

Lecture Notes of the Institute
for Computer Sciences, Social-Informatics
and Telecommunications Engineering 19

Editorial Board

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong

Falko Dressler
University of Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Italy

Mario Gerla
UCLA, USA

Hisashi Kobayashi
Princeton University, USA

Sergio Palazzo
University of Catania, Italy

Sartaj Sahni
University of Florida, USA

Xuemin (Sherman) Shen
University of Waterloo, Canada

Mircea Stan
University of Virginia, USA

Jia Xiaohua
City University of Hong Kong, Hong Kong

Albert Zomaya
University of Sydney, Australia

Geoffrey Coulson
Lancaster University, UK

Yan Chen Tassos D. Dimitriou
Jianying Zhou (Eds.)

Security and Privacy
in Communication
Networks

5th International ICST Conference
SecureComm 2009
Athens, Greece, September 14-18, 2009
Revised Selected Papers

13

Volume Editors

Yan Chen
Northwestern University, Department of Electrical Engineering
and Computer Science, Robert R. McCormick School
of Engineering and Application Science, 2145 Sheridian Road
Evanston, IL 60208-3118, USA
E-mail: ychen@northwestern.edu

Tassos D. Dimitriou
Athens Information Technology
Markopoulo Ave.
GR-19002, Peania, Greece
E-mail: tdim@ait.edu.gr

Jianying Zhou
Institute for Infocomm Research
1 Fusionopolis Way, 21-01
Connexis, South Tower, 138632 Singapore
E-mail: jyzhou@i2r.a-star.edu.sg

Library of Congress Control Number: 2009938038

CR Subject Classification (1998): C.2, D.4.6, K.6.5, K.4.4, J.1

ISSN 1867-8211
ISBN-10 3-642-05283-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-05283-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12773008 06/3180 5 4 3 2 1 0

Preface

SecureComm 2009, the 5th International ICST Conference on Security and Pri-
vacy in Communication Networks, was held in Athens, Greece, September 14–17,
2009. SecureComm was organized by the Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering (ICST). The General Chair of
the conference was Peng Liu from the Pennsylvania State University, USA.

The conference received 76 submissions (one withdrawn) and each submis-
sion received at least three reviews, with some papers receiving as many as five
reviews. The first phase of the review process (April 7 to May 27) generated 290
reviews overall or about 3.8 reviews per submission. In the second phase (May
28 to June 12), a two-week online discussion was initiated ensuring consensus
for each accepted paper. The review process was challenging and we are deeply
grateful to the committee members and the external reviewers for their outstand-
ing work. The Program Committee consisted of 64 academics and professionals
well known in their corresponding area of expertise.

After meticulous deliberation, the Program Committee, which was chaired
by Yan Chen from Northwestern University, USA and Tassos Dimitriou from
Athens Information Technology, Greece, selected 19 full papers and 7 short ones
for presentation in the academic track and inclusion in this volume. This gives
the acceptance rates of 25.3% for the full papers and 34.7% for all papers.

The program also included two invited talks in addition to the academic and
industrial tracks. The invited talks were given by Sal Stolfo from Columbia Uni-
versity on “Polymorphic Shellcode: The Demise of Signature-based Detection,”
and Bart Preneel from Katholieke Universiteit Leuven, Belgium on “Upgrading
Cryptographic Algorithms for Network Security.” We would like to genuinely
thank them for accepting our invitation and for contributing to the success of
SecureComm 2009.

Finally, we would like to thank the technical sponsors CreateNet, ICST, and
the Institute of Informatics and Telecommunications (IIT) of the Greek National
Centre for Scientific Research “Demokritos” for their support. We would like to
thank all the people involved in the organization of this conference. In particular,
we would like to thank the Publication Chair Jianying Zhou, the Conference Co-
ordinators Gergely Nagy and Eszter Hajdu, the Website Coordinator Kun Bai,
and the Steering Committee members, namely, Imrich Chlamtac and Krishna
Sivalingam.

September 2009 Yan Chen
Tassos Dimitriou

Peng Liu

SecureComm 2009

5th International Conference on
Security and Privacy in Communication Networks

Athens, Greece
September 14–18, 2009

Organized and Sponsored by

Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering (ICST)

General Chair

Peng Liu Penn State University, USA

Technical Program Chairs

Yan Chen Northwestern University, USA
Tassos Dimitriou Athens Information Technology, Greece

Publicity Chair

Morley Mao University of Michigan, USA

Publication Chair

Jianying Zhou Institute for Infocomm Research, Singapore

Sponsorship Chair

Effie Makri Institute of Informatics and
Telecommunications, Greece

Workshop Chair

Reza Curtmola NJIT, USA

VIII Organization

Conference Coordinator

Gergely Nagy ICST

Website Coordinator

Kun Bai Penn State University, USA

Technical Program Committee

Ehab Al-Shaer DePaul University
Feng Bao Institute for Infocomm Research
Paul Barford University of Wisconsin-Madison
Nikita Borisov University of Illinois at Urbana-Champaign
Hao Chen University of California, Davis
Shuo Chen Microsoft Research
Songqing Chen George Mason University
Yingying Chen Stevens Institute of Technology
Mauro Conti University of Rome
Bruno Crispo University of Trento
Reza Cutmola New Jersey Institute of Technology
George Danezis Microsoft Research
Sven Dietrich Stevens Institute of Technology
Xuhua Ding Singapore Management University
Yingfei Dong University of Hawaii
Roberto DiPietro University of Rome
Cristian Estan University of Wisconsin-Madison
Felix C. Freiling University of Mannheim
David Galindo University of Luxembourg
Guofei Gu Texas A&M University
Yong Guan Iowa State University
Peter Gutmann University of Auckland
Markus Jakobsson Palo Alto Research Center
Brent Hoon Kang University of North Carolina at Charlotte
Nikos Komninos Athens Information Technology
Ioannis Krontiris University of Mannheim
Brian LaMacchia Microsoft
Loukas Lazos University of Arizona
Javier Lopez University of Malaga
Zhichun Li Northwestern University
Donggang Liu University of Texas at Arlington
Peng Liu Penn State University
Kostas Markantonakis University of London
Jelena Mirkovic USC Information Sciences Institute

Organization IX

John Mitchell Stanford University
David Molnar University of California, Berkeley
Panos Papadimitratos EPFL
Kenny Paterson Royal Holloway, University of London
Adrian Perrig Carnegie Mellon University
Radha Poovendran University of Washington
Neeli R. Prasad Center for TeleInFrastruktur
Kui Ren Illinois Institute of Technology
Pierangela Samarati University degli Studi di Milano
Sanjeev Setia George Mason University
Jessica Staddon Palo Alto Research Center
Yannis Stamatiou University of Ioannina
Angelos Stavrou George Mason University
Paul Syverson Naval Research Laboratory
Patrick Traynor Georgia Tech
Haining Wang College of William and Mary
XiaoFeng Wang Indiana University
Dirk Westhoff NEC Europe
Avishai Wool Tel Aviv University
Felix Wu University of California, Davis
Yinglian Xie Microsoft Research
Dongyan Xu Purdue University
Yanjiang Yang Institute for Infocomm Research
Vinod Yegneswaran SRI International
Yanchao Zhang New Jersey Institute of Technology
Ben Y. Zhao University of California, Santa Barbara
Jianying Zhou Institute for Infocomm Research
Bo Zhu Concordia University
Sencun Zhu Penn State University
Cliff Zou University of Central Florida

Steering Committee

Imrich Chlamtac (Chair) Create-Net, Italy
Krishna Sivalingam

(Co-chair) University of Maryland Baltimore County,
USA

Andreas Schmid Novalyst IT, Germany
Peng Liu Penn State University, USA

Table of Contents

Wireless Network Security I

Mitigating DoS Attacks on the Paging Channel by Efficient Encoding
in Page Messages . 1

Liang Cai, Gabriel Maganis, Hui Zang, and Hao Chen

FIJI: Fighting Implicit Jamming in 802.11 WLANs 21
Ioannis Broustis, Konstantinos Pelechrinis, Dimitris Syrivelis,
Srikanth V. Krishnamurthy, and Leandros Tassiulas

Deny-by-Default Distributed Security Policy Enforcement in Mobile
Ad Hoc Networks . 41

Mansoor Alicherry, Angelos D. Keromytis, and Angelos Stavrou

Network Intrusion Detection

Baiting Inside Attackers Using Decoy Documents . 51
Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis, and
Salvatore J. Stolfo

MULAN: Multi-Level Adaptive Network Filter . 71
Shimrit Tzur-David, Danny Dolev, and Tal Anker

Automated Classification of Network Traffic Anomalies 91
Guilherme Fernandes and Philippe Owezarski

Security and Privacy for the General Internet

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri
Nets . 101

Magdalena Payeras-Capellà, Macià Mut-Puigserver,
Andreu Pere Isern-Deyà, Josep L. Ferrer-Gomila, and
Llorenç Huguet-Rotger

On the Security of Bottleneck Bandwidth Estimation Techniques 121
Ghassan Karame, David Gubler, and Srdjan Čapkun

An Eavesdropping Game with SINR as an Objective Function 142
Andrey Garnaev and Wade Trappe

Malware and Misbehavior

Ensemble: Community-Based Anomaly Detection for Popular
Applications . 163

Feng Qian, Zhiyun Qian, Z. Morley Mao, and Atul Prakash

XII Table of Contents

Using Failure Information Analysis to Detect Enterprise Zombies 185
Zhaosheng Zhu, Vinod Yegneswaran, and Yan Chen

Dealing with Liars: Misbehavior Identification via Rényi-Ulam
Games . 207

William Kozma Jr. and Loukas Lazos

Wireless Network Security II, Sensor Networks

Multichannel Protocols for User-Friendly and Scalable Initialization of
Sensor Networks . 228

Toni Perković, Ivo Stančić, Luka Malǐsa, and Mario Čagalj

Aggregated Authentication (AMAC) Using Universal Hash Functions . . . 248
Wassim Znaidi, Marine Minier, and Cédric Lauradoux

Sec-TMP: A Secure Topology Maintenance Protocol for Event Delivery
Enforcement in WSN . 265

Andrea Gabrielli, Mauro Conti, Roberto Di Pietro, and
Luigi V. Mancini

Hierarchical Self-healing Key Distribution for Heterogeneous Wireless
Sensor Networks . 285

Yanjiang Yang, Jianying Zhou, Robert H. Deng, and Feng Bao

Key Management, Credentials, Authentications

User–Centric Identity Using ePassports . 296
Martijn Oostdijk, Dirk-Jan van Dijk, and Maarten Wegdam

Defending against Key Abuse Attacks in KP-ABE Enabled Broadcast
Systems . 311

Shucheng Yu, Kui Ren, Wenjing Lou, and Jin Li

Breaking and Building of Group Inside Signature . 330
S. Sree Vivek, S. Sharmila Deva Selvi, S. Gopi Nath, and
C. Pandu Rangan

Use of ID-Based Cryptography for the Efficient Verification of the
Integrity and Authenticity of Web Resources . 340

Thanassis Tiropanis and Tassos Dimitriou

Wireless Network Security III

Self-organized Anonymous Authentication in Mobile Ad Hoc
Networks . 350

Julien Freudiger, Maxim Raya, and Jean-Pierre Hubaux

Table of Contents XIII

An Active Global Attack Model for Sensor Source Location Privacy:
Analysis and Countermeasures . 373

Yi Yang, Sencun Zhu, Guohong Cao, and Thomas LaPorta

Rogue Access Point Detection Using Innate Characteristics of the
802.11 MAC . 394

Aravind Venkataraman and Raheem Beyah

Secure Multicast, Emerging Technologies

A Novel Architecture for Secure and Scalable Multicast over IP
Network . 417

Yawen Wei, Zhen Yu, and Yong Guan

Reliable Resource Searching in P2P Networks . 437
Michael T. Goodrich, Jonathan Z. Sun, Roberto Tamassia, and
Nikos Triandopoulos

The Frog-Boiling Attack: Limitations of Anomaly Detection for Secure
Network Coordinate Systems . 448

Eric Chan-Tin, Daniel Feldman, Nicholas Hopper, and Yongdae Kim

Author Index . 459

Mitigating DoS Attacks on the Paging Channel
by Efficient Encoding in Page Messages

Liang Cai1, Gabriel Maganis1, Hui Zang2, and Hao Chen1

1 Computer Science Department, University of California, Davis
{lngcai,gymaganis}@ucdavis.edu,

hchen@cs.ucdavis.edu
2 Sprint Advanced Technology Labs

hui.zang@sprint.com

Abstract. Paging is an important mechanism for network bandwidth
efficiency and mobile terminal battery life. It has been widely adopted by
mobile networks, such as cellular networks, WiMax, and Mobile IP. Due
to certain mechanisms for achieving paging efficiency and the conver-
gence of wireless voice and data networks, the paging channel is vulner-
able to inexpensive DoS attacks. To mitigate these attacks, we propose
to leverage the knowledge of the user population size, the slotted nature
of the paging operation, and the quick paging mechanism to reduce the
length of terminal identifiers. In the case of a CDMA2000 system, we can
reduce each identifier from 34 bits down to 7 bits, effectively doubling the
paging channel capacity. Moreover, our scheme incurs no paging latency,
missed pages, or false pages. Using a simulator and data collected from
a commercial cellular network, we demonstrate that our scheme doubles
the cost for DoS attackers.

Keywords: Paging, DoS Attacks, General Page Message, Quick
Paging.

1 Introduction

The biggest advantage of mobile networks over wired networks is mobility, which
allows users to access the network from different locations. Mobile networks
achieve mobility through Macro-mobility management and Micro-mobility man-
agement. The former ensures that mobile terminals (e.g., cell phones and laptops
with wireless cards) are addressable when they roam between different domains,
while the latter manages the mobile terminal’s movement between access points
or base stations within the same domain. While implementations vary across
mobile networks, macro-mobility management always requires roaming users to
notify the network each time they arrive at a new domain. By contrast, a similar
scheme, which would require terminals to update their locations every time they
move to a new access point or base station, is impractical for micro-mobility
management for several reasons. First, location updates would be much more
frequent than in macro-mobility management, which would consume significant

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 1–20, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

2 L. Cai et al.

wireless bandwidth and mobile terminal power. Second, to trace their own loca-
tions, terminals must continuously monitor the beacon or pilot channel of base
stations, which would drain their batteries even faster.

Paging is a critical mechanism to improve the bandwidth and terminal energy
efficiency in micro-mobility management. The designer divides the network into
paging areas and requires terminals to notify the network about their location
only when they enter a new paging area. Each paging area is usually large enough
so that location updates are infrequent even for highly mobile terminals. Mean-
while, terminals monitor the network at longer intervals and enter the idle mode
in between. When an incoming call arrives, the network controller broadcasts a
page message to the entire paging area. If the terminal is located in the paging
area, it responds to acquire a traffic channel. As an efficient location management
scheme, paging has been widely adopted in mobile networks, including cellular
communication systems (GSM[1], W-CDMA and CDMA2000[2]), WiMax[3] and
Mobile IP systems[4].

There are a pair of low-bandwidth channels in a cellular network used for loca-
tion management. The downlink channel, often referred to as the paging channel,
is used for paging while the uplink channel (the access channel) is used for lo-
cation updates. To lower the bandwidth requirement on the access channel, we
desire larger paging areas; however, larger paging areas would increase the load
on the paging channel since all the users in the same paging area share the same
paging channel. Concentrated flash crowds could even lead to temporary paging
channel overload or saturation. This tradeoff between bandwidth requirement
and paging area size is known as the paging efficiency problem.

The recent convergence of wireless voice and data networks exacerbates this
problem. Besides incoming voice calls, incoming short messages (SMSs) and
data packets may also increase the load on the paging channel. This provides
attackers with an opportunity to launch a DoS attack on wireless networks from
the Internet, possibly with very low cost. For example, Serror et al. showed how
to saturate the paging channel of a cellular network by sending data packets
from the Internet at a very low cost [5], and Enck et al. showed how to disrupt a
cellular network in a major city by sending SMS messages of a sufficient rate [6].

If we improve paging efficiency, we could not only accommodate flash crowds
but also mitigate DoS attacks. Previous approaches focused on reducing the
number of paging requests (e.g., by predicting terminals’ locations [7]). In this
paper, we take a different approach by increasing the number of paging requests
that the paging channel can carry. A page message contains the identifiers of
all the paged mobile terminals. Our key insight is that the shorter the lengths
of these identifiers are, the more terminals a single page message can page.
Towards this goal, we propose a series of methods for shortening terminal IDs
by leveraging the knowledge of the population size in a paging area, by grouping
terminals based on paging channel slots, and by using special Bloom filters in
quick paging. When applying these methods to a CDMA2000 system, we are
able to reduce the length of each terminal ID from 34 bits to 7 bits, which we
shall show doubles the number of terminals that one page message can contain.

Mitigating DoS Attacks on the Paging Channel 3

Since our scheme only shortens terminal IDs, it has no adverse effect on paging
performance (e.g., paging latency, missed page rate, false paging) and requires
little change to the paging protocols.

The rest of the paper is organized as follows: We describe the paging channel
operation and page message format in Section 2, and show the importance of
improving paging efficiency. We present the optimization schemes for reducing
the terminal ID length in Section 3. We then evaluate the scheme using an
experiment on a real cellular system and a simulation tool and illustrate the
results in Section 4. After comparing our scheme with several related works in
Section 5, we conclude in Section 6.

2 Paging Channel Operation

In this section, we first describe the paging channel operation and the page
message format in the context of a cellular network using CDMA2000 technology.
To show that our scheme is not limited to cellular systems, we explore the page
operations in other mobile systems and discuss their differences from cellular
systems.

2.1 Paging Channel Operation

A mobile network needs to track the location of the mobile terminals so that it
can deliver data and voice calls to their intended recipients. A simple solution
would be to require mobile terminals to report their locations through location
updates whenever their locations change. However, since mobile devices are typi-
cally resource (e.g., battery power) constrained, requiring them to remain in the
“active state” just to report their locations would be inefficient. Thus, mobile
operators typically divide their networks into location areas, and mobile termi-
nals report their locations only when they enter a new location area. When a
new call or data packet arrives, the network pages the recipient mobile terminal
in the location area. Therefore, paging and location updates are key components
in mobility management in a mobile network.

CDMA2000 networks have a dedicated channel, the paging channel, that de-
livers page messages to mobile terminals1. Mobile terminals monitor this channel
through a Time Division Multiple Access (TDMA) scheme. The network divides
a paging cycle (either 2.56 or 5.12 seconds) into slots (either 32 or 64 slots,
respectively). Thus, a mobile terminal stays in the idle mode, when the power
consumption is minimal, most of the time and wakes up only during its assigned
slot (whose duration is 80 ms) to determine whether it has been paged. The net-
work assigns a mobile terminal to a slot based on the terminal’s International
Mobile Station Identifier (IMSI). Figure 1 illustrates the structure of 32-slot
paging channel.

When an incoming call (or downlink data packet) arrives, the mobile switching
center (MSC) broadcasts a General Page Message (GPM) to the location area
1 A CDMA system can be configured to have at most seven paging channels.

4 L. Cai et al.

Fig. 1. An example structure of a paging channel [5]. A mobile terminal is in idle mode
except during the ith slot, when it wakes up and monitors the paging channel.

Channel Assignment Message (CAM)

Acknowledgement (ACK)

MobileBase station

 p
ag

in
g

de
la

yPage Response Message(PRM)

General Page Message (GPM)

Paging Channel

Access Channel

Fig. 2. Messages exchanged between a base station and a mobile terminal during a
paging operation

(also known as the paging area) during the recipient mobile terminal’s assigned
slot. When the mobile terminal finds that it has been paged, it will respond
through the associated base station with a Page Response Message (PRM).
Then, the MSC sends an acknowledgment message (ACK) and a Channel As-
signment Message (CAM) to the mobile terminal. The mobile terminal responds
to the CAM with an ACK to establish a connection with the base station over the
assigned traffic channel. Both the ACKs and the CAMs are sometime referred
as non-slotted messages, since they can be sent during any slot (After sending
the PRM, the terminal leaves the slotted mode and monitors all the slots). On
the other hand, GPMs are slotted messages, which must be sent during the re-
cipient mobile terminal’s assigned slot. Figure 2 shows the messages exchanged
between the base station and a mobile terminal during the paging process when
an incoming call arrives. After this step, the terminal communicates with the
base station on the assigned traffic channel only.

The number of slotted messages in the paging channel greatly exceeds that of
non-slotted messages. When the MSC sends a slotted message, it does not know

Mitigating DoS Attacks on the Paging Channel 5

the location of the recipient, so it has to broadcast the page message to all the
base stations in the paging area. By contrast, it needs to send the subsequent
non-slotted messages to only the base station as determined from the PRM. Be-
sides slotted messages and non-slotted messages, the paging channel is also used
for transmitting system parameters, which are sometimes regarded as overhead
traffic in the paging channel. These messages occupy the paging channel based
on the paging load. The more GPMs there are, the fewer overhead messages will
be sent. Typically, overhead traffic takes at least 25% of the capacity.

2.2 Paging Message Format

In the CDMA2000 standard, the specification for the GPM format is highly
flexible, so GPMs in different systems may vary in length and pattern. Figure 3
shows an actual GPM that we captured from a mobile device in a live commercial
CDMA2000 network. We can see that a GPM is composed of a header, several
page records, padding, and the CRC.

Page records comprise the main body of a page message. Among all the fields
in a page record, the terminal identifier field plays a critical role in the paging

Field value length(bit)
General Paging Message

Message Header
MSG LENGTH 0000xxxx 8
MSG ID 010001 6
CONFIG MSG SEQ 000011 6
ACC MSG SEQ 011101 6
CLASS 0 DONE 1 1
CLASS 1 DONE 1 1
TMSI DONE 1 1
ORDERED TMSIS 0 1
BROADCAST DONE 1 1
RESERVED 0000 4
ADD LENGTH 000 3

Mobile Station 1
PAGE CLASS 00 2
PAGE SUBCLASS 00 2
MSG SEQ 100 3
IMSI S (xxx) xxx-xxxx 34
SDU INCLUDED 1 1
SERVICE OPTION xx 16

Mobile Station 2
...

Message end Padding
PDU PADDING 0000 4
CRC 30

Fig. 3. The format of an actual General Paging Message. A 34-bit IMSI S is used as
the terminal identifier, and the length of each page record is 58 bits, while the header
and the tail are 38 and 30 bits long, respectively.

6 L. Cai et al.

operation. This field may use many identifier types, indicated by the PAGE
CLASS and PAGE SUBCLASS fields, listed in the CDMA2000 specification [8].
In our example, the terminal’s IMSI S (a 10-digit number derived from the ter-
minal’s International Mobile Subscriber Identity (IMSI)) is used as the identifier.
In a GPM, the IMSI S is encoded into a 34-bit string. Other optional identifier
types have similar length (e.g., a TMSI is 32 bits) or longer.

Another important field in page records is the SERVICE OPTION. It informs
the terminal of the type of the incoming call. This is important since the message
after the GPM could be of different service types. For example, the GPM is
always followed by Channel Assignment Message(CAM) in the case of a voice
call, but the CAM can be replaced by a Data Burst Message (DBM) in the case
of text service.

2.3 Paging Operation in Other Mobile Networks

IEEE802.16 systems such as WiMax [9] or Hpi [10] do not use separated slotted
channels in their paging operations. When a WiMax terminal is not engaged in
communication, it enters the idle mode, which works in four stages: idle mode
initialization, idle mode entry, idle mode operation and idle mode exit. Idle mode
can be initiated either by the mobile terminal or the base station. When the mo-
bile terminal initiates the idle mode, it sends a deregistration request message
(DREG-REQ); when the base station initiates the idle mode, it sends a DREG-
CMD message to the terminal, which responds with a DREG-REQ message. The
base station then notifies the paging controller of the terminal’s service informa-
tion. The paging controller decides the PAGING CYCLE, PAGING OFFSET,
and Paging Listen Interval (PLI) parameters and sends them to the terminal
in a DREG-CMD message via the base station. Then, the terminal wakes up
during the Paging Listen Interval periodically to check for a MOB-PAG-ADV
message (the GPM’s counterpart in a WiMax system). The message consists of a
48-bit MAC header, several page group IDs, several page records, and padding.
The length of each page record is 32 bits. A paged terminal is identified with a
hash value of its 24-bit MAC address.

Mobile IP systems also propose a paging operation [11,12,13,4,14]. In most of
these schemes, a terminal’s home IP address is used as its identifier in the page
message, so the identifier is 32 bits in IPv4 systems and 128 bits in IPv6 systems.

2.4 Paging Channel Overload Problem

Recall that the size of a paging area determines how often mobile terminals send
location updates. The smaller a paging area is (i.e., containing fewer cells), the
more frequently a terminal with high mobility needs to send location updates,
which consumes more power and generates more traffic on the access (uplink sig-
naling) channel, which is also a low-bandwidth channel like the paging channel.
To avoid this adverse effect, in current cellular networks, a paging area usually
consists of hundreds of cells.

Equation 1 calculates the maximum number of terminals that can be paged
in each slot per paging area, where we assume that the bandwidth of the paging

Mitigating DoS Attacks on the Paging Channel 7

channel is 9600bps, the duration of a paging slot is 0.08s, the overhead traffic
occupies 25% of the channel capacity.2, the length of the page message header is
38, the length of the CRC value is 30, and the length of each page record is 58.

Nmax = �9600 × 0.08 × (1 − 0.25) − 38 − 30
58

� = 8 (1)

Equation 1 shows that the call arrival rate to a paging area is limited to 100
per second (8 calls / 0.08 second). Given the size of a typical paging area, this
maximum call arrival rate is acceptable when only voice calls are paged. However,
when the network provides more and more text and data services, this upper
bound makes the paging operation an essential bottleneck.

Worse yet, the paging channel has become an ideal target of Denial of Service
(DoS) attacks on the cellular network. [5] described such an attack by flooding
the network with UDP packets. When a mobile terminal establishes a wire-
less data connection with the network, it acquires an IP address. The network
reserves the address for the terminal until the terminal disconnects from the
network, even when it is in the idle mode. The DoS vulnerability lies within the
fact that when a data packet arrives at the mobile network, the recipient mobile
terminal needs paged. Since it is relatively easy to find the IP subnets assigned
to a mobile service provider, an attacker on the Internet can flood these IPs with
UDP packets to trigger a flood of page messages within the mobile network. The
authors explored the feasibility of this attack by conducting experiments on a
live commercial CDMA2000 network. Due to legal and ethical constraints, the
goal of the experiments was only to increase the paging channel load by 10%.
The authors predicated that the performance of the network would degrade fur-
ther if they had increased the attack load or if the attacks had been carried out
in a busy area.

3 Efficient Encoding in Page Records

To mitigate paging channel overload, we wish that a page record can carry more
terminal IDs. However, the length of a page record is determined by its slot
duration and the paging channel bandwidth, both of which are constrained by
system configurations and physical limitations. Instead, we investigate how to
fit more terminal IDs into existing page records.

The CDMA2000 specification, for example, supports different types of termi-
nal IDs [2], but most of them are longer than 30 bits. IMSI S, one of the most
commonly used terminal ID, is 34 bits, and a TMSI is 32 bits. Typically, termi-
nal IDs account for more than half of a page record’s size. Therefore, they are a
good target for optimization. Moreover, terminals IDs are universal in all paging
systems, while other fields in page records are system specific.

For convenience, we describe our scheme for efficiently encoding terminals IDs
in the context of a CDMA2000 system, although the principle applies to other
2 25% is a common overhead load. When the overhead traffic load is less than 25%,

we occasionally observe GPMs with 9 records in real paging data.

8 L. Cai et al.

mobile networks, such as WiMax and Mobile IP. Using a series of techniques, we
are able to reduce terminal IDs from 34 bits down to only 7 bits, as described
in detail below.

3.1 Approaches

Optimization using Knowledge about Population Size in a Paging
Area. One reason why the IMSI S is long is that it is globally unique. However,
the paging operation only needs to differentiate between terminals in the same
paging area. Therefore, as the first step, we replace the globally unique IMSI S
with a locally unique identifier. As we observed from a commercial CDMA2000
system, the number of terminals in a single paging area, including the most pop-
ulated areas such as Manhattan, does not exceeded one million. This indicates
that 20 bits suffice for locally unique IDs.

Optimization using the Slotted Nature of the Paging Channel. Sec-
tion 2.4 showed that a cellular network divides the paging channel into 32 or 64
slots. Each terminal wakes up in only one slot (calculated based on its IMSI) in
the paging cycle to listen to the page message. In other words, terminals in a
paging area are divided into distinctive slot groups by their slot numbers. Since
a terminal only listens to one slot, their local IDs need to be unique only within
each slot group. A typical CDMA 2000 system has 64 slots. If all the terminals
in a paging area are evenly divided into slot groups, no slot group should contain
more than 220/64 = 214 terminals. Therefore, we can reduce the length of local
IDs further to 14 bits.

Optimization using the Quick Paging Mechanism. Finally, we decrease
the length of the local IDs even further by using the Quick Paging channel. Quick
Paging is a standardized operation adopted by most mobile networks to reduce
terminals’ wakeup time to improve their power efficiency. Similar to the Paging
Channel operation, the Quick Paging channel is also divided into slots. In fact, a
terminal’s quick paging channel slot occurs exactly 100ms earlier than its paging
channel slot. The purpose of Quick Paging is to convey “paging indicator bits”
to help terminals pre-determine whether they are paged. Towards this goal, each
quick paging slot is divided into four frames, and each frame carries a sequence
of indicator bits. Each terminal has two indicator bits. The system calculates the
positions of these two bits in the quick paging frames by feeding the terminal’s
IMSI into two hash functions. The standard requires that these two indicator
bits occur in either the first and third frames, or the second and fourth frames
(so that a terminal needs to wake up in only half of the frames). If a terminal
detects that either one of its indicator bits is not set, it is not paged and therefore
will stay idle in the coming paging slot; otherwise, it might be paged, so it will
wake up in the coming paging slot. Quick paging increases the wakeup duration
of the paged terminals by half, but decreases the wakeup duration of unpaged
terminals by at least half (because the terminal only wakes up in two of the four
frames of the quick paging slot). Since typically only a small fraction of terminals
are paged, quick paging reduces the overall wakeup time of all terminals.

Mitigating DoS Attacks on the Paging Channel 9

The Quick Paging operation uses a special Bloom filter. Due to the false posi-
tives inherent in Bloom filters, quick paging cannot replace the paging operation.
However, we can take advantage of quick paging to reduce the length of local
IDs further. Since quick paging instructs only a very small fraction of terminals
to wake up and listen to their paging slots, the local IDs need to differentiate
only between the terminals that are truly paged and those that are not paged
but whose paging indicator bits are set due to the inaccuracy of the Bloom filter.

As mentioned earlier, the first indicator bit of a terminal must be in either
the first or second frame. In our reference CDMA system, the quick paging
channel operates at full speed (9600 bps) and each frame is 20ms, so there are
9600× 0.02× 2 = 384 bits in the first two frames. The CDMA2000 specification
uses several bits in these frames as broadcast bits so the total number of bits
used as paging indicators in the first two frames is 368. Since we only need to
differentiate between the terminals whose first indicator bits are at the same
location in the first two quick paging frames, we can reduce the local ID space
further. Assuming that the locations of the first indicator bits of all terminals
are evenly distributed, we can reduce the local ID space by 368 ≈ 28. As a result,
we would need only 14 − 8 = 6 bits to represent each local ID. We discuss our
scheme below.

If no first indicator bits of the paged terminals share the same location, we
can order the local IDs in the page record by the order of their corresponding
first indicator bits in the quick page frames. For example, if a terminal’s first
indicator bit is the ith set bit in the quick page frames, the terminal will check
the ith local ID in the page record (to see if it is really paged or if its first
indicator bits are set merely due to Bloom filter inaccuracy).3

However, the above solution would not work when multiple terminals are
paged but their first indicator bits share the same location in the quick paging
frames. To solve this problem, in the page record, we group terminals by the
locations of their first indicator bits, and prepend a group bit to each local ID.
We set the group bit of the first terminal in a group to 1, and the group bits
of all the other terminals in the same group to 0. For example, in Figure 4 the
first indicator bits of both Terminal 1 and 4 are at the same position in the first
quick paging frame. Therefore, in the page record, the group bit of Terminal 1
is 1 since it is the first terminal in this group, and the group bit of Terminal 4
is 0 since it is not the first terminal in this group.

We summarize the paging operation from a terminal’s perspective. When a
terminal joins a paging area, the network assigns a 6-bit ID to the terminal.

3 A subtle complication occurs when the first indicator bit of a mobile terminal is in
the second quick page frame. In this case, since the mobile terminal does not listen
to the first quick page frame, it does not know how many bits are set there, so it
does not know the position of its page record in the page frame. We can solve this
problem by a simply trick: rather than calculating its position from the beginning
of the frame, the above terminal should calculate its position from the end of the
frame. For example, if a mobile terminal’s first indicator bit is the ith set bit from
the end of the second quick page frame, it should check the ith page record from the
end of the page frame for its local ID.

10 L. Cai et al.

Fig. 4. An example of an optimized GPM based on quick paging. Seven paged terminals
are ordered by the position of their corresponding first indicator bits. Those with the
same first indicator bits are grouped by a group bit.

The terminal then calculates the position of its slot in the page message and the
positions of its first and second indicator bits in the quick page message. In each
paging cycle, the terminal wakes up to listen to two of the four frames in its slot
in the quick page message. If both the first and second indicator bits are set, the
terminal wakes up to listen to its paging channel slot to receive the page record.
Using the method described in Section 3.1, the terminal compares its local ID
with the corresponding one in the page record. If they match, the terminal is
paged.

Mitigating DoS Attacks on the Paging Channel 11

3.2 Bandwidth Gain

For our reference CDMA2000 system, our scheme reduces the length of local IDs
from 34 bits down to 7 bits, and the length of each pag/doubing records from 58
bits to 31 bits. After applying our scheme, the maximum number of page records
per slot increases from 8 to 16(Figure 5).

Without our scheme With our scheme
Terminal identifier length 34 7
Page record length 58 31
Maximum page records per each slot 8 16

Fig. 5. Our scheme doubles the maximum page records per slot

3.3 Implementation Requirements

Implementing our scheme is straightforward. It requires only the following mod-
ifications to the existing paging operation.

– Local ID management by Paging Controller. The paging controller
(PC) maintains all the local IDs of terminals in the paging area. When a
terminal arrives, the PC searches for an unused local ID and assigns it to the
terminal. When an incoming call for the terminal arrives, the PC constructs
a GPM using the local ID. When the terminal leaves, the PC reclaims the
local ID. Given the high computational power of the paging controller, such
management overhead is negligible.

– Local ID transfer. Our scheme requires that the paging controller sends the
local ID to the terminal. The controller can do this during user registration.
Since the local ID is only several bits, the overhead is negligible.
To determine the length of local IDs, the paging controller must estimate
the maximum number of terminals in the same paging area. If the controller
finds this estimate insufficient, it may increase the length of local IDs and
broadcast the new length to all the terminals in a configuration message.

– Terminal modification. Our scheme requires slight modification to the
paging module in terminals. Note that our scheme does not change the pro-
tocol messages; rather it merely changes the algorithm by which a terminal
searches for its local ID in the page record.

3.4 Advantages

Simplicity. Our scheme does not cause any adverse effects, such as paging la-
tency, false paging, and missed paging, that other schemes often suffer from. Our
scheme is compatible with and complementary to many other schemes, such as
the ones based on location prediction [7].

12 L. Cai et al.

Versatility. Besides cellular networks, our scheme applies to many other mo-
bile networks. WiMax, for example, can also benefit from this page message
optimization, although it uses a very different paging operation. Instead of us-
ing slots to determine terminals’ wakeup time, the base station and the mo-
bile station in WiMax negotiate the numerical values of the PAGING CYCLE,
PAGING OFFSET and PAGING LISTEN INTERVAL parameters through the
DREG CMD and DREG REQ message pair. Such mechanism invalidates our
scheme where it groups terminals by their wake up slots. However, [9] proposes
to group WiMax terminals by aligning their PAGING OFFSET so that their
page messages can be merged into one message. The essence of the scheme is
to borrow the concept of slots from cellular networks. This proposal makes our
idea of using a shorter identifier local to each slot feasible again. Furthermore,
[15] and [16] propose a quick paging channel for IEEE802.16, making our entire
scheme applicable to WiMax systems. In WiMax’s page message, MOB-PAG-
ADV, the mobile identifier, is a 24-bit hash value of the MAC address, so false
paging is inevitable. Our scheme, by contrast, can eliminate the unnecessary
false paging in WiMax.

4 Evaluation

We evaluate the effectiveness of our scheme on mitigating DoS attacks and on
increasing the capacity of the paging channel. Since modifying a commercial cel-
lular system and launching a full-fledged DoS attack are prohibited, we demon-
strate the performance of our scheme using real paging data collected from a
live cellular network as well as using a simulation tool.

4.1 Evaluation Based on Partial DoS Attack on Live Cellular
Network

One advantage of our scheme is that it does not change existing paging protocols,
as our scheme merely changes the terminal IDs inside the GPM. Therefore, we
can use paging data measured on a real paging system to infer the performance
of our scheme (such as its impact on reducing channel utilization) with one
exception: During high paging load, the paging controller without applying our
scheme may not be able to page all the requested terminals in a slot, so it will
page some of these terminals in the next paging cycle instead. Since our scheme
allows the paging controller to fit more terminal IDs into one page message,
it will eliminate some or all of these delays. In this case, the terminals paged
in each paging cycle would be different if the paging system had adopted our
scheme.

Based on the above observation, we recreated the partial DoS attack exper-
iment described in [5]. We captured GPMs over an CDMA2000 interface. We
then launched a partial DoS attack by injecting UDP packets from the Internet
to data users of the cellular network. Using the captured GPMs, we calculated
the utilization of the paging channel by GPMs. To infer the channel load when

Mitigating DoS Attacks on the Paging Channel 13

Fig. 6. Paging channel utilization during the attack without our scheme (top), before
the attack without our scheme (middle), and during attack with our scheme (bottom)

our scheme is applied, we only need to calculate the length of the GPMs under
our scheme, if there were no or negligible paging delays indicated by our cap-
tured GPMs. To verify this assumption, we examined the captured GPMs and
found only three GPMs (out of more than 20,000 GPMs) that contained the
maximum number of paging records (which indicates potential paging delays).
This validates our assumption that paging delays occurred rarely in the captured
GPMs.

Figure 6 depicts the utilization of paging channel by GPM under three differ-
ent situations. For legibility, we have smoothed the curves using the Exponential
Moving Weighted Average (EMWA) algorithm. Before the attack, the average
utilization by GPMs in the measured system was 18.1%4. The utilization went
up to 23.2% during the attack. If the system deployed our scheme, the aver-
age utilization would be 14.2% before the attack (not shown in the figure for
legibility), and 16.8% after the attack.

As another measurement of the effectiveness of our scheme, we quantified
the resources that an attacker must acquire to saturate the paging channel.
Since overhead messages occupy at least 25% of the paging channel capacity, an
4 The paging channel utilization is calculated as the total bits of GPM during a certain

time period, divided by the product of the length of the time period and the channel
capacity (e.g., 9600bps).

14 L. Cai et al.

Fig. 7. Number of page records required to completely saturate the channel with and
without our scheme

attacker only needs to saturate the remaining 75% of the paging channel. We
calculated how many page records the attacker must trigger. We assume that
all the messages other than GPMs remain unchanged after the attack begins.
Figure 7 shows that our scheme almost doubles the efforts of the attacker to
completely saturate the paging channel.

4.2 Simulating a Paging System

In Section 4.1, we examined the effect of our scheme using page messages mea-
sured on a live cellular network. In this section, we use simulation to study our
scheme under different conditions of the paging system. We simulate the pag-
ing channel at a base station as a queueing system. There are two main types of
messages in a paging system, slotted messages and non-slotted messages. Slotted
messages need to be sent during their assigned slots in the paging channel while
non-slotted messages can be sent at any time. Non-slotted messages arrive only
after the paged terminal moves into the cell (by contrast, a page message is used
to locate a terminal in the paging area and hence is not necessarily associated
with this base station). Therefore, the arrival process of the non-slotted mes-
sages is equivalent to the service process of the slotted messages multiplied by a
factor of p, where p, the paging success factor, is the probability that a mobile

Mitigating DoS Attacks on the Paging Channel 15

back into the system (probabilty p)

slotted messages feeding

non slotted
queue

64 slotted queues

slotted messages leaving
the system (probability 1−p)

non−slotted
messages

Fig. 8. A queueing system representation of a paging system. There are 64 slotted
queues and 1 non-slotted queue. Slotted messages initially arrive according to a Poisson
process. For each slotted message, the system generates a non-slotted message with
probability p.

terminal is located with a given base station and is inversely proportional to the
size of the paging area. We assume that there is no delay between the time when
a slotted message is served and the time it triggers a non-slotted message. We
also assume that slotted messages initially arrive according to a Poisson process.
This is a common assumption for modelling the arrival of events such as calls in
phone systems. Figure 8 illustrates this queueing system.

We simulate such a paging system with a paging cycle divided into 64 slots.
Hence we have 64 slotted queues and 1 non-slotted queue, as shown in Figure 8.
The simulation program has three main modules, namely, the arrival, slot, and
server modules, which we describe in detail below.

Arrival. The arrival module generates slotted messages according to a Poisson
process. Then it randomly assigns them to one of the 64 slotted queues.

Slot. The slot module implements the schedule in which the slotted queues are
served. Each slotted queue is served in a time division multiplexing manner.
Specifically, the slot module calls the server module on each slotted queue in a
round-robin schedule. The slot module allows the service of each slotted queue
for a fixed duration of D = 0.08 seconds (i.e., the slot duration).

Server. The server module dequeues messages (i.e., sending messages) as well
as generates non-slotted messages. When invoked by the slot module, it builds
a GPM by dequeuing messages up to the maximum capacity (Nmax). In more
detail, it computes the total capacity of the paging channel, subtracts the length
of the GPM header, and subtracts up to (Nmax × rs) bits where rs is the length
of each page record. Before applying our scheme, Nmax is only 8 and rs is 58
bits. After our scheme is applied, Nmax becomes 16 and rs becomes 31 bits. For
each new page record, the module generates, with a probability p, a subsequent
non-slotted message and inserts it into the non-slotted queue.

16 L. Cai et al.

If the slotted queue has spare bandwidth (i.e., the slotted queue contains
fewer than Nmax messages), the non-slotted queue is serviced for the remainder
of the slot duration. To do this, the simulator builds a non-slotted message by
subtracting the length of a non-slotted message header followed by the length
of a non-slotted message record multiplied by as many non-slotted messages as
can be dequeued (sent) during the remainder of the slot duration. If there are
insufficient messages in the non-slotted queue, the server sits idle during the rest
of the slot duration.

A sent non-slotted message indicates a successfully established call so we use
the number of serviced non-slotted messages to calculate the system throughput.
We plot the throughput of non-slotted messages with increasing arrival rate
(λ) in Figure 9. We find that in both cases, applying our scheme allows the
throughput to be sustained for up to about twice the peak arrival rate that the
current scheme can sustain. This can be attributed to the increase in Nmax after
applying our scheme.

We simulated the paging system for p = 0.01 and p = 0.05. Since p represents
the success rate of the paging algorithm, (e.g., location management scheme), it
is inversely proportional to the size of the paging area. A small value of p (e.g.,
0.01) represents a relatively large paging area, while a large value of p (e.g., 0.05)
indicates a small paging area. From the data we captured in our experiments
(Section 4.1), we observed that p was less than 5%.

Paging delay is the amount of time that it takes to establish a connection
between the initiating terminal and the target terminal. It is mainly caused by
paging channel overload. Figure 10 shows the average paging delay before and
after applying our scheme. Again, we find that our scheme can sustain up to
twice the slotted message arrival intensity that the current scheme can before
paging delay grows exponentially. Note that the paging delay is roughly the same
regardless of p since the number of non-slotted messages in the paging channel
only affects the paging delay when λ is small. However, the paging delay is also
small when λ is small.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

T
hr

ou
gh

pu
t (

m
sg

s/
se

c)

Intensity of arrival (λ)

before optimization
after optimization

(a) p = 0.01 (large paging area)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

T
hr

ou
gh

pu
t (

m
sg

s/
se

c)

Intensity of arrival (λ)

before optimization
after optimization

(b) p = 0.05 (small paging area)

Fig. 9. Throughput of non-slotted messages under different arrival rates λ. A small
value of p (e.g., 0.01) represents a large paging area while a large value of p (e.g., 0.05)
represents a small paging area.

Mitigating DoS Attacks on the Paging Channel 17

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Intensity of arrival (λ)

A
ve

ra
ge

 p
ag

in
g

de
la

y
(s

ec
on

ds
)

before optimization
after optimization

Fig. 10. The average paging delay on different slotted message arrival rates, before
and after applying our scheme

Section 4.1 demonstrated that our scheme would force the attacker to spend
more resources before he could overload the paging channel (i.e., the attacker
would need to generate more calls). Figure 11 shows that our scheme doubles
the number of slotted messages required for saturating the paging channel.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

120

140

160

180

Intensity of arrival (λ)

A
ve

ra
ge

 a
tta

ck
 e

ffo
rt

 (
m

sg
s/

se
c)

before optimization
after optimization

Fig. 11. The average number of slotted messages needed to saturate the paging channel
(i.e., the attacker’s effort)

5 Related Work

With the ongoing convergence of wireless voice and data networks, denial of
service (DoS) attacks on the paging channel of wireless networks have attracted

18 L. Cai et al.

a lot of attention. Enck et al. presented a denial-of-service attack by sending
a sufficient number of SMS messages per second to a range of cellular phones
in the same area [6]. An attacker would need only a single computer with a
broadband network access to disrupt a network in a major city by saturating
control channels shared between voice calls and SMSs. Serror et al. provided
experimental evidence of the impact of an attack on the paging channel. They
injected UDP packets from the Internet to data users in a cellular network to
cause increased load on the paging channel [5]. By improving paging efficiency, we
aim at mitigating these attacks. Our approach is complementary and orthogonal
to other attack detection [17] and mitigation techniques.

Researchers have proposed many solutions to enhance paging efficiency by
improving location update schemes. The underlying idea is to increase the es-
timation precision of the mobile stations’ location by exploiting their mobility
patterns. [18] provides a good survey of early work. Some of them, such as time-
based, distance-based and zone-based, have been adopted in the standard. Other
proposed schemes include movement based, cost based and velocity based. One
popular approach is profile based location management: each mobile station has
a profile that helps the paging controller to predict the paging area. This idea is
based on the observation that each individual user has her own mobility pattern.
Researches in this area mainly focus on how to establish user’s profile. E.g., [7]
mined the call history of the users to build their mobility profiles.

To improve paging efficiency, location management schemes break the paging
process into two or more stages. In the first stage, the network sends the paging
message to a predicted small subset of cells in the paging area. If the mobile
terminal does not respond, the network then sends the message to a larger set of
cells. If the prediction is accurate, the average number of paged cells is expected
to be much smaller; however, if the prediction is wrong, these approaches cause
paging latency. The average paging latency in a normal paging operation is
half of the paging cycle (2.56s). Each additional phase will add 5.12s to it. Our
scheme, by comparison, does not increase the paging latency, since it does not
break paging into stages.

Some researchers have explored paging message optimization. [19] proposed
a Bloom filter to map multiple page records to one fixed length bitmap. Quick
paging, described in Section 3, also uses a special form of Bloom filter. The
main difference between them is that the number of hash functions in [19] is
dynamically calculated and is transferred as a parameter of each page message.
While achieving high paging capacity in certain situations, this Bloom filter
based paging system suffers from excessive false page rates and hence low battery
efficiency. By contrast, our scheme causes no false page. Another problem with
this approach is that it removed single paging records from paging messages;
therefore, useful information previously piggybacked with the paging records,
such as the Service Option field, was no longer available to terminals.

[9] aims at improving the paging efficiency of WiMax networks. Based on the
observation that two individual MOB-PAG-ADV messages use more bandwidth
than one MOB-PAG-ADV message with two records, it grouped multiple mobile

Mitigating DoS Attacks on the Paging Channel 19

station records into one MOB-PAG-ADV message to reduce the overhead and
improve the paging efficiency. This solution is specific to WiMax. By contrast,
our scheme applies to almost all mobile networks that require paging.

6 Conclusion

We propose a novel approach to improve paging efficiency and to mitigate DoS
attacks on the paging channel. We describe a series of mechanisms for efficiently
encoding terminal identifiers in page messages to increase the paging channel
capacity. For instance, we can shorten the terminal identifier in a CDMA2000
General Page Message from its current length of 34 bits down to 7 bits. We
evaluated our scheme using data measured on a live cellular network and using
simulation. The results indicate that our scheme can significantly increase the
paging throughput and the cost to the attackers, thereby mitigating DoS attacks
on the paging channel. Our scheme is simple and is straightforward to implement.
It does not incur any adverse effect, such as paging delay, false paging, and
higher missed paging rate, that other schemes often suffer from. Furthermore, it
is compatible with location-based paging efficiency improving schemes. Although
we describe our scheme in the context of cellular networks, the scheme applies
to other mobile networks such as WiMax.

Acknowledgment

This paper is based upon work supported by the National Science Foundation
under Grant Nos. 0644450 and 0520320 and by a generous gift from Sprint. We
thank Jean Bolot, Prasant Mohapatra and Sridhar Machiraju for their valuable
comments.

References

1. Mobile radio interface layer 3 specification, 3GPP TS24008 (December 2008)
2. Upper layer (layer 3) signaling standard for cdma2000 spread spectrum systems,

3GPP2 C.S0005-D (September 2005)
3. Air interface for fixed and mobile broadband wireless access systems. IEEE Std

802.16eTM-2005 (February 2006)
4. Haverinen, H., Malinen, J.: Mobile ip regional paging (June 2000),

http://draft-haverinen-mobileip-reg-paging-00.txt

5. Serror, J., Zang, H., Bolot, J.C.: Impact of paging channel overloads or attacks
on a cellular network. In: WiSe 2006: Proceedings of the 5th ACM workshop on
Wireless security, pp. 75–84. ACM, New York (2006)

6. Enck, W., Traynor, P., McDaniel, P., Porta, T.L.: Exploiting open functionality
in sms-capable cellular networks. In: CCS 2005: Proceedings of the 12th ACM
conference on Computer and communications security, pp. 393–404. ACM, New
York (2005)

http://draft-haverinen-mobileip-reg-paging-00.txt

20 L. Cai et al.

7. Zang, H., Bolot, J.C.: Mining call and mobility data to improve paging efficiency
in cellular networks. In: MobiCom 2007: Proceedings of the 13th annual ACM
international conference on Mobile computing and networking, pp. 123–134. ACM,
New York (2007)

8. Signaling link access control (lac) standard for cdma1998 spread spectrum systems,
3GPP2 C.S0004-D (September 2005)

9. Mohanty, S., Venkatachalam, M., Yang, X.: A novel algorithm for efficient paging
in mobile wimax. In: Mobile WiMAX Symposium, March 2007, pp. 48–53. IEEE,
Los Alamitos (2007)

10. Roh, H.S., Lee, S.h.: Paging scheme for high-speed portable internet (hpi) system.
In: Advanced Communication Technology, 2006. ICACT 2006, The 8th Interna-
tional Conference, February 2006, vol. 3(4), p. 1732 (2006)

11. Kempf, J.: Dormant mode host alerting (”ip paging”) problem statement, rfc3132
(June 2001)

12. Ramjee, R., Varadhan, K., Salgarelli, L., Thuel, S.R., Wang, S.-Y., La Porta, T.:
Hawaii: a domain-based approach for supporting mobility in widearea wireless
networks. IEEE/ACM Transactions on Networking 10(3), 396–410 (2002)

13. Campbell, A.T., Gomez, J., Valko, A.G.: An overview of cellular ip. In: Wireless
Communications and Networking Conference, 1999. WCNC 1999, vol. 2, pp. 606–
610. IEEE, Los Alamitos (1999)

14. Zhang, X., Castellanos, J.G., Campbell, A.T.: P-mip: paging extensions for mobile
ip. Mob. Netw. Appl. 7(2), 127–141 (2002)

15. Mohanty, S., Venkatachalam, M., Timiri, S., Ahmadi, S.: Proposal for ieee 802.16m
quick paging channel design (July 2008)

16. Koorapaty, H., Ernstrm, P.: Quick paging signal for ieee 802.16e (May 2008)
17. Traynor, P., McDaniel, P., La Porta, T.: On attack causality in internet-connected

cellular networks. In: Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium (2007)

18. Akyildiz, I.F., Ho, S.M.: On location management for personal communications
networks. Communications Magazine, IEEE 34(9), 138–145 (1996)

19. Mutaf, P., Castelluccia, C.: Hash-based paging and location update using bloom
filters: a paging algorithm that is best suitable for ipv6. Mob. Netw. Appl. 9(6),
627–631 (2004)

FIJI: Fighting Implicit Jamming in 802.11 WLANs�

Ioannis Broustis1, Konstantinos Pelechrinis1, Dimitris Syrivelis2,
Srikanth V. Krishnamurthy1, and Leandros Tassiulas2

1 University of California, Riverside
{broustis,kpele,krish}@cs.ucr.edu

2 University of Thessaly
{jsyr,leandros}@inf.uth.gr

Abstract. The IEEE 802.11 protocol inherently provides the same long-term
throughput to all the clients associated with a given access point (AP). In this
paper, we first identify a clever, low-power jamming attack that can take advan-
tage of this behavioral trait: the placement of a low-power jammer in a way that
it affects a single legitimate client can cause starvation to all the other clients.
In other words, the total throughput provided by the corresponding AP is dras-
tically degraded. To fight against this attack, we design FIJI, a cross-layer anti-
jamming system that detects such intelligent jammers and mitigates their impact
on network performance. FIJI looks for anomalies in the AP load distribution to
efficiently perform jammer detection. It then makes decisions with regards to op-
timally shaping the traffic such that: (a) the clients that are not explicitly jammed
are shielded from experiencing starvation and, (b) the jammed clients receive the
maximum possible throughput under the given conditions. We implement FIJI
in real hardware; we evaluate its efficacy through experiments on a large-scale
indoor testbed, under different traffic scenarios, network densities and jammer
locations. Our measurements suggest that FIJI detects such jammers in real-time
and alleviates their impact by allocating the available bandwidth in a fair and
efficient way.

Keywords: IEEE 802.11 WLANs, Fairness, Jamming, Measurement.

1 Introduction

The proliferation of IEEE 802.11 WLANs makes them an attractive target for malicious
attackers with jamming devices [1,2]. A jammer typically emits electromagnetic energy
thereby causing: (a) prolonged packet collisions at collocated devices, and (b) packet
transmission deferrals due to legitimate nodes detecting continuous medium activity.
Hence, jamming attacks can lead to significant throughput degradation, especially when
they intelligently exploit the properties of the MAC protocol in use.

In this paper, we first identify a clever jamming attack where the jammer can not only
hurt its intended victim, but cause starvation to other clients that are associated with the

� This work was done partially with support from the US Army Research Office under the Multi-
University Research Initiative (MURI) grants W911NF-07-1-0318 and the NSF NeTS:WN /
Cyber trust grant 0721941.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 21–40, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

22 I. Broustis et al.

same AP as the victim. We call this attack the Implicit-Jamming attack. We design and
implement FIJI, a cross-layer anti-jamming system to effectively detect such jammers
and mitigate the impact of their attack.

The implicit-jamming attack. An inherent characteristic of the IEEE 802.11 MAC
protocol is that under saturated traffic demands, an AP (access point) will provide the
same long-term throughput to all of its affiliated clients [3]. If a client cannot receive
high throughput from its AP for any reason (e.g. long-distance AP→client link or high
levels of interference at the client side), the AP will spend a large amount of time serv-
ing this client at a low transmission bit-rate; this rate is determined by the rate adap-
tation algorithm in use. This will compel the AP to serve each of its other “healthier”
clients (to which it can support higher transmission rates) for smaller periods. In other
words, the AP does not distinguish between clients with low-SINR links and clients
with high-SINR links; the long times taken to serve the former class of clients hurts
the time available to serve the latter class of clients. This behavior is referred to as the
performance anomaly of 802.11 [4] and is caused by the inherent design principles of
the IEEE 802.11 MAC protocol (described in more detail in section 2).

The implicit jammer exploits this anomaly. To illustrate, consider the scenario de-
picted in Fig. 1. In this scenario: (a) all clients have high-SINR links with their AP in
benign conditions, and (b) a low power jammer is placed next to a particular client (say
client C) such that it does not directly affect any other client of the AP. The jammer
causes high levels of interference at client C and thus, most of the packets sent by the
AP to C are not successfully received. This in turn causes the AP to reduce the trans-
mission rate used to serve C (an inherent property of rate adaptation). As a result, the
AP spends more time attempting to serve C, and this reduces the fraction of time that
it provides to its other clients. Thus, the throughput of all the clients drops significantly
due to the jamming of only client C. In other words, jamming a small subset of clients
(even only a single client) implicitly affects all the clients that are affiliated with the
same AP.

Client A

Client B

Client C

Client D

Client E

0 1.25 2.50 3.75 5.00

Throughput (Mbps)

With Jammer Without Jammer

Fig. 1. Implicit Jamming. The jammer takes advantage of the 802.11 performance anomaly.
Using very low transmission power, it simply attacks client C. This is sufficient to tremendously
degrade the throughput of all clients.

FIJI: Fighting Implicit Jamming in 802.11 WLANs 23

The impact of the implicit-jamming attack. In order to demonstrate the potential im-
pact of this attack on the performance of the network, we conduct a set of preliminary
experiments on our wireless testbed (described later in section 4). In particular, we con-
struct the scenario in Fig. 1, where an AP maintains ongoing sessions with 5 clients and
transmits saturated unicast traffic to all of these clients. We place a jammer 7 ft. away
from one client (C). The jammer emits energy continuously at 0 dBm (1 mW), such
that it causes interference to client C only. Fig. 1 depicts our throughput measurements,
with and without the jammer. We observe that in the absence of jamming each client re-
ceives 4.1 Mbits/sec, on average. When the jammer is enabled, however, the long-term
throughput of all clients drops to 90 Kbits/sec.

FIJI: An anti-jamming system to mitigate the implicit-jamming attack. In order
to alleviate the effects of this intelligent attack, we design and implement FIJI, a dis-
tributed software system that is executed locally at the APs. With FIJI, the AP is able
to quickly detect an implicit jamming attack and identify the clients that are under the
direct influence of the jammer(s). Furthermore, via a minimal set of online calibrat-
ing measurements that characterize the impact of the attack, the AP shapes the down-
link traffic such that: (a) the jammed clients receive the maximum possible throughput
given the circumstances, and (b) the rest of the clients are unaffected, i.e., shielded
from the influence of the jammer(s). Some parts of FIJI are implemented on the Click
software framework [5] and the rest are implemented on the driver/firmware of our
wireless cards. Via extensive experiments, we observe that FIJI effectively mitigates
the implicit-jamming attack on an 802.11a/g wireless testbed.

Our work in perspective. FIJI can be potentially applied in scenarios wherein jam-
mers attack APs directly. However, in this work, we focus on addressing intelligent
jammers that exploit the performance anomaly at the client side. Moreover, note that
the impact of implicit jamming is exacerbated in downlink traffic scenarios; with up-
link traffic, jammed clients will simply defer accessing the medium and will thereby
allow the other clients to obtain higher levels of access.

The remainder of the paper is structured as follows. In section 2, we provide a brief
background on the performance anomaly in 802.11 as well as jamming attacks, and
discuss related studies. In section 3, we describe the implicit jamming detection and
mitigation with FIJI, our anti-jamming system. We describe the implementation of FIJI
and evaluate its effectiveness in section 4. Section 5 provides the scope of our study.
We conclude in section 6.

2 Background and Previous Work

In this section, we first describe the so-called performance anomaly with IEEE 802.11
and efforts related to addressing the anomaly. We then discuss jamming attacks in brief
as well as prior work related to anti-jamming.

2.1 Performance Anomaly in 802.11 WLANs

Heusse et al. [4] were the first to observe that the long term throughput of all the clients
associated with an AP in a WLAN is limited by the client with the poorest link. This

24 I. Broustis et al.

effect eventually provides the same long-term throughput to all clients. Although [4]
considers uplink traffic, this “anomaly” arises with downlink traffic as well [6,7]. With
either uplink or downlink saturated traffic, 802.11 provides equal medium access prob-
ability to all links. Let us consider the downlink scenario. An AP→client link with
low SINR will coerce the rate adaptation mechanism at the AP to use a low transmis-
sion rate for this client. Thus, when attempting to serve this client, the AP will spend
large amounts of time. Given that the AP will access the channel with equal probabil-
ity for low-SINR clients and high-SINR clients (higher bit rate, shorter transmission
durations), the latter will be served for smaller proportions of time.

Let us assume that AP α is sending saturated unicast traffic to each of its κ clients.
The theoretical instantaneous transmission rate from AP α towards client ci, where
i ∈ {1, ..., κ}, is a step function of the SINR for this client [8]. In this work, we consider
fci to be the instantaneous deliverable rate towards client ci, which in practice may not
always be equal to the transmission rate (especially at high rates). Each client ci of AP
α will receive the same throughput Ti in the long term; this throughput is given by:

Ti = Mα · B∑κ
i=1

B
fci

= Mα · 1∑κ
i=1

1
fci

. (1)

In the above equation, Mα is the fraction of the time that AP α is able to access the
medium, given the contention with its co-channel neighbor devices. We assume that AP
α transmits data packets of the same length B to all clients. From the above equation it
is evident that if a client ci receives low throughput, all clients will also receive equally
low throughput under saturated conditions. Note that this phenomenon has been taken
into account during the design of previous performance improvement algorithms for
WLANs; examples can be found in [3], [6], [7], [8]. All these studies take the anomaly
as a given and try to improve the network performance through other intelligent strate-
gies, such as AP load balancing and power control. In other words, such studies are
inherently based on the fact that the 802.11 MAC protocol provides long-term fairness.
Clearly, when this property of 802.11 is exploited by a malicious attacker, the perfor-
mance of the schemes that are based on this property is also compromised. Hence, the
existence of a mechanism that detects and mitigates such jammers becomes very vital.

Studies on mitigating the performance anomaly in 802.11. There have been numer-
ous efforts on addressing the anomaly in 802.11. Most of them either require significant
modifications on the 802.11 protocol functionality or they are very difficult to imple-
ment in practice.

Packet aggregation. Razafindralambo et al., [9] propose PAS, a technique that involves
packet aggregation with dynamic time intervals. With PAS, nodes transmit consecutive
packets back-to-back, separated by a SIFS period [10]. As a result, high-rate clients
are able to transmit/receive many packets during an allocated time interval. However,
packet aggregation requires modifications on the 802.11 protocol, in order to allow
back-to-back data frame transmissions.

Contention window manipulation. Kim et al., [11] show that the anomaly can be ad-
dressed by tuning the 802.11 contention window size. They compute the minimum
value of the window for the elimination of the anomaly. This technique, however,

FIJI: Fighting Implicit Jamming in 802.11 WLANs 25

requires modification to the algorithm that selects the value of the contention window
in 802.11. In contrast, our proposed scheme (described in the following section) does
not require any changes to the 802.11 protocol semantics.

Data traffic manipulation. Bellavista et al., in [12] propose MUM, an application-
level middleware for facilitating multimedia streaming services. MUM tries to detect
the anomaly by monitoring the RSSI of received packets and estimating the good-
ness of links. It employs the Linux tc/iptables to implement a hierarchical token
buffer scheduler [13] that “differentiates” data transmissions towards low-rate nodes.
The RSSI, however, cannot accurately capture the levels of contention and interference
[14]. In addition, [12] uses a limited set of 4 static rate classes for traffic differentia-
tion; this setting is not adequate in jamming scenarios, as we show in section 4. Along
the same lines, Dunn et al., [15] propose a heuristic for allocating a packet size to every
client, which is proportional to the transmission rate. We show in section 4 that the use of
this heuristic during an implicit-jamming attack leads to some undesirable effects that
in turn lead to poorer throughput than what is possible with FIJI. Similar approaches
are followed in [16,17] and [18]. Finally, Yang et al. [19] analytically model a WLAN
with stations that support multiple transmission rates in order to demonstrate the per-
formance anomaly. In contrast with these studies, our anti-jamming solution addresses
the fact that the maximum transmission rate achieved by a single client can bound the
total AP throughput. From the above discussion, as well as our measurements in section
4, it becomes evident that prior efforts on overcoming the performance anomaly prob-
lem in 802.11 cannot efficiently mitigate implicit jammers. We approach the 802.11
anomaly from the security point of view; in particular we examine a case where a ma-
licious adversary can remotely exploit this feature as a vulnerability to cause complete
starvation to the associated clients. FIJI is effective against the implicit jamming attack,
provides the best trade-offs between throughput and fairness and does not require any
modifications on the 802.11 protocol.

2.2 Jamming in Wireless Networks

Jammers are classified into two main categories based on their behaviors.

– Constant jammers: They emit electromagnetic energy all the time. This jam-
ming technique is not usually adopted, since it depletes the battery of mobile jam-
mers rather quickly. This category includes deceptive jammers [20], which transmit
seemingly legitimate back-to-back data packets. With this, deceptive jammers can
mislead other nodes and monitoring systems into believing that legitimate traffic is
being sent over the medium.

– Intermittent jammers. They conserve battery life by emitting energy intermittently.
As examples: (i) Random jammers alternate between random jamming and sleeping
periods. (ii) Reactive jammers emit energy right after the detection of traffic on the
medium, and remain inactive as long as the medium is idle. The implementation
of reactive jammers is difficult; the detection and alleviation of such attacks is very
challenging.

Previously proposed anti-jamming techniques. Prior work has focused on the impact
of jamming on the performance of isolated wireless links. To the best of our knowledge,

26 I. Broustis et al.

FIJI is the first system to examine the effects of implicit jamming on the overall per-
formance of WLANs. Some previous studies employ frequency hopping techniques to
avoid jammers [21,22,23]. We do not adopt such techniques in FIJI, since frequency
hopping cannot overcome wide-band jammers [2], which are capable of jamming a
plurality of the available bands simultaneously. Moreover, frequency hopping has lim-
ited effectiveness when multiple collocated jammers operate on different frequencies.
FIJI, however, can be complementary to frequency hopping.

Gummadi et al. [21] show that even ultra-low power jammers can corrupt the re-
ception of packets; towards coping with these jammers they propose a rapid frequency
hopping strategy. Navda et al. [22] implement a proactive frequency hopping protocol
with pseudo-random channel switching. They compute the optimal frequency hopping
parameters, assuming that the jammer is aware of the frequency hopping procedure
that is followed. Xu et al. [23] propose two anti jamming techniques: reactive channel
surfing and spatial retreats. However, they do not consider 802.11 networks. In [20], ef-
ficient mechanisms for jammer detection at the PHY layer are developed. However, the
authors do not propose any anti-jamming mechanisms. The work in [24] suggests that
the proper adjustment of transmission power and error correction codes could alleviate
jamming effects. However, it neither proposes an anti-jamming protocol nor performs
evaluations of these strategies. Along the same lines, Lin and Noubir [25] present an an-
alytical evaluation of the use of cryptographic interleavers with various coding schemes
to improve the robustness of wireless LANs. In subsequent work, Noubir and Lin [26]
investigate the power efficiency of a jammer. They show that in the absence of error-
correction codes a jammer can conserve battery power by simply destroying only a por-
tion of a legitimate packet. Finally, Noubir [27] proposes a combination of directional
antennae and node-mobility in order to alleviate jammers.

None of these efforts consider the implicit jamming attack; FIJI is the first system to
address this attack.

3 FIJI to Combat the Implicit Jamming Attack

In this section, we describe the design of our anti-jamming software system, FIJI. The
goal of FIJI is twofold:

1. To detect the attack and restore the throughput on clients that are not explicitly
jammed (we call these clients “healthy”).

2. To maintain connectivity and provide the highest possible throughput to clients that
are explicitly jammed (we call these clients “jammed”).

FIJI involves the co-design of two individual modules, executed at the AP: a detection
module and a traffic shaping module. We have implemented the two modules in the
kernel space (we provide implementation details in section 4).

Attack model. In this work, we focus on low-power deceptive jammers. In particu-
lar, we assume that the jamming device has the following properties:

– It is placed next to legitimate clients. With this, the jammer is able to distort packets
destined to the jammed client(s). In addition, the jammer is constantly transmitting
packets back-to-back, thereby prohibiting the jammed clients from accessing the
medium.

FIJI: Fighting Implicit Jamming in 802.11 WLANs 27

– It operates at very low power. As discussed earlier, the jammer simply needs to
explicitly affect one of the clients of the AP. By transmitting at low power the
jammer can conserve energy and make the detection of the attack a challenging
task.

– It is able to operate on a wide band (covering all the available channels); this makes
frequency hopping techniques inappropriate.

We describe the operation of the detection and the traffic shaping modules in what
follows.

3.1 Detecting the Implicit-Jamming Attack

The purpose of this module is to make the AP capable of detecting the jammed clients.
Previous jamming detection schemes assume that the jammed node is always the one
that performs the detection. However with the implicit-jamming attack, the AP needs to
detect the jammed client(s) in order to prevent the throughput starvation of the healthy
clients. As an example, in [20] the jammed node performs a consistency check between
the instantaneous PDR (Packet Delivery Ratio), and the RSSI (Received Signal Strength
Indicator) that it measures on its antenna. If the PDR is extremely low (i.e., almost zero),
while the RSSI is much higher than the CCA threshold1, the node is considered to be
jammed. With the implicit jamming attack, however, the AP does not know the RSSI
value that is observed by each of its clients. Thus, the approach in [20] does not allow
the AP to detect the implicit jamming attack.

Measuring the transmission delay per client. FIJI relies on measuring the data unit
transmission delay dci = B/fci of every client ci at the AP. More specifically, the
denominator of Eq. (1) is the aggregate transmission delay Dα incurred by AP α in
order to serve all of its associated clients once; it is the sum of the individual dci values,
i ∈ {1, ..., κ}, of the κ clients that are associated with AP α [3]. In other words, if
we assume saturated downlink traffic, Dα corresponds to the average time that AP α
needs in order to send one data unit to every client. The value of Dα is the same for
all clients, and the transmission delay dci of client ci contributes to the value of Dα.
Hence, a sudden, very large increment in Dα indicates that one or more of the dci values
has suddenly increased; this would imply that one or more clients are under attack.
Towards calculating Dα, AP α needs to measure the dci value for every client ci (this
includes possible retransmission delays and the rate-scaling overhead2). Measuring dci

will directly reveal the jammed clients: the value of dcJ
i

for a jammed client cJ
i is likely

to be much higher than the delays of the other clients. We adopt this detection strategy
in FIJI.

3.2 Shaping the Traffic at the AP to Alleviate Jammers

A trivial solution to the problem of mitigating the attack would be for the AP to simply
stop serving the jammed clients. However, this would be unfair, since in many cases

1 The CCA (Clear Channel Assessment) threshold specifies the RSSI value below which, recep-
tions are ignored with regards to carrier sensing [8].

2 The rate scaling overhead accounts for the higher delays incurred due to transient lower rates
that the rate adaptation algorithm invokes.

28 I. Broustis et al.

the jammed clients might still be able to receive data, albeit at lower rates. We opt to
provide a fair bandwidth allocation solution; our twofold objective is to simultaneously
achieve the following:

– Objective 1. For each of the healthy clients we seek to provide the same throughput
that they would have enjoyed in the absence of the jammer, i.e., prior to the attack.

– Objective 2. A jammed client typically cannot receive much throughput as long
as the jammer is active. Hence we want to provide to every jammed client the
maximum possible throughput that it can receive, given that objective 1 is satisfied.

We refer to the state where these objectives are met as the optimal state.
We propose a real-time, cross-layer software system to mitigate the effects of the

implicit-jamming attack. The system is implemented partly in the Click module [5]
and partly in the wireless driver/firmware. Click receives information from the MAC
Layer with regards to the properties of the jammed clients. The AP→client traffic is
then appropriately shaped and forwarded down to the MAC layer at the AP.

i) DPT: Controlling the data packet size. With this strategy, the AP fragments the
packets destined to jammed clients; each such smaller fragment is now an independent
packet. We call this approach DPT for Data Packet Tuning. With DPT, the rate at which
these smaller packets are sent to the MAC layer is equal to the rate at which normal
packets were forwarded to the MAC layer, prior to jamming. DPT is expected to have
the following effects: (a) The transmission of small data packets is more robust to in-
terference due to jamming; hence these small packets are more likely to be correctly
deciphered by the jammed clients. (b) The rate at which the AP accesses the medium
for the jammed clients remains unchanged; however, the channel occupancy time that is
spent for them is reduced, due to transmitting smaller packets to jammed clients. Hence,
the AP will allocate a larger fraction of time for healthy clients.

Deriving the optimal data packet sizes. Our target is to determine the right packet size
such that the optimal state is reached. The problem of achieving this state is formulated
as follows.

Let us suppose that AP α has κ associated clients, and that n clients are being
jammed, with n ≤ κ. Our objective is to minimize the aggregate transmission delay
DJ

α of all the jammed clients cJ
i , i ∈ {1, .., n} of AP α. In other words, we seek to

minimize

DJ
α =

n∑
i=1

dcJ
i

=
n∑

i=1

Ji

fcJ
i

,

where Ji is the data unit length for jammed client cJ
i , while fcJ

i
is the deliverable rate

at cJ
i .

Constraint. The dcJ
i

value of each jammed client cJ
i must be at least equal (and as

close as possible) to its data unit transmission delay dci in benign conditions:

X1 : dJ
ci

≥ dci ⇒ Ji

fcJ
i

≥ B

fci

, ∀i ∈ n ,

where B is the default data unit length that the AP is using for all clients, and fci is
the deliverable rate to cJ

i in benign conditions. As explained earlier, the value of Dα

FIJI: Fighting Implicit Jamming in 802.11 WLANs 29

is the same for all clients that are associated with AP α. If we sum constraint X1 over
all jammed clients, the left hand side of the inequality is our objective function. With
this we make sure that the healthy κ − n clients will indeed experience an aggregate
transmission delay very close to Dα =

∑κ
i=1(B/fci); note that this is the aggregate

transmission delay that was experienced by these clients prior to the jamming attack.
Hence, by choosing the packet size Ji that results in a transmission delay that is as
close to dci as possible, we ensure that the throughput of the healthy clients remains
unaffected (we elaborate on this later with an example).

Based on the above constraint, our optimization problem can be formulated as fol-
lows:

minimize : DJ
α =

n∑
i=1

dcJ
i

=
n∑

i=1

Ji

fcJ
i

(2)

subject to : 1 ≤ Ji ≤ B, ∀i ∈ {1, 2, ..., n}, (3)

and X1. (4)

The solution to the above problem provides the values of Ji that minimize (2). Although
the problem is an integer programming problem, it is easy to see that its special form
ensures that it always has a solution, which can be found in polynomial time w.r.t. the
number of variables.

How does DPT operate? Let us consider a case study with AP α, κ = 3, n = 1 and
default packet size B. The transmission delays for the healthy clients c1 and c2 are d1
and d2, respectively; for the jammed client c3, it is d3. The long-term throughput of
every client in benign conditions will be: Tb = B

d1+d2+d3
. If c3 is now being jammed,

its transmission delay will be dJ
3 > d3 and the new throughput will be: TJ = B

d1+d2+dJ
3

.

By applying DPT, the packet size towards c3 will be Jdpt
3 and its new transmission delay

will be ddpt
3 . Since the rest of the clients are to maintain their old transmission delays

(they are not explicitly jammed), the throughput with DPT will be: Tdpt = B

d1+d2+ddpt
3

.

Our minimization problem ensures that ddpt
3 ≈ d3. Thus, for clients c1 and c2: Tdpt1 =

Tdpt2 ≈ Tb. In other words, DPT restores the throughput at the healthy clients.
Next, we show that the jammed client cannot receive a higher throughput if we fur-

ther decrease the packet size3 to a value J l
3 < Jdpt

3 . With packet size Jdpt
3 the through-

put at c3 will be: Tdpt3 = Jdpt
3

d1+d2+ddpt
3

. Let us assume that with packet size J l
3 < Jdpt

3

the transmission delay of c3 is dl
3. The throughput at c3 will then be Tl3 = Jl

3
d1+d2+dl

3
.

The required condition Tl3 < Tdpt3 can be simplified as:

Tl3 < Tdpt3 ⇔ dl
3 >

J l
3

Jdpt
3

· (d1 + d2 + ddpt
3) − d1 − d2.

3 For larger packet sizes, objective 1 cannot be satisfied; hence we do not need to consider such
a case.

30 I. Broustis et al.

Since the packet delivery rate fc3 is the same, we have:

J l
3

Jdpt
3

=
dl
3

ddpt
3

⇔ dl
3 = ddpt

3 · J l
3

Jdpt
3

Thus:
J l

3

Jdpt
3

· ddpt
3 >

J l
3

Jdpt
3

· (d1 + d2 + ddpt
3) − d1 − d2 ⇔

0 > (
J l

3

Jdpt
3

− 1)(d1 + d2).

The last inequality is always true; hence, Tl3 < Tdpt3 .
Similar steps can be followed in order to show that DPT operates in the same manner

in scenarios with multiple jammed clients. We adopt DPT in FIJI.

ii) DRT: An alternate approach. An alternative strategy would be to explicitly tune the
rate at which the packets are delivered at the MAC layer (the packet size is now kept
unchanged), destined to jammed clients. Fewer packets would arrive at the MAC layer
for transmission towards the jammed clients, thereby allowing the AP to send traffic to
healthy clients more frequently. Let us call this approach DRT for Data Rate Tuning.
DRT operates as follows. Based on the measured dci for each client ci, the deliverable
rate to every jammed client would be:

fcJ
i

= B/dcJ
i
. (5)

DRT would bound the packet generation rate such that the data rate to the jammed
client cJ

i is at most fcJ
i

. As a result, the rest of the (healthy) clients would share the
remaining bandwidth. Thus, they would enjoy a share that is in fact higher than what
they had prior to the attack. However, the packets destined to the jammed clients could
be potentially lost due to channel or interference effects. Hence with DRT, the jammed
clients will eventually receive lower long-term throughput than the specified (by DRT)
rate of fcJ

i
. Clearly, while both DPT and DRT shape the traffic in order to overcome the

implicit jamming effects, they essentially differ in the way they allocate the bandwidth.
With DPT the healthy clients receive the same throughput as before the attack, while
the jammed clients achieve the maximum possible throughput under the circumstances.
On the other hand, with DRT the healthy clients have a higher share of the bandwidth
than in benign settings and receive more throughput than before the attack; the APs will
spend more time serving the healthy clients, since most of the traffic is now destined to
them. However, since the jammed clients do not reach their capacity, they are treated
rather “unfairly”. We evaluate this fairness versus throughput trade-off in section 4.3.

4 Implementation and Evaluation

In this section, we first describe our implementation of FIJI. Next we apply FIJI on a
WLAN testbed and evaluate its efficacy in overcoming the implicit jamming attack.

FIJI: Fighting Implicit Jamming in 802.11 WLANs 31

4.1 The Implementation of FIJI

FIJI is implemented entirely at the AP; no client software modifications are needed. In
addition, FIJI does not require any special functionalities at the APs or at the clients;
the only requirement is for the AP to be able to measure the dci value for each affiliated
client. Hence, FIJI can be applied on commercial APs through a driver/firmware update.
In order to implement the two modules of FIJI we perform modifications on the driver
and firmware of the AP, and we develop specific traffic shaping functionalities on the
Click framework [5].

Implementing the implicit-jamming detection module. As explained in section 3.1,
the AP needs to measure dci for every client ci. This will reveal, with high probability,
the set of jammed clients. However, the value of dci cannot be directly obtained from the
driver of the wireless card; modifications in the firmware are required in order to com-
pute this value. We use a prototype version of the Intel ipw2200 AP driver/firmware;
for every client we measure the time duration between the placement of the packet at
the head of the MAC queue until an 802.11 ACK frame is received for this packet.
The value is then passed up to the driver. The AP maintains a table in the driver space
with the dci value for every client ci. It also computes DJ

α (when jammers are active)
and Dα (when jammers are inactive), by summing up the corresponding client delays.
Temporary variations of the dci values are handled by FIJI by using weighted moving
average filtering; the previously maintained average is assigned a weight of 0.9 while
the new sample has an associated weight of 0.1 (similar values are used in [3,6]). Us-
ing these values, the AP constructs a table with the appropriate data packet sizes for
the jammed clients. If the weighted dci(new)/dci(old) value (for one or more clients)
exceeds a pre-specified threshold δ, the AP computes the new packet sizes, updates the
table and subsequently feeds it into the traffic shaping module, described below.

Implementation of the traffic shaping module. We implement the traffic shaper in
Click. The module receives the table from the driver with suggested parameter set-
tings for every client and shapes the traffic accordingly. We implement both DPT and
DRT for comparison purposes. For DPT we have also developed an application-level
script, which reads the table with the suggested packet sizes and inputs these values to
the rude/crude measurement tool [28]. For DRT one may use two different Click ele-
ments, namely either the BandwidthShaper(bandwidth)or the LinkUnqueue
(latency, bandwidth) element; we utilize the latter. Finally, we configure the
AP to periodically flush the stored transmission delay values for every client and per-
form fresh delay measurements, using the default packet size. With this, we address
scenarios of mobile jammers, which may move to the proximity of different clients,
jammers with variable transmission power as well as jammers that stop operating.

4.2 Experimental Set-Up and Methodology

Testbed description. Our testbed consists of 28 Soekris net4826 nodes [29], which
mount a Debian Linux distribution with kernel v2.6 over NFS. The testbed is deployed
in the 3rd floor of our campus building; the node layout is depicted in Fig. 2. Each node
is equipped with an Intel-2915 mini PCI WiFi card, connected to two 5-dBi gain ex-
ternal omnidirectional antennae. We use both the main and aux antenna connectors of

32 I. Broustis et al.

Client

AP

Jammer

20

12
27

11
14

19

13

31

22

23 30

24

25

26
28

29

36

15

37

39

4041

44
46 48

42

4550

Fig. 2. The deployment of our indoor 802.11a/g WLAN testbed in the 3rd floor of a campus
building

the card for diversity. As mentioned earlier, we use a proprietary version of the ipw2200
AP driver/firmware of the Intel-2915 card. With this version we are able to (a) measure
the Dα and DJ

α values at the AP, and (b) experiment with both 802.11a and 802.11g.

Constant jammer implementation. We have implemented our own deceptive jammer
(instead of purchasing a commercial one [2]) since this gives us the freedom of tun-
ing various jamming parameters. Our implementation of a constant jammer is based
on a specific card configuration and a user space utility that sends broadcast pack-
ets as fast as possible. Our jammers are also equipped with the Intel-2915 cards; our
ipw2200 prototype firmware for these cards allows the tuning of the CCA threshold
parameter. By setting the CCA threshold to 0 dBm, we force the WiFi card to ignore all
802.11 signals during carrier sensing (packets arrive at the jammer’s circuitry with pow-
ers much less than 0 dBm, even if the distances between the jammer and the legitimate
transceivers are very small). The jammer transmits broadcast UDP traffic. This ensures
that its packets are transmitted back-to-back and that the jammer does not wait for any
ACK messages (the back-off functionality is disabled in 802.11 for broadcast traffic).
We have developed an application-layer utility that employs raw sockets, allowing the
construction of UDP packets and the forwarding of each packet directly down to the
hardware.

Experimental methodology. For each experiment we first enable traffic from the AP
to its clients and subsequently we activate the jammer(s). The duration of each experi-
ment is 10 minutes; during each minute, the jammer is inactive for the first k sec, where
k ∈ [5, 20], and active for the other 60 − k sec. We use a subset of 4 nodes as the
jamming devices (nodes 15, 31, 36 and 45 in Fig. 2). We collect throughput and trans-
mission delay (dci) measurements once every 500 msec, for each client. We experiment
with many different topological settings, with different numbers of APs and clients. By
default all legitimate nodes set their transmission powers to the maximum value of 20
dBm and their CCA thresholds to -80 dBm. We examine both 802.11a and 802.11g
links (unless otherwise stated, we observe the same behavior for 802.11a and 802.11g).

