Yan Chen
Tassos D, Dimitriou
Jianying Zhou {Eds.}

Lecture Notes of the Institute
for Computer Sciences, Social-Informatics
and Telecommunications Engineering 19

Editorial Board

Ozgur Akan

Middle East Technical University, Ankara, Turkey
Paolo Bellavista

University of Bologna, Italy
Jiannong Cao

Hong Kong Polytechnic University, Hong Kong
Falko Dressler

University of Erlangen, Germany
Domenico Ferrari

Universita Cattolica Piacenza, Italy
Mario Gerla

UCLA, USA
Hisashi Kobayashi

Princeton University, USA
Sergio Palazzo

University of Catania, Italy
Sartaj Sahni

University of Florida, USA
Xuemin (Sherman) Shen

University of Waterloo, Canada
Mircea Stan

University of Virginia, USA
Jia Xiaohua

City University of Hong Kong, Hong Kong
Albert Zomaya

University of Sydney, Australia
Geoffrey Coulson

Lancaster University, UK

Yan Chen Tassos D. Dimitriou
Jianying Zhou (Eds.)

Security and Privacy
1in Communication
Networks

5th International ICST Conference
SecureComm 2009

Athens, Greece, September 14-18, 2009
Revised Selected Papers

@ Springer

Volume Editors

Yan Chen

Northwestern University, Department of Electrical Engineering
and Computer Science, Robert R. McCormick School

of Engineering and Application Science, 2145 Sheridian Road
Evanston, IL 60208-3118, USA

E-mail: ychen@northwestern.edu

Tassos D. Dimitriou

Athens Information Technology
Markopoulo Ave.

GR-19002, Peania, Greece
E-mail: tdim@ait.edu.gr

Jianying Zhou

Institute for Infocomm Research

1 Fusionopolis Way, 21-01

Connexis, South Tower, 138632 Singapore
E-mail: jyzhou@i2r.a-star.edu.sg

Library of Congress Control Number: 2009938038

CR Subject Classification (1998): C.2, D.4.6, K.6.5, K.4.4, J.1

ISSN 1867-8211
ISBN-10 3-642-05283-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-05283-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12773008 06/3180 543210

Preface

SecureComm 2009, the 5th International ICST Conference on Security and Pri-
vacy in Communication Networks, was held in Athens, Greece, September 14-17,
2009. SecureComm was organized by the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering (ICST). The General Chair of
the conference was Peng Liu from the Pennsylvania State University, USA.

The conference received 76 submissions (one withdrawn) and each submis-
sion received at least three reviews, with some papers receiving as many as five
reviews. The first phase of the review process (April 7 to May 27) generated 290
reviews overall or about 3.8 reviews per submission. In the second phase (May
28 to June 12), a two-week online discussion was initiated ensuring consensus
for each accepted paper. The review process was challenging and we are deeply
grateful to the committee members and the external reviewers for their outstand-
ing work. The Program Committee consisted of 64 academics and professionals
well known in their corresponding area of expertise.

After meticulous deliberation, the Program Committee, which was chaired
by Yan Chen from Northwestern University, USA and Tassos Dimitriou from
Athens Information Technology, Greece, selected 19 full papers and 7 short ones
for presentation in the academic track and inclusion in this volume. This gives
the acceptance rates of 25.3% for the full papers and 34.7% for all papers.

The program also included two invited talks in addition to the academic and
industrial tracks. The invited talks were given by Sal Stolfo from Columbia Uni-
versity on “Polymorphic Shellcode: The Demise of Signature-based Detection,”
and Bart Preneel from Katholieke Universiteit Leuven, Belgium on “Upgrading
Cryptographic Algorithms for Network Security.” We would like to genuinely
thank them for accepting our invitation and for contributing to the success of
SecureComm 2009.

Finally, we would like to thank the technical sponsors CreateNet, ICST, and
the Institute of Informatics and Telecommunications (II'T) of the Greek National
Centre for Scientific Research “Demokritos” for their support. We would like to
thank all the people involved in the organization of this conference. In particular,
we would like to thank the Publication Chair Jianying Zhou, the Conference Co-
ordinators Gergely Nagy and Eszter Hajdu, the Website Coordinator Kun Bai,
and the Steering Committee members, namely, Imrich Chlamtac and Krishna
Sivalingam.

September 2009 Yan Chen
Tassos Dimitriou
Peng Liu

SecureComm 2009

5th International Conference on
Security and Privacy in Communication Networks

Athens, Greece
September 14-18, 2009

Organized and Sponsored by

Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering (ICST)

General Chair

Peng Liu Penn State University, USA

Technical Program Chairs

Yan Chen Northwestern University, USA
Tassos Dimitriou Athens Information Technology, Greece

Publicity Chair

Morley Mao University of Michigan, USA

Publication Chair

Jianying Zhou Institute for Infocomm Research, Singapore

Sponsorship Chair

Effie Makri Institute of Informatics and
Telecommunications, Greece

Workshop Chair

Reza Curtmola NJIT, USA

VIII Organization

Conference Coordinator

Gergely Nagy

ICST

Website Coordinator

Kun Bai

Penn State University, USA

Technical Program Committee

Ehab Al-Shaer
Feng Bao

Paul Barford
Nikita Borisov
Hao Chen

Shuo Chen
Songqing Chen
Yingying Chen
Mauro Conti
Bruno Crispo
Reza Cutmola
George Danezis
Sven Dietrich
Xuhua Ding
Yingfei Dong
Roberto DiPietro
Cristian Estan
Felix C. Freiling
David Galindo
Guofei Gu

Yong Guan
Peter Gutmann
Markus Jakobsson
Brent Hoon Kang
Nikos Komninos
loannis Krontiris
Brian LaMacchia
Loukas Lazos
Javier Lopez
Zhichun Li
Donggang Liu
Peng Liu

Kostas Markantonakis
Jelena Mirkovic

DePaul University

Institute for Infocomm Research
University of Wisconsin-Madison
University of llinois at Urbana-Champaign
University of California, Davis

Microsoft Research

George Mason University

Stevens Institute of Technology
University of Rome

University of Trento

New Jersey Institute of Technology
Microsoft Research

Stevens Institute of Technology
Singapore Management University
University of Hawaii

University of Rome

University of Wisconsin-Madison
University of Mannheim

University of Luxembourg

Texas A&M University

Towa State University

University of Auckland

Palo Alto Research Center

University of North Carolina at Charlotte
Athens Information Technology
University of Mannheim

Microsoft

University of Arizona

University of Malaga

Northwestern University

University of Texas at Arlington

Penn State University

University of London

USC Information Sciences Institute

John Mitchell
David Molnar
Panos Papadimitratos
Kenny Paterson
Adrian Perrig
Radha Poovendran
Neeli R. Prasad
Kui Ren

Pierangela Samarati
Sanjeev Setia
Jessica Staddon
Yannis Stamatiou
Angelos Stavrou
Paul Syverson
Patrick Traynor
Haining Wang
XiaoFeng Wang
Dirk Westhoff
Avishai Wool

Felix Wu

Yinglian Xie
Dongyan Xu
Yanjiang Yang
Vinod Yegneswaran
Yanchao Zhang
Ben Y. Zhao
Jianying Zhou

Bo Zhu

Sencun Zhu

Cliff Zou

Organization

Stanford University

University of California, Berkeley
EPFL

Royal Holloway, University of London
Carnegie Mellon University
University of Washington

Center for TeleInFrastruktur
Illinois Institute of Technology
University degli Studi di Milano
George Mason University

Palo Alto Research Center
University of Ioannina

George Mason University

Naval Research Laboratory
Georgia Tech

College of William and Mary
Indiana University

NEC Europe

Tel Aviv University

University of California, Davis
Microsoft Research

Purdue University

Institute for Infocomm Research
SRI International

New Jersey Institute of Technology
University of California, Santa Barbara
Institute for Infocomm Research
Concordia University

Penn State University

University of Central Florida

Steering Committee

Imrich Chlamtac (Chair) Create-Net, Italy

Krishna Sivalingam
(Co-chair)

Andreas Schmid
Peng Liu

University of Maryland Baltimore County,
USA

Novalyst IT, Germany

Penn State University, USA

IX

Table of Contents

Wireless Network Security 1
Mitigating DoS Attacks on the Paging Channel by Efficient Encoding

in Page MeSSages . ..ottt e 1
Liang Cai, Gabriel Maganis, Hui Zang, and Hao Chen
F1JI: Fighting Implicit Jamming in 802.11 WLANs................... 21

Toannis Broustis, Konstantinos Pelechrinis, Dimitris Syrivelis,
Srikanth V. Krishnamurthy, and Leandros Tassiulas

Deny-by-Default Distributed Security Policy Enforcement in Mobile
Ad Hoc Networkso 41
Mansoor Alicherry, Angelos D. Keromytis, and Angelos Stavrou

Network Intrusion Detection

Baiting Inside Attackers Using Decoy Documents 51
Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis, and
Salvatore J. Stolfo

MULAN: Multi-Level Adaptive Network Filter 71
Shimrit Tzur-David, Danny Dolev, and Tal Anker

Automated Classification of Network Traffic Anomalies 91
Guilherme Fernandes and Philippe Owezarski

Security and Privacy for the General Internet
Formal Analysis of FPH Contract Signing Protocol Using Colored Petri
Magdalena Payeras-Capella, Macia Mut-Puigserver,

Andreu Pere Isern-Deya, Josep L. Ferrer-Gomila, and
Lloren¢ Huguet-Rotger

On the Security of Bottleneck Bandwidth Estimation Techniques 121
Ghassan Karame, David Gubler, and Srdjan Capkun

An Eavesdropping Game with SINR as an Objective Function 142
Andrey Garnaev and Wade Trappe

Malware and Misbehavior

Ensemble: Community-Based Anomaly Detection for Popular
Applications. 163
Feng Qian, Zhiyun Qian, Z. Morley Mao, and Atul Prakash

XII Table of Contents

Using Failure Information Analysis to Detect Enterprise Zombies
Zhaosheng Zhu, Vinod Yegneswaran, and Yan Chen

Dealing with Liars: Misbehavior Identification via Rényi-Ulam

William Kozma Jr. and Loukas Lazos

Wireless Network Security II, Sensor Networks

Multichannel Protocols for User-Friendly and Scalable Initialization of
Sensor NetworKsot
Toni Perkovié, Ivo Stanci¢, Luka Malisa, and Mario Cagalj

Aggregated Authentication (AMAC) Using Universal Hash Functions. . .
Wassim Znaidi, Marine Minier, and Cédric Lauradouz

Sec-TMP: A Secure Topology Maintenance Protocol for Event Delivery
Enforcement in WSN
Andrea Gabrielli, Mauro Conti, Roberto Di Pietro, and
Luigi V. Mancini

Hierarchical Self-healing Key Distribution for Heterogeneous Wireless
Sensor Networkso
Yanjiang Yang, Jianying Zhou, Robert H. Deng, and Feng Bao

Key Management, Credentials, Authentications

User—Centric Identity Using ePassports
Martign Qostdigk, Dirk-Jan van Dijk, and Maarten Wegdam

Defending against Key Abuse Attacks in KP-ABE Enabled Broadcast
SYSTEIMS . . ottt
Shucheng Yu, Kui Ren, Wenjing Lou, and Jin Li

Breaking and Building of Group Inside Signature
S. Sree Vivek, S. Sharmila Deva Selvi, S. Gopi Nath, and
C. Pandu Rangan

Use of ID-Based Cryptography for the Efficient Verification of the
Integrity and Authenticity of Web Resources
Thanassis Tiropanis and Tassos Dimitriou

Wireless Network Security II1

Self-organized Anonymous Authentication in Mobile Ad Hoc
Networks
Julien Freudiger, Maxim Raya, and Jean-Pierre Hubauz

Table of Contents XIII

An Active Global Attack Model for Sensor Source Location Privacy:
Analysis and Countermeasures.uuiitiniinineeneenn... 373
Yi Yang, Sencun Zhu, Guohong Cao, and Thomas LaPorta

Rogue Access Point Detection Using Innate Characteristics of the
80211 MAC . . 394
Aravind Venkataraman and Raheem Beyah

Secure Multicast, Emerging Technologies

A Novel Architecture for Secure and Scalable Multicast over IP
Network ..o 417
Yawen Wei, Zhen Yu, and Yong Guan

Reliable Resource Searching in P2P Networks 437
Michael T. Goodrich, Jonathan Z. Sun, Roberto Tamassia, and
Nikos Triandopoulos

The Frog-Boiling Attack: Limitations of Anomaly Detection for Secure
Network Coordinate Systems 448
Eric Chan-Tin, Daniel Feldman, Nicholas Hopper, and Yongdae Kim

Author Index 459

Mitigating DoS Attacks on the Paging Channel
by Efficient Encoding in Page Messages

Liang Cail, Gabriel Maganis!, Hui Zang?, and Hao Chen!

! Computer Science Department, University of California, Davis
{1ngcai,gymaganis}@ucdavis.edu,
hchen@cs.ucdavis.edu
2 Sprint Advanced Technology Labs
hui.zang@sprint.com

Abstract. Paging is an important mechanism for network bandwidth
efficiency and mobile terminal battery life. It has been widely adopted by
mobile networks, such as cellular networks, WiMax, and Mobile IP. Due
to certain mechanisms for achieving paging efficiency and the conver-
gence of wireless voice and data networks, the paging channel is vulner-
able to inexpensive DoS attacks. To mitigate these attacks, we propose
to leverage the knowledge of the user population size, the slotted nature
of the paging operation, and the quick paging mechanism to reduce the
length of terminal identifiers. In the case of a CDMA2000 system, we can
reduce each identifier from 34 bits down to 7 bits, effectively doubling the
paging channel capacity. Moreover, our scheme incurs no paging latency,
missed pages, or false pages. Using a simulator and data collected from
a commercial cellular network, we demonstrate that our scheme doubles
the cost for DoS attackers.

Keywords: Paging, DoS Attacks, General Page Message, Quick
Paging.

1 Introduction

The biggest advantage of mobile networks over wired networks is mobility, which
allows users to access the network from different locations. Mobile networks
achieve mobility through Macro-mobility management and Micro-mobility man-
agement. The former ensures that mobile terminals (e.g., cell phones and laptops
with wireless cards) are addressable when they roam between different domains,
while the latter manages the mobile terminal’s movement between access points
or base stations within the same domain. While implementations vary across
mobile networks, macro-mobility management always requires roaming users to
notify the network each time they arrive at a new domain. By contrast, a similar
scheme, which would require terminals to update their locations every time they
move to a new access point or base station, is impractical for micro-mobility
management for several reasons. First, location updates would be much more
frequent than in macro-mobility management, which would consume significant

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. IE 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

2 L. Cai et al.

wireless bandwidth and mobile terminal power. Second, to trace their own loca-
tions, terminals must continuously monitor the beacon or pilot channel of base
stations, which would drain their batteries even faster.

Paging is a critical mechanism to improve the bandwidth and terminal energy
efficiency in micro-mobility management. The designer divides the network into
paging areas and requires terminals to notify the network about their location
only when they enter a new paging area. Each paging area is usually large enough
so that location updates are infrequent even for highly mobile terminals. Mean-
while, terminals monitor the network at longer intervals and enter the idle mode
in between. When an incoming call arrives, the network controller broadcasts a
page message to the entire paging area. If the terminal is located in the paging
area, it responds to acquire a traffic channel. As an efficient location management
scheme, paging has been widely adopted in mobile networks, including cellular
communication systems (GSM[I], W-CDMA and CDMA2000[2]), WiMax[3] and
Mobile IP systems[4].

There are a pair of low-bandwidth channels in a cellular network used for loca-
tion management. The downlink channel, often referred to as the paging channel,
is used for paging while the uplink channel (the access channel) is used for lo-
cation updates. To lower the bandwidth requirement on the access channel, we
desire larger paging areas; however, larger paging areas would increase the load
on the paging channel since all the users in the same paging area share the same
paging channel. Concentrated flash crowds could even lead to temporary paging
channel overload or saturation. This tradeoff between bandwidth requirement
and paging area size is known as the paging efficiency problem.

The recent convergence of wireless voice and data networks exacerbates this
problem. Besides incoming voice calls, incoming short messages (SMSs) and
data packets may also increase the load on the paging channel. This provides
attackers with an opportunity to launch a DoS attack on wireless networks from
the Internet, possibly with very low cost. For example, Serror et al. showed how
to saturate the paging channel of a cellular network by sending data packets
from the Internet at a very low cost [5], and Enck et al. showed how to disrupt a
cellular network in a major city by sending SMS messages of a sufficient rate [6].

If we improve paging efficiency, we could not only accommodate flash crowds
but also mitigate DoS attacks. Previous approaches focused on reducing the
number of paging requests (e.g., by predicting terminals’ locations [7]). In this
paper, we take a different approach by increasing the number of paging requests
that the paging channel can carry. A page message contains the identifiers of
all the paged mobile terminals. Our key insight is that the shorter the lengths
of these identifiers are, the more terminals a single page message can page.
Towards this goal, we propose a series of methods for shortening terminal IDs
by leveraging the knowledge of the population size in a paging area, by grouping
terminals based on paging channel slots, and by using special Bloom filters in
quick paging. When applying these methods to a CDMA2000 system, we are
able to reduce the length of each terminal ID from 34 bits to 7 bits, which we
shall show doubles the number of terminals that one page message can contain.

Mitigating DoS Attacks on the Paging Channel 3

Since our scheme only shortens terminal IDs, it has no adverse effect on paging
performance (e.g., paging latency, missed page rate, false paging) and requires
little change to the paging protocols.

The rest of the paper is organized as follows: We describe the paging channel
operation and page message format in Section 2] and show the importance of
improving paging efficiency. We present the optimization schemes for reducing
the terminal ID length in Section Bl We then evaluate the scheme using an
experiment on a real cellular system and a simulation tool and illustrate the
results in Section Ml After comparing our scheme with several related works in
Section Bl we conclude in Section

2 Paging Channel Operation

In this section, we first describe the paging channel operation and the page
message format in the context of a cellular network using CDMA2000 technology.
To show that our scheme is not limited to cellular systems, we explore the page
operations in other mobile systems and discuss their differences from cellular
systems.

2.1 Paging Channel Operation

A mobile network needs to track the location of the mobile terminals so that it
can deliver data and voice calls to their intended recipients. A simple solution
would be to require mobile terminals to report their locations through location
updates whenever their locations change. However, since mobile devices are typi-
cally resource (e.g., battery power) constrained, requiring them to remain in the
“active state” just to report their locations would be inefficient. Thus, mobile
operators typically divide their networks into location areas, and mobile termi-
nals report their locations only when they enter a new location area. When a
new call or data packet arrives, the network pages the recipient mobile terminal
in the location area. Therefore, paging and location updates are key components
in mobility management in a mobile network.

CDMA2000 networks have a dedicated channel, the paging channel, that de-
livers page messages to mobile terminald]. Mobile terminals monitor this channel
through a Time Division Multiple Access (TDMA) scheme. The network divides
a paging cycle (either 2.56 or 5.12 seconds) into slots (either 32 or 64 slots,
respectively). Thus, a mobile terminal stays in the idle mode, when the power
consumption is minimal, most of the time and wakes up only during its assigned
slot (whose duration is 80 ms) to determine whether it has been paged. The net-
work assigns a mobile terminal to a slot based on the terminal’s International
Mobile Station Identifier (IMSI). Figure [illustrates the structure of 32-slot
paging channel.

When an incoming call (or downlink data packet) arrives, the mobile switching
center (MSC) broadcasts a General Page Message (GPM) to the location area

1 A CDMA system can be configured to have at most seven paging channels.

4 L. Cai et al.

ry

cycle

h 4
Fy

cycle ———»f

o1 i oj31fo|1 { 30 | 31

Fig. 1. An example structure of a paging channel [5]. A mobile terminal is in idle mode
except during the " slot, when it wakes up and monitors the paging channel.

Base station Mobile

General Page Message (GPM)

Page Response Message(PRM)

Acknowledgement (ACK)

paging delay

Channel Assignment Message (CAM)

—= Paging Channel

—<—— Access Channel

Fig. 2. Messages exchanged between a base station and a mobile terminal during a
paging operation

(also known as the paging area) during the recipient mobile terminal’s assigned
slot. When the mobile terminal finds that it has been paged, it will respond
through the associated base station with a Page Response Message (PRM).
Then, the MSC sends an acknowledgment message (ACK) and a Channel As-
signment Message (CAM) to the mobile terminal. The mobile terminal responds
to the CAM with an ACK to establish a connection with the base station over the
assigned traffic channel. Both the ACKs and the CAMs are sometime referred
as non-slotted messages, since they can be sent during any slot (After sending
the PRM, the terminal leaves the slotted mode and monitors all the slots). On
the other hand, GPMs are slotted messages, which must be sent during the re-
cipient mobile terminal’s assigned slot. Figure [2 shows the messages exchanged
between the base station and a mobile terminal during the paging process when
an incoming call arrives. After this step, the terminal communicates with the
base station on the assigned traffic channel only.

The number of slotted messages in the paging channel greatly exceeds that of
non-slotted messages. When the MSC sends a slotted message, it does not know

Mitigating DoS Attacks on the Paging Channel 5

the location of the recipient, so it has to broadcast the page message to all the
base stations in the paging area. By contrast, it needs to send the subsequent
non-slotted messages to only the base station as determined from the PRM. Be-
sides slotted messages and non-slotted messages, the paging channel is also used
for transmitting system parameters, which are sometimes regarded as overhead
traffic in the paging channel. These messages occupy the paging channel based
on the paging load. The more GPMs there are, the fewer overhead messages will
be sent. Typically, overhead traffic takes at least 25% of the capacity.

2.2 Paging Message Format

In the CDMA2000 standard, the specification for the GPM format is highly
flexible, so GPMs in different systems may vary in length and pattern. Figure [3]
shows an actual GPM that we captured from a mobile device in a live commercial
CDMA2000 network. We can see that a GPM is composed of a header, several
page records, padding, and the CRC.

Page records comprise the main body of a page message. Among all the fields
in a page record, the terminal identifier field plays a critical role in the paging

Field value length(bit)
General Paging Message
Message Header

MSG LENGTH 0000xxxx 8
MSG ID 010001 6
CONFIG MSG SEQ 000011 6
ACC MSG SEQ 011101 6
CLASS 0 DONE 1 1
CLASS 1 DONE 1 1
TMSI DONE 1 1
ORDERED TMSIS 0 1
BROADCAST DONE 1 1
RESERVED 0000 4
ADD LENGTH 000 3

Mobile Station 1
PAGE CLASS 00 2
PAGE SUBCLASS 00 2
MSG SEQ 100 3
IMSI S (xxXX) XXX-XXXX 34
SDU INCLUDED 1 1
SERVICE OPTION XX 16

Mobile Station 2

Message end Padding

PDU PADDING 0000 4
CRC 30

Fig. 3. The format of an actual General Paging Message. A 34-bit IMSI S is used as
the terminal identifier, and the length of each page record is 58 bits, while the header
and the tail are 38 and 30 bits long, respectively.

6 L. Cai et al.

operation. This field may use many identifier types, indicated by the PAGE
CLASS and PAGE SUBCLASS fields, listed in the CDMA2000 specification [§].
In our example, the terminal’s IMSI S (a 10-digit number derived from the ter-
minal’s International Mobile Subscriber Identity (IMSI)) is used as the identifier.
In a GPM, the IMSI S is encoded into a 34-bit string. Other optional identifier
types have similar length (e.g., a TMSI is 32 bits) or longer.

Another important field in page records is the SERVICE OPTION. It informs
the terminal of the type of the incoming call. This is important since the message
after the GPM could be of different service types. For example, the GPM is
always followed by Channel Assignment Message(CAM) in the case of a voice
call, but the CAM can be replaced by a Data Burst Message (DBM) in the case
of text service.

2.3 Paging Operation in Other Mobile Networks

IEEER02.16 systems such as WiMax [9] or Hpi [10] do not use separated slotted
channels in their paging operations. When a WiMax terminal is not engaged in
communication, it enters the idle mode, which works in four stages: idle mode
wnitialization, idle mode entry, idle mode operation and idle mode ezit. Idle mode
can be initiated either by the mobile terminal or the base station. When the mo-
bile terminal initiates the idle mode, it sends a deregistration request message
(DREG-REQ); when the base station initiates the idle mode, it sends a DREG-
CMD message to the terminal, which responds with a DREG-REQ message. The
base station then notifies the paging controller of the terminal’s service informa-
tion. The paging controller decides the PAGING CYCLE, PAGING OFFSET,
and Paging Listen Interval (PLI) parameters and sends them to the terminal
in a DREG-CMD message via the base station. Then, the terminal wakes up
during the Paging Listen Interval periodically to check for a MOB-PAG-ADV
message (the GPM’s counterpart in a WiMax system). The message consists of a
48-bit MAC header, several page group IDs, several page records, and padding.
The length of each page record is 32 bits. A paged terminal is identified with a
hash value of its 24-bit MAC address.

Mobile TP systems also propose a paging operation [TTIT2IT3/4IT4]. In most of
these schemes, a terminal’s home IP address is used as its identifier in the page
message, so the identifier is 32 bits in [Pv4 systems and 128 bits in IPv6 systems.

2.4 Paging Channel Overload Problem

Recall that the size of a paging area determines how often mobile terminals send
location updates. The smaller a paging area is (i.e., containing fewer cells), the
more frequently a terminal with high mobility needs to send location updates,
which consumes more power and generates more traffic on the access (uplink sig-
naling) channel, which is also a low-bandwidth channel like the paging channel.
To avoid this adverse effect, in current cellular networks, a paging area usually
consists of hundreds of cells.

Equation [I] calculates the maximum number of terminals that can be paged
in each slot per paging area, where we assume that the bandwidth of the paging

Mitigating DoS Attacks on the Paging Channel 7

channel is 9600bps, the duration of a paging slot is 0.08s, the overhead traffic
occupies 25% of the channel capacityE7 the length of the page message header is
38, the length of the CRC value is 30, and the length of each page record is 58.

9600 x 0.08 x (1 —0.25) — 38 — 30J _g (1)
58

Equation [Ml shows that the call arrival rate to a paging area is limited to 100

per second (8 calls / 0.08 second). Given the size of a typical paging area, this

maximum call arrival rate is acceptable when only voice calls are paged. However,

when the network provides more and more text and data services, this upper

bound makes the paging operation an essential bottleneck.

Worse yet, the paging channel has become an ideal target of Denial of Service
(DoS) attacks on the cellular network. [B] described such an attack by flooding
the network with UDP packets. When a mobile terminal establishes a wire-
less data connection with the network, it acquires an IP address. The network
reserves the address for the terminal until the terminal disconnects from the
network, even when it is in the idle mode. The DoS vulnerability lies within the
fact that when a data packet arrives at the mobile network, the recipient mobile
terminal needs paged. Since it is relatively easy to find the IP subnets assigned
to a mobile service provider, an attacker on the Internet can flood these IPs with
UDP packets to trigger a flood of page messages within the mobile network. The
authors explored the feasibility of this attack by conducting experiments on a
live commercial CDMA2000 network. Due to legal and ethical constraints, the
goal of the experiments was only to increase the paging channel load by 10%.
The authors predicated that the performance of the network would degrade fur-
ther if they had increased the attack load or if the attacks had been carried out
in a busy area.

Nmam = I_

3 Efficient Encoding in Page Records

To mitigate paging channel overload, we wish that a page record can carry more
terminal IDs. However, the length of a page record is determined by its slot
duration and the paging channel bandwidth, both of which are constrained by
system configurations and physical limitations. Instead, we investigate how to
fit more terminal IDs into existing page records.

The CDMA2000 specification, for example, supports different types of termi-
nal IDs [2], but most of them are longer than 30 bits. IMSI S, one of the most
commonly used terminal ID, is 34 bits, and a TMSI is 32 bits. Typically, termi-
nal IDs account for more than half of a page record’s size. Therefore, they are a
good target for optimization. Moreover, terminals IDs are universal in all paging
systems, while other fields in page records are system specific.

For convenience, we describe our scheme for efficiently encoding terminals IDs
in the context of a CDMA2000 system, although the principle applies to other

2 95% is a common overhead load. When the overhead traffic load is less than 25%,
we occasionally observe GPMs with 9 records in real paging data.

8 L. Cai et al.

mobile networks, such as WiMax and Mobile IP. Using a series of techniques, we
are able to reduce terminal IDs from 34 bits down to only 7 bits, as described
in detail below.

3.1 Approaches

Optimization using Knowledge about Population Size in a Paging
Area. One reason why the IMSI S is long is that it is globally unique. However,
the paging operation only needs to differentiate between terminals in the same
paging area. Therefore, as the first step, we replace the globally unique IMSI S
with a locally unique identifier. As we observed from a commercial CDMA2000
system, the number of terminals in a single paging area, including the most pop-
ulated areas such as Manhattan, does not exceeded one million. This indicates
that 20 bits suffice for locally unique IDs.

Optimization using the Slotted Nature of the Paging Channel. Sec-
tion 24 showed that a cellular network divides the paging channel into 32 or 64
slots. Each terminal wakes up in only one slot (calculated based on its IMSI) in
the paging cycle to listen to the page message. In other words, terminals in a
paging area are divided into distinctive slot groups by their slot numbers. Since
a terminal only listens to one slot, their local IDs need to be unique only within
each slot group. A typical CDMA 2000 system has 64 slots. If all the terminals
in a paging area are evenly divided into slot groups, no slot group should contain
more than 22/64 = 24 terminals. Therefore, we can reduce the length of local
IDs further to 14 bits.

Optimization using the Quick Paging Mechanism. Finally, we decrease
the length of the local IDs even further by using the Quick Paging channel. Quick
Paging is a standardized operation adopted by most mobile networks to reduce
terminals’ wakeup time to improve their power efficiency. Similar to the Paging
Channel operation, the Quick Paging channel is also divided into slots. In fact, a
terminal’s quick paging channel slot occurs exactly 100ms earlier than its paging
channel slot. The purpose of Quick Paging is to convey “paging indicator bits”
to help terminals pre-determine whether they are paged. Towards this goal, each
quick paging slot is divided into four frames, and each frame carries a sequence
of indicator bits. Each terminal has two indicator bits. The system calculates the
positions of these two bits in the quick paging frames by feeding the terminal’s
IMSI into two hash functions. The standard requires that these two indicator
bits occur in either the first and third frames, or the second and fourth frames
(so that a terminal needs to wake up in only half of the frames). If a terminal
detects that either one of its indicator bits is not set, it is not paged and therefore
will stay idle in the coming paging slot; otherwise, it might be paged, so it will
wake up in the coming paging slot. Quick paging increases the wakeup duration
of the paged terminals by half, but decreases the wakeup duration of unpaged
terminals by at least half (because the terminal only wakes up in two of the four
frames of the quick paging slot). Since typically only a small fraction of terminals
are paged, quick paging reduces the overall wakeup time of all terminals.

Mitigating DoS Attacks on the Paging Channel 9

The Quick Paging operation uses a special Bloom filter. Due to the false posi-
tives inherent in Bloom filters, quick paging cannot replace the paging operation.
However, we can take advantage of quick paging to reduce the length of local
IDs further. Since quick paging instructs only a very small fraction of terminals
to wake up and listen to their paging slots, the local IDs need to differentiate
only between the terminals that are truly paged and those that are not paged
but whose paging indicator bits are set due to the inaccuracy of the Bloom filter.

As mentioned earlier, the first indicator bit of a terminal must be in either
the first or second frame. In our reference CDMA system, the quick paging
channel operates at full speed (9600 bps) and each frame is 20ms, so there are
9600 x 0.02 x 2 = 384 bits in the first two frames. The CDMA2000 specification
uses several bits in these frames as broadcast bits so the total number of bits
used as paging indicators in the first two frames is 368. Since we only need to
differentiate between the terminals whose first indicator bits are at the same
location in the first two quick paging frames, we can reduce the local ID space
further. Assuming that the locations of the first indicator bits of all terminals
are evenly distributed, we can reduce the local ID space by 368 ~ 2%. As a result,
we would need only 14 — 8 = 6 bits to represent each local ID. We discuss our
scheme below.

If no first indicator bits of the paged terminals share the same location, we
can order the local IDs in the page record by the order of their corresponding
first indicator bits in the quick page frames. For example, if a terminal’s first
indicator bit is the i, set bit in the quick page frames, the terminal will check
the 4, local ID in the page record (to see if it is really paged or if its first
indicator bits are set merely due to Bloom filter inaccuracy)ﬁ

However, the above solution would not work when multiple terminals are
paged but their first indicator bits share the same location in the quick paging
frames. To solve this problem, in the page record, we group terminals by the
locations of their first indicator bits, and prepend a group bit to each local ID.
We set the group bit of the first terminal in a group to 1, and the group bits
of all the other terminals in the same group to 0. For example, in Figure [the
first indicator bits of both Terminal 1 and 4 are at the same position in the first
quick paging frame. Therefore, in the page record, the group bit of Terminal 1
is 1 since it is the first terminal in this group, and the group bit of Terminal 4
is 0 since it is not the first terminal in this group.

We summarize the paging operation from a terminal’s perspective. When a
terminal joins a paging area, the network assigns a 6-bit ID to the terminal.

3 A subtle complication occurs when the first indicator bit of a mobile terminal is in
the second quick page frame. In this case, since the mobile terminal does not listen
to the first quick page frame, it does not know how many bits are set there, so it
does not know the position of its page record in the page frame. We can solve this
problem by a simply trick: rather than calculating its position from the beginning
of the frame, the above terminal should calculate its position from the end of the
frame. For example, if a mobile terminal’s first indicator bit is the ij set bit from
the end of the second quick page frame, it should check the i;;, page record from the
end of the page frame for its local ID.

10 L. Cai et al.

Paged terminals

9999 9949

Termirtal 1 Tefminal 2 Termin

First Indicator bit
inframe 1 or 2

Frame 1 Frame 2

Quick Paging Channel

Page Mes'ﬁageﬁader

PAGE_CLASS 1 Terminal 2 SDU FLAG
MSQ_SEQ Local Page Index SERVICE OPT

PAGE_CLASS 1 Terminal 1 SDU FLAG
MSQ_SEQ Local Page Index SERVICE OPT

PAGE_CLASS 0 Terminal 4 SDU FLAG
MSQ_SEQ Local Page Index SERVICE OPT

page PAGE_CLASS 1 Terminal 6 SDU FLAG
records MSQ_SEQ Local Page Index SERVICE OPT

PAGE_CLASS Terminal 3 SDU FLAG
MSQ_SEQ Local Page Index SERVICE OPT

PAGE_CLASS 0 Terminal 7 SDU FLAG
MSQ_SEQ Local Page Index SERVICE OPT

\ PAGE_CLASS 1 Terminal 5 SDU FLAG
MSQ_SEQ Local Page Index SERVICE OFT

Page Message End Padding

General Page Message

Fig. 4. An example of an optimized GPM based on quick paging. Seven paged terminals
are ordered by the position of their corresponding first indicator bits. Those with the
same first indicator bits are grouped by a group bit.

The terminal then calculates the position of its slot in the page message and the
positions of its first and second indicator bits in the quick page message. In each
paging cycle, the terminal wakes up to listen to two of the four frames in its slot
in the quick page message. If both the first and second indicator bits are set, the
terminal wakes up to listen to its paging channel slot to receive the page record.
Using the method described in Section Bl the terminal compares its local 1D
with the corresponding one in the page record. If they match, the terminal is
paged.

Mitigating DoS Attacks on the Paging Channel 11

3.2 Bandwidth Gain

For our reference CDMA2000 system, our scheme reduces the length of local IDs
from 34 bits down to 7 bits, and the length of each pag/doubing records from 58
bits to 31 bits. After applying our scheme, the maximum number of page records
per slot increases from 8 to 16(Figure [H).

Without our scheme With our scheme

Terminal identifier length 34 7
Page record length 58 31
Maximum page records per each slot 8 16

Fig. 5. Our scheme doubles the maximum page records per slot

3.3 Implementation Requirements

Implementing our scheme is straightforward. It requires only the following mod-
ifications to the existing paging operation.

— Local ID management by Paging Controller. The paging controller
(PC) maintains all the local IDs of terminals in the paging area. When a
terminal arrives, the PC searches for an unused local ID and assigns it to the
terminal. When an incoming call for the terminal arrives, the PC constructs
a GPM using the local ID. When the terminal leaves, the PC reclaims the
local ID. Given the high computational power of the paging controller, such
management overhead is negligible.

— Local ID transfer. Our scheme requires that the paging controller sends the

local ID to the terminal. The controller can do this during user registration.
Since the local ID is only several bits, the overhead is negligible.
To determine the length of local IDs, the paging controller must estimate
the maximum number of terminals in the same paging area. If the controller
finds this estimate insufficient, it may increase the length of local IDs and
broadcast the new length to all the terminals in a configuration message.

— Terminal modification. Our scheme requires slight modification to the
paging module in terminals. Note that our scheme does not change the pro-
tocol messages; rather it merely changes the algorithm by which a terminal
searches for its local ID in the page record.

3.4 Advantages

Simplicity. Our scheme does not cause any adverse effects, such as paging la-
tency, false paging, and missed paging, that other schemes often suffer from. Our
scheme is compatible with and complementary to many other schemes, such as
the ones based on location prediction [7].

12 L. Cai et al.

Versatility. Besides cellular networks, our scheme applies to many other mo-
bile networks. WiMax, for example, can also benefit from this page message
optimization, although it uses a very different paging operation. Instead of us-
ing slots to determine terminals’ wakeup time, the base station and the mo-
bile station in WiMax negotiate the numerical values of the PAGING CYCLE,
PAGING OFFSET and PAGING LISTEN INTERVAL parameters through the
DREG CMD and DREG REQ@ message pair. Such mechanism invalidates our
scheme where it groups terminals by their wake up slots. However, [9] proposes
to group WiMax terminals by aligning their PAGING OFFSET so that their
page messages can be merged into one message. The essence of the scheme is
to borrow the concept of slots from cellular networks. This proposal makes our
idea of using a shorter identifier local to each slot feasible again. Furthermore,
[15] and [16] propose a quick paging channel for IEEE802.16, making our entire
scheme applicable to WiMax systems. In WiMax’s page message, MOB-PAG-
ADYV, the mobile identifier, is a 24-bit hash value of the MAC address, so false
paging is inevitable. Our scheme, by contrast, can eliminate the unnecessary
false paging in WiMax.

4 Evaluation

We evaluate the effectiveness of our scheme on mitigating DoS attacks and on
increasing the capacity of the paging channel. Since modifying a commercial cel-
lular system and launching a full-fledged DoS attack are prohibited, we demon-
strate the performance of our scheme using real paging data collected from a
live cellular network as well as using a simulation tool.

4.1 Evaluation Based on Partial DoS Attack on Live Cellular
Network

One advantage of our scheme is that it does not change existing paging protocols,
as our scheme merely changes the terminal IDs inside the GPM. Therefore, we
can use paging data measured on a real paging system to infer the performance
of our scheme (such as its impact on reducing channel utilization) with one
exception: During high paging load, the paging controller without applying our
scheme may not be able to page all the requested terminals in a slot, so it will
page some of these terminals in the next paging cycle instead. Since our scheme
allows the paging controller to fit more terminal IDs into one page message,
it will eliminate some or all of these delays. In this case, the terminals paged
in each paging cycle would be different if the paging system had adopted our
scheme.

Based on the above observation, we recreated the partial DoS attack exper-
iment described in [5]. We captured GPMs over an CDMA2000 interface. We
then launched a partial DoS attack by injecting UDP packets from the Internet
to data users of the cellular network. Using the captured GPMs, we calculated
the utilization of the paging channel by GPMs. To infer the channel load when

Mitigating DoS Attacks on the Paging Channel 13

0.3

0.25 During attack without our sheme

(O — kIR Y |0 TN kiu! IR
0.2

Before attack without our scheme

o A

|
015 y During attack with our scheme

Channel utilization by GPM{%:)

0.1

Time (sec)

Fig. 6. Paging channel utilization during the attack without our scheme (top), before
the attack without our scheme (middle), and during attack with our scheme (bottom)

our scheme is applied, we only need to calculate the length of the GPMs under
our scheme, if there were no or negligible paging delays indicated by our cap-
tured GPMs. To verify this assumption, we examined the captured GPMs and
found only three GPMs (out of more than 20,000 GPMs) that contained the
maximum number of paging records (which indicates potential paging delays).
This validates our assumption that paging delays occurred rarely in the captured
GPMs.

Figure [l depicts the utilization of paging channel by GPM under three differ-
ent situations. For legibility, we have smoothed the curves using the Exponential
Moving Weighted Average (EMWA) algorithm. Before the attack, the average
utilization by GPMs in the measured system was 18.1%H. The utilization went
up to 23.2% during the attack. If the system deployed our scheme, the aver-
age utilization would be 14.2% before the attack (not shown in the figure for
legibility), and 16.8% after the attack.

As another measurement of the effectiveness of our scheme, we quantified
the resources that an attacker must acquire to saturate the paging channel.
Since overhead messages occupy at least 25% of the paging channel capacity, an

4 The paging channel utilization is calculated as the total bits of GPM during a certain
time period, divided by the product of the length of the time period and the channel
capacity (e.g., 9600bps).

14 L. Cai et al.

230

210 With our scheme

Mumber of pages to saturate the paging channel

0 200 400 600 800 1000
Time (sec)

Fig. 7. Number of page records required to completely saturate the channel with and
without our scheme

attacker only needs to saturate the remaining 75% of the paging channel. We
calculated how many page records the attacker must trigger. We assume that
all the messages other than GPMs remain unchanged after the attack begins.
Figure [0 shows that our scheme almost doubles the efforts of the attacker to
completely saturate the paging channel.

4.2 Simulating a Paging System

In Section LTl we examined the effect of our scheme using page messages mea-
sured on a live cellular network. In this section, we use simulation to study our
scheme under different conditions of the paging system. We simulate the pag-
ing channel at a base station as a queueing system. There are two main types of
messages in a paging system, slotted messages and non-slotted messages. Slotted
messages need to be sent during their assigned slots in the paging channel while
non-slotted messages can be sent at any time. Non-slotted messages arrive only
after the paged terminal moves into the cell (by contrast, a page message is used
to locate a terminal in the paging area and hence is not necessarily associated
with this base station). Therefore, the arrival process of the non-slotted mes-
sages is equivalent to the service process of the slotted messages multiplied by a
factor of p, where p, the paging success factor, is the probability that a mobile

Mitigating DoS Attacks on the Paging Channel 15

64 slotted queues

—
77777 C
——
——

non slotted
queue

slotted messages feeding
back into the system (probabilty p)

slotted messages leaving
the system (probability 1-p)

non-slotted
messages

Fig. 8. A queueing system representation of a paging system. There are 64 slotted
queues and 1 non-slotted queue. Slotted messages initially arrive according to a Poisson
process. For each slotted message, the system generates a non-slotted message with
probability p.

terminal is located with a given base station and is inversely proportional to the
size of the paging area. We assume that there is no delay between the time when
a slotted message is served and the time it triggers a non-slotted message. We
also assume that slotted messages initially arrive according to a Poisson process.
This is a common assumption for modelling the arrival of events such as calls in
phone systems. Figure [illustrates this queueing system.

We simulate such a paging system with a paging cycle divided into 64 slots.
Hence we have 64 slotted queues and 1 non-slotted queue, as shown in Figure 8
The simulation program has three main modules, namely, the arrival, slot, and
server modules, which we describe in detail below.

Arrival. The arrival module generates slotted messages according to a Poisson
process. Then it randomly assigns them to one of the 64 slotted queues.

Slot. The slot module implements the schedule in which the slotted queues are
served. Each slotted queue is served in a time division multiplexing manner.
Specifically, the slot module calls the server module on each slotted queue in a
round-robin schedule. The slot module allows the service of each slotted queue
for a fixed duration of D = 0.08 seconds (i.e., the slot duration).

Server. The server module dequeues messages (i.e., sending messages) as well
as generates non-slotted messages. When invoked by the slot module, it builds
a GPM by dequeuing messages up to the maximum capacity (Nyq.). In more
detail, it computes the total capacity of the paging channel, subtracts the length
of the GPM header, and subtracts up to (Nyax X 75) bits where ry is the length
of each page record. Before applying our scheme, N,,,, is only 8 and 74 is 58
bits. After our scheme is applied, N4 becomes 16 and r; becomes 31 bits. For
each new page record, the module generates, with a probability p, a subsequent
non-slotted message and inserts it into the non-slotted queue.

16 L. Cai et al.

If the slotted queue has spare bandwidth (i.e., the slotted queue contains
fewer than N, messages), the non-slotted queue is serviced for the remainder
of the slot duration. To do this, the simulator builds a non-slotted message by
subtracting the length of a non-slotted message header followed by the length
of a non-slotted message record multiplied by as many non-slotted messages as
can be dequeued (sent) during the remainder of the slot duration. If there are
insufficient messages in the non-slotted queue, the server sits idle during the rest
of the slot duration.

A sent non-slotted message indicates a successfully established call so we use
the number of serviced non-slotted messages to calculate the system throughput.
We plot the throughput of non-slotted messages with increasing arrival rate
(A\) in Figure @ We find that in both cases, applying our scheme allows the
throughput to be sustained for up to about twice the peak arrival rate that the
current scheme can sustain. This can be attributed to the increase in IV, ., after
applying our scheme.

We simulated the paging system for p = 0.01 and p = 0.05. Since p represents
the success rate of the paging algorithm, (e.g., location management scheme), it
is inversely proportional to the size of the paging area. A small value of p (e.g.,
0.01) represents a relatively large paging area, while a large value of p (e.g., 0.05)
indicates a small paging area. From the data we captured in our experiments
(Section], we observed that p was less than 5%.

Paging delay is the amount of time that it takes to establish a connection
between the initiating terminal and the target terminal. It is mainly caused by
paging channel overload. Figure [0 shows the average paging delay before and
after applying our scheme. Again, we find that our scheme can sustain up to
twice the slotted message arrival intensity that the current scheme can before
paging delay grows exponentially. Note that the paging delay is roughly the same
regardless of p since the number of non-slotted messages in the paging channel
only affects the paging delay when X is small. However, the paging delay is also
small when A is small.

— -~ before optimization — -~ before optimization
after optimization atter optimization

Throughput (msgs/sec)
o
Throughput (msgs/sec)

\

05 ! R 2r \
\

]
o
0O 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
Intensity of arrival (1) Intensity of arrival (1)

(a) p=0.01 (large paging area) (b) p = 0.05 (small paging area)

Fig. 9. Throughput of non-slotted messages under different arrival rates A. A small
value of p (e.g., 0.01) represents a large paging area while a large value of p (e.g., 0.05)
represents a small paging area.

Mitigating DoS Attacks on the Paging Channel 17

: : T
4500~ = before optimization
after optimization

4000

3500 -

3000 -

2500 -

2000

1500

Average paging delay (seconds)

1000

500 , i

0 0.2 04 06 08 1 1.2 1.4 1.6 1.8 2
Intensity of arrival (L)

Fig.10. The average paging delay on different slotted message arrival rates, before
and after applying our scheme

Section] demonstrated that our scheme would force the attacker to spend
more resources before he could overload the paging channel (i.e., the attacker
would need to generate more calls). Figure [[I] shows that our scheme doubles
the number of slotted messages required for saturating the paging channel.

T T
‘‘‘‘‘ before optimization
after optimization

o A o
® o N &
S & o o

(o2}
o

Average attack effort (msgs/sec)

40

20

0 02 04 06 08 1 1.2 1.4 1.6 1.8 2
Intensity of arrival (L)

Fig. 11. The average number of slotted messages needed to saturate the paging channel
(i.e., the attacker’s effort)

5 Related Work

With the ongoing convergence of wireless voice and data networks, denial of
service (DoS) attacks on the paging channel of wireless networks have attracted

18 L. Cai et al.

a lot of attention. Enck et al. presented a denial-of-service attack by sending
a sufficient number of SMS messages per second to a range of cellular phones
in the same area [6]. An attacker would need only a single computer with a
broadband network access to disrupt a network in a major city by saturating
control channels shared between voice calls and SMSs. Serror et al. provided
experimental evidence of the impact of an attack on the paging channel. They
injected UDP packets from the Internet to data users in a cellular network to
cause increased load on the paging channel [5]. By improving paging efficiency, we
aim at mitigating these attacks. Our approach is complementary and orthogonal
to other attack detection [I7] and mitigation techniques.

Researchers have proposed many solutions to enhance paging efficiency by
improving location update schemes. The underlying idea is to increase the es-
timation precision of the mobile stations’ location by exploiting their mobility
patterns. [I8] provides a good survey of early work. Some of them, such as time-
based, distance-based and zone-based, have been adopted in the standard. Other
proposed schemes include movement based, cost based and welocity based. One
popular approach is profile based location management: each mobile station has
a profile that helps the paging controller to predict the paging area. This idea is
based on the observation that each individual user has her own mobility pattern.
Researches in this area mainly focus on how to establish user’s profile. E.g., [7]
mined the call history of the users to build their mobility profiles.

To improve paging efficiency, location management schemes break the paging
process into two or more stages. In the first stage, the network sends the paging
message to a predicted small subset of cells in the paging area. If the mobile
terminal does not respond, the network then sends the message to a larger set of
cells. If the prediction is accurate, the average number of paged cells is expected
to be much smaller; however, if the prediction is wrong, these approaches cause
paging latency. The average paging latency in a normal paging operation is
half of the paging cycle (2.56s). Each additional phase will add 5.12s to it. Our
scheme, by comparison, does not increase the paging latency, since it does not
break paging into stages.

Some researchers have explored paging message optimization. [19] proposed
a Bloom filter to map multiple page records to one fixed length bitmap. Quick
paging, described in Section [B] also uses a special form of Bloom filter. The
main difference between them is that the number of hash functions in [19] is
dynamically calculated and is transferred as a parameter of each page message.
While achieving high paging capacity in certain situations, this Bloom filter
based paging system suffers from excessive false page rates and hence low battery
efficiency. By contrast, our scheme causes no false page. Another problem with
this approach is that it removed single paging records from paging messages;
therefore, useful information previously piggybacked with the paging records,
such as the Service Option field, was no longer available to terminals.

[9] aims at improving the paging efficiency of WiMax networks. Based on the
observation that two individual MOB-PAG-ADV messages use more bandwidth
than one MOB-PAG-ADV message with two records, it grouped multiple mobile

Mitigating DoS Attacks on the Paging Channel 19

station records into one MOB-PAG-ADV message to reduce the overhead and
improve the paging efficiency. This solution is specific to WiMax. By contrast,
our scheme applies to almost all mobile networks that require paging.

6 Conclusion

We propose a novel approach to improve paging efficiency and to mitigate DoS
attacks on the paging channel. We describe a series of mechanisms for efficiently
encoding terminal identifiers in page messages to increase the paging channel
capacity. For instance, we can shorten the terminal identifier in a CDMA2000
General Page Message from its current length of 34 bits down to 7 bits. We
evaluated our scheme using data measured on a live cellular network and using
simulation. The results indicate that our scheme can significantly increase the
paging throughput and the cost to the attackers, thereby mitigating DoS attacks
on the paging channel. Our scheme is simple and is straightforward to implement.
It does not incur any adverse effect, such as paging delay, false paging, and
higher missed paging rate, that other schemes often suffer from. Furthermore, it
is compatible with location-based paging efficiency improving schemes. Although
we describe our scheme in the context of cellular networks, the scheme applies
to other mobile networks such as WiMax.

Acknowledgment

This paper is based upon work supported by the National Science Foundation
under Grant Nos. 0644450 and 0520320 and by a generous gift from Sprint. We
thank Jean Bolot, Prasant Mohapatra and Sridhar Machiraju for their valuable
comments.

References

1. Mobile radio interface layer 3 specification, 3GPP TS24008 (December 2008)

2. Upper layer (layer 3) signaling standard for cdma2000 spread spectrum systems,
3GPP2 C.S0005-D (September 2005)

3. Air interface for fixed and mobile broadband wireless access systems. IEEE Std
802.16eTM-2005 (February 2006)

4. Haverinen, H., Malinen, J.: Mobile ip regional paging (June 2000),
http://draft-haverinen-mobileip-reg-paging-00.txt

5. Serror, J., Zang, H., Bolot, J.C.: Impact of paging channel overloads or attacks
on a cellular network. In: WiSe 2006: Proceedings of the 5th ACM workshop on
Wireless security, pp. 75-84. ACM, New York (2006)

6. Enck, W., Traynor, P., McDaniel, P., Porta, T.L.: Exploiting open functionality
in sms-capable cellular networks. In: CCS 2005: Proceedings of the 12th ACM
conference on Computer and communications security, pp. 393-404. ACM, New
York (2005)

http://draft-haverinen-mobileip-reg-paging-00.txt

20

7

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

L. Cai et al.

. Zang, H., Bolot, J.C.: Mining call and mobility data to improve paging efficiency
in cellular networks. In: MobiCom 2007: Proceedings of the 13th annual ACM
international conference on Mobile computing and networking, pp. 123-134. ACM,
New York (2007)

. Signaling link access control (lac) standard for cdmal998 spread spectrum systems,
3GPP2 C.S0004-D (September 2005)

. Mohanty, S., Venkatachalam, M., Yang, X.: A novel algorithm for efficient paging

in mobile wimax. In: Mobile WiMAX Symposium, March 2007, pp. 48-53. IEEE,

Los Alamitos (2007)

Roh, H.S., Lee, S.h.: Paging scheme for high-speed portable internet (hpi) system.

In: Advanced Communication Technology, 2006. ICACT 2006, The 8th Interna-

tional Conference, February 2006, vol. 3(4), p. 1732 (2006)

Kempf, J.: Dormant mode host alerting ("ip paging”) problem statement, rfc3132

(June 2001)

Ramjee, R., Varadhan, K., Salgarelli, L., Thuel, S.R., Wang, S.-Y., La Porta, T.:

Hawaii: a domain-based approach for supporting mobility in widearea wireless

networks. IEEE/ACM Transactions on Networking 10(3), 396-410 (2002)

Campbell, A.T., Gomez, J., Valko, A.G.: An overview of cellular ip. In: Wireless

Communications and Networking Conference, 1999. WCNC 1999, vol. 2, pp. 606—

610. IEEE, Los Alamitos (1999)

Zhang, X., Castellanos, J.G., Campbell, A.T.: P-mip: paging extensions for mobile

ip. Mob. Netw. Appl. 7(2), 127-141 (2002)

Mohanty, S., Venkatachalam, M., Timiri, S., Ahmadi, S.: Proposal for ieee 802.16m

quick paging channel design (July 2008)

Koorapaty, H., Ernstrm, P.: Quick paging signal for ieee 802.16e (May 2008)

Traynor, P., McDaniel, P., La Porta, T.: On attack causality in internet-connected

cellular networks. In: Proceedings of 16th USENIX Security Symposium on

USENIX Security Symposium (2007)

Akyildiz, I.F., Ho, S.M.: On location management for personal communications

networks. Communications Magazine, IEEE 34(9), 138-145 (1996)

Mutaf, P., Castelluccia, C.: Hash-based paging and location update using bloom

filters: a paging algorithm that is best suitable for ipv6. Mob. Netw. Appl. 9(6),

627-631 (2004)

FLJI: Fighting Implicit Jamming in 802.11 WLANs*

Ioannis Broustis', Konstantinos Pelechrinis', Dimitris Syrivelis?,
Srikanth V. Krishnamurthy!, and Leandros Tassiulas?

L University of California, Riverside
{broustis, kpele, krish}@cs.ucr.edu
2 University of Thessaly
{jsyr,leandros}@inf.uth.gr

Abstract. The IEEE 802.11 protocol inherently provides the same long-term
throughput to all the clients associated with a given access point (AP). In this
paper, we first identify a clever, low-power jamming attack that can take advan-
tage of this behavioral trait: the placement of a low-power jammer in a way that
it affects a single legitimate client can cause starvation to all the other clients.
In other words, the total throughput provided by the corresponding AP is dras-
tically degraded. To fight against this attack, we design FIJI, a cross-layer anti-
jamming system that detects such intelligent jammers and mitigates their impact
on network performance. FIJI looks for anomalies in the AP load distribution to
efficiently perform jammer detection. It then makes decisions with regards to op-
timally shaping the traffic such that: (a) the clients that are not explicitly jammed
are shielded from experiencing starvation and, (b) the jammed clients receive the
maximum possible throughput under the given conditions. We implement FIJI
in real hardware; we evaluate its efficacy through experiments on a large-scale
indoor testbed, under different traffic scenarios, network densities and jammer
locations. Our measurements suggest that FIJI detects such jammers in real-time
and alleviates their impact by allocating the available bandwidth in a fair and
efficient way.

Keywords: IEEE 802.11 WLANS, Fairness, Jamming, Measurement.

1 Introduction

The proliferation of IEEE 802.11 WLANs makes them an attractive target for malicious
attackers with jamming devices [[1I2]]. A jammer typically emits electromagnetic energy
thereby causing: (a) prolonged packet collisions at collocated devices, and (b) packet
transmission deferrals due to legitimate nodes detecting continuous medium activity.
Hence, jamming attacks can lead to significant throughput degradation, especially when
they intelligently exploit the properties of the MAC protocol in use.

In this paper, we first identify a clever jamming attack where the jammer can not only
hurt its intended victim, but cause starvation to other clients that are associated with the

* This work was done partially with support from the US Army Research Office under the Multi-
University Research Initiative (MURI) grants W911NF-07-1-0318 and the NSF NeTS:WN /
Cyber trust grant 0721941.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 21«@ 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

22 1. Broustis et al.

same AP as the victim. We call this attack the Implicit-Jamming attack. We design and
implement FIJI, a cross-layer anti-jamming system to effectively detect such jammers
and mitigate the impact of their attack.

The implicit-jamming attack. An inherent characteristic of the IEEE 802.11 MAC
protocol is that under saturated traffic demands, an AP (access point) will provide the
same long-term throughput to all of its affiliated clients [3]]. If a client cannot receive
high throughput from its AP for any reason (e.g. long-distance AP—-client link or high
levels of interference at the client side), the AP will spend a large amount of time serv-
ing this client at a low transmission bit-rate; this rate is determined by the rate adap-
tation algorithm in use. This will compel the AP to serve each of its other “healthier”
clients (to which it can support higher transmission rates) for smaller periods. In other
words, the AP does not distinguish between clients with low-SINR links and clients
with high-SINR links; the long times taken to serve the former class of clients hurts
the time available to serve the latter class of clients. This behavior is referred to as the
performance anomaly of 802.11 [4]] and is caused by the inherent design principles of
the IEEE 802.11 MAC protocol (described in more detail in section).

The implicit jammer exploits this anomaly. To illustrate, consider the scenario de-
picted in Fig.[Il In this scenario: (a) all clients have high-SINR links with their AP in
benign conditions, and (b) a low power jammer is placed next to a particular client (say
client C') such that it does not directly affect any other client of the AP. The jammer
causes high levels of interference at client C' and thus, most of the packets sent by the
AP to C are not successfully received. This in turn causes the AP to reduce the trans-
mission rate used to serve C' (an inherent property of rate adaptation). As a result, the
AP spends more time attempting to serve C', and this reduces the fraction of time that
it provides to its other clients. Thus, the throughput of all the clients drops significantly
due to the jamming of only client C'. In other words, jamming a small subset of clients
(even only a single client) implicitly affects all the clients that are affiliated with the
same AP.

W With Jammer Without Jammer
J EJ D’, Client A
Client B
A \ /
™~ = ClientC
il *
é-/ NG Y ClientD
L Jammers Glient E

0 125 250 3.75 5.00
Throughput (Mbps)

Fig. 1. Implicit Jamming. The jammer takes advantage of the 802.11 performance anomaly.
Using very low transmission power, it simply attacks client C'. This is sufficient to tremendously
degrade the throughput of all clients.

FUJI: Fighting Implicit Jamming in 802.11 WLANs 23

The impact of the implicit-jamming attack. In order to demonstrate the potential im-
pact of this attack on the performance of the network, we conduct a set of preliminary
experiments on our wireless testbed (described later in sectionE). In particular, we con-
struct the scenario in Fig.[Il where an AP maintains ongoing sessions with 5 clients and
transmits saturated unicast traffic to all of these clients. We place a jammer 7 ft. away
from one client (C). The jammer emits energy continuously at 0 dBm (1 mW), such
that it causes interference to client C' only. Fig.[[ldepicts our throughput measurements,
with and without the jammer. We observe that in the absence of jamming each client re-
ceives 4.1 Mbits/sec, on average. When the jammer is enabled, however, the long-term
throughput of all clients drops to 90 Kbits/sec.

FIJI: An anti-jamming system to mitigate the implicit-jamming attack. In order
to alleviate the effects of this intelligent attack, we design and implement FIJI, a dis-
tributed software system that is executed locally at the APs. With FIJI, the AP is able
to quickly detect an implicit jamming attack and identify the clients that are under the
direct influence of the jammer(s). Furthermore, via a minimal set of online calibrat-
ing measurements that characterize the impact of the attack, the AP shapes the down-
link traffic such that: (a) the jammed clients receive the maximum possible throughput
given the circumstances, and (b) the rest of the clients are unaffected, i.e., shielded
from the influence of the jammer(s). Some parts of FIJI are implemented on the Click
software framework [5]] and the rest are implemented on the driver/firmware of our
wireless cards. Via extensive experiments, we observe that FIJI effectively mitigates
the implicit-jamming attack on an 802.11a/g wireless testbed.

Our work in perspective. F1JI can be potentially applied in scenarios wherein jam-
mers attack APs directly. However, in this work, we focus on addressing intelligent
jammers that exploit the performance anomaly at the client side. Moreover, note that
the impact of implicit jamming is exacerbated in downlink traffic scenarios; with up-
link traffic, jammed clients will simply defer accessing the medium and will thereby
allow the other clients to obtain higher levels of access.

The remainder of the paper is structured as follows. In section 2l we provide a brief
background on the performance anomaly in 802.11 as well as jamming attacks, and
discuss related studies. In section [3] we describe the implicit jamming detection and
mitigation with FIJI, our anti-jamming system. We describe the implementation of FIJI
and evaluate its effectiveness in section @l Section [3 provides the scope of our study.
We conclude in section[6l

2 Background and Previous Work

In this section, we first describe the so-called performance anomaly with IEEE 802.11
and efforts related to addressing the anomaly. We then discuss jamming attacks in brief
as well as prior work related to anti-jamming.

2.1 Performance Anomaly in 802.11 WLANs

Heusse et al. [4]] were the first to observe that the long term throughput of all the clients
associated with an AP in a WLAN is limited by the client with the poorest link. This

24 1. Broustis et al.

effect eventually provides the same long-term throughput to all clients. Although [4]
considers uplink traffic, this “anomaly” arises with downlink traffic as well [67]]. With
either uplink or downlink saturated traffic, 802.11 provides equal medium access prob-
ability to all links. Let us consider the downlink scenario. An AP—client link with
low SINR will coerce the rate adaptation mechanism at the AP to use a low transmis-
sion rate for this client. Thus, when attempting to serve this client, the AP will spend
large amounts of time. Given that the AP will access the channel with equal probabil-
ity for low-SINR clients and high-SINR clients (higher bit rate, shorter transmission
durations), the latter will be served for smaller proportions of time.

Let us assume that AP « is sending saturated unicast traffic to each of its x clients.
The theoretical instantaneous transmission rate from AP « towards client ¢;, where
i € {1,...,k},1is a step function of the SINR for this client [§]. In this work, we consider
fe,; to be the instantaneous deliverable rate towards client ¢;, which in practice may not
always be equal to the transmission rate (especially at high rates). Each client ¢; of AP
a will receive the same throughput 7; in the long term; this throughput is given by:

B 1

" — Ma . . . (1)
2z fi Dz fil

In the above equation, M, is the fraction of the time that AP « is able to access the
medium, given the contention with its co-channel neighbor devices. We assume that AP
« transmits data packets of the same length B to all clients. From the above equation it
is evident that if a client ¢; receives low throughput, all clients will also receive equally
low throughput under saturated conditions. Note that this phenomenon has been taken
into account during the design of previous performance improvement algorithms for
WLANS; examples can be found in [3]], [6]], [7]], [8]]. All these studies take the anomaly
as a given and try to improve the network performance through other intelligent strate-
gies, such as AP load balancing and power control. In other words, such studies are
inherently based on the fact that the 802.11 MAC protocol provides long-term fairness.
Clearly, when this property of 802.11 is exploited by a malicious attacker, the perfor-
mance of the schemes that are based on this property is also compromised. Hence, the
existence of a mechanism that detects and mitigates such jammers becomes very vital.

Ty = M, -

Studies on mitigating the performance anomaly in 802.11. There have been numer-
ous efforts on addressing the anomaly in 802.11. Most of them either require significant
modifications on the 802.11 protocol functionality or they are very difficult to imple-
ment in practice.

Packet aggregation. Razafindralambo et al., [9] propose PAS, a technique that involves
packet aggregation with dynamic time intervals. With PAS, nodes transmit consecutive
packets back-to-back, separated by a SIFS period [10]. As a result, high-rate clients
are able to transmit/receive many packets during an allocated time interval. However,
packet aggregation requires modifications on the 802.11 protocol, in order to allow
back-to-back data frame transmissions.

Contention window manipulation. Kim et al., [11]] show that the anomaly can be ad-
dressed by tuning the 802.11 contention window size. They compute the minimum
value of the window for the elimination of the anomaly. This technique, however,

FUJI: Fighting Implicit Jamming in 802.11 WLANs 25

requires modification to the algorithm that selects the value of the contention window
in 802.11. In contrast, our proposed scheme (described in the following section) does
not require any changes to the 802.11 protocol semantics.

Data traffic manipulation. Bellavista et al., in [12]] propose MUM, an application-
level middleware for facilitating multimedia streaming services. MUM tries to detect
the anomaly by monitoring the RSSI of received packets and estimating the good-
ness of links. It employs the Linux tc/iptables to implement a hierarchical token
buffer scheduler that “differentiates” data transmissions towards low-rate nodes.
The RSSI, however, cannot accurately capture the levels of contention and interference
[14]]. In addition, [12] uses a limited set of 4 static rate classes for traffic differentia-
tion; this setting is not adequate in jamming scenarios, as we show in sectiond Along
the same lines, Dunn et al., propose a heuristic for allocating a packet size to every
client, which is proportional to the transmission rate. We show in sectionEthat the use of
this heuristic during an implicit-jamming attack leads to some undesirable effects that
in turn lead to poorer throughput than what is possible with FIJI. Similar approaches
are followed in and [18]). Finally, Yang et al. analytically model a WLAN
with stations that support multiple transmission rates in order to demonstrate the per-
formance anomaly. In contrast with these studies, our anti-jamming solution addresses
the fact that the maximum transmission rate achieved by a single client can bound the
total AP throughput. From the above discussion, as well as our measurements in section
[it becomes evident that prior efforts on overcoming the performance anomaly prob-
lem in 802.11 cannot efficiently mitigate implicit jammers. We approach the 802.11
anomaly from the security point of view; in particular we examine a case where a ma-
licious adversary can remotely exploit this feature as a vulnerability to cause complete
starvation to the associated clients. FIJI is effective against the implicit jamming attack,
provides the best trade-offs between throughput and fairness and does not require any
modifications on the 802.11 protocol.

2.2 Jamming in Wireless Networks
Jammers are classified into two main categories based on their behaviors.

— Constant jammers: They emit electromagnetic energy all the time. This jam-
ming technique is not usually adopted, since it depletes the battery of mobile jam-
mers rather quickly. This category includes deceptive jammers [20], which transmit
seemingly legitimate back-to-back data packets. With this, deceptive jammers can
mislead other nodes and monitoring systems into believing that legitimate traffic is
being sent over the medium.

— Intermittent jammers. They conserve battery life by emitting energy intermittently.
As examples: (i) Random jammers alternate between random jamming and sleeping
periods. (ii) Reactive jammers emit energy right after the detection of traffic on the
medium, and remain inactive as long as the medium is idle. The implementation
of reactive jammers is difficult; the detection and alleviation of such attacks is very
challenging.

Previously proposed anti-jamming techniques. Prior work has focused on the impact
of jamming on the performance of isolated wireless links. To the best of our knowledge,

26 1. Broustis et al.

FIJT is the first system to examine the effects of implicit jamming on the overall per-
formance of WLANS. Some previous studies employ frequency hopping techniques to
avoid jammers [21122123]]. We do not adopt such techniques in FIJI, since frequency
hopping cannot overcome wide-band jammers [2]], which are capable of jamming a
plurality of the available bands simultaneously. Moreover, frequency hopping has lim-
ited effectiveness when multiple collocated jammers operate on different frequencies.
FIJI, however, can be complementary to frequency hopping.

Gummadi et al. show that even ultra-low power jammers can corrupt the re-
ception of packets; towards coping with these jammers they propose a rapid frequency
hopping strategy. Navda er al. [22] implement a proactive frequency hopping protocol
with pseudo-random channel switching. They compute the optimal frequency hopping
parameters, assuming that the jammer is aware of the frequency hopping procedure
that is followed. Xu et al. propose two anti jamming techniques: reactive channel
surfing and spatial retreats. However, they do not consider 802.11 networks. In [20], ef-
ficient mechanisms for jammer detection at the PHY layer are developed. However, the
authors do not propose any anti-jamming mechanisms. The work in [24] suggests that
the proper adjustment of transmission power and error correction codes could alleviate
jamming effects. However, it neither proposes an anti-jamming protocol nor performs
evaluations of these strategies. Along the same lines, Lin and Noubir present an an-
alytical evaluation of the use of cryptographic interleavers with various coding schemes
to improve the robustness of wireless LANs. In subsequent work, Noubir and Lin [26]
investigate the power efficiency of a jammer. They show that in the absence of error-
correction codes a jammer can conserve battery power by simply destroying only a por-
tion of a legitimate packet. Finally, Noubir proposes a combination of directional
antennae and node-mobility in order to alleviate jammers.

None of these efforts consider the implicit jamming attack; FIJI is the first system to
addpress this attack.

3 F1JI to Combat the Implicit Jamming Attack

In this section, we describe the design of our anti-jamming software system, FIJI. The
goal of FIJI is twofold:

1. To detect the attack and restore the throughput on clients that are not explicitly
jammed (we call these clients ‘“healthy”).

2. To maintain connectivity and provide the highest possible throughput to clients that
are explicitly jammed (we call these clients “jammed”).

FIJI involves the co-design of two individual modules, executed at the AP: a detection
module and a traffic shaping module. We have implemented the two modules in the
kernel space (we provide implementation details in section).

Attack model. In this work, we focus on low-power deceptive jammers. In particu-
lar, we assume that the jamming device has the following properties:

— Itis placed next to legitimate clients. With this, the jammer is able to distort packets
destined to the jammed client(s). In addition, the jammer is constantly transmitting
packets back-to-back, thereby prohibiting the jammed clients from accessing the
medium.

FUJI: Fighting Implicit Jamming in 802.11 WLANs 27

— It operates at very low power. As discussed earlier, the jammer simply needs to
explicitly affect one of the clients of the AP. By transmitting at low power the
jammer can conserve energy and make the detection of the attack a challenging
task.

— Itis able to operate on a wide band (covering all the available channels); this makes
frequency hopping techniques inappropriate.

We describe the operation of the detection and the traffic shaping modules in what
follows.

3.1 Detecting the Implicit-Jamming Attack

The purpose of this module is to make the AP capable of detecting the jammed clients.
Previous jamming detection schemes assume that the jammed node is always the one
that performs the detection. However with the implicit-jamming attack, the AP needs to
detect the jammed client(s) in order to prevent the throughput starvation of the healthy
clients. As an example, in [20] the jammed node performs a consistency check between
the instantaneous PDR (Packet Delivery Ratio), and the RSSI (Received Signal Strength
Indicator) that it measures on its antenna. If the PDR is extremely low (i.e., almost zero),
while the RSSI is much higher than the CCA thresholcﬂ, the node is considered to be
jammed. With the implicit jamming attack, however, the AP does not know the RSSI
value that is observed by each of its clients. Thus, the approach in [20] does not allow
the AP to detect the implicit jamming attack.

Measuring the transmission delay per client. FIJI relies on measuring the data unit
transmission delay d., = B/ f., of every client ¢; at the AP. More specifically, the
denominator of Eq. (I) is the aggregate transmission delay D,, incurred by AP « in
order to serve all of its associated clients once; it is the sum of the individual d., values,
i € {1,...,k}, of the k clients that are associated with AP « [3]. In other words, if
we assume saturated downlink traffic, D,, corresponds to the average time that AP «
needs in order to send one data unit to every client. The value of D, is the same for
all clients, and the transmission delay d., of client ¢; contributes to the value of D,.
Hence, a sudden, very large increment in D, indicates that one or more of the d; values
has suddenly increased; this would imply that one or more clients are under attack.
Towards calculating D, AP « needs to measure the d., value for every client c; (this
includes possible retransmission delays and the rate-scaling overheacﬁ). Measuring d.,
will directly reveal the jammed clients: the value of d,., for a jammed client cf is likely
to be much higher than the delays of the other clients. We adopt this detection strategy
in FIJL.

3.2 Shaping the Traffic at the AP to Alleviate Jammers

A trivial solution to the problem of mitigating the attack would be for the AP to simply
stop serving the jammed clients. However, this would be unfair, since in many cases

! The CCA (Clear Channel Assessment) threshold specifies the RSSI value below which, recep-
tions are ignored with regards to carrier sensing [S]].

% The rate scaling overhead accounts for the higher delays incurred due to transient lower rates
that the rate adaptation algorithm invokes.