FIJI: Fighting Implicit Jamming in 802.11 WLANs 33

The experiments are performed late at night in order to avoid interference from col-
located WLANs, as well as not to cause interference to them. We use saturated UDP
traffic with a default data packet size B = 1500 bytes. We also experiment with TCP
traffic4. We use the iperf measurement tool to generate data traffic among legitimate
nodes. We also use the rude tool to test DPT.

4.3 Does FIJI Deliver?

Next, we apply our anti-jamming framework on the testbed and evaluate its efficiency
in alleviating the effects of implicit-jamming on the WLAN performance.

i) The efficacy of the detection module. We seek to observe two properties of this
module:

1. Efficiency of Detection: How quickly can FIJI detect the presence of implicit jam-
mers?

2. Accuracy of Detection: How accurately can FIJI determine if there is an ongoing
jamming attack?

We conduct experiments with 5 APs and different numbers of clients with various link
qualities. We configure the jammers to transmit at 0 dBm (1 mW) with CCA = 0 dBm,
such that they affect one or more clients without affecting the APs.

a) On the speed of detection. Our measurements indicate that the transmission delay
dcJ

i
of a client increases sharply upon experiencing the implicit jamming attack. This

increase is seen in less than 700 msecs; this time includes the transient periods before
the weighted average dcJ

i
converges to a stable value. Fig. 3 depicts a delay snapshot

with one AP and four clients with moderate-quality links. We observe that the dcJ
1

value
increases significantly (by 26 times in this experiment). Other experiments provided
similar results. In summary, these results show that FIJI can quickly detect implicit
jamming attacks.

b) On the accuracy of detection. We seek to evaluate FIJI in terms of its ability to detect
an implicit jamming attack in the presence of interference. Note that the dci value for
a client ci is affected by the levels of interference on the AP → ci link. The higher the
level of interference, the higher the dci value. In order to evaluate this ability of FIJI,
we perform experiments with multiple overlapping cells (each with its own AP), so that
some clients suffer interference from one or more APs; in this setting, we activate our
low-power jammers.

Detecting jamming on good quality links. We first consider links that have a high
SINR. Fig. 4 depicts sample experimental results. In the snapshot of Fig. 4, a jammer
is placed such that it affects 2 out of the 4 clients of an AP. We observe that FIJI is able
to perform a successful detection. In general, our empirical observations suggest that

4 The anomaly exists with TCP traffic as well [4]. Even though we do not present our TCP
measurements, we observe that FIJI is similarly efficient with TCP traffic; we discuss this
briefly in section 5.

34 I. Broustis et al.

Transmission Delay (msec)

Client 1

Client 2

Client 3

Client 4

0 37.5 75.0 112.5 150.0

With Jammer Without Jammer

Fig. 3. FIJI detects jammed clients by mea-
suring their data unit transmission delays

Transmission Delay (msec)

Client 1

Client 2

Client 3

Client 4

0 10 20 30 40

With Jammer Without Jammer

Fig. 4. The jammer detection functionality
of FIJI is accurate in most cases

Client 1

Client 2

Client 3

Client 4

Client 5

0 15 30 45 60

With Jammer Without Jammer

Transmission Delay (msec)

Fig. 5. The jammer detection with FIJI is
less accurate in scenarios with very poor
links

 0

 1

 2

 3

 4

 5

 6

 7

No Jam Jam DPT

T
hr

ou
gh

pu
t (

M
bp

s)
Client 13
Client 19
Client 11

Fig. 6. DPT restores the performance of
healthy clients to that in benign settings

when threshold δ ≥ 9, FIJI can effectively detect the attack (Fig. 4). In the experiment
described above, the value of δ was 9.

FIJI and poor quality links. With poor quality links (SINR is low), FIJI cannot easily
decide if a client is under attack or not. This effect is captured in Fig. 5, where the
jammer affects a very poor link. In particular, the link 46→25 is considered with the
node 45 acting as a jammer (Fig. 2). The link achieves 190 Kbits/sec in the absence
of jamming and 164 Kbits/sec under jamming. Since the jammer does not significantly
increase the delay experienced on such poor links, FIJI cannot decipher whether the
increased dnode−25 value is due to jamming or legitimate interference. However, in such
conditions, the overall change in the network performance due to the jammer is unlikely
to be significant; the presence of the poor link already hurts the network performance.
Furthermore note that a jammer is unlikely to attack such poor quality links if it aims
to harm the network to the extent possible.

In some extreme cases, a poor quality link (exposed perhaps to other interfering APs
that are hidden from its own AP) might cause a client to experience large delays. In
such scenarios with healthy but poor-quality links, FIJI may incorrectly classify such

FIJI: Fighting Implicit Jamming in 802.11 WLANs 35

links as being jammed. Classifying such cases as attacks, though, is perhaps appealing
in terms of improving performance for the rest of the network.

FIJI and high power jammers. An implicit-jamming attacker is likely to place its jam-
mer(s) very close to one or more clients so as to:

– degrade the client’s observed SINR value to the extent possible, and
– use a very low transmission power, in order to conserve energy and avoid detection.

As our experiments indicate, under these conditions, FIJI can identify the jammed
clients in real time since all measured dcJ

i
values are usually extremely high for those

clients. In contrast, a jammer could use high transmission power (although this could
increase the chance of its detection and result in high energy consumption). Such a high
power jammer is likely to affect multiple clients and even the AP itself, directly. The
delays of all these clients may go up and in this case, given its design principles, FIJI
may not be able to detect the jammer. However, there are other jammer detection tech-
niques that can be used in conjunction with FIJI to detect such jammers [20].

ii) The traffic shaping module in action. Next we evaluate the efficacy of DPT and
compare it against DRT.

DPT is the most fair solution. In a nutshell we observe that as long as the jammer is
successfully detected, DPT restores the throughput at the healthy clients. A sample case
is depicted in Fig. 6. Here, AP 44 transmits unicast traffic to clients 11, 13 and 19; node
36 is jamming client 11. In the absence of jamming each client receives 4.8 Mbits/sec
on average. When the jammer is active, without enabling DPT, all clients receive 1.1
Mbits/sec on average. The solution to the problem formulated in (2) suggests that J11
should be set to 345 bytes. When DPT is enabled and this packet size is chosen for the
jammed client, we observe that the throughput of the healthy clients 13 and 19 is re-
stored to 4.66 Mbits/sec, while the jammed client 11 achieves about 1.1 Mbits/sec. Note
that the healthy clients do not achieve their jamming-free throughput of 4.8 Mbits/sec.
This is because in our solution the equality in the constraint X1 is achieved for a non-
integral value of J11; we round the value of J11 up to the nearest integer. With this, the
transmission delay for the jammed client is a bit higher as compared to the delay under
benign conditions and this slightly degrades the throughput at the healthy clients.

In order to validate that DPT provides the most fair bandwidth allocation, we exper-
iment with many different J11 values. Fig. 7 depicts the results that correspond to the
settings with two J11 values: 166 and 700 bytes. We observe that:

– With packet sizes smaller than Jdpt
11 (case with 166 bytes), the jammed client does

not reach its capacity (receives 360 Kbits/sec) and the AP spends more time serving
the healthy clients (as discussed in section 3): each healthy client now receives 5.1
Mbits/sec. Note that the value J11 = 166 bytes is computed using the approach
proposed in [15] for the considered scenario and it clearly does not provide the
desirable fairness in terms of throughput.

– When the packet size is higher than Jdpt
11 (case with 700 bytes), the throughput at the

jammed client is lower than 1.1 Mbits/sec; the healthy clients also underperform.

36 I. Broustis et al.

 0

 1

 2

 3

 4

 5

 6

 7

DPT 700 bytes 166 bytes

T
hr

ou
gh

pu
t (

M
bp

s)

Client 13
Client 19
Client 11

Fig. 7. DPT always manages to provide a fair
allocation of throughput among clients

 0

 1

 2

 3

 4

 5

 6

 7

No Jam Jam DPT

T
hr

ou
gh

pu
t (

M
bp

s)

Client 13
Client 11
Client 37

Fig. 8. DPT can easily handle scenarios
with multiple clients that are simultaneously
jammed

This is again conformant with our analytical assessments in section 3 with regards
to the maximum achievable throughput.

Multiple jammed clients. We have so far considered scenarios wherein a single client
was jammed. Next, we examine scenarios with multiple jammed clients per AP. Our
experiments reveal that DPT is also able to effectively mitigate the implicit jamming
attack in such scenarios. Fig. 8 presents a sample case with AP 46 and clients 11, 37
and 14; the jammer-node 36 explicitly affects both clients 11 and 37. Under benign
conditions all clients receive approximately 4.5 Mbits/sec on average. As soon as the
jammer is activated, without enabling DPT, all clients receive about 1.1 Mbits/sec. DPT
sets the value of J11 to be 367 bytes and J37 to be 1266 bytes. With this, DPT is able
to restore the throughput at the healthy clients.

DPT vs. DRT. Using the same methodology, we examine the effectiveness of the DRT
solution. Our measurements demonstrate that DRT provides much higher throughput to
healthy clients. On the other hand, DRT results in an additional unfair degradation at the
jammed client. Fig. 9 represents the behaviors in an example scenario, with the same
topological configuration as before (AP 44, clients 11, 13 and 19, jammer 36); the fig-
ure depicts the throughput prior to the attack (benign settings), with the jammer without
DRT, and after the application of DRT. We observe that DRT overcomes the implicit
impacts of the attack. Upon enabling DRT, clients 13 and 19 are no longer affected by
the jammer and they receive 5.12 Mbits/sec each. Although DRT sets the maximum
allowable data rate towards client 11 to be 1.1 Mbits/sec, the observed throughput at
this client is significantly lower i.e., 680 Kbits/sec on average. This behavior of DRT
conforms with our discussion in section 3.2; we observe similar trends in all our mea-
surements with one or more jammed clients. To summarize, with DRT the healthy clients
receive more throughput than before the attack; however the jammed clients are penal-
ized further.

The choice between DPT and DRT depends on the performance objectives; one has
to decide between fairness (with DPT) and bandwidth utilization (with DRT). DPT is
fair: the healthy clients receive the same throughput as before the attack, while the

FIJI: Fighting Implicit Jamming in 802.11 WLANs 37

 0

 1

 2

 3

 4

 5

 6

 7

No Jam Jam DRT

T
hr

ou
gh

pu
t (

M
bp

s)

Client 13
Client 19
Client 11

Fig. 9. With DRT healthy clients receive
more throughput than before the attack

 0

 1

 2

 3

 4

 5

 6

 7

DRT MUM 0.5Mbps

T
hr

ou
gh

pu
t (

M
bp

s)

Client 13
Client 19
Client 11

Fig. 10. DRT satisfies our objectives better
than other data rate allocation approaches

jammed clients achieve the maximum possible throughput under the circumstances. On
the other hand, DRT increases the throughput at the healthy clients and potentially, the
total network throughput. However, the jammed clients cannot receive the maximum
throughput that they can achieve in the presence of the jammer.

Note that DRT also relies on the online measurement and use of dci . With this, DRT
seeks to eliminate the effects of implicit jamming at healthy clients, while at the same
time not degrade the throughput at jammed clients. Fig. 10 depicts a case with 802.11a
where DRT sets the data rate at 1.1 Mbits/sec, while MUM [12] (recall our discussion
in section 2) sets 6 Mbits/sec. We observe that by using data rates higher than the one
chosen by DRT, the healthy clients are still affected by the attack, since in this case the
downlink traffic for the jammed client is still saturated. Moreover, if we use lower data
rates than the one chosen by DRT, the healthy clients get more service time, however
the jammed clients receive much lower throughput than with DRT.

5 The Scope of Our Study

FIJI and previous studies on traffic shaping. Our work is the first to analytically de-
rive the optimal settings for traffic shaping at the AP to mitigate the implicit-jamming at-
tack. Traffic shapers have also been previously proposed in [12,16,17,15]. Clearly, FIJI
could also be considered as another traffic shaper, simply to overcome the performance
degradation due to the 802.11 anomaly. Unlike FIJI however, previous traffic shaping
schemes cannot overcome the effects of an implicit-jamming attack, as explained in
sections 2 and 4. Other schemes that provide fair access to the WLAN resources [31,3]
would also be inadequate in combating an implicit-jamming attack since they are not
designed for this purpose.

FIJI versus power control. Power control has been suggested as a means of mitigating
legitimate interference [7,31]. Typically with power control, nodes tune their transmis-
sion power and CCA settings in order to reduce the amount of interference from/to their
neighbors. However, if the jammer is very close to one or more clients, its signal cannot

38 I. Broustis et al.

be ignored through CCA adaptation. If a client increases its CCA threshold to a high
level (to ignore the jammer’s signal), the connectivity to the AP will be lost.

Addressing random and reactive jammers. FIJI can mitigate the interference due to
any type of jammer, even random or reactive jammers. With prolonged random jam-
ming and sleeping periods (order of seconds), FIJI can perform a rapid detection and
then customize the data packet size, as per the observed data unit transmission delay
dcJ

i
. If the sleep and active periods of the random jammer are of the order of mil-

liseconds, FIJI can monitor the average dcJ
i

value instead. FIJI is expected to alleviate
reactive jammers, too, since it only needs to monitor the impact of reactive jamming by
measuring dcJ

i
. We have not experimented with reactive jammers, since implementing

such a jammer is a very difficult task.

FIJI against other attacks. The two modules of FIJI can arguably be effective against
any attempt to exploit the 802.11 performance anomaly in order to degrade the client
throughput. As examples, a compromised device x could deliberately decide to (a) asso-
ciate to a very distant AP α, or (b) accept traffic at a very low reception rate only (e.g. by
discarding a large volume of correctly received packets). In both cases, x would receive
a few Kbits/sec. Note here that, legitimate, non-compromised devices would follow
such an approach only if they cannot associate with a better APs. However, given that
(a) dense deployments of WLANs make the presence of an AP with a good quality link
likely [7], and (b) distant poor quality APs are likely to be beyond the administrative
domain of the client (the client will not be able to associate with such APs), the possi-
bility of this is small in practice. FIJI can arguably be effective against such attacks. In
particular, FIJI considers such clients to be jammed clients and ensures that the other
clients remain unaffected.

FIJI and TCP. FIJI is implemented above the 802.11 MAC and below the transport
layer at the AP. We have done measurements with TCP, which have demonstrated that:
(a) Without FIJI, the performance anomaly also exists with downlink TCP traffic. The
TCP packets that are destined to the jammed clients require a significant amount of
time for successful delivery. As a consequence, the healthy clients are affected; they do
not achieve the same throughput as before the attack. (b) Our experiments also demon-
strated that the application of FIJI in TCP traffic scenarios is beneficial. By reducing the
rate at which packets are delivered to the MAC for the jammed clients, DPT shapes the
TCP traffic in a way that the healthy clients are unfettered. Note that the packet frag-
mentation with FIJI is executed after any TCP layer fragmentation; hence, FIJI does not
intervene with TCP operations.

6 Conclusion

In this paper we identify a low-power jamming attack that we call the implicit jam-
ming attack. With this attack, a jammer exploits a performance trait of the IEEE 802.11
MAC protocol to cause starvation to not only an explicitly jammed client, but all the
clients associated with the same AP as that client. Since the 802.11 MAC provides long
term fairness (under saturation conditions) to the associated clients in terms of equal

FIJI: Fighting Implicit Jamming in 802.11 WLANs 39

throughput, the attacker can nullify the AP throughput by affecting only one or at most
a few clients.

We design, implement and evaluate FIJI, a cross layer software system for mitigating
the implicit-jamming attack. FIJI is comprised of two modules, for detecting such an
attack and shaping the traffic appropriately in order to alleviate the jamming effects.
We evaluate FIJI on an 802.11a/g testbed, and under many different jamming scenarios.
We show that FIJI can quickly detect the attack and effectively restore the throughput
at the implicitly affected clients. FIJI also ensures that the jammed clients get as much
throughput as they can under the circumstances.

Acknowledgment. We thank Intel Research for providing the wireless driver.

References

1. SESP jammers, http://www.sesp.com/
2. ISM wideband jammers. http://69.6.206.229/e-commerce-solutions-catalog1.0.4.html
3. Sundaresan, K., Papagiannaki, K.: The Need for Cross-Layer Information in Access Point

Selection Algorithms. In: ACM IMC (2006)
4. Heusse, M., Rousseau, F., Berger-Sabbatel, G., Duda, A.: Performance Anomaly of 802.11b.

In: IEEE INFOCOM (2003)
5. Click web page, http://read.cs.ucla.edu/click/
6. Kauffmann, B., et al.: Measurement-Based Self Organization of Interfering 802.11 Wireless

Access Networks. In: IEEE INFOCOM (2007)
7. Broustis, I., Papagiannaki, K., Krishnamurthy, S.V., Faloutsos, M., Mhatre, V.: MDG:

Measurement-Driven Guidelines for 802.11 WLAN Design. In: ACM MOBICOM (2007)
8. Mhatre, V., Papagiannaki, K., Baccelli, F.: Interference Mitigation through Power Control in

High Density 802.11 WLANs. In: IEEE INFOCOM (2007)
9. Razafindralambo, T., Lassous, I.G., Iannone, L., Fdida, S.: Dynamic Packet Aggregation

to Solve Performance Anomaly in 802.11 Wireless Networks. In: ACM MSWiM (October
2006)

10. ANSI/IEEE 802.11-Standard. 1999 edn.
11. Kim, H., Yun, S., Kang, I., Bahk, S.: Resolving 802.11 Performance Anomalies through QoS

Differentiation. IEEE Comm. Letters 9(7) (July 2005)
12. Bellavista, P., Corradi, A., Foschini, L.: The MUM Middleware to Counteract IEEE 802.11

Performance Anomaly in Context-aware Multimedia Provisioning. International Journal of
Multimedia and Ubiquitous Engineering 2(2) (July 2007)

13. Hierarchical Token Bucket, http://luxik.cdi.cz/˜devik/qos/htb/
14. Vlavianos, A., Law, E., Broustis, I., Krishnamurthy, S.V., Faloutsos, M.: Assessing Link

Quality in IEEE 802.11 Wireless Networks: Which is the Right Metric? In: IEEE PIMRC
(2008)

15. Dunn, J., Neufeld, M., Sheth, A., Grunwald, D., Bennett, J.: A Practical Cross-Layer Mech-
anism For Fairness in 802.11 Networks. In: IEEE BROADNETS (2004)

16. Portoles, M., Zhong, Z., Choi, S.: IEEE 802.11 Downlink Traffic Shaping Scheme for Multi-
User Service. In: IEEE PIMRC (2003)

17. Iannone, L., Fdida, S.: Sdt. 11b: Un Schema a Division de Temps Pour Eviter l’anomalie de
la Couche MAC 802.11b. In: CFIP (April 2005)

18. Yoo, S., Choi, J., Hwang, J.-H., Yoo, C.: Eliminating the Performance Anomaly of 802.11b.
In: ICN (2005)

http://www.sesp.com/
http://read.cs.ucla.edu/click/
http://luxik.cdi.cz/~devik/qos/htb/

40 I. Broustis et al.

19. Yang, D., et al.: Performance Enhancement of Multi-Rate IEEE 802.11 WLANs with
Geographically-Scattered Stations. IEEE Trans. Mob. Comp. 5(7) (July 2006)

20. Xu, W., Trappe, W., Zhang, Y., Wood, T.: The Feasibility of Launching and Detecting Jam-
ming Attacks in Wireless Networks. In: ACM MOBIHOC (2005)

21. Gummadi, R., et al.: Understanding and Mitigating the Impact of RF Interference on 802.11
Networks. In: ACM SIGCOMM (2007)

22. Navda, V., et al.: Using Channel Hopping to Increase 802.11 Resilience to Jamming Attacks.
In: IEEE INFOCOM mini-conference (2007)

23. Hu, W., Wood, T., Trappe, W., Zhang, Y.: Channel Surfing and Spatial Retreats: Defenses
Against Wireless Denial of Service. In: WISE (2004)

24. Xu, W., Ma, K., Trappe, W., Zhang, Y.: Jamming Sensor Networks: Attacks and Defense
Strategies. In: IEEE Network (May/June 2006)

25. Lin, G., Noubir, G.: On Link Layer Denial of Service in Data Wireless LANs. In: Wireless
Communications and Mobile Computing (May 2003)

26. Noubir, G., Lin, G.: Low-power DoS Attacks in Data Wireless LANs and Countermeasures.
In: ACM MOBIHOC (2003) (poster)

27. Noubir, G.: On Connectivity in Ad Hoc Network under Jamming Using Directional Antennas
and Mobility. In: Langendoerfer, P., Liu, M., Matta, I., Tsaoussidis, V. (eds.) WWIC 2004.
LNCS, vol. 2957, pp. 186–200. Springer, Heidelberg (2004)

28. Rude/Crude measurement tool, http://rude.sourceforge.net/
29. Soekris-net4826, http://www.soekris.com/net4826.htm
30. Jardosh, A., et al.: IQU: Practical Queue-Based User Association. In: ACM MOBICOM

(2006)
31. Akella, A., Judd, G., Seshan, S., Steenkiste, P.: Self-Management in Chaotic Wireless De-

ployments. In: ACM MOBICOM (2005)

http://rude.sourceforge.net/
http://www.soekris.com/net4826.htm

Deny-by-Default Distributed Security Policy
Enforcement in Mobile Ad Hoc Networks

Mansoor Alicherry1, Angelos D. Keromytis1, and Angelos Stavrou2

1 Department of Computer Science, Columbia University
2 Department of Computer Science, George Mason University

Abstract. Mobile Ad-hoc Networks (MANETs) are increasingly em-
ployed in tactical military and civil rapid-deployment networks, including
emergency rescue operations and ad hoc disaster-relief networks. How-
ever, this flexibility of MANETs comes at a price, when compared to
wired and base station-based wireless networks: MANETs are suscepti-
ble to both insider and outsider attacks. This is mainly because of the
lack of a well-defined defense perimeter preventing the effective use of
wired defenses including firewalls and intrusion detection systems.

We introduce a novel distributed security policy enforcement architec-
ture that is designed specifically for MANETs. Our approach harnesses
and extends the concept of network capabilities and is especially suited
for mobile and heterogeneous communication environments. Our model
imposes communication restrictions between MANET nodes by enforc-
ing hop-by-hop policies in a distributed manner. We use a deny-by-default
principle, allowing compromised nodes to access only authorized services.
This significantly limits their ability disrupt or even interfere with end-
to-end connectivity and nodes beyond their local communication radius.
In this short paper, we only present the overall architecture of the system.

Keywords: MANETs, Capabilities, Distributed Firewall.

1 Introduction

Recent advances in low-power computing and communications have led to the
proliferation of handheld and portable devices equipped with wireless connectiv-
ity. These mobile wireless devices appear to be ideal for situations where fixed
infrastructure is too costly or dangerous to deploy, or has been rendered inop-
erable. However, because of radio power consumption, physical obstacles, and
channel capacity, a mobile node may not be able to reach all other nodes within
a single broadcast. Therefore, to achieve end-to-end connectivity, nodes have
to form mobile ad hoc wireless networks (MANETs), which allow data to be
routed through intermediate nodes. MANETs are fundamentally different from
the Internet because all peers act as both sources and routers using the other
participants to relay packets to their final destination. Due to their flexibility,
MANETs are currently employed in both military and commercial applications.

Unfortunately, not all MANET nodes are equally capable, nor can all users
be equally trusted. Worse yet, mobile nodes in tactical environments run the

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 41–50, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

42 M. Alicherry, A.D. Keromytis, and A. Stavrou

danger of being captured or malfunction. Even a small number of misbehaving
nodes can successfully render the entire MANET inoperable: malicious peers can
abuse the network exhausting all network and power resources.

In traditional networks, malicious nodes and traffic are kept away from a set
of nodes belonging to an organization or a group using firewalls. This is feasible
because of the existence of a well defined network perimeter. All incoming and
outgoing traffic needs to transit through these firewall nodes, which enforce the
policies at the perimeter. Within the perimeter, smaller sub-groups can have
more stringent policies by deploying their own firewalls. Unfortunately, the con-
cept of a network perimeter does not exist in MANETs, and policies need to be
enforced in a distributed manner while taking into consideration node mobility.

To address this, we propose an architecture that enforces trust relationships
and traffic accountability between mobile nodes through a novel policy enforce-
ment scheme designed specifically for MANETs. We extend the network ca-
pability framework [8,2] and we tailor it to the resource-constrained MANET
environment. A capability is a token of authority that has associated rights. In
our model, capabilities propagate both access control rules and traffic-shaping
parameters that should govern a node’s traffic. To that end, we define a pro-
tocol for communicating capabilities, which are treated as soft state, across the
MANET.

Our architecture enables the enforcement of adaptive bandwidth constraints
inside the network, denying by default unauthorized traffic. Nodes can only
access the services and hosts they are authorized for by the capabilities given
to them. Compromised or malicious nodes cannot exceed their authority and
expose the whole network to an adversary. Upon detection, we can prevent a
compromised node from further attacking the network simply by revoking its
capabilities. Moreover, our architecture helps mitigate the impact of denial of
service (DoS) attacks because excess or unauthorized packets are dropped closer
to the attack source. Thus, we avoid unnecessary data processing and forwarding
at the target node and the network itself.

Even though we focus on MANETs, our system can also be used in wired net-
works. However, MANETs provide our architecture both advantages and chal-
lenges. Specifically, the ratio of CPU cycles to available bandwidths (Hz/kbit) is
normally higher in MANET nodes compared to their wired counterparts. This
enables us to do more intelligent processing (and use cryptography) on most
or all of the packets transiting through a MANET node. The number of traffic
flows handled by a MANET node is also small due to the small network size.
However, frequent route changes between a source and a destination node due
to node mobility represents a difficult challenge in an distributed enforcement
environment such as ours.

The rest of the paper is organized as follows. We begin by describing the threat
model in Section 2. We then present the system architecture and a high-level
overview of our scheme, including the security analysis, in Section 3. Related
work is discussed in Section 4.

Deny-by-Default Distributed Security Policy Enforcement 43

2 Threat Model

Our goal is to protect network resources and end-node services from denial of ser-
vice attacks, and to enforce access control rules in the absence of a fixed topology.
Thus, we want a node to be able to access only the services it is entitled to, and
to limit the amount of traffic that can be sent to any such service. To preserve
bandwidth and power, we need to filter any unauthorized traffic early on.

We assume MANET environments where an adversary may be an existing
node that has been compromised (insider) or a malicious external node that
might want to participate in the MANET. In addition, there may be multiple
cooperating adversaries; and compromised nodes may not be detected as such
immediately, or ever (depending on their actions).

The resources needed to access a service are allocated by the group con-
troller(s) (GCs) of the MANET. Group controllers are nodes responsible for
maintaining the group membership for a set of MANET nodes, and a priori
authorize communications within the group. This means that GCs do not par-
ticipate in the actual communications, nor do they need to be consulted by nodes
in real time; in fact, if they distribute the appropriate policies ahead of time,
they need not even be members of the MANET. In most cases, the GC may
be reachable through a high-energy-consumption, high-latency, low-bandwidth
long-range link (e.g., a satellite connection); interactions in such an environment
should be kept to a minimum, and only for exceptional circumstances (e.g., for
revoking access for compromised nodes).

Without compromising a GC, an external node can participate in a MANET
only by stealing the authorization credentials that are bound to the identity of a
legitimate node. Because we envision GCs as being primarily offline or, at best,
intermittently reachable (with respect to the MANET), we are not addressing
the issue of compromised controllers in this paper.

If a node is compromised, an adversary can only access the services and band-
width that node is authorized to access. If other MANET nodes are adhering
to our architecture, a compromised node does not have the ability to disrupt or
interfere with end-to-end service connectivity and other nodes beyond its local
radio communication radius. The nodes providing services will receive only the
traffic that the compromised node is authorized to transmit, unless the adversary
is in the local communication radius.

3 System Architecture

In our architecture, there is one or more pre-defined nodes that act as a group
controller (GC). These nodes are trusted by all the group nodes. For simplicity
and without loss of generality, we will assume that all the MANET nodes are
part of a single group. A group controller has authority to assign resources to
the nodes in MANET. These resources are expressed in terms of limits on the
number of packets or on bandwidth rates that a MANET participant is permitted
to transmit toward another node. The resource allocation by the GC to a node

44 M. Alicherry, A.D. Keromytis, and A. Stavrou

is represented using a credential called policy token that all the nodes can verify.
The policy tokens are typically provisioned ahead of time, and represent the
projections of centralized policy, even though an on-demand allocation from the
GC is possible. The GC may be offline after it distributes the policy tokens,
and may be reachable sporadically at best after that (as external connectivity
permits). The presence of the GC is not required, after the initial policy token
distribution, for the normal working of the protocol.

When a node (initiator) requests a service from another MANET node (re-
sponder) using the policy token assigned to the initiator, the responder can
provide a capability back to the initiator. This is called a network capability,
and it is generated based on the resource policy assigned to the responder and
its dynamic conditions (e.g., level of utilization).

All the nodes in the path from an initiator to a responder (i.e., nodes relaying
the packets) are required to enforce and abide by the resource allocation encoded
by the GC in the policy token and the responder in the network capability. The
enforcement involves both accessibility and bandwidth allocation. A responder
accepts packets (except for the first one) from an initiator only if the initiator
has authorization to send, in the form of a valid network capability. An inter-
mediate node will forward the packets from a node only if the packets have an
associated policy token and network capability, and if they do not violate the
conditions contained therein. Note that the possession of a network capability
does not imply resource reservation; they are the maximum limit a node can use.
Available resources are allocated by the intermediate nodes in a fair manner, in
proportion to the allocations defined in the policy token and network capability.
Intermediate nodes cache policy tokens and network capabilities in a capability
database, treating them soft state.

Figure 1 gives an overview of the protocol exchanges when an initiator wants
to communicate with a responder. The initiator has a policy token previously
issued by the GC that authorizes the communication with the responder (step
1). The initiator sends a communication request (and, optionally, initial data),
along with its policy token toward the responder (step 2). This packet also con-
tains a transaction id that the initiator will use in subsequent packets to the
same responder. The packet may also contain a network capability that the ini-
tiator generates; this can be used by the responder to communicate back to
the initiator. Here, we assume that the initiator has a routing table entry for
the responder. Otherwise the underlying routing protocol will be invoked to get
the route. An intermediate node will forward the packet only after validating
it (step 3). The validation involves cryptographic verification of the capability,
and verification of the constraints (e.g., bandwidth usage, service and destina-
tion address) specified in the policy token. If the validation is successful, the
intermediate node also records the policy token in its capability database, along
with other attributes of the packet, such as source and destination node address
and the transaction id.

The responder, on receiving the packet verifies the policy token and creates a
network capability for the initiator (step 4). The responder sends the response

Deny-by-Default Distributed Security Policy Enforcement 45

Fig. 1. System overview

to the request as well as the newly created network capability for the initiator
(step 5). The responder also creates a transaction id for the communication,
and includes it in the response. The responder also needs to include the network
capability it received from the initiator in the first message, which authorizes it
to communicate back; alternatively (or in addition), it may use a policy token
issued by the GC to responder that is authorizing the communication with the
initiator. Intermediate nodes, on receiving this packet from the responder, vali-
date the packet and adds the responder’s policy token and network capability to
its capability database (step 6). In the diagram, the reverse path is shown to be
different from the forward path; the paths can also be the same. The initiator
will then have to include the responder-issued network capability in subsequent
packets it transmits (step 7); intermediate nodes will add this credential to their
capability database (steps 8, 9).

Any further data traffic between the initiator and the responder does not
contain the policy token and network capability; instead, it contains only the
transaction id that was included in the initial handshake (steps 10-12). The
packets are signed by the sender, and can be verified by the intermediate nodes.
If the cost of the cryptographic operations is too high (in terms of latency or
power consumption), cryptographic validation may be done probabilistically.
The intermediate nodes can validate the packets by looking at the policy token
and network capability contained in the capability database corresponding to
the transaction id in the packet. This process ensures that the packet does not
exceed the resource limit allowed in the policy token and the network capability,
and is authorized to reach the destination by both the GC and the destination
itself. For this validation, the intermediate node also maintains the resource usage
against each capability in its capability database. The only time the initiator or

46 M. Alicherry, A.D. Keromytis, and A. Stavrou

responder need to re-send the capability is when the path between them changes
due to node mobility, or when the network capability expires and is reissued by
the peer.

We note that our solution can be used to protect multicast traffic and rout-
ing control packets. Furthermore, we can bound the probability of an adversary
injecting traffic that remains undetected, when probabilistic cryptographic vali-
dation is performed. We omit the details due to lack of space.

3.1 Feasibility

We argue that the proposed solution is feasible for MANETs, even though the
memory and processing power are lower in MANET nodes compared to routers in
wired networks. Our scheme requires memory to store the information about the
traffic sessions, and CPU cycles for the cryptographic operations. The feasibility
comes from the fact that the bandwidth in MANETs is significantly lower than
that of wired networks, while the nodes are relatively powerful (e.g., normal
laptops, or high-end cellphone devices). As a result, the available memory and
processing power per packet is higher in MANETs than in wired networks. The
processing power per packet for MANET nodes are increasing everyday with the
advent of faster but less power-hungry processors for portable devices.

Furthermore, the per-packet cryptographic operations, which involve a public
key signature verification, can be achieved with very small key sizes. This is
because, unlike traditional uses of public keys, these keys are useful only for the
short duration of the session. For longer sessions, new keys can be generated and
old ones discarded.

3.2 Capability Definition

Each node has authority to send traffic to its peers at certain rates. This au-
thority is encoded in the policy token and network capability. Both of these are
represented by KeyNote-style credentials [3]. Each credential contains

1. Identity of the node (principal)
2. (Optional) Identity of the destination node; if left unspecified, it applies to

all destinations
3. Type of service and amount of data the principal is allowed to send
4. An expiration time
5. Signature of the GC (for policy tokens) or peer (for network capabilities)

All nodes in the MANET know the public key of the GCs, so that they can
verify policy tokens issued by them. Identities are expressed in term of the long-
term public key of the node to which a credential is assigned. The destination
node can be a host, subnet, or public key. Type of service refers to the transport
protocol identifiers (e.g., TCP ports) a credential authorizes.

Typically, the bandwidth available to a node on a network capability is higher
than that of its policy token. Policy tokens are assigned by the GC, which has no
knowledge of network load at the time the communication takes place. Hence,

Deny-by-Default Distributed Security Policy Enforcement 47

the central authority will consider the worst case scenario while assigning the
policy token and permit only enough communication to take place for a hand-
shake to occur. It is up to the responder to provide a network capability with
enough bandwidth allocation to enable the communication to proceed. Note,
also, that it is in the interest of a node to issue short-lived network capabilities
to its communicating peers, so that it can quickly respond to changing network
dynamics or (more importantly) to peer misbehavior (e.g., a flood-based DoS).

Policy tokens and network capabilities have the same syntactic representation.
Following is an example:

serial: 130745
owner: unit01.nj.army.mil (public key)
destination: *.nj.army.mil
service: https
bandwidth: 50kbps
expiration: 2010-12-31 23:59:59
issuer: captain.nj.army.mil
signature: sig-rsa 23455656767543566678

The above represents a policy token assigned by node captain.nj.army.mil to
unit01. The unit can use this policy token to send the traffic to any node in
the domain nj.army.mil. The peak data rate using this credential cannot exceed
50kbps.

If unit01 wants to communicate with unit02, it will send a message to unit02
using this policy token. Unit02 will issue a network capability for unit01, if the
communication needs more bandwidth than available in the policy token.

serial: 1567
owner: unit01.nj.army.mil (public key)
destination: unit02.nj.army.mil
bandwidth: 150kbps
expiration: 2007:10:21 13:05:35
issuer: unit02.nj.army.mil
comment: Policy allowing the receiver

to issue this capability.
signature: sig-rsa 238769789789898

This capability is restricted to be used only by unit01 for communication with
unit02. It specifies a higher bandwidth, but a shorter expiration date. The issuer
of the capability is the same as the destination of the capability.

After receiving this capability, unit01 will use this capability for communi-
cation with unit02. The more general policy token can be used by unit01 for
communicating with other nodes.

If the communication from unit01 to unit02 was short and required low band-
width, unit01 could have used its policy token for the entire duration of the
communication, without requesting for a network capability from unit02. This
will be faster for short communication as there is no capability request/reply,

48 M. Alicherry, A.D. Keromytis, and A. Stavrou

and unit02 does not have to issue any capabilities. If unit01 expects some mes-
sages from unit 2 that require more capabilities than the one that is available to
unit02 in the form of its corresponding policy token, then unit01 could issue a
network capability to unit02.

3.3 Security Analysis

We now discuss how our architecture relates to the threat model described in
Section 2.

Since the capabilities are signed by a GC and are verifiable by all nodes,
adversaries cannot generate their own valid capabilities. Adversaries can create
valid capabilities only if the GC is compromised. Since the individual packets
are signed, an adversary cannot use a transaction id that does not belong to it
to transmit packets.

A compromised or malicious node that does not enforce the capability pro-
tocol can only have impact within its communication radius. Packets generated
without the capability or with a snooped transaction id by a malicious node will
be dropped by the neighboring nodes due to invalid signatures. A compromised
node can only access the services it is authorized to. Packets of nodes trying to
use more bandwidth than is allocated to them will be rejected. A malicious node
frequently doing this can be detected and isolated.

A receiver can protect against DoS attacks by controlling the issuance of
network capabilities to its peers. A malicious node can use its policy tokens or
network capabilities to send duplicate packets in multiple disjoint paths; we do
not currently protect against this attack, which allows a node to transmit more
traffic that it is authorized to. We note, however, that local nodes in the radio
perimeter of the misbehaving node can detect this scenario. Since the network
capability can be created only based on the policy allowed by the GC, it is not
possible for two compromised nodes to collaborate and create arbitrarily large
network capabilities.

4 Related Work

Security for mobile ad hoc network is an active area of research. Most of the prior
work on MANET security focused on solving specific problems or retrofitting se-
curity into an existing IP-based network architecture; we are trying to introduce
a new architecture where security is built into the network. Surveys of research
in MANETs can be found elsewhere [11,13,9].

The concept of capabilities was used in operating system for securing resources
[10]. There was work on allowing controlled exposure of resources at the network
layer using the concept of “visas” for packets [4], which is similar to network
capabilities. More recently, network capabilities were proposed to prevent DoS
in wired networks [2]. We extend the concept to MANET and use it for both
access control rules and traffic shaping parameters. In the original approach, the
capabilities were assigned only by the receivers, and there is no limit on the

Deny-by-Default Distributed Security Policy Enforcement 49

amount of capability that a receiver can assign. Though it achieves the goal of
preventing the DoS attack at the receiver, it does not prevent two nodes from
taking up all the available network resources. Their solution also assumes that
the links in the path between a sender and receiver cannot be snooped, and
the path is fixed. These assumptions are valid for the wire line system that
their solution is designed for, but does not work for MANETs. Previous work
on distributed firewalls [5] focused on wired fixed-network environments, and
attempts to protect only the end hosts using a host-based solution. Our solution
is for a mobile network, using a combination of network and host-based solutions
that attempt to protect both the network and end-host resources.

Signing and verification of packets between a sender and a receiver were
commercially available in early 1990s. Novell’s Netware 3.11 and 4.x supported
NCP Packet Signature Option, where a unique signature was appended to each
packet sent between the client and the server [7]. The keys for the signatures
were negotiated at login time. Intermediate nodes were not involved in packet
verification.

Mitigating the denial of service attacks by including a message authentication
code and the certificate of the sender for each packet has been previously pro-
posed [12]. That work does not study the high overhead associated with sending
a large signature or a large certificate on each packet. The authors use game
theory to study the problem of dealing with selfish nodes that do not verify the
packet signatures, using incentives and punishments. This mechanism or any
other reputation based mechanism [6] can also be used in our scheme to deal
with selfish nodes.

HEAP [1] mitigates various MANET attacks from outsider nodes by doing a
hop-by-hop packet authentication using HMAC. MACs (end-to-end or hop-by-
hop) cannot deal with insider attacks. They also cannot provide access control
unless different MAC keys are used for different policies. Even with different
keys, MACs allow rogue nodes to “hide” since MACs are repudiable as all the
intermediate nodes in the path between a sender and a receiver need to know
the key. Only asymmetric key mechanisms can allow validation by all the inter-
mediate nodes that the packets indeed sent by the source node of the packet.

5 Conclusions and Future Work

We presented a novel architecture for enforcing security policies in MANETs.
Our scheme, based on the concept of network capabilities and following a deny-
by-default paradigm, can protect both end-host resources and network band-
width from denial of service attacks, as well as limit the exposure of the MANET
to compromised and malicious nodes. We discussed the details of the architec-
ture and protocol used for propagating policy tokens and receivers, and discussed
the various scenarios of use. For our future work, we plan to study the impact
of our scheme on throughput and latency for different topologies and classes of
traffic. In addition, we intend to quantify the performance of multicast traffic on
mobility scenarios, and to implement and deploy on MANET testbeds with real
traffic.

50 M. Alicherry, A.D. Keromytis, and A. Stavrou

Acknowledgements

This work was supported in part by the National Science Foundation through
Grant CNS-07-14277. Any opinions, findings, conclusions, and recommendations
expressed in this paper are those of the authors and do not necessarily reflect
the views of the NSF or the US Goverment.

Mansoor Alicherry was supported by Alcatel-Lucent, Murray Hill, New Jersey.

References

1. Akbania, R., Korkmaz, T., Raju, G.: HEAP: A packet authentication scheme for
mobile ad hoc networks. In: Communications and Networking Simulation Sympo-
sium (2007)

2. Anderson, T., Roscoe, T., Wetherall, D.: Preventing internet denial-of-service with
capabilities. In: Proc. of Hotnets-II (2003)

3. Blaze, M., Ioannidis, J., Keromytis, A.: Trust management for ipsec. In: Symposium
on Network and Distributed Systems Security, SNDSS (2001)

4. Estrin, D., Mogul, J.C., Tsudik, G.: Visa protocls for controlling interorganizational
datagram flow. IEEE Journal on Selected Areas in Communications (May 1989)

5. Ioannidis, S., Keromytis, A.D., Bellovin, S.M., Smith, J.M.: Implementing a dis-
tributed firewall, pp. 190–199 (2000)

6. Jaramillo, J., Srikant, R.: Darwin: Distributed and adaptive reputation mechanism
for wireless ad-hoc networks. In: MOBICOM (2007)

7. Lee, R.: Netware 4.x performance tuning and optimization: Part 3 (October 1993),
http://support.novell.com/techcenter/articles/ana19931001.html

8. Parno, B., Wendlandt, D., Shi, E., Perrig, A., Maggs, B., Hu, Y.-C.: Portcullis:
protecting connection setup from denial-of-capability attacks. SIGCOMM Comput.
Commun. Rev. 37(4), 289–300 (2007)

9. Shi, E., Perrig, A.: Designing secure sensor networks. IEEE Wireless Communica-
tions (2004)

10. Wobber, E., Abadi, M., Burrows, M., Lampson, B.: Authentication in the taos
operating system. ACM Transactions on Computer Systems 12 (February 1994)

11. Wu, B., Chen, J., Wu, J., Cardei, M.: A survey on attacks and countermeasures in
manets. In: Wireless/Mobile Network Security, ch. 12. Springer, Heidelberg (2006)

12. Wu, X., Yau, D.K.Y.: Mitigating Denial-of-Service Attacks in MANET by Dis-
tributed Packet Filtering: A Game-theoretic Approach. In: ASIACCS (March 2007)

13. Yang, H., Luo, H., Ye, F., Lu, S., Zhang, L.: Security in mobile ad hoc networks:
Challenges and solutions. IEEE Wireless Communications (2004)

http://support.novell.com/techcenter/articles/ana19931001.html

Baiting Inside Attackers Using Decoy
Documents

Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis,
and Salvatore J. Stolfo

Department of Computer Science Columbia University

Abstract. The insider threat remains one of the most vexing problems
in computer security. A number of approaches have been proposed to
detect nefarious insider actions including user modeling and profiling
techniques, policy and access enforcement techniques, and misuse de-
tection. In this work we propose trap-based defense mechanisms and a
deployment platform for addressing the problem of insiders attempting
to exfiltrate and use sensitive information. The goal is to confuse and
confound an adversary requiring more effort to identify real information
from bogus information and provide a means of detecting when an at-
tempt to exploit sensitive information has occurred. “Decoy Documents”
are automatically generated and stored on a file system by the D3 System
with the aim of enticing a malicious user. We introduce and formalize a
number of properties of decoys as a guide to design trap-based defenses
to increase the likelihood of detecting an insider attack. The decoy doc-
uments contain several different types of bogus credentials that when
used, trigger an alert. We also embed “stealthy beacons” inside the doc-
uments that cause a signal to be emitted to a server indicating when and
where the particular decoy was opened. We evaluate decoy documents
on honeypots penetrated by attackers demonstrating the feasibility of
the method.

1 Introduction

Much research in computer security has focused on the means of preventing
unauthorized and illegitimate access to systems and information. Unfortunately,
the most damaging malicious activity is the result of internal misuse within an
organization, perhaps since far less attention has been focused inward. Despite
classic internal operating system security mechanisms and the body of work
on formal specification of security and access control policies, including Bell-
LaPadula [1] and the Clark-Wilson models [4], we still have an extensive insider
attack problem. Indeed in many cases, formal security policies are incomplete
and implicit or they are purposely ignored in order to get business goals ac-
complished. There seems to be little technology available to address the insider
threat problem.

Insider attack has overtaken viruses and worm attacks as the most reported
security incident according to a report from the US Computer Security Institute

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 51–70, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

52 B.M. Bowen et al.

(CSI) [19]. The annual Computer Crime and Security Survey for 2007 surveyed
494 security personnel members from US corporations and government agencies,
finding that insider incidents were cited by 59 percent of respondents, while only
52 percent said they had encountered a conventional virus in the previous year.
The state-of-the-art seems to be still driven by forensics analysis after an attack,
rather than technologies that prevent, detect, and deter insider attack.

We define insider threats by differentiating between Masqueraders (attack-
ers who impersonate another inside user) and Traitors (an inside attacker using
their own legitimate credentials). One possible solution for masquerade detection
involves anomaly detection [27]. In this approach, users actions are profiled to
form a baseline of normal behavior. Subsequent monitoring for abnormal behav-
iors that exhibit large deviations from this baseline [16] signal a potential insider
attack. The common strategy to prevent inside attacks involves policy-based ac-
cess control techniques to limit the scope of systems and information an insider is
authorized to use, and hence, limit the damage the organization may incur when
an insider goes awry. Prevention techniques may not always succeed, and thus,
monitoring and detection techniques are needed when prevention fails. In this
paper, we are focused on different techniques aimed at detecting masqueraders
and traitors.

We note that some external attackers can become insiders when an outsider
attains internal network access. Many attacks use spyware and rootkits [3], which
give outsiders internal access. Such software can easily be installed on systems
from physical or digital media (e.g., email, downloads) and allow an attacker
administrator or “root” access on a machine along with a means to gather sen-
sitive data. Rootkits have the ability to conceal themselves and elude detection,
especially when the rootkit is previously unknown, as is true in zero-day attacks
[8]. An external attacker that manages to install rootkits internally in effect
becomes an insider, thereby multiplying the ability to inflict harm. Although
the techniques described in this paper may have utility for these cases, in this
paper our primary focus is on human insiders attempting to exfiltrate sensitive
information. By exfiltration we mean unauthorized copying and transmission of
information by any means.

The insider attack defense system described in this paper is of an offensive
nature, intended to confuse and deceive a traitor by leveraging uncertainty, to
reduce the knowledge they ordinarily have of the systems and data they might
be authorized to use. This work considers methods to detect insider actions
against enterprise systems as well as individual hosts and laptops. We introduce
a deception system to distribute potentially large amounts of decoy information
with the aim to detect nefarious acts as well as to increase the workload of
an attacker to identify real information from bogus information, rather than
providing unfettered access as broadly exists today. We developed a system to
generate and place decoy documents within a file system. Our system generates
decoy documents containing decoy credentials that are monitored (e.g., Gmail
credential monitoring) for misuse and stealthily embedded beacons that signal
an alert when the document is opened.

Baiting Inside Attackers Using Decoy Documents 53

To achieve the goal of wide spread deception we must consider methods to
trap a wide variety of potential insiders with varying levels of sophistication.
Toward this goal, we developed a proof-of-concept system we call D3, the Decoy
Document Distributor system. Samples of D3 generated documents are presented
in the Appendix. The contributions of this paper include:

• A novel set of generally applicable properties are proposed to guide the
design and deployment of decoys and maximize the deception they induce
for different classes of insiders who vary by their level of knowledge and
sophistication.

• A large-scale automated creation and management system for deploying de-
coys that can detect the presence (and, in some cases, “identity”) of mali-
cious insiders, or at least indicate malicious insider activity. This provides
a means for ordinary users to deploy honey documents without having to
setup sophisticated honeypot systems and sensors.

• An offensive trap-based defense system is proposed to detect masqueraders
and traitors, and to flood attackers with bogus exfiltrated information that
they must analyze in order to find real information of value. Hence, our
long term goal is to flood the miscreant marketplace with bogus information
devaluing their quarry.

• A design of decoy information that combines a number of methods and
monitors, both internal and external, to detect insider exploitation using a
common and ubiquitous set of baited targets, ordinary looking documents.
1. A watermark is embedded in the binary format of the document file to

detect when the decoy is loaded in memory, or egressed in the open over
a network.

2. A “beacon” is embedded in the decoy document that signals a remote
web site upon opening of the document indicating the malfeasance of an
insider illicitly reading bait information.

3. If these methods fail to detect an insider attack or an exfiltration of
baited documents, the content of the documents contain bait and decoy
information that is monitored as well. Bogus logins at multiple organi-
zations as well as bogus and realistic bank information is monitored by
external means.

• An easy to use system to broadly deploy decoys to ordinary users who are
alerted by email when a decoy has been touched on their laptops and personal
computers; no such system presently exists.

The reader is encouraged to visit the Decoy Document Distribution (D3) web
site to evaluate our technology developed to date at: http://www.cs.columbia.
edu/ids/RUU/Dcubed1.

2 Related Work

The use of deception, or decoys, plays a valuable role in the protection of systems,
networks, and information. The first use of decoys (i.e., in the cyber domain)
1 Some features are restricted for internal use only.

http://www.cs.columbia.edu/ids/RUU/Dcubed
http://www.cs.columbia.edu/ids/RUU/Dcubed

54 B.M. Bowen et al.

has been credited to Cliff Stoll [29,23] and detailed in his novel “The Cuckoos
Egg” [24], where he provides a thorough account of his crusade to catch German
hackers breaking into Lawrence Berkeley Laboratory computer systems. Stoll’s
methods included the use of bogus networks, systems, and documents to gather
intelligence on the German attackers who were apparently seeking state secrets.
Among the many techniques waged, he crafted “bait” files, or in his case, bogus
classified documents that really contained non-sensitive government information
and attached “alarms” to them so that he would know if anyone accessed at them.
To Stoll’s credit, a German hacker was eventually caught and it was found that
he had been selling secrets to the KGB.

Honeypots are effective tools for profiling attacker behavior. Honeypots are
considered to have low false positive rates since they are designed to capture
only malicious attackers, except for perhaps an occasional mistake by innocent
users. Spitzner described how honeypots can be useful for detecting insider at-
tack [22] and discusses the use of honeytokens [23] such as bogus medical records,
credit card numbers, and credentials. In a similar spirit, Webb et al. [26] showed
how honeypots can be useful for detecting spammers. In current systems, the
decoy/honeytoken creation is a laborious and manual process requiring large
amounts of administrator intervention. Our work extends these basic ideas to
an automated system of managing the creation and deployment of these honey-
tokens.

Yuill et al. [29] extend the notion of honeytokens with a “honeyfile system”
to support the creation of bait files, or as they define them, “honeyfiles.” The
honeyfile system is implemented as an enhancement to the Network File Server.
The system allows for any file within user file space to become a honeyfile through
the creation of a record associating a filename to userid. The honeyfile system
monitors all file access on the server and alerts users when honeyfiles have been
accessed. Their work does not focus on the content or automatic creation of files,
but they do elicit some of the challenges of creating deceptive files (with respect
to names) that we address in section 4.

In this paper, we introduce a set of properties of decoys to guide their design
and maximize the deception they induce for different classes of insiders who vary
by their level of knowledge and sophistication. To the best of our knowledge, the
synthesis of these properties is indeed novel a contribution. Bell and Whaley
[2] have described the structure of deception as a process of hiding the real and
showing showing the false. They introduce several methods of hiding that include
masking, repackaging, and dazzling, along with three methods of showing that
include mimicking, inventing, and decoying. Yuill et al. [28] expand upon this
work and characterize deceptive hiding in terms of how it defeats an adversary’s
discovery process. They describe an adversary’s discovery process as taking three
forms: direct observation, investigation based on evidence, and learning from
other people or agents. Their work offers a process model for creating deceptive
hiding techniques based on how they defeat an adversary’s discovery process.

The decoy documents introduced in this paper utilize similar deception mech-
anisms as well as beacons to signal a remote detect and alert in real-time time

Baiting Inside Attackers Using Decoy Documents 55

when a decoy has been opened. Web bugs are a class of silent embedded tokens
which have been used to track usage habits of web or email users [17]. Unfor-
tunately, they have been most closely associated with unscrupulous operators,
such as spammers, virus writers, and spyware authors who have used them to
violate users privacy. Typically they will be embedded in the HTML portion of
an email message as a non-visible white on white image, but they have also been
demonstrated in other forms such as Microsoft Word, Excel, and PowerPoint
documents [20]. When rendered as HTML, a web bug triggers a server update
which allows the sender to note when and where the web bug was viewed. Ani-
mated images allow the senders to monitor how long the message was displayed.
The web bugs operate without alerting the user of the tracking mechanisms. The
advantage for legitimate advertisers is that this allows them to monitor adver-
tisement effectiveness, while privacy advocates worry that this technology can
be misused to spy on users’ habits. Our work leverages the same ideas, but ex-
tends them to other document classes and is more sophisticated in the methods
used to draw attention. In addition, our targets are insiders who should have no
expectation of privacy on a system they violate.

3 Threat Model - Level of Sophistication of the Attacker

The insider seeks to identify and avoid the decoys and abscond with “real”
information. We broadly define four monotonically increasing levels of insider
sophistication and capability. Some will have tools available to assist in deciding
what is a decoy and what is real. Others will only have their own observations
and thoughts.

– Low: Direct observation is the only tool available. The adversary largely
depends on what can be gleaned from a first glance. We strive to defeat
this level of adversary with our beacon documents, even though decoys with
embedded beacons may be distinguished with more advanced tools.

– Medium: A more thorough investigation can be performed by the insider;
decisions based on other, possibly outside evidence, can be made. For exam-
ple, if a decoy document contains a decoy account credential for a particular
identity, an adversary may verify that the particular identity is real or not
by querying an external system (such as www.whitepages.com). Such adver-
saries will require stronger decoy information possibly corroborated by other
sources of evidence.

– High: Access to the most sophisticated tools are available to the attacker
(e.g., super computers, other informed people who have organizational in-
formation). The notion of the “Perfect Decoy” described in the next section
may be the only indiscernible decoy by an adversary of such caliber.

– Highly Privileged: Probably the most dangerous of all is the privileged
and highly sophisticated user. Such attackers might even be aware that the
system is baited and will employ sophisticated tools to try to analyze, disable,
and avoid decoys entirely. As an example of how defeating this level of threat

56 B.M. Bowen et al.

might be possible, consider the analogy with someone who knows encryption
is used (and which encryption algorithm is used), but still cannot break the
system because they do not have knowledge of an easy-to-change operational
parameter (the key). Likewise, just because someone knows that decoys are
used in the system does not mean they should be able to identify them.
This is the principal– coming up with a scheme to satisfy it remains an open
problem.

4 Generating and Distributing Bait

In order to create decoys to bait various levels of insiders, one must understand
the core properties of a decoy that will successfully bait an insider.

4.1 Decoy Properties

We enumerate various properties and means of measuring these properties that
are associated with decoy documents to ensure their use will be likely to snare
an inside attacker. We introduce the following notation for these definitions.

Believable2: Capable of eliciting belief or trust; capable of being
believed; appearing true; seeming to be true or authentic.

A good decoy should make it difficult for an adversary to discern whether they
are looking at an authentic document from a legitimate source or if they are
indeed looking at a decoy. We conjecture that believability of any particular
decoy can be measured by adversary’s failure to discern one from the other. We
formalize this by defining a decoy believability experiment. The experiment is
defined for the document space M with the set of decoys D such that D ⊆ M
and M − D is the set of authentic documents.

The Decoy Believability Experiment: Expbelieve
A,D,M

• For any d ∈ D, choose two documents m0, m1 ∈ M such that m0 = d or
m1 = d, and m0
= m1; that is, one is a decoy we wish to measure the
believability of and the second is chosen at random from the set of authentic
documents.

• Adversary A obtains m0, m1 and attempts to choose m̂ ∈ {m0, m1} such
that m̂
= d, using only information intrinsic to m0, m1.

• The output of the experiment is 1 if m̂
= d and 0 otherwise.

For concreteness, we build upon the definition of “Perfect Secrecy” proposed in
the cryptography community [12] and define a “perfect decoy” when:

Pr[Expbelieve
A,D,M = 1] = 1/2

2 For clarity, each property is provided with its definition gleaned from online dictio-
nary sources.

Baiting Inside Attackers Using Decoy Documents 57

The decoy is chosen in a believability experiment with a probability of 1/2 (the
outcome that would be achieved if the volunteer decided completely at random).
That is, a perfect decoy is one that is completely indistinguishable from one that
is not. A benefit of this definition is that the challenge of showing a decoy to be
believable, or not, reduces to the problem of creating a “distinguisher” that can
decide with probability better than 1/2.

In practice, the construction of a “perfect decoy” might be unachievable,
especially through automatic means, but the notion remains important as it
provides a goal to strive for in our design and implementation of systems. For
many threat models, it might suffice to have less than perfect believable decoys.
For our proof-of-concept system described below, we generate receipts and tax
documents, and other common form-based documents with decoy credentials,
realistic names, addresses and logins, all information that is familiar to all users.

We note that the believable property of a decoy may be less important than
other properties defined below since the attacker may have to open the decoy
in order to decide whether the document is real or not. The act of opening
the document may be all that we need to trap the insider, irrespective of the
believability of its content. Hence, enticing an attacker to open a document, say
one with a very interesting name, may be a more effective strategy to detect an
inside attack than producing a decoy document with believable content.

Enticing: highly attractive and able to arouse hope or desire; “an
alluring prospect”; lure.

Herein lies the issue of how does one measure the extent to which a decoy arouses
desires, how well is it a lure? One obvious way is to create decoys containing
information with monetary value, such as passwords or credit card numbers
that have black market value [14,25]. However, enticement depends upon the
attacker’s intent or preference. We define enticing documents in terms of the
likelihood of an adversary’s preference; enticing decoys are those decoys that are
chosen with the same likelihood. More formally, for the document space M , let P
be the set of documents of an adversary’s A preference, where P ⊆ M . For some
value ε such that ε > 1/|M |, an enticing document is defined by the probability

Pr[m → M |m ∈ P] > ε

where m → M denotes m is chosen from M. An enticing decoy is then defined
for the set of decoys D, where D ⊆ M , such that

Pr[m → M |m ∈ P] = Pr[d → M |d ∈ D]

We posit that by defining several general categories of “things” that are of “at-
tacker interest”, one may compose decoys using terms or words that correspond
to desires of the attacker that are overwhelmingly enticing. For example, if the
attacker desires money, any document that mentions or describes information
that provides access to money should be highly enticing. We believe we can
measure frequently occurring (search) terms associated with major categories of

58 B.M. Bowen et al.

interest (e.g., words or terms drawn from finance, medical information, intellec-
tual property) and use these as the constituent words in decoy documents. To
measure the effectiveness of this generative strategy, it should be possible to ex-
ecute content searches and count the number of times decoys appear in the top
10 list of displayed documents. This is a reasonable approach also, to measuring
how conspicuous, defined below, the decoys become based upon the attacker’s
searches associated with their interest and intent.

Conspicuous: easily visible; easily or clearly visible; obvious to the
eye or mind; Attracting attention.

A conspicuous decoy should be easily found or observed. Conspicuous is defined
similar to enticing, but conspicuous documents are found because they are easily
observed, whereas enticing documents are chosen because they are of interest to
an attacker. For the document space M , let V be the set of documents defined
by the minimum number of user actions required to enable their view. We use
a subscript to denote the number of user actions required to view some set of
documents. For example, documents that are in view at logon or on the desktop
(requiring zero user actions) are labeled V0, those requiring one user action are
V1, etc. We define a “view”, Vi of a set of documents as a function of a number
of user actions applied to a prior view, Vi−1, hence

Vi = Action(Vi−1) where Vj
= Vi, j < i

An “Action” may be any command or function that displays files and documents,
such as ‘ls’, ‘dir’, ‘search.’ For some value ε such that ε > 0, a conspicuous
document, d, is defined by the probability

n∏
i=0

Pr[Vi] > ε

where n is the minimum value where d ∈ Vn. Note if d is on the desktop, V0,
Pr[V0] = 1 (i.e., the documents in full view are highly conspicuous).

When a user first logs in, a conspicuous decoy should either be in full view
on the desktop, or viewable after one (targeted) search action. One simple user
action is optimal for a highly conspicuous decoy. Thus, a measure of conspic-
uousness may be a count of the number of search actions needed, on average,
for a decoy to appear in full view. The decoy may be stored in the file system
anywhere if a simple content-based search locates it in one step. But, this search
act depends upon the query executed by the user. The query can either be a
location (e.g., search for a directory named “TAX” in which the decoy appears)
or a content query (e.g., using Google Desktop Search for documents containing
the word “TAX.”) In either case, if a decoy document appears after one such
search, it is conspicuous. Hence, we may define the set P as all such files that can
be found in some number of steps. But, this depends upon what search terms the
attacker uses to query! If the decoy never appears because the attacker used the

Baiting Inside Attackers Using Decoy Documents 59

wrong search terms, the decoy is not conspicuous. We posit that the property of
enticing is likely the most important property, and a formal measure to evaluate
enticement will generate better decoys. In summary, an enticing decoy should
be conspicuous to be an effective decoy trap.

Detectable; to discover or catch (a person) in the performance of
some act: to detect someone cheating.

Decoys must ensure an alert is generated if they are exploited. Formally, this
is defined for adversary A, document space M , and the set of decoys D such
that D ⊆ M . We use AlertA,d = 1 to denote an alert for d ∈ D. We say d is
detectable with probability ε when

Pr[d → M : AlertA,d = 1] ≥ ε

Ideally, ε should be 1.
We designed the decoy documents with several techniques to provide a good

chance of detecting the malfeasance of an inside attack in real-time.

• At time of application start-up, the decoy document emits a beacon alert to
a remote server.

• At the time of memory load, a host-sensor, such as an antivirus scanner, may
detect embedded tokens placed in a clandestine location of the document file
format.

• At the time of exfiltration, a NIDS such as Snort, or a stream event detection
system such as Cayuga [5] may be used to detect these embedded tokens
during the egress of the decoy document in network traffic where possible.

• At time of information exploitation and/or credential misuse, monitoring
of decoy logins and other credentials embedded in the document content
by external systems will generate an alert that is correlated with the decoy
document in which the credential was placed.

This extensive set of monitors maximizes ε, forcing the attacker to expend con-
siderable effort to avoid detection, and hopefully will serve as a deterrent to
reduce internal malfeasance within organizations that deploy such a trap-based
defense. In the proof-of-concept implementation reported in this paper, we focus
our evaluation on the last item. We utilize monitors at our local IT systems, at
Gmail and at an external bank.

Variability: The range of possible outcomes of a given situation; the
quality of being subject to variation.

Attackers are humans with insider knowledge, even possibly with the knowledge
that decoys are liberally spread throughout an enterprise. Their task is to identify
the real documents from the potentially large cache of decoys. One important
property of the set of decoys is that they are not easily identifiable due to some
common invariant information they all share. A single search or test function

60 B.M. Bowen et al.

would thus easily distinguish the real from the fake. The decoys thus must be
highly varied. We define variable in terms of the likelihood of being able to decide
the believability of a decoy given any known decoy. Formally, we define perfectly
variable for document space M with the set of decoys D such that D ⊆ M where

Pr[d′ → D : Expbelieve
A,D,M,d′ = 1] = 1/2

Observe that under this definition an adversary may have access to all N pre-
viously generated decoys with the knowledge they are bogus, but still lack the
ability to discern the N+1st. From a statistical perspective, each decoy is inde-
pendent and identically distributed. For the case that an adversary can determine
the N+1st decoy only after observing the N prior decoys, we define this as an
N-strong Variant.

Clearly, a good decoy generator should produce an unbounded collection of
enticing, conspicuous, but distinct and variable documents. They are distinct
with respect to string content. If the same sentence appears in 100 decoys, one
would not consider such decoys with repetitive information as highly variable;
the common invariant sentence(s) can be used as a “signature” to find the decoys,
rendering them distinguishable (and clearly, less enticing).

Non-interference: Something that does not hinder, obstructs, or
impede.

Introducing decoys to an operational system has the potential to interfere with
normal operations in multiple ways. Of primary concern is that decoys may pol-
lute authentic data so that their legitimate usage becomes hindered by corruption
or as a result of confusion by legitimate users (i.e., they cannot differentiate real
from fake). We define non-interference in terms of the likelihood of legitimate
users successfully accessing normal documents after decoys are introduced. We
use AccessU,m = 1 to denote the success of a legitimate user U accessing a normal
document m. More formally, for some value ε, the document space M , ∀m ∈ M
we define

Pr[AccessU,m = 1] ≥ ε

on a system without decoys. Non-interference is then defined for the set of decoys
D such that D ⊆ M and ∀m ∈ M we have

Pr[AccessU,m = 1] = Pr[AccessU,m = 1|D]

Although we seek to create decoys to ensnare an inside attacker, a legitimate user
whose data is the subject of an attacker must still be able to identify their own
real documents from the planted decoys. The more enticing or believable a decoy
document may be, the more likely it would be to lead the user to confuse it with a
legitimate document they were looking for. Our goal is to increase believability,
conspicuous, and enticingness while keeping interference low; ideally a decoy
should be completely non-interfering. The challenge is to devise a simple and
easy to use scheme for the user to easily differentiate their own documents, and
thus a measure of interference is then possible as a by-product.

Baiting Inside Attackers Using Decoy Documents 61

Differentiable: to mark or show a difference in; constitute a
difference that distinguishes; to develop differential characteristics
in; to cause differentiation of in the course of development.

It is important that decoys be “obvious” to the legitimate user to avoid inter-
ference, but “unobvious” to the insider stealing information. We define this in
terms of an inverted believability experiment, in which the adversary is replaced
by a legitimate user. We say a decoy is differentiable if the legitimate user al-
ways succeeds. Formally, we state this for the document space M with the set
of decoys D such that D ⊆ M where

Pr[Expbelieve
U,D,M = 1] = 1

How might we easily differentiate a decoy for the legitimate user so that we
maintain “non-interference” with the user’s own actions and legitimate work?
The remote thief who exfiltrates all of a user’s files onto a remote hard drive may
be perplexed by having hundreds of decoys amidst a few real documents; the thief
should not be able to easily differentiate between the two cases. If we store a
hundred decoys for each real document, the thief’s task is daunting; they would
need to test embedded information in the documents to decide what is real and
what is not, which should complicate their end goals. For clarity, decoys should
be easily differentiable to the legitimate user, but not to the attacker without
significant effort. Thus, the use of “beacons” or other embedded content in the
binary file format of a document, must be judiciously designed and deployed to
avoid making decoys trivially differentiable for the attacker.

4.2 The Decoy Document Distributor (D3) System

The D3 web-based service generates and distributes decoy documents to regis-
tered users. The decoy properties guide the design of decoy templates in D3 that
are used to generate specific documents for download. The content of each decoy
document includes several types of “bait” information such as online banking lo-
gins provided by a collaborating financial institution3, login accounts for online
servers, and web based email accounts. In our deployment we used Columbia
University student accounts and Gmail email accounts as bait, but these can
be customized to any set of monitored credentials. These decoy credentials are
“bait” and are enticing targets for different types of adversaries [14,13].

4.3 Decoy Document Design

The primary goal of the trap based defense is to detect malfeasance. Since no
system is foolproof, we propose that multiple overlapping signals be embedded in
the decoy documents to ensure detectability. Any alert generated by the multiple
decoys is an indicator that some insider activity has occurred. Since the attacker
may have varying levels of sophistication, a combination of traps are used in
3 By agreement, the institution request that its name be withheld.

62 B.M. Bowen et al.

decoy documents to increase the likelihood one will succeed in generating an
alert. A sophisticated attacker may, for example, disable the internal beacon,
or cut off network connections avoiding communication, disable or kill local
host monitoring processes, or they may exfiltrate documents via a web-browser
without opening them locally. The documents are designed with several means
of detecting their misuse:

• embedded honeytokens, computer login accounts created that provide no
access to valuable resources, and that are monitored when (mis)used;

• embedded honeytoken banking login accounts specifically created and mon-
itored for this trap-based technology demonstration specifically to entice
financially motivated attackers;

• a network-level egress monitor that alerts whenever a marker, specially
planted in the decoy document, is detected (we are collaborating with Cor-
nell to use Cayuga [5] for this purpose. Presently Snort may be used as simple
signature detector as a proof-of-concept);

• a host-based monitor that alerts whenever a decoy document is “touched”
in the file system such as a copy operation;

• an embedded “beacon” alerts a remote server at a site at Columbia that we
call SONAR. The web site emits an email to the registered user who created
and downloaded the decoy document.

The implementation of features are described below.

Honeytokens. This layer of defense is made up of “bait” information such as
online banking logins provided by a collaborating financial institution, credit
card numbers, login accounts for online servers, and web based email accounts.
The primary requirement for bait is that it be detectable when (mis)used. For
example, one form of bait that we use are usernames and passwords for Gmail
accounts. D3 is integrated with a variety of services to enable monitoring of these
credentials once they are deployed as decoys. In the case of the Gmail accounts,
custom scripts access mail.google.com to parse the bait account pages, gather-
ing account activity information. The information includes the IP addresses for
the previous 5 account accesses and the time. If there is any activity from IP
addresses other than D3’s monitor, an alert is triggered with the time and IP of
the offending host. Alerts are also triggered when the monitor cannot login to
the bait account. In this case, we conclude that the account password was stolen
(unless monitoring resumes) and the password changed unless other corroborat-
ing information (like a network outage) can be used to convince otherwise. In
addition, some of our accounts have password monitors, allowing us to produce
a seemingly unbounded collection of decoy variants for individual usernames.

In the case of financially motivated bait, we are beginning to use real credit card
numbers in addition to banking login credentials. Many credit card providers offer
“one-time-credit-card numbers” and other forms of Controlled Payment Numbers
[18], which enable the generation of multiple credit card numbers for a single ac-
count. In the case of PayPal, single use credit cardnumbers can be generatedwith a

Baiting Inside Attackers Using Decoy Documents 63

predetermined balance. The D3 monitor is being integrated with the PayPal APIs
to automatically monitor the activity of the credit card numbers deployed through
D3. As is the case for all of the decoys, the benefit of deployment through D3 is the
automation, enabling their creation, monitoring, and distribution en masse.

Beacon Implementation. The highly sophisticated attacker will likely at-
tempt to differentiate between a real document and a decoy by analyzing the
binary file format prior to opening a file. This necessitates a design where beacon
code and watermarks in decoy documents are hidden to avoid their easy identi-
fication. The attacker would surely avoid the decoys if they could easily identify
them by a simple static test for an embedded beacon. The beacon code can be
embedded in documents in a number of ways and made to appear statistically
equivalent to its surrounding data using a blending technique called “spectrum
shaping” (see [21,6]). Such obfuscation techniques are very hard to defeat [15].

Using common techniques developed for malware, beacons attempt to silently
contact a centralized server with a unique token embedded within the document
at creation time. The token is used to identify the decoy and document, the IP
address of the host accessing the decoy document. Depending on the particular
document type and the rendering environment used during viewing of the beacon
document, some additional data may be collected.

The first proof-of-concept beacons have been implemented in MS Word and
PDF and deployed through the D3 web site. In the case of the MS Word doc-
ument beacons, the examples rely on a stealthily embedded remote image that
is rendered when the document is opened. The request for the remote image is
a positive indication the document has been opened. In the case of PDF doc-
ument beacons, the signaling mechanism relies on the execution of Javascript
within the document. The D3 site includes a tutorial guiding the user on how
to generate, download, and enable the decoys’ silent communication on hosts.
It is important to point out that there are methods for disabling the beacon
mechanism. In Section 5.2, we provide an evaluation of beacon robustness.

Embedded Marker Implementation. Beacon documents contain embedded
markers that a host or network sensor may detect either when documents are
loaded in memory or transmitted in the clear. The markers are constructed as
a unique pattern of word tokens uniquely tied to the document creator. The
sequence of word tokens is embedded within the beacon document’s meta-data
area or reformated as comments within the document format structure. Both
locations are ideal for embedding markers since most rendering programs ig-
nore these parts of the document. The embedded markers can be used in Snort
signatures for detecting exfiltration.

5 Evaluation

5.1 Masquerade Detection Using Decoy Documents as Bait

We have defined the general properties that decoys should have and discussed
how we may measure these properties, but here we focus on the most important

64 B.M. Bowen et al.

property: detectability. Under ideal testing conditions, decoy efficacy could be
shown through deployment on true operational systems either within an enter-
prise environment, or on personal computers, by the number of attacks they are
able to detect or thwart (they have a deterrence effect). However, given rea-
sonable time limits, the infrequency of attacks within the insider threat model
makes this approach impractical within a university environment. As we men-
tioned we are now seeking a larger user population to study and measure decoy
generation over time.

Another approach to evaluation is a user study in which users are organized
and asked to evaluate decoys based on each of the key decoy properties men-
tioned earlier. We take human evaluation to be the gold standard of evaluation
since the human mind is the ultimate target of our decoys. That is, we wish to
show how well our decoys can induce deception on human test subjects. One of
the challenges of conducting a traditional user study lies in the logistics of ob-
taining volunteers. In our methodology, we attempt to reduce this challenge by
leveraging external attackers to serve as participants in our study on masquer-
ade detection. To do so, we “invite” attackers (or more accurately, bamboozle
them) into our study by attracting them with a set of vulnerable systems on the
university network, which also serve as our testing platform.

Our test platform is embedded within a honeynet [9]. It consists of several vir-
tual machines running Linux and configured with Sebek [10] to capture attacker
activities including commands and file references. In order to limit potential
damage from system compromise and still allow for testing, we configured the
honeynet to allow all incoming connections while restricting the number of out-
going connections.

The virtual machine hosts within the honeynet were configured with accounts
and home directories for three decoy usernames. To make the environment as real
as possible, genuine data from personal accounts on other systems were loaded
into each of the home directories. We changed name references within the data
to reflect those of the appropriate decoy users. In total, our phony user accounts
contained 15 or more directories and 50-100 files. The hosts were then seeded
with several of D3’s decoy files using the decoy distributor utility. The decoy files
were generated to have conspicuous names such as “stolen passwords”, “credit
card”, “private data”, and “Gmail AccountInfo”, but were distributed within
the polluted home directories of the decoy accounts, making the environment as
real as possible.

To lure test subjects into the study, our initial approach was to use attackers
that attempt to gain internal access via password scanning. Password scanning
attacks are common on the university network, where attempts on a typical
machine are in the range of thousands per day. To enable attacker access, we
conducted a short study to first determine the most common usernames and
passwords (excluding those for root and actual users) used in these attempts.
We created accounts with several of these usernames and passwords, to quickly
learn that this breed of attacker was not going to suffice for our user study; their
sole purpose seemed confined to creating zombies for botnets. While this may

Baiting Inside Attackers Using Decoy Documents 65

be a valid threat to study while evaluating decoys [7], allowing bots to operate
on the university network poses too much risk.

In our second and more aggressive approach, we narrowed our recruitment
effort to web forums and IRC channels with the expectation and hope that we
would get fewer attacks involving botnets. In this approach, we selected several
high volume forums to solicit volunteers and posted variations of invitations with
messages that included hostnames, usernames, and passwords. The idea was to
provide just enough innocent-looking information from a novice to lure people
into our machines without providing direct evidence that we were conducting a
deception-based experiment. Note that we deliberately omit the names of the
forums used and the exact details of the messages, as this is an ongoing study.

While our methodology could, in theory, provide anyone with access to our test
platform, by selectively choosing the location of postings and contents postings,
we expected to recruit two primary classes of individuals:

• Legitimate and generally curious computer-savvy individuals. These users
have no interest in extending privileges in an unauthorized way, but partic-
ipate in the study out of curiosity, as there is no other incentive.

• Unscrupulous opportunistic hackers who attempt to extend their network
access by whatever means afforded to them. These individuals are enticed
by our posting as they see our machines as low “hanging fruit” in their
targeting campaign.

In either case, we believe these individuals to be suitable candidates for our
study (with one caveat mentioned later). Both classes of individuals can be used
in measuring the enticement property of decoys. We measure this by examining
the behavior exhibited in file access, both with respect to the particular files a
user attempts to read and in the order in which the files are read. For example,
if all users consistently read the same file first, we know the file must indeed be
enticing.

In regards to indistinguishability of the decoys, we note that the content of
these decoys contains bait information in the form of monitored credentials on
real systems. Certainly, if our attackers take the time to use the decoy credentials,
there is an implication that they must also be believable. More importantly
though, if they use the credentials and we detect their use, we have also answered
the most important question of – can we detect the attacker? Note that the first
class of the individuals is by definition, not useful for this part of the study.
That is, attempting to use credentials found on our machines is clearly an illicit
activity, which they would not partake in. Unfortunately, we do not have a good
way of distinguishing the two classes, so we get slightly skewed results.

Over the span of the first week4, our hosts netted 20 unique users, deter-
mined anecdotally by source IP address and reinforced by the unique behaviors
exhibited by each. The length of user sessions ranged from minutes to hours.
The users that spent hours were focused on activities that included writing code
and attempting to install other software, presumably with malicious intent. The
4 Most attacks occurred within the first 8-hour period after posting.

66 B.M. Bowen et al.

Fig. 1. Decoy email message with embedded Gmail account information

most common activities exhibited for users upon login included activities such as:
determining who else was on the machine, checking and deleting the command
history, and exploring the system (i.e., reading the most conspicuous files). We
note that in almost all cases, our decoys were among the first few files viewed
by users upon initial login (as noted, viewing the history file was also popular).
The most significant observations were made for 6 of the 20 unique users:

1. There were three attempts to use Gmail credentials that were contained in
a decoy document, which triggered an alert on SONAR.

2. One attacker changed the password on a bogus Gmail account, which also
triggered a SONAR alert.

3. There were at least two attempts to exfiltrate decoy files (with scp and sftp;
one file, named “stolenpasswords”, contained credentials to the university
systems.

4. There was one attempt to use the university credentials contained in the
“stolenpassword” file, which we were alerted to by the monitor that signaled
an alert to SONAR.

We take these results as evidence that D3/SONAR indeed has value as a de-
fense against masqueraders. While only 5 of the 20 users sounded an alarm on
SONAR, we emphasize that our methodology did include an unknown proportion
of benign users. Furthermore, the focus of study was on masquerade detection;
admittedly, we do not yet have a good way of evaluating our system on traitors,
but this will be the focus of future work.

One flaw in our evaluation methodology that was revealed during testing was
that we allowed users to make changes to the file system. We did this deliberately

Baiting Inside Attackers Using Decoy Documents 67

Fig. 2. Decoy tax document with bogus user information

to increase the realism of the environment in the experiments. The problem this
created was that it made decoy defense vulnerable to deletion (e.g., several of
our visitors executed wholesale deletion of files with “rm -rf *”) . This poses a
problem in our testing methodology, but not necessarily in practice. That is, the
act of deleting files is in itself a detectable behavior that would alert monitors
of suspicious behavior.

In this study, we omitted testing decoy documents with embedded beacons.
The honeypots set up to attract remote attackers were stripped down Linux
machines that had no installed applications necessary to open and render the
decoy documents. We believe the value of beacon documents to be self-evident.
We encourage the reader to visit and test the D3 site, and participate in our
planned longitudinal study. In the next section we describe tests of the beacon
implementation on multiple hosts.

5.2 Beacon Implementation Tests

To test the robustness of the beacon implementations we tested them with the
most common configurations of operating systems and document viewers. To this
end, we contacted a random group of users across the Internet and sent them
each two types of beacon documents along with a request that they open them
as part of a benign experiment. The results of tests conducted on PDF and Word
beacons are presented in Table 1 and 2 below. These results are a representative
sample of real users across multiple hosts accessing the beacon documents. For
the most part the beacon technology works well on the windows platform while
not as well on Mac and Linux operating systems. The reason is that the default
PDF reader is not Adobe’s and does not execute Javascript embedded within the
documents. Similarly, Word document beacons do not work when applications
other than Microsoft Word (e.g., OpenOffice or Google Docs) are used to open

68 B.M. Bowen et al.

Table 1. PDF Beacon Test Results

OS Application #Tests #Pings
Windows XP Adobe 6 6

Windows Vista Adobe 4 4
Mac OS Preview 1 0

Mac OS Adobe 1 1

Ubuntu Evince 1 0

Table 2. Word Beacon Test Results

OS Application #Tests #Pings
Windows XP Word 5 4
Windows XP GoogleDocs 1 0

Windows Vista Adobe 4 4
Mac OS Word 2 2

Linux OpenOffice 1 0

them. We are currently researching ways to address these limitations and will
focus on them in future work.

6 Conclusions

Our work focuses on the study and creation of bait information with the aim
of exposing or thwarting the exploitation of exfiltrated information by malicious
insiders. As future work, we intend to explore how this approach might also be
applicable in detecting accidental violations of policy, as a means of warning
users and organizations about such violations. The benefit of using the pro-
posed decoy document system for this purpose is that it can potentially operate
without the privacy repercussions if a mistake is made; such a benefit differen-
tiates the approach from traditional monitoring approaches. Another direction
to explore is how to improve the believability of decoys documents. We are
planning a series of user studies to help us determine how users treat differ-
ent attributes of a document in a specific context, such as whether an attacker
would find more believable a document purporting to contain tax information
that is encrypted/protected with a weak (predictable) passphrase, compared to
an unprotected version of the same document.

In conclusion, although the use of bait information and similar trap-based
defenses is well known, most of those efforts have focused either on artifacts
that are logically separate from the operational systems (e.g., honeypots [22])
or on low-level snippets of information created manually (e.g., fake database
records [23]). The D3 system is a scalable and automated trap-based defensive
system that forces attackers to expend considerable effort to identify realistic

Baiting Inside Attackers Using Decoy Documents 69

useful information from purposely planted bogus information intended to de-
ceive. Naturally, the probability of exposing a malicious insider with trap-based
defense tactics increases with the amount of decoy information that is gener-
ated and disseminated. D3 offers the novel service of automatically creating and
managing decoy documents, enabling the throttling of bait based on the desired
protection level or cost (e.g., interference) one is willing to pay.

Acknowledgments

This material is based upon work supported in part by the US Department of
Homeland Security under Grant Award Number 60NANB1D0127 with the Insti-
tute for Information Infrastructure Protection (I3P), the Army Research Office
(ARO) Under Grant Award W911NF-06-1-0151 - 49626-CI, and the National
Science Foundation (NSF) under Grant CNS-07-14647. The I3P is managed by
Dartmouth College. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the U.S. Department of Homeland
Security, the I3P, ARO, NSF, or Dartmouth College.

We give special thanks to the Sandia National Laboratories Doctorate Study
Program for supporting Brian Bowen and to Henner Mohr for his diligent effort
and contributions to the development of the D3 website and decoy document
content.

References

1. Bell, D.E., LaPadula, L.J.: Secure Computer Systems: Mathematical Foundations,
MITRE Corporation (1973)

2. Bell, J., Whaley, B.: Cheating and Deception. Transaction Publishers, New
Brunswick (1982)

3. Butler, J., Sherri, S.: Security: Spyware and Rootkits. In: Login, December 2004,
vol. 29(6) (2004)

4. Clark, D.D., Wilson, D.R.: A Comparison of Commercial and Military Computer
Security Policies. In: IEEE Symposium on Security and Privacy, pp. 184–194 (1987)

5. Demers, A., Gehrke, J., Hong, M., Panda, B., Riedewald, M., Sharma, V., White,
W.: Cayuga: A General Purpose Event Monitoring System. In: CIDR, pp. 412–422
(2007)

6. Detristan, T., Ulenspiegel, T., Malcom, Y., Von Underduk, M.S.: Polymorphic
Shellcode Engine Using Spectrum Analysis. Phrack 11, 61–69 (2003)

7. Friess, N., Aycock, J.: Black Market Botnets. Department of Computer Science,
University of Calgary, TR 2007-873-25 (July 2007)

8. Hoang, M.: Handling Today’s Tough Security Threats. Symantec Security Response
(2006)

9. The Honeynet Project, http://www.honeynet.org
10. The Honeynet Project, Know Your Enemy: Sebek, A Kernel based data capture

tool (November 2003)
11. Honeypot Mailing List, Security Focus,

http://www.securityfocus.com/archive/119

http://www.honeynet.org
http://www.securityfocus.com/archive/119

70 B.M. Bowen et al.

12. Katz, J., Yehuda, L.: Introduction to Modern Cryptography. Chapman and Hall
CRC Press, Boca Raton (2007)

13. Kravets, D.: From Riches to Prison: Hackers Rig Stock Prices. Wired Blog Network
(September 2008)

14. Krebs, B.: Web Fraud 2.0: Validating Your Stolen Goods. The Washington Post
(August 20, 2008)

15. Li, W., Stolfo, S.J., Stavrou, A., Androulaki, E., Keromytis, A.: A Study of Malcode-
Bearing Documents. In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS,
vol. 4579, pp. 231–250. Springer, Heidelberg (2007)

16. Maloof, M., Stephens, G.D.: ELICIT: A System for Detecting Insiders Who Violate
Need-to-know. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 146–166. Springer, Heidelberg (2007)

17. McRae, C.M., Vaughn, R.B.: Phighting the Phisher: Using Web Bugs and Honey-
tokens to Investigate the Source of Phishing Attacks. In: Proceedings of the 40th
Hawaii International Conference on System Sciences (2007)

18. Orbiscom, http://www.orbiscom.com/
19. Richardson, R.: CSI/FBI Computer Crime and Security Survey (2007)
20. Smith, R.M.: Microsoft Word Documents that Phone Home. Privacy Foundation

(August 2000)
21. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo, S.J.: On the in-

feasibility of modeling polymorphic shellcode. In: Proceedings of the 14th ACM
conference on Computer and communications security (CCS 2007), pp. 541–551
(2007)

22. Spitzner, L.: Honeypots: Catching the Insider Threat. In: Proceedings of ACSAC,
Las Vegas (December 2003)

23. Spitzner, L.: Honeytokens: The Other Honeypot. Security Focus (2003)
24. Stoll, C.: The Cuckoo’s Egg. Doubleday (1989)
25. Symantec. Global Internet Security Threat Report, Trends for July –December

2007 (April 2008)
26. Webb, S., Caverlee, J., Pu, C.: Social Honeypots: Making Friends with a Spam-

mer Near You. In: Proceedings of the Fifth Conference on Email and Anti-Spam
(CEAS 2008), Mountain View, CA (August 2008)

27. Ye, N.: Markov Chain Model of Temporal Behavior for Anomaly Detection. In:
Proceedings of the 2000 IEEE Workshop on Information Assurance and Security,
United States Military Academy, West Point, NY, June 2000, pp. 171–174 (2000)

28. Yuill, J., Denning, D., Feer, F.: Using Deception to Hide Things from Hackers:
Processes, Principles, and Techniques. Journal of Information Warfare 5(3), 26–40
(2006)

29. Yuill, J., Zappe, M., Denning, D., Feer, F.: Honeyfiles: Deceptive Files for Intrusion
Detection. In: Proceedings of the 2004 IEEE Workshop on Information Assurance,
United States Military Academy, West Point, NY, June 2004, pp. 116–122 (2004)

http://www.orbiscom.com/

MULAN: Multi-Level Adaptive Network Filter

Shimrit Tzur-David, Danny Dolev, and Tal Anker

The Hebrew University, Jerusalem, Israel
{shimritd,dolev,anker}@cs.huji.ac.il

Abstract. A security engine should detect network traffic attacks at line-speed.
When an attack is detected, a good security engine should screen away the offend-
ing packets and continue to forward all other traffic. Anomaly detection engines
must protect the network from new and unknown threats before the vulnerability
is discovered and an attack is launched. Thus, the engine should integrate in-
telligent “learning” capabilities. The principal way for achieving this goal is to
model anticipated network traffic behavior, and to use this model for identifying
anomalies.

The scope of this research focuses primarily on denial of service (DoS) attacks
and distributed DoS (DDoS). Our goal is detection and prevention of attacks. The
main challenges include minimizing the false-positive rate and the memory con-
sumption. In this paper, we present the MULAN-filter. The MULAN (MUlti-Level
Adaptive Network) filter is an accurate engine that uses multi-level adaptive struc-
ture for specifically detecting suspicious traffic using a relatively small memory
size.

1 Introduction

A bandwidth attack is an attempt to disrupt an online service by flooding it with large
volumes of bogus packets in order to overwhelm the servers. The aim is to consume
network bandwidth in the targeted network to such an extent that it starts dropping
packets. As the packets that get dropped include also legitimate traffic, the result is
denial of service (DoS) to valid users.

Normally, a large number of machines is required to generate volume of traffic large
enough for flooding a network. This is called a distributed denial of service (DDoS), as
the coordinated attack is carried out by multiple machines. Furthermore, to diffuse the
source of the attack, such machines are typically located in different networks, so that
a single network address cannot be identified as the source of the attack and be blocked
away.

Detection of such attacks is usually done by monitoring IP addresses, ports, TCP
state information and other attributes to identify the anomalous network sessions. The
weakness of directly applying such a methodology is the large volume of memory re-
quired for a successful monitoring. Protocols that accumulate state information that
grows linearly with the number of flows are not scalable.

In designing a fully accurate and scalable engine, one need to address the following
challenges.

1. Prevention of Threats: The engine should prevent threats from entering the network.
Threat prevention (and not just detection) adds difficulties to the engine, most of

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 71–90, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

72 S. Tzur-David, D. Dolev, and T. Anker

which stem from the need to work at line-speed. This potentially makes the engine
a bottleneck – increasing latency and reducing throughput.

2. Accuracy: The engine must be accurate. Accuracy is measured by false-negative
and false-positive rates. A false-negative occurs when the engine does not detect a
threat and a false-positive when the engine drops normal traffic.

3. Modeling the anticipated traffic behavior: A typical engine uses thresholds to de-
termine whether a packet/flow is part of an attack or not. These thresholds are a
function of the anticipated traffic behavior, which should reflect, as best as possi-
ble, actual “clean” traffic. Creating such a profile requires a continuous tracking of
network flows.

4. Scalability: One of the major problems in supplying an accurate engine is the mem-
ory explosion. There is a clear trade-off between accuracy and memory consump-
tion. It is a challenge to design a scalable engine using a relatively small memory
that does not compromise the engine accuracy.

This paper presents the MULAN-filter. The MULAN-filter detects and prevents DoS/DDoS
attacks from entering the network. The MULAN-filter maintains a hierarchical data struc-
ture to measure traffic statistics. It uses a dynamic tree to maintain the information used
in identifying offending traffic. Each level of the tree represents a different aggregation
level. The main goal of the tree is to save statistics only for potentially threatening traffic.
Leaf nodes are used to maintain the most detailed statistics. Each inner-node of the tree
represents an aggregation of the statistics of all its descendants.

Periodically, the algorithm clusters the nodes at the first level of the tree, it identifies
the clusters that might hold information of suspicious traffic, for each node in such
clusters, the algorithm retrieves its children and apply the clustering algorithm on the
node’s children. The algorithm repeats this process until it gets to the lower level of the
tree. This way, the algorithm identifies the specific traffic of the attack and thus, this
traffic can be blocked.

The MULAN-filter removes from the tree nodes that are not being updated frequently.
This way, it maintains detailed information for active incoming flows that may poten-
tially become suspicious, without exhausting the memory of the device on which it is
installed.

The MULAN-filter uses samples. At the end of each sample it analyzes the tree and
identifies suspicious traffic. When the MULAN-filter identifies a suspicious path in the
tree, it examines this path to determine whether or not the path represents an attack, this
may take a few more samples. As a result, there might be very short attacks, that start
and end within few samples that the MULAN-filter will not detect. In [1], the authors
conclude that the bulk of the attacks last from three to twenty minutes. By determining
the duration of a sample to few seconds, our MULAN-filter detect almost all such attacks.

The MULAN-filter was implemented in software and was demonstrated both on traces
from the MIT DARPA project [2] and on 10 days of incoming traffic of the Computer
Science school in our university. Our results show that the MULAN-filter works at wire
speed with great accuracy. The MULAN-filter preferably be installed a on a router, so the
attacks are detected before they harm the network, but its design allows it to be installed
anywhere.

MULAN: Multi-Level Adaptive Network Filter 73

2 Related Work

Detection of network anomalies is currently performed by monitoring IP addresses,
ports, TCP state information and other attributes to identify network sessions, or by
identifying TCP connections that differ from a profile trained on attacks-free traffic.

PHAD [3] is a packet header anomaly detector that models protocols rather than
user behavior using a time-based model, which assumes that the network statistics can
change rapidly, in a short period of time. According to PHAD, the probability, P, of
an event occurring is inversely proportional to the length of time since it last occurred.
P(NovelEvent) = r/n, where r is the number of observed values and n is the number of
observations. PHAD assigns an anomaly score for novel values of 1/P(NovelEvent) =
tn/r, where t is the time since the last detected anomaly. PHAD detects ∼ 35% of the
attacks at a rate of ten false alarms per day after training on seven days on attack-free
network traffic.

MULTOPS [4] is a denial of service bandwidth detection system. In this system, each
network device maintains a data structure that monitors certain traffic characteristics.
The data structure is a tree of nodes that contains packet rate statistics for subnet prefixes
at different aggregation levels. The detection is performed by comparing the inbound
and outbound packet rates. MULTOPS fails to detect attacks that deploy a large number
of proportional flows to cripple the victim, thus, it will not detect many of the DDoS
attacks.

ALPI [5] is a DDoS defense system for high speed networks. It uses a leaky-bucket
scheme to calculate an attribute-value-variation score for analyzing the deviations of
the values of the current traffic attributes. It applies the classical proportion integration
scheme in control theory to determine the discarding threshold dynamically. ALPI does
not provide attribute value analysis semantics; i.e., it does not take into consideration
that some TCP control packets, like SYN or ACK, are being more disruptive.

Many DoS defense systems, like Brownlee et al. [6], instrument routers to add flow
meters at either all, or at selected, input links. The main problem with the flow mea-
surement approach is its lack of scalability. For example, in [6], if memory usage rises
above a high-water mark they increase the granularity of flow collection and decrease
the rate at which new flows are created. Updating per-packet counters in DRAM is im-
possible with today’s line speed. Cisco NetFlow [7] solves this problem by sampling,
which affects measurement accuracy. Estan and Varghese presented in [8] algorithms
that use an amount of memory that is a constant factor larger than the number of large
flows. For each packet arrival, a flow id lookup is generated. The main problem with
this approach is in identifying large flows. The first solution they presented is to sample
each packet with a certain probability, if there is no entry for the flow id, a new entry
is created. From this point, each packet of that flow is sampled. The problem with that
is its accuracy. The second solution uses hash stages that operate in parallel. When a
packet arrives, a hash of its flow id is computed and the corresponding counter is up-
dated. A large flow is a flow whose counter exceeds some threshold. Since the number
of counters is lower than the number of flows, packets of different flows can result in up-
dating the same counter, yielding a wrong result. In order to reduce the false-positives,
several hash tables are used in parallel.

74 S. Tzur-David, D. Dolev, and T. Anker

Schuehler et al. present in [9] an FPGA implementation of a modular circuit design
of a content processing system. The implementation contains a large per-flow state store
that supports 8 million bidirectional TCP flows concurrently. The memory consumption
grows linearly with the number of flows. The processing rate of the device is limited to
2.9 million 64-byte packets per second.

Another solution, presented in [10], uses aggregation to scalably detect attacks. Due
to behavioral aliasing the solution doesn’t produce good accuracy. Behavioral alias-
ing can cause false-positives when a set of well behaved connections aggregate, thus
mimicking bad behavior. Aliasing can also result in false negatives when the aggregate
behavior of several badly behaved connections mimics good behavior. Another draw-
back of this solution is its vulnerability against spoofing. The authors identify flows
with a high imbalance between two types of control packets that are usually balanced.
For example, the comparison of SYNs and FINs can be exploited by the attacker to send
spurious FINs to confuse the detection mechanism.

3 DoS Attacks

Denial of service (DoS) attacks cause service disruptions when too many resources
are consumed by the attack instead of serving legitimate users. A distributed denial of
service (DDoS) attack launches a coordinated DoS attack toward the victim from ge-
ographically diverse Internet nodes. The attacking machines are usually compromised
zombie machines controlled by remote masters. Typical attacked resources include link
bandwidth, server memory and CPU time. DDoS attacks are more potent because of
the aggregated effect of the traffic converging from many sources to a single one. With
knowledge of the network topology the attackers may overwhelm specific links in the
attacked network.

The best known TCP DoS attack is the SYN flooding [11]. Cisco Systems Inc. imple-
mented a TCP Intercept feature on its routers [12]. The router acts as a transparent TCP
proxy between the real server and the client. When a connection request is made from
the client, the router completes the handshake for the server, and opens the real con-
nection only after the handshake is completed. If the amount of half-open connections
exceeds a threshold, the timeout period interval is lowered, thus dropping the half-open
connections faster. The real servers are shielded while the routers aggressively handle
the attacks. Another solution is SYN cookies [13], which eliminates the need to store
information per half open connection. This solution requires design modification, in
order to change the system responses.

Another known DoS attack is the SMURF [14]. SMURF uses spoofed broadcast ping
messages to flood a target system. In such an attack, a perpetrator sends a large amount of
ICMP echo (ping) traffic to IP broadcast addresses, with a spoofed source address of the
intended victim. The hosts on that IP network take the ICMP echo request and reply with
an echo reply, multiplying the traffic by the number of hosts responding. An optional
solution is to never reply to ICMP packets that are sent on a broadcast address [15].

Back [16] is an attack against the Apache web server in which an attacker submits re-
quests with URL containing many front-slashes. Processing these requests slows down
the server performance, until it is incapable of processing other requests. Sometimes this

MULAN: Multi-Level Adaptive Network Filter 75

attack is not categorized as high rate DoS attacks, but we mention it since the MULAN-
filter discovers it. In order to avoid detection, the attacker sends the front-slashes in
separate HTTP packets, resulting in many ACK packets from the victim server to the
attacker. An existing solution suggests counting the front-slashes in the URL. A request
with 100 front-slashes in the URL would be highly irregular on most systems. This
threshold could be varied to find the desired balance between detection rate and false
alarm rate.

In all the above examples, the solutions presented are specific to the target attack and
can be implemented just after the vulnerabilities are exploited. The MULAN-filter iden-
tifies new and unknown threats, including all the above attacks, before the vulnerability
is discovered and the exploit is created and launched, as detailed later.

4 Notations and Definitions

– A metric is defined as the chosen rate at which the measurements by the algorithm
are executed, for example, bit per second, packets per second etc.

– An Ln is the number of levels in the tree data structured used by the algorithm.
– Sample value is defined as the aggregated value that is collected from the captured

packets in one sample interval.
– Window interval is defined as m× sample interval, where m > 0 and the sample

interval is the length of each sampling.
– Clustering Algorithm is defined as the process of organizing sample values into

groups whose members have “similar” values. A cluster is therefore a collection of
sample values that are “similar” and are “dissimilar” to the sample values belonging
to other clusters (as detailed later).

– Cluster Info is the number of samples in the cluster, the cluster mean and the cluster
standard deviation, denoted by C.Size, C.Mean and C.Std respectively.

– Anticipated Behavior Profile (ABP) is a set of k Clusters Info, where k is the number
of clusters.

– Clusters Weighted Mean (WMean) is the weighted mean of all clusters, alterna-
tively, the mean of all samples.

– Clusters Weighted Standard Deviation (WStd) is the weighted standard deviation
of all clusters, alternatively, the standard deviation of all samples.

– High General Threshold (HGThreshold) is WMean+ t1 ×WStd and Low General
Threshold (LGThreshold) is WMean + t2 ×WStd, where t1 > t2.

– Marked Cluster is a cluster with mean greater than LGT hreshold.

5 The MULAN-Filter Design

The MULAN-filter uses inbound rate anomalies in order to detect malicious traffic.
The statistics are maintained in a tree-shaped data-structure. Each level in the tree
represents an aggregation level of the traffic. For instance, the highest level may de-
scribe inbound packets rate per-destination, the second level may represent per-protocol
rate for a specific destination and the third level hold per-destination port rate for a spe-
cific destination and protocol. Each node maintains the aggregated statistics of all its

76 S. Tzur-David, D. Dolev, and T. Anker

descendants. A new node is created only for packets with a potentially suspicious par-
ent node. This way, for example, there is a need to maintain a detailed statistics only
for potentially suspicious destinations, protocols or ports. Another advantage of using
the tree is the ability to find specific anomalies for specific nodes. For example, one rate
can be considered normal for one destination, but is anomalous for the normal traffic of
another destination.

The MULAN-filter can be used in two modes, training mode and verification mode.
The output of the training mode is the ABP and the thresholds. For each cluster C in
the ABP, if C.Mean > LGT hreshold, the cluster is denoted as a marked cluster. This
information is used to compare the online rates in the verification mode process.

In order to calculate this information, the anticipated traffic behavior profile must
be measured. There are two ways to measure such a profile: Either training a profile on
identification of attack-free traffic, or by trying to filter the traffic from prominent bursts,
which might indicate attacks and then creating the profile from the filtered traffic.

5.1 Anticipated Traffic Behavior Profile

In order to create the ABP, it is better to use an attack-free traffic. Alternative solutions
strongly assume attack-free traffic, an assumption that may be impractical for several
reasons. First, unknown attacks may be included in that traffic, so the baseline traffic is
not attack-free. Furthermore, traffic profiles vary from one device to another, and unique
attack-free training profiles need to be obtained for each specific device on which the
system is deployed. Moreover, traffic profiles on any given device may vary over time.
Thus, a profile may be relevant only at a given time, and may change a few hours later.

We propose a methodology in which anomalies are first identified, and then refined.
The cleaner the initial traffic the more precise the initial state is, but our methodology
works well with non-clean traffic. To achieve both goals, the algorithm aggregates per-
sample interval statistics, creating a sample value for each such interval. At the end of
each window interval, the algorithm employs a clustering algorithm in order to obtain
a set of clustered sample values. If there are one or more clusters with significantly
high mean values (3 standard deviations from WMean), the algorithm discovers the
samples that are key contributors to the resulting mean values. The algorithm refines
those samples by setting their value to the cluster mean value and then recalculates the
clusters’ means values. The “refinement” rule states that lower levels always override
refinement of higher levels. This means that if the algorithm detects a high burst at one
of the destinations and then detects a high burst at a specific protocol for that destination,
it refines the node value associated with the protocol, which also impacts the value
associated with the destination. The refinement process is performed at every window
interval for maintaining a dynamic profile.

5.2 Data Structure

The MULAN-filter uses a tree-shaped data structure. The tree enables maintaining dis-
tinct statistics of all the relevant traffic. Traffic is considered relevant if there is a high
probability that it contains an attack.

In our implementation example, there are three levels in the tree. The nodes at the
first level hold statistics per-destination IP address, the nodes at the second level hold

MULAN: Multi-Level Adaptive Network Filter 77

Root

Dest 2 Dest n

Proto 1 Proto 2 Proto k

Port 1 Port 2 Port m

Dest 1

Fig. 1. The Tree

statistics per-protocol and the nodes at the third level hold statistics per-destination port
(see Fig. 1). During the verification mode, when a sample value is calculated, the algo-
rithm saves the aggregation for the first level. In our implementation, assume that the
sample value is equal to SV and there are Ns packets that arrived during the sample
interval with n different IP addresses. We define Metric(Packet j) to be the contribution
of Packet j to SV , and SVi to be the part of SV that is calculated from packets with IPi

in their header. Formally, SVi = ∑ j,IPi∈Packet j
Metric(Packet j), thus, SV = ∑i SVi, where

1 ≤ j ≤ Ns and 1 ≤ i ≤ n. The tree structure is flexible to hold special levels for specific
protocols, see Section 5.3.

In the verification mode, the tree is updated following two possible events. One is
a completion of each sample interval. In this case, the algorithm compares SV to the
clusters’ means from the ABP. If the closest mean belongs to a marked cluster, a node
for each IPi is added to the first level in the tree. The second event at which the tree is
updated may occur at packet’s arrival. If the destination IP address in the packet header
has a node in the first level, a node for the packet protocol is created at the second level,
and so on. In any case, the metric’s values along the path from the leaf to the root are
updated. This way, each node in the tree holds the aggregated sum of the metric’s values
of its descendants.

A node that is not updated for long enough is removed from the tree. A node can not
be removed unless it is a leaf, and it can become a leaf if all of its descendants have been
removed. Thus, we focus only on nodes (or on traffic) that are suspected of comprising
an attack; thus, saving on memory consumption.

5.3 Special Levels for Specific Protocols

Some protocols have special information in their header that can help the algorithm
in blocking more specific data. Since our tree is very flexible in the data it can hold,
we can add special levels for specific protocols. In our experiments we added a level
for the TCP protocol that distinguishes between the TCP flags. This addition results in
dropping only the SYN packets when the algorithm detects a SYN attack. The same

78 S. Tzur-David, D. Dolev, and T. Anker

can be done for the ICMP types in order to recognize the ECHO packets in the SMURF

attack.

6 The Algorithm

Prior to implementing the algorithm, the following should be defined: depth of the
tree, characteristics of the data aggregated at each level, sample interval, window in-
terval, metrics to be measured, and t1 and t2 used for calculating LGT hreshold and
HGThreshold.

The MULAN-filter has been implemented in software. The input to our engine is taken
both from the MIT DARPA project [2] and from the Computer Science school in our
university. The input from MIT contains two stretches of five-days traffic (fourth and
fifth week) with documented attacks and the input from the university contains 10 days
of incoming traffic, this containing both real and simulated attacks that we injected.

The algorithm operates in two modes, the training mode and the verification mode.
The training mode is generated at the end of a window interval. The input for this mode
is a set of N samples and the output is ABP with indication of the marked clusters.

6.1 Training Mode

In order to create the ABP, the algorithm generates the K-means [17] clustering algo-
rithm every window interval to cluster the N sample values into k clusters. For each
cluster, the algorithm holds its size, mean and standard deviation, after which the algo-
rithm can calculate the weighted mean, WMean, and the weighted standard deviation,
WStd, and determine the value of LGT hreshold. Since the samples may contain at-
tacks, LGT hreshold might be higher than it should. Therefore, for each cluster C, if
C.Mean > LGT hreshold, the algorithm retrieves C’s sample values. In our implemen-
tation, each sample value in the cluster holds metric values of IP addresses that were
seen in that sample interval. For each sample, the algorithm gets the aggregation per
IP address and generates new set of samples. The algorithm then generates K-means
again, where the input is the newly created set. Running K-means on this set produces a
set of clusters, a cluster with a high mean value holds the destinations with the highest
metric value. The algorithm continues recursively for each level of the tree.

At each iteration in the recursion, the algorithm detects the high bursts and refines
the samples in the cluster to decrease the bursts influence on the thresholds, see Sec-
tion 5.1. As mentioned, the “refinement” rule states that lower levels always override
refinement of higher levels. This means that if the algorithm detects a high burst at one
of the destinations and then a high burst at a specific protocol for that destination, it
refines the node value associated with the protocol, impacting on the value associated
with the destination. When the refinement process is completed, the refined samples
are clustered again to produce the updated ABP information and the LGT hreshold. A
cluster C is indicated a marked cluster if C.Mean > LGT hreshold.

There can be cases in which the bursts that the algorithm refines represent normal
behavior. In such cases LGT hreshold may be lower than expected. Since the algorithm
uses the training mode in order to decide whether to save information when running in

MULAN: Multi-Level Adaptive Network Filter 79

verification mode, the only adverse impact of this refinement is in memory utilization,
as more information is saved than actually needed. This is preferable to overlooking an
attack because of a mistakenly calculated high threshold. The training mode algorithm
is presented in Algorithm 1.

At each sample completion, the algorithm gets the sample value and finds the most
suitable cluster from the ABP. In order for the profile to stay updated and for the clus-
tering algorithm to be generated only at the end of each window interval, the cluster
mean and standard deviation are updated by the new sample value.

6.2 Verification Mode

The verification mode starts after one iteration of the training mode (after one window
interval). The verification mode is executed either on a packet arrival or following a
sample completion.

To simplify the discussion, as a working example in this section we assume that the
tree has three levels and the aggregation levels are IP address, protocol and port number
in the first, second and third level, respectively.

On each packet arrival, the algorithm checks whether there is a node in the first
level of the tree for the destination IP address of the packet. If there is no such node,
nothing is done. If the packet has a representative node in the first level, the algorithm
updates the node’s metric value. From the second level down, if a child node exists for
the packet, the algorithm updates the node’s metric value, otherwise, it creates a new
child.

At each sample completion, the algorithm gets the sample value and finds the most
suitable cluster from the ABP. If the suitable cluster is a marked cluster, the algorithm
adds nodes for that sample in the first level of the tree. In our example, the algorithm
adds per-destination aggregated information from the sample to the tree. I.e. for each
destination IP address that appears in the sample, if there is no child node for that IP
address, the algorithm creates a child node with the aggregated metric value for that
address (see Section 5.2).

The algorithm runs K-means on the nodes at the first level of the tree. Each sample
value is per-destination aggregated information (SVi with the notations from
Section 5.2). As in the training mode, the clustering algorithm produces the set of
clusters info, but in this case the algorithm calculates the threshold HGT hreshold. If
a cluster’s mean is above the HGThreshold, a deeper analysis is performed. For each
sample in the cluster (or alternatively, for each node at the first level), the algorithm
retrieves the node’s children and generates K-means again. The algorithm continues
recursively for each level in the tree. At each iteration, the algorithm also checks the
sample values in the cluster nodes. If a sample value is greater than HGThreshold, it
marks the node as suspicious.

The last step is to walk through the tree and to identify the attacks. The analysis is
done in a DFS manner. A leaf that has not been updated long enough is removed from
the tree. Each leaf that is suspected too long is added to the black list, thus preventing
suspicious traffic until its rate is lowered to a normal rate. For each node on the black-list,
if its high rate is caused as a results of only a few sources, the algorithm raises an alert
but does not block the traffic; If there are many sources, the traffic that is represented

80 S. Tzur-David, D. Dolev, and T. Anker

Algorithm 1. Training Mode Algorithm
1: packet ⇐ ReceivePacket();
2: U pdateMetricValue(sample, packet);
3: if End o f Sample Interval then
4: samples.AddSample(sample);
5: end if;
6: if End o f Window Interval then
7: U pdateTrainPro f ile(samples);
8: end if.

UpdateTrainProfile(samples)
1: clusters ⇐ KMeans(samples);
2: samples ⇐ Re f ine(clusters,samples);
3: ABP ⇐ BuildPro f ile(clusters);
4: LGT hreshold ⇐ calcT hreshold(ABP);
5: for all clusterIn f o ∈ ABP do
6: if clusterIn f o.Mean > LGThreshold then
7: setMarked(cluster);
8: end if;
9: end for.

by the specific path is blocked until the rate becomes normal. The verification mode
algorithm is presented in Algorithm 2.

In addition of the above, to prevent attacks that do not use a single IP destination,
like attacks that scan the network looking for a specific port on one of the IP addresses,
the algorithm identifies sudden increase in the size of the tree. When such increase
is detected, the algorithm builds a hash-table indexed by the source IP address. The
value of each entry in the hash-table is the number of packets that were sent by the
specific source. This way, the algorithm can detect the attacker and block its traffic
(see Section 8). The algorithm maintains a constant number of entries and replaces
entries with low values. The hash-table size is negligible and does not affect the memory
consumption of the algorithm.

Since the algorithm detects anomalies at each level of the tree, it can easily recognize
exceptions in the anomalies it generates. For example, if one IP address appears in many
samples as an anomaly, the algorithm learns this IP address and its anticipated rate and
adds it to an exceptions list. From this moment on, the algorithm compares this IP
address to a specific threshold.

6.3 The Algorithm Parameters

In our simulation, the algorithm builds three levels in the tree. The first level holds
aggregated data for the destination IP addresses, the second level holds aggregated data
for the protocol for a specific IP address, and the third level holds aggregated data for
a destination port for specific IP and port. Since we look for DoS/DDoS attacks, these
levels are sufficient to isolate the attack’s traffic.

At the end of each window interval the algorithm updates the ABP and, since the
network can be very dynamic, we chose the window interval to be five minutes. The bulk

MULAN: Multi-Level Adaptive Network Filter 81

Algorithm 2. Verification Mode Algorithm
1: packet ⇐ ReceivePacket();
2: U pdateMetricValue(sample, packet);
3: PlacePctInTree(packet,root,0);
4: if End o f Sample Interval then
5: SetFirstLevel(sample,root);
6: Veri f y(root.children);
7: AnalyzeTree(root);
8: end if.

PlacePctInTree(packet, node, level)
1: if level == lastLevel then
2: return;
3: end if;
4: if node.HasChild(packet) then
5: child ⇐ node.GetChild(packet);
6: child.AddToSampleValue(packet);
7: PlacePctInTree(packet,child,++ level);
8: else
9: if level > 0 then

10: child ⇐ CreateNode(packet);
11: node.AddChild(child);
12: end if;
13: end if.

SetFirstLevel(sample, root)
1: cluster ⇐ GetClosestClusterFromABP(sample);
2: cluster.U pdateMeanAndStd(sample);
3: if MarkedCluster(cluster) then
4: AddFirstLevelIn f o(sample);
5: end if.

Verify(nodes)
1: clustersIn f o ⇐ KMeans(nodes);
2: CalcT hresholds(clustersIn f o);
3: for all cluster ∈ clustersIn f o do
4: if cluster.Mean > LGT hreshold then
5: for all node ∈ cluster do
6: if node.sampleValue > HGT hreshold then
7: MarkSuspect(node);
8: end if;
9: Veri f y(node.children);

10: end for;
11: end if;
12: end for.

AnalyzeTree(node)
1: for all child ∈ node.children do
2: if child.NoChildren() then
3: if child.UnSuspectTime > cleanDuration then
4: RemoveFromTree(child);
5: end if;
6: if child.SuspectTime > suspectDuration then
7: AddToBlackList(child);
8: end if;
9: else

10: AnalyzeTree(child);
11: end if;
12: end for.

82 S. Tzur-David, D. Dolev, and T. Anker

of DoS/DDoS attacks lasts from three to twenty minutes, we have therefore chosen the
sample interval to be five seconds. This way the algorithm might miss few very short
attacks. An alternative solution for short attacks is presented in Section 6.5. A node
is considered as indicating an attack if it stays suspicious for suspect duration; In our
implementation the suspect duration is 18 samples. A node is removed from the tree if it
is not updated for clean duration; In our implementation the clean duration is 1 sample.
DoS/DDoS attacks can be generated by many short packets, like in the SYN attack
example, thus, a bit-per-second metric may miss those attacks. In our implementation
we use a packet-per-second metric.

The last parameters to be determined are t1 and t2 that are used for calculating
LGT hreshold and HGThreshold. These parameters are chosen using Chebyshev in-
equality. The Chebyshev inequality states that in any data sample or probability dis-
tribution, nearly all the values are close to the mean value, in particular, no more than
1/t2 of the values are more than t standard deviations away from the mean. Formally,
if α = tσ, the probability of an attribute length, can be calculated using the inequality:

p(|x−µ| > α) <
σ2

α2 .

The Chebyshev bound is weak, meaning the bound is tolerant to deviations in the sam-
ples. This weakness is usually a drawback. In our case, since DoS/DDoS attacks are
characterized by a very high rate, the engine has to detect just significant anomalies and
this weakness of the Chebyshev boundary becomes an advantage. In our experiment we
set t1 = 1 and t2 = 5.

Non-self-similar traffic may be found at the lower levels of the tree (per destination
rate, per protocol rate etc.). Another problem at the lower levels is the reduced number
of samples, complicating the ability to anticipate traffic behavior at these levels. In
order to identify the anomalies at those levels, we introduce an alternative measurement
model, see Section 6.4.

6.4 Modeling Non-self-similar Traffic

The MULAN-filter has to model anticipated traffic. There are two main challenges in
modeling anticipated traffic: the complexity of network traffic, and its variance over
time.

Bellovin [18] and Paxson [19] found that wide network traffic contains a wide range
of anomalies and bizarre data that is not easily explained. Instead of specifying the
extremely complex behavior of network traffic, they use a machine learning approach to
model actual traffic behavior. Research by Adamic [20] and Huberman and Adamic [21]
implies that this approach would fail since the list of observed values grows at a constant
rate and is never completed, regardless of the length of the training period. However,
Leland et al. [22] and Paxson & Floyd [23] show that this is not valid for many types
of events, like measuring packets per second rate.

Non-self-similar traffic may be found at the lower levels of the tree (per destination
rate, per protocol rate etc.). Another problem at the lower levels is the reduced number
of samples, complicating the ability to anticipate traffic behavior at these levels. In order
to identify the anomalies at those levels, an alternative measurement model should be

MULAN: Multi-Level Adaptive Network Filter 83

introduced. Let Nc be the number of children of a node, and s be the sum of all sample
values of the node children. If a “small” subset of Nc represents a “high percentage”
of s, an anomaly is alerted. For example, consider a destination for which there are
seven protocol nodes, of which six have sample values of approximately ten packets
per second, and a seventh node has a sample value of 400 packets per second. This
would result in a mean value of 65.7, with rather high standard deviation of 147.4.
Using traditional models, it will be difficult to identify the seventh child as an anomaly.
Using the proposed model, one child represents ∼ 87% of all samples, so this node is
identified as an anomaly.

6.5 Handling Short Attacks

MIT traces contain short DDoS attacks (some of them are 1 second long). An example
from MIT traces is the SMURF attack. In the SMURF attack, the attacker sends ICMP
‘echo request’ packets to the broadcast address of many subnets with the source address
spoofed to be that of the intended victim. Any machine that is listening on these subnets
responds by sending ICMP ‘echo reply’ packets to the victim. Short attacks can exhaust
a victim but usually cannot defeat it. Since our algorithm blocks the anomalies from
entering the network, it declares an anomaly only after a node has being suspected for
some time. By reducing the sample interval, our algorithm can easily detect the short
attacks so an alert mechanism is added for them. As opposed to the common DoS
or DDoS attacks, in order to exhaust a service, the rate of the short attacks must be
significantly high so the anomaly will be much more conspicuous. Thus, in order to
reduce the false-positives we use more stringent detection rules for the short attacks.

7 Optimal Implementation

The main bottleneck that might occur in our engine is the tree lookup, which is per-
formed on arrival of each packet. Since the engine has to work at wire speed, software
solutions might be unacceptable. We suggest an alternative implementation.

The optimal implementation is to use a TCAM (Ternary Content Addressable Mem-
ory) [24]. The TCAM is an advanced memory chip that can store three values for every
bit: zero, one and “don’t care”. The memory is content addressable; thus, the time re-
quired to find an item is considerably reduced. The RTCAM NIPS presented in [25]
detects signatures-based attacks that were drawn from Snort [26]. In the RTCAM solu-
tion, the patterns are populated in the TCAM so the engine detects a pattern match in
one TCAM lookup. We can similarly deploy the MULAN filter in the TCAM. A TCAM
of size M can be configured to hold �M/w� rows, where w is the TCAM width. Let |Li|
be the length of the information at level i in the tree. Assuming that there are m levels,
w is taken to be ∑i |Li|, where 1 ≤ i ≤ m. In our example, the IP address at the first level
contains 4 bytes (for IPv4). An additional byte is needed to code the protocol at the
second level. For the port number at the third level we need another two bytes. Thus, in
our example w = 7. Since the TCAM returns the first match, it is populated as follows:
the first rows hold the paths for all the leaves in the tree. A row for a leaf at level i,
where i < Ln is appended with “don’t care” signs. After the rows for the leaves, we add

84 S. Tzur-David, D. Dolev, and T. Anker

123.34.55.10,TCP,456

123.34.55.10,TCP,124

123.34.55.10,TCP,876

123.34.55.10,UDP,555

123.34.56.4,***,***

123.34.54.7,***,***

123.34.55.10,TCP,***

123.34.55.10,UDP,***

123.34.55.10,***,***

********,***,***

root

123.34.56.4 123.34.54.7 123.34.55.10

TCP UDP

124 876456 555

Fig. 2. TCAM Population

rows for the rest of the nodes, from the bottom of the tree up to the root. Each row for a
non-leaf node at level l is appended with “don’t care” signs for the information at each
level j ≤ n such that l < j . The last row contains w “don’t care” bytes, thus indicating
that there is no path for the packet and providing the default match row.

Fig. 2 presents an example of the tree structure and the populated TCAM for that tree.
As shown, each node (except the root) has a row in the TCAM. When a packet arrives, the
algorithm extracts the relevant data, creates a TCAM key and looks for a TCAM match.
Each row in the TCAM holds a counter and a pointer to the row of the parent node. When
there is a TCAM match (except in the last row), the algorithm updates the counter at the
matched row and follows the pointer to the parent node’s row. The algorithm updates the
counters for each row along the path from the node corresponding to the matched row
to the row corresponding to the ancestor at the first level.

In our algorithm, there are only two places where the algorithm might add nodes to
the tree, when nodes are set for the first level, and on packet arrival. In both cases, the
algorithm adds leaves represented by the corresponding rows at the beginning of the
TCAM. Similarly, when the algorithm“cleans” the tree, it removes leaves, again, han-
dling the beginning of the TCAM. In order to easily update the TCAM while keeping
the right order of the populated rows, the TCAM is divided into L parts, where L is the
number of the levels in the tree.

The last obstacle our algorithm has to deal with is the TCAM updates. TCAM up-
dates are done when adding nodes to the tree and when removing nodes from the tree.
The TCAM can be updated either with a software engine or with a hardware engine.
Using software engine is much simpler but is practical only when there is a low number
of updates. Fig. 3 presents the average number of TCAM updates for each 100 packets
of the incoming traffic of the Computer Science school. The figure clearly illustrates
the creation of the tree. During the creation of the tree there are many insertions, thus
the number of updates is relatively high.

Each value is an average of values of all the days of MIT traces. The total average
update rate is ∼ 1.5 updates for 100 packets, more than 99% of the values are below 50
updates, with a small number of scenarios when the engine has to make up to ∼ 1700

MULAN: Multi-Level Adaptive Network Filter 85

0 1 2 3 4 5 6 7

x 10
6

0

200

400

600

800

1000

1200

1400

1600

1800

Number of Packets

N
u
m

b
e
r

o
f

U
p
d
a
te

s

Fig. 3. TCAM Updates

TCAM updates. Today’s enterprise network equipment supports hundreds of Giga bits
per second of traffic and small and medium business devices handle 60−100 Giga bits
per second and above. One Giga interface supports 1.5 million packets per second, thus
enterprise network devices need to deal with about 500 millions packets per second, and
small and medium business need to deal with about 150 millions packets per second. A
software engine will not be able to fulfil these requirements and thus is not acceptable.
A hardware engine can achieve line speed rates. The available TCAM update speed
with hardware engine is in the range of 3 to 4 nano seconds, which is 250,000,000
to 330,000,000 updates per second. In light of the rate of TCAM updates, it can be
deduced that on average, one TCAM update is performed for every 67 packets. With a
traffic rate of 500 million packets per second, the engine has to make 500M/67 ≈ 7.5
millions updates per second, which is significantly less than the available TCAM update
rates limit. Even with 50 TCAM updates, the engine executes 500M/2 = 250 millions
updates per second which is still in range.

8 Experimental Results

The quality of performance of the algorithm is determined by two factors: scalability
and accuracy. In order to analyze the performance of the algorithm, a simulation was
implemented and tested with MIT DARPA traces and real traffic from our School of
Computer Science.

8.1 Scalability

Demonstration of scalability of the algorithm requires analysis of the memory require-
ment at every stage of execution. We measured the number of nodes on each sample
and we found an average size of the tree is 1028 nodes. This result is very encouraging
since it is a very reasonable memory consumption.

Another major advantage of our algorithm is the fact that the increase in tree size is
very moderate compared to the increase in the number of flows. This is clearly demon-
strated in Fig. 4 (Note that the x axis is a logarithm scale). In general, for any number

86 S. Tzur-David, D. Dolev, and T. Anker

10
3

10
4

10
5

0

0.5

1

1.5

2

2.5

3
x 10

4

Number of Flows

T
re

e
 S

iz
e

 (
n

o
d

e
s)

Fig. 4. Tree Size vs Number of Flows

of flows the tree size is below 10000 nodes. There are few cases where the size of
the tree exceeds 30000 nodes, these cases occur when the traffic contains attacks. An
optimization to the algorithm, thats prevent such cases is presented in Section 8.3.

Memory consumption is one of the major difficulties when trying to extract per-
flow information in a security device. The main problem with the flow measurement
approach is its lack of scalability. Memory consumption of algorithms presented in
previous works is directly influenced by the number of flows, and in many cases the
algorithm performance is affected. Cisco NetFlow [7] solves this problem by sampling,
which affects measurement accuracy. Another work [8] develops algorithms that use an
amount of memory that is a constant factor larger than the number of the large flows.
The main problem in this approach is how to identify large flows. Two possible solutions
were presented, both of which lack accuracy. In [4], the authors try to aggregate data
by IP prefixes. For more than 1024 IPs, the data structure size does not fit in cache, so
that the algorithm rates drop proportionally to the total memory consumption. In our
engine, memory consumption does not grow linearly with the number of flows and the
algorithm accuracy is therefore not affected.

8.2 Accuracy

Accuracy is measured by the false-negative and the false-positive rates. False-negative
is a case in which the system does not detect a threat and false-positive is the case in
which the system drops normal traffic. This section presents the accuracy results both
on MIT DARPA traces and on the real traffic from our School of Computer Science.

MIT DARPA Traces. There are only two documented bandwidth attacks in the MIT
DARPA traces, both are SYN-attacks. Our algorithm finds these attacks. In addition,
our algorithm detects several other anomalous behaviors. The analysis indicates that
in one of the days, there are many retransmissions packets and a large number of se-
quential TCP-keep-alive packets, which is consistent with anomalous behavior. Another
example is the back attack targeted at the Apache web servers by submitting requests
with URL’s containing many front-slashes. As the server tries to process these requests,
it slows down and is unable to process other requests. In order to avoid detection, the

MULAN: Multi-Level Adaptive Network Filter 87

attacker sends each front-slash in a different HTTP packet. The victim sends many TCP
ACK packets back to the attacker. Since the engine compares traffic per destination (at
the first level) it detects this traffic as anomaly. There is another case where our algo-
rithm detects many TCP SYN, RST and FIN packets. In one of the SYN attacks, the
source of the attack is an IP address within the network. As a result of the attack, the
victim sends many TCP RST packets back to the attacker. Consequently, the engine de-
tects two anomalies: the SYN packets to the victim and the RST packets to the attacker.

The School of Computer Science Traces. We analyzed the traffic in two modes. In
the first mode, we ran the algorithm on the original data and we looked for real attacks.
In the second mode we randomly added attacks to random destinations and verified that
the algorithm detects the injected attacks.

In the first mode we found some very interesting anomalous behaviors. In one alert,
the algorithm detects inbound scan on TCP, port 1433. In this attack, the attacker scans
the network, looking for a Microsoft SQL Server installations with weak password
protection and, if successful, looks to steal or corrupt data or use some features with
SQL Server to compromise the host system. Another alert indicates a single source
that scans the network for a listening HTTP server (scanning many IP addresses on
port 80). One more interesting alert indicates an inbound scan on TCP, port 139. Such
inbound scans are typically systems that are trying to connect to file shares that might
be available on the system and therefore should be blocked. While most of this traffic
is the result of worms or viruses, which can use open file shares to propagate, they can
be also the result of malicious users attempt to connect to the victim. Once connected,
they can download, upload or even delete or edit files on the connected file share.

The algorithm detected 4 exceptional IP addresses, all of them servers in the network.
The algorithm generated 87 alerts, almost all of them are IP addresses that communicate
with an IP address from the exceptions list. Since the exceptions list is a safe list of
servers, these alerts were omitted from the final results. We were left with 24 alerts.
There can be cases where a single host downloads a heavy file or backup heavy material
etc. In such cases, there will be a high rate between a single host to a single destination.
Our algorithm detects these channels as an attack. Since we don’t want to prevent this
legal traffic, our algorithm alerts these connections but it does not block the connection’s
traffic. Analysis of the results indicates that there are only 5 alerts containing more than
one source. These 5 alerts are false positives and they were generated from the highest
level in the tree, e.g. the alerts refer to IP addresses without indications for a specific
protocol or port. In case of an attack on a specific service, the tree detects the attack
also in lower levels, thus, an attack on this level may imply only some kind of network
scan, i.e. a port scan. When an attacker tries to scan the network, the size of the tree
significantly increases. Thus, by combining both anomalies, high rate on the highest
level and the size of the tree, we can eliminate these false positives.

In the second mode we randomly injected DoS/DDoS attacks of different kinds, our
algorithm found all of them. The injected attacks included the following attacks: ICMP
flood, where a host is bombarded by many ICMP echo requests in order to consume its
resources by the need to reply. Syn Attack, where random Syn packets are sent to the
attacked host with intent to fill the number of open connections it can hold and therefore
leave no free resources for new valid connections. DNS flood, roughly similar to ICMP

88 S. Tzur-David, D. Dolev, and T. Anker

flood, only more efficient against DNS servers as usually these requests require more
time spent on the server side. Smurf, where the attacker spoofs many echo requests
coming from the attacked host, and consequently the host is swamped by echo replies.

To reinforce our results, we compare the MULAN filter against LAD [27]. LAD is a
triggered, multi-stage infrastructure for the detection of large-scale network attacks. In
the first stage, LAD detects volume anomalies using SNMP data feeds. These anomalies
are then used to trigger flow collectors and then, on the second stage, LAD performs
analysis of the flow records by applying a clustering algorithm that discovers heavy-
hitters along IP prefixes. By applying this multi-stage approach, LAD targets the scal-
ability goal. Since SNMP data has coarse granularity, the first stage of LAD produces
false-negatives. The collection of flow records on the second phase requires a buffer to
hold the data and adds bandwidth overhead to the network, thus LAD uses a relatively
high threshold that leads to the generation of false-negatives. One major difference be-
tween the MULAN filter and LAD is that LAD only supplies detection of attacks, which
a network operator needs to process. This eases the implementation by two aspects; first,
the attacks are not detected online and the second is the tolerance to false positives. The
MULAN filter prevents the attacks with a negligible rate of false positives.

8.3 Controlling the Tree Size

In order to control the size of the tree in a way that it does not explode as it may do
during scanning attacks, we added the following rule: When the algorithm detects an
attack on any of the nodes in the tree, it stops adding children to that node until the
node’s rate falls below the threshold. As mentioned in Section 8.1, the reason the tree
had ∼ 15,000 nodes on that day is that two IP addresses received TCP traffic for many
different ports. For each unique port, the algorithm created a node in the tree. With the
above rule, when the anomalies are detected, the algorithm does not add more nodes
for new ports, although it does update the counter at the parent node (in this example,
the node that represents TCP). The algorithm resume adding children when the counter
at the parent is reduced and the parent is no longer categorized as an anomaly. The tree
size results after applying this optimization is presented in Table 1.

Table 1. Tree Size Results after Optimization

Day Packets Number Average Maximum
(W.D) (Nodes) (Nodes)

4.1 1,320,049 11.3 108
4.2 1,251,319 9.3 101
4.3 1,258,076 10.2 84
4.4 1,580,440 11.2 121
4.5 1,261,848 10.4 116
5.1 1,320,049 10.8 108
5.2 2,502,808 10.9 134
5.3 1,329,336 10.5 90
5.4 2,259,146 19.7 1,035
5.5 2,602,565 11.5 104

MULAN: Multi-Level Adaptive Network Filter 89

9 Discussion and Future Work

The engine presented in this paper detects DoS/DDoS attacks. We fully simulated and
tested it with MIT DARPA traces and on real and recent traffic. There are two major ad-
vantages of our algorithm. One is the ability to save detailed information of the attacks
while using a limited amount of memory. The second advantage is the fact that our en-
gine finds all the attacks we expect it to find with a negligible number of false-positives.
These two advantages were achieved by the use of a hierarchical data structure.

A future work can identify a way to generalize this algorithm so it can detect other
types of attacks. One can create a state machine for each protocol, and identify patterns
that repeat in the different state machines. Thus, the nodes in the tree will hold the state
machine operations and suspicious behavior will be an anomaly from these operations.

Another algorithm could be developed for finding anomalies in different parts of a
packet or a flow. For example, a normal pattern can be the number of HTTP headers, in
which case, HTTP request with many headers (Apache2 attack) would be reported as an
anomaly. Another example is addressing a Mailbomb attack in which the attacker sends
many messages to a server, overflowing that server’s mail queue and causing system
crash. Each site has a different threshold of e-mail messages that can be sent by (or to)
one user before the messages are considered a Mailbomb. Thus, a high rate detection
engine might not discover this kind of attack. If the nodes in the tree will contain per
protocol information, the algorithm will detect the unexpected number of emails.

References

1. Moore, D., Voelker, G.M., Savage, S.: Inferring internet denial-of-service activity. In: 10th
Usenix Security Symposium, pp. 9–22 (2001)

2. Mit darpa project data set, http://www.ll.mit.edu/IST/ideval/index.html
3. Mahoney, M., Chan, P.: Phad: Packet header anomaly detection for identifying hostile net-

work traffic. Technical report, Florida Tech., CS-2001-4 (2001)
4. Gil, T.M., Poletto, M.: MULTOPS: A Data-Structure for bandwidth attack detection. In:

Proceedings of USENIX Security Symposium, pp. 23–38 (2001)
5. Ayres, P.E., Sun, H., Chao, H.J., Lau, W.C.: Alpi: A ddos defense system for high-speed

networks. IEEE Journal on Selected Areas in Communications 24(10), 1864–1876 (2006)
6. Brownlee, N., Mills, C., Ruth, G.: Traffic flow measurement: Architecture,

http://www.ietf.org/rfc/rfc2063.txt
7. Cisco netflow,

http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/index.html
8. Estan, C., Varghese, G.: New directions in traffic measurement and accounting. In: Proceed-

ings of the 2001 ACM SIGCOMM Internet Measurement Workshop, pp. 75–80 (2002)
9. Schuehler, D.V., Lockwood, J.W.: A modular system for FPGA-based TCP flow processing

in high-speed networks. In: Becker, J., Platzner, M., Vernalde, S. (eds.) FPL 2004. LNCS,
vol. 3203, pp. 301–310. Springer, Heidelberg (2004)

10. Kompella, R.R., Singh, S., Varghese, G.: On scalable attack detection in the network.
IEEE/ACM Trans. Netw. 15(1), 14–25 (2007)

11. Cert coordination center: tcp syn flooding and ip spoofing attacks,
http://www.cert.org/advisories/CA-1996-21.html

http://www.ll.mit.edu/IST/ideval/index.html
http://www.ietf.org/rfc/rfc2063.txt
http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/index.html
http://www.cert.org/advisories/CA-1996-21.html

90 S. Tzur-David, D. Dolev, and T. Anker

12. Eddy, W.M.: Cisco: Defenses against tcp syn flooding attacks,
http://www.cisco.com/web/about/ac123/ac147/archived issues/ipj 9-4/
syn flooding attacks.html

13. Bernstein, D.J.: Syn cookies, http://cr.yp.to/syncookies.html
14. Cert coordination center: smurf ip denial-of-service attacks,

http://www.cert.org/advisories/CA-1998-01.html
15. Ferguson, P., Senie, D.: Rfc 2827. network ingress filtering: Defeating denial of service at-

tacks which employ ip source address spoofing,
http://www.faqs.org/rfcs/rfc2827.html

16. Kendall, K.: A database of computer attacks for the evaluation of intrusion detection systems.
Master Thesis, MIT Department of Electrical Engineering and Computer Science (1999)

17. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations.
In: Cam, L.M.L., Neyman, J. (eds.) Proc. of the fifth 5th Berkeley Symposium on Mathemat-
ical Statistics and Probability, vol. 1, pp. 281–297. University of California (1967)

18. Bellovin, S.M.: Packets found on an Internet. Technical report, Computer Communications
Review (1993)

19. Paxson, V.: Bro: a system for detecting network intruders in real-time. Computer Net-
works 31(23-24), 2435–2463 (1999)

20. Adamic, L.A.: Zipf, power-laws, and pareto - a ranking tutorial,
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html

21. Adamic, L.A., Huberman, B.A.: The nature of markets in the world wide web,
http://www.hpl.hp.com/research/idl/papers/webmarkets/webmarkets.pdf

22. Leland, W.E., Taqq, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of Ethernet
traffic. In: Sidhu, D.P. (ed.) ACM SIGCOMM, San Francisco, California, pp. 183–193 (1993)

23. Paxson, V., Floyd, S.: Wide area traffic: the failure of Poisson modeling. IEEE ACM Trans-
actions on Networking 3(3), 226–244 (1995)

24. Arsovski, I., Chandler, T., Sheikholeslami, A.: A ternary content-addressable memory (tcam)
based on 4t static storage and including a current-race sensing scheme. IEEE Journal of
Solid-State Circuits 38(1) (2003)

25. Weinsberg, Y., Tzur-David, S., Anker, T., Dolev, D.: High performance string matching al-
gorithm for a network intrusion prevention system (nips). In: High Performance Switching
and Routing, HPSR 2006 (2006)

26. Snort, http://www.snort.org/
27. Sekar, V., Duffield, N., Spatscheck, O., Merwe, J.V.D., Zhang, H.: Lads: Large-scale auto-

mated ddos detection system. In: USENIX ATC, pp. 171–184 (2006)

http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/syn_flooding_attacks.html
http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_9-4/syn_flooding_attacks.html
http://cr.yp.to/syncookies.html
http://www.cert.org/advisories/CA-1998-01.html
http://www.faqs.org/rfcs/rfc2827.html
http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html
http://www.hpl.hp.com/research/idl/papers/webmarkets/webmarkets.pdf
http://www.snort.org/

Automated Classification of Network Traffic
Anomalies

Guilherme Fernandes and Philippe Owezarski

LAAS - CNRS
Université de Toulouse

7 Avenue du Colonel Roche
31077 Toulouse, France

owe@laas.fr

Abstract. Network traffic anomalies detection and characterization has
been a hot topic of research for many years. Although the field is very ad-
vanced in the detection of network traffic anomalies, accurate automated
classification is still a very challenging and unmet problem. This paper
presents a new algorithm for automated classification of network traffic
anomalies. The algorithm relies on three steps: (i) after an anomaly has
been detected, identify all (or most) related packets or flow records; (ii)
use these packets or flow records to derive several distinct metrics directly
related to the anomaly; and (iii) classify the anomaly using these metrics
in a signature-based approach. We show how this approach can act as a
filter to reduce the false positive rate of detection algorithms, while pro-
viding network operators with (additional) valuable information about
detected anomalies. We validate our algorithm on two different datasets:
the METROSEC project database and the MAWI traffic repository.

1 Introduction

The Internet has greatly grown in complexity, changing from a single best effort
service to a multi-services network that is ever more demanding of guaranteed
quality of service (QoS). Network traffic anomalies can seriously impact or dis-
rupt the normal operation of networks. It is then vital that their identification
and mitigation be quickly done by network administrators. A specific type, vol-
ume anomalies, is responsible for unusual modifications on network traffic vol-
ume characteristics (normally identified on the #packets, #bytes and/or #new
flows). These anomalies can be caused by a myriad of events: from physical or
technical network problems (e.g. outages, routers misconfiguration), to inten-
tionally malicious behavior (e.g. denial-of-service attacks, worms related traffic),
to abrupt changes caused by legitimate traffic (e.g. flash crowds, alpha flows).
This diversity coupled with the great (natural) variability of normal Internet
traffic volume [16], makes the identification and mitigation of these anomalies a
very challenging task.

Despite these difficulties, constant progress has been made in network traffic
anomaly detection. Methods have been created to detect anomalies in single-
links and network-wide data, and techniques have been used to cope with the

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 91–100, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

92 G. Fernandes and P. Owezarski

high dimensionality of network traffic data (e.g. sketches [13][4] and principal
components [11][12]). Algorithms for network traffic anomaly detection have
evolved from only being able to signal an anomaly in time (e.g. [1][17]) to pro-
viding information about the actual flows that cause the anomaly [13][4]. This
information is very valuable for network administrators that need to manually
verify and mitigate potential anomalies, but is still not enough. Because of the
characteristics of network traffic and the frequency of anomalies, it is not feasi-
ble to manually analyze (in real-time) all anomalies detected by state-of-the-art
detection algorithms. Network operators need more information than just the
anomalous flows to efficiently prioritize between detected anomalies.

Although there has been some effort to characterize network traffic anomalies,
automated classification has not received much attention (a notable exception is
[12]). Automated classification intends to add meaningful information to the alert
of a detected anomaly. Ideally, the computed information can then be used to de-
fine the type of the anomaly or to at least help characterize the underlying cause.
In this paper, we present a new algorithm for automated classification of network
traffic anomalies. We show how the information obtained by further analyzing
the identified anomalous flows can be used in a signature-based classification
module to reliably characterize different types of anomalies (e.g. DDoS, network
scans, attack responses). We also show how this approach provides the flexibil-
ity needed by network operators to understand and manipulate the classification
process. We do a statistical validation for the automated classification of DDoS
anomalies and discuss results obtained for other type of anomalies using two dif-
ferent datasets: the METROSEC project (see http://www.laas.fr/METROSEC)
database and the MAWI traffic repository [2].

2 Related Work

The evolution of detection algorithms (see Section 1) has been followed by sev-
eral studies on the characterization of network traffic anomalies. Barford et al. [1]
used a wavelet-based signal analysis on single-link volume data to characterize
four classes of network anomalies: outages, flash crowds, attacks and measure-
ment failures. Lakhina et al. used the subspace method to characterize several
types of network-wide anomalies based on traffic volume metrics [11] and on
traffic features [12]. Prior work has also been directed to individual types of
anomalies. For example, DoS and distributed DoS (DDoS) attacks received an
in-depth analysis in [15][8][14]. Jung et al. [9] studied the differences on DDoS
and flash crowds behavior from a web server perspective. We thoroughly use
the knowledge of such previous work to convey different attributes of the traf-
fic anomalies that are used by our classification module to reliably label the
anomaly.

Previous work has proposed ways to (automatically) convey more informa-
tion about network traffic (e.g. by creating and labeling clusters [12][5]) and
to provide prioritization (e.g. by using heuristics such as unexpectedness [5]).
Specific to network traffic anomalies, the unsupervised approach of [12] creates

Automated Classification of Network Traffic Anomalies 93

clusters based on how anomalies are represented in the entropy space of their
traffic features (i.e. IP addresses and ports). Although all anomalies that belong
to a specific cluster share a given characteristic, this approach is clearly not
enough to uniquely classify an anomaly (as shown by their results). Closer to
our work, Kim et al. [10] study how different types of DoS attacks and port scans
behave, creating rules to detect and classify them based either on flow header
information or on statistical analysis of the flow traffic. Our algorithm aims at
general automated classification of network traffic anomalies which are just being
detected.

3 Anomaly Classification

Our algorithm defines three steps for anomaly classification: (i) after an anomaly
has been detected, identify all (or most) related packets or flow; (ii) use these
packets or flow records to derive several distinct metrics directly related to the
anomaly; and (iii) classify the anomaly using these metrics with a signature-
based approach. These steps are based on the fact that much information is
needed to reliably classify different types of anomalies and even to distinguish
between subtypes, like the many types of DoS attacks. Since current detection
algorithms are based on few parameters (i.e. traffic volume metrics or traffic fea-
tures like IP address and ports), steps are necessary to obtain more information
about the anomaly. Naturally, the best source of information are records on the
packets or flows that actually cause the anomaly. From now on, we will refer
only to packets traces, but similar results can be obtained using flow records.

To test our classification algorithm, we use a variation of the simple traffic
volume anomaly detection algorithm presented on [6]. The detection algorithm
can be explained as follows. Given a trace of duration T and a time-scale gran-
ularity of Δ (i.e. 30s throughout this paper), divide the trace in N slots where
N ∈ [1, T/Δ]. For each slot i obtain the data time series X of each traffic volume
metric ∈ {#packets, #bytes, #syn}. Obtain the absolute deltoids [3] P of X and
calculate their standard deviation σp. For any pi over the threshold K ∗σp, mark
its slot as anomalous. Using the deltoids of the data time series is important to
consider the variation over the amplitude of the curve instead of the variation of
network traffic, as the latter is insignificant due to its natural high variability.
Our choice of metrics is based on [11] (with #syn instead of #new flows), but
the algorithm permits the use of any other data time series.

Detection of low intensity anomalies is important especially for DDoS anoma-
lies [16] and for anomalies in highly aggregated traffic. To detect low intensity
anomalies, we apply the detection algorithm to different aggregation levels at the
same time. Aggregation is done based on destination IP address and a bit mask
modifier for each packet. In this paper we use the following prefix sizes as aggre-
gation levels /0 (i.e. whole traffic), /8, /16 and /24. As with any other detection
algorithm, this increase in sensitivity generates a higher rate of false positives
(i.e. normal traffic variations are considered anomalous). With the multi-level
feature, the algorithm presented above is particularly sensitive to infrequent

94 G. Fernandes and P. Owezarski

communications where only a few packets are seen for a given network/mask
aggregation. Although this would generally make the algorithm unusable, we
show how the classification process can be used as a filter to greatly reduce the
number of false positives. The simplicity of the detection algorithm makes the
next step (i.e. identification of corresponding packets and derivation of metrics)
a straightforward task and permitted us to concentrate on the characterization
of the anomalies.

3.1 Gathering Information

With the characterization of network traffic anomalies done in previous work
[1][11][12], we see that different types of anomalies can affect volume metrics and
traffic features, such as IP addresses and ports, in the same manner. This clearly
shows that we cannot do reliable classification based only on these metrics,
and further information needs to be identified. We then introduce the notion
of anomaly attributes. An attribute is a feature that helps to characterize a
specific anomaly (see Table 1). The classification module uses signatures based
on attributes derived directly from the packets that compose the anomaly.

The detection algorithm that we use in this work makes it straightforward to
get these packets. A detected anomaly is identified by its slot, network address
and mask. We also know exactly why it was considered anomalous (i.e. the
deltoid for one or more of the volume metrics was above the threshold). Using
this information we then proceed to read all the packets in the corresponding slot
that are destined to that network, so that we can find the responsible destination
hosts (i.e. IP address/32). Our idea of responsible destinations is similar to the
notion of dominant IP address range and/or port of [11]. In our algorithm,
the set of responsible destinations is composed of all the destination hosts that
appear in any of the possible combinations of minimum sets that would bring
the anomaly’s corresponding deltoid below a fraction of the original threshold.
After identifying these hosts, we follow an equivalent approach to determine the
responsible sources, ports and protocols. This notion could also be applied to
any other traffic feature. Potentially, finding the packets (or flows) that compose
an anomaly can be done with any detection algorithm that identifies the starting
time and anomalous flows of the anomalies (e.g. [13][4]).

During the anomaly detection and responsible flows identification phases we
compute the attributes shown in Table 1. Attributes found and impactlevel are
specific to the detection algorithm we use in this work, but similar attributes
should be available for other detection algorithms. The rest of the attributes are
derived while identifying the responsible flows. This list is by no means absolute
and can be extended. These attributes were the ones we identified as useful
during this work and are justified in Section 3.2.

3.2 Classification

General Idea. The main objective of our algorithm is to automatically label
network traffic anomalies while they are being detected. The vast number of

Automated Classification of Network Traffic Anomalies 95

Table 1. Attributes derived from a given anomaly. p, b and s are for packets, bytes
and syn respectively.

Attribute Description
found{p,b,s} If metric was anomalous, value of P, zero otherwise.
impactlevel{p,b,s} # of anomalous parent aggregation levels due to this anomaly.
#respdest Number of responsible destinations.
#rsrc/#rdst Ratio of responsible sources to responsible destinations.
avg#rdstports Average number of responsible destination/source ports.
avg#rsrcports Average number of responsible source ports.
#rpkt/#rdstport Ratio of number of packets to responsible destination ports.
#rpkt/#rsrc Average number of packets of responsible sources.
bpprop Average packet size (only packets of the anomaly).
spprop Ratio of number of syn to number of packets of the anomaly.
samesrcpred If a specific responsible source appears for the majority of dests.
samesrcportpred If the majority of responsible sources use the same source ports.
oneportpred If only one destination port dominated.
invprotopred If packets using invalid protocol numbers or types dominated.
invalidpred If the anomaly was mainly consisted of (other) invalid packets.
landpred If most packets had the same source and destination IPs.
echopred If most packets were of type ICMP Echo Request/Reply.
icmppred If most packets were ICMP of any other type.
rstpred If most packets were TCP with RST flag set.

different types of anomalies [11] and the variations of individual types make
it necessary to create very specialized signatures to achieve low misclassifica-
tion rates. To this extent, we define three types of signatures: (i) universal, (ii)
strong and (iii) local. Universal signatures are rules that should never misclas-
sify an anomaly independently of network characteristics. Strong signatures are
expected to have low misclassification rates but usually rely on some kind of
threshold (and thresholds are difficult to set). Local signatures are defined by
network administrators specifically to their domain. Note that they can choose
how to best label these anomalies and change thresholds to suit their needs.

We will now discuss the anomalies that we have studied and show some ex-
amples of how the attributes we have identified can be used to create strong or
even universal signatures for them. The idea is to give the reader a better un-
derstanding of how automated classification can be done using these attributes
and to show the expressiveness of our algorithm. New attributes and rules can
certainly be identified by expert network administrators.

DoS Characterization. Denial-of-service (DoS) attacks are malicious attempts
to negate access to network resources [15]. Distributed denial-of-service (DDoS)
attacks are (flooding) DoS attacks which use multiple sources to cause much more
damage while being hardly detectable. These attacks are extremely common [15][8]
and can greatly reduce the QoS of a network even when it has enough resources
to cope with the attack [16]. DDoS anomalies may greatly affect the time series of
#packets, #flows or both [11][1], and the distributions of destination and source

96 G. Fernandes and P. Owezarski

Table 2. Examples of strong signatures used in this work. gr stands for the time series
granularity and sspp is an abbreviation for the attribute samesrcportspred.

Id Anomaly Type Signature
1 ICMP Echo DDoS #respdest == 1 and echopred and (#rpkt/#rdstport > 30*gr

or #rsrc/#rdest > 15)
2 TCP SYN DDoS #respdest == 1 and founds and spprop > 0.9 and oneportpred

and #rpkt/#rdstport > 10*gr
3 Network Scan #respdest > 200 and samesrcpred
4 SYN Port Scan #respdest == 1 and #rsrc/#rdest == 1 and spprop > 0.8

and avg#rdstports > 5
5 Attack Response #respdest == 1 and (rstpred or icmppred) and foundp > 20*gr

and (not (impactlevelp == 3)) and (#rsrc/#rdest == 1 or sspp)

addresses and ports [12]. However, these characteristics are shared with other types
of anomalies, and more detailed information is needed to create robust signatures
for their automated classification.

Universal signatures for DDoS anomalies can be defined by analyzing the types
of DDoS attacks that use packets which do not comply with the used protocol
specification. For example, many attacks have been seen in the wild to use either
minimum size IP packets (i.e. 40 bytes) [8], an invalid protocol (e.g. IP protocol
0 or 255 [15][8]), or using land packets for flooding (i.e. packets with the same
source and destination IP) [4]. A simple and direct rule would be if invalidpred
or invprotopred or landpred then label as DoS (see Table 1 for a description of
the attributes used). Note that all the identification information (e.g. source(s)
and destination IP and port, protocol, etc.) is given as part of the alert.

Creating universal signatures for DDoS anomalies generated by attacks that
use compliant packets is very difficult. For this type of attacks we try to de-
velop strong signatures using a rich variety of attributes. Table 2 shows some of
the signatures used in this work. For example, the second signature of Table 2
classifies TCP SYN attacks destined to a specific service (oneportpred) with an
average of 10 or more packets per second (#rpkt/#rdstport). It uses founds and
spprop to verify that most of the packets that generate the anomaly have (only)
the TCP SYN flag set.

Other Anomalies. We will now quickly go over the other type of anomalies
and the most interesting attributes we have identified for each one. Network
scans [14] are probing attempts to identify the availability of a specific service
on many different machines. Network scans can be reliably characterized by a
single source communicating with many destinations (i.e. attributes #respdest
and samesrcpred). Stronger signatures can also use bpprop, foundsyn, spprop,
oneportpred and #rpkt/#rdstport to improve accuracy and maybe lower the
threshold for #respdest. Port scans are similar but concentrate on one desti-
nation to discover which services the host is running. They should create very
little traffic but may have a noticeable impact on #syn. They are characterized
by one source, one destination and multiple ports with few packets being used.
Signature 4 of Table 2 shows an example for classifying TCP SYN port scans.

Automated Classification of Network Traffic Anomalies 97

Flash crowds (FC) can be defined as a sudden surge of legitimate client re-
quests for a resource. The distributed nature of FCs makes it difficult to distin-
guish them from DDoS attacks [9]. Attributes include #rsrc/#rdst, oneportpred,
foundsyn, foundpkts and #rpkt/#rsrc, while also taking into consideration that
they should only be detectable in higher granularities (i.e. > 5min). Alpha flows
are unusual high-rate byte transfers from a single source to a single destination,
having a strong impact in #bytes and #packets [11]. They also tend to use much
bigger packets than DoS attacks. Normally, port information is used to identify
known operations that create alpha flows (e.g. scheduled backups). Attributes
include impactlevelbytes, impactlevelpkts, #respdest, #rsrc/#rdst, bpprop and
foundsyn, and actual ports might be defined.

Finally, attack response anomalies are generated by victims of attacks (e.g.
DDoS or scans). These response packets are normally either TCP packets with
RST ACK, RST or SYN ACK flags set, or ICMP control packets [15]. The line
between attack responses and low intensity DDoS anomalies is very thin, es-
pecially as these packets are known to be used in DDoS reflector attacks [8].
Signature 5 of Table 2 shows a unified signature for detecting responses to flood-
ing attacks and to scanning attempts.

Local Signatures. The flexibility of being able to understand, add and modify
the way that anomalies are classified is a key feature for the applicability of au-
tomated network traffic anomaly detection and classification on real networks.
Network operators may modify (or disable) strong signatures (i.e. by changing
thresholds and/or labels), and also develop local (i.e. domain specific) signa-
tures. For example, instead of trying to separate attack responses from DDoS
attacks that use TCP RST packets, a signature might be defined as if #respdest
== 1 and rstpred and impactlevelp > 2 then label as StrongRSTAnomaly. The
flexibility provided by this approach can also be used to reduce false positives
of detection algorithms. The rationale is that a wide range of signatures can be
defined to potentially cover most of the true anomalies and a default label —
applied to any anomalies that did not match one of these signatures — could
then be discarded by network operators. This reduces the detection rate of true
anomalies but trades the false positive rate of the detection algorithm for the
misclassifications of the signatures defined.

4 Validation

We use two datasets to validate our algorithm: the METROSEC project traces
with artificially created anomalies and the MAWI traffic repository with anoma-
lies seen on the wild. We concentrate on DDoS anomalies for their importance
and multiformity. If we are able to successfully separate different DDoS anoma-
lies from normal traffic and from other types of anomalies, it might follow that
general automated classification of network traffic anomalies is possible. Note
that because of space limitation, only the most significant results are presented.
A full description of the validation process and results can be found in [7].

98 G. Fernandes and P. Owezarski

4.1 Data

The METROSEC traces consist of real traffic collected on the French opera-
tional network RENATER with simulated attacks performed using real DDoS
attack tools. This dataset was created in the context of the METROSEC re-
search project to, among other goals, study the nature and impact of anomalies
on networks’ QoS. This dataset has been used for validation by a number of
different studies on anomaly detection (e.g. [17]). For the validation of our al-
gorithm, we use 14 METROSEC traces containing DDoS attacks of intensities
ranging from very low (i.e. 4-10% of the whole traffic) to very high (i.e. 87-92%).
The attacks also vary in type (i.e. from TCP SYN flooding to Smurf attacks),
number of attacking hosts (i.e. 1-4) and duration.

On the other hand, the MAWI dataset has real undocumented anomalies.
It is composed of 15 minutes packets traces collected daily at 2PM from a
Japanese network called WIDE since 1999 to present. These traces are pro-
vided publicly after being anonymized and stripped of their payload data (see
http://mawi.wide.ad.jp/). Although these traces are undocumented, the authors
of [4] started an effort to label anomalies found in this database. We randomly
selected a total of 30 traces from 2001 to 2006 from which some had already
been identified by [4] to contain DDoS anomalies. Using this second dataset is
important to verify that our algorithm is not restricted to a single network nor
to artificial attacks.

4.2 Methodology

The validation of our algorithm is divided in two parts. In the first part, a (proper)
statistical validation is done using the METROSEC traces for the classification of
DDoS anomalies. Different levels of sensitivity of the detection algorithm are used
by varying its K parameter from 1.5 to 6. The classification signatures used are the
same for all values of K, but only DDoS related signatures are considered. In the
second part, the classification performance of our algorithm is tested for different
types of anomalies (i.e. DDoS, port and network scan, and attack response) on
both of the datasets presented in the previous section. A fixed K of 2 is used, and
all the signatures are enabled (including the same DDoS signatures used in the
first part). A granularity of 30 seconds and the levels of aggregation 0, 8, 16 and
24 are used in the detection algorithm for both parts.

4.3 Results and Discussion

The classification performance for the first part of our validation was very sim-
iliar for all values of K (i.e. the algorithm achieved a very high rate of correct
classifications with a very small rate of misclassifications). The results obtained
with K equal to 2 include 23 true positives (i.e. DDoS anomalies correctly clas-
sified), 2 false positives (i.e. non-DDoS anomalies misclassified as DDoS), 1 false
negative (i.e. misclassified DDoS anomaly) and 455731 true negatives (i.e. non-
DDoS anomalies classified as non-DDoS). Further analysis showed that one of

Automated Classification of Network Traffic Anomalies 99

the false positives was actually a real, unexpected DDoS ICMP reflector attack,
and the attack responsible for the false negative was correctly classified in a
subsequent anomaly.

The results for the second part of our validation were equally promising.
On the METROSEC traces, the non-DDoS signatures found a total of 16 port
scans, 13 attack responses and 2471 network scans. Manual analysis showed
that all port scans and 10 attack responses were true positives. We were not
able to identify the nature of the other 3 attack responses. Network scans were
not manually analyzed, but the signature used (see Table 2) has a very low (if
not inexistent) misclassification rate. Running the algorithm on the 30 fifteen
minutes MAWI traces resulted in 22 DDoS, 4429 network scan, 5233 port scan
and 72 attack response anomalies in a total of 2.5 million anomalies detected.
Manual analysis and cross-referencing with the results of [4] revealed 19 true
positives (of which 6 had not been detected by [4]), 3 false positives that might
be ICMP reflector attacks, and 9 (known) false negatives. The false negatives
were mainly due to the detection algorithm used, and are not a limitation of
our classification approach or of the signatures used. Preliminary analysis of the
other type of anomalies showed that many of them were due to worm scannings
(and responses), with Sasser and Dabber variants being particularly common.

5 Conclusions

In this paper we presented a new approach for automated classification of net-
work traffic anomalies. We defined an initial set of anomaly attributes and char-
acterized different types of anomalies (e.g. DDoS, network scans, etc) using them.
We showed how automated classification can be done (succesfully) using these
attributes within a signature-based approach and leveraging on the capability of
state-of-the-art detection algorithms to identify the anomalous flows. We evalu-
ated our work using two very different sets of packets traces with real network
traffic and several anomalies. The results obtained illustrate the expressiveness of
our approach to differentiate between many types of DDoS anomalies and other
anomalies (including normal traffic variations), and strongly hint that general
automated classification is possible. On future work we intend to explore the sub-
tleties of other types of anomalies and to see how state-of-the-art identification
algorithms can be easily integrated to our classification approach.

Acknowledgment

This work has been done in the framework of the ECODE project funded by the
European commission under grant FP7-ICT-2007-2/223936.

References

1. Barford, P., Kline, J., Plonka, D., Ron, A.: A signal analysis of network traffic
anomalies. In: Internet Measurment Workshop, Marseille (November 2002)

2. Cho, K., Mitsuya, K., Kato, A.: Traffic data repository at the wide project. In:
USENIX ATEC, San Diego, California (2000)

100 G. Fernandes and P. Owezarski

3. Cormode, G., Muthukrishnan, S.: What’s new: finding significant differences in
network data streams. IEEE/ACM Trans. Netw. 13(6), 1219–1232 (2005)

4. Dewaele, G., Fukuda, K., Borgnat, P., Abry, P., Cho, K.: Extracting hidden anoma-
lies using sketch and non gaussian multiresolution statistical detection procedures.
In: Workshop on Large-Scale Attack Defense (LSAD), Kyoto, Japan (2007)

5. Estan, C., Savage, S., Varghese, G.: Automatically inferring patterns of resource
consumption in network traffic. In: ACM SIGCOMM, Karlsruhe (2003)

6. Farraposo, S., Owezarski, P., Monteiro, E.: A multi-scale tomographic algorithm
for detecting and classifying traffic anomalies. In: IEEE ICC, Glasgow (June 2007)

7. Fernandes, G., Owezarski, P.: Automated classification of network traffic anomalies.
LAAS Report No 08468 (2008)

8. Hussain, A., Heidemann, J., Papadopoulos, C.: A framework for classifying denial
of service attacks. In: ACM SIGCOMM, Karlsruhe (2003)

9. Jung, J., Krishnamurthy, B., Rabinovich, M.: Flash crowds and denial of service
attacks: Characterization and implications for cdns and web sites. In: WWW,
Honolulu, Hawaii (May 2002)

10. Kim, M.-S., Kong, H.-J., Hong, S.-C., Chung, S.-H., Hong, J.: A flow-based method
for abnormal network traffic detection. In: IEEE/IFIP Network Operations and
Management Symposium, Seoul (April 2004)

11. Lakhina, A., Crovella, M., Diot, C.: Characterization of network-wide anomalies
in traffic flows. In: Internet Measurement Conference, Taormina, Italy (2004)

12. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distri-
butions. In: ACM SIGCOMM, Philadelphia (2005)

13. Li, X., Bian, F., Crovella, M., Diot, C., Govindan, R., Iannaccone, G., Lakhina,
A.: Detection and identification of network anomalies using sketch subspaces. In:
Internet Measurement Conference, Rio de Janeiro, Brazil (2006)

14. Mirkovic, J., Reiher, P.: A taxonomy of ddos attack and ddos defense mechanisms.
SIGCOMM Comput. Commun. Rev. 34(2), 39–53 (2004)

15. Moore, D., Voelker, G.M., Savage, S.: Inferring internet denial-of-service activity.
In: USENIX SSYM, Washington, DC (2001)

16. Owezarski, P.: On the impact of dos attacks on internet traffic characteristics and
qos. In: ICCCN (October 2005)

17. Scherrer, A., Larrieu, N., Owezarski, P., Borgnat, P., Abry, P.: Non-gaussian and
long memory statistical characterizations for internet traffic with anomalies. IEEE
Trans. Dependable Secur. Comput. 4(1), 56–70 (2007)

Formal Analysis of FPH Contract Signing Protocol
Using Colored Petri Nets

Magdalena Payeras-Capellà, Macià Mut-Puigserver, Andreu Pere Isern-Deyà,
Josep L. Ferrer-Gomila, and Llorenç Huguet-Rotger

Departament de Matemàtiques i Informàtica, Universitat de les Illes Balears
{mpayeras,macia.mut,andreupere.isern,jlferrer,l.huguet}@uib.es

Abstract. An electronic contract signing protocol is a fair exchange protocol
where the parties exchange their signature on a contract. Some contract signing
protocols have been presented, and usually they come with an informal analysis.
In this paper we use Colored Petri Nets to formally verify the fairness and the re-
sistance to five previously described attacks of FPH contract signing protocol. We
have modeled the protocol and the roles of the signers, a trusted third party, mali-
cious signers as well as the role of an intruder. We have proven that the protocol is
resistant to typical attacks. However, we have detected three cases where the pro-
tocol generates contradictory evidences. Finally, we have explained which should
be the behavior of an arbiter to allow the resolution of these conflicting situations.

Keywords: contract signing protocol, Coloured Petri Nets, formal verification.

1 Introduction

Contract signing procedures, certified electronic mail or electronic purchases are good
examples of fair exchange protocols. A fair exchange of values always provides an
equal treatment to all users, and, at the end of the execution of the exchange, all parties
have the element that wished to obtain, or the exchange has not been solved success-
fully (in this case, nobody has its expected element). These protocols make use of non-
repudiation services, so they have to produce evidences to guarantee non-repudiation
services. In case of dispute an arbiter has to be able to evaluate the evidences and take a
decision in favor of one party without any ambiguity. Contract signing protocols allow
the signature of a previously accorded contract by two or more signers. The fair ex-
change protocol ensures that at the end of the exchange all the signers have the signed
contract or none of them have it. Fair exchange protocols often use Trusted Third Parties
(TTPs) helping users to successfully realize the exchange. Several electronic contract
signing protocols have been presented, with TTPs involved in different degrees. Among
them there are a few proposals where the exchange can be finished in only three steps.
Micali’s protocol [1] and FPH protocol [2] are both efficient protocols with 3 messages
in the exchange protocol. These protocols differ in the resolution protocol as well as in
the elements exchanged in the three steps. However, they have another common aspects
like the use of an off-line TTP, called optimistic approach. This concept of optimistic
protocol was introduced in [3] by Asokan et al. In an optimistic fair exchange protocol
the TTP only intervenes in case of problems to guarantee the fairness of the exchange.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 101–120, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

102 M. Payeras-Capellà et al.

Bao et Al. described [4] three attacks to Micali’s protocol and proposed an improved
protocol. Recently, Sornkhom and Permpoontanalarp [5] have applied a formal method
to analyze the security of Micali’s protocol by using Colored Petri Nets (hereinafter
CPNs). This method allows the demonstration of the vulnerability of Micali’s protocol
to the three attacks described by Bao. Additionally, the method has been used to find
two new attacks to Micali’s protocol.

In this paper we have created a new model for the formal analysis of FPH protocol,
similar to that used by Sornkhom and Permpoontanalarp but adapted to the features of
the present analysis. Once the protocol is modeled, we can formally prove the behavior
of the protocol in case of malicious users. Our first goal is to prove the fairness of this
protocol; first we will do that in case of malicious signers, and then we have modeled a
malicious intruder.

We have organized the paper as follows, in Section 2 we summarize FPH protocol
with its security characteristics. Section 3 includes the description of the simulation
model using CPNs. Section 4 presents the analysis of the protocol and the results ob-
tained in different execution scenarios. Finally, section 5 includes the conclusions and
describes future applications of the simulation model.

2 FPH Contract Signing Protocol

2.1 Ideal Features of a Contract Signing Protocol

Practical solutions for contract signing require of the existence and possible involve-
ment of a TTP. To obtain efficiency, three objectives are usually pursued:

– To reduce the involvement of the TTP.
– To reduce the number of messages to be exchanged.
– Possible implication of the TTP should not require expensive operations, neither

the storage of high volume of information.

The first objective has been achieved in some proposals. They are the optimistic so-
lutions [3,6,7,8,9] and the TTP are not involved in every protocol run. Regarding the
number of messages to be exchanged, [6] states that three is the minimum number of
messages for a contract signing protocol. Protocols for contract signing have to provide
evidence to parties to prove, at the end of the exchange, if the contract is signed and
the terms of the contract. Some additional properties have to be achieved in optimistic
protocols [7,9]:

– Effectiveness: if the parties behave correctly the TTP will not be involved;
– Fairness: no party will be in advantageous situation at any stage of a protocol run;
– Timeliness: parties can decide when to finish a protocol run;
– Non-repudiation: parties can not deny their actions;
– Verifiability of the third party: if the TTP misbehaves, all damaged parties will be

able to prove it.