28 1. Broustis et al.

the jammed clients might still be able to receive data, albeit at lower rates. We opt to
provide a fair bandwidth allocation solution; our twofold objective is to simultaneously
achieve the following:

— Objective 1. For each of the healthy clients we seek to provide the same throughput
that they would have enjoyed in the absence of the jammer, i.e., prior to the attack.
— Objective 2. A jammed client typically cannot receive much throughput as long
as the jammer is active. Hence we want to provide to every jammed client the
maximum possible throughput that it can receive, given that objective 1 is satisfied.

We refer to the state where these objectives are met as the optimal state.

We propose a real-time, cross-layer software system to mitigate the effects of the
implicit-jamming attack. The system is implemented partly in the Click module [3]]
and partly in the wireless driver/firmware. Click receives information from the MAC
Layer with regards to the properties of the jammed clients. The AP—client traffic is
then appropriately shaped and forwarded down to the MAC layer at the AP.

i) DPT: Controlling the data packet size. With this strategy, the AP fragments the
packets destined to jammed clients; each such smaller fragment is now an independent
packet. We call this approach DPT for Data Packet Tuning. With DPT, the rate at which
these smaller packets are sent to the MAC layer is equal to the rate at which normal
packets were forwarded to the MAC layer, prior to jamming. DPT is expected to have
the following effects: (a) The transmission of small data packets is more robust to in-
terference due to jamming; hence these small packets are more likely to be correctly
deciphered by the jammed clients. (b) The rate at which the AP accesses the medium
for the jammed clients remains unchanged; however, the channel occupancy time that is
spent for them is reduced, due to transmitting smaller packets to jammed clients. Hence,
the AP will allocate a larger fraction of time for healthy clients.

Deriving the optimal data packet sizes. Our target is to determine the right packet size
such that the optimal state is reached. The problem of achieving this state is formulated
as follows.

Let us suppose that AP « has « associated clients, and that n clients are being
jammed, with n < k. Our objective is to minimize the aggregate transmission delay
DY of all the jammed clients ¢, i € {1,..,n} of AP . In other words, we seek to

minimize
: : : : (2
Di = dC‘-’ =)
k3
i=1 = Jer

where J; is the data unit length for jammed client ¢, while £, is the deliverable rate
atc/.

Constraint. The d,, value of each jammed client ¢/ must be at least equal (and as
close as possible) to its data unit transmission delay d., in benign conditions:

Ji B .
X1: d] >de,= " >, Vien,
) f c‘lj f Ci

where B is the default data unit length that the AP is using for all clients, and f., is
the deliverable rate to ¢/ in benign conditions. As explained earlier, the value of D,

FUJI: Fighting Implicit Jamming in 802.11 WLANs 29

is the same for all clients that are associated with AP «. If we sum constraint X1 over
all jammed clients, the left hand side of the inequality is our objective function. With
this we make sure that the healthy x — n clients will indeed experience an aggregate
transmission delay very close to D, = Y7, (B/f.,); note that this is the aggregate
transmission delay that was experienced by these clients prior to the jamming attack.
Hence, by choosing the packet size .J; that results in a transmission delay that is as
close to d., as possible, we ensure that the throughput of the healthy clients remains
unaffected (we elaborate on this later with an example).

Based on the above constraint, our optimization problem can be formulated as fol-
lows:

minimize : D = ; d, = ; f‘]7 2)
subjectto: 1<.J; < B,Vie{l,2,..,n}, 3)
and X 1. 4)

The solution to the above problem provides the values of .J; that minimize (2)). Although
the problem is an integer programming problem, it is easy to see that its special form
ensures that it always has a solution, which can be found in polynomial time w.r.t. the
number of variables.

How does DPT operate? Let us consider a case study with AP «, k =3, n =1 and
default packet size B. The transmission delays for the healthy clients ¢; and co are d;
and do, respectively; for the jammed client cs, it is d3. The long-term throughput of
every client in benign conditions will be: Tp, =, | L’Z +a,- If ¢3 is now being jammed,

its transmission delay will be d§ > d3 and the new throughput will be: Ty = dt fQ al
3

By applying DPT, the packet size towards c3 will be Jg‘f P and its new transmission delay
will be dgp *. Since the rest of the clients are to maintain their old transmission delays

(they are not explicitly jammed), the throughput with DPT will be: Ty, = B dpt -
di+da+dg

Our minimization problem ensures that dgp t ds. Thus, for clients c; and co: Type, =
Tapt, = Ty. In other words, DPT restores the throughput at the healthy clients.

Next, we show that the jammed client cannot receive a higher throughput if we fur-
ther decrease the packet sizd] to a value JL < Jg Pt With packet size J3" " the through-
. . . Jgrt : : l dpt
put at cg will be: Ty, = dy 7 Let us assume that with packet size J; < J;
. . . Jt
the transmission delay of c3 is d}. The throughput at c3 will then be T}, = didot d-

The required condition T}, < Ty, can be simplified as:

Jl
Tyy < Tape, < db > de;t (dy + dy + d9PYy — dy — dy.
3

3 For larger packet sizes, objective 1 cannot be satisfied; hence we do not need to consider such
a case.

30 1. Broustis et al.

Since the packet delivery rate f., is the same, we have:

l i
J3 _ ds o db = gt .
Jdpt - ddpt 37— 73
3 3

1
J3
dpt
‘]3

Jh Jh
Thus: "2 - di? > "0 (dy+do 5T —di —dy &
‘]3 ‘]3
T3
0> (Jgdpt — 1)(d1 +d2)

The last inequality is always true; hence, T}, < Typ,.
Similar steps can be followed in order to show that DPT operates in the same manner
in scenarios with multiple jammed clients. We adopt DPT in FIJI.

ii) DRT: An alternate approach. An alternative strategy would be to explicitly tune the
rate at which the packets are delivered at the MAC layer (the packet size is now kept
unchanged), destined to jammed clients. Fewer packets would arrive at the MAC layer
for transmission towards the jammed clients, thereby allowing the AP to send traffic to
healthy clients more frequently. Let us call this approach DRT for Data Rate Tuning.
DRT operates as follows. Based on the measured d., for each client c;, the deliverable
rate to every jammed client would be:

fer =B/d.;. (5)

DRT would bound the packet generation rate such that the data rate to the jammed
client ¢/ is at most fes. As aresult, the rest of the (healthy) clients would share the
remaining bandwidth. Thus, they would enjoy a share that is in fact higher than what
they had prior to the attack. However, the packets destined to the jammed clients could
be potentially lost due to channel or interference effects. Hence with DRT, the jammed
clients will eventually receive lower long-term throughput than the specified (by DRT)
rate of f,,. Clearly, while both DPT and DRT shape the traffic in order to overcome the
implicit jémming effects, they essentially differ in the way they allocate the bandwidth.
With DPT the healthy clients receive the same throughput as before the attack, while
the jammed clients achieve the maximum possible throughput under the circumstances.
On the other hand, with DRT the healthy clients have a higher share of the bandwidth
than in benign settings and receive more throughput than before the attack; the APs will
spend more time serving the healthy clients, since most of the traffic is now destined to
them. However, since the jammed clients do not reach their capacity, they are treated
rather “unfairly”. We evaluate this fairness versus throughput trade-off in section {3

4 Implementation and Evaluation

In this section, we first describe our implementation of FIJI. Next we apply FIJI on a
WLAN testbed and evaluate its efficacy in overcoming the implicit jamming attack.

FUJI: Fighting Implicit Jamming in 802.11 WLANs 31

4.1 The Implementation of F1JI

FIJI is implemented entirely at the AP; no client software modifications are needed. In
addition, FIJT does not require any special functionalities at the APs or at the clients;
the only requirement is for the AP to be able to measure the d., value for each affiliated
client. Hence, FIJI can be applied on commercial APs through a driver/firmware update.
In order to implement the two modules of FIJI we perform modifications on the driver
and firmware of the AP, and we develop specific traffic shaping functionalities on the
Click framework [J3]].

Implementing the implicit-jamming detection module. As explained in section 3.1}
the AP needs to measure d., for every client ¢;. This will reveal, with high probability,
the set of jammed clients. However, the value of d., cannot be directly obtained from the
driver of the wireless card; modifications in the firmware are required in order to com-
pute this value. We use a prototype version of the Intel ipw2200 AP driver/firmware;
for every client we measure the time duration between the placement of the packet at
the head of the MAC queue until an 802.11 ACK frame is received for this packet.
The value is then passed up to the driver. The AP maintains a table in the driver space
with the d., value for every client ¢;. It also computes Dé (when jammers are active)
and D, (when jammers are inactive), by summing up the corresponding client delays.
Temporary variations of the d., values are handled by FIJI by using weighted moving
average filtering; the previously maintained average is assigned a weight of 0.9 while
the new sample has an associated weight of 0.1 (similar values are used in [3l6]). Us-
ing these values, the AP constructs a table with the appropriate data packet sizes for
the jammed clients. If the weighted d.., (new)/de, (o1a) Value (for one or more clients)
exceeds a pre-specified threshold 4, the AP computes the new packet sizes, updates the
table and subsequently feeds it into the traffic shaping module, described below.

Implementation of the traffic shaping module. We implement the traffic shaper in
Click. The module receives the table from the driver with suggested parameter set-
tings for every client and shapes the traffic accordingly. We implement both DPT and
DRT for comparison purposes. For DPT we have also developed an application-level
script, which reads the table with the suggested packet sizes and inputs these values to
the rude/crude measurement tool [28]. For DRT one may use two different Click ele-
ments, namely either the BandwidthShaper (bandwidth) orthe LinkUnqueue
(latency, bandwidth) element; we utilize the latter. Finally, we configure the
AP to periodically flush the stored transmission delay values for every client and per-
form fresh delay measurements, using the default packet size. With this, we address
scenarios of mobile jammers, which may move to the proximity of different clients,
jammers with variable transmission power as well as jammers that stop operating.

4.2 Experimental Set-Up and Methodology

Testbed description. Our testbed consists of 28 Soekris net4826 nodes [29], which
mount a Debian Linux distribution with kernel v2.6 over NFS. The testbed is deployed
in the 3rd floor of our campus building; the node layout is depicted in Fig.[2l Each node
is equipped with an Intel-2915 mini PCI WiFi card, connected to two 5-dBi gain ex-
ternal omnidirectional antennae. We use both the main and aux antenna connectors of

32 1. Broustis et al.

o Client
W AP

' Jammer

Fig.2. The deployment of our indoor 802.11a/g WLAN testbed in the 3rd floor of a campus
building

the card for diversity. As mentioned earlier, we use a proprietary version of the ipw2200
AP driver/firmware of the Intel-2915 card. With this version we are able to (a) measure
the D,, and D values at the AP, and (b) experiment with both 802.11a and 802.11g.

Constant jammer implementation. We have implemented our own deceptive jammer
(instead of purchasing a commercial one [2]]) since this gives us the freedom of tun-
ing various jamming parameters. Our implementation of a constant jammer is based
on a specific card configuration and a user space utility that sends broadcast pack-
ets as fast as possible. Our jammers are also equipped with the Intel-2915 cards; our
ipw2200 prototype firmware for these cards allows the tuning of the CCA threshold
parameter. By setting the CCA threshold to 0 dBm, we force the WiFi card to ignore all
802.11 signals during carrier sensing (packets arrive at the jammer’s circuitry with pow-
ers much less than 0 dBm, even if the distances between the jammer and the legitimate
transceivers are very small). The jammer transmits broadcast UDP traffic. This ensures
that its packets are transmitted back-to-back and that the jammer does not wait for any
ACK messages (the back-off functionality is disabled in 802.11 for broadcast traffic).
We have developed an application-layer utility that employs raw sockets, allowing the
construction of UDP packets and the forwarding of each packet directly down to the
hardware.

Experimental methodology. For each experiment we first enable traffic from the AP
to its clients and subsequently we activate the jammer(s). The duration of each experi-
ment is 10 minutes; during each minute, the jammer is inactive for the first k£ sec, where
k € [5,20], and active for the other 60 — k sec. We use a subset of 4 nodes as the
jamming devices (nodes 15, 31, 36 and 45 in Fig.2)). We collect throughput and trans-
mission delay (d.,) measurements once every 500 msec, for each client. We experiment
with many different topological settings, with different numbers of APs and clients. By
default all legitimate nodes set their transmission powers to the maximum value of 20
dBm and their CCA thresholds to -80 dBm. We examine both 802.11a and 802.11g
links (unless otherwise stated, we observe the same behavior for 802.11a and 802.11g).

FUJI: Fighting Implicit Jamming in 802.11 WLANs 33

The experiments are performed late at night in order to avoid interference from col-
located WLANS, as well as not to cause interference to them. We use saturated UDP
traffic with a default data packet size B = 1500 bytes. We also experiment with TCP
traffid]. We use the iperf measurement tool to generate data traffic among legitimate
nodes. We also use the rude tool to test DPT.

4.3 Does F1JI Deliver?

Next, we apply our anti-jamming framework on the testbed and evaluate its efficiency
in alleviating the effects of implicit-jamming on the WLAN performance.

i) The efficacy of the detection module. We seek to observe two properties of this
module:

1. Efficiency of Detection: How quickly can FIJI detect the presence of implicit jam-
mers?

2. Accuracy of Detection: How accurately can FIJI determine if there is an ongoing
jamming attack?

We conduct experiments with 5 APs and different numbers of clients with various link
qualities. We configure the jammers to transmit at 0 dBm (1 mW) with CCA =0 dBm,
such that they affect one or more clients without affecting the APs.

a) On the speed of detection. Our measurements indicate that the transmission delay
d.s of a client increases sharply upon experiencing the implicit jamming attack. This
increase is seen in less than 700 msecs; this time includes the transient periods before
the weighted average d_.; converges to a stable value. Fig. [3] depicts a delay snapshot
with one AP and four clients with moderate-quality links. We observe that the dc{ value
increases significantly (by 26 times in this experiment). Other experiments provided
similar results. In summary, these results show that FIJI can quickly detect implicit
jamming attacks.

b) On the accuracy of detection. We seek to evaluate FIJT in terms of its ability to detect
an implicit jamming attack in the presence of interference. Note that the d., value for
a client ¢; is affected by the levels of interference on the AP — ¢; link. The higher the
level of interference, the higher the d., value. In order to evaluate this ability of FIJI,
we perform experiments with multiple overlapping cells (each with its own AP), so that
some clients suffer interference from one or more APs; in this setting, we activate our
low-power jammers.

Detecting jamming on good quality links. We first consider links that have a high
SINR. Fig. @ depicts sample experimental results. In the snapshot of Fig. @ a jammer
is placed such that it affects 2 out of the 4 clients of an AP. We observe that FIJI is able
to perform a successful detection. In general, our empirical observations suggest that

* The anomaly exists with TCP traffic as well [4]]. Even though we do not present our TCP
measurements, we observe that FIJI is similarly efficient with TCP traffic; we discuss this
briefly in section[3]

34 1. Broustis et al.

W With Jammer [l Without Jammer . .
W With Jammer [l Without Jammer

Cllent Client 1
Client 2 Client 2
Client 3 Client 3
Client 4 Client 4
0 10 20 30 40

0 37.5 75.0 1125 150.0

- Transmission Delay (msec)
Transmission Delay (msec)

Fig. 4. The jammer detection functionality

Fig. 3. FIJI detects jammed clients by mea- . .
of FIJI is accurate in most cases

suring their data unit transmission delays

Bl With Jammer [Without Jammer

! Client 13
Client 1 6+ Client19
> Client 11
. Q 5t
Client 2 g
. = 4t
Client 3 2
< 3 L
D
Client 4 3
£ 2
Client 5 1t
0 15 30 45 60 0
Transmission Delay (msec) NoJam Jam DPT
Fig. 5. The jammer detection with FIJT is Fig.6. DPT restores the performance of
less accurate in scenarios with very poor healthy clients to that in benign settings
links

when threshold § > 9, FIJI can effectively detect the attack (Fig.[H). In the experiment
described above, the value of § was 9.

FI]I and poor quality links. With poor quality links (SINR is low), FIJI cannot easily
decide if a client is under attack or not. This effect is captured in Fig. [5] where the
jammer affects a very poor link. In particular, the link 46—25 is considered with the
node 45 acting as a jammer (Fig. D). The link achieves 190 Kbits/sec in the absence
of jamming and 164 Kbits/sec under jamming. Since the jammer does not significantly
increase the delay experienced on such poor links, FIJI cannot decipher whether the
increased d,,,qe—25 value is due to jamming or legitimate interference. However, in such
conditions, the overall change in the network performance due to the jammer is unlikely
to be significant; the presence of the poor link already hurts the network performance.
Furthermore note that a jammer is unlikely to attack such poor quality links if it aims
to harm the network to the extent possible.

In some extreme cases, a poor quality link (exposed perhaps to other interfering APs
that are hidden from its own AP) might cause a client to experience large delays. In
such scenarios with healthy but poor-quality links, FIJI may incorrectly classify such

FUJI: Fighting Implicit Jamming in 802.11 WLANs 35

links as being jammed. Classifying such cases as attacks, though, is perhaps appealing
in terms of improving performance for the rest of the network.

FI1]I and high power jammers. An implicit-jamming attacker is likely to place its jam-
mer(s) very close to one or more clients so as to:

— degrade the client’s observed SINR value to the extent possible, and
— use a very low transmission power, in order to conserve energy and avoid detection.

As our experiments indicate, under these conditions, FIJI can identify the jammed
clients in real time since all measured d, J values are usually extremely high for those
clients. In contrast, a jammer could use hlgh transmission power (although this could
increase the chance of its detection and result in high energy consumption). Such a high
power jammer is likely to affect multiple clients and even the AP itself, directly. The
delays of all these clients may go up and in this case, given its design principles, FIJI
may not be able to detect the jammer. However, there are other jammer detection tech-
niques that can be used in conjunction with FIJI to detect such jammers [20].

ii) The traffic shaping module in action. Next we evaluate the efficacy of DPT and
compare it against DRT.

DPT is the most fair solution. In a nutshell we observe that as long as the jammer is
successfully detected, DPT restores the throughput at the healthy clients. A sample case
is depicted in Fig.[6l Here, AP 44 transmits unicast traffic to clients 11, 13 and 19; node
36 is jamming client 11. In the absence of jamming each client receives 4.8 Mbits/sec
on average. When the jammer is active, without enabling DPT, all clients receive 1.1
Mbits/sec on average. The solution to the problem formulated in (@) suggests that J1;
should be set to 345 bytes. When DPT is enabled and this packet size is chosen for the
jammed client, we observe that the throughput of the healthy clients 13 and 19 is re-
stored to 4.66 Mbits/sec, while the jammed client 11 achieves about 1.1 Mbits/sec. Note
that the healthy clients do not achieve their jamming-free throughput of 4.8 Mbits/sec.
This is because in our solution the equality in the constraint X 1 is achieved for a non-
integral value of J;1; we round the value of J;; up to the nearest integer. With this, the
transmission delay for the jammed client is a bit higher as compared to the delay under
benign conditions and this slightly degrades the throughput at the healthy clients.

In order to validate that DPT provides the most fair bandwidth allocation, we exper-
iment with many different J1; values. Fig. [l depicts the results that correspond to the
settings with two J1; values: 166 and 700 bytes. We observe that:

— With packet sizes smaller than Jff * (case with 166 bytes), the jammed client does
not reach its capacity (receives 360 Kbits/sec) and the AP spends more time serving
the healthy clients (as discussed in section[3): each healthy client now receives 5.1
Mbits/sec. Note that the value .J1; = 166 bytes is computed using the approach
proposed in for the considered scenario and it clearly does not provide the
desirable fairness in terms of throughput.

— When the packet size is higher than J{i t " (case with 700 bytes), the throughput at the
jammed client is lower than 1.1 Mbits/sec; the healthy clients also underperform.

36 1. Broustis et al.

7 Client 13 7 Client 13

6| Client19 6} Client 11
’g_T Client 11 n Client 37
8 57 2 51
= S
= 47 = 4
> >
Q. [e%
s 3t 5 3
> >
e o <)
£ £ 2]

1t 1r

0 s 0

DPT 700 bytes 166 bytes No Jam Jam DPT
Fig.7. DPT always manages to provide a fair Fig.8. DPT can easily handle scenarios
allocation of throughput among clients with multiple clients that are simultaneously
jammed

This is again conformant with our analytical assessments in section 3] with regards
to the maximum achievable throughput.

Multiple jammed clients. We have so far considered scenarios wherein a single client
was jammed. Next, we examine scenarios with multiple jammed clients per AP. Our
experiments reveal that DPT is also able to effectively mitigate the implicit jamming
attack in such scenarios. Fig. [§] presents a sample case with AP 46 and clients 11, 37
and 14; the jammer-node 36 explicitly affects both clients 11 and 37. Under benign
conditions all clients receive approximately 4.5 Mbits/sec on average. As soon as the
jammer is activated, without enabling DPT, all clients receive about 1.1 Mbits/sec. DPT
sets the value of J;; to be 367 bytes and J37 to be 1266 bytes. With this, DPT is able
to restore the throughput at the healthy clients.

DPT vs. DRT. Using the same methodology, we examine the effectiveness of the DRT
solution. Our measurements demonstrate that DRT provides much higher throughput to
healthy clients. On the other hand, DRT results in an additional unfair degradation at the
jammed client. Fig. Ol represents the behaviors in an example scenario, with the same
topological configuration as before (AP 44, clients 11, 13 and 19, jammer 36); the fig-
ure depicts the throughput prior to the attack (benign settings), with the jammer without
DRT, and after the application of DRT. We observe that DRT overcomes the implicit
impacts of the attack. Upon enabling DRT, clients 13 and 19 are no longer affected by
the jammer and they receive 5.12 Mbits/sec each. Although DRT sets the maximum
allowable data rate towards client 11 to be 1.1 Mbits/sec, the observed throughput at
this client is significantly lower i.e., 680 Kbits/sec on average. This behavior of DRT
conforms with our discussion in section 3.2t we observe similar trends in all our mea-
surements with one or more jammed clients. To summarize, with DRT the healthy clients
receive more throughput than before the attack; however the jammed clients are penal-
ized further.

The choice between DPT and DRT depends on the performance objectives; one has
to decide between fairness (with DPT) and bandwidth utilization (with DRT). DPT is
fair: the healthy clients receive the same throughput as before the attack, while the

FUJI: Fighting Implicit Jamming in 802.11 WLANs 37

! Client 13 ! Client 13

6 Client 19 6+ Client19
= Client 11 = Client 11
85 S 5¢ ;
= =
= 4 Z 4}t
3 3
sy by
5 3 S 3
3 3
£ 2 £ 27
(= [

1 1Fr

0 0 ;

No Jam Jam DRT DRT MUM 0.5Mbps

Fig.9. With DRT healthy clients receive Fig. 10. DRT satisfies our objectives better
more throughput than before the attack than other data rate allocation approaches

jammed clients achieve the maximum possible throughput under the circumstances. On
the other hand, DRT increases the throughput at the healthy clients and potentially, the
total network throughput. However, the jammed clients cannot receive the maximum
throughput that they can achieve in the presence of the jammer.

Note that DRT also relies on the online measurement and use of d.,. With this, DRT
seeks to eliminate the effects of implicit jamming at healthy clients, while at the same
time not degrade the throughput at jammed clients. Fig.[[0depicts a case with 802.11a
where DRT sets the data rate at 1.1 Mbits/sec, while MUM [12]] (recall our discussion
in section [2)) sets 6 Mbits/sec. We observe that by using data rates higher than the one
chosen by DRT, the healthy clients are still affected by the attack, since in this case the
downlink traffic for the jammed client is still saturated. Moreover, if we use lower data
rates than the one chosen by DRT, the healthy clients get more service time, however
the jammed clients receive much lower throughput than with DRT.

5 The Scope of Our Study

FLJI and previous studies on traffic shaping. Our work is the first to analytically de-
rive the optimal settings for traffic shaping at the AP to mitigate the implicit-jamming at-
tack. Traffic shapers have also been previously proposed in [T2IT6I17/13]. Clearly, FIJI
could also be considered as another traffic shaper, simply to overcome the performance
degradation due to the 802.11 anomaly. Unlike FIJI however, previous traffic shaping
schemes cannot overcome the effects of an implicit-jamming attack, as explained in
sections2Jand @ Other schemes that provide fair access to the WLAN resources
would also be inadequate in combating an implicit-jamming attack since they are not
designed for this purpose.

FLJI versus power control. Power control has been suggested as a means of mitigating
legitimate interference [7U31]]. Typically with power control, nodes tune their transmis-
sion power and CCA settings in order to reduce the amount of interference from/to their
neighbors. However, if the jammer is very close to one or more clients, its signal cannot

38 1. Broustis et al.

be ignored through CCA adaptation. If a client increases its CCA threshold to a high
level (to ignore the jammer’s signal), the connectivity to the AP will be lost.

Addressing random and reactive jammers. FIJI can mitigate the interference due to
any type of jammer, even random or reactive jammers. With prolonged random jam-
ming and sleeping periods (order of seconds), FIJI can perform a rapid detection and
then customize the data packet size, as per the observed data unit transmission delay
d, g If the sleep and active periods of the random jammer are of the order of mil-
hseconds FIJI can monitor the average d,. J value instead. FIJI is expected to alleviate
reactive jammers, too, since it only needs to monitor the impact of reactive jamming by
measuring d.;. We have not experimented with reactive jammers, since implementing
such a jammér is a very difficult task.

FLJI against other attacks. The two modules of FIJI can arguably be effective against
any attempt to exploit the 802.11 performance anomaly in order to degrade the client
throughput. As examples, a compromised device x could deliberately decide to (a) asso-
ciate to a very distant AP «, or (b) accept traffic at a very low reception rate only (e.g. by
discarding a large volume of correctly received packets). In both cases, would receive
a few Kbits/sec. Note here that, legitimate, non-compromised devices would follow
such an approach only if they cannot associate with a better APs. However, given that
(a) dense deployments of WLANs make the presence of an AP with a good quality link
likely [[7], and (b) distant poor quality APs are likely to be beyond the administrative
domain of the client (the client will not be able to associate with such APs), the possi-
bility of this is small in practice. FIJI can arguably be effective against such attacks. In
particular, FIJI considers such clients to be jammed clients and ensures that the other
clients remain unaffected.

FIJI and TCP. FIJI is implemented above the 802.11 MAC and below the transport
layer at the AP. We have done measurements with TCP, which have demonstrated that:
(a) Without FIJI, the performance anomaly also exists with downlink TCP traffic. The
TCP packets that are destined to the jammed clients require a significant amount of
time for successful delivery. As a consequence, the healthy clients are affected; they do
not achieve the same throughput as before the attack. (b) Our experiments also demon-
strated that the application of FIJI in TCP traffic scenarios is beneficial. By reducing the
rate at which packets are delivered to the MAC for the jammed clients, DPT shapes the
TCP traffic in a way that the healthy clients are unfettered. Note that the packet frag-
mentation with FIJT is executed after any TCP layer fragmentation; hence, FIJI does not
intervene with TCP operations.

6 Conclusion

In this paper we identify a low-power jamming attack that we call the implicit jam-
ming attack. With this attack, a jammer exploits a performance trait of the IEEE 802.11
MAC protocol to cause starvation to not only an explicitly jammed client, but all the
clients associated with the same AP as that client. Since the 802.11 MAC provides long
term fairness (under saturation conditions) to the associated clients in terms of equal

FUJI: Fighting Implicit Jamming in 802.11 WLANs 39

throughput, the attacker can nullify the AP throughput by affecting only one or at most
a few clients.

We design, implement and evaluate FIJI, a cross layer software system for mitigating
the implicit-jamming attack. FIJI is comprised of two modules, for detecting such an
attack and shaping the traffic appropriately in order to alleviate the jamming effects.
We evaluate FIJT on an 802.11a/g testbed, and under many different jamming scenarios.
We show that FIJI can quickly detect the attack and effectively restore the throughput
at the implicitly affected clients. FIJT also ensures that the jammed clients get as much
throughput as they can under the circumstances.

Acknowledgment. We thank Intel Research for providing the wireless driver.

References

1. SESP jammers, http://www.sesp.com/

2. ISM wideband jammers. http://69.6.206.229/e-commerce-solutions-catalog1.0.4.html

3. Sundaresan, K., Papagiannaki, K.: The Need for Cross-Layer Information in Access Point
Selection Algorithms. In: ACM IMC (2006)

4. Heusse, M., Rousseau, F., Berger-Sabbatel, G., Duda, A.: Performance Anomaly of 802.11b.
In: IEEE INFOCOM (2003)

5. Click web page, http://read.cs.ucla.edu/click/

6. Kauffmann, B., et al.: Measurement-Based Self Organization of Interfering 802.11 Wireless
Access Networks. In: IEEE INFOCOM (2007)

7. Broustis, 1., Papagiannaki, K., Krishnamurthy, S.V., Faloutsos, M., Mhatre, V.: MDG:
Measurement-Driven Guidelines for 802.11 WLAN Design. In: ACM MOBICOM (2007)

8. Mhatre, V., Papagiannaki, K., Baccelli, F.: Interference Mitigation through Power Control in
High Density 802.11 WLANS. In: [IEEE INFOCOM (2007)

9. Razafindralambo, T., Lassous, I.G., lannone, L., Fdida, S.: Dynamic Packet Aggregation
to Solve Performance Anomaly in 802.11 Wireless Networks. In: ACM MSWiM (October
2006)

10. ANSI/IEEE 802.11-Standard. 1999 edn.

11. Kim, H., Yun, S., Kang, 1., Bahk, S.: Resolving 802.11 Performance Anomalies through QoS
Differentiation. IEEE Comm. Letters 9(7) (July 2005)

12. Bellavista, P., Corradi, A., Foschini, L.: The MUM Middleware to Counteract IEEE 802.11
Performance Anomaly in Context-aware Multimedia Provisioning. International Journal of
Multimedia and Ubiquitous Engineering 2(2) (July 2007)

13. Hierarchical Token Bucket, http://luxik.cdi.cz/~devik/gos/htb/

14. Vlavianos, A., Law, E., Broustis, 1., Krishnamurthy, S.V., Faloutsos, M.: Assessing Link
Quality in IEEE 802.11 Wireless Networks: Which is the Right Metric? In: IEEE PIMRC
(2008)

15. Dunn, J., Neufeld, M., Sheth, A., Grunwald, D., Bennett, J.: A Practical Cross-Layer Mech-
anism For Fairness in 802.11 Networks. In: IEEE BROADNETS (2004)

16. Portoles, M., Zhong, Z., Choi, S.: IEEE 802.11 Downlink Traffic Shaping Scheme for Multi-
User Service. In: IEEE PIMRC (2003)

17. Tannone, L., Fdida, S.: Sdt. 11b: Un Schema a Division de Temps Pour Eviter I’anomalie de
la Couche MAC 802.11b. In: CFIP (April 2005)

18. Yoo, S., Choi, J., Hwang, J.-H., Yoo, C.: Eliminating the Performance Anomaly of 802.11b.
In: ICN (2005)

http://www.sesp.com/
http://read.cs.ucla.edu/click/
http://luxik.cdi.cz/~devik/qos/htb/

40

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

1. Broustis et al.

Yang, D., et al.: Performance Enhancement of Multi-Rate IEEE 802.11 WLANs with
Geographically-Scattered Stations. IEEE Trans. Mob. Comp. 5(7) (July 2006)

Xu, W., Trappe, W., Zhang, Y., Wood, T.: The Feasibility of Launching and Detecting Jam-
ming Attacks in Wireless Networks. In: ACM MOBIHOC (2005)

Gummadi, R., et al.: Understanding and Mitigating the Impact of RF Interference on 802.11
Networks. In: ACM SIGCOMM (2007)

Navda, V., et al.: Using Channel Hopping to Increase 802.11 Resilience to Jamming Attacks.
In: IEEE INFOCOM mini-conference (2007)

Hu, W., Wood, T., Trappe, W., Zhang, Y.: Channel Surfing and Spatial Retreats: Defenses
Against Wireless Denial of Service. In: WISE (2004)

Xu, W.,, Ma, K., Trappe, W., Zhang, Y.: Jamming Sensor Networks: Attacks and Defense
Strategies. In: IEEE Network (May/June 2006)

Lin, G., Noubir, G.: On Link Layer Denial of Service in Data Wireless LANs. In: Wireless
Communications and Mobile Computing (May 2003)

Noubir, G., Lin, G.: Low-power DoS Attacks in Data Wireless LANs and Countermeasures.
In: ACM MOBIHOC (2003) (poster)

Noubir, G.: On Connectivity in Ad Hoc Network under Jamming Using Directional Antennas
and Mobility. In: Langendoerfer, P., Liu, M., Matta, 1., Tsaoussidis, V. (eds.) WWIC 2004.
LNCS, vol. 2957, pp. 186-200. Springer, Heidelberg (2004)

Rude/Crude measurement tool, http://rude.sourceforge.net/

Soekris-net4826, http: //www.soekris.com/net4826.htm

Jardosh, A., et al.: IQU: Practical Queue-Based User Association. In:. ACM MOBICOM
(2006)

Akella, A., Judd, G., Seshan, S., Steenkiste, P.: Self-Management in Chaotic Wireless De-
ployments. In: ACM MOBICOM (2005)

http://rude.sourceforge.net/
http://www.soekris.com/net4826.htm

Deny-by-Default Distributed Security Policy
Enforcement in Mobile Ad Hoc Networks

Mansoor Alicherry!, Angelos D. Keromytis', and Angelos Stavrou?

! Department of Computer Science, Columbia University
2 Department of Computer Science, George Mason University

Abstract. Mobile Ad-hoc Networks (MANETS) are increasingly em-
ployed in tactical military and civil rapid-deployment networks, including
emergency rescue operations and ad hoc disaster-relief networks. How-
ever, this flexibility of MANETSs comes at a price, when compared to
wired and base station-based wireless networks: MANETS are suscepti-
ble to both insider and outsider attacks. This is mainly because of the
lack of a well-defined defense perimeter preventing the effective use of
wired defenses including firewalls and intrusion detection systems.

We introduce a novel distributed security policy enforcement architec-
ture that is designed specifically for MANETSs. Our approach harnesses
and extends the concept of network capabilities and is especially suited
for mobile and heterogeneous communication environments. Our model
imposes communication restrictions between MANET nodes by enforc-
ing hop-by-hop policies in a distributed manner. We use a deny-by-default
principle, allowing compromised nodes to access only authorized services.
This significantly limits their ability disrupt or even interfere with end-
to-end connectivity and nodes beyond their local communication radius.
In this short paper, we only present the overall architecture of the system.

Keywords: MANETS, Capabilities, Distributed Firewall.

1 Introduction

Recent advances in low-power computing and communications have led to the
proliferation of handheld and portable devices equipped with wireless connectiv-
ity. These mobile wireless devices appear to be ideal for situations where fixed
infrastructure is too costly or dangerous to deploy, or has been rendered inop-
erable. However, because of radio power consumption, physical obstacles, and
channel capacity, a mobile node may not be able to reach all other nodes within
a single broadcast. Therefore, to achieve end-to-end connectivity, nodes have
to form mobile ad hoc wireless networks (MANETS), which allow data to be
routed through intermediate nodes. MANETSs are fundamentally different from
the Internet because all peers act as both sources and routers using the other
participants to relay packets to their final destination. Due to their flexibility,
MANETS are currently employed in both military and commercial applications.

Unfortunately, not all MANET nodes are equally capable, nor can all users
be equally trusted. Worse yet, mobile nodes in tactical environments run the

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 412009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

42 M. Alicherry, A.D. Keromytis, and A. Stavrou

danger of being captured or malfunction. Even a small number of misbehaving
nodes can successfully render the entire MANET inoperable: malicious peers can
abuse the network exhausting all network and power resources.

In traditional networks, malicious nodes and traffic are kept away from a set
of nodes belonging to an organization or a group using firewalls. This is feasible
because of the existence of a well defined network perimeter. All incoming and
outgoing traffic needs to transit through these firewall nodes, which enforce the
policies at the perimeter. Within the perimeter, smaller sub-groups can have
more stringent policies by deploying their own firewalls. Unfortunately, the con-
cept of a network perimeter does not exist in MANETS, and policies need to be
enforced in a distributed manner while taking into consideration node mobility.

To address this, we propose an architecture that enforces trust relationships
and traffic accountability between mobile nodes through a novel policy enforce-
ment scheme designed specifically for MANETSs. We extend the network ca-
pability framework [RI2] and we tailor it to the resource-constrained MANET
environment. A capability is a token of authority that has associated rights. In
our model, capabilities propagate both access control rules and traffic-shaping
parameters that should govern a node’s traffic. To that end, we define a pro-
tocol for communicating capabilities, which are treated as soft state, across the
MANET.

Our architecture enables the enforcement of adaptive bandwidth constraints
inside the network, denying by default unauthorized traffic. Nodes can only
access the services and hosts they are authorized for by the capabilities given
to them. Compromised or malicious nodes cannot exceed their authority and
expose the whole network to an adversary. Upon detection, we can prevent a
compromised node from further attacking the network simply by revoking its
capabilities. Moreover, our architecture helps mitigate the impact of denial of
service (DoS) attacks because excess or unauthorized packets are dropped closer
to the attack source. Thus, we avoid unnecessary data processing and forwarding
at the target node and the network itself.

Even though we focus on MANETS, our system can also be used in wired net-
works. However, MANET's provide our architecture both advantages and chal-
lenges. Specifically, the ratio of CPU cycles to available bandwidths (Hz/kbit) is
normally higher in MANET nodes compared to their wired counterparts. This
enables us to do more intelligent processing (and use cryptography) on most
or all of the packets transiting through a MANET node. The number of traffic
flows handled by a MANET node is also small due to the small network size.
However, frequent route changes between a source and a destination node due
to node mobility represents a difficult challenge in an distributed enforcement
environment such as ours.

The rest of the paper is organized as follows. We begin by describing the threat
model in Section 21 We then present the system architecture and a high-level
overview of our scheme, including the security analysis, in Section Bl Related
work is discussed in Section [l

Deny-by-Default Distributed Security Policy Enforcement 43
2 Threat Model

Our goal is to protect network resources and end-node services from denial of ser-
vice attacks, and to enforce access control rules in the absence of a fixed topology.
Thus, we want a node to be able to access only the services it is entitled to, and
to limit the amount of traffic that can be sent to any such service. To preserve
bandwidth and power, we need to filter any unauthorized traffic early on.

We assume MANET environments where an adversary may be an existing
node that has been compromised (insider) or a malicious external node that
might want to participate in the MANET. In addition, there may be multiple
cooperating adversaries; and compromised nodes may not be detected as such
immediately, or ever (depending on their actions).

The resources needed to access a service are allocated by the group con-
troller(s) (GCs) of the MANET. Group controllers are nodes responsible for
maintaining the group membership for a set of MANET nodes, and a priori
authorize communications within the group. This means that GCs do not par-
ticipate in the actual communications, nor do they need to be consulted by nodes
in real time; in fact, if they distribute the appropriate policies ahead of time,
they need not even be members of the MANET. In most cases, the GC may
be reachable through a high-energy-consumption, high-latency, low-bandwidth
long-range link (e.g., a satellite connection); interactions in such an environment
should be kept to a minimum, and only for exceptional circumstances (e.g., for
revoking access for compromised nodes).

Without compromising a GC, an external node can participate in a MANET
only by stealing the authorization credentials that are bound to the identity of a
legitimate node. Because we envision GCs as being primarily offline or, at best,
intermittently reachable (with respect to the MANET), we are not addressing
the issue of compromised controllers in this paper.

If a node is compromised, an adversary can only access the services and band-
width that node is authorized to access. If other MANET nodes are adhering
to our architecture, a compromised node does not have the ability to disrupt or
interfere with end-to-end service connectivity and other nodes beyond its local
radio communication radius. The nodes providing services will receive only the
traffic that the compromised node is authorized to transmit, unless the adversary
is in the local communication radius.

3 System Architecture

In our architecture, there is one or more pre-defined nodes that act as a group
controller (GC). These nodes are trusted by all the group nodes. For simplicity
and without loss of generality, we will assume that all the MANET nodes are
part of a single group. A group controller has authority to assign resources to
the nodes in MANET. These resources are expressed in terms of limits on the
number of packets or on bandwidth rates that a MANET participant is permitted
to transmit toward another node. The resource allocation by the GC to a node

44 M. Alicherry, A.D. Keromytis, and A. Stavrou

is represented using a credential called policy token that all the nodes can verify.
The policy tokens are typically provisioned ahead of time, and represent the
projections of centralized policy, even though an on-demand allocation from the
GC is possible. The GC may be offline after it distributes the policy tokens,
and may be reachable sporadically at best after that (as external connectivity
permits). The presence of the GC is not required, after the initial policy token
distribution, for the normal working of the protocol.

When a node (initiator) requests a service from another MANET node (re-
sponder) using the policy token assigned to the initiator, the responder can
provide a capability back to the initiator. This is called a network capability,
and it is generated based on the resource policy assigned to the responder and
its dynamic conditions (e.g., level of utilization).

All the nodes in the path from an initiator to a responder (i.e., nodes relaying
the packets) are required to enforce and abide by the resource allocation encoded
by the GC in the policy token and the responder in the network capability. The
enforcement involves both accessibility and bandwidth allocation. A responder
accepts packets (except for the first one) from an initiator only if the initiator
has authorization to send, in the form of a valid network capability. An inter-
mediate node will forward the packets from a node only if the packets have an
associated policy token and network capability, and if they do not violate the
conditions contained therein. Note that the possession of a network capability
does not imply resource reservation; they are the maximum limit a node can use.
Available resources are allocated by the intermediate nodes in a fair manner, in
proportion to the allocations defined in the policy token and network capability.
Intermediate nodes cache policy tokens and network capabilities in a capability
database, treating them soft state.

Figure [l gives an overview of the protocol exchanges when an initiator wants
to communicate with a responder. The initiator has a policy token previously
issued by the GC that authorizes the communication with the responder (step
1). The initiator sends a communication request (and, optionally, initial data),
along with its policy token toward the responder (step 2). This packet also con-
tains a transaction id that the initiator will use in subsequent packets to the
same responder. The packet may also contain a network capability that the ini-
tiator generates; this can be used by the responder to communicate back to
the initiator. Here, we assume that the initiator has a routing table entry for
the responder. Otherwise the underlying routing protocol will be invoked to get
the route. An intermediate node will forward the packet only after validating
it (step 3). The validation involves cryptographic verification of the capability,
and verification of the constraints (e.g., bandwidth usage, service and destina-
tion address) specified in the policy token. If the validation is successful, the
intermediate node also records the policy token in its capability database, along
with other attributes of the packet, such as source and destination node address
and the transaction id.

The responder, on receiving the packet verifies the policy token and creates a
network capability for the initiator (step 4). The responder sends the response

Deny-by-Default Distributed Security Policy Enforcement 45

CENTRAL
AUTHORITY h
RESPONDER
I ()]
!
1. Allocate policy tokens(offline)
i 4. Create network capability for
/ 3. Add the initiator’s capability to () the initiator
! 2. Connection request with policy

capability database i
token and network capability for PR, end response with
), cabability received from the

(199)
) the responder usmmmz rect
|mzwanum NODE initiator
7. Send data and the Capabillw

Received from the responder 8. Update the capability database 9. Receive data

entry for the initiator

10. Send more data

INITIATOR

11. Forward data after verifying 12. Receive more data

with capability database

2l
6memeumf noDE
6. Add responder’s capability to
(E;) capability database

INTERMEDIATE NODE

Fig. 1. System overview

to the request as well as the newly created network capability for the initiator
(step 5). The responder also creates a transaction id for the communication,
and includes it in the response. The responder also needs to include the network
capability it received from the initiator in the first message, which authorizes it
to communicate back; alternatively (or in addition), it may use a policy token
issued by the GC to responder that is authorizing the communication with the
initiator. Intermediate nodes, on receiving this packet from the responder, vali-
date the packet and adds the responder’s policy token and network capability to
its capability database (step 6). In the diagram, the reverse path is shown to be
different from the forward path; the paths can also be the same. The initiator
will then have to include the responder-issued network capability in subsequent
packets it transmits (step 7); intermediate nodes will add this credential to their
capability database (steps 8, 9).

Any further data traffic between the initiator and the responder does not
contain the policy token and network capability; instead, it contains only the
transaction id that was included in the initial handshake (steps 10-12). The
packets are signed by the sender, and can be verified by the intermediate nodes.
If the cost of the cryptographic operations is too high (in terms of latency or
power consumption), cryptographic validation may be done probabilistically.
The intermediate nodes can validate the packets by looking at the policy token
and network capability contained in the capability database corresponding to
the transaction id in the packet. This process ensures that the packet does not
exceed the resource limit allowed in the policy token and the network capability,
and is authorized to reach the destination by both the GC and the destination
itself. For this validation, the intermediate node also maintains the resource usage
against each capability in its capability database. The only time the initiator or

46 M. Alicherry, A.D. Keromytis, and A. Stavrou

responder need to re-send the capability is when the path between them changes
due to node mobility, or when the network capability expires and is reissued by
the peer.

We note that our solution can be used to protect multicast traffic and rout-
ing control packets. Furthermore, we can bound the probability of an adversary
injecting traffic that remains undetected, when probabilistic cryptographic vali-
dation is performed. We omit the details due to lack of space.

3.1 Feasibility

We argue that the proposed solution is feasible for MANETS, even though the
memory and processing power are lower in MANET nodes compared to routers in
wired networks. Our scheme requires memory to store the information about the
traffic sessions, and CPU cycles for the cryptographic operations. The feasibility
comes from the fact that the bandwidth in MANETS is significantly lower than
that of wired networks, while the nodes are relatively powerful (e.g., normal
laptops, or high-end cellphone devices). As a result, the available memory and
processing power per packet is higher in MANETS than in wired networks. The
processing power per packet for MANET nodes are increasing everyday with the
advent of faster but less power-hungry processors for portable devices.

Furthermore, the per-packet cryptographic operations, which involve a public
key signature verification, can be achieved with very small key sizes. This is
because, unlike traditional uses of public keys, these keys are useful only for the
short duration of the session. For longer sessions, new keys can be generated and
old ones discarded.

3.2 Capability Definition

Each node has authority to send traffic to its peers at certain rates. This au-
thority is encoded in the policy token and network capability. Both of these are
represented by KeyNote-style credentials [3]. Each credential contains

1. Identity of the node (principal)

2. (Optional) Identity of the destination node; if left unspecified, it applies to
all destinations

3. Type of service and amount of data the principal is allowed to send

4. An expiration time

5. Signature of the GC (for policy tokens) or peer (for network capabilities)

All nodes in the MANET know the public key of the GCs, so that they can
verify policy tokens issued by them. Identities are expressed in term of the long-
term public key of the node to which a credential is assigned. The destination
node can be a host, subnet, or public key. Type of service refers to the transport
protocol identifiers (e.g., TCP ports) a credential authorizes.

Typically, the bandwidth available to a node on a network capability is higher
than that of its policy token. Policy tokens are assigned by the GC, which has no
knowledge of network load at the time the communication takes place. Hence,

Deny-by-Default Distributed Security Policy Enforcement 47

the central authority will consider the worst case scenario while assigning the
policy token and permit only enough communication to take place for a hand-
shake to occur. It is up to the responder to provide a network capability with
enough bandwidth allocation to enable the communication to proceed. Note,
also, that it is in the interest of a node to issue short-lived network capabilities
to its communicating peers, so that it can quickly respond to changing network
dynamics or (more importantly) to peer misbehavior (e.g., a flood-based DoS).

Policy tokens and network capabilities have the same syntactic representation.
Following is an example:

serial: 130745

owner: unitOl.nj.army.mil (public key)
destination: *.nj.army.mil

service: https

bandwidth: 50kbps

expiration: 2010-12-31 23:59:59

issuer: captain.nj.army.mil

signature: sig-rsa 23455656767543566678

The above represents a policy token assigned by node captain.nj.army.mil to
unitO0l. The unit can use this policy token to send the traffic to any node in
the domain nj.army.mil. The peak data rate using this credential cannot exceed
50kbps.

If unit01 wants to communicate with unit02, it will send a message to unit02
using this policy token. Unit02 will issue a network capability for unitO1, if the
communication needs more bandwidth than available in the policy token.

serial: 1567

owner: unitOl.nj.army.mil (public key)

destination: unit02.nj.army.mil

bandwidth: 150kbps

expiration: 2007:10:21 13:05:35

issuer: unit02.nj.army.mil

comment: Policy allowing the receiver
to issue this capability.

signature: sig-rsa 238769789789898

This capability is restricted to be used only by unitO1 for communication with
unit02. It specifies a higher bandwidth, but a shorter expiration date. The issuer
of the capability is the same as the destination of the capability.

After receiving this capability, unitO1 will use this capability for communi-
cation with unit02. The more general policy token can be used by unit01 for
communicating with other nodes.

If the communication from unit01 to unit02 was short and required low band-
width, unit01 could have used its policy token for the entire duration of the
communication, without requesting for a network capability from unit02. This
will be faster for short communication as there is no capability request/reply,

48 M. Alicherry, A.D. Keromytis, and A. Stavrou

and unit02 does not have to issue any capabilities. If unitO1 expects some mes-
sages from unit 2 that require more capabilities than the one that is available to
unit02 in the form of its corresponding policy token, then unitOl could issue a
network capability to unit02.

3.3 Security Analysis

We now discuss how our architecture relates to the threat model described in
Section

Since the capabilities are signed by a GC and are verifiable by all nodes,
adversaries cannot generate their own valid capabilities. Adversaries can create
valid capabilities only if the GC is compromised. Since the individual packets
are signed, an adversary cannot use a transaction id that does not belong to it
to transmit packets.

A compromised or malicious node that does not enforce the capability pro-
tocol can only have impact within its communication radius. Packets generated
without the capability or with a snooped transaction id by a malicious node will
be dropped by the neighboring nodes due to invalid signatures. A compromised
node can only access the services it is authorized to. Packets of nodes trying to
use more bandwidth than is allocated to them will be rejected. A malicious node
frequently doing this can be detected and isolated.

A receiver can protect against DoS attacks by controlling the issuance of
network capabilities to its peers. A malicious node can use its policy tokens or
network capabilities to send duplicate packets in multiple disjoint paths; we do
not currently protect against this attack, which allows a node to transmit more
traffic that it is authorized to. We note, however, that local nodes in the radio
perimeter of the misbehaving node can detect this scenario. Since the network
capability can be created only based on the policy allowed by the GC, it is not
possible for two compromised nodes to collaborate and create arbitrarily large
network capabilities.

4 Related Work

Security for mobile ad hoc network is an active area of research. Most of the prior
work on MANET security focused on solving specific problems or retrofitting se-
curity into an existing IP-based network architecture; we are trying to introduce
a new architecture where security is built into the network. Surveys of research
in MANETS can be found elsewhere [TTJT31[9].

The concept of capabilities was used in operating system for securing resources
[10]. There was work on allowing controlled exposure of resources at the network
layer using the concept of “visas” for packets [4], which is similar to network
capabilities. More recently, network capabilities were proposed to prevent DoS
in wired networks [2]. We extend the concept to MANET and use it for both
access control rules and traffic shaping parameters. In the original approach, the
capabilities were assigned only by the receivers, and there is no limit on the

Deny-by-Default Distributed Security Policy Enforcement 49

amount of capability that a receiver can assign. Though it achieves the goal of
preventing the DoS attack at the receiver, it does not prevent two nodes from
taking up all the available network resources. Their solution also assumes that
the links in the path between a sender and receiver cannot be snooped, and
the path is fixed. These assumptions are valid for the wire line system that
their solution is designed for, but does not work for MANETSs. Previous work
on distributed firewalls [5] focused on wired fixed-network environments, and
attempts to protect only the end hosts using a host-based solution. Our solution
is for a mobile network, using a combination of network and host-based solutions
that attempt to protect both the network and end-host resources.

Signing and verification of packets between a sender and a receiver were
commercially available in early 1990s. Novell’s Netware 3.11 and 4.x supported
NCP Packet Signature Option, where a unique signature was appended to each
packet sent between the client and the server [7]. The keys for the signatures
were negotiated at login time. Intermediate nodes were not involved in packet
verification.

Mitigating the denial of service attacks by including a message authentication
code and the certificate of the sender for each packet has been previously pro-
posed [I2]. That work does not study the high overhead associated with sending
a large signature or a large certificate on each packet. The authors use game
theory to study the problem of dealing with selfish nodes that do not verify the
packet signatures, using incentives and punishments. This mechanism or any
other reputation based mechanism [6] can also be used in our scheme to deal
with selfish nodes.

HEAP [I] mitigates various MANET attacks from outsider nodes by doing a
hop-by-hop packet authentication using HMAC. MACs (end-to-end or hop-by-
hop) cannot deal with insider attacks. They also cannot provide access control
unless different MAC keys are used for different policies. Even with different
keys, MACs allow rogue nodes to “hide” since MACs are repudiable as all the
intermediate nodes in the path between a sender and a receiver need to know
the key. Only asymmetric key mechanisms can allow validation by all the inter-
mediate nodes that the packets indeed sent by the source node of the packet.

5 Conclusions and Future Work

We presented a novel architecture for enforcing security policies in MANETS.
Our scheme, based on the concept of network capabilities and following a deny-
by-default paradigm, can protect both end-host resources and network band-
width from denial of service attacks, as well as limit the exposure of the MANET
to compromised and malicious nodes. We discussed the details of the architec-
ture and protocol used for propagating policy tokens and receivers, and discussed
the various scenarios of use. For our future work, we plan to study the impact
of our scheme on throughput and latency for different topologies and classes of
traffic. In addition, we intend to quantify the performance of multicast traffic on
mobility scenarios, and to implement and deploy on MANET testbeds with real
traffic.

50

M. Alicherry, A.D. Keromytis, and A. Stavrou

Acknowledgements

This work was supported in part by the National Science Foundation through
Grant CNS-07-14277. Any opinions, findings, conclusions, and recommendations
expressed in this paper are those of the authors and do not necessarily reflect
the views of the NSF or the US Goverment.

Mansoor Alicherry was supported by Alcatel-Lucent, Murray Hill, New Jersey.

References

10.

11.

12.

13.

. Akbania, R., Korkmaz, T., Raju, G.: HEAP: A packet authentication scheme for

mobile ad hoc networks. In: Communications and Networking Simulation Sympo-
sium (2007)

. Anderson, T., Roscoe, T., Wetherall, D.: Preventing internet denial-of-service with

capabilities. In: Proc. of Hotnets-II (2003)

. Blaze, M., Ioannidis, J., Keromytis, A.: Trust management for ipsec. In: Symposium

on Network and Distributed Systems Security, SNDSS (2001)

. Estrin, D.; Mogul, J.C., Tsudik, G.: Visa protocls for controlling interorganizational

datagram flow. IEEE Journal on Selected Areas in Communications (May 1989)

. loannidis, S., Keromytis, A.D., Bellovin, S.M., Smith, J.M.: Implementing a dis-

tributed firewall, pp. 190-199 (2000)

. Jaramillo, J., Srikant, R.: Darwin: Distributed and adaptive reputation mechanism

for wireless ad-hoc networks. In: MOBICOM (2007)

. Lee, R.: Netware 4.x performance tuning and optimization: Part 3 (October 1993),

http://support.novell.com/techcenter/articles/ana19931001.html

. Parno, B., Wendlandt, D., Shi, E., Perrig, A., Maggs, B., Hu, Y.-C.: Portcullis:

protecting connection setup from denial-of-capability attacks. SIGCOMM Comput.
Commun. Rev. 37(4), 289-300 (2007)

. Shi, E., Perrig, A.: Designing secure sensor networks. IEEE Wireless Communica-

tions (2004)

Wobber, E., Abadi, M., Burrows, M., Lampson, B.: Authentication in the taos
operating system. ACM Transactions on Computer Systems 12 (February 1994)
Wu, B., Chen, J., Wu, J., Cardei, M.: A survey on attacks and countermeasures in
manets. In: Wireless/Mobile Network Security, ch. 12. Springer, Heidelberg (2006)
Wu, X., Yau, D.K.Y.: Mitigating Denial-of-Service Attacks in MANET by Dis-
tributed Packet Filtering: A Game-theoretic Approach. In: ASTACCS (March 2007)
Yang, H., Luo, H., Ye, F., Lu, S., Zhang, L.: Security in mobile ad hoc networks:
Challenges and solutions. IEEE Wireless Communications (2004)

http://support.novell.com/techcenter/articles/ana19931001.html

Baiting Inside Attackers Using Decoy
Documents

Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis,
and Salvatore J. Stolfo

Department of Computer Science Columbia University

Abstract. The insider threat remains one of the most vexing problems
in computer security. A number of approaches have been proposed to
detect nefarious insider actions including user modeling and profiling
techniques, policy and access enforcement techniques, and misuse de-
tection. In this work we propose trap-based defense mechanisms and a
deployment platform for addressing the problem of insiders attempting
to exfiltrate and use sensitive information. The goal is to confuse and
confound an adversary requiring more effort to identify real information
from bogus information and provide a means of detecting when an at-
tempt to exploit sensitive information has occurred. “Decoy Documents”
are automatically generated and stored on a file system by the D® System
with the aim of enticing a malicious user. We introduce and formalize a
number of properties of decoys as a guide to design trap-based defenses
to increase the likelihood of detecting an insider attack. The decoy doc-
uments contain several different types of bogus credentials that when
used, trigger an alert. We also embed “stealthy beacons” inside the doc-
uments that cause a signal to be emitted to a server indicating when and
where the particular decoy was opened. We evaluate decoy documents
on honeypots penetrated by attackers demonstrating the feasibility of
the method.

1 Introduction

Much research in computer security has focused on the means of preventing
unauthorized and illegitimate access to systems and information. Unfortunately,
the most damaging malicious activity is the result of internal misuse within an
organization, perhaps since far less attention has been focused inward. Despite
classic internal operating system security mechanisms and the body of work
on formal specification of security and access control policies, including Bell-
LaPadula [I] and the Clark-Wilson models [4], we still have an extensive insider
attack problem. Indeed in many cases, formal security policies are incomplete
and implicit or they are purposely ignored in order to get business goals ac-
complished. There seems to be little technology available to address the insider
threat problem.

Insider attack has overtaken viruses and worm attacks as the most reported
security incident according to a report from the US Computer Security Institute

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 51 009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

52 B.M. Bowen et al.

(CSI) [19]. The annual Computer Crime and Security Survey for 2007 surveyed
494 security personnel members from US corporations and government agencies,
finding that insider incidents were cited by 59 percent of respondents, while only
52 percent said they had encountered a conventional virus in the previous year.
The state-of-the-art seems to be still driven by forensics analysis after an attack,
rather than technologies that prevent, detect, and deter insider attack.

We define insider threats by differentiating between Masqueraders (attack-
ers who impersonate another inside user) and Traitors (an inside attacker using
their own legitimate credentials). One possible solution for masquerade detection
involves anomaly detection [27]. In this approach, users actions are profiled to
form a baseline of normal behavior. Subsequent monitoring for abnormal behav-
iors that exhibit large deviations from this baseline [I6] signal a potential insider
attack. The common strategy to prevent inside attacks involves policy-based ac-
cess control techniques to limit the scope of systems and information an insider is
authorized to use, and hence, limit the damage the organization may incur when
an insider goes awry. Prevention techniques may not always succeed, and thus,
monitoring and detection techniques are needed when prevention fails. In this
paper, we are focused on different techniques aimed at detecting masqueraders
and traitors.

We note that some external attackers can become insiders when an outsider
attains internal network access. Many attacks use spyware and rootkits [3], which
give outsiders internal access. Such software can easily be installed on systems
from physical or digital media (e.g., email, downloads) and allow an attacker
administrator or “root” access on a machine along with a means to gather sen-
sitive data. Rootkits have the ability to conceal themselves and elude detection,
especially when the rootkit is previously unknown, as is true in zero-day attacks
[]. An external attacker that manages to install rootkits internally in effect
becomes an insider, thereby multiplying the ability to inflict harm. Although
the techniques described in this paper may have utility for these cases, in this
paper our primary focus is on human insiders attempting to exfiltrate sensitive
information. By exfiltration we mean unauthorized copying and transmission of
information by any means.

The insider attack defense system described in this paper is of an offensive
nature, intended to confuse and deceive a traitor by leveraging uncertainty, to
reduce the knowledge they ordinarily have of the systems and data they might
be authorized to use. This work considers methods to detect insider actions
against enterprise systems as well as individual hosts and laptops. We introduce
a deception system to distribute potentially large amounts of decoy information
with the aim to detect nefarious acts as well as to increase the workload of
an attacker to identify real information from bogus information, rather than
providing unfettered access as broadly exists today. We developed a system to
generate and place decoy documents within a file system. Our system generates
decoy documents containing decoy credentials that are monitored (e.g., Gmail
credential monitoring) for misuse and stealthily embedded beacons that signal
an alert when the document is opened.

Baiting Inside Attackers Using Decoy Documents 53

To achieve the goal of wide spread deception we must consider methods to
trap a wide variety of potential insiders with varying levels of sophistication.
Toward this goal, we developed a proof-of-concept system we call D2, the Decoy
Document Distributor system. Samples of D? generated documents are presented
in the Appendix. The contributions of this paper include:

e A novel set of generally applicable properties are proposed to guide the
design and deployment of decoys and maximize the deception they induce
for different classes of insiders who vary by their level of knowledge and
sophistication.

e A large-scale automated creation and management system for deploying de-
coys that can detect the presence (and, in some cases, “identity”) of mali-
cious insiders, or at least indicate malicious insider activity. This provides
a means for ordinary users to deploy honey documents without having to
setup sophisticated honeypot systems and sensors.

e An offensive trap-based defense system is proposed to detect masqueraders
and traitors, and to flood attackers with bogus exfiltrated information that
they must analyze in order to find real information of value. Hence, our
long term goal is to flood the miscreant marketplace with bogus information
devaluing their quarry.

e A design of decoy information that combines a number of methods and
monitors, both internal and external, to detect insider exploitation using a
common and ubiquitous set of baited targets, ordinary looking documents.

1. A watermark is embedded in the binary format of the document file to
detect when the decoy is loaded in memory, or egressed in the open over
a network.

2. A “beacon” is embedded in the decoy document that signals a remote
web site upon opening of the document indicating the malfeasance of an
insider illicitly reading bait information.

3. If these methods fail to detect an insider attack or an exfiltration of
baited documents, the content of the documents contain bait and decoy
information that is monitored as well. Bogus logins at multiple organi-
zations as well as bogus and realistic bank information is monitored by
external means.

e An easy to use system to broadly deploy decoys to ordinary users who are
alerted by email when a decoy has been touched on their laptops and personal
computers; no such system presently exists.

The reader is encouraged to visit the Decoy Document Distribution (D?) web
site to evaluate our technology developed to date at: http://www.cs.columbia.
edu/ids/RUU/Dcubed].

2 Related Work

The use of deception, or decoys, plays a valuable role in the protection of systems,
networks, and information. The first use of decoys (i.e., in the cyber domain)

1 Some features are restricted for internal use only.

http://www.cs.columbia.edu/ids/RUU/Dcubed
http://www.cs.columbia.edu/ids/RUU/Dcubed

54 B.M. Bowen et al.

has been credited to Cliff Stoll [29/23] and detailed in his novel “The Cuckoos
Egg” [24], where he provides a thorough account of his crusade to catch German
hackers breaking into Lawrence Berkeley Laboratory computer systems. Stoll’s
methods included the use of bogus networks, systems, and documents to gather
intelligence on the German attackers who were apparently seeking state secrets.
Among the many techniques waged, he crafted “bait” files, or in his case, bogus
classified documents that really contained non-sensitive government information
and attached “alarms” to them so that he would know if anyone accessed at them.
To Stoll’s credit, a German hacker was eventually caught and it was found that
he had been selling secrets to the KGB.

Honeypots are effective tools for profiling attacker behavior. Honeypots are
considered to have low false positive rates since they are designed to capture
only malicious attackers, except for perhaps an occasional mistake by innocent
users. Spitzner described how honeypots can be useful for detecting insider at-
tack [22] and discusses the use of honeytokens [23] such as bogus medical records,
credit card numbers, and credentials. In a similar spirit, Webb et al. [26] showed
how honeypots can be useful for detecting spammers. In current systems, the
decoy/honeytoken creation is a laborious and manual process requiring large
amounts of administrator intervention. Our work extends these basic ideas to
an automated system of managing the creation and deployment of these honey-
tokens.

Yuill et al. [29] extend the notion of honeytokens with a “honeyfile system”
to support the creation of bait files, or as they define them, “honeyfiles.” The
honeyfile system is implemented as an enhancement to the Network File Server.
The system allows for any file within user file space to become a honeyfile through
the creation of a record associating a filename to userid. The honeyfile system
monitors all file access on the server and alerts users when honeyfiles have been
accessed. Their work does not focus on the content or automatic creation of files,
but they do elicit some of the challenges of creating deceptive files (with respect
to names) that we address in section 4.

In this paper, we introduce a set of properties of decoys to guide their design
and maximize the deception they induce for different classes of insiders who vary
by their level of knowledge and sophistication. To the best of our knowledge, the
synthesis of these properties is indeed novel a contribution. Bell and Whaley
[2] have described the structure of deception as a process of hiding the real and
showing showing the false. They introduce several methods of hiding that include
masking, repackaging, and dazzling, along with three methods of showing that
include mimicking, inventing, and decoying. Yuill et al. [28] expand upon this
work and characterize deceptive hiding in terms of how it defeats an adversary’s
discovery process. They describe an adversary’s discovery process as taking three
forms: direct observation, investigation based on evidence, and learning from
other people or agents. Their work offers a process model for creating deceptive
hiding techniques based on how they defeat an adversary’s discovery process.

The decoy documents introduced in this paper utilize similar deception mech-
anisms as well as beacons to signal a remote detect and alert in real-time time

Baiting Inside Attackers Using Decoy Documents 55

when a decoy has been opened. Web bugs are a class of silent embedded tokens
which have been used to track usage habits of web or email users [I7]. Unfor-
tunately, they have been most closely associated with unscrupulous operators,
such as spammers, virus writers, and spyware authors who have used them to
violate users privacy. Typically they will be embedded in the HTML portion of
an email message as a non-visible white on white image, but they have also been
demonstrated in other forms such as Microsoft Word, Excel, and PowerPoint
documents [20]. When rendered as HTML, a web bug triggers a server update
which allows the sender to note when and where the web bug was viewed. Ani-
mated images allow the senders to monitor how long the message was displayed.
The web bugs operate without alerting the user of the tracking mechanisms. The
advantage for legitimate advertisers is that this allows them to monitor adver-
tisement effectiveness, while privacy advocates worry that this technology can
be misused to spy on users’ habits. Our work leverages the same ideas, but ex-
tends them to other document classes and is more sophisticated in the methods
used to draw attention. In addition, our targets are insiders who should have no
expectation of privacy on a system they violate.

3 Threat Model - Level of Sophistication of the Attacker

The insider seeks to identify and avoid the decoys and abscond with “real”
information. We broadly define four monotonically increasing levels of insider
sophistication and capability. Some will have tools available to assist in deciding
what is a decoy and what is real. Others will only have their own observations
and thoughts.

— Low: Direct observation is the only tool available. The adversary largely
depends on what can be gleaned from a first glance. We strive to defeat
this level of adversary with our beacon documents, even though decoys with
embedded beacons may be distinguished with more advanced tools.

— Medium: A more thorough investigation can be performed by the insider;
decisions based on other, possibly outside evidence, can be made. For exam-
ple, if a decoy document contains a decoy account credential for a particular
identity, an adversary may verify that the particular identity is real or not
by querying an external system (such as www.whitepages.com). Such adver-
saries will require stronger decoy information possibly corroborated by other
sources of evidence.

— High: Access to the most sophisticated tools are available to the attacker
(e.g., super computers, other informed people who have organizational in-
formation). The notion of the “Perfect Decoy” described in the next section
may be the only indiscernible decoy by an adversary of such caliber.

— Highly Privileged: Probably the most dangerous of all is the privileged
and highly sophisticated user. Such attackers might even be aware that the
system is baited and will employ sophisticated tools to try to analyze, disable,
and avoid decoys entirely. As an example of how defeating this level of threat

56 B.M. Bowen et al.

might be possible, consider the analogy with someone who knows encryption
is used (and which encryption algorithm is used), but still cannot break the
system because they do not have knowledge of an easy-to-change operational
parameter (the key). Likewise, just because someone knows that decoys are
used in the system does not mean they should be able to identify them.
This is the principal—- coming up with a scheme to satisfy it remains an open
problem.

4 Generating and Distributing Bait

In order to create decoys to bait various levels of insiders, one must understand
the core properties of a decoy that will successfully bait an insider.

4.1 Decoy Properties

We enumerate various properties and means of measuring these properties that
are associated with decoy documents to ensure their use will be likely to snare
an inside attacker. We introduce the following notation for these definitions.

Believabld: Capable of eliciting belief or trust; capable of being
believed; appearing true; seeming to be true or authentic.

A good decoy should make it difficult for an adversary to discern whether they
are looking at an authentic document from a legitimate source or if they are
indeed looking at a decoy. We conjecture that believability of any particular
decoy can be measured by adversary’s failure to discern one from the other. We
formalize this by defining a decoy believability experiment. The experiment is
defined for the document space M with the set of decoys D such that D C M
and M — D is the set of authentic documents.

The Decoy Believability Experiment: Expff)lgfﬁ(j[

e For any d € D, choose two documents mg, m; € M such that my = d or
my = d, and my # myq; that is, one is a decoy we wish to measure the
believability of and the second is chosen at random from the set of authentic
documents.

e Adversary A obtains mg, m; and attempts to choose m € {mg,m;} such
that m # d, using only information intrinsic to mg, mq.

e The output of the experiment is 1 if /m # d and 0 otherwise.

For concreteness, we build upon the definition of “Perfect Secrecy” proposed in
the cryptography community [12] and define a “perfect decoy” when:

PrExp'fs% = 1] =1/2

2 For clarity, each property is provided with its definition gleaned from online dictio-
nary sources.

Baiting Inside Attackers Using Decoy Documents 57

The decoy is chosen in a believability experiment with a probability of 1/2 (the
outcome that would be achieved if the volunteer decided completely at random).
That is, a perfect decoy is one that is completely indistinguishable from one that
is not. A benefit of this definition is that the challenge of showing a decoy to be
believable, or not, reduces to the problem of creating a “distinguisher” that can
decide with probability better than 1/2.

In practice, the construction of a “perfect decoy” might be unachievable,
especially through automatic means, but the notion remains important as it
provides a goal to strive for in our design and implementation of systems. For
many threat models, it might suffice to have less than perfect believable decoys.
For our proof-of-concept system described below, we generate receipts and tax
documents, and other common form-based documents with decoy credentials,
realistic names, addresses and logins, all information that is familiar to all users.

We note that the believable property of a decoy may be less important than
other properties defined below since the attacker may have to open the decoy
in order to decide whether the document is real or not. The act of opening
the document may be all that we need to trap the insider, irrespective of the
believability of its content. Hence, enticing an attacker to open a document, say
one with a very interesting name, may be a more effective strategy to detect an
inside attack than producing a decoy document with believable content.

Enticing: highly attractive and able to arouse hope or desire; “an
alluring prospect”; lure.

Herein lies the issue of how does one measure the extent to which a decoy arouses
desires, how well is it a lure? One obvious way is to create decoys containing
information with monetary value, such as passwords or credit card numbers
that have black market value [T4I25]. However, enticement depends upon the
attacker’s intent or preference. We define enticing documents in terms of the
likelihood of an adversary’s preference; enticing decoys are those decoys that are
chosen with the same likelihood. More formally, for the document space M, let P
be the set of documents of an adversary’s A preference, where P C M. For some
value € such that € > 1/|M|, an enticing document is defined by the probability

Prim — M|m € P| > ¢

where m — M denotes m is chosen from M. An enticing decoy is then defined
for the set of decoys D, where D C M, such that

Prim — M|m € P] = Pr[d — M|d € D]

We posit that by defining several general categories of “things” that are of “at-
tacker interest”, one may compose decoys using terms or words that correspond
to desires of the attacker that are overwhelmingly enticing. For example, if the
attacker desires money, any document that mentions or describes information
that provides access to money should be highly enticing. We believe we can
measure {requently occurring (search) terms associated with major categories of

58 B.M. Bowen et al.

interest (e.g., words or terms drawn from finance, medical information, intellec-
tual property) and use these as the constituent words in decoy documents. To
measure the effectiveness of this generative strategy, it should be possible to ex-
ecute content searches and count the number of times decoys appear in the top
10 list of displayed documents. This is a reasonable approach also, to measuring
how conspicuous, defined below, the decoys become based upon the attacker’s
searches associated with their interest and intent.

Conspicuous: easily visible; easily or clearly visible; obvious to the
eye or mind; Attracting attention.

A conspicuous decoy should be easily found or observed. Conspicuous is defined
similar to enticing, but conspicuous documents are found because they are easily
observed, whereas enticing documents are chosen because they are of interest to
an attacker. For the document space M, let V' be the set of documents defined
by the minimum number of user actions required to enable their view. We use
a subscript to denote the number of user actions required to view some set of
documents. For example, documents that are in view at logon or on the desktop
(requiring zero user actions) are labeled Vp, those requiring one user action are
V1, etc. We define a “view”, V; of a set of documents as a function of a number
of user actions applied to a prior view, V;_1, hence

Vi = Action(V;_1) where V; # V;,j < i

An “Action” may be any command or function that displays files and documents,
such as ‘ls’, ‘dir’, ‘search.” For some value € such that ¢ > 0, a conspicuous
document, d, is defined by the probability

where n is the minimum value where d € V,,. Note if d is on the desktop, Vg,
Pr[Vp] = 1 (i.e., the documents in full view are highly conspicuous).