In this section we describe the FPH protocol that will be formally evaluated in next
sections. This protocol achieves the previous requirements.

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 103

2.2 Description of FPH Contract Signing Protocol

It is assumed that both (A)lice and (B)ob have already agreed on a plaintext contract C
before the exchange. Then they sign the contract using the protocol. The channel used
among the signers is an unreliable channel, so it cannot be assumed that the messages
sent through this channel arrive to their recipient. The channel between a signer and the
TTP is a resilient channel, that is, the messages will eventually arrive to their recipient
but the time of the arrival cannot be predicted. The originator, A, and the recipient,
B, will exchange non-repudiation evidence directly. Only in case they cannot get the
expected items from the other party, the TTP will be invoked, by initiating cancel or
finish sub-protocols. The notation and elements used in the protocol description are in
Table 1 while the exchange sub-protocol is described in Table 2.

Table 1. Elements

X, Y Concatenation of two messages X and Y
H(X) Collision-resistant one-way hash function of message X
Si(X) Digital signature on message X with the private key, or signing

key, of i (using some hash function, H(), to create a digest of X)
i → j: X i sends message X to j
M={A,B,C} Message containing the contract to be signed, C, the originator,

A(lice), and the recipient, B(ob)
hA = SA(M) Signature of A on the contract M
hB = SB(M) Signature of B on the contract M
ACKA = SA(hB) Signature of A on hB ; acknowledgement that A knows that the

contract is signed, and is part of the necessary evidence for B
ACKT = ST (hB) Signature of the TTP on hB ; this is an equivalent acknowledge-

ment to which A should have sent
hAT = SA[H(M), hA] Evidence that A has requested TTP’s intervention
hBT = SB[H(M), hA, hB] Evidence that B has requested TTP’s intervention
h′

B = ST (hB) Signature of the TTP on hB to prove its intervention

Table 2. Exchange sub-protocol

1. A → B: M , hA

2. B → A: hB

3. A → B: ACKA

If the protocol run is completed, the originator A will hold non-repudiation (NR)
evidence, hB , and the recipient B will hold non-repudiation evidence, hA and ACKA.
So the protocol meets the effectiveness requirement. If it is not the case, A or B, or
both, need to rectify the unfair situation by initiating the cancel or finish sub-protocol,
respectively, so that the situation returns to a fair position.

If A ”says” (A could be trying to cheat or being in a wrong conception of the exchange
state) that she has not received message 2 from B, A may initiate the cancel sub-protocol
(Table 3).

104 M. Payeras-Capellà et al.

Table 3. Cancel sub-protocol

1’. A → T : H(M), hA, hAT

IF (finished=true) 2’. T : retrieves hB

3’. T → A: hB , h′
B

ELSE 2”. T → A: ST (”cancelled”, hA)
3”. T : Stores cancelled=true

In the cancel sub-protocol, the TTP will verify the correctness of the information
given by A. If it is not the case, the TTP will send an error message to A. Otherwise, it
will proceed in one of two possible ways. If the variable finished is true, it means that B
had previously contacted with the TTP (see paragraph below), and the TTP had given
the NR token to B, ACKT . Now it has to give the NR token to A. So, it retrieves this
stored NR token, hB , and sends it to A, and a token to prove its intervention, h′

B . But
if B had not previously contacted with the TTP, the TTP will send a message to A to
cancel the transaction, and it will store this information (cancelled = true) in order to
satisfy future petitions from B. Whatever case, now, we are again in a fair situation.

Table 4. Finish sub-protocol

2’. B → T : H(M), hA, hB , hBT

IF (can-
celled=true)

3’. T → B: ST (”cancelled”, hB)

ELSE 3”. T → B: ACKT

4”. T : stores finished=true and hB

If B ”says” that he has not received message 3, B may initiate the finish sub-protocol
(Table 4). In the finish sub-protocol, the TTP will verify the correctness of the informa-
tion given by B. If it is not the case the TTP will send an error message to B. Otherwise,
it will proceed in one of two possible ways. If the variable cancelled is true, it means
that A had previously contacted with the TTP (see paragraph above). The TTP had given
a message to A to cancel the transaction, and now it has to send a similar message to
B. Otherways, the TTP will send the NR token, ACKT , to B. In this case the TTP will
store the NR token, hB , and will assign the value true to the finished variable, in order
to satisfy future petitions from A. Again, whatever case, now, we are in a fair situation.

As a conclusion, the protocol is fair and we have not made timing assumptions (the
protocol is asynchronous).

2.3 Informal Analysis of Fairness and Non-repudiation of FPH Protocol

After a protocol run is completed (with or without the participation of the TTP), dis-
putes can arise between participants. We can face with two possible types of disputes:
repudiation of A (B claims that the contract is signed) and repudiation of B (A claims
that the contract is signed).

An external arbiter (not part of the protocol) has to evaluate the evidence held and
brought by the parties to resolve these two types of disputes. As a result, the arbiter will

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 105

determine who says the truth. The arbiter has to know who is the originator and who is
the recipient; remember that the contract, M, contains this information.

In case of repudiation of A, B is claiming that he received the signature on the con-
tract M from A. He has to provide the following information to an arbiter: M, hA

and ACKA or ACKT . The arbiter will check if hA is A’s signature on M , and if it
is positive the arbiter will assume that A had sent her signature to B. Then, the ar-
biter will check if ACKA is A’s signature on hB , or it will check if ACKT is TTP’s
signature on hB . If this verification is positive, the arbiter will assume that either A
or the TTP had sent an acknowledgement to B. Therefore, the arbiter will side with
B. Otherwise, if one or both of the previous checks fails, the arbiter will reject B’s
demand. If the evidence held by B proves he is right, and A holds a message like
PRT [H(”cancelled”, hA)], it means that the TTP or A had acted improperly.

In case of repudiation of B, A is claiming that B had signed the contract M . She has
to provide the following information to an arbiter: M and hB . The arbiter will check if
hB is B’s signature on M , and if it is positive the arbiter will assume that B had received
M and hA, and that he is committed to obtain the acknowledgement, ACKA or ACKT .
If the previous verification fails, the arbiter will reject A’s demand. If the verification is
positive, the arbiter should interrogate B. If B contributes a cancel message, it means
that B contacted with the TTP, and the TTP observed that A had already executed the
cancel sub-protocol. For this reason the TTP sent the cancel message to B. Now it is
demonstrated that A has tried to cheat. Therefore, the arbiter will reject A’s demand,
and the arbiter will side with B. If B cannot contribute the cancel message, the arbiter
will side with A.

As a conclusion, the protocol meets the non-repudiation requirement. Moreover, the
protocol also fulfils the property of verifiability of the TTP [2]. This informal analysis
doesn’t cover all the possible situations derived of the execution of the protocol. It will
be completed with a formal verification of the protocol (included in Section 4) resulting
from the use of the model based on Petri Nets described in Section 3.

3 Description of the Model Used for the Formal Analysis of Fair
Exchange Protocols

3.1 Colored Petri Nets

CPN (Colored Petri Nets) is a discrete-event modeling language combining Petri Nets
with a programming language called standard ML [10]. Petri Nets are capable to pro-
vide the interaction between processes and the programming language is used for the
definition and manipulation of the data types. So, CPN can be used as a formal method
to analyze distributed systems and communication protocols. A CPN model is an exe-
cutable model representing the states of the system and the transitions that can cause a
change of the state of the system. CPN contains four kinds of components:

– Places. They represent the system state at a given time. The places change from the
activation of the transitions.

– Transitions. They are the actions which implies a state change.
– Arcs. They are the links between places and transitions.

106 M. Payeras-Capellà et al.

– Color sets. The tokens that move through the states and transitions have a value,
called color.

The global system state, after firing an event, is called marking. So, a marking is like a
photo of the state of the system after each event. One of the tools that implement CPN is
CPNTools [10]. This is the tool we have used in this work. When the model is designed,
we can submit a simulation process in order to generate the state space. The state space
is the set of markings between initial and final event. Therefore, we extract a complete
definition of the system behavior along its execution.

3.2 General Assumptions and Methodology

In order to use Petri Nets to model the protocol, a number of general assumptions are
made:

– Each party in the model has a unique identifier.
– Each party already knows the public keys of the others.
– Cryptographic algorithms used in the model are secure.
– The messages sent between the TTP and any party will always be delivered to the

intended destination without modification (resilient channel).

The methodology followed to analyze the fairness of the protocol is:

– Build the model
– Declare color sets (colsets) to represent messages and elements in the protocol.
– Create top-level net to model the parties.
– Create entity-level net to model the behavior of each party.
– Create process-level net for each entity-level.
– Declare functions and variables that will be used in the model.

– Generate the state space
– Set up initial marking for each party.
– Generate the state space of the model using CPNTools.

– Create query functions to search for attack states.
– Extract attack scenarios using paths between states if attacks are found.

3.3 Description of the Model

In our model, based on Sornkhom and Permpoontanalarp’s model [5], we have four
key parties: Alice (A), Bob (B), Intruder (I) and TTP. While the TTP is strictly honest,
the other parties can take the role of a malicious party. A and B, in their malicious
role (Am and Bm respectively), can stop the exchange or they can contact to the TTP in
many different steps and this way, they could try to cheat the other party. I is a malicious
party who can acts as an observer, like a man in the middle, and moreover he can deploy
many other tasks: drop, store, forward or modify messages in transit sent by any party
involved in the exchange.

In order to model the drop and stop events made by malicious parties (e.g. Am, Bm

or I), the model has a mechanism to inform about these events to the other involved

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 107

parties. When an event occurs, a message is immediately sent by the party who drops
the message or stops the exchange to the other parties involved. This assumption helps
us to avoid the use of a timeout on each party. When an event message is received, the
party could act contacting the TTP or maybe stopping the exchange depending of which
is the current protocol step.

Another important consideration is: messages between the TTP and any other
party of the model will always be delivered to the intended destination without any
modification.

With the provided data, we are able to build an scenario that can be used to model the
protocol using different attack sessions, where each session can involve an initiator (e.g.
A or Am) and a responder (e.g. B or Bm). Note that I and TTP are implicitly present
in every session trace. So, we can deploy four sessions: (A, B), (Am, B), (A, Bm) and
(Am, Bm), where (X, Y) denotes which party is the initiator (X) and the responder
(Y). In this paper, we won’t consider parallel session attacks where malicious parties
can be involved in multiple and concurrent sessions, and this task will be deployed in
further works.

The architecture of the model can be divided into three big blocks, using a top-
down technique: top, entity and process levels. All messages sent by any party are a
combination of source, destination and a protocol message as a payload.

The top level scheme (Fig. 1) shows basic interaction with all parties involved in
the protocol and the message flow between these parties. In the top level we can see
the contents of each party’s database, which contains the protocol messages sent and
received by each party. Finally, we can see and control the content of the session. The

PROTOCOL SIGNATURA
CONTRACTES 2 PARTS

alice

alice

ttp

ttp

bob

bob

intruder

intruder

DBma
DBAm

1`dId(Am)++1`dId(B)++
1`dC(A,B,M1)++1`dSK(SKa)

DB

DBmb
DBBm

1`dId(Bm)++
1`dSK(SKb)++
1`dC(A,B,M2)

DB

SSe
session

(A,Bm)

SSe

DBt
DBT

1`dSK(SKt)++
1`dCanceled(false)++
1`dFinished(false)++
1`dHA("")++
1`dHB("")

DB

DBb
DBB

1`dId(B)++
1`dSK(SKb)++
1`dC(A,B,M1)

DB

DBi
DBI

1`dId(I)++1`dSK(SKi)

DB

DBa
DBA

1`dId(A)++1`dId(B)++
1`dC(A,B,M1)++1`dSK(SKa)

DB

F3

NET

F2

NET

C3

NET

C2

NET

F4

NET

F1

NET

E6

NET

E3

NET

E2

NET

C4

NET

C1

NET

E5

NET

E4

NET

E1

NET

DBA DBI DBB

DBT

session

DBBmDBAm

intruder
bob

ttp

alice

4 1`dId(B)++
1`dId(Am)++
1`dSK(SKa)++
1`dC((A,B,M1))

3 1`dId(Bm)++
1`dSK(SKb)++
1`dC((A,B,M2))

1 1`(A,Bm)

5 1`dSK(SKt)++
1`dCanceled(false)++
1`dFinished(false)++
1`dHA("")++
1`dHB("")

3 1`dId(B)++
1`dSK(SKb)++
1`dC((A,B,M1))

2
1`dId(I)++
1`dSK(SKi)

4 1`dId(A)++
1`dId(B)++
1`dSK(SKa)++
1`dC((A,B,M1))

Fig. 1. Top level scheme

108 M. Payeras-Capellà et al.

variable controls that will be used to distinguish the roles of the parties involved in the
protocol execution (e.g. honest or malicious role). Moreover, in Fig. 1 we can see as the
messages always are intercepted by I in their transit between parties.

The entity level shows us a more detailed model of the protocol and denotes all the
steps each party can execute. In Fig. 2 we can see the entity level of A and her two
roles. Transitions TA1 to TA4 are the transitions corresponding to her honest role, and
TAm1 to TAm4 are the transitions of the malicious role. The first transitions of A, TA1
and TAm1, are to generate the first protocol message and send it to B. The transitions
TA2 and TAm2 are to receive and verify the second message sent by B and send to B
the third message. TA3 and TAm3 have the responsibility to contact the TTP using the
cancellation sub-protocol, and the last transitions TA4 and TAm4 are to receive the
response from the TTP. Note that the selection of the transitions that will be executed is
done by the session configuration which tells if the party is honest or malicious.

B’s entity level, as it is shown in Fig. 3, like A’s entity level, implements the honest
(TB1 to TB3) and malicious (TBm1 to TBm3) roles of B. TB1 and TBm1 are to
receive and verify the first message of the protocol and they also send the second mes-
sage, while TB2 and TBm2 are to receive and verify the third protocol message and, if
it is needed, these transitions are able to contact the TTP. At last, TB3 and TBm3 are
to receive the response from the TTP.

The process level implements all the actions deployed by the users and specifies
how the relations between the entities are. The actions deployed by each process are
atomic, e.g. only one process can be executed at the same time. This can be done by a
unique token, which is shared between all parties of the model. It is captured by each
party when a process starts, and it will be released when the process ends. Moreover,
each process level is controlled by a session flow control mechanism. This mechanism

TAm4

TAm4

TAm3

TAm3

TAm2

TAm2

TAm1

TAm1

TA4

TA4

TA3

TA3

TA2

TA2

TA1

TA1

DBam
DBAm

1`dId(Am)++1`dId(B)++
1`dC(A,B,M1)++1`dSK(SKa)

DB

DBa
DBA

1`dId(A)++1`dId(B)++
1`dC(A,B,M1)++1`dSK(SKa)

DB

E4
In NET

E5
Out NET

C4
In NET

C1
Out NET

E1
Out NETOut

Out

In

OutIn

DBA

DBAm

TA1

TA2

TA3

TA4

TAm1

TAm2

TAm3

TAm4

4

1`dId(B)++
1`dId(Am)++
1`dSK(SKa)++
1`dC((A,B,M1))

4

1`dId(A)++
1`dId(B)++
1`dSK(SKa)++
1`dC((A,B,M1))

Fig. 2. A’s entity level

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 109

TBm3

TBm3

TBm2

TBm2

TBm1

TBm1

TB3

TB3

TB2

TB2

TB1

TB1

DBbm
DBBm

1`dId(Bm)++
1`dSK(SKb)++
1`dC(A,B,M2)

DB

DBb
DBB

1`dId(B)++
1`dSK(SKb)++
1`dC(A,B,M1)

DB

F4
In NET

F1

Out NET

E6
In NET

E3

Out NET

E2
In NETIn

Out

In
Out

In

DBB

DBBm

TB1

TB2

TB3

TBm1

TBm2

TBm3

3
1`dId(Bm)++
1`dSK(SKb)++
1`dC((A,B,M2))

3
1`dId(B)++
1`dSK(SKb)++
1`dC((A,B,M1))

Fig. 3. B’s entity level

is defined like a token which passes through parties and at every step, they change it
contents. This token controls the order in that actions will be done. For example, it
controls that a message generation should be executed after the verification step.

3.4 Query Functions

In order to extract attack scenarios from state spaces we have developed a set of query
functions, such that of Fig. 4 to find special contents in each party database. The main
function is SearchCommitsTerminalNodes(ack,id), where ack is the element or commit
we would like to search in the database of the id party. This function returns a list of
markings which fulfill some conditions. The function is build around the use of stan-
dard query function PredNodes(p1,p2,p3). The first parameter is another custom query
function named SearchCommits(ack,id), where ack and id have the same use as in the
previous query. This function is capable to take up the contents of the desired database
id and tell us if the ack is in the database. The second parameter is to choose only mark-
ings which are leaf markings, e.g. terminal markings, which are markings that contain a
complete execution of the protocol. The last parameter, NoLimit, tells the query should
walk all markings and return all results.

The main query can be used to analyze the fairness property. In order to do this,
we apply the query function against the parties involved in the exchange, depending
of the session, to search the desired commit. The function will return a list of terminal
markings. The analysis of this list will tell us if the exchange is fair or not.

110 M. Payeras-Capellà et al.

Fig. 4. Search query functions developed in order to search commits into the party’s databases

4 Formal Analysis of FPH Contract Signing Protocol

4.1 Evaluation of the Vulnerability to Previously Defined Attacks

Until today, several attacks to contract signing protocols have been described. Bao et
Al. [4] found three attacks to Micali’s ECS1 protocol (Table 5). Later Sornkhom and
Permpoontanalarp [5] found two new attacks to the same protocol. The consequence
of these attacks is the loss of fairness. For this reason, we have used the model based
on CPN described in last section to evaluate the resistance of FPH protocol to all these
attacks.

Micali’s ECS1 protocol (Table 5) and FPH protocol are similar, so we will use the
same notation to describe them. Moreover, we will use EX(Y) to denote the encryption
using the public key of X of the message Y. A is committed to the contract, C, as an
initiator if B has both SA(C, Z) and M where Z = ETTP (A, B, M) and M is a random.
On the other hand, B is committed to C as a responder if A has both SB(C, Z) and
SB(Z).

Now we are going to describe the five attacks to Micali’s protocol and apply them to
FPH protocol, then we will use the model to prove both the fairness and its resistance
to these attacks.

Table 5. Micali’s ECS1 protocol definition

A → B: SA(C, Z)
B → A: SB(C, Z), SB(Z)

IF (Both signatures are valid) A → B: M
IF (B receives valid M such that Z = ETTP (A,B, M)) The exchange is completed
ELSE B → TTP: A,B, Z, SB(C, Z), SB(Z)

TTP → A: SB(C, Z), SB(Z)
TTP → B: M

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 111

Bao’s First Attack. A is a malicious initiator and sends a false element in step
1. In Micali’s protocol this attack (Table 6) can be done if A sends a false Z where
Z = ETTP (A, B, M). In this case, A can always obtain B’s commitment but B will
not have A’s commitment. This attack is possible because B cannot verify the elements
received in step 1.

Table 6. Bao’s First Attack Trace

A → B: SA(C, Z) where Z = ETTP (A,B, M)
B → A: SB(C, Z), SB(Z)
A → B: Nothing
B → TTP: A,B, Z, SB(C, Z), SB(Z)
TTP → A: Nothing
TTP → B: Nothing

In order to detect the attack on the model, we have generated a session with Am (A
acting maliciously) and B, as we can see on Fig. 5. In this attack, Am builds a false
contract M2 and she sets an arbitrary initiator (X) and arbitrary responder (Y). The
first query searches hA element in Am’s database, finding four cases, corresponding to
markings 20, 21, 22 and 37. The second query searches the same element, hA, in B’s
database and as we can see, B never has this element. This is because the verification
stage fails and B never stores the received message. The two last queries search the
response of the TTP into Am’s database, and we can see that Am only receives a cancel
message (marking 37) and she never obtains the NR evidence from the TTP.

Then, FPH protocol is not vulnerable against Bao’s first attack, because B verifies
the elements received in step 1 and in case of attack 1 he doesn’t send the message of
step 2. Then A will not send message 3. If A tries to contact the TTP, the TTP will send
a cancellation proof and stores cancelled=true. B will not contact the TTP because he
doesn’t have any valid element from A.

Fig. 5. First attack query results, Am database contents and session configuration

112 M. Payeras-Capellà et al.

Bao’s Second Attack. A conspires with another initiator A’ and changes her iden-
tity in step 1. In Micali’s protocol this attack (Table 7) can be done if A conspires
with A’ and sends a false Z where Z = ETTP (A′, B, M). In this case, malicious A
can always obtain B’s commitment on a contract between B and A’, but B will not have
anything. This attack is possible because B cannot verify the identity of A in the element
received in step 1.

Table 7. Bao’s Second Attack Trace

A → B: SA(C, Z) where Z = ETTP (A′, B,M)
B → A: SB(C, Z), SB(Z)
A → B: Nothing
B → TTP: A,B, Z, SB(C, Z), SB(Z)
TTP → A: Nothing
TTP → B: Nothing

The second attack can be detected in the model using the same session configuration
(Am, B) as the first attack, but using a different contract. In this case, we have built a
false contract with a confabulated initiator (X), the initial receiver (B) and the previously
accorded plain contract (M1). As we can see in Fig. 6, the query results are the same as
in the first attack, the second function never returns any result because B never builds
message 2. Then, if we search the TTP’s response on Am’s database, we can see Am

never obtains the NR and she only could have a cancellation proof.
So, FPH protocol is not vulnerable against this attack. B verifies the elements re-

ceived in step 1 and in case of attack 2 he doesn’t send the message of step 2, as in
attack 1. Then A will not send message 3 and the exchange will be stopped and A will
not obtain B’s commitment. If A tries to conclude the exchange contacting the TTP, she
will receive a cancellation proof. On the other side, B will not contact the TTP because
he doesn’t want to finish the exchange because he knows that the element sent in step 1
is false and, moreover, he hasn’t sent any element.

Fig. 6. Second attack query results, Am database contents and session configuration

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 113

Table 8. Bao’s Third Attack Trace

A → B: SA(C, Z) where Z = ETTP (A′, B,M)
B → TTP: Z, SB(C′, Z), SB(Z) for a false contract C′

TTP → A: SB(C′, Z), SB(Z)
TTP → B: M

Fig. 7. Third attack query results, Bm database contents and session configuration

Bao’s Third Attack. Malicious B contacts the TTP and requests the resolution
with a false contract. In Micali’s protocol this attack (Table 8) can be done if B,
after the reception of a valid message in step 1, contacts the TTP to start the resolution
of the exchange. In this request B includes a fake contract. In this case, malicious B
always gets A’s commitment on the original contract, but A obtains B’s commitment
on the false contract (selected by B). This attack is possible because A cannot request
the resolution of the exchange and obtains from the TTP the elements resulting of the
resolution started by B.

The third attack can be verified with the model using a session configuration where
A is the honest initiator and Bm is the malicious responder, e.g. (A, Bm). Bm builds a
contract containing a false plain text (M2) but using the real initiator and responder. As
we can see in Fig. 7, when Bm receives the first message, he changes its contents by
setting a different plain contract (M2). Then, we have searched if a false h′

B sent by Bm

is into A’s database and, effectively, it is in marking 63. Although A stores the message,
she verifies it and she decides it is wrong and she doesn’t generate the third message.
Then A can contact the TTP, but she would ask for the original real contract using the
cancellation sub-protocol and the TTP will send a cancellation proof to A. Finally, we
can search the TTP’s responses in Bm’s database and we can see that he never obtains
the alternative proof. Moreover, he can only obtain the cancellation proof and an error
message because the TTP’s verification fails.

In FPH protocol, however, when A receives a false h′
B = SB(M ′, A, B) in step 2,

she detects the attack, stops the exchange and contacts the TTP. If B has contacted the
TTP in first place and the request contained a false hB , the TPP has been able to detect

114 M. Payeras-Capellà et al.

that hA and hB are not related with the same contract. Then, when A sends a resolution
request, the TTP will send her a cancellation proof, so the contract will not be signed.
If A contacts the TTP in first place, she will obtain a cancellation proof.

Fourth Attack. An Attacker eavesdrops B’s commitment. The fourth attack was
described in [5] and it is possible because Micali’s protocol has an incomplete definition
on B’s commitment. The message (SB(C, Z), SB(Z)) is the evidence to prove that B
has committed himself to contract C with any initiator. The evidence is not linked to the
initiator, so anybody who has it can claim to be an initiator of the contract committed
by B.

The fourth attack can be detected using a session between two honest parties, A and
B. As we can see in Fig. 8, the databases of A and B contain the previously committed
contract. In this case, we would search states where an intruder, I, eavesdrops messages.
So, in the first query we will find one state where I changes the initiator of the contract.
This message is found on B’s database and finally, using the third query, we can prove
how B never builds his commit, hB , over the wrong contract with I as initiator.

Fig. 8. Fourth attack query results, parties’ database contents and session configuration

In contrast to Micali’s protocol, FPH protocol has linked B’s commitment to the
contract. The evidence is the message hB = SB(M), however holding this evidence is
not enough for anyone to prove that B has committed himself to contract C. Because
FPH protocol specifies that M contains the contract to be signed, C, and it indicates who
is the originator, A, and who is the recipient, B. Thus, FPH protocol is resistant to this
attack.

Fifth Attack. Swapping the initiator and the responder role. In the fifth attack
(Table 9) described in [5] a malicious A can get B’s commitment on a contract be-
tween B as an initiator and any conspired party Ar as a responder. But B will not get
anything. In order to perform the attack, A involves B in the protocol so as to exchange
the commitments on a contract. But A build a fake item Z with the identity of B as the
initiator and a conspiring party Ar as the responder: Z = ETTP (B, Ar , M). Finally
A will give SB(C, Z) and M to Ar. The TTP can’t send anything to A and B because
item Z doesn’t fulfill the protocol specifications. Now, Ar can successfully claim B’s
commitment on the contract as an initiator and B doesn’t have any kind of evidence.

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 115

Table 9. Fifth Attack Trace

A → B: SA(C, Z) where Z = ETTP (B,Ar, M)
B → A: SB(C, Z), SB(Z)
A → B: Nothing
B → TTP: A,B, Z, SB(C, Z), SB(Z)
TTP → A: Nothing
TTP → B: Nothing

The last attack reconstruction (Fig. 9) uses a session composed by Am and B. In
this case, Am changes the contents of the contract, swapping party’s roles but she uses
the previously committed contract (M1). The application of the query functions against
the model (Fig. 9) is the same as in the first and second attacks. The step 1 searches
in Am’s database the first element h′

A and then the second query searches the second
message into B’s database. As it is shown, B does not build it. Finally, the third and
fourth queries try to search responses sent by the TTP into Am database. As we can
see, she will only obtain a cancellation proof (marking 37).

However, in FPH protocol, as we have already explained, B verifies the item received
at the step 1 of the protocol. Thus, if A has made improper changes in the message, B
will detect it. Then, he will not continue and he will not send the message of step 2.
Therefore, the attack described here will not be successful.

Fig. 9. Fifth attack query results, Am database contents and session configuration

4.2 Fairness Analysis

In this section we will describe some conflicting situations in FPH protocol where the
signers have contradictory evidences (see Section 2.3). The evidences generated by this
protocol are not transferable, and an arbiter must contact both signers to solve a dispute,
know the final state of the exchange and guarantee non repudiation. This property has
been described in [11] and is called weak fairness. In this formal analysis of the fairness
of the protocol we will prove that the arbiter can solve all kinds of conflicting situations
derived from the execution of the protocol.

In [2], we described a conflicting situation where A can obtain NR evidence from B
(hB) and a cancel message from T, while B obtain NR evidence from A (hA, ACKA).
A can do it, for instance, invoking the cancel sub-protocol after the end of the exchange

116 M. Payeras-Capellà et al.

sub-protocol. It seems that A can affirm that the contract is signed or is not signed (can-
celled), depending on her usefulness, while B possesses NR evidence that will prove
that the contract is signed. We have detected this situation in the formal analysis and we
have called it case 1.

Moreover, thanks to our model we have discovered two more conflicting situations.
The first one (we will call it case 2) is produced when a malicious A invokes the cancel
sub-protocol after the end of the exchange sub-protocol (as in case 1) and then a mali-
cious B executes it, too. It seems that A and B can state that the contract is signed or is
not signed (cancelled), depending on her usefulness.

The last conflicting case we have detected (case 3) is achieved when the exchange
is stopped after the step 2. In this case A has the NR evidence from B while B does not
have the NR evidence from A. Both parties can contact the TTP. If B contacts in first
place the TTP will send him the NR evidence and the contract will be signed. Instead,
if A contacts in first place, the TTP will cancel the exchange and then A would have
NR evidence from B (hB) and a cancel message from T, while B obtains the cancel
message.

The three conflicting situations are found in the model deploying a session composed
by a malicious initiator or both a malicious initiator and a malicious responder, e. g.
(Am, Bm). This way, all possible behaviors of both parties are contemplated. Using
the already known query functions, as shown in Fig. 10, we have searched into each
party’s database the desired commits. In this case, we have searched the second and
third messages of the exchange sub-protocol and all the responses received from the
TTP.

If we study the list of markings obtained from each query, we can build Table 10
with the three cases previously described. For each case, we denote the state of the
contract (signed as S and cancelled as C) and either if Am or Bm have contacted,

Fig. 10. Query functions results over the model with (Am, Bm) session

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 117

Table 10. List of the markings corresponding to the three cases with contradictory evidences

Case Marking Am has NR Bm has NR Am contacts TTP Bm contacts TTP
1 488 S & C S Yes (M) No
2 615 S & C S & C Yes (M) Yes (M)
3 607 S & C C Yes (M) Yes (H)
3 613 S & C C Yes (M) Yes (H)

Table 11. Scenarios without contradictory evidences

Marking Am has NR Bm has NR Am contacts TTP Bm contacts TTP
84 C Nothing Yes (H) No
211 S S No No
467 S S No Yes
506 S S & S (by TTP) No Yes
535 S (by TTP) S (by TTP) Yes (H) Yes (H)
536 C C Yes (H) Yes (H)
537 C C Yes (H) Yes (H)
538 S (by TTP) S (by TTP) Yes (H) Yes (H)
610 S & S (by TTP) S (by TTP) Yes (M) Yes (H)
614 S & S (by TTP) S (by TTP) Yes (M) Yes (H)
616 S & S (by TTP) S & S (by TTP) Yes (M) Yes (M)

maliciously (M) or honestly (H), the TTP. As shown in Table 10, using the model we
have located the three cases where Am and Bm have contradictory evidences although
we have detected four possible scenarios, because case 3 could appear twice.

As we can see, case 1 happens on marking 488, when Am obtains the NR evidence
from Bm (so A has evidence that the contract is signed), but she contacts the TTP
in order to cancel the exchange. This is a malicious behavior, because Am shouldn’t
contact the TTP to cancel an exchange that is already finished. The TTP sends Am the
cancel message and then, Am could affirm that the contract is signed or cancelled. Bm

receives the NR from Am and he doesn’t need to contact the TTP.
In case 2, corresponding to marking 615, the exchange sub-protocol ends success-

fully for each party, but Am contacts the TTP, after the transfer of NR evidence to Bm,
in order to obtain a cancel message. Once Bm receives the NR evidence from Am,
she also contacts the TTP and he obtains a cancel message. So, Am and Bm have a
malicious behavior because they contact the TTP when they shouldn’t.

Case 3 is detected twice on the model. In both scenarios, Am obtains the NR from
Bm but Bm never receives the third message. In each scenario, Am executes mali-
ciously the cancellation sub-protocol and she receives a cancel message from the TTP.
In the first scenario, corresponding to marking 607, Am decides to maliciously stop the
exchange and she doesn’t send the third message to Bm. In the other hand, marking
613 is the result of a drop event of the third message by an intruder, I. From the point
of view of Bm, both scenarios are the same, and he will contact to the TTP in order to
resolve the situation obtaining a cancel message for each scenario.

118 M. Payeras-Capellà et al.

In addition to the conflicting cases, there are other cases detected by the model where
there aren’t contradictory evidences but, in some cases, each party could have repeated
proofs because they may contact the TTP when the protocol is successfully ended. Table
11 displays the scenarios without contradictory evidences.

The most interesting cases displayed on Table 11 are markings 84 and 616. In mark-
ing 84, Bm has nothing from Am because an intruder I has executed a drop event on
the first message. Bm cannot execute the finalization sub-protocol because he doesn’t
have any valid element from Am. In the other hand, Am resolves the contract executing
the cancellation sub-protocol obtaining a cancel message from the TTP. The second
marking, 616, is the case where Am and Bm act maliciously contacting the TTP when
the exchange sub-protocol ends successfully. It is similar to case 615, but this time, Bm

contacts in first place the TTP, obtaining the corresponding NR evidence. Then, if Am

tries to cancel, the TTP sends a NR evidence that states that the contract is signed.
In order to solve these conflicting situations an arbiter must always contact both

parties, and in case of contradictory evidences, we have established that he must act as
follows:

– Case 1: A can state that the contract is signed or cancelled, but B possesses NR
evidence that will prove that the contract is signed. If A tries to use the cancel
message she will be proving she is a cheating party, so the arbiter will side with B.

– Case 2: As in case 1, an arbiter will contact both parties in case of contradictory
evidences. If B shows NR evidence that will prove that the contract is signed, the
arbiter can state that the contract is signed, and if B shows that the contract is
cancelled the arbiter will state that the contract is cancelled. This way, due to the
fact that A is always the first cheating party, if the arbiter sides always with B, the
protocol will discourage A to act fraudulently.

– Case 3: Once again, A has acted fraudulently, and if the arbiter sides with B he will
state that the contract is cancelled.

As a conclusion, we have detected the previously defined conflicting situation and we
have discovered two additional cases. All the cases are due to the fraudulent behavior of
A. To solve these situations, an arbiter must contact both parties and in case of conflict
he must always side with B. This way, the protocol will be fair in all cases and moreover
the fraudulent behavior of the parties is discouraged.

5 Conclusions and Future Work

In this paper we have formally analyzed, using a formal method (Petri Nets), an efficient
contract signing protocol, FPH protocol [2], known as one of the solutions involving
only three messages, as Micali’s protocol. But, while Micali’s protocol has been flawed
(three attacks were found by Bao et.al. and two more attacks were found by Sornkhom
and Perpoomtanalarp), FPH protocol is not vulnerable to any of these attacks due to
its features. We have evaluated FPH protocol using a model that assumes that all the
signers can be dishonest and an intruder can also attack the exchange, and we have
proven the resistance to all these attacks using the model.

Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets 119

We have evaluated all the possible situations involving malicious users and intruders,
and in all cases the exchange ends in a fair situation. Moreover, we have also detected
that there are three cases in where, although the exchange is fair, one of the signers (or
both) can have contradictory evidences. For these reason, although the exchange is fair,
we cannot say that the proofs generated by the protocol are transferable, because both
parties have to be interrogated by an arbiter to know the final state of the exchange.
Finally, we have created a set of rules to determine the role of the arbiter in order to
achieve fairness even when contradictory evidences are presented.

With the model created to evaluate the vulnerability of the protocol to previously
described attacks and prove the fairness of the protocol we will be able, in a near future,
to formally analyze other properties of the protocol, such as the verifiability of the TTP
and also try to model more complex protocols such as a multiparty contract signing
protocol. Moreover, we will adapt the model to work with new attack scenarios, like
confabulated attacks using data from two different signature sessions. In parallel, we
will work in the improvement of the model in order to include more control over the
intruder’s behavior and some other enhancements.

Acknowledgement

This work is partially supported by MEC and FEDER under projects: ”Seguridad en
la Contratación Electrónica basada en Servicios Web” (CICYT TSI2007-62986) and
ARES ”Grupo de Investigación Avanzada en Seguridad y Privacidad de la Información”
(Consolider - Ingenio CSD2007-004). We would like to thank Yongyuth Permpoon-
tanalarp for his useful comments and support during the development of this work.

References

1. Micali, S.: Simple and Fast Optimistic Protocols for Fair Electronic Exchange. In: Proceed-
ings of 21st Symposium on Principles of Distributed Computing, pp. 12–19 (2003)

2. Ferrer-Gomila, J., Payeras-Capellà, M., Huguet-Rotger, L.: Efficient Optimistic N-Party
Contract Signing Protocol. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200,
pp. 394–407. Springer, Heidelberg (2001)

3. Asokan, N., Shunter, M., Waidner, M.: Optimistic Protocols for Fair Exchange. In: 4th ACM
Conference on Computer and Communications Security, pp. 7–17 (1997)

4. Bao, F., Wang, G., Zhou, J., Zhu, Z.: Analysis and Improvement of Micali’s Fair Contract
Signing Protocol. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS,
vol. 3108, pp. 176–187. Springer, Heidelberg (2004)

5. Sornkhom, P., Permpoontanalarp, Y.: Security analysis of micali’s fair contract signing pro-
tocol by using coloured petri nets. In: 9th ACIS Int. Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing, pp. 329–334 (2008)

6. Ferrer-Gomila, J.L., Payeras-Capellà, M.M., Huguet-Rotger, L.: Optimality in asynchronous
contract signing protocols. In: Katsikas, S.K., López, J., Pernul, G. (eds.) TrustBus 2004.
LNCS, vol. 3184, pp. 200–208. Springer, Heidelberg (2004)

7. Asokan, N., Shoup, V., Waidner, M.: Asynchronous Protocols for Optimistic Fair Exchange.
In: IEEE Symposium on Research in Security and Privacy, pp. 86–99 (1998)

8. Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 449. Springer, Heidelberg (1999)

120 M. Payeras-Capellà et al.

9. Zhou, J., Deng, R., Bao, F.: Some remarks on a fair exchange protocol. In: Imai, H., Zheng,
Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 46–57. Springer, Heidelberg (2000)

10. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for Modelling
and Validation of Concurrent Systems. Intenationals Journal on Software Tools for Technol-
ogy Transfer, 213–254 (2007)

11. Kremer, S., Markowitch, O., Zhou, J.: An Intensive Survey of Fair Non-Repudiation Proto-
cols. Computer Communications 25, 1606–1621 (2002)

On the Security of Bottleneck Bandwidth
Estimation Techniques

Ghassan Karame, David Gubler, and Srdjan Čapkun

Department of Computer Science
ETH Zürich, Switzerland

karameg@inf.ethz.ch, dgubler@student.ethz.ch, capkuns@inf.ethz.ch

Abstract. Several wide-area services are increasingly relying on bottle-
neck bandwidth estimation tools to enhance their network performance.
Selfish hosts have, therefore, considerable incentives to fake their band-
widths in order to increase their benefit in the network. In this paper,
we address this problem and we investigate the vulnerabilities of current
bottleneck bandwidth estimation techniques in adversarial settings. We
show that finding “full-fledged” solutions for the multitude of attacks on
the end-to-end bandwidth estimation process might not be feasible in the
absence of trusted network components; we discuss solutions that make
use of such trusted components. Nevertheless, we discuss other possible
solutions that alleviate these threats without requiring trusted infras-
tructure support and we evaluate the effectiveness of our proposals on
PlanetLab nodes.

Keywords: Security, Bandwidth Estimation, Bandwidth Shapers.

1 Introduction

Bottleneck bandwidth measurements are gaining increasing importance in many
wide-area Internet systems and services including multicast trees [1], content
distribution and peer-to-peer (P2P) systems [3]. Bottleneck bandwidth refers
to the maximum throughput that a path can provide to a flow, when there is
no other competing traffic load. Recently, bottleneck bandwidth estimation has
attracted significant interest in the literature. This is mainly due to the fact that
the performance and Quality-of-Service of most Internet services are based on
their bandwidth capacities.

Several tools for bottleneck bandwidth estimation (e.g., Nettimer [4], Pathchar
[5], pchar [6], bprobe [8], pathrate [9], Sprobe [10], etc.) have been proposed and
evaluated both by simulations and empirically over a number of Internet paths.
These techniques can be mainly classified in two categories [11]: the one-packet
and the packet-pair technique. Both techniques are well understood and can
provide accurate estimates under certain conditions. In both techniques, probe
packets are exchanged between the verifier (or the sender) and the prover (or
the receiver) to extract estimates of the network bandwidth characteristics.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 121–141, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

122 G. Karame, D. Gubler, and S. Čapkun

To measure bandwidth in a scalable way, current bandwidth measurement
tools push the estimation functionality to the end-hosts. This renders them vul-
nerable to a wide range of security threats as trust is pushed to end-hosts that are
more likely to be compromised than core/edge routers. Due to the increasing re-
liance on bandwidth estimation in current Internet services, untrusted hosts have
considerable incentives to abuse this trust and fake their bottleneck bandwidth
claims in order to increase their advantage from these services (e.g., free-riding
in P2P networks [3]). Indeed, current measurement techniques are often at odds
with“security”when deployed in adversarial settings. A malicious host can abuse
the operation of these techniques in numerous ways to claim an inflated and/or
deflated bandwidth: an untrusted host can make use of bandwidth shapers or
can delay its probe packets to claim any bandwidth of its choice. By inflating
its bandwidth claims, an untrusted host is likely to be delegated high priority in
the network. For example, the untrusted host can be chosen as a super-peer in
a P2P network [12] or a recommended server in content distribution networks
based on the highest-capacity path. Similarly, untrusted provers might claim
lower bandwidths to reduce their contribution in the network.

While some proposals (e.g., [10], [42], etc.) recommend the deployment of bot-
tleneck bandwidth estimation tools across Internet hosts, we argue that the easy
and accurate realization of attacks against current bottleneck bandwidth estima-
tion techniques raises serious concerns about the suitability of their deployment.
A thorough evaluation of these techniques in adversarial settings should therefore
precede any prospective large-scale deployment.

Previous work [10], [11], [13], [14], [16], [17], [18] focused on evaluating the per-
formance of bandwidth estimation techniques and did not address their security
vulnerabilities. In this paper, we address this problem and we analyze the major
security threats against current bottleneck bandwidth estimation techniques. We
also investigate the impact of available software – such as traffic shapers – on
the bandwidth estimation process. We demonstrate the effect, feasibility and the
accuracy of these attacks on PlanetLab nodes [43]. Another important aim of
this work is to extract relevant lessons about the security prospects of existing
bottleneck estimation techniques and to hint application designers on the choice
of a bandwidth estimation technique that better satisfies their desired level of
assurance in the measurements. To the best of our knowledge, this is the first
work that investigates the security vulnerabilities of bandwidth measurements
in adversarial settings.

Our findings suggest that “full-fledged” solutions against the multitude of at-
tacks on the bandwidth estimation process might not be feasible without requir-
ing functionality from trusted network components; namely, since measurements
are conducted end-to-end, fully mitigating delay-attacks against bandwidth esti-
mation emerges as a challenging research problem. Remote attestation by trusted
network components represents one of the few viable options to prevent such at-
tacks. In this work, we discuss the viability and the effectiveness of this proposal
in securing bandwidth measurements. We further propose and analyze several
other solutions and heuristics that do not require any infrastructural support

On the Security of Bottleneck Bandwidth Estimation Techniques 123

and we demonstrate that these schemes counter a large subset of attacks on
current bandwidth estimation techniques.

The rest of the paper is structured as follows: Section 2 briefly overviews
current bandwidth estimation techniques. Section 3 compiles the list of security
threats against bottleneck bandwidth estimation techniques. In Section 4, we
briefly discuss a solution to thwart these attacks based on remote attestation by
trusted network components. In Section 5, we propose a set of techniques that
do not require infrastructural support and we evaluate their effectiveness on
PlanetLab nodes. In Section 6, we discuss possible insights in the design space of
secure bottleneck bandwidth measurements. We conclude the paper in Section 7.

2 Bottleneck Bandwidth Estimation

The bottleneck bandwidth Bmin of a path is the maximum rate that the path
can provide to a flow from the source to the sink. Bmin is determined by the
minimum link capacity in the path. In what follows, we outline the operation
of the two major bottleneck bandwidth estimation techniques: the one-packet
technique and the packet-pair technique.

The One-Packet Technique. The one-packet technique relies on the assump-
tion that a packet’s traversal time across a path can be computed as the sum of
its transmission and propagation delays, as follows:

tjl = tj0 +
l−1∑
i=0

(
Sj

Bi
+ di), (1)

where tjl is the traversal time of packet j through l links, tj0 is the sending time
of packet j, Sj is the packet size, Bi is the bandwidth of link i and di is the
latency of link i.

Fig. 1. Packet-Pair technique: The temporal spacing
between the packets after the bottleneck link is in-
versely proportional to the bandwidth. The narrow
part of the pipe represents the bottleneck link.

Assuming that the trans-
mission delay is linear with
respect to the packet size,
it is highly likely that
if the verifier transmits a
large number of packets of
variable size, at least one
will have negligible queu-
ing delay, and therefore the
minimum round-trip time
(RTT) values of these pack-
ets will form a line whose slope is the inverse of the link bandwidth to the
prover [11]. This technique produces an estimate of the bandwidth at each hop
in the path; the bottleneck bandwidth is then computed as the minimum value
of the estimated link bandwidths. Note that the one-packet technique can only

124 G. Karame, D. Gubler, and S. Čapkun

measure the download bandwidth (i.e., from the verifier to the prover). Examples
of tools using the one-packet technique are Pathchar [5] and Clink [7].

The Packet-Pair Technique: Here, the verifier sends two back-to-back large
packets of equal size to the prover. Once the prover receives these packets, it is-
sues back its reply packet-pairs; the verifier then estimates the prover’s download
bandwidth by measuring the time dispersion between the reply packet-pairs [10].
Similarly, to estimate the prover’s upload bandwidth, the prover sends two large
packets adjacently in time to the verifier. The intuition behind the packet-pair
technique is that when two large packets of the same size are sent back-to-back,
it is highly likely that their queuing occurs at the bottleneck link of capacity
Bi. Once the bottleneck link is traversed, the temporal spacing Δout between
the two packets remains constant (Figure 1) and is inversely proportional to the
bottleneck bandwidth [11]. Assuming FIFO queuing, the dispersion Δmax after
the packet-pair traverse H hops is as follows:

Δmax = max
i=0...H

(
S

Bi
) =

S

mini=0...H(Bi)
=

S

B
, (2)

where Bi is the bandwidth of link i, S is the packet size and B is the bottleneck
bandwidth of the path.

Several implementations of the packet-pair technique exist such as Nettimer [4],
Pathrate [9] and Sprobe [10].

2.1 The Need for Secure Measurements

0 10 20 30 40 50 60 70 80
200

400

600

800

1000

1200

Percentage of Malicious Hosts

A
ve

ra
ge

 D
ow

nl
oa

d
T

im
e

in
 th

e
N

et
w

or
k

(s
)

Claiming Higher BW.

Claiming Lower BW.

Fig. 2. Effect of malicious hosts on the average down-
load time in a multicast binary tree application. Here,
the num. of hosts is 1000 and the resource size is 3
MB. Each data point is averaged over 100 runs.

Bottleneck bandwidth mea-
surements have the
potential to solve consid-
erable problems in appli-
cations and areas such as
network management, end-
to-end admission control,
routing and traffic engi-
neering [1], P2P networks,
content distribution archi-
tectures [2], etc.. Selfish
hosts might, therefore, have
considerable incentives to
fake their bandwidth claims
and increase their profit from these applications; by claiming higher bandwidths,
selfish hosts are likely to be assigned higher priority in the network. Alternatively,
hosts might claim lower bandwidths to limit their contribution in the network.
This renders “secure” bandwidth measurement a crucial task nowadays.

For instance, in multicast distribution architectures, the download perfor-
mance of hosts is highly affected by the organization of the nodes in the tree;

On the Security of Bottleneck Bandwidth Estimation Techniques 125

one slow peer located near the root of the tree can significantly impact the re-
source distribution time in the network [2]. In a prototype simulation that we
have conducted1, we investigate the effect of selfish hosts faking their bandwidths
in an exemplary multicast binary-tree architecture. We assume a realistic band-
width distribution amongst the nodes derived from the findings in [3]. As shown
in Figure 2, selfish hosts can considerably affect the average resource download
times in the entire network by claiming incorrect bandwidths. This effect is even
more detrimental when hosts claim higher bandwidths than they actually have;
the average download time over all peers in the network almost quadruples when
only 20% of peers over-report their bandwidths.

3 Bandwidth Manipulation Attacks

In this section, we investigate delay-based attacks along with the major security
threats against current bottleneck bandwidth estimation techniques.

3.1 System and Attacker Model

Our system consists of a verifier and a prover, connected by a network. The
verifier measures and verifies the bottleneck bandwidth of the path to an un-
trusted prover. Here, we assume that the verifier actively probes the prover by
issuing probe packets. The prover echoes its reply probe packets to the verifier.
The latter estimates the bandwidth of the prover by extracting packet arrival
times according to either the one-packet or the packet-pair technique. We fo-
cus on bottleneck bandwidth measurement and we assume that the application
making use of the bandwidth measurement requires that the prover cooperates
with the verifier during this process (otherwise it would be difficult to securely
estimate its bandwidth). We limit our analysis to those applications that require
an accurate estimate of the bottleneck bandwidth to the prover for their correct
operation. For instance, while bandwidth manipulation attacks can be tolerated
in BitTorrent [15], such attacks might affect the performance of the entire net-
work in routing services, content distribution networks, multicast architectures,
etc..

We further assume that the verifier uses a high-speed connection; therefore,
its bandwidth will not affect the bottleneck bandwidth of the path to the prover.
We do acknowledge that current bandwidth estimation tools can result in rather
large estimation errors, however we assume that enough probe packets are ex-
changed to abstract away the effects of noisy measurements.

Untrusted provers constitute the core of our internal attacker model; by an
untrusted prover, we refer to a host that is involved in bandwidth measurements,
however it is not trusted by the verifier to correctly execute the measurement
protocols. We assume that untrusted provers need to inflate/deflate their band-
width claims by a considerable amount (> 200%) to increase their profit in the
network.
1 Simulation details are omitted due to lack of space.

126 G. Karame, D. Gubler, and S. Čapkun

An external attacker Eve can equally compromise routers on the path be-
tween the verifier and the prover. By compromising routers, Eve can delay the
exchanged probes to alter the bandwidth estimated by the verifier. Eve can also
re-route probe packets through another bottleneck link to influence the con-
ducted measurements.

3.2 Attacks on Current Techniques

Bandwidth measurement tools were developed without prior security considera-
tions as they rely on ICMP/TCP implementations at end-hosts and do not guar-
antee any form of source nor destination authentication. An external attacker
can spoof the IP [26] of the prover and issue back ICMP replies on its behalf; the
measured bandwidth would be that of the attacker. The adversary could also
re-route the probes to hosts at its disposal ([19], [20]) to claim a bandwidth of
her choice (sybil attack [27]). In what follows, we analyze the detrimental impact
of delay attacks on bottleneck bandwidth measurements.

Delay & Rushing Attacks on the One-Packet Technique: An untrusted
prover can intentionally delay its reply packets to convince the verifier of a
bandwidth claim of its choice (Figure 3). Given a set S of the variable-sized
packets used in the one-packet technique, the prover can claim lower bandwidths
Bclaimed than its genuine bandwidth Bauth by introducing a delay Δj to all
packets j ∈ S of size Sj > Si, where i is the smallest packet in S, as follows:

Bclaimed =
Sj − Si

RTTj − RTTi + Δj
(3)

Δj = (Sj − Si) · (1
Bclaimed

− 1
Bauth

), (4)

Here, RTTj denotes the smallest round trip time of probe j from the verifier
to the prover. Note that the prover can equally claim a higher bandwidth by
delaying probes j ∈ S of size Sj < Sk, where k denotes the largest packet in S,
by Δj = (Sk − Sj) · (1

Bauth
− 1

Bclaimed
).

Fig. 3. Delay Attacks on the One-
Packet technique

10 20 30 40 50 60 70 80 90 100

10
1

10
2

10
3

10
4

Claimed Bandwidth (Mbps)

M
ax

im
um

 In
tr

od
uc

ed
 D

el
ay

 (
us

)

One−Packet Technique

Packet−Pair Technique

Fig. 4. Maximum delay required to fake band-
width claims in the one-packet and the packet-
pair technique. Bauth = 100 Mbps, the probe
size ranges from 58 bytes to 1500 bytes. The
path contains 5 link-layer hops.

On the Security of Bottleneck Bandwidth Estimation Techniques 127

In Equation 4, we assume that there are no intermediate hops on the path
between the verifier and the prover. In practice, the untrusted prover has to
further take into account the delays caused by the intermediate hops. This could
be achieved by repeatedly applying Equation 4 for all link-layer hops in the
desired link as follows:

Δj =
H∑

i=1

(
(Sj − Si) · (1

Bclaimed
− 1

Bauth
)
)

, (5)

where H is the total number of link-layer hops in the measured path. Delay attacks
can be very hard to detect given the unnoticeable delay that they introduce (Fig-
ure 4). Note that this attack is not only restricted to untrusted provers; a rogue
router (compromised by Eve) can equally trick the verifier into accepting a fake
bandwidth claim by introducing appropriate delays to the packet traversal time.

An untrusted prover can also predict the Identifier and Sequence Number2

fields in the ICMP echo request packets and “rush” its reply by sending specially
crafted ICMP echo replies ahead of time. In this way, an attacker can claim
a smaller RTT which translates to a different bottleneck bandwidth measure-
ment. A combination of these rushing and delay attacks could even reduce the
maximum delay Δj that needs to be introduced to fake bandwidth claims.

Packet-Attraction and Repulsion attacks on the Packet-Pair Tech-
nique. In current implementations of the packet-pair technique [10], the verifier
sends large back-to-back TCP SYN packets and awaits the corresponding TCP
RST packets from the prover. Assuming that the prover immediately replies to
the probe requests, this time dispersion will also be reflected in the difference of
TCP SYN packet arrival times. By intentionally delaying the second reply probe,
an untrusted prover increases the time dispersion between the packet-pairs and
consequently the verifier would assume the existence of a smaller bottleneck link
on the path to the prover. The required delay Δ is computed as follows:

Bclaimed =
S

Δdispersion + Δ
(6)

Δ = S · (1
Bclaimed

− 1
Bauth

) (7)

where Δdispersion is the genuine dispersion between the packet-pairs, Δ denotes
the additional delay between the packet-pairs, S is the size of the probes, Bclaimed

is the fake claimed bandwidth of the prover and Bauth is the genuine bandwidth
of the prover. As shown in Figure 4, Δ is considerably small – even for the largest
probe size of 1500 bytes – compared to the delay required in the one-packet tech-
nique. This suggests that delay attacks are indeed more challenging to detect in the
packet-pair technique when compared to the one-packet technique (Section 5.2).

Similarly, an untrusted prover or a rogue router can claim a smaller time
dispersion between packet-pairs and consequently a higher download bottleneck
2 Generally, the Sequence Number field in the ICMP echo request is incremental and

therefore can be easily predicted.

128 G. Karame, D. Gubler, and S. Čapkun

bandwidth. The prover can delay its reply till both TCP SYN packets are re-
ceived before sending its packet-pair replies with a time dispersion of its choice.
Since RST packets are typically small in size, they will not queue at the bot-
tleneck link. In this way, the prover can successfully claim a higher bandwidth
than its genuine physical one.

At first glance, one might consider that these attacks can only be mounted
by sophisticated attackers. However, this intuition is not correct. While a so-
phisticated user is able to manipulate his interface to temporarily delay all re-
ply probes, less powerful provers can cause the same effect by using bandwidth
shapers as shown in the following section.

3.3 Demonstration of Delay Attacks

In what follows, we demonstrate the feasibility of delay attacks on the one-
packet and packet-pair techniques. Our findings are depicted in Figures 5 and 6.
In our plots, target bandwidth refers to the bottleneck bandwidth claimed by
an untrusted prover and measured bandwidth denotes the bottleneck bandwidth
estimate extracted by the verifier. We rely on 10 and 100 Mbps symmetric phys-
ical connections deployed on three paths: Path1 where both the verifier and
the prover hosts (running Ubuntu v. 7.04 with 1 GB of RAM) are both located
in Switzerland, Path23 where the verifier and the prover (host running Debian
with 2 GB of RAM) are located in Switzerland and Germany, respectively, and
Path3 where the verifier is located in Switzerland and the prover is located in
Illinois, USA. The prover runs RedHat Linux with 320 MB of RAM. Each data
point in our plots is averaged over 1000 measurements.

One-Packet Technique. We created a prototype tool based on Pathchar [5]
that delays the prover’s reply packets (Equation 5). We used probe sizes rang-
ing from 58 bytes to 1514 bytes (Ethernet headers included). Our application
replaces the kernel’s TCP/IP stack by a raw socket and uses an iptable rule to
drop all replies issued by the kernel; it then sends back the reply probes with
the desired delay.

As shown in Figures 5(a) and 5(c), an untrusted prover can claim any band-
width of its choice in the one-packet technique by appropriately introducing small
– almost unnoticeable – delays before issuing its replies (Figure 5(b)). Given the
impact of small delays, the accuracy of the bandwidth claims can be further
increased by accounting for the prover’s PCI bus delays (Figure 5(c)).

Packet-Pair Technique: We demonstrate delay attacks on Sprobe [10] using
an application that modifies the prover’s networking interface and an open-source
traffic shaper.

The cumulative distribution functions (CDF) of the conducted measurements
(Figure 6(a)) suggests that these attacks – whether originating from a modified

3 We were not able to conduct one-packet experiments on Path2 due to the fact that
intermediate routers were blocking the ICMP probes.

On the Security of Bottleneck Bandwidth Estimation Techniques 129

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
D

F
 o

f m
ea

su
re

m
en

ts

Bandwidth (Mbps)

Path 1, 100 Mbps phy.
Path 1, 10 Mbps phy. simulating 100 Mbps

(a) Claiming 100 Mbps
bandwidth on a 10 Mbps
connection.

 100

 1000

 10000

 100000

 0.1 1 10 100

M
ax

im
um

 in
tr

od
uc

ed
 d

el
ay

 (
m

ic
ro

se
co

nd
s)

Target Bandwidth (Mbps)

Path 1, 100 Mbps phys.
Path 2, 100 Mbps phys.

(b) Maximum introduced
delay in claiming a lower
bandwidth over a 100 Mbps
downlink connection.

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

M
ea

su
re

d
B

an
dw

id
th

 (
M

bp
s)

Target Bandwidth (Mbps)

Target bandwidth
Path 1, using Equations 5 and 6

Path 1, correction for link layer delays
Path 1, correction for IP layer and PCI bus delays

(c) Impact of link-layer and
PCI bus delays on mea-
surements over a 100 Mbps
downlink connection.

Fig. 5. Delay attacks on the One-Packet technique

application or from bandwidth shapers – are almost statistically indistinguish-
able at the verifier’s side from authentic bandwidth measurements, which renders
them very hard to detect.

Our analysis in Section 3.2 is further validated in Figure 6(b). Indeed, the
prover can claim a bandwidth of its choice irrespective of its actual physical
download bottleneck4. These attacks can be equally achieved by bandwidth
shapers (Figure 6(b)). We further investigate the effect of bandwidth shapers
on bandwidth estimation in Section 5.2.

4 Trusted Infrastructure Support for Bandwidth
Measurement

To the best of our knowledge, it is hard, if not impossible, for the verifier to fully
ensure that the remote provers did not intentionally introduce delays before
issuing their replies. Although some schemes were proposed in the scope of se-
curing link quality measurement [40] and RTT measurements [41], they assume
that the prover does not have incentives to mount delay-based attacks; this is
not the case in bandwidth estimation scenarios. An intuitive solution to thwart
this problem is to use tamper-resistant hardware [39] to prevent hosts from tam-
pering with their network interface. However, this hardware comes at a high
cost.

Remote attestation by trusted network components emerges as one of the few
workable alternatives to fully securing bottleneck bandwidth measurements. In
what follows, we briefly outline a scheme that makes use of trusted edge-routers
and we show that our solution effectively mitigates delay attacks against band-
width estimation. In Section 5, we discuss several other alternatives to partially
alleviate these attacks without requiring infrastructural support.
4 Note that Path2 featured considerable cross-traffic during the measurements, which

explains the estimate errors in the plots.

130 G. Karame, D. Gubler, and S. Čapkun

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
D

F
 o

f m
ea

su
re

m
en

ts

Bandwidth (Mbps)

Path 1, modified application, 100 Mbps phys.
Path 2, modified application, 100 Mbps phys.
Path 3, modified application, 100 Mbps phys.

Path 1, SProbe [14], traffic shaper, 100 Mbps phys.

(a) Claiming 10 Mbps on a
100 Mbps uplink connection.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140

M
ea

su
re

d
B

an
dw

id
th

 (
M

bp
s)

Target Bandwidth (Mbps)

Target bandwidth
Path 1, Client at 100 Mbps, modified application
Path 2, Client at 100 Mbps, modified application
Path 3, Client at 100 Mbps, modified application

Path 1, SProbe [14], Client at 100 Mbps, shaper, 250 Hz
Path 1, SProbe [14], Client at 100 Mbps, shaper, 4000 Hz

()(b) Packet-delay attacks on a
100 Mbps downlink connection.

Fig. 6. Delay attacks on the Packet-Pair technique

Fig. 7. Bottleneck bandwidth measure-
ments using trusted edge routers

As shown in Figure 7, we assume in
our analysis that the bottleneck links
reside between the outer-most edge-
routers and the end-hosts. Sample ex-
periments on PlanetLab [43] nodes
confirm that this is a reasonable as-
sumption. We further assume that
edge-routers are trusted by all entities
and can timestamp, generate and au-
thenticate packets.

Our scheme for securing bottleneck
bandwidth measurements unfolds as follows: when the verifier wishes to measure
the bottleneck bandwidth of the path to a prover, it sends along that path a
request packet containing the IP address of the prover and the type of bandwidth
measurement of interest (upload and/or download). Upon reception of the latter
packet, the edge-router connected to the prover measures the capacity of the
bottleneck link it shares with the prover and sends its measurement results to
the verifier. The verifier can validate the authenticity of the measurement results
since they come enclosed with the signature of the edge-router. The edge-router
estimates the bottleneck bandwidth of the link it shares with the prover as
follows:

- Upload Bandwidth Measurement. Similar to the packet-pair technique,
the prover sends two large back-to-back packets to the edge-router. Since the
latter is located on the other side of the bottleneck link, it can verify that
no additional delay Δ (Equation 7) was introduced between the packet-pairs
(the edge-router measures the time delay between the last bit of the first
packet and the first bit of the second packet is negligible). By doing so, the
edge-router is certain that both packets queued at the bottleneck link. It then
measures the time dispersion between the packets to estimate the bottleneck
link of the path to the prover according to the packet-pair technique.

On the Security of Bottleneck Bandwidth Estimation Techniques 131

- Download Bandwidth Measurement. To measure the downlink bottle-
neck of the prover, the edge-router can estimate the time it needs to upload a
packet-pair on the path to the prover. Since the bottleneck link is shared by
both the prover and the edge-router and assuming a high transmission rate,
the latter’s upload throughput corresponds to the download capacity5 of the
bottleneck link.

5 “Best-Effort” Solutions for Current Bandwidth
Estimation Techniques

In Section 4, we showed that by relying on trusted network components, secu-
rity threats against bottleneck bandwidth measurements can be fully mitigated.
Given the current architecture of the Internet, we do acknowledge, nevertheless,
that relying on trusted infrastructure might constitute a rather “bulky”proposal
nowadays. In this section, we discuss and evaluate several other “best-effort”
countermeasures that do not require trusted infrastructure support.

5.1 Mitigating Spoofing and Rushing Attacks

Bottleneck bandwidth measurement tools can make use of lightweight authen-
tication protocols to counter impersonation attacks. Furthermore, the verifier
can use pseudo-random functions to generate its request probes such that they
cannot be predicted by the provers and require that the reply probes are corre-
lated in content to its request probes. Alternatively, the verifier can make use of
distance bounding protocols [30] or can require that the prover authenticates the
received pseudo-random probes using a shared key. Thus, the probability that
the prover correctly rushes its replies before receiving the request probes can be
made satisfactorily negligible (O(2−k) for k-bit probes).

Note that the time required to authenticate each request probe is negligible
compared to the probes’ propagation times. For example, the time required to
encrypt a 1500 bytes message with a 256 bit key using the AES implementation
in the Crypto++ library on an Intel Core 2 1.83 GHz processor running Win-
dows XP is 19 μs [21]. We implemented a variant of the Sprobe tool [10] in which
the prover is required to encrypt (using AES) the request probes and we have
conducted sample bandwidth measurements on Paths 1 and 2 using this appli-
cation. Our findings in Figure 8 show that the accuracy of the measurements is
preserved, which makes AES-based authentication suitable for integration within
current bandwidth estimation techniques.

5.2 Alleviating Delay Attacks

In what follows, we discuss some techniques to alleviate delay attacks on band-
width estimation.
5 Note that the edge-router can estimate the full capacity of the bottleneck link since

it can ensure that no downlink traffic is present at the time of the measurements.

132 G. Karame, D. Gubler, and S. Čapkun

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 80 85 90 95 100 105 110 115

C
D

F
 o

f m
ea

su
re

m
en

ts

Measured Bandwidth (Mbps)

Standard Packet-Pair, path 1
Authentication using AES128, path 1

Standard Packet-Pair, path 2
Authentication using AES128, path 2

Fig. 8. Effect of Authentication on
measurements

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100 120 140

M
ea

su
re

d
B

an
dw

id
th

 (
M

bp
s)

Target Bandwidth (Mbps)

Target bandwidth
Path 1, Client at 100 Mbps
Path 2, Client at 100 Mbps
Path 3, Client at 100 Mbps

Fig. 9. Attacks on a 100 Mbps up-
link connection

1) Mitigating Bandwidth Inflation Attacks in the Packet-Pair Tech-
nique: Given large probe sizes, the packet-pair technique ensures that the upper
bound on the upload bandwidth that an untrusted prover can claim is bounded
by its physical bottleneck bandwidth. This is depicted in Figure 9. In fact, the
lower bound on the time dispersion between large packet-pairs is determined by
the queuing on the bottleneck link. Even if the untrusted prover manipulates
the transmission times of its reply probes, they will queue at the bottleneck link
with high probability. Given this, the only viable strategy to claim a higher band-
width would be to send each of the packet-pairs using different paths. However,
this requires accurate knowledge of the network status; in practice, the attacker
will only succeed with negligible probability. Note that an untrusted prover can
also distribute its authentication credentials to other hosts under its control. In
this case, the upper limit on the claimed bandwidth is bounded by the highest
physical bandwidth of all the compromised hosts.

2) “Reference” Round-Trip Times: Theoretically, delay attacks can be al-
leviated if the verifier knows an estimate of the RTT to the prover. The verifier
can acquire RTT estimates via offline measurements or from online servers that
perform RTT measurements around the globe (e.g., [31]).

For instance, in the one-packet technique, if the verifier knows a reference
RTT for a median-size probe packet in the set S of the variable probe sizes, then
the bandwidth range that a prover can claim is bounded by the accuracy ε of
the estimated reference RTT as follows:

Bauth × (Sj − Si)
ε · Bauth + (Sj − Si)

≤ Bclaimed ≤ Bauth × (Sk − Sj)
(Sk − Sj) − ε · Bauth

,

where Bclaimed is the bandwidth claimed by the untrusted prover, Bauth is the
genuine bottleneck bandwidth on the prover’s side, Si is the size of the smallest
probe packet used in the variable-size probing set S and Sk is the size of the
largest probe packet in S.

On the Security of Bottleneck Bandwidth Estimation Techniques 133

(a) ε = 5 ms.

(b) ε = 5 ms.

(c) ε = 10 ms.

Fig. 10. Range of achievable bandwidth claims for ε = 5 ms and ε = 10 ms. The dark
and light areas represent the achievable claims in the one-packet technique and the
packet-pair technique, respectively.

Similarly, in the packet-pair technique, the download bandwidth that an un-
trusted prover can claim is equally bounded by the accuracy ε of the estimated
RTT:

S

Δdispersion + ε
≤ Bclaimed ≤ S

Δdispersion − ε
,

where S is the request probe packet size, Δdispersion is the time dispersion be-
tween the request probe packet-pairs originating at the bottleneck link and ε is
the acceptable deviation in time from the reference RTT.

We investigate the benefits of this approach in Figure 10 for estimation er-
rors ε = 5 ms and ε = 10 ms from the reference RTT. Given the variability of
RTTs in current networks and the error ε in estimating the reference RTT, this
technique can only limit the range of false claims (within 20 % of the genuine
bandwidth6) in the case where the genuine bottleneck bandwidths are modest
(typically < 10 Mbps). Our findings also show that this technique is not well-
suited to upper-bound fake bandwidth claims in the packet-pair technique. This
is due to the fact that the time dispersion between packets Δdispersion is com-
parable to typical values of ε, even when dealing with small bandwidths. It can,
however, significantly lower-bound the claims of modest-bandwidth hosts.

6 This is rather acceptable compared to the estimation errors resulting from current
bandwidth estimation tools.

134 G. Karame, D. Gubler, and S. Čapkun

3) Detecting Bandwidth Shapers in the Packet-Pair Technique: Band-
width and traffic shapers (e.g., NetLimiter [28], NetEqualizer [29], HTB [32])
provide a simple mechanism to limit the amount of data a host transmits and
accepts by delaying incoming and outgoing packets to match a specified rate
limit. Due to their mode of operation, bandwidth shapers cannot alter the mea-
surements conducted by the one-packet technique since they cannot limit the rate
at which individual probe packets are sent. However, they present themselves as
effortless routines to conduct delay attacks on the packet-pair technique. We
implemented a prototype shaper script on the prover’s side and we studied its
impact on the Sprobe tool [10]. Our script uses iptable rules and the HTB traffic
shaper [32] to throttle the bandwidth of the prover on the fly. We have also
conducted upload bandwidth measurements on Sprobe using NetLimiter [28]
running on a Windows XP kernel. Our measurements were conducted on Path
1 (refer to Section 3.3).

Our findings in Figure 11 suggest that current implementations of bandwidth
shapers allow a verifier to detect their deployment on the prover’s side. In fact,
bandwidth shapers can only receive, store, and release packets whenever a system
timer interrupt occurs [32]. This suggests that the maximum rate at which a
pair of packets can be sent is bounded by the timer frequency of the underlying
operating system: Bmax = S · Fsys, where Bmax is the maximum achievable
bandwidth claim, S is the packet size and Fsys is the system timer frequency.
Furthermore, the achievable time dispersions between a packet-pair Tnominal

are inversely proportional to the system timer frequency Fsys. The achievable
bandwidth claims are therefore computed as follows:

Bclaimed =
S · Fsys

i
, ∀i ∈ N

∗, (8)

which explains the step-wise curves obtained in Figure 11. In most Linux sys-
tems, it is however possible to increase the system frequency through kernel
re-compilation. As shown in Figure 11(a), a prover can achieve a higher upper
bound on the claimed bandwidth by re-compiling its kernel to operate at a higher
timer frequency.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14

M
ea

su
re

d
B

an
dw

id
th

 (
M

bp
s)

Target Bandwidth (Mbps)

Target bandwidth
Path 1, Client at 10 Mbps, modified application

Path 1, SProbe [14], Client at 10 Mbps, shaper, 250 Hz
Path 1, SProbe [14], Client at 10 Mbps, shaper, 4000 Hz

(a) Effect of the HTB Shaper.

 0

 0.5

 1

 1.5

 2

 0 0.5 1 1.5 2

M
ea

su
re

d
B

an
dw

id
th

 (
M

bp
s)

Target Bandwidth (Mbps)

Target bandwidth
Path 1, NetLimiter 2 Pro, Client at 100 Mbps

(b) Effect of NetLimiter.

Fig. 11. Effect of Bandwidth/Traffic Shapers

On the Security of Bottleneck Bandwidth Estimation Techniques 135

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Bandwidth Claims (Mbps)

(a) Fsys = 66.67 Hz

0 0.5 1 1.5 2 2.5 3 3.5
Bandwidth Claims (Mbps)

(b) Fsys = 250 Hz

Fig. 12. Achievable bandwidth claims by traffic shapers in the packet-pair technique.
A spike at value X indicates that bandwidth X can be achieved.

By comparing the time dispersions of the reply packet-pairs with Tnominal

for typical system frequencies, a verifier can suspect the presence of bandwidth
shapers on the provers’ side and can rule out the resulting estimate. This is
especially true for small bandwidths (Figure 12).

We validate this claim via extensive measurements on 200 PlanetLab provers.
To truthfully represent Internet nodes, we chose the PlanetLab nodes whose
bandwidth distribution follows the distribution in the current Internet [38]. In
accordance with the findings in [3], we assume that 40 % of the provers are
selfish and make use of bandwidth shapers to vary their bandwidth claims over
time. Untrusted provers can claim both higher (inflate) or lower (deflate) band-
widths by factors ranging from 1 to 10; as suggested in [3], we assume that
high-bandwidth provers claim higher bandwidths with probability 0.1 and lower
bandwidths with probability 0.9. Low-bandwidth provers claim higher band-
width capabilities with probability 0.9.

In our experiments, we compute the median Bmed of the measured bandwidths
(typically 10 packet-pairs to remove noisy measurements) and we compare it to
the closest bandwidth that a shaper can achieve Bmin as follows: we assume a
normal distribution7 around Bmin and we compute the probability P that Bmed

is within a threshold number of standard deviations (n · σ) of Bmin:

P =
1

σ
√

π

∫ Bmin+nσ

Bmin−nσ

e−
(x−Bmin)2

2σ2 , (9)

Our results are illustrated in Figure 13; a significant fraction (76 %) of provers
that use bandwidth shapers were correctly identified, which confirms the fea-
sibility of bandwidth shaper detection in the packet-pair technique. Since the
granularity of bandwidths that a bandwidth shaper can produce is small for low
bandwidths, it can emulate a large number of low bandwidths (Figure 12). Given
this, and in the presence of cross-traffic, the claims of low-bandwidth provers
(e.g., modem users) can be easily mis-judged to be originating from bandwidth
shapers. This explains the false negatives obtained in identifying honest provers.

Note that some Linux built-in traffic shapers (Linux kernel v. 2.6.23) do not
rely on system timer interrupts. Thus, other techniques will be needed to detect
them in the future. Windows-based shapers (e.g., NetLimiter [28]) can, however,
still be detected using the aforementioned method.

7 Experimental results conducted on 200 different Internet paths confirm this
assumption.

136 G. Karame, D. Gubler, and S. Čapkun

Honest Provers Provers using Bandwidth Shapers
0

20

40

60

80

100

P
er

ce
nt

ag
e

(%
)

CorrectDetections

False Postives

False Negatives

Fig. 13. Bandwidth Shaper Detection conducted on 200 different PlanetLab hosts

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 100 1000

M
ea

su
re

d
B

an
dw

id
th

 (
M

bp
s)

Block size (KB)

DSL connection, upstream direction, max.
DSL connection, upstream direction, mean

Fig. 14. Tradeoffs in the Block-
Transfer method

4) Verifying Bandwidth Capability. The
block transfer method is a conventional mean
to measure the available bandwidth (the un-
used capacity) of a path. Here, the verifier asks
the prover to download/upload a full block of
data and computes the data transfer rate to
estimate the residual bandwidth of the path
to the prover. Several applications make use of
this technique to estimate the available band-
width of a path (e.g., BitTorrent [15]). In the
block transfer method, the upper bound on
the claimed bandwidth is guaranteed to match
the genuine bottleneck bandwidth. This allows
the verifier to identify whether the bottleneck
bandwidth claimed by the prover can be achieved in practice. However, this so-
lution incurs significant overhead in the network and depends on the traffic load
in the path. Nevertheless, our findings suggest the existence of a potential trade-
off with respect to the required data transfer size. We conducted block transfer
measurements from a high-speed verifier to a prover connected to the Internet
by a 0.8 Mbps upload connection. Figure 14 depicts the tradeoff between the
size of the transfer block and the accuracy of the bandwidth estimated by the
verifier. Indeed, even blocks of moderate size (50-100 KB) result in an indicative
bandwidth estimate, which might justify the use of this method to filter out
suspicious bandwidth claims.

5) Reverse-Resolve DNS Names. By resolving a prover’s IP address into
its Domain Name Server (DNS), the verifier might deduce the prover’s type
of Internet connection and detect false bandwidth claims. For example, if the
prover’s DNS name contains the string “dsl”, it is highly likely that it has a DSL
Internet connection [10]. We evaluated the viability of this proposal through
extensive experiments on 1,000,000 randomly chosen IPs. We classified the ob-
tained DNS names depending on whether they contain the strings: “dsl”, “cable”,
“dial”, “isdn”, “WLAN” and “T1” or “T3”. Our findings indicate that 34 % of the
IPs leak their host’s bandwidth information8 (Figure 15). This information can
be used by the verifier to detect discrepancies in the measured bandwidth. For in-

8 Our results could be further improved given better knowledge of the local providers
specific to each country (e.g., AT&T for DSL in the USA).

On the Security of Bottleneck Bandwidth Estimation Techniques 137

Fig. 15. Parsing results of the DNS
names of 1,000,000 randomly chosen
IPs around the globe

Detection False
Rate Positives

Honest Provers 81.4 % 18.6 %
Bandwidth Shapers 75.6 % 21.2 %

Provers with a
68.1 % 31.9 %

Modified Interface
Overall 74.5 % 25.5 %

Fig. 16. Detection Results on 200 Planet-
Lab Nodes

stance, if the verifier measures a 5 Mbps download bandwidth while the prover’s
DNS name is “smartuser.dialup.com”, then it is highly likely that there was an
attack on bandwidth estimation.

6) Additional Heuristics: Statistical outlier detection [22], [23], [24] can also
be used to prevent untrusted hosts from faking their bandwidth claims. Using
outlier detection methods, correlations between different measurements can be
identified and discrepancies can be detected. Furthermore, it is often the case that
various performance metrics implicitly exhibit well-defined correlations [22], [44],
which might allow the verifier to detect inconsistencies. For example, it is unlikely
that a host having a 5 Mbps download bandwidth will have a 10 Mbps upload
bandwidth.

To evaluate the viability of this proposal, we refined the PlanetLab experi-
ment described in Section 5.2-2. We assume that a dedicated server periodically
monitors the bandwidth claims of hosts and keeps history of the recorded mea-
surements. We consider the following setting: 20 % of the hosts modify their
networking interface to fake their bandwidth claims, 20 % of the hosts make
use of bandwidth shapers and the remaining 60 % are “honest” hosts. We use
a combination of bandwidth shaping detection (described earlier) and outlier
detection based on the Z-score test to identify malicious hosts that fake their
bandwidth claims.

Z =
√

n(X − μ)
σ

, (10)

Here, n is the number of measurements per host, μ is their mean and σ is
the standard deviation from the mean. If the P-value of the Z-score is above a
threshold value (0.05), the host is considered to be malicious.

Our findings (Table 16) suggest almost 75 % of the fake claims were success-
fully detected; most of those detections correspond to provers that use bandwidth
shapers and/or that vary their bandwidth claims over time. Larger detection
rates could be achieved by incorporating additional techniques, such as reverse-
resolve DNS names and reputation-based approaches [33], [34], [36], [37] in the
detection process. In the latter approach, each host can be associated with a
reputation value that indicates how trustworthy it is. Interacting hosts measure

138 G. Karame, D. Gubler, and S. Čapkun

their respective bandwidth and form an opinion about each other. Malicious
hosts, claiming incorrect bandwidths or varying their bandwidth claims, will
be associated with low reputation values and, therefore, will not be chosen in
subsequent interactions.

6 Discussion and Outlook

A great deal of lessons can be extracted from the operation of current bottleneck
bandwidth estimation tools. We therefore hope that our findings hint application
designers on the design of secure bandwidth measurement tools:
“Security” Features of Current Techniques. Till recently, the accuracy and
the overhead of bandwidth estimation techniques have highly influenced the de-
cision of application designers to choose a certain estimation technique (e.g.,
one-packet, packet-pair) given the requirements of their applications [10], [11].
However, “security” is another important factor that needs to be taken into ac-
count to ensure consistent bandwidth measurements. Although the design of
current techniques cannot give “clear-cut” security guarantees, our findings sug-
gest that some techniques are likely to perform better than others in different
adversarial settings. On one hand, the packet-pair technique cannot prevent un-
trusted provers from inflating nor deflating their download bandwidth claims.
Although it can successfully deflate its upload bandwidth, an untrusted prover
cannot inflate its upload bandwidth claims given large probes in the packet-pair
technique. An important observation here is that bandwidth deflation/inflation
attacks on the packet-pair technique can be achieved by bandwidth shapers, and
thus can be easily realized by untrusted provers. On the other hand, delay attacks
on the one-packet technique require more sophisticated users, capable of altering
their networking interface, since bandwidth shapers cannot affect the measure-
ments in the one-packet technique. Fortunately, bandwidth manipulation attacks
mounted by modest-bandwidth provers might be successfully mitigated in both
techniques (with the exception of download bandwidth inflation attacks) if the
verifier knows an estimate of the RTT to the prover.
Active and Cooperative Measurements. Some previous work [10] argues
that bandwidth estimation tools should be designed to work in uncooperative
environments in order to scale to a large number of hosts. Although this is indeed
a desirable property, we find support for uncooperative environments rather un-
realistic. In fact, with the proliferation of “de-facto” security applications, such
as home firewalls, probing techniques based on uncooperative TCP/UDP and
ICMP functionality find less applicability in the near future as they are likely to
be considered hostile by the end-hosts. Some routers already filter ICMP pack-
ets due to their potential malevolent use [11]. Therefore, support for cooperative
measurements is inevitable in the near-future [10]. Furthermore, end-to-end se-
curity would impair the use of bandwidth monitoring tools in passive and unco-
operative environments as it involves active end-host cooperation for source au-
thentication; cooperative environments present themselves as vital“playgrounds”
for secure end-to-end bandwidth monitoring in the current Internet.

On the Security of Bottleneck Bandwidth Estimation Techniques 139

Network Measurements as “First Class Citizens”. Current measurement
tools do not take into account the impact of untrusted hosts on bandwidth mea-
surements. Given the current trends in designing a “clean-slate” future Internet,
our findings indirectly motivate the need for a secure next-generation Internet.
Since network measurements are gaining paramount importance in monitoring
the performance of the Internet, secure infrastructural support for network mea-
surements becomes rather a necessity. As shown in Section 4, by pushing func-
tionality from end-hosts back to dedicated and trusted network components,
several security threats can be eliminated. Performance “awareness” is another
desirable design property for next-generation Internet. Dedicated network com-
ponents could in the future construct and store bandwidth and latency “maps”
of Internet hosts. This would indeed eliminate the need for active probing-based
end-to-end insecure measurement tools.

7 Conclusions

In this paper, we analyzed and demonstrated the major security vulnerabilities
of current bottleneck bandwidth estimation techniques. Given the increasing
reliance on bandwidth estimation tools in current Internet services, these vul-
nerabilities might affect the performance of all the applications that make use
of these tools. Another important aim of this work is to extract relevant lessons
about the security prospects of existing bottleneck estimation techniques and
to hint application designers on the choice of a bandwidth estimation technique
that better suits their applications. Our findings suggest that it is very hard,
if not impossible, to fully counter all security challenges against existing tools
without requiring functionality from trusted network components. More specif-
ically, delay attacks pose serious challenges to the consistency of bandwidth
measurements. Nevertheless, we proposed other possible solutions and heuristics
– that do not require infrastructural support – to mitigate attacks on existing
tools and we showed via extensive measurements on PlanetLab nodes that they
can alleviate a significant fraction of attacks on current bottleneck bandwidth
measurement techniques.

Acknowledgments

The authors would like to thank the anonymous reviewers for their helpful sug-
gestions and feedback.

References

1. Ratnasamy, S., McCanne, S.: Inference of Multicast Routing Tree Topologies and
Bottleneck Bandwidths using End-to-end Measurements. In: Proceedings of IEEE
INFOCOM (1999)

2. Schiely, M., Renfer, L., Felber, P.: Self-Organization in Cooperative Content Dis-
tribution Networks. In: Proceedings of NCA (2005)

140 G. Karame, D. Gubler, and S. Čapkun

3. Saroiu, S., Gummadi, P., Gribble, S.: A Measurement Study of Peer-to-Peer File
Sharing Systems. In: MMCN (2002)

4. Lai, K., Baker, M.: Nettimer: A Tool for Measuring Bottleneck Link Bandwidth.
In: USITS (2001)

5. Jocobson, V.: Pathchar (1997),
http://www.caida.org/tools/taxonomy/perftaxonomy.xml#pathchar

6. Math, B.: pchar (1999),
http://www.caida.org/tools/taxonomy/perftaxonomy.xml#pchar

7. Clink: a tool for estimating Internet link characteristics,
http://allendowney.com/research/clink/

8. Carter, R.: Cprobe and bprobe Tools (1996),
http://cs-people.bu.edu/carter/tools/Tools.html

9. Dovrolis, C.: pathrate (2001),
http://www.cis.udel.edu/~dovrolis/bwmeter.html

10. Sariou, S., Gummadi, P., Gribble, S.: SProbe: A Fast Technique for Measuring Bot-
tleneck Bandwidth in Uncooperative Environments. In: Proceedings of INFOCOM
(2002)

11. Lai, K., Baker, M.: Measuring Link Bandwidths Using a Deterministic Model of
Packet Delays. In: ACM SIGCOMM (2000)

12. KaZaA, http://www.kazaa.com/
13. Strauss, J., Katabi, D., Kaashoek, F.: A Measurement Study of Available Band-

width Estimation Tools. In: IMC (2003)
14. Hu, N., Li, L., Mao, Z., Steenkiste, P., Wang, J.: A Measurement Study of Internet

Bottlenecks. In: Proceedings of INFOCOM (2005)
15. BitTorrent, http://www.bittorrent.org/protocol.html
16. Carter, R., Crovella, M.: Measuring Bottleneck Link Speed in Packet-Switched

Networks. In: Performance Evaluation (1996)
17. Dovrolis, C., Ramanathan, P., Moore, D.: What do packet dispersion techniques

measure? In: Proceedings of INFOCOM (2001)
18. Prasad, R., Dovrolis, C., Murray, M., Claffy, K.: Bandwidth estimation: metrics,

measurement techniques, and tools. IEEE Network (2003)
19. Revealed, the Internet’s Biggest Security Hole,

http://blog.wired.com/27bstroke6/2008/08/revealed-the-in.html

20. More on BGP Attacks,
http://blog.wired.com/27bstroke6/2008/08/how-to-intercep.html

21. Speed Comparison of Popular Crypto Algorithms,
http://www.cryptopp.com/benchmarks.html

22. Walters, A., Zage, D., Nita-Rotaru, C.: A Framework for Mitigating Attacks
Against Measurement-Based Adaptation Mechanisms in Unstructured Multicast
Overlay Networks. ACM/IEEE Transactions on Networking (2007)

23. Soule, A., Salamatian, K., Taft, N.: Combining Filtering and Statistical Methods
for Anomaly Detection. In: Proceedings of IMC (2005)

24. Snader, R., Borisov, N.: EigenSpeed: Secure Peer-to-peer Bandwidth Evaluation.
In: Proceedings of IPTPS (2009)

25. Savage, S., Cardwell, N., Wetherall, D., Anderson, T.: TCP Congestion Control
with a Misbehaving Receiver. Computer Communication Review (1999)

26. Harris, B., Hunt, R.: TCP/IP security threats and attack methods. Computer
Communications (1999)

27. Douceur, J.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A.
(eds.) IPTPS 2002. LNCS, vol. 2429, p. 251. Springer, Heidelberg (2002)

http://www.caida.org/tools/taxonomy/perftaxonomy.xml#pathchar
http://www.caida.org/tools/taxonomy/perftaxonomy.xml#pchar
http://allendowney.com/research/clink/
http://cs-people.bu.edu/carter/tools/Tools.html
http://www.cis.udel.edu/~dovrolis/bwmeter.html
http://www.kazaa.com/
http://www.bittorrent.org/protocol.html
http://blog.wired.com/27bstroke6/2008/08/revealed-the-in.html
http://blog.wired.com/27bstroke6/2008/08/how-to-intercep.html
http://www.cryptopp.com/benchmarks.html

On the Security of Bottleneck Bandwidth Estimation Techniques 141

28. NetLimiter, http://www.netlimiter.com/
29. NetEqualizer, http://www.netequalizer.com/
30. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EU-

ROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)
31. The CAIDA DNS root/gTLD RTT Dataset,

https://data.caida.org/datasets/dns/root-gtld-rtt/

32. HTB Traffic Shaper, http://luxik.cdi.cz/~devik/qos/htb/
33. Kamvar, S., Schlosser, M., Garcia-Molina, H.: The EigenTrust Algorithm for Rep-

utation Management in P2P Networks. In: WWW (2003)
34. Sears, W., Yu, Z., Guan, Y.: An Adaptive Reputation-based Trust Framework for

Peer-to-Peer Applications. In: NCA (2005)
35. Damiani, E., Vimercati, S., Paraboschi, S., Samarati, P.: Managing and Sharing

Servents’ Reputations in P2P Systems. IEEE Transactions on Knowledge and Data
Engineering (2003)

36. Dimitriou, T., Karame, G., Christou, I.: SuperTrust: A Secure and Efficient Frame-
work for Handling Trust in Super Peer Networks. In: Proceedings of ACM PODC
(2007)

37. Karame, G., Christou, I., Dimitriou, T.: A Secure Hybrid Reputation Management
System for Super-Peer Networks. In: Proceedings of IEEE CCNC (2008)

38. OECD, Broadband Growth and Policies in OECD Countries,
http://aui.es/IMG/pdf_Informe_OCDE_Banda_Ancha_en_el_Mundo.pdf

39. Jin, H., Lotspiech, J.: Forensic Analysis for Tamper Resistant Software. In: Pro-
ceedings of ISSRE (2003)

40. Zeng, K., Yu, S., Ren, K., Lou, W.: Towards Secure Link Quality Measurement in
Multihop Wireless Networks. In: Globecom (2008)

41. Courtay, O., Karroum, M., Duran, A.: Method and Devices for Secure Measure-
ments of Time-Based Distance Between Two Devices. Patent no. WO/2006/136278
(2006)

42. Barford, P.: Measurement as a First Class Network Citizen. White Paper,
http://pages.cs.wisc.edu/~pb/sngi_whitepaper.pdf

43. PlanetLab, http://www.planet-lab.org/
44. Jiang, G., Cybenko, G.: Temporal and spatial distributed event correlation for

network security. In: American Control Conference (2004)

http://www.netlimiter.com/
http://www.netequalizer.com/
https://data.caida.org/datasets/dns/root-gtld-rtt/
http://luxik.cdi.cz/~devik/qos/htb/
http://aui.es/IMG/pdf_Informe_OCDE_Banda_Ancha_en_el_Mundo.pdf
http://pages.cs.wisc.edu/~pb/sngi_whitepaper.pdf
http://www.planet-lab.org/

An Eavesdropping Game with SINR as an
Objective Function

Andrey Garnaev1 and Wade Trappe2

1 St. Petersburg State University, Russia
agarnaev@rambler.ru

2 WINLAB, Rutgers University, USA
trappe@winlab.rutgers.edu

Abstract. We examine eavesdropping over wireless channels, where se-
cret communication in the presence of an eavesdropper is formulated as
a zero-sum game. In our problem, the legitimate receiver does not have
complete knowledge about the environment, i.e. does not know the exact
values of the channels gains, but instead knows just their distribution.
To communicate secretly, the user must decide how to transmit its in-
formation across subchannels under a worst-case condition and thus, the
legal user faces a max-min optimization problem. To formulate the op-
timization problem, we pose the environment as a secondary player in a
zero-sum game whose objective is to hamper communication by the user.
Thus, nature faces a min-max optimization problem. In our formulation,
we consider signal-to-interference ratio (SINR) as a payoff function. We
then study two specific scenarios: (i) the user does not know the channels
gains; and (ii) the user does not know how the noise is distributed among
the main channels. We show that in model (i) in his optimal behavior the
user transmits signal energy uniformly across a subset of selected chan-
nels. In model (ii), if the user does not know the eavesdropper’s channel
gains he/she also employs a strategy involving uniformly distributing
energy across a subset of channels. However, if the user acquires extra
knowledge about environment, e.g. the eavesdropper’s channel gains, the
user may better tune his/her power allocation among the channels. We
provide criteria for selecting which channels the user should transmit
on by deriving closed-form expressions for optimal strategies for both
players.

1 Introduction

Security is one of the most prominent problems surrounding wireless communi-
cations, largely due to the broadcast nature of the wireless medium, which facil-
itates eavesdropping. Although much of the work in confidentiality for wireless
systems has focused on cryptographic solutions, which necessitate key manage-
ment, there has been a recent movement towards exploring new security mecha-
nisms for wireless systems. There has been an effort by the wireless
research community to develop new forms of confidential communication that

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 142–162, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

An Eavesdropping Game with SINR as an Objective Function 143

exploit the fading characteristics of the wireless channel to achieve secret com-
munications through appropriate coding constructions[1,2,3,4,6,7]. Such work
has largely built upon prior information-theoretic work of [8,9,10,11], where the
notion of secrecy capacity was introduced to describe the rate at which a sender
could communicate in an information-theoretically confidential manner in the
presence of an eavesdropper. Recent results have sought to incorporate mod-
ern communication system design, and take advantage of the many degrees of
freedom available in a dynamic wireless fading environment. For example, it is
possible to use multiple subcarriers in order to provide a large number of parallel
subchannels, as is utilized in OFDM transceivers (which is becoming a de facto
physical layer strategy for many existing and emerging wireless systems, includ-
ing 802.11g and WiMax), and the underlying frequency selectivity induced by
multipaths can provide a diversity advantage. Recent results related to secret
communication over independent, parallel channels has been reported in [4,5].

In the basic formulation of confidential communication, we have three entities:
Alice, Bob and Eve. Alice seeks to communicate secretly with Bob while in
the presence of an eavesdropper Eve. In this formulation, there are two sets
of channels of interest, first is the channel from Alice to Bob, and second is
the channel from Alice to Eve. Using G as a generic representation for the
Alice to Bob channel, and H as a generic representation for the Alice to Eve
channel, a natural question that arises is how secret communication rates can
be characterized under different assumptions regarding which entities know the
states of various channel states. The results of [4], for example, were formulated
for the case of complete channel state information where Alice, Bob and Eve
all have perfect knowledge of the CSI for channels G and H . For complete CSI
it has been shown that the secrecy capacity for a collection of independent
parallel channels can be solved through appropriate water-filling of the channel
differences between G and H .

Unfortunately, the case of complete CSI is not representative of what one
would expect to face in an adversarial setting, where the eavesdropper is not
likely to reveal its presence. Instead, incomplete CSI cases are more appropriate
but, for the most part, have not been considered in the literature. Generally, it is
reasonable to assume that the receiver has knowledge of the state of the channel
from the transmitter. Hence, we are interested in cases where Alice does not have
complete knowledge of G or H . In this paper, we examine the problem of secret
communication over fading channels for several specific cases of incomplete CSI.

To address the problem of how the sender can best communicate secretly to
a legitimate receiver while having varying levels of knowledge about the cor-
responding channel states, we formulate the problem of secret communication
as a zero-sum game. Here, the user must decide how to transmit information
across which subchannels under a worst-case condition, while we pose the envi-
ronment as a secondary player in a zero-sum game whose objective is to hamper
successful communication by the user. We consider signal-to-interference ratio
(SINR) as a payoff function since, in the regime of low SINR, this objective is
an approximation to the secrecy rate.

144 A. Garnaev and W. Trappe

We begin the paper in Section 2 by presenting our three entities (Alice, Bob
and Eve), and providing a description of the basic communication model that we
will use throughout this paper. In the sections that follow, we examine several
distinct cases where different assumptions are placed on how well Alice or Eve
know the channel gains. Throughout the paper we present conclusions that can
be drawn from theoretically formulating the eavesdropping problem in a game-
theoretic scenario. We provide proofs in the Appendix.

2 Problem Overview

Alice seeks to communicate secretly with Bob, while in the presence of a potential
(passive) eavesdropper, Eve. We consider a communication system involving n
independent subchannels, as might arise in an OFDM system. Letting Alice’s
transmitted signal on channel i be Xi, then Bob’s received signal is

Yi =
√

giXi + WAB
i , (1)

while Eve receives the signal

Zi =
√

hiXi + WAE
i . (2)

We may collect Alice’s channel input as Xn = [X1, · · · , Xn], and similarly define
Bob’s received signals as Y n, and Eve’s as Zn. In the communication literature,
the channel gains gi and hi may follow many different distributions and one of the
most common is the Rayleigh fading model, where gi and hi follow an exponential
distribution with an average channel gain E[gi] or E[hi] capturing distance-
dependent attenuation and shadowing. In general the Alice-to-Bob channel and
Alice-to-Eve channel will have different average characteristics, i.e. in general
E[gi]
= E[hi]. Further, we note that the WAB

i and WAE
i are additive noise

terms that (unless noted otherwise) have been normalized appropriately (relative
to the main Alice-to-Bob channel gains gi) to have unit variance.

In [4], it was shown under the complete CSI assumption, that the secrecy
capacity of the system of n independent channels for Alice-Bob-Eve can be ex-
pressed as Cn(g,h,P∗) =

∑n
i=1 CAWGN (gi, hi, Pi), where CAWGN(gi, hi, Pi) is

the secrecy capacity for an additive white Gaussian noise channel model, and
was given by Leung-Yan-Cheong and Hellman in [13]. Further, P∗ is the opti-
mal power allocation across the n subchannels and corresponds to waterfilling
appropriately by considering the relative differences between g and h.

3 Optimization with SINR as the Objective Function

In this section, we formulate the secret communication problem as an optimiza-
tion problem. As noted earlier, Alice would like to transmit information through
n channels, and to do this she must allocate power P = (P1, . . . , Pn) across these
channels, where

An Eavesdropping Game with SINR as an Objective Function 145

Pi ≥ 0 for i ∈ [1, n] (3)

and
n∑

i=1

Pi = P̄ . (4)

Here P̄ > 0 denotes the signal total power budget she may transmit. Up to a
normalization factor, Alice’s payoff is given as follows

v(P) =
n∑

i=1

[
ln (1 + giPi) − ln (1 + hiPi)

]
+

(5)

where gi and hi are the corresponding fading channel gains of the main (Alice
to Bob) and eavesdropper (Alice to Eve) channels. The individual secrecy rate
terms ln (1 + giPi) − ln (1 + hiPi) are generally unwieldy, and as a useful ap-
proximation, we may instead define a more convenient payoff function, which we
shall refer to as the SINR payoff. The SINR payoff for Alice is given as follows

v(P) =
n∑

i=1

giPi −
n∑

i=1

hiPi. (6)

SINR has been considered in non-eavesdropping communication scenarios. Specif-
ically, it has been used as an objective function in the power control game in [16],
[17] and [15]. In [16], the Braess paradox in the context of the power control game
has been studied and in [17] all users have a single common channel and choose
between several base stations, while in [15] jamming and cooperative scenarios are
considered. Lastly, we note that in the regime of low SINR the present objective
serves as an approximation to the secrecy rate.

Since the payoff is linear in P the optimal power strategy assigns transmis-
sion power across the channels by placing a preference to channels with greater
difference between the channel gains of the main and eavesdropper channels,
gi − hi. Namely, the following result holds.

Theorem 1. The optimal power allocation strategy, P , for Alice for the secret
communication optimization problem with SINR as the payoff, under condition
(3) and (4), is given as follows

Pi

{
= 0 for i ∈ [1, n]\I∗,
≥ 0 such that

∑
i∈I∗ Pi = P̄ for i ∈ I∗,

where I∗ = {i ∈ [1, n] : gi − hi = max{gj − hj : j ∈ [1, n]}} is the maximal
difference between fading channel gains of the main (Alice to Bob) and eaves-
dropper (Alice to Eve) channels. The payoff corresponding to this strategy is
v = P̄ max{gj − hj : j ∈ [1, n]}.
Now look at the problem assuming that Alice has fixed the power allocation,
i.e. the vector P = (P1, . . . , Pn) satisfying (3) and (4), yet the environmental

146 A. Garnaev and W. Trappe

parameters are not completely known, i.e. Alice does not know the exact values
of the channels gains. To capture this assumption, we shall further assume that
Alice knows the best case scenario for the main and eavesdropper channel gains,
but does not know the precise values of any instantaneous realization. Hence,
we assume that the gains gi for the main subchannel i is given by

gi = g0
i − Gi, (7)

where g0
i is the best possible channel gain, and Gi reflects additional degradation

of the channel that might arise from fading or other factors. For analysis, we
assume that Alice knows that the degradation Gi is such that

Gi ≥ 0 for i ∈ [1, n] (8)

and that she knows an (ensemble) characterization of this degradation across all
n subchannels

n∑
i=1

Gi = Ḡ, (9)

where Ḡ > 0 thus corresponds to the total main channel perturbation.
Similarly, we assume that Alice has imprecise knowledge of the gains of the

eavesdropper subchannel i, given by

hi = h0
i + Hi, (10)

where h0
i is (best, and hence smallest) possible channel gain and is known to the

user. However, as before, about the perturbation of this channel gain, Hi, she
knows only that it is such that

Hi ≥ 0 for i ∈ [1, n] (11)

and
n∑

i=1

Hi = H̄, (12)

where H̄ > 0 is the total eavesdropper’s channels perturbation known to Alice.
The payoff is then given as follows

v((G, H)) =
n∑

i=1

(g0
i − Gi)Pi −

n∑
i=1

(h0
i + Hi)Pi

=
n∑

i=1

ξ0
i Pi −

n∑
i=1

(Gi + Hi)Pi,

(13)

where ξi is the difference between fading channel gains of the main (Alice to
Bob) and eavesdropper (Alice to Eve) channels i, namely,

ξ0
i = g0

i − h0
i , i ∈ [1, n]. (14)

We will assume that g0
i > h0

i for i ∈ [1, n], so ξ0
i > 0 for i ∈ [1, n]. The following

result allows Alice to quantify the worst payoff she could have, as she would like
to minimize (13) for any admissible (G, H).

An Eavesdropping Game with SINR as an Objective Function 147

Theorem 2. Let Imax = {i ∈ [1, n] : Pi = Pmax} where Pmax = maxj∈[1,n] Pj.
Then the optimal strategy (G, H) is given as follows

Gi

{
= 0, i ∈ [1, n]\Imax,

≥ 0 such that
∑

j∈Imax
Gj = Ḡ, i ∈ Imax,

(15)

Hi

{
= 0, i ∈ [1, n]\Imax,

≥ 0 such that
∑

j∈Imax
Hj = H̄, i ∈ Imax.

(16)

The payoff corresponding to this strategy is v =
∑n

i=1 ξ0
i Pi − Pmax(Ḡ + H̄).

4 An Eavesdropping Game with Unknown Gains

We continue our analysis of the situation where Alice does not know the exact
values of the channels gains, as described previously. Alice faces the problem of
allocating power so that information can be transmitted under the worst-case
conditions or, in other words, Alice faces a maxmin problem. To address this
question we draw upon game theory since we may consider Alice as a player
in a game, while we may model the environment (nature) as a second player
with a goal opposite to Alice’s, namely, to hamper information transmission by
Alice (by selecting channel states so as to benefit the eavesdropper Eve)1. Thus,
nature faces a minmax problem and the optimal strategies of the players for the
maxmin and minmax problems will coincide with each other.

We assume that the gains of the main channel i is given by (7) and the
gains of the eavesdropper channel i is given by (10). The strategy for the en-
vironment is governed by appropriately selecting (G, H), which consists of two
components: G = (G1, . . . , Gn) – the main channel’s degradations about g; and
H = (H1, . . . , Hn) – the eavesdropper’s channel degradations about h, as per
the conditions (8), (9) and (11), (12). Alice’s P is given by satisfying (3) and
(4). The SINR payoff for Alice is given as follows

v(P, (G, H)) =
n∑

i=1

(g0
i − Gi)Pi −

n∑
i=1

(h0
i + Hi)Pi. (17)

Both players know the values of g0
i , h0

i , i ∈ [1, n] as well as P̄ , Ḡ and H̄ . We
consider the situation as a zero-sum game Alice versus nature with Alice’s payoff
as (36), while the payoff to nature is −v(P, (G, H)).

We will look for the value of the game v and the optimal strategies P ∗ of
Alice and (G∗, H∗) for nature. Recall that optimal strategies and the value of
the game satisfy the conditions:

v(P, (G∗, H∗)) ≤ v := v(P ∗, (G∗, H∗)) ≤ v(P ∗, (G, H))

for any strategies P and (G, H) for the players (Alice and nature).
1 We note, contrary to intuition, Eve is not the second player in our formulation, but

is a passive beneficiary of the strategy employed by the environment.

148 A. Garnaev and W. Trappe

Note that the payoff (17) of the game by (14) can be rewritten in the following
equivalent form

v(P, (G, H)) =
n∑

i=1

ξ0
i Pi −

n∑
i=1

(Gi + Hi)Pi. (18)

Without loss of generality we can assume that the channels are arranged in such
a way that

ξ0
1 ≥ ξ0

2 ≥ . . . ≥ ξ0
n > 0. (19)

We introduce the following auxiliary notation,

ϕk :=
k∑

i=1

(ξ0
i − ξ0

k) for k ∈ [1, n]. (20)

It is clear that the sequence ϕk, k ∈ [1, n] is increasing since the following
relations hold:

ϕk+1 − ϕk =
k+1∑
i=1

(ξ0
i − ξ0

k+1) −
k∑

i=1

(ξ0
i − ξ0

k) = (ξ0
k − ξ0

k+1)k ≥ 0,

and ϕ1 = 0. For this game we can prove the following result describing the
optimal strategies as well as the value of the game.

Theorem 3. (a) Let
Ḡ + H̄ ≥ ϕn, (21)

then the value of the game is given by

v =
P̄

n

(
n∑

i=1

ξ0
i − Ḡ − H̄

)
. (22)

Alice’s optimal strategy P ∗ assigns power uniformly across all the n channels,
i.e.

P ∗
i = P̄ /n for i ∈ [1, n]. (23)

Nature’s optimal strategy (G∗, H∗), meanwhile, involves assigning the eavesdrop-
per and main channel components H∗ and G∗ to equalize the difference in quality
between the fading channel gains of the main (Alice to Bob) and eavesdropper
(Alice to Eve) channels, namely, H∗ satisfies (11) and (12), G∗ satisfies (8) and
(9) and

G∗
i + H∗

i =
1
n

⎛⎝H̄ + Ḡ −
n∑

j=1

(ξ0
j − ξ0

i)

⎞⎠ , (24)

say,

G∗
i =

Ḡ

n(Ḡ + H̄)

⎛⎝H̄ + Ḡ −
n∑

j=1

(ξ0
j − ξ0

i)

⎞⎠ , (25)

An Eavesdropping Game with SINR as an Objective Function 149

H∗
i =

H̄

n(Ḡ + H̄)

⎛⎝H̄ + Ḡ −
n∑

j=1

(ξ0
j − ξ0

i)

⎞⎠ (26)

for i ∈ [1, n].
(b) Let

Ḡ + H̄ < ϕn.

Then, there is a k∗ ∈ [1, n − 1] such that

ϕk∗ ≤ Ḡ + H̄ < ϕk∗+1. (27)

The value of the game is given as follows

v =
P̄

k∗

(
k∗∑
i=1

ξ0
i − Ḡ − H̄

)
.

Alice’s optimal strategy P ∗ assigns power equally among the first k∗ channels,
i.e.

P ∗
i =

{
P̄ /k∗ for i ∈ [1, k∗],
0 for i ∈ [k∗ + 1, n].

(28)

Nature’s optimal strategy (G∗, H∗) assigns G∗ only to the main channel compo-
nents unused by Alice, while H∗ and G∗ are assigned across the eavesdropper’s
subchannels so as to equalize the k∗ best differences in quality between fading
channel gains of the main (Alice to Bob) and eavesdropper (Alice to Eve) chan-
nels. Namely, H∗ satisfies (11) and (12), G∗ satisfies (8) and (9),

G∗
i = H∗

i = 0 for i ∈ [k∗ + 1, n] (29)

and

G∗
i + H∗

i =
1
k∗

⎛⎝H̄ + Ḡ −
k∗∑

j=1

(ξ0
j − ξ0

i)

⎞⎠ , (30)

say,

G∗
i =

Ḡ

k∗(Ḡ + H̄)

⎛⎝H̄ + Ḡ −
k∗∑

j=1

(ξ0
j − ξ0

i)

⎞⎠ , (31)

H∗
i =

H̄

k∗(Ḡ + H̄)

⎛⎝H̄ + Ḡ −
k∗∑

j=1

(ξ0
j − ξ0

i)

⎞⎠ (32)

for i ∈ [1, k∗].

150 A. Garnaev and W. Trappe

5 Either the Eavesdropper’s Channels Gains or the Main
Channels Gains Are Unknown

In this section, we first consider the case where Alice does not know the exact
values of gains of the eavesdropper’s channels, but she does have full knowledge
about the main (Alice to Bob) channel gains. The payoff for Alice is

v(P, H) =
n∑

i=1

g0
i Pi −

n∑
i=1

(h0
i + Hi)Pi. (33)

Nature’s strategy thus consists only of appropriately selecting the eavesdropper’s
channels component H while satisfying (11) and (12). For this case we can prove
the following result, which basically states that in order to harm Alice (and
thus help Eve), nature has to spoil equalizing k channels with the largest gains
differences, while Alice has to assign power uniformly across these k channels.

Theorem 4. The value of the game is given as follows

v =
P̄

k

(
k∑

i=1

ξ0
i − H̄

)
.

where

k =

{
n for ϕn ≤ H,

k∗ : ϕk∗ ≤ H̄ < ϕk∗+1 for ϕn > H.

Alice’s optimal strategy P ∗ has her using an equalizing strategy among the k best
channels. Namely,

P ∗ =

{
P̄ /k, i ∈ [1, k],
0, otherwise.

(34)

Nature’s optimal strategy H∗ involves equalizing the k best channels. Namely,

H∗
i =

{1
k

(
H̄ −∑k

j=1(ξ
0
j − ξ0

i)
)

, i ∈ [1, k]

0, otherwise.

If Alice does not know the exact values of the gains of the main subchannels,
while she has full knowledge about eavesdropper’s channel gains, then the payoff
to Alice is given as follows

v(P, G) =
n∑

i=1

(g0
i − Gi)Pi −

n∑
i=1

h0
i Pi. (35)

Theorem 5. The value of the game is given as follows

v =
P̄

k

(
k∑

i=1

ξ0
i − Ḡ

)
.

An Eavesdropping Game with SINR as an Objective Function 151

where

k =

{
n for ϕn ≤ G,

k∗ : ϕk∗ ≤ Ḡ < ϕk∗+1 for ϕn > G.

Alice’s optimal strategy P ∗ has her using an equalizing strategy among the k best
channels. Namely,

P ∗ =

{
P̄ /k, i ∈ [1, k],
0, otherwise.

Nature’s optimal strategy G∗ involves equalizing the k best channels. Namely,

G∗
i =

{1
k

(
Ḡ −∑k

j=1(ξ
0
j − ξ0

i)
)

, i ∈ [1, k]

0, otherwise.

Let us demonstrate some numerical results showing how information about the
channels impacts the value of the eavesdropping game we have formulated. Sup-
pose there are five subchannels, n = 5, and ξi is given by an exponential law,
namely, let ξi = 4κi−1 for i ∈ [1, n] and κ = 0.7. We examine the value of the
game and the number of channels employed to communicate for the two cases:
(1) with unknown gains as in Section 4, (2) with unknown eavesdropper chan-
nels gains. For both plots we will assume that P̄ = 3 and Ḡ ∈ [1, 7] and H̄ = 1.
However, for the second case we assume that H̄ is uniformly distributed across
the subchannels Hi. In Table 1 we present the value of the game for different
values of k. Of course, when the players use all the five channels then the value
of the two cases of the eavesdropping game coincide, which occurs for large Ḡ
(in this example, Ḡ = 7). If Ḡ is small (equals 1) then having extra information
about the channels (the second case) allows her to improve her SINR (and hence
secrecy) payoff by a factor of roughly 1.5.

Table 1. The value of the game and k for two plots

Ḡ Case 1 k Case 2 k

1 1.587 3 2.400 1
2 1.283 4 1.800 2
3 1.033 4 1.320 3
4 0.818 5 0.987 3
5 0.618 5 0.683 4
6 0.418 5 0.433 4
7 0.218 5 0.218 5

6 The Worst Case for the Main Gains Are Known

To show that the optimal strategies essentially depend on the information the
players have, in this section we slightly change the formulation of the game to
assume that the worst possible values for the main channels gains are known

152 A. Garnaev and W. Trappe

(instead of the best possible values), and then demonstrate the impact that such
a change has on the optimal strategies. We assume that the SINR payoff for
Alice is given as follows

v(P, (G, H)) =
n∑

i=1

(g0
i + Gi)Pi −

n∑
i=1

(h0
i + Hi)Pi, (36)

where now g0
i is the worst possible value for the main subchannel i’s gain.

For this game we can prove the following result describing the optimal strate-
gies as well as the value of the resulting eavesdropping game:

Theorem 6. (a) Let (21) hold. Then the value of the game is given by

v =
P̄

n

(
n∑

i=1

ξ0
i − H̄ + Ḡ

)
. (37)

Alice’s optimal strategy P ∗ assigns power uniformly across all n subchannels,
i.e. by (23). Nature’s optimal strategy (G∗, H∗), meanwhile, involves assigning
the eavesdropper channel component H∗ to equalize the eavesdropper channels,
while assigning the main channel component G∗ uniformly across subchannels,

G∗
i = Ḡ/n, (38)

H∗
i =

1
n

⎛⎝H̄ −
n∑

j=1

(ξ0
j − ξ0

i)

⎞⎠ (39)

for i ∈ [1, n].
(b) Let H̄ < ϕn. Then, there is a k∗ ∈ [1, n − 1] such that (27) holds.Also, let

A < 0, (40)

where

A := Ḡ − 1
k∗

n∑
i=k∗+1

⎛⎝ k∗∑
j=1

(ξ0
j − ξ0

i) − H̄

⎞⎠
= Ḡ − 1

k∗

(
(n − k∗)

k∗∑
j=1

ξ0
j

− k∗
n∑

j=k∗+1

ξ0
j − H̄(n − k∗)

)
.

(41)

Then the value of the game is v = P̄
(∑k∗

i=1 ξ0
i − H̄

)
/k∗. Alice’s optimal strategy

P ∗ assigns power equally among the first k∗ channels, i.e. it is given by (28).

An Eavesdropping Game with SINR as an Objective Function 153

Nature’s optimal strategy (G∗, H∗) assigns G∗ only to the main channel com-
ponents not used by Alice, while H∗ is assigned across the eavesdropper’s sub-
channels so as to equalize the quality of the k∗ best channels for Alice. Namely,

G∗
i

⎧⎪⎪⎨⎪⎪⎩
= 0, i ∈ [1, k∗],

≤ 1
k∗

(∑k∗
j=1(ξ

0
j − ξ0

i) − H̄
)

such that
∑n

j=k∗+1 G∗
i = Ḡ, i ∈ [k∗ + 1, n],

(42)

H∗
i =

{ 1
k∗

(
H̄ −∑k∗

j=1(ξ
0
j − ξ0

i)
)

, i ∈ [1, k∗],

0, i ∈ [k∗ + 1, n].
(43)

(c) Let H̄ < ϕn and A ≥ 0. The value of the game is given by (37). Alice’s
optimal strategy P ∗ is given by (23). Nature’s optimal strategy (G∗, H∗) assigns
H∗ according to (43), and equalizes the quality of the k∗ best channels, while
component for the main channel G∗ is assigned to supplement all the channels
until they have an equal level, as follows

G∗
i =

{A
n , i ≤ k∗,
A
n + 1

k∗

(∑k∗
j=1(ξ

0
j − ξ0

i) − H̄
)

, i > k∗.
(44)

Since the inequality

P̄

n

(
n∑

i=1

ξ0
i − H̄ + Ḡ

)
<

P̄

k∗

(
k∗∑
i=1

ξ0
i − H̄

)

is equivalent to

k∗Ḡ < (n − k∗)
k∗∑

j=1

ξ0
j − k∗

n∑
j=k∗+1

ξ0
j − H̄(n − k∗)

or, by (41), to A < 0, we can summarize the result of Theorem 6 about the value
of the game in the following statement.

Theorem 7. The value of the game is given as follows: if ϕn > H̄, then

v = max

{
P̄

n

(
n∑

i=1

ξ0
i − H̄ + Ḡ

)
,
P̄

k∗

(
k∗∑
i=1

ξ0
i − H̄

)}
.

We now present some numerical results to illustrate the implications of Theorem 6
and 7. As before, suppose there are five subchannels, n = 5 and ξi is given by the
exponential law, namely, let ξi = 4κi−1 for i ∈ [1, n] and κ = 0.7. We compare
how the optimal strategies change around the switching point A. In Table 2 we put
together the optimal strategies for nature when Ḡ = 1, P̄ = {3, 4} corresponding
to the values of the game 5.76 and 4.855. In spite of the fact that k∗ = 3 for both
cases, there is a switching point between P̄ = 3 and P̄ = 4 since for the first case

154 A. Garnaev and W. Trappe

Table 2. The optimal strategies for the nature player in the example eavesdropping
game

H∗&G∗(P̄) 1 2 3 4 5
H∗(3) 2.08 0.88 0.04 0 0
G∗(3) 0 0 0 ≤0.446 ≤0.858
H∗(4) 2.413 1.213 0.373 0 0
G∗(4) 0.032 0.032 0.032 0.246 0.658

A = −0.507 and for the second case A = 0.159. In the case P̄ = 3 a variety of
G components is possible that do not use the first three channels. For example, it
could be any G∗ = (0, 0, 0, G∗

4, G
∗
5) such that G∗

4 ≤ 0.446, G∗
5 = 0.858, G∗

4 +G∗
5 =

1. Meanwhile, in the case P̄ = 4 the G∗ component uses all the channels.

7 The Optimization Problem with Unknown Noise and
Eavesdropper’s Channel Gains

In this section, we relax the assumptions about the noise term (WAB
i from

Section 2), and consider the situation where Alice does not know how the noise
is distributed among the main (Alice to Bob) subchannels. For example, the
noise power may not be uniform across subchannels. To reflect this case, we
assume that the main channels gains are given by

gi = 1/(N0
i + Ni) for i ∈ [1, n],

where N0
i is a constant part of the noise level in the main channel i and Ni is a

variable component for which Alice knows only the total perturbation N̄ , which
satisfies

n∑
i=1

Ni = N̄ (45)

and
Ni ≥ 0 for i ∈ [1, n]. (46)

We note that this is representation allows us to reflect the variable noise terms
directly in the channel gains gi. For example, low levels of noise (i.e. small N0

i

and Ni) leads to a correspondingly large subchannel gain gi, which implies that
the ith subchannel is good.

Assume that Alice has fixed the power allocation strategy for signal transmis-
sion, i.e. the vector P = (P1, . . . , Pn) satisfying (3) and (4), but the parameters
for the environment are not completely known, i.e. Alice does not know how the
noise is distribution for Eve, or the values the eavesdropper’s channels gains.
The payoff is given as follows

v((N, H)) =
n∑

i=1

Pi

N0
i + Ni

−
n∑

i=1

(h0
i + Hi)Pi. (47)

An Eavesdropping Game with SINR as an Objective Function 155

Alice would like to know what the worst payoff she could have, so, she would
like to minimize (47) by (N, H).

Since the payoff is linear in H and concave in N , the strategy (N∗, H∗) is the
optimal one if and only if there is ν, such that

Pi

(N0
i + N∗

i)2

{
= ν for N∗

i > 0,

≤ ν for N∗
i = 0,

(48)

H∗
i

{
≥ 0 for Pi = Pmax,

= 0 otherwise.
(49)

Then the optimal H∗ is given by (16) and the optimal N∗ is of the form

N∗
i = Ni(ν) =

[√
Pi/ν − N0

i

]
+

for i ∈ [1, n],

where ν = ν∗ is the unique positive root of the equation

n∑
i=1

[√
Pi/ν − N0

i

]
+

= N̄ .

The payoff corresponding to (N∗, H∗) is given as follows

v =
√

ν∗
∑

Ni(ν∗)>0

√
Pi −

n∑
i=1

h0
i Pi − H̄Pmax.

8 The Game with Unknown Noise in the Main
Subchannels

In this section we consider the situation where there is unknown noise in the
main subchannels, and examine this case from game-theoretical position. There
are two players: Alice and nature. Alice has to transmit the total power P̄ using
strategy P satisfying (3) and (4). Recall that nature’s objective is to harm Alice-
to-Bob communication, and thus in this case nature’s strategy consists only of a
jamming component N satisfying (45) and (46), i.e. nature introduces noise to
the main subchannels. The payoff to Alice is given as follows

v(P, N) =
n∑

i=1

Pi

N0
i + Ni

−
n∑

i=1

h0
i Pi (50)

The payoff to nature is −v(P, N).
In the following theorem we find the value of the game and the optimal strate-

gies for the players. In particular, we show that nature should hamper precisely
the same channels that Alice employs. The optimal strategy for nature is a water
filling strategy, but from an adversarial point of view.

156 A. Garnaev and W. Trappe

Theorem 8. The value of the game is ω∗P̄ where ω∗ is the unique root in
[−mini h0

i ,∞) of the water filling equation

HN(ω) :=
n∑

i=1

[
1

h0
i + ω

− N0
i

]
+

= N̄ . (51)

The optimal nature’s strategy is given by

N∗
i = Ni(ω) =

[
1

h0
i + ω

− N0
i

]
+

, i ∈ [1, n]. (52)

The optimal Alice’s strategy is given as follows

P ∗
i =

⎧⎪⎪⎨⎪⎪⎩
P̄

1/(h0
i + ω∗)2∑

j:Nj(ω∗)>0

(1/(h0
j + ω∗)2)

if Ni(ω∗) > 0.

0 otherwise.

Remark 1. It is interesting that the optimal strategy for nature does not take
into account the power of signal Alice has to transmit but only the parameters of
the environment, which is quite reasonable because nature is Alice’s rival.

As a numerical example we consider five channels n = 5 case. Let N0
i and h0

i

are given by the same exponential law, namely, N0
i = h0

i = κi−1 for i ∈ [1, n]
where κ = 0.5. Also, let P̄ = 1 and N̄ = 0.5 In Table 3 the value of the game
and the players’ optimal strategies are given as a function of κ. For κ = 0.1
these strategies use four out of the five subchannels, for κ = 0.8 they use two
subchannels, and for intermediate values these strategies use three subchannels.

Table 3. The value of the game and the optimal strategies of the players

κ v 1 2 3 4 5
0.1 6.315 N 0.000 0.047 0.142 0.154 0.157

P 0.000 0.230 0.248 0.258 0.263
0.2 5.314 N 0.000 0.000 0.140 0.176 0.184

P 0.000 0.000 0.321 0.336 0.344
0.3 4.655 N 0.000 0.000 0.114 0.182 0.204

P 0.000 0.000 0.319 0.336 0.345
0.4 3.858 N 0.000 0.000 0.083 0.187 0.229

P 0.000 0.000 0.316 0.336 0.347
0.5 3.056 N 0.000 0.000 0.052 0.189 0.258

P 0.000 0.000 0.312 0.337 0.351
0.6 2.345 N 0.000 0.000 0.025 0.189 0.286

P 0.000 0.000 0.306 0.338 0.356
0.7 1.764 N 0.000 0.000 0.006 0.186 0.307

P 0.000 0.000 0.298 0.339 0.363
0.8 1.314 N 0.000 0.000 0.000 0.183 0.317

P 0.000 0.000 0.000 0.478 0.522

An Eavesdropping Game with SINR as an Objective Function 157

It is interesting to note that for κ ∈ [0.2, 0.7] the maximal difference is 11% (it
is accentuated in bold font) from the uniform strategy, and arises right before
switching to using smaller number of channels and smallest in 1% (accentuated
in italic font right after the switching point).

9 Conclusion

Recently, there has been increasing interest in using the properties of the phys-
ical layer in a wireless system to support security (specifically, confidentiality)
objectives. The basic principle behind this new form of confidentiality is to take
advantage of conditions where the main Alice-to-Bob channel is better than the
adversarial channel Alice-to-Eve. One fundamental challenge facing the formu-
lation of such physical layer secrecy is understanding the implications of varying
assumptions for what knowledge the participants (Alice, Bob and Eve) have
in the secret communication. In this paper we have examined the problem of
eavesdropping over fading channels, where the problem of secret communication
in the presence of an eavesdropper is formulated as a zero-sum game. In our
problem, the legitimate receiver does not have complete knowledge about the
environment, i.e. does not know the exact values of the channels gains. Rather,
we consider that the receiver has some partial knowledge characterizing the
channel, such as its distribution. The transmitter’s task then involves deciding
how to transmit its information across which subchannels. We have posed this
problem as an optimization problem, where the environment acts as a secondary
player in a zero-sum game whose objective is to hamper successful communica-
tion by the user. In our formulation, we have chosen to use signal-to-interference
ratio (SINR) as the payoff function, due to the tractability it provides, but note
that at low SINR our objective function approximates the secrecy capacity. We
have studied a variety of scenarios where different assumptions are placed on
the amount of knowledge that the transmitter, Alice, has in the eavesdropping
game. In the case where Alice does not know the gains for the various subchan-
nels, then the best strategy is to distribute energy equally across a subset of
selected channels. On the other hand, if Alice does not know the eavesdropper’s
channel gains, then Alice should also employ a strategy involving uniformly dis-
tributing energy across a subset of channels. However, if the user acquires extra
knowledge about environment, e.g. the eavesdropper’s channel gains, then we
show how Alice may better tune her power allocation among the channels.

References

1. Li, X., Chen, M., Ratazzi, E.P.: Space-time transmissions for wireless secret-key
agreement with information-theoretic secrecy. In: Proc. IEEE SPAWC 2005, June
2005, pp. 811–815 (2005)

2. Koorapaty, H., Hassan, A.A., Chennakeshu, S.: Secure Information Transmission
for Mobile Radio. IEEE Trans. Wireless Commun., 52–55 (July 2003)

3. Hero, A.E.: Secure Space-Time Communication. IEEE Trans. Info. Theory, 3235–
3249 (December 2003)

158 A. Garnaev and W. Trappe

4. Li, Z., Yates, R., Trappe, W.: Secrecy Capacity of Independent Parallel Channels.
In: Allerton Conference on Communication, Control, and Computing (2006)

5. Li, Z., Xu, W., Miller, R., Trappe, W.: Securing wireless systems via lower layer
enforcements. In: WiSe 2006: Proceedings of the 5th ACM workshop on Wireless
security, pp. 33–42 (2006)

6. Liang, Y., Poor, H.V., Shamai, S.: Secure Communication over Fading Channels.
IEEE Transactions on Information Theory, Special issue on Information Theoretic
Security 54(6), 2470–2492 (2008)

7. Gopala, P., Lai, L., El Gamal, H.: On the secrecy capacity of fading channels. IEEE
Trans. Inform. Theory (accepted for publication)

8. Wyner, A.: The wire-tap channel. Bell. Syst. Tech. J. 54(8), 1355–1387 (1975)
9. Csiszár, I., Körner, J.: Broadcast channels with confidental messages. IEEE Trans.

on Inf. Theory 24(3), 339–348 (1978)
10. Maurer, U.M., Wolf, S.: Information-theoretic key agreement: From weak to strong

secrecy for free. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp.
351–368. Springer, Heidelberg (2000)

11. Bennett, C., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy ampli-
fication. IEEE Trans. on Information Theory 41, 1915–1923 (1995)

12. Van Dijk, M.: On a special class of broadcast channels with confidential messages.
IEEE Trans. on Information Theory 43(2), 712–714 (1997)

13. Leung-Yan-Cheong, S.K., Hellman, M.: The gaussian wire-tap channel. IEEE
Transactions on Information Theory 24(4), 451–456 (1978)

14. Altman, E., Avrachenkov, K., Garnaev, A.: A jamming game in wireless networks
with transmission cost. In: Chahed, T., Tuffin, B. (eds.) NET-COOP 2007. LNCS,
vol. 4465, pp. 1–12. Springer, Heidelberg (2007)

15. Altman, E., Avrachenkov, K., Garnaev, A.: Transmission power control game with
SINR as objective function. In: Altman, E., Chaintreau, A. (eds.) NET-COOP
2008. LNCS, vol. 5425, pp. 112–120. Springer, Heidelberg (2009)

16. Altman, E., Kamble, V., Kameda, H.: A Braess Type Paradox in Power Control
over Interference Channels. In: Physicomnet workshop, Berlin, April 4 (2008)

17. Ji, H., Huang, C.-Y.: Non-cooperative uplink power control in cellular radio sys-
tems. Wireless Networks 4, 233–240 (1998)

A Appendix

Proof of Theorem 3. Since the payoff is linear in P , G and H , the strategies P ∗,
(G∗,H∗) for Alice and nature are in equilibrium (so, these strategies are the best
response to one another) if and only if there are ω, νG and νH such that

P ∗
i

{
≥ 0 for ξ0

i − G∗
i − H∗

i = ω,

= 0 for ξ0
i − G∗

i − H∗
i < ω,

(53)

G∗
i

{
≥ 0 for P ∗

i = νG,

= 0 for P ∗
i < νG,

(54)

H∗
i

{
≥ 0 for P ∗

i = νH ,

= 0 for P ∗
i < νH .

(55)

An Eavesdropping Game with SINR as an Objective Function 159

(a) Let P ∗ be given by (23). Then, by (54) and (55), νG = νH = P̄ /n and
any strategy (G, H) is the best response one for (23), in particular, the strategy
given by (29). Let H∗ and G∗ be given by (29). Then, by (21) they present a
strategy and ξ0

i −G∗
i −H∗

i = ω for i ∈ [1, n] where ω =
(∑n

j=1 ξ0
j − H̄ − Ḡ

)
/n.

Then, by (53), any strategy for Alice is the best response strategy to nature’s
strategy given by (29). This proves (a).

(b) Let P ∗ be given by (28). Then, by (54) and (55), νG = νH = P̄ /k∗ and
any strategy for nature (G, H) satisfying the following conditions is the best
response for (28).

Hi = 0 and Gi = 0 for i ∈ [k∗ + 1, n]. (56)

By (27), (G∗, H∗) given by (29) and (30) is a strategy which satisfies to (56). So,
(G∗, H∗) is the best response one for (28). Let (G∗, H∗) be given by (29) and
(30). Then

ξ0
i − G∗

i − H∗
i

{
= ω, i ∈ [1, k∗],
≤ ω, i ∈ [k∗ + 1, n],

where ω =
(∑k∗

j=1 ξ0
j − H̄ − Ḡ

)
/k∗. So, (28) is the best response to (29) and

(30) by (53).

Proof of Theorem 6. Since the payoff is linear in P , G and H , the strategies P ∗,
(G∗,H∗) for Alice and nature is in equilibrium (so, these strategies are the best
response each other) if and only if there are ω, νG and νH such that

P ∗
i

{
≥ 0 for ξ0

i + G∗
i − H∗

i = ω,

= 0 for ξ0
i + G∗

i − H∗
i < ω,

(57)

G∗
i

{
≥ 0 for P ∗

i = νG,

= 0 for P ∗
i > νG,

(58)

H∗
i

{
≥ 0 for P ∗

i = νH ,

= 0 for P ∗
i < νH .

(59)

(a) Let P ∗ be given by (23). Then, by (58) and (59), νG = νH = P̄ /n and any
strategy (G, H) is the best response one for (23), in particular, the strategy given
by (38) and (39). Let H∗ be given by(39). It is clear that for this H∗ (11) holds
and, by (39), (19) and (21),

H∗
j =

1
n

⎛⎝H̄ −
n∑

j=1

(ξ0
j − ξ0

i)

⎞⎠ ≥ 1
n

(
H̄ − ϕn

) ≥ 0 for j ∈ [1, n].

So, (11) also holds and H∗ is the eavesdropper’s channel component arising
in nature’s strategy to harm the secrecy of communication between Alice and

160 A. Garnaev and W. Trappe

Bob. It is clear that G∗ given by (38) satisfies (8) and (9) and for G∗ and
H∗ holds the following relation: ξ0

i + G∗
i − H∗

i = ω for i ∈ [1, n] where ω =(∑n
j=1 ξ0

j − H̄ + Ḡ
)

/n. Then, by (57), any strategy for Alice is the best response
strategy to nature’s strategy given by (38) and (39). This proves (a).

(b) Let P ∗ be given by (28). Then, by (58) and (59), νG = 0 and νH = P̄ /k∗
and any nature’s strategy (G, H) satisfying the following conditions is the best
response for (28).

Hi = 0 for i ∈ [k∗ + 1, n],
Gi = 0 for i ∈ [1, k∗].

(60)

Let H∗ be given by (43). It is clear that for this H∗ (11) holds. Also, by (22),
(19) and (21)

H∗
j =

1
k∗

⎛⎝H̄ −
k∗∑

j=1

(ξ0
j − ξ0

i)

⎞⎠ ≥ 1
k∗

(
H̄ − ϕk∗

) ≥ 0 for j ∈ [1, k∗]. (61)

So, for H∗, (12) also holds and it is the eavesdropper’s channel components for
a strategy employed by nature. By (19) and (27),

k∗∑
j=1

(ξ0
j − ξ0

i) − H̄ ≥
k∗∑

j=1

(ξ0
j − ξ0

k∗+1) − H̄

= ϕk∗+1 − H̄ ≥ 0 for j ∈ [k∗ + 1, n].

(62)

Thus, for G∗ given by (42), (9) holds. Then, by (40), it is the main channels
component of a strategy by nature. It is clear that H∗ and G∗ satisfy (60).
Therefore, they present the best response to (28).

Let G∗ and H∗ be given by (43) and (42). Then

ξ0
i + G∗

i − H∗
i

{
= ω, i ∈ [1, k∗],
≤ ω, i ∈ [k∗ + 1, n],

where ω =
(∑k∗

j=1 ξ0
j − H̄

)
/k∗. So, (28) is the best response to (43) and (42).

(c) Let P ∗ be given by (23), then any strategy (G, H) is the best response for
(23), in particular to the strategy given by (43) and (44).

Let G∗ and H∗ be given by (43) and (44). Then, by (22), (19), (21) and (61),
H∗ are the eavesdropper channel components of a strategy by nature. Also, as
A > 0, then, by (62), G∗ corresponds to the main channel components for a
strategy employed by nature. Then ξ0

i + G∗
i − H∗

i = ω for i ∈ [1, n] where

ω =
A

n
+

1
k∗

(
k∗∑
i=1

ξ0
i − H̄

)
.

An Eavesdropping Game with SINR as an Objective Function 161

Thus, any Alice strategy is the best response for (H∗, G∗), such as the strategy
given by (23), and ωP̄ is the value of the game. Then, since

A

n
+

1
k∗

(
k∗∑
i=1

ξ0
i − H̄

)

=
1
n

⎛⎜⎜⎜⎜⎜⎝Ḡ −
(n − k∗)

k∗∑
j=1

ξ0
j − k∗

n∑
j=k∗+1

ξ0
j − H̄(n − k∗)

k∗

⎞⎟⎟⎟⎟⎟⎠
+

1
k∗

(
k∗∑
i=1

ξ0
i − H̄

)
=

1
n

(
n∑

i=1

ξ0
i + Ḡ − H̄

)
.

the value of the game is given by (37). This completes the proof of Theorem 6.

Proof of Theorem 8. Since the payoff is linear in P and concave on N , the
strategies P ∗, N∗ of Alice and nature is in equilibrium (so, these strategies are
the best response to each other) if and only if there are ω, ν such that

P ∗
i

⎧⎨⎩≥ 0 for 1
N0

i + N∗
i

− h0
i = ω,

= 0 for 1
N0

i + N∗
i

− h0
i < ω,

(63)

P ∗
i

(N0
i + N∗

i)2

{
= ν for N∗

i > 0,

≤ ν for N∗
i = 0.

(64)

Thus, by (64), if P ∗
i = 0 then N∗

i = 0. It is reasonable to look for the optimal
nature strategy in a subclass of strategies which hamper only the channels em-
ployed by Alice to transmit the signal, so for the strategies that have P ∗

i > 0
then N∗

i > 0. Then, by (63), the optimal strategy N∗ is of the form

N∗
i = Ni(ω) =

[
1

h0
i + ω

− N0
i

]
+

, (65)

where ω = ω∗ is the unique root in [−mini h0
i ,∞) of the following water filling

equation

HN(ω) :=
n∑

i=1

[
1

h0
i + ω

− N0
i

]
+

= N̄ . (66)

By (64) and (65) we have that the Alice’s optimal strategy is of the form

P ∗
i = Pi(ν) =

⎧⎨⎩
ν

(h0
i + ω∗)2

if Ni(ω∗) > 0,

0 otherwise
(67)

162 A. Garnaev and W. Trappe

and ν = ν∗ can be found as the unique root of HP (ν) :=
∑n

i=1 Pi(ν) = P̄ . Thus,

ν∗ =
P̄∑

j:Nj(ω∗)>0(1/(h0
j + ω∗)2)

.

It is clear that the strategies defined by (65) and (67) satisfies the conditions
(63) and (64). That is why they are the optimal ones. This completes the proof
of Theorem 8.

Ensemble: Community-Based Anomaly Detection for
Popular Applications

Feng Qian, Zhiyun Qian, Z. Morley Mao, and Atul Prakash

University of Michigan, Ann Arbor MI 48109, USA
{fengqian,zhiyunq,zmao,aprakash}@umich.edu

Abstract. A major challenge in securing end-user systems is the risk of popu-
lar applications being hijacked at run-time. Traditional measures do not prevent
such threats because the code itself is unmodified and local anomaly detectors are
difficult to tune for correct thresholds due to insufficient training data.

Given that the target of attackers are often popular applications for communi-
cation and social networking, we propose Ensemble, a novel, automated approach
based on a trusted community of users contributing system-call level local behav-
ioral profiles of their applications to a global profile merging engine. The trust can
be assumed in cases such as enterprise environments and can be further policed
by reputation systems, e.g., by exploiting trust relationships inherently associated
with social networks. The generated global profile can be used by all community
users for local anomaly detection or prevention. Evaluation results based on a mal-
ware pool of 57 exploits demonstrate that Ensemble is an effective defense tech-
nique for communities of about 300 or more users as in enterprise environments.

1 Introduction

End-user systems can be difficult to secure for a variety of reasons. They are typically
unmanaged: users download software, browser bugs, etc. In this paper, we focus on de-
fending against a class of attacks in which popular applications are hijacked at run-time.
In the past, this has led to wide-spread attacks such as the Skype worm [14] spread us-
ing Skype and buffer overflows in Outlook email clients to execute arbitrary code [7].
Traditional measures, such as anti-virus scanners [5], do not prevent such threats be-
cause the application code itself is unmodified. Prior work indicates that system-call
level profiling [23,33,37] may help detect such attacks early but a significant barrier is
a lack of sufficient training data to ensure low false positive rates.

In this paper, we present Ensemble, a novel unsupervised anomaly detection ap-
proach based on the idea of a trusted community of users contributing system-call level
local profiles of an application to a common merging engine. The merging engine gen-
erates a global profile that captures the possible space of normal run-time behaviors of
an application. The global profile can be used to detect or prevent anomalies in appli-
cation behavior at each end-host in real time. The promise of this approach is that it
helps overcome the problem of a lack of sufficient training data at each host and can
be largely automated. The challenges are making such a system efficient, overcoming
the differences in profiles due to factors such as variations in installation directories or
hardware, and identifying the appropriate information to collect in profiles.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 163–184, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

164 F. Qian et al.

The underlying hypothesis of Ensemble is that, as the number of local profiles in-
creases, the aggregate global profile tends to converge, thus revealing the normal be-
havior of the target application. Most applications in our experiments were found to
satisfy this property, though we also identified types of applications that would be ex-
ceptions. This paper makes the following contributions.

Handling diversity in execution environments. Various factors impact community-
based profiling, e.g., the same application at different hosts may be installed in different
directories, run with different amount of memory, and use different number of CPUs.
All these can cause variations in the system call traces with their parameters. We de-
termined the types of data to use for generating behavioral profiles to handle these
variations, while keeping profiles compact and representative of the application.

Analysis of the relationship between the community size and false positive rates.
We first applied community-based anomaly detection to a community of 12 users us-
ing a normal, clean instant messaging application. The detailed system-call level data
were sampled for 50 minutes during 5 hours with each local profile generated based on
one minute of sampled data. We found that high false positive rates to be of significant
concern, just as with single-host profiling using system calls. A testbed of virtual ma-
chines was subsequently used to study the impact of scaling up the system to a larger
user community. We found that the techniques, in general, tend to become much more
effective with larger community size. Significant reduction in false positive rates was
observed after reaching approximately 300 users.

Techniques to reduce data transfer by sharing summary data generated by pro-
filing applications. We show that while each host collects detailed system-call level
data [23,26,36] for local analysis, it only needs to send a modest amount of local profile
data per application (approximately, 4-5 KB/sec) to a common server to create commu-
nity profiles.

A general interface. Our system provides a useful abstraction of a general interface
for any target application to be protected. Multiple applications can subscribe to the
Ensemble service.

Ensemble is currently implemented in user space in Windows. We used Detour li-
brary [27] by Microsoft Research to intercept system calls for target applications. For
improved efficiency, as discussed in §4.2, Ensemble can be implemented as a service in
the OS kernel. The rest of the paper is organized as follows: §2 overviews the related
work; §3 describes the overall model of Ensemble; §4 details our implementation; and
§5 evaluates the system experimentally. Finally, §6 discusses limitations before con-
cluding in §7.

2 Related Work

Our work improves on existing work in the area of anomaly detection by exploring
the applicability of community-based profiling to generate detailed run-time behavior

Ensemble: Community-Based Anomaly Detection for Popular Applications 165

profiles of applications at the system call level. Below we highlight some of the related
approaches in malware detection and containment.

Anomaly Detection. One of the first studies on anomaly detection for applications was
done by Forrest et al. [23,26,36]. They executed an application multiple times with dif-
ferent inputs to collect system call sequences and then used those to form the baseline
behavior of the program. Any significant deviation from the baseline was considered as
an anomaly. Many of the follow-up studies [16,24,21,25,37,33,20] incorporate machine
learning techniques such as hidden-Markov model and neural networks. Later studies
examined the inclusion of system call arguments [13] and call stack information [22].
Generating a common model from different runs is a non-trivial problem. In [16], Bal-
lardie and Crowcroft explore several representative models, including frequency-based
models, a data-mining approach, and a finite state machine approach.

All these above approaches can suffer from high false positive rate. The data col-
lection process is typically manual or may take a long time to cover most normal be-
havior. If the application’s normal behaviors are not adequately captured, unobserved
normal behavior is likely misclassified as abnormal. While better machine learning al-
gorithms [25,33] can help, one fundamental problem in making these schemes practical
is the difficulty in getting sufficient training data to capture comprehensive application
behavior.

Our work builds on the approaches in the above systems. The primary contribution
is to show that if a large user community sharing their training data with an IDS at a
fine-grained level, behavioral profiles can be generated that are much more complete
and accurate than local profiles. One of the challenges we examined in extending the
techniques to a community environment is that not just the inputs, but the operating
environment for the software can be different. In our experiments, we allowed appli-
cations to be installed in random directories on various systems with diverse hardware
configuration and varying workload imposed by other applications. We extend existing
algorithms for combining profiles to handle likely variations.

Community-based Systems. The concept of “application community” [2] has been
proposed to collaboratively diagnose and respond to attacks by generating appropriate
configuration patches and filters. The goal is to generate a community-specific situa-
tion awareness gauge to predict imminent attacks. But it does not focus on anomaly
detection as in our work to help prevent attacks.

A similar concept of “collaborative learning for security” [19] is applied to auto-
matically generate a patch to the problematic software without affecting application
functionality. However, the detectors used are static detectors without training, and the
ways in which the community is utilized are limited to gathering detailed execution con-
straints in the binary, distributing the generated patch, and letting the user community
evaluate them.

Companies, such as Symantec [12], Microsoft, and Google also leverage the notion
of a community to help identify malware programs or spam emails [4] from user based
feedback. Vigilante [17] and Sweeper [34] try to contain Internet worms by automat-
ically detecting exploits. Both enable a user community to share their antibodies to
prevent and stop future attacks from Internet worms.

166 F. Qian et al.

In other application contexts, the concept of community has also been explored. Peer-
Pressure [35] utilizes it to automatically detect and troubleshoot misconfigurations by
assuming that most users in the community have the correct configuration. The Gamma
System [32] was proposed to split the monitoring task among community users, en-
abling minimally intrusive program analysis and software evolution. Similarly, Cooper-
ative Bug Isolation [31,30] leverages the community to do “statistical debugging” based
on the feedback data automatically generated by community users.

In contrast to the above body of work, our work examines the effectiveness of apply-
ing the notion of community at a much finer-grained level. Instead of just combining
binary feedback or signatures of worms, we integrate run-time behavioral profiles, con-
sisting of system calls and associated parameters, of applications across a community of
heterogeneous users. This allows us to extend anomaly detection to additional classes
of software applications.

Signature based anti-virus (AV) software. In this approach, a user typically uses a
signature database of known attacks, resulting in the advantage of negligible false posi-
tives. Unfortunately, it is difficult to maintain signatures covering new attacks. A study
by Oberheide et al. [28] found that commercial AV software has a detection rate ranging
from only 54.9% to 86.6% for attacks that occurred in the previous year. More impor-
tantly, the AV software had significantly poorer detection rates for more recent malware
samples. This implies that anomaly based detection is still indispensable.

Behavior-based intrusion detection systems (IDS). These systems rely on pre-defined
rules to detect anomalies in the run-time system behavior. They can better detect zero-
day attacks that attempt to evade code-based signatures. But, getting the rules right can
be difficult and therefore the rules tend to be relatively coarse-grained. For example, by
default, McAfee VirusScan Enterprise 8.5i [5] Access Protection rule blocks outbound
port 25 to filter malicious email programs. However, to get normal email applications to
work, 42 popular email clients, such asoutlook.exe andthunderbird.exe [11],
are exempt. Note these applications are often the ones exploited.

3 Methodology

In this section, first we present high-level methodologies used in Ensemble, then explain
them in detail in §3.1 to §3.3.

The goal of Ensemble is to detect application misbehavior, particularly caused by
zero-day attacks. As the start point of our approach, we generate a local profile for each
application instance. A profile is a summary of target application’s inter-process com-
munications and its behavior that can result in persistent changes (changes that survive
across reboots) to the file system, the registry, network, and other system settings. They
are abstracted from system call traces. Statistically, it can be seen as representative data
points in the sample space containing all possible state changing behavior of the target
application.

We envision that a large number of community users feed local profiles of an ap-
plication to a central server, which periodically aggregates them into a global profile,
depicting the application’s normal behavior as a baseline. The global profile serves as a
classifier that identifies anomalies using collected local profiles as training data.

Ensemble: Community-Based Anomaly Detection for Popular Applications 167

To detect and prevent intrusion, we monitor the application behavior and compared it
with the global profile continuously. An alarm is triggered when the application is about
to perform an operation that does not match the global profile. The user can be alerted
or the system can be configured to directly block the operation. Next we investigate
several important challenges of our methodology.

3.1 Profile Generation

Local profiles. A local profile is generated from raw system call traces [26]. In Win-
dows, system calls are undocumented, thus we use Windows API calls in our prototype.
For simplicity we ignore a set of APIs that do not modify host file system or network
state such as graphics and user interface API that are unlikely abused or even if abused
will likely be visible through other APIs we monitor. Also, we only focus on operations
executed by the target application given the profile is for a particular application, with
the exception of the process dependency, as discussed below.

Global profiles. A global profile is distilled from multiple local profiles. We develop a
taxonomy for APIs in terms of functionality (process dependency, file access, network
access, etc.). For each category, corresponding records in local profiles are aggregated
by key attributes (Table 1). An example of aggregating File Access category is shown
in Table 2.

Table 1. Key attributes for primary categories in global profiles

Category Key Attributes

Process Src Process Name/Image Hash,
Dependency Dst Process Name/Image Hash,

Type ∈ {Fork, Hook, File...}
File Access Filename, Type ∈ {Read, Write}

Registry Access Registry key, Type ∈ {Read, Write}
Network Remote IP, Remote Port,

Connection Protocol ∈ {TCP, UDP, other}

Table 2. Example: aggregate records in local profile (a) into global profile (b)

(a) Local profiles

Profile ID Filename Bytes accessed Type
1 a.dat 10 read
1 a.dat 15 read
1 b.dat 10 read
2 b.dat 10 read

(b) Global profiles

Filename Type Count by profiles
a.dat read 1
b.dat read 2

Among all the categories, the process dependency [29] depicts the interaction among
processes of the target application and other processes. A local profile contains two
types of dependencies: indirect and direct dependency. Indirect dependency, such as a
file dependency (Process A writes file F, which is then read by Process B), requires an

168 F. Qian et al.

object (e.g., a file or an IP address) as an intermediary. It is synthesized by correlating
multiple API calls. Direct dependency, such as a fork dependency, takes place without
an intermediary. It can be inferred from a single API call.

3.2 The Environment Diversity Challenge

For categories other than process dependency, the simplified methodology illustrated in
Table 2 has limitations. For example, for a text processor, different users edit different
files, thus the file access category is not aggregatable if naively using the filename as the
key attribute. Similarly, a P2P client may talk to random IP addresses, leading the aggre-
gation in the global profile to be a set of IP addresses each with very few occurrences.
We apply two methods to address this challenge.

First, we use predefined rules to normalize the path and file names. For example,
c:\Documents and Settings\Alice\a.dat is normalized to USER-DOC\
a.dat. This also helps protect the privacy of community users.

Second, our main solution is Stack Signature, which describes the stack history of the
calling thread for each API call. The key idea is that the “random” events of the same
functionality of a program such as sending a message or making a VoIP call in Skype,
should be associated with a fixed set of execution paths that can be represented by call
stacks. Based on this assumption, we introduce Stack Signature, a compact version of
call stack. A Stack Signature is calculated by iterating all stack frames of the current
thread and XORing their return addresses. In the case of recursive calls, return addresses
occurring multiple times are counted once.

In a global profile, the relationship between stack signatures and objects (e.g., file-
names and IP addresses) can be characterized by a weighted bipartite graph, whose
vertices are divided into two disjoint sets X and Y , where X is the set of stack sig-
natures and Y is the set of objects. There is an edge e : x → y ∈ E where x ∈ X
and y ∈ Y , if and only if an event accessing object y has stack signature x in at least
one local profile. Each element in X , Y and E has a weight, indicating its occurrence
frequency in terms of the number of local profiles. Except for the process dependency
which is fairly stable, we introduce stack signatures and use bipartite graphs as the data
abstraction for all other categories.

We observe many such cases in our experiments. For example, at stack signature
0x61AE46F8, QQ [8] – an instant messaging application may receive data from at
least 64 different servers such as 121.14.*.*, 219.133.*.*, 58.61.*.*, via port 8000. All
servers are found at Guangdong, China, where the headquarter of QQ is located. The
size of received data is always a multiple of 10240 bytes.

3.3 Anomaly Detection

As described at the beginning of this section, Ensemble clients periodically pull the
global profile from the server. The anomaly detection and prevention are performed
continuously. Before each operation monitored by Ensemble is executed, the API call
is intercepted and compared with the global profile using the following comparison
algorithm.

Ensemble: Community-Based Anomaly Detection for Popular Applications 169

1. Threshold-based process dependency anomaly detection. If a process dependency
D is detected (e.g., a fork or file dependency), we locate its frequency f(D) =
of local profiles containing D

of local profiles in the global profile, if f(D) < thPD, where thPD is a thresh-
old, then D is regarded as abnormal.

2. Stack signature analysis. If the operation to be executed by the target application
falls into other categories in Table 1, then its stack signature x is calculated, its object y
is identified, and e : x → y is matched against the bipartite graph BG = {XG, YG} in
the global profile. Let the frequency of e and x in BG be f(e) and f(x), respectively.
(i.e., f(e) = # of local profiles containing e

of local profiles). Let the degree of x in BG be d(x). We also in-
troduce thresholds the, thx and degx. We determine whether e is an abnormal action
by several tests searching for the predictable relation of the objects accessed by stack
signatures.

Test 1. Does a fixed stack signature always access a fixed object? (e.g., The program
reads a constant configuration file) Formally, if f(e) > the, then e passes the test and
no further tests are needed.

Test 2. Does a fixed stack signature always access different objects? (e.g., A file editor
may open different files) Formally, if f(x) > thx and d(x) > degx, then e passes
the test and no further tests are needed. This handles the “the Environment Diversity
Challenge.”

Some challenges arise, as we observe that in multiple executions of the same ap-
plication, a single object may be accessed by different stack signatures forming one
or more clusters. Figure 1 is an example of reading file ServUCert.key in 1,305
executions by Serv-U 5.0.0.0 (a commercial FTP server). The stack signatures form a
cluster ranging from 0x1019A500 to 0x1019A5FF. We conjecture two reasons: (1)
The locality of object access. The same object is often accessed at close-by instruction
addresses. For example, the code in Figure 2 is common in C programs. The consecu-
tive calls of fread satisfy the locality principle. (2) The accumulation of varieties. A

0x1019A500 0x1019A5FF
0

4

8

12

Stack signatures

A
pp

ea
re

d
tim

es

Fig. 1. Frequency of accessing ServUCert.key from different stack signatures in 1305 local
profiles

Fig. 2. Sample code of reading a file

170 F. Qian et al.

signature is calculated by XORing return addresses of n stack frames with each frame
having a variety of ki, the total variety can be as large as

∏n
i=1 ki.

Motivated by the above observation, we add two additional tests to reduce false
positives.

Test 3. Does a cluster of stack signatures access a fixed object? We define a cluster
by a window centering at x: Xwin =

{
z ∈ XG

∣∣|z − x| ≤ winSize
}

. Formally, if∑
z∈Xwin

f(e′ : z → y) > the, then e : x → y passes this test.

Test 4. Does a cluster of stack signatures access different objects? Formally, if∑
z∈Xwin

f(z) > thx and
∑

z∈Xwin
d(z) > degx, then e passes this test. It is a further

generalization of Test 3.
Test 3 and 4 may introduce false negatives; however, they are expedient alternatives

in the situation where the number of samples is limited. Ideally, when the global profile
contains a large enough sample space, Test 3 and 4 can be replaced by Test 1 and
2, respectively, since the range of stack signatures is finite. Figure 3 illustrates four
patterns in the global profile, corresponding to the above four tests.

Fig. 3. Four API invocation patterns

4 Implementation

The architecture of our Ensemble prototype is illustrated in Figure 4. It is designed
to perform online anomaly detection using continuously updated global profiles and
generated local profiles. Existing work is mostly evaluated in Linux environments while
our system is implemented on Microsoft Windows XP, which is a more common attack
target. Our prototype is implemented using about 10,000 lines of C++ code.

In our design, we initially tried to implement Ensemble by using system call se-
quences (N-gram previously proposed [23,26,36]) as the representation of local profiles,
due to its claimed effectiveness and simplicity. However, we found that N-gram has sur-
prisingly low convergence speed for Windows API sequences in terms of obtaining the
model of application’s normal behaviors, likely due to a much larger sample space than
in Linux (the number of Windows APIs is 6 times the number of Linux syscalls). We
estimate two reasons for such big discrepancy: first, there are distinct difference be-
tween Unix/Linux system calls and Windows APIs; second, modern applications are
becoming more and more complicated. System calls may be a too find-grained charac-
terization of program behavior. Note that a lot of researchers apply N-gram algorithm
on virus or malwares, whose binary sizes are much less than legitimate applications.
Therefore, instead we resort to the simpler frequency-based model as described in §3.1
that has a faster convergence behavior.

Ensemble: Community-Based Anomaly Detection for Popular Applications 171

Fig. 4. The Ensemble Architecture

4.1 Generating Profiles and Anomaly Detection

We used the Detour Library [27] to monitor and log 106 APIs calls related to file system
(26), registry (8), file mapping (6), messages (8), thread (4), process (8), network (13),
pipe (6), hook (3), clipboard (3), system time (6), DNS (2), handle management (2) and
user accounts management (11), most of which are Windows specific. To the best of
our knowledge, they cover most APIs that can cause inter-process communications, or
result in persistent changes to the file system, the registry, the network, and other system
settings. Note that it is fairly easy to include new APIs to the framework. We generate
stack signatures using the StackWalk64 function in Windows Debugging Library.

Given the raw API traces and their stack signatures, the local profiles are gener-
ated as described in §3.1 (for process dependency) and §3.2 (for other categories). We
implemented seven categories for profiles. (1) process dependency, (2) file access, (3)
directory access, (4) registry access, (5) network connection, (6) DNS, and (7) IP prefix
access. For (1), we handle 4 types of direct process dependencies: send message, set
hook, create/terminate/suspend process (thread) and write/read/alloc/dealloc process
memory, and 8 types of indirect dependencies: files, registry, file mapping, network,
named pipes, anonymous pipes, system time and clipboard. The transformation from
API traces to other categories (e.g., file access, network access) is trivially done by
translating API parameters.

The global profile is generated by grouping various local profiles. Except for the
process dependency, which is represented by a table like Table 2(b), other categories
are represented using bipartite graphs (stack signature → object names).

Our anomaly detection algorithm described in §3.3 is very efficient. For process de-
pendency, the dependency inference and frequency look up is O(1) in run time using
hash tables. For other categories using bipartite graphs, the computational complexity
for Tests 1 and 2 is O(1); while Test 3 and 4 are also O(1) given that the window size
is a small constant.

4.2 Operational Model

Finally, we present an overview of Ensemble’s operational model. At each client, En-
semble is running as a system service and is transparent to the target application.
CAPTCHA is used when subscribing or unsubscribing Ensemble services to prevent
tampering from bots.

172 F. Qian et al.

When the application is running, the Ensemble sampling module periodically logs its
API calls with stack signatures1 and generates the local profile (e.g., every 3 hours, one
local profile is generated from 1-min sampling of API call traces). The Ensemble com-
munication module periodically submits the local profile to the server, and also fetches
the global profile from it. The Ensemble Anomaly Detection Module keeps monitoring
target application’s API calls and matching them with the global profile. If an alarm is
triggered, the requested operation is denied, or the decision is left to the user.

Initially our anomaly detection is sampled: a local profile is generated periodically
and compared with the global profile. Then we found that even if the anomaly detection
is performed continuously, the extra overhead is acceptable (less than 2%), given that
in most cases, the applications’ API calls are not invoked in a “bursty” manner.

The Ensemble server can be maintained either on a large scale (e.g., by the applica-
tion vendor), or on a small scale (e.g., within an enterprise network). Its tasks include
collecting local profiles, generating the global profile and other management function-
alities. Ideally, each version of the application should have its own global profile. De-
pending on the specific application, one global profile may also characterize several
versions with minor differences.

4.3 Limitations of the Prototype

Our current prototype has the following limitations which are not fundamental to our
design. At the client side, the sampling module is implemented at the user level, using
a third-party library. For future work we plan to move the entire system into Windows
kernel. At the server side, in order to prevent pollution of global profiles, we plan to
investigate the use of reputation systems that establish trust among community users.
Currently, we envision our system to be mainly deployed in enterprise environments
where trust can be assumed.

The latest Windows Vista adopts Address Space Load Randomization (ASLR) tech-
nique [1], which hampers the functionality of Stack Signatures. We can address this
problem by using the relative offset of the return address from the module’s start ad-
dress, together with the module signature. We plan to explore this as future work.

5 Evaluation and Experiments

In this section, we systematically evaluate Ensemble. First we describe a small-scale
deployment for a community of 12 users (§5.1). Based on the negative results due to
the limited size of the community, we introduce our testbed and target applications used
for experiments (§5.2), then analyze the generated local profiles (§5.3) and the result-
ing global profiles (§5.4). Next, we measure false positives (§5.5) and estimate false
negatives using a recent malware collection (§5.6). Finally we present the performance
evaluation of our system (§5.7).

5.1 Small Scale Real Deployment

We deployed Ensemble among 12 real users, using Windows Live Messenger (MSN)
as the target application. All users were using Win XP SP2 but with different software

1 To capture process dependency, some APIs called by other processes also need to be logged.

Ensemble: Community-Based Anomaly Detection for Popular Applications 173

and hardware configurations. Before the experiment, we manually upgraded their MSN
to the same version (2008 Build 8.5.1302.1018) and ensured the systems are virus-free.
Users were not familiar with technical details of Ensemble, and were told to use MSN
as usual. For each user, we collected 50 API call traces, each lasting 1 minute, during a
5-hour period. We used this dataset to evaluate false positives.

We used 5-fold cross validation on 600 traces to evaluate false positives. For each
trace in the test group, if any API call triggered a false alarm, then the local profile
was counted as one false positive. For the parameters in §3.3, we empirically set the =
1%, thx = 1%, degx = 10, winSize = 4KB (We tried different parameters such that
the < 2%, thx < 2%, degx < 20, and obtained similar results). We found that the
false positive rates were too high to be accepted (greater than 30% for file access and
registry access). The reason is that 12 users are not sufficient to form a community to
cover diverse application behavior.

5.2 Experimental Infrastructure

To test the impact of a larger community, we created an automated testbed to simulate a
community environment. The idea is simple: to execute the target application multiple
times on the testbed. In each execution, a local profile is created and fed to the global
profile generator, as if it was submitted by a real community user. Then we use the
global profile to test against normal and abnormal behaviors and evaluate false positives
and negatives. We have two design goals for the testbed.

– Diverse User Behaviors. Random user actions are injected during each trial. The
distribution of the randomness should roughly conform to that of a real community.

– Diverse System Environment. During each trial, the system environment should
also vary to simulate hardware and software variations in a real community. For
example, a VoIP client may adjust its voice encoding strategy according to available
network bandwidth, leading to different local profiles.

We manually created a Finite State Machine (FSM) for each target application to de-
scribe most of its main functionalities from an end user’s perspective. FSM can be
generated in a more automated fashion by combining user traces and adding some per-
turbation to include additional usage behavior. Despite the manual effort, FSM based
representation for understanding application usage, even approximate, can aid in gener-
ating more diverse usage scenarios for a given application. Figure 5 is a simplified FSM
for MSN. In each automated execution, the testbed partially iterates the FSM based on a
Markov chain model, which characterizes the popularity of application’s different func-
tionalities. Each state transition Sx → Sy in the FSM represents a user action. A weight
is assigned to e indicating the probability that the next state is Sy given the current state
is Sx. For example, in Figure 5, “Login” is the initial state where the user starts the
application. The probability that the user successfully logs in (10

1+2+10 = 77%) is much
higher than the probability that the user enters an invalid ID or password (8%).

The testbed not only randomly chooses the action, but also executes some actions
with randomness. For instance, it is able to operate an instant messenger by selecting a
random user and chatting with him/her via random text messages, emotion icons, hand-
writings or Flash winks. In another example, the “make phone call” action in Skype is
carried out by dialing a number from 3000 toll-free numbers we collected.

174 F. Qian et al.

Fig. 5. A simplified finite state machine of MSN. Labels on edges indicate state transition
probability.

We admit that our approach contains subjective elements and thus may not perfectly
simulate a community environment. However, a community itself is a set of subjective
users and has a tendency to change from time to time. Also, we will show in §5.3 the
heavy-tailed distribution of simulated users’ behaviors, which are usually the case in a
real community.

To tackle the system environment randomness, the testbed automatically changes
the hardware/software configurations for each trial. All experiments were conducted
on virtual machines (VMware 6.0.2) for ease of management. The varied configuration
includes memory, number of processors, installed software, existing running processes,
system workload, firewall settings, system time, network bandwidth, DNS server, etc.

The testbed includes a FSM script parser, an action executor that maintains the state
synchronization and sends mouse/keyboard input to the target application, a configura-
tion manipulator that changes the system environment and a communicator that com-
municates with the Ensemble kernel. The testbed is built using about 3,000 lines of C++
code.

We chose four applications running on Microsoft Windows XP SP2 as our ini-
tial target applications: Skype 3.5.0.239; Windows Live Messenger (MSN) 2008 Build
8.5.1302.1018; Tecnet QQ [8] (2007 Beta 4, 7.0.374.204), an ICQ client with typically
more than 30 million daily online users in China; Serv-U [9] (5.0.0.0), a commercial
FTP server. These applications were selected due to their popularity and past history of
attacks targeting them.

5.3 Local Profiles

Table 3 shows the number of local profiles, sampling times and API log sizes of local
profiles of each target application. The sampling time was set to conform to a Gaussian

Ensemble: Community-Based Anomaly Detection for Popular Applications 175

Table 3. Statistics of local profiles

Target # of Sample Sample API Trace LP
App local Time Time Size Size

profiles (Mean) (Std Dev) (Mean) (Mean)

Skype 550 60 secs 5 secs 3.40MB 0.20MB
MSN 1298 75 secs 5 secs 1.17MB 0.09MB
QQ 1118 60 secs 5 secs 1.18MB 0.09MB

Serv-U 1305 45 secs 5 secs 0.23MB 0.03MB

Table 4. Statistics of global profiles

Target Process File File Dir Dir Reg Reg Connections IP DNS
App Dependency Read Write Read Write Read Write Prefixes Query

Skype 8 209 237 178 208 4,587 328 135,844 115,864 0
MSN 10 2,884 244 795 90 54,506 2,749 6,417 554 0
QQ 4 6,549 8,029 6,541 8,021 59,491 229 11,867 9823 10,691

Serv-U 1 2,609 835 305 7 146 0 23,295 2 1

distribution. The sampling process started either at or after the application starts, and
stopped either at or before the application terminates. The entire collection of local
profiles lasted for one week.

As mentioned, we created randomness during each trial to simulate different user
behavior in the community. Thus each “user” may explore a different subset of the
application functionalities. Figure 6 illustrates the distribution of FSM patterns for
Skype, MSN and QQ. A pattern defines the states iterated by the testbed in a single
trial. If there are n possible states in FSM, then there exists 2n − 1 possible patterns
(0, 0, ..., 0, 1), ..., (1, 1, ..., 1, 1). For pattern (a1, a2, ..., an), ai = 1 iff the i-th state is
visited at least once in a trial. The heavy-tailed distributions in Figure 6 demonstrate
the diversity of user behaviors generated by our testbed, as well as the similarity of
most users’ behaviors. Although this may not exactly match the actual user behavior,
we believe our method adds sufficient randomness to closely approximate general user
activities.

10
0

10
1

10
2

0

10

20

30

40

50

60

70

Skype FSM Patterns

F
re

qu
en

cy

10
0

10
2

0

2

4

6

8

10

12

MSN FSM Patterns

F
re

qu
en

cy

10
0

10
2

0

20

40

60

80

QQ FSM Patterns

F
re

qu
en

cy

Fig. 6. FSM Pattern distribution for Skype (474 patterns), MSN (1137 patterns) and QQ (584
patterns). The X-axis is log-scaled.

176 F. Qian et al.

5.4 Global Profiles

Table 4 presents statistics of global profiles. The numbers in the table are the numbers
of process dependencies and, for other categories, the number of edges in the bipartite
graphs.

The process dependency categories of QQ, MSN and Skype are shown in Figures 9(a),
10, and 11(a), respectively. Only parts with solid line represent the observed depen-
dencies; while the dotted lines indicate detected misbehavior (§5.6). The percentage on
the edge denotes its occurrence frequency. The size of bipartite graphs is usually much
larger.

Figure 7 shows examples of the bipartite graphs. For each subfigure, the upper part
X is the set of stack signatures; the lower part Y is the set of objects (registry keys,
directory names, etc.), which are represented by a number (object ID). The numbers in
square brackets are the frequencies.

– Subfigure (a) is a common case where a fixed stack signature accesses a fixed ob-
ject. For example, stack signature 0x7BF74721 always reads 3 registry keys:
\REGISTRY\MACHINE\SOFTWARE\Classes\QQCPHelper...
\REGISTRY\MACHINE\SOFTWARE\Classes\CLSID\23752AA7...
\REGISTRY\MACHINE\SOFTWARE\Classes\CLSID\23752AA7...

– Subfigure (b) illustrates a random event problem. For each trial, Stack signature
1814742014 (0x6C2AC3FE) writes different registry keys under
\REGISTRY\MACHINE\SOFTWARE\Classes\CLSID\ and
\REGISTRY\MACHINE\SOFTWARE\Classes\TypeLib\.