When a user first logs in, a conspicuous decoy should either be in full view
on the desktop, or viewable after one (targeted) search action. One simple user
action is optimal for a highly conspicuous decoy. Thus, a measure of conspic-
uousness may be a count of the number of search actions needed, on average,
for a decoy to appear in full view. The decoy may be stored in the file system
anywhere if a simple content-based search locates it in one step. But, this search
act depends upon the query executed by the user. The query can either be a
location (e.g., search for a directory named “TAX” in which the decoy appears)
or a content query (e.g., using Google Desktop Search for documents containing
the word “TAX.”) In either case, if a decoy document appears after one such
search, it is conspicuous. Hence, we may define the set P as all such files that can
be found in some number of steps. But, this depends upon what search terms the
attacker uses to query! If the decoy never appears because the attacker used the

Baiting Inside Attackers Using Decoy Documents 59

wrong search terms, the decoy is not conspicuous. We posit that the property of
enticing is likely the most important property, and a formal measure to evaluate
enticement will generate better decoys. In summary, an enticing decoy should
be conspicuous to be an effective decoy trap.

Detectable; to discover or catch (a person) in the performance of
some act: to detect someone cheating.

Decoys must ensure an alert is generated if they are exploited. Formally, this
is defined for adversary A, document space M, and the set of decoys D such
that D C M. We use Alerta,q= 1 to denote an alert for d € D. We say d is
detectable with probability ¢ when

Prid — M : Alertaq=1] > ¢

Ideally, € should be 1.
We designed the decoy documents with several techniques to provide a good
chance of detecting the malfeasance of an inside attack in real-time.

e At time of application start-up, the decoy document emits a beacon alert to
a remote server.

e At the time of memory load, a host-sensor, such as an antivirus scanner, may
detect embedded tokens placed in a clandestine location of the document file
format.

e At the time of exfiltration, a NIDS such as Snort, or a stream event detection
system such as Cayuga [5] may be used to detect these embedded tokens
during the egress of the decoy document in network traffic where possible.

e At time of information exploitation and/or credential misuse, monitoring
of decoy logins and other credentials embedded in the document content
by external systems will generate an alert that is correlated with the decoy
document in which the credential was placed.

This extensive set of monitors maximizes €, forcing the attacker to expend con-
siderable effort to avoid detection, and hopefully will serve as a deterrent to
reduce internal malfeasance within organizations that deploy such a trap-based
defense. In the proof-of-concept implementation reported in this paper, we focus
our evaluation on the last item. We utilize monitors at our local IT systems, at
Gmail and at an external bank.

Variability: The range of possible outcomes of a given situation; the
quality of being subject to variation.

Attackers are humans with insider knowledge, even possibly with the knowledge
that decoys are liberally spread throughout an enterprise. Their task is to identify
the real documents from the potentially large cache of decoys. One important
property of the set of decoys is that they are not easily identifiable due to some
common invariant information they all share. A single search or test function

60 B.M. Bowen et al.

would thus easily distinguish the real from the fake. The decoys thus must be
highly varied. We define variable in terms of the likelihood of being able to decide
the believability of a decoy given any known decoy. Formally, we define perfectly
variable for document space M with the set of decoys D such that D C M where

Pr[d — D : Expy'5% ¢ =1 =1/2
Observe that under this definition an adversary may have access to all N pre-
viously generated decoys with the knowledge they are bogus, but still lack the
ability to discern the N+1%¢. From a statistical perspective, each decoy is inde-
pendent and identically distributed. For the case that an adversary can determine
the N+4-15¢ decoy only after observing the N prior decoys, we define this as an
N-strong Variant.

Clearly, a good decoy generator should produce an unbounded collection of
enticing, conspicuous, but distinct and variable documents. They are distinct
with respect to string content. If the same sentence appears in 100 decoys, one
would not consider such decoys with repetitive information as highly variable;
the common invariant sentence(s) can be used as a “signature” to find the decoys,
rendering them distinguishable (and clearly, less enticing).

Non-interference: Something that does not hinder, obstructs, or
impede.

Introducing decoys to an operational system has the potential to interfere with
normal operations in multiple ways. Of primary concern is that decoys may pol-
lute authentic data so that their legitimate usage becomes hindered by corruption
or as a result of confusion by legitimate users (i.e., they cannot differentiate real
from fake). We define non-interference in terms of the likelihood of legitimate
users successfully accessing normal documents after decoys are introduced. We
use Accessy,, = 1 to denote the success of a legitimate user U accessing a normal
document m. More formally, for some value €, the document space M, Vm € M
we define

Pr[Accessym = 1] > €

on a system without decoys. Non-interference is then defined for the set of decoys
D such that D C M and Vm € M we have

Pr[Accessy,m = 1] = Pr[Accessy,m = 1|D]

Although we seek to create decoys to ensnare an inside attacker, a legitimate user
whose data is the subject of an attacker must still be able to identify their own
real documents from the planted decoys. The more enticing or believable a decoy
document may be, the more likely it would be to lead the user to confuse it with a
legitimate document they were looking for. Our goal is to increase believability,
conspicuous, and enticingness while keeping interference low; ideally a decoy
should be completely non-interfering. The challenge is to devise a simple and
easy to use scheme for the user to easily differentiate their own documents, and
thus a measure of interference is then possible as a by-product.

Baiting Inside Attackers Using Decoy Documents 61

Differentiable: to mark or show a difference in; constitute a
difference that distinguishes; to develop differential characteristics
in; to cause differentiation of in the course of development.

It is important that decoys be “obvious” to the legitimate user to avoid inter-
ference, but “unobvious” to the insider stealing information. We define this in
terms of an inverted believability experiment, in which the adversary is replaced
by a legitimate user. We say a decoy is differentiable if the legitimate user al-
ways succeeds. Formally, we state this for the document space M with the set
of decoys D such that D C M where

Pr[Expl(’]e’lf)ej\f[=1]=1

How might we easily differentiate a decoy for the legitimate user so that we
maintain “non-interference” with the user’s own actions and legitimate work?
The remote thief who exfiltrates all of a user’s files onto a remote hard drive may
be perplexed by having hundreds of decoys amidst a few real documents; the thief
should not be able to easily differentiate between the two cases. If we store a
hundred decoys for each real document, the thief’s task is daunting; they would
need to test embedded information in the documents to decide what is real and
what is not, which should complicate their end goals. For clarity, decoys should
be easily differentiable to the legitimate user, but not to the attacker without
significant effort. Thus, the use of “beacons” or other embedded content in the
binary file format of a document, must be judiciously designed and deployed to
avoid making decoys trivially differentiable for the attacker.

4.2 The Decoy Document Distributor (D3) System

The D? web-based service generates and distributes decoy documents to regis-
tered users. The decoy properties guide the design of decoy templates in D? that
are used to generate specific documents for download. The content of each decoy
document includes several types of “bait” information such as online banking lo-
gins provided by a collaborating financial institutiorﬂ login accounts for online
servers, and web based email accounts. In our deployment we used Columbia
University student accounts and Gmail email accounts as bait, but these can
be customized to any set of monitored credentials. These decoy credentials are
“bait” and are enticing targets for different types of adversaries [T4/T3].

4.3 Decoy Document Design

The primary goal of the trap based defense is to detect malfeasance. Since no
system is foolproof, we propose that multiple overlapping signals be embedded in
the decoy documents to ensure detectability. Any alert generated by the multiple
decoys is an indicator that some insider activity has occurred. Since the attacker
may have varying levels of sophistication, a combination of traps are used in

3 By agreement, the institution request that its name be withheld.

62 B.M. Bowen et al.

decoy documents to increase the likelihood one will succeed in generating an
alert. A sophisticated attacker may, for example, disable the internal beacon,
or cut off network connections avoiding communication, disable or kill local
host monitoring processes, or they may exfiltrate documents via a web-browser
without opening them locally. The documents are designed with several means
of detecting their misuse:

e embedded honeytokens, computer login accounts created that provide no
access to valuable resources, and that are monitored when (mis)used;

e embedded honeytoken banking login accounts specifically created and mon-
itored for this trap-based technology demonstration specifically to entice
financially motivated attackers;

e a network-level egress monitor that alerts whenever a marker, specially
planted in the decoy document, is detected (we are collaborating with Cor-
nell to use Cayuga [5] for this purpose. Presently Snort may be used as simple
signature detector as a proof-of-concept);

e a host-based monitor that alerts whenever a decoy document is “touched”
in the file system such as a copy operation;

e an embedded “beacon” alerts a remote server at a site at Columbia that we
call SONAR. The web site emits an email to the registered user who created
and downloaded the decoy document.

The implementation of features are described below.

Honeytokens. This layer of defense is made up of “bait” information such as
online banking logins provided by a collaborating financial institution, credit
card numbers, login accounts for online servers, and web based email accounts.
The primary requirement for bait is that it be detectable when (mis)used. For
example, one form of bait that we use are usernames and passwords for Gmail
accounts. D? is integrated with a variety of services to enable monitoring of these
credentials once they are deployed as decoys. In the case of the Gmail accounts,
custom scripts access mail.google.com to parse the bait account pages, gather-
ing account activity information. The information includes the IP addresses for
the previous 5 account accesses and the time. If there is any activity from IP
addresses other than D3’s monitor, an alert is triggered with the time and IP of
the offending host. Alerts are also triggered when the monitor cannot login to
the bait account. In this case, we conclude that the account password was stolen
(unless monitoring resumes) and the password changed unless other corroborat-
ing information (like a network outage) can be used to convince otherwise. In
addition, some of our accounts have password monitors, allowing us to produce
a seemingly unbounded collection of decoy variants for individual usernames.
In the case of financially motivated bait, we are beginning to use real credit card
numbers in addition to banking login credentials. Many credit card providers offer
“one-time-credit-card numbers” and other forms of Controlled Payment Numbers
[18], which enable the generation of multiple credit card numbers for a single ac-
count. In the case of PayPal, single use credit card numbers can be generated with a

Baiting Inside Attackers Using Decoy Documents 63

predetermined balance. The D? monitor is being integrated with the PayPal APIs
to automatically monitor the activity of the credit card numbers deployed through
D3. Asis the case for all of the decoys, the benefit of deployment through D? is the
automation, enabling their creation, monitoring, and distribution en masse.

Beacon Implementation. The highly sophisticated attacker will likely at-
tempt to differentiate between a real document and a decoy by analyzing the
binary file format prior to opening a file. This necessitates a design where beacon
code and watermarks in decoy documents are hidden to avoid their easy identi-
fication. The attacker would surely avoid the decoys if they could easily identify
them by a simple static test for an embedded beacon. The beacon code can be
embedded in documents in a number of ways and made to appear statistically
equivalent to its surrounding data using a blending technique called “spectrum
shaping” (see [216]). Such obfuscation techniques are very hard to defeat [15].

Using common techniques developed for malware, beacons attempt to silently
contact a centralized server with a unique token embedded within the document
at creation time. The token is used to identify the decoy and document, the IP
address of the host accessing the decoy document. Depending on the particular
document type and the rendering environment used during viewing of the beacon
document, some additional data may be collected.

The first proof-of-concept beacons have been implemented in MS Word and
PDF and deployed through the D? web site. In the case of the MS Word doc-
ument beacons, the examples rely on a stealthily embedded remote image that
is rendered when the document is opened. The request for the remote image is
a positive indication the document has been opened. In the case of PDF doc-
ument beacons, the signaling mechanism relies on the execution of Javascript
within the document. The D? site includes a tutorial guiding the user on how
to generate, download, and enable the decoys’ silent communication on hosts.
It is important to point out that there are methods for disabling the beacon
mechanism. In Section [(.2] we provide an evaluation of beacon robustness.

Embedded Marker Implementation. Beacon documents contain embedded
markers that a host or network sensor may detect either when documents are
loaded in memory or transmitted in the clear. The markers are constructed as
a unique pattern of word tokens uniquely tied to the document creator. The
sequence of word tokens is embedded within the beacon document’s meta-data
area or reformated as comments within the document format structure. Both
locations are ideal for embedding markers since most rendering programs ig-
nore these parts of the document. The embedded markers can be used in Snort
signatures for detecting exfiltration.

5 Evaluation

5.1 Masquerade Detection Using Decoy Documents as Bait

We have defined the general properties that decoys should have and discussed
how we may measure these properties, but here we focus on the most important

64 B.M. Bowen et al.

property: detectability. Under ideal testing conditions, decoy efficacy could be
shown through deployment on true operational systems either within an enter-
prise environment, or on personal computers, by the number of attacks they are
able to detect or thwart (they have a deterrence effect). However, given rea-
sonable time limits, the infrequency of attacks within the insider threat model
makes this approach impractical within a university environment. As we men-
tioned we are now seeking a larger user population to study and measure decoy
generation over time.

Another approach to evaluation is a user study in which users are organized
and asked to evaluate decoys based on each of the key decoy properties men-
tioned earlier. We take human evaluation to be the gold standard of evaluation
since the human mind is the ultimate target of our decoys. That is, we wish to
show how well our decoys can induce deception on human test subjects. One of
the challenges of conducting a traditional user study lies in the logistics of ob-
taining volunteers. In our methodology, we attempt to reduce this challenge by
leveraging external attackers to serve as participants in our study on masquer-
ade detection. To do so, we “invite” attackers (or more accurately, bamboozle
them) into our study by attracting them with a set of vulnerable systems on the
university network, which also serve as our testing platform.

Our test platform is embedded within a honeynet [9]. It consists of several vir-
tual machines running Linux and configured with Sebek [10] to capture attacker
activities including commands and file references. In order to limit potential
damage from system compromise and still allow for testing, we configured the
honeynet to allow all incoming connections while restricting the number of out-
going connections.

The virtual machine hosts within the honeynet were configured with accounts
and home directories for three decoy usernames. To make the environment as real
as possible, genuine data from personal accounts on other systems were loaded
into each of the home directories. We changed name references within the data
to reflect those of the appropriate decoy users. In total, our phony user accounts
contained 15 or more directories and 50-100 files. The hosts were then seeded
with several of D3’s decoy files using the decoy distributor utility. The decoy files
were generated to have conspicuous names such as “stolen passwords”, “credit
card”, “private data”, and “Gmail AccountInfo”, but were distributed within
the polluted home directories of the decoy accounts, making the environment as
real as possible.

To lure test subjects into the study, our initial approach was to use attackers
that attempt to gain internal access via password scanning. Password scanning
attacks are common on the university network, where attempts on a typical
machine are in the range of thousands per day. To enable attacker access, we
conducted a short study to first determine the most common usernames and
passwords (excluding those for root and actual users) used in these attempts.
We created accounts with several of these usernames and passwords, to quickly
learn that this breed of attacker was not going to suffice for our user study; their
sole purpose seemed confined to creating zombies for botnets. While this may

Baiting Inside Attackers Using Decoy Documents 65

be a valid threat to study while evaluating decoys [7], allowing bots to operate
on the university network poses too much risk.

In our second and more aggressive approach, we narrowed our recruitment
effort to web forums and IRC channels with the expectation and hope that we
would get fewer attacks involving botnets. In this approach, we selected several
high volume forums to solicit volunteers and posted variations of invitations with
messages that included hostnames, usernames, and passwords. The idea was to
provide just enough innocent-looking information from a novice to lure people
into our machines without providing direct evidence that we were conducting a
deception-based experiment. Note that we deliberately omit the names of the
forums used and the exact details of the messages, as this is an ongoing study.

While our methodology could, in theory, provide anyone with access to our test
platform, by selectively choosing the location of postings and contents postings,
we expected to recruit two primary classes of individuals:

e Legitimate and generally curious computer-savvy individuals. These users
have no interest in extending privileges in an unauthorized way, but partic-
ipate in the study out of curiosity, as there is no other incentive.

e Unscrupulous opportunistic hackers who attempt to extend their network
access by whatever means afforded to them. These individuals are enticed
by our posting as they see our machines as low “hanging fruit” in their
targeting campaign.

In either case, we believe these individuals to be suitable candidates for our
study (with one caveat mentioned later). Both classes of individuals can be used
in measuring the enticement property of decoys. We measure this by examining
the behavior exhibited in file access, both with respect to the particular files a
user attempts to read and in the order in which the files are read. For example,
if all users consistently read the same file first, we know the file must indeed be
enticing.

In regards to indistinguishability of the decoys, we note that the content of
these decoys contains bait information in the form of monitored credentials on
real systems. Certainly, if our attackers take the time to use the decoy credentials,
there is an implication that they must also be believable. More importantly
though, if they use the credentials and we detect their use, we have also answered
the most important question of — can we detect the attacker? Note that the first
class of the individuals is by definition, not useful for this part of the study.
That is, attempting to use credentials found on our machines is clearly an illicit
activity, which they would not partake in. Unfortunately, we do not have a good
way of distinguishing the two classes, so we get slightly skewed results.

Over the span of the first Weekﬂ our hosts netted 20 unique users, deter-
mined anecdotally by source IP address and reinforced by the unique behaviors
exhibited by each. The length of user sessions ranged from minutes to hours.
The users that spent hours were focused on activities that included writing code
and attempting to install other software, presumably with malicious intent. The

4 Most attacks occurred within the first 8-hour period after posting.

66 B.M. Bowen et al.

AL Head ‘B W CTmI B0l COM 3357 5 301 Coats, ML LRy v Cage

Kawpaabew Resty Fowars M Adan Delew Spam

While | am away.... Briee.

From Fronk Secot eecolsBgmel come e Bt By, To D, €
To: 2 teeryciact.com
Date: Tue, 16 Sep 2008 1211 pm

Terry,

I b on waCatkon for the next B weeks. Fiaass check my smail and keep me Apprsad of aryihing critical whike |
am gore.

1 will not hawe interrat comnectiity, Dut | can be reached at (415) BER-3456. H you reed i make any puchases,
iBase 158 the Cradt card info bekow

Tharks,
Frank

Gmal Password: wiyT1734

ATM PIN: 3553
Cracit Card: 45326810784 25053
CVV: 17Ta

Exp. Date: 09011

Mzthar's Mican Name: Sharidan
Bireh date: VDA 1982

ama: Frank Seesls
Adsrass: 60 € Ria Salads, Apend
City: Tempa

Suate: AZ

Zip: 85281

Tol: 480-682-5100

MOTICE: This e-mal is intended sclely for th use of the indnidualis) 1o whom Lis addressed. I you balieve you
received This e-mall in eiror, pase noty the sender Immediately. dekes the e-mail from your computer and do
ot gty OF deCkse it 10 anyone else.

Fig. 1. Decoy email message with embedded Gmail account information

most common activities exhibited for users upon login included activities such as:
determining who else was on the machine, checking and deleting the command
history, and exploring the system (i.e., reading the most conspicuous files). We
note that in almost all cases, our decoys were among the first few files viewed
by users upon initial login (as noted, viewing the history file was also popular).
The most significant observations were made for 6 of the 20 unique users:

1. There were three attempts to use Gmail credentials that were contained in
a decoy document, which triggered an alert on SONAR.

2. One attacker changed the password on a bogus Gmail account, which also
triggered a SONAR alert.

3. There were at least two attempts to exfiltrate decoy files (with scp and sftp;
one file, named “stolenpasswords”, contained credentials to the university
systems.

4. There was one attempt to use the university credentials contained in the
“stolenpassword” file, which we were alerted to by the monitor that signaled
an alert to SONAR.

We take these results as evidence that D3/SONAR indeed has value as a de-
fense against masqueraders. While only 5 of the 20 users sounded an alarm on
SONAR, we emphasize that our methodology did include an unknown proportion
of benign users. Furthermore, the focus of study was on masquerade detection;
admittedly, we do not yet have a good way of evaluating our system on traitors,
but this will be the focus of future work.

One flaw in our evaluation methodology that was revealed during testing was
that we allowed users to make changes to the file system. We did this deliberately

Baiting Inside Attackers Using Decoy Documents 67

: Deparimant of 1 Treasurp—iramal Ravarue Senics (7
1040 U indvidual income Tax Return 007 | P S ——
o o o Jan 10w 113007 o car 2 o g TR, g T
“Vour vt name ana nsal Last rams “Four Bacial security numEr
Mark Myers. IWI 30 TTHO
T8 [et speuaes el ram a0 RS | Last rama e ——
o 0cr A (eemton 3 S, ¥ s T & P o, b g 13 ey Vo mUSt e
518 Tully Strest | A o sshi avove.
Er L L L Checking & bow bl
Wastand M 48185 [/ changu your tax o
I Chech hers 1 you. o1 your spouse Il g foinly, wanl 3 1 go bo 1 fund ee page 12k [You [] Spouse
. 1 b Sengie 4 [Head of houshold pwih qastying perscr. (Ses pages 131 1
Filing Status 2 [7] naarmedt ring jomty feven if oty cre had inceme) 0 qualiing person is & chikd but 1ot our crpendens, nter
Chask enly 3 L] naamad ming ssparmtaty. Entar speuss's S5 above fhis, chikT's nama hers. -
ona box and hul rame hot. & 5[] Cualtying widowian wih gepancent child (sse £age 14

) G [¢] Yourssl. ¥ scmeons can claie you a3 8 dependent, do not chec bus 88
Exemplions b [Jspouse

o

© Dapandents:) Cepengn's AL

1) it s [rereen s sy -

It mars tnan feur T
Gependents, e
page 15

o Tolnl muvber of arempliors ciabmed

7 Wages, saiars, fips, efc. Aftach Formisi W . . . L oL L .
Income B Taxable rterest Allach Schecude B f requied
Attsch Formes) b Tax-omemgt inferost. Do vt incudeon o ga L, . Lowl 1 |
W-Zhore. Also a Crdnary diidends. Asch Schedus Dfreduned o . L

Fig. 2. Decoy tax document with bogus user information

to increase the realism of the environment in the experiments. The problem this
created was that it made decoy defense vulnerable to deletion (e.g., several of
our visitors executed wholesale deletion of files with “rm -rf *”) . This poses a
problem in our testing methodology, but not necessarily in practice. That is, the
act of deleting files is in itself a detectable behavior that would alert monitors
of suspicious behavior.

In this study, we omitted testing decoy documents with embedded beacons.
The honeypots set up to attract remote attackers were stripped down Linux
machines that had no installed applications necessary to open and render the
decoy documents. We believe the value of beacon documents to be self-evident.
We encourage the reader to visit and test the D? site, and participate in our
planned longitudinal study. In the next section we describe tests of the beacon
implementation on multiple hosts.

5.2 Beacon Implementation Tests

To test the robustness of the beacon implementations we tested them with the
most common configurations of operating systems and document viewers. To this
end, we contacted a random group of users across the Internet and sent them
each two types of beacon documents along with a request that they open them
as part of a benign experiment. The results of tests conducted on PDF and Word
beacons are presented in Table 1 and 2 below. These results are a representative
sample of real users across multiple hosts accessing the beacon documents. For
the most part the beacon technology works well on the windows platform while
not as well on Mac and Linux operating systems. The reason is that the default
PDF reader is not Adobe’s and does not execute Javascript embedded within the
documents. Similarly, Word document beacons do not work when applications
other than Microsoft Word (e.g., OpenOffice or Google Docs) are used to open

68 B.M. Bowen et al.

Table 1. PDF Beacon Test Results

(ON] Application #Tests #Pings
Windows XP Adobe 6 6
Windows Vista Adobe 4 4
Mac OS Preview 1 0
Mac OS Adobe 1 1
Ubuntu Evince 1 0

Table 2. Word Beacon Test Results

(01 Application #Tests #Pings
Windows XP Word 5 4
Windows XP GoogleDocs 1 0

Windows Vista Adobe 4 4
Mac OS Word 2 2
Linux OpenOffice 1 0

them. We are currently researching ways to address these limitations and will
focus on them in future work.

6 Conclusions

Our work focuses on the study and creation of bait information with the aim
of exposing or thwarting the exploitation of exfiltrated information by malicious
insiders. As future work, we intend to explore how this approach might also be
applicable in detecting accidental violations of policy, as a means of warning
users and organizations about such violations. The benefit of using the pro-
posed decoy document system for this purpose is that it can potentially operate
without the privacy repercussions if a mistake is made; such a benefit differen-
tiates the approach from traditional monitoring approaches. Another direction
to explore is how to improve the believability of decoys documents. We are
planning a series of user studies to help us determine how users treat differ-
ent attributes of a document in a specific context, such as whether an attacker
would find more believable a document purporting to contain tax information
that is encrypted/protected with a weak (predictable) passphrase, compared to
an unprotected version of the same document.

In conclusion, although the use of bait information and similar trap-based
defenses is well known, most of those efforts have focused either on artifacts
that are logically separate from the operational systems (e.g., honeypots [22])
or on low-level snippets of information created manually (e.g., fake database
records [23]). The D3 system is a scalable and automated trap-based defensive
system that forces attackers to expend considerable effort to identify realistic

Baiting Inside Attackers Using Decoy Documents 69

useful information from purposely planted bogus information intended to de-
ceive. Naturally, the probability of exposing a malicious insider with trap-based
defense tactics increases with the amount of decoy information that is gener-
ated and disseminated. D? offers the novel service of automatically creating and
managing decoy documents, enabling the throttling of bait based on the desired
protection level or cost (e.g., interference) one is willing to pay.

Acknowledgments

This material is based upon work supported in part by the US Department of
Homeland Security under Grant Award Number 60NANB1D0127 with the Insti-
tute for Information Infrastructure Protection (I3P), the Army Research Office
(ARO) Under Grant Award W911NF-06-1-0151 - 49626-CI, and the National
Science Foundation (NSF) under Grant CNS-07-14647. The I3P is managed by
Dartmouth College. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the U.S. Department of Homeland
Security, the 13P, ARO, NSF, or Dartmouth College.

We give special thanks to the Sandia National Laboratories Doctorate Study
Program for supporting Brian Bowen and to Henner Mohr for his diligent effort
and contributions to the development of the D? website and decoy document
content.

References

1. Bell, D.E., LaPadula, L.J.: Secure Computer Systems: Mathematical Foundations,
MITRE Corporation (1973)

2. Bell, J., Whaley, B.: Cheating and Deception. Transaction Publishers, New
Brunswick (1982)

3. Butler, J., Sherri, S.: Security: Spyware and Rootkits. In: Login, December 2004,
vol. 29(6) (2004)

4. Clark, D.D., Wilson, D.R.: A Comparison of Commercial and Military Computer
Security Policies. In: IEEE Symposium on Security and Privacy, pp. 184-194 (1987)

5. Demers, A., Gehrke, J., Hong, M., Panda, B., Riedewald, M., Sharma, V., White,
W.: Cayuga: A General Purpose Event Monitoring System. In: CIDR, pp. 412-422
(2007)

6. Detristan, T., Ulenspiegel, T., Malcom, Y., Von Underduk, M.S.: Polymorphic
Shellcode Engine Using Spectrum Analysis. Phrack 11, 61-69 (2003)

7. Friess, N., Aycock, J.: Black Market Botnets. Department of Computer Science,
University of Calgary, TR 2007-873-25 (July 2007)

8. Hoang, M.: Handling Today’s Tough Security Threats. Symantec Security Response
(2006)

9. The Honeynet Project, http://www.honeynet. org

10. The Honeynet Project, Know Your Enemy: Sebek, A Kernel based data capture
tool (November 2003)

11. Honeypot Mailing List, Security Focus,
http://www.securityfocus.com/archive/119

http://www.honeynet.org
http://www.securityfocus.com/archive/119

70

12.

13.

14.

15.

16.

17.

18.
19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

B.M. Bowen et al.

Katz, J., Yehuda, L.: Introduction to Modern Cryptography. Chapman and Hall
CRC Press, Boca Raton (2007)

Kravets, D.: From Riches to Prison: Hackers Rig Stock Prices. Wired Blog Network
(September 2008)

Krebs, B.: Web Fraud 2.0: Validating Your Stolen Goods. The Washington Post
(August 20, 2008)

Li, W., Stolfo, S.J., Stavrou, A., Androulaki, E., Keromytis, A.: A Study of Malcode-
Bearing Documents. In: Haimmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS,
vol. 4579, pp. 231-250. Springer, Heidelberg (2007)

Maloof, M., Stephens, G.D.: ELICIT: A System for Detecting Insiders Who Violate
Need-to-know. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 146-166. Springer, Heidelberg (2007)

McRae, C.M., Vaughn, R.B.: Phighting the Phisher: Using Web Bugs and Honey-
tokens to Investigate the Source of Phishing Attacks. In: Proceedings of the 40th
Hawaii International Conference on System Sciences (2007)

Orbiscom, http://www.orbiscom.com/

Richardson, R.: CSI/FBI Computer Crime and Security Survey (2007)

Smith, R.M.: Microsoft Word Documents that Phone Home. Privacy Foundation
(August 2000)

Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the in-
feasibility of modeling polymorphic shellcode. In: Proceedings of the 14th ACM
conference on Computer and communications security (CCS 2007), pp. 541-551
(2007)

Spitzner, L.: Honeypots: Catching the Insider Threat. In: Proceedings of ACSAC,
Las Vegas (December 2003)

Spitzner, L.: Honeytokens: The Other Honeypot. Security Focus (2003)

Stoll, C.: The Cuckoo’s Egg. Doubleday (1989)

Symantec. Global Internet Security Threat Report, Trends for July —December
2007 (April 2008)

Webb, S., Caverlee, J., Pu, C.: Social Honeypots: Making Friends with a Spam-
mer Near You. In: Proceedings of the Fifth Conference on Email and Anti-Spam
(CEAS 2008), Mountain View, CA (August 2008)

Ye, N.: Markov Chain Model of Temporal Behavior for Anomaly Detection. In:
Proceedings of the 2000 IEEE Workshop on Information Assurance and Security,
United States Military Academy, West Point, NY, June 2000, pp. 171-174 (2000)
Yuill, J., Denning, D., Feer, F.: Using Deception to Hide Things from Hackers:
Processes, Principles, and Techniques. Journal of Information Warfare 5(3), 26-40
(2006)

Yuill, J., Zappe, M., Denning, D., Feer, F.: Honeyfiles: Deceptive Files for Intrusion
Detection. In: Proceedings of the 2004 IEEE Workshop on Information Assurance,
United States Military Academy, West Point, NY, June 2004, pp. 116-122 (2004)

http://www.orbiscom.com/

MULAN: Multi-Level Adaptive Network Filter

Shimrit Tzur-David, Danny Dolev, and Tal Anker

The Hebrew University, Jerusalem, Israel
{shimritd,dolev, anker}@cs.huji.ac.il

Abstract. A security engine should detect network traffic attacks at line-speed.
When an attack is detected, a good security engine should screen away the offend-
ing packets and continue to forward all other traffic. Anomaly detection engines
must protect the network from new and unknown threats before the vulnerability
is discovered and an attack is launched. Thus, the engine should integrate in-
telligent “learning” capabilities. The principal way for achieving this goal is to
model anticipated network traffic behavior, and to use this model for identifying
anomalies.

The scope of this research focuses primarily on denial of service (DoS) attacks
and distributed DoS (DDoS). Our goal is detection and prevention of attacks. The
main challenges include minimizing the false-positive rate and the memory con-
sumption. In this paper, we present the MULAN-filter. The MULAN (MUIti-Level
Adaptive Network) filter is an accurate engine that uses multi-level adaptive struc-
ture for specifically detecting suspicious traffic using a relatively small memory
size.

1 Introduction

A bandwidth attack is an attempt to disrupt an online service by flooding it with large
volumes of bogus packets in order to overwhelm the servers. The aim is to consume
network bandwidth in the targeted network to such an extent that it starts dropping
packets. As the packets that get dropped include also legitimate traffic, the result is
denial of service (DoS) to valid users.

Normally, a large number of machines is required to generate volume of traffic large
enough for flooding a network. This is called a distributed denial of service (DDoS), as
the coordinated attack is carried out by multiple machines. Furthermore, to diffuse the
source of the attack, such machines are typically located in different networks, so that
a single network address cannot be identified as the source of the attack and be blocked
away.

Detection of such attacks is usually done by monitoring IP addresses, ports, TCP
state information and other attributes to identify the anomalous network sessions. The
weakness of directly applying such a methodology is the large volume of memory re-
quired for a successful monitoring. Protocols that accumulate state information that
grows linearly with the number of flows are not scalable.

In designing a fully accurate and scalable engine, one need to address the following
challenges.

1. Prevention of Threats: The engine should prevent threats from entering the network.
Threat prevention (and not just detection) adds difficulties to the engine, most of

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 7 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

72 S. Tzur-David, D. Dolev, and T. Anker

which stem from the need to work at line-speed. This potentially makes the engine
a bottleneck — increasing latency and reducing throughput.

2. Accuracy: The engine must be accurate. Accuracy is measured by false-negative
and false-positive rates. A false-negative occurs when the engine does not detect a
threat and a false-positive when the engine drops normal traffic.

3. Modeling the anticipated traffic behavior: A typical engine uses thresholds to de-
termine whether a packet/flow is part of an attack or not. These thresholds are a
function of the anticipated traffic behavior, which should reflect, as best as possi-
ble, actual “clean” traffic. Creating such a profile requires a continuous tracking of
network flows.

4. Scalability: One of the major problems in supplying an accurate engine is the mem-
ory explosion. There is a clear trade-off between accuracy and memory consump-
tion. It is a challenge to design a scalable engine using a relatively small memory
that does not compromise the engine accuracy.

This paper presents the MULAN-filter. The MULAN-filter detects and prevents DoS/DDoS
attacks from entering the network. The MULAN-filter maintains a hierarchical data struc-
ture to measure traffic statistics. It uses a dynamic tree to maintain the information used
in identifying offending traffic. Each level of the tree represents a different aggregation
level. The main goal of the tree is to save statistics only for potentially threatening traffic.
Leaf nodes are used to maintain the most detailed statistics. Each inner-node of the tree
represents an aggregation of the statistics of all its descendants.

Periodically, the algorithm clusters the nodes at the first level of the tree, it identifies
the clusters that might hold information of suspicious traffic, for each node in such
clusters, the algorithm retrieves its children and apply the clustering algorithm on the
node’s children. The algorithm repeats this process until it gets to the lower level of the
tree. This way, the algorithm identifies the specific traffic of the attack and thus, this
traffic can be blocked.

The MULAN-filter removes from the tree nodes that are not being updated frequently.
This way, it maintains detailed information for active incoming flows that may poten-
tially become suspicious, without exhausting the memory of the device on which it is
installed.

The MULAN-filter uses samples. At the end of each sample it analyzes the tree and
identifies suspicious traffic. When the MULAN-filter identifies a suspicious path in the
tree, it examines this path to determine whether or not the path represents an attack, this
may take a few more samples. As a result, there might be very short attacks, that start
and end within few samples that the MULAN-filter will not detect. In []], the authors
conclude that the bulk of the attacks last from three to twenty minutes. By determining
the duration of a sample to few seconds, our MULAN-filter detect almost all such attacks.

The MULAN-filter was implemented in software and was demonstrated both on traces
from the MIT DARPA project [2] and on 10 days of incoming traffic of the Computer
Science school in our university. Our results show that the MULAN-filter works at wire
speed with great accuracy. The MULAN-filter preferably be installed a on a router, so the
attacks are detected before they harm the network, but its design allows it to be installed
anywhere.

MULAN: Multi-Level Adaptive Network Filter 73

2 Related Work

Detection of network anomalies is currently performed by monitoring IP addresses,
ports, TCP state information and other attributes to identify network sessions, or by
identifying TCP connections that differ from a profile trained on attacks-free traffic.

PHAD is a packet header anomaly detector that models protocols rather than
user behavior using a time-based model, which assumes that the network statistics can
change rapidly, in a short period of time. According to PHAD, the probability, P, of
an event occurring is inversely proportional to the length of time since it last occurred.
P(NovelEvent) = r/n, where r is the number of observed values and n is the number of
observations. PHAD assigns an anomaly score for novel values of 1/P(NovelEvent) =
tn/r, where ¢ is the time since the last detected anomaly. PHAD detects ~ 35% of the
attacks at a rate of ten false alarms per day after training on seven days on attack-free
network traffic.

MULTOPS [4] is a denial of service bandwidth detection system. In this system, each
network device maintains a data structure that monitors certain traffic characteristics.
The data structure is a tree of nodes that contains packet rate statistics for subnet prefixes
at different aggregation levels. The detection is performed by comparing the inbound
and outbound packet rates. MULTOPS fails to detect attacks that deploy a large number
of proportional flows to cripple the victim, thus, it will not detect many of the DDoS
attacks.

ALPI [3] is a DDoS defense system for high speed networks. It uses a leaky-bucket
scheme to calculate an attribute-value-variation score for analyzing the deviations of
the values of the current traffic attributes. It applies the classical proportion integration
scheme in control theory to determine the discarding threshold dynamically. ALPI does
not provide attribute value analysis semantics; i.e., it does not take into consideration
that some TCP control packets, like SYN or ACK, are being more disruptive.

Many DoS defense systems, like Brownlee et al. 6], instrument routers to add flow
meters at either all, or at selected, input links. The main problem with the flow mea-
surement approach is its lack of scalability. For example, in [6], if memory usage rises
above a high-water mark they increase the granularity of flow collection and decrease
the rate at which new flows are created. Updating per-packet counters in DRAM is im-
possible with today’s line speed. Cisco NetFlow solves this problem by sampling,
which affects measurement accuracy. Estan and Varghese presented in [8] algorithms
that use an amount of memory that is a constant factor larger than the number of large
flows. For each packet arrival, a flow id lookup is generated. The main problem with
this approach is in identifying large flows. The first solution they presented is to sample
each packet with a certain probability, if there is no entry for the flow id, a new entry
is created. From this point, each packet of that flow is sampled. The problem with that
is its accuracy. The second solution uses hash stages that operate in parallel. When a
packet arrives, a hash of its flow id is computed and the corresponding counter is up-
dated. A large flow is a flow whose counter exceeds some threshold. Since the number
of counters is lower than the number of flows, packets of different flows can result in up-
dating the same counter, yielding a wrong result. In order to reduce the false-positives,
several hash tables are used in parallel.

74 S. Tzur-David, D. Dolev, and T. Anker

Schuehler et al. present in [9] an FPGA implementation of a modular circuit design
of a content processing system. The implementation contains a large per-flow state store
that supports 8 million bidirectional TCP flows concurrently. The memory consumption
grows linearly with the number of flows. The processing rate of the device is limited to
2.9 million 64-byte packets per second.

Another solution, presented in [10]], uses aggregation to scalably detect attacks. Due
to behavioral aliasing the solution doesn’t produce good accuracy. Behavioral alias-
ing can cause false-positives when a set of well behaved connections aggregate, thus
mimicking bad behavior. Aliasing can also result in false negatives when the aggregate
behavior of several badly behaved connections mimics good behavior. Another draw-
back of this solution is its vulnerability against spoofing. The authors identify flows
with a high imbalance between two types of control packets that are usually balanced.
For example, the comparison of SYNs and FINs can be exploited by the attacker to send
spurious FINs to confuse the detection mechanism.

3 DoS Attacks

Denial of service (DoS) attacks cause service disruptions when too many resources
are consumed by the attack instead of serving legitimate users. A distributed denial of
service (DDoS) attack launches a coordinated DoS attack toward the victim from ge-
ographically diverse Internet nodes. The attacking machines are usually compromised
zombie machines controlled by remote masters. Typical attacked resources include link
bandwidth, server memory and CPU time. DDoS attacks are more potent because of
the aggregated effect of the traffic converging from many sources to a single one. With
knowledge of the network topology the attackers may overwhelm specific links in the
attacked network.

The best known TCP DoS attack is the SYN flooding [[I1]]. Cisco Systems Inc. imple-
mented a TCP Intercept feature on its routers [12]. The router acts as a transparent TCP
proxy between the real server and the client. When a connection request is made from
the client, the router completes the handshake for the server, and opens the real con-
nection only after the handshake is completed. If the amount of half-open connections
exceeds a threshold, the timeout period interval is lowered, thus dropping the half-open
connections faster. The real servers are shielded while the routers aggressively handle
the attacks. Another solution is SYN cookies [13]], which eliminates the need to store
information per half open connection. This solution requires design modification, in
order to change the system responses.

Another known DoS attack is the SMURF [[14]]. SMURF uses spoofed broadcast ping
messages to flood a target system. In such an attack, a perpetrator sends a large amount of
ICMP echo (ping) traffic to IP broadcast addresses, with a spoofed source address of the
intended victim. The hosts on that IP network take the ICMP echo request and reply with
an echo reply, multiplying the traffic by the number of hosts responding. An optional
solution is to never reply to ICMP packets that are sent on a broadcast address [13].

Back [16] is an attack against the Apache web server in which an attacker submits re-
quests with URL containing many front-slashes. Processing these requests slows down
the server performance, until it is incapable of processing other requests. Sometimes this

MULAN: Multi-Level Adaptive Network Filter 75

attack is not categorized as high rate DoS attacks, but we mention it since the MULAN-
filter discovers it. In order to avoid detection, the attacker sends the front-slashes in
separate HTTP packets, resulting in many ACK packets from the victim server to the
attacker. An existing solution suggests counting the front-slashes in the URL. A request
with 100 front-slashes in the URL would be highly irregular on most systems. This
threshold could be varied to find the desired balance between detection rate and false
alarm rate.

In all the above examples, the solutions presented are specific to the target attack and
can be implemented just after the vulnerabilities are exploited. The MULAN-filter iden-
tifies new and unknown threats, including all the above attacks, before the vulnerability
is discovered and the exploit is created and launched, as detailed later.

4 Notations and Definitions

— A metric is defined as the chosen rate at which the measurements by the algorithm
are executed, for example, bit per second, packets per second etc.

— An L, is the number of levels in the tree data structured used by the algorithm.

— Sample value is defined as the aggregated value that is collected from the captured
packets in one sample interval.

— Window interval is defined as mx sample interval, where m > 0 and the sample
interval is the length of each sampling.

— Clustering Algorithm is defined as the process of organizing sample values into
groups whose members have “similar” values. A cluster is therefore a collection of
sample values that are “similar” and are “dissimilar” to the sample values belonging
to other clusters (as detailed later).

— Cluster Info is the number of samples in the cluster, the cluster mean and the cluster
standard deviation, denoted by C.Size, C.Mean and C.Std respectively.

— Anticipated Behavior Profile (ABP) is a set of k Clusters Info, where & is the number
of clusters.

— Clusters Weighted Mean (WMean) is the weighted mean of all clusters, alterna-
tively, the mean of all samples.

— Clusters Weighted Standard Deviation (W Std) is the weighted standard deviation
of all clusters, alternatively, the standard deviation of all samples.

— High General Threshold (HGT hreshold) is WMean +t; x WStd and Low General
Threshold (LGT hreshold) is WMean +t, x WStd, where t| > 1.

— Marked Cluster is a cluster with mean greater than LGT hreshold.

5 The MULAN:-Filter Design

The MULAN-filter uses inbound rate anomalies in order to detect malicious traffic.
The statistics are maintained in a tree-shaped data-structure. Each level in the tree
represents an aggregation level of the traffic. For instance, the highest level may de-
scribe inbound packets rate per-destination, the second level may represent per-protocol
rate for a specific destination and the third level hold per-destination port rate for a spe-
cific destination and protocol. Each node maintains the aggregated statistics of all its

76 S. Tzur-David, D. Dolev, and T. Anker

descendants. A new node is created only for packets with a potentially suspicious par-
ent node. This way, for example, there is a need to maintain a detailed statistics only
for potentially suspicious destinations, protocols or ports. Another advantage of using
the tree is the ability to find specific anomalies for specific nodes. For example, one rate
can be considered normal for one destination, but is anomalous for the normal traffic of
another destination.

The MULAN-filter can be used in two modes, training mode and verification mode.
The output of the training mode is the ABP and the thresholds. For each cluster C in
the ABP, if C.Mean > LGT hreshold, the cluster is denoted as a marked cluster. This
information is used to compare the online rates in the verification mode process.

In order to calculate this information, the anticipated traffic behavior profile must
be measured. There are two ways to measure such a profile: Either training a profile on
identification of attack-free traffic, or by trying to filter the traffic from prominent bursts,
which might indicate attacks and then creating the profile from the filtered traffic.

5.1 Anticipated Traffic Behavior Profile

In order to create the ABP, it is better to use an attack-free traffic. Alternative solutions
strongly assume attack-free traffic, an assumption that may be impractical for several
reasons. First, unknown attacks may be included in that traffic, so the baseline traffic is
not attack-free. Furthermore, traffic profiles vary from one device to another, and unique
attack-free training profiles need to be obtained for each specific device on which the
system is deployed. Moreover, traffic profiles on any given device may vary over time.
Thus, a profile may be relevant only at a given time, and may change a few hours later.

We propose a methodology in which anomalies are first identified, and then refined.
The cleaner the initial traffic the more precise the initial state is, but our methodology
works well with non-clean traffic. To achieve both goals, the algorithm aggregates per-
sample interval statistics, creating a sample value for each such interval. At the end of
each window interval, the algorithm employs a clustering algorithm in order to obtain
a set of clustered sample values. If there are one or more clusters with significantly
high mean values (3 standard deviations from WMean), the algorithm discovers the
samples that are key contributors to the resulting mean values. The algorithm refines
those samples by setting their value to the cluster mean value and then recalculates the
clusters” means values. The “refinement” rule states that lower levels always override
refinement of higher levels. This means that if the algorithm detects a high burst at one
of the destinations and then detects a high burst at a specific protocol for that destination,
it refines the node value associated with the protocol, which also impacts the value
associated with the destination. The refinement process is performed at every window
interval for maintaining a dynamic profile.

5.2 Data Structure

The MULAN-filter uses a tree-shaped data structure. The tree enables maintaining dis-
tinct statistics of all the relevant traffic. Traffic is considered relevant if there is a high
probability that it contains an attack.

In our implementation example, there are three levels in the tree. The nodes at the
first level hold statistics per-destination IP address, the nodes at the second level hold

MULAN: Multi-Level Adaptive Network Filter 77

Fig. 1. The Tree

statistics per-protocol and the nodes at the third level hold statistics per-destination port
(see Fig. 1). During the verification mode, when a sample value is calculated, the algo-
rithm saves the aggregation for the first level. In our implementation, assume that the
sample value is equal to SV and there are N, packets that arrived during the sample
interval with n different IP addresses. We define Metric(Packet;) to be the contribution
of Packet; to SV, and SV; to be the part of SV that is calculated from packets with IP;
in their header. Formally, SV; = X jp.c pucker, Metric(Packet), thus, SV =¥, SV;, where
1 < j < Nyand 1 <i<n. The tree structure is flexible to hold special levels for specific
protocols, see Section 5.3.

In the verification mode, the tree is updated following two possible events. One is
a completion of each sample interval. In this case, the algorithm compares SV to the
clusters” means from the ABP. If the closest mean belongs to a marked cluster, a node
for each IP; is added to the first level in the tree. The second event at which the tree is
updated may occur at packet’s arrival. If the destination IP address in the packet header
has a node in the first level, a node for the packet protocol is created at the second level,
and so on. In any case, the metric’s values along the path from the leaf to the root are
updated. This way, each node in the tree holds the aggregated sum of the metric’s values
of its descendants.

A node that is not updated for long enough is removed from the tree. A node can not
be removed unless it is a leaf, and it can become a leaf if all of its descendants have been
removed. Thus, we focus only on nodes (or on traffic) that are suspected of comprising
an attack; thus, saving on memory consumption.

5.3 Special Levels for Specific Protocols

Some protocols have special information in their header that can help the algorithm
in blocking more specific data. Since our tree is very flexible in the data it can hold,
we can add special levels for specific protocols. In our experiments we added a level
for the TCP protocol that distinguishes between the TCP flags. This addition results in
dropping only the SYN packets when the algorithm detects a SYN attack. The same

78 S. Tzur-David, D. Dolev, and T. Anker

can be done for the ICMP types in order to recognize the ECHO packets in the SMURF
attack.

6 The Algorithm

Prior to implementing the algorithm, the following should be defined: depth of the
tree, characteristics of the data aggregated at each level, sample interval, window in-
terval, metrics to be measured, and 71 and 2 used for calculating LGT hreshold and
HGThreshold.

The MULAN-filter has been implemented in software. The input to our engine is taken
both from the MIT DARPA project [2]] and from the Computer Science school in our
university. The input from MIT contains two stretches of five-days traffic (fourth and
fifth week) with documented attacks and the input from the university contains 10 days
of incoming traffic, this containing both real and simulated attacks that we injected.

The algorithm operates in two modes, the training mode and the verification mode.
The training mode is generated at the end of a window interval. The input for this mode
is a set of N samples and the output is ABP with indication of the marked clusters.

6.1 Training Mode

In order to create the ABP, the algorithm generates the K-means clustering algo-
rithm every window interval to cluster the N sample values into k clusters. For each
cluster, the algorithm holds its size, mean and standard deviation, after which the algo-
rithm can calculate the weighted mean, WMean, and the weighted standard deviation,
WStd, and determine the value of LGT hreshold. Since the samples may contain at-
tacks, LGT hreshold might be higher than it should. Therefore, for each cluster C, if
C.Mean > LGT hreshold, the algorithm retrieves C’s sample values. In our implemen-
tation, each sample value in the cluster holds metric values of TP addresses that were
seen in that sample interval. For each sample, the algorithm gets the aggregation per
IP address and generates new set of samples. The algorithm then generates K-means
again, where the input is the newly created set. Running K-means on this set produces a
set of clusters, a cluster with a high mean value holds the destinations with the highest
metric value. The algorithm continues recursively for each level of the tree.

At each iteration in the recursion, the algorithm detects the high bursts and refines
the samples in the cluster to decrease the bursts influence on the thresholds, see Sec-
tion 5.1. As mentioned, the “refinement” rule states that lower levels always override
refinement of higher levels. This means that if the algorithm detects a high burst at one
of the destinations and then a high burst at a specific protocol for that destination, it
refines the node value associated with the protocol, impacting on the value associated
with the destination. When the refinement process is completed, the refined samples
are clustered again to produce the updated ABP information and the LGT hreshold. A
cluster C is indicated a marked cluster if C.Mean > LGT hreshold.

There can be cases in which the bursts that the algorithm refines represent normal
behavior. In such cases LGT hreshold may be lower than expected. Since the algorithm
uses the training mode in order to decide whether to save information when running in

MULAN: Multi-Level Adaptive Network Filter 79

verification mode, the only adverse impact of this refinement is in memory utilization,
as more information is saved than actually needed. This is preferable to overlooking an
attack because of a mistakenly calculated high threshold. The training mode algorithm
is presented in Algorithm 1.

At each sample completion, the algorithm gets the sample value and finds the most
suitable cluster from the ABP. In order for the profile to stay updated and for the clus-
tering algorithm to be generated only at the end of each window interval, the cluster
mean and standard deviation are updated by the new sample value.

6.2 Verification Mode

The verification mode starts after one iteration of the training mode (after one window
interval). The verification mode is executed either on a packet arrival or following a
sample completion.

To simplify the discussion, as a working example in this section we assume that the
tree has three levels and the aggregation levels are IP address, protocol and port number
in the first, second and third level, respectively.

On each packet arrival, the algorithm checks whether there is a node in the first
level of the tree for the destination IP address of the packet. If there is no such node,
nothing is done. If the packet has a representative node in the first level, the algorithm
updates the node’s metric value. From the second level down, if a child node exists for
the packet, the algorithm updates the node’s metric value, otherwise, it creates a new
child.

At each sample completion, the algorithm gets the sample value and finds the most
suitable cluster from the ABP. If the suitable cluster is a marked cluster, the algorithm
adds nodes for that sample in the first level of the tree. In our example, the algorithm
adds per-destination aggregated information from the sample to the tree. L.e. for each
destination IP address that appears in the sample, if there is no child node for that IP
address, the algorithm creates a child node with the aggregated metric value for that
address (see Section 5.2).

The algorithm runs K-means on the nodes at the first level of the tree. Each sample
value is per-destination aggregated information (SV; with the notations from
Section 5.2). As in the training mode, the clustering algorithm produces the set of
clusters info, but in this case the algorithm calculates the threshold HGT hreshold. If
a cluster’s mean is above the HGT hreshold, a deeper analysis is performed. For each
sample in the cluster (or alternatively, for each node at the first level), the algorithm
retrieves the node’s children and generates K-means again. The algorithm continues
recursively for each level in the tree. At each iteration, the algorithm also checks the
sample values in the cluster nodes. If a sample value is greater than HGT hreshold, it
marks the node as suspicious.

The last step is to walk through the tree and to identify the attacks. The analysis is
done in a DFS manner. A leaf that has not been updated long enough is removed from
the tree. Each leaf that is suspected too long is added to the black list, thus preventing
suspicious traffic until its rate is lowered to a normal rate. For each node on the black-list,
if its high rate is caused as a results of only a few sources, the algorithm raises an alert
but does not block the traffic; If there are many sources, the traffic that is represented

80 S. Tzur-David, D. Dolev, and T. Anker

Algorithm 1. Training Mode Algorithm

1: packet <= ReceivePacket();

2: UpdateMetricValue(sample, packet);

3: if End of Sample Interval then

4: samples.AddSample(sample);

5: end if;

6: if End of Window Interval then

7 UpdateTrainProfile(samples);

8: end if.

UpdateTrainProfile(samples)

. clusters <= KMeans(samples);

. samples <= Refine(clusters,samples);

ABP < BuildProfile(clusters),

: LGThreshold <= calcT hreshold(ABP);

: for all clusterInfo € ABP do

if clusterInfo.Mean > LGT hreshold then
setMarked (cluster);

end if;

: end for.

by the specific path is blocked until the rate becomes normal. The verification mode
algorithm is presented in Algorithm 2.

In addition of the above, to prevent attacks that do not use a single IP destination,
like attacks that scan the network looking for a specific port on one of the IP addresses,
the algorithm identifies sudden increase in the size of the tree. When such increase
is detected, the algorithm builds a hash-table indexed by the source IP address. The
value of each entry in the hash-table is the number of packets that were sent by the
specific source. This way, the algorithm can detect the attacker and block its traffic
(see Section 8). The algorithm maintains a constant number of entries and replaces
entries with low values. The hash-table size is negligible and does not affect the memory
consumption of the algorithm.

Since the algorithm detects anomalies at each level of the tree, it can easily recognize
exceptions in the anomalies it generates. For example, if one IP address appears in many
samples as an anomaly, the algorithm learns this IP address and its anticipated rate and
adds it to an exceptions list. From this moment on, the algorithm compares this IP
address to a specific threshold.

6.3 The Algorithm Parameters

In our simulation, the algorithm builds three levels in the tree. The first level holds
aggregated data for the destination IP addresses, the second level holds aggregated data
for the protocol for a specific IP address, and the third level holds aggregated data for
a destination port for specific IP and port. Since we look for DoS/DDoS attacks, these
levels are sufficient to isolate the attack’s traffic.

At the end of each window interval the algorithm updates the ABP and, since the
network can be very dynamic, we chose the window interval to be five minutes. The bulk

MULAN: Multi-Level Adaptive Network Filter

Algorithm 2. Verification Mode Algorithm

1
2
3
4
5:
6
7
8

: packet <= ReceivePacket();

: UpdateMetricValue(sample, packet);
: PlacePctInTree(packet,root,0);

. if End of Sample Interval then

SetFirstLevel (sample,root);
Verify(root.children);
AnalyzeTree(root);

: end if.

PlacePctInTree(packet, node, level)

1:
2
3
4
5:
6
7
8
9:
10:
11:

12:
13:

if level == lastLevel then
return;

: end if;
. if node.HasChild(packet) then

child <= node.GetChild(packet);
child AddToSampleValue(packet),
PlacePctInTree(packet,child,+ + level);

: else

if level > O then
child < CreateNode(packet);
node.AddChild(child);
end if;
end if.

SetFirstLevel(sample, root)

. cluster <= GetClosestClusterFromABP(sample);
. cluster.U pdateMeanAndStd (sample);
. if MarkedCluster(cluster) then

AddFirstLevellnfo(sample);

. end if.

Verify(nodes)

1:

clustersinfo <= KMeans(nodes);

2: CalcThresholds(clustersinfo);

3: for all cluster € clustersinfo do

4: if cluster.Mean > LGT hreshold then

5: for all node € cluster do

6: if node.sampleValue > HGT hreshold then
7: MarkSuspect(node);

8: end if;

9: Verify(node.children);
10: end for;
11: end if;
12: end for.

AnalyzeTree(node)

1: for all child € node.children do

2: if child.NoChildren() then

3 if child .UnSuspectTime > cleanDuration then
4: RemoveFromTree(child);

5: end if;

6 if child .SuspectTime > suspectDuration then
7 AddToBlackList(child);

8 end if;

9: else
10: AnalyzeTree(child);
11: end if;
12: end for.

81

82 S. Tzur-David, D. Dolev, and T. Anker

of DoS/DDoS attacks lasts from three to twenty minutes, we have therefore chosen the
sample interval to be five seconds. This way the algorithm might miss few very short
attacks. An alternative solution for short attacks is presented in Section 6.5. A node
is considered as indicating an attack if it stays suspicious for suspect duration; In our
implementation the suspect duration is 18 samples. A node is removed from the tree if it
is not updated for clean duration; In our implementation the clean duration is 1 sample.
DoS/DDoS attacks can be generated by many short packets, like in the SYN attack
example, thus, a bit-per-second metric may miss those attacks. In our implementation
we use a packet-per-second metric.

The last parameters to be determined are #1 and 2 that are used for calculating
LGT hreshold and HGT hreshold. These parameters are chosen using Chebyshev in-
equality. The Chebyshev inequality states that in any data sample or probability dis-
tribution, nearly all the values are close to the mean value, in particular, no more than
1/¢? of the values are more than ¢ standard deviations away from the mean. Formally,
if o0 = 0, the probability of an attribute length, can be calculated using the inequality:

G2
plr—pl>0) < .
The Chebyshev bound is weak, meaning the bound is tolerant to deviations in the sam-
ples. This weakness is usually a drawback. In our case, since DoS/DDoS attacks are
characterized by a very high rate, the engine has to detect just significant anomalies and
this weakness of the Chebyshev boundary becomes an advantage. In our experiment we
setrl =1and 2 =5.

Non-self-similar traffic may be found at the lower levels of the tree (per destination
rate, per protocol rate etc.). Another problem at the lower levels is the reduced number
of samples, complicating the ability to anticipate traffic behavior at these levels. In
order to identify the anomalies at those levels, we introduce an alternative measurement
model, see Section 6.4.

6.4 Modeling Non-self-similar Traffic

The MULAN-filter has to model anticipated traffic. There are two main challenges in
modeling anticipated traffic: the complexity of network traffic, and its variance over
time.

Bellovin and Paxson [19] found that wide network traffic contains a wide range
of anomalies and bizarre data that is not easily explained. Instead of specifying the
extremely complex behavior of network traffic, they use a machine learning approach to
model actual traffic behavior. Research by Adamic [20]] and Huberman and Adamic
implies that this approach would fail since the list of observed values grows at a constant
rate and is never completed, regardless of the length of the training period. However,
Leland et al. [22]] and Paxson & Floyd [23] show that this is not valid for many types
of events, like measuring packets per second rate.

Non-self-similar traffic may be found at the lower levels of the tree (per destination
rate, per protocol rate etc.). Another problem at the lower levels is the reduced number
of samples, complicating the ability to anticipate traffic behavior at these levels. In order
to identify the anomalies at those levels, an alternative measurement model should be

MULAN: Multi-Level Adaptive Network Filter 83

introduced. Let N, be the number of children of a node, and s be the sum of all sample
values of the node children. If a “small” subset of N, represents a “high percentage”
of s, an anomaly is alerted. For example, consider a destination for which there are
seven protocol nodes, of which six have sample values of approximately ten packets
per second, and a seventh node has a sample value of 400 packets per second. This
would result in a mean value of 65.7, with rather high standard deviation of 147.4.
Using traditional models, it will be difficult to identify the seventh child as an anomaly.
Using the proposed model, one child represents ~ 87% of all samples, so this node is
identified as an anomaly.

6.5 Handling Short Attacks

MIT traces contain short DDoS attacks (some of them are 1 second long). An example
from MIT traces is the SMURF attack. In the SMURF attack, the attacker sends ICMP
‘echo request’ packets to the broadcast address of many subnets with the source address
spoofed to be that of the intended victim. Any machine that is listening on these subnets
responds by sending ICMP ‘echo reply’ packets to the victim. Short attacks can exhaust
a victim but usually cannot defeat it. Since our algorithm blocks the anomalies from
entering the network, it declares an anomaly only after a node has being suspected for
some time. By reducing the sample interval, our algorithm can easily detect the short
attacks so an alert mechanism is added for them. As opposed to the common DoS
or DDoS attacks, in order to exhaust a service, the rate of the short attacks must be
significantly high so the anomaly will be much more conspicuous. Thus, in order to
reduce the false-positives we use more stringent detection rules for the short attacks.

7 Optimal Implementation

The main bottleneck that might occur in our engine is the tree lookup, which is per-
formed on arrival of each packet. Since the engine has to work at wire speed, software
solutions might be unacceptable. We suggest an alternative implementation.

The optimal implementation is to use a TCAM (Ternary Content Addressable Mem-
ory) [24]. The TCAM is an advanced memory chip that can store three values for every
bit: zero, one and “don’t care”. The memory is content addressable; thus, the time re-
quired to find an item is considerably reduced. The RTCAM NIPS presented in
detects signatures-based attacks that were drawn from Snort [26]. In the RTCAM solu-
tion, the patterns are populated in the TCAM so the engine detects a pattern match in
one TCAM lookup. We can similarly deploy the MULAN filter in the TCAM. A TCAM
of size M can be configured to hold | M /w| rows, where w is the TCAM width. Let |L;]|
be the length of the information at level i in the tree. Assuming that there are m levels,
w is taken to be ¥; |L;|, where 1 < i <m. In our example, the IP address at the first level
contains 4 bytes (for IPv4). An additional byte is needed to code the protocol at the
second level. For the port number at the third level we need another two bytes. Thus, in
our example w = 7. Since the TCAM returns the first match, it is populated as follows:
the first rows hold the paths for all the leaves in the tree. A row for a leaf at level i,
where i < L, is appended with “don’t care” signs. After the rows for the leaves, we add

84 S. Tzur-David, D. Dolev, and T. Anker

root

123.34.55.10,TCP, 124
123.34.55.10,TCP 456

123.34.55.10,TCP,876
123.34.55.10,UDP,555
123.34.55.10 123.34.55.10,TCP,"*
123.34.55.10,UDP,**

12334564 123.34.54.7

123.34.56.4,***
123.34.54.7,
123.34.55.10,*,*

KRKRERE KRR KkR
—

124 456 876 585

Fig. 2. TCAM Population

rows for the rest of the nodes, from the bottom of the tree up to the root. Each row for a
non-leaf node at level / is appended with “don’t care” signs for the information at each
level j < n such that/ < j . The last row contains w “don’t care” bytes, thus indicating
that there is no path for the packet and providing the default match row.

Fig. 2 presents an example of the tree structure and the populated TCAM for that tree.
As shown, each node (except the root) has a row in the TCAM. When a packet arrives, the
algorithm extracts the relevant data, creates a TCAM key and looks for a TCAM match.
Each row in the TCAM holds a counter and a pointer to the row of the parent node. When
there is a TCAM match (except in the last row), the algorithm updates the counter at the
matched row and follows the pointer to the parent node’s row. The algorithm updates the
counters for each row along the path from the node corresponding to the matched row
to the row corresponding to the ancestor at the first level.

In our algorithm, there are only two places where the algorithm might add nodes to
the tree, when nodes are set for the first level, and on packet arrival. In both cases, the
algorithm adds leaves represented by the corresponding rows at the beginning of the
TCAM. Similarly, when the algorithm“cleans” the tree, it removes leaves, again, han-
dling the beginning of the TCAM. In order to easily update the TCAM while keeping
the right order of the populated rows, the TCAM is divided into L parts, where L is the
number of the levels in the tree.

The last obstacle our algorithm has to deal with is the TCAM updates. TCAM up-
dates are done when adding nodes to the tree and when removing nodes from the tree.
The TCAM can be updated either with a software engine or with a hardware engine.
Using software engine is much simpler but is practical only when there is a low number
of updates. Fig. 3 presents the average number of TCAM updates for each 100 packets
of the incoming traffic of the Computer Science school. The figure clearly illustrates
the creation of the tree. During the creation of the tree there are many insertions, thus
the number of updates is relatively high.

Each value is an average of values of all the days of MIT traces. The total average
update rate is ~ 1.5 updates for 100 packets, more than 99% of the values are below 50
updates, with a small number of scenarios when the engine has to make up to ~ 1700

MULAN: Multi-Level Adaptive Network Filter 85

Number of Updates
g 8 8 8 &8 8

8

8

oo

2 3 4 5
Number of Packets x10°

Fig. 3. TCAM Updates

TCAM updates. Today’s enterprise network equipment supports hundreds of Giga bits
per second of traffic and small and medium business devices handle 60 — 100 Giga bits
per second and above. One Giga interface supports 1.5 million packets per second, thus
enterprise network devices need to deal with about 500 millions packets per second, and
small and medium business need to deal with about 150 millions packets per second. A
software engine will not be able to fulfil these requirements and thus is not acceptable.
A hardware engine can achieve line speed rates. The available TCAM update speed
with hardware engine is in the range of 3 to 4 nano seconds, which is 250,000,000
to 330,000,000 updates per second. In light of the rate of TCAM updates, it can be
deduced that on average, one TCAM update is performed for every 67 packets. With a
traffic rate of 500 million packets per second, the engine has to make 500M /67 ~ 7.5
millions updates per second, which is significantly less than the available TCAM update
rates limit. Even with 50 TCAM updates, the engine executes 500M /2 = 250 millions
updates per second which is still in range.

8 Experimental Results

The quality of performance of the algorithm is determined by two factors: scalability
and accuracy. In order to analyze the performance of the algorithm, a simulation was
implemented and tested with MIT DARPA traces and real traffic from our School of
Computer Science.

8.1 Scalability

Demonstration of scalability of the algorithm requires analysis of the memory require-
ment at every stage of execution. We measured the number of nodes on each sample
and we found an average size of the tree is 1028 nodes. This result is very encouraging
since it is a very reasonable memory consumption.

Another major advantage of our algorithm is the fact that the increase in tree size is
very moderate compared to the increase in the number of flows. This is clearly demon-
strated in Fig. 4 (Note that the x axis is a logarithm scale). In general, for any number

86 S. Tzur-David, D. Dolev, and T. Anker

++-

Tree Size (nodes)
&

0
10°

o
Number of Flows

Fig. 4. Tree Size vs Number of Flows

of flows the tree size is below 10000 nodes. There are few cases where the size of
the tree exceeds 30000 nodes, these cases occur when the traffic contains attacks. An
optimization to the algorithm, thats prevent such cases is presented in Section 8.3.

Memory consumption is one of the major difficulties when trying to extract per-
flow information in a security device. The main problem with the flow measurement
approach is its lack of scalability. Memory consumption of algorithms presented in
previous works is directly influenced by the number of flows, and in many cases the
algorithm performance is affected. Cisco NetFlow [7] solves this problem by sampling,
which affects measurement accuracy. Another work [8]] develops algorithms that use an
amount of memory that is a constant factor larger than the number of the large flows.
The main problem in this approach is how to identify large flows. Two possible solutions
were presented, both of which lack accuracy. In [4]], the authors try to aggregate data
by IP prefixes. For more than 1024 IPs, the data structure size does not fit in cache, so
that the algorithm rates drop proportionally to the total memory consumption. In our
engine, memory consumption does not grow linearly with the number of flows and the
algorithm accuracy is therefore not affected.

8.2 Accuracy

Accuracy is measured by the false-negative and the false-positive rates. False-negative
is a case in which the system does not detect a threat and false-positive is the case in
which the system drops normal traffic. This section presents the accuracy results both
on MIT DARPA traces and on the real traffic from our School of Computer Science.

MIT DARPA Traces. There are only two documented bandwidth attacks in the MIT
DARPA traces, both are SYN-attacks. Our algorithm finds these attacks. In addition,
our algorithm detects several other anomalous behaviors. The analysis indicates that
in one of the days, there are many retransmissions packets and a large number of se-
quential TCP-keep-alive packets, which is consistent with anomalous behavior. Another
example is the back attack targeted at the Apache web servers by submitting requests
with URL’s containing many front-slashes. As the server tries to process these requests,
it slows down and is unable to process other requests. In order to avoid detection, the

MULAN: Multi-Level Adaptive Network Filter 87

attacker sends each front-slash in a different HT TP packet. The victim sends many TCP
ACK packets back to the attacker. Since the engine compares traffic per destination (at
the first level) it detects this traffic as anomaly. There is another case where our algo-
rithm detects many TCP SYN, RST and FIN packets. In one of the SYN attacks, the
source of the attack is an IP address within the network. As a result of the attack, the
victim sends many TCP RST packets back to the attacker. Consequently, the engine de-
tects two anomalies: the SYN packets to the victim and the RST packets to the attacker.

The School of Computer Science Traces. We analyzed the traffic in two modes. In
the first mode, we ran the algorithm on the original data and we looked for real attacks.
In the second mode we randomly added attacks to random destinations and verified that
the algorithm detects the injected attacks.

In the first mode we found some very interesting anomalous behaviors. In one alert,
the algorithm detects inbound scan on TCP, port 1433. In this attack, the attacker scans
the network, looking for a Microsoft SQL Server installations with weak password
protection and, if successful, looks to steal or corrupt data or use some features with
SQL Server to compromise the host system. Another alert indicates a single source
that scans the network for a listening HTTP server (scanning many IP addresses on
port 80). One more interesting alert indicates an inbound scan on TCP, port 139. Such
inbound scans are typically systems that are trying to connect to file shares that might
be available on the system and therefore should be blocked. While most of this traffic
is the result of worms or viruses, which can use open file shares to propagate, they can
be also the result of malicious users attempt to connect to the victim. Once connected,
they can download, upload or even delete or edit files on the connected file share.

The algorithm detected 4 exceptional IP addresses, all of them servers in the network.
The algorithm generated 87 alerts, almost all of them are IP addresses that communicate
with an IP address from the exceptions list. Since the exceptions list is a safe list of
servers, these alerts were omitted from the final results. We were left with 24 alerts.
There can be cases where a single host downloads a heavy file or backup heavy material
etc. In such cases, there will be a high rate between a single host to a single destination.
Our algorithm detects these channels as an attack. Since we don’t want to prevent this
legal traffic, our algorithm alerts these connections but it does not block the connection’s
traffic. Analysis of the results indicates that there are only 5 alerts containing more than
one source. These 5 alerts are false positives and they were generated from the highest
level in the tree, e.g. the alerts refer to IP addresses without indications for a specific
protocol or port. In case of an attack on a specific service, the tree detects the attack
also in lower levels, thus, an attack on this level may imply only some kind of network
scan, i.e. a port scan. When an attacker tries to scan the network, the size of the tree
significantly increases. Thus, by combining both anomalies, high rate on the highest
level and the size of the tree, we can eliminate these false positives.

In the second mode we randomly injected DoS/DDoS attacks of different kinds, our
algorithm found all of them. The injected attacks included the following attacks: ICMP
flood, where a host is bombarded by many ICMP echo requests in order to consume its
resources by the need to reply. Syn Attack, where random Syn packets are sent to the
attacked host with intent to fill the number of open connections it can hold and therefore
leave no free resources for new valid connections. DNS flood, roughly similar to ICMP

88 S. Tzur-David, D. Dolev, and T. Anker

flood, only more efficient against DNS servers as usually these requests require more
time spent on the server side. Smurf, where the attacker spoofs many echo requests
coming from the attacked host, and consequently the host is swamped by echo replies.

To reinforce our results, we compare the MULAN filter against LAD [27]. LAD is a
triggered, multi-stage infrastructure for the detection of large-scale network attacks. In
the first stage, LAD detects volume anomalies using SNMP data feeds. These anomalies
are then used to trigger flow collectors and then, on the second stage, LAD performs
analysis of the flow records by applying a clustering algorithm that discovers heavy-
hitters along IP prefixes. By applying this multi-stage approach, LAD targets the scal-
ability goal. Since SNMP data has coarse granularity, the first stage of LAD produces
false-negatives. The collection of flow records on the second phase requires a buffer to
hold the data and adds bandwidth overhead to the network, thus LAD uses a relatively
high threshold that leads to the generation of false-negatives. One major difference be-
tween the MULAN filter and LAD is that LAD only supplies detection of attacks, which
anetwork operator needs to process. This eases the implementation by two aspects; first,
the attacks are not detected online and the second is the tolerance to false positives. The
MULAN filter prevents the attacks with a negligible rate of false positives.

8.3 Controlling the Tree Size

In order to control the size of the tree in a way that it does not explode as it may do
during scanning attacks, we added the following rule: When the algorithm detects an
attack on any of the nodes in the tree, it stops adding children to that node until the
node’s rate falls below the threshold. As mentioned in Section 8.1, the reason the tree
had ~ 15,000 nodes on that day is that two IP addresses received TCP traffic for many
different ports. For each unique port, the algorithm created a node in the tree. With the
above rule, when the anomalies are detected, the algorithm does not add more nodes
for new ports, although it does update the counter at the parent node (in this example,
the node that represents TCP). The algorithm resume adding children when the counter
at the parent is reduced and the parent is no longer categorized as an anomaly. The tree
size results after applying this optimization is presented in Table [T}

Table 1. Tree Size Results after Optimization

Day Packets Number Average Maximum

(W.D) (Nodes) (Nodes)
4.1 1,320,049 11.3 108
4.2 1,251,319 9.3 101

4.3 1,258,076 10.2 84
4.4 1,580,440 11.2 121
4.5 1,261,848 10.4 116
5.1 1,320,049 10.8 108
52 2,502,808 10.9 134
53 1,329,336 10.5 90
5.4 2,259,146 19.7 1,035
55 2,602,565 11.5 104

MULAN: Multi-Level Adaptive Network Filter 89
9 Discussion and Future Work

The engine presented in this paper detects DoS/DDoS attacks. We fully simulated and
tested it with MIT DARPA traces and on real and recent traffic. There are two major ad-
vantages of our algorithm. One is the ability to save detailed information of the attacks
while using a limited amount of memory. The second advantage is the fact that our en-
gine finds all the attacks we expect it to find with a negligible number of false-positives.
These two advantages were achieved by the use of a hierarchical data structure.