– Subfigure (c) illustrates the slight variation of stack signatures, as explained in
§3.3. We can observe two clusters of stack signatures in subfigure (c): 4582218??,
1819194???. Both clusters access the user cookie directoryUSER-DOC\cookies.

Fig. 7. Examples of bipartite graphs. From top to bottom: (a) Registry write category of QQ (b)
Registry write category of Skype (c) Directory write category of MSN.

Ensemble: Community-Based Anomaly Detection for Popular Applications 177

5.5 False Positives

We used the same methodology (5-fold cross-validation) and the parameters as in the
real deployment (§5.1) to evaluate the false positives for the testbed. In Table 5, the col-
umn “LPs” indicates the number of local profiles in the test group; the columns “Worst”
and “Best” indicate the highest and lowest number of false positives (traces that con-
tain at least one API call that triggers the false alarm), respectively, in 10 independent
experiments (each experiment has 5 passes).

Table 5. Coarse-grained false positives (counting the number of local profiles)

Target App Skype MSN QQ ServU
Category LPs Worst Best LPs Worst Best LPs Worst Best LPs Worst Best

Process Dependency 110 0 0 262 0 0 226 1 0 196 0 0
File Read 110 0 0 262 0 0 226 0 0 261 0 0
File Write 110 0 0 262 0 0 226 0 0 261 0 0

Directory Read 110 0 0 262 0 0 226 0 0 261 0 0
Directory Write 110 0 0 262 0 0 226 0 0 261 0 0
Registry Read 110 0 0 262 4 2 226 1 0 261 0 0
Registry Write 110 0 0 262 1 0 226 0 0 0 0 0
Connections N/A 262 4 2 226 1 0 261 0 0
IP Prefixes N/A 262 0 0 226 0 0 261 0 0
DNS Query 0 0 0 0 0 0 226 0 0 261 0 0

Table 6 presents a fine-grained false positive measurement. Similar as above, we
employed 5-fold cross-validation and the experiment was repeated for 10 times using
the same parameters. In Table 6, the column “Avg E” denotes the average number of
API calls2 in the test group, which were fed into Ensemble Anomaly Detection Module;
the columns “Worst” and “Best” indicate the highest and lowest numbers of API calls
that are mistakenly detected as abnormal, respectively.

For Skype and ServU, no false positives were observed. For MSN and QQ, although
their fine-grained false positives of Registry Read and Connections categories were
slightly higher even when the false positive rate converges (shown in Figure 8), the
mistakenly detected API calls concentrated in a few local profiles (Upon manual in-
spection of the logs, it was highly possible that during the generation of these local
profiles, the application terminated unexpectedly.). Ideally, if they were indeed appli-
cation’s natural behaviors, then as the pool of training data becomes larger, the initial
“strange” behaviors will become normal, and the large size of training data is exactly
the advantage of a community.

When we were testing Skype, it produced unacceptable false positive rates for
network-related behavior (two categories whose false positives labeled as “N/A” in
Table 5 and Table 6). Upon manual inspection, we found that the stack signatures from
network related APIs were almost uniformly distributed in the entire address space, and

2 To be precise, “Avg E” is the number of process dependencies or the number of edges in the
bipartite graph.

178 F. Qian et al.

Table 6. Fine-grained false positives. (counting the number of edges in PDGs or bipartite graphs)

Target App Skype MSN QQ ServU
Category Avg E Worst Best Avg E Worst Best Avg E Worst Best Avg E Worst Best

Proc. Dep. 498 0 0 2203 0 0 844 1 0 196 0 0
File Read 13271 0 0 31650 0 0 40578 0 0 6290 0 0
File Write 1938 0 0 3623 0 0 40138 0 0 3473 0 0
Dir Read 10214 0 0 22292 0 0 39903 0 0 2758 0 0
Dir Write 1650 0 0 2711 0 0 40114 0 0 1810 0 0
Reg Read 43398 0 0 611294 55 37 415532 1 0 23943 0 0
Reg Write 33639 0 0 25441 1 0 23805 0 0 0 0 0

Connections N/A 23398 12 4 18074 11 0 7194 0 0
IP Prefixes N/A 17974 0 0 16385 0 0 516 0 0
DNS Query 0 0 0 0 0 0 17085 0 0 258 0 0

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

100

120

Number of local profiles as training data

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

File Read
File Write
Registry Read
Registry Write

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

Number of local profiles as training data

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

File Read
File Write
Registry Read
Registry Write
Network Connection

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

Number of local profiles as training data

N
um

be
r

of
 fa

ls
e

po
si

tiv
es

File Read
File Write
Registry Read
Registry Write
Network Connection

Fig. 8. Convergence of fine-grained FP as local profiles increase. (Top: Skype; Middle: MSN;
Bottom: QQ)

the dumped stack frames were also abnormal. Based on our estimation, Skype may em-
ploy some obfuscation techniques to protect their code against reverse engineering [10].
In summary, we believe that the false positives of Ensemble are acceptable.

Ensemble: Community-Based Anomaly Detection for Popular Applications 179

Furthermore, we used 600 API call traces obtained in real deployment to test against
the global profile generated by 1,298 MSN local profiles from the testbed. We obtained
false positive rates of 0% (process dependency), 6% (file read), 4% (file write), 2% (di-
rectory read), 1% (directory write), 11% (registry read), 6% (registry write), 9% (con-
nections) and 3% (IP prefixes), using the metric in Table 5. Upon manual inspection,
the main cause of false positives was the incompleteness of our FSM model, in which
some use cases such as video chat were not covered.

We also measured the relationship between the community size and the false positive
rate using a 5-fold cross-validation, and presents the results using the worst case (the
highest number of false positives in 10 independent experiments). As shown in Figure 8
for three applications, it is clear that the fine-grained false positive rate significantly
decreases with increasing number of local profiles, and converges to a stable value (We
discussed the high false positives of QQ and MSN earlier in this section). A real active
community is believed to have orders of magnitude of more local profiles submitted by
users, thus ensuring a low false positive rate.

5.6 False Negatives

We evaluate false negatives on a total of 57 known malware programs and exploits
for each target application by performing online comparison between the application
behavior monitored in real time and the global profile, which was generated from local
profiles described in Table 3. We used the same parameters as in the false positive
evaluation.

Table 7 summarizes our selected malwares and exploits against target applications.
They were selected from a malware collection obtained from honeypots, Web page
crawling, and spam traps. It seems that these 57 malwares and exploits have some-
what common exploit techniques. However, we argue that the core merit of anomaly
detection system is that, no matter how sophisticated an attack will be, as long as the
application’s behavior deviates from the baseline, the anomaly can be detected without
prior knowledge.

For QQ, we tested 27 password stealer trojans, all of which were detected by En-
semble. Figure 9 shows a representative case. The trojan process (1180.EXE) sets a
keyboard hook to QQ.EXE and tries to log users’ keystrokes. The trojan also caused ab-
normal file accesses: KERNEL32.DLL and ISIGNUP.SYS. The latter was extracted
by the trojan.

We attempted two buffer overflow exploits using the Metasploit framework [6] against
Serv-U. Both exploits were detected by Ensemble. One exploit caused ServU to spawn a
command line shell, which could be remotely controlled by the attacker. Another exploit

Table 7. Our malware/exploit collection used in false negative evaluation

Target App # of Malwares/Exploits Descriptions

Skype 3 Worm
MSN 25 Worm, password trojan
QQ 27 Password trojan

Serv-U 2 Buffer overflow exploits

180 F. Qian et al.

(a) process dependency

Stack Address File Pathname

0x157C278F PROGRAM FILES\Internet Explorer\
Connection Wizard\isignup.sys

0x157C2746 Kernel32.DLL
(b) file read category

Fig. 9. Anomaly detection results of the QQ trojan

Table 8. Anomaly detection results of the Serv-U buffer overflow exploit (unusual file and net-
work access)

Stack Signature(s) Object Type Object Name

6607A2DC 6606A17F File Read IE TEMP\Content.IE5\H0SBCDN6\putty.exe
112CF1F2 660AC700 660AC7D1 File Write IE TEMP\Content.IE5\H0SBCDN6\putty.exe
11201534 11211697 File Write SYSTEM32\a.exe
6606A17F 6607A2DC Dir Read IE TEMP\Content.IE5\H0SBCDN6\
11211697 11201534 Dir Write SYSTEM32\
660AC7D1 660AC700 112CF1F2 Dir Write IE TEMP\Content.IE5\H0SBCDN6\
60814BDC 17A77DFF Connection 193.201.200.66:80 TCP
1B772B23 1B7729D0 IP Prefix 193.201.200.0/23

(Omitted: 106 registry read edges and 26 registry write edges)

made ServU to download a file and execute it. The exploit was constructed in Metasploit
by providing a URL pointing to an executable file (in our experiment, the downloaded
executable was putty.exe, which was then renamed to a.exe and executed). In
Table 8, a series of events before the execution ofa.exewere clearly revealed by failing
to match abnormal edges with bipartite graphs in the global profile.

For MSN, we tested 25 worms that hijack MSN to send out malicious contents to the
user’s contacts. In one example shown in Figure 10, the malware process with a long
file name tried to modify registry keys and files that MSN read later.

Skype consists of Skype.exe and SkypePM.exe. We tested three worms that
abused the Skype API to send malicious links to deceive receivers to click them. Since
the Skype API on Windows is implemented using the message mechanism, Ensemble
detected the worm named StWinsDat.exe that sent messages to Skype.exe, as
shown in Figure 11. Ensemble also detected that Skype read the file StWinsDat.exe
from two stack addresses that never appeared in the global profile.

As part of the real-deployment in §5.1, we manually executed 25 MSN worms on
3 real machines with different configurations. All abnormal behaviors were detected
by Ensemble. Furthermore, it seems that all above anomalies can be covered by the
process dependency category. However, we argue that other categories are necessary.
For one reason, it is possible that some attacks can happen without process depen-
dency (e.g., anomalies caused by network packets such as Apache-Knacker exploit [3]).

Ensemble: Community-Based Anomaly Detection for Popular Applications 181

Fig. 10. Anomaly detection results of the MSN worm (process dependency)

(a) process dependency

Stack Address File Pathname

0x6C37D084 SYSTEM32\stwinsdat.exe
0x6C37EFFD SYSTEM32\stwinsdat.exe

(b) file read category

Fig. 11. Anomaly detection results of the Skype worm

Furthermore, as shown in Figure 9(b), Figure 11(b) and Table 8, other categories pro-
vide more detailed information about the anomaly.

5.7 Performance Evaluation

Using four target applications mentioned above, we measured the overhead of our pro-
totype in terms of time and space. The evaluation was done on a commodity Dell In-
spiron 530 PC (2.33G Core2 Duo CPU, 2GB memory, with WinXP SP2 installed).
We believe that the overall overhead is acceptable. Extra delay incurred by local pro-
file collection is less than 15%. Note that this happens infrequently (e.g., 1 minute
per 3 hours), and Ensemble does not collect local profiles for two applications si-
multaneously. Extra overhead caused by anomaly detection is less than 2%. The log-
ging size of API traces is less than 0.25 MB/min per application. The global profile
size is less than 10MB per application. Like software update, the Ensemble server
can transfer a “patch” of the new version of the global profile, with a much smaller
size.

182 F. Qian et al.

6 Limitations of Ensemble

While we found Ensemble’s approach to be a promising direction for addressing a diffi-
cult problem of using run-time profiles for detecting code injections and other run-time
anomalies, we also noted limitations that would need to be addressed in the future.

We expect that some applications to be too complex for profiles to converge using
limited system-call sampling. Our experiments indicate that this is the case for com-
plex plug-in enabled applications such as IE and MS Word since plug-ins may behave
differently from the original applications. Additional sampling and larger communities
may help in such cases.

We plan to evaluate Ensemble in a real community with hundreds of users. Privacy
concerns must be addressed, even though only summary data about system calls is
exchanged with a server.

If a significant fraction of community of users mounted a coordinated attack to pol-
lute the global profile, it is conceivable that the global profile can be corrupted. This
is more likely in open communities, where sybil attacks [18] are possible. In closed
communities as in enterprise environments, such attacks are much less likely.

Different applications may require different types of profiling. For example, if an
application purposely randomizes addresses at function or instruction level (e.g., the
network access module of Skype mentioned in §5.5 to obfuscate its behavior), then
stack signatures are ineffective. Alternative methods, such as path profiling [15], can be
added to handle such applications.

In our design, the stack signature is generated by XORing unique return addresses
of stack frames. The probability of collision is non-negligible in 32-bit OS, but very
unlikely in 64-bit systems which are becoming increasingly popular.

6.1 Over-Generalization

Each application has a set of “normal behaviors” (true baseline). False negative may
happen when the detector-defined normal behaviors go beyond the true baseline (i.e.,
over-generalized) because the features or methods are not well-chosen or the model is
not precise enough (i.e., an imperfect detector). For almost all practical IDS, the detector-
defined normal behaviors are broader than the true baseline, thus allowing mimicry at-
tacks. This is a problem with any detectors not just ours. The aggregation process should
not introduce much additional over-generalization. Consider the aggregation of local
profiles whose diversities are caused by: (i) User randomness. Different users can gen-
erate different profiles but they mostly fall within true baseline assuming profiles are
trusted (User randomness can be regarded as exercising different normal execution paths
in the application). (ii) System environment randomness. We admit that different system
environment may have different set of “normal behaviors”. However, this should intro-
duce limited over-generalization, if any at all. In the worst case, we can have separate
aggregations/pools for different OSes and software versions as mentioned in §4.2.

6.2 Mimicry Attacks

A perfect detector should leave no opportunity for mimicry attacks which are due to
over-generalization. Note that the aggregation process is independent of what features

Ensemble: Community-Based Anomaly Detection for Popular Applications 183

or approaches are used for anomaly detection. The existence of mimicry attack is mainly
due to limitations in feature selection and detection techniques, not in profile aggrega-
tion. Our focus is to show that with a reasonable detector, how we can reduce false
positives rather than making the features rich enough to eliminate the possibility for
mimicry attacks.

7 Conclusions

We have described the design of Ensemble, an unsupervised anomaly detection and
prevention system relying on a user community to detect or prevent anomalies in pop-
ular applications. Local behavioral profiles are combined into a global profile, which
can be used to detect or prevent code-injection or behavior-modifying exploits. Hosts
participating in Ensemble only need to contribute summary run-time profile data (about
0.5 MB) periodically. Ensemble addresses the problem of merging profiles from hosts
that may have different operating environments. From evaluation based on 57 test ex-
ploits for four candidate applications, we found that the quality of global profiles, and
the resulting false positive rate, significantly improves as the community size grows to
approximately 300 users, demonstrating that the use of communities is a practical way
to automatically generate behavioral profiles without much manual training, and the re-
sulting behavioral profiles are effective for run-time anomaly detection and prevention.

References

1. Address space layout randomization, http://blogs.msdn.com/
2. Application Community, http://www.darpa.mil/
3. C. CAN-2003-0245. Apache apr-psprintf memory corruption vulnerability,

http://web.nvd.nist.gov/
4. Gmail: We’re working as a community, give your support!,

http://news.softpedia.com/
5. McAfee Anti-virus software, http://mcafee.com/
6. Metasploit framework, http://www.metasploit.com
7. Microsoft Outlook Buffer Overflow in Processing TNEF Messages Lets Remote Users Exe-

cute Arbitrary Code, http://securitytracker.com/
8. QQ Instant Messenger, http://im.qq.com
9. Serv-U FTP Server, http://www.serv-u.com/

10. Should we be afraid of Skype, http://www.ossir.org/
11. VirusScan Enterprise 8.5i Access Protection rule blocks outbound SMTP mail on Port 25,

https://knowledge.mcafee.com/
12. Malware flood driving new AV (December 2007), http://www.infoworld.com/
13. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the Detection of Anomalous System Call

Arguments (2003)
14. Arak, V.: On the worm that affects Skype for Windows users (September 2007),

http://share.skype.com/
15. Ball, T., Larus, J.: Efficient Path Profiling. In: 29th Annual IEEE/ACM International Sym-

posium on Microarchitecture (1996)
16. Ballardie, T., Crowcroft, J.: Multicast-specific Security Threats and Counter-measures. In:

Proc. of the IEEE Symposium on Security and Privacy (1999)

http://blogs.msdn.com/
http://www.darpa.mil/
http://web.nvd.nist.gov/
http://news.softpedia.com/
http://mcafee.com/
http://www.metasploit.com
http://securitytracker.com/
http://im.qq.com
http://www.serv-u.com/
http://www.ossir.org/
https://knowledge.mcafee.com/
http://www.infoworld.com/
http://share.skype.com/

184 F. Qian et al.

17. Costa, M., Crowcroft, J., Castro, M., Rowstron, A., Zhou, L., Zhang, L., Barham, P.: Vigi-
lante: end-to-end containment of internet worms. In: SOSP (2005)

18. Douceur, J.R.: The Sybil Attack. In: Peer-To-Peer Systems: First International Workshop
(2002)

19. Ernst, M.: Self-defending software: Collaborative learning for security,
http://norfolk.cs.washington.edu/

20. Eskin, E.: Anomarly Detection over Noisy Data using Learned Probability Distributions. In:
International Conference on Machine Learning (2000)

21. Eskin, E., Lee, W., Stolfo, S.J.: Modeling system calls for intrusion detection with dynamic
window sizes. In: Proceedings of DARPA Information Survivability Conference and Expo-
sition II (DISCEX II) (2001)

22. Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly Detection Using Call
Stack Information (2003)

23. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A Sense of Self for Unix Pro-
cesses. In: IEEE Symposium on Security and Privacy (1996)

24. Ghosh, A., Wanken, J., Charron, F.: Detecting anomalous and unknown intrusions against
programs. In: Proc. of the 1998 Annual Computer Security Applications Conference, AC-
SAC 1998 (1998)

25. Ghosh, A.K., Schwartzbard, A., Schatz, M.: Learning program behavior profiles for intrusion
detection. In: Proceedings of the 1st conference on Workshop on Intrusion Detection and
Network Monitoring, vol. 1 (1999)

26. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of system calls.
Journal of Computer Security (1998)

27. Hunt, G., Brubacher, D.: Detours: Binary Interception of Win32 Functions. In: Proceedings
of the 3rd USENIX Windows NT Symposium (1999)

28. Jon Oberheide, E.C., Jahanian, F.: CloudAV: N-Version Antivirus in the Network Cloud. In:
Proceedings of 17th Usenix Security Symposium (2008)

29. King, S.T., Chen, P.M.: Backtracking intrusions. In: SOSP (2003)
30. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Public deployment of cooperative

bug isolation. In: Proceedings of the Second International Workshop on Remote Analysis
and Measurement of Software Systems, RAMSS (2004)

31. Liblit, B.R.: Cooperative bug isolation. PhD thesis, Berkeley, CA, USA, Chair-Alexander
Aiken (2004)

32. Orso, A., Liang, D., Harrold, M.J., Lipton, R.: Gamma system: continuous evolution of soft-
ware after deployment. SIGSOFT Softw. Eng. Notes 27(4) (2002)

33. Sekar, R., Dhurjati, M.D., Bollineni, P.: A Fast Automation-Based Method for Detecting
Anomalous Program Behaviors. In: IEEE Symposium on Security and Privacy (2001)

34. Tucek, J., Newsome, J., Lu, S., Huang, C., Xanthos, S., Brumley, D., Zhou, Y., Song, D.:
Sweeper: a lightweight end-to-end system for defending against fast worms. In: EuroSys.
(March 2007)

35. Wang, H.J., Platt, J.C., Chen, Y., Zhang, R., Wang, Y.-M.: Automatic misconfiguration trou-
bleshooting with peerpressure. In: OSDI (2004)

36. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting Intrusions using System Calls: Alter-
native Data Models. In: IEEE Symposium on Security and Privacy (1999)

37. Yeung, D.-Y., Ding, Y.: Host-based intrusion detection using dynamic and static behavioral
models. Pattern Recognition 36 (2003)

http://norfolk.cs.washington.edu/

Using Failure Information Analysis to Detect
Enterprise Zombies

Zhaosheng Zhu1, Vinod Yegneswaran2, and Yan Chen1

1 Department of Electrical and Computer Engineering, Northwestern University
{z-zhu,ychen}@northwestern.edu

2 Computer Science Laboratory, SRI International
vinod@csl.sri.com

Abstract. We propose failure information analysis as a novel strategy
for uncovering malware activity and other anomalies in enterprise net-
work traffic. A focus of our study is detecting self-propagating malware
such as worms and botnets. We begin by conducting an empirical study
of transport- and application-layer failure activity using a collection of
long-lived malware traces. We dissect the failure activity observed in
this traffic in several dimensions, finding that their failure patterns differ
significantly from those of real-world applications. Based on these ob-
servations, we describe the design of a prototype system called Netfuse
to automatically detect and isolate malware-like failure patterns. The
system uses an SVM-based classification engine to identify suspicious
systems and clustering to aggregate failure activity of related enterprise
hosts. Our evaluation using several malware traces demonstrates that
the Netfuse system provides an effective means to discover suspicious
application failures and infected enterprise hosts. We believe it would be
a useful complement to existing defenses.

1 Introduction

Due to the persistent and ubiquitous nature of the Internet’s background radia-
tion [35], modern enterprise networks have become relentless targets of attacks
from a plethora of Internet malware including worms, self-propagating bots,
spamming bots, client-side infects (drive-by downloads) and phishing attacks.
Estimates on the number of malware instances released vary vastly (between
ten of thousands to more than hundred thousand per month) depending on cen-
sus methodologies [16, 31]. However, there is consensus that malware is becoming
increasingly prevalent, sophisticated, and a formidable threat not just to network
communications but also as a purveyor of data and identity theft. Network se-
curity analysts in today’s enterprise networks rely primarily on a combination of
network intrusion detection systems (NIDS) [36, 41] and antivirus (AV) systems
to shield enterprise networks from this deluge of malware.

A NIDS passively monitors packets on the network wire and uses rules to dis-
cover suspicious activities, such as scans and exploit attempts, directed against
systems in the network. Knowledge-based and behavior-based detection are two

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 185–206, 2009.
� Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

186 Z. Zhu, V. Yegneswaran, and Y. Chen

fundamental approaches to intrusion detection [14]. Knowledge-based intrusion
detection systems [41] use signatures of well-known exploits and intrusions to
identify attack traffic. However, reliable and accurate performance requires con-
stant maintenance of the knowledgebase to reflect the latest vulnerabilities. In
contrast, behavior-based intrusion detection techniques [27] compare current ac-
tivity with a predefined model of normal behavior and flag deviants from known
models as anomalies. A drawback with many behavioral approaches is the inher-
ent difficulty of building robust models of normal behavior whose incompleteness
results in high false alarm rates.

Contemporary AV software monitors end hosts by performing periodic system
scans and real-time monitoring, checking existing files and process images with
a dictionary of malware signatures that is constantly updated. Certain vendors
also incorporate heuristic detection engines that identify infections based on
static traits (e.g., whether it is packed) or approximate behavioral profiles of
known malware. Despite their ubiquity and sophistication, most AV systems
have been shown to have unsatisfactory detection rates [10] especially in early
days of an outbreak. Our experience at honeynets shows that the median day-
zero detection rate for 30 AV vendors is around 82% [26]. The proliferation of
the recent Conficker A and B worms offers further testament to the inefficacy of
current AV systems. By leveraging a well-publicized Windows RPC vulnerability
(MS08-67) [32], Conficker has successfully infected millions of hosts [17, 18],
and in the early days of the outbreak only 3/39 AV engines were able to detect
this binary as being malicious [43]. Like most malware, Conficker disables AV
updates after infection, so subsequent signature updates by AV vendors were
not particularly effective in curtailing this worm. In summary, the remarkable
success of a scan-and-infect worm such as Conficker (seven years after Code
Red I [13]), underscores why network security analysts need better tools to
understand, react to, and cope with infections in their enterprises.

Our approach. In this paper, we introduce a new behavior-based approach
to detect infected hosts within an enterprise network. Our objective is to de-
velop a system that is independent of malware family and requiring no apriori
knowledge of malware semantics or command and control (C&C) mechanisms.
We devise an approach that is motivated by the simple observation that many
malware communication patterns result in abnormally high failure rates. While
prior efforts have tried to exploit this in the specific context of portscans [28]
or studied types of failures [44, 39], we extend this to broadly consider a large
class of failures in both transport and application levels. We have developed a
prototype system called Netfuse that correlates network and application failures
to detect infected hosts within enterprise networks. The event correlation engine
of our system is inspired by prior systems such as BotHunter [23]. While BotH-
unter relies on exploit signatures from Snort, an important distinction of our
approach is that it requires no specific knowledge of malware. Instead, Netfuse
relies on application knowledge that it obtains from network protocol analyzers
such as Wireshark [8] and L7 filters [5]. In some sense, Netfuse could be consid-
ered a behavior-based detection system whose model for malicious behavior is

Using Failure Information Analysis to Detect Enterprise Zombies 187

derived from underlying protocol analyzers. However, its novelty lies in its use
of multipoint failure monitoring for support vector machine (SVM)-based clas-
sification of malware failure profiles. We believe that Netfuse could be a useful
sensor input to BotHunter.

The Netfuse system has several integral components. First, it has a proto-
col failure analysis component that is built on the Wireshark protocol analyzer.
It specifically analyzes transport failures (TCP RSTs, ICMP) and application
failures on common ports TCP/25 (SMTP), TCP/80 (HTTP), UDP/53 (DNS)
and TCP/6667 (IRC). Furthermore, it uses L7 filters to detect when common
protocols are observed in nonstandard ports (e.g., HTTP or DNS activity on a
high-order port) and routes them to the appropriate Wireshark protocol handler.
Second, it has a lightweight DNS monitor that monitors DNS activity between
enterprise clients and the DNS server. Finally, it has a clustering and correla-
tion component that aggregates alerts observed by the two sensors producing
a condensed summary of failure activity that classify anomalous activity. For
every IP with failure activity, it computes four different scores: (i) composite
failure (ii) divergence (iii) persistence and (iv) failure entropy. This informa-
tion is used by an SVM driven classification engine to detect suspicious hosts.
Furthermore, a cluster summary is produced that aggregates suspicious hosts
with similar failure profiles. The combination of these scores and clustering en-
ables security analysts to easily comprehend failure patterns in the enterprise
and quickly identify suspicious hosts in the network. We find that our approach
is effective in isolating the presence of a vast majority of contemporary malware
without specialized signatures.

Contributions. The contributions of our work are as follows:

1. We describe application-aware failure monitoring as a new approach for iden-
tifying infected hosts and uncovering anomalies in enterprise traffic.

2. We develop a prototype implementation of the Netfuse monitor using Wire-
shark and L7 filters. An important aspect of the implementation is multi-
point failure monitoring.

3. We develop an SVM-based classifier to identify infected hosts.
4. We use multiple network traces of malware and benign traffic to evaluate

detection rates and the false positive rate of Netfuse.

The remainder of the paper is organized as follows. In Section 2, we provide an
analysis of network and application failures that motivate the Netfuse system.
In Section 3, we introduce our Netfuse prototype implementation. In Section 4,
we describe our classification and clustering algorithm. Then we describe our
in-situ and online experiences with the Netfuse system and analyze results in
Section 5. We survey related work in Section 6. We summarize our results and
discuss future work in Section 7.

2 An Empirical Survey of Application Failure Anomalies

We explore reasons behind the occurrence of application failures in enterprise
traffic. We begin with a case study analysis of the failure patterns of malware

188 Z. Zhu, V. Yegneswaran, and Y. Chen

using over 30 long-lived malware (5-8 hour) traces. We then examine failure pro-
files of several normal applications that may cause failures similar to malware
including webcrawlers, P2P software and popular video sites. Then we discuss
the potential and implications of using protocol failure anomalies to detect mis-
behaving clients in the enterprise network.

In the following, we define the term failure to broadly refer to both network
and application failures. Network failure corresponds to presence of packets,
indicating transport-level failures such as TCP RSTs and ICMP unreachable
messages in the trace. Application failures indicate higher-level protocol failures
as shown in Table 1.

Table 1. Commonly observed protocol failure messages

Protocol Layer Failure Types

DNS Application NXDOMAIN (No such domain)

HTTP Application 400 Bad Request, 404 Not Found,
403 Forbidden, 411 Length Required

500 Internal Server Server, 501 Not Implemented

FTP
Application Transient Negative Completion reply

Permanent Negative Completion reply

SMTP

Application Domain service not available, mailbox unavailable
Syntax error, command not implemented

Machine does not accept mail, mailbox unavailable
User not local, requested mail action aborted

IRC
Application No such nick, No such server

No such channel, Cannot send to channel

2.1 Malware Trace Analysis

The first part of our analysis is a study of application failure patterns observed in
contemporary Internet malware. We started with a corpus of 32 different malware
instances that we each executed in a controlled virtual machine (VM) environ-
ment for several hours. The sources of the malware include our honeynet [43],
malicious email attachments, and the Offensive Computing website [6]. To ob-
tain accurate and complete results of network interaction, it was necessary to
collect long-lived traces and to allow the hosts to communicate with the outside
world. We collected tcpdump traces of all network activity, and we analyze the
failure patterns found in these traces below.

We find that contemporary malware instances generate a diverse set of fail-
ures, in both the transport and application levels. Interestingly, we find that these
failures could be attributed to a small set of causes, i.e., broken C&C channels,
scanning and spam delivery attempts. Furthermore, the volume of failure activ-
ity seems to be strongly correlated with the volume of overall network activity.
For example, scanners tend to generate a lot of flows, many of which generate
transport failures. Likewise, many malware instances periodically retry failed
communication attempts, which results in larger network traces with redundant
activity.

Using Failure Information Analysis to Detect Enterprise Zombies 189

Among the 32 malware instances, eight did not generate failures. These in-
clude two worms, three IRC botnets, and three spyware instances. As the three
IRC bots contacted the server successfully and did not receive any MOTD com-
mands from the server, there were no failures. Likewise, the well-behaved spyware
binaries simply contacted a few active websites.

Table 2 illustrates the distribution of failures by protocol for each of the
malware instances that generated transport or application failures. First, we
note that 24/32 botnet and worm instances generate some sort of failure (either
application or transport). We find that most of them (18/24 instances) trigger
DNS failures. Furthermore, malware with spam capabilities (notably Storm) also
tends to produce high volumes of SMTP failures. Finally, malware with P2P
C&C channels and malware with scanning behavior are also associated with
abnormally high ICMP failures. We examine the failure breakdowns within each
protocol in greater detail below and provide explanations for their causes.

DNS failures. In our analysis, we found that 18 malware traces contained DNS
failures. All of these were due to unresolved domain names or NXDOMAIN
responses from the DNS server. In many cases, particularly for IRC bots, these
arise because the C&C server gets taken down by ISPs or is otherwise blocked
by law enforcement. While many well-behaved applications terminate connection
attempts after a few failed tries, we find that malware tends to be remarkably
persistent in its repeated attempts to contact its C&C server. We also observed
that for certain malware, there is built-in redundancy in that they will query
a set of domain names for the remote server. Although some domains do not
resolve, C&C communication will still continue based on the successful DNS
lookups.

Table 2. Failure profile summary (in hourly rates) of 24 malware instances

Malware Class DNS HTTP ICMP SMTP TCP
rate rate rate rate rate

Look2me Spyware 5
Wsnpoem Spyware 15

Bobax HTTP botnet 148 191
Kraken I HTTP botnet 348
AgoBot IRC botnet 5312
Gobot IRC botnet 891 9539
Sdbot IRC botnet 2188

Sdbot II IRC botnet 53
Spybot I IRC botnet 283 1506
Spybot II IRC botnet 16 50
Spybot III IRC botnet 16
Wootbot IRC botnet 275

Irc.Webloit IRC botnet 477
Nugache P2P botnet 291
Storm I P2P botnet 26 5432 284 73
Storm II P2P botnet 27151
Allaple Worm 9 33413 5738
Grum Worm 60 160 31330
Kwbot Worm 37
Mytob Worm 221 385 53
Netsky Worm 51012

Protoride Worm 503 151
Virut Worm 222 10 409 14
Weby Worm 67 24

190 Z. Zhu, V. Yegneswaran, and Y. Chen

In fact, for some bots, such as Kraken, DNS failures could be considered part
of normal behavior. This malware uses a dynamic C&C-based communication
structure that constructs a new list of C&C rendezvous points each day. The
fully qualified domain name (FQDN) of the C&C server is constructed from
a dynamically generated hostname (based on the date) and one of the follow-
ing four base domain names: .mooo.com, .dynserv.com, .dyndns.org, and
.yi.org. As long as the botmaster and the malware use the same algorithm to
generate domain names, it is very easy for the botmaster to change the C&C
server names and IP addresses to evade detection. While resolutions for most of
these DNS domains are expected to fail everyday, the botmaster simply has to
register one of the daily domains when he wants to instruct the bots to perform
a task. Hence, a lot of DNS lookup failures are observed in the trace. For exam-
ple, our trace shows that the host received 1740 DNS failures in about 5 hours,
which is highly anomalous for a normal host. A similar strategy is also adopted
by the recent Conficker worms [18].

SMTP failures. In our analysis, we found that SMTP failures result from spam-
ming behaviors. A typical example is the Storm botnet, which also uses SMTP
to generate emails for spam as well as propagation. Hence, its trace includes a
flurry of SMTP activity and a lot of failures. Certain SMTP servers immediately
close the connection after the TCP handshake. Other failures occur early in the
SMTP connection setup, most common reason being “550 Recipient address re-
jected: User unknown”. In our traces, we found hundreds of SMTP failures from
several email servers. But these failures were not persistent, i.e., Storm does not
retry a rejected username on the same SMTP server. In certain traces of the
Storm botnet, this spam behavior stops after an hour, suggesting that certain
malware instances do eventually learn from failures (albeit after a long time).
We feel that any malware that generates spam is bound to produce such failures.
Besides Storm, there were other malware instances that attempted to send spam
email, e.g., Bobax, but could not succeed in establishing communication with
the remote SMTP server.

HTTP failures. We found that the HTTP failures in our traces could be at-
tributed to two reasons: (1) sending mal-formed packets for DoS attacks and (2)
querying for a configuration file that has since been removed from the control
server. For example, malware Mimail.L sends the following request to the target
HTTP server to launch a DoS attack: “GET / HTTP/1.0” to port 80, followed
by 2048 bytes of data to port 80. As a result, it receives a flurry of “HTTP 400”
errors from the server implying “Bad or Malformed HTTP request”. Certain
other failures are due to the missing files in controlling servers. For example,
clients infected with the Weby malware will try to get a configuration file from
several servers. Since this file is removed in the servers, it results in “HTTP
404/File not found” errors, which are quite persistent. In our 5-hour trace, there
were 335 “HTTP 404/File not found” failures.

IRC failures. For botnets that use the IRC protocol for communication and
control, the following failure modes are common. Sometimes, the channel is

Using Failure Information Analysis to Detect Enterprise Zombies 191

removed from a public IRC server, which results in IRC application failures
like “no such channel”. In certain other cases, the channel might be full due to
too many bots, which would result in a “Cannot join channel” message.

TCP layer failures. We consider unproductive TCP flows i.e., which do com-
plete a TCP handshake and/or terminate the connection with RST prior to
sending any payload. The prevalence of such unproductive flows (which also re-
sults from scanning behavior), is another characteristic of malware. For some
malware instances, we observed that there were continuous TCP layer failures
in certain ports. For example, some IRC botnet clients receive failures in the IRC
port (TCP/6667) from the remote servers (either because the server has been
taken down or because it is too busy). Certain Bobax clients receive failures in
the SMTP (TCP/25) port from remote email servers because the client network
has been blacklisted. While scanning is usually good evidence of malware, we
find that persistent TCP failures from the same remote host could be another
useful indicator of malware. For example, we observed that many IRC botnets
generate TCP failures from being unable to contact a previously active C&C
server that has since been taken down.

ICMP failures. In our analysis, we found that ICMP failures result from scan-
ning behavior and communication patterns of P2P botnets such as Storm. As we
discuss below, this is quite unlike normal P2P applications, such as BitTorrent
and eMule, that generate few ICMP failures.

2.2 Failure Patterns of Normal Applications

The second part of our analysis studies failure patterns of normal applications.
As studying failure patterns of all applications is outside the scope of this study,
we focus on applications that one might typically expect to produce failure
patterns similar to what was observed in the malware corpus that we analyzed.
The goal of this study is to understand the degree to which malware failure
patterns could be used to distinguish malware traffic from other benign enterprise
traffic. Our Netfuse system uses these network failures as symptoms to detect
suspicious hosts. Thus, these results could inform the feasibility and design of the
Netfuse system and help us prioritize failure patterns that are used for detection.
Specifically, we focus our investigation on three classes of applications, which
at the first glance may cause similar failures: web crawler, P2P applications
(BitTorrent, eMule), and online video service (youtube).

We collected several long-lived traces for each of these normal applications, in
order to get a good understanding of the types of failures they generate. Table 3
provides a summary of these traces.

Webcrawler. webcrawlers, popularly known as webspiders or webrobots, are
automated scripts that systematically scan all web-pages in a site looking for
specific types of content. These are commonly used by search engines to build
automated meta-data (indexes) of public web-pages, but are also used for mirror-
ing websites, data mining, and by other web-based applications such as mashups

192 Z. Zhu, V. Yegneswaran, and Y. Chen

Table 3. Normal application trace summary

Type Site Size Time Pkts # URLs
news.sohu.com 3.1 GB 2 days 3577674 25334

Webcrawler amazon.com 1.9 GB 2 days 2058630 23111
Mirror bofa.com 144 MB 12 hours 186711 4141

imdb.com 252 MB 16 hours 333583 8113
P2P BitTorrent 6.1 GB 18 hours 7338627 n/a
P2P eMule 1.3 GB 1 day 1982682 n/a
Video youtube.com 16MB 2 hours 25498 n/a

Table 4. Failure profile summary (in hourly rates) for normal applications

Application Name HTTP ICMP TCP
rate rate # ports / rate

Web crawler(sohu) 1.4 1/0.4
Web crawler(amazon) 1/1.4
Web Crawler(imdb) 0.04 1/0.2
Web Crawler(bofa) 0.8 1/0.9

BitTorrent 0.6 382/333
eMule 68 839/370

and portals. Since webcrawlers have become very popular and they follow hy-
perlinks in an automated fashion, one might expect such systems to frequently
stumble upon many failed links and generate HTTP failures. Hence, we pick
them as the first class of application to study.

We used the default settings and -m (mirror) option in wget [3] that forces
wget to act as a webcrawler, recursively following all links in a given site. until all
the pages have been downloaded. We collected traces from crawling four popular
websites in the US and China including bofa.com, amazon.com, imdb.com and
sohu.com. Each crawl took 1-2 days and involved 144 MB to 3 GB of data
transfer. We found that the webcrawler produced very few HTTP and transport
failures. As an example, for the website news.sohu.com, there were only 18
transport layer (TCP) failures and 66 HTTP failures in 2 days. Other websites
also show the similarly low failure patterns as shown in Table 4. As one might
expect, we find that in webcrawlers, HTTP failures are restricted to “HTTP
404/File not found” messages.

P2P applications. We select two popular peer-to-peer (P2P) software pro-
grams for our analysis: BitTorrent and eMule. BitTorrent and eMule are P2P
file sharing protocols used to transfer large amounts of data such as media files,
software, and OS distributions. A single large file is broken up into pieces, which
are replicated and distributed among a set of peers. In BitTorrent, the publisher
of the file acts as the first seed, and every peer who downloads the data also
uploads the content to other peers. A client wishing to download the file first
obtains the meta-data file, called the torrent, which specifies where to download
the pieces. Thus, a single HTTP request for a large file is translated into several
small data requests to various peers in the network. eMule is similar in concept
but implements a different protocol based on Kademlia [4].

Using Failure Information Analysis to Detect Enterprise Zombies 193

Since the status of peers in both of these networks can dynamically change
(from online to offline), we expect these P2P applications to have many failures.
We used BitTorrent to download a popular Linux distribution (Fedora 10) and
monitored the activity of this peer for one day. It turns out there were very few
(11) ICMP failures and HTTP failures, but many TCP failures. Likewise, we
used eMule to download another popular Linux distribution (Ubuntu) and mon-
itored its activity for a day. It had many ICMP and TCP failures. An important
difference between transport-level failure profiles of BitTorrent and the malware
we analyzed is that for BitTorrent the TCP failures happen on a large set of
ports. This did not occur in the malware traces, i.e., failures were restricted to
fewer ports and typically occurred in one or two ports. As an example, most TCP
failures with the Storm worm were dominated by its activity on port 25/TCP
(arising from its spam campaigns and unrelated to its P2P communication).

Online video service. YouTube.com is one of the largest and most popular
websites that provide online video hosting service. Users can upload, view, and
publicly share video clips. In this experiment, we collected traces by opening
videos from youtube.com, and then keeping the browser open for several hours.
In analyzing the trace, we found that there were no transport-layer failures.
While we did find several “HTTP 304/Not Modified” errors, we did not find any
other application-level failures. Since “HTTP 304/Not Modified” messages were
not found in the malware traces, we infer that this might be an error code to be
considered in a whitelist.

2.3 On the Potential of Failure Analysis to Uncover Suspicious
Activities

We summarize the results of our exploratory empirical analysis on the utility
of failure profile analysis. After our analysis of a collection of traces from both
malware and benign applications, we find several notable differences in failure
pattern between malware and normal applications that could be exploited in
network-based detection systems.

1. Failures in malware occur frequently in both the transport and application
levels. In general, failures are rare for normal applications, except for certain
P2P protocols that can generate high volumes of transport failures. Thus
high volume of failure traffic could be a useful indicator of malware.

2. DNS failures and in particular NXDOMAIN errors are common among mal-
ware applications and relatively infrequent in normal applications. Further-
more, these failures tend to persist (repeat with high frequency) in malware.

3. Failures in malware applications tend to be restricted to a few ports and often
a few domains. Thus, malware failure patterns tend to have low entropy.

3 Architecture

In the prior section, we explored the possibility to using failure information to
detect suspicious hosts in the enterprise network. Here, we describe the system
framework and our prototype implementation of a system that realizes our ideas.

194 Z. Zhu, V. Yegneswaran, and Y. Chen

Enterprise

Network

Single

Suspicious

Host Detection

Final Report

Host A

DNS Server

DNS mon

Host B

Host C

Failure Log

Host D
Gateway

FIA

Correlation

Engine

Fig. 1. Netfuse multi-point monitoring architecture

3.1 System Overview

As shown in Figure 1, Netfuse is composed of three parts: the failure information
analysis (FIA) engine, DNSMon and the correlation engine. The FIA engine will
typically be deployed on the perimeter of the enterprise networks. The major
function of this component is to extract the failure information by looking at all
packets that transit the enterprise gateway router. It will generate the failure
information if any, by including both flow-level and application-level informa-
tion (if available). The DNSMon system monitors interaction between enterprise
clients and the local DNS server.

After the failure information is collected, the correlation engine implements
a diagnostic algorithm to classify hosts according to their failure profiles and to
group those suspicious hosts with similar failures. It then generates a classifica-
tion report that identifies suspicious hosts based on four different criteria: failure
volume, failure entropy, failure persistence, and failure uptick. We implemented
our prototype FIA engine by modifying the wireshark network protocol analyzer.
Our correlation engine is implemented in Python and uses a publicly available
clustering package [1].

3.2 Building an FIA from Wireshark

Wireshark([8]) is an open-source network protocol analyzer that is based on
libpcap library. Hence, Wireshark can analyze packets captured from a live net-
work connection or read from a captured pcap trace file. It is distinguished by
its flexible design that makes it easy to add dissectors for new protocols and
built-in support for hundreds of popular protocols.

We modified Wireshark to automatically extract failure information. The fail-
ures we consider include transport-level and selected application-level protocols
such as FTP, HTTP, SMTP, DNS, and IRC. For each ICMP failure, we record
the error type and client IP address. For TCP failure, we record client and server
IP addresses and corresponding port numbers. For DNS failures, we record the

Using Failure Information Analysis to Detect Enterprise Zombies 195

failure type, domain name, and client IP address. For FTP, IRC, HTTP and
SMTP failures, we record the server IP address, error code, client IP address,
and detailed failure information that may be helpful to an administrator. We
also capture the packet associated with each failure message. We focus on these
five protocols simply because they were the most popular in the enterprise traffic
that we monitored. However, the design of Wireshark makes it straightforward
to track failures in other protocols. Finally, as we are interested only in iden-
tifying potentially infected local hosts, we configure our system to only track
inbound failure messages.

3.3 L7-Based Automatic Protocol Inference

One problem with Wireshark is that it does not have built-in protocol inference
capability. It does not detect when a well-known protocol, e.g., HTTP, is used in
nonstandard ports. Wireshark expects each dissector to be tied to one or more
ports and relies on the user to explicitly decode the packet by choosing a dissec-
tor when the packets are observed in unspecified ports. This is a fundamental
limitation especially for malware analysis, as malware often transmits packets in
nonstandard ports to evade monitoring systems.

To improve the fidelity of the FIA engine, we enhance Wireshark with L7
filter protocol signatures. L7-filter [5] is a classifier that can identify packets
based on packet payload. It uses regular expressions to automatically classify
packets as belonging to certain common protocols. We provide below examples
of L7 protocol signatures for HTTP and IRC:

− HTTP Protocol: http/(0.9|1.0|1.1)[1-5][0-9][0-9][\x09-\x0d-˜]*(connection:|
content-type:|content-length:|date:)|post[\x09-\x0d-˜]*http/[01].[019]

− IRC Protocol: ˆ(nick[\x09-\x0d]*user[\x09-\x0d]*:|user [\x09\x0d]*:[\x02-
\x0d]*nick[\x09-\x0d]*\x0d\x0a)

We modified the connection struct in Wireshark to maintain a dissector tag for
each connection. Every connection starts without any pre-specified dissectors.
When a packet arrives, we first check to see if the connection has been allocated
to a dissector. If not, we check to see if the packet matches one of the L7 filter
signatures. If it finds a suitable dissector, then the connection struct is updated
so future packets can be accelerated, bypassing the L7 regular expression check.
Once the packet is parsed with the appropriate dissector, the output is examined
for any failure messages that are stored in a log file. The FIA engine is installed
as a monitor on the span port of the gateway router of the enterprise networks
and logs inbound failure responses from remote servers. Figure 2 illustrates the
modified Wireshark packet processing engine.

3.4 Multipoint Deployment

We begin with a simplified overview of a domain name lookup using the domain
name service. As in our deployment, DNS servers are typically located inside the
enterprise network. Local enterprise clients submit name resolution requests to the

196 Z. Zhu, V. Yegneswaran, and Y. Chen

IP Layer

P
a
c
k
e
t

ICMP?
ICMP failure

Analysis

D
N
S
?

T
C
P
 w
it
h
o
u
t

p
a
y
lo
a
d

DNS failure

Analysis
TCP failure

Analysis

O
th
e
r T
C
P
 P
k
t

Dissectors

existing for this

flow?

NO

Y
E
S

Application(HTT

P, SMTP, IRC,

FTP) failure

analysis

Payload

matching and

Choosing

dissector for this

flow

Fig. 2. Modified Wireshark packet processing engine

local DNS server (resolving name server). The resolving server checks its cache
and if the name does not exist queries the authoritative name server on behalf
of the local client. (The resolving server might have to query additional servers
to obtain the name of the authoritative server for a specific domain.) Finally, the
resolving name server responds back to the client with the appropriate IP address
or NXDOMAIN if the name does not exist, or other type of DNS failure.

A side-effect of the hierarchical DNS system is that it poses additional chal-
lenges for any network-based monitoring system as monitoring the gateway only
provides a view of the interaction between the resolving name server and ex-
ternal DNS servers. While suspicious domain lookups could be identified, they
cannot typically be tracked back to the client that originated the name lookup.
Netfuse addresses this problem by integrating an additional lightweight monitor
(which we call DNSMon) that tracks activity between the local clients and the
resolving name server. DNSMon produces regular alert logs that summarize DNS
failure activity of all enterprise hosts. By combining DNSMon alerts with the
data collected at the gateway monitor, we get a comprehensive log of network
failure activity. Next, we describe how the Netfuse correlation engine processes
this information to intelligently isolate suspicious enterprise hosts.

4 Correlation and Clustering Engine

Here, we first describe the algorithm that we implement for ranking suspicious
hosts based on failure profiles. Next, we describe our algorithm for classifying
groups of hosts with similar failure profiles. Finally, we discuss some techniques
that we implemented for reducing false positives in our enterprise network.

Based on our empirical experience from analyzing malware traces, the cur-
rent prototype system implementation is focused on failures that occur in the
transport-layer and five application-layer protocols: HTTP, FTP, SMTP, DNS,
and IRC. As Wireshark has dissectors for hundreds of protocols, it is not difficult

Using Failure Information Analysis to Detect Enterprise Zombies 197

to extend the system to support additional protocols. We now describe how our
detection algorithm works based on failure input from these protocol analyzers.

4.1 Detecting Suspicious Hosts

The primary inputs to the diagnostic algorithm are failure logs obtained from
the FIA engine and DNSMon described in Section 3. First, we classify and
aggregate failure information based on host IP address, protocol, and failure
type. Next, we compute the following four different scores for each host in
the enterprise network with failure activity: (i) composite failure, (ii) failure
divergence, (iii) failure persistence and (iv) failure entropy. The scores are each
normalized to be in the range of 0 and 1. Finally, we use an SVM-based learning
technique to classify suspicious hosts. We begin by describing the four scoring
functions in greater detail.

Composite Failure Score. This score estimates the severity of the observed
failures by each host based on volume. For every host, the failure profile can be
represented as a vector{Ni}, where Ni represents the number of failures of the
ith protocol. We proceed as follows to compute the composite failure score for
each host.

Step 1: In Section 2, we observed that malware tends to have a large number of
failures. So the first step in our analysis is a filtering step that culls hosts with the
fewest number of failures. Let αi, βi, and γi represent the number of application
level failures, number of TCP RSTs and number of ICMP failures respectively
of host i. Furthermore, let μ(β) and σ(β) represent the average and standard
deviation of TCP failures for a host. Likewise, let μ(γ) and σ(γ) represent the
average and standard deviation of ICMP failures for a host.

Specifically, we consider only hosts that satisfy either of the following three
constraints: (1) αi > τ (where τ is a constant, set to be 15 for our experiments);
(2) βi > μ(β) + 2 ∗ σ(β) (TCP RST count more than two standard deviations
from the mean); or (3) γi > μ(γ) + 2 ∗ σ(γ) (ICMP failure count more than two
standard deviations from the mean). The final two constraints remove backscat-
ter traffic [33], which artificially inflates the TCP RST and ICMP failure counts
for IP addresses in the network.

Step 2: Next, we compute a composite score for each of the remaining hosts as
follows: score(hosti) =

∑n
i=1 Ni/Ti, where Ti is the total number of failures for

ith protocol across all hosts.

Step 3: Finally, we sort all the hosts according to the score calculated in the
second step. Hosts with higher scores are more suspicious than hosts with lower
scores.

Failure Divergence Score. The objective of the failure divergence score is to
measure the degree of uptick in a host’s failure profile. In particular, we would
like to measure the delta between a host’s current (daily) failure profile and
past failure profiles. We expect that newly infected hosts would show a strong

198 Z. Zhu, V. Yegneswaran, and Y. Chen

and positive divergence in their failure patterns while other hosts (clean hosts
and those that have been infected for a while) would demonstrate a more stable
failure profile.

To quantify this we adopt a well-known statistical forecasting technique, ex-
ponentially weighted moving averages (EWMA) [7], that uses a weighted moving
average of past observations as the basis for predicting the failure profile for the
next day. EWMA uses an exponential distribution to weigh recent observations
more heavily than past observations and it is controlled by the parameter α,
where α is the smoothing factor, and 0 ≤ α ≤ 1. In our measurements, we set
α to be 0.5. We compute divergence as follows for each host in the network. Let
Eijt correspond to the expected number of failures for host i, on protocol j on
day t. We compute Eijt as shown in Figure 3. We then compare the actual value
Xijt with Eijt by calculating the distance as follows: 1-(Eijt-Xijt)/(Eijt+Xijt).
Finally, we normalize by dividing by the maximum divergence score across all
hosts in that day to obtain a score in the range [0,1].

Eij0 = Xij0 (1)

Eijt = αXi,j,t−1 + (1 − α)Ei,j,t−1 (2)

Distit =
n∑

j=1

1 − Eijt − Xijt

Eijt + Xijt
(3)

Divergenceit =
Distit

∀k max(Distkt)
(4)

Fig. 3. Simple exponential prediction model and divergence computation

Failure Entropy Score. The failure entropy score measures the degree of diver-
sity in a host’s failure profile. This is based on the insight derived from Section 2
that failures in many malware applications tend to have a high degree of redun-
dancy, e.g., failures are often restricted to a few ports or domains such as in a
bot that tries to repeatedly contact a C&C server that is currently inactive.

For TCP failures, we track entropy in the server distribution and host distri-
bution of each client receiving TCP RST failures. For every server Hi, we record
the number of Ni failures from it. We repeat the same for each server port Pi.
For DNS failures, we track entropy in the domain names that are associated with
failures. For each domain name Di appearing in failure response, we record the
number Ni. For HTTP, FTP IRC, and SMTP failures, we track entropy in the
disribution of various failure types (e.g., HTTP/404) within each protocol and
remote servers that issue the errors. For each host Hi and each error type Ei,
we calculate the corresponding number Ni. We do not consider ICMP failures
in the entropy computation.

For those protocols that have two distribution sets, we calculate the average
entropy [2] for each set. We begin by computing weights for each host i and
protocol j. Then, for each host i, we compute the significance (s) of protocol j as
sij = Nij/

∑
k = 1nNkj (i.e., number of failures of host i in protocol j divided

by the total number of failures in protocol j across all hosts). The weight of

Using Failure Information Analysis to Detect Enterprise Zombies 199

protocol j for host i is simply its normalized significance wij = sij /
∑n

k=1 sik.
The weighting function ensures that for each host, protocols that are responsible
for a large portion of its failures will dominate its entropy value. Next, for each
host i and protocol j, we calculate the entropy pij . The failure entropy score for
the host is simply the weighted average entropy score, i.e.,

∑n
i=1 wi ∗ pi.

Failure Persistence Score. The final score is failure persistence, which is
motivated by the observation from our case study that malware failures tend to
be long-lived. Prior approaches have used autocorrelation techniques to detect
long-lived periodic behavior of malware additivity [24]. While we could leverage
similar statistical approaches to measure persistent malware activity, we adopt a
simpler approach to measure persistence. We simply split the time horizon into
N parts (where N is set to 24 in our prototype implementation), and compute
the percentage of parts where the failure happens. High failure persistence values
provide yet another useful indicator of potential malware infections.

SVM-based Algorithm to Classify Suspicious Hosts. Support vector ma-
chines are a recent and well-studied family of supervised learning algorithms used
for classification of multidimensional data. Given a training data set, SVMs work
by building a hyperplane (or a predictor function) that efficiently seperates posi-
tive and negative examples. In our case, we are interested in the maximal margin
classifier, i.e., a hyperplane that separates positive and negative examples with
maximal distance. In many environments, SVMs have been shown to outperform
traditional linear classifiers. Indeed, we had a similar experience in testing dif-
ferent classifiers on our data set. For this system, we use a publicly available tool
WEKA [9] to implement our SVM-based classification. The input to the system
is a series of four-dimensional vectors where each vector corresponds to the four
scores of a individual host. We train the system using a set of malware traces
and clean traces for which we have ground truth. The classification problem is
identifying the set of suspicious hosts in the network.

4.2 Detecting Failure Groups

After we get the result of suspicious hosts, we want to know whether they are
infected by the same malware. For example, we want to know whether they be-
long to the same botnet. This information can help the network administrator
rapdily assess what has happened inside the network. To enable this, we devel-
oped a clustering algorithm to detect failure groups which we discuss below. We
begin by defining the scoring function that is used for comparing failure profiles.

Scoring Function. According to the description above, each type of failure can
be represented as a set of (Fi,Ni), where Fi is the failure property and Ni is the
number of failures with this property. Given this representation, we can define
the similarity between two hosts as follows. The pseudocode for the algorithm is
provided in Algorithm 1. For each protocol, the algorithm compares the number
of failures for hosts i and j. The similarity score is incremented by protocol failure
count of each host minus the difference between the larger and smaller failure
count. It should be apparent that hosts with identical failure profiles would end

200 Z. Zhu, V. Yegneswaran, and Y. Chen

Let (Fi,Ni) be the set of one host, and (Fj ,Nj) be the set of the other.
procedure Similarity((Fi,Ni), (Fj ,Nj))
Let sum = 0 be the total number of failures of these two sets ;
Let sim = 0 be the number of failures that show similarity;
foreach (Fik,Nik) in set (Fi,Ni) do1

foreach (Fjl,Njl) in set (Fj ,Nj) do2

if Fik = Fjl then3

sim = sim + (Nik + Njl − abs(Nik − Njl))4

sum = sum + Nik + Njl5

end

end
Return sim/sum;6

Algorithm 1. Function to calculate similarity between two failure profiles

up with higher similarity scores. Finally, the similarity score is normalized by
dividing by the total number of failures between the two hosts.

Clustering Method. The similarity metric enables us to cluster hosts into
distinct groups based on their respective failure profiles. We apply hierarchical
clustering based on Peter Kleiwig’s publicly available clustering package [1]. The
unique aspect of this tool is its flexibility, which lets us choose between seven
different clustering algorithms. We chose Ward’s minimum variance clustering
method, which is widely used for hierarchical clustering. The clustering generates
a dendrogram that illustrates similarity among hosts in the network based on
their failure profiles. Then instead of fixing a threshold to cut them into clusters,
we implement Silhouette Validation Method [37] to find the optimal cut index.

5 Evaluation

To evaluate the performance of Netfuse, we conducted comprehensive tests to
measure its detection and false positive rates. The traffic that we use includes
five traces shown in Table 5: three malware trace sets and two clean traces from a
research institute network, which we refer to as the institute trace. First, we built
a model from the training trace. Then to test the classification performance, we
use traces from different malware sets and mix them with the institute traces.

Table 5. Training and testing data set

5-day 12-day
Institute Trace Institute Trace

Malware Trace I Training Testing
Malware Trace II Testing
Malware Trace III Testing

Using Failure Information Analysis to Detect Enterprise Zombies 201

1. Malware Trace I: We reuse 24 traces from Table 2 which we combine with
clean traces to build the classification model.

2. Malware Trace II: This data set contains five malware families that are not
included in the training set (Peacomm, Kraken, Rbot, Mimail and Bifros) and
three malware instances represented in the training set. We created a VMware-
based virtual machine (VM) environment running eight isolated Windows XP
virtual machines, infecting each with a different malware instance. We let these
systems run for 10 hours and collected traces of all their network activity. We
repeated the experiment three times collecting a total of 24 traces (three per mal-
ware). We use this trace to evaluate the classification system and the clustering
component.

3. Malware Trace III: This data set contains more than 5,000 malware traces
that were obtained from a sandnet. This corpus is particularly attractive because
it represents a large and diverse collection of malware. However, a deficiency of
sandnet traces is that the malware binaries are often run only for a short period
and many of them do not generate any network activity. From this large corpus,
we downselected 242 longer running traces based on duration and trace size.

4. Benign Institute Trace: We deployed our system online in the research
institute network and continuously ran it for over three weeks. The network is
rigorously monitored by NIDSs and has more than one hundred systems (mix
of Linux, Macs and Windows PCs). Being a relatively small, well-administered
network with a diverse mix of traffic makes it a good candidate for evaluating
false positives. We use two traces from this network (a 5-day trace for training
and a 12-day trace for testing). In our analysis of clients that generate many
failures, we stumbled upon a group of misconfigured Tor nodes that are part of
another project. These hosts are grouped together by the clustering engine and
classified as benign by the SVM classifier.

5.1 Classification and Detection Results

We will first describe the training process. Then we use the built model to test
the performance of our system, including detection rate and false positives.

Training Process. In the training process, we use the SVM algorithm to build
a classification model. First, we combine malware trace I with the 5-day institute
trace to construct the input data set. Intuitively, a larger training set implies a
more accurate model. An example of a rule generated by the SVM algorithm is
−4.266 × (normalized) divergence score −0.042 × persistence score +0.664 ×
entropy score +0.561 × failure score + 1.8486. For our evaluation the detection
rate for training is 97.2% and the false positive rate is 0.3%.

Performance Evaluation. To measure the detection performance and estimate
false positive rates, we mixed different malware traces I, II, and III with 12
days of institute traces. We then processed them through the Netfuse classifier,
which took under one hour to process the failure logs for 12 days. In each case,
we counted the number of malware traces that were identified (true-positives)

202 Z. Zhu, V. Yegneswaran, and Y. Chen

2 4 6 8 10 12
Day

0

10

20

30

40

50

60

70

80

90

100

D
et

ec
tio

n
R

at
e

(%
) Inst / malware I

Inst / malware II
Inst / malware III

2 4 6 8 10 12
Day

0

10

20

30

40

50

60

70

80

90

100

Fa
ls

e
Po

si
tiv

e
R

at
e

(%
)

Inst / malware I
Inst / malware II
Inst / malware III

Fig. 4. Detection (left) and False Positive (right) rates on Institute/malware I,II,III
mixture traffic

and the number of benign clients that were classified incorrectly. The results
are shown in Figure 4. The detection rate is more than 92% for traces I and
II. For trace 3, the detection rate varies between 35% and 40%, i.e., around
90/242 malware instances detected. The lower detection rate for trace 3 could
be attributed to two reasons. First, the trace set includes many types of malware,
including adware that often have traffic profiles similar to benign applications.
Second, the traces are quite short (around 15 minutes long). Despite this, Netfuse
is able to detect over a third of the malware without any specialized signatures.
The false positive rate is consistently lower than 5%.

A0
C0
C1
C2
A1
A2
D0
D1
D2
H0
H2
H1
E0
E1
E2
G0
G2
G1
B0
B2
B1
F0
F2
F1

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 5. Malware clustering dendrogram

Table 6. Malware clustering summary

Bot Trace Packets Clustered Accuracy
Peacomm 999905 3/3 100%
Bifrose 30635 3/3 100%
Mimail 279962 3/3 100%
Kraken 49505 3/3 100%
Sdbot 312796 3/3 100%
Spybot 79750 3/3 100%
Rbot 1175083 3/3 100%
Weby 9000 3/3 100%

Clustering Results. After we identify suspicious hosts, we group them according
to their failure profiles to simplify analysis of the network administrators. We use
malware trace II to test the clustering engine. As shown in Table 6, we find that in
all cases the clustering is quite robust. The corresponding dendrogram is provided
in Figure 5, where 24 hosts are infected with eight malware instances listed A-H.

Using Failure Information Analysis to Detect Enterprise Zombies 203

6 Related Work

Over the last three years, botnets have become one of the hot areas in networking
and security research. In [40] Rajab et al. use a multifaceted approach to conduct
a comprehensive study on the prevalence of IRC botnets. Dagon et al. ([12]) use
DNS sink-hole redirection to measure botnet properties and develop a diurnal
model for botnet propagation. In [21], Grizzard et al. study the structure of
botnets and discuss how the single point weakness will force botherders to a P2P
structure using the Storm botnet as an example. Vogt [42] et al. discuss a recent
trend toward smaller botnets and raise the threat of superbots, i.e., an army
of distributed botnets that can be coordinated to act as a single network. More
recently, Holz et al. discuss the emerging threat of fast-flux service networks [25].
Bayer et al. [11] propose a scalable algorithm to cluster the malware according
to the host behavior profiles.

Inspired by these measurement and modeling studies, there has been a consid-
erable research thrust in building better botnet detection systems. The Rishi [20]
system detects IRC botnets by matching IRC bot nickname patterns. BotHunter
was the first system to use dialog correlation to detect botnet activity. BotSnif-
fer uses spatio-temporal correlation to detect botnet C&C activity [24]. The
BotMiner system [22] combines clustering techniques with heuristics developed
by BotHunter and BotSniffer to classify malware based on both malware activ-
ity patterns and C&C patterns. The motivation for Netfuse and its correlation
approach bears certain similarities to these systems. However, these systems fun-
damentally differ from Netfuse in that they ignore application-layer failures and
focus on successful communication patterns of bots.

Others have developed machine-learning approaches to detect botnets [30,
19]. Bayesian network classifiers are used in [30]. In this paper, authors use
machine learning techniques to distinguish between non-IRC traffic, botnet IRC
traffic and non-botnet IRC traffic. A different framework, which uses an entropy
classifier and a machine-learning classifier, to detect chat bots is provided in [19].
It shows that message sizes and inter-message delays are sufficient to differentiate
humans from chat bots. We consider these efforts complementary to our system.
Statistical traffic anomaly detection techniques have also been demonstrated to
have the potential of identifying botnet-like activity. The exPose system [29]
uses statistical rule-mining techniques to extracting significant communication
patterns and identify temporally correlated flows, such as worm flows. Threshold
random walk is a well-known algorithm that uses hypothesis testing to identify
portscanners and Internet worms [28].

Finally, we are also informed by traffic characterization studies such as Pang et
al. [34] and efforts to automate characterization of enterprise use patterns [15].
A comprehensive analysis of DNS query traffic and its use in identifying net-
work anomalies is provided in [38]. While our system is tuned toward the botnet
detection problem, Netfuse could be easily extended to be used as a traffic char-
acterization tool.

204 Z. Zhu, V. Yegneswaran, and Y. Chen

7 Conclusion

We propose failure information analysis as a new paradigm for detecting
application-layer failures and suspicious activities in the enterprise. We are mo-
tivated by the goal of automatically discovering infected hosts in the enterprise.
We use an empirical analysis case study to highlight certain differences in bot-
like malware and production enterprise traffic that could be exploited to identify
infection activity. Using this framework, we develop a prototype system called
Netfuse that has three integral components: FIA, DNSMon and the correlation
engine. The correlation engine uses four different scores (composite failure, di-
vergence, failure entropy, and failure divergence) to classify suspicious hosts and
a clustering component aggregates hosts with similar failure profiles to simplify
analysis. We evaluate the system using several malware traces. Our evaluation
and analysis shows that Netfuse is an efficient and effective system for discov-
ering embedded malware. In future work, we plan to address the problem of
adapting Netfuse to deal with knowledgeable adversaries.

Acknowledgements

This material is based on work supported by the Army Research Office under
Cyber-TA Grant No. W911NF-06-1-0316 and by the National Science Founda-
tion Grant No. CNS-0716612. This work was also partially supported by DOD
(Air Force of Scientific Research) Young Investigator Award FA9550-07-1-0074
and a grant from NU-Motorola Center for Seamless Communication. Any opin-
ions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the fund-
ing sources. We also wish to acknowledge help from Michael Hodgsett, Matt
Jonkman and the useful feedback received from our Securecomm reviewers.

References

1. Data clustering, http://www.let.rug.nl/~kleiweg/clustering/
2. Entropy, http://en.wikipedia.org/wiki/Information_entropy
3. Gnu wget, http://www.gnu.org/software/wget/
4. Kademlia, http://en.wikipedia.org/wiki/Kademlia
5. L7-filter: Application Layer Packet Classifier for Linux,

http://l7-filter.sourceforge.net/

6. Offensive Computing, Community Malicious code research and analysis,
http://www.offensivecomputing.net/

7. Simple Exponential Smoothing,
http://en.wikipedia.org/wiki/Exponential_smoothing

8. Wireshark: The World’s Most Popular Network Protocol Analyzer,
http://www.wireshark.org/

9. WEKA-Machine Learning Software in Java (2008),
http://weka.wiki.sourceforge.net/Primer-?token=

2b7a093d07966047b281eeec0da1b9fd

http://www.let.rug.nl/~kleiweg/clustering/
http://en.wikipedia.org/wiki/Information_entropy
http://www.gnu.org/software/wget/
http://en.wikipedia.org/wiki/Kademlia
http://l7-filter.sourceforge.net/
http://www.offensivecomputing.net/
http://en.wikipedia.org/wiki/Exponential_smoothing
http://www.wireshark.org/
http://weka.wiki.sourceforge.net/Primer-?token=2b7a093d07966047b281eeec0da1b9fd
http://weka.wiki.sourceforge.net/Primer-?token=2b7a093d07966047b281eeec0da1b9fd

Using Failure Information Analysis to Detect Enterprise Zombies 205

10. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Au-
tomated classification and analysis of internet malware. In: Kruegel, C., Lippmann,
R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg
(2007)

11. Bayer, U., Comparetti, P.M., Hlauscheck, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: Network and Distributed System Security
Symposium, NDSS (2009)

12. Dagon, D., Zou, C., Lee, W.: Modeling botnet propagation using time zones. In:
Network and Distributed System Security Symposium, NDSS (2006)

13. Moore, D., Shannon, C., Brown, J.: Code-Red: A case study on the spread and vic-
tims of an Internet worm. In: Proceedings of the Internet Measurement Workshop
(2002)

14. Debar, H.: An Introduction to Intrusion Detection Systems. In: Proceedings of
Connect (2000)

15. Estan, C., Savage, S., Varghese, G.: Automatically Inferring Patterns of Resource
Consumption in Network Traffic. In: Proceedings of ACM SIGCOMM (2003)

16. F-Secure. Kapersky Security Bulletin 2008: Malware Evolution January - June
2008 (2008), http://www.viruslist.com/analysis?pubid=204792034

17. F-Secure. Calculating the Size of the Downadup Outbreak (2009),
http://www.f-secure.com/weblog/archives/00001584.html

18. Fitzgerald, P.: Downadup: Geolocation, Fingerprinting and Piracy (2009),
https://forums.symantec.com/t5/Malicious-Code/Downadup-Geo-location-

Fingerprinting-and-Piracy/ba-p/380993

19. Gianvecchio, S., Xie, M., Wu, Z., Wang, H.: Measurement and classification of
humans and bots in internet. In: USENIX Security (2008)

20. Goebel, J., Holz, T.: Rishi: Identify bot contaminated hosts by irc nickname eval-
uation. In: Hot Topics in Understanding Botnets (HotBots) (2007)

21. Grizzard, J.B., Sharma, V., Nunnery, C., Kang, B.B.: Peer-to-peer botnets:
Overview and case study. In: Hot Topics in Understanding Botnets (HotBots)
(2007)

22. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: Clustering analysis of network
traffic for protocol- and structure-independent botnet detection. In: Proceedings
of the 17th USENIX Security Symposium (2008)

23. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting
malware infection through IDS-driven dialog correlation. In: Proceedings of 16th
USENIX Security Symposium (2007)

24. Gu, G., Zhang, J., Lee, W.: Botsniffer: Detecting botnet command and control
channels in network traffic. In: Proceedings of the 15th Annual Network and Dis-
tributed System Security Symposium, NDSS 2008 (2008)

25. Holz, T., Gorecki, C., Rieck, K., Freiling, F.C.: Measuring and detecting fast-flux
service networks. In: NDSS (2008)

26. SRI International. Malware Threat Center (2008), http://mtc.sri.org
27. Javitz, H., Valdes, A.: The SRI IDES statistical anomaly detector. In: Proceedings

of IEEE Symposium on Research in Security and Privacy (1991)
28. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan detection using

sequential hypothesis testing. In: Proceedings of the IEEE Symposium on Security
and Privacy (2004)

29. Kandula, S., Chandra, R., Katabi, D.: What’s going on? Learning communication
rules in edge networks. In: Sigcomm (2008)

http://www.viruslist.com/analysis?pubid=204792034
http://www.f-secure.com/weblog/archives/00001584.html
https://forums.symantec.com/t5/Malicious-Code/Downadup-Geo-location-Fingerprinting-and-Piracy/ba-p/380993
https://forums.symantec.com/t5/Malicious-Code/Downadup-Geo-location-Fingerprinting-and-Piracy/ba-p/380993
http://mtc.sri.org

206 Z. Zhu, V. Yegneswaran, and Y. Chen

30. Livadas, C., Walsh, R., Lapsley, D., Strayer, W.T.: Using machine learning tech-
niques to identify botnet traffic. In: Proc. IEEE LCN Workshop on Network Secu-
rity, WoNS 2006 (2006)

31. Trend Micro. Trend Micro Threat Roundup and Forecast - 1H 2008 (2008),
http://us.trendmicro.com/us/threats/enterprise/security-library/

threat-reports/index.html

32. Microsoft. Microsoft Security Bulletin MS08-067 – Critical (2008),
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx

33. Moore, D., Voelker, G.M., Savage, S.: Inferring internet denial-of-service activity.
In: Proceedings of the 10th Usenix Security Symposium (2001)

34. Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V., Tierney, B.: A first look
at modern enterprise traffic. In: IMC (2005)

35. Pang, R., Yegneswaran, V., Barford, P., Paxson, V., Peterson, L.: Characteristics
of Internet background radiation. In: Proceedings of the 4th ACM SIGCOMM
Internet Measurement Conference (2004)

36. Paxson, V.: Bro: A system for detecting network intruders in real-time. In: Pro-
ceedings of the 7th USENIX Security Symposium, San Antonio, TX (January 1998)

37. Rousseeuw, P.: Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics 20 (1987)

38. Plonka, D., Barford, P.: Context-aware clustering of dns query traffic. In: Proceed-
ings of ACM Internet Measurement Conference (2008)

39. Plonka, D., Barford, P.: Context-aware Clustering of DNS Query Traffic. In: Pro-
ceedings of the 8th ACM SIGCOMM Internet Measurement Conference (2008)

40. Rajab, M.A., Zarfoss, J., Monrose, F., Terzis, A.: A multifaceted approach to un-
derstanding the botnet phenomenon. In: Proceedings of the 6th ACM SIGCOMM
Internet Measurement Conference (2006)

41. Roesch, M.: The SNORT Network Intrusion Detection System (2002),
http://www.snort.org

42. Vogt, R., Aycock, J., Jacobson Jr., M.J.: Army of botnets. In: Network and Dis-
tributed System Security Symposium, NDSS (2008)

43. Yegneswaran, V., Porras, P., Saidi, H., Sharif, M., Narayanan, A.: SRI’s Multiper-
spective Malware Infection Analysis Page (2009),
http://www.cyber-ta.org/releases/malware-analysis/public/

44. Zdrnja, B., Brownlee, N., Wessels, D.: Passive Monitoring of DNS Anomalies (2007)

http://us.trendmicro.com/us/threats/enterprise/security-library/threat-reports/index.html
http://us.trendmicro.com/us/threats/enterprise/security-library/threat-reports/index.html
http://www.microsoft.com/technet/security/Bulletin/MS08-067.mspx
http://www.snort.org
http://www.cyber-ta.org/releases/malware-analysis/public/

Dealing with Liars: Misbehavior Identification
via Rényi-Ulam Games�

William Kozma Jr. and Loukas Lazos

The University of Arizona, Electrical and Computer Engineering Dept. Tucson,
Arizona, 85712

{wkozma,llazos}@ece.arizona.edu

Abstract. We address the problem of identifying misbehaving nodes
that refuse to forward packets in wireless multi-hop networks. We map
the process of locating the misbehaving nodes to the classic Rényi-Ulam
game of 20 questions. Compared to previous methods, our mapping al-
lows the evaluation of node behavior on a per-packet basis, without the
need for energy-expensive overhearing techniques or intensive acknowl-
edgment schemes. Furthermore, it copes with colluding adversaries that
coordinate their behavioral patterns to avoid identification and frame
honest nodes. We show via simulations that our algorithms reduce the
communication overhead for identifying misbehaving nodes by at least
one order of magnitude compared to other methods, while increasing the
identification delay logarithmically with the path size.

1 Introduction

Multi-hop networks, such as wireless ad-hoc, sensor, and mesh networks rely
on collaboration among network nodes to provide reliable data services. If the
destination is not within the communication range of the source, data has to be
relayed by intermediate nodes. Implicit in this relay process is the assumption
that intermediate nodes are willing to forward traffic other than their own.

However, a fraction of nodes may not conform to the specifications of col-
laborative routing protocols. Sophisticated users can misconfigure their devices
to behave in a selfish manner and drop relay traffic, in order to save energy
resources [8, 9, 34]. Moreover, in hostile environments, an adversary may com-
promise several nodes and configure them to misbehave. It has been shown that
even a small fraction of misbehaving nodes refusing to relay packets, can lead to
a significant drop in the overall network performance [6,7,20,21]. In this paper,
we address the problem of developing resource-efficient methods for identifying
nodes that refuse to collaborate in relaying packets. We define resource efficiency
in terms of the communication overhead associated with the identification of all
misbehaving nodes along a routing path.

Previously proposed solutions addressing routing misbehavior can be clas-
sified to reputation-based systems [6, 7, 21], credit-based systems [8, 9, 16, 34],
� This research was supported by BAE systems, and Connection One (an I/UCRC

NSF/industry/university consortium).

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 207–227, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

208 W. Kozma Jr. and L. Lazos

and acknowledgment-based systems [1, 2, 18, 20, 23]. A common element in all
these solutions is the evaluation of node behavior on a per-packet basis. This
approach provides a fine granularity in quantifying the behavior of nodes and
low delay in identifying the misbehaving ones. However, it expends energy (in
the form of receptions or transmissions) on a per-packet basis. For example,
in acknowledgment-based systems, packets must be acknowledged two or more
hops upstream [2, 1], thus consuming energy and bandwidth.

We develop a communication-efficient solution that allows the per-packet eval-
uation of behavior while not incurring the per-packet overhead. Nodes themselves
are responsible for monitoring the packets they receive and forward to the next
hop. When misbehavior is observed on a particular path, the source requests
from nodes along the path to commit to a proof of the packets they receive and
forward via an audit process (similar to [18, 1]). Although misbehaving nodes
may lie about the packets they forward, the source combines multiple audit
replies from honest nodes to identify the misbehaving ones.

Our Contributions: We map the problem of misbehavior identification to the
classic Rényi-Ulam game of 20 questions [29, 32]. Rényi-Ulam games have been
extensively used in various contexts including error correction codes [3], select-
ing, sorting, and searching in the presence of errors [25, 30, 31], to name a few.
We develop communication-efficient algorithms for locating misbehaving nodes,
based on different versions of Rényi-Ulam games. Our mapping allows the per-
packet evaluation of node behavior without incurring the per-packet communi-
cation overhead. Furthermore, our formulation addresses colluding adversaries
who coordinate their attacks to avoid identification and frame honest nodes.

The remainder of the paper is organized as follows. In Section 2, we present
related work. In Section 3, we state the problem and our model assumptions. In
Section 4, we map the misbehavior identification problem to Rényi-Ulam games
and develop two auditing (searching) strategies. In Section 5, we present an effi-
cient method for constructing audits. In Section 6, we compare the performance
of our algorithms to previously proposed schemes. In Section 7, we conclude.

2 Related Work

Previously proposed methods for addressing the misbehavior problem can be
classified into three categories: (a) credit-based systems, e.g., [8, 9, 16, 34], (b)
reputation-based systems, e.g., [14,7,13,21,6,22], and (c) acknowledgment-based
systems, e.g., [1,2,20,23].

Credit-Based Systems: Credit-based systems [8,34,9,16] are designed to provide
incentives for forwarding packets in the form of credit payments. Nodes accumu-
late credit that can be later used to pay for sending their own traffic. Buttyan
et al. [8, 9] proposed a scheme in which a nuglet counter is used to tabulate the
amount of credit accumulated at each node. To prevent tampering with the ac-
cumulated credit, the nuglet counter is implemented in tamper proof hardware.
Zhong et al. [34] proposed Sprite, in which nodes collect receipts for the packets

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 209

they forward which can be later exchanged for credit in a Credit Clearance Ser-
vice (CCS). Jakobsson et al. [16] used cryptographic payment tokens that are
attached to all packets and managed by a virtual bank. In credit-based systems
a misbehaving node can drop relayed traffic if it is not interested in routing its
own packets. Moreover, colluding nodes can agree to forward their own flows to
accumulate credit while dropping all other flows. Finally, credit-based systems
favor well connected nodes to boundary ones.

Reputation-Based Systems: Reputation-based systems [6,7,13,21,22,14] rely on
building a reputation metric for each node according to its behavioral pattern.
Buchegger et al. [6,7] proposed the CONFIDANT scheme, in which neighboring
nodes monitor the behavior of their peers via overhearing. A similar monitoring
method was proposed by Marti et al. [21]. In building the reputation metric,
monitoring nodes usually overhear the transmission and reception of messages on
a per-packet basis, thus operating their radio in promiscuous mode. Ganeriwal et
al. [13] used a Bayesian model to map binary ratings into reputation metrics. He
et al. [14] proposed SORI, which monitors neighboring nodes using a watchdog
mechanism and propagates collected information to nearby nodes, thus relying
on both first- and second-hand evaluations. Michiardi et al. [22] proposed CORE,
where nodes combine reports from other nodes and task-specific monitoring to
assign reputation metrics.

Node monitoring becomes complex in cases of multi-channel networks or nodes
equipped with directional antennas. Neighboring nodes may be engaged in paral-
lel transmissions in orthogonal channels thus being unable to monitor their peers.
Moreover, operating in promiscuous mode requires up to 0.5 times the amount
of energy for transmitting a message [12], thus making message overhearing an
energy expensive operation.

Acknowledgment-Based Systems: Acknowledgment-based systems [1, 2, 20, 23]
rely on the reception of acknowledgments to verify that a message was forwarded
to the next hop. Liu et al. [20] proposed the 2ACK scheme, where nodes explicitly
send acknowledgments two hops upstream to verify cooperation. Packets that
have not yet been verified remain in a cache until they expire. A value is assigned
to the quantity/frequency of unverified packets to determine misbehavior. The
2ACK scheme is susceptible to collusion of two or more consecutive nodes. Fur-
thermore, colluding nodes can frame honest ones by claiming not to receive the
acknowledgments. Padmanabhan et al. [23] proposed a method based on tracer-
oute in which the source probes the path with pilot packets indistinguishable
from data packets. Finally, Awerbuch et. al. [1] proposed an ACK-based scheme
relying on a binary search process to identify a single misbehaving link. As with
previous schemes, node collusion is not considered.

In our previous work [18], we proposed REAct, a reactive misbehavior identi-
fication scheme relying on audits. In REAct, the destination periodically sends
acknowledgments to the source indicating the performance on the route. In the
case of a performance drop, the source initiates a series of random audits to
identify the misbehaving nodes. Nodes in the path in question provide a proof of

210 W. Kozma Jr. and L. Lazos

the packets they forward to the next hop using Bloom filters. REAct reduces the
communication overhead for identifying misbehaving nodes due to the compact
representation of its audits. However, REAct does not address collusion.

3 Network and Adversarial Models

Network Model: We assume a multi-hop ad hoc network where nodes collabora-
tively relay traffic according to an underlying routing protocol such as DSR [17]
or AODV [26]. The path PSD used to route traffic from a source S to a desti-
nation D is assumed to be known to S. This is true for source routing protocols
such as DSR. If DSR is not used, PSD can be identified through a traceroute
operation. For simplicity, we number nodes in PSD in ascending order, i.e., ni is
upstream of nj if i < j.

We assume that the source and destination collaboratively monitor the perfor-
mance of PSD. The destination periodically reports to the source critical metrics
such as throughput or delay. If a misbehaving node drops the periodic updates
as part of its misbehavior pattern, the source interprets the lack of updates as
misbehavior. Likewise, the destination explicitly alerts the source in case the
performance in PSD is restored. These alerts are used to pause the misbehavior
identification process and account for: (a) temporal variations of performance
due to traffic or intermittent connectivity, and (b) random behavioral patterns
of the misbehaving nodes. We initially consider a quasi-static network in which
PSD does not change during the misbehavior identification process. This is later
relaxed, allowing changes in PSD due to node mobility.

We assume that the integrity, authenticity, and freshness of critical control
messages can be verified using resource-efficient cryptographic methods. For ex-
ample, a public key cryptosystem realized via computationally-efficient elliptic
curve cryptography may be used to verify the authenticity and integrity of mes-
sages while providing confidentiality [19]. Note that such cryptosystems require
the existence of a trusted certificate authority (CA) for initialization (issuance
of keys and certificates) as well as revocation of users via a certificate revocation
list (CRL). Several methods have been proposed for the distributed implemen-
tation of a CA [11,28, 33]. Alternatively, methods based on symmetric keys can
be used to protect critical messages [15,24,27].

Adversarial Model: We assume that a set M of misbehaving nodes exist in a
path of length k ≥ |M |. Misbehaving nodes can be located anywhere in PSD.
The source and destination have a mutual interest in communicating, thus mis-
behavior of S and D is not considered. Misbehaving nodes are aware of the mech-
anism used for misbehavior identification. The goal of misbehaving is twofold;
degrade throughput in PSD, and remain undetected. We consider two models
with respect to the behavioral pattern of nodes in M .

Independently misbehaving nodes: In this model, nodes in PSD misbehave inde-
pendently without coordinating their packet dropping patterns. Misbehavior is
modeled after an ON/OFF process in which nodes alternate between dropping

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 211

packets and behaving honestly. The duration of the misbehaving/behaving period
is exponentially distributed with parameters μ1, μ2.

Colluding nodes: Colluding nodes share information with respect to the misbe-
havior identification process. For example, one misbehaving node can notify an-
other of any actions of the source. Information sharing is achieved either in-band
via the exchange of encrypted messages, or through an out-of-band coordination
channel. Based on collective knowledge, the colluding nodes coordinate their be-
havioral patterns to avoid identification or frame honest nodes. In this model,
we assume that colluding nodes are controlled by a single entity.

4 Misbehavior Identification

4.1 Motivation and Problem Mapping

The behavior monitoring mechanisms in previously proposed schemes operate
on a per-packet basis, either with acknowledgments [1, 2, 20, 23], or message
overhearing [6,7,21]. To reduce this overhead, we request nodes to self-evaluate
the set of packets they forward to the next hop. In this self-evaluation process,
honest nodes faithfully report the set of packets they received and forwarded,
while misbehaving nodes may lie regarding packets they dropped.

We map the process of identifying lies to Rényi-Ulam searching games [29,32],
that have been used for recovering an unknown value in the presence of errors.
Using our mapping to Rényi-Ulam games, we develop novel misbehavior identi-
fication methods that are collusion resistant. We first provide a brief background
on Rényi-Ulam games and then describe our mapping.

Background on Rényi-Ulam Games: Rényi-Ulam games are searching games
independently proposed by Rényi [29] and Ulam [32]. These games involve two
players; a questioner and a responder. The responder selects a secret value ω from
a finite search space Ω. The questioner attempts to determine ω by asking at
most q questions to which the responder is allowed up to � lies. Before starting the
game, the players agree on: (a) the search space Ω, (b) the number of questions q,
(c) the number of lies �, and (d) the mode of interaction between the players. The
format of the questions can be classified into three categories: (a) bit questions,
(b) cut questions, and (c) membership questions. Bit questions are defined as
“Is the ith-bit of ω equal to 1?” Cut questions are defined as, for some y ∈ Ω,
“Is ω ≤ y?” Membership questions are defined as, for some subset A ⊆ Ω, “Is
ω ∈ A?” The same questioning format is assumed for the entire game.

Two modes are possible for the interaction between the players; batch mode
and adaptive mode. In batch mode, the questioner submits all questions to the
responder at the same time. The responder is therefore able to review all ques-
tions before answering. In adaptive mode, the questioner asks questions one at a
time. The questioner can adapt its strategy based on all previous answers. The
questioner wins the game if it determines ω after at most q questions. Else, the
responder wins. The questioner is said to have a “winning strategy” if it can find
ω after at most q questions, independent of ω, or how the responder lies.

212 W. Kozma Jr. and L. Lazos

Questioner Responder

 = {1,…,k}

Is y?

No

S n1 n2 n3 n4 n5 D

Questioner Responder
=

AuditRequest

AuditReply

 = {n1,…,n5}

(a) (b)

Fig. 1. (a) A generic Rényi-Ulam game. (b) Misbehavior identification mapped to a
Rényi-Ulam game.

Mapping to Rényi-Ulam Games: In our mapping of misbehavior identification
to Rényi-Ulam games, the role of the questioner is assumed by the source and
destination, while the role of the responder is assumed by PSD. The search
space is defined as the set of nodes in PSD, i.e., Ω = {n1, . . . , nk}, k = |PSD|.
The responder selects ω ∈ {1, . . . , k}, corresponding to the node nω in PSD

which is misbehaving. The source’s goal is to determine nω, i.e., to locate the
misbehaving node. Questions submitted by the questioner correspond to audits
performed by the source to nodes in PSD.

When responding to an audit, nodes state the set of packets forwarded to
the next hop. The source combines one or more audits to construct bit, cut, or
membership questions. The responder lies when a misbehaving node lies with
respect to the packets forwarded to the next hop. For example, a node lies by
either claiming to forward all packets received when in reality it drops them, or
claiming to have forwarded no packets indicating they were dropped somewhere
upstream. The location of the misbehaving nodes in PSD is mapped to the
placement of such lies by the responder. Note that since the responder is a
single entity controlling the lies (i.e. location of misbehaving nodes and response
to audits), our mapping implicitly assumes collusion. Figures 1(a) and 1(b) show
the mapping of the misbehavior identification problem to a Rényi-Ulam game.

In our game, an honest node will always respond faithfully to an audit, thus a
lie can only occur if a misbehaving node is audited. By adaptively selecting the
nodes to be audited, the source can gather sufficient honest replies to identify
nodes in M . If each node in PSD is audited at most one time, the number of
possible lies is limited to � = |M |. If nodes are audited multiple times, the
number of lies depends on the exact auditing strategy. We now present two
adaptive auditing strategies inspired by Rényi-Ulam games.

4.2 Rényi-Ulam Inspired Auditing Strategies

Let Xi denote the set of packets forwarded by a node ni to the next hop. For ex-
ample, the source sends packets XS to the destination, and nodes ni, nj forward
packets Xi, Xj respectively. In the absence of misbehavior in PSD and assuming
no packet loss XS = Xi = Xj . In reality, some portion of the packets may be lost
due to the wireless channel conditions or congestion, and hence XS ≈ Xi ≈ Xj .

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 213

Definition 1. A link (ni, ni+1) is defined as misbehaving if its two incident
nodes ni, ni+1 provide conflicting claims with respect to the packets forwarded to
the next hop, i.e., |Xi

⋂
Xi+1| � |Xi|.

Proposition 1. At least one node incident to a misbehaving link is misbehaving.

Proof. By contradiction. Assume that both nodes ni, ni+1 of a misbehaving link
are honest. Hence, the set of packets Xi+1 forwarded by ni+1 to the next hop
is approximately equal to the set of packets Xi, forwarded by ni to ni+1, i.e.,
|Xi

⋂
Xi+1| ≈ |Xi|. This contradicts the definition of a misbehaving link.

Definition 2. A simultaneous audit is defined as auditing two or more nodes
with respect to the same set of packets XS , sent from S to D via PSD.

Corollary 1. The link between two behaving nodes ni, ni+1 cannot be identified
as misbehaving, when ni, ni+1 are simultaneously audited.

Proof. By Proposition 1, at least one misbehaving node is incident to any mis-
behaving link. Hence, two behaving adjacent nodes cannot be incident to a mis-
behaving link. The simultaneous audit requirement ensures that the dropping
pattern of any misbehaving node upstream of behaving node ni has the same
effect on the packets observed by ni, ni+1. Thus packets forwarded by ni are also
forwarded by ni+1, i.e., |Xi

⋂
Xi+1| ≈ |Xi|.

Note that the converse of Corollary 1 is not true. For two nodes ni, ni+1 for
which |Xi

⋂
Xi+1| ≈ |Xi|, we cannot conclude that both nodes are honest. Two

colluding nodes may be incident to a link, and thus claim similar audit replies
regardless of the packets forwarded.

Adaptive Audits with Cut Questions. We now show how the source can
identify misbehaving nodes using an adaptive strategy and cut questions. Cut
questions can be implemented by auditing one node at a time. These questions
are of the form, “Is the misbehaving node upstream of ni?”, where ni is the
audited node. Assume there exists a single continuously misbehaving node nM

in PSD. Define the set of nodes suspicious of misbehavior as V = {n1, . . . , nk}.
If ni ∈ V is audited and replies with Xi such that |XS

⋂
Xi| � |XS |, the source

concludes that all nodes downstream of ni are behaving honestly, and therefore
nM ≤ ni. This is true since either ni is honest in which case it never received
packets in XS indicating an upstream misbehaving node, or ni is the misbehaving
node lying about its audit reply. If ni replies that |XS

⋂
Xi| ≈ |XS |, the source

concludes that all nodes upstream of ni are honest, and therefore nM ≥ ni. This
is true, since if any node upstream of ni was the misbehaving one, ni would not
have received packets in XS . Thus the set V is reduced to {ni, . . . , nk}.

Pelc [25] proposed a questioning strategy for adaptive games in which the
questioner wins if he determines ω, or proves a lie took place. For a search space
of size |Ω|, and a maximum number of lies �, the winning strategy requires
�log2 |Ω|� + � questions. To find ω, the questioner first performs a binary search
requiring �log2 |Ω|� questions to converge to a value ω′. It then asks the responder

214 W. Kozma Jr. and L. Lazos

� times if ω ≤ ω′. Since the responder is limited in lies, the questioner can
determine if ω′ is the secret value or the responder has lied.

Following the winning strategy proposed by Pelc, let the source win if either
a misbehaving link is identified or the source can prove a lie has occurred. The
source can converge to a single link by performing a binary search. The source
initializes V = {n1, . . . , nk} and selects node with index i = � |V|

2 �, for audit.
As previously described, V is reduced to either {n1, . . . , ni} or {ni, . . . , nk}.
The source continues to audit nodes in V until |V| = 2. In the case of a single
misbehaving node, the source identifies the misbehaving link as shown in the
following Proposition.

Proposition 2. For a single misbehaving node, the source always converges to
the misbehaving link in log2(|PSD|) audits.

Proof. Let nM denote the misbehaving node. Initially, V = PSD and hence nM ∈
V . Let the source select a node ni upstream of nM for audit. Being upstream,
ni responds honestly that it forwarded packets to the next hop, reducing V to
{ni, . . . , nk}, with nM ∈ V . Similarly, if a node nj downstream of nM is audited,
it will respond that no packets were forwarded, reducing V to {n1, . . . , nj}. If
nM is audited, its response will indicate that misbehavior occurs either upstream
of downstream. In either case nM ∈ V , since the audited node always remains
in V . The convergence of the binary search will end in a suspicious set V =
{nM−1, nM} or V = {nM , nM+1}, depending on whether nM indicated that
misbehavior occurs upstream of downstream. In any case, the identified link
is a misbehaving one since per the definition, its two incident nodes provide
conflicting audit replies. Since the binary search converges in log2(|PSD|), in
case |M | = 1 the source will locate nM in log2(|PSD|) steps.

If two or more nodes collude, the source may converge on a link in which both
nodes are behaving, as shown in the following example. In Figure 2(a), M =
{n1, n4} with nodes n1, n4 colluding. Initially, n4 drops all packets, while n1 be-
haves. Let node n2 be audited and report no misbehavior, thus V = {n2, n3, n4}.
Assume now that nodes n1, n4 switch their behavior with node n1 dropping
packets while n4 is behaving, as shown in Figure 2(b). If node n3 is audited, it
will report misbehavior upstream, reducing V to {n2, n3} and thus removing n4
from V . Hence, link (n2, n3) is incorrectly identified as misbehaving.

Pelc solves this problem through the repetitive questioning of the result,
thereby exhausting the responder’s lies. In our case, a simultaneous audit on
nodes ni, ni+1 of an identified link V = {ni, ni+1} is sufficient to identify a mis-
behaving link or the occurrence of a lie. If |Xi

⋂
Xi+1| � |Xi|, a misbehaving

link is identified. Else, the source concludes that a lie occurred. Returning to our
previous example, in Figure 2(c), n2 and n3 are simultaneously audited. Since
both nodes are honest, they return identical audit replies and no misbehaving
link is identified. In this example, the responder has lied by changing the value of
ω during the search, i.e., initially ω = n4, then ω = n1. However, S can identify
that a lie occurred.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 215

S n1 n2 n3 n4 D S n1 n2 n3 n4 D

(a) (b)
S n1 n2 n3 n4 D

(c)

Fig. 2. (a) Nodes n1, n4 collude, with n4 dropping all packets. Audited node n2 claims
misbehavior is downstream. (b) Nodes n1, n4 alter their behaviors, with n1 dropping all
packets. Audited node n3 claims misbehavior is upstream. (c) Source simultaneously
audits n2, n3 to verify if misbehaving link exists.

When the source identifies a lie occurred, is can also reach to the following con-
clusion: either (a) nM ∈ V but lied during the simultaneous audit, or (b) |M | ≥ 2
with at least one misbehaving node upstream of ni+1 and one downstream of
ni. Note that if |M | = 1 and the misbehaving node stops misbehaving (due to
the fact that it is being audited) the destination alerts the source that misbe-
havior has stopped in PSD. In such a case, the source will take two steps. First,
any outstanding audits will be discarded. Second, the search will be suspended
at the current state until misbehavior re-appears on PSD. When misbehavior
is resumed, the source continues the search from where it left off the last time
misbehavior occurred.

If the destination does not alert the source that performance in PSD has been
restored, the source concludes that |M | ≥ 2. This is evident in our example by
the responses of n2; on the first audit in Figure 2(a), it claims that misbehavior
is downstream, while in Figure 2(c), it claims misbehavior is upstream. Let the
audit process converge to link (ni, ni+1). Since the source knows that at least
one misbehaving node is upstream of ni and one is downstream, it attempts
to isolate the effect of the misbehavior of each node by partitioning PSD into
PSni = {n1, . . . , ni} and Pni+1D = {ni+1, . . . , nk}. The source repeats the audits
recursively for each path partition PSni , Pni+1D. However, note that the desti-
nation can only determine if misbehavior occurs in PSD, not which partition.

To treat each partition individually, the source considers ni as a pseudo-
destination and ni+1 as a pseudo-source. In PSni , node ni is always audited
simultaneously with any other node. Similarly node ni+1 is audited simultane-
ously with any other node in Pn+1D. Note that if ni is the misbehaving node, it
has only two strategies, (a) respond honestly, or (b) lie. If ni lies, it immediately
implicates itself in a misbehaving link, since both ni, ni+1 are always audited.
If ni responds honestly, the search in PSni will converge to the misbehaving
link (assuming one misbehaving node in PSni). For the realization of the cut
questions, the source initializes VSni = {n1, . . . , ni} and selects nj , j = � |VSni

|
2 �

for audit. The cut question “Is nM < nj?” is true if |XS

⋂
Xj| � |XS | and

|XS

⋂
Xi| � |XS |. The second condition verifies misbehavior on PSni .

216 W. Kozma Jr. and L. Lazos

Algorithm 1. Cut Questioning Algorithm
1: ni ← n1, nj ← n|PSD|,V = {ni, . . . , nj}
2: while |V| > 2 do

3: h = � |V|
2
�, Audit(nh)

4: if |XS

⋂
Xh| ≈ |XS | then

5: ni ← nh

6: else
7: nj ← nh

8: end if
9: end while

10: Audit(ni, nj)
11: if |Xi

⋂
Xj |
 |Xi| then

12: return Xi, Xj

13: else
14: return |M | ≥ 2, Partition PSD

15: end if

Likewise on Pni+1D, the audit response of ni+1 acts as a verification if packets
from XS have reached this partition. Node ni+1 therefore acts as a pseudo-
source for Pni+1D. Much like ni, if ni+1 lies it immediately implicates itself in a
misbehaving link since (ni, ni+1) is always audited. Thus the source can identify
multiple misbehaving links using this adaptive auditing strategy. This strategy
is presented in Algorithm 1.

Adaptive Audits with Membership Questions. Our scheme can also use an
adaptive auditing strategy based on membership questions to identify the mis-
behaving nodes. Membership questions are constructed by combining two cut
questions. To answer the question, “Is nM ∈ A = {ni, . . . , nj}?” the source au-
dits ni, nj simultaneously and compares their audit replies. If |Xi

⋂
Xj | ≈ |Xi|,

then ni, nj claim nM /∈ A, since all packets forwarded by ni are received by nj .
Else, they claim nM ∈ A. Dhagat et al. [10] proposed an adaptive questioning
strategy which proceeds in stages. During each stage, the questioner either be-
lieves the responder’s answer and places it in a trusted set T , or discards it if
it contradicts prior answers. Let Vj represent the set of possible values for ω at
stage j, with V1 initialized to Ω.

Suppose that Vj is the current stage, with |Vj | > 1, and let set {rj−1,a, rj−1,b}
represent the answers to round j − 1. The questioner divides Vj into two equal-
sized subsets, A and B. The responder is asked “Is ω ∈ A?” If the answer
rj,a is “yes”, the questioner adds {rj,a} to T and moves to the next stage with
Vj+1 = A. Else, the questioner asks “Is ω ∈ B?” If the answer rj,b is “yes,”
{rj,a, rj,b} are added to T and the questioner moves to Vj+1 = B. If both rj,a, rj,b

are negative, the questioner removes {rj−1,a, rj−1,b} from T , and returns to
stage Vj−1. The questioner then selects a different partition of Vj−1 for stage j
and repeats the questioning on each partition. Dhagat et. al. showed that the
responder’s secret value ω can be identified after q = � 2 log2 |Ω|

1−3β � questions, when
β < 1

3 , with β being the fraction of q than are lies [10]. To prevent repeated lies

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 217

S n1 n2 n3 n4 Dn5 S n1 n2 n3 n4 Dn5

(a) (b)
S n1 n2 n3 n4 Dn5

(c)

Fig. 3. (a) Let V1 = {S, n1, . . . , n5, D} with A = {S, n1, n2, n3}, B = {n3, n4, n5, D}
and nM = n4. The source audits A, concluding nM /∈ A. (b) The source then audits
B, concluding nM ∈ B. (c) The source proceeds to stage V2 = {n3, n4, n5, D} and
continues the auditing strategy.

from the same misbehaving node, the source selects a new node and repeats the
membership questions, until |Vj | = 2.

Mapping Dhagat’s questioning strategy to misbehavior identification, the
source begins from stage V1 = {S, n1, . . . , nk, D}. Set V1 is divided into two
subsets, A = {S, . . . , ni} and B = {ni, . . . , D} with i = � |V1|

2 �. The source first
asks “Is nM ∈ A?” by simultaneously auditing nodes S, ni. If S and ni return
conflicting audit replies, the source knows that nM ∈ A, adds {r1,a} to T , and
proceeds to stage V2 = {S, . . . , ni}. Else, the source questions “Is nM ∈ B?” by
simultaneously auditing nodes ni, D, whose audit replies define answer r1,b. If
ni, D return conflicting audit replies, i.e., |Xi

⋂
XD| � |Xi|, the source knows

that nM ∈ B, adds {r1,a, r1,b} to T , and proceeds with V2 = {ni, . . . , D}. If both
r1,a, r1,b are negative, the source concludes a lie has occurred.

In Figure 3(a), n4 = nM . The source splits V1 = {S, n1, . . . , n5, D} to sets A =
{S, n1, n2, n3}, B = {n3, n4, n5, D}, and audits S, n3 to realize the membership
question “Is nM ∈ A?” Since n3 is honest, the source asks “Is nM ∈ B?” by
simultaneously auditing n3, D, as shown in Figure 3(b). Since n3, D are honest,
the source concludes nM ∈ B. In Figure 3(c), the source moves to the next stage
by dividing V2 = B into two memberships sets. The process is repeated until
|Vj | = 2. In our example, the source converges to the misbehaving link (n3, n4).
The source’s auditing strategy is presented in Algorithm 2.

Proposition 3. For a single misbehaving node, the source converges to the mis-
behaving link in less than 4 log2(|PSD|) + 2 audits.

Proof. Let the source be at stage Vj = {ni, . . . , nk} with nM ∈ Vj and select node
nh for audit, creating membership sets A = {ni, . . . , nh} and B = {nh, . . . , nk}.
If nM
= ni, nh, nk, then all audit responses will be honest and the source will
conclude either nM ∈ A or nM ∈ B, thus proceeding to the next stage with
Vj+1 = A, Vj+1 = B and nM ∈ Vj+1. As long as the source audits honest nodes,
the set of suspicious nodes Vj will be reduced by half.

Now assume one of the ni, nh, nk is nM . When audited, nM will either respond
honestly, or lie. If nM responds honestly, the search will proceed to state Vj+1

218 W. Kozma Jr. and L. Lazos

Algorithm 2. Membership Questioning Algorithm
1: V1 = {ni, . . . , nk}, ni ← S, nk ← D, T = r1,a

2: while |Vj | > 2 do

3: h = � |Vj |
2

�, rj,a = audit(ni, nh)
4: if |Xi

⋂
Xh|
 |Xi| then

5: T ← {rj,a}, j = j + 1, Vj = {ni, . . . , nh}
6: else
7: rj,b = audit(nh, nk)
8: if |Xh

⋂
Xk|
 |Xh| then

9: T ← {rj,a, rj,b}, j = j + 1, Vj = {nh, . . . , nk}
10: else
11: return j = j − 1
12: end if
13: end if
14: end while
15: return Xi, Xk

with nM ∈ Vj+1 and |Vj+1| = |Vj |
2 . Thus the search continues to converge. If nM

lies, the source will obtain negative answers from both membership questions,
unable to reduce Vj further, thus returning to stage Vj−1 with nM ∈ Vj−1. The
source will then pick a different nh, and repeat the set splitting, thus preventing
the same lie from repeating.

In the absence of lies, the total number of membership questions needed for
convergence to the misbehaving link is 2 log2(|PSD|). This is true, since at each
stage we split the suspicious set in half similar to a binary search. To realize
a membership question we need to simultaneously audit two nodes, requiring
a total of 4 log2(|PSD|) audits in the worst case. If nM is audited and lies, the
search backtracks to the previous stage, resulting in the waste of two audits.
For a single misbehaving node nM and the fact that the source always selects
a different node after a backtrack, nM will be audited only once. Thus, in the
worst case, the source requires q ≤ 4 log2(|PSD|) + 2 audits.

Corollary 2. The source never converges to a link with two behaving nodes.

Proof. According to Algorithm 2, the source must receive conflicting reports
from two simultaneously audited nodes to proceed from stage j − 1 to stage j.
Hence, to terminate with Vj = {ni, ni+1} the source must receive conflicting
audit replies from ni, ni+1 when simultaneously audited. However, via Corollary
1, this cannot occur if ni, ni+1 are behaving nodes.

It is possible that multiple neighboring colluding nodes can delay the search
indefinitely. Assume all nodes in Vj collude. Once in stage Vj+1, the replies to the
audits from the colluding nodes yield membership questions on both partitions
negative, thus forcing the source to return to stage Vj . Auditing any other node
in Vj will yield the same results since nodes in Vj are colluding. If the source has
audited all possible partitions of Vj, and thus all ni ∈ V , with no progress to the
next stage, it terminates the search and proceeds to the identification phase.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 219

n1

n2

n3

n4

n5

n6

D
S

n

nn1

n2

n3

n4

n5

n6

D
S

(a) (b)

Fig. 4. (a) Node n3 drops packets, with link (n3, n4) being the misbehaving link. (b)
Slight alteration to routing path.

4.3 Misbehaving Node Identification

Once the source has converged to a misbehaving link (ni, ni+1), it can no longer
proceed to identify the misbehaving node. The two conflicting audit responses
from ni, ni+1 indicate that either ni or ni+1 is lying. From the routing point of
view, identifying the misbehaving link is sufficient for restoring the performance
in PSD since the source can now avoid this link. However, we would like to
identify and isolate the misbehaving node to prevent it from further affecting
other paths. This is accomplished through the idea of path division. The path
PSD is divided in such a way that new independent observations can be made
with respect to ni and ni+1. We first illustrate the idea of path division for a
single misbehaving nodes and then generalize to many.

Single Misbehaving Node. Without loss of generality assume that the audit
process converged to (nM , nM+1), where nM is the misbehaving node. The source
divides PSD into two paths such that packets are routed through either nM or
nM+1, and attempts to re-identify the misbehaving link. This can be achieved by
bypassing each node in PSD via an alternative path. Instead of performing the
entire audit process, the source concentrates on the nodes around nM , nM+1, For
example, in Figure 4(a), the source has identified link (n3, n4) as the misbehaving
one. In Figure 4(b), the source splits the traffic between two paths that bypass
n3, n4 in turn via nodes nα, nβ. Path segment {n2, n3, n4, n5} is replaced by the
segments {n2, nβ, n4, n5} and {n2, n3, nα, n5}, thus isolating n3, n4 from each
other. The source simultaneously audits nodes nβ, n4 and n3, nα to identify the
misbehaving link. The source identifies link (n3, nα) as misbehaving, and hence
identifies the misbehaving node n3.

Multiple Misbehaving Nodes. Assume now the existence of multiple misbe-
having nodes in PSD. If the cut auditing strategy is employed, the source will
split PSD to smaller paths in order to isolate the effect of each misbehaving node.
The source can then perform the path division in each subpath as in the case
of a single misbehaving node. Note that, as in the case of a single misbehaving
node, the newly added nodes must not be misbehaving in order to avoid framing
honest nodes. If the membership questioning strategy is employed, the source
will converge to a set Vj containing at most one honest node. To identify the
misbehaving one, all nodes in Vj must be excluded in turn from PSD according

220 W. Kozma Jr. and L. Lazos

to the path division process. That is, the source constructs |Vj | individual paths
with each node in Vj being present on only one path.

4.4 Mobility

We now relax our assumption that PSD does not change during the identification
process. Let a node ni be removed from PSD. If ni /∈ V , then its removal has
no effect on the search. The source identifies misbehaving links from the nodes
in V . Let ni ∈ V . There are two cases, either ni is a behaving node, or ni is
misbehaving. If ni is behaving, then removing it is analogous to reducing V to a
smaller set that still contains the misbehaving node. If ni is misbehaving, then
the performance in PSD is restored or one less misbehaving node is present.

Consider now adding a new node ni to PSD. If ni is added between nodes in
V , then regardless of ni’s behavior, this is equivalent to ni being in V , in the first
place and not yet been audited. Let ni be added in PSD outside V . If ni is an
honest node, there is no effect on the audit process. If ni is a misbehaving node,
then this is equivalent to the situation in which |M | ≥ 2 and one of the nM has
been removed from V . However, we have shown that both auditing strategies
can address the case of multiple misbehaving nodes. In the case of cut questions,
the source splits PSD into two paths while in the case of membership questions,
the source converges on the misbehaving node in V . Once this node is removed,
the source will continue to identify the newly added misbehaving node.

5 The Audit Mechanism

We now describe how the source can perform audits in a resource-efficient man-
ner. The audit mechanism is adopted from [18] and is based on the compact
representation of a membership set via Bloom filters [4]. The goal of auditing
a node ni ∈ PSD is to force ni to commit to the set of packets Xi that it re-
ceived and forwarded to the next hop. Contradicting commitments are used to
identify misbehaving links and eventually misbehaving nodes. To respond to an
audit, the node ni records the packets forwarded for a period of time, and re-
ports them to the source. Based on this report, the source compares the packets
in Xi with the packets in XS originally sent to the destination. Buffering the
packets themselves requires a large amount of storage and significant overhead
for transmission back to the source. On the other hand, Bloom filters provide
a storage-efficient way of performing membership testing [4]. The audit process
occurs in three steps; sending an audit request, constructing the audit reply, and
processing the audit reply. We now describe these steps in detail.

Sending an Audit Request: The source audits a node ni according to the algo-
rithms described in Section 4. The source selects the audit duration ad, measured
in number of packets, and the initial packet sequence number as from which the
audit will begin. The value of ad is a parameter that must be sufficiently large to
differentiate misbehavior from normal packet loss. The audit request is routed

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 221

to ni via PSD. Values as and ad are randomized thereby preventing any mis-
behaving nodes from conjecturing the start and duration of audits, unless they
are audited themselves. Note that an audit request may fail to reach the audited
node ni since a misbehaving node along PSni may drop it, or ni is the misbehav-
ing node and chooses not to respond. In this case, the source tries a threshold
number of times to audit ni. Failure to obtain a reply is interpreted as “Node
ni did not forward packets in XS to the next hop.” This is true since either ni

is the misbehaving node or a misbehaving node is upstream of ni.

Constructing an Audit Reply: When a node ni is audited, it constructs a Bloom
filter of the set of packets it receives and forwards, from as to as + ad, denoted
by Xi = {xas , xas+1, . . . , xad

}. By using a Bloom filter, packets in Xi can be
compactly represented in an m-bit vector vi with m � |Xi| [4]. After ad packets
have been added to vi, node ni signs vi, and sends it to S via the reverse path
PniS . The signed Bloom filter binds the audited node to the set of packets Xi

that it claims to have forwarded to the next hop, in a publicly verifiable manner.
Based on ni’s signature, any node can verify the authenticity and integrity of vi.
To assess the behavior of audited nodes, the source constructs its own Bloom
filter vS in the same manner as ni. When S receives ni’s Bloom filter, it compares
it against vS and compute what fraction of packets in XS was forwarded by ni.

Processing the Audit Reply: When S receives vi, it verifies its authenticity and
discards vi if the signature check fails. Otherwise, given the vector length m, the
cardinalities of Xi, XS , filters vi, vS , and the number z of hash functions used to
generate the Bloom filters, S computes the metric [5],

|XS

⋂
Xi| ≈ |XS| + |Xi| −

log2

(
<vS ,vi>

m +
(
1 − 1

m

)z|XS | +
(
1 − 1

m

)z|Xi|)
z log2

(
1 − 1

m

) (1)

6 Performance Evaluation

6.1 Simulation Setup

We randomly deployed 100 nodes within an 80×80 square and selected 10
source/destination pairs. For each pair, we constructed the shortest path and
randomly selected the set of misbehaving nodes. We generated traffic from S
to D according to the constant bit-rate (CBR) model. Each misbehaving node
randomly selected a behavioral state of either behave or misbehave, with equal
probability. It then randomly selected the duration of the state from the interval
[1, 400] packets. We focus on two metrics of interest: (a) the communication over-
head defined as the number of messages transmitted/received by nodes in PSD,
weighed by 1/0.5, respectively [12], and (b) the identification delay defined as
the time elapsed from the occurrence of misbehavior until the misbehaving nodes
are identified, normalized over the audit duration. Simulations were performed
in a packet-level C simulator.

222 W. Kozma Jr. and L. Lazos

6.2 Auditing Strategy Comparison

We first compared the performance of the two auditing strategies; the strat-
egy based on cut questions as described by Algorithm 1, which we will refer
to as CUT, and the strategy based on membership questions as described by
Algorithm 2, which we will refer to as MEM.

Communication Overhead. In Figure 5(a), we show the communication over-
head required to identify one misbehaving node as a function of the path length.
We observe that CUT requires less communication overhead than MEM. This
is expected, as the realization of cut questions requires only one audit, whereas
membership questions require two audits. Both auditing strategies audit in a bi-
nary fashion, thus resulting in logarithmic increase in communication overhead
as a function of the path length. In Figure 5(b), we show the communication
overhead required to identify two misbehaving nodes as a function of path length.

Identification Delay. In Figure 5(c), we show the delay required to identify
one misbehaving node as a function of the path length. Both CUT and MEM
incur approximately the same delay due to their binary search approach. In
Figure 5(d), we show the delay required to identify two misbehaving nodes as a

5 6 7 8 9 10 11 12 13 14 15
10

1

10
2

10
3

Path Length, |P
SD

|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead as a Function of |P
SD

|

CUT
MEM

|M| = 1

5 6 7 8 9 10 11 12 13 14 15
10

2

10
3

Path Length, |P
SD

|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead as a Function of |P
SD

|

CUT (Parrallel)
CUT (Series)
MEM

|M| = 2

(a) (b)

5 6 7 8 9 10 11 12 13 14 15
2

4

6

8

10

12

Path Length, |P
SD

|

D
el

ay

Identification Delay as a Function of |P
SD

|

CUT
MEM

|M| = 1

5 6 7 8 9 10 11 12 13 14 15
5

10

15

20

25

Path Length, |P
SD

|

D
el

ay

Identification Delay as a Function of |P
SD

|

CUT (Parallel)
CUT (Series)
MEM

|M| = 2

(c) (d)

Fig. 5. Communication overhead for (a) one misbehaving node, (b) two misbehaving
nodes. Identification delay for (c) one misbehaving node, (d) two misbehaving nodes.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 223

function of the path length. In CUT, after the path is partitioned, the auditing
of the two partitions is dependent on the misbehavior strategies of nodes in
M . Assume that only one misbehaving node drops packets at a time. Thus the
search will only audit the path partition which is reporting misbehavior. This
causes the source to search the partitions in series, i.e., one at a time. If both
misbehaving nodes drop packets, the source can audit the two path partitions
in parallel, since each path partition contains a source (or pseudo-source) and a
destination (or pseudo-destination). This parallel auditing decreases the delay.

For CUT, we plot both the case of search in series and parallel, giving an
expected range for the delay. Note that the delay of MEM falls within this
range; closer to the parallel CUT for smaller path sizes and closer to the series
CUT as the path length increases. This is due to the nature of the auditing
strategies employed. In CUT, the source cannot determine if a lie occurred until
performing the simultaneous audit at the end of the auditing strategy. In MEM,
the source determines if a lie occurred by looking for contradictions at every
stage. Therefore, if a lie is found, the penalty is only the waste of two audits.
This results in a tradeoff in which MEM incurs an additional overhead per stage
compared to CUT by checking for contradictions at the expense of delay.

6.3 Comparison with Other Schemes

We now compare the performance of our algorithms to CONFIDANT [6], 2ACK
[20], and AWERBUCH [1]. For CONFIDANT, every one-hop neighbor of a trans-
mitting node was assumed to operate in promiscuous mode, thus overhearing
transmitted messages. For 2ACK, a fraction p of the messages transmitted by
each node was acknowledged two hops upstream of the receiving node. We set
p = {1, 0.5, 0.1} [20]. AWERBUCH identifies misbehaving links by requesting
selected nodes in PSD to acknowledge each packet back to the source. For com-
parison, we select the adaptive auditing strategy utilizing cut questions. The
plots of Figure 5(a)-(d) can be used for comparisons with MEM. We first con-
sidered the overhead during a fixed duration of time, i.e., the time required to
identify the misbehaving node using CUT.

Fixed Time Communication Overhead. In Figure 6(a), we show the com-
munication overhead as a function of the path length. The Y axis is shown in
logarithmic scale. The communication overhead for CUT is between 1-2 orders
of magnitude less compared to other schemes. This gain is due to the fact that
CUT does not expend energy on a per-packet basis to monitor the behavior
of each node. The 2ACK scheme presents the highest communication overhead
since every packet requires a 2-hop acknowledgment upstream per link traversed.

In Figure 6(b), we show the communication overhead as a function of the
audit duration ad for a path of eight nodes. Schemes 2ACK, CONFIDANT, and
AWERBUCH all incur a linear increase in communication overhead, due to the
per-packet behavior evaluation. On the other hand, the communication overhead
for CUT and MEM is incurred on a per-audit basis, and is independent of audit
duration. While our algorithms provide significant savings in communication

224 W. Kozma Jr. and L. Lazos

5 7 9 11 13 15
10

0

10
1

10
2

10
3

10
4

10
5

Path Length, |P
SD

|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
Communication Overhead as a Function of |P

SD
|

AWERBUCH
2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
CUT

200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

Audit Size, a
d

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead as a Function of a
d

AWERBUCH
2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
CUT

(a) (b)

5 7 9 11 13 15
0

5

10

15

20

Path Length, |P
SD

|

D
el

ay

Identification Delay as a Function of |P
SD

|

AWERBUCH
2ACK: 100%
2ACK: 50%
2ACK: 10%
CONFIDANT
CUT

(c)

Fig. 6. (a) Communication overhead as a function of |PSD| for an audit size of 200
packets. The overhead is computed over time required by the CUT scheme to converge
to the misbehaving node. (b) Communication overhead as a function of audit size for
|PSD| = 8. (c) Delay as a function of |PSD| in units of number of audits.

overhead, they require a longer time to identify the misbehaving nodes. On the
other hand, the proactive schemes require only the duration of one audit to
identify misbehavior. This is due to the fact that proactive protocols monitor
all nodes in the path PSD in parallel. Fortunately, for schemes CUT and MEM,
the delay grows logarithmically with |PSD|. Hence, the increase in identification
delay is small compared to the savings in communication overhead.

In Figure 7(c), we show the identification delay as a function of path length.
CONFIDANT requires a single audit duration to identify the misbehaving node
since all nodes in PSD are monitored in parallel. AWERBUCH performs a binary
search, incurring a logarithmic increase in delay. The 2ACK scheme also requires
a single audit duration for identification when all packets are acknowledged.
However, the identification delay increases when only a fraction of the packets
are acknowledged. For example, when only 10% of the packets are acknowledged,
2ACK and CUT incurr similar delay. However, as shown in Figure 6(b), CUT
incurs an order of magnitude less in communication overhead.

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 225

5 7 9 11 13 15
10

0

10
1

10
2

10
3

10
4

10
5

Path Length, |P
SD

|

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead over the Identification Period

AWERBUCH
2ACK
CONFIDANT
CUT

200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

Audit Size, a
d

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

Communication Overhead over the Identification Period

AWERBUCH
2ACK
CONFIDANT
CUT

(a) (b)

Fig. 7. (a) Communication overhead for an audit size of 200 packets. For each scheme,
the overhead is computed for the time required to identify misbehavior, (b) communi-
cation overhead as a function of audit size for |PSD| = 8.

Comparison Based on Identification Delay. We now evaluate the com-
munication overhead incurred by each scheme until the misbehaving node is
identified. In Figure 7(a), we show the communication overhead as a function
of the path length, for an audit size of 200 packets. In Figure 7(b), we show
the communication overhead as a function of the audit size, for a path of eight
nodes. We observe that even in the case where the communication overhead is
measured only during the identification delay, CUT significantly outperforms
the other schemes. The CONFIDANT, 2ACK and AWERBUCH schemes are
sensitive to path length and audit size. On the other hand, CUT illustrates a
graceful tradeoff between communication overhead and delay.

7 Conclusion

We addressed the problem of identifying misbehaving nodes that refuse to for-
ward packets to the destination in a wireless multi-hop network. We mapped this
problem to the classic Rényi-Ulam game of 20 questions. From this mapping we
employed communication efficient questioning strategies which allow the source
to locate the set of misbehaving nodes. We showed that our scheme significantly
reduces the communication overhead associated with misbehavior identification
compared to previously proposed schemes. This reduction in resource expendi-
ture comes at the expense of a logarithmic increase in the identification delay.

References

1. Awerbuch, B., Holmer, D., Rotaru, C.-N., Rubens, H.: An on-demand secure rout-
ing protocol resilient to byzantine failures. In: WiSe 2002 (2002)

2. Balakrishnan, K., Deng, J., Varshney, P.K.: Twoack: Preventing selfishness in mo-
bile ad hoc networks. In: WCNC 2005 (2005)

226 W. Kozma Jr. and L. Lazos

3. Berlekamp, E.: Error Correcting Codes. Wiley, NY (1968)
4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-

nications of the ACM 13(7), 422–426 (1970)
5. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: A survey.

Internet Mathematics 1(4), 485–509 (2004)
6. Buchegger, S., Boudec, J.-Y.L.: Performance analysis of the confidant protocol

(cooperation of nodes: Fairness in dynamic ad-hoc networks). In: MobiHOC 2002
(2002)

7. Buchegger, S., Boudec, J.-Y.L.: Self-policing mobile ad-hoc networks by reputation
systems. IEEE Communications Magazine, 101–107 (2005)

8. Buttyan, L., Hubaux, J.-P.: Enforcing service availability in mobile ad-hoc wans.
In: MobiHOC 2000, pp. 87–96 (2000)

9. Buttyan, L., Hubaux, J.-P.: Stimulating cooperation in self-organizing mobile ad
hoc networks. ACM/Kluwer Mobile Networks and Applications 8(5) (2003)

10. Dhagat, A., Gács, P., Winkler, P.: On playing “twenty questions” with a liar. In:
SODA 1992, pp. 16–22. Society for Industrial and Applied Mathematics (1992)

11. Dong, Y., Go, H., Sui, A., Li, V., Hui, L., Yiu, S.: Providing Distributed Certificate
Authority Service in Mobile Ad Hoc Networks. In: SecureComm 2005 (2005)

12. Feeney, L.M., Nilsson, M.: Investigating the energy consumption of a wireless net-
work interface in an ad hoc networking environment. In: INFOCOM 2001 (2001)

13. Ganeriwal, S., Srivastava, M.: Reputation-based framework for high integrity sensor
networks. In: SASN 2004, pp. 66–77 (2004)

14. He, Q., Wu, D., Khosla, P.: Sori: A secure and objective reputation-based incentive
scheme for ad hoc networks. In: WCNC 2004 (2004)

15. Hu, Y., Johnson, D., Perrig, A.: SEAD: secure efficient distance vector routing for
mobile wireless ad hoc networks. Ad Hoc Networks 1(1), 175–192 (2003)

16. Jakobsson, M., Hubaux, J.-P., Buttyan, L.: A micropayment scheme encouraging
collaboration in multi-hop cellular networks. In: Proc. of Financial Crypto (2003)

17. Johnson, D., Maltz, D., Hu, Y.-C.: The dynamic source routing protocol for mobile
ad hoc networks (dsr). draft-ietf-manet-dsr-09.txt (2003)

18. Kozma Jr., W., Lazos, L.: REAct: Resource-Efficient Accountability for Node Mis-
behavior in Ad Hoc Networks based on Random Audits. In: WiSec 2009 (2009)

19. Liu, A., Ning, P.: Tinyecc: A configurable library for elliptic curve cryptography
in wireless sensor networks. In: IPSN 2008 (2008)

20. Liu, K., Deng, J., Varshney, P., Balakrishnan, K.: An acknowledgment-based ap-
proach for the detection of routing misbehavior in manets. IEEE Transactions on
Mobile Computing 6(5), 536–550 (2006)

21. Marti, S., Giuli, T., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile
ad hoc networks. In: MobiCom 2000, pp. 255–265 (2000)

22. Michiardi, P., Molva, R.: Core: A collaborative reputation mechanism to enforce
node cooperation in mobile ad hoc networks. In: CMS 2002 (2002)

23. Padmanabhan, V.-N., Simon, D.-R.: Secure traceroute to detect faulty or malicious
routing. SIGCOMM Computer Communication Review 33(1) (2003)

24. Papadimitratos, P., Haas, Z.: Secure routing for mobile ad hoc networks. In: SCS
Communication Networks and Distributed Systems Modeling and Simulation Con-
ference (CNDS 2002), pp. 1–27 (2002)

25. Pelc, A.: Detecting errors in searching games. Journal of Combinatorial Theory
Series A 51(1), 43–54 (1989)

26. Perkins, C., Royer, E., Das, S.: Ad hoc On-Demand Distance Vector (AODV)
Routing (2003)

Dealing with Liars: Misbehavior Identification via Rényi-Ulam Games 227

27. Perrig, A., Szewczyk, R., Tygar, J., Wen, V., Culler, D.: SPINS: Security Protocols
for Sensor Networks. Wireless Networks 8(5), 521–534 (2002)

28. Raghani, S., Toshniwal, D., Joshi, R.: Dynamic Support for Distributed Certifica-
tion Authority in Mobile Ad Hoc Networks. In: Proceedings of the 2006 Interna-
tional Conference on Hybrid Information Technology, vol. 1, pp. 424–432. IEEE
Computer Society, Washington (2006)

29. Rényi, A.: A Diary on Information Theory. Wiley, New York (1984)
30. Rivest, R., Meyer, A., Kleitman, D., Winklmann, K., Spencer, J.: Coping with

errors in binary search procedures. J. Comput. System Sci. 20, 396–404 (1980)
31. Spencer, J., Winkler, P.: Three thresholds for a liar. Combinatorics, Probability

and Computing 1, 81–93 (1992)
32. Ulam, S.: Adventures of a Mathematician. Scribner, New York (1976)
33. Yi, S., Kravets, R.: MOCA: Mobile Certificate Authority for Wireless Ad Hoc

Networks. In: 2nd Annual PKI Research Workshop Pre-Proceedings, vol. 51
34. Zhong, S., Chen, J., Yang, Y.R.: Sprite: A simple cheat-proof, credit-based system

for mobile ad-hoc networks. In: INFOCOM 2003 (2003)

Multichannel Protocols for User-Friendly and
Scalable Initialization of Sensor Networks

Toni Perković, Ivo Stančić, Luka Malǐsa, and Mario Čagalj

FESB, University of Split, Croatia
{toperkov,istancic,lmalisa,mcagalj}@fesb.hr

Abstract. We consider the classical problem of establishing initial secu-
rity associations in wireless sensor networks. More specifically, we focus
on pre-deployment phase in which sensor nodes have not yet been loaded
with shared secrets or other forms of authentic information.

In this paper, we propose two novel multichannel protocols for ini-
tialization of large scale wireless sensor networks. The first protocol uses
only secret key cryptography and is suitable for CPU-constrained sensor
nodes. The second protocol is based on public key cryptography. Both
protocols involve communication over a bidirectional radio channel and
an unidirectional out-of-band visible light channel. A notable feature of
the proposed “public key”-based key deployment protocol is that it is
designed to be secure in a very strong attacker model, where an attacker
can eavesdrop, jam and modify transmitted messages by adding his own
message to both a radio and a visible light channel; the attacker however
cannot disable the visible light communication channel. We show that
many existing protocols that rely on the visible light channel are insecure
in this strong adversary model.

We implemented the proposed protocols on the Meshnetics wireless
sensor platform. The proposed protocols are cheap to implement, secure
in the very strong attacker model, easy to use and scalable. We also de-
signed and tested a simple random number generator suitable for sensor
platforms.

1 Introduction

Deployment of cryptographic keys into individual sensor nodes is an imperative
for secure operation of a sensor network. While there is a large body of work
on key management in scenarios where cryptographic keys are already deployed
into the nodes [9,11,12,21,27], very few studies exists on the equally important
problem of establishing initial security associations in large wireless sensor net-
works.

Many existing systems consider the key pre-deployment to be a trivial mat-
ter. Thus, we can read that “the key distribution is relatively simple; nodes are
loaded with a shared key before deployment”. Long experience with WiFi net-
works have taught us that very often such “relatively simple” setup procedures
render the security features useless (users easily give up and thus leave their net-
works unprotected), even when dealing with only a few network devices. Some

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 228–247, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Multichannel Protocols for User-Friendly and Scalable Initialization 229

other solutions propose to send the key in the clear over the radio channel or al-
ternatively, imprint the keys onto the nodes at production time (ZigBee [1]). The
problem with this approach is that customers may not trust the keys deployed
by the factory.

Solutions that require physical contact are not scalable, especially if the user is
required to initialize a large number of nodes. More advanced solutions have been
proposed in [8,5,3,24,24,19,30] some of which do not scale well and/or require
specialized node hardware, and some are insecure in the realistic attacker model
introduced in this paper.

When dealing with initialization of network nodes on a large scale, a secure,
fast, cost effective and above all user-friendly solution is mandatory. In this pa-
per, we propose two novel multichannel protocols for initialization of large scale
wireless sensor networks. Similar to [30], our protocols involve communication
over a radio channel and the out-of-band visible light channel (VLC). The first
protocol uses only secret key cryptography and is suitable for CPU-constrained
sensor nodes. The “secret key”-based initialization of sensor nodes is depicted
in Figure 1(a). In this protocol, each sensor node establishes a unique secret key
with a base station (BS). The base station comprises a simple web camera and
one sensor node all attached to an ordinary PC. In the first phase of the pro-
tocol, the sensor nodes transmit secret keys to the base station over a protected
visible light channel (Figure 1(a)). In the second phase, each sensor node runs a
key verification protocol with the base station over a bidirectional radio channel.
Once the keys are verified, the base station can serve as a trusted third party and
mediate establishment of security associations between any pair or any group of
sensor nodes.

Our second protocol uses public key cryptography. The “public key”-based
sensor node initialization process is summarized in Figure 1(b). As with the
previous protocol, the ultimate goal is to establish security association between
each sensor node and the base station. This protocol is based on the multichannel
pairing protocol from [38,5]. Thus, each sensor node first exchanges its public key
(through specially formed commitment/openning pairs) with the base station
over a radio channel (Figure 1(b)). In turn, each sensor node transmits a short
authentication string (SAS) using a visible light channel (Figure 1(b) - right).
The proposed “public key”-based protocol is similar to [30], with the difference
that our protocol is designed to be secure in a very strong attacker model, where
an attacker can eavesdrop, jam and modify transmitted messages by adding his
own message to both a radio and a visible light channel; the attacker however
cannot disable the visible light communication channel1.

The paper is organized as follows: in Section 2 we state the problem and assump-
tions. In Sections 3 and 4 we present the “secret key”- and “public key”-based pro-
tocols (including security analysis of both protocols).We describe the implementa-

1 It was brought to our attention recently that a similar approach has been suggested
in [31]. The initialization method in [31], however, is developed for a weaker attacker
model than the one we consider here.

230 T. Perković et al.

BS

Sn

S1

S2

BS

Sn

S1

S2

BS

Sn

S1

S2

BS

Sn

S1

S2

(a) (b)

Fig. 1. Two phases of node initialization for (a) secret key and (b) public key deploy-
ment protocol. In (a) nodes transmit the key to the base station via VLC (dashed
arrows) and perform authentication via a radio channel (full line arrows), while in (b)
they exchange public keys over a radio channel and perform authentication via VLC.

tion of the protocols and a simple random number generator in Section 5. Related
work is provided in Section 6. Finally, we conclude in Section 7.

2 Problem Statement and System Model

We consider the following problem: How to securely initialize a large number of
sensor nodes in a user-friendly fashion? Since the initialization will be performed
by potentially non-expert personnel, a solution has to be easy both to learn
and use (user-friendliness). In addition, the hardware cost per node has to be
minimized (cost-efficiency).

2.1 System Model

We assume that a user is equipped with a base station used for verification and
monitoring as shown in Figure 2.

Base Station. The base station comprises a monitor, a simple web camera
and one sensor node (a verification node) all attached to an ordinary PC. The
verification node serves as a radio modem to the base station.

Uninitialized Sensor Nodes. Nodes may be equipped with a single LED (we
used two LEDs in our implementation) used for key transmission via out-of-band
VLC and with radio transceivers. In addition, each node has a “pushbutton” used
to either restart or finalize the initialization process.

Cardboard box. A simple cardboard box is used to block the escape of light
during the key transmission via VLC. The cardboard box is required only for
the “secret key” - based key deployment protocol.

2.2 Attacker Model

An adversary has full control over the radio channel. He can eavesdrop, drop,
delay, replay and modify messages sent via radio. Thus, he is able to initiate
communication with any device (a node or the base station) and at any given

Multichannel Protocols for User-Friendly and Scalable Initialization 231

Web camera

Verification node

1 2 3 4

1

2

3

4

Monitor

Cardboard box

Base station

Fig. 2. Secret key deployment setup comprises a base station and a simple cardboard
box

time during the key transmission. Furthermore, the adversary can install his
own web camera in the same place where the initialization is taking place. We
assume that devices involved in key deployment (PC and nodes themselves) are
not compromised. Taking into account these constraints, we define: (a) a passive
adversary who only observes the visual channel and can eventually record a
secret key if the key transmission takes place in insecure conditions (outside
the cardboard box), and (b) an active adversary who in addition can initiate
communication with any device during the initialization phase.

In the case of “public key” - based initialization, we consider a stronger ad-
versary model where an attacker can eavesdrop and modify messages sent over
a light channel at all times (we elaborate this in Section 4).

3 Secret Key Deployment

In this section we propose secret key based key deployment protocol and provide
initial security assessment of the proposed key deployment method.

3.1 Key Transmission and Verification

Prior to the start of node initialization, the user connects a web camera and
a verification node to a PC. Next, the user places the web camera on top of
the box from the inside, as shown in Figure 2. At this stage, the user turns the
nodes ON and places them inside the box. Next, the user closes the box, runs
the program on the PC and initiates the node initialization procedure. The box
remains closed until the key transmission and verification is performed on all
nodes which is subsequently indicated on the monitor.

Key transmission. Our “secret key”-based deployment is build upon ISO/IEV
9798-2 [4] three-pass key authentication protocol (Figure 3). We modify this
protocol to include the communication over VLC (dashed arrow in Figure 3).
The modified protocol evolves as follows.

The node Si generates n-bit random key KSiB and k-bit random string NSi .
The base station generates k-bit random string NBi . The node, equipped with

232 T. Perković et al.

Node Si Base Station BS
Pick KSiB ∈U {0, 1}n

Pick NSi ∈U {0, 1}k Pick NBi ∈U {0, 1}k

(1)
Si||KSiB ��������

(2) ��
B||NBi

(3)
Si||{NSi

||NBi
||B}KSiB��

Verify NBi , KSiB

(4) ��
B||{NSi

||NBi
}KSiB

(5) Verify NSi , KSiB

Fig. 3. Modification of ISO/IEV 9798-2 three pass key authentication protocol. The
dashed arrow represents key transmission over secure VLC.

minimally one LED, sends the key via VLC (step 1) to the base station (web
camera), as shown in Figure 3. At the same time, the base station performs three
tasks: (i) collects keys KSiB generated by the nodes (step 1), (ii) initiates key
verification over a radio channel (steps 2-5), and finally, (iii) notifies the user
which node has been successfully initialized via the monitor. Section 5 provides
details of the key transfer over VLC.

Key verification. After the key is transmitted over VLC, the base station
initiates the key verification protocol. All messages in the key verification are
exchanged over the radio channel. The base station (using the verification node)
sends random nonce NBi over the radio channel to node Si (step 2). Next, Si

forms a packet by encrypting concatenations NSi‖NBi‖B with the key KSiB.
The node Si sends this message (and its identity) to the base station (step 3).
The base station extracts the random nonce NSi , verifies the key KSiB and the
random nonce NBi . If the verification is successful, the BS encrypts concatena-
tion NBi‖NSi using KSiB and sends it back to node Si. The node Si receives
and verifies both the key KSiB and the random nonce NSi . The whole procedure
is considered as completed if all the nodes are successfully initialized, which is
finally indicated by the GUI on the monitor. At the end, the user opens the box
and completes the initialization with the short push on the node’s button. This
feature is used to ensure the “proof of presence” property to prevent an active
attack (as described in Section 3.3).

3.2 Sensor Node State Diagram

Both user and base station need to know the status of the initialization process
at any given time. For that reason, the current state of the node will be indicated
with a LED according to the state diagram shown in Figure 4. During the initial-
ization process, the node can take one of the four following states: Uninitialized,

Multichannel Protocols for User-Friendly and Scalable Initialization 233

Uninitialized Ready Initialized Confirmed

Push (OK)Key establishment Verification

LED LED LED LED

Fig. 4. Node’s state diagram. A colored square indicates that the LED is ON, while a
half colored that the LED is blinking.

Ready, Initialized and Confirmed. Next, we describe each of these states as well as
the transitions between them.

Uninitialized state. Initially, when the user powers the node ON it is in the
Uninitialized state. Prior to the start of key transmission the LED blinks with a
predefined frequency. During this phase the node generates the key and, upon
completion, sends it via VLC to the camera. After the key transmission is com-
plete, the node advances to the Ready state (step 1 in Figure 3).

Ready state. The node remains in this state for a predefined period of time (e.g.,
a few seconds). In this state the node has sent the key and awaits the base station
to initiate the key verification protocol over a radio channel. During this phase
the node’s LED is OFF (Figure 4). If the node does not receive any messages from
the base station within the predefined period of time, it automatically restarts
and returns back to the Uninitialized state. The node repeats the whole procedure
which involves new key generation and transmission over VLC. Alternatively,
the node receives a message from the base station and starts the key verification
(steps 2-5 in Figure 2). If the key verification is successful, the node advances to
the Initialized state.

Initialized state. In this state the node’s LED is turned ON (Figure 4). At
the same time, the base station notifies the user via the monitor about the
node’s position within the box as well as its current state. If the key verification
succeeded on both sides (the node’s and the base station’s), the user is instructed
to remove the nodes from the box and to shortly push the button on the node to
finalize the initialization. The push of the button serves as “proof of presence”,
an aspect we describe in Section 3.3. However, if the node or the base station
failed to verify the key, the user is instructed over the monitor to restart the
initialization on selected nodes with a longer push on the button in order to
repeat the node initialization. After the short push of the button, the node
advances to the Confirmed state.

Confirmed state. In this state the node and the base station established a secret
key and verified it, and the initialization process is finalized.

3.3 Initial Security Assessment

Our “secret key”-based protocol is build upon ISO/IEV 9798-2 [4] three-pass
key authentication protocol that was proven to be secure when used over a radio

234 T. Perković et al.

channel. Therefore, we focus on possible attacks over the VLC, as we extended
the ISO/IEV 9798-2 [4] protocol by including a transmission of a secret key via
the VLC.

Camera recording (passive) attacker. A camera-recording attacker attempts
to learn the secret key simply by recording the key sent from the node via VLC
(step 1 in Figure 2). In this model the attacker does not interact in any way with
the node initialization procedure.

Let us consider the case in which the node starts sending the key under
insecure conditions (e.g., outside of the box). Thus, the attacker records the
key, and the node advances from Uninitialized to Ready state (node’s LED turns
ON). In this state, the node waits a predefined period of time for the base station
to initiate the key verification (Figure 4). After the predefined time period has
passed during which the base station didn’t initiate the key verification protocol,
the node returns back to the Uninitialized state and repeats the whole procedure
again (generates a new key and, again, sends it via VLC). The base station
waits to receive a notification from the user that the system is ready (operates in
secure conditions). Only then will the base station begin to process keys received
over VLC and initiate the key verification protocol. Under secure conditions, the
attacker does not have an access to the key transmitted by the node and therefore
cannot successfully perform the key verification with the node.

Active attacker. In this attacker model, the attacker controls both the radio
channel and communication over VLC when sensor node(s) are out of the card-
board box. Let us assume that the attacker captures the key sent by a node via
VLC under insecure conditions (e.g., the node outside of the box). At this stage,
the node is in Ready state and awaits the base station to initiate key verifica-
tion (Figure 4). Next, the attacker initiates the key verification over the radio
channel using the captured key. If the verification is successful on the node’s
side, the node advances to the Initialized state (the LED turns ON as shown in
Figure 4). In this state the node waits for the user to confirm the initialization
(push on a button). The user doesn’t know that the attacker placed the node
in the Initialized state so she picks the node up, and places it inside the box.
Once the compromised node is placed inside the box, the base station recog-
nizes a constantly powered ON LED on it and warns the user (via the monitor)
to restart the initialization of that node. This is done by a longer push on the
node’s button. This form of active attacks does not work as the attacker does not
have physical access to the node, therefore he cannot force the node to advance
to Confirmed state. The user basically “proves her presence” through the push
button.

4 Public Key Deployment

In this section we extend the attacker model to a more powerful adversary who
can observe the electromagnetic radiation emanating from the LEDs. We assume
the LEDs emanate radio signals which cannot be blocked by a simple cardboard

Multichannel Protocols for User-Friendly and Scalable Initialization 235

box and we also assume that the attacker is able to easily eavesdrop on the
leaked signals. This is a variant of an attack previously introduced in [18].

To establish keys between nodes and the base station by using a bidirec-
tional radio channel and an unidirectional out-of-band VLC, we use SAS pro-
tocols [5,38]. The protocols make the key exchange process more usable, but at
the cost of having to introduce public key cryptography. Recent work on ellip-
tic curve cryptography has shown promising results regarding key distribution
on resource constrained devices like our sensor nodes. In TinyPBC [26] and Na-
noECC [36] times less than 1 and 2 seconds, respectively, for point multiplication
in binary fields were achieved.

Many prominent solutions that use LEDs and cameras [32,30] assume that
the Visible Light Channel is authentic, which is not the case in our attacker
model. To convey information via VLC they use on-off keying (switch the LED
ON or OFF). An attacker equipped with a directional light source (e.g. a laser)
has the capability to modify a message sent via VLC. In our model the attacker
can modify messages by flipping 0 → 1, but not vice versa (1 → 0) as the
attacker cannot force a switched ON LED to turn OFF. In this case we speak
of a semi-authentic visible light channel.

In the following sections we describe how to perpetrate such attacks and we
also propose solutions on how to protect against them.

4.1 Attacks on Visible Light Channel

We consider prominent device pairing methods proposed in [32] and [30]. Both
of the methods were developed for an authentic VLC (an attacker cannot modify
messages sent via VLC). The proposed methods are secure within the authentic
VLC model but, as we will show, are insecure in our semi-authentic VLC model
(an attacker can flip 0 → 1).

Protocol [32] in the semi-authentic model. In [32] two devices (S1 and S2
as shown in Figure 5(a)) exchange public key values via a radio channel using the

BS

S1

Laser

beams

S2

M

SAS2

SAS1

(a)

M

S1 S2

SAS1
SAS2

Laser

 beam

(b)

Fig. 5. Attacker M , with the aid of a laser, tries to modify short authentication strings
exchanged over VLC (dashed arrows) between devices S1, S2 and BS (full-line arcs
represent communication over a radio channel)

236 T. Perković et al.

SAS protocol [5,38]. To authenticate these messages, each device simultaneously
transmits short authentication strings (SAS) using visible light. The camera (BS
in Figure 5(a)) captures both of these authentication strings and compares them.
As BS does not know the SAS beforehand, the attacker can mount a MITM
attack and modify these strings with a laser. Attacker M exchanges public keys
with two devices S1 and S2 via a radio channel. When transmission via VLC
occurs, the attacker points the lasers into the nodes’ LEDs and appropriately
modifies the bits (flips 0 → 1). The simplest attack is the one in which the
attacker flips all bits 0 → 1. In this case, the base station will see all 1s and
inform the user about the correct authentication. Please note that all 1s is a
legitimate SAS.

Protocol [30] in the semi-authentic model. In an approach similar to [32],
two devices (S1 and S2 in Figure 5(b)) exchange public key values over a radio
channel. In this scheme, at least one device has an integrated web camera. In
order to verify the exchanged public key values, device S2 sends the SAS via
VLC (using LEDs) to the device S1. Here, an attacker tries to mount a MITM
attack by exchanging different public keys with devices S1 and S2, (Figure 5(b)).
To succeed, the attacker has to ensure that SAS1 = SAS2. Due to the property of
the protocols [5] in which the probability for SAS1 and SAS2 to be equal is 2−k (k
is the length of the SAS) the attacker will establish two different authentication
strings SAS1 and SAS2 with a high probability. However, in the semi-authentic
model where the adversary can modify the bits (flip 0 → 1) this probability
is significantly reduced. Indeed, if the ith bits of SAS1 and SAS2 are equal, an
attacker will not need to modify them in any way. On the other hand, if the
ith bits of SAS1 and SAS2 equal 1 and 0, respectively, an attacker could flip
0 → 1 by using the laser. Finally, if the ith bits of SAS1 and SAS2 are 0 and 1,
the attacker will be unable to flip 1 → 0 for he cannot switch OFF an already
powered ON LED. This is summarized below:

SAS1i SAS2i Attack
0 0 yes
0 1 no
1 0 yes
1 1 yes

Thus, we conclude that that 3 combinations of ith bits of SAS1 and SAS2 are
beneficial for the attacker (all combinations but the second one). It follows that
the probability for an attacker to modify the bits is 3/4, therefore, the probability
of a successful attack increases to (3/4)k as opposed to 2−k (in the case of
authentic VLC). If k = 15, the probability in a single attack increases from 2−15

to approximately 2−6.

Virtual node attack. Let us assume the user wants to initialize one node (S1)
and the attacker (M) wants to inject his own virtual node (S2) as shown in
Figure 6. Attacker M simply exchanges public key values over a radio channel
with BS and points his laser within the visible area of the base station’s camera.
The pointed laser is used to create a virtual node (device S2 in Figure 6), and as

Multichannel Protocols for User-Friendly and Scalable Initialization 237

BS
S1

Laser

beam

S2

M

SAS2

SAS1

Fig. 6. An example of the virtual node attack; dashed arrows and full-line arcs represent
communication over a semi-authentic VLC and a radio channel, respectively

such, to “blink” the correct short authentication string in such a way that the
base station’s camera detects it. The BS compares the SAS2 it received from
the attacker’s laser with the one established over radio, sees that they match,
and accepts the public key values from M as authentic.

4.2 “Public Key”–Based Deployment Protocol

We assume that each node Si and the base station BS previously generated
public key values pkSi and pkB. In order to exchange authenticated public key
values over a radio channel, we propose using the protocol introduced in [5,38],
and shown in Figure 7. Please note, the base station performs this protocol
individually with each node. The protocol evolves as follows:

(i) The user counts the number of nodes he/she wants to initialize and enters
the number into the base station control software via a keyboard. We will show

Node Si Base Station BS
Pick NSiεU{0, 1}k Pick NBiεU{0, 1}k

mSi ← 1‖Si‖pkSi‖NSi mBi ← 0||B||pkB ||NBi

(cSi , dSi) ←commit(mSi) (cBi , dBi) ← commit(mBi)
cBi��
cSi ��

m̂Bi ← open(ĉBi , d̂Bi)
dBi��

SASSi ← N̂Bi ⊕ NSi

dSi �� m̂Si ← open(ĉSi , d̂Si)
SASBi ← NBi ⊕ N̂Si

SASSi ������ Verify SASSi = SASBi

If SASSi = SASBi , the base station informs the user
to accept public key values as authentic.

Fig. 7. SAS protocol by [5,38]. The dashed arrow represents communication over a
semi-authentic VLC.

238 T. Perković et al.

later that by entering the number of nodes we can prevent the virtual node
attack and make the size of the SAS invariant of the number of nodes to be
initialized.

(ii) The user switches the nodes ON and places them in front of the camera,
with the LEDs facing the camera.

(iii) The node’s LED starts flashing with the delimiter 111000 to indicate to
the BS they are ready to be initialized and to enable the BS to count them.

(iv) Next, the user instructs the base station to begin with the protocol shown
in Figure 7. Having exchanged commit/open pairs with the BS, each node Si

first calculates the respective SASSi (Figure 7), Manchester encodes SASSi and
begins transmitting it repetitively via a VLC (using on-off keying, switching LED
OFF and ON). The Manchester encoded short authentication string, denoted
M(SASSi), is separated with delimiter 111000. The usage of the delimiter and
Manchester encoding was inspired by I-codes [6] and was used to prevent the
flipping attacks (Section 4.3). Finally, the node transmits (blinks) the following
repetitive sequence:

· · ·
delim.︷ ︸︸ ︷

1 1 1 0 0 0

M(SASSi
)︷ ︸︸ ︷

1 0 0 1 · · · 1 0

delim.︷ ︸︸ ︷
1 1 1 0 0 0

M(SASSi
)︷ ︸︸ ︷

1 0 0 1 · · · 1 0

delim.︷ ︸︸ ︷
1 1 1 0 0 0 · · ·

(v) If the SAS verification is successful for all the nodes, the user is instructed
to finalize the initialization procedure by pushing a button on each of the nodes.
If one or more nodes fail to initialize properly (e.g. due to errors in transmis-
sion, attacks etc.) the initialization procedure is aborted for all the participating
nodes.

4.3 Short Security Analysis

Due to the lack of space, in this section we provide only a short security analysis
of the public key deployment protocol.

Flipping attacks. In order to prevent flipping attacks we used Manchester
encoded SASSi for the transmission via VLC. Note that such a message contains
an equal number of 0s and 1s. Due to the on-off keying modulation and the fact
that an attacker is unable to switch OFF the LED (flip 1 → 0), any attempt
of flipping will be detected by the BS as an excess of 1s. This construction is
proved secure in [6].

Virtual node attack. According to the protocol, the base station knows exactly
how many nodes it has to initialize (step (i) of the protocol). In addition, the BS
counts itself the nodes by detecting respective delimiters (111000) transmitted
over VLC. In order to successfully inject his own virtual nodes, the attacker has
to block transmission of the delimiter 111000 over VLC for at least one of the
nodes. However, the attacker cannot do this, for he is unable to turn OFF an
already switched ON LED. In addition, any attempt of flipping 0 → 1 in the
delimiter will be detected by the BS [6].

All or none. The design choice to abort the initialization procedure if at least
one node fails to initialize properly makes the SAS invariant to changing the

Multichannel Protocols for User-Friendly and Scalable Initialization 239

number of nodes to be initialized. Indeed, from the above analysis we know that
an attacker can neither add new (virtual) nodes, remove existing (legal) ones,
nor perform bit flipping attacks. It follows that the attacker can only try to
perform a man-in-the-middle attack against one or more legal nodes. Now, if
an attacker attempts to mount the attack against m nodes (out of n) and the
respective short authentication strings are mutually independent, the probability
of a successful attack against at least one sensor node, in a single attempt, will
be at least min{m · 2−k, 1} [5]. For example, if the attacker attacks m = 100
nodes and k = 15, the probability for the attacker to succeed against at least
one node is around 2−8. However, by restricting the attacker to be successful
against all the nodes, the probability for the attacker to succeed is reduced to
(2−15)m = 2−15·m. Therefore, the best strategy for the attacker is to mount an
attack against exactly one node (i.e., m = 1), which implies the probability of
success (in a single attempt) to be bounded by 2−k + ε (k being the size of SAS
and ε a negligible probability) [5].

5 Implementation

We next describe the implementation of our secret-key deployment protocol.
More specifically, we describe the implementation of a simple random number
generator (RNG) and the key recognition software that enables communication
over the light channel. We used Meshnetics ZigBee sensor nodes equipped with
Green and Red LEDs, Atmel AT-mega1281V microcontrollers and AT86RF230
RF transceivers. Each sensor module features 128KB of flash memory and 8KB
of RAM with data rate of 250 kbps in frequency band from 2.400 − 2.483 GHz.
For software developing and testing of the initialization procedure, a PC with the
following configuration was used: Intel dual core processor clocked at 2.66GHz,
2GB of RAM, a Logitech notebook deluxe webcam with VGA resolution at 30fps
interfaced via USB to the computer and Windows XP SP3 operating system.

5.1 Random Number Generator

The key feature for secure communication lies in a good random number genera-
tor. In this section, we describe our Random Number Generator (RNG). We first
describe some related work on random number generators suitable for devices
with limited processing capabilities.

TinyRNG [15] uses transmission bit errors as a source of randomness. These
bits are randomly distributed as well as uncorrelated and may not be manipu-
lated by an adversary. In [14] two oscillators are used, one oscillating much faster
than the other. Generated bit stream’s randomness is based on the frequency
instability of a free running oscillator. The slow oscillator samples the higher
frequency oscillator. They have shown that if the jitter in the slow oscillator
signal is sufficient, the output of the RNG will have very little bit-to-bit corre-
lation. Tkacik [37] also uses two free-running oscillators whose frequency vary
with voltage and temperature. Random numbers are generated as exclusive-or of

240 T. Perković et al.

previously selected and permuted 32 bits of the LFSR (linear feedback shift reg-
ister) and CASR (cellular automata shift register). Each shift register is clocked
by these oscillators. However, an initial seed is required for each register.

Design of a Random Number Generator. In our implementation we used
the approach from [14]. The generation of random numbers goes as follows:
Meshnetics ZigBee nodes are equipped with two usable oscillators, an Internal
Calibrated RC Oscillator (4 MHz) and a Watchdog Oscillator (128 kHz) [25]. The
software running on the sensor nodes creates two timers; one timer is associated
with the slower oscillator and the other timer with the faster one. The timers
are configured with clock dividers in such a way that the slower timer fires once
per second, while the faster one fires roughly 50000 times per second. On every
tick of the slower timer, the number of ticks from the faster timer is logged.
Figure 8(b) shows two traces of the number of ticks from the faster timer during
the period of 512 ticks from the slower timer (roughly 512 seconds). As shown,
the source of randomness comes from the instability (jitter) of the two used
oscillators (Figure 8(a)).

Digital postprocessing. Table 5.1 shows the digital postprocessing and the
random number generation process. As shown, on each successful low frequency
timer tick the number of high frequency ticks is counted. Next, this value is

0

1

0

1

t

t

Slower timer (Watchdog)

Faster timer (Internal crystal)

1/f1

i

1 2 3 4 5 6 1 2 3

i+1

7 4

1/f2

100 200 300 400 500

5.05

5.055

5.06

5.065

5.07

x 104

Sample number

N
u
m

b
e
r

o
f
ti
c
k
s
 (

fa
s
te

r
ti
m

e
r)

Sequence 1

Sequence 2

0

(a) (b)

Fig. 8. (a)An example of oscillator frequency instability (jitter). (b) Two traces show-
ing the number of ticks of a faster timer relating to one tick of the slower one.

Table 1. An example of digital postprocessing performed on the generated raw bit-
stream as well as the generation of random numbers. The generated bit stream is
110100.

Number of ticks Number of ticks Partial binary Last two
(Watchdog) (Internal RC) representation digits

1 50607 10101111 11
2 50605 10101101 01
3 50640 11010000 00

Multichannel Protocols for User-Friendly and Scalable Initialization 241

converted into a binary representation (last eight binary digits are presented
in Table 5.1) from which the last two bits are taken. We could extract more
than two bits at the expense of a more complex extractor. Since for our purpose
the entropy is sufficient, we choose to use this simple extractor. The results of
statistical tests are presented in the next section.

Statistical Tests. ENT [40] and NIST [13] statistical test suites were used to
test the randomness of our generated bitstreams. Statistical tests were conducted
on a 3 × 106 long bitstream which we obtained from 7 ZigBee nodes over the
period of approximately 3 days.

ENT [40] is a pseudorandom number frequency test that performs a variety
of tests such as Entropy, Arithmetic mean, Monte Carlo value for Pi, Serial
correlation coefficient and Chi square distribution. Table 5.1 contains the results
of the ENT test performed on a 3 × 106 long bitstream.

Only the last two bits were taken from the binary representation of the faster
timer tick count. If more than two bits are taken, the bitstream fails the “Chi
square” part of the ENT test suite. But, as we already mentioned, our RNG
directly samples the number of faster timer ticks, without the requirement for
other complex extractors.

NIST STS [13] contains 15 tests out of which only 8 were performed due to
the minimum bitstream requirement (3 × 106 bits were produced) for each test.
Each test is used to calculate the P-value which shows the strength of the null
hypothesis. The hypothesis passes the test if the P-value is higher than 0.01 in
which case the sequence is considered to be random. As shown in Table 5.1, the
generated sequence passed the tests (P-value is higher than 0.01).

Table 2. ENT test results

Entropy = 0.999999 bits per bit.
Optimum compression would reduce the size of this 3 × 106 bit file by 0 percent.
Chi square distribution for 3267632 samples is 2.40 and randomly would exceed
this value 12.14 percent of the times.
Arithmetic mean value of data bits is 0.4996 (0.5 = random).
Monte Carlo value for Pi is 3.155460889 (error 0.44 percent).
Serial correlation coefficient is 0.000264 (totally uncorrelated = 0.0).

Table 3. NIST test results

TEST P-VALUE PROPORTION TEST P-VALUE PROPORTION
frequency 0.148094 0.9922 fft 0.468595 1.0000

block-frequency 0.500934 0.9922 aperiodic all passed all passed
cumulative-sums 0.311542 0.9922 apen 0.275709 0.9844
cumulative-sums 0.031497 0.9922 serial 0.671779 0.9844

runs 0.437274 0.9922 serial 0.637119 0.9922

242 T. Perković et al.

These tests were performed over the raw bits. Since the output bitstream
passes both NIST and ENT test suites, no additional randomness extractors
(universal hash functions [41,7], von Neumann extractor [39], or simply applying
a cryptographic hash function over the bitstream) are necesarry.

These results are preliminary; future work will include a more detailed study of
factors which impact the work of RC oscillators (e.g. voltage and temperature),
and therefore directly impact the quality of the generated random numbers.

5.2 Communication over a Visible Light Channel

After the key generation follows the key transmission via an out-of-band Visible
Light Channel (VLC). The sensor nodes are programmed in such a way that
generated key bits are Manchester encoded prior to transmission which ensures
lower bit error rates during the transmission over VLC. The bits are transmit-
ted in such a way that logical 0 and 1 of our bitstream are represented with
LED ON and OFF states, respectively. The duration of each state (single LED’s
blink) is approximately 200 ms. In Figure 9 we give an example of a bitstream’s
“life-cycle”; from the bit generation to the bit transmission phase. As shown in
Figure 9, the generated bits are separated in such a way that the first and the
second LED (Green and Red LED) transmit odd and even bits, respectively, of
Manchester encoded binary stream via VLC. In this way we achieve easier key
recognition on the side of the base station, as described in the sequel.

Computer Vision. Once the user places sensor nodes inside of the box, we use
our computer vision (CV) system to derive the secret key from the nodes’ LED
blinking sequence. We developed our CV system in MATLAB 2007 GUI [16],
and achieved transmission speeds of 10 bits per second (5 b/s per each LED).

The image processing part of our CV system is CPU demanding. In order
to achieve real-time performance, we process only certain parts of an webcam-
obtained image - so called “Areas of Interest” (small rectangles encompassing
LEDs of each node). The algorithm was designed to work with two LEDs on each
node (Green and Red LED). To determine the Area of Interest (AoI) for each
node, which is the first step, a few seconds of buffered frames is required. Once
the areas are determined, the rest of the algorithm is performed in real-time.
All of the following steps are performed only over Areas of Interest. The rest of
the image does not contain any relevant information, and thus is excluded from
future processing.
Image transformation. In the second step, the selected image parts (AoIs) are
converted from RGB to HSV color space, known to be more reliable for detecting

Manchester

encoding

 1 0 1 1

Input (random)

bit-stream

Visible Light

Modulation
Separator

 1 1

 0 1

G

R

 1 0 1 0

 0 1 1 0

G

R

G

R

tt2 t3t1 t4

Fig. 9. An example of the bit stream sent via VLC using Manchester encoding. G and
R stand for Green and Red LED, respectively.

Multichannel Protocols for User-Friendly and Scalable Initialization 243

1

0

1

B
in

a
ry

 V
a

lu
e

640 660 680 700 720 740 760 780 800 820

Frame Number

R
e

d
 L

E
D

 G
re

e
n

 L
E

D

111111

000000 000000......

convolution

6

0

6

C
o
n
v
o
lu

ti
o
n
 V

a
lu

e

640 660 680 700 720 740 760 780 800 820

Frame Number

Frame loss

R
e
d
 L

E
D

 G
re

e
n
 L

E
D

decoding

0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0 1 0 1 1 0 1 0 1 0

1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0

1

0

1

B
in

a
ry

 V
a

lu
e

640 660 680 700 720 740 760 780 800 820

Frame Number

R
e

d
 L

E
D

 G
re

e
n

 L
E

D

0

(a) (b) (c)

Fig. 10. A key recognition process: (a) detecting the status of LED indicators, (b)
applying the convolution over the sampled area and (c) the bit identification process
after the convolution

colors in low and changing light conditions [33]. Obtained images are tested for
their levels of Hue, Saturation and Value, which enables us to detect the state
(ON/OFF) of each LED. Color detector relies mainly on the level of Hue, while
levels of Saturation and Value are just used in order to avoid false detection due
to noise at low illumination conditions in the dark box.

Recognition of VLC signal. Due to a high frame loss and transmission er-
ror rates, during the transmission each bit is repeated in 6 consecutive frames
(6 samples per bit). Decoding starts by detecting first 18 frames of the packet
delimiter (3 binary ones in a sequence on both LEDs). Next, the key recognition
algorithm performs the mathematical operation of convolution over the frames
following the delimiter with a mask of six consecutive 1s (Figure 10(a)). As
a result, data arrays containing values ranging from 0 to 6 are obtained (Fig-
ure 10(b)), where elements with extremes 0 and 6 are decoded as bits 0 and 1,
respectively. Plateaus (areas with multiple, identical and consecutive elements)
are decoded as double 0s or 1s, depending on their values (0 or 6). As Manchester
encoding was used, only the convoluted signal’s slope is analyzed, and not their
values. This results in a method highly robust to de-synchronization effects. As
shown by an example in Figure 10(b), frame loss during transmission via VLC
does not affect correct bit recognition in any way.

6 Related Work

Recently, manykey deployment schemes such as ZigBee [1], SPINS [27], LEAP [42]
and Transitory Master Key [10] have been proposed. Others [9,11,12,21,28] pro-
pose random key pre-distribution schemes. All of these schemes rely on an unspec-
ified secure key deployment mechanism between devices.

In On-off Keying, the presence of an RF signal represents a binary 1, while its
absence represents a binary 0 [5,6]. By using an unidirectional encoding scheme,
On-off Keying ensures that an attacker is unable to modify a packet during
transmission.

244 T. Perković et al.

In Shake Them Up [8], user establishes a secret key between two nodes by
holding and shaking the devices together while they send identical packets over
the radio. This way, they assume that an adversary is unable to distinguish the
source of the packets. This may be violated by using radio fingerprinting. Also,
this does not scale well. The three related schemes are Are You With Me [20],
Smart-Its Friends [17] and [22].

In Key Infection [2], two nodes establish a secret key by sending it in the clear
over radio. They assume an attacker is unable to eavesdrop all the keys from
all the nodes (e.g., 10.000 nodes) during key deployment. Based on simplicity
and cost effectiveness, this scheme is insecure against a determined adversary.
Moreover, an adversary is capable of injecting his own key, also violating key
authentication.

In Resurrecting Duckling [35], a physical contact is required to securely estab-
lish a secret key. Based on the assumption that physical contact is secure, key
authenticity and secrecy are ensured. But, since it requires specialized additional
hardware, this scheme is not cost effective.

In Message In a Bottle [19], keys are sent in the clear to the nodes located
inside a Faraday cage that ensures key secrecy and authenticity. However, the
number of simultaneously initialized nodes determines the size of the Faraday
cage. Moreover, a scale is used to determine the number of nodes within the
Faraday cage based on total Faraday cage weight. In order to ensure key secrecy
and authenticity for a large number of nodes, this scheme requires specialized
setup hardware.

In HAPADEP [34] both data and verification information is sent over an audio
channel. The pairing devices are both required to have speakers and microphones.
In a related paper, Saxena and Uddin [30] present a device pairing method with
an unidirectional channel based on devices equipped with LEDs and a video
camera as the receiver. Their method is used for asymmetric pairing scenarios.
Again, Saxena et. al. [32] use an auxiliary device (a laptop equipped with a web
camera) to compare a short authentication string sent from the nodes to the
laptop via unidirectional visible light channel. Both protocols are prone to laser
attacks where an adversary may inject his/her malicious key by modifying the
messages sent via the light channel with a directional light source (e.g. laser
emitter).

Talking to strangers [3] requires specialized setup hardware (e.g. audio or
infrared) in order to setup a public key. Seeing Is Believing uses an installation
device with a camera or a bar code reader to create an out-of-band secure channel
[24]. Key authenticity is achieved through certified public keys.

Mayrhofer and Welch [23] use an out-of-band laser channel constructed with
off the shelf components for transmitting short authentication strings. According
to [23], the proposed solution does not ensure complete authenticity of the the
laser channel. Roman and Lopez [29] discuss general aspects of communication
over a visible light channel.

Multichannel Protocols for User-Friendly and Scalable Initialization 245

7 Conclusion

We made several contributions in this paper. We proposed two novel multichan-
nel protocols for initialization of large scale wireless sensor networks. The first
protocol uses only secret key cryptography and is suitable for CPU-constrained
sensor nodes. The second protocol is based on public key cryptography. Both
protocols involve communication over a bidirectional radio channel and an uni-
directional out-of-band visible light channel.

We demonstrated the importance of considering a very strong and realistic
attacker model, where an attacker can eavesdrop, jam and modify transmitted
messages in both a radio and a visible light channel; many existing protocols
that rely on a visible light channel were shown to be insecure in this strong
adversary model. Our “public key” - based protocol is designed to be secure
in this very strong attacker model. Moreover, we showed that principle “all or
none” keeps invariant the size of short authentication strings to changing the
number of sensor nodes to be initialized.

The proposed protocols are implemented on the Meshnetics ZigBee sensor
nodes. We showed that the proposed protocols are cheap to implement (a sensor
node has to be equipped with one LED and a “push button”) and scalable.
We also designed and tested a simple random number generator suitable for
CPU-constrained sensor nodes.

Acknowledgment

The authors would like to thank the anonymous reviewers for their thorough
reviews and helpful suggestions.