A future work can identify a way to generalize this algorithm so it can detect other
types of attacks. One can create a state machine for each protocol, and identify patterns
that repeat in the different state machines. Thus, the nodes in the tree will hold the state
machine operations and suspicious behavior will be an anomaly from these operations.

Another algorithm could be developed for finding anomalies in different parts of a
packet or a flow. For example, a normal pattern can be the number of HTTP headers, in
which case, HTTP request with many headers (Apache?2 attack) would be reported as an
anomaly. Another example is addressing a Mailbomb attack in which the attacker sends
many messages to a server, overflowing that server’s mail queue and causing system
crash. Each site has a different threshold of e-mail messages that can be sent by (or to)
one user before the messages are considered a Mailbomb. Thus, a high rate detection
engine might not discover this kind of attack. If the nodes in the tree will contain per
protocol information, the algorithm will detect the unexpected number of emails.

References

1. Moore, D., Voelker, G.M., Savage, S.: Inferring internet denial-of-service activity. In: 10th
Usenix Security Symposium, pp. 9-22 (2001)

2. Mit darpa project data set, http://www.11l.mit.edu/IST/ideval/index.html

3. Mahoney, M., Chan, P.: Phad: Packet header anomaly detection for identifying hostile net-
work traffic. Technical report, Florida Tech., CS-2001-4 (2001)

4. Gil, T.M., Poletto, M.: MULTOPS: A Data-Structure for bandwidth attack detection. In:
Proceedings of USENIX Security Symposium, pp. 23-38 (2001)

5. Ayres, P.E., Sun, H., Chao, H.J., Lau, W.C.: Alpi: A ddos defense system for high-speed
networks. IEEE Journal on Selected Areas in Communications 24(10), 1864—1876 (2006)

6. Brownlee, N., Mills, C., Ruth, G.: Traffic flow measurement: Architecture,
http://www.ietf.org/rfc/rfc2063.txt

7. Cisco netflow,
http://www.cisco.com/en/US/products/sw/netmgtsw/psl964/index.html

8. Estan, C., Varghese, G.: New directions in traffic measurement and accounting. In: Proceed-
ings of the 2001 ACM SIGCOMM Internet Measurement Workshop, pp. 75-80 (2002)

9. Schuehler, D.V., Lockwood, J.W.: A modular system for FPGA-based TCP flow processing
in high-speed networks. In: Becker, J., Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS,
vol. 3203, pp. 301-310. Springer, Heidelberg (2004)

10. Kompella, R.R., Singh, S., Varghese, G.: On scalable attack detection in the network.
IEEE/ACM Trans. Netw. 15(1), 14-25 (2007)

11. Cert coordination center: tcp syn flooding and ip spoofing attacks,
http://www.cert.org/advisories/CA-1996-21.html

http://www.ll.mit.edu/IST/ideval/index.html
http://www.ietf.org/rfc/rfc2063.txt
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/index.html
http://www.cert.org/advisories/CA-1996-21.html

90

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
217.

S. Tzur-David, D. Dolev, and T. Anker

Eddy, W.M.: Cisco: Defenses against tcp syn flooding attacks,
http://www.cisco.com/web/about/acl23/acld’7/archived issues/ipj 9-4/

syn flooding attacks.html

Bernstein, D.J.: Syn cookies, http://cr.yp.to/syncookies.html

Cert coordination center: smurf ip denial-of-service attacks,
http://www.cert.org/advisories/CA-1998-01.html

Ferguson, P., Senie, D.: Rfc 2827. network ingress filtering: Defeating denial of service at-
tacks which employ ip source address spoofing,
http://www.fags.org/rfcs/rfc2827.html

Kendall, K.: A database of computer attacks for the evaluation of intrusion detection systems.
Master Thesis, MIT Department of Electrical Engineering and Computer Science (1999)
MacQueen, J.B.: Some methods for classification and analysis of multivariate observations.
In: Cam, L.M.L., Neyman, J. (eds.) Proc. of the fifth 5th Berkeley Symposium on Mathemat-
ical Statistics and Probability, vol. 1, pp. 281-297. University of California (1967)

Bellovin, S.M.: Packets found on an Internet. Technical report, Computer Communications
Review (1993)

Paxson, V.: Bro: a system for detecting network intruders in real-time. Computer Net-
works 31(23-24), 2435-2463 (1999)

Adamic, L.A.: Zipf, power-laws, and pareto - a ranking tutorial,
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html

Adamic, L.A., Huberman, B.A.: The nature of markets in the world wide web,
http://www.hpl.hp.com/research/idl/papers/webmarkets/webmarkets.pdf
Leland, W.E., Taqq, M..S., Willinger, W., Wilson, D.V.: On the self-similar nature of Ethernet
traffic. In: Sidhu, D.P. (ed.) ACM SIGCOMM, San Francisco, California, pp. 183—-193 (1993)
Paxson, V., Floyd, S.: Wide area traffic: the failure of Poisson modeling. IEEE ACM Trans-
actions on Networking 3(3), 226244 (1995)

Arsovski, 1., Chandler, T., Sheikholeslami, A.: A ternary content-addressable memory (tcam)
based on 4t static storage and including a current-race sensing scheme. IEEE Journal of
Solid-State Circuits 38(1) (2003)

Weinsberg, Y., Tzur-David, S., Anker, T., Dolev, D.: High performance string matching al-
gorithm for a network intrusion prevention system (nips). In: High Performance Switching
and Routing, HPSR 2006 (2006)

Snort, http://www.snort.org/

Sekar, V., Duffield, N., Spatscheck, O., Merwe, J.V.D., Zhang, H.: Lads: Large-scale auto-
mated ddos detection system. In: USENIX ATC, pp. 171-184 (2006)

http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/syn_flooding_attacks.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/syn_flooding_attacks.html
http://cr.yp.to/syncookies.html
http://www.cert.org/advisories/CA-1998-01.html
http://www.faqs.org/rfcs/rfc2827.html
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html
http://www.hpl.hp.com/research/idl/papers/webmarkets/webmarkets.pdf
http://www.snort.org/

Automated Classification of Network Traffic
Anomalies

Guilherme Fernandes and Philippe Owezarski

LAAS - CNRS
Université de Toulouse
7 Avenue du Colonel Roche
31077 Toulouse, France
owe@laas.fr

Abstract. Network traffic anomalies detection and characterization has
been a hot topic of research for many years. Although the field is very ad-
vanced in the detection of network traffic anomalies, accurate automated
classification is still a very challenging and unmet problem. This paper
presents a new algorithm for automated classification of network traffic
anomalies. The algorithm relies on three steps: (i) after an anomaly has
been detected, identify all (or most) related packets or flow records; (ii)
use these packets or flow records to derive several distinct metrics directly
related to the anomaly; and (iii) classify the anomaly using these metrics
in a signature-based approach. We show how this approach can act as a
filter to reduce the false positive rate of detection algorithms, while pro-
viding network operators with (additional) valuable information about
detected anomalies. We validate our algorithm on two different datasets:
the METROSEC project database and the MAWI traffic repository.

1 Introduction

The Internet has greatly grown in complexity, changing from a single best effort
service to a multi-services network that is ever more demanding of guaranteed
quality of service (QoS). Network traffic anomalies can seriously impact or dis-
rupt the normal operation of networks. It is then vital that their identification
and mitigation be quickly done by network administrators. A specific type, vol-
ume anomalies, is responsible for unusual modifications on network traffic vol-
ume characteristics (normally identified on the #packets, #bytes and/or #new
flows). These anomalies can be caused by a myriad of events: from physical or
technical network problems (e.g. outages, routers misconfiguration), to inten-
tionally malicious behavior (e.g. denial-of-service attacks, worms related traffic),
to abrupt changes caused by legitimate traffic (e.g. flash crowds, alpha flows).
This diversity coupled with the great (natural) variability of normal Internet
traffic volume [16], makes the identification and mitigation of these anomalies a
very challenging task.

Despite these difficulties, constant progress has been made in network traffic
anomaly detection. Methods have been created to detect anomalies in single-
links and network-wide data, and techniques have been used to cope with the

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 91{-100] 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

92 G. Fernandes and P. Owezarski

high dimensionality of network traffic data (e.g. sketches [I3][4] and principal
components [II][12]). Algorithms for network traffic anomaly detection have
evolved from only being able to signal an anomaly in time (e.g. [I][I7]) to pro-
viding information about the actual flows that cause the anomaly [I3][4]. This
information is very valuable for network administrators that need to manually
verify and mitigate potential anomalies, but is still not enough. Because of the
characteristics of network traffic and the frequency of anomalies, it is not feasi-
ble to manually analyze (in real-time) all anomalies detected by state-of-the-art
detection algorithms. Network operators need more information than just the
anomalous flows to efficiently prioritize between detected anomalies.

Although there has been some effort to characterize network traffic anomalies,
automated classification has not received much attention (a notable exception is
[12]). Automated classification intends to add meaningful information to the alert
of a detected anomaly. Ideally, the computed information can then be used to de-
fine the type of the anomaly or to at least help characterize the underlying cause.
In this paper, we present a new algorithm for automated classification of network
traffic anomalies. We show how the information obtained by further analyzing
the identified anomalous flows can be used in a signature-based classification
module to reliably characterize different types of anomalies (e.g. DDoS, network
scans, attack responses). We also show how this approach provides the flexibil-
ity needed by network operators to understand and manipulate the classification
process. We do a statistical validation for the automated classification of DDoS
anomalies and discuss results obtained for other type of anomalies using two dif-
ferent datasets: the METROSEC project (see http://www.laas.fr/METROSEC)
database and the MAWT traffic repository [2].

2 Related Work

The evolution of detection algorithms (see Section [J) has been followed by sev-
eral studies on the characterization of network traffic anomalies. Barford et al. [I]
used a wavelet-based signal analysis on single-link volume data to characterize
four classes of network anomalies: outages, flash crowds, attacks and measure-
ment failures. Lakhina et al. used the subspace method to characterize several
types of network-wide anomalies based on traffic volume metrics [T1] and on
traffic features [12]. Prior work has also been directed to individual types of
anomalies. For example, DoS and distributed DoS (DDoS) attacks received an
in-depth analysis in [I5][§][14]. Jung et al. [9] studied the differences on DDoS
and flash crowds behavior from a web server perspective. We thoroughly use
the knowledge of such previous work to convey different attributes of the traf-
fic anomalies that are used by our classification module to reliably label the
anomaly.

Previous work has proposed ways to (automatically) convey more informa-
tion about network traffic (e.g. by creating and labeling clusters [I2][5]) and
to provide prioritization (e.g. by using heuristics such as unexpectedness [5]).
Specific to network traffic anomalies, the unsupervised approach of [12] creates

Automated Classification of Network Traffic Anomalies 93

clusters based on how anomalies are represented in the entropy space of their
traffic features (i.e. IP addresses and ports). Although all anomalies that belong
to a specific cluster share a given characteristic, this approach is clearly not
enough to uniquely classify an anomaly (as shown by their results). Closer to
our work, Kim et al. [T0] study how different types of DoS attacks and port scans
behave, creating rules to detect and classify them based either on flow header
information or on statistical analysis of the flow traffic. Our algorithm aims at
general automated classification of network traffic anomalies which are just being
detected.

3 Anomaly Classification

Our algorithm defines three steps for anomaly classification: (i) after an anomaly
has been detected, identify all (or most) related packets or flow; (ii) use these
packets or flow records to derive several distinct metrics directly related to the
anomaly; and (iii) classify the anomaly using these metrics with a signature-
based approach. These steps are based on the fact that much information is
needed to reliably classify different types of anomalies and even to distinguish
between subtypes, like the many types of DoS attacks. Since current detection
algorithms are based on few parameters (i.e. traffic volume metrics or traffic fea-
tures like IP address and ports), steps are necessary to obtain more information
about the anomaly. Naturally, the best source of information are records on the
packets or flows that actually cause the anomaly. From now on, we will refer
only to packets traces, but similar results can be obtained using flow records.

To test our classification algorithm, we use a variation of the simple traffic
volume anomaly detection algorithm presented on [6]. The detection algorithm
can be explained as follows. Given a trace of duration T and a time-scale gran-
ularity of A (i.e. 30s throughout this paper), divide the trace in N slots where
N € [1,T/A]. For each slot i obtain the data time series X of each traffic volume
metric € {#packets, #bytes, #syn}. Obtain the absolute deltoids [3] P of X and
calculate their standard deviation o,. For any p; over the threshold K *o,, mark
its slot as anomalous. Using the deltoids of the data time series is important to
consider the variation over the amplitude of the curve instead of the variation of
network traffic, as the latter is insignificant due to its natural high variability.
Our choice of metrics is based on [11] (with #syn instead of #new flows), but
the algorithm permits the use of any other data time series.

Detection of low intensity anomalies is important especially for DDoS anoma-
lies [I6] and for anomalies in highly aggregated traffic. To detect low intensity
anomalies, we apply the detection algorithm to different aggregation levels at the
same time. Aggregation is done based on destination IP address and a bit mask
modifier for each packet. In this paper we use the following prefix sizes as aggre-
gation levels /0 (i.e. whole traffic), /8, /16 and /24. As with any other detection
algorithm, this increase in sensitivity generates a higher rate of false positives
(i.e. normal traffic variations are considered anomalous). With the multi-level
feature, the algorithm presented above is particularly sensitive to infrequent

94 G. Fernandes and P. Owezarski

communications where only a few packets are seen for a given network/mask
aggregation. Although this would generally make the algorithm unusable, we
show how the classification process can be used as a filter to greatly reduce the
number of false positives. The simplicity of the detection algorithm makes the
next step (i.e. identification of corresponding packets and derivation of metrics)
a straightforward task and permitted us to concentrate on the characterization
of the anomalies.

3.1 Gathering Information

With the characterization of network traffic anomalies done in previous work
[[TT][12], we see that different types of anomalies can affect volume metrics and
traffic features, such as IP addresses and ports, in the same manner. This clearly
shows that we cannot do reliable classification based only on these metrics,
and further information needs to be identified. We then introduce the notion
of anomaly attributes. An attribute is a feature that helps to characterize a
specific anomaly (see Table[]]). The classification module uses signatures based
on attributes derived directly from the packets that compose the anomaly.

The detection algorithm that we use in this work makes it straightforward to
get these packets. A detected anomaly is identified by its slot, network address
and mask. We also know exactly why it was considered anomalous (i.e. the
deltoid for one or more of the volume metrics was above the threshold). Using
this information we then proceed to read all the packets in the corresponding slot
that are destined to that network, so that we can find the responsible destination
hosts (i.e. IP address/32). Our idea of responsible destinations is similar to the
notion of dominant IP address range and/or port of [II]. In our algorithm,
the set of responsible destinations is composed of all the destination hosts that
appear in any of the possible combinations of minimum sets that would bring
the anomaly’s corresponding deltoid below a fraction of the original threshold.
After identifying these hosts, we follow an equivalent approach to determine the
responsible sources, ports and protocols. This notion could also be applied to
any other traffic feature. Potentially, finding the packets (or flows) that compose
an anomaly can be done with any detection algorithm that identifies the starting
time and anomalous flows of the anomalies (e.g. [13][4]).

During the anomaly detection and responsible flows identification phases we
compute the attributes shown in Table [l Attributes found and impactlevel are
specific to the detection algorithm we use in this work, but similar attributes
should be available for other detection algorithms. The rest of the attributes are
derived while identifying the responsible flows. This list is by no means absolute
and can be extended. These attributes were the ones we identified as useful
during this work and are justified in Section 3.2

3.2 Classification

General Idea. The main objective of our algorithm is to automatically label
network traffic anomalies while they are being detected. The vast number of

Automated Classification of Network Traffic Anomalies 95

Table 1. Attributes derived from a given anomaly. p, b and s are for packets, bytes
and syn respectively.

Attribute Description

found{p,b,s} If metric was anomalous, value of P, zero otherwise.
impactlevel{p,b,s} # of anomalous parent aggregation levels due to this anomaly.
#respdest Number of responsible destinations.

#rsre/#rdst Ratio of responsible sources to responsible destinations.
avg#rdstports Average number of responsible destination/source ports.
avg#trsrcports Average number of responsible source ports.

#rpkt/#rdstport Ratio of number of packets to responsible destination ports.
#rpkt/#rsrc Average number of packets of responsible sources.

bpprop Average packet size (only packets of the anomaly).

Spprop Ratio of number of syn to number of packets of the anomaly.
samesrcpred If a specific responsible source appears for the majority of dests.
samesrcportpred If the majority of responsible sources use the same source ports.
oneportpred If only one destination port dominated.

invprotopred If packets using invalid protocol numbers or types dominated.
invalidpred If the anomaly was mainly consisted of (other) invalid packets.
landpred If most packets had the same source and destination IPs.
echopred If most packets were of type ICMP Echo Request/Reply.
icmppred If most packets were ICMP of any other type.

rstpred If most packets were TCP with RST flag set.

different types of anomalies [I1] and the variations of individual types make
it necessary to create very specialized signatures to achieve low misclassifica-
tion rates. To this extent, we define three types of signatures: (i) universal, (ii)
strong and (iii) local. Universal signatures are rules that should never misclas-
sify an anomaly independently of network characteristics. Strong signatures are
expected to have low misclassification rates but usually rely on some kind of
threshold (and thresholds are difficult to set). Local signatures are defined by
network administrators specifically to their domain. Note that they can choose
how to best label these anomalies and change thresholds to suit their needs.

We will now discuss the anomalies that we have studied and show some ex-
amples of how the attributes we have identified can be used to create strong or
even universal signatures for them. The idea is to give the reader a better un-
derstanding of how automated classification can be done using these attributes
and to show the expressiveness of our algorithm. New attributes and rules can
certainly be identified by expert network administrators.

DoS Characterization. Denial-of-service (DoS) attacks are malicious attempts
to negate access to network resources [I5]. Distributed denial-of-service (DDoS)
attacks are (flooding) DoS attacks which use multiple sources to cause much more
damage while being hardly detectable. These attacks are extremely common [15][S]
and can greatly reduce the QoS of a network even when it has enough resources
to cope with the attack [16]. DDoS anomalies may greatly affect the time series of
#packets, #flows or both [IT][I], and the distributions of destination and source

96 G. Fernandes and P. Owezarski

Table 2. Examples of strong signatures used in this work. gr stands for the time series
granularity and sspp is an abbreviation for the attribute samesrcportspred.

Id Anomaly Type Signature

1 ICMP Echo DDoS #respdest == 1 and echopred and (#rpkt/#rdstport > 30*gr
or #rsrc/#rdest > 15)

2 TCP SYN DDoS #respdest == 1 and founds and spprop > 0.9 and oneportpred
and #rpkt/#rdstport > 10*gr

3 Network Scan #respdest > 200 and samesrcpred

4 SYN Port Scan #respdest == 1 and #rsrc/#rdest == 1 and spprop > 0.8
and avg#rdstports > 5

5 Attack Response #respdest == 1 and (rstpred or icmppred) and foundp > 20*gr
and (not (impactlevelp == 3)) and (#rsrc/#rdest == 1 or sspp)

addresses and ports [12]. However, these characteristics are shared with other types
of anomalies, and more detailed information is needed to create robust signatures
for their automated classification.

Universal signatures for DDoS anomalies can be defined by analyzing the types
of DDoS attacks that use packets which do not comply with the used protocol
specification. For example, many attacks have been seen in the wild to use either
minimum size IP packets (i.e. 40 bytes) [8], an invalid protocol (e.g. IP protocol
0 or 255 [I5][]]), or using land packets for flooding (i.e. packets with the same
source and destination IP) [4]. A simple and direct rule would be if invalidpred
or invprotopred or landpred then label as DoS (see Table [for a description of
the attributes used). Note that all the identification information (e.g. source(s)
and destination IP and port, protocol, etc.) is given as part of the alert.

Creating universal signatures for DDoS anomalies generated by attacks that
use compliant packets is very difficult. For this type of attacks we try to de-
velop strong signatures using a rich variety of attributes. Table [2] shows some of
the signatures used in this work. For example, the second signature of Table
classifies TCP SYN attacks destined to a specific service (oneportpred) with an
average of 10 or more packets per second (#rpkt/#rdstport). It uses founds and
spprop to verify that most of the packets that generate the anomaly have (only)
the TCP SYN flag set.

Other Anomalies. We will now quickly go over the other type of anomalies
and the most interesting attributes we have identified for each one. Network
scans [14] are probing attempts to identify the availability of a specific service
on many different machines. Network scans can be reliably characterized by a
single source communicating with many destinations (i.e. attributes #respdest
and samesrcpred). Stronger signatures can also use bpprop, foundsyn, spprop,
oneportpred and #rpkt/#rdstport to improve accuracy and maybe lower the
threshold for #respdest. Port scans are similar but concentrate on one desti-
nation to discover which services the host is running. They should create very
little traffic but may have a noticeable impact on #syn. They are characterized
by one source, one destination and multiple ports with few packets being used.
Signature 4 of Table 2] shows an example for classifying TCP SYN port scans.

Automated Classification of Network Traffic Anomalies 97

Flash crowds (FC) can be defined as a sudden surge of legitimate client re-
quests for a resource. The distributed nature of FCs makes it difficult to distin-
guish them from DDoS attacks [9]. Attributes include #rsrc/#rdst, oneportpred,
foundsyn, foundpkts and #rpkt/#rsrc, while also taking into consideration that
they should only be detectable in higher granularities (i.e. > 5min). Alpha flows
are unusual high-rate byte transfers from a single source to a single destination,
having a strong impact in #bytes and #packets [11]. They also tend to use much
bigger packets than DoS attacks. Normally, port information is used to identify
known operations that create alpha flows (e.g. scheduled backups). Attributes
include impactlevelbytes, impactlevelpkts, #respdest, #rsrc/#rdst, bpprop and
foundsyn, and actual ports might be defined.

Finally, attack response anomalies are generated by victims of attacks (e.g.
DDoS or scans). These response packets are normally either TCP packets with
RST ACK, RST or SYN ACK flags set, or ICMP control packets [15]. The line
between attack responses and low intensity DDoS anomalies is very thin, es-
pecially as these packets are known to be used in DDoS reflector attacks [g].
Signature 5 of Table Plshows a unified signature for detecting responses to flood-
ing attacks and to scanning attempts.

Local Signatures. The flexibility of being able to understand, add and modify
the way that anomalies are classified is a key feature for the applicability of au-
tomated network traffic anomaly detection and classification on real networks.
Network operators may modify (or disable) strong signatures (i.e. by changing
thresholds and/or labels), and also develop local (i.e. domain specific) signa-
tures. For example, instead of trying to separate attack responses from DDoS
attacks that use TCP RST packets, a signature might be defined as if #respdest
== 1 and rstpred and impactlevelp > 2 then label as StrongRSTAnomaly. The
flexibility provided by this approach can also be used to reduce false positives
of detection algorithms. The rationale is that a wide range of signatures can be
defined to potentially cover most of the true anomalies and a default label —
applied to any anomalies that did not match one of these signatures — could
then be discarded by network operators. This reduces the detection rate of true
anomalies but trades the false positive rate of the detection algorithm for the
misclassifications of the signatures defined.

4 Validation

We use two datasets to validate our algorithm: the METROSEC project traces
with artificially created anomalies and the MAWT traffic repository with anoma-
lies seen on the wild. We concentrate on DDoS anomalies for their importance
and multiformity. If we are able to successfully separate different DDoS anoma-
lies from normal traffic and from other types of anomalies, it might follow that
general automated classification of network traffic anomalies is possible. Note
that because of space limitation, only the most significant results are presented.
A full description of the validation process and results can be found in [7].

98 G. Fernandes and P. Owezarski

4.1 Data

The METROSEC traces consist of real traffic collected on the French opera-
tional network RENATER with simulated attacks performed using real DDoS
attack tools. This dataset was created in the context of the METROSEC re-
search project to, among other goals, study the nature and impact of anomalies
on networks’ QoS. This dataset has been used for validation by a number of
different studies on anomaly detection (e.g. [I7]). For the validation of our al-
gorithm, we use 14 METROSEC traces containing DDoS attacks of intensities
ranging from very low (i.e. 4-10% of the whole traffic) to very high (i.e. 87-92%).
The attacks also vary in type (i.e. from TCP SYN flooding to Smurf attacks),
number of attacking hosts (i.e. 1-4) and duration.

On the other hand, the MAWI dataset has real undocumented anomalies.
It is composed of 15 minutes packets traces collected daily at 2PM from a
Japanese network called WIDE since 1999 to present. These traces are pro-
vided publicly after being anonymized and stripped of their payload data (see
http://mawi.wide.ad.jp/). Although these traces are undocumented, the authors
of [4] started an effort to label anomalies found in this database. We randomly
selected a total of 30 traces from 2001 to 2006 from which some had already
been identified by [] to contain DDoS anomalies. Using this second dataset is
important to verify that our algorithm is not restricted to a single network nor
to artificial attacks.

4.2 Methodology

The validation of our algorithm is divided in two parts. In the first part, a (proper)
statistical validation is done using the METROSEC traces for the classification of
DDoS anomalies. Different levels of sensitivity of the detection algorithm are used
by varying its K parameter from 1.5 to 6. The classification signatures used are the
same for all values of K, but only DDoS related signatures are considered. In the
second part, the classification performance of our algorithm is tested for different
types of anomalies (i.e. DDoS, port and network scan, and attack response) on
both of the datasets presented in the previous section. A fixed K of 2 is used, and
all the signatures are enabled (including the same DDoS signatures used in the
first part). A granularity of 30 seconds and the levels of aggregation 0, 8, 16 and
24 are used in the detection algorithm for both parts.

4.3 Results and Discussion

The classification performance for the first part of our validation was very sim-
iliar for all values of K (i.e. the algorithm achieved a very high rate of correct
classifications with a very small rate of misclassifications). The results obtained
with K equal to 2 include 23 true positives (i.e. DDoS anomalies correctly clas-
sified), 2 false positives (i.e. non-DDoS anomalies misclassified as DDoS), 1 false
negative (i.e. misclassified DDoS anomaly) and 455731 true negatives (i.e. non-
DDoS anomalies classified as non-DDoS). Further analysis showed that one of

Automated Classification of Network Traffic Anomalies 99

the false positives was actually a real, unexpected DDoS ICMP reflector attack,
and the attack responsible for the false negative was correctly classified in a
subsequent anomaly.

The results for the second part of our validation were equally promising.
On the METROSEC traces, the non-DDoS signatures found a total of 16 port
scans, 13 attack responses and 2471 network scans. Manual analysis showed
that all port scans and 10 attack responses were true positives. We were not
able to identify the nature of the other 3 attack responses. Network scans were
not manually analyzed, but the signature used (see Table [2) has a very low (if
not inexistent) misclassification rate. Running the algorithm on the 30 fifteen
minutes MAWI traces resulted in 22 DDoS, 4429 network scan, 5233 port scan
and 72 attack response anomalies in a total of 2.5 million anomalies detected.
Manual analysis and cross-referencing with the results of [] revealed 19 true
positives (of which 6 had not been detected by []), 3 false positives that might
be ICMP reflector attacks, and 9 (known) false negatives. The false negatives
were mainly due to the detection algorithm used, and are not a limitation of
our classification approach or of the signatures used. Preliminary analysis of the
other type of anomalies showed that many of them were due to worm scannings
(and responses), with Sasser and Dabber variants being particularly common.

5 Conclusions

In this paper we presented a new approach for automated classification of net-
work traffic anomalies. We defined an initial set of anomaly attributes and char-
acterized different types of anomalies (e.g. DDoS, network scans, etc) using them.
We showed how automated classification can be done (succesfully) using these
attributes within a signature-based approach and leveraging on the capability of
state-of-the-art detection algorithms to identify the anomalous flows. We evalu-
ated our work using two very different sets of packets traces with real network
traffic and several anomalies. The results obtained illustrate the expressiveness of
our approach to differentiate between many types of DDoS anomalies and other
anomalies (including normal traffic variations), and strongly hint that general
automated classification is possible. On future work we intend to explore the sub-
tleties of other types of anomalies and to see how state-of-the-art identification
algorithms can be easily integrated to our classification approach.

Acknowledgment

This work has been done in the framework of the ECODE project funded by the
European commission under grant FP7-1CT-2007-2/223936.

References

1. Barford, P., Kline, J., Plonka, D., Ron, A.: A signal analysis of network traffic
anomalies. In: Internet Measurment Workshop, Marseille (November 2002)

2. Cho, K., Mitsuya, K., Kato, A.: Traffic data repository at the wide project. In:
USENIX ATEC, San Diego, California (2000)

100

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

G. Fernandes and P. Owezarski

Cormode, G., Muthukrishnan, S.: What’s new: finding significant differences in
network data streams. IEEE/ACM Trans. Netw. 13(6), 1219-1232 (2005)
Dewaele, G., Fukuda, K., Borgnat, P., Abry, P., Cho, K.: Extracting hidden anoma-
lies using sketch and non gaussian multiresolution statistical detection procedures.
In: Workshop on Large-Scale Attack Defense (LSAD), Kyoto, Japan (2007)

. Estan, C., Savage, S., Varghese, G.: Automatically inferring patterns of resource

consumption in network traffic. In: ACM SIGCOMM, Karlsruhe (2003)
Farraposo, S., Owezarski, P., Monteiro, E.: A multi-scale tomographic algorithm
for detecting and classifying traffic anomalies. In: IEEE ICC, Glasgow (June 2007)
Fernandes, G., Owezarski, P.: Automated classification of network traffic anomalies.
LAAS Report No 08468 (2008)

Hussain, A., Heidemann, J., Papadopoulos, C.: A framework for classifying denial
of service attacks. In: ACM SIGCOMM, Karlsruhe (2003)

Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service
attacks: Characterization and implications for cdns and web sites. In: WWW,
Honolulu, Hawaii (May 2002)

Kim, M.-S., Kong, H.-J., Hong, S.-C., Chung, S.-H., Hong, J.: A flow-based method
for abnormal network traffic detection. In: IEEE/IFIP Network Operations and
Management Symposium, Seoul (April 2004)

Lakhina, A., Crovella, M., Diot, C.: Characterization of network-wide anomalies
in traffic flows. In: Internet Measurement Conference, Taormina, Italy (2004)
Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distri-
butions. In: ACM SIGCOMM, Philadelphia (2005)

Li, X., Bian, F., Crovella, M., Diot, C., Govindan, R., lannaccone, G., Lakhina,
A.: Detection and identification of network anomalies using sketch subspaces. In:
Internet Measurement Conference, Rio de Janeiro, Brazil (2006)

Mirkovic, J., Reiher, P.: A taxonomy of ddos attack and ddos defense mechanisms.
SIGCOMM Comput. Commun. Rev. 34(2), 39-53 (2004)

Moore, D., Voelker, G.M., Savage, S.: Inferring internet denial-of-service activity.
In: USENIX SSYM, Washington, DC (2001)

Owezarski, P.: On the impact of dos attacks on internet traffic characteristics and
qos. In: ICCCN (October 2005)

Scherrer, A., Larrieu, N., Owezarski, P., Borgnat, P., Abry, P.: Non-gaussian and
long memory statistical characterizations for internet traffic with anomalies. IEEE
Trans. Dependable Secur. Comput. 4(1), 56-70 (2007)

Formal Analysis of FPH Contract Signing Protocol
Using Colored Petri Nets

Magdalena Payeras-Capella, Macia Mut-Puigserver, Andreu Pere Isern-Deya,
Josep L. Ferrer-Gomila, and Lloreng Huguet-Rotger

Departament de Matematiques i Informatica, Universitat de les Illes Balears
{mpayeras,macia.mut,andreupere.isern, jlferrer, l.huguet}@uib.es

Abstract. An electronic contract signing protocol is a fair exchange protocol
where the parties exchange their signature on a contract. Some contract signing
protocols have been presented, and usually they come with an informal analysis.
In this paper we use Colored Petri Nets to formally verify the fairness and the re-
sistance to five previously described attacks of FPH contract signing protocol. We
have modeled the protocol and the roles of the signers, a trusted third party, mali-
cious signers as well as the role of an intruder. We have proven that the protocol is
resistant to typical attacks. However, we have detected three cases where the pro-
tocol generates contradictory evidences. Finally, we have explained which should
be the behavior of an arbiter to allow the resolution of these conflicting situations.

Keywords: contract signing protocol, Coloured Petri Nets, formal verification.

1 Introduction

Contract signing procedures, certified electronic mail or electronic purchases are good
examples of fair exchange protocols. A fair exchange of values always provides an
equal treatment to all users, and, at the end of the execution of the exchange, all parties
have the element that wished to obtain, or the exchange has not been solved success-
fully (in this case, nobody has its expected element). These protocols make use of non-
repudiation services, so they have to produce evidences to guarantee non-repudiation
services. In case of dispute an arbiter has to be able to evaluate the evidences and take a
decision in favor of one party without any ambiguity. Contract signing protocols allow
the signature of a previously accorded contract by two or more signers. The fair ex-
change protocol ensures that at the end of the exchange all the signers have the signed
contract or none of them have it. Fair exchange protocols often use Trusted Third Parties
(TTPs) helping users to successfully realize the exchange. Several electronic contract
signing protocols have been presented, with TTPs involved in different degrees. Among
them there are a few proposals where the exchange can be finished in only three steps.
Micali’s protocol [1]] and FPH protocol [2] are both efficient protocols with 3 messages
in the exchange protocol. These protocols differ in the resolution protocol as well as in
the elements exchanged in the three steps. However, they have another common aspects
like the use of an off-line TTP, called optimistic approach. This concept of optimistic
protocol was introduced in [3] by Asokan et al. In an optimistic fair exchange protocol
the TTP only intervenes in case of problems to guarantee the fairness of the exchange.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 101 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

102 M. Payeras-Capella et al.

Bao et Al. described [4]] three attacks to Micali’s protocol and proposed an improved
protocol. Recently, Sornkhom and Permpoontanalarp [5]] have applied a formal method
to analyze the security of Micali’s protocol by using Colored Petri Nets (hereinafter
CPNs). This method allows the demonstration of the vulnerability of Micali’s protocol
to the three attacks described by Bao. Additionally, the method has been used to find
two new attacks to Micali’s protocol.

In this paper we have created a new model for the formal analysis of FPH protocol,
similar to that used by Sornkhom and Permpoontanalarp but adapted to the features of
the present analysis. Once the protocol is modeled, we can formally prove the behavior
of the protocol in case of malicious users. Our first goal is to prove the fairness of this
protocol; first we will do that in case of malicious signers, and then we have modeled a
malicious intruder.

We have organized the paper as follows, in Section [2| we summarize FPH protocol
with its security characteristics. Section [3] includes the description of the simulation
model using CPNs. Section [presents the analysis of the protocol and the results ob-
tained in different execution scenarios. Finally, section Blincludes the conclusions and
describes future applications of the simulation model.

2 FPH Contract Signing Protocol

2.1 Ideal Features of a Contract Signing Protocol

Practical solutions for contract signing require of the existence and possible involve-
ment of a TTP. To obtain efficiency, three objectives are usually pursued:

— To reduce the involvement of the TTP.

— To reduce the number of messages to be exchanged.

— Possible implication of the TTP should not require expensive operations, neither
the storage of high volume of information.

The first objective has been achieved in some proposals. They are the optimistic so-
lutions and the TTP are not involved in every protocol run. Regarding the
number of messages to be exchanged, [6] states that three is the minimum number of
messages for a contract signing protocol. Protocols for contract signing have to provide
evidence to parties to prove, at the end of the exchange, if the contract is signed and
the terms of the contract. Some additional properties have to be achieved in optimistic

protocols [7.9]:

Effectiveness: if the parties behave correctly the TTP will not be involved;
Fairness: no party will be in advantageous situation at any stage of a protocol run;
Timeliness: parties can decide when to finish a protocol run;

Non-repudiation: parties can not deny their actions;

Verifiability of the third party: if the TTP misbehaves, all damaged parties will be
able to prove it.

In this section we describe the FPH protocol that will be formally evaluated in next
sections. This protocol achieves the previous requirements.

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 103

2.2 Description of FPH Contract Signing Protocol

It is assumed that both (A)lice and (B)ob have already agreed on a plaintext contract C
before the exchange. Then they sign the contract using the protocol. The channel used
among the signers is an unreliable channel, so it cannot be assumed that the messages
sent through this channel arrive to their recipient. The channel between a signer and the
TTP is a resilient channel, that is, the messages will eventually arrive to their recipient
but the time of the arrival cannot be predicted. The originator, A, and the recipient,
B, will exchange non-repudiation evidence directly. Only in case they cannot get the
expected items from the other party, the TTP will be invoked, by initiating cancel or
finish sub-protocols. The notation and elements used in the protocol description are in
Table [while the exchange sub-protocol is described in Table 2

Table 1. Elements

X, Y Concatenation of two messages X and Y

H(X) Collision-resistant one-way hash function of message X

Si(X) Digital signature on message X with the private key, or signing
key, of i (using some hash function, H(), to create a digest of X)

i—j3X i sends message X to j

M={A,B,C} Message containing the contract to be signed, C, the originator,
A(lice), and the recipient, B(ob)

ha = Sa(M) Signature of A on the contract M

hg = Sp(M) Signature of B on the contract M

ACKa = Sa(hB) Signature of A on hp; acknowledgement that A knows that the
contract is signed, and is part of the necessary evidence for B

ACKr = St(hB) Signature of the TTP on hp; this is an equivalent acknowledge-
ment to which A should have sent

har = Sa[H(M), ha Evidence that A has requested TTP’s intervention

hpr = Sp[H(M),ha,hg] Evidence that B has requested TTP’s intervention

's = St(hp) Signature of the TTP on hp to prove its intervention

Table 2. Exchange sub-protocol

1.A— B: M, ha
2.B— A: hp
3.A—B: ACK 4

If the protocol run is completed, the originator A will hold non-repudiation (NR)
evidence, hp, and the recipient B will hold non-repudiation evidence, h4 and ACK 4.
So the protocol meets the effectiveness requirement. If it is not the case, A or B, or
both, need to rectify the unfair situation by initiating the cancel or finish sub-protocol,
respectively, so that the situation returns to a fair position.

If A ”says” (A could be trying to cheat or being in a wrong conception of the exchange

state) that she has not received message 2 from B, A may initiate the cancel sub-protocol
(Table[3)).

104 M. Payeras-Capella et al.

Table 3. Cancel sub-protocol

I""A—T: HWM),ha,har

IF (finished=true) 2’.7T: retrieves hp
3.T— A hp,hl

ELSE 22. T — A: Sr("cancelled’, ha)
37T Stores cancelled=true

In the cancel sub-protocol, the TTP will verify the correctness of the information
given by A. If it is not the case, the TTP will send an error message to A. Otherwise, it
will proceed in one of two possible ways. If the variable finished is true, it means that B
had previously contacted with the TTP (see paragraph below), and the TTP had given
the NR token to B, AC K. Now it has to give the NR token to A. So, it retrieves this
stored NR token, hp, and sends it to A, and a token to prove its intervention, h’B. But
if B had not previously contacted with the TTP, the TTP will send a message to A to
cancel the transaction, and it will store this information (cancelled = true) in order to
satisfy future petitions from B. Whatever case, now, we are again in a fair situation.

Table 4. Finish sub-protocol

2.B—T: HOM), ha,hs, hsr

IF (can- 3. T — B: St(’cancelled’, hp)
celled=true)
ELSE 3. T — B: ACKr

4. T stores finished=true and hp

If B ”says” that he has not received message 3, B may initiate the finish sub-protocol
(Table[). In the finish sub-protocol, the TTP will verify the correctness of the informa-
tion given by B. If it is not the case the TTP will send an error message to B. Otherwise,
it will proceed in one of two possible ways. If the variable cancelled is true, it means
that A had previously contacted with the TTP (see paragraph above). The TTP had given
a message to A to cancel the transaction, and now it has to send a similar message to
B. Otherways, the TTP will send the NR token, AC' K7, to B. In this case the TTP will
store the NR token, & g, and will assign the value true to the finished variable, in order
to satisfy future petitions from A. Again, whatever case, now, we are in a fair situation.

As a conclusion, the protocol is fair and we have not made timing assumptions (the
protocol is asynchronous).

2.3 Informal Analysis of Fairness and Non-repudiation of FPH Protocol

After a protocol run is completed (with or without the participation of the TTP), dis-
putes can arise between participants. We can face with two possible types of disputes:
repudiation of A (B claims that the contract is signed) and repudiation of B (A claims
that the contract is signed).

An external arbiter (not part of the protocol) has to evaluate the evidence held and
brought by the parties to resolve these two types of disputes. As a result, the arbiter will

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 105

determine who says the truth. The arbiter has to know who is the originator and who is
the recipient; remember that the contract, M, contains this information.

In case of repudiation of A, B is claiming that he received the signature on the con-
tract M from A. He has to provide the following information to an arbiter: M, h 4
and ACK 4 or ACKp. The arbiter will check if h 4 is A’s signature on M, and if it
is positive the arbiter will assume that A had sent her signature to B. Then, the ar-
biter will check if ACK 4 is A’s signature on hpg, or it will check if AC K is TTP’s
signature on hp. If this verification is positive, the arbiter will assume that either A
or the TTP had sent an acknowledgement to B. Therefore, the arbiter will side with
B. Otherwise, if one or both of the previous checks fails, the arbiter will reject B’s
demand. If the evidence held by B proves he is right, and A holds a message like
PRp[H(”cancelled”, h 4)], it means that the TTP or A had acted improperly.

In case of repudiation of B, A is claiming that B had signed the contract M. She has
to provide the following information to an arbiter: M and h . The arbiter will check if
hp is B’s signature on M, and if it is positive the arbiter will assume that B had received
M and h 4, and that he is committed to obtain the acknowledgement, ACK 4 or AC K.
If the previous verification fails, the arbiter will reject A’s demand. If the verification is
positive, the arbiter should interrogate B. If B contributes a cancel message, it means
that B contacted with the TTP, and the TTP observed that A had already executed the
cancel sub-protocol. For this reason the TTP sent the cancel message to B. Now it is
demonstrated that A has tried to cheat. Therefore, the arbiter will reject A’s demand,
and the arbiter will side with B. If B cannot contribute the cancel message, the arbiter
will side with A.

As a conclusion, the protocol meets the non-repudiation requirement. Moreover, the
protocol also fulfils the property of verifiability of the TTP [2]. This informal analysis
doesn’t cover all the possible situations derived of the execution of the protocol. It will
be completed with a formal verification of the protocol (included in Section @) resulting
from the use of the model based on Petri Nets described in Section 3l

3 Description of the Model Used for the Formal Analysis of Fair
Exchange Protocols

3.1 Colored Petri Nets

CPN (Colored Petri Nets) is a discrete-event modeling language combining Petri Nets
with a programming language called standard ML [[10]. Petri Nets are capable to pro-
vide the interaction between processes and the programming language is used for the
definition and manipulation of the data types. So, CPN can be used as a formal method
to analyze distributed systems and communication protocols. A CPN model is an exe-
cutable model representing the states of the system and the transitions that can cause a
change of the state of the system. CPN contains four kinds of components:

— Places. They represent the system state at a given time. The places change from the
activation of the transitions.

— Transitions. They are the actions which implies a state change.

— Arcs. They are the links between places and transitions.

106 M. Payeras-Capella et al.

— Color sets. The tokens that move through the states and transitions have a value,
called color.

The global system state, after firing an event, is called marking. So, a marking is like a
photo of the state of the system after each event. One of the tools that implement CPN is
CPNTools [10]. This is the tool we have used in this work. When the model is designed,
we can submit a simulation process in order to generate the state space. The state space
is the set of markings between initial and final event. Therefore, we extract a complete
definition of the system behavior along its execution.

3.2 General Assumptions and Methodology

In order to use Petri Nets to model the protocol, a number of general assumptions are
made:

Each party in the model has a unique identifier.

Each party already knows the public keys of the others.

Cryptographic algorithms used in the model are secure.

The messages sent between the TTP and any party will always be delivered to the
intended destination without modification (resilient channel).

The methodology followed to analyze the fairness of the protocol is:

Build the model
— Declare color sets (colsets) to represent messages and elements in the protocol.
Create top-level net to model the parties.
— Create entity-level net to model the behavior of each party.
Create process-level net for each entity-level.
— Declare functions and variables that will be used in the model.
Generate the state space
— Set up initial marking for each party.
— Generate the state space of the model using CPNTools.
Create query functions to search for attack states.
Extract attack scenarios using paths between states if attacks are found.

3.3 Description of the Model

In our model, based on Sornkhom and Permpoontanalarp’s model [3]], we have four
key parties: Alice (A), Bob (B), Intruder (/) and TTP. While the TTP is strictly honest,
the other parties can take the role of a malicious party. A and B, in their malicious
role (A,, and B, respectively), can stop the exchange or they can contact to the TTP in
many different steps and this way, they could try to cheat the other party. 7 is a malicious
party who can acts as an observer, like a man in the middle, and moreover he can deploy
many other tasks: drop, store, forward or modify messages in transit sent by any party
involved in the exchange.

In order to model the drop and stop events made by malicious parties (e.g. A, B
or I), the model has a mechanism to inform about these events to the other involved

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 107

parties. When an event occurs, a message is immediately sent by the party who drops
the message or stops the exchange to the other parties involved. This assumption helps
us to avoid the use of a timeout on each party. When an event message is received, the
party could act contacting the TTP or maybe stopping the exchange depending of which
is the current protocol step.

Another important consideration is: messages between the TTP and any other
party of the model will always be delivered to the intended destination without any
modification.

With the provided data, we are able to build an scenario that can be used to model the
protocol using different attack sessions, where each session can involve an initiator (e.g.
A or A,,) and a responder (e.g. B or B,;,). Note that I and TTP are implicitly present
in every session trace. So, we can deploy four sessions: (A, B), (A,,, B), (4, B,,) and
(A, By), where (X, Y) denotes which party is the initiator (X) and the responder
(Y). In this paper, we won’t consider parallel session attacks where malicious parties
can be involved in multiple and concurrent sessions, and this task will be deployed in
further works.

The architecture of the model can be divided into three big blocks, using a top-
down technique: top, entity and process levels. All messages sent by any party are a
combination of source, destination and a protocol message as a payload.

The top level scheme (Fig. [[) shows basic interaction with all parties involved in
the protocol and the message flow between these parties. In the top level we can see
the contents of each party’s database, which contains the protocol messages sent and
received by each party. Finally, we can see and control the content of the session. The

1 d1d(B)++
1 dId(A)++1" dId(B)++ 1 dSK(SKb) ++

1°dC(A,B,M1)++1" dSK(SKa) 1" dId(1)++1" dSK(SKi) 1'dC(A,B,M1)
1'dId(A)++ <
(oo ol 28 (oo 1B g (om B[t dHB
DEA—"pg|1" dSK(SKa)++ DB |1"dSK(SKi) bB [1dC((A,B,M1)
1" dC((A,B,M1))|

- ata(amy 41 cto @)+ L iSK(ab
17dC(A,B,M1)++1" dSK(SKa) ,—@_> 4@_> 1'dC(A,B,M2)
NET NET 1-dId(Bm)++
DB |1 dSK(SKb)++
IC((AB,MD))|

alice 4@—> intruder bob

(A,Bm)

€ non)

sse

PROTOCOL SIGNATURA
CONTRACTES 2 PARTS

1" dSK(SKt)++
1" dCanceled(false)++
1" dFinished(false)++

ot
(9|1 dSK(SKD++
1 dCanceled(false)++

DB|1" dFinished(false)++
1 dHA(")+

Fig. 1. Top level scheme

108 M. Payeras-Capella et al.

variable controls that will be used to distinguish the roles of the parties involved in the
protocol execution (e.g. honest or malicious role). Moreover, in Fig.[llwe can see as the
messages always are intercepted by 7 in their transit between parties.

The entity level shows us a more detailed model of the protocol and denotes all the
steps each party can execute. In Fig. [2l we can see the entity level of A and her two
roles. Transitions T'A; to T A4 are the transitions corresponding to her honest role, and
T Am to T Amy are the transitions of the malicious role. The first transitions of A, T'A;
and T'Amy, are to generate the first protocol message and send it to B. The transitions
T Ay and T'Ams are to receive and verify the second message sent by B and send to B
the third message. 7' A3 and T"Amg have the responsibility to contact the TTP using the
cancellation sub-protocol, and the last transitions T'A4 and T'Am, are to receive the
response from the TTP. Note that the selection of the transitions that will be executed is
done by the session configuration which tells if the party is honest or malicious.

B’s entity level, as it is shown in Fig.3] like A’s entity level, implements the honest
(T'B; to T'B3) and malicious (T'Bmy to T'Bmg) roles of B. T'B; and T'Bm; are to
receive and verify the first message of the protocol and they also send the second mes-
sage, while 7' By and T'Bms, are to receive and verify the third protocol message and, if
it is needed, these transitions are able to contact the TTP. At last, T'B3 and T'Bmg are
to receive the response from the TTP.

The process level implements all the actions deployed by the users and specifies
how the relations between the entities are. The actions deployed by each process are
atomic, e.g. only one process can be executed at the same time. This can be done by a
unique token, which is shared between all parties of the model. It is captured by each
party when a process starts, and it will be released when the process ends. Moreover,
each process level is controlled by a session flow control mechanism. This mechanism

1'dIfs -+
Taqhidd®EE

1°dId(B)++
oA 1°dC((A,B,M1))| o

DB [TAT

o

*dld(Am)++1°dId(B)++ TAm2
d1'dId(B)++ fiSK(SKa)

1" dId(Am)++ [TAm2
0 1 dSK(SKa)++
DB [17dC((A,B,M1))

=
o

Fig. 2. A’s entity level

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 109

1'dId(B)++
1" dSK(SKb)-++

L YA atd(B) ++
9 1" dSK(SKb)++
1" dC((A,B,M1))
DB
: ')

NET TB1 NET

(=)

NET 162 NET
F4 B3

NET TB3

1°dId(Bm)++
1" dSK(SKb)++
L d1‘(1111(Bm)-¢-+
9 1" dSK(SKb)++
op L dC((A,B,M2))

Fig. 3. B’s entity level

is defined like a token which passes through parties and at every step, they change it
contents. This token controls the order in that actions will be done. For example, it
controls that a message generation should be executed after the verification step.

3.4 Query Functions

In order to extract attack scenarios from state spaces we have developed a set of query
functions, such that of Fig. lto find special contents in each party database. The main
function is SearchCommitsTerminalNodes(ack,id), where ack is the element or commit
we would like to search in the database of the id party. This function returns a list of
markings which fulfill some conditions. The function is build around the use of stan-
dard query function PredNodes(p1,p2,p3). The first parameter is another custom query
function named SearchCommits(ack,id), where ack and id have the same use as in the
previous query. This function is capable to take up the contents of the desired database
id and tell us if the ack is in the database. The second parameter is to choose only mark-
ings which are leaf markings, e.g. terminal markings, which are markings that contain a
complete execution of the protocol. The last parameter, NoLimit, tells the query should
walk all markings and return all results.

The main query can be used to analyze the fairness property. In order to do this,
we apply the query function against the parties involved in the exchange, depending
of the session, to search the desired commit. The function will return a list of terminal
markings. The analysis of this list will tell us if the exchange is fair or not.

110 M. Payeras-Capella et al.

fun SearchCommits(ack:DB, id:Id) : Node list
= PredAllNodes(

fnn=2x>

let
val dba = Mark.Top'DBa 1 n
val dbb = Mark.Top'DBb 1 n
val dbi = Mark.Top'DBi 1 n
val dbam = Mark.Top'DBma 1 n
val dbbm = Mark.Top'DBmb 1 n

if {id=A) then

cf{ ack, dba)=> 0
else if (id=B) then

cf{ ack ,dbb} >0
else if (id=Am) then

cf({ ack, dbam) > 0
else if (id=Bm) then

cf{ ack, dbbm) > 0
else (* id=1 *)

cf{ ack ,dbi) > 0

end

)

fun SearchCommitsTerminalModes(ack:DB, id:1d) : Node list
= PredNodes [(SearchCommits{ack,id}) ,
fn n => (Terminal n) andalso (FullyProcessed n),
NoLimit)

Fig. 4. Search query functions developed in order to search commits into the party’s databases

4 Formal Analysis of FPH Contract Signing Protocol
4.1 Evaluation of the Vulnerability to Previously Defined Attacks

Until today, several attacks to contract signing protocols have been described. Bao et
Al found three attacks to Micali’s ECS1 protocol (Table [§). Later Sornkhom and
Permpoontanalarp [3] found two new attacks to the same protocol. The consequence
of these attacks is the loss of fairness. For this reason, we have used the model based
on CPN described in last section to evaluate the resistance of FPH protocol to all these
attacks.

Micali’s ECS1 protocol (Table [3) and FPH protocol are similar, so we will use the
same notation to describe them. Moreover, we will use Ex (Y") to denote the encryption
using the public key of X of the message Y. A is committed to the contract, C, as an
initiator if B has both S4(C, Z) and M where Z = Eprp(A, B, M) and M is arandom.
On the other hand, B is committed to C as a responder if A has both Sp(C, Z) and
Sp(Z).

Now we are going to describe the five attacks to Micali’s protocol and apply them to
FPH protocol, then we will use the model to prove both the fairness and its resistance
to these attacks.

Table 5. Micali’s ECS1 protocol definition

A — B: SA(C, Z)
B—A: Sp(C,Z),S5(2)

IF (Both signatures are valid) A — B: M
IF (B receives valid M such that Z7 = Err p(A, B, M)) The exchange is completed
ELSE B—TTP: A,B,Z,55(C,Z),Ss(Z)

TTP — A: Sp(C,Z),S8(Z)
TTP — B: M

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 111

Bao’s First Attack. A is a malicious initiator and sends a false element in step
1. In Micali’s protocol this attack (Table [6)) can be done if A sends a false Z where
Z = Eprp(A, B, M). In this case, A can always obtain B’s commitment but B will
not have A’s commitment. This attack is possible because B cannot verify the elements
received in step 1.

Table 6. Bao’s First Attack Trace

A — B: Sa(C,Z) where Z = Errp(A,B, M)
B— A: Se(C,2),S5(Z)
A — B: Nothing

B — TTP: A,B,Z,SB(C,Z),SB(Z)
TTP — A: Nothing
TTP — B: Nothing

In order to detect the attack on the model, we have generated a session with A4,,, (A
acting maliciously) and B, as we can see on Fig. [3 In this attack, A,, builds a false
contract My and she sets an arbitrary initiator (X) and arbitrary responder (Y). The
first query searches h 4 element in A,,’s database, finding four cases, corresponding to
markings 20, 21, 22 and 37. The second query searches the same element, h 4, in B’s
database and as we can see, B never has this element. This is because the verification
stage fails and B never stores the received message. The two last queries search the
response of the TTP into A,,,’s database, and we can see that A,, only receives a cancel
message (marking 37) and she never obtains the NR evidence from the TTP.

Then, FPH protocol is not vulnerable against Bao’s first attack, because B verifies
the elements received in step 1 and in case of attack I he doesn’t send the message of
step 2. Then A will not send message 3. If A tries to contact the TTP, the TTP will send
a cancellation proof and stores cancelled=true. B will not contact the TTP because he
doesn’t have any valid element from A.

SearchCommitsTe rmina Mo des(dSCA[{X, ¥.M2),SKa), Am) 1 dId [J_‘!“"":'++1 Tdld(B)++
val it = [20,21,22,37] : Mode list 1" dC(X,¥,M2) ++ 1" d BK([5Ka)

DBmz (4% 1 dld{B)++

SearchCommitsTe rminallo des{dSCB{(X, ¥.M2),5Kh).B) S 1" d1d (Am)+ +
walit=[]: Made list DB 1 dSK(SKa)++ |
17 dC([, ¥.M2]]
SearchCommitsTerminalMades(d 3O5([[¥ ¥.M2],5Ka), SKt) ,Am)
wvalit=[]: Made list
(Am.B)
SearchCommitsTerminalModes(d SMT{(cancel,((X. ¥.M2),5K a)), SKt), Am) 55e ¢ L (Am,.B)
wval it = [37] : Made list session S5e

Fig. 5. First attack query results, A,,, database contents and session configuration

112 M. Payeras-Capella et al.

Bao’s Second Attack. A conspires with another initiator A’ and changes her iden-
tity in step 1. In Micali’s protocol this attack (Table [Z) can be done if A conspires
with A” and sends a false Z where Z = Eprp(A’, B, M). In this case, malicious A
can always obtain B’s commitment on a contract between B and A’, but B will not have
anything. This attack is possible because B cannot verify the identity of A in the element
received in step 1.

Table 7. Bao’s Second Attack Trace

A —B: Sa(C,Z) where Z = Errp(A’, B, M)
B — A: SB(C,Z),SB(Z)
A — B: Nothing

B—TTP: A B,Z Ss(C,2),Ss(Z)
TTP — A: Nothing
TTP — B: Nothing

The second attack can be detected in the model using the same session configuration
(A, B) as the first attack, but using a different contract. In this case, we have built a
false contract with a confabulated initiator (X), the initial receiver (B) and the previously
accorded plain contract (M7). As we can see in Fig. [0l the query results are the same as
in the first attack, the second function never returns any result because B never builds
message 2. Then, if we search the TTP’s response on A,,’s database, we can see A,
never obtains the NR and she only could have a cancellation proof.

So, FPH protocol is not vulnerable against this attack. B verifies the elements re-
ceived in step 1 and in case of atfack 2 he doesn’t send the message of step 2, as in
attack 1. Then A will not send message 3 and the exchange will be stopped and A will
not obtain B’s commitment. If A tries to conclude the exchange contacting the TTP, she
will receive a cancellation proof. On the other side, B will not contact the TTP because
he doesn’t want to finish the exchange because he knows that the element sent in step 1
is false and, moreover, he hasn’t sent any element.

SearchCommitsTerminallMades(dSCA{X, B M1),SKa]. Am) i:ﬂgtﬁ;)h:;i;d]#d(?;;w
val it = [20,21,22.37] : Made list LB MLJ++1 " d AK{8Ka)

DBmz (4 1 dld{Bj++

SearchCommitsTe rminalio des(dSCB{(X,B, ML),5Kk), B) i 1::]51[(‘5‘-:)4]-:-
wal it =[] Maode list 1'l:|C[[K,BfM1]]

SearchCommitsTerminalMo des{ d50S(([¥,B.M1),5Ka), SKt) ,Am)
valit=[]: Mode list (Am,B)
55e (1% 17 (Am.B)
SearchCommitsTarmina o des(d SMT[[cancel, (% B,M1).5K2)),5Kt),Am] [EEzzon]
val it = [37] ! Mede list

S5e

Fig. 6. Second attack query results, A,,, database contents and session configuration

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 113

Table 8. Bao’s Third Attack Trace

A —B: Sa(C,Z) where Z = Errp(A’, B, M)

B —TTP: Z,Sg(C’,Z),Sg(Z) for a false contract C’
TTP — A: SB(C/,Z),SB(Z)

TTP — B: M

Se archCommitsTe rmin 2 I de s (d S CB((A B. M2), SKb], &) SearchCommitsTerminzIMNodes(d SOS(((A48,M2),5Kb), SKa], Bm)
wal it = [63] : Mode list val t=[]: Made list

SearchCommitsTe rmina [N des{ dSOSC [(AB,M2L5Kb), Ska 1, A] SearchCommitsTe rminalto des(d50S(((AB.M2),5Kb), SKt) Bm)

valit =[] 1 Nade list el ({0 G e
SearchCommitsTa rminalila des(d SMT][cs neel (A B,M2),5Kb)),5K1),Bm)
SearchCommitsTe rminalliodes(d SOS{ ({AB.M2),5Kb), SKt) ,A) val it = [545,543] : Hode list
walit=[]: Node list

SearchCommitsTe rminalla des(dE(errar),Bm)

SearchCommitsTe rmina o des(d SMT({cancel,((A B,M2).5Ka)).SKELA) yal it = [299,211,318,325,332,542,544,546,547,548] : Mode list
val it =[]: Made list

1 dId[Bm)++

SearchCommitsTe rminallMades(dE(errar).A) 1" dSK(EKE)++
valt=[]: Made list 1 dC[A B M2)
s pamb 13 1" did(Bm)++
SearchCommitsTe rmina lMa des(d SCB{(AB, M2),5Kb], Bm) [CESml—pp 1" dsK(sKb)++
val it = 1" de({AB, M2))
[123,160,290,311,218,325,332,379, 413,414,447,544,545, 546,54 7,548,5459,63]
i Made lise (ABm)
sge 40 17 (ABm)

S5e

Fig. 7. Third attack query results, B,, database contents and session configuration

Bao’s Third Attack. Malicious B contacts the TTP and requests the resolution
with a false contract. In Micali’s protocol this attack (Table [§) can be done if B,
after the reception of a valid message in step 1, contacts the TTP to start the resolution
of the exchange. In this request B includes a fake contract. In this case, malicious B
always gets A’s commitment on the original contract, but A obtains B’s commitment
on the false contract (selected by B). This attack is possible because A cannot request
the resolution of the exchange and obtains from the TTP the elements resulting of the
resolution started by B.

The third attack can be verified with the model using a session configuration where
A is the honest initiator and B,, is the malicious responder, e.g. (A, B,,). By, builds a
contract containing a false plain text (1) but using the real initiator and responder. As
we can see in Fig.[ll when B, receives the first message, he changes its contents by
setting a different plain contract (M>). Then, we have searched if a false h’; sent by B,
is into A’s database and, effectively, it is in marking 63. Although A stores the message,
she verifies it and she decides it is wrong and she doesn’t generate the third message.
Then A can contact the TTP, but she would ask for the original real contract using the
cancellation sub-protocol and the TTP will send a cancellation proof to A. Finally, we
can search the TTP’s responses in B,,’s database and we can see that he never obtains
the alternative proof. Moreover, he can only obtain the cancellation proof and an error
message because the TTP’s verification fails.

In FPH protocol, however, when A receives a false hl; = Sp(M’, A, B) in step 2,
she detects the attack, stops the exchange and contacts the TTP. If B has contacted the
TTP in first place and the request contained a false h g, the TPP has been able to detect

114 M. Payeras-Capella et al.

that h 4 and h g are not related with the same contract. Then, when A sends a resolution
request, the TTP will send her a cancellation proof, so the contract will not be signed.
If A contacts the TTP in first place, she will obtain a cancellation proof.

Fourth Attack. An Attacker eavesdrops B’s commitment. The fourth attack was
described in [3] and it is possible because Micali’s protocol has an incomplete definition
on B’s commitment. The message (Sg(C, Z), Sg(Z)) is the evidence to prove that B
has committed himself to contract C with any initiator. The evidence is not linked to the
initiator, so anybody who has it can claim to be an initiator of the contract committed
by B.

The fourth attack can be detected using a session between two honest parties, A and
B. As we can see in Fig.[8] the databases of A and B contain the previously committed
contract. In this case, we would search states where an intruder, /, eavesdrops messages.
So, in the first query we will find one state where I changes the initiator of the contract.
This message is found on B’s database and finally, using the third query, we can prove
how B never builds his commit, h g, over the wrong contract with / as initiator.

SearchCommitsTerminallodes(dSC{(LB,M1),SkKi).I) 1 dId[A)++1 " dIdi{B]+ +
val it = [21] : Hode list 17 dC{aB, ML) ++1 " dSK(SKa)
1" dId[&)++
DBa J8F |- d1d(a)++
SearchCommitsTermina (Mo des(dSCA{(L B,M1).5ED),B) pp 1 dSK{GKa)++
val it = [21] : MHede list 1" do({A B, ML)
17 dId(B)++
) i 1 dsk(SKh]++
SearchCommitsTe rm.lnall Iades(dS(.:E.({].B.Ml).SVh).E.) 1° de(AB, M1)
valit=[]: [Made list s s 1" did[B)++

17 dSK{SKb)++
Dm 1 dE({AR M1Y)

17 dId(I++ 17 dSK{SK] (AB)
DEi |2 (s . _.SEe i 17 (AB)|
pE 1 dsk(skK] SESEIEN 55e

Fig. 8. Fourth attack query results, parties’ database contents and session configuration

In contrast to Micali’s protocol, FPH protocol has linked B’s commitment to the
contract. The evidence is the message hg = S (M), however holding this evidence is
not enough for anyone to prove that B has committed himself to contract C. Because
FPH protocol specifies that M contains the contract to be signed, C, and it indicates who
is the originator, A, and who is the recipient, B. Thus, FPH protocol is resistant to this
attack.

Fifth Attack. Swapping the initiator and the responder role. In the fifth attack
(Table @) described in [3] a malicious A can get B’s commitment on a contract be-
tween B as an initiator and any conspired party A, as a responder. But B will not get
anything. In order to perform the attack, A involves B in the protocol so as to exchange
the commitments on a contract. But A build a fake item Z with the identity of B as the
initiator and a conspiring party A, as the responder: Z = Eppp(B, A,., M). Finally
A will give Sp(C,Z) and M to A,.. The TTP can’t send anything to A and B because
item Z doesn’t fulfill the protocol specifications. Now, A, can successfully claim B’s
commitment on the contract as an initiator and B doesn’t have any kind of evidence.

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 115

Table 9. Fifth Attack Trace

A — B: Sa(C,Z)where Z = Errp(B, Ay, M)
B— A: Se(C,2),Ss(Z)
A — B: Nothing

B — TTP: A,B,Z,SB(C,Z),SB(Z)
TTP — A: Nothing
TTP — B: Nothing

The last attack reconstruction (Fig. [0) uses a session composed by A,, and B. In
this case, A, changes the contents of the contract, swapping party’s roles but she uses
the previously committed contract (1/;). The application of the query functions against
the model (Fig. B) is the same as in the first and second attacks. The step 1 searches
in A,,’s database the first element i’y and then the second query searches the second
message into B’s database. As it is shown, B does not build it. Finally, the third and
fourth queries try to search responses sent by the TTP into A,,, database. As we can
see, she will only obtain a cancellation proof (marking 37).

However, in FPH protocol, as we have already explained, B verifies the item received
at the step 1 of the protocol. Thus, if A has made improper changes in the message, B
will detect it. Then, he will not continue and he will not send the message of step 2.
Therefore, the attack described here will not be successful.

SearchCommitsTe rminalModes(dSCA{(B, A ML),5Ka), Am) 1 dId [Am]++1 ‘dlgi(B)++
val it = [20,21,22,37] : Hode list 17dC(B.AMY++ 1 dSk(Ska)

DBmz (@) 1 dId(B)++
SearchCommitsTe rminalllodes{dSCR{(B,A ML),5Kb], B) 17 dld (Am)++

val =[] : Made list DB 1 dSk(SKa]++
17 dc((B,AMI1]]

SearchCommitsTerminalMades(d505([[B.AML).SKa), SKEt) ,Am)

valit=[]: Made list (Am,B)
SearchCommitsTerminaldaodes(d SMT((cancel,((B. A M1), 5K a)). SKL),4m) sse §ij ! (AmB)
val it = [37] : Node list SSe

Fig. 9. Fifth attack query results, A,,, database contents and session configuration

4.2 Fairness Analysis

In this section we will describe some conflicting situations in FPH protocol where the
signers have contradictory evidences (see Section[2.3). The evidences generated by this
protocol are not transferable, and an arbiter must contact both signers to solve a dispute,
know the final state of the exchange and guarantee non repudiation. This property has
been described in [I1] and is called weak fairness. In this formal analysis of the fairness
of the protocol we will prove that the arbiter can solve all kinds of conflicting situations
derived from the execution of the protocol.

In [2], we described a conflicting situation where A can obtain NR evidence from B
(hp) and a cancel message from T, while B obtain NR evidence from A (h 4, ACK 4).
A can do it, for instance, invoking the cancel sub-protocol after the end of the exchange

116 M. Payeras-Capella et al.

sub-protocol. It seems that A can affirm that the contract is signed or is not signed (can-
celled), depending on her usefulness, while B possesses NR evidence that will prove
that the contract is signed. We have detected this situation in the formal analysis and we
have called it case 1.

Moreover, thanks to our model we have discovered two more conflicting situations.
The first one (we will call it case 2) is produced when a malicious A invokes the cancel
sub-protocol after the end of the exchange sub-protocol (as in case I) and then a mali-
cious B executes it, too. It seems that A and B can state that the contract is signed or is
not signed (cancelled), depending on her usefulness.

The last conflicting case we have detected (case 3) is achieved when the exchange
is stopped after the step 2. In this case A has the NR evidence from B while B does not
have the NR evidence from A. Both parties can contact the TTP. If B contacts in first
place the TTP will send him the NR evidence and the contract will be signed. Instead,
if A contacts in first place, the TTP will cancel the exchange and then A would have
NR evidence from B (hp) and a cancel message from T, while B obtains the cancel
message.

The three conflicting situations are found in the model deploying a session composed
by a malicious initiator or both a malicious initiator and a malicious responder, e. g.
(A, By). This way, all possible behaviors of both parties are contemplated. Using
the already known query functions, as shown in Fig. we have searched into each
party’s database the desired commits. In this case, we have searched the second and
third messages of the exchange sub-protocol and all the responses received from the
TTP.

If we study the list of markings obtained from each query, we can build Table
with the three cases previously described. For each case, we denote the state of the
contract (signed as S and cancelled as C) and either if A,, or B,, have contacted,

SearchCommitsTerminalModes{ dSO5(((AB.M1).5Kb]), 5¥a], Am]
wal it = [211,467,488,506,607, 610,613 614.615,616] : Mode list

SearchCommitsTerminalModesi d SO5(([AB.M1),5Kb). SKt) ,Am)
wal it = [535,538,610.614616] : Mode list

SearchCommitsTerminalMades(d SMT([cancel,((A B,ML), 5K 2)),SKt), Am)
val it = [488,536,537.607,613.5615.84] : Made list

SearchCommitsTerminalModes{ d SOS(((AB.M1),5Kb), SKa], Bm)
wal it = [211,488 508.615,616] : Mode list

SearchCommitsTerminalMades{ d SOS{ ([AB.M1),5kKh), SKt) ,Bm)
val it = [467,506,535,536,610,614,616] : Hode list

SearchCommitsTerminaModes{ d SMT{[cancel, (A B ML), 5KE)), SKt),Bm)
val it = [5326,537,607.613,615] : Hede list

Fig. 10. Query functions results over the model with (A,,, By,) session

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 117

Table 10. List of the markings corresponding to the three cases with contradictory evidences

Case Marking A,,, has NR By, has NR A,, contacts TTP B, contacts TTP
1 488 S&C S Yes (M) No

2 615 S&C S&C Yes (M) Yes (M)

3 607 S&C C Yes (M) Yes (H)

3 613 S&C C Yes (M) Yes (H)

Table 11. Scenarios without contradictory evidences

Marking A, has NR By, has NR A,, contacts TTP B, contacts TTP
84 C Nothing Yes (H) No

211 S S No No

467 S S No Yes

506 S S &S (by TTP) No Yes

535 S (by TTP) S (by TTP) Yes (H) Yes (H)
536 C C Yes (H) Yes (H)
537 C C Yes (H) Yes (H)
538 S (by TTP) S (by TTP) Yes (H) Yes (H)
610 S &S (by TTP) S (by TTP) Yes (M) Yes (H)
614 S &S (by TTP) S (by TTP) Yes (M) Yes (H)
616 S&S (byTTP) S &S (byTTP) Yes (M) Yes (M)

maliciously (M) or honestly (H), the TTP. As shown in Table [[0} using the model we
have located the three cases where A,,, and B,,, have contradictory evidences although
we have detected four possible scenarios, because case 3 could appear twice.

As we can see, case I happens on marking 488, when A,,, obtains the NR evidence
from B,, (so A has evidence that the contract is signed), but she contacts the TTP
in order to cancel the exchange. This is a malicious behavior, because A,,, shouldn’t
contact the TTP to cancel an exchange that is already finished. The TTP sends A,,, the
cancel message and then, A,, could affirm that the contract is signed or cancelled. B,,
receives the NR from A,,, and he doesn’t need to contact the TTP.

In case 2, corresponding to marking 615, the exchange sub-protocol ends success-
fully for each party, but A,,, contacts the TTP, after the transfer of NR evidence to B,,,,
in order to obtain a cancel message. Once B,, receives the NR evidence from A,,,
she also contacts the TTP and he obtains a cancel message. So, A,,, and B,, have a
malicious behavior because they contact the TTP when they shouldn’t.

Case 3 is detected twice on the model. In both scenarios, A4,,, obtains the NR from
B, but B, never receives the third message. In each scenario, A4,, executes mali-
ciously the cancellation sub-protocol and she receives a cancel message from the TTP.
In the first scenario, corresponding to marking 607, A,,, decides to maliciously stop the
exchange and she doesn’t send the third message to B,,. In the other hand, marking
613 is the result of a drop event of the third message by an intruder, /. From the point
of view of B,,,, both scenarios are the same, and he will contact to the TTP in order to
resolve the situation obtaining a cancel message for each scenario.

118 M. Payeras-Capella et al.

In addition to the conflicting cases, there are other cases detected by the model where
there aren’t contradictory evidences but, in some cases, each party could have repeated
proofs because they may contact the TTP when the protocol is successfully ended. Table
[Tl displays the scenarios without contradictory evidences.

The most interesting cases displayed on Table [Tl are markings 84 and 616. In mark-
ing 84, B,, has nothing from A,,, because an intruder / has executed a drop event on
the first message. B,,, cannot execute the finalization sub-protocol because he doesn’t
have any valid element from A,,. In the other hand, A,,, resolves the contract executing
the cancellation sub-protocol obtaining a cancel message from the TTP. The second
marking, 616, is the case where A,,, and B,,, act maliciously contacting the TTP when
the exchange sub-protocol ends successfully. It is similar to case 615, but this time, B,,,
contacts in first place the TTP, obtaining the corresponding NR evidence. Then, if A,,
tries to cancel, the TTP sends a NR evidence that states that the contract is signed.

In order to solve these conflicting situations an arbiter must always contact both
parties, and in case of contradictory evidences, we have established that he must act as
follows:

— Case I: A can state that the contract is signed or cancelled, but B possesses NR
evidence that will prove that the contract is signed. If A tries to use the cancel
message she will be proving she is a cheating party, so the arbiter will side with B.

— Case 2: As in case 1, an arbiter will contact both parties in case of contradictory
evidences. If B shows NR evidence that will prove that the contract is signed, the
arbiter can state that the contract is signed, and if B shows that the contract is
cancelled the arbiter will state that the contract is cancelled. This way, due to the
fact that A is always the first cheating party, if the arbiter sides always with B, the
protocol will discourage A to act fraudulently.

— Case 3: Once again, A has acted fraudulently, and if the arbiter sides with B he will
state that the contract is cancelled.

As a conclusion, we have detected the previously defined conflicting situation and we
have discovered two additional cases. All the cases are due to the fraudulent behavior of
A. To solve these situations, an arbiter must contact both parties and in case of conflict
he must always side with B. This way, the protocol will be fair in all cases and moreover
the fraudulent behavior of the parties is discouraged.

5 Conclusions and Future Work

In this paper we have formally analyzed, using a formal method (Petri Nets), an efficient
contract signing protocol, FPH protocol [2], known as one of the solutions involving
only three messages, as Micali’s protocol. But, while Micali’s protocol has been flawed
(three attacks were found by Bao et.al. and two more attacks were found by Sornkhom
and Perpoomtanalarp), FPH protocol is not vulnerable to any of these attacks due to
its features. We have evaluated FPH protocol using a model that assumes that all the
signers can be dishonest and an intruder can also attack the exchange, and we have
proven the resistance to all these attacks using the model.

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 119

We have evaluated all the possible situations involving malicious users and intruders,
and in all cases the exchange ends in a fair situation. Moreover, we have also detected
that there are three cases in where, although the exchange is fair, one of the signers (or
both) can have contradictory evidences. For these reason, although the exchange is fair,
we cannot say that the proofs generated by the protocol are transferable, because both
parties have to be interrogated by an arbiter to know the final state of the exchange.
Finally, we have created a set of rules to determine the role of the arbiter in order to
achieve fairness even when contradictory evidences are presented.

With the model created to evaluate the vulnerability of the protocol to previously
described attacks and prove the fairness of the protocol we will be able, in a near future,
to formally analyze other properties of the protocol, such as the verifiability of the TTP
and also try to model more complex protocols such as a multiparty contract signing
protocol. Moreover, we will adapt the model to work with new attack scenarios, like
confabulated attacks using data from two different signature sessions. In parallel, we
will work in the improvement of the model in order to include more control over the
intruder’s behavior and some other enhancements.

Acknowledgement

This work is partially supported by MEC and FEDER under projects: ”Seguridad en
la Contratacion Electrénica basada en Servicios Web” (CICYT TSI2007-62986) and
ARES ”Grupo de Investigacion Avanzada en Seguridad y Privacidad de la Informacién”
(Consolider - Ingenio CSD2007-004). We would like to thank Yongyuth Permpoon-
tanalarp for his useful comments and support during the development of this work.

References

1. Micali, S.: Simple and Fast Optimistic Protocols for Fair Electronic Exchange. In: Proceed-
ings of 21st Symposium on Principles of Distributed Computing, pp. 12-19 (2003)

2. Ferrer-Gomila, J., Payeras-Capella, M., Huguet-Rotger, L.: Efficient Optimistic N-Party
Contract Signing Protocol. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200,
pp- 394-407. Springer, Heidelberg (2001)

3. Asokan, N., Shunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange. In: 4th ACM
Conference on Computer and Communications Security, pp. 7-17 (1997)

4. Bao, F.,, Wang, G., Zhou, J., Zhu, Z.: Analysis and Improvement of Micali’s Fair Contract
Signing Protocol. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS,
vol. 3108, pp. 176—187. Springer, Heidelberg (2004)

5. Sornkhom, P., Permpoontanalarp, Y.: Security analysis of micali’s fair contract signing pro-
tocol by using coloured petri nets. In: 9th ACIS Int. Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 329-334 (2008)

6. Ferrer-Gomila, J.L., Payeras-Capella, M.M., Huguet-Rotger, L.: Optimality in asynchronous
contract signing protocols. In: Katsikas, S.K., Lopez, J., Pernul, G. (eds.) TrustBus 2004.
LNCS, vol. 3184, pp. 200-208. Springer, Heidelberg (2004)

7. Asokan, N., Shoup, V., Waidner, M.: Asynchronous Protocols for Optimistic Fair Exchange.
In: IEEE Symposium on Research in Security and Privacy, pp. 86-99 (1998)

8. Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 449. Springer, Heidelberg (1999)

120

9.

10.

11.

M. Payeras-Capella et al.

Zhou, J., Deng, R., Bao, F.: Some remarks on a fair exchange protocol. In: Imai, H., Zheng,
Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 46-57. Springer, Heidelberg (2000)

Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for Modelling
and Validation of Concurrent Systems. Intenationals Journal on Software Tools for Technol-
ogy Transfer, 213-254 (2007)

Kremer, S., Markowitch, O., Zhou, J.: An Intensive Survey of Fair Non-Repudiation Proto-
cols. Computer Communications 25, 1606-1621 (2002)

On the Security of Bottleneck Bandwidth
Estimation Techniques

Ghassan Karame, David Gubler, and Srdjan Capkun

Department of Computer Science
ETH Ziirich, Switzerland
karameg@inf.ethz.ch, dgubler@student.ethz.ch, capkuns@inf.ethz.ch

Abstract. Several wide-area services are increasingly relying on bottle-
neck bandwidth estimation tools to enhance their network performance.
Selfish hosts have, therefore, considerable incentives to fake their band-
widths in order to increase their benefit in the network. In this paper,
we address this problem and we investigate the vulnerabilities of current
bottleneck bandwidth estimation techniques in adversarial settings. We
show that finding “full-fledged” solutions for the multitude of attacks on
the end-to-end bandwidth estimation process might not be feasible in the
absence of trusted network components; we discuss solutions that make
use of such trusted components. Nevertheless, we discuss other possible
solutions that alleviate these threats without requiring trusted infras-
tructure support and we evaluate the effectiveness of our proposals on
PlanetLab nodes.

Keywords: Security, Bandwidth Estimation, Bandwidth Shapers.

1 Introduction

Bottleneck bandwidth measurements are gaining increasing importance in many
wide-area Internet systems and services including multicast trees [I], content
distribution and peer-to-peer (P2P) systems [3]. Bottleneck bandwidth refers
to the maximum throughput that a path can provide to a flow, when there is
no other competing traffic load. Recently, bottleneck bandwidth estimation has
attracted significant interest in the literature. This is mainly due to the fact that
the performance and Quality-of-Service of most Internet services are based on
their bandwidth capacities.

Several tools for bottleneck bandwidth estimation (e.g., Nettimer [4], Pathchar
[5], pchar [G], bprobe [8], pathrate [9], Sprobe [I0], etc.) have been proposed and
evaluated both by simulations and empirically over a number of Internet paths.
These techniques can be mainly classified in two categories [I1]: the one-packet
and the packet-pair technique. Both techniques are well understood and can
provide accurate estimates under certain conditions. In both techniques, probe
packets are exchanged between the verifier (or the sender) and the prover (or
the receiver) to extract estimates of the network bandwidth characteristics.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 121 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

122 G. Karame, D. Gubler, and S. Capkun

To measure bandwidth in a scalable way, current bandwidth measurement
tools push the estimation functionality to the end-hosts. This renders them vul-
nerable to a wide range of security threats as trust is pushed to end-hosts that are
more likely to be compromised than core/edge routers. Due to the increasing re-
liance on bandwidth estimation in current Internet services, untrusted hosts have
considerable incentives to abuse this trust and fake their bottleneck bandwidth
claims in order to increase their advantage from these services (e.g., free-riding
in P2P networks [3]). Indeed, current measurement techniques are often at odds
with “security” when deployed in adversarial settings. A malicious host can abuse
the operation of these techniques in numerous ways to claim an inflated and/or
deflated bandwidth: an untrusted host can make use of bandwidth shapers or
can delay its probe packets to claim any bandwidth of its choice. By inflating
its bandwidth claims, an untrusted host is likely to be delegated high priority in
the network. For example, the untrusted host can be chosen as a super-peer in
a P2P network [I2] or a recommended server in content distribution networks
based on the highest-capacity path. Similarly, untrusted provers might claim
lower bandwidths to reduce their contribution in the network.

While some proposals (e.g., [I0], [42], etc.) recommend the deployment of bot-
tleneck bandwidth estimation tools across Internet hosts, we argue that the easy
and accurate realization of attacks against current bottleneck bandwidth estima-
tion techniques raises serious concerns about the suitability of their deployment.
A thorough evaluation of these techniques in adversarial settings should therefore
precede any prospective large-scale deployment.

Previous work [10], [111, [13], [14], [16], [I7], [18] focused on evaluating the per-
formance of bandwidth estimation techniques and did not address their security
vulnerabilities. In this paper, we address this problem and we analyze the major
security threats against current bottleneck bandwidth estimation techniques. We
also investigate the impact of available software — such as traffic shapers — on
the bandwidth estimation process. We demonstrate the effect, feasibility and the
accuracy of these attacks on PlanetLab nodes [43]. Another important aim of
this work is to extract relevant lessons about the security prospects of existing
bottleneck estimation techniques and to hint application designers on the choice
of a bandwidth estimation technique that better satisfies their desired level of
assurance in the measurements. To the best of our knowledge, this is the first
work that investigates the security vulnerabilities of bandwidth measurements
in adversarial settings.

Our findings suggest that “full-fledged” solutions against the multitude of at-
tacks on the bandwidth estimation process might not be feasible without requir-
ing functionality from trusted network components; namely, since measurements
are conducted end-to-end, fully mitigating delay-attacks against bandwidth esti-
mation emerges as a challenging research problem. Remote attestation by trusted
network components represents one of the few viable options to prevent such at-
tacks. In this work, we discuss the viability and the effectiveness of this proposal
in securing bandwidth measurements. We further propose and analyze several
other solutions and heuristics that do not require any infrastructural support

On the Security of Bottleneck Bandwidth Estimation Techniques 123

and we demonstrate that these schemes counter a large subset of attacks on
current bandwidth estimation techniques.

The rest of the paper is structured as follows: Section [briefly overviews
current bandwidth estimation techniques. Section Bl compiles the list of security
threats against bottleneck bandwidth estimation techniques. In Section] we
briefly discuss a solution to thwart these attacks based on remote attestation by
trusted network components. In Section B we propose a set of techniques that
do not require infrastructural support and we evaluate their effectiveness on
PlanetLab nodes. In Section [G we discuss possible insights in the design space of
secure bottleneck bandwidth measurements. We conclude the paper in Section[7}

2 Bottleneck Bandwidth Estimation

The bottleneck bandwidth B,,;, of a path is the maximum rate that the path
can provide to a flow from the source to the sink. B,,;, is determined by the
minimum link capacity in the path. In what follows, we outline the operation
of the two major bottleneck bandwidth estimation techniques: the one-packet
technique and the packet-pair technique.

The One-Packet Technique. The one-packet technique relies on the assump-
tion that a packet’s traversal time across a path can be computed as the sum of
its transmission and propagation delays, as follows:

-1
. . 9.
H=t+ (5 +d), (1)
i=0 "

where t{ is the traversal time of packet j through [links, tg is the sending time
of packet j, S; is the packet size, B; is the bandwidth of link ¢ and d; is the
latency of link 4.

Flow Direction————»

Assuming that the trans-

mission delay is linear with @
respect to the packet size,
it is highly likely that "™

— ADout
&
if the verifier transmits a LI

é f Prover
Probe Packet:
large number of packets of

variable size, at least one Fig.1. Packet-Pair technique: The temporal spacing
will have negligible queu- between the packets after the bottleneck link is in-
versely proportional to the bandwidth. The narrow
part of the pipe represents the bottleneck link.

ing delay, and therefore the
minimum round-trip time
(RTT) values of these pack-
ets will form a line whose slope is the inverse of the link bandwidth to the
prover [I1]. This technique produces an estimate of the bandwidth at each hop
in the path; the bottleneck bandwidth is then computed as the minimum value
of the estimated link bandwidths. Note that the one-packet technique can only

124 G. Karame, D. Gubler, and S. Capkun

measure the download bandwidth (i.e., from the verifier to the prover). Examples
of tools using the one-packet technique are Pathchar [5] and Clink [7].

The Packet-Pair Technique: Here, the verifier sends two back-to-back large
packets of equal size to the prover. Once the prover receives these packets, it is-
sues back its reply packet-pairs; the verifier then estimates the prover’s download
bandwidth by measuring the time dispersion between the reply packet-pairs [10].
Similarly, to estimate the prover’s upload bandwidth, the prover sends two large
packets adjacently in time to the verifier. The intuition behind the packet-pair
technique is that when two large packets of the same size are sent back-to-back,
it is highly likely that their queuing occurs at the bottleneck link of capacity
B;. Once the bottleneck link is traversed, the temporal spacing A,,; between
the two packets remains constant (Figure[ll) and is inversely proportional to the
bottleneck bandwidth [I1]. Assuming FIFO queuing, the dispersion A,,q, after
the packet-pair traverse H hops is as follows:

S S S
Amax = = 3 - ’ 2
Zi%a%{(B;) min;—o._.g(Bi) B .

where B; is the bandwidth of link 7, S is the packet size and B is the bottleneck
bandwidth of the path.

Several implementations of the packet-pair technique exist such as Nettimer [4],
Pathrate [9] and Sprobe [10].

2.1 The Need for Secure Measurements

Bottleneck bandwidth mea-
surements have the
potential to solve consid-
erable problems in appli-
cations and areas such as
network management, end- S yers———r=—
to-end admission control, 200 ‘ ‘ ‘ _ | Claiming Lower BW

0 10 20 60 70 80

routing and traffic engi_ Percsgmagecfﬁalioioussﬁos«s

neering m’ P2P networks, Fig. 2. Effect of malicious hosts on the average down-
content distribution archi- load time in a multicast binary tree application. Here,
tectures [2], etc.. Selfish the num. of hosts is 1000 and the resource size is 3
hosts might, therefore, have MB. Each data point is averaged over 100 runs.
considerable incentives to
fake their bandwidth claims
and increase their profit from these applications; by claiming higher bandwidths,
selfish hosts are likely to be assigned higher priority in the network. Alternatively,
hosts might claim lower bandwidths to limit their contribution in the network.
This renders “secure” bandwidth measurement a crucial task nowadays.

For instance, in multicast distribution architectures, the download perfor-
mance of hosts is highly affected by the organization of the nodes in the tree;

s
3
8
3
s

®
3
3

Average Download
Time in the Network (s)

On the Security of Bottleneck Bandwidth Estimation Techniques 125

one slow peer located near the root of the tree can significantly impact the re-
source distribution time in the network [2]. In a prototype simulation that we
have conducte(ﬁl7 we investigate the effect of selfish hosts faking their bandwidths
in an exemplary multicast binary-tree architecture. We assume a realistic band-
width distribution amongst the nodes derived from the findings in [3]. As shown
in Figure [selfish hosts can considerably affect the average resource download
times in the entire network by claiming incorrect bandwidths. This effect is even
more detrimental when hosts claim higher bandwidths than they actually have;
the average download time over all peers in the network almost quadruples when
only 20% of peers over-report their bandwidths.

3 Bandwidth Manipulation Attacks

In this section, we investigate delay-based attacks along with the major security
threats against current bottleneck bandwidth estimation techniques.

3.1 System and Attacker Model

Our system consists of a verifier and a prover, connected by a network. The
verifier measures and wverifies the bottleneck bandwidth of the path to an un-
trusted prover. Here, we assume that the verifier actively probes the prover by
issuing probe packets. The prover echoes its reply probe packets to the verifier.
The latter estimates the bandwidth of the prover by extracting packet arrival
times according to either the one-packet or the packet-pair technique. We fo-
cus on bottleneck bandwidth measurement and we assume that the application
making use of the bandwidth measurement requires that the prover cooperates
with the verifier during this process (otherwise it would be difficult to securely
estimate its bandwidth). We limit our analysis to those applications that require
an accurate estimate of the bottleneck bandwidth to the prover for their correct
operation. For instance, while bandwidth manipulation attacks can be tolerated
in BitTorrent [I5], such attacks might affect the performance of the entire net-
work in routing services, content distribution networks, multicast architectures,
etc..

We further assume that the verifier uses a high-speed connection; therefore,
its bandwidth will not affect the bottleneck bandwidth of the path to the prover.
We do acknowledge that current bandwidth estimation tools can result in rather
large estimation errors, however we assume that enough probe packets are ex-
changed to abstract away the effects of noisy measurements.

Untrusted provers constitute the core of our internal attacker model; by an
untrusted prover, we refer to a host that is involved in bandwidth measurements,
however it is not trusted by the verifier to correctly execute the measurement
protocols. We assume that untrusted provers need to inflate/deflate their band-
width claims by a considerable amount (> 200%) to increase their profit in the
network.

! Simulation details are omitted due to lack of space.

126 G. Karame, D. Gubler, and S. Capkun

An external attacker Eve can equally compromise routers on the path be-
tween the verifier and the prover. By compromising routers, Eve can delay the
exchanged probes to alter the bandwidth estimated by the verifier. Eve can also
re-route probe packets through another bottleneck link to influence the con-
ducted measurements.

3.2 Attacks on Current Techniques

Bandwidth measurement tools were developed without prior security considera-
tions as they rely on ICMP/TCP implementations at end-hosts and do not guar-
antee any form of source nor destination authentication. An external attacker
can spoof the IP [26] of the prover and issue back ICMP replies on its behalf; the
measured bandwidth would be that of the attacker. The adversary could also
re-route the probes to hosts at its disposal ([19], [20]) to claim a bandwidth of
her choice (sybil attack [27]). In what follows, we analyze the detrimental impact
of delay attacks on bottleneck bandwidth measurements.

Delay & Rushing Attacks on the One-Packet Technique: An untrusted
prover can intentionally delay its reply packets to convince the verifier of a
bandwidth claim of its choice (Figure [B)). Given a set S of the variable-sized
packets used in the one-packet technique, the prover can claim lower bandwidths
Beigimed than its genuine bandwidth By, by introducing a delay A; to all
packets j € S of size S; > S;, where i is the smallest packet in S, as follows:

% 5 3)
RTT; — RTT, + A;

A= (8-8)(, ") (4)

Bclaimed ; Bauth
Here, RT'T; denotes the smallest round trip time of probe j from the verifier
to the prover. Note that the prover can equally claim a higher bandwidth by
delaylng probes j € S of size S; < S, where k denotes the largest packet in S,

by A; = (Sp—S;) - (" —Bmwﬂ

auth

Bclaimed =

Claiming a lower bandwidth

Claiming a higher
bandwidth

RTT
Maximum Introduced Delay (us)

- @ - One-Packet Technique : :
& -:| —P— Packet-Pair Technique H |
T T T T ; . i
— 10 20 30 40 50 60 70 80 90 100
©® Minimum RTT Claimed Bandwidth (Mbps)
@ Delayed RTT

Actual Linear,
Fit

Packet Size in S

Fig. 4. Maximum delay required to fake band-
width claims in the one-packet and the packet-
Fig. 3. Delay Attacks on the One- pair technique. Bauin = 100 Mbps, the probe
Packet technique size ranges from 58 bytes to 1500 bytes. The
path contains 5 link-layer hops.

On the Security of Bottleneck Bandwidth Estimation Techniques 127

In Equation @l we assume that there are no intermediate hops on the path
between the verifier and the prover. In practice, the untrusted prover has to
further take into account the delays caused by the intermediate hops. This could
be achieved by repeatedly applying Equation @ for all link-layer hops in the
desired link as follows:

d 1 1

A] ; ((S] SZ) (Bclaimed Bauth)) ’ (5)
where H is the total number of link-layer hops in the measured path. Delay attacks
can be very hard to detect given the unnoticeable delay that they introduce (Fig-
ure M). Note that this attack is not only restricted to untrusted provers; a rogue
router (compromised by Eve) can equally trick the verifier into accepting a fake
bandwidth claim by introducing appropriate delays to the packet traversal time.
An untrusted prover can also predict the Identifier and Sequence Number]
fields in the ICMP echo request packets and “rush” its reply by sending specially
crafted ICMP echo replies ahead of time. In this way, an attacker can claim
a smaller RTT which translates to a different bottleneck bandwidth measure-
ment. A combination of these rushing and delay attacks could even reduce the

maximum delay A; that needs to be introduced to fake bandwidth claims.

Packet-Attraction and Repulsion attacks on the Packet-Pair Tech-
nique. In current implementations of the packet-pair technique [I0], the verifier
sends large back-to-back TCP SYN packets and awaits the corresponding TCP
RST packets from the prover. Assuming that the prover immediately replies to
the probe requests, this time dispersion will also be reflected in the difference of
TCP SYN packet arrival times. By intentionally delaying the second reply probe,
an untrusted prover increases the time dispersion between the packet-pairs and
consequently the verifier would assume the existence of a smaller bottleneck link
on the path to the prover. The required delay A is computed as follows:

S
Bc aimed —
! ¢ Adispersion + A (6)
A=s-(, L - ™)

Bclaimed Bauth

where Agispersion 1S the genuine dispersion between the packet-pairs, A denotes
the additional delay between the packet-pairs, S is the size of the probes, Bejgimed
is the fake claimed bandwidth of the prover and B, is the genuine bandwidth
of the prover. As shown in Figureldl A is considerably small — even for the largest
probe size of 1500 bytes — compared to the delay required in the one-packet tech-
nique. This suggests that delay attacks are indeed more challenging to detect in the
packet-pair technique when compared to the one-packet technique (Section (.2)).

Similarly, an untrusted prover or a rogue router can claim a smaller time
dispersion between packet-pairs and consequently a higher download bottleneck

2 Generally, the Sequence Number field in the ICMP echo request is incremental and
therefore can be easily predicted.

128 G. Karame, D. Gubler, and S. Capkun

bandwidth. The prover can delay its reply till both TCP SYN packets are re-
ceived before sending its packet-pair replies with a time dispersion of its choice.
Since RST packets are typically small in size, they will not queue at the bot-
tleneck link. In this way, the prover can successfully claim a higher bandwidth
than its genuine physical one.

At first glance, one might consider that these attacks can only be mounted
by sophisticated attackers. However, this intuition is not correct. While a so-
phisticated user is able to manipulate his interface to temporarily delay all re-
ply probes, less powerful provers can cause the same effect by using bandwidth
shapers as shown in the following section.

3.3 Demonstration of Delay Attacks

In what follows, we demonstrate the feasibility of delay attacks on the one-
packet and packet-pair techniques. Our findings are depicted in Figures [l and [Gl
In our plots, target bandwidth refers to the bottleneck bandwidth claimed by
an untrusted prover and measured bandwidth denotes the bottleneck bandwidth
estimate extracted by the verifier. We rely on 10 and 100 Mbps symmetric phys-
ical connections deployed on three paths: Pathl where both the verifier and
the prover hosts (running Ubuntu v. 7.04 with 1 GB of RAM) are both located
in Switzerland, Path2 where the verifier and the prover (host running Debian
with 2 GB of RAM) are located in Switzerland and Germany, respectively, and
Path3 where the verifier is located in Switzerland and the prover is located in
Mlinois, USA. The prover runs RedHat Linux with 320 MB of RAM. Each data
point in our plots is averaged over 1000 measurements.

One-Packet Technique. We created a prototype tool based on Pathchar [5]
that delays the prover’s reply packets (Equation). We used probe sizes rang-
ing from 58 bytes to 1514 bytes (Ethernet headers included). Our application
replaces the kernel’s TCP/IP stack by a raw socket and uses an iptable rule to
drop all replies issued by the kernel; it then sends back the reply probes with
the desired delay.

As shown in Figures and an untrusted prover can claim any band-
width of its choice in the one-packet technique by appropriately introducing small
— almost unnoticeable — delays before issuing its replies (Figure[5(b)). Given the
impact of small delays, the accuracy of the bandwidth claims can be further
increased by accounting for the prover’s PCI bus delays (Figure [5(c)).

Packet-Pair Technique: We demonstrate delay attacks on Sprobe [10] using
an application that modifies the prover’s networking interface and an open-source
traffic shaper.

The cumulative distribution functions (CDF) of the conducted measurements
(Figure suggests that these attacks — whether originating from a modified

3 We were not able to conduct one-packet experiments on Path2 due to the fact that
intermediate routers were blocking the ICMP probes.

On the Security of Bottleneck Bandwidth Estimation Techniques

100000

10000

1000

10000

1000

100

129

0 0m ©oaf

CDF of measurements
Measured Bandwidth (Mbps)

Maximum introduced delay (microseconds)

1
100 SO
% 0.1
s 01 1 10 100 1000 10000
1 10 100 1000 10000 0.1 1 10 100 Target Bandwidth (Mbps)
Bandwidth (Mbps) Target Bandwidth (Mbps) Target bandwidth

Path 1, using Equations 5and6 O

h 1, 100 Mbps phy. - Path 1, 100 Mops phys. [Path 1, corréction for link layer delays &

Path 1, 10 Mbps phy slmu\atmg 100 Mbps @ Path 2, 100 Mobps phys. O Path 1, correction for IP layer and PCI bus delays v

(a) Claiming 100 Mbps (b) Maximum introduced (c) Impact of link-layer and

bandwidth on a 10 Mbps delay in claiming a lower
connection. bandwidth over a 100 Mbps
downlink connection.

PCI bus delays on mea-
surements over a 100 Mbps
downlink connection.

Fig. 5. Delay attacks on the One-Packet technique

application or from bandwidth shapers — are almost statistically indistinguish-
able at the verifier’s side from authentic bandwidth measurements, which renders
them very hard to detect.

Our analysis in Section B.2] is further validated in Figure - Indeed, the
prover can claim a bandwidth of its choice irrespective of its actual physical
download bottleneckﬁ These attacks can be equally achieved by bandwidth
shapers (Figure [6(b)). We further investigate the effect of bandwidth shapers
on bandwidth estimation in Section

4 Trusted Infrastructure Support for Bandwidth
Measurement

To the best of our knowledge, it is hard, if not impossible, for the verifier to fully
ensure that the remote provers did not intentionally introduce delays before
issuing their replies. Although some schemes were proposed in the scope of se-
curing link quality measurement [40] and RTT measurements [41], they assume
that the prover does not have incentives to mount delay-based attacks; this is
not the case in bandwidth estimation scenarios. An intuitive solution to thwart
this problem is to use tamper-resistant hardware [39] to prevent hosts from tam-
pering with their network interface. However, this hardware comes at a high
cost.

Remote attestation by trusted network components emerges as one of the few
workable alternatives to fully securing bottleneck bandwidth measurements. In
what follows, we briefly outline a scheme that makes use of trusted edge-routers
and we show that our solution effectively mitigates delay attacks against band-
width estimation. In Section [we discuss several other alternatives to partially
alleviate these attacks without requiring infrastructural support.

4 Note that Path2 featured considerable cross-traffic during the measurements, which
explains the estimate errors in the plots.

130 G. Karame, D. Gubler, and S. Capkun

1

g 160
5
2 08 g M
§ | £ 12
1 i s 100 v
£ o8 la i el
3 { & @
E o4 o 60 &
5 O [[alala[alalalslalala]slalalala]
Ire H
g] [Bla]
S o2 g 20
& 0
N on 0 20 40 60 8 100 120 140
” 10 100 Target Bandwidth (Mbps)
Bandwidth (Mbps) X Target bandwidth ———
Path 1, Client at 100 Mops, modified application ~ ©

Path 1, modified application, 100 Mbps phys.
Path 2 modifed application. 100 Mops phys
3, modified application, 100 Mbps phys.

Path 1 Shrobe [14], traffic shaper, 100 Mbps phys.

Path 2. Client at 100 Mops, modified application
Path 3. Client at 100 Mops, modified application v
Path 1, SProbe [14], Client at 100 Mbps, shaper, 250 Hz

~ Path 1, SProbe [14], Client at 100 Mbps, shaper, 4000 Hz &1

4ron

(a) Claiming 10 Mbps on a (b) Packet-delay attacks on a
100 Mbps uplink connection. 100 Mbps downlink connection.

Fig. 6. Delay attacks on the Packet-Pair technique

As shown in Figure[7 we assume in {%., :’;@
our analysis that the bottleneck links e
reside between the outer-most edge-
routers and the end-hosts. Sample ex-
periments on PlanetLab [43] nodes oo - e
confirm that this is a reasonable as- o B repy Pose
sumption. We further assume that @ o — e ===
edge-routers are trusted by all entities
and can timestamp, generate and au-
thenticate packets.

Our scheme for securing bottleneck
bandwidth measurements unfolds as follows: when the verifier wishes to measure
the bottleneck bandwidth of the path to a prover, it sends along that path a
request packet containing the IP address of the prover and the type of bandwidth
measurement of interest (upload and/or download). Upon reception of the latter
packet, the edge-router connected to the prover measures the capacity of the
bottleneck link it shares with the prover and sends its measurement results to
the verifier. The verifier can validate the authenticity of the measurement results
since they come enclosed with the signature of the edge-router. The edge-router
estimates the bottleneck bandwidth of the link it shares with the prover as
follows:

Fig.7. Bottleneck bandwidth measure-
ments using trusted edge routers

- Upload Bandwidth Measurement. Similar to the packet-pair technique,
the prover sends two large back-to-back packets to the edge-router. Since the
latter is located on the other side of the bottleneck link, it can verify that
no additional delay A (Equation [7) was introduced between the packet-pairs
(the edge-router measures the time delay between the last bit of the first
packet and the first bit of the second packet is negligible). By doing so, the
edge-router is certain that both packets queued at the bottleneck link. It then
measures the time dispersion between the packets to estimate the bottleneck
link of the path to the prover according to the packet-pair technique.

On the Security of Bottleneck Bandwidth Estimation Techniques 131

- Download Bandwidth Measurement. To measure the downlink bottle-
neck of the prover, the edge-router can estimate the time it needs to upload a
packet-pair on the path to the prover. Since the bottleneck link is shared by
both the prover and the edge-router and assuming a high transmission rate,
the latter’s upload throughput corresponds to the download capacityﬁ of the
bottleneck link.

5 “Best-Effort” Solutions for Current Bandwidth
Estimation Techniques

In Section [we showed that by relying on trusted network components, secu-
rity threats against bottleneck bandwidth measurements can be fully mitigated.
Given the current architecture of the Internet, we do acknowledge, nevertheless,
that relying on trusted infrastructure might constitute a rather “bulky” proposal
nowadays. In this section, we discuss and evaluate several other “best-effort”
countermeasures that do not require trusted infrastructure support.

5.1 Mitigating Spoofing and Rushing Attacks

Bottleneck bandwidth measurement tools can make use of lightweight authen-
tication protocols to counter impersonation attacks. Furthermore, the verifier
can use pseudo-random functions to generate its request probes such that they
cannot be predicted by the provers and require that the reply probes are corre-
lated in content to its request probes. Alternatively, the verifier can make use of
distance bounding protocols [30] or can require that the prover authenticates the
received pseudo-random probes using a shared key. Thus, the probability that
the prover correctly rushes its replies before receiving the request probes can be
made satisfactorily negligible (O(27%) for k-bit probes).

Note that the time required to authenticate each request probe is negligible
compared to the probes’ propagation times. For example, the time required to
encrypt a 1500 bytes message with a 256 bit key using the AES implementation
in the Crypto++ library on an Intel Core 2 1.83 GHz processor running Win-
dows XP is 19 s [21I]. We implemented a variant of the Sprobe tool [I0] in which
the prover is required to encrypt (using AES) the request probes and we have
conducted sample bandwidth measurements on Paths 1 and 2 using this appli-
cation. Our findings in Figure 8 show that the accuracy of the measurements is
preserved, which makes AES-based authentication suitable for integration within
current bandwidth estimation techniques.

5.2 Alleviating Delay Attacks

In what follows, we discuss some techniques to alleviate delay attacks on band-
width estimation.

5 Note that the edge-router can estimate the full capacity of the bottleneck link since
it can ensure that no downlink traffic is present at the time of the measurements.

132 G. Karame, D. Gubler, and S. Capkun

160
140
120
" godoepeace)
60
40
20

CDF of measurements
°
o
Measured Bandwidth (Mbps)

0
80 8 90 95 100 105 110 115 0 20 40 60 80 100 120 140
Measured Bandwidth (Mbps) Target Bandwidth (Mbps)
Standard Packet-Par, path 1 —&-- Target bandwidth
Authentigation using AES12, palh 1 -0 Path 1, Cliont at 100 Mops O
tan B 3

ard Packel-Pair, path 2 2 1 a
Authentication using AES128, path 2 - ;:m § S}:ﬁ:ﬁ §§ }83 Mggz v

Fig. 8. Effect of Authentication on Fig. 9. Attacks on a 100 Mbps up-
measurements link connection

1) Mitigating Bandwidth Inflation Attacks in the Packet-Pair Tech-
nique: Given large probe sizes, the packet-pair technique ensures that the upper
bound on the upload bandwidth that an untrusted prover can claim is bounded
by its physical bottleneck bandwidth. This is depicted in Figure[d In fact, the
lower bound on the time dispersion between large packet-pairs is determined by
the queuing on the bottleneck link. Even if the untrusted prover manipulates
the transmission times of its reply probes, they will queue at the bottleneck link
with high probability. Given this, the only viable strategy to claim a higher band-
width would be to send each of the packet-pairs using different paths. However,
this requires accurate knowledge of the network status; in practice, the attacker
will only succeed with negligible probability. Note that an untrusted prover can
also distribute its authentication credentials to other hosts under its control. In
this case, the upper limit on the claimed bandwidth is bounded by the highest
physical bandwidth of all the compromised hosts.

2) “Reference” Round-Trip Times: Theoretically, delay attacks can be al-
leviated if the verifier knows an estimate of the RTT to the prover. The verifier
can acquire RTT estimates via offline measurements or from online servers that
perform RTT measurements around the globe (e.g., [31]).

For instance, in the one-packet technique, if the verifier knows a reference
RTT for a median-size probe packet in the set S of the variable probe sizes, then
the bandwidth range that a prover can claim is bounded by the accuracy € of
the estimated reference RTT as follows:

Bauth X (S] - Sz) <B i 4 < Bauth X (Sk - S])
E'Bauth+(5j_5i) - oamed = (Sk:_Sj)_6'-Bauth7

where B jgimed is the bandwidth claimed by the untrusted prover, By is the
genuine bottleneck bandwidth on the prover’s side, S; is the size of the smallest
probe packet used in the variable-size probing set S and Sy is the size of the
largest probe packet in S.

On the Security of Bottleneck Bandwidth Estimation Techniques 133

Ccwian
g &

g

Relative Claimed

Bandwidth
=

Relative Claimed

Bandwidth

02 04 06 08 | 12 14 16 18 2
Genine Bandwidth (Mbps) "
(c) e =10 ms.

Fig. 10. Range of achievable bandwidth claims for ¢ = 5 ms and ¢ = 10 ms. The dark
and light areas represent the achievable claims in the one-packet technique and the
packet-pair technique, respectively.

Similarly, in the packet-pair technique, the download bandwidth that an un-
trusted prover can claim is equally bounded by the accuracy e of the estimated
RTT:

S S
A < Bclaimed < A
dispersion +€ dispersion — €

b

where S is the request probe packet size, Agispersion 15 the time dispersion be-
tween the request probe packet-pairs originating at the bottleneck link and € is
the acceptable deviation in time from the reference RTT.

We investigate the benefits of this approach in Figure for estimation er-
rors € = 5 ms and € = 10 ms from the reference RTT. Given the variability of
RTTs in current networks and the error € in estimating the reference RTT, this
technique can only limit the range of false claims (within 20 % of the genuine
bandwidtlﬁ) in the case where the genuine bottleneck bandwidths are modest
(typically < 10 Mbps). Our findings also show that this technique is not well-
suited to upper-bound fake bandwidth claims in the packet-pair technique. This
is due to the fact that the time dispersion between packets Agispersion is com-
parable to typical values of €, even when dealing with small bandwidths. It can,
however, significantly lower-bound the claims of modest-bandwidth hosts.

5 This is rather acceptable compared to the estimation errors resulting from current
bandwidth estimation tools.

134 G. Karame, D. Gubler, and S. Capkun

3) Detecting Bandwidth Shapers in the Packet-Pair Technique: Band-
width and traffic shapers (e.g., NetLimiter [28], NetEqualizer [29], HTB [32])
provide a simple mechanism to limit the amount of data a host transmits and
accepts by delaying incoming and outgoing packets to match a specified rate
limit. Due to their mode of operation, bandwidth shapers cannot alter the mea-
surements conducted by the one-packet technique since they cannot limit the rate
at which individual probe packets are sent. However, they present themselves as
effortless routines to conduct delay attacks on the packet-pair technique. We
implemented a prototype shaper script on the prover’s side and we studied its
impact on the Sprobe tool [10]. Our script uses iptable rules and the HTB traffic
shaper [32] to throttle the bandwidth of the prover on the fly. We have also
conducted upload bandwidth measurements on Sprobe using NetLimiter [2§]
running on a Windows XP kernel. Our measurements were conducted on Path
1 (refer to Section [B3).

Our findings in Figure [Tl suggest that current implementations of bandwidth
shapers allow a verifier to detect their deployment on the prover’s side. In fact,
bandwidth shapers can only receive, store, and release packets whenever a system
timer interrupt occurs [32]. This suggests that the maximum rate at which a
pair of packets can be sent is bounded by the timer frequency of the underlying
operating system: Byae = S - Foys, where By,q, is the maximum achievable
bandwidth claim, S is the packet size and Fy, is the system timer frequency.
Furthermore, the achievable time dispersions between a packet-pair Ty ominal
are inversely proportional to the system timer frequency Fj,s. The achievable
bandwidth claims are therefore computed as follows:

S : Fs s .
Bclaimed - i Y 7V’L S N*a (8)

which explains the step-wise curves obtained in Figure [[Il In most Linux sys-
tems, it is however possible to increase the system frequency through kernel
re-compilation. As shown in Figure a prover can achieve a higher upper
bound on the claimed bandwidth by re-compiling its kernel to operate at a higher
timer frequency.

12 NAAAS

6
(elelolelelolelolololelolololole |
4
2 05
BA [olclolclo]
0
0 2 4 6 8 10 12 14
0

Target Bandwidth (Mbps) 0 0.5 1 15 2

Target bandwidth —
Path 1, Client at 10 Mbps, modified applicaion O Target Bandwidth (Mbps)

Path 1, SProbe [14], Client at 10 Mbps, shaper, 250 Hz 2 Target bandwidth
Path 1, SProbe [14], Client at 10 Mbps, shaper, 4000 Hz v Path 1, NetLimiter 2 Pro, Client at 100 Mbps ~ ©

(a) Effect of the HTB Shaper. (b) Effect of NetLimiter.

Measured Bandwidth (Mbps)

®
<4
Measured Bandwidth (Mops)

Fig. 11. Effect of Bandwidth/Traffic Shapers

On the Security of Bottleneck Bandwidth Estimation Techniques 135

04 05 06 07 08 09 1 0 05
Bandwidth Claims (Mbps)

(a) Fsys = 66.67 Hz (b) Fsys =250 Hz

15 2
Bandwidth Claims (Mbps)

Fig. 12. Achievable bandwidth claims by traffic shapers in the packet-pair technique.
A spike at value X indicates that bandwidth X can be achieved.

By comparing the time dispersions of the reply packet-pairs with T},ominai
for typical system frequencies, a verifier can suspect the presence of bandwidth
shapers on the provers’ side and can rule out the resulting estimate. This is
especially true for small bandwidths (Figure [[2]).

We validate this claim via extensive measurements on 200 PlanetLab provers.
To truthfully represent Internet nodes, we chose the PlanetLab nodes whose
bandwidth distribution follows the distribution in the current Internet [38]. In
accordance with the findings in [3], we assume that 40 % of the provers are
selfish and make use of bandwidth shapers to vary their bandwidth claims over
time. Untrusted provers can claim both higher (inflate) or lower (deflate) band-
widths by factors ranging from 1 to 10; as suggested in [3], we assume that
high-bandwidth provers claim higher bandwidths with probability 0.1 and lower
bandwidths with probability 0.9. Low-bandwidth provers claim higher band-
width capabilities with probability 0.9.

In our experiments, we compute the median B,,.q of the measured bandwidths
(typically 10 packet-pairs to remove noisy measurements) and we compare it to
the closest bandwidth that a shaper can achieve B,,;, as follows: we assume a
normal distributiorﬂ around B,,;, and we compute the probability P that B,eq
is within a threshold number of standard deviations (n - o) of Byin:

1 Bpmin+tno _ (m—Bmin)Z
P = e 202) (9)
0’\/7'(Bpyin—no

Our results are illustrated in Figure [[3} a significant fraction (76 %) of provers
that use bandwidth shapers were correctly identified, which confirms the fea-
sibility of bandwidth shaper detection in the packet-pair technique. Since the
granularity of bandwidths that a bandwidth shaper can produce is small for low
bandwidths, it can emulate a large number of low bandwidths (Figure[I2)). Given
this, and in the presence of cross-traffic, the claims of low-bandwidth provers
(e.g., modem users) can be easily mis-judged to be originating from bandwidth
shapers. This explains the false negatives obtained in identifying honest provers.

Note that some Linux built-in traffic shapers (Linux kernel v. 2.6.23) do not
rely on system timer interrupts. Thus, other techniques will be needed to detect
them in the future. Windows-based shapers (e.g., NetLimiter [28]) can, however,
still be detected using the aforementioned method.

" Experimental results conducted on 200 different Internet paths confirm this
assumption.

136 G. Karame, D. Gubler, and S. Capkun

100 T
T I CorrectDetections
& False Postives
60 [JFalse Negatives
40 1
20
0 I

Honest Provers Provers using Bandwidth Shapers

Percentage (%)

Fig. 13. Bandwidth Shaper Detection conducted on 200 different PlanetLab hosts

4) Verifying Bandwidth Capability. The

block transfer method is a conventional mean N

to measure the available bandwidth (the un- £ 1 E\D%%BDE

used capacity) of a path. Here, the verifier asks % Ry oo Lol

the prover to download/upload a full block of £ 06| “%.0e oooomoooozi
data and computes the data transfer rate to € o« o %
estimate the residual bandwidth of the path 2 o2

to the prover. Several applications make use of 0

this technique to estimate the available band- 1 B‘o;::ize(,@) 1000
width of a path (e.g., BitTorrent [I5]). In the B T e e, 8

block transfer method, the upper bound on

the claimed bandwidth is guaranteed to match Fig.14. Tradeoffs in the Block-
the genuine bottleneck bandwidth. This allows Transfer method

the verifier to identify whether the bottleneck

bandwidth claimed by the prover can be achieved in practice. However, this so-
lution incurs significant overhead in the network and depends on the traffic load
in the path. Nevertheless, our findings suggest the existence of a potential trade-
off with respect to the required data transfer size. We conducted block transfer
measurements from a high-speed verifier to a prover connected to the Internet
by a 0.8 Mbps upload connection. Figure [[4] depicts the tradeoff between the
size of the transfer block and the accuracy of the bandwidth estimated by the
verifier. Indeed, even blocks of moderate size (50-100 KB) result in an indicative
bandwidth estimate, which might justify the use of this method to filter out
suspicious bandwidth claims.

5) Reverse-Resolve DNS Names. By resolving a prover’s IP address into
its Domain Name Server (DNS), the verifier might deduce the prover’s type
of Internet connection and detect false bandwidth claims. For example, if the
prover’s DNS name contains the string “dsl”, it is highly likely that it has a DSL
Internet connection [I0]. We evaluated the viability of this proposal through
extensive experiments on 1,000,000 randomly chosen IPs. We classified the ob-
tained DNS names depending on whether they contain the strings: “dsl”, “cable”,
“dial”, “isdn”, “WLAN” and “T'1” or “T'3”. Our findings indicate that 34 % of the
IPs leak their host’s bandwidth mformatlorﬁ (Figure [[3]). This information can
be used by the verifier to detect discrepancies in the measured bandwidth. For in-

8 QOur results could be further improved given better knowledge of the local providers
specific to each country (e.g., AT&T for DSL in the USA).

On the Security of Bottleneck Bandwidth Estimation Techniques 137

Unknown

Detection| False
Rate |Positives
Honest Provers [81.4 % | 186 %

Bandwidth Shapers| 75.6 % | 21.2 %

aera Provers with a
Goras \ AN Modified Interface 68.1% | 31.9%
Overall 74.5 % | 25.5 %

Fig.15. Parsing results of the DNS Fig.16. Detection Results on 200 Planet-
names of 1,000,000 randomly chosen Lab Nodes
IPs around the globe

stance, if the verifier measures a 5 Mbps download bandwidth while the prover’s
DNS name is “smartuser.dialup.com”, then it is highly likely that there was an
attack on bandwidth estimation.

6) Additional Heuristics: Statistical outlier detection [22], [23], [24] can also
be used to prevent untrusted hosts from faking their bandwidth claims. Using
outlier detection methods, correlations between different measurements can be
identified and discrepancies can be detected. Furthermore, it is often the case that
various performance metrics implicitly exhibit well-defined correlations [22], [44],
which might allow the verifier to detect inconsistencies. For example, it is unlikely
that a host having a 5 Mbps download bandwidth will have a 10 Mbps upload
bandwidth.

To evaluate the viability of this proposal, we refined the PlanetLab experi-
ment described in Section B.212. We assume that a dedicated server periodically
monitors the bandwidth claims of hosts and keeps history of the recorded mea-
surements. We consider the following setting: 20 % of the hosts modify their
networking interface to fake their bandwidth claims, 20 % of the hosts make
use of bandwidth shapers and the remaining 60 % are “honest” hosts. We use
a combination of bandwidth shaping detection (described earlier) and outlier
detection based on the Z-score test to identify malicious hosts that fake their
bandwidth claims.

g - VX —p)

.) (10)
Here, n is the number of measurements per host, p is their mean and o is
the standard deviation from the mean. If the P-value of the Z-score is above a
threshold value (0.05), the host is considered to be malicious.

Our findings (Table [T6]) suggest almost 75 % of the fake claims were success-
fully detected; most of those detections correspond to provers that use bandwidth
shapers and/or that vary their bandwidth claims over time. Larger detection
rates could be achieved by incorporating additional techniques, such as reverse-
resolve DNS names and reputation-based approaches [33], [34], [36], [37] in the
detection process. In the latter approach, each host can be associated with a
reputation value that indicates how trustworthy it is. Interacting hosts measure

138 G. Karame, D. Gubler, and S. Capkun

their respective bandwidth and form an opinion about each other. Malicious
hosts, claiming incorrect bandwidths or varying their bandwidth claims, will
be associated with low reputation values and, therefore, will not be chosen in
subsequent interactions.

6 Discussion and Outlook

A great deal of lessons can be extracted from the operation of current bottleneck
bandwidth estimation tools. We therefore hope that our findings hint application
designers on the design of secure bandwidth measurement tools:

“Security” Features of Current Techniques. Till recently, the accuracy and
the overhead of bandwidth estimation techniques have highly influenced the de-
cision of application designers to choose a certain estimation technique (e.g.,
one-packet, packet-pair) given the requirements of their applications [I0], [I1].
However, “security” is another important factor that needs to be taken into ac-
count to ensure consistent bandwidth measurements. Although the design of
current techniques cannot give “clear-cut” security guarantees, our findings sug-
gest that some techniques are likely to perform better than others in different
adversarial settings. On one hand, the packet-pair technique cannot prevent un-
trusted provers from inflating nor deflating their download bandwidth claims.
Although it can successfully deflate its upload bandwidth, an untrusted prover
cannot inflate its upload bandwidth claims given large probes in the packet-pair
technique. An important observation here is that bandwidth deflation/inflation
attacks on the packet-pair technique can be achieved by bandwidth shapers, and
thus can be easily realized by untrusted provers. On the other hand, delay attacks
on the one-packet technique require more sophisticated users, capable of altering
their networking interface, since bandwidth shapers cannot affect the measure-
ments in the one-packet technique. Fortunately, bandwidth manipulation attacks
mounted by modest-bandwidth provers might be successfully mitigated in both
techniques (with the exception of download bandwidth inflation attacks) if the
verifier knows an estimate of the RTT to the prover.

Active and Cooperative Measurements. Some previous work [I0] argues
that bandwidth estimation tools should be designed to work in uncooperative
environments in order to scale to a large number of hosts. Although this is indeed
a desirable property, we find support for uncooperative environments rather un-
realistic. In fact, with the proliferation of “de-facto” security applications, such
as home firewalls, probing techniques based on uncooperative TCP/UDP and
ICMP functionality find less applicability in the near future as they are likely to
be considered hostile by the end-hosts. Some routers already filter ICMP pack-
ets due to their potential malevolent use [I1]. Therefore, support for cooperative
measurements is inevitable in the near-future [I0]. Furthermore, end-to-end se-
curity would impair the use of bandwidth monitoring tools in passive and unco-
operative environments as it involves active end-host cooperation for source au-
thentication; cooperative environments present themselves as vital “playgrounds”
for secure end-to-end bandwidth monitoring in the current Internet.

On the Security of Bottleneck Bandwidth Estimation Techniques 139

Network Measurements as “First Class Citizens”. Current measurement
tools do not take into account the impact of untrusted hosts on bandwidth mea-
surements. Given the current trends in designing a “clean-slate” future Internet,
our findings indirectly motivate the need for a secure next-generation Internet.
Since network measurements are gaining paramount importance in monitoring
the performance of the Internet, secure infrastructural support for network mea-
surements becomes rather a necessity. As shown in Section @ by pushing func-
tionality from end-hosts back to dedicated and trusted network components,
several security threats can be eliminated. Performance “awareness” is another
desirable design property for next-generation Internet. Dedicated network com-
ponents could in the future construct and store bandwidth and latency “maps”
of Internet hosts. This would indeed eliminate the need for active probing-based
end-to-end insecure measurement tools.

7 Conclusions

In this paper, we analyzed and demonstrated the major security vulnerabilities
of current bottleneck bandwidth estimation techniques. Given the increasing
reliance on bandwidth estimation tools in current Internet services, these vul-
nerabilities might affect the performance of all the applications that make use
of these tools. Another important aim of this work is to extract relevant lessons
about the security prospects of existing bottleneck estimation techniques and
to hint application designers on the choice of a bandwidth estimation technique
that better suits their applications. Our findings suggest that it is very hard,
if not impossible, to fully counter all security challenges against existing tools
without requiring functionality from trusted network components. More specif-
ically, delay attacks pose serious challenges to the consistency of bandwidth
measurements. Nevertheless, we proposed other possible solutions and heuristics
— that do not require infrastructural support — to mitigate attacks on existing
tools and we showed via extensive measurements on PlanetLab nodes that they
can alleviate a significant fraction of attacks on current bottleneck bandwidth
measurement techniques.

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful sug-
gestions and feedback.

References

1. Ratnasamy, S., McCanne, S.: Inference of Multicast Routing Tree Topologies and
Bottleneck Bandwidths using End-to-end Measurements. In: Proceedings of IEEE
INFOCOM (1999)

2. Schiely, M., Renfer, L., Felber, P.: Self-Organization in Cooperative Content Dis-
tribution Networks. In: Proceedings of NCA (2005)

140

3.

4.

10.

11.

12.
13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

G. Karame, D. Gubler, and S. Capkun

Saroiu, S., Gummadi, P., Gribble, S.: A Measurement Study of Peer-to-Peer File
Sharing Systems. In: MMCN (2002)

Lai, K., Baker, M.: Nettimer: A Tool for Measuring Bottleneck Link Bandwidth.
In: USITS (2001)

. Jocobson, V.: Pathchar (1997),

http://www.caida.org/tools/taxonomy/perftaxonomy.xml#pathchar

. Math, B.: pchar (1999),

http://www.caida.org/tools/taxonomy/perftaxonomy .xml#pchar

. Clink: a tool for estimating Internet link characteristics,

http://allendowney.com/research/clink/

. Carter, R.: Cprobe and bprobe Tools (1996),

http://cs-people.bu.edu/carter/tools/Tools.html

. Dovrolis, C.: pathrate (2001),

http://www.cis.udel.edu/ dovrolis/bumeter.html

Sariou, S., Gummadi, P., Gribble, S.: SProbe: A Fast Technique for Measuring Bot-
tleneck Bandwidth in Uncooperative Environments. In: Proceedings of INFOCOM
(2002)

Lai, K., Baker, M.: Measuring Link Bandwidths Using a Deterministic Model of
Packet Delays. In: ACM SIGCOMM (2000)

KaZaA, http://www.kazaa.com/

Strauss, J., Katabi, D., Kaashoek, F.: A Measurement Study of Available Band-
width Estimation Tools. In: IMC (2003)

Hu, N., Li, L., Mao, Z., Steenkiste, P., Wang, J.: A Measurement Study of Internet
Bottlenecks. In: Proceedings of INFOCOM (2005)

BitTorrent, http://www.bittorrent.org/protocol.html

Carter, R., Crovella, M.: Measuring Bottleneck Link Speed in Packet-Switched
Networks. In: Performance Evaluation (1996)

Dovrolis, C., Ramanathan, P., Moore, D.: What do packet dispersion techniques
measure? In: Proceedings of INFOCOM (2001)

Prasad, R., Dovrolis, C., Murray, M., Claffy, K.: Bandwidth estimation: metrics,
measurement techniques, and tools. IEEE Network (2003)

Revealed, the Internet’s Biggest Security Hole,
http://blog.wired.com/27bstroke6/2008/08/revealed-the-in.html

More on BGP Attacks,
http://blog.wired.com/27bstroke6/2008/08/how-to-intercep.html

Speed Comparison of Popular Crypto Algorithms,
http://www.cryptopp.com/benchmarks.html

Walters, A., Zage, D., Nita-Rotaru, C.: A Framework for Mitigating Attacks
Against Measurement-Based Adaptation Mechanisms in Unstructured Multicast
Overlay Networks. ACM/IEEE Transactions on Networking (2007)

Soule, A., Salamatian, K., Taft, N.: Combining Filtering and Statistical Methods
for Anomaly Detection. In: Proceedings of IMC (2005)

Snader, R., Borisov, N.: EigenSpeed: Secure Peer-to-peer Bandwidth Evaluation.
In: Proceedings of IPTPS (2009)

Savage, S., Cardwell, N., Wetherall, D., Anderson, T.: TCP Congestion Control
with a Misbehaving Receiver. Computer Communication Review (1999)

Harris, B., Hunt, R.: TCP/IP security threats and attack methods. Computer
Communications (1999)

Douceur, J.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, p. 251. Springer, Heidelberg (2002)

http://www.caida.org/tools/taxonomy/perftaxonomy.xml#pathchar
http://www.caida.org/tools/taxonomy/perftaxonomy.xml#pchar
http://allendowney.com/research/clink/
http://cs-people.bu.edu/carter/tools/Tools.html
http://www.cis.udel.edu/~dovrolis/bwmeter.html
http://www.kazaa.com/
http://www.bittorrent.org/protocol.html
http://blog.wired.com/27bstroke6/2008/08/revealed-the-in.html
http://blog.wired.com/27bstroke6/2008/08/how-to-intercep.html
http://www.cryptopp.com/benchmarks.html

28.
29.
30.
31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

On the Security of Bottleneck Bandwidth Estimation Techniques 141

NetLimiter, http://www.netlimiter.com/

NetEqualizer, http://www.netequalizer.com/

Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EU-
ROCRYPT 1993. LNCS, vol. 765, pp. 344-359. Springer, Heidelberg (1994)

The CAIDA DNS root/gTLD RTT Dataset,
https://data.caida.org/datasets/dns/root-gtld-rtt/

HTB Traffic Shaper, http://luxik.cdi.cz/"devik/qos/htb/

Kamvar, S., Schlosser, M., Garcia-Molina, H.: The EigenTrust Algorithm for Rep-
utation Management in P2P Networks. In: WWW (2003)

Sears, W., Yu, Z., Guan, Y.: An Adaptive Reputation-based Trust Framework for
Peer-to-Peer Applications. In: NCA (2005)

Damiani, E., Vimercati, S., Paraboschi, S., Samarati, P.: Managing and Sharing
Servents’ Reputations in P2P Systems. IEEE Transactions on Knowledge and Data
Engineering (2003)

Dimitriou, T., Karame, G., Christou, I.: SuperTrust: A Secure and Efficient Frame-
work for Handling Trust in Super Peer Networks. In: Proceedings of ACM PODC
(2007)

Karame, G., Christou, 1., Dimitriou, T.: A Secure Hybrid Reputation Management
System for Super-Peer Networks. In: Proceedings of IEEE CCNC (2008)

OECD, Broadband Growth and Policies in OECD Countries,
http://aui.es/IMG/pdf_Informe_OCDE_Banda_Ancha_en_el_Mundo.pdf

Jin, H., Lotspiech, J.: Forensic Analysis for Tamper Resistant Software. In: Pro-
ceedings of ISSRE (2003)

Zeng, K., Yu, S., Ren, K., Lou, W.: Towards Secure Link Quality Measurement in
Multihop Wireless Networks. In: Globecom (2008)

Courtay, O., Karroum, M., Duran, A.: Method and Devices for Secure Measure-
ments of Time-Based Distance Between Two Devices. Patent no. WO /2006/136278
(2006)

Barford, P.: Measurement as a First Class Network Citizen. White Paper,
http://pages.cs.wisc.edu/"pb/sngi_whitepaper.pdf

PlanetLab, http://www.planet-lab.org/

Jiang, G., Cybenko, G.: Temporal and spatial distributed event correlation for
network security. In: American Control Conference (2004)

http://www.netlimiter.com/
http://www.netequalizer.com/
https://data.caida.org/datasets/dns/root-gtld-rtt/
http://luxik.cdi.cz/~devik/qos/htb/
http://aui.es/IMG/pdf_Informe_OCDE_Banda_Ancha_en_el_Mundo.pdf
http://pages.cs.wisc.edu/~pb/sngi_whitepaper.pdf
http://www.planet-lab.org/

An Eavesdropping Game with SINR as an
Objective Function

Andrey Garnaev' and Wade Trappe?

1 St. Petersburg State University, Russia
agarnaev@rambler.ru
2 WINLAB, Rutgers University, USA
trappe@winlab.rutgers.edu

Abstract. We examine eavesdropping over wireless channels, where se-
cret communication in the presence of an eavesdropper is formulated as
a zero-sum game. In our problem, the legitimate receiver does not have
complete knowledge about the environment, i.e. does not know the exact
values of the channels gains, but instead knows just their distribution.
To communicate secretly, the user must decide how to transmit its in-
formation across subchannels under a worst-case condition and thus, the
legal user faces a max-min optimization problem. To formulate the op-
timization problem, we pose the environment as a secondary player in a
zero-sum game whose objective is to hamper communication by the user.
Thus, nature faces a min-max optimization problem. In our formulation,
we consider signal-to-interference ratio (SINR) as a payoff function. We
then study two specific scenarios: (i) the user does not know the channels
gains; and (ii) the user does not know how the noise is distributed among
the main channels. We show that in model (i) in his optimal behavior the
user transmits signal energy uniformly across a subset of selected chan-
nels. In model (ii), if the user does not know the eavesdropper’s channel
gains he/she also employs a strategy involving uniformly distributing
energy across a subset of channels. However, if the user acquires extra
knowledge about environment, e.g. the eavesdropper’s channel gains, the
user may better tune his/her power allocation among the channels. We
provide criteria for selecting which channels the user should transmit
on by deriving closed-form expressions for optimal strategies for both
players.

1 Introduction

Security is one of the most prominent problems surrounding wireless communi-
cations, largely due to the broadcast nature of the wireless medium, which facil-
itates eavesdropping. Although much of the work in confidentiality for wireless
systems has focused on cryptographic solutions, which necessitate key manage-
ment, there has been a recent movement towards exploring new security mecha-
nisms for wireless systems. There has been an effort by the wireless
research community to develop new forms of confidential communication that

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 142@ 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

An Eavesdropping Game with SINR as an Objective Function 143

exploit the fading characteristics of the wireless channel to achieve secret com-
munications through appropriate coding constructions[II2IBI4I6I7]. Such work
has largely built upon prior information-theoretic work of [SIOTO/TT], where the
notion of secrecy capacity was introduced to describe the rate at which a sender
could communicate in an information-theoretically confidential manner in the
presence of an eavesdropper. Recent results have sought to incorporate mod-
ern communication system design, and take advantage of the many degrees of
freedom available in a dynamic wireless fading environment. For example, it is
possible to use multiple subcarriers in order to provide a large number of parallel
subchannels, as is utilized in OFDM transceivers (which is becoming a de facto
physical layer strategy for many existing and emerging wireless systems, includ-
ing 802.11g and WiMax), and the underlying frequency selectivity induced by
multipaths can provide a diversity advantage. Recent results related to secret
communication over independent, parallel channels has been reported in [4lJ5].

In the basic formulation of confidential communication, we have three entities:
Alice, Bob and Eve. Alice seeks to communicate secretly with Bob while in
the presence of an eavesdropper Eve. In this formulation, there are two sets
of channels of interest, first is the channel from Alice to Bob, and second is
the channel from Alice to Eve. Using GG as a generic representation for the
Alice to Bob channel, and H as a generic representation for the Alice to Eve
channel, a natural question that arises is how secret communication rates can
be characterized under different assumptions regarding which entities know the
states of various channel states. The results of [4], for example, were formulated
for the case of complete channel state information where Alice, Bob and Eve
all have perfect knowledge of the CSI for channels G and H. For complete CSI
it has been shown that the secrecy capacity for a collection of independent
parallel channels can be solved through appropriate water-filling of the channel
differences between G and H.

Unfortunately, the case of complete CSI is not representative of what one
would expect to face in an adversarial setting, where the eavesdropper is not
likely to reveal its presence. Instead, incomplete CSI cases are more appropriate
but, for the most part, have not been considered in the literature. Generally, it is
reasonable to assume that the receiver has knowledge of the state of the channel
from the transmitter. Hence, we are interested in cases where Alice does not have
complete knowledge of G or H. In this paper, we examine the problem of secret
communication over fading channels for several specific cases of incomplete CSI.

To address the problem of how the sender can best communicate secretly to
a legitimate receiver while having varying levels of knowledge about the cor-
responding channel states, we formulate the problem of secret communication
as a zero-sum game. Here, the user must decide how to transmit information
across which subchannels under a worst-case condition, while we pose the envi-
ronment as a secondary player in a zero-sum game whose objective is to hamper
successful communication by the user. We consider signal-to-interference ratio
(SINR) as a payoff function since, in the regime of low SINR, this objective is
an approximation to the secrecy rate.

144 A. Garnaev and W. Trappe

We begin the paper in Section P by presenting our three entities (Alice, Bob
and Eve), and providing a description of the basic communication model that we
will use throughout this paper. In the sections that follow, we examine several
distinct cases where different assumptions are placed on how well Alice or Eve
know the channel gains. Throughout the paper we present conclusions that can
be drawn from theoretically formulating the eavesdropping problem in a game-
theoretic scenario. We provide proofs in the Appendix.

2 Problem Overview

Alice seeks to communicate secretly with Bob, while in the presence of a potential
(passive) eavesdropper, Eve. We consider a communication system involving n
independent subchannels, as might arise in an OFDM system. Letting Alice’s
transmitted signal on channel ¢ be X;, then Bob’s received signal is

Y = g Xi + WP, 1)
while Eve receives the signal

Z; = VhiX; + WAE. (2)
We may collect Alice’s channel input as X™ = [X1,- -+, X,,], and similarly define

Bob’s received signals as Y, and Eve’s as Z™. In the communication literature,
the channel gains g; and h; may follow many different distributions and one of the
most common is the Rayleigh fading model, where ¢; and h; follow an exponential
distribution with an average channel gain E[g;] or E[h;] capturing distance-
dependent attenuation and shadowing. In general the Alice-to-Bob channel and
Alice-to-Eve channel will have different average characteristics, i.e. in general
E[g;] # Elh;]. Further, we note that the WAZ and WAF are additive noise
terms that (unless noted otherwise) have been normalized appropriately (relative
to the main Alice-to-Bob channel gains g;) to have unit variance.

In M], it was shown under the complete CSI assumption, that the secrecy
capacity of the system of n independent channels for Alice-Bob-Eve can be ex-
pressed as C,(g, h,P*) = 3" | Cawan(gi, hi, P;), where Cawean (gi, hi, Pi) is
the secrecy capacity for an additive white Gaussian noise channel model, and
was given by Leung-Yan-Cheong and Hellman in [I3]. Further, P* is the opti-
mal power allocation across the n subchannels and corresponds to waterfilling
appropriately by considering the relative differences between g and h.

3 Optimization with SINR as the Objective Function

In this section, we formulate the secret communication problem as an optimiza-
tion problem. As noted earlier, Alice would like to transmit information through
n channels, and to do this she must allocate power P = (P4, ..., P,) across these
channels, where

An Eavesdropping Game with SINR as an Objective Function 145

P, >0 for i€ [1,n] (3)

and .
Y P =P (4)
i=1

Here P > 0 denotes the signal total power budget she may transmit. Up to a
normalization factor, Alice’s payoff is given as follows

n

o(P) =Y [m(1+4P) —1n(1+hiPi)]+ (5)
i=1

where g; and h; are the corresponding fading channel gains of the main (Alice
to Bob) and eavesdropper (Alice to Eve) channels. The individual secrecy rate
terms In (14 ¢;P;) — In (1 + h;P;) are generally unwieldy, and as a useful ap-
proximation, we may instead define a more convenient payoff function, which we
shall refer to as the SINR payoff. The SINR payoff for Alice is given as follows

SINR has been considered in non-eavesdropping communication scenarios. Specif-
ically, it has been used as an objective function in the power control game in [16],
[17] and [I5]. In [16], the Braess paradox in the context of the power control game
has been studied and in [I7] all users have a single common channel and choose
between several base stations, while in [I5] jamming and cooperative scenarios are
considered. Lastly, we note that in the regime of low SINR the present objective
serves as an approximation to the secrecy rate.

Since the payoff is linear in P the optimal power strategy assigns transmis-
sion power across the channels by placing a preference to channels with greater
difference between the channel gains of the main and eavesdropper channels,
g; — h;. Namely, the following result holds.

Theorem 1. The optimal power allocation strategy, P, for Alice for the secret
communication optimization problem with SINR as the payoff, under condition

(3) and [), is given as follows

P =0 fori e [1,n]\ L,
“1> 0 such that Yier. Pi= P foricl,,
where I, = {i € [1,n| : g; — h; = max{g; — h; : j € [1,n]}} is the mazimal
difference between fading channel gains of the main (Alice to Bob) and eaves-
dropper (Alice to Eve) channels. The payoff corresponding to this strategy is
v = Pmax{g; —h;: j € [1,n]}.

Now look at the problem assuming that Alice has fixed the power allocation,
i.e. the vector P = (Py,..., P,) satisfying ([B) and (), yet the environmental

146 A. Garnaev and W. Trappe

parameters are not completely known, i.e. Alice does not know the exact values
of the channels gains. To capture this assumption, we shall further assume that
Alice knows the best case scenario for the main and eavesdropper channel gains,
but does not know the precise values of any instantaneous realization. Hence,
we assume that the gains ¢g; for the main subchannel i is given by

9 =gy — G, (7)

where ¢? is the best possible channel gain, and G; reflects additional degradation
of the channel that might arise from fading or other factors. For analysis, we
assume that Alice knows that the degradation G; is such that

G; >0 forie [1,n] (8)

and that she knows an (ensemble) characterization of this degradation across all
n subchannels

zn: G =G, ©)

where G > 0 thus corresponds to the total main channel perturbation.
Similarly, we assume that Alice has imprecise knowledge of the gains of the
eavesdropper subchannel i, given by

where hY is (best, and hence smallest) possible channel gain and is known to the
user. However, as before, about the perturbation of this channel gain, H;, she
knows only that it is such that

H; >0 for i € [1,n] (11)
and

zn: H; = H, (12)
=1

where H > 0 is the total eavesdropper’s channels perturbation known to Alice.
The payoff is then given as follows

n n

v((GH)) =Y () = Gi)P, = > (b + H)P;

i=1 i=1

N N (13)
=Y &P - (Gi+ H)P,
i=1 i=1

where &, is the difference between fading channel gains of the main (Alice to
Bob) and eavesdropper (Alice to Eve) channels i, namely,

We will assume that ¢g¢ > h? for i € [1,n], so £ > 0 for i € [1,n]. The following
result allows Alice to quantify the worst payoff she could have, as she would like
to minimize ([3]) for any admissible (G, H).

An Eavesdropping Game with SINR as an Objective Function 147

Theorem 2. Let Iiyae = {i € [1,n] : P; = Pras} where Ppaz = maxjeqi n) Pj.
Then the optimal strategy (G, H) is given as follows

= 07) €]-7 Imawv
) iellnh (15)
> 0 such that zjelmaz G; =G, 1€ I,
=0) 1 Imama
> 0 such that Zjelm,m H;=H, i€ Ins-

The payoff corresponding to this strategy is v =" ;|) Pi — Ppas(G + H).

4 An Eavesdropping Game with Unknown Gains

We continue our analysis of the situation where Alice does not know the exact
values of the channels gains, as described previously. Alice faces the problem of
allocating power so that information can be transmitted under the worst-case
conditions or, in other words, Alice faces a maxmin problem. To address this
question we draw upon game theory since we may consider Alice as a player
in a game, while we may model the environment (nature) as a second player
with a goal opposite to Alice’s, namely, to hamper information transmission by
Alice (by selecting channel states so as to benefit the eavesdropper Eveﬂ. Thus,
nature faces a minmax problem and the optimal strategies of the players for the
maxmin and minmax problems will coincide with each other.

We assume that the gains of the main channel i is given by (@) and the
gains of the eavesdropper channel i is given by ([0). The strategy for the en-
vironment is governed by appropriately selecting (G, H), which consists of two
components: G = (G, ...,G,) — the main channel’s degradations about g; and
H = (Hy,...,H,) — the eavesdropper’s channel degradations about h, as per
the conditions), @) and (), [@Z). Alice’s P is given by satisfying @) and
). The SINR payoff for Alice is given as follows

n

(P (G, H)) =) (9] = Gi)Pi - Zn:(h? + H;)P;. (17)

i=1 i=1

Both players know the values of g7, h?, i € [1,n] as well as P, G and H. We
consider the situation as a zero-sum game Alice versus nature with Alice’s payoff
as (B4), while the payoff to nature is —v(P, (G, H)).

We will look for the value of the game v and the optimal strategies P* of
Alice and (G*, H*) for nature. Recall that optimal strategies and the value of

the game satisfy the conditions:
o(P,(G*,H")) <wv:=v(P",(G*,H")) <v(P*", (G, H))
for any strategies P and (G, H) for the players (Alice and nature).

1 'We note, contrary to intuition, Eve is not the second player in our formulation, but
is a passive beneficiary of the strategy employed by the environment.

148 A. Garnaev and W. Trappe

Note that the payoff (I7) of the game by (I4]) can be rewritten in the following
equivalent form

sz }:G+mMz (18)

Without loss of generality we can assume that the channels are arranged in such
a way that
>0>...>¢ >0. (19)

We introduce the following auxiliary notation,

k
ok =Y (& — &) for k€ [1,7)]. (20)

i=1

It is clear that the sequence ¢, k € [1,n] is increasing since the following
relations hold:

kb1 k
Pre—or = (& = &) —) (& — &)k 20,
=1 =1

and ¢1; = 0. For this game we can prove the following result describing the
optimal strategies as well as the value of the game.

Theorem 3. (a) Let o
G+H > oy, (21)

then the value of the game is given by

:5<§:§?—G—H>. (22)
i=1

Alice’s optimal strategy P* assigns power uniformly across all the n channels,
i.€.
= P/n forie€ [1,n]. (23)

Nature’s optimal strategy (G*, H*), meanwhile, involves assigning the eavesdrop-
per and main channel components H* and G* to equalize the difference in quality
between the fading channel gains of the main (Alice to Bob) and eavesdropper
(Alice to Eve) channels, namely, H* satisfies (I1l) and (I2), G* satisfies (8) and

(@) and

* * __ 1 7 ~ - 0 _ ¢0
Gy +H = n H+G ; l(fj &) (24)
say,
c- O |ara-ye-e (25)
‘ n(G+ H) j=1 ! ' 7

An Eavesdropping Game with SINR as an Objective Function 149

* H I'] ~ E
Hi= Gy |\ ET0-2E-8) (26)

fori e [1,n].
(b) Let
G+H< ©On-
Then, there is a ks € [1,n — 1] such that

ok, <G+ H < @p, 41. (27)

The value of the game is given as follows

_ kL
:f (Zg?—G—H).
* \i=1

Alice’s optimal strategy P* assigns power equally among the first k. channels,
i.€.

K2

{P/k* for i€ [1,k,], (28)

0 fori € [k +1,n].

Nature’s optimal strategy (G*, H*) assigns G* only to the main channel compo-
nents unused by Alice, while H* and G* are assigned across the eavesdropper’s
subchannels so as to equalize the k. best differences in quality between fading
channel gains of the main (Alice to Bob) and eavesdropper (Alice to Eve) chan-

nels. Namely, H* satisfies {I1l) and {I2), G* satisfies {8) and (3),

G;=H; =0 fori¢€ [k.+1,n] (29)
and
e L - i (30)
! Yk = &
say,
a Sk
G = e \HTE- ;@? -&) | (31)
i B k.
Hi=, Grm|H+E]22}50 &) (32)

fori e [1,k.].

150 A. Garnaev and W. Trappe

5 Either the Eavesdropper’s Channels Gains or the Main
Channels Gains Are Unknown

In this section, we first consider the case where Alice does not know the exact
values of gains of the eavesdropper’s channels, but she does have full knowledge
about the main (Alice to Bob) channel gains. The payoff for Alice is

v(P,H) =Y g)P; =Y (h) + H;)P;. (33)
=1 =1

Nature’s strategy thus consists only of appropriately selecting the eavesdropper’s
channels component H while satisfying (III) and (I2)). For this case we can prove
the following result, which basically states that in order to harm Alice (and
thus help Eve), nature has to spoil equalizing k channels with the largest gains
differences, while Alice has to assign power uniformly across these k channels.

Theorem 4. The value of the game is given as follows

— ok
v = 1]: (Z{?—H)
i=1

where

n for o, < H,
kv :op, < H < @p. 11 for ¢, > H.

Alice’s optimal strategy P* has her using an equalizing strategy among the k best
channels. Namely,
P/k, i€l k
P* — / ? [) ‘]7 (34)
0, otherwise.
Nature’s optimal strategy H* involves equalizing the k best channels. Namely,

_ . .
Hf = llf (H_ijl(ﬁf—ﬁg))7 i€[l,k]
0, otherwise.
If Alice does not know the exact values of the gains of the main subchannels,

while she has full knowledge about eavesdropper’s channel gains, then the payoff
to Alice is given as follows

n

o(P.G) =3 (6~ GP— S 0P (35)
=1

i=1

Theorem 5. The value of the game is given as follows

— /K
v = IZ (Zg?-G).
i=1

An Eavesdropping Game with SINR as an Objective Function 151
where

L for v, <G,
N keior. <G < @p1 for on > G.

Alice’s optimal strategy P* has her using an equalizing strategy among the k best
channels. Namely,
. {P/k, i€ 1,k

0, otherwise.

Nature’s optimal strategy G* involves equalizing the k best channels. Namely,

G%:{;(G—zf_xg?—s?)), i€ [LK

0, otherwise.

Let us demonstrate some numerical results showing how information about the
channels impacts the value of the eavesdropping game we have formulated. Sup-
pose there are five subchannels, n = 5, and &; is given by an exponential law,
namely, let & = 4x'~1 for i € [1,n] and k = 0.7. We examine the value of the
game and the number of channels employed to communicate for the two cases:
(1) with unknown gains as in Section [(2) with unknown eavesdropper chan-
nels gains. For both plots we will assume that P =3 and G € [1,7] and H = 1.
However, for the second case we assume that H is uniformly distributed across
the subchannels H;. In Table 1 we present the value of the game for different
values of k. Of course, when the players use all the five channels then the value
of the two cases of the eavesdropping game coincide, which occurs for large G
(in this example, G = 7). If G is small (equals 1) then having extra information
about the channels (the second case) allows her to improve her SINR, (and hence
secrecy) payoff by a factor of roughly 1.5.

Table 1. The value of the game and k for two plots

G Case 1 k Case 2 k

1 1.587 3 2.400 1
2 1.283 4 1.800 2
3 1.033 4 1.320 3
4 0.818 5 0.987 3
5 0.618 5 0.683 4
6 0418 5 0.433 4
7 0.218 5 0.218 5

6 The Worst Case for the Main Gains Are Known

To show that the optimal strategies essentially depend on the information the
players have, in this section we slightly change the formulation of the game to
assume that the worst possible values for the main channels gains are known

152 A. Garnaev and W. Trappe

(instead of the best possible values), and then demonstrate the impact that such
a change has on the optimal strategies. We assume that the SINR payoff for
Alice is given as follows

n n

v(P, (G, H)) = (9 +Gi)Pi = Y _(h{ + H,)P, (36)

i=1 i=1

where now ¢? is the worst possible value for the main subchannel i’s gain.
For this game we can prove the following result describing the optimal strate-
gies as well as the value of the resulting eavesdropping game:

Theorem 6. (a) Let (Z1) hold. Then the value of the game is given by

v:5<§:§?—H+G>. (37)

i=1

Alice’s optimal strateqgy P* assigns power uniformly across all n subchannels,
i.e. by (Z3). Nature’s optimal strategy (G*, H*), meanwhile, involves assigning
the eavesdropper channel component H* to equalize the eavesdropper channels,
while assigning the main channel component G* uniformly across subchannels,

Gt =G/n, (38)
m = E-Y @) (3)
j=1

fori € [1,n].
(b) Let H < ¢y,. Then, there is a k. € [1,n — 1| such that (27) holds.Also, let

A <0, (40)

where

j=kut1

Then the value of the game is v = P (Zf;l £ — f]) [k.. Alice’s optimal strategy
P* assigns power equally among the first k. channels, i.e. it is given by (2§).

An Eavesdropping Game with SINR as an Objective Function 153

Nature’s optimal strategy (G*, H*) assigns G* only to the main channel com-
ponents not used by Alice, while H* is assigned across the eavesdropper’s sub-
channels so as to equalize the quality of the ki best channels for Alice. Namely,

=0, i€ 1,k
Gy b (Shae-¢)-n) (12)
such that 377, | Gy =G, i€k+1,n],
: = {ki (-5 -), el "
0, i € [ke +1,n].

(c) Let H < ¢, and A > 0. The value of the game is given by (7). Alice’s
optimal strategy P* is given by (23). Nature’s optimal strategy (G*, H*) assigns
H* according to {£3), and equalizes the quality of the k. best channels, while
component for the main channel G* is assigned to supplement all the channels
until they have an equal level, as follows

N ’ﬁlﬂc (Z?;(ﬁ?—s?)—ﬁ), i > k.

Since the inequality

3 "o
N‘FU‘

(fjg?—HJrG)

i=1

(e

k.G < (Z&O ks 250 1 (n — k)

G=ku+1

is equivalent to

or, by [I), to A < 0, we can summarize the result of Theorem Bl about the value
of the game in the following statement.

Theorem 7. The value of the game is given as follows: if v, > H, then

— n — ks
v:max{}: (Zf?—H—i—G),]f (Zﬁ?—H)}.
i=1 * \i=1

We now present some numerical results to illustrate the implications of Theorem[@]
and[d As before, suppose there are five subchannels, n = 5 and &; is given by the
exponential law, namely, let £ = 4k~ ! for i € [1,n] and k = 0.7. We compare
how the optimal strategies change around the switching point A. In Table 2 we put
together the optimal strategies for nature when G = 1, P = {3, 4} corresponding
to the values of the game 5.76 and 4.855. In spite of the fact that k, = 3 for both
cases, there is a switching point between P = 3 and P = 4 since for the first case

154 A. Garnaev and W. Trappe

Table 2. The optimal strategies for the nature player in the example eavesdropping
game

H*&G*(P) 1 2 3 4 5
H*(3) 208 088 004 0 0
G*(3) 0 0 0 <0.446 <0.858
H*(4) 24131.2130.373 0 0
G*(4) 0.032 0.032 0.032 0.246 0.658

A = —0.507 and for the second case A = 0.159. In the case P = 3 a variety of
G components is possible that do not use the first three channels. For example, it
could be any G* = (0,0,0, G}, Gf) such that G} < 0.446, G§ = 0.858, G + Gf =
1. Meanwhile, in the case P = 4 the G* component uses all the channels.

7 The Optimization Problem with Unknown Noise and
Eavesdropper’s Channel Gains

In this section, we relax the assumptions about the noise term (WAZ from
Section 2), and consider the situation where Alice does not know how the noise
is distributed among the main (Alice to Bob) subchannels. For example, the
noise power may not be uniform across subchannels. To reflect this case, we
assume that the main channels gains are given by

gi = 1/(N? + N;) for i € [1,n],

where N? is a constant part of the noise level in the main channel i and N; is a
variable component for which Alice knows only the total perturbation N, which
satisfies

Y N;=N (45)

and
N; >0 for i€ [1,n]. (46)

We note that this is representation allows us to reflect the variable noise terms
directly in the channel gains g;. For example, low levels of noise (i.e. small N?
and NV;) leads to a correspondingly large subchannel gain g;, which implies that
the ith subchannel is good.

Assume that Alice has fixed the power allocation strategy for signal transmis-
sion, i.e. the vector P = (P, ..., P,) satisfying @) and (@), but the parameters
for the environment are not completely known, i.e. Alice does not know how the
noise is distribution for Eve, or the values the eavesdropper’s channels gains.
The payoff is given as follows

AN =Y ' = S+)P (7)

An Eavesdropping Game with SINR as an Objective Function 155

Alice would like to know what the worst payoff she could have, so, she would
like to minimize 1) by (N, H).

Since the payoff is linear in H and concave in N, the strategy (N*, H*) is the
optimal one if and only if there is v, such that

P; =v for Nj >0, (48)
(N +Nf)?2 | <v for N} =0,
> f IDZ = Pmafu
= e (49)
=0 otherwise.

Then the optimal H* is given by (@) and the optimal N* is of the form

7

N} = N;(v) = [\/Pi/V_NZOLr for i € [1,n],

where v = v, is the unique positive root of the equation

[\/Pi/z/ - N?] =N

n
1=

The payoff corresponding to (N*, H*) is given as follows

v=ye Y, VP - Xn:h?Pi — HP,os.

N;i(v.)>0 i=1

8 The Game with Unknown Noise in the Main
Subchannels

In this section we consider the situation where there is unknown noise in the
main subchannels, and examine this case from game-theoretical position. There
are two players: Alice and nature. Alice has to transmit the total power P using
strategy P satisfying [B) and). Recall that nature’s objective is to harm Alice-
to-Bob communication, and thus in this case nature’s strategy consists only of a
jamming component N satisfying (@0 and (@G]), i.e. nature introduces noise to
the main subchannels. The payoff to Alice is given as follows

v(P,N) =) NO 4 N > hiP; (50)
i=1 "t =1

The payoff to nature is —v(P, N).

In the following theorem we find the value of the game and the optimal strate-
gies for the players. In particular, we show that nature should hamper precisely
the same channels that Alice employs. The optimal strategy for nature is a water
filling strategy, but from an adversarial point of view.

156 A. Garnaev and W. Trappe

Theorem 8. The value of the game is w,P where w, is the unique root in
[—min; h?, 00) of the water filling equation

n 1 B
Hy(w) = ~N?| =N. 51
EE S P 61)

The optimal nature’s strategy is given by

1

K3

—NE} , i €[1,n]. (52)
+

The optimal Alice’s strategy is given as follows

U R SR V(TR

JiNj(ws)>0
0 otherwise.

Remark 1. It is interesting that the optimal strategy for nature does mot take
into account the power of signal Alice has to transmit but only the parameters of
the environment, which is quite reasonable because nature is Alice’s rival.

As a numerical ezample we consider five channels n =5 case. Let N? and hY
are given by the same exponential law, namely, N? = h? = k=1 for i € [1,n]
where k = 0.5. Also, let P =1 and N = 0.5 In Table 3 the value of the game
and the players’ optimal strategies are given as a function of k. For k = 0.1
these strategies use four out of the five subchannels, for k = 0.8 they use two
subchannels, and for intermediate values these strategies use three subchannels.

Table 3. The value of the game and the optimal strategies of the players

KV 1 2 3 4 5
0.1 6.315 N 0.000 0.047 0.142 0.154 0.157
P 0.000 0.230 0.248 0.258 0.263
0.2 5.314 N 0.000 0.000 0.140 0.176 0.184
P 0.000 0.000 0.321 0.336 0.344
0.3 4.655 N 0.000 0.000 0.114 0.182 0.204
P 0.000 0.000 0.319 0.336 0.345
0.4 3.858 N 0.000 0.000 0.083 0.187 0.229
P 0.000 0.000 0.316 0.336 0.347
0.5 3.056 N 0.000 0.000 0.052 0.189 0.258
P 0.000 0.000 0.312 0.337 0.351
0.6 2.345 N 0.000 0.000 0.025 0.189 0.286
P 0.000 0.000 0.306 0.338 0.356
0.7 1.764 N 0.000 0.000 0.006 0.186 0.307
P 0.000 0.000 0.298 0.339 0.363
0.8 1.314 N 0.000 0.000 0.000 0.183 0.317
P 0.000 0.000 0.000 0.478 0.522

An Eavesdropping Game with SINR as an Objective Function 157

It is interesting to note that for k € [0.2,0.7] the mazimal difference is 11% (it
is accentuated in bold font) from the uniform strategy, and arises right before
switching to using smaller number of channels and smallest in 1% (accentuated
in italic font right after the switching point).

9 Conclusion

Recently, there has been increasing interest in using the properties of the phys-
ical layer in a wireless system to support security (specifically, confidentiality)
objectives. The basic principle behind this new form of confidentiality is to take
advantage of conditions where the main Alice-to-Bob channel is better than the
adversarial channel Alice-to-Eve. One fundamental challenge facing the formu-
lation of such physical layer secrecy is understanding the implications of varying
assumptions for what knowledge the participants (Alice, Bob and Eve) have
in the secret communication. In this paper we have examined the problem of
eavesdropping over fading channels, where the problem of secret communication
in the presence of an eavesdropper is formulated as a zero-sum game. In our
problem, the legitimate receiver does not have complete knowledge about the
environment, i.e. does not know the exact values of the channels gains. Rather,
we consider that the receiver has some partial knowledge characterizing the
channel, such as its distribution. The transmitter’s task then involves deciding
how to transmit its information across which subchannels. We have posed this
problem as an optimization problem, where the environment acts as a secondary
player in a zero-sum game whose objective is to hamper successful communica-
tion by the user. In our formulation, we have chosen to use signal-to-interference
ratio (SINR) as the payoff function, due to the tractability it provides, but note
that at low SINR our objective function approximates the secrecy capacity. We
have studied a variety of scenarios where different assumptions are placed on
the amount of knowledge that the transmitter, Alice, has in the eavesdropping
game. In the case where Alice does not know the gains for the various subchan-
nels, then the best strategy is to distribute energy equally across a subset of
selected channels. On the other hand, if Alice does not know the eavesdropper’s
channel gains, then Alice should also employ a strategy involving uniformly dis-
tributing energy across a subset of channels. However, if the user acquires extra
knowledge about environment, e.g. the eavesdropper’s channel gains, then we
show how Alice may better tune her power allocation among the channels.

References

1. Li, X., Chen, M., Ratazzi, E.P.: Space-time transmissions for wireless secret-key
agreement with information-theoretic secrecy. In: Proc. IEEE SPAWC 2005, June
2005, pp. 811-815 (2005)

2. Koorapaty, H., Hassan, A.A., Chennakeshu, S.: Secure Information Transmission
for Mobile Radio. IEEE Trans. Wireless Commun., 52-55 (July 2003)

3. Hero, A.E.: Secure Space-Time Communication. IEEE Trans. Info. Theory, 3235—
3249 (December 2003)

158

4.

5.

10.

11.
12.
13.

14.

15.

16.

17.

A

A. Garnaev and W. Trappe

Li, Z., Yates, R., Trappe, W.: Secrecy Capacity of Independent Parallel Channels.
In: Allerton Conference on Communication, Control, and Computing (2006)

Li, Z., Xu, W., Miller, R., Trappe, W.: Securing wireless systems via lower layer
enforcements. In: WiSe 2006: Proceedings of the 5th ACM workshop on Wireless
security, pp. 33-42 (2006)

. Liang, Y., Poor, H.V., Shamai, S.: Secure Communication over Fading Channels.

IEEE Transactions on Information Theory, Special issue on Information Theoretic
Security 54(6), 2470-2492 (2008)

. Gopala, P., Lai, L., El Gamal, H.: On the secrecy capacity of fading channels. IEEE

Trans. Inform. Theory (accepted for publication)

. Wyner, A.: The wire-tap channel. Bell. Syst. Tech. J. 54(8), 1355-1387 (1975)
. Csiszar, 1., Koérner, J.: Broadcast channels with confidental messages. IEEE Trans.

on Inf. Theory 24(3), 339-348 (1978)

Maurer, U.M., Wolf, S.: Information-theoretic key agreement: From weak to strong
secrecy for free. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
351-368. Springer, Heidelberg (2000)

Bennett, C., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy ampli-
fication. IEEE Trans. on Information Theory 41, 1915-1923 (1995)

Van Dijk, M.: On a special class of broadcast channels with confidential messages.
IEEE Trans. on Information Theory 43(2), 712-714 (1997)

Leung-Yan-Cheong, S.K., Hellman, M.: The gaussian wire-tap channel. IEEE
Transactions on Information Theory 24(4), 451-456 (1978)

Altman, E., Avrachenkov, K., Garnaev, A.: A jamming game in wireless networks
with transmission cost. In: Chahed, T., Tuffin, B. (eds.) NET-COOP 2007. LNCS,
vol. 4465, pp. 1-12. Springer, Heidelberg (2007)

Altman, E., Avrachenkov, K., Garnaev, A.: Transmission power control game with
SINR as objective function. In: Altman, E., Chaintreau, A. (eds.) NET-COOP
2008. LNCS, vol. 5425, pp. 112-120. Springer, Heidelberg (2009)

Altman, E., Kamble, V., Kameda, H.: A Braess Type Paradox in Power Control
over Interference Channels. In: Physicomnet workshop, Berlin, April 4 (2008)

Ji, H., Huang, C.-Y.: Non-cooperative uplink power control in cellular radio sys-
tems. Wireless Networks 4, 233-240 (1998)

Appendix

Proof of Theorem[3 Since the payoff is linear in P, G and H, the strategies P*,
(G*,H*) for Alice and nature are in equilibrium (so, these strategies are the best
response to one another) if and only if there are w, vg and vy such that

>0 for& —Gr—H =
i* — or 5’6 (3 K3 w7 (53)

=0 forg -G —H <w,
>0 for P" =

G;k = or I Vg, (54)
=0 for P’ <vgq,
> for P* =

HZ* = 0 or I~ vy, (55)
=0 for P’ <vy.

An Eavesdropping Game with SINR as an Objective Function 159

(a) Let P* be given by ([23). Then, by (54) and (B5), vg = vy = P/n and
any strategy (G, H) is the best response one for (23)), in particular, the strategy
given by ([29). Let H* and G* be given by (Z9). Then, by) they present a

strategy and £) — G — H} = w for i € [1,n] where w = (Z?:I ¢ —H— G) /n.
Then, by (B3]), any strategy for Alice is the best response strategy to nature’s
strategy given by (29). This proves (a).

(b) Let P* be given by [28)). Then, by (54) and (BH), vg = vy = P/k. and
any strategy for nature (G, H) satisfying the following conditions is the best
response for (28]).

H;=0and G; =0 for i € [k. + 1,n]. (56)

By @), (G*, H*) given by 29) and (B0) is a strategy which satisfies to (B4]). So,
(G*, H*) is the best response one for ([Z8). Let (G*, H*) be given by ([Zd) and
@0). Then

@ g ek
<w, i€lki+1,n],

where w = (Z?*:l &) —H - C;’) /k.. So, 28) is the best response to (29) and
B0 by B3).

Proof of Theorem[@. Since the payoff is linear in P, G and H, the strategies P*,
(G*,H*) for Alice and nature is in equilibrium (so, these strategies are the best
response each other) if and only if there are w, vg and vy such that

L] >0 for & +G;—H =w, (57)
“1=0 for&+ G- Hf <w,
>0 for PF=
G;k = or I vqg, (58)
=0 for P* > vg,
>0 for Pf=
= 0 for P’ = vy, (59)
=0 for P’ <vy.

(a) Let P* be given by (23). Then, by (G8) and (), vg = vy = P/n and any
strategy (G, H) is the best response one for ([23)), in particular, the strategy given
by B8) and 39). Let H* be given by([9)). It is clear that for this H* () holds

and, by B9), () and 1),

*_]' 7 - 0 0 I 5 ;
H; = H—;(gj—gi) > (H—=¢n) = 0forjelln].

So, () also holds and H* is the eavesdropper’s channel component arising
in nature’s strategy to harm the secrecy of communication between Alice and

160 A. Garnaev and W. Trappe

Bob. It is clear that G* given by ([B8) satisfies (8) and (@) and for G* and
H* holds the following relation: &) + Gf — Hf = w for i € [1,n] where w =
(Z;Lzl 5? - H+ G) /n. Then, by (B7), any strategy for Alice is the best response
strategy to nature’s strategy given by ([B8) and ([39). This proves (a).

(b) Let P* be given by ([28). Then, by (58) and J), vg = 0 and vy = P/k.
and any nature’s strategy (G, H) satisfying the following conditions is the best
response for (28]).

Hi:OforiE [k*+1,n],

60
G;=0fori e [1, k. (60)

Let H* be given by ([@3J). It is clear that for this H* (] holds. Also, by 22),
(@) and @)

k
1 - 1, -
H; = b N > L (H — i) >0 for j € [1,k]. (61)
]:1 *
So, for H*, ([I2)) also holds and it is the eavesdropper’s channel components for
a strategy employed by nature. By ([9) and (1),

. k.
(&~ — &) -

j; J ; (62)
=k, 11— H >0for j € [k +1,n].

Thus, for G* given by #2), (@) holds. Then, by [J), it is the main channels
component of a strategy by nature. It is clear that H* and G* satisfy (G0).
Therefore, they present the best response to (28]).

Let G* and H* be given by {3) and [{@2)). Then

=) 1 %5
SRNC RS DR
<w, i€lki+1,n],

where w = (Z?;l &9 — H) /k«. So, (2])) is the best response to @3] and ([@2).
(¢c) Let P* be given by (23)), then any strategy (G, H) is the best response for

[23)), in particular to the strategy given by (@3] and (@4).
Let G* and H* be given by [A3]) and {@d)). Then, by 22), (@), 1) and (&I,

H* are the eavesdropper channel components of a strategy by nature. Also, as
A > 0, then, by ([62), G* corresponds to the main channel components for a
strategy employed by nature. Then & + Gf — Hf = w for i € [1,n] where

k
A 1 ~ 0 =
= +k* (;gZ—H>

An Eavesdropping Game with SINR as an Objective Function 161

Thus, any Alice strategy is the best response for (H*, G*), such as the strategy
given by ([23), and wP is the value of the game. Then, since

k
A 1 (&K, -
§ O _
n+k*<i_1£z >

ks n
(n=k)D &~k Y &~ Hn—k)
_ 1 a_ j=1 j=k.+1

n k.

1 (& _ 1 (& L
(o) (Seven)

the value of the game is given by (B). This completes the proof of Theorem

Proof of Theorem [8. Since the payoff is linear in P and concave on N, the
strategies P*, N* of Alice and nature is in equilibrium (so, these strategies are
the best response to each other) if and only if there are w, v such that

>0 for 1 L — W =uw,
=0 forN0+N*_hi<w’
P =v for N >0,
0 . . (64)
(N} +Nj)? |<v for Nf =0.

Thus, by (64), if P} = 0 then N} = 0. It is reasonable to look for the optimal
nature strategy in a subclass of strategies which hamper only the channels em-
ployed by Alice to transmit the signal, so for the strategies that have P’ > 0
then N/ > 0. Then, by (G3)), the optimal strategy N* is of the form

. 1
Ny =) = [0y, - N (65)
i +

where w = w, is the unique root in [~ min; h?, 00) of the following water filling
equation

Hy(w) ::ZZZ {h?iw —N?L =N. (66)

By (64) and (63) we have that the Alice’s optimal strategy is of the form
if Nz (w*) > O,

v
Pr=Pv) ={ (] +w.)? (67)
0 otherwise

162 A. Garnaev and W. Trappe

and v = v, can be found as the unique root of Hp(v) := > | P;(v) = P. Thus,
P
Zj:Nj(w*)>O(1/(h(; +wi)?)

It is clear that the strategies defined by (BH) and (€7) satisfies the conditions
©3) and (©4]). That is why they are the optimal ones. This completes the proof
of Theorem [B

Uy =

Ensemble: Community-Based Anomaly Detection for
Popular Applications

Feng Qian, Zhiyun Qian, Z. Morley Mao, and Atul Prakash

University of Michigan, Ann Arbor MI 48109, USA
{fengqian, zhiyung, zmao, aprakash}@umich.edu

Abstract. A major challenge in securing end-user systems is the risk of popu-
lar applications being hijacked at run-time. Traditional measures do not prevent
such threats because the code itself is unmodified and local anomaly detectors are
difficult to tune for correct thresholds due to insufficient training data.

Given that the target of attackers are often popular applications for communi-
cation and social networking, we propose Ensemble, a novel, automated approach
based on a trusted community of users contributing system-call level local behav-
ioral profiles of their applications to a global profile merging engine. The trust can
be assumed in cases such as enterprise environments and can be further policed
by reputation systems, e.g., by exploiting trust relationships inherently associated
with social networks. The generated global profile can be used by all community
users for local anomaly detection or prevention. Evaluation results based on a mal-
ware pool of 57 exploits demonstrate that Ensemble is an effective defense tech-
nique for communities of about 300 or more users as in enterprise environments.

1 Introduction

End-user systems can be difficult to secure for a variety of reasons. They are typically
unmanaged: users download software, browser bugs, efc. In this paper, we focus on de-
fending against a class of attacks in which popular applications are hijacked at run-time.
In the past, this has led to wide-spread attacks such as the Skype worm spread us-
ing Skype and buffer overflows in Outlook email clients to execute arbitrary code [[7].
Traditional measures, such as anti-virus scanners [3], do not prevent such threats be-
cause the application code itself is unmodified. Prior work indicates that system-call
level profiling may help detect such attacks early but a significant barrier is
a lack of sufficient training data to ensure low false positive rates.

In this paper, we present Ensemble, a novel unsupervised anomaly detection ap-
proach based on the idea of a trusted community of users contributing system-call level
local profiles of an application to a common merging engine. The merging engine gen-
erates a global profile that captures the possible space of normal run-time behaviors of
an application. The global profile can be used to detect or prevent anomalies in appli-
cation behavior at each end-host in real time. The promise of this approach is that it
helps overcome the problem of a lack of sufficient training data at each host and can
be largely automated. The challenges are making such a system efficient, overcoming
the differences in profiles due to factors such as variations in installation directories or
hardware, and identifying the appropriate information to collect in profiles.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 163 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

164 F. Qian et al.

The underlying hypothesis of Ensemble is that, as the number of local profiles in-
creases, the aggregate global profile tends to converge, thus revealing the normal be-
havior of the target application. Most applications in our experiments were found to
satisfy this property, though we also identified types of applications that would be ex-
ceptions. This paper makes the following contributions.

Handling diversity in execution environments. Various factors impact community-
based profiling, e.g., the same application at different hosts may be installed in different
directories, run with different amount of memory, and use different number of CPUs.
All these can cause variations in the system call traces with their parameters. We de-
termined the types of data to use for generating behavioral profiles to handle these
variations, while keeping profiles compact and representative of the application.

Analysis of the relationship between the community size and false positive rates.
We first applied community-based anomaly detection to a community of 12 users us-
ing a normal, clean instant messaging application. The detailed system-call level data
were sampled for 50 minutes during 5 hours with each local profile generated based on
one minute of sampled data. We found that high false positive rates to be of significant
concern, just as with single-host profiling using system calls. A testbed of virtual ma-
chines was subsequently used to study the impact of scaling up the system to a larger
user community. We found that the techniques, in general, tend to become much more
effective with larger community size. Significant reduction in false positive rates was
observed after reaching approximately 300 users.

Techniques to reduce data transfer by sharing summary data generated by pro-
filing applications. We show that while each host collects detailed system-call level
data for local analysis, it only needs to send a modest amount of local profile
data per application (approximately, 4-5 KB/sec) to a common server to create commu-
nity profiles.

A general interface. Our system provides a useful abstraction of a general interface
for any target application to be protected. Multiple applications can subscribe to the
Ensemble service.

Ensemble is currently implemented in user space in Windows. We used Detour li-
brary [27] by Microsoft Research to intercept system calls for target applications. For
improved efficiency, as discussed in §4.2] Ensemble can be implemented as a service in
the OS kernel. The rest of the paper is organized as follows: §2] overviews the related
work; §3describes the overall model of Ensemble; §4] details our implementation; and
43 evaluates the system experimentally. Finally, §6 discusses limitations before con-
cluding in §71

2 Related Work

Our work improves on existing work in the area of anomaly detection by exploring
the applicability of community-based profiling to generate detailed run-time behavior

Ensemble: Community-Based Anomaly Detection for Popular Applications 165

profiles of applications at the system call level. Below we highlight some of the related
approaches in malware detection and containment.

Anomaly Detection. One of the first studies on anomaly detection for applications was
done by Forrest et al. [23126/36]]. They executed an application multiple times with dif-
ferent inputs to collect system call sequences and then used those to form the baseline
behavior of the program. Any significant deviation from the baseline was considered as
an anomaly. Many of the follow-up studies incorporate machine
learning techniques such as hidden-Markov model and neural networks. Later studies
examined the inclusion of system call arguments and call stack information [22].
Generating a common model from different runs is a non-trivial problem. In [[16], Bal-
lardie and Crowcroft explore several representative models, including frequency-based
models, a data-mining approach, and a finite state machine approach.

All these above approaches can suffer from high false positive rate. The data col-
lection process is typically manual or may take a long time to cover most normal be-
havior. If the application’s normal behaviors are not adequately captured, unobserved
normal behavior is likely misclassified as abnormal. While better machine learning al-
gorithms [23133]] can help, one fundamental problem in making these schemes practical
is the difficulty in getting sufficient training data to capture comprehensive application
behavior.

Our work builds on the approaches in the above systems. The primary contribution
is to show that if a large user community sharing their training data with an IDS at a
fine-grained level, behavioral profiles can be generated that are much more complete
and accurate than local profiles. One of the challenges we examined in extending the
techniques to a community environment is that not just the inputs, but the operating
environment for the software can be different. In our experiments, we allowed appli-
cations to be installed in random directories on various systems with diverse hardware
configuration and varying workload imposed by other applications. We extend existing
algorithms for combining profiles to handle likely variations.

Community-based Systems. The concept of “application community” [2] has been
proposed to collaboratively diagnose and respond to attacks by generating appropriate
configuration patches and filters. The goal is to generate a community-specific situa-
tion awareness gauge to predict imminent attacks. But it does not focus on anomaly
detection as in our work to help prevent attacks.

A similar concept of “collaborative learning for security” [19] is applied to auto-
matically generate a patch to the problematic software without affecting application
functionality. However, the detectors used are static detectors without training, and the
ways in which the community is utilized are limited to gathering detailed execution con-
straints in the binary, distributing the generated patch, and letting the user community
evaluate them.

Companies, such as Symantec [12]], Microsoft, and Google also leverage the notion
of a community to help identify malware programs or spam emails [4] from user based
feedback. Vigilante and Sweeper try to contain Internet worms by automat-
ically detecting exploits. Both enable a user community to share their antibodies to
prevent and stop future attacks from Internet worms.

166 F. Qian et al.

In other application contexts, the concept of community has also been explored. Peer-
Pressure [33] utilizes it to automatically detect and troubleshoot misconfigurations by
assuming that most users in the community have the correct configuration. The Gamma
System was proposed to split the monitoring task among community users, en-
abling minimally intrusive program analysis and software evolution. Similarly, Cooper-
ative Bug Isolation leverages the community to do “statistical debugging” based
on the feedback data automatically generated by community users.

In contrast to the above body of work, our work examines the effectiveness of apply-
ing the notion of community at a much finer-grained level. Instead of just combining
binary feedback or signatures of worms, we integrate run-time behavioral profiles, con-
sisting of system calls and associated parameters, of applications across a community of
heterogeneous users. This allows us to extend anomaly detection to additional classes
of software applications.

Signature based anti-virus (AV) software. In this approach, a user typically uses a
signature database of known attacks, resulting in the advantage of negligible false posi-
tives. Unfortunately, it is difficult to maintain signatures covering new attacks. A study
by Oberheide et al. [28]] found that commercial AV software has a detection rate ranging
from only 54.9% to 86.6% for attacks that occurred in the previous year. More impor-
tantly, the AV software had significantly poorer detection rates for more recent malware
samples. This implies that anomaly based detection is still indispensable.

Behavior-based intrusion detection systems (IDS). These systems rely on pre-defined
rules to detect anomalies in the run-time system behavior. They can better detect zero-
day attacks that attempt to evade code-based signatures. But, getting the rules right can
be difficult and therefore the rules tend to be relatively coarse-grained. For example, by
default, McAfee VirusScan Enterprise 8.5i [3] Access Protection rule blocks outbound
port 25 to filter malicious email programs. However, to get normal email applications to
work, 42 popular email clients, such as out 1ook . exe and thunderbird. exe [11],
are exempt. Note these applications are often the ones exploited.

3 Methodology

In this section, first we present high-level methodologies used in Ensemble, then explain
them in detail in 3.1]to §3.3

The goal of Ensemble is to detect application misbehavior, particularly caused by
zero-day attacks. As the start point of our approach, we generate a local profile for each
application instance. A profile is a summary of target application’s inter-process com-
munications and its behavior that can result in persistent changes (changes that survive
across reboots) to the file system, the registry, network, and other system settings. They
are abstracted from system call traces. Statistically, it can be seen as representative data
points in the sample space containing all possible state changing behavior of the target
application.

We envision that a large number of community users feed local profiles of an ap-
plication to a central server, which periodically aggregates them into a global profile,
depicting the application’s normal behavior as a baseline. The global profile serves as a
classifier that identifies anomalies using collected local profiles as training data.

Ensemble: Community-Based Anomaly Detection for Popular Applications 167

To detect and prevent intrusion, we monitor the application behavior and compared it
with the global profile continuously. An alarm is triggered when the application is about
to perform an operation that does not match the global profile. The user can be alerted
or the system can be configured to directly block the operation. Next we investigate
several important challenges of our methodology.

3.1 Profile Generation

Local profiles. A local profile is generated from raw system call traces [26]. In Win-
dows, system calls are undocumented, thus we use Windows API calls in our prototype.
For simplicity we ignore a set of APIs that do not modify host file system or network
state such as graphics and user interface API that are unlikely abused or even if abused
will likely be visible through other APIs we monitor. Also, we only focus on operations
executed by the target application given the profile is for a particular application, with
the exception of the process dependency, as discussed below.

Global profiles. A global profile is distilled from multiple local profiles. We develop a
taxonomy for APIs in terms of functionality (process dependency, file access, network
access, efc.). For each category, corresponding records in local profiles are aggregated
by key attributes (Table[I)). An example of aggregating File Access category is shown
in Table

Table 1. Key attributes for primary categories in global profiles

Category Key Attributes

Process Src Process Name/Image Hash,
Dependency Dst Process Name/Image Hash,

Type € {Fork, Hook, File...}
File Access Filename, Type € {Read, Write}
Registry Access Registry key, Type € {Read, Write}

Network Remote IP, Remote Port,

Connection Protocol € {TCP, UDP, other}

Table 2. Example: aggregate records in local profile (a) into global profile (b)

(a) Local profiles (b) Global profiles
Profile ID Filename Bytes accessed Type Filename Type Count by profiles
1 a.dat 10 read adat read 1
1 a.dat 15 read b.dat read 2
1 b.dat 10 read
2 b.dat 10 read

Among all the categories, the process dependency depicts the interaction among
processes of the target application and other processes. A local profile contains two
types of dependencies: indirect and direct dependency. Indirect dependency, such as a
file dependency (Process A writes file F, which is then read by Process B), requires an

168 F. Qian et al.

object (e.g., a file or an IP address) as an intermediary. It is synthesized by correlating
multiple API calls. Direct dependency, such as a fork dependency, takes place without
an intermediary. It can be inferred from a single API call.

3.2 The Environment Diversity Challenge

For categories other than process dependency, the simplified methodology illustrated in
Table 2 has limitations. For example, for a text processor, different users edit different
files, thus the file access category is not aggregatable if naively using the filename as the
key attribute. Similarly, a P2P client may talk to random IP addresses, leading the aggre-
gation in the global profile to be a set of IP addresses each with very few occurrences.
We apply two methods to address this challenge.

First, we use predefined rules to normalize the path and file names. For example,
c:\Documents and Settings\Alice\a.dat is normalized to USER-DOC\
a.dat. This also helps protect the privacy of community users.

Second, our main solution is Stack Signature, which describes the stack history of the
calling thread for each API call. The key idea is that the “random” events of the same
functionality of a program such as sending a message or making a VoIP call in Skype,
should be associated with a fixed set of execution paths that can be represented by call
stacks. Based on this assumption, we introduce Stack Signature, a compact version of
call stack. A Stack Signature is calculated by iterating all stack frames of the current
thread and XORing their return addresses. In the case of recursive calls, return addresses
occurring multiple times are counted once.

In a global profile, the relationship between stack signatures and objects (e.g., file-
names and IP addresses) can be characterized by a weighted bipartite graph, whose
vertices are divided into two disjoint sets X and Y, where X is the set of stack sig-
natures and Y is the set of objects. There is an edge e : + — y € E where x € X
and y € Y, if and only if an event accessing object y has stack signature x in at least
one local profile. Each element in X, Y and E has a weight, indicating its occurrence
frequency in terms of the number of local profiles. Except for the process dependency
which is fairly stable, we introduce stack signatures and use bipartite graphs as the data
abstraction for all other categories.

We observe many such cases in our experiments. For example, at stack signature
0x61AE46F8, QQ — an instant messaging application may receive data from at
least 64 different servers such as 121.14.%.%,219.133.%.* 58.61.%.*, via port 8000. All
servers are found at Guangdong, China, where the headquarter of QQ is located. The
size of received data is always a multiple of 10240 bytes.

3.3 Anomaly Detection

As described at the beginning of this section, Ensemble clients periodically pull the
global profile from the server. The anomaly detection and prevention are performed
continuously. Before each operation monitored by Ensemble is executed, the API call
is intercepted and compared with the global profile using the following comparison
algorithm.

Ensemble: Community-Based Anomaly Detection for Popular Applications 169

1. Threshold-based process dependency anomaly detection. If a process dependency
D is detected (e.g., a fork or file dependency), we locate its frequency f(D) =
#of locﬁtgﬁzﬁielspiggiini“g P in the global profile, if f (D) < thpp, where thpp is a thresh-
old, then D 1s regarded as abnormal.

2. Stack signature analysis. If the operation to be executed by the target application
falls into other categories in Table[I] then its stack signature x is calculated, its object y
is identified, and e : — y is matched against the bipartite graph Bg = {X¢, Yo} in
the global profile. Let the frequency of e and x in B¢ be f(e) and f(x), respectively.
(ie, f(e) = * lo;a(l)fp lrgcﬁ;f ;fooa?;"ing “). Let the degree of = in Bg be d(z). We also in-
troduce thresholds the, th, and deg,. We determine whether e is an abnormal action
by several tests searching for the predictable relation of the objects accessed by stack

signatures.

Test 1. Does a fixed stack signature always access a fixed object? (e.g., The program
reads a constant configuration file) Formally, if f(e) > the, then e passes the test and
no further tests are needed.

Test 2. Does a fixed stack signature always access different objects? (e.g., A file editor
may open different files) Formally, if f(x) > th, and d(z) > deg,, then e passes
the test and no further tests are needed. This handles the “the Environment Diversity
Challenge.”

Some challenges arise, as we observe that in multiple executions of the same ap-
plication, a single object may be accessed by different stack signatures forming one
or more clusters. Figure [Tlis an example of reading file ServUCert .key in 1,305
executions by Serv-U 5.0.0.0 (a commercial FTP server). The stack signatures form a
cluster ranging from 0x1019A500 to 0x1019A5FF. We conjecture two reasons: (1)
The locality of object access. The same object is often accessed at close-by instruction
addresses. For example, the code in Figure P]is common in C programs. The consecu-
tive calls of £read satisfy the locality principle. (2) The accumulation of varieties. A

Appeared times

ox1 099A500 0x1019A5FF

Stack signatures

Fig. 1. Frequency of accessing ServUCert . key from different stack signatures in 1305 local
profiles

FILE * ifs = fopen(“data.dat”, “r");

fread(¶l, sizeof(paral), 1, ifs);

if (paral == 1) fread(¶2, sizeof(para2), 1, ifs);
/* read other parameters */

felose (ofs) ;

Fig. 2. Sample code of reading a file

170 F. Qian et al.

signature is calculated by XORing return addresses of n stack frames with each frame
having a variety of k;, the total variety can be as large as Hz;l k;

Motivated by the above observation, we add two additional tests to reduce false
positives.

Test 3. Does a cluster of stack signatures access a fixed object? We define a cluster
by a window centering at z: Xui = {2z € X¢||z — 2| < winSize}. Formally, if
> ex,,, f(€ iz —y)>the, thene: x — y passes this test.

Test 4. Does a cluster of stack signatures access different objects? Formally, if
dexy,, f(2) >thyand -y d(z) > deg,, then e passes this test. It is a further
generalization of Test 3.

Test 3 and 4 may introduce false negatives; however, they are expedient alternatives
in the situation where the number of samples is limited. Ideally, when the global profile
contains a large enough sample space, Test 3 and 4 can be replaced by Test 1 and
2, respectively, since the range of stack signatures is finite. Figure [3 illustrates four
patterns in the global profile, corresponding to the above four tests.

i l@é%@\\@é?é@l
o DI0IOIO 009@

Test 1 Test 2 Test 3 Test 4

Fig. 3. Four API invocation patterns

4 Implementation

The architecture of our Ensemble prototype is illustrated in Figure [It is designed
to perform online anomaly detection using continuously updated global profiles and
generated local profiles. Existing work is mostly evaluated in Linux environments while
our system is implemented on Microsoft Windows XP, which is a more common attack
target. Our prototype is implemented using about 10,000 lines of C++ code.

In our design, we initially tried to implement Ensemble by using system call se-
quences (N-gram previously proposed [23126/36]]) as the representation of local profiles,
due to its claimed effectiveness and simplicity. However, we found that N-gram has sur-
prisingly low convergence speed for Windows API sequences in terms of obtaining the
model of application’s normal behaviors, likely due to a much larger sample space than
in Linux (the number of Windows APIs is 6 times the number of Linux syscalls). We
estimate two reasons for such big discrepancy: first, there are distinct difference be-
tween Unix/Linux system calls and Windows APIs; second, modern applications are
becoming more and more complicated. System calls may be a too find-grained charac-
terization of program behavior. Note that a lot of researchers apply N-gram algorithm
on virus or malwares, whose binary sizes are much less than legitimate applications.
Therefore, instead we resort to the simpler frequency-based model as described in §3.1]
that has a faster convergence behavior.

Ensemble: Community-Based Anomaly Detection for Popular Applications 171

Ensemble Client
»f Ano gly Detection Results
Detection it

API Call Module
Traces
Sampling Ensemble

Maodule Server
[
l Local Profile
Global
Profile Comm. Glabal Profile
Maodule
Local Profile

Fig. 4. The Ensemble Architecture

4.1 Generating Profiles and Anomaly Detection

We used the Defour Library to monitor and log 106 APIs calls related to file system
(26), registry (8), file mapping (6), messages (8), thread (4), process (8), network (13),
pipe (6), hook (3), clipboard (3), system time (6), DNS (2), handle management (2) and
user accounts management (11), most of which are Windows specific. To the best of
our knowledge, they cover most APIs that can cause inter-process communications, or
result in persistent changes to the file system, the registry, the network, and other system
settings. Note that it is fairly easy to include new APIs to the framework. We generate
stack signatures using the StackWalk64 function in Windows Debugging Library.

Given the raw API traces and their stack signatures, the local profiles are gener-
ated as described in §3.1] (for process dependency) and §3.2] (for other categories). We
implemented seven categories for profiles. (1) process dependency, (2) file access, (3)
directory access, (4) registry access, (5) network connection, (6) DNS, and (7) IP prefix
access. For (1), we handle 4 types of direct process dependencies: send message, set
hook, create/terminate/suspend process (thread) and write/read/alloc/dealloc process
memory, and 8 types of indirect dependencies: files, registry, file mapping, network,
named pipes, anonymous pipes, system time and clipboard. The transformation from
API traces to other categories (e.g., file access, network access) is trivially done by
translating API parameters.

The global profile is generated by grouping various local profiles. Except for the
process dependency, which is represented by a table like Table PIb), other categories
are represented using bipartite graphs (stack signature — object names).

Our anomaly detection algorithm described in §3.3]is very efficient. For process de-
pendency, the dependency inference and frequency look up is O(1) in run time using
hash tables. For other categories using bipartite graphs, the computational complexity
for Tests 1 and 2 is O(1); while Test 3 and 4 are also O(1) given that the window size
is a small constant.

4.2 Operational Model

Finally, we present an overview of Ensemble’s operational model. At each client, En-
semble is running as a system service and is transparent to the target application.
CAPTCHA is used when subscribing or unsubscribing Ensemble services to prevent
tampering from bots.

172 F. Qian et al.

When the application is running, the Ensemble sampling module periodically logs its
API calls with stack signaturesﬂ and generates the local profile (e.g., every 3 hours, one
local profile is generated from 1-min sampling of API call traces). The Ensemble com-
munication module periodically submits the local profile to the server, and also fetches
the global profile from it. The Ensemble Anomaly Detection Module keeps monitoring
target application’s API calls and matching them with the global profile. If an alarm is
triggered, the requested operation is denied, or the decision is left to the user.

Initially our anomaly detection is sampled: a local profile is generated periodically
and compared with the global profile. Then we found that even if the anomaly detection
is performed continuously, the extra overhead is acceptable (less than 2%), given that
in most cases, the applications’ API calls are not invoked in a “bursty” manner.

The Ensemble server can be maintained either on a large scale (e.g., by the applica-
tion vendor), or on a small scale (e.g., within an enterprise network). Its tasks include
collecting local profiles, generating the global profile and other management function-
alities. Ideally, each version of the application should have its own global profile. De-
pending on the specific application, one global profile may also characterize several
versions with minor differences.

4.3 Limitations of the Prototype

Our current prototype has the following limitations which are not fundamental to our
design. At the client side, the sampling module is implemented at the user level, using
a third-party library. For future work we plan to move the entire system into Windows
kernel. At the server side, in order to prevent pollution of global profiles, we plan to
investigate the use of reputation systems that establish trust among community users.
Currently, we envision our system to be mainly deployed in enterprise environments
where trust can be assumed.

The latest Windows Vista adopts Address Space Load Randomization (ASLR) tech-
nique [[1], which hampers the functionality of Stack Signatures. We can address this
problem by using the relative offset of the return address from the module’s start ad-
dress, together with the module signature. We plan to explore this as future work.

5 Evaluation and Experiments

In this section, we systematically evaluate Ensemble. First we describe a small-scale
deployment for a community of 12 users (§5.1). Based on the negative results due to
the limited size of the community, we introduce our testbed and target applications used
for experiments (§3.2)), then analyze the generated local profiles (§5.3)) and the result-
ing global profiles (§5.4). Next, we measure false positives (§5.3) and estimate false
negatives using a recent malware collection (§5.6). Finally we present the performance
evaluation of our system (§5.7)).

5.1 Small Scale Real Deployment

We deployed Ensemble among 12 real users, using Windows Live Messenger (MSN)
as the target application. All users were using Win XP SP2 but with different software

! To capture process dependency, some APIs called by other processes also need to be logged.

Ensemble: Community-Based Anomaly Detection for Popular Applications 173

and hardware configurations. Before the experiment, we manually upgraded their MSN
to the same version (2008 Build 8.5.1302.1018) and ensured the systems are virus-free.
Users were not familiar with technical details of Ensemble, and were told to use MSN
as usual. For each user, we collected 50 API call traces, each lasting 1 minute, during a
5-hour period. We used this dataset to evaluate false positives.

We used 5-fold cross validation on 600 traces to evaluate false positives. For each
trace in the test group, if any API call triggered a false alarm, then the local profile
was counted as one false positive. For the parameters in §3.3 we empirically set th, =
1%, thy = 1%, deg, = 10, winSize = 4K B (We tried different parameters such that
the < 2%, th, < 2%,deg, < 20, and obtained similar results). We found that the
false positive rates were too high to be accepted (greater than 30% for file access and
registry access). The reason is that 12 users are not sufficient to form a community to
cover diverse application behavior.

5.2 Experimental Infrastructure

To test the impact of a larger community, we created an automated testbed to simulate a
community environment. The idea is simple: to execute the target application multiple
times on the testbed. In each execution, a local profile is created and fed to the global
profile generator, as if it was submitted by a real community user. Then we use the
global profile to test against normal and abnormal behaviors and evaluate false positives
and negatives. We have two design goals for the testbed.

— Diverse User Behaviors. Random user actions are injected during each trial. The
distribution of the randomness should roughly conform to that of a real community.

— Diverse System Environment. During each trial, the system environment should
also vary to simulate hardware and software variations in a real community. For
example, a VoIP client may adjust its voice encoding strategy according to available
network bandwidth, leading to different local profiles.

We manually created a Finite State Machine (FSM) for each target application to de-
scribe most of its main functionalities from an end user’s perspective. FSM can be
generated in a more automated fashion by combining user traces and adding some per-
turbation to include additional usage behavior. Despite the manual effort, FSM based
representation for understanding application usage, even approximate, can aid in gener-
ating more diverse usage scenarios for a given application. FigureBlis a simplified FSM
for MSN. In each automated execution, the testbed partially iterates the FSM based on a
Markov chain model, which characterizes the popularity of application’s different func-
tionalities. Each state transition S, — S, in the FSM represents a user action. A weight
is assigned to e indicating the probability that the next state is .S, given the current state
is S,. For example, in Figure [3] “Login” is the initial state where the user starts the
application. The probability that the user successfully logs in (;_ 3, = 77%) is much
higher than the probability that the user enters an invalid ID or password (8%).

The testbed not only randomly chooses the action, but also executes some actions
with randomness. For instance, it is able to operate an instant messenger by selecting a
random user and chatting with him/her via random text messages, emotion icons, hand-
writings or Flash winks. In another example, the “make phone call” action in Skype is
carried out by dialing a number from 3000 toll-free numbers we collected.

174 F. Qian et al.

Wrong password 1

Fig.5. A simplified finite state machine of MSN. Labels on edges indicate state transition
probability.

We admit that our approach contains subjective elements and thus may not perfectly
simulate a community environment. However, a community itself is a set of subjective
users and has a tendency to change from time to time. Also, we will show in §3.3] the
heavy-tailed distribution of simulated users’ behaviors, which are usually the case in a
real community.

To tackle the system environment randomness, the testbed automatically changes
the hardware/software configurations for each trial. All experiments were conducted
on virtual machines (VMware 6.0.2) for ease of management. The varied configuration
includes memory, number of processors, installed software, existing running processes,
system workload, firewall settings, system time, network bandwidth, DNS server, efc.

The testbed includes a FSM script parser, an action executor that maintains the state
synchronization and sends mouse/keyboard input to the target application, a configura-
tion manipulator that changes the system environment and a communicator that com-
municates with the Ensemble kernel. The testbed is built using about 3,000 lines of C++
code.

We chose four applications running on Microsoft Windows XP SP2 as our ini-
tial target applications: Skype 3.5.0.239; Windows Live Messenger (MSN) 2008 Build
8.5.1302.1018; Tecnet QQ [8] (2007 Beta 4, 7.0.374.204), an ICQ client with typically
more than 30 million daily online users in China; Serv-U [9]] (5.0.0.0), a commercial
FTP server. These applications were selected due to their popularity and past history of
attacks targeting them.

5.3 Local Profiles

Table Bl shows the number of local profiles, sampling times and API log sizes of local
profiles of each target application. The sampling time was set to conform to a Gaussian

Ensemble: Community-Based Anomaly Detection for Popular Applications 175

Table 3. Statistics of local profiles

Target #of Sample Sample APITrace LP
App local Time Time Size Size
profiles (Mean) (Std Dev) (Mean) (Mean)
Skype 550 60secs Ssecs 3.40MB 0.20MB
MSN 1298 75secs Ssecs 1.17MB 0.09MB
QQ 1118 60secs 5secs 1.18MB 0.09MB
Serv-U 1305 45secs Ssecs 0.23MB 0.03MB

Table 4. Statistics of global profiles

Target Process File File Dir Dir Reg Reg Connections IP DNS

App Dependency Read Write Read Write Read Write Prefixes Query
Skype 8 209 237 178 208 4,587 328 135,844 115864 0O
MSN 10 2,884 244 795 90 54,506 2,749 6,417 554 0

QQ 4 6,549 8,029 6,541 8,021 59,491 229 11,867 9823 10,691
Serv-U 1 2,609 835 305 7 146 0 23,295 2 1

distribution. The sampling process started either at or after the application starts, and
stopped either at or before the application terminates. The entire collection of local
profiles lasted for one week.

As mentioned, we created randomness during each trial to simulate different user
behavior in the community. Thus each “user” may explore a different subset of the
application functionalities. Figure [@] illustrates the distribution of FSM patterns for
Skype, MSN and QQ. A pattern defines the states iterated by the testbed in a single
trial. If there are n possible states in FSM, then there exists 2" — 1 possible patterns
(0,0,...,0,1),....,(1,1,...,1,1). For pattern (a1, az, ..., ay), a; = 1 iff the i-th state is
visited at least once in a trial. The heavy-tailed distributions in Figure |6] demonstrate
the diversity of user behaviors generated by our testbed, as well as the similarity of
most users’ behaviors. Although this may not exactly match the actual user behavior,
we believe our method adds sufficient randomness to closely approximate general user
activities.

-3
S

Frequency
Frequency
Frequency
S
S

20

10°

10' 10° 0 10° o 10
Skype FSM Patterns MSN FSM Patterns QQ FSM Patterns

2

Fig. 6. FSM Pattern distribution for Skype (474 patterns), MSN (1137 patterns) and QQ (584
patterns). The X-axis is log-scaled.

176 F. Qian et al.

5.4 Global Profiles

Table [presents statistics of global profiles. The numbers in the table are the numbers
of process dependencies and, for other categories, the number of edges in the bipartite
graphs.

The process dependency categories of QQ, MSN and Skype are shown in Figures[@(a),
and [[1ka), respectively. Only parts with solid line represent the observed depen-
dencies; while the dotted lines indicate detected misbehavior (§3.6). The percentage on
the edge denotes its occurrence frequency. The size of bipartite graphs is usually much
larger.

Figure [7l shows examples of the bipartite graphs. For each subfigure, the upper part
X is the set of stack signatures; the lower part Y is the set of objects (registry keys,
directory names, efc.), which are represented by a number (object ID). The numbers in
square brackets are the frequencies.

— Subfigure (a) is a common case where a fixed stack signature accesses a fixed ob-
ject. For example, stack signature 0x7BF 74721 always reads 3 registry keys:
\REGISTRY\MACHINE\SOFTWARE\Classes\QQCPHelper. ..
\REGISTRY\MACHINE\SOFTWARE\Classes\CLSID\23752AA7. . .
\REGISTRY\MACHINE\SOFTWARE\Classes\CLSID\23752AA7. . .

— Subfigure (b) illustrates a random event problem. For each trial, Stack signature
1814742014 (0x6C2AC3FE) writes different registry keys under
\REGISTRY\MACHINE\SOFTWARE\Classes\CLSID\ and
\REGISTRY\MACHINE\SOFTWARE\Classes\TypeLib\.

— Subfigure (c) illustrates the slight variation of stack signatures, as explained in
3.3l We can observe two clusters of stack signatures in subfigure (c): 458221872,
181919472?7. Both clusters access the user cookie directory USER-DOC\cookies.

TR — TS / Gciomn
G:‘nk”,} oll";_]vD gﬂ \‘ [1113])

i)
Tk “‘/\

/lu\[ul\ku 7 1) Ihlj/]l"ﬂl&ll!l |um \Eml
@®® @E@®® @

(a) Registry Write Category of Q)
—_—

1442014
[2¥

I q\ﬁv 5] /_m\[ST~ e Tl

/’“mwu gl |w=1- — s 5

L R —"l% 13 1 ’---’_:45
@ & @ @ @ ("'J DA? 2 (&)

{b) Registry Write Category of Skype

/-1 T
\ {’I

,\.d

N e ‘“—-~—/

e ~ g
l,/* "LIH“HI/JHMN'A) (6‘|\) [|02“]) {\ |-'2‘]> (1!151;;:) gl!l[\lﬁl}\:&rﬂw)

= _ el -
: . ~u N ,f[-i-l /|a-*1

— T —

{c) Directory Write Category of MSN

Fig. 7. Examples of bipartite graphs. From top to bottom: (a) Registry write category of QQ (b)
Registry write category of Skype (c¢) Directory write category of MSN.

Ensemble: Community-Based Anomaly Detection for Popular Applications 177

5.5 False Positives

We used the same methodology (5-fold cross-validation) and the parameters as in the
real deployment (§3.1)) to evaluate the false positives for the testbed. In Table[3] the col-
umn “LPs” indicates the number of local profiles in the test group; the columns “Worst”
and “Best” indicate the highest and lowest number of false positives (traces that con-
tain at least one API call that triggers the false alarm), respectively, in 10 independent
experiments (each experiment has 5 passes).

Table 5. Coarse-grained false positives (counting the number of local profiles)

Target App Skype MSN QQ ServU
Category LPs Worst Best LPs Worst Best LPs Worst Best LPs Worst Best
Process Dependency 110 0 0 262 0 0 226 1 0 196 0 0
File Read 110 0 0 262 0 0 226 O 0 261 O 0
File Write 110 0 0 262 O 0 226 0 0 261 O 0
Directory Read 110 0 0 262 O 0 226 0 0 261 O 0
Directory Write 110 0 0 262 0 0 226 0 0 261 O 0
Registry Read 110 0 0 262 4 2 226 1 0 261 O 0
Registry Write 110 0 0 262 1 0 226 0 0 O 0 0
Connections N/A 262 4 2 226 1 0 261 O 0
IP Prefixes N/A 262 0 0 226 0 0 261 O 0
DNS Query 0 0 0 0 0 0 226 0 0 261 O 0

Table [6] presents a fine-grained false positive measurement. Similar as above, we
employed 5-fold cross-validation and the experiment was repeated for 10 times using
the same parameters. In Table [the column “Avg E” denotes the average number of
API callg] in the test group, which were fed into Ensemble Anomaly Detection Module;
the columns “Worst” and “Best” indicate the highest and lowest numbers of API calls
that are mistakenly detected as abnormal, respectively.

For Skype and ServU, no false positives were observed. For MSN and QQ, although
their fine-grained false positives of Registry Read and Connections categories were
slightly higher even when the false positive rate converges (shown in Figure [, the
mistakenly detected API calls concentrated in a few local profiles (Upon manual in-
spection of the logs, it was highly possible that during the generation of these local
profiles, the application terminated unexpectedly.). Ideally, if they were indeed appli-
cation’s natural behaviors, then as the pool of training data becomes larger, the initial
“strange” behaviors will become normal, and the large size of training data is exactly
the advantage of a community.

When we were testing Skype, it produced unacceptable false positive rates for
network-related behavior (two categories whose false positives labeled as “N/A” in
Table[§and Table[6). Upon manual inspection, we found that the stack signatures from
network related APIs were almost uniformly distributed in the entire address space, and

% To be precise, “Avg E” is the number of process dependencies or the number of edges in the
bipartite graph.

178 F. Qian et al.

Table 6. Fine-grained false positives. (counting the number of edges in PDGs or bipartite graphs)

Target App Skype MSN QQ ServU
Category Avg E Worst Best Avg E Worst Best Avg E Worst Best Avg E Worst Best
Proc. Dep. 498 0 0 2203 0 0 844 1 0 196 0 0
File Read 13271 O 0 31650 O 0 40578 0 0 6290 O 0
File Write 1938 0 0 3623 0 0 40138 0 0 3473 0 0
Dir Read 10214 0 0 22292 O 0 39903 O 0 2758 0 0
Dir Write 1650 0 0 2711 0 0 40114 0 0 1810 O 0
Reg Read 43398 0 0 611294 55 37 415532 1 0 23943 0 0
Reg Write 33639 0 0 25441 1 0 23805 O 0 0 0 0
Connections N/A 23398 12 4 18074 11 0 7194 0 0
IP Prefixes N/A 17974 0 0 16385 O 0 516 0 0
DNS Query 0 0 0 0 0 0 17085 O 0 258 0 0
120 —e—File Read
100 j;"eegi\;\::iyleRead
—Registry Write

®
<

N
&

Number of false positives
o,
3

oL——=F 5 & 5 .
0 50 100 150 200 250 300 350 400 450
Number of local profiles as training data

140,
—=—File Read

120F —=—File Write
——Registry Read

100F ——Registry Write
——Network Connection

®
<

a:
<

Number of false positives

0 100 200 800 900 1000

300 400 500 600 700
Number of local profiles as training data

@
3

—e—File Read
—=-File Write
——Registry Read
—— Registry Write
——Network C i

@
S

IS
S

N
S

Number of false positives
@
8

5

o

Fig. 8. Convergence of fine-grained FP as local profiles increase. (Top: Skype; Middle: MSN;
Bottom: QQ)

the dumped stack frames were also abnormal. Based on our estimation, Skype may em-
ploy some obfuscation techniques to protect their code against reverse engineering [10].
In summary, we believe that the false positives of Ensemble are acceptable.

Ensemble: Community-Based Anomaly Detection for Popular Applications 179

Furthermore, we used 600 API call traces obtained in real deployment to test against
the global profile generated by 1,298 MSN local profiles from the testbed. We obtained
false positive rates of 0% (process dependency), 6% (file read), 4% (file write), 2% (di-
rectory read), 1% (directory write), 11% (registry read), 6% (registry write), 9% (con-
nections) and 3% (IP prefixes), using the metric in Table [Sl Upon manual inspection,
the main cause of false positives was the incompleteness of our FSM model, in which
some use cases such as video chat were not covered.

We also measured the relationship between the community size and the false positive
rate using a 5-fold cross-validation, and presents the results using the worst case (the
highest number of false positives in 10 independent experiments). As shown in Figure[S]
for three applications, it is clear that the fine-grained false positive rate significantly
decreases with increasing number of local profiles, and converges to a stable value (We
discussed the high false positives of QQ and MSN earlier in this section). A real active
community is believed to have orders of magnitude of more local profiles submitted by
users, thus ensuring a low false positive rate.

5.6 False Negatives

We evaluate false negatives on a total of 57 known malware programs and exploits
for each target application by performing online comparison between the application
behavior monitored in real time and the global profile, which was generated from local
profiles described in Table 3l We used the same parameters as in the false positive
evaluation.

Table [7] summarizes our selected malwares and exploits against target applications.
They were selected from a malware collection obtained from honeypots, Web page
crawling, and spam traps. It seems that these 57 malwares and exploits have some-
what common exploit techniques. However, we argue that the core merit of anomaly
detection system is that, no matter how sophisticated an attack will be, as long as the
application’s behavior deviates from the baseline, the anomaly can be detected without
prior knowledge.

For QQ, we tested 27 password stealer trojans, all of which were detected by En-
semble. Figure [9] shows a representative case. The trojan process (1180 . EXE) sets a
keyboard hook to QQ . EXE and tries to log users’ keystrokes. The trojan also caused ab-
normal file accesses: KERNEL32 .DLL and ISIGNUP. SYS. The latter was extracted
by the trojan.

We attempted two buffer overflow exploits using the Metasploit framework [6] against
Serv-U. Both exploits were detected by Ensemble. One exploit caused ServU to spawn a
command line shell, which could be remotely controlled by the attacker. Another exploit

Table 7. Our malware/exploit collection used in false negative evaluation

Target App # of Malwares/Exploits Descriptions
Skype 3 Worm
MSN 25 Worm, password trojan
QQ 27 Password trojan

Serv-U 2 Buffer overflow exploits

180 F. Qian et al.

‘ 1
" i
HOOK FilE

Stack Address File Pathname
@ 0x157C278F PROGRAM FILES\Internet Explorer)
Connection Wizard\isignup.sys
POk Mso s S 0x157C2746 Kernel32.DLL

(b) file read category

(a) process dependency

Fig. 9. Anomaly detection results of the QQ trojan

Table 8. Anomaly detection results of the Serv-U buffer overflow exploit (unusual file and net-
work access)

Stack Signature(s) Object Type Object Name
6607A2DC 6606A17F File Read IE TEMP\Content.IE5\HOSBCDN6\putty.exe
112CF1F2 660AC700 660AC7D1 File Write IE TEMP\Content.IE5\HOSBCDNG6\putty.exe
11201534 11211697 File Write SYSTEM32\a.exe
6606A17F 6607A2DC DirRead IE TEMP\Content.IE5\HOSBCDNG\
11211697 11201534 Dir Write SYSTEM32\
660AC7D1 660AC700 112CF1F2 Dir Write IE TEMP\Content.IE5\HOSBCDNG6\
60814BDC 17A77DFF Connection 193.201.200.66:80 TCP
1B772B23 1B7729D0 IP Prefix 193.201.200.0/23

(Omitted: 106 registry read edges and 26 registry write edges)

made ServU to download a file and execute it. The exploit was constructed in Metasploit
by providing a URL pointing to an executable file (in our experiment, the downloaded
executable was putty.exe, which was then renamed to a.exe and executed). In
Table[8] a series of events before the execution of a . exe were clearly revealed by failing
to match abnormal edges with bipartite graphs in the global profile.

For MSN, we tested 25 worms that hijack MSN to send out malicious contents to the
user’s contacts. In one example shown in Figure [I0] the malware process with a long
file name tried to modify registry keys and files that MSN read later.

Skype consists of Skype.exe and SkypePM. exe. We tested three worms that
abused the Skype API to send malicious links to deceive receivers to click them. Since
the Skype API on Windows is implemented using the message mechanism, Ensemble
detected the worm named StWinsDat . exe that sent messages to Skype.exe, as
shown in Figure[[1l Ensemble also detected that Skype read the file StWinsDat . exe
from two stack addresses that never appeared in the global profile.

As part of the real-deployment in §5.11 we manually executed 25 MSN worms on
3 real machines with different configurations. All abnormal behaviors were detected
by Ensemble. Furthermore, it seems that all above anomalies can be covered by the
process dependency category. However, we argue that other categories are necessary.
For one reason, it is possible that some attacks can happen without process depen-
dency (e.g., anomalies caused by network packets such as Apache-Knacker exploit [3]]).

Ensemble: Community-Based Anomaly Detection for Popular Applications 181

SBC1BEE1987CI8TFODEL
DBTO0SBE1AIF EXE

FILE MAP
8%

Stack Address File Pathname

0x6C37D084 SYSTEM32\stwinsdat.exe
0x6C37EFFD SYSTEM32\stwinsdat.exe
(b) file read category

2%

5G
MSG FILE MAP %

FORK

el a% T a0

(a) process dependency

Fig. 11. Anomaly detection results of the Skype worm

Furthermore, as shown in Figure [0(b), Figure [[Tb) and Table [§] other categories pro-
vide more detailed information about the anomaly.

5.7 Performance Evaluation

Using four target applications mentioned above, we measured the overhead of our pro-
totype in terms of time and space. The evaluation was done on a commodity Dell In-
spiron 530 PC (2.33G Core2 Duo CPU, 2GB memory, with WinXP SP2 installed).
We believe that the overall overhead is acceptable. Extra delay incurred by local pro-
file collection is less than 15%. Note that this happens infrequently (e.g., 1 minute
per 3 hours), and Ensemble does not collect local profiles for two applications si-
multaneously. Extra overhead caused by anomaly detection is less than 2%. The log-
ging size of API traces is less than 0.25 MB/min per application. The global profile
size is less than 10MB per application. Like software update, the Ensemble server
can transfer a “patch” of the new version of the global profile, with a much smaller
size.

182 F. Qian et al.

6 Limitations of Ensemble

While we found Ensemble’s approach to be a promising direction for addressing a diffi-
cult problem of using run-time profiles for detecting code injections and other run-time
anomalies, we also noted limitations that would need to be addressed in the future.

We expect that some applications to be too complex for profiles to converge using
limited system-call sampling. Our experiments indicate that this is the case for com-
plex plug-in enabled applications such as IE and MS Word since plug-ins may behave
differently from the original applications. Additional sampling and larger communities
may help in such cases.

We plan to evaluate Ensemble in a real community with hundreds of users. Privacy
concerns must be addressed, even though only summary data about system calls is
exchanged with a server.

If a significant fraction of community of users mounted a coordinated attack to pol-
lute the global profile, it is conceivable that the global profile can be corrupted. This
is more likely in open communities, where sybil attacks [18]] are possible. In closed
communities as in enterprise environments, such attacks are much less likely.

Different applications may require different types of profiling. For example, if an
application purposely randomizes addresses at function or instruction level (e.g., the
network access module of Skype mentioned in §3.3] to obfuscate its behavior), then
stack signatures are ineffective. Alternative methods, such as path profiling [I5]], can be
added to handle such applications.

In our design, the stack signature is generated by XORing unique return addresses
of stack frames. The probability of collision is non-negligible in 32-bit OS, but very
unlikely in 64-bit systems which are becoming increasingly popular.

6.1 Over-Generalization

Each application has a set of “normal behaviors” (true baseline). False negative may
happen when the detector-defined normal behaviors go beyond the true baseline (i.e.,
over-generalized) because the features or methods are not well-chosen or the model is
not precise enough (i.e., an imperfect detector). For almost all practical IDS, the detector-
defined normal behaviors are broader than the true baseline, thus allowing mimicry at-
tacks. This is a problem with any detectors not just ours. The aggregation process should
not introduce much additional over-generalization. Consider the aggregation of local
profiles whose diversities are caused by: (i) User randomness. Different users can gen-
erate different profiles but they mostly fall within true baseline assuming profiles are
trusted (User randomness can be regarded as exercising different normal execution paths
in the application). (ii) System environment randomness. We admit that different system
environment may have different set of “normal behaviors”. However, this should intro-
duce limited over-generalization, if any at all. In the worst case, we can have separate
aggregations/pools for different OSes and software versions as mentioned in §4.21

6.2 Mimicry Attacks

A perfect detector should leave no opportunity for mimicry attacks which are due to
over-generalization. Note that the aggregation process is independent of what features

Ensemble: Community-Based Anomaly Detection for Popular Applications 183

or approaches are used for anomaly detection. The existence of mimicry attack is mainly
due to limitations in feature selection and detection techniques, not in profile aggrega-
tion. Our focus is to show that with a reasonable detector, how we can reduce false
positives rather than making the features rich enough to eliminate the possibility for
mimicry attacks.

7 Conclusions

We have described the design of Ensemble, an unsupervised anomaly detection and
prevention system relying on a user community to detect or prevent anomalies in pop-
ular applications. Local behavioral profiles are combined into a global profile, which
can be used to detect or prevent code-injection or behavior-modifying exploits. Hosts
participating in Ensemble only need to contribute summary run-time profile data (about
0.5 MB) periodically. Ensemble addresses the problem of merging profiles from hosts
that may have different operating environments. From evaluation based on 57 test ex-
ploits for four candidate applications, we found that the quality of global profiles, and
the resulting false positive rate, significantly improves as the community size grows to
approximately 300 users, demonstrating that the use of communities is a practical way
to automatically generate behavioral profiles without much manual training, and the re-
sulting behavioral profiles are effective for run-time anomaly detection and prevention.

References

1. Address space layout randomization, http://blogs.msdn.com/
2. Application Community, http://www.darpa.mil/
3. C. CAN-2003-0245. Apache apr-psprintf memory corruption vulnerability,
http://web.nvd.nist.gov/
4. Gmail: We’re working as a community, give your support!,
http://news.softpedia.com/
5. McAfee Anti-virus software, http://mcafee.com/
6. Metasploit framework, http://www.metasploit.com
7. Microsoft Outlook Buffer Overflow in Processing TNEF Messages Lets Remote Users Exe-
cute Arbitrary Code, http://securitytracker.com/
8. QQ Instant Messenger, http://im.qgqg.com
9. Serv-U FTP Server,http://www.serv-u.com/
10. Should we be afraid of Skype, http://www.ossir.org/
11. VirusScan Enterprise 8.51 Access Protection rule blocks outbound SMTP mail on Port 25,
https://knowledge.mcafee.com/
12. Malware flood driving new AV (December 2007), http://www.infoworld.com/
13. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the Detection of Anomalous System Call
Arguments (2003)
14. Arak, V.: On the worm that affects Skype for Windows users (September 2007),
http://share.skype.com/
15. Ball, T., Larus, J.: Efficient Path Profiling. In: 29th Annual IEEE/ACM International Sym-
posium on Microarchitecture (1996)
16. Ballardie, T., Crowcroft, J.: Multicast-specific Security Threats and Counter-measures. In:
Proc. of the IEEE Symposium on Security and Privacy (1999)

http://blogs.msdn.com/
http://www.darpa.mil/
http://web.nvd.nist.gov/
http://news.softpedia.com/
http://mcafee.com/
http://www.metasploit.com
http://securitytracker.com/
http://im.qq.com
http://www.serv-u.com/
http://www.ossir.org/
https://knowledge.mcafee.com/
http://www.infoworld.com/
http://share.skype.com/

184

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

F. Qian et al.

Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P.: Vigi-
lante: end-to-end containment of internet worms. In: SOSP (2005)

Douceur, J.R.: The Sybil Attack. In: Peer-To-Peer Systems: First International Workshop
(2002)

Ernst, M.: Self-defending software: Collaborative learning for security,
http://norfolk.cs.washington.edu/

Eskin, E.: Anomarly Detection over Noisy Data using Learned Probability Distributions. In:
International Conference on Machine Learning (2000)

Eskin, E., Lee, W., Stolfo, S.J.: Modeling system calls for intrusion detection with dynamic
window sizes. In: Proceedings of DARPA Information Survivability Conference and Expo-
sition II (DISCEX II) (2001)

Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly Detection Using Call
Stack Information (2003)

Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix Pro-
cesses. In: IEEE Symposium on Security and Privacy (1996)

Ghosh, A., Wanken, J., Charron, F.: Detecting anomalous and unknown intrusions against
programs. In: Proc. of the 1998 Annual Computer Security Applications Conference, AC-
SAC 1998 (1998)

Ghosh, A K., Schwartzbard, A., Schatz, M.: Learning program behavior profiles for intrusion
detection. In: Proceedings of the Ist conference on Workshop on Intrusion Detection and
Network Monitoring, vol. 1 (1999)

Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls.
Journal of Computer Security (1998)

Hunt, G., Brubacher, D.: Detours: Binary Interception of Win32 Functions. In: Proceedings
of the 3rd USENIX Windows NT Symposium (1999)

Jon Oberheide, E.C., Jahanian, F.: CloudAV: N-Version Antivirus in the Network Cloud. In:
Proceedings of 17th Usenix Security Symposium (2008)

King, S.T., Chen, P.M.: Backtracking intrusions. In: SOSP (2003)

Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Public deployment of cooperative
bug isolation. In: Proceedings of the Second International Workshop on Remote Analysis
and Measurement of Software Systems, RAMSS (2004)

Liblit, B.R.: Cooperative bug isolation. PhD thesis, Berkeley, CA, USA, Chair-Alexander
Aiken (2004)

Orso, A., Liang, D., Harrold, M.J., Lipton, R.: Gamma system: continuous evolution of soft-
ware after deployment. SIGSOFT Softw. Eng. Notes 27(4) (2002)

Sekar, R., Dhurjati, M.D., Bollineni, P.: A Fast Automation-Based Method for Detecting
Anomalous Program Behaviors. In: IEEE Symposium on Security and Privacy (2001)
Tucek, J., Newsome, J., Lu, S., Huang, C., Xanthos, S., Brumley, D., Zhou, Y., Song, D.:
Sweeper: a lightweight end-to-end system for defending against fast worms. In: EuroSys.
(March 2007)

Wang, H.J., Platt, J.C., Chen, Y., Zhang, R., Wang, Y.-M.: Automatic misconfiguration trou-
bleshooting with peerpressure. In: OSDI (2004)

Warrender, C., Forrest, S., Pearlmutter, B.: Detecting Intrusions using System Calls: Alter-
native Data Models. In: IEEE Symposium on Security and Privacy (1999)

Yeung, D.-Y., Ding, Y.: Host-based intrusion detection using dynamic and static behavioral
models. Pattern Recognition 36 (2003)

http://norfolk.cs.washington.edu/

Using Failure Information Analysis to Detect
Enterprise Zombies

Zhaosheng Zhu'!, Vinod Yegneswaran?, and Yan Chen'

! Department of Electrical and Computer Engineering, Northwestern University
{z-zhu, ychen}@northwestern.edu
2 Computer Science Laboratory, SRI International
vinod@csl.sri.com

Abstract. We propose failure information analysis as a novel strategy
for uncovering malware activity and other anomalies in enterprise net-
work traffic. A focus of our study is detecting self-propagating malware
such as worms and botnets. We begin by conducting an empirical study
of transport- and application-layer failure activity using a collection of
long-lived malware traces. We dissect the failure activity observed in
this traffic in several dimensions, finding that their failure patterns differ
significantly from those of real-world applications. Based on these ob-
servations, we describe the design of a prototype system called Netfuse
to automatically detect and isolate malware-like failure patterns. The
system uses an SVM-based classification engine to identify suspicious
systems and clustering to aggregate failure activity of related enterprise
hosts. Our evaluation using several malware traces demonstrates that
the Netfuse system provides an effective means to discover suspicious
application failures and infected enterprise hosts. We believe it would be
a useful complement to existing defenses.

1 Introduction

Due to the persistent and ubiquitous nature of the Internet’s background radia-
tion [35], modern enterprise networks have become relentless targets of attacks
from a plethora of Internet malware including worms, self-propagating bots,
spamming bots, client-side infects (drive-by downloads) and phishing attacks.
Estimates on the number of malware instances released vary vastly (between
ten of thousands to more than hundred thousand per month) depending on cen-
sus methodologies [16} B1]. However, there is consensus that malware is becoming
increasingly prevalent, sophisticated, and a formidable threat not just to network
communications but also as a purveyor of data and identity theft. Network se-
curity analysts in today’s enterprise networks rely primarily on a combination of
network intrusion detection systems (NIDS) [36, 4I] and antivirus (AV) systems
to shield enterprise networks from this deluge of malware.

A NIDS passively monitors packets on the network wire and uses rules to dis-
cover suspicious activities, such as scans and exploit attempts, directed against
systems in the network. Knowledge-based and behavior-based detection are two

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 185{206, [2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

186 7. Zhu, V. Yegneswaran, and Y. Chen

fundamental approaches to intrusion detection [I4]. Knowledge-based intrusion
detection systems [4I] use signatures of well-known exploits and intrusions to
identify attack traffic. However, reliable and accurate performance requires con-
stant maintenance of the knowledgebase to reflect the latest vulnerabilities. In
contrast, behavior-based intrusion detection techniques [27] compare current ac-
tivity with a predefined model of normal behavior and flag deviants from known
models as anomalies. A drawback with many behavioral approaches is the inher-
ent difficulty of building robust models of normal behavior whose incompleteness
results in high false alarm rates.

Contemporary AV software monitors end hosts by performing periodic system
scans and real-time monitoring, checking existing files and process images with
a dictionary of malware signatures that is constantly updated. Certain vendors
also incorporate heuristic detection engines that identify infections based on
static traits (e.g., whether it is packed) or approximate behavioral profiles of
known malware. Despite their ubiquity and sophistication, most AV systems
have been shown to have unsatisfactory detection rates [I0] especially in early
days of an outbreak. Our experience at honeynets shows that the median day-
zero detection rate for 30 AV vendors is around 82% [26]. The proliferation of
the recent Conficker A and B worms offers further testament to the inefficacy of
current AV systems. By leveraging a well-publicized Windows RPC vulnerability
(MS08-67) [32], Conficker has successfully infected millions of hosts [17} [I8],
and in the early days of the outbreak only 3/39 AV engines were able to detect
this binary as being malicious [43]. Like most malware, Conficker disables AV
updates after infection, so subsequent signature updates by AV vendors were
not particularly effective in curtailing this worm. In summary, the remarkable
success of a scan-and-infect worm such as Conficker (seven years after Code
Red T [I3]), underscores why network security analysts need better tools to
understand, react to, and cope with infections in their enterprises.

Our approach. In this paper, we introduce a new behavior-based approach
to detect infected hosts within an enterprise network. Our objective is to de-
velop a system that is independent of malware family and requiring no apriori
knowledge of malware semantics or command and control (C&C) mechanisms.
We devise an approach that is motivated by the simple observation that many
malware communication patterns result in abnormally high failure rates. While
prior efforts have tried to exploit this in the specific context of portscans [2§]
or studied types of failures [44] [39], we extend this to broadly consider a large
class of failures in both transport and application levels. We have developed a
prototype system called Netfuse that correlates network and application failures
to detect infected hosts within enterprise networks. The event correlation engine
of our system is inspired by prior systems such as BotHunter [23]. While BotH-
unter relies on exploit signatures from Snort, an important distinction of our
approach is that it requires no specific knowledge of malware. Instead, Netfuse
relies on application knowledge that it obtains from network protocol analyzers
such as Wireshark [§] and L7 filters [5]. In some sense, Netfuse could be consid-
ered a behavior-based detection system whose model for malicious behavior is

Using Failure Information Analysis to Detect Enterprise Zombies 187

derived from underlying protocol analyzers. However, its novelty lies in its use
of multipoint failure monitoring for support vector machine (SVM)-based clas-
sification of malware failure profiles. We believe that Netfuse could be a useful
sensor input to BotHunter.

The Netfuse system has several integral components. First, it has a proto-
col failure analysis component that is built on the Wireshark protocol analyzer.
It specifically analyzes transport failures (TCP RSTs, ICMP) and application
failures on common ports TCP/25 (SMTP), TCP/80 (HTTP), UDP/53 (DNS)
and TCP/6667 (IRC). Furthermore, it uses L7 filters to detect when common
protocols are observed in nonstandard ports (e.g., HTTP or DNS activity on a
high-order port) and routes them to the appropriate Wireshark protocol handler.
Second, it has a lightweight DNS monitor that monitors DNS activity between
enterprise clients and the DNS server. Finally, it has a clustering and correla-
tion component that aggregates alerts observed by the two sensors producing
a condensed summary of failure activity that classify anomalous activity. For
every IP with failure activity, it computes four different scores: (i) composite
failure (77) divergence (iii) persistence and (iv) failure entropy. This informa-
tion is used by an SVM driven classification engine to detect suspicious hosts.
Furthermore, a cluster summary is produced that aggregates suspicious hosts
with similar failure profiles. The combination of these scores and clustering en-
ables security analysts to easily comprehend failure patterns in the enterprise
and quickly identify suspicious hosts in the network. We find that our approach
is effective in isolating the presence of a vast majority of contemporary malware
without specialized signatures.

Contributions. The contributions of our work are as follows:

1. We describe application-aware failure monitoring as a new approach for iden-
tifying infected hosts and uncovering anomalies in enterprise traffic.

2. We develop a prototype implementation of the Netfuse monitor using Wire-

shark and L7 filters. An important aspect of the implementation is multi-

point failure monitoring.

We develop an SVM-based classifier to identify infected hosts.

We use multiple network traces of malware and benign traffic to evaluate

detection rates and the false positive rate of Netfuse.

= w0

The remainder of the paper is organized as follows. In Section 2 we provide an
analysis of network and application failures that motivate the Netfuse system.
In Section Bl we introduce our Netfuse prototype implementation. In Section [
we describe our classification and clustering algorithm. Then we describe our
in-situ and online experiences with the Netfuse system and analyze results in
Section [l We survey related work in Section [l We summarize our results and
discuss future work in Section [

2 An Empirical Survey of Application Failure Anomalies

We explore reasons behind the occurrence of application failures in enterprise
traffic. We begin with a case study analysis of the failure patterns of malware

188 7. Zhu, V. Yegneswaran, and Y. Chen

using over 30 long-lived malware (5-8 hour) traces. We then examine failure pro-
files of several normal applications that may cause failures similar to malware
including webcrawlers, P2P software and popular video sites. Then we discuss
the potential and implications of using protocol failure anomalies to detect mis-
behaving clients in the enterprise network.

In the following, we define the term failure to broadly refer to both network
and application failures. Network failure corresponds to presence of packets,
indicating transport-level failures such as TCP RSTs and ICMP unreachable
messages in the trace. Application failures indicate higher-level protocol failures
as shown in Table [

Table 1. Commonly observed protocol failure messages

Protocol Layer Failure Types
DNS Application NXDOMAIN (No such domain)
HTTP Application 400 Bad Request, 404 Not Found,

403 Forbidden, 411 Length Required
500 Internal Server Server, 501 Not Implemented
Application Transient Negative Completion reply

FTP Permanent Negative Completion reply
Application Domain service not available, mailbox unavailable
SMTP Syntax error, command not implemented
Machine does not accept mail, mailbox unavailable
User not local, requested mail action aborted
IRC Application No such nick, No such server

No such channel, Cannot send to channel

2.1 Malware Trace Analysis

The first part of our analysis is a study of application failure patterns observed in
contemporary Internet malware. We started with a corpus of 32 different malware
instances that we each executed in a controlled virtual machine (VM) environ-
ment for several hours. The sources of the malware include our honeynet [43],
malicious email attachments, and the Offensive Computing website [6]. To ob-
tain accurate and complete results of network interaction, it was necessary to
collect long-lived traces and to allow the hosts to communicate with the outside
world. We collected tcpdump traces of all network activity, and we analyze the
failure patterns found in these traces below.

We find that contemporary malware instances generate a diverse set of fail-
ures, in both the transport and application levels. Interestingly, we find that these
failures could be attributed to a small set of causes, i.e., broken C&C channels,
scanning and spam delivery attempts. Furthermore, the volume of failure activ-
ity seems to be strongly correlated with the volume of overall network activity.
For example, scanners tend to generate a lot of flows, many of which generate
transport failures. Likewise, many malware instances periodically retry failed
communication attempts, which results in larger network traces with redundant
activity.

Using Failure Information Analysis to Detect Enterprise Zombies 189

Among the 32 malware instances, eight did not generate failures. These in-
clude two worms, three IRC botnets, and three spyware instances. As the three
IRC bots contacted the server successfully and did not receive any MOTD com-
mands from the server, there were no failures. Likewise, the well-behaved spyware
binaries simply contacted a few active websites.

Table [2 illustrates the distribution of failures by protocol for each of the
malware instances that generated transport or application failures. First, we
note that 24/32 botnet and worm instances generate some sort of failure (either
application or transport). We find that most of them (18/24 instances) trigger
DNS failures. Furthermore, malware with spam capabilities (notably Storm) also
tends to produce high volumes of SMTP failures. Finally, malware with P2P
C&C channels and malware with scanning behavior are also associated with
abnormally high ICMP failures. We examine the failure breakdowns within each
protocol in greater detail below and provide explanations for their causes.

DNS failures. In our analysis, we found that 18 malware traces contained DNS
failures. All of these were due to unresolved domain names or NXDOMAIN
responses from the DNS server. In many cases, particularly for IRC bots, these
arise because the C&C server gets taken down by ISPs or is otherwise blocked
by law enforcement. While many well-behaved applications terminate connection
attempts after a few failed tries, we find that malware tends to be remarkably
persistent in its repeated attempts to contact its C&C server. We also observed
that for certain malware, there is built-in redundancy in that they will query
a set of domain names for the remote server. Although some domains do not
resolve, C&C communication will still continue based on the successful DNS
lookups.

Table 2. Failure profile summary (in hourly rates) of 24 malware instances

Malware Class DNS HTTP ICMP SMTP TCP
rate rate rate rate rate
Look2me Spyware 5
Wsnpoem Spyware 15
Bobax HTTP botnet 148 191

Kraken I HTTP botnet 348

AgoBot IRC botnet 5312

Gobot IRC botnet 891 9539
Sdbot IRC botnet 2188

Sdbot II IRC botnet 53

Spybot I IRC botnet 283 1506
Spybot II IRC botnet 16 50
Spybot III IRC botnet 16
Wootbot IRC botnet 275
Irc.Webloit IRC botnet 477
Nugache P2P botnet 291
Storm I P2P botnet 26 5432 284 73
Storm II ~ P2P botnet 27151
Allaple ‘Worm 9 33413 5738
Grum ‘Worm 60 160 31330
Kwbot ‘Worm 37
Mytob Worm 221 385 53
Netsky Worm 51012
Protoride ‘Worm 503 151
Virut ‘Worm 222 10 409 14

Weby Worm 67 24

190 7. Zhu, V. Yegneswaran, and Y. Chen

In fact, for some bots, such as Kraken, DNS failures could be considered part
of normal behavior. This malware uses a dynamic C&C-based communication
structure that constructs a new list of C&C rendezvous points each day. The
fully qualified domain name (FQDN) of the C&C server is constructed from
a dynamically generated hostname (based on the date) and one of the follow-
ing four base domain names: .mooo.com, .dynserv.com, .dyndns.org, and
.yi.org. As long as the botmaster and the malware use the same algorithm to
generate domain names, it is very easy for the botmaster to change the C&C
server names and [P addresses to evade detection. While resolutions for most of
these DNS domains are expected to fail everyday, the botmaster simply has to
register one of the daily domains when he wants to instruct the bots to perform
a task. Hence, a lot of DNS lookup failures are observed in the trace. For exam-
ple, our trace shows that the host received 1740 DNS failures in about 5 hours,
which is highly anomalous for a normal host. A similar strategy is also adopted
by the recent Conficker worms [I§].

SMTP failures. In our analysis, we found that SMTP failures result from spam-
ming behaviors. A typical example is the Storm botnet, which also uses SMTP
to generate emails for spam as well as propagation. Hence, its trace includes a
flurry of SMTP activity and a lot of failures. Certain SMTP servers immediately
close the connection after the TCP handshake. Other failures occur early in the
SMTP connection setup, most common reason being “550 Recipient address re-
jected: User unknown”. In our traces, we found hundreds of SMTP failures from
several email servers. But these failures were not persistent, i.e., Storm does not
retry a rejected username on the same SMTP server. In certain traces of the
Storm botnet, this spam behavior stops after an hour, suggesting that certain
malware instances do eventually learn from failures (albeit after a long time).
We feel that any malware that generates spam is bound to produce such failures.
Besides Storm, there were other malware instances that attempted to send spam
email, e.g., Bobax, but could not succeed in establishing communication with
the remote SMTP server.

HTTP failures. We found that the HTTP failures in our traces could be at-
tributed to two reasons: (1) sending mal-formed packets for DoS attacks and (2)
querying for a configuration file that has since been removed from the control
server. For example, malware Mimail.LL sends the following request to the target
HTTP server to launch a DoS attack: “GET / HTTP/1.0” to port 80, followed
by 2048 bytes of data to port 80. As a result, it receives a flurry of “HTTP 400”
errors from the server implying “Bad or Malformed HTTP request”. Certain
other failures are due to the missing files in controlling servers. For example,
clients infected with the Weby malware will try to get a configuration file from
several servers. Since this file is removed in the servers, it results in “HTTP
404 /File not found” errors, which are quite persistent. In our 5-hour trace, there
were 335 “HTTP 404 /File not found” failures.

IRC failures. For botnets that use the IRC protocol for communication and
control, the following failure modes are common. Sometimes, the channel is

Using Failure Information Analysis to Detect Enterprise Zombies 191

removed from a public IRC server, which results in IRC application failures
like “no such channel”. In certain other cases, the channel might be full due to
too many bots, which would result in a “Cannot join channel” message.

TCP layer failures. We consider unproductive TCP flows i.e., which do com-
plete a TCP handshake and/or terminate the connection with RST prior to
sending any payload. The prevalence of such unproductive flows (which also re-
sults from scanning behavior), is another characteristic of malware. For some
malware instances, we observed that there were continuous TCP layer failures
in certain ports. For example, some IRC botnet clients receive failures in the IRC
port (TCP/6667) from the remote servers (either because the server has been
taken down or because it is too busy). Certain Bobax clients receive failures in
the SMTP (TCP/25) port from remote email servers because the client network
has been blacklisted. While scanning is usually good evidence of malware, we
find that persistent TCP failures from the same remote host could be another
useful indicator of malware. For example, we observed that many IRC botnets
generate TCP failures from being unable to contact a previously active C&C
server that has since been taken down.

ICMP failures. In our analysis, we found that ICMP failures result from scan-
ning behavior and communication patterns of P2P botnets such as Storm. As we
discuss below, this is quite unlike normal P2P applications, such as BitTorrent
and eMule, that generate few ICMP failures.

2.2 Failure Patterns of Normal Applications

The second part of our analysis studies failure patterns of normal applications.
As studying failure patterns of all applications is outside the scope of this study,
we focus on applications that one might typically expect to produce failure
patterns similar to what was observed in the malware corpus that we analyzed.
The goal of this study is to understand the degree to which malware failure
patterns could be used to distinguish malware traffic from other benign enterprise
traffic. Our Netfuse system uses these network failures as symptoms to detect
suspicious hosts. Thus, these results could inform the feasibility and design of the
Netfuse system and help us prioritize failure patterns that are used for detection.
Specifically, we focus our investigation on three classes of applications, which
at the first glance may cause similar failures: web crawler, P2P applications
(BitTorrent, eMule), and online video service (youtube).

We collected several long-lived traces for each of these normal applications, in
order to get a good understanding of the types of failures they generate. Table [3]
provides a summary of these traces.

Webcrawler. webcrawlers, popularly known as webspiders or webrobots, are
automated scripts that systematically scan all web-pages in a site looking for
specific types of content. These are commonly used by search engines to build
automated meta-data (indexes) of public web-pages, but are also used for mirror-
ing websites, data mining, and by other web-based applications such as mashups

192 7. Zhu, V. Yegneswaran, and Y. Chen

Table 3. Normal application trace summary

Type Site Size Time Pkts # URLs
news.sohu.com 3.1 GB 2 days 3577674 25334
Webcrawler amazon.com 1.9 GB 2 days 2058630 23111

Mirror bofa.com 144 MB 12 hours 186711 4141
imdb.com 252 MB 16 hours 333583 8113

P2P BitTorrent 6.1 GB 18 hours 7338627 n/a
P2P eMule 1.3 GB 1day 1982682 n/a

Video youtube.com 16MB 2 hours 25498 n/a

Table 4. Failure profile summary (in hourly rates) for normal applications

Application Name HTTP ICMP TCP
rate rate # ports / rate

Web crawler(sohu) 1.4 1/0.4

Web crawler(amazon) 1/1.4

Web Crawler(imdb) 0.04 1/0.2

Web Crawler(bofa) 0.8 1/0.9
BitTorrent 0.6 382/333
eMule 68 839/370

and portals. Since webcrawlers have become very popular and they follow hy-
perlinks in an automated fashion, one might expect such systems to frequently
stumble upon many failed links and generate HTTP failures. Hence, we pick
them as the first class of application to study.

We used the default settings and -m (mirror) option in wget [3] that forces
weget to act as a webcrawler, recursively following all links in a given site. until all
the pages have been downloaded. We collected traces from crawling four popular
websites in the US and China including bofa.com, amazon.com, imdb.comand
sohu.com. Each crawl took 1-2 days and involved 144 MB to 3 GB of data
transfer. We found that the webcrawler produced very few HTTP and transport
failures. As an example, for the website news.sohu.com, there were only 18
transport layer (TCP) failures and 66 HTTP failures in 2 days. Other websites
also show the similarly low failure patterns as shown in Table @l As one might
expect, we find that in webcrawlers, HTTP failures are restricted to “HTTP
404 /File not found” messages.

P2P applications. We select two popular peer-to-peer (P2P) software pro-
grams for our analysis: BitTorrent and eMule. BitTorrent and eMule are P2P
file sharing protocols used to transfer large amounts of data such as media files,
software, and OS distributions. A single large file is broken up into pieces, which
are replicated and distributed among a set of peers. In BitTorrent, the publisher
of the file acts as the first seed, and every peer who downloads the data also
uploads the content to other peers. A client wishing to download the file first
obtains the meta-data file, called the torrent, which specifies where to download
the pieces. Thus, a single HTTP request for a large file is translated into several
small data requests to various peers in the network. eMule is similar in concept
but implements a different protocol based on Kademlia [4].

Using Failure Information Analysis to Detect Enterprise Zombies 193

Since the status of peers in both of these networks can dynamically change
(from online to offline), we expect these P2P applications to have many failures.
We used BitTorrent to download a popular Linux distribution (Fedora 10) and
monitored the activity of this peer for one day. It turns out there were very few
(11) ICMP failures and HTTP failures, but many TCP failures. Likewise, we
used eMule to download another popular Linux distribution (Ubuntu) and mon-
itored its activity for a day. It had many ICMP and TCP failures. An important
difference between transport-level failure profiles of BitTorrent and the malware
we analyzed is that for BitTorrent the TCP failures happen on a large set of
ports. This did not occur in the malware traces, i.e., failures were restricted to
fewer ports and typically occurred in one or two ports. As an example, most TCP
failures with the Storm worm were dominated by its activity on port 25/TCP
(arising from its spam campaigns and unrelated to its P2P communication).

Online video service. YouTube.com is one of the largest and most popular
websites that provide online video hosting service. Users can upload, view, and
publicly share video clips. In this experiment, we collected traces by opening
videos from youtube.com, and then keeping the browser open for several hours.
In analyzing the trace, we found that there were no transport-layer failures.
While we did find several “HTTP 304/Not Modified” errors, we did not find any
other application-level failures. Since “HTTP 304/Not Modified” messages were
not found in the malware traces, we infer that this might be an error code to be
considered in a whitelist.

2.3 On the Potential of Failure Analysis to Uncover Suspicious
Activities

We summarize the results of our exploratory empirical analysis on the utility
of failure profile analysis. After our analysis of a collection of traces from both
malware and benign applications, we find several notable differences in failure
pattern between malware and normal applications that could be exploited in
network-based detection systems.

1. Failures in malware occur frequently in both the transport and application
levels. In general, failures are rare for normal applications, except for certain
P2P protocols that can generate high volumes of transport failures. Thus
high volume of failure traffic could be a useful indicator of malware.

2. DNS failures and in particular NXDOMAIN errors are common among mal-
ware applications and relatively infrequent in normal applications. Further-
more, these failures tend to persist (repeat with high frequency) in malware.

3. Failures in malware applications tend to be restricted to a few ports and often
a few domains. Thus, malware failure patterns tend to have low entropy.

3 Architecture

In the prior section, we explored the possibility to using failure information to
detect suspicious hosts in the enterprise network. Here, we describe the system
framework and our prototype implementation of a system that realizes our ideas.

194 7. Zhu, V. Yegneswaran, and Y. Chen

Enterprise
Network

DNS Server
DNS mon

Single

Suspicious
Host Detection
Failure Log

Final Report Correlation
Engine

Fig. 1. Netfuse multi-point monitoring architecture

3.1 System Overview

As shown in Figure 1, Netfuse is composed of three parts: the failure information
analysis (FIA) engine, DNSMon and the correlation engine. The FTA engine will
typically be deployed on the perimeter of the enterprise networks. The major
function of this component is to extract the failure information by looking at all
packets that transit the enterprise gateway router. It will generate the failure
information if any, by including both flow-level and application-level informa-
tion (if available). The DNSMon system monitors interaction between enterprise
clients and the local DNS server.

After the failure information is collected, the correlation engine implements
a diagnostic algorithm to classify hosts according to their failure profiles and to
group those suspicious hosts with similar failures. It then generates a classifica-
tion report that identifies suspicious hosts based on four different criteria: failure
volume, failure entropy, failure persistence, and failure uptick. We implemented
our prototype FIA engine by modifying the wireshark network protocol analyzer.
Our correlation engine is implemented in Python and uses a publicly available
clustering package [IJ.

3.2 Building an FIA from Wireshark

Wireshark([8]) is an open-source network protocol analyzer that is based on
libpcap library. Hence, Wireshark can analyze packets captured from a live net-
work connection or read from a captured pcap trace file. It is distinguished by
its flexible design that makes it easy to add dissectors for new protocols and
built-in support for hundreds of popular protocols.

We modified Wireshark to automatically extract failure information. The fail-
ures we consider include transport-level and selected application-level protocols
such as FTP, HTTP, SMTP, DNS, and IRC. For each ICMP failure, we record
the error type and client IP address. For TCP failure, we record client and server
IP addresses and corresponding port numbers. For DNS failures, we record the

Using Failure Information Analysis to Detect Enterprise Zombies 195

failure type, domain name, and client IP address. For FTP, IRC, HTTP and
SMTP failures, we record the server IP address, error code, client IP address,
and detailed failure information that may be helpful to an administrator. We
also capture the packet associated with each failure message. We focus on these
five protocols simply because they were the most popular in the enterprise traffic
that we monitored. However, the design of Wireshark makes it straightforward
to track failures in other protocols. Finally, as we are interested only in iden-
tifying potentially infected local hosts, we configure our system to only track
inbound failure messages.

3.3 L7-Based Automatic Protocol Inference

One problem with Wireshark is that it does not have built-in protocol inference
capability. It does not detect when a well-known protocol, e.g., HT'TP, is used in
nonstandard ports. Wireshark expects each dissector to be tied to one or more
ports and relies on the user to explicitly decode the packet by choosing a dissec-
tor when the packets are observed in unspecified ports. This is a fundamental
limitation especially for malware analysis, as malware often transmits packets in
nonstandard ports to evade monitoring systems.

To improve the fidelity of the FIA engine, we enhance Wireshark with L7
filter protocol signatures. L7-filter [5] is a classifier that can identify packets
based on packet payload. It uses regular expressions to automatically classify
packets as belonging to certain common protocols. We provide below examples
of L7 protocol signatures for HT'TP and IRC:

— HTTP Protocol: http/(0.911.0/1.1)[1-5][0-9][0-9][\x09-\x0d-"]*(connection: |
content-type: | content-length: | date:) | post[\x09-\x0d-"]*http/[01].[019]

— IRC Protocol: "(nick[\x09-\x0d]*user[\x09-\x0d]*: luser [\x09\x0d]*:[\x02-
\x0d]*nick[\x09-\x0d]*\x0d\x0a)

We modified the connection struct in Wireshark to maintain a dissector tag for
each connection. Every connection starts without any pre-specified dissectors.
When a packet arrives, we first check to see if the connection has been allocated
to a dissector. If not, we check to see if the packet matches one of the L7 filter
signatures. If it finds a suitable dissector, then the connection struct is updated
so future packets can be accelerated, bypassing the L7 regular expression check.
Once the packet is parsed with the appropriate dissector, the output is examined
for any failure messages that are stored in a log file. The FIA engine is installed
as a monitor on the span port of the gateway router of the enterprise networks
and logs inbound failure responses from remote servers. Figure 2l illustrates the
modified Wireshark packet processing engine.

3.4 Multipoint Deployment

We begin with a simplified overview of a domain name lookup using the domain
name service. As in our deployment, DNS servers are typically located inside the
enterprise network. Local enterprise clients submit name resolution requests to the

196 7. Zhu, V. Yegneswaran, and Y. Chen

ICMP failure
IP Layer Analysis
Payload

matching and
Choosing
dissector for this
flow

Dissectors
existing for this
flow?

DNS failure
Analysis

TCP failure
Analysis

Application(HTT
P, SMTP, IRC,
FTP) failure
analysis

Fig. 2. Modified Wireshark packet processing engine

local DNS server (resolving name server). The resolving server checks its cache
and if the name does not exist queries the authoritative name server on behalf
of the local client. (The resolving server might have to query additional servers
to obtain the name of the authoritative server for a specific domain.) Finally, the
resolving name server responds back to the client with the appropriate IP address
or NXDOMAIN if the name does not exist, or other type of DNS failure.

A side-effect of the hierarchical DNS system is that it poses additional chal-
lenges for any network-based monitoring system as monitoring the gateway only
provides a view of the interaction between the resolving name server and ex-
ternal DNS servers. While suspicious domain lookups could be identified, they
cannot typically be tracked back to the client that originated the name lookup.
Netfuse addresses this problem by integrating an additional lightweight monitor
(which we call DNSMon) that tracks activity between the local clients and the
resolving name server. DNSMon produces regular alert logs that summarize DNS
failure activity of all enterprise hosts. By combining DNSMon alerts with the
data collected at the gateway monitor, we get a comprehensive log of network
failure activity. Next, we describe how the Netfuse correlation engine processes
this information to intelligently isolate suspicious enterprise hosts.

4 Correlation and Clustering Engine

Here, we first describe the algorithm that we implement for ranking suspicious
hosts based on failure profiles. Next, we describe our algorithm for classifying
groups of hosts with similar failure profiles. Finally, we discuss some techniques
that we implemented for reducing false positives in our enterprise network.
Based on our empirical experience from analyzing malware traces, the cur-
rent prototype system implementation is focused on failures that occur in the
transport-layer and five application-layer protocols: HT'TP, FTP, SMTP, DNS,
and IRC. As Wireshark has dissectors for hundreds of protocols, it is not difficult

Using Failure Information Analysis to Detect Enterprise Zombies 197

to extend the system to support additional protocols. We now describe how our
detection algorithm works based on failure input from these protocol analyzers.

4.1 Detecting Suspicious Hosts

The primary inputs to the diagnostic algorithm are failure logs obtained from
the FIA engine and DNSMon described in Section First, we classify and
aggregate failure information based on host IP address, protocol, and failure
type. Next, we compute the following four different scores for each host in
the enterprise network with failure activity: (i) composite failure, (i7) failure
divergence, (7i7) failure persistence and (iv) failure entropy. The scores are each
normalized to be in the range of 0 and 1. Finally, we use an SVM-based learning
technique to classify suspicious hosts. We begin by describing the four scoring
functions in greater detail.

Composite Failure Score. This score estimates the severity of the observed
failures by each host based on volume. For every host, the failure profile can be
represented as a vector{N;}, where N, represents the number of failures of the
i¢n, protocol. We proceed as follows to compute the composite failure score for
each host.

Step 1: In Section 2l we observed that malware tends to have a large number of
failures. So the first step in our analysis is a filtering step that culls hosts with the
fewest number of failures. Let «;, §;, and ~; represent the number of application
level failures, number of TCP RSTs and number of ICMP failures respectively
of host i. Furthermore, let u(3) and o(8) represent the average and standard
deviation of TCP failures for a host. Likewise, let p(y) and o(vy) represent the
average and standard deviation of ICMP failures for a host.

Specifically, we consider only hosts that satisfy either of the following three
constraints: (1) o; > 7 (where 7 is a constant, set to be 15 for our experiments);
(2) Bi > p(B) +2*0(B) (TCP RST count more than two standard deviations
from the mean); or (3) v; > p(y) +2x*o(y) (ICMP failure count more than two
standard deviations from the mean). The final two constraints remove backscat-
ter traffic [33], which artificially inflates the TCP RST and ICMP failure counts
for IP addresses in the network.

Step 2: Next, we compute a composite score for each of the remaining hosts as
follows: score(host;) = >+, N;/T;, where T; is the total number of failures for
¢, protocol across all hosts.

Step 3: Finally, we sort all the hosts according to the score calculated in the
second step. Hosts with higher scores are more suspicious than hosts with lower
scores.

Failure Divergence Score. The objective of the failure divergence score is to
measure the degree of uptick in a host’s failure profile. In particular, we would
like to measure the delta between a host’s current (daily) failure profile and
past failure profiles. We expect that newly infected hosts would show a strong

198 7. Zhu, V. Yegneswaran, and Y. Chen

and positive divergence in their failure patterns while other hosts (clean hosts
and those that have been infected for a while) would demonstrate a more stable
failure profile.

To quantify this we adopt a well-known statistical forecasting technique, ex-
ponentially weighted moving averages (EWMA) [7], that uses a weighted moving
average of past observations as the basis for predicting the failure profile for the
next day. EWMA uses an exponential distribution to weigh recent observations
more heavily than past observations and it is controlled by the parameter «,
where « is the smoothing factor, and 0 < a < 1. In our measurements, we set
a to be 0.5. We compute divergence as follows for each host in the network. Let
E;j; correspond to the expected number of failures for host ¢, on protocol j on
day t. We compute E;j; as shown in Figure[3l We then compare the actual value
Xi;i with Ej;j; by calculating the distance as follows: 1-(Ejji-Xij0)/ (Eiji+Xiji)-
Finally, we normalize by dividing by the maximum divergence score across all
hosts in that day to obtain a score in the range [0,1].

Eijo = Xijo (1)

Eijt = aXiji1+ (1 —a)Biji (2)
. . Eije — Xije

Distiy = E—— J 3

‘ Jzzl Eije + Xije)

Divergenceir = Distir (4)

Vk max(Disty)

Fig. 3. Simple exponential prediction model and divergence computation

Failure Entropy Score. The failure entropy score measures the degree of diver-
sity in a host’s failure profile. This is based on the insight derived from Section [2]
that failures in many malware applications tend to have a high degree of redun-
dancy, e.g., failures are often restricted to a few ports or domains such as in a
bot that tries to repeatedly contact a C&C server that is currently inactive.

For TCP failures, we track entropy in the server distribution and host distri-
bution of each client receiving TCP RST failures. For every server H;, we record
the number of N; failures from it. We repeat the same for each server port P;.
For DNS failures, we track entropy in the domain names that are associated with
failures. For each domain name D; appearing in failure response, we record the
number N;. For HTTP, FTP IRC, and SMTP failures, we track entropy in the
disribution of various failure types (e.g., HTTP/404) within each protocol and
remote servers that issue the errors. For each host H; and each error type E;,
we calculate the corresponding number N;. We do not consider ICMP failures
in the entropy computation.

For those protocols that have two distribution sets, we calculate the average
entropy [2] for each set. We begin by computing weights for each host ¢ and
protocol j. Then, for each host ¢, we compute the significance (s) of protocol j as
sij = Nij/ >k = 1"Ny; (i.e., number of failures of host 4 in protocol j divided
by the total number of failures in protocol j across all hosts). The weight of

Using Failure Information Analysis to Detect Enterprise Zombies 199

protocol j for host ¢ is simply its normalized significance w;j = s;5 / >_p_; sik.
The weighting function ensures that for each host, protocols that are responsible
for a large portion of its failures will dominate its entropy value. Next, for each
host 7 and protocol j, we calculate the entropy p;;. The failure entropy score for
the host is simply the weighted average entropy score, i.e., Y ., w; * p;.

Failure Persistence Score. The final score is failure persistence, which is
motivated by the observation from our case study that malware failures tend to
be long-lived. Prior approaches have used autocorrelation techniques to detect
long-lived periodic behavior of malware additivity [24]. While we could leverage
similar statistical approaches to measure persistent malware activity, we adopt a
simpler approach to measure persistence. We simply split the time horizon into
N parts (where N is set to 24 in our prototype implementation), and compute
the percentage of parts where the failure happens. High failure persistence values
provide yet another useful indicator of potential malware infections.

SVM-based Algorithm to Classify Suspicious Hosts. Support vector ma-
chines are a recent and well-studied family of supervised learning algorithms used
for classification of multidimensional data. Given a training data set, SVMs work
by building a hyperplane (or a predictor function) that efficiently seperates posi-
tive and negative examples. In our case, we are interested in the maximal margin
classifier, i.e., a hyperplane that separates positive and negative examples with
maximal distance. In many environments, SVMs have been shown to outperform
traditional linear classifiers. Indeed, we had a similar experience in testing dif-
ferent classifiers on our data set. For this system, we use a publicly available tool
WEKA [9] to implement our SVM-based classification. The input to the system
is a series of four-dimensional vectors where each vector corresponds to the four
scores of a individual host. We train the system using a set of malware traces
and clean traces for which we have ground truth. The classification problem is
identifying the set of suspicious hosts in the network.

4.2 Detecting Failure Groups

After we get the result of suspicious hosts, we want to know whether they are
infected by the same malware. For example, we want to know whether they be-
long to the same botnet. This information can help the network administrator
rapdily assess what has happened inside the network. To enable this, we devel-
oped a clustering algorithm to detect failure groups which we discuss below. We
begin by defining the scoring function that is used for comparing failure profiles.

Scoring Function. According to the description above, each type of failure can
be represented as a set of (F;,N;), where F; is the failure property and N; is the
number of failures with this property. Given this representation, we can define
the similarity between two hosts as follows. The pseudocode for the algorithm is
provided in Algorithm [l For each protocol, the algorithm compares the number
of failures for hosts 7 and j. The similarity score is incremented by protocol failure
count of each host minus the difference between the larger and smaller failure
count. It should be apparent that hosts with identical failure profiles would end

200 7. Zhu, V. Yegneswaran, and Y. Chen

Let (F;,N;) be the set of one host, and (F},N;) be the set of the other.
procedure Similarity ((F;,N;), (F;,N;))
Let sum = 0 be the total number of failures of these two sets ;
Let sim = 0 be the number of failures that show similarity;
1 foreach (Fji,Ni) in set (F;,N;) do
2 foreach (Fj;,Nj;) in set (F;,N;) do
3 if Fik = Fjl then
4 sim = sim + (N + Nj; — abs(Ny — Nj1))
5 sum = sum + Ny + Nj
end
end
6 Return sim/sum;

Algorithm 1. Function to calculate similarity between two failure profiles

up with higher similarity scores. Finally, the similarity score is normalized by
dividing by the total number of failures between the two hosts.

Clustering Method. The similarity metric enables us to cluster hosts into
distinct groups based on their respective failure profiles. We apply hierarchical
clustering based on Peter Kleiwig’s publicly available clustering package [I]. The
unique aspect of this tool is its flexibility, which lets us choose between seven
different clustering algorithms. We chose Ward’s minimum variance clustering
method, which is widely used for hierarchical clustering. The clustering generates
a dendrogram that illustrates similarity among hosts in the network based on
their failure profiles. Then instead of fixing a threshold to cut them into clusters,
we implement Silhouette Validation Method [37] to find the optimal cut index.

5 Evaluation

To evaluate the performance of Netfuse, we conducted comprehensive tests to
measure its detection and false positive rates. The traffic that we use includes
five traces shown in Table[B} three malware trace sets and two clean traces from a
research institute network, which we refer to as the institute trace. First, we built
a model from the training trace. Then to test the classification performance, we
use traces from different malware sets and mix them with the institute traces.

Table 5. Training and testing data set

5-day 12-day

Institute Trace Institute Trace
Malware Trace I Training Testing
Malware Trace II Testing

Malware Trace 111 Testing

Using Failure Information Analysis to Detect Enterprise Zombies 201

1. Malware Trace I: We reuse 24 traces from Table 2] which we combine with
clean traces to build the classification model.

2. Malware Trace II: This data set contains five malware families that are not
included in the training set (Peacomm, Kraken, Rbot, Mimail and Bifros) and
three malware instances represented in the training set. We created a VMware-
based virtual machine (VM) environment running eight isolated Windows XP
virtual machines, infecting each with a different malware instance. We let these
systems run for 10 hours and collected traces of all their network activity. We
repeated the experiment three times collecting a total of 24 traces (three per mal-
ware). We use this trace to evaluate the classification system and the clustering
component.

3. Malware Trace III: This data set contains more than 5,000 malware traces
that were obtained from a sandnet. This corpus is particularly attractive because
it represents a large and diverse collection of malware. However, a deficiency of
sandnet traces is that the malware binaries are often run only for a short period
and many of them do not generate any network activity. From this large corpus,
we downselected 242 longer running traces based on duration and trace size.

4. Benign Institute Trace: We deployed our system online in the research
institute network and continuously ran it for over three weeks. The network is
rigorously monitored by NIDSs and has more than one hundred systems (mix
of Linux, Macs and Windows PCs). Being a relatively small, well-administered
network with a diverse mix of traffic makes it a good candidate for evaluating
false positives. We use two traces from this network (a 5-day trace for training
and a 12-day trace for testing). In our analysis of clients that generate many
failures, we stumbled upon a group of misconfigured Tor nodes that are part of
another project. These hosts are grouped together by the clustering engine and
classified as benign by the SVM classifier.

5.1 Classification and Detection Results

We will first describe the training process. Then we use the built model to test
the performance of our system, including detection rate and false positives.

Training Process. In the training process, we use the SVM algorithm to build
a classification model. First, we combine malware trace I with the 5-day institute
trace to construct the input data set. Intuitively, a larger training set implies a
more accurate model. An example of a rule generated by the SVM algorithm is
—4.266 x (normalized) divergence score —0.042 x persistence score +0.664 X
entropy score +0.561 x failure score + 1.8486. For our evaluation the detection
rate for training is 97.2% and the false positive rate is 0.3%.

Performance Evaluation. To measure the detection performance and estimate
false positive rates, we mixed different malware traces I, II, and III with 12
days of institute traces. We then processed them through the Netfuse classifier,
which took under one hour to process the failure logs for 12 days. In each case,
we counted the number of malware traces that were identified (true-positives)

202 7. Zhu, V. Yegneswaran, and Y. Chen

100

3

4--4 Inst / malware I
#— Inst / malware II
—o Inst / malware 11T

2

4--& Inst / malware T
+— Inst / malware II
©—© Inst / malware IIT

Detection Rate (%)
8

False Positive Rate (%)
g

2

8
T
8

S
T

Fig. 4. Detection (left) and False Positive (right) rates on Institute/malware I,IT,III
mixture traffic

and the number of benign clients that were classified incorrectly. The results
are shown in Figure @l The detection rate is more than 92% for traces I and
II. For trace 3, the detection rate varies between 35% and 40%, i.e., around
90/242 malware instances detected. The lower detection rate for trace 3 could
be attributed to two reasons. First, the trace set includes many types of malware,
including adware that often have traffic profiles similar to benign applications.
Second, the traces are quite short (around 15 minutes long). Despite this, Netfuse
is able to detect over a third of the malware without any specialized signatures.
The false positive rate is consistently lower than 5%.

Coﬂ:li Table 6. Malware clustering summary

C1

c2

A2 :'—’7 Bot Trace Packets Clustered Accuracy
DO 1

o1 Peacomm 999905 3/3 100%
i Bifrose 30635 3/3 100%
Hf— B .

& Mimail 279962 3/3 100%
Eé — Kraken 49505 3/3 100%
G } Sdbot 312796 3/3 100%
8 e — e DA Spybot 79750 3/3 100%
5 Rbot 1175083 3/3 100%
S Weby 9000 3/3 100%

Fig. 5. Malware clustering dendrogram

Clustering Results. After we identify suspicious hosts, we group them according
to their failure profiles to simplify analysis of the network administrators. We use
malware trace II to test the clustering engine. As shown in Table[d, we find that in
all cases the clustering is quite robust. The corresponding dendrogram is provided
in Figure[B] where 24 hosts are infected with eight malware instances listed A-H.

Using Failure Information Analysis to Detect Enterprise Zombies 203

6 Related Work

Over the last three years, botnets have become one of the hot areas in networking
and security research. In [40] Rajab et al. use a multifaceted approach to conduct
a comprehensive study on the prevalence of IRC botnets. Dagon et al. ([12]) use
DNS sink-hole redirection to measure botnet properties and develop a diurnal
model for botnet propagation. In [2I], Grizzard et al. study the structure of
botnets and discuss how the single point weakness will force botherders to a P2P
structure using the Storm botnet as an example. Vogt [42] et al. discuss a recent
trend toward smaller botnets and raise the threat of superbots, i.e., an army
of distributed botnets that can be coordinated to act as a single network. More
recently, Holz et al. discuss the emerging threat of fast-flux service networks [25].
Bayer et al. [II] propose a scalable algorithm to cluster the malware according
to the host behavior profiles.

Inspired by these measurement and modeling studies, there has been a consid-
erable research thrust in building better botnet detection systems. The Rishi [20]
system detects IRC botnets by matching IRC bot nickname patterns. BotHunter
was the first system to use dialog correlation to detect botnet activity. BotSnif-
fer uses spatio-temporal correlation to detect botnet C&C activity [24]. The
BotMiner system [22] combines clustering techniques with heuristics developed
by BotHunter and BotSniffer to classify malware based on both malware activ-
ity patterns and C&C patterns. The motivation for Netfuse and its correlation
approach bears certain similarities to these systems. However, these systems fun-
damentally differ from Netfuse in that they ignore application-layer failures and
focus on successful communication patterns of bots.

Others have developed machine-learning approaches to detect botnets [30}
[19]. Bayesian network classifiers are used in [30]. In this paper, authors use
machine learning techniques to distinguish between non-IRC traffic, botnet IRC
traffic and non-botnet IRC traffic. A different framework, which uses an entropy
classifier and a machine-learning classifier, to detect chat bots is provided in [19].
It shows that message sizes and inter-message delays are sufficient to differentiate
humans from chat bots. We consider these efforts complementary to our system.
Statistical traffic anomaly detection techniques have also been demonstrated to
have the potential of identifying botnet-like activity. The exPose system [29]
uses statistical rule-mining techniques to extracting significant communication
patterns and identify temporally correlated flows, such as worm flows. Threshold
random walk is a well-known algorithm that uses hypothesis testing to identify
portscanners and Internet worms [2§].

Finally, we are also informed by traffic characterization studies such as Pang et
al. [34] and efforts to automate characterization of enterprise use patterns [15].
A comprehensive analysis of DNS query traffic and its use in identifying net-
work anomalies is provided in [38]. While our system is tuned toward the botnet
detection problem, Netfuse could be easily extended to be used as a traffic char-
acterization tool.

204 7. Zhu, V. Yegneswaran, and Y. Chen

7 Conclusion

We propose failure information analysis as a new paradigm for detecting
application-layer failures and suspicious activities in the enterprise. We are mo-
tivated by the goal of automatically discovering infected hosts in the enterprise.
We use an empirical analysis case study to highlight certain differences in bot-
like malware and production enterprise traffic that could be exploited to identify
infection activity. Using this framework, we develop a prototype system called
Netfuse that has three integral components: FIA, DNSMon and the correlation
engine. The correlation engine uses four different scores (composite failure, di-
vergence, failure entropy, and failure divergence) to classify suspicious hosts and
a clustering component aggregates hosts with similar failure profiles to simplify
analysis. We evaluate the system using several malware traces. Our evaluation
and analysis shows that Netfuse is an efficient and effective system for discov-
ering embedded malware. In future work, we plan to address the problem of
adapting Netfuse to deal with knowledgeable adversaries.

Acknowledgements

This material is based on work supported by the Army Research Office under
Cyber-TA Grant No. W911NF-06-1-0316 and by the National Science Founda-
tion Grant No. CNS-0716612. This work was also partially supported by DOD
(Air Force of Scientific Research) Young Investigator Award FA9550-07-1-0074
and a grant from NU-Motorola Center for Seamless Communication. Any opin-
ions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the fund-
ing sources. We also wish to acknowledge help from Michael Hodgsett, Matt
Jonkman and the useful feedback received from our Securecomm reviewers.

References

. Data clustering, http://www.let.rug.nl/~kleiweg/clustering/

. Entropy, http://en.wikipedia.org/wiki/Information_entropy

Gnu wget, http://www.gnu.org/software/wget/

. Kademlia, http://en.wikipedia.org/wiki/Kademlia

. L7-filter: Application Layer Packet Classifier for Linux,

http://17-filter.sourceforge.net/

6. Offensive Computing, Community Malicious code research and analysis,
http://www.offensivecomputing.net/

7. Simple Exponential Smoothing,
http://en.wikipedia.org/wiki/Exponential_smoothing

8. Wireshark: The World’s Most Popular Network Protocol Analyzer,
http://www.wireshark.org/

9. WEKA-Machine Learning Software in Java (2008),

http://weka.wiki.sourceforge.net/Primer-7token=

2b7a093d07966047b281eeecOdalb9fd

U W o

http://www.let.rug.nl/~kleiweg/clustering/
http://en.wikipedia.org/wiki/Information_entropy
http://www.gnu.org/software/wget/
http://en.wikipedia.org/wiki/Kademlia
http://l7-filter.sourceforge.net/
http://www.offensivecomputing.net/
http://en.wikipedia.org/wiki/Exponential_smoothing
http://www.wireshark.org/
http://weka.wiki.sourceforge.net/Primer-?token=2b7a093d07966047b281eeec0da1b9fd
http://weka.wiki.sourceforge.net/Primer-?token=2b7a093d07966047b281eeec0da1b9fd

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Using Failure Information Analysis to Detect Enterprise Zombies 205

Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Au-
tomated classification and analysis of internet malware. In: Kruegel, C., Lippmann,
R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178-197. Springer, Heidelberg
(2007)

Bayer, U., Comparetti, P.M., Hlauscheck, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: Network and Distributed System Security
Symposium, NDSS (2009)

Dagon, D., Zou, C., Lee, W.: Modeling botnet propagation using time zones. In:
Network and Distributed System Security Symposium, NDSS (2006)

Moore, D., Shannon, C., Brown, J.: Code-Red: A case study on the spread and vic-
tims of an Internet worm. In: Proceedings of the Internet Measurement Workshop
(2002)

Debar, H.: An Introduction to Intrusion Detection Systems. In: Proceedings of
Connect (2000)

Estan, C., Savage, S., Varghese, G.: Automatically Inferring Patterns of Resource
Consumption in Network Traffic. In: Proceedings of ACM SIGCOMM (2003)
F-Secure. Kapersky Security Bulletin 2008: Malware Evolution January - June
2008 (2008), http://www.viruslist.com/analysis?pubid=204792034

F-Secure. Calculating the Size of the Downadup Outbreak (2009),
http://www.f-secure.com/weblog/archives/00001584.html

Fitzgerald, P.: Downadup: Geolocation, Fingerprinting and Piracy (2009),
https://forums.symantec.com/t5/Malicious-Code/Downadup-Geo-location-
Fingerprinting-and-Piracy/ba-p/380993

Gianvecchio, S., Xie, M., Wu, Z., Wang, H.: Measurement and classification of
humans and bots in internet. In: USENIX Security (2008)

Goebel, J., Holz, T.: Rishi: Identify bot contaminated hosts by irc nickname eval-
uation. In: Hot Topics in Understanding Botnets (HotBots) (2007)

Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B.: Peer-to-peer botnets:
Overview and case study. In: Hot Topics in Understanding Botnets (HotBots)
(2007)

Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In: Proceedings
of the 17th USENIX Security Symposium (2008)

Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting
malware infection through IDS-driven dialog correlation. In: Proceedings of 16th
USENIX Security Symposium (2007)

Gu, G., Zhang, J., Lee, W.: Botsniffer: Detecting botnet command and control
channels in network traffic. In: Proceedings of the 15th Annual Network and Dis-
tributed System Security Symposium, NDSS 2008 (2008)

Holz, T., Gorecki, C., Rieck, K., Freiling, F.C.: Measuring and detecting fast-flux
service networks. In: NDSS (2008)

SRI International. Malware Threat Center (2008), http://mtc.sri.org

Javitz, H., Valdes, A.: The SRI IDES statistical anomaly detector. In: Proceedings
of IEEE Symposium on Research in Security and Privacy (1991)

Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan detection using
sequential hypothesis testing. In: Proceedings of the IEEE Symposium on Security
and Privacy (2004)

Kandula, S., Chandra, R., Katabi, D.: What’s going on? Learning communication
rules in edge networks. In: Sigcomm (2008)

http://www.viruslist.com/analysis?pubid=204792034
http://www.f-secure.com/weblog/archives/00001584.html
https://forums.symantec.com/t5/Malicious-Code/Downadup-Geo-location-Fingerprinting-and-Piracy/ba-p/380993
https://forums.symantec.com/t5/Malicious-Code/Downadup-Geo-location-Fingerprinting-and-Piracy/ba-p/380993
http://mtc.sri.org

206

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

7. Zhu, V. Yegneswaran, and Y. Chen

Livadas, C., Walsh, R., Lapsley, D., Strayer, W.T.: Using machine learning tech-
niques to identify botnet traffic. In: Proc. IEEE LCN Workshop on Network Secu-
rity, WoN$S 2006 (2006)

Trend Micro. Trend Micro Threat Roundup and Forecast - 1TH 2008 (2008),
http://us.trendmicro.com/us/threats/enterprise/security-library/
threat-reports/index.html

Microsoft. Microsoft Security Bulletin MS08-067 — Critical (2008),
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
Moore, D., Voelker, G.M., Savage, S.: Inferring internet denial-of-service activity.
In: Proceedings of the 10th Usenix Security Symposium (2001)

Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V., Tierney, B.: A first look
at modern enterprise traffic. In: IMC (2005)

Pang, R., Yegneswaran, V., Barford, P., Paxson, V., Peterson, L.: Characteristics
of Internet background radiation. In: Proceedings of the 4th ACM SIGCOMM
Internet Measurement Conference (2004)

Paxson, V.: Bro: A system for detecting network intruders in real-time. In: Pro-
ceedings of the 7th USENIX Security Symposium, San Antonio, TX (January 1998)
Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics 20 (1987)
Plonka, D., Barford, P.: Context-aware clustering of dns query traffic. In: Proceed-
ings of ACM Internet Measurement Conference (2008)

Plonka, D., Barford, P.: Context-aware Clustering of DNS Query Traffic. In: Pro-
ceedings of the 8¢h ACM SIGCOMM Internet Measurement Conference (2008)
Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to un-
derstanding the botnet phenomenon. In: Proceedings of the 6th ACM SIGCOMM
Internet Measurement Conference (2006)

Roesch, M.: The SNORT Network Intrusion Detection System (2002),
http://www.snort.org

Vogt, R., Aycock, J., Jacobson Jr., M.J.: Army of botnets. In: Network and Dis-
tributed System Security Symposium, NDSS (2008)

Yegneswaran, V., Porras, P., Saidi, H., Sharif, M., Narayanan, A.: SRI’s Multiper-
spective Malware Infection Analysis Page (2009),
http://www.cyber-ta.org/releases/malware-analysis/public/

Zdrnja, B., Brownlee, N., Wessels, D.: Passive Monitoring of DNS Anomalies (2007)

http://us.trendmicro.com/us/threats/enterprise/security-library/threat-reports/index.html
http://us.trendmicro.com/us/threats/enterprise/security-library/threat-reports/index.html
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
http://www.snort.org
http://www.cyber-ta.org/releases/malware-analysis/public/

Dealing with Liars: Misbehavior Identification
via Rényi-Ulam Games*

William Kozma Jr. and Loukas Lazos

The University of Arizona, Electrical and Computer Engineering Dept. Tucson,
Arizona, 85712
{wkozma,llazos}@ece.arizona.edu

Abstract. We address the problem of identifying misbehaving nodes
that refuse to forward packets in wireless multi-hop networks. We map
the process of locating the misbehaving nodes to the classic Rényi-Ulam
game of 20 questions. Compared to previous methods, our mapping al-
lows the evaluation of node behavior on a per-packet basis, without the
need for energy-expensive overhearing techniques or intensive acknowl-
edgment schemes. Furthermore, it copes with colluding adversaries that
coordinate their behavioral patterns to avoid identification and frame
honest nodes. We show via simulations that our algorithms reduce the
communication overhead for identifying misbehaving nodes by at least
one order of magnitude compared to other methods, while increasing the
identification delay logarithmically with the path size.

1 Introduction

Multi-hop networks, such as wireless ad-hoc, sensor, and mesh networks rely
on collaboration among network nodes to provide reliable data services. If the
destination is not within the communication range of the source, data has to be
relayed by intermediate nodes. Implicit in this relay process is the assumption
that intermediate nodes are willing to forward traffic other than their own.

However, a fraction of nodes may not conform to the specifications of col-
laborative routing protocols. Sophisticated users can misconfigure their devices
to behave in a selfish manner and drop relay traffic, in order to save energy
resources [8,[9,[34]. Moreover, in hostile environments, an adversary may com-
promise several nodes and configure them to misbehave. It has been shown that
even a small fraction of misbehaving nodes refusing to relay packets, can lead to
a significant drop in the overall network performance [6L[7,20,21]. In this paper,
we address the problem of developing resource-efficient methods for identifying
nodes that refuse to collaborate in relaying packets. We define resource efficiency
in terms of the communication overhead associated with the identification of all
misbehaving nodes along a routing path.

Previously proposed solutions addressing routing misbehavior can be clas-
sified to reputation-based systems [6L[7,21], credit-based systems [, 9] 16} [34],

* This research was supported by BAE systems, and Connection One (an I/UCRC
NSF/industry /university consortium).

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 207 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

208 W. Kozma Jr. and L. Lazos

and acknowledgment-based systems [IL[2,[1820,23]. A common element in all
these solutions is the evaluation of node behavior on a per-packet basis. This
approach provides a fine granularity in quantifying the behavior of nodes and
low delay in identifying the misbehaving ones. However, it expends energy (in
the form of receptions or transmissions) on a per-packet basis. For example,
in acknowledgment-based systems, packets must be acknowledged two or more
hops upstream [21[1], thus consuming energy and bandwidth.

We develop a communication-efficient solution that allows the per-packet eval-
uation of behavior while not incurring the per-packet overhead. Nodes themselves
are responsible for monitoring the packets they receive and forward to the next
hop. When misbehavior is observed on a particular path, the source requests
from nodes along the path to commit to a proof of the packets they receive and
forward via an audit process (similar to [I8[I]). Although misbehaving nodes
may lie about the packets they forward, the source combines multiple audit
replies from honest nodes to identify the misbehaving ones.

Our Contributions: We map the problem of misbehavior identification to the
classic Rényi-Ulam game of 20 questions [29,32]. Rényi-Ulam games have been
extensively used in various contexts including error correction codes [3], select-
ing, sorting, and searching in the presence of errors [25/30,[31], to name a few.
We develop communication-efficient algorithms for locating misbehaving nodes,
based on different versions of Rényi-Ulam games. Our mapping allows the per-
packet evaluation of node behavior without incurring the per-packet communi-
cation overhead. Furthermore, our formulation addresses colluding adversaries
who coordinate their attacks to avoid identification and frame honest nodes.
The remainder of the paper is organized as follows. In Section 2 we present
related work. In Section [3l we state the problem and our model assumptions. In
Section @l we map the misbehavior identification problem to Rényi-Ulam games
and develop two auditing (searching) strategies. In Section Bl we present an effi-
cient method for constructing audits. In Section [6 we compare the performance
of our algorithms to previously proposed schemes. In Section [l we conclude.

2 Related Work

Previously proposed methods for addressing the misbehavior problem can be
classified into three categories: (a) credit-based systems, e.g., [8,[9,16,34], (b)
reputation-based systems, e.g., [[47T32T6,22], and (c) acknowledgment-based

systems, e.g., [1L2120]23].

Credit-Based Systems: Credit-based systems [8[34,0[T6] are designed to provide
incentives for forwarding packets in the form of credit payments. Nodes accumu-
late credit that can be later used to pay for sending their own traffic. Buttyan
et al. [8,9] proposed a scheme in which a nuglet counter is used to tabulate the
amount of credit accumulated at each node. To prevent tampering with the ac-
cumulated credit, the nuglet counter is implemented in tamper proof hardware.
Zhong et al. [34] proposed Sprite, in which nodes collect receipts for the packets

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 209

they forward which can be later exchanged for credit in a Credit Clearance Ser-
vice (CCS). Jakobsson et al. [16] used cryptographic payment tokens that are
attached to all packets and managed by a virtual bank. In credit-based systems
a misbehaving node can drop relayed traffic if it is not interested in routing its
own packets. Moreover, colluding nodes can agree to forward their own flows to
accumulate credit while dropping all other flows. Finally, credit-based systems
favor well connected nodes to boundary ones.

Reputation-Based Systems: Reputation-based systems [6L[7LI32122,T4] rely on
building a reputation metric for each node according to its behavioral pattern.
Buchegger et al. [6L[7] proposed the CONFIDANT scheme, in which neighboring
nodes monitor the behavior of their peers via overhearing. A similar monitoring
method was proposed by Marti et al. [2I]. In building the reputation metric,
monitoring nodes usually overhear the transmission and reception of messages on
a per-packet basis, thus operating their radio in promiscuous mode. Ganeriwal et
al. [13] used a Bayesian model to map binary ratings into reputation metrics. He
et al. [T4] proposed SORI, which monitors neighboring nodes using a watchdog
mechanism and propagates collected information to nearby nodes, thus relying
on both first- and second-hand evaluations. Michiardi et al. [22] proposed CORE,
where nodes combine reports from other nodes and task-specific monitoring to
assign reputation metrics.

Node monitoring becomes complex in cases of multi-channel networks or nodes
equipped with directional antennas. Neighboring nodes may be engaged in paral-
lel transmissions in orthogonal channels thus being unable to monitor their peers.
Moreover, operating in promiscuous mode requires up to 0.5 times the amount
of energy for transmitting a message [12], thus making message overhearing an
energy expensive operation.

Acknowledgment-Based Systems: Acknowledgment-based systems [11 2,20, 23]
rely on the reception of acknowledgments to verify that a message was forwarded
to the next hop. Liu et al. [20] proposed the 2ACK scheme, where nodes explicitly
send acknowledgments two hops upstream to verify cooperation. Packets that
have not yet been verified remain in a cache until they expire. A value is assigned
to the quantity/frequency of unverified packets to determine misbehavior. The
2ACK scheme is susceptible to collusion of two or more consecutive nodes. Fur-
thermore, colluding nodes can frame honest ones by claiming not to receive the
acknowledgments. Padmanabhan et al. [23] proposed a method based on tracer-
oute in which the source probes the path with pilot packets indistinguishable
from data packets. Finally, Awerbuch et. al. [I] proposed an ACK-based scheme
relying on a binary search process to identify a single misbehaving link. As with
previous schemes, node collusion is not considered.

In our previous work [I8], we proposed REAct, a reactive misbehavior identi-
fication scheme relying on audits. In REAct, the destination periodically sends
acknowledgments to the source indicating the performance on the route. In the
case of a performance drop, the source initiates a series of random audits to
identify the misbehaving nodes. Nodes in the path in question provide a proof of

210 W. Kozma Jr. and L. Lazos

the packets they forward to the next hop using Bloom filters. REAct reduces the
communication overhead for identifying misbehaving nodes due to the compact
representation of its audits. However, REAct does not address collusion.

3 Network and Adversarial Models

Network Model: We assume a multi-hop ad hoc network where nodes collabora-
tively relay traffic according to an underlying routing protocol such as DSR [I7]
or AODV [26]. The path Psp used to route traffic from a source S to a desti-
nation D is assumed to be known to S. This is true for source routing protocols
such as DSR. If DSR is not used, Psp can be identified through a traceroute
operation. For simplicity, we number nodes in Psp in ascending order, i.e., n; is
upstream of n; if 1 < j.

We assume that the source and destination collaboratively monitor the perfor-
mance of Pgp. The destination periodically reports to the source critical metrics
such as throughput or delay. If a misbehaving node drops the periodic updates
as part of its misbehavior pattern, the source interprets the lack of updates as
misbehavior. Likewise, the destination explicitly alerts the source in case the
performance in Pgp is restored. These alerts are used to pause the misbehavior
identification process and account for: (a) temporal variations of performance
due to traffic or intermittent connectivity, and (b) random behavioral patterns
of the misbehaving nodes. We initially consider a quasi-static network in which
Psp does not change during the misbehavior identification process. This is later
relaxed, allowing changes in Psp due to node mobility.

We assume that the integrity, authenticity, and freshness of critical control
messages can be verified using resource-efficient cryptographic methods. For ex-
ample, a public key cryptosystem realized via computationally-efficient elliptic
curve cryptography may be used to verify the authenticity and integrity of mes-
sages while providing confidentiality [19]. Note that such cryptosystems require
the existence of a trusted certificate authority (CA) for initialization (issuance
of keys and certificates) as well as revocation of users via a certificate revocation
list (CRL). Several methods have been proposed for the distributed implemen-
tation of a CA [T1L28,33]. Alternatively, methods based on symmetric keys can
be used to protect critical messages [15,24,27].

Adversarial Model: We assume that a set M of misbehaving nodes exist in a
path of length k > |M|. Misbehaving nodes can be located anywhere in Pgp.
The source and destination have a mutual interest in communicating, thus mis-
behavior of S and D is not considered. Misbehaving nodes are aware of the mech-
anism used for misbehavior identification. The goal of misbehaving is twofold;
degrade throughput in Psp, and remain undetected. We consider two models
with respect to the behavioral pattern of nodes in M.

Independently misbehaving nodes: In this model, nodes in Psp misbehave inde-
pendently without coordinating their packet dropping patterns. Misbehavior is
modeled after an ON/OFF process in which nodes alternate between dropping

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 211

packets and behaving honestly. The duration of the misbehaving /behaving period
is exponentially distributed with parameters g1, po.

Colluding nodes: Colluding nodes share information with respect to the misbe-
havior identification process. For example, one misbehaving node can notify an-
other of any actions of the source. Information sharing is achieved either in-band
via the exchange of encrypted messages, or through an out-of-band coordination
channel. Based on collective knowledge, the colluding nodes coordinate their be-
havioral patterns to avoid identification or frame honest nodes. In this model,
we assume that colluding nodes are controlled by a single entity.

4 Misbehavior Identification

4.1 Motivation and Problem Mapping

The behavior monitoring mechanisms in previously proposed schemes operate
on a per-packet basis, either with acknowledgments [I,[2,[20,[23], or message
overhearing [6L[7,2T]. To reduce this overhead, we request nodes to self-evaluate
the set of packets they forward to the next hop. In this self-evaluation process,
honest nodes faithfully report the set of packets they received and forwarded,
while misbehaving nodes may lie regarding packets they dropped.

We map the process of identifying lies to Rényi-Ulam searching games [2932],
that have been used for recovering an unknown value in the presence of errors.
Using our mapping to Rényi-Ulam games, we develop novel misbehavior identi-
fication methods that are collusion resistant. We first provide a brief background
on Rényi-Ulam games and then describe our mapping.

Background on Rényi-Ulam Games: Rényi-Ulam games are searching games
independently proposed by Rényi [29] and Ulam [32]. These games involve two
players; a questioner and a responder. The responder selects a secret value w from
a finite search space (2. The questioner attempts to determine w by asking at
most ¢ questions to which the responder is allowed up to ¢ lies. Before starting the
game, the players agree on: (a) the search space {2, (b) the number of questions ¢,
(c) the number of lies ¢, and (d) the mode of interaction between the players. The
format of the questions can be classified into three categories: (a) bit questions,
(b) cut questions, and (c) membership questions. Bit questions are defined as
“Is the ith-bit of w equal to 17”7 Cut questions are defined as, for some y € (2,
“Is w < y7” Membership questions are defined as, for some subset A C {2, “Is
w € A?” The same questioning format is assumed for the entire game.

Two modes are possible for the interaction between the players; batch mode
and adaptive mode. In batch mode, the questioner submits all questions to the
responder at the same time. The responder is therefore able to review all ques-
tions before answering. In adaptive mode, the questioner asks questions one at a
time. The questioner can adapt its strategy based on all previous answers. The
questioner wins the game if it determines w after at most g questions. Else, the
responder wins. The questioner is said to have a “winning strategy” if it can find
w after at most ¢ questions, independent of w, or how the responder lies.

212 W. Kozma Jr. and L. Lazos

Q ={ny,...,ns} o=w
Questioner Responder
Q={1,..K _ _ _nesponder
- - D
Isw<y?
Questioner No Responder AuditReply

w
AuditRequest

(a) (b)

Fig.1. (a) A generic Rényi-Ulam game. (b) Misbehavior identification mapped to a
Rényi-Ulam game.

Mapping to Rényi-Ulam Games: In our mapping of misbehavior identification
to Rényi-Ulam games, the role of the questioner is assumed by the source and
destination, while the role of the responder is assumed by Psp. The search
space is defined as the set of nodes in Psp, i.e., 2 = {n1,...,np},k = |Psp]|.
The responder selects w € {1,...,k}, corresponding to the node n, in Psp
which is misbehaving. The source’s goal is to determine n,, i.e., to locate the
misbehaving node. Questions submitted by the questioner correspond to audits
performed by the source to nodes in Psp.

When responding to an audit, nodes state the set of packets forwarded to
the next hop. The source combines one or more audits to construct bit, cut, or
membership questions. The responder lies when a misbehaving node lies with
respect to the packets forwarded to the next hop. For example, a node lies by
either claiming to forward all packets received when in reality it drops them, or
claiming to have forwarded no packets indicating they were dropped somewhere
upstream. The location of the misbehaving nodes in Pgp is mapped to the
placement of such lies by the responder. Note that since the responder is a
single entity controlling the lies (i.e. location of misbehaving nodes and response
to audits), our mapping implicitly assumes collusion. Figures[Il(a) and [Ib) show
the mapping of the misbehavior identification problem to a Rényi-Ulam game.

In our game, an honest node will always respond faithfully to an audit, thus a
lie can only occur if a misbehaving node is audited. By adaptively selecting the
nodes to be audited, the source can gather sufficient honest replies to identify
nodes in M. If each node in Pgp is audited at most one time, the number of
possible lies is limited to ¢ = |M|. If nodes are audited multiple times, the
number of lies depends on the exact auditing strategy. We now present two
adaptive auditing strategies inspired by Rényi-Ulam games.

4.2 Rényi-Ulam Inspired Auditing Strategies

Let X; denote the set of packets forwarded by a node n; to the next hop. For ex-
ample, the source sends packets Xg to the destination, and nodes n;,n; forward
packets X;, X; respectively. In the absence of misbehavior in Pgp and assuming
no packet loss Xg = X; = Xj. In reality, some portion of the packets may be lost
due to the wireless channel conditions or congestion, and hence X5 ~ X; ~ X;.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 213

Definition 1. A link (n;,n;y1) is defined as misbehaving if its two incident
nodes n;,n;+1 provide conflicting claims with respect to the packets forwarded to
the next hop, i.e., | X; () Xit1| < | Xl

Proposition 1. At least one node incident to a misbehaving link is misbehaving.

Proof. By contradiction. Assume that both nodes n;,n; 1 of a misbehaving link
are honest. Hence, the set of packets X;;1 forwarded by n;.1 to the next hop
is approximately equal to the set of packets X;, forwarded by n; to n;41, i.e.,
| X; () Xit+1] = | X;|. This contradicts the definition of a misbehaving link.

Definition 2. A simultaneous audit is defined as auditing two or more nodes
with respect to the same set of packets Xg, sent from S to D wia Psp.

Corollary 1. The link between two behaving nodes n;,n;+1 cannot be identified
as misbehaving, when n;,n;+1 are simultaneously audited.

Proof. By Proposition[I] at least one misbehaving node is incident to any mis-
behaving link. Hence, two behaving adjacent nodes cannot be incident to a mis-
behaving link. The simultaneous audit requirement ensures that the dropping
pattern of any misbehaving node upstream of behaving node n; has the same
effect on the packets observed by n;, n;y1. Thus packets forwarded by n; are also
forwarded by nj;i1, i.e., | X; () Xit1| = | Xi].

Note that the converse of Corollary [is not true. For two nodes n;,n;+1 for
which | X; () Xi+1| = | X;|, we cannot conclude that both nodes are honest. Two
colluding nodes may be incident to a link, and thus claim similar audit replies
regardless of the packets forwarded.

Adaptive Audits with Cut Questions. We now show how the source can
identify misbehaving nodes using an adaptive strategy and cut questions. Cut
questions can be implemented by auditing one node at a time. These questions
are of the form, “Is the misbehaving node upstream of n;?”, where n; is the
audited node. Assume there exists a single continuously misbehaving node nj,
in Psp. Define the set of nodes suspicious of misbehavior as V = {ny,...,nx}.
If n; € V is audited and replies with X; such that | Xg [X;| < |Xg/|, the source
concludes that all nodes downstream of n; are behaving honestly, and therefore
ny < n;. This is true since either n; is honest in which case it never received
packets in Xg indicating an upstream misbehaving node, or n; is the misbehaving
node lying about its audit reply. If n; replies that |Xg () X;| = | Xs|, the source
concludes that all nodes upstream of n; are honest, and therefore ny; > n;. This
is true, since if any node upstream of n; was the misbehaving one, n; would not
have received packets in Xg. Thus the set V is reduced to {n;,...,ny}.

Pelc [25] proposed a questioning strategy for adaptive games in which the
questioner wins if he determines w, or proves a lie took place. For a search space
of size |f2|, and a maximum number of lies ¢, the winning strategy requires
[logy |2]] 4 ¢ questions. To find w, the questioner first performs a binary search
requiring [log, |£2|] questions to converge to a value w'. It then asks the responder

214 W. Kozma Jr. and L. Lazos

£ times if w < W’. Since the responder is limited in lies, the questioner can
determine if w’ is the secret value or the responder has lied.

Following the winning strategy proposed by Pelc, let the source win if either
a misbehaving link is identified or the source can prove a lie has occurred. The
source can converge to a single link by performing a binary search. The source
initializes ¥V = {n1,...,nx} and selects node with index i = flglh for audit.
As previously described, V is reduced to either {ni,...,n;} or {n;,...,ni}.
The source continues to audit nodes in V until [V| = 2. In the case of a single
misbehaving node, the source identifies the misbehaving link as shown in the
following Proposition.

Proposition 2. For a single misbehaving node, the source always converges to
the misbehaving link in log,(|Psp|) audits.

Proof. Let ny; denote the misbehaving node. Initially, Y = Psp and hence ny; €
V. Let the source select a node n; upstream of nj; for audit. Being upstream,
n; responds honestly that it forwarded packets to the next hop, reducing V to
{ni,...,ng}, with nas € V. Similarly, if a node n; downstream of ny is audited,
it will respond that no packets were forwarded, reducing V to {ni,...,n;}. If
n s is audited, its response will indicate that misbehavior occurs either upstream
of downstream. In either case ny; € V, since the audited node always remains
in V. The convergence of the binary search will end in a suspicious set V =
{nayr—1,mp} or V = {ny,nar41}, depending on whether ny, indicated that
misbehavior occurs upstream of downstream. In any case, the identified link
is a misbehaving one since per the definition, its two incident nodes provide
conflicting audit replies. Since the binary search converges in log,(|Pspl), in
case |[M| = 1 the source will locate nys in logy(|Psp|) steps.

If two or more nodes collude, the source may converge on a link in which both
nodes are behaving, as shown in the following example. In Figure Rla), M =
{n1,n4} with nodes ny,n4 colluding. Initially, ny drops all packets, while ny be-
haves. Let node ny be audited and report no misbehavior, thus V = {ng, n3, n4}.
Assume now that nodes mq,n4 switch their behavior with node n; dropping
packets while ny is behaving, as shown in Figure 2(b). If node nj is audited, it
will report misbehavior upstream, reducing V to {ns, n3} and thus removing ny
from V. Hence, link (ng,ng) is incorrectly identified as misbehaving.

Pelc solves this problem through the repetitive questioning of the result,
thereby exhausting the responder’s lies. In our case, a simultaneous audit on
nodes n;,n;+1 of an identified link V = {n;, n;;1} is sufficient to identify a mis-
behaving link or the occurrence of a lie. If | X; () X;11| < |X;|, a misbehaving
link is identified. Else, the source concludes that a lie occurred. Returning to our
previous example, in Figure Pl(c), ne and ng are simultaneously audited. Since
both nodes are honest, they return identical audit replies and no misbehaving
link is identified. In this example, the responder has lied by changing the value of
w during the search, i.e., initially w = ny4, then w = n;. However, S can identify
that a lie occurred.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 215

SQULIAL 1 1 1 =S 1 G 0 A
il Hﬂﬂf
(a) (b)

S HHHH ny ny N3 N4 D
o - mpea mpa omn g)
oy

()

Fig. 2. (a) Nodes n1,n4 collude, with n4 dropping all packets. Audited node n» claims
misbehavior is downstream. (b) Nodes n1,n4 alter their behaviors, with n; dropping all
packets. Audited node ns claims misbehavior is upstream. (c¢) Source simultaneously
audits na2, n3 to verify if misbehaving link exists.

When the source identifies a lie occurred, is can also reach to the following con-
clusion: either (a) nas € V but lied during the simultaneous audit, or (b) |M| > 2
with at least one misbehaving node upstream of n;; and one downstream of
n;. Note that if |[M| = 1 and the misbehaving node stops misbehaving (due to
the fact that it is being audited) the destination alerts the source that misbe-
havior has stopped in Psp. In such a case, the source will take two steps. First,
any outstanding audits will be discarded. Second, the search will be suspended
at the current state until misbehavior re-appears on Psp. When misbehavior
is resumed, the source continues the search from where it left off the last time
misbehavior occurred.

If the destination does not alert the source that performance in Psp has been
restored, the source concludes that |M| > 2. This is evident in our example by
the responses of ng; on the first audit in Figure[(a), it claims that misbehavior
is downstream, while in Figure Bl(c), it claims misbehavior is upstream. Let the
audit process converge to link (n;,n;y1). Since the source knows that at least
one misbehaving node is upstream of n; and one is downstream, it attempts
to isolate the effect of the misbehavior of each node by partitioning Psp into
Psy, ={n1,...,ni} and P,,.,p = {nis1,...,n}. The source repeats the audits
recursively for each path partition Psy,, P,,,,p. However, note that the desti-
nation can only determine if misbehavior occurs in Psp, not which partition.

To treat each partition individually, the source considers n; as a pseudo-
destination and n;y; as a pseudo-source. In Pg,,, node n; is always audited
simultaneously with any other node. Similarly node n;41 is audited simultane-
ously with any other node in P,,;1p. Note that if n; is the misbehaving node, it
has only two strategies, (a) respond honestly, or (b) lie. If n; lies, it immediately
implicates itself in a misbehaving link, since both n;,n,+1 are always audited.
If n; responds honestly, the search in Ps,, will converge to the misbehaving
link (assuming one misbehaving node in Ps,,,). For the realization of the cut
questions, the source initializes Vs,, = {n1,...,n;} and selects n;,j = fIVSQ"iW
for audit. The cut question “Is nyr < n;?” is true if [Xg () X;| < |Xg| and
|Xs N Xi| < |Xs|. The second condition verifies misbehavior on Psgy,,.

216 W. Kozma Jr. and L. Lazos

Algorlthm 1. Cut Questioning Algorithm
ni — ni,n; — Nypgp|, V= {ni,...,n;}
while V| > 2 do
h= [, Audit(nny)
if |Xs ﬂXh| ~ |Xs| then
ng < Np
else
ng < np
end if
end while
: Audit(ng,ny)
return X;, X;
: else
return |M| > 2, Partition Psp
: end if

— e s e
GU Wi~ O ©

Likewise on P, , p, the audit response of n;1 acts as a verification if packets
from Xg have reached this partition. Node n;; 1 therefore acts as a pseudo-
source for P, , p. Much like n;, if n; ;1 lies it immediately implicates itself in a
misbehaving link since (n;,n;4+1) is always audited. Thus the source can identify
multiple misbehaving links using this adaptive auditing strategy. This strategy
is presented in Algorithm [l

Adaptive Audits with Membership Questions. Our scheme can also use an
adaptive auditing strategy based on membership questions to identify the mis-
behaving nodes. Membership questions are constructed by combining two cut
questions. To answer the question, “Is ny; € A = {n;,...,n;}?” the source au-
dits n;, n; simultaneously and compares their audit replies. If | X; () X;| = | X/,
then n;,n; claim ny ¢ A, since all packets forwarded by n; are received by n;.
Else, they claim nj; € A. Dhagat et al. [I0] proposed an adaptive questioning
strategy which proceeds in stages. During each stage, the questioner either be-
lieves the responder’s answer and places it in a trusted set T', or discards it if
it contradicts prior answers. Let V; represent the set of possible values for w at
stage j, with V; initialized to (2.

Suppose that V; is the current stage, with [V;| > 1, and let set {7j_1,4,7j—1,5}
represent the answers to round j — 1. The questioner divides V; into two equal-
sized subsets, A and B. The responder is asked “Is w € A?” If the answer
ja is “yes”, the questioner adds {r;j .} to T and moves to the next stage with
Vi+1 = A. Else, the questioner asks “Is w € B?” If the answer r;; is “yes,”
{rja,rjp} are added to T and the questioner moves to V11 = B. If both 7 4,755
are negative, the questioner removes {r;_1,4,7j-1,} from T, and returns to
stage Vj_1. The questioner then selects a different partition of V;_; for stage j
and repeats the questioning on each partition. Dhagat et. al. showed that the
responder’s secret value w can be identified after ¢ = [QIf glﬁfllw questions, when
6 < ;), with 8 being the fraction of ¢ than are lies [10]. To prevent repeated lies

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 217

Ew@rwo Ml igelie .o [o
Ll
(b)

; I, o0) O] o

0m
()

Fig. 3. (a) Let V1 = {S,n1,...,n5,D} with A = {S,n1,n2,n3}, B = {n3,n4,ns, D}
and na = n4. The source audits A, concluding nas ¢ A. (b) The source then audits
B, concluding nays € B. (¢) The source proceeds to stage Vo = {ns,n4,ns, D} and
continues the auditing strategy.

from the same misbehaving node, the source selects a new node and repeats the
membership questions, until |V;| = 2.

Mapping Dhagat’s questioning strategy to misbehavior identification, the
source begins from stage V; = {S,n1,...,nk, D}. Set V; is divided into two
subsets, A = {S,...,n;} and B = {n,;,..., D} with i = [“;1']. The source first
asks “Is ny; € A?” by simultaneously auditing nodes S, n;. If S and n; return
conflicting audit replies, the source knows that ny € A, adds {r1,4} to T, and
proceeds to stage Vo = {S,...,n;}. Else, the source questions “Is ny; € B?” by
simultaneously auditing nodes n;, D, whose audit replies define answer r; ;. If
n;, D return conflicting audit replies, i.e., | X; () Xp| < |X;|, the source knows
that nas € B, adds {r1,4,71,4} to T, and proceeds with Vo = {n;, ..., D}. If both
T1.a,71,p are negative, the source concludes a lie has occurred.

In FigureBl(a), ny = nps. The source splits Vi = {S,nq,...,n5, D} tosets A =
{S,n1,n2,n3}, B = {n3,ng,ns, D}, and audits S, n3 to realize the membership
question “Is np; € A?” Since ngz is honest, the source asks “Is ny; € B?” by
simultaneously auditing ns, D, as shown in Figure B(b). Since ns, D are honest,
the source concludes ny; € B. In FigureBl(c), the source moves to the next stage
by dividing V> = B into two memberships sets. The process is repeated until
[V;| = 2. In our example, the source converges to the misbehaving link (ns, n4).
The source’s auditing strategy is presented in Algorithm 2

Proposition 3. For a single misbehaving node, the source converges to the mis-
behaving link in less than 41logs(|Pspl) + 2 audits.

Proof. Let the source be at stage V; = {ni,...,ng} withny € V; and select node
ny, for audit, creating membership sets A = {n;,...,ny} and B = {np,...,ni}.
If npr # ng,mp, ng, then all audit responses will be honest and the source will
conclude either ny; € A or nyy € B, thus proceeding to the next stage with
Vit1 = A, Vjy1 = B and nyr € Vj41. As long as the source audits honest nodes,
the set of suspicious nodes V; will be reduced by half.

Now assume one of the n;, ny, ng is nas. When audited, nj; will either respond
honestly, or lie. If s responds honestly, the search will proceed to state Vj411

218 W. Kozma Jr. and L. Lazos

Algorithm 2. Membership Questioning Algorithm
1: Vi ={ni,...,ne},ni — S,nk — D, T =r1,
2: while |V;| > 2 do

3 h= [l‘;jw, Tja = audit(n;, np)

4:if | X, () X»| < |X| then

5: T—{rja}, j=74+1, Vi={ni,....nn}
6: else

T ri = audit(np, ny)

8: if | X5, (N Xk| < |Xn| then

9: T‘—{Tj,aﬂ"j,b}, j:j—"_ly Vj :{Tlh,...,nk}
10: else

11: return j=j5—1

12: end if

13: end if

14: end while
15: return X;, Xj

with nar € V41 and |Vj+1\ = n;jl. Thus the search continues to converge. If n,s
lies, the source will obtain negative answers from both membership questions,
unable to reduce V; further, thus returning to stage V;_; with nys € Vj_1. The
source will then pick a different ny, and repeat the set splitting, thus preventing
the same lie from repeating.

In the absence of lies, the total number of membership questions needed for
convergence to the misbehaving link is 2log,(|Psp|). This is true, since at each
stage we split the suspicious set in half similar to a binary search. To realize
a membership question we need to simultaneously audit two nodes, requiring
a total of 4log,(|Psp|) audits in the worst case. If nys is audited and lies, the
search backtracks to the previous stage, resulting in the waste of two audits.
For a single misbehaving node nj,; and the fact that the source always selects
a different node after a backtrack, ny; will be audited only once. Thus, in the
worst case, the source requires ¢ < 4log,(|Pspl) + 2 audits.

Corollary 2. The source never converges to a link with two behaving nodes.

Proof. According to Algorithm P the source must receive conflicting reports
from two simultaneously audited nodes to proceed from stage j — 1 to stage j.
Hence, to terminate with V; = {n;,n;;1} the source must receive conflicting
audit replies from n;, n; 11 when simultaneously audited. However, via Corollary
[[this cannot occur if n;, ;1 are behaving nodes.

It is possible that multiple neighboring colluding nodes can delay the search
indefinitely. Assume all nodes in V; collude. Once in stage V;41, the replies to the
audits from the colluding nodes yield membership questions on both partitions
negative, thus forcing the source to return to stage V;. Auditing any other node
in V; will yield the same results since nodes in V; are colluding. If the source has
audited all possible partitions of V;, and thus all n; € V, with no progress to the
next stage, it terminates the search and proceeds to the identification phase.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 219

Fig. 4. (a) Node ng drops packets, with link (ns,n4) being the misbehaving link. (b)
Slight alteration to routing path.

4.3 Misbehaving Node Identification

Once the source has converged to a misbehaving link (n;,n;41), it can no longer
proceed to identify the misbehaving node. The two conflicting audit responses
from n;,n;4+1 indicate that either n; or n;y; is lying. From the routing point of
view, identifying the misbehaving link is sufficient for restoring the performance
in Psp since the source can now avoid this link. However, we would like to
identify and isolate the misbehaving node to prevent it from further affecting
other paths. This is accomplished through the idea of path division. The path
Psp is divided in such a way that new independent observations can be made
with respect to n; and n;y1. We first illustrate the idea of path division for a
single misbehaving nodes and then generalize to many.

Single Misbehaving Node. Without loss of generality assume that the audit
process converged to (nas, nar+1), where nyy is the misbehaving node. The source
divides Psp into two paths such that packets are routed through either ny; or
nas+1, and attempts to re-identify the misbehaving link. This can be achieved by
bypassing each node in Psp via an alternative path. Instead of performing the
entire audit process, the source concentrates on the nodes around ns, nys41, For
example, in Figure[|(a), the source has identified link (n3,n4) as the misbehaving
one. In Figure @l(b), the source splits the traffic between two paths that bypass
ns3,ny in turn via nodes ng, ng. Path segment {no, ns, n4, ns} is replaced by the
segments {na,ng,n4,ns} and {ng,ns, na,ns}, thus isolating ng,nys from each
other. The source simultaneously audits nodes ng, ns and ns, n, to identify the
misbehaving link. The source identifies link (n3,n,) as misbehaving, and hence
identifies the misbehaving node ns.

Multiple Misbehaving Nodes. Assume now the existence of multiple misbe-
having nodes in Psp. If the cut auditing strategy is employed, the source will
split Psp to smaller paths in order to isolate the effect of each misbehaving node.
The source can then perform the path division in each subpath as in the case
of a single misbehaving node. Note that, as in the case of a single misbehaving
node, the newly added nodes must not be misbehaving in order to avoid framing
honest nodes. If the membership questioning strategy is employed, the source
will converge to a set V; containing at most one honest node. To identify the
misbehaving one, all nodes in V; must be excluded in turn from Psp according

220 W. Kozma Jr. and L. Lazos

to the path division process. That is, the source constructs |V;| individual paths
with each node in V; being present on only one path.

4.4 Mobility

We now relax our assumption that Psp does not change during the identification
process. Let a node n; be removed from Pgp. If n; ¢ V), then its removal has
no effect on the search. The source identifies misbehaving links from the nodes
in V. Let n; € V. There are two cases, either n; is a behaving node, or n; is
misbehaving. If n; is behaving, then removing it is analogous to reducing V to a
smaller set that still contains the misbehaving node. If n; is misbehaving, then
the performance in Pgp is restored or one less misbehaving node is present.

Consider now adding a new node n; to Psp. If n; is added between nodes in
V, then regardless of n;’s behavior, this is equivalent to n; being in V, in the first
place and not yet been audited. Let n; be added in Psp outside V. If n; is an
honest node, there is no effect on the audit process. If n; is a misbehaving node,
then this is equivalent to the situation in which |M| > 2 and one of the njys has
been removed from V. However, we have shown that both auditing strategies
can address the case of multiple misbehaving nodes. In the case of cut questions,
the source splits Psp into two paths while in the case of membership questions,
the source converges on the misbehaving node in V. Once this node is removed,
the source will continue to identify the newly added misbehaving node.

5 The Audit Mechanism

We now describe how the source can perform audits in a resource-efficient man-
ner. The audit mechanism is adopted from [I8] and is based on the compact
representation of a membership set via Bloom filters [4]. The goal of auditing
a node n; € Psp is to force n; to commit to the set of packets X; that it re-
ceived and forwarded to the next hop. Contradicting commitments are used to
identify misbehaving links and eventually misbehaving nodes. To respond to an
audit, the node n; records the packets forwarded for a period of time, and re-
ports them to the source. Based on this report, the source compares the packets
in X; with the packets in Xg originally sent to the destination. Buffering the
packets themselves requires a large amount of storage and significant overhead
for transmission back to the source. On the other hand, Bloom filters provide
a storage-efficient way of performing membership testing [4]. The audit process
occurs in three steps; sending an audit request, constructing the audit reply, and
processing the audit reply. We now describe these steps in detail.

Sending an Audit Request: The source audits a node n; according to the algo-
rithms described in Sectiondl The source selects the audit duration a4, measured
in number of packets, and the initial packet sequence number as from which the
audit will begin. The value of a4 is a parameter that must be sufficiently large to
differentiate misbehavior from normal packet loss. The audit request is routed

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 221

to n; via Psgp. Values as and ag are randomized thereby preventing any mis-
behaving nodes from conjecturing the start and duration of audits, unless they
are audited themselves. Note that an audit request may fail to reach the audited
node n; since a misbehaving node along Ps,, may drop it, or n; is the misbehav-
ing node and chooses not to respond. In this case, the source tries a threshold
number of times to audit n;. Failure to obtain a reply is interpreted as “Node
n; did not forward packets in Xg to the next hop.” This is true since either n;
is the misbehaving node or a misbehaving node is upstream of n;.

Constructing an Audit Reply: When a node n; is audited, it constructs a Bloom
filter of the set of packets it receives and forwards, from as to as + a4, denoted
by X; = {%a.,Za.4+1,---,Ta, }- By using a Bloom filter, packets in X; can be
compactly represented in an m-bit vector v; with m < |X;| []. After ay packets
have been added to v;, node n; signs v;, and sends it to S via the reverse path
P,,s. The signed Bloom filter binds the audited node to the set of packets X;
that it claims to have forwarded to the next hop, in a publicly verifiable manner.
Based on n;’s signature, any node can verify the authenticity and integrity of v;.
To assess the behavior of audited nodes, the source constructs its own Bloom
filter vg in the same manner as n;. When S receives n;’s Bloom filter, it compares
it against vg and compute what fraction of packets in Xg was forwarded by n;.

Processing the Audit Reply: When S receives v;, it verifies its authenticity and
discards v; if the signature check fails. Otherwise, given the vector length m, the
cardinalities of X;, Xg, filters v;, vg, and the number z of hash functions used to
generate the Bloom filters, S computes the metric [5],

tog (<050 o (1= 1)+ (1= 1))

X X;| ~ | X X;| —
| Sm | | S|+‘ | Zlng(].—;L)

6 Performance Evaluation

6.1 Simulation Setup

We randomly deployed 100 nodes within an 80x80 square and selected 10
source/destination pairs. For each pair, we constructed the shortest path and
randomly selected the set of misbehaving nodes. We generated traffic from §
to D according to the constant bit-rate (CBR) model. Each misbehaving node
randomly selected a behavioral state of either behave or misbehave, with equal
probability. It then randomly selected the duration of the state from the interval
[1,400] packets. We focus on two metrics of interest: (a) the communication over-
head defined as the number of messages transmitted/received by nodes in Psp,
weighed by 1/0.5, respectively [12], and (b) the identification delay defined as
the time elapsed from the occurrence of misbehavior until the misbehaving nodes
are identified, normalized over the audit duration. Simulations were performed
in a packet-level C' simulator.

222 W. Kozma Jr. and L. Lazos

6.2 Auditing Strategy Comparison

We first compared the performance of the two auditing strategies; the strat-
egy based on cut questions as described by Algorithm [II which we will refer
to as CUT, and the strategy based on membership questions as described by
Algorithm 2 which we will refer to as MEM.

Communication Overhead. In FigureBl(a), we show the communication over-
head required to identify one misbehaving node as a function of the path length.
We observe that CUT requires less communication overhead than MEM. This
is expected, as the realization of cut questions requires only one audit, whereas
membership questions require two audits. Both auditing strategies audit in a bi-
nary fashion, thus resulting in logarithmic increase in communication overhead
as a function of the path length. In Figure Blb), we show the communication
overhead required to identify two misbehaving nodes as a function of path length.

Identification Delay. In Figure Blc), we show the delay required to identify
one misbehaving node as a function of the path length. Both CUT and MEM
incur approximately the same delay due to their binary search approach. In
Figure Bl(d), we show the delay required to identify two misbehaving nodes as a

Communication Overhead as a Function of lPsol Communication Overhead as a Function of lPsol
3
10 - —
—A—CUT : IMI =1 —A—CUT (Parrallel) IMI =2
B \—' T . || A CUT (Series) \—‘
e © 107 —a—MEM
5] 5] : :
> >
(@] (@]
c c
2 2
]]
L L
=4 =4
3 3
£ £
£ £
o o
(&) (&)
10‘ i i i i i i i i i 10 i i i i i i i i i
6 7 8 9 10 11 12 13 14 15 5 6 7 8 9 10 11 12 13 14 15
Path Length, lPsol Path Length, lPsol
(a) (b)
Identification Delay as a Function of IP I Identification Delay as a Function of IP I
12 25
—A—cuT IMI =1 —A— CUT (Parallel) IMI=2
\—‘ A CUT (Series) \—‘
10 . : ——MEM
20 AAA
AA AT
8 n -
> > A A
© ©
g ¢ © 15F :
o o
6 : Ms

1
4 o).
2 5
5 6 7 8 9 10 11 12 13 14 15 5 6 7 8 9 10 11 12 13 14 15
Path Length, IPSDI Path Length, IPSDI
(c) (d)

Fig. 5. Communication overhead for (a) one misbehaving node, (b) two misbehaving
nodes. Identification delay for (c¢) one misbehaving node, (d) two misbehaving nodes.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 223

function of the path length. In CUT, after the path is partitioned, the auditing
of the two partitions is dependent on the misbehavior strategies of nodes in
M. Assume that only one misbehaving node drops packets at a time. Thus the
search will only audit the path partition which is reporting misbehavior. This
causes the source to search the partitions in series, i.e., one at a time. If both
misbehaving nodes drop packets, the source can audit the two path partitions
in parallel, since each path partition contains a source (or pseudo-source) and a
destination (or pseudo-destination). This parallel auditing decreases the delay.
For CUT, we plot both the case of search in series and parallel, giving an
expected range for the delay. Note that the delay of MEM falls within this
range; closer to the parallel CUT for smaller path sizes and closer to the series
CUT as the path length increases. This is due to the nature of the auditing
strategies employed. In CUT, the source cannot determine if a lie occurred until
performing the simultaneous audit at the end of the auditing strategy. In MEM,
the source determines if a lie occurred by looking for contradictions at every
stage. Therefore, if a lie is found, the penalty is only the waste of two audits.
This results in a tradeoff in which MEM incurs an additional overhead per stage
compared to CUT by checking for contradictions at the expense of delay.

6.3 Comparison with Other Schemes

We now compare the performance of our algorithms to CONFIDANT [6], 2ACK
[20], and AWERBUCH [1]. For CONFIDANT, every one-hop neighbor of a trans-
mitting node was assumed to operate in promiscuous mode, thus overhearing
transmitted messages. For 2ACK, a fraction p of the messages transmitted by
each node was acknowledged two hops upstream of the receiving node. We set
p = {1,0.5,0.1} [20). AWERBUCH identifies misbehaving links by requesting
selected nodes in Psp to acknowledge each packet back to the source. For com-
parison, we select the adaptive auditing strategy utilizing cut questions. The
plots of Figure [El(a)-(d) can be used for comparisons with MEM. We first con-
sidered the overhead during a fixed duration of time, i.e., the time required to
identify the misbehaving node using CUT.

Fixed Time Communication Overhead. In Figure[6a), we show the com-
munication overhead as a function of the path length. The Y axis is shown in
logarithmic scale. The communication overhead for CUT is between 1-2 orders
of magnitude less compared to other schemes. This gain is due to the fact that
CUT does not expend energy on a per-packet basis to monitor the behavior
of each node. The 2ACK scheme presents the highest communication overhead
since every packet requires a 2-hop acknowledgment upstream per link traversed.

In Figure [Bl(b), we show the communication overhead as a function of the
audit duration ag for a path of eight nodes. Schemes 2ACK, CONFIDANT, and
AWERBUCH all incur a linear increase in communication overhead, due to the
per-packet behavior evaluation. On the other hand, the communication overhead
for CUT and MEM is incurred on a per-audit basis, and is independent of audit
duration. While our algorithms provide significant savings in communication

224 W. Kozma Jr. and L. Lazos

Communication Overhead as a Function of lPsol Communication Overhead as a Function of a,
10°
W 10 M
8 4‘W 8 /—/.’_"
b 10 H 5 e 4 ;
5] + o 10 5 : !
5 108 W] 5 /a’/_a/‘a‘—"(
s ‘ ' s 10°
8o M i g :
£ 10] —8— AWERBUCH €10° & A —8— AWERBUCH
g —6—2ACK: 100% g —6—2ACK: 100%
£ 1 —»%—2ACK: 50% € 1 —»%— 2ACK: 50%
5 10 ; —o—2ACK: 10% 3 10 —0—2ACK: 10%
o —+— CONFIDANT o —+— CONFIDANT
o : —A—CcuT o —A—CcuT
10 i H i T 10 H i .
5 7 9 1 13 15 200 400 600 800 1000
Path Length, IP__I Audit Size, a
SD d
(a) (b)

Identification Delay as a Function of IPSDI

20 —=— AWERBUCH
—O6—2ACK: 100%
—%— 2ACK: 50%
—O— 2ACK: 10%
15| —— CONFIDANT
—A—cuT

9 11 15
Path Length, [P

()

Fig. 6. (a) Communication overhead as a function of |Psp| for an audit size of 200
packets. The overhead is computed over time required by the CUT scheme to converge
to the misbehaving node. (b) Communication overhead as a function of audit size for
|Psp| = 8. (c) Delay as a function of |Psp| in units of number of audits.

overhead, they require a longer time to identify the misbehaving nodes. On the
other hand, the proactive schemes require only the duration of one audit to
identify misbehavior. This is due to the fact that proactive protocols monitor
all nodes in the path Psp in parallel. Fortunately, for schemes CUT and MEM,
the delay grows logarithmically with |Psp|. Hence, the increase in identification
delay is small compared to the savings in communication overhead.

In Figure[(c), we show the identification delay as a function of path length.
CONFIDANT requires a single audit duration to identify the misbehaving node
since all nodes in Psp are monitored in parallel. AWERBUCH performs a binary
search, incurring a logarithmic increase in delay. The 2ACK scheme also requires
a single audit duration for identification when all packets are acknowledged.
However, the identification delay increases when only a fraction of the packets
are acknowledged. For example, when only 10% of the packets are acknowledged,
2ACK and CUT incurr similar delay. However, as shown in Figure B(b), CUT
incurs an order of magnitude less in communication overhead.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 225

Communication Overhead over the Identification Period Communication Overhead over the Identification Period
10° : 10°
el H e} H
3 : : 3 c
£ 10° £ 10°)/@_/9_/.9—’—* r
] W* 5] i
3 W] 3 4 /&/a/a”‘(
S 10¥W 5 10%
. W r g . A A A
é 107, : é 10
I —&— AWERBUCH £ 4 —&— AWERBUCH
Q 10 : —6—2ACK Q 10 —6—2ACK
o —+— CONFIDANT o —+— CONFIDANT
o —A—CcuT o —A—cut
10 H H H T 10 H i .
5 7 9 1 13 15 200 400 600 800 1000
Path Length, IPSDI Audit Size, a,
(a) (b)

Fig. 7. (a) Communication overhead for an audit size of 200 packets. For each scheme,
the overhead is computed for the time required to identify misbehavior, (b) communi-
cation overhead as a function of audit size for |Psp| = 8.

Comparison Based on Identification Delay. We now evaluate the com-
munication overhead incurred by each scheme until the misbehaving node is
identified. In Figure [f(a), we show the communication overhead as a function
of the path length, for an audit size of 200 packets. In Figure [(b), we show
the communication overhead as a function of the audit size, for a path of eight
nodes. We observe that even in the case where the communication overhead is
measured only during the identification delay, CUT significantly outperforms
the other schemes. The CONFIDANT, 2ACK and AWERBUCH schemes are
sensitive to path length and audit size. On the other hand, CUT illustrates a
graceful tradeoff between communication overhead and delay.

7 Conclusion

We addressed the problem of identifying misbehaving nodes that refuse to for-
ward packets to the destination in a wireless multi-hop network. We mapped this
problem to the classic Rényi-Ulam game of 20 questions. From this mapping we
employed communication efficient questioning strategies which allow the source
to locate the set of misbehaving nodes. We showed that our scheme significantly
reduces the communication overhead associated with misbehavior identification
compared to previously proposed schemes. This reduction in resource expendi-
ture comes at the expense of a logarithmic increase in the identification delay.

References

1. Awerbuch, B., Holmer, D., Rotaru, C.-N., Rubens, H.: An on-demand secure rout-
ing protocol resilient to byzantine failures. In: WiSe 2002 (2002)

2. Balakrishnan, K., Deng, J., Varshney, P.K.: Twoack: Preventing selfishness in mo-
bile ad hoc networks. In: WCNC 2005 (2005)

226

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

W. Kozma Jr. and L. Lazos

Berlekamp, E.: Error Correcting Codes. Wiley, NY (1968)

Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13(7), 422-426 (1970)

Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey.
Internet Mathematics 1(4), 485-509 (2004)

. Buchegger, S., Boudec, J.-Y.L.: Performance analysis of the confidant protocol

(cooperation of nodes: Fairness in dynamic ad-hoc networks). In: MobiHOC 2002
(2002)

Buchegger, S., Boudec, J.-Y.L.: Self-policing mobile ad-hoc networks by reputation
systems. IEEE Communications Magazine, 101-107 (2005)

Buttyan, L., Hubaux, J.-P.: Enforcing service availability in mobile ad-hoc wans.
In: MobiHOC 2000, pp. 87-96 (2000)

Buttyan, L., Hubaux, J.-P.: Stimulating cooperation in self-organizing mobile ad
hoc networks. ACM/Kluwer Mobile Networks and Applications 8(5) (2003)
Dhagat, A., Gacs, P., Winkler, P.: On playing “twenty questions” with a liar. In:
SODA 1992, pp. 16-22. Society for Industrial and Applied Mathematics (1992)
Dong, Y., Go, H., Sui, A., Li, V., Hui, L., Yiu, S.: Providing Distributed Certificate
Authority Service in Mobile Ad Hoc Networks. In: SecureComm 2005 (2005)
Feeney, L.M., Nilsson, M.: Investigating the energy consumption of a wireless net-
work interface in an ad hoc networking environment. In: INFOCOM 2001 (2001)
Ganeriwal, S.; Srivastava, M.: Reputation-based framework for high integrity sensor
networks. In: SASN 2004, pp. 6677 (2004)

He, Q., Wu, D., Khosla, P.: Sori: A secure and objective reputation-based incentive
scheme for ad hoc networks. In: WCNC 2004 (2004)

Hu, Y., Johnson, D., Perrig, A.: SEAD: secure efficient distance vector routing for
mobile wireless ad hoc networks. Ad Hoc Networks 1(1), 175-192 (2003)
Jakobsson, M., Hubaux, J.-P., Buttyan, L.: A micropayment scheme encouraging
collaboration in multi-hop cellular networks. In: Proc. of Financial Crypto (2003)
Johnson, D.; Maltz, D., Hu, Y.-C.: The dynamic source routing protocol for mobile
ad hoc networks (dsr). draft-ietf-manet-dsr-09.txt (2003)

Kozma Jr., W., Lazos, L.: REAct: Resource-Efficient Accountability for Node Mis-
behavior in Ad Hoc Networks based on Random Audits. In: WiSec 2009 (2009)
Liu, A., Ning, P.: Tinyecc: A configurable library for elliptic curve cryptography
in wireless sensor networks. In: IPSN 2008 (2008)

Liu, K., Deng, J., Varshney, P., Balakrishnan, K.: An acknowledgment-based ap-
proach for the detection of routing misbehavior in manets. IEEE Transactions on
Mobile Computing 6(5), 536-550 (2006)

Marti, S., Giuli, T., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile
ad hoc networks. In: MobiCom 2000, pp. 255-265 (2000)

Michiardi, P., Molva, R.: Core: A collaborative reputation mechanism to enforce
node cooperation in mobile ad hoc networks. In: CMS 2002 (2002)
Padmanabhan, V.-N.; Simon, D.-R.: Secure traceroute to detect faulty or malicious
routing. SIGCOMM Computer Communication Review 33(1) (2003)
Papadimitratos, P., Haas, Z.: Secure routing for mobile ad hoc networks. In: SCS
Communication Networks and Distributed Systems Modeling and Simulation Con-
ference (CNDS 2002), pp. 1-27 (2002)

Pelc, A.: Detecting errors in searching games. Journal of Combinatorial Theory
Series A 51(1), 43-54 (1989)

Perkins, C., Royer, E., Das, S.: Ad hoc On-Demand Distance Vector (AODV)
Routing (2003)

27.

28.

29.
30.

31.

32.
33.

34.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 227

Perrig, A., Szewczyk, R., Tygar, J., Wen, V., Culler, D.: SPINS: Security Protocols
for Sensor Networks. Wireless Networks 8(5), 521-534 (2002)

Raghani, S., Toshniwal, D., Joshi, R.: Dynamic Support for Distributed Certifica-
tion Authority in Mobile Ad Hoc Networks. In: Proceedings of the 2006 Interna-
tional Conference on Hybrid Information Technology, vol. 1, pp. 424-432. IEEE
Computer Society, Washington (2006)

Rényi, A.: A Diary on Information Theory. Wiley, New York (1984)

Rivest, R., Meyer, A., Kleitman, D., Winklmann, K., Spencer, J.: Coping with
errors in binary search procedures. J. Comput. System Sci. 20, 396-404 (1980)
Spencer, J., Winkler, P.: Three thresholds for a liar. Combinatorics, Probability
and Computing 1, 81-93 (1992)

Ulam, S.: Adventures of a Mathematician. Scribner, New York (1976)

Yi, S., Kravets, R.: MOCA: Mobile Certificate Authority for Wireless Ad Hoc
Networks. In: 2nd Annual PKI Research Workshop Pre-Proceedings, vol. 51
Zhong, S., Chen, J., Yang, Y.R.: Sprite: A simple cheat-proof, credit-based system
for mobile ad-hoc networks. In: INFOCOM 2003 (2003)

Multichannel Protocols for User-Friendly and
Scalable Initialization of Sensor Networks

Toni Perkovié¢, Ivo Stanci¢, Luka Malisa, and Mario Cagalj

FESB, University of Split, Croatia
{toperkov,istancic,lmalisa,mcagalj}@fesb.hr

Abstract. We consider the classical problem of establishing initial secu-
rity associations in wireless sensor networks. More specifically, we focus
on pre-deployment phase in which sensor nodes have not yet been loaded
with shared secrets or other forms of authentic information.

In this paper, we propose two novel multichannel protocols for ini-
tialization of large scale wireless sensor networks. The first protocol uses
only secret key cryptography and is suitable for CPU-constrained sensor
nodes. The second protocol is based on public key cryptography. Both
protocols involve communication over a bidirectional radio channel and
an unidirectional out-of-band wvisible light channel. A notable feature of
the proposed “public key”-based key deployment protocol is that it is
designed to be secure in a very strong attacker model, where an attacker
can eavesdrop, jam and modify transmitted messages by adding his own
message to both a radio and a visible light channel; the attacker however
cannot disable the visible light communication channel. We show that
many existing protocols that rely on the visible light channel are insecure
in this strong adversary model.

We implemented the proposed protocols on the Meshnetics wireless
sensor platform. The proposed protocols are cheap to implement, secure
in the very strong attacker model, easy to use and scalable. We also de-
signed and tested a simple random number generator suitable for sensor
platforms.

1 Introduction

Deployment of cryptographic keys into individual sensor nodes is an imperative
for secure operation of a sensor network. While there is a large body of work
on key management in scenarios where cryptographic keys are already deployed
into the nodes [QTTIT2I2TI27], very few studies exists on the equally important
problem of establishing initial security associations in large wireless sensor net-
works.

Many existing systems consider the key pre-deployment to be a trivial mat-
ter. Thus, we can read that “the key distribution is relatively simple; nodes are
loaded with a shared key before deployment”. Long experience with WiFi net-
works have taught us that very often such “relatively simple” setup procedures
render the security features useless (users easily give up and thus leave their net-
works unprotected), even when dealing with only a few network devices. Some

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 228 2009.
© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Multichannel Protocols for User-Friendly and Scalable Initialization 229

other solutions propose to send the key in the clear over the radio channel or al-
ternatively, imprint the keys onto the nodes at production time (ZigBee [1]). The
problem with this approach is that customers may not trust the keys deployed
by the factory.

Solutions that require physical contact are not scalable, especially if the user is
required to initialize a large number of nodes. More advanced solutions have been
proposed in [8IBIBI24I24IT9I30] some of which do not scale well and/or require
specialized node hardware, and some are insecure in the realistic attacker model
introduced in this paper.

When dealing with initialization of network nodes on a large scale, a secure,
fast, cost effective and above all user-friendly solution is mandatory. In this pa-
per, we propose two novel multichannel protocols for initialization of large scale
wireless sensor networks. Similar to [30], our protocols involve communication
over a radio channel and the out-of-band visible light channel (VLC). The first
protocol uses only secret key cryptography and is suitable for CPU-constrained
sensor nodes. The “secret key”-based initialization of sensor nodes is depicted
in Figure[(a). In this protocol, each sensor node establishes a unique secret key
with a base station (BS). The base station comprises a simple web camera and
one sensor node all attached to an ordinary PC. In the first phase of the pro-
tocol, the sensor nodes transmit secret keys to the base station over a protected
visible light channel (Figure[i(a)). In the second phase, each sensor node runs a
key verification protocol with the base station over a bidirectional radio channel.
Once the keys are verified, the base station can serve as a trusted third party and
mediate establishment of security associations between any pair or any group of
sensor nodes.

Our second protocol uses public key cryptography. The “public key”-based
sensor node initialization process is summarized in Figure [(b). As with the
previous protocol, the ultimate goal is to establish security association between
each sensor node and the base station. This protocol is based on the multichannel
pairing protocol from [38/5]. Thus, each sensor node first exchanges its public key
(through specially formed commitment/openning pairs) with the base station
over a radio channel (Figure [[b)). In turn, each sensor node transmits a short
authentication string (SAS) using a visible light channel (Figure [I(b) - right).
The proposed “public key”-based protocol is similar to [30], with the difference
that our protocol is designed to be secure in a very strong attacker model, where
an attacker can eavesdrop, jam and modify transmitted messages by adding his
own message to both a radio and a visible light channel; the attacker however
cannot disable the visible light communication channell.

The paper is organized as follows: in Section2we state the problem and assump-
tions. In SectionsBland @ we present the “secret key”- and “public key”-based pro-
tocols (including security analysis of both protocols). We describe the implementa-

! It was brought to our attention recently that a similar approach has been suggested
in [31]. The initialization method in [31], however, is developed for a weaker attacker
model than the one we consider here.

230 T. Perkovi¢ et al.

Fig. 1. Two phases of node initialization for (a) secret key and (b) public key deploy-
ment protocol. In (a) nodes transmit the key to the base station via VLC (dashed
arrows) and perform authentication via a radio channel (full line arrows), while in (b)
they exchange public keys over a radio channel and perform authentication via VLC.

tion of the protocols and a simple random number generator in Section[Bl Related
work is provided in Section[fl Finally, we conclude in Section 7l

2 Problem Statement and System Model

We consider the following problem: How to securely initialize a large number of
sensor nodes in a user-friendly fashion? Since the initialization will be performed
by potentially non-expert personnel, a solution has to be easy both to learn
and use (user-friendliness). In addition, the hardware cost per node has to be
minimized (cost-efficiency).

2.1 System Model

We assume that a user is equipped with a base station used for verification and
monitoring as shown in Figure

Base Station. The base station comprises a monitor, a simple web camera
and one sensor node (a verification node) all attached to an ordinary PC. The
verification node serves as a radio modem to the base station.

Uninitialized Sensor Nodes. Nodes may be equipped with a single LED (we
used two LEDs in our implementation) used for key transmission via out-of-band
VLC and with radio transceivers. In addition, each node has a “pushbutton” used
to either restart or finalize the initialization process.

Cardboard box. A simple cardboard box is used to block the escape of light
during the key transmission via VLC. The cardboard box is required only for
the “secret key” - based key deployment protocol.

2.2 Attacker Model

An adversary has full control over the radio channel. He can eavesdrop, drop,
delay, replay and modify messages sent via radio. Thus, he is able to initiate
communication with any device (a node or the base station) and at any given

Multichannel Protocols for User-Friendly and Scalable Initialization 231

Base station
Verification node
Monitor
1 3
(3,03,
Web camera Ij
1 2 3 4
o o o o

Cardboard box

Fig. 2. Secret key deployment setup comprises a base station and a simple cardboard
box

time during the key transmission. Furthermore, the adversary can install his
own web camera in the same place where the initialization is taking place. We
assume that devices involved in key deployment (PC and nodes themselves) are
not compromised. Taking into account these constraints, we define: (a) a passive
adversary who only observes the visual channel and can eventually record a
secret key if the key transmission takes place in insecure conditions (outside
the cardboard box), and (b) an active adversary who in addition can initiate
communication with any device during the initialization phase.

In the case of “public key” - based initialization, we consider a stronger ad-
versary model where an attacker can eavesdrop and modify messages sent over
a light channel at all times (we elaborate this in Section H).

3 Secret Key Deployment

In this section we propose secret key based key deployment protocol and provide
initial security assessment of the proposed key deployment method.

3.1 Key Transmission and Verification

Prior to the start of node initialization, the user connects a web camera and
a verification node to a PC. Next, the user places the web camera on top of
the box from the inside, as shown in Figure[2l At this stage, the user turns the
nodes ON and places them inside the box. Next, the user closes the box, runs
the program on the PC and initiates the node initialization procedure. The box
remains closed until the key transmission and verification is performed on all
nodes which is subsequently indicated on the monitor.

Key transmission. Our “secret key”-based deployment is build upon ISO/TEV
9798-2 [4] three-pass key authentication protocol (Figure B)). We modify this
protocol to include the communication over VLC (dashed arrow in Figure []).
The modified protocol evolves as follows.

The node S; generates n-bit random key Kg,p and k-bit random string Ng,.
The base station generates k-bit random string Np,. The node, equipped with

232 T. Perkovi¢ et al.

Node S; Base Station BS
Pick KSiB cu {0, 1}n
Pick Ns, €v {0,1}" Pick Np, €y {0,1}F

(1) _ SillKsis

2) BlINB,

<
Sil{Ns;[INp,; [|1B} Kk g
(3) S 114V By >KslB

Verify Np,, Ks,B

BIl{Ns,|INB, }icg 5
<

(5) Verify Ns,, Ks,B

Fig. 3. Modification of ISO/IEV 9798-2 three pass key authentication protocol. The
dashed arrow represents key transmission over secure VLC.

minimally one LED, sends the key via VLC (step 1) to the base station (web
camera), as shown in Figure[3l At the same time, the base station performs three
tasks: (i) collects keys Kg,p generated by the nodes (step 1), (ii) initiates key
verification over a radio channel (steps 2-5), and finally, (iii) notifies the user
which node has been successfully initialized via the monitor. Section [provides
details of the key transfer over VLC.

Key verification. After the key is transmitted over VLC, the base station
initiates the key verification protocol. All messages in the key verification are
exchanged over the radio channel. The base station (using the verification node)
sends random nonce Np, over the radio channel to node S; (step 2). Next, S;
forms a packet by encrypting concatenations Ng,||Np,||B with the key Kg,p.
The node S; sends this message (and its identity) to the base station (step 3).
The base station extracts the random nonce Ng,, verifies the key Kg,p and the
random nonce Np,. If the verification is successful, the BS encrypts concatena-
tion Np,||Ns, using Kg,p and sends it back to node S;. The node S; receives
and verifies both the key K, p and the random nonce Ng,. The whole procedure
is considered as completed if all the nodes are successfully initialized, which is
finally indicated by the GUI on the monitor. At the end, the user opens the box
and completes the initialization with the short push on the node’s button. This
feature is used to ensure the “proof of presence” property to prevent an active
attack (as described in Section B3).

3.2 Sensor Node State Diagram

Both user and base station need to know the status of the initialization process
at any given time. For that reason, the current state of the node will be indicated
with a LED according to the state diagram shown in Figure[dl During the initial-
ization process, the node can take one of the four following states: Uninitialized,

Multichannel Protocols for User-Friendly and Scalable Initialization 233

Uninitialized

Key establishment Verification Push (OK)
LED ‘ LED ‘ LED ‘ LED

O | O
D‘ Ready ‘D‘ Initialized ‘ﬁ>‘ Confirmed

Fig. 4. Node’s state diagram. A colored square indicates that the LED is ON, while a
half colored that the LED is blinking.

Ready, Initialized and Confirmed. Next, we describe each of these states as well as
the transitions between them.

Uninitialized state. Initially, when the user powers the node ON it is in the
Uninitialized state. Prior to the start of key transmission the LED blinks with a
predefined frequency. During this phase the node generates the key and, upon
completion, sends it via VL.C to the camera. After the key transmission is com-
plete, the node advances to the Ready state (step 1 in Figure [)).

Ready state. The node remains in this state for a predefined period of time (e.g.,
a few seconds). In this state the node has sent the key and awaits the base station
to initiate the key verification protocol over a radio channel. During this phase
the node’s LED is OFF (Figure[). If the node does not receive any messages from
the base station within the predefined period of time, it automatically restarts
and returns back to the Uninitialized state. The node repeats the whole procedure
which involves new key generation and transmission over VLC. Alternatively,
the node receives a message from the base station and starts the key verification
(steps 2-5 in Figure). If the key verification is successful, the node advances to
the Initialized state.

Initialized state. In this state the node’s LED is turned ON (Figure). At
the same time, the base station notifies the user via the monitor about the
node’s position within the box as well as its current state. If the key verification
succeeded on both sides (the node’s and the base station’s), the user is instructed
to remove the nodes from the box and to shortly push the button on the node to
finalize the initialization. The push of the button serves as “proof of presence”,
an aspect we describe in Section However, if the node or the base station
failed to verify the key, the user is instructed over the monitor to restart the
initialization on selected nodes with a longer push on the button in order to
repeat the node initialization. After the short push of the button, the node
advances to the Confirmed state.

Confirmed state. In this state the node and the base station established a secret
key and verified it, and the initialization process is finalized.

3.3 Initial Security Assessment

Our “secret key”-based protocol is build upon ISO/IEV 9798-2 [4] three-pass
key authentication protocol that was proven to be secure when used over a radio

234 T. Perkovi¢ et al.

channel. Therefore, we focus on possible attacks over the VL.C, as we extended
the ISO/IEV 9798-2 [4] protocol by including a transmission of a secret key via
the VLC.

Camera recording (passive) attacker. A camera-recording attacker attempts
to learn the secret key simply by recording the key sent from the node via VLC
(step 1 in Figure[2). In this model the attacker does not interact in any way with
the node initialization procedure.

Let us consider the case in which the node starts sending the key under
insecure conditions (e.g., outside of the box). Thus, the attacker records the
key, and the node advances from Uninitialized to Ready state (node’s LED turns
ON). In this state, the node waits a predefined period of time for the base station
to initiate the key verification (Figure Hl). After the predefined time period has
passed during which the base station didn’t initiate the key verification protocol,
the node returns back to the Uninitialized state and repeats the whole procedure
again (generates a new key and, again, sends it via VLC). The base station
waits to receive a notification from the user that the system is ready (operates in
secure conditions). Only then will the base station begin to process keys received
over VLC and initiate the key verification protocol. Under secure conditions, the
attacker does not have an access to the key transmitted by the node and therefore
cannot successfully perform the key verification with the node.

Active attacker. In this attacker model, the attacker controls both the radio
channel and communication over VLC when sensor node(s) are out of the card-
board box. Let us assume that the attacker captures the key sent by a node via
VLC under insecure conditions (e.g., the node outside of the box). At this stage,
the node is in Ready state and awaits the base station to initiate key verifica-
tion (Figure). Next, the attacker initiates the key verification over the radio
channel using the captured key. If the verification is successful on the node’s
side, the node advances to the Initialized state (the LED turns ON as shown in
Figure M)). In this state the node waits for the user to confirm the initialization
(push on a button). The user doesn’t know that the attacker placed the node
in the Initialized state so she picks the node up, and places it inside the box.
Once the compromised node is placed inside the box, the base station recog-
nizes a constantly powered ON LED on it and warns the user (via the monitor)
to restart the initialization of that node. This is done by a longer push on the
node’s button. This form of active attacks does not work as the attacker does not
have physical access to the node, therefore he cannot force the node to advance
to Confirmed state. The user basically “proves her presence” through the push
button.

4 Public Key Deployment

In this section we extend the attacker model to a more powerful adversary who
can observe the electromagnetic radiation emanating from the LEDs. We assume
the LEDs emanate radio signals which cannot be blocked by a simple cardboard

Multichannel Protocols for User-Friendly and Scalable Initialization 235

box and we also assume that the attacker is able to easily eavesdrop on the
leaked signals. This is a variant of an attack previously introduced in [I8].

To establish keys between nodes and the base station by using a bidirec-
tional radio channel and an unidirectional out-of-band VLC, we use SAS pro-
tocols [BI38]. The protocols make the key exchange process more usable, but at
the cost of having to introduce public key cryptography. Recent work on ellip-
tic curve cryptography has shown promising results regarding key distribution
on resource constrained devices like our sensor nodes. In TinyPBC [26] and Na-
noECC [36] times less than 1 and 2 seconds, respectively, for point multiplication
in binary fields were achieved.

Many prominent solutions that use LEDs and cameras [32I30] assume that
the Visible Light Channel is authentic, which is not the case in our attacker
model. To convey information via VLC they use on-off keying (switch the LED
ON or OFF). An attacker equipped with a directional light source (e.g. a laser)
has the capability to modify a message sent via VLC. In our model the attacker
can modify messages by flipping 0 — 1, but not vice versa (1 — 0) as the
attacker cannot force a switched ON LED to turn OFF. In this case we speak
of a semi-authentic visible light channel.

In the following sections we describe how to perpetrate such attacks and we
also propose solutions on how to protect against them.

4.1 Attacks on Visible Light Channel

We consider prominent device pairing methods proposed in [32] and [30]. Both
of the methods were developed for an authentic VLC (an attacker cannot modify
messages sent via VLC). The proposed methods are secure within the authentic
VLC model but, as we will show, are insecure in our semi-authentic VLC model
(an attacker can flip 0 — 1).

Protocol [32] in the semi-authentic model. In [32] two devices (S and So
as shown in Figure|5(a)|) exchange public key values via a radio channel using the

M
Lasery N S‘l 82
beams \ > SAS;\ e -
BS . « .
&~ \\ //
Sz /
DT, SAS;
Laser 7
beam /7
1 SAS; < SAS,
M

Fig. 5. Attacker M, with the aid of a laser, tries to modify short authentication strings
exchanged over VLC (dashed arrows) between devices S1, Sz and BS (full-line arcs
represent communication over a radio channel)

236 T. Perkovi¢ et al.

SAS protocol [BI38]. To authenticate these messages, each device simultaneously
transmits short authentication strings (SAS) using visible light. The camera (BS
in Figure captures both of these authentication strings and compares them.
As BS does not know the SAS beforehand, the attacker can mount a MITM
attack and modify these strings with a laser. Attacker M exchanges public keys
with two devices S; and S via a radio channel. When transmission via VLC
occurs, the attacker points the lasers into the nodes’ LEDs and appropriately
modifies the bits (flips 0 — 1). The simplest attack is the one in which the
attacker flips all bits 0 — 1. In this case, the base station will see all 1s and
inform the user about the correct authentication. Please note that all 1s is a
legitimate SAS.

Protocol [30] in the semi-authentic model. In an approach similar to [32],
two devices (S7 and S in Figure exchange public key values over a radio
channel. In this scheme, at least one device has an integrated web camera. In
order to verify the exchanged public key values, device Sy sends the SAS via
VLC (using LEDs) to the device S;. Here, an attacker tries to mount a MITM
attack by exchanging different public keys with devices S7 and Sa, (Figure.
To succeed, the attacker has to ensure that SAS; = SAS,. Due to the property of
the protocols [5] in which the probability for SAS; and SAS, to be equal is 2% (k
is the length of the SAS) the attacker will establish two different authentication
strings SAS; and SASs with a high probability. However, in the semi-authentic
model where the adversary can modify the bits (flip 0 — 1) this probability
is significantly reduced. Indeed, if the ith bits of SAS; and SAS, are equal, an
attacker will not need to modify them in any way. On the other hand, if the
ith bits of SAS; and SAS, equal 1 and 0, respectively, an attacker could flip
0 — 1 by using the laser. Finally, if the ith bits of SAS; and SASs are 0 and 1,
the attacker will be unable to flip 1 — 0 for he cannot switch OFF an already
powered ON LED. This is summarized below:

SASU SASQ'L Attack

0 0 yes

0 1 no

1 0 yes

1 1 yes
Thus, we conclude that that 3 combinations of ith bits of SAS; and SAS, are
beneficial for the attacker (all combinations but the second one). It follows that
the probability for an attacker to modify the bits is 3/4, therefore, the probability
of a successful attack increases to (3/4)* as opposed to 27% (in the case of
authentic VLC). If k = 15, the probability in a single attack increases from 271°
to approximately 276,

Virtual node attack. Let us assume the user wants to initialize one node (S7)
and the attacker (M) wants to inject his own virtual node (S3) as shown in
Figure [0l Attacker M simply exchanges public key values over a radio channel
with BSS and points his laser within the visible area of the base station’s camera.
The pointed laser is used to create a virtual node (device Sy in Figure[d]), and as

Multichannel Protocols for User-Friendly and Scalable Initialization 237

BS T —

’
Laser 7

4
SAS, beam,

Fig. 6. An example of the virtual node attack; dashed arrows and full-line arcs represent
communication over a semi-authentic VLC and a radio channel, respectively

such, to “blink” the correct short authentication string in such a way that the
base station’s camera detects it. The BS compares the SASs it received from
the attacker’s laser with the one established over radio, sees that they match,
and accepts the public key values from M as authentic.

4.2 “Public Key”—Based Deployment Protocol

We assume that each node S; and the base station BS previously generated
public key values pks, and pkp. In order to exchange authenticated public key
values over a radio channel, we propose using the protocol introduced in [5I38],
and shown in Figure [l Please note, the base station performs this protocol
individually with each node. The protocol evolves as follows:

(i) The user counts the number of nodes he/she wants to initialize and enters
the number into the base station control software via a keyboard. We will show

Node S; Base Station BS
Pick Ns,ev{0,1}* Pick Np,ev{0,1}"
ms, — 1[S:[lpks, [Vs, ms, — 0||Bllpks||Ne,
(es,,ds,) <commit(ms,) (¢B,,dB,;) < commit(msp,)
< s
cs;
>
—~ dBi
ﬁ\’bBi — open(EBi,dBi) <
~ dg. ~
SASSi — NBi (&) Nsl. i > ’r/fbsi — open(’c\si,dsz.)
SASp, < NpB, ® Ns,
SASq

—— =% Verify SASs, = SASg,
If SASs, = SASp,, the base station informs the user
to accept public key values as authentic.

Fig. 7. SAS protocol by [BI38]. The dashed arrow represents communication over a
semi-authentic VLC.

238 T. Perkovi¢ et al.

later that by entering the number of nodes we can prevent the virtual node
attack and make the size of the SAS invariant of the number of nodes to be
initialized.

(ii) The user switches the nodes ON and places them in front of the camera,
with the LEDs facing the camera.

(iii) The node’s LED starts flashing with the delimiter 111000 to indicate to
the BS they are ready to be initialized and to enable the BS to count them.

(iv) Next, the user instructs the base station to begin with the protocol shown
in Figure [l Having exchanged commit/open pairs with the BS, each node 5;
first calculates the respective SASg, (Figure [[l), Manchester encodes SASg, and
begins transmitting it repetitively via a VLC (using on-off keying, switching LED
OFF and ON). The Manchester encoded short authentication string, denoted
M(SASg,), is separated with delimiter 111000. The usage of the delimiter and
Manchester encoding was inspired by I-codes [6] and was used to prevent the
flipping attacks (Section F3]). Finally, the node transmits (blinks) the following
repetitive sequence:

delim. ~ M(SASs;) delim. ~ M(SASs;) delim.
- N -~ N - N N r -~ P NN
---1110001001---10 111000 1001---10 111000---

(v) If the SAS verification is successful for all the nodes, the user is instructed
to finalize the initialization procedure by pushing a button on each of the nodes.
If one or more nodes fail to initialize properly (e.g. due to errors in transmis-
sion, attacks etc.) the initialization procedure is aborted for all the participating
nodes.

4.3 Short Security Analysis

Due to the lack of space, in this section we provide only a short security analysis
of the public key deployment protocol.

Flipping attacks. In order to prevent flipping attacks we used Manchester
encoded SASg, for the transmission via VLC. Note that such a message contains
an equal number of Os and 1s. Due to the on-off keying modulation and the fact
that an attacker is unable to switch OFF the LED (flip 1 — 0), any attempt
of flipping will be detected by the BS as an excess of 1s. This construction is
proved secure in [6].

Virtual node attack. According to the protocol, the base station knows exactly
how many nodes it has to initialize (step (i) of the protocol). In addition, the BS
counts itself the nodes by detecting respective delimiters (111000) transmitted
over VLC. In order to successfully inject his own virtual nodes, the attacker has
to block transmission of the delimiter 111000 over VLC for at least one of the
nodes. However, the attacker cannot do this, for he is unable to turn OFF an
already switched ON LED. In addition, any attempt of flipping 0 — 1 in the
delimiter will be detected by the BS [0].

All or none. The design choice to abort the initialization procedure if at least
one node fails to initialize properly makes the SAS invariant to changing the

Multichannel Protocols for User-Friendly and Scalable Initialization 239

number of nodes to be initialized. Indeed, from the above analysis we know that
an attacker can neither add new (virtual) nodes, remove existing (legal) ones,
nor perform bit flipping attacks. It follows that the attacker can only try to
perform a man-in-the-middle attack against one or more legal nodes. Now, if
an attacker attempts to mount the attack against m nodes (out of n) and the
respective short authentication strings are mutually independent, the probability
of a successful attack against at least one sensor node, in a single attempt, will
be at least min{m - 27% 1} [5]. For example, if the attacker attacks m = 100
nodes and k = 15, the probability for the attacker to succeed against at least
one node is around 278. However, by restricting the attacker to be successful
against all the nodes, the probability for the attacker to succeed is reduced to
(2715)ym = 2715 Therefore, the best strategy for the attacker is to mount an
attack against exactly one node (i.e., m = 1), which implies the probability of
success (in a single attempt) to be bounded by 27% + ¢ (k being the size of SAS
and ¢ a negligible probability) [5].

5 Implementation

We next describe the implementation of our secret-key deployment protocol.
More specifically, we describe the implementation of a simple random number
generator (RNG) and the key recognition software that enables communication
over the light channel. We used Meshnetics ZigBee sensor nodes equipped with
Green and Red LEDs, Atmel AT-megal281V microcontrollers and AT86RF230
RF transceivers. Each sensor module features 128KB of flash memory and 8KB
of RAM with data rate of 250 kbps in frequency band from 2.400 — 2.483 GHz.
For software developing and testing of the initialization procedure, a PC with the
following configuration was used: Intel dual core processor clocked at 2.66GHz,
2GB of RAM, a Logitech notebook deluxe webcam with VGA resolution at 30fps
interfaced via USB to the computer and Windows XP SP3 operating system.

5.1 Random Number Generator

The key feature for secure communication lies in a good random number genera-
tor. In this section, we describe our Random Number Generator (RNG). We first
describe some related work on random number generators suitable for devices
with limited processing capabilities.

TinyRNG [I5] uses transmission bit errors as a source of randomness. These
bits are randomly distributed as well as uncorrelated and may not be manipu-
lated by an adversary. In [I4] two oscillators are used, one oscillating much faster
than the other. Generated bit stream’s randomness is based on the frequency
instability of a free running oscillator. The slow oscillator samples the higher
frequency oscillator. They have shown that if the jitter in the slow oscillator
signal is sufficient, the output of the RNG will have very little bit-to-bit corre-
lation. Tkacik [37] also uses two free-running oscillators whose frequency vary
with voltage and temperature. Random numbers are generated as exclusive-or of

240 T. Perkovi¢ et al.

previously selected and permuted 32 bits of the LFSR (linear feedback shift reg-
ister) and CASR (cellular automata shift register). Each shift register is clocked
by these oscillators. However, an initial seed is required for each register.

Design of a Random Number Generator. In our implementation we used
the approach from [I4]. The generation of random numbers goes as follows:
Meshnetics ZigBee nodes are equipped with two usable oscillators, an Internal
Calibrated RC Oscillator (4 MHz) and a Watchdog Oscillator (128 kHz) [25]. The
software running on the sensor nodes creates two timers; one timer is associated
with the slower oscillator and the other timer with the faster one. The timers
are configured with clock dividers in such a way that the slower timer fires once
per second, while the faster one fires roughly 50000 times per second. On every
tick of the slower timer, the number of ticks from the faster timer is logged.
Figure B(b) shows two traces of the number of ticks from the faster timer during
the period of 512 ticks from the slower timer (roughly 512 seconds). As shown,
the source of randomness comes from the instability (jitter) of the two used
oscillators (Figure [B(a)).

Digital postprocessing. Table (1] shows the digital postprocessing and the
random number generation process. As shown, on each successful low frequency
timer tick the number of high frequency ticks is counted. Next, this value is

x 104

o
=]
N

T T T
— Sequence 1| |
---- Sequence 2

Faster timer (Internal crystal)

o
=3
>
a

Number of ticks (faster timer)
o
°
(]

Ui t
1 2 3 4 5 6 7.1 2 3 4
1 5.055
o ;
1 . 5.05 |
! " 0 100 200 300 400 500
Slower timer (Watchdog) Sample number
(a) (b)

Fig. 8. (a)An example of oscillator frequency instability (jitter). (b) Two traces show-
ing the number of ticks of a faster timer relating to one tick of the slower one.

Table 1. An example of digital postprocessing performed on the generated raw bit-
stream as well as the generation of random numbers. The generated bit stream is
110100.

Number of ticks Number of ticks Partial binary Last two
(Watchdog) (Internal RC) representation digits
1 50607 10101111 11
2 50605 10101101 01
3 50640 11010000 00

Multichannel Protocols for User-Friendly and Scalable Initialization 241

converted into a binary representation (last eight binary digits are presented
in Table 1) from which the last two bits are taken. We could extract more
than two bits at the expense of a more complex extractor. Since for our purpose
the entropy is sufficient, we choose to use this simple extractor. The results of
statistical tests are presented in the next section.

Statistical Tests. ENT [40] and NIST [I3] statistical test suites were used to
test the randomness of our generated bitstreams. Statistical tests were conducted
on a 3 x 10% long bitstream which we obtained from 7 ZigBee nodes over the
period of approximately 3 days.

ENT [40] is a pseudorandom number frequency test that performs a variety
of tests such as Entropy, Arithmetic mean, Monte Carlo value for Pi, Serial
correlation coefficient and Chi square distribution. Table [5.] contains the results
of the ENT test performed on a 3 x 10% long bitstream.

Only the last two bits were taken from the binary representation of the faster
timer tick count. If more than two bits are taken, the bitstream fails the “Chi
square” part of the ENT test suite. But, as we already mentioned, our RNG
directly samples the number of faster timer ticks, without the requirement for
other complex extractors.

NIST STS [I3] contains 15 tests out of which only 8 were performed due to
the minimum bitstream requirement (3 x 10¢ bits were produced) for each test.
Each test is used to calculate the P-value which shows the strength of the null
hypothesis. The hypothesis passes the test if the P-value is higher than 0.01 in
which case the sequence is considered to be random. As shown in Table (.1l the
generated sequence passed the tests (P-value is higher than 0.01).

Table 2. ENT test results

Entropy = 0.999999 bits per bit.

Optimum compression would reduce the size of this 3 x 10° bit file by 0 percent.
Chi square distribution for 3267632 samples is 2.40 and randomly would exceed
this value 12.14 percent of the times.

Arithmetic mean value of data bits is 0.4996 (0.5 = random).

Monte Carlo value for Pi is 3.155460889 (error 0.44 percent).

Serial correlation coefficient is 0.000264 (totally uncorrelated = 0.0).

Table 3. NIST test results

TEST P-VALUE PROPORTION TEST P-VALUE PROPORTION

frequency 0.148094 0.9922 fft 0.468595 1.0000
block-frequency 0.500934 0.9922 aperiodic all passed all passed
cumulative-sums 0.311542 0.9922 apen 0.275709 0.9844
cumulative-sums 0.031497 0.9922 serial 0.671779 0.9844

runs 0.437274 0.9922 serial 0.637119 0.9922

242 T. Perkovi¢ et al.

These tests were performed over the raw bits. Since the output bitstream
passes both NIST and ENT test suites, no additional randomness extractors
(universal hash functions [417], von Neumann extractor [39], or simply applying
a cryptographic hash function over the bitstream) are necesarry.

These results are preliminary; future work will include a more detailed study of
factors which impact the work of RC oscillators (e.g. voltage and temperature),
and therefore directly impact the quality of the generated random numbers.

5.2 Communication over a Visible Light Channel

After the key generation follows the key transmission via an out-of-band Visible
Light Channel (VLC). The sensor nodes are programmed in such a way that
generated key bits are Manchester encoded prior to transmission which ensures
lower bit error rates during the transmission over VLC. The bits are transmit-
ted in such a way that logical 0 and 1 of our bitstream are represented with
LED ON and OFF states, respectively. The duration of each state (single LED’s
blink) is approximately 200 ms. In Figure @ we give an example of a bitstream’s
“life-cycle”; from the bit generation to the bit transmission phase. As shown in
Figure @ the generated bits are separated in such a way that the first and the
second LED (Green and Red LED) transmit odd and even bits, respectively, of
Manchester encoded binary stream via VLC. In this way we achieve easier key
recognition on the side of the base station, as described in the sequel.

Computer Vision. Once the user places sensor nodes inside of the box, we use
our computer vision (CV) system to derive the secret key from the nodes’ LED
blinking sequence. We developed our CV system in MATLAB 2007 GUI [I6],
and achieved transmission speeds of 10 bits per second (5 b/s per each LED).
The image processing part of our CV system is CPU demanding. In order
to achieve real-time performance, we process only certain parts of an webcam-
obtained image - so called “Areas of Interest” (small rectangles encompassing
LEDs of each node). The algorithm was designed to work with two LEDs on each
node (Green and Red LED). To determine the Area of Interest (Aol) for each
node, which is the first step, a few seconds of buffered frames is required. Once
the areas are determined, the rest of the algorithm is performed in real-time.
All of the following steps are performed only over Areas of Interest. The rest of
the image does not contain any relevant information, and thus is excluded from
future processing.
Image transformation. In the second step, the selected image parts (Aols) are
converted from RGB to HSV color space, known to be more reliable for detecting

el 11 17010

% Separator 2 Manchester G Visible Light G
Input (random) Rl encoding o 0 11 0, Modulation R

bit-stream

h b 13 t4t

Fig. 9. An example of the bit stream sent via VLC using Manchester encoding. G and
R stand for Green and Red LED, respectively.

Multichannel Protocols for User-Friendly and Scalable Initialization 243

[Frame loss

IR

o

111111

000000) 000000

convolution

—= I

640660 680 700 720 740 760 780 800 82! 640 660 680 700 720 740 760 780 800 820 640660 680 700 720 740 760 780 800 820
Frame Number Frame Number Frame Number

(a) (b) (c)

Fig.10. A key recognition process: (a) detecting the status of LED indicators, (b)
applying the convolution over the sampled area and (c) the bit identification process
after the convolution

Binary Value
co

Binary Value
o
Red LED Green LED

Red LED Green LED

Convolution Value
o
Red LED Green LED

=)

colors in low and changing light conditions [33]. Obtained images are tested for
their levels of Hue, Saturation and Value, which enables us to detect the state
(ON/OFF) of each LED. Color detector relies mainly on the level of Hue, while
levels of Saturation and Value are just used in order to avoid false detection due
to noise at low illumination conditions in the dark box.

Recognition of VLC signal. Due to a high frame loss and transmission er-
ror rates, during the transmission each bit is repeated in 6 consecutive frames
(6 samples per bit). Decoding starts by detecting first 18 frames of the packet
delimiter (3 binary ones in a sequence on both LEDs). Next, the key recognition
algorithm performs the mathematical operation of convolution over the frames
following the delimiter with a mask of six consecutive 1s (Figure [[0(a)). As
a result, data arrays containing values ranging from 0 to 6 are obtained (Fig-
ure , where elements with extremes 0 and 6 are decoded as bits 0 and 1,
respectively. Plateaus (areas with multiple, identical and consecutive elements)
are decoded as double 0Os or 1s, depending on their values (0 or 6). As Manchester
encoding was used, only the convoluted signal’s slope is analyzed, and not their
values. This results in a method highly robust to de-synchronization effects. As
shown by an example in Figure [0(b), frame loss during transmission via VLC
does not affect correct bit recognition in any way.

6 Related Work

Recently, many key deployment schemes such as Zig Bee [I], SPINS [27], LEAP [42]
and Transitory Master Key [I0] have been proposed. Others [QITTIT22TI28] pro-
pose random key pre-distribution schemes. All of these schemes rely on an unspec-
ified secure key deployment mechanism between devices.

In On-off Keying, the presence of an RF signal represents a binary 1, while its
absence represents a binary 0 [56]. By using an unidirectional encoding scheme,
On-off Keying ensures that an attacker is unable to modify a packet during
transmission.

244 T. Perkovi¢ et al.

In Shake Them Up [§], user establishes a secret key between two nodes by
holding and shaking the devices together while they send identical packets over
the radio. This way, they assume that an adversary is unable to distinguish the
source of the packets. This may be violated by using radio fingerprinting. Also,
this does not scale well. The three related schemes are Are You With Me [20],
Smart-Its Friends [I7] and [22].

In Key Infection [2], two nodes establish a secret key by sending it in the clear
over radio. They assume an attacker is unable to eavesdrop all the keys from
all the nodes (e.g., 10.000 nodes) during key deployment. Based on simplicity
and cost effectiveness, this scheme is insecure against a determined adversary.
Moreover, an adversary is capable of injecting his own key, also violating key
authentication.

In Resurrecting Duckling [35], a physical contact is required to securely estab-
lish a secret key. Based on the assumption that physical contact is secure, key
authenticity and secrecy are ensured. But, since it requires specialized additional
hardware, this scheme is not cost effective.

In Message In a Bottle [19], keys are sent in the clear to the nodes located
inside a Faraday cage that ensures key secrecy and authenticity. However, the
number of simultaneously initialized nodes determines the size of the Faraday
cage. Moreover, a scale is used to determine the number of nodes within the
Faraday cage based on total Faraday cage weight. In order to ensure key secrecy
and authenticity for a large number of nodes, this scheme requires specialized
setup hardware.

In HAPADEP [34] both data and verification information is sent over an audio
channel. The pairing devices are both required to have speakers and microphones.
In a related paper, Saxena and Uddin [30] present a device pairing method with
an unidirectional channel based on devices equipped with LEDs and a video
camera as the receiver. Their method is used for asymmetric pairing scenarios.
Again, Saxena et. al. [32] use an auxiliary device (a laptop equipped with a web
camera) to compare a short authentication string sent from the nodes to the
laptop via unidirectional visible light channel. Both protocols are prone to laser
attacks where an adversary may inject his/her malicious key by modifying the
messages sent via the light channel with a directional light source (e.g. laser
emitter).

Talking to strangers [3] requires specialized setup hardware (e.g. audio or
infrared) in order to setup a public key. Seeing Is Believing uses an installation
device with a camera or a bar code reader to create an out-of-band secure channel
[24]. Key authenticity is achieved through certified public keys.

Mayrhofer and Welch [23] use an out-of-band laser channel constructed with
off the shelf components for transmitting short authentication strings. According
to [23], the proposed solution does not ensure complete authenticity of the