References

1. ZigBee Alliance. ZigBee Specification (Document 053474r06, Version 1.0). Techni-
cal report (June 2005)

2. Anderson, R., Chan, H., Perrig, A.: Key Infection: Smart Trust for Smart Dust.
In: IEEE International Conference on Network Protocols (2004)

3. Balfanz, D., Smetters, D.K., Stewart, P., Wong, H.C.: Talking to Strangers: Au-
thentication in Ad-hoc Wireless Networks. In: Symposium on Network and Dis-
tributed Systems Security (2002)

4. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer, Heidelberg (2003)

5. Cagalj, M., Capkun, S., Hubaux, J.: Key Agreement in Peer-to-Peer Wireless Net-
works. In: Proceedings of the IEEE Special Issue on Cryptography and Security
(2006)

6. Cagalj, M., Hubaux, J.P., Capkun, S., Rengaswamy, R., Tsigkogiannis, I., Srivas-
tava, M.: Integrity (I) Codes: Message Integrity Protection and Authentication
Over Insecure Channels. In: Proceedings of the IEEE Symposium on Security and
Privacy (2006)

7. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. Journal of Com-
puter and System Sciences 18(2) (1979)

246 T. Perković et al.

8. Castelluccia, C., Mutaf, P.: Shake Them Up!: A Movement-based Pairing Protocol
for CPU-constrained Devices. In: ACM MobiSys (2005)

9. Chan, H., Perrig, A., Song, D.: Random Key Predistribution Schemes for Sensor
Networks. In: Proceedings of the IEEE Symposium on Security and Privacy (2003)

10. Deng, J., Hartung, C., Han, R., Mishra, S.: A Practical Study of Transitory Mas-
ter Key Establishment For Wireless Sensor Networks. In: Proceedings of the First
International Conference on Security and Privacy for Emerging Areas in Commu-
nications Networks (2005)

11. Du, W., Deng, J., Han, Y.S., Varshney, P.K.: A Pairwise Key Pre-Distribution
Scheme for Wireless Sensor Networks. In: Proceedings of the 10th ACM conference
on Computer and Communications Security, CCS (2003)

12. Eschenauer, L., Gligor, V.D.: A Key-Management Scheme for Distributed Sensor
Networks. In: Proceedings of the 9th ACM conference on Computer and Commu-
nications Security (2002)

13. Rukhin, A., et al.: A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications (2001), http://csrc.nist.gov/rng/

14. Fairfield, R.C., Mortenson, R.L., Coulthart, K.B.: An LSI random number gener-
ator (RNG). In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 203–230. Springer, Heidelberg (1985)

15. Francillon, A., Castelluccia, C.: TinyRNG: A Cryptographic Random Number Gen-
erator for Wireless Sensors Network Nodes. In: Int. Symposium on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks (2007)

16. MATLAB Online Users Guide, http://www.mathworks.com (last access, Septem-
ber 2008)

17. Holmquist, L.E., Mattern, F., Schiele, B., Alahuhta, P., Beigl, M., Gellersen, H.W.:
Smart-Its Friends: A Technique for Users to Easily Establish Connections between
Smart Artefacts. In: International Proceedings of the 3rd international conference
on Ubiquitous Computing (2001)

18. Kuhn, M.G.: Electromagnetic eavesdropping risks of flat-panel displays. In: Mar-
tin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 88–107. Springer,
Heidelberg (2005)

19. Kuo, C., Luk, M., Negi, R., Perrig, A.: Message-In-a-Bottle: User-Friendly and
Secure Key Deployment for Sensor Nodes. In: ACM SenSys (2007)

20. Lester, J., Hannaford, B., Borriello, G.: “Are you with me?” - using accelerometers
to determine if two devices are carried by the same person. In: Ferscha, A., Mattern,
F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 33–50. Springer, Heidelberg
(2004)

21. Liu, D., Ning, P., Du., W.: Group-Based Key Pre-Distribution in Wireless Sensor
Networks. In: ACM Workshop on Wireless Security (2005)

22. Mayrhofer, R., Gellersen, H.: Shake Well Before Use: Two Implementations for
Implicit Context Authentication. In: Ubicomp (2007)

23. Mayrhofer, R., Welch, M.: A Human-Verifiable Authentication Protocol Using Vis-
ible Laser Light. In: International Conference on Availability, Reliability and Se-
curity (2007)

24. McCune, J.M., Perrig, A., Reiter, M.K.: Seeing-Is-Believing: Using Camera Phones
for Human-Verifiable Authentication. In: Proceedings of the IEEE Symposium on
Security and Privacy (2005)

25. Murray, K.D.: 8-bit AVR Microcontroller with 64K/128K/256K Bytes In-System
Programmable Flash, http://www.atmel.com (last access, March 2008)

http://csrc.nist.gov/rng/
http://www.mathworks.com
http://www.atmel.com

Multichannel Protocols for User-Friendly and Scalable Initialization 247

26. Oliveira, L.B., Scott, M., Lopez, J., Dahab, R.: TinyPBC: Pairings for Authenti-
cated Identity-Based Non-Interactive Key Distribution in Sensor Networks. In: 5th
International Conference on Networked Sensing Systems, INSS (2008)

27. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: SPINS: Security
Protocols for Sensor Networks. Wireless Networks 8(5) (2002)

28. Ramkumar, M., Memon, N.: An Efficient Key Predistribution Scheme for Ad-hoc
Network Security. IEEE Journal on Selected Areas in Communications (2005)

29. Roman, R., Lopez, J.: KeyLED - Transmitting Sensitive Data Over Out-of-Band
Channels in Wireless Sensor Networks. In: IEEE WSNS (2008)

30. Saxena, N., Uddin, M. B.: Automated Device Pairing for Asymmetric Pairing Sce-
narios. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008. LNCS, vol. 5308,
pp. 311–327. Springer, Heidelberg (2008)

31. Saxena, N., Uddin, M.B.: Bootstrapping Key Pre-Distribution: Secure, Scalable
and User-Friendly Initialization of Sensor Nodes. In: ACNS (2009)

32. Saxena, N., Uddin, M.B., Voris, J.: Universal Device Pairing Using an Auxiliary
Device. In: Proceedings of the 4th Symposium on Usable Privacy and Security,
SOUPS (2008)

33. Shapiro, G., Stockman, G.C.: Computer Vision. Prentice-Hall, Englewood Cliffs
(2001)

34. Soriente, C., Tsudik, G., Uzun, E.: HAPADEP: Human-Assisted Pure Audio De-
vice Pairing. In: Proceedings of the 11th International Conference on Information
Security, ISC (2008)

35. Stajano, F., Anderson, R.: The Resurrecting Duckling: Security Issues for Ad-hoc
Wireless Networks. In: 7th International Workshop. Springer, Heidelberg (1999)

36. Szczechowiak, P., Oliveira, L.B., Scott, M., Collier, M., Dahab, R.: NanoECC:
Testing the Limits of Elliptic Curve Cryptography in Sensor Networks. In: Verdone,
R. (ed.) EWSN 2008. LNCS, vol. 4913, pp. 305–320. Springer, Heidelberg (2008)

37. Tkacik, T.E.: A Hardware Random Number Generator. Revised Papers from the
4th International Workshop on Cryptographic Hardware and Embedded Systems,
CHES (2003)

38. Vaudenay, S.: Secure Communications Over Insecure Channels Based on Short
Authenticated Strings. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
309–326. Springer, Heidelberg (2005)

39. von Neumann, J.: Various Techniques Used in Connection With Random Digits.
Applied Math Series (1951)

40. Walker, J.: Hotbits, http://www.fourmilab.ch/random/ (last access, March 2009)
41. Yuksel, K., Kaps, J.P., Sunar, B.: Universal Hash Functions for Emerging Ultra-

Lowpower Networks. In: Proceedings of the Communications Networks and Dis-
tributed Systems Modeling and Simulation Conference (2004)

42. Zhu, S., Setia, S., Jajodia, S.: LEAP: Efficient Security Mechanisms for Large-
Scale Distributed Sensor Networks. In: Proceedings of the 10th ACM conference
on Computer and Communications Security, CCS (2003)

http://www.fourmilab.ch/random/

Aggregated Authentication (AMAC) Using
Universal Hash Functions

Wassim Znaidi1, Marine Minier1, and Cédric Lauradoux2

1 CITI Laboratory, Lyon University
F-69621, France

firstname.lastname@insa-lyon.fr
2 UCL / INGI / GSI, Place Saint Barbe, 2

Louvain-la-Neuve, Belgique
cedric.lauradoux@uclouvain.be

Abstract. Aggregation is a very important issue to reduce the en-
ergy consumption in Wireless Sensors Networks (WSNs). There is cur-
rently a lack of cryptographic primitives for authentication of aggregated
data. The theoretical background for Aggregated Message Authentica-
tion Codes (AMACs) has been proposed by Chan and Castelluccia at
ISIT 08.

In this paper, we propose a MAC design based on universal hash
functions and more precisely on the Krawczyk’s constructions. We show
how those designs can be used for aggregation and how it can be easily
adapted for WSNs. Our two AMAC constructions offer a small memory
footprint and a signification speed to fit into a sensor. Moreover, when
compared with scenarios without aggregation, the method proposed here
induces a simulated energy gain between 3 and 9.

Keywords: Sensor networks, aggregation, authentication, MACs.

1 Introduction

The purpose of wireless sensors networks (WSNs) is to collect data and then
transmit them at a gathering point. There are two classes of nodes in such a
network. Data nodes have limited resources (CPU, memory and energy) and
are on their own, i.e. the energy is the critical resource. Gathering nodes are
considered more powerful (base stations) and they have an access to a power
supply. We consider in this paper, an hop-by-hop scheme for the data forwarded
by the data nodes to a gathering node considering a fixed topology. In this model,
the most expensive operation is the data transmission. It is then highly valuable
to reduce the size and the number of the transmitted messages. The messages
aggregation has been used for this purpose. We apply a function over all the data
produced by the collection nodes instead of concatenating them. This function is
evaluated successively by each data gathering node resulting in a communication
scheme with a constant message size.

If aggregation is a very powerful technique to save energy, it has to be used
carefully. Sensors can be deployed at a large scale and over a large area. It is very

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 248–264, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Aggregated Authentication (AMAC) Using Universal Hash Functions 249

likely that they get compromised or attacked and thus an attacker can influence
the result of the aggregation function [22]. Security is therefore a critical issue.
The confidentiality, the integrity and the origin of aggregated data must be
preserved. There exists several works concerning aggregated encryption [10,6,8]
or aggregated authentication [19,23,15]. Recently, several works [7,16,3] have
established the foundation for aggregated MACs. This work aims to fill the gap
between the theoretical results and practical design for aggregated MACs.

A MAC algorithm could be seen as a signature only valid between two users
that share the same secret key: a MAC allows to guarantee the integrity of the
transmitted message and to verify the identity of the sender for the user sharing
the symmetric key. A MAC is thus an algorithm that takes as input a message
m and a key K and that produces a fingerprint tag = MACK(m). The receiver
of the message m′||tag(m) verifies if tag′ = MACK(m′) is equal or not to tag.
In the case of a WSN, this verification must be performed at each stage of the
aggregation to establish a complete trust chain over all the results.

In this paper, we propose two AMAC constructions based on the well-known
universal hash functions, i.e. CRC Hash and LFSR hash proposed by Krawczyk
in [17].

Contributions of the paper are as follows:

• We show how to use existing universal hash functions to design an aggregated
MAC scheme and which level of security can be achieved.

• We identify the parameters of the functions suitable for the constraints of
sensors.

• We present a comparison of the performances of several aggregation
scenarios.

The simulations performed for different scenarios show that the gain in terms of
energy between our method and methods without aggregation varies between 3
and 9.

In Section 2, we give a reminder on aggregation and message authentica-
tion codes. We particularly focus on universal hash functions based MACs. We
present in Section 3 our new designs for aggregate MACs and we discuss the se-
curity issues. The performance of our schemes are evaluated in Section 4. Then,
we conclude.

2 Preliminaries

In this section, we first introduce a formal definition of message aggregation and
of AMAC as done in [7] and describe the relative constructions proposed in the
literature. Then, we introduce three particular MAC designs which are linear
and based upon universal hash functions.

2.1 Formal Definition of Aggregation and Related Work

The basic communication model in an hop-by-hop WSNs is the concatenation.
Let consider a WSN with n nodes sending message of � bits. Each node i concate-
nates its contribution xi to the result of the previous step. This model is easily

250 W. Znaidi, M. Minier, and C. Lauradoux

implemented but it consumes a significant amount of bandwith and energy: the
last node in the protocol has for instance to transmit x1, x2, · · · , xi, · · · , xn−1, xn.
This overhead can be reduced by using the aggregation: given n messages
(x1, x2, · · · , xn) of length � sent by the n different nodes, the aggregated result
m of length � is defined by a function f :

f : m = f(x1, x2, · · · , xn).

Some examples of aggregation functions usually used are the median or the mean
as explained in [22]. The security of an aggregation scheme relies on encryption
and authentication. The properties of those two mechanisms are very specific in
the context of aggregation.

Encrypted and Aggregated Data. The confidentiality of the messages sent
in an aggregation scheme requires to perform the aggregation over the ciphertexts
rather than the plaintexts. This problem is usually solved with homomorphic ci-
phers. Many public-key cryptosystems, e.g. RSA or ElGamal, can be used for
this purpose but they are not generally suitable for sensors. A method of homo-
morphic ciphers based upon stream ciphers and suitable for WSNs applications
has been developed in [6]. Let consider a node i receiving an �-bit message pi−1.
The node i aggregates its contribution xi to the message pi−1 in the following
way:

pi = pi−1 + ci mod q

= pi−1 + xi + keystreami mod q

where q is a well chosen prime number and where keystreami is the keystream
produced by the node i with its secret key ki and a stream cipher.

Aggregated Authentication. The aim of aggregated authentication is to
provide a way to verify the aggregated result, i.e. f(x1, x2, · · · , xi, · · ·), rather
than each message xi individually. Different schemes have been proposed for
the aggregation of authentication. They used Merkle tree [19] or MACs algo-
rithms [23,3,15,7]. We especially focus on the solution proposed by A. Chan and
C. Castelluccia [7]. They have proposed a formalization of aggregate message au-
thentication code (AMAC) and they study its security. More formally, an AMAC
algorithm is defined as follows:

– Key Generation (KG). Let KG(1λ, n) → (k1, k2, ..., kn) be a probabilistic
algorithm. Then, ki (with 1 ≤ i ≤ n) is the secret key used to generate a
verification tag by node i. The gathering node also called the sink possesses
all ki’s used for tag verification.

– Tag Generation (MAC). MACki(xi) → tagi takes a secret key ki and a
message xi as input to generate a verification tag tagi for xi. The message
sent out from node i is a 3-tuple ({i}, xi, tagi).

– Tag Verification (Ver). Let m be an f -aggregate of messages x1, x2, · · · , xi, · · ·
and hdr be the set of all contributing identities. Then

Verk1,k2,··· ,ki,···(m, tag1, tag2, · · · , tagi, · · ·) → 0/1

Aggregated Authentication (AMAC) Using Universal Hash Functions 251

takes the aggregate m and the tag tagi and secret key ki for each i ∈ hdr
and outputs 1 if m is a correct aggregate (i.e. m = f(x1, x2, · · · , xi, · · ·))
and 0 otherwise.

Note that no aggregation algorithm is specified in AMAC; the aggregation is
done in plaintexts. When an aggregating node with identity k receives two
measurement values and their tags from downstream, say, ({i}, xi, tagi) and
({j}, xj, tagj), it would pass

({i, j, k}, f(xi, xj , xk), tagi, tagj, tagk)

as the aggregation result to its parent where xk is its own measurement.
Note also that aggregation of verification tags is not considered here. So all the

tags are needed in the verification: let m = f(x1, ..., xi, ...), then the correctness
requirement of AMAC is as follows:

Verk1,··· ,ki,···(m, MACk1(x1), ..., MACki(xi), ...) = 1.

here, the tags are not aggregated.
At this time, no instance of this scheme has been proposed. We propose

to use the universal hash functions defined by Carter and Wegman in [4] to
design a MAC corresponding to the requirements of [7] and where the tags
could also be aggregated leading to an AMAC scheme defined as follows: let
m = f(x1, · · · , xi, · · ·) and tag be the value g(MACk1(x1), ..., MACki(xi), ...)
be the tag aggregation considering that g is an aggregation functions that could
be (or not) equal to f , then the corresponding verification is thus:

Verk1,··· ,ki,···(m, tag) = 1.

2.2 MACs Based Upon Universal Hash Functions

In this section, we will first introduce the definition of an universal hash function
and the original MAC schemes proposed by Krawczyk based upon universal hash
functions and the one proposed by Sarkar.

Universal Hash Functions. A universal hash function is a family of functions
indexed by a parameter called the key and it must verify that the probability
over all keys that all distinct inputs collide is small. This notion was introduced
by Carter and Wegman in [4].

Definition 1. Let fk be a function of an (�, n)-family H from an �-bit set to
an n-bit set with the parameter k taken in a set K. The family H is ε-almost
universal if the probability of collisions for a random distribution of the value
k over the set K (i.e. Prk(fk(M) = fk(M ′)), ∀k ∈R K) is smaller than ε. We
also say that H is ε-almost XOR universal (ε-AXU) if the associated differential
probability for a random distribution of the value k over the set K is bounded by
ε, i.e. ∀(M, M ′, a), P rk(fk(M) − fk(M ′) = a) ≤ ε.

252 W. Znaidi, M. Minier, and C. Lauradoux

Definition 2. We also say that a family of functions H is ⊕-linear if for all
M, M ′, we have fk(M ⊕ M ′) = fk(M) ⊕ fk(M ′) for all instance fk in H.

The Definition 2 is particularly important for aggregated authentication.
These functions can be used for message authentication if the output is pro-

cessed with another function. A MAC designs using the Definition 1 assumed
the following scenario: the parties have already exchanged their secret key k,
then to exchange a message M of length �, the sender sends M and the tag
tag = fk(M) ⊕ r. The shared secret key k is thus composed of a particular fk

function drawn randomly from an (�, n)-family of hash functions and a random
pad r. At reception, the receiver verifies the “tag” tag, corresponding with the
MAC will be recomputed and checked for consistency. In practice, the fingerprint
fk(M) will be encrypted with a stream cipher that will produce r.

Krawczyk has shown in [17] that the design of MAC of the above kind (i.e.
combined with a one-time pad) requires to have a family of functions that is
ε-almost XOR universal. Moreover, the family of functions can also be ⊕-linear.

Many universal hash families have been proposed in the literature to build
MACs. One of the first examples was the evaluation of a particular polynomial
in a particular point k as done in [2]. Let consider an �-bit message m split into t
blocks mi such that � = pt. In this case, the universal hash function fk is defined
as:

fk(m1, · · · , mt) =
t∑

i=1

mi · ki mod p.

This function is multi-linear and the base field could be Fp or F2n . In [21], V.
Shoup gave a classification of the universal hash functions that could be used
for MACs constructions in 3 categories: The first one is composed of the polyno-
mial evaluations over a prime field or a finite field; the second one is composed
of polynomial divisions over F2 described by Krawczyk in [17] and known as
cryptographic CRC and as “LFSR (Linear Feedback Shift Register) hash”; the
third category is composed of polynomial division over F2k . V. Shoup particu-
larly studied in his article the last class. The reader can find more details on
MAC algorithms based on universal hash functions in [18] and on their security
in [13].

Cryptographic CRC. As described in [21], the first scheme proposed by H.
Krawczyk in [17] is based upon modular division using an irreducible polynomial
over the field F2. It is a cryptographic variant of the well-known Cyclic Redun-
dancy Codes (CRC), standards for errors detection in networks. More precisely,
each message M is seen in its equivalent polynomial representation M(x) over
the field F2, the coefficients being the bits of M . Thus, for each irreducible poly-
nomial q(x) of degree n over F2, the associated family of universal hash functions
is hq(M) = M(x) · xn mod q(x). Notice here that it is necessary to multiply
M(x) by xn to ensure the security of the scheme for the notion of ε-AXU.

The (�, n) family of hash functions hq is the set of irreducible polynomials of
degree n and of the messages of size �. This family is ⊕-linear, ε-almost universal
(with ε ≤ n+

2n−1) and ε-almost XOR universal (with ε ≤ n+

2n−1).

Aggregated Authentication (AMAC) Using Universal Hash Functions 253

The hardware and software implementation of such mechanisms is really effi-
cient because the modular division for polynomials in F2 could be performed us-
ing a simple LFSR. The corresponding extension proposed by Shoup and proved
secure is the extension of this construction to the case where the base field is
F2k . In this case, the corresponding ε value is about

2kn .

Linear Feedback Shift Register (LFSR) Hashing. In the same article,
Krawczyk introduced a second construction based upon random matrices. More
precisely, given A a boolean Toeplitz matrix of size n×� (i.e. each lower diagonal
is fixed, i.e. if k−i = l−j for all indices then Ai,j = Ak,l) and given a message M
of size �. The universal hash function hA(M) is then the binary multiplication
of the matrix A by the column vector composed of the bits of the message M :
hA(M) = A · M .

A simple method to build such matrices is the LFSR use: given q(x) an irre-
ducible polynomial of degree n over F2; given s0, s1, · · · the output sequence of
the bits generated by the LFSR defined according to q(x) and the initial state of
the LFSR s = (s0, s1, · · · , sn−1). For each irreducible polynomial q(x) and for
each non-zero initial state of the LFSR, we associate the hash function hq,s(M)
defined as the linear combination

⊕
−1
j=0 Mj · (sj , sj+1, · · · , sj+n−1) where Mj is

the bit number j of M . In other words, at each clock, the LFSR updates its internal
state taking into account each message bit. This hash functions family is ⊕-linear,
ε-almost universal (with ε ≤ n+

2n−1 and ε-almost XOR universal (with ε ≤

2n−1).

Multi-linear Universal Hash Functions. In [20], P. Sarkar proposed the fol-
lowing evaluation: given a field Fp and an extension of this field Fpn with n ≥ 1;
given φ a linear transformation from Fpn into itself such as the minimal polynomial
of φ in Fp[x] be of degree n and be irreducible over Fp; the message to cipher M is
cut into l ≤ n elements (M1, · · ·Ml) over Fp. The hash functions family is:

GK(M) = M · (K, φ(K), · · · , φl−1(K))
= M1K + M2φ(K) + · · · + Mlφ

k−l(K)

where K belongs to Fpn .
The family GK is thus a linear combination of (M1, · · ·Ml) and of (K, φ(K), · · · ,

φl−1(K)), it is multi-linear (i.e. linear in each of its component), ε-almost universal
with ε ≤ 1/qn and also ε-almost XOR universal with the same ε value.

Sarkar also noted that φ could be easily implemented because it can be seen
as a LFSR over Fp. The author studied the particular p values allowing a fast
implementation in hardware and in software. The examples given are q = 2,
n = 128; q = 28 + 1, n = 16; q = 216 + 1, n = 8; q = 232 + 15, n = 4. He also
gave some examples of extensions over the field F2 that we will not detail here.

3 New Designs

We are going to present in this section the possible applications of the previous
functions in the case of a WSN. We simplify the study case for a better under-
standing and reduce the number of nodes to two nodes i and j depending on

254 W. Znaidi, M. Minier, and C. Lauradoux

({i, j, k}, ci ⊕ cj ⊕ ck, tagi ⊕ tagj ⊕ tagk)

({j}, ci, tagi)

({i}, cj , tagj)

i

j

k

Fig. 1. XOR aggregation with three nodes: i, j and k

one aggregator node k as shown in Fig. 1. This last one is directly connected to
the sink. This simple scheme could be easily generalized.

3.1 XOR Aggregation: How to Adapt the Krawczyk’s Approaches
for WSNs

The first construction described by Krawczyk could be directly applied to the
MAC aggregation if the XOR operation is used. This approach could be directly
combined with the XOR data aggregation proposed in [6].

Suppose that a WSN is composed of N nodes i. Each node receives during
an initialization phase a cipher key KEi shared between the node and the base
station (the sink), an authentication key KAi also shared between the node and
the base station and a polynomial q(x) shared by all the nodes and the base
station. Suppose now that the simple network described in Fig. 1 describes a
tree with three nodes i, j and k directly rooted at the sink.

When the node i wants to send (on demand or at regular intervals) a message
mi, it ciphers this message using a pseudo-random stream generated using a
stream cipher algorithm E (for example RC4 or SNOW v2 [11]). The common
cipher key KEi and a common initial value IVi used once must be shared between
the node i and the base station for the correct use of the E stream cipher. Thus,
node i ciphers Ci = mi ⊕ ri where ri is the pseudo-random stream produced
by E(KEi, IVi). Note that as mentioned in [6] the node i must also transmit
to the base station its Id i and the unique value IVi that also plays the role
of a counter to discard replay attacks. We first propose that IVi be the only
transmitted value writing IVi = i||CTRi, i.e. as a concatenation between the
node Id and a counter CTRi incremented by 1 at each new sending. (Note also
that this value must be transmitted each time in case of the non-transmission
of a particular message).

The node i also produces the corresponding MAC of the message mi using the
Krawczyk’s construction: it computes tagi = (mi(x) · xn mod q(x)) ⊕ r′i where
r′i is the pseudo-random stream produced using E initialized with KAi and IVi.
Thus, node i transmits to its parent k the value: {hdr, data, tag} with hdr = IVi,
data = Ci, tag = tagi.

Suppose now that the node j wants to transmit the message mj to the ag-
gregator node k, then it sends to k {IVj , Cj , tagj}. The node k transmits to the

Aggregated Authentication (AMAC) Using Universal Hash Functions 255

base station (considering that it sends itself mk):

{IVi, IVj , IVk, Ci ⊕ Cj ⊕ Ck, tagi ⊕ tagj ⊕ tagk}.
The base station deciphers

Ci ⊕ Cj ⊕ Ck ⊕ ri ⊕ rj ⊕ rk = mi ⊕ mj ⊕ mk = M

using the knowledge of the different keys and of the different IV s. It verifies:

tagi ⊕ tagj ⊕ tagk ⊕ r′i ⊕ r′j ⊕ r′k
= mi · xn ⊕ mj · xn ⊕ mk · xn mod q(x)
= (mi ⊕ mj ⊕ mk) · xn mod q(x)
= M · xn mod q(x).

Thus, the base station could verify the aggregated tags according to the received
sum.

Examples of values sizes Concerning the key sizes, the minimal size is 128 bits.
The polynomial q(x) could be a primitive polynomial of size 64 bits. the IV
values could be of 48 bits length (24 bits for example for the node Id and 24
bits reserved for the counter1. The messages must have a 64 bits length (this
value could not be smaller than the degree of the polynomial q). In this case,
the final messages size is defined according the number of nodes N transmitting
an information: 48N + 64 + 64. Considering a 96 bits polynomial and a 96 bits
message to transmit, the total size of transmitted information becomes 48N +
96+96. The security bounds of the underlying universal hash functions are equal
to 2−56 (resp. 2−87). The induced overhead on the network clearly depends on
the header size and thus on the nodes number sending back an information.

The following on demand mechanism could reduce this overhead: when the
base station wants to receive values from the network, it broadcasts a unique
value IV of 24 bits. The nodes receiving it use the previous method to cipher
and to authenticate their data using the IV value IVi = i||IV . The header has
only to be constituted of the responding Id nodes and could thus be replaced
by a ciphered Bloom filter of size m as proposed in [1]. The cipher key K of the
filter is shared between all the nodes and the base station. In this case, each node
ciphers k times its Id by putting at 1 the bit corresponding to this position in
the Bloom filter. This improvement seems to be efficient even if the probability
to obtain a false positive in the Bloom filter is about 0, 6185m/n where n is the
number of elements to insert in considering that k is about 0, 7m

n . For a network
with 200 nodes, a Bloom filter of size 2048 bits with k = 7 has a false positive
probability less than 1%. This probability could be reduced if instead of bits, the
Bloom filter is composed of 4 bits word or of bytes. If a Bloom filter is used, the
required computations performed by each sensor are increased by k additional
1 Once all the IV s values used, the cipher keys must be changed to discard WEP like

attacks.

256 W. Znaidi, M. Minier, and C. Lauradoux

hash computations and the base station must test if all the Id nodes are or are
not in the Bloom filter leading to kN additional hash computations.

We have proposed a direct use of the Krawczyk constructions in the case where
we try to obtain the XOR of the messages and not the sum. We have presented
examples using the first construction, the same reasoning could be applied using
the second construction. In this case, each node must be initialized with the
same matrix A to conserve the ⊕-linearity, the other parameters being the same
than the one previously described. A deduced MAC size of 64 or 96 bits gives
reasonable security bounds.

3.2 Aggregation over Fp

In this section, we extend the Krawczyk’s MAC constructions over Fp with p
prime to transform the proposed MAC from ⊕-linear to +-linear as the one
proposed by Sarkar.

Extension of Krawczyk’s Over Fp. We first introduce the following nota-
tions: we denote by F

l
p the vectorial space of size l over Fp and F

n
p the one of size

n. The message M we want to compute the MAC is written M = (M0, · · · , Ml−1)
where each Mi belongs to Fp. In the same way, the output of the hash function
is considered as an element of Fn

p , a vector of size n over Fp.
In this case, the first Krawczyk’s construction becomes: given a message M =

(M0, · · · , Ml−1) in Fl
p seen as a polynomial with coefficients in Fp: M(x) =

M0x
l−1 + M1x

l−2 + · · · + Ml−1; given an irreducible polynomial q(x) of degree
n with coefficients in Fp with its leading coefficient equal to 1; the hash function
is defined as hq(M) = M(x) ·xn mod q(x) seen as a vector of size n of elements
of Fp. The obtained tag is thus tag = hq(M) + r where r is a vector of size n of
random numbers taken in Fp.

We need to compute Prh(hq(M)−hq(M ′) = c(x)) to prove that this function
is ε-almost universal. This function is trivially +-linear. Thus, directly using
the results of [21] and of [17], if hq(M) − hq(M ′) = c(x), by linearity, we have
hq(M − M ′) = c(x), i.e. q(x) divides (M − M ′) · xn − c(x). This polynomial has
a maximal degree equal to l + n whereas q(x) has a degree of n, the number of
factors of degree n of this polynomial is n+l

n . The maximal number of functions
hq that map M − M ′ in c(x) is n+l

n . The number of all possible functions is
the set of irreducible polynomials of degree n over Fp[x]; there are pn−1

n such
functions. We thus directly deduce that Prh(hq(M) − hq(M ′) = c(x)) ≤ n+l

pn−1

and that the family of proposed functions is ε-almost + universal with ε = n+l
pn−1

and it is multi-linear.
We have generalized the first Krawczyk’s construction for a prime field Fp

keeping the willing linear properties. Notice that the second scheme proposed in
[17] could be generalized in the same way: in this case, this last generalization
is very closed to the one proposed by Sarkar except the definition of the final
set seen in the Krawczyk’s generalization as a vectorial space ans seen in the
Sarkar’s construction as a field extension. Let us now explain how to use those
generalizations for WSNs.

Aggregated Authentication (AMAC) Using Universal Hash Functions 257

Applications for WSNs. In this section, we will describe how to use those
new constructions for MAC aggregation in WSNs. We suppose here that the
messages (for example temperatures) sensed by the nodes will be sent by packets,
one packet being constituted of l single messages of size p. Each node sensing l
different values stores those values M0, · · · , Ml−1 before sending them together
to the base station at each given time interval or on demand, l being known
and fixed in advance. In the case where a sensor has not collected l values but a
smaller number, it replaces in the sent message the missing values by some 0s.
Let us illustrate the proposed method using the example of Fig. 1.

Using the same assumptions than the one of Section 3.1, we suppose that
each node i shares with the base station a cipher key KEi, an authentication
key KAi, a stream cipher E and an irreducible polynomial q(x) of degree n with
coefficients in Fp common with all the other nodes and the base station.

The node i stores l messages and sends them to the base station using the
proposed method. For ciphering messages, it directly uses the method described
in [6], i.e. it computes for each message Mj (j ∈ [0, .., l − 1]), Mj + rj mod p
where rj is a pseudo-random number smaller than p and where p is a prime
number defined as p ≥ 2�log2 M∗N� (where M is the maximal size that can take
a single message) and where N is always the total number of nodes. So, first,
node i ciphers its l messages M i = (M i

0, · · · , M i
l−1):

Ci = M i + ri

= (Ci
0 = M i

0 + ri
0 mod p, · · · ,

Ci
l−1 = M i

l−1 + ri
l−1 mod p)

where each ri
j is a random number in [0, p − 1]. Those values are obtained using

algorithm E initialized with the key KEi and an IV value IVi. From this point,
node i computes the MAC of all the l messages M i seen as a polynomial with
coefficients in Fp: it first computes a vector of size n: hq(M i) = (hi

0, · · · , hi
n−1) =

(M i · xn mod q(x)). Finally, we have:

tagi + r′i = (tagi
0, · · · , tagi

n−1)

= (hi
0 + r′i0 mod p, · · · ,

hi
n−1 + r′in−1 mod p)

where r′j are random numbers belonging to [0, p−1] obtained using E initialized
with KAi and IVi. Node i transmits to its parent node k: {hdr, data, tag} with
hdr = IVi, data = Ci and tag = tagi.

Following the same previous example, the node j depending on the same
parent k transmits its own l messages and the associated MAC: {IVj , C

j , tagj}.
The node k transmits to the base station (considering that it has also l messages
to transmit):

{IVi, IVj , IVk, Ci + Cj + Ck, tagi + tagj + tagk}.
The base station deciphers Ci+Cj+Ck−ri−rj−rk = M i+M j+Mk = M using
its knowledge of each KEi and of IVi. M is a vector of size l. More precisely:
M = (

∑
i M i

0 mod p, · · ·∑i M i
l−1 mod p). It then verifies:

258 W. Znaidi, M. Minier, and C. Lauradoux

tagi + tagj + tagk + r′i + r′j + r′k

= M i · xn + M j · xn + Mk · xn mod q(x)
= (M i + M j + Mk) · xn mod q(x)

= (
∑

i

M i
0 mod p, · · · ,∑

i

M i
l−1 mod p) · xn mod q(x)

= M · xn mod q(x)

Thus, the base station is able to verify the value of the aggregated tags according
the received sum value.

Examples of values sizes. As previously mentioned, for key and IV sizes we
keep the sames as the ones defined in Section 3.1. So, let us define the p value.
It depends on the size of the network and of the maximal size of the message to
send. With the temperature example and a network composed of 200 nodes, we
consider that the temperature is smaller than 5000 Celsius degree. we directly
deduce that the p size is about 20 bits. We thus need to choose a prime number
easy to implement such as 220 +7. For the particular values closed to the powers
of 2, we could choose the prime numbers given in [20]. So if p = 220 + 7, an
irreducible polynomial of degree 6 gives an admissible security bounds and we
can send the messages by packets of size 10. Thus the generated MAC for each
node will be of size 126 bits, the concatenation of 10 messages will be of length
300 bits. If N nodes transmit their values, the packets size will be bounded over
by 48N + 126 + 300.

As explained in Section 3.1, a ciphered Bloom filter (with the same properties)
could be used for overhead reductions.

3.3 Security Analysis in the AMAC Model

In [7], A. Chan and C. Castelluccia proposed two security models for aggregation
schemes in WSNs. The first one is called Concealed Data Aggregation (CDA)
and concerns a security model for data aggregation whereas the second one called
AMAC is dedicated to the security of Aggregated Message Authentication Codes.

The security model for CDA defines a security notion against adaptive cho-
sen ciphertexts attacks and the indistinguishability notion in this model (IND-
CCA2). The particular game used here authorizes the usual challenges in this
model (cipher oracle and decipher oracle). The authors noticed that the con-
struction defined in [6] does not verify the IND-CCA2 property. This comes
directly from the intrinsic nature of the construction: we could distinguish two
particular ciphertexts and their sum.

In the same article, the authors defined the AMAC security notion using a
generation oracle and a verification oracle. In this model, they demonstrated
that an adversary is able to win the following game: given two messages, (hdr =
{i}, mi, tagi) sent by node i and (hdr = {j}, mj, tagj) sent by node j that the

Aggregated Authentication (AMAC) Using Universal Hash Functions 259

adversary knows; if the adversary sends to the verification oracle the aggregated
of those two messages (hdr = {i, j}, mi + mj , tagi + tagj) then the adversary is
able to forge a tag for a valid message.

The schemes proposed here have this security weakness intrinsically linked
with the wishing linear properties. However, we could legitimately question the
practical implications of a such attack especially concerning our MAC schemes.
The discussion below only concerns the AMAC case of study, the data aggrega-
tion scheme used here being the one studied in [7]. Indeed, if we suppose that
the base station needs the complete value of the header to correctly decipher
the messages sum and the aggregated value of the tags, this implies that the
adversary (that can not replay old packets due to the presence of the IV value
into the header) could only send to the base station information that it already
knows. If the base station does not possess those information, this implies that
the two nodes i and j were not able to transmit their values to the base station
(because for example the parent node is dead). In this last case, the adversary
helps for good operations in the network.

Moreover, in the AMAC security model proposed in [7], the header is not taken
into account. We can imagine to redefine a security model where the header is
included. In this case, the security of the scheme could rely in part at least
on the header itself by ciphering it for example or by using a ciphered Bloom
filter as explained in Section 3.1. One of the simplest methods consists in always
ciphering the header using the AES and a unique key shared by all the nodes
in the network and the base station. This method is not robust against node
compromise and do not allow to verify if the header has been modified during
process or not. To discard this last problem, we could add to this ciphered header
a MAC chain for which each node contributes by over-ciphering data as done
in [9]. The only deduced constraint is that the use of an additive homomorphic
cipher is prohibited to cipher and authenticate the header.

4 Performance Comparison

In this section, we present the performance evaluation of different aggregation
models. We have considered four cases:

• Scenario 1: the communication scheme uses no aggregation, i.e. the con-
catenation, nor for the data neither for the authentication.

• Scenario 2: the data are aggregated using a stream cipher as proposed
in [6]. The authentication is not aggregated.

• Scenario 3: the data and the authentication are respectively aggregated
with a stream cipher over F2 and with the AMAC proposed in Section 3.1.

• Scenario 4: the data and the authentication are respectively aggregated
with a stream cipher [6] and with the AMAC proposed in Section 3.2.

We test those four schemes using the LEACH [14] election mechanism and the
WSnet simulator [12]. First, we briefly describe LEACH, the simulation param-
eters and we discuss the different results.

260 W. Znaidi, M. Minier, and C. Lauradoux

4.1 LEACH: Low-Energy Adaptative Clustering Hierarchy

LEACH [14] is a clustering-based protocol which minimizes energy dissipation
in WSN’s. LEACH selects randomly nodes as cluster heads (special aggregator
nodes), so the energy dissipation in the communications with the sink is spread
to all nodes in the network. LEACH is composed of two steps: the set-up phase
and the steady phase. During the set-up phase, a sensor node is elected as cluster
head if it generates a random number (between 0 and 1) greater than a given
threshold T defined as:

T =

{
P

1−P∗[r mod 1/P] , if n ∈ G

0, Otherwise

where P is the desired percentage of cluster heads, r is the current round of the
protocol and G is the set of nodes that have not been selected as a cluster head
in the previous rounds. Using this threshold, each node will be a cluster-head
at some point after 1/P rounds. After an advertisement information, each node
selects its cluster head. During the steady phase, each node sends their sensing
values to its cluster head which aggregates the received data before sending
them to the base station. After the steady phase, the network goes into the
set-up phase again for a new round and a new cluster heads election.

4.2 Different Scenarios and Evaluation Parameters

We have implemented the LEACH protocol on the WSnet simulator. we have set
P = 0.2 and we have tested our approach on a random nodes distribution. Each
simulation is run with n sensor nodes and n ∈ [100; 600] distributed randomly
over a square field of 400m by 400m. Our simulations use the IEEE 802.11
physical and MAC layers which are fully simulated in the WSnet environment.
We have also used the RC4 stream cipher but any other stream cipher can be
used. In this study, we have simulated four different scenarios: the first scenario
consists in no aggregation at all, nor for the data neither for the MACs. The
second scenario simulates the data aggregation technique presented in [5] which
we add the concatenation of all tags generated by sensor nodes. The two last cases
simulate our own proposals described in Section 3.1 and in Section 3.2. Note that
the operations performed in Scenario 3 are based upon XOR operations whereas
the usual + is used only in Scenario 4.

4.3 Simulation and Results

We have simulated the 4 scenarios described above based on aggregator nodes
elected using the LEACH protocol. We consider in all simulations that each node
senses a value at each second and sends it with a given probability equal to 90 %.

We have tested the average delay time for a packet to travel until reaching the
sink and the average energy consumption per nodes for the four scenarios. For
each test, we have repeated the tests over 100 simulations for the four scenarios.

Aggregated Authentication (AMAC) Using Universal Hash Functions 261

 0

 20

 40

 60

 80

 100

 700 600 500 400 300 200 100

A
ve

ra
ge

 d
el

ay
 o

f p
ac

ke
ts

 a
rr

iv
al

 to
 B

S
 (

s)

Number of nodes

scenario 1
scenario 2
scenario 3
scenario 4

Fig. 2. Energy consumption for different aggregation schemes

Fig. 2 presents the average delay for a packet to reach the sink. Clearly,
Scenario 4 is the slowest one and has the maximum delay for the average packet
transfer as every node must wait l time intervals before sending the l aggregated
values to first its cluster head that aggregates them and forwards to the sink.
Moreover, the cluster head must wait values from other members before sending
all the aggregated values to the base station. So, as expected, the Scenario 4 has
the highest latency compared with the other scenarios. This proposal is really
adapted to applications that require simple data gathering or environmental
monitoring without any emergency needs. Among the three other scenarios, the
Scenario 3 is the one that presents the best average delay compared with the two
first scenarios. This comes from the fact that this scenario minimizes the size of
the sent packets leading to a better transmission time for every cluster head.

Fig. 3 presents the gain on energy consumption between Scenario 4 and each of
the other scenarios. As one could see on the figure, this gain is between 2.5 and 9
which is really significant. Moreover, Scenario 3 has the best energy consumption
after Scenario 4. Those real improvements in terms of energy keeping is directly
linked with the size of the sent packets because in the three first scenarios the
number of sent packets is about the same whereas in the last case, the number
of sent packets is divided by l here equal to 10.

More formally, considering the WSN as a tree of depth d and of width t,
considering that one bit is sent by each nodes, the number of sent bits when no
aggregation is performed is equal to

∑d
i=0(d− i)td−i, whereas when we consider

an aggregated scheme, the total number of sent bits is
∑d

i=0 td−i. In those cases,
considering that each node send a message of m bits and a tag of � bits, the
number of bits sent if Scenario 1 is used is (�+m)

∑d
i=0(d−i)td−i, for Scenario 2

it is �
∑d

i=0(d−i)td−i+m
∑d

i=0 td−i, for Scenario 3 it is �
∑d

i=0 td−i+m
∑d

i=0 td−i

and for Scenario 4, considering that a message of length m and a MAC of length

262 W. Znaidi, M. Minier, and C. Lauradoux

 0

 2

 4

 6

 8

 10

 100 200 300 400 500 600

E
ne

rg
y

ga
in

 fo
r

sc
en

ar
io

 4

Number of nodes

Gain over scenario 1
Gain over scenario 2
Gain over scenario 3

Fig. 3. Gains on energy consumption when comparing Scenario 4 with the three first
scenarios

� is sent one time during l periods, it is about

�
∑d

i=0 td−i + m
∑d

i=0 td−i

l
.

Thus, performance evaluations confirm theoretical evaluations: in the theoretical
approach, the gain would be better than as shown by evaluations but this fact
is directly linked with the perfect structure of the network supposed in the the-
oretical model; the number of aggregator nodes is also greater in the theoretical
approach.

5 Conclusion

In this paper, we have presented a simple method based upon universal hash
function to aggregate MACs in a Wireless Sensors Network. To reach this aim,
we extended the two schemes originally proposed by Krawczyk in [17] to simplify
the data treatment. We have also discussed the security of our schemes in the
model proposed in [7]. We have validated our approaches by intensive simulations
that show the pertinence of our schemes and a significant gain in terms of energy
when our last proposal is used.

Due to the small sizes of the sent messages in a WSN, it seems judicious
to send several messages in a same time to be sure to generate a correct (and
sufficiently long) MAC. If only a single message is sent, the required functions for
this operation look more like expansion functions than compression functions.
In our future work, we will particularly focus on this expansion aspect and on
the implementation of universal hash functions in MSP430 sensors in order to
evaluate their software performances on small devices.

Aggregated Authentication (AMAC) Using Universal Hash Functions 263

References

1. Aad, I., Castelluccia, C., Hubaux, J.P.: Packet coding for strong anonymity in ad
hoc networks. In: IEEE Securecomm (August 2006)

2. Bernstein, D.J.: The poly1305-aes message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005)

3. Bhaskar, R., Herranz, J., Laguillaumie, F.: Efficient authentication for reactive
routing protocols. In: AINA (2), pp. 57–61. IEEE Computer Society, Los Alamitos
(2006)

4. Carter, L., Wegman, M.N.: Universal Classes of Hash Functions. Journal of Com-
puter and System Sciences - JCSS 18(2), 143–154 (1979)

5. Castelluccia, C.: Securing very dynamic groups and data aggregation in wireless
sensor networks. In: IEEE MASS - The Fourth IEEE International Conference on
Mobile Ad-hoc and Sensor Systems, Pisa, Italy, October 2007, pp. 1–9 (2007)

6. Castellucia, C., Mykletun, E., Tsudik, G.: Efficient aggregation of encrypted data
in wireless sensor networks. In: Mobile and Ubiquitous Systems: Networking and
Services - MobiQuitous 2005, pp. 1–9 (2005)

7. Chan, A.C.-F., Castelluccia, C.: On the (Im)possibility of aggregate message au-
thentication codes. In: IEEE International Symposium on Information Theory -
ISIT 2008, pp. 235–239. IEEE, Los Alamitos (2008)

8. Chan, A.C.-F., Castelluccia, C.: On the Privacy of Concealed Data Aggregation.
In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 390–405.
Springer, Heidelberg (2007)

9. Chan, H., Perrig, A., Song, D.: Secure hierarchical in-network aggregation in sensor
networks. In: CCS 2006: Proceedings of the 13th ACM conference on Computer
and communications security, pp. 278–287. ACM, New York (2006)

10. Domingo-Ferrer, J.: A Provably Secure Additive and Multiplicative Privacy Ho-
momorphism. In: Chan, A.H., Gligor, V.D. (eds.) ISC 2002. LNCS, vol. 2433, pp.
471–483. Springer, Heidelberg (2002)

11. Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Nyberg,
K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 47–61. Springer, Heidelberg
(2003)

12. Ben Hamida, E., Chelius, G., Gorce, J.-M.: Scalability versus accuracy in physical
layer modeling for wireless network simulations. In: 22nd ACM/IEEE/SCS Work-
shop on Principles of Advanced and Distributed Simulation (PADS 2008), Rome,
Italy (June 2008)

13. Handschuh, H., Preneel, B.: Key-Recovery Attacks on Universal Hash Function
Based MAC Algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 144–161. Springer, Heidelberg (2008)

14. Heinzelman, W., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communi-
cation protocol for wireless microsensor networks. In: Proceedings of the Hawaii
Conference on System Sciences (January 2000)

15. Hu, L., Evans, D.: Secure aggregation for wireless networks. In: Workshop on Se-
curity and Assurance in Ad hoc Networks, pp. 384–394 (2003)

16. Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In: Malkin, T.G.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 155–169. Springer, Heidelberg (2008)

17. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

264 W. Znaidi, M. Minier, and C. Lauradoux

18. Nevelsteen, W., Preneel, B.: Software performance of universal hash functions.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 24–41. Springer,
Heidelberg (1999)

19. Przydatek, B., Song, D., Perrig, A.: SIA: Secure information aggregation in sensor
networks. In: ACM SenSys 2003 (November 2003)

20. Sarkar, P.: A New Universal Hash Function and Other Cryptographic Algorithms
Suitable for Resource Constrained Devices. Cryptology ePrint Archive, Report
2008/216 (2008), http://eprint.iacr.org/

21. Shoup, V.: On Fast and Provably Secure Message Authentication Based on Univer-
sal Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 313–328.
Springer, Heidelberg (1996)

22. Wagner, D.: Resilient aggregation in sensor networks. In: 2nd ACM workshop on
Security of ad hoc and sensor networks - SASN 2004, pp. 78–87. ACM, New York
(2004)

23. Yang, Y., Wang, X., Zhu, S., Cao, G.: Sdap: a secure hop-by-hop data aggregation
protocol for sensor networks. In: MobiHoc 2006: Proceedings of the 7th ACM
international symposium on Mobile ad hoc networking and computing, pp. 356–
367. ACM, New York (2006)

http://eprint.iacr.org/

Sec-TMP: A Secure Topology Maintenance
Protocol for Event Delivery

Enforcement in WSN�

Andrea Gabrielli1, Mauro Conti2, Roberto Di Pietro3, and Luigi V. Mancini1

1 Dipartimento di Informatica, Università di Roma “La Sapienza”, Roma, IT
2 Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, NL

3 Dipartimento di Matematica, Università di Roma “Tre”, Roma, IT

Abstract. Topology Maintenance in Wireless Sensor Networks (WSNs),
that is, alternating duty cycles with sleep cycles while having an adequate
number of nodes monitoring the environment, is a necessary requirement
to allow the WSNs to move from niche applications to widespread adop-
tion; topology maintenance is even mandatory when the WSNs are used
in a security sensitive context.

In this work, we present the first scalable Secure Topology Mainte-
nance Protocol (Sec-TMP) for Wireless Sensor Networks that does not
require pair-wise node confidentiality. The aim of Sec-TMP is to enforce
event delivery to the BS while providing a standard topology mainte-
nance service to the WSN. Sec-TMP enjoys the following features: it
does not require pair-wise node confidentiality; it does not need any un-
derlying routing—just one-hop communications are used; and, it is highly
scalable. Sec-TMP reaches its goal being also resilient to the known at-
tacks on TMPs: snooze attack; sleep deprivation attack; and, network
substitution attack. Furthermore, Sec-TMP confines node replication at-
tack: once a node is captured, the protocol limits the possible usage of
the corresponding node’s ID to a single neighbourhood. Finally, exten-
sive simulations support our findings.

Keywords: Sensor Network Security, Topology Maintenance Protocol,
Attack-Resilient.

1 Introduction

Wireless Sensor Networks (WSNs) are designed to fulfil a variety of tasks; law
enforcement, disaster recovery, search-and-rescue, to cite a few [1]. WSNs are
often unattended and operate in harsh environment. Furthermore, they operate
without relying on existing infrastructure; for example, nodes are scattered by
an airplane and once on the ground they start communicating to each other.
The communication radius of a node determines its neighbourhood.

One of the most challenging research problem of WSNs is topology mainte-
nance [6,5]: if more than the required number of nodes are present in a given
� This work is partially supported by Caspur under grant HPC-2007.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 265–284, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

266 A. Gabrielli et al.

area, some of the nodes could switch from working state to sleeping state to save
energy and to avoid communication congestion. Nodes in sleeping state could be
activated in a further moment, if required. Different Topology Maintenance Pro-
tocols (TMPs), that assume a trusted environment, have been already proposed
in the literature [6,5,13,23]. While being efficient and effective, if a malicious
node is inserted in the above cited solutions, the WSN functionalities can be
subverted. Indeed, just few preliminary works consider the security of TMPs,
such as [18,15].

The main goal of our Sec-TMP protocol is to enforce the delivery of events
intended to be received by the BS, or to detect that such a delivery failed,
while providing the functionalities of a standard topology maintenance protocol.
Assume a specific event (e.g. a fire alarm) is sensed in a given neighbourhood.
The adversary goal could be to prevent the BS from learning such an event. To
this aim, it could exploit a non-secure TMP so that only malicious nodes will be
working in that neighbourhood when the BS will come to collect data—nodes
that will not signal the firing event.

As an example, we can think to any data gathering scenario in a hostile
environment such as a battlefield.

We assume WSNs do not necessary have an underlying routing protocol: each
node is just programmed to sense data and pass-it on to the Base Station (BS).
In order to increase the network lifetime, and to be resilient to attacks, nodes
run our Sec-TMP protocol. In particular, assume node b is driven —by our TMP
protocol— to a sleeping state while b has some data to communicate to the BS.
Before setting itself in sleeping state, b sends its sensed data to its neighbour,
say a, that has committed itself to be in working state (see Figure 1). Node a
will eventually deliver b’s data to the BS.

Contributions. In this paper we propose, to the best of our knowledge, the first
Secure Topology Maintenance Protocol (Sec-TMP) for Wireless Sensor Networks
(WSN) that: (i) does not require any pair-wise node confidentiality; (ii) is scal-
able (newly deployed nodes would be involved in the topology maintenance pro-
tocol by pre-existing nodes in the network); (iii) it is resilient to standard attacks
TMP are subject to [18,15]: snooze attack; sleep deprivation attack; and, network
substitution attack; and, (iv) tames the effect of node replication attack.

Organization. In Section 2, we describe the related work in the area. In sections
3 and 4 we describe the system assumptions and the threat model, respectively.
In Section 5, we give an overview of the proposed protocol. In Section 6, we
describe the Sec-TMP protocol in detail. In Section 7, we analyze the security of

goes to Sleeping state

data sensed by
b a

BS

data sensed by
data sensed by

a

b
b

Working state

Fig. 1. Collaboration instance

Sec-TMP: A Secure Topology Maintenance Protocol 267

our proposal and we discuss the obtained simulation results in Section 8. Finally,
we conclude in Section 9.

2 Related Work

One of the main issue in WSNs is energy consumption since power is often
provided to a node by a small battery, and it is often impossible to replace nodes
battery. For instance, this is the case when WSNs are deployed in a hostile or
not easy reachable environment.

Many different approaches have been proposed in the literature to prolong
the lifetime of a WSN. A classification of these techniques is presented in [2].
There are protocols, such as [24], that are based either on changing and adjusting
the transmission power of each node, or on geometrical structure-based methods
to select next-hop neighbours. There is a class of so called Power Management
protocols [2], such as [20], that aim to save the nodes’ energy by switching off
the radio in the active nodes when they do not need to communicate.

Between the proposed solutions to extend network lifetime, there are the
Topology Maintenance Protocols (TMPs). The TMPs protocols leverage the
node redundancy to schedule working periods between nodes. Only a subset
of the nodes are in a working state, while the others goes in a sleeping state
(stand-by) to save energy. Several TMPs have been proposed in the literature
(e.g. SPAN [6], ASCENT [5], GAF [26], PEAS [13], CCP [23], AFECA [25]).
These TMPs differ not only in the approach to schedule sleeping periods, but
they differ also in their objectives. For example, SPAN [6] and ASCENT [5] aim
to maintain only network connectivity. Others, such as PEAS [13] and CCP [23],
aim to maintain both connectivity and sensing coverage. Some of them, as for
example GAF [26], rely upon nodes location information; they require nodes
with a GPS or some other location system. The CCP approach is similar to
the one of SPAN, and they share the same state activity diagram and the same
communication pattern.

The secure TMP protocol that we propose in this paper belongs to the Topol-
ogy Maintenance Protocols that leverages sleep-wake period management. So,
the comparison of our solution and the focus of this paper is within this cat-
egory. In particular, all the cited protocols in the considered classification are
vulnerable to attacks, as described in [15].

The first work that addressed the security issues on TMPs, [18], described
the snooze attack against some previous protocols (e.g. GAF [26], SPAN [6],
and AFECA [25]). However, [18] does not discuss the use of the snooze attack to
reduce the sensing coverage. Moreover, [18] does not take the sleep deprivation
and the network substitution attacks into consideration, nor do they discuss any
possible countermeasure. In [21] the sleep deprivation attack is introduced in a
context different than that of TMPs (and no countermeasures are described).

In [15], the security vulnerabilities of topology maintenance protocols for wire-
less sensor networks are analyzed. In particular, two new attacks in the context
of topology maintenance protocol, namely the sleep deprivation attack and the

268 A. Gabrielli et al.

network substitution attack are described. In [15], authors describe how these
attacks can be launched against PEAS, ASCENT, and CCP, and suggest some
countermeasures to make these cited protocols robust against the exposed at-
tacks.

We observe that the solutions proposed in [15] require authenticated node
pair-wise communication, e.g. a pair-wise scheme such as [12,10,7] must be used
in conjunction with the TMP protocol. Furthermore, [15] requires the used pair-
wise key establishment scheme to be resilient to node replication attacks [8].
In particular, in the proposed countermeasures it is required that, even if the
adversary captures a node w, the identity of the compromised node cannot be
successfully impersonated outside the neighbourhood of w. One possible protocol
for achieving this goal in a sensor network is LEAP [27]. However, any scheme
that meets these requirements can be used.

In [14], the authors propose the idea of applying mechanism inspired by bio-
logical systems and processes in order to increase the security and fault-tolerance
of TMP protocols. However, no practical implementation is analysed.

The motivation of the importance of events detection and data survival in
unattended wireless sensor networks has recently been highlighted in [11].

Finally, also the mobility of the BS, or the mobility of the nodes, has been
considered for different purposes. As an example, in [3] the mobility of the BS
is leveraged to balance the power consumption of static nodes in the network.
In [16], the authors proposed a protocol to move nodes along the deployment
area to maintain the coverage.

3 System Assumptions and Notation

In the remainder of this work we assume the system model described in this
section. In particular, we assume a static network—each node has an initial
location that does not change as the time goes by. However, nodes do not need
to be deployed all at the same time—newly deployed nodes will cooperate to the
aim of the topology maintenance with the nodes already present in the network
area.

Our Secure Topology Maintenance Protocol (Sec-TMP) does not require any
underlying routing protocol—it only resorts to one hop messages. Furthermore,
each node, say a, can only contact the Base Station (BS) directly (via one-
hop), when the BS is within the a’s transmission radius. The BS is not always
reachable by every nodes. The BS has a GPS, and it moves over the network in
an unpredictable way. It can also be absent from the network for a while (i.e. no
node is able to reach the BS). As a result, from the single node point of view,
the BS can be reachable (appear/disappear) in an unpredictable way.

In Sec-TMP, time synchronization between nodes is not necessary—nodes are
not required to share a common time. However, we assume that the clock drift
(difference between nodes’ clock speed) is negligible.

Sec-TMP does not require any pair-wise key to be shared among nodes. Node
a only shares a symmetric key, Ka, with the BS. So, we remark that the BS (and

Sec-TMP: A Secure Topology Maintenance Protocol 269

not the other nodes) is the only one that checks the authenticity of the messages
originated (not just forwarded) by the nodes. Furthermore, the nodes do not
know the set of the legitimate node IDs. To ease exposition, we assume that
the following hypothesis holds: for each neighbourhood, the number of nodes
physically present is greater or equal than the number of nodes, (d), desired to
be in a working state. Otherwise, the security properties stated in this paper
cannot be guaranteed.

We define the neighbourhood of node a as the circular area having (i) center
corresponding to a’s location; and, (ii) radius Rt—the Transmission range—.
The nodes in the neighbourhood of a are its one-hop neighbours (also called just
neighbours).

Table 1 summarizes the notation used in the paper.

Table 1. Summary of Notation

Symbol Meaning
N Number of network nodes
d Desired number of node in Working state

for each neighbourhood
Rt Transmission range (radius)
Ts Sleeping time

Ka Symmetric key shared between node a and the BS
λ The desired probing rate towards nodes in Working state
ρ Average of the received neighbours densities
τ Time interval between consecutive BS contact
p Probability that a node starts in Working state

Densa Neighbour density of the node a
tBS Time information used by the BS

counterb A counter used by the node b

4 Threat Model

In this section, we describe the behavior and the capabilities of the adversary.
In particular, we assume the adversary can compromise nodes and make them
colluding, or playing an even harmful attack: having laptop-class devices storing
and using information retrieved from compromised nodes. We observe that this
type of attacks are particularly challenging. In fact, they cannot be prevented
by authentication mechanisms since the adversary knows all the crypto material
possessed by the compromised nodes.

The aim of the adversary is to avoid a sensed data to reach the Base Station.
Under our assumption of data forwarding, the adversary can directly reach its
target if it is able to do the following: leverage the proposed TMP protocol to
avoid non-compromised (honest) nodes from being in Working state. However,
the adversary could try to achieve its goal also by using standard TMP attacks
[15,18]:

– Sleep Deprivation Attack. The adversary tries to induce a node to remain
active. This attack has two effects. First, by increasing the energy expendi-
ture of sensor nodes, it reduces the lifetime of the node and of the network as
well. Second, in the case of a densely populated area, it can lead to increased
energy consumption due to congestion and contention at the data link layer.

270 A. Gabrielli et al.

– Snooze Attack. The adversary forces the nodes to remain in sleeping state.
The adversary can launch this attack to reduce the sensing coverage in a re-
gion of the network. This kind of attack can be applied to the whole network
or to a subset of nodes.

– Network Substitution Attack. The adversary takes control of the entire net-
work or of a portion of it by using a set of colluding malicious nodes.

As an example, if the adversary is able to let all the node exhaust their batteries
through sleep deprivation attack, there would be no sensed data at all —so, the
adversary reaches its goal.

We assume that, for a neighbourhood composed of d nodes, the adversary is
able to uses at most d − 1 compromised nodes identity. We stress that it is not
necessary for the adversary to capture the node IDs in the same neighbourhood
where they are intended to be used by the adversary. Furthermore, we assume
that the adversary can eavesdrop on the communications of other nodes and in-
ject data packets into the network. Nodes are not considered to be tamper-proof.
As a consequence, all the information (including cryptographic keys) stored in
a node the adversary compromised with are considered leaked to the adversary.
As for the BS, we assume that it is trusted.

Finally, we assume the adversary is also able to perform the following type of
attack (that Sec-TMP is implicitly able to defend from): Node replication attack.
That is, the adversary cloning the identity (and the cryptographic material) of
a captured node in other malicious nodes.

5 Protocol Overview

In Sec-TMP, each node has three operating states: Working, Sleeping, and Prob-
ing. The state diagram is described in Figure 2.

– Sleeping: the node does nothing but saving energy (i.e. turning off the radio)
and waiting for the time out Ts—indicating the sleeping time—to expire.
When Ts expires the node moves in Probing state.

– Probing: the node probes its neighbours to determine whether to go either
in Sleeping or in Working state. The node sends a PROBE message within
its transmission range Rt, and it waits for P-REPLY messages in response.

– Working: the node executes the regular node operations such as sensing and
communicating to the BS as required by our protocol. When the BS claims
its presence, and the node off-loads the data it stores to the BS, it also sends

Ts expires BS contact

Receives less than
 P-REPLY

Receives at least
 P-REPLY

Sleeping WorkingProbing

d d

Fig. 2. State transition diagram

Sec-TMP: A Secure Topology Maintenance Protocol 271

a request to the BS to receive a proof of the upload activity. Then, it goes
in Probing state. Moreover, if the node receives a PROBE message from one
of its neighbours, it replies to the neighbour sending a P-REPLY. Via the
P-REPLY, the node informs the neighbours that it is in Working state.

Once a node is deployed, it starts in Sleeping state having an initial sleeping
time-out Ts. The initial Ts is randomly picked over a given time interval. This
choice is motivated to avoid (probabilistically) that all the nodes go in Probing
state all together.

We remind that we do not assume any confidentiality layer in the node pair-
wise communications. The main idea underlying our proposal is to have a mech-
anism that, if a node a states to be in a Working state (e.g. replying to a PROBE
originated by node b), then node a is actually forced to be in Working state until
the next b’s probe. Otherwise, a will be considered failed or malicious. In the
proposed protocol implementation, we actually extend this mechanism from a
single node, to a set of at least d nodes: i.e. a node a can actually move from
the Working state to the Sleeping state if there is some other node that, in turn,
moved from the Sleeping state to the Working state.

Enforcement is realized using the evidences issued by the BS to the node in
Working state. Let us assume node b sends a PROBE to node a, and a replies
being in Working state. If the BS enters the communication range of a before
the next b’s probe, a has to prove to b it was in Working state when the BS
come —that is, it uploaded b’s data to the BS. To this aim, we require a to
ask the BS for a specific proof (provided by an authenticated token1). Node a
sends back the token to b, allowing b to check that a was in Working state and
interacted with the BS. This is required for any node to which a replied to as
a consequence of a PROBE. However, it is not necessary that the BS releases a
new token before the next b’s probe. If this is the case, node a replies to b using
the last token received from the BS. As we describe in Section 7.1, this behaviour
does not introduce a security issue. Note that there is a specific transient case to
deal with: before the first BS arrival, no node can provide a token to a probing
node. We describe this situation (protocol Start-up), in Section 6.1.

6 Protocol Description

In this section, we give a detailed description of our protocol. In particular, we
first present the protocol Start-up in Section 6.1. Then, we describe the behaviour
of a node while it is in the different protocol states (Figure 2): Section 6.2
describes the Probing state, Section 6.3 describes the Working state and, finally,
Section 6.4 describes the Sleeping state.

6.1 Protocol Start-Up

Before the first BS arrival, no node can provide a token to a probing node. As
a consequence, every node could be in Working state after the first PROBE,
1 Note that the token authenticity is enforced using symmetric keys.

272 A. Gabrielli et al.

until the first BS arrival. Note that this solution would be energy-consuming
and could cause transmission congestion.

Assuming no adversary is present in the network before the first BS arrival,
we can easily start-up our protocol as follows: instead of considering d tokens, a
probing node b considers d P-REPLYs without requiring any token. In particular,
the probing node b will accept P-REPLYs without requiring tokens, until it
receives a P-REPLY with a token (i.e. the BS has contacted a neighbour of b).
As soon as the BS arrives the first time, every nodes in Working will receive the
correct tokens.

However, we do assume that an adversary can be present from the time of the
network deployment (also, be there during the start-up). So, one might think to
the following attack. If a single adversary node is present in every neighbourhood
(this is not against our assumptions), it can send as many probe replies (P-
REPLY) as it wants. In this way, a single adversary node can put every other
node in the neighbourhood in Sleeping state.

To avoid this attack, we use a probabilistic approach. At the beginning, ev-
ery node decides, with probability p, to go in Working state. Otherwise, with
probability 1−p, the node goes in Probing state and accepts P-REPLYs without
requiring tokens. These latter nodes accept P-REPLYs without requiring tokens,
until they receive a P-REPLY with a token.

As a result, even in the presence of an adversary, a honest node will be in
Working state in a neighbourhood with a given probability p. Then, at the first
BS arrival, it will receive the token from the BS.

Note that node a ends the start-up phase when it receives a token (either
from the BS, if a is in Working state, or from a node in Working state, if a sends
a PROBE). Thus, the end of the start-up propagates in the network thanks to
the nodes in Working state.

In the following, we describe the operations performed by nodes when the
start-up phase has come to end.

6.2 Probing State

In this section, we describe the operations that a node performs while it is in
Probing state (Algorithm 1).

The aim of the Probing state is to determine the next state (Sleeping or
Working) of the executing node. To do so, a node, say b, broadcasts a PROBE
(line 5). The PROBE is authenticated by the node b with its key Kb, and it
contains a counter value, counterb. The counterb is different for each following
PROBE message. As explained in Section 7.1, the counterb is necessary to avoid
replay attacks. Once the PROBE has been broadcasted (line 5), the nodes waits
for a time δ (set in line 4) to receive the associated reply P-REPLY from its
neighbours in Working state.

In each P-REPLY message, there is a token generated by the BS. The token
contains: a time information tBS , the identity of the replying node a, and the
neighbour density of the replying node, that is Densa.

Sec-TMP: A Secure Topology Maintenance Protocol 273

input :
b, ID of the executing node
a, ID of the replying node
Dreply , Desired number of P-REPLY (i.e. d)

output:
the next node state (Working/Sleeping)
Ts, Sleeping time

begin
Creply = 0

// counter of P-REPLY
Set TimeOut δ
Broadcast 〈P ROBE, IDb, counterb, MACKb

(counterb)〉
while δ not elapsed do

for any received P-REPLY message MSG do
if 〈P − REPLY, b, a, tBS, Densa, RMAC〉 ← MSG AND
MACKb

(tBS, Densa, a) = RMAC then

Creply ++

if Creply <Dreply then
move to Working state

else
Ts=sleepTime
move to Sleeping state

end

Algorithm 1. Sec-TMP: Probing

The tBS is used to inform the probing node about the time when the token
has been created. This value is used in the following way: if b receives a P-
REPLY with a given BS time, say t′BS , then b will not consider the tokens
having t′′BS < t′BS for the computation of d. In fact, let us assume node c stated
to be in Working state; if it is not able to show to b a BS token with time t′BS ,
that means c did not have the chance to communicate with the BS during the
BS arrival time t′BS : c was sleeping or not following the protocol. In either case,
the P-REPLY of c will be ignored. Observe that the BS needs time to move and
talk with the different nodes in the neighborhood. As a result, the tBS values
released to two neighbour nodes can actually be different by a small amount of
time. For easy of exposition, in the following we do not explicitly consider this
problem. However, we note that this could be solved either (i) implementing tBS

as just a counter managed by the BS, so not changed while talking with different
nodes in the same BS passage; (ii) comparing the different tBS values taking into
consideration this small amount of time as negligible.

Once a node collected all the P-REPLYs, it has to take a decision about its
next state. In particular, if less than the desired P-REPLYs are received (check
line 10), the executing node will move to Working state (line 11). Otherwise, if
the number of P-REPLYs is enough for the node, it will set the Sleeping time
(line 13) and it will go in Sleeping state (line 14).

The node sets the Sleeping time according to an exponential distribution [13]:

f(Ts) = (λ/ρ)e−(λ/ρ)Ts (1)

where λ is the desired probing rate towards working nodes (λ is the same for
each node), and ρ is the estimated neighbours density. The idea behind this is
to leverage the network density; we decrease the probing rate of a sleeping node
together with the increase of its neighbours density. The ρ value is computed by

274 A. Gabrielli et al.

each node independently as the average of the received densities (Densa of line
8). The Densa is the neighbour density of the replying node a. Note that the
value Densa is computed by the BS. In particular, the BS computes Densa by
counting the number of TOKEN requested by a node a in Working state. Then,
the BS inserts Densa, into the TOKENs replied to a (Algorithm 2, line 6). This
value represents the neighbours density of node a —node a requests a TOKEN
for each of its neighbours.

6.3 Working State

In this section we describe the operations performed by a node that is con-
tacted by the BS. When node a is aware of the presence of the BS within its
communication range, it runs Algorithm 2. In particular, node a sends to the
BS a request (REQ type message) containing the last PROBEs a received from
its neighbours (line 2). The REQ message is authenticated using Ka. If the BS
fails authenticate the message, then the BS just discards the request. However,
if the authentication succeeds, with this message node a implicitly requires the
BS to produce a token (that is different for each neighbour of a) to prove that
a was in Working state and interacted with the BS. In fact, for each received
token (TOKEN message, line 6) that passes the authentication check (line 7),
a updates the token available for the corresponding neighbour b (line 8). That
is, this token will be used as a P-REPLY for the next PROBE of node b. Fur-
thermore, at the end of every BS contact, a moves to Probing state (line 10).
This latter operation is required to recover from a situation that tends to put in
Working state all the nodes in a neighbourhood. The latter situation is rooted
in failure of a working node. Assume that d nodes in the neighbourhood are in
Working state, as required by the protocol. Assume that one of these nodes, say
a, exhausts its battery. As a results, less that d nodes are in Working state. In
this setting, as soon as the first node in this neighbourhood, say b, sends out a
PROBE, it will receive less than d P-REPLYs with a token. As a consequence,
node b will go in Working state. Any other further nodes in this neighbourhood,
say c, executing a probe, would receive less than d P-REPLYs with a token (also
if ≥ d node are now in Working state), because less than d nodes would be able
to send a P-REPLY with a token. So, if a working node fails, the result is that
every node executing a probe in the neighbourhood of the failed node would go
in Working state, having D > d nodes in Working state.

However, when the BS arrives, all the nodes in Working state are required to:
ask tokens for their neighbours, and go in Probing state. As a result, only the
last d out of the D nodes executing the probe will go back in Working state. In
general, this procedure could be leveraged to select the d out of the D nodes in
some optimal way. As an example, it could be desirable that the d nodes out
of D are the ones with more available energy —to do so, we can distribute the
time of the probe execution of the D nodes such that the higher is the battery
power, the later is the performed the probe.

Note that, before releasing a TOKEN for a node b, the BS verifies the b’s
PROBE message. The BS discards the request without releasing the TOKEN,

Sec-TMP: A Secure Topology Maintenance Protocol 275

if either the authentication of the PROBE using Kb fails, or the BS has already
seen the counterb value. The counterb value avoids replay attacks, as described
later in Section 7.1.

Finally, we remind that the BS has a GPS: this allows the BS to build a map
of the network topology as follows. The first time it receives a message from a
node a, the BS bounds the location of a into a region compliant with the BS
location at the moment of the contact (depending on the transmission radius
of nodes). In particular, after the first contact with the BS, node a location is
bounded into a circular area of radius Rt. For each following contact with node
a, the BS refines the boundary region. The BS stores the network topology map
for security reasons described later in Section 7.1.

input :
a, ID of the executing node
NPa, PROBEs of all the neighbours node

output:
CTa, Executing node’s table of tokens

begin
〈REQ, a, NPa, MACKa

(NPa)〉 → BS

Set TimeOut δ
while δ not elapsed do

for any received TOKEN message MSG do
〈TOKEN, a, Densa, b, tBS, MACKb

(tBS, Densa, a), RMAC〉 ← MSG

if MACKa
(MACKb

(tBS , Densa, a)) = RMAC then

Update CTa(b, 〈T OKEN, Densa, tBS, MACKb
(tBS , Densa, a)〉

if received a valid TOKEN message then
move to Probing state

end

Algorithm 2. Sec-TMP: BS-contact

6.4 Sleeping State

A node in Sleeping state does nothing but waiting for the Ts timer expiration. In
this state, the node saves energy having its radio turned off. When the sleeping
timer Ts expires, the node turns the radio on and enters the Probing state.

7 Security Analysis

We remind that the protocol goal is to enforce the delivery of a sensed event
from the generator node to the BS, while providing a standard topology man-
agement service. That is, assuming at most d − 1 compromised nodes in the
neighbourhood, there is at least a non compromised node in Working state for
each neighbourhood. The idea is that if there is a sensed event that should be
reported to the Base Station, there will be at least one (honest) node doing that.

As outlined in Section 4, the adversary could try to reach its goal in a direct
way —i.e. leveraging the specific behaviour of our protocol— or through standard
attacks on TMPs. In Section 7.1, we describe why our protocol features cannot
be leveraged by the adversary. In Section 7.2, we discuss the resilience of our
protocol to the standard attacks on TMPs [15,18] (to the best of our knowledge,

276 A. Gabrielli et al.

all the known attacks on TMPs): Sleep Deprivation attack; snooze attack; and,
network substitution attack. Finally, in Section 7.3 we discuss how Sec-TMP
tames the node replication attack.

7.1 Sec-TMP Security Property

In the following we first revise the possible attack, and later explain how Sec-
TMP thwarts it.

Using a node’s ID in more than one neighbourhood. Once an adversary captured
a node, it can know the ID (and the symmetric key) of that node (we remind from
Section 3 that we do not assume to have tamper proof sensors). The adversary
can plug all the known IDs in a single device (e.g. a laptop class node) that
pretends to be in every neighbourhood. In this way, compromising a total of d
nodes, one might think that the adversary could be able to use the d IDs in
every neighbourhood. So, taking over the network.

In Section 6.3 we described how the BS can estimate the network topology.
We now observe that this allows the BS to prevent the described attack. In fact,
assume the adversary already used a node’s ID, say a, in a given location, say
loca, to ask for tokens. Then, the BS will link the node’s ID a to the claimed
location loca. When a further asks other tokens, BS will check whether the
current a’s location is coherent with loca. If this is not the case, the BS will
not give any token to a —and possibly take further actions. Furthermore, the
neighbours declared by node a (for which it ask the BS appropriate tokens)
should also be coherent with the other information the BS collected about the
network. As an example, a node b cannot be a’s neighbour if b appeared in a
location not coherent with the neighbourhood area of a.

Using the same TOKENs to reply to PROBE messages with multiple identities
(Sybil Attack [19]). An adversary can eavesdrop the communications between
honest nodes and the BS. Assume that the honest node a requests a TOKEN
for one of its neighbours, say b. The adversary eavesdrops and stores this TOKEN
received by node a. Assume that the number of working neighbours of b is less
than d. Then, after the following probe, node b will go in Working state. One
might think that the adversary could send multiple P-REPLYs to b, using the
stored TOKENs and identities different from a (Sybil attack [19]). In this way,
the adversary could induce b to figure out it has more than d working neighbours
—that is, the goals of the adversary is to force node b to go in Sleeping state.

However, the BS includes into each TOKEN released, the identity of the re-
questing node, in this case a. Note that, the TOKEN message is authenticated
with the symmetric key Kb (Algorithm 2, line 6). As a consequence, the au-
thentication check of the TOKEN (received from the adversary) performed by
probing node b fails, because the sender identity does not match (check done in
line 8, Algorithm 1). Thus, the attack fails because the honest node b discards
the P-REPLYs sent by the adversary.

Using old BS’s TOKENs to reply to PROBE messages (Replay Attack). As
for the previous attack, assume that an adversary eavesdrops the communication

Sec-TMP: A Secure Topology Maintenance Protocol 277

between honest nodes and the BS. Assume that a honest node a requests a TO-
KEN for one its neighbours, say b. The adversary eavesdrops and stores the TO-
KENs received by node a. After node a fails (for instance, because its battery de-
pleted), the adversary could send the stored TOKENs to node b. In this way, the
adversary tries to induce b to believe that a is still alive and in Working state.

Such an attack would fail for the following reason. The BS includes into the re-
leased TOKENs, a time tBS (and the identity of the TOKEN requesting node, say
a). The tBS value changes (increases) for each BS arrival. Because of the mecha-
nism described in 6.3, every node that ends the sleeping time before the next BS
arrival will remain in Working state. Since there are at most d − 1 compromised
nodes in the neighbourhood, after a while a honest node, say c, will be in Working
state (remind that, by the protocol, d nodes must be in Working state). The next
time the BS will come over the neighbourhood, c will ask the BS for a TOKEN for
node b. Being c a honest node, it will take the correct TOKEN with the updated
t′BS . When b executes the probe, if it receives a TOKEN with the updated t′BS , b
will ignore any other TOKEN with t′′BS < t′BS .

Using old PROBE messages (Replay Attack). Assume that an adversary replies
old PROBE messages of a node b to its neighbour a that is in Working state.
The scope of such an attack can be to induce the BS to consider b alive even if b
failed. As a result, the BS would compute a false neighbours density. Indeed, the
number of TOKENs requested from a node a is used by the BS to compute the
neighbours density of node a. The density estimation is then included into the
TOKEN that the BS sends back to the node a. Eventually, the density is used by
the neighbour of a that are in Sleeping state to set the next sleeping timer (see
Section 6.2). If the adversary could successfully use old b’s PROBE messages,
it could maliciously falsify the BS estimation. In this way, it could increase the
length of the nodes sleeping periods. Furthermore, the adversary could increase
the nodes energy depletion. In fact, the BS continues to release the TOKEN for
the already failed node, b, to the node a. As a consequence, node a receives the
TOKEN, stores it, and then sends it to b in the following P-REPLY.

We observe that the adversary cannot succeed because of the counterb in-
cluded into each PROBE. In particular, each time a node probes the neighbour-
hood, it includes into the PROBE message the value of the node counterb. If
the attacker uses old counterb values, the node a discards the corresponding
PROBE requests—and possibly take further actions. Observe that, if the at-
tacker pretends to use forged counterb values, the node a cannot further identify
the counterb as a forged one (a does not know the keys that b shares with the
BS). However, this can be done by the BS that know the key that b should use
to generate the MAC part of the b’s message.

Node impersonation. The PROBE and the REQ messages are authenticated by
the senders through keyed MAC (line 5 Algorithm 1, and line 2 Algorithm 2,
respectively). Thus, an adversary can send valid PROBE and REQ messages on

278 A. Gabrielli et al.

behalf of an identity a if, and only if, the adversary has compromised the node
a (i.e. insider adversary).

Maintaining the network in start-up. Assume the adversary is present from the
moment of the initial network deployment. As described in Section 6.1, the
adversary can send P-REPLYs without any token, using d different identities,
to maintain a node in Sleeping state. However, the adversary cannot force the
nodes that start in Working state to go in Sleeping state. In fact, to do so, the
adversary would need P-REPLYs with a token that can be only obtained from
the BS. A node a ends the start-up when it receives a token (either from the BS,
if a is in Working state, or from a node in Working state, if a sends a PROBE).
Thus, the end of the start-up propagates in the network thanks to the nodes
in Working state. When the node a ended the start-up, it pretends P-REPLYs
with a token. As a consequence, the adversary can increase the time needed by
the network to end the protocol start-up (i.e. all the nodes have received at least
a P-REPLY with a token). However, it cannot indefinitely keep the network in
the start-up. In Section 8.2, we report the simulation results of the time needed
by the network to complete the start-up, assuming an adversary is present from
the moment of the network deployment.

Event hiding. Assume the start-up completed and an adversary wants to hide
to the BS an event generated by node b. To do so, the adversary could leverage
the TMP protocol to have: (i) b in Sleeping state; and, (ii) just malicious nodes
in Working state in the b’s neighborhood—a malicious node would not send the
target event to the BS.

As for (i), if the adversary wants b to move to Sleeping state, it must be able
to provide d P-REPLYs with token. In fact, node b ended the start-up and it
goes in Sleeping state only if it receives at least d P-REPLYs with token. The
same condition is required for (ii). In fact, any other honest node should be
forced to switch to Sleeping state by the adversary. Otherwise, an honest node
in Working state will report the event to the BS.

As we assume that the adversary uses at most d−1 identity in a neighborhood,
it would not be able to provide d malicious P-REPLYs.

7.2 Sec-TMP Resilience to Standard TMPs Attacks

In this section, we describe how Sec-TMP faces standard TMPs known attacks
[18,15].

Resilience to Sleep Deprivation Attack. In this attack, the adversary wants
to induce a node, say a, to remain in Working state, even if the node a already
has d neighbours in Working state. Note that the node a, regardless if it is in
Sleeping or Working state, periodically goes in Probing state. In Probing state,
a sends out a PROBE. If it receives at least d P-REPLYs, it goes in Sleeping
state. Thus, avoiding the reception of the P-REPLYs by node a is the only way
the adversary has to successfully launch a Sleep Deprivation Attack against a.
In other words, the adversary, to reach its goal, has to jam the node a to prevent

Sec-TMP: A Secure Topology Maintenance Protocol 279

the reception of the P-REPLY messages. However, due to the periodically and
asynchronously transitions of the nodes to Probing state, this operation must be
performed quite often, making the attack not affordable for node-class adversary,
and resource consuming even for a laptop-class adversary. Moreover, note that a
denial-of-service attack involving continuous jamming (e.g. constant or deceptive
jamming) can be performed in any sensor network, regardless of the topology
maintenance protocol being used. Hence, we do not consider this as an attack
that is specific to topology maintenance protocols. It is worth noticing that the
selective jamming can also be applied during BS tokens releasing phase. However,
this behaviour can be detect by the BS, that can possibly react.

Resilience to Snooze Attack. In the snooze attack, the adversary wants to
induce a node, say a, to remain in Sleeping state, even if the node a has less than d
neighbours in Working state, as required by the Sec-TMP protocol. As previously
described in 7.1, the adversary has to compromise d node identities that are
neighbours of a. Thus, Sec-TMP is resilient to an adversary that compromises
up to d − 1 nodes within a neighbourhood.

Resilience to Network Substitution Attack. The adversary substitutes
legitimate nodes with malicious nodes in a portion of the network. To apply this
attack, the adversary has to induce all the legitimate nodes in that portion of the
network to go in Sleeping state. Thus, the resilience of Sec-TMP to this attack
is the same of the resilience to the snooze attack (Section 7.2).

7.3 Sec-TMP to Thwart Node Replication Attack

We observe that our Sec-TMP protocol, while designed as a TMP for event deliv-
ery enforcement, it has also some ability to detect the node replication attack [4]:
the adversary captures a node, and clone the identity (and the cryptographic
material) of the captured node in other malicious nodes. In fact, as described in
Section 6.3, the BS estimates the network topology. This allows the BS to detect
if the same node ID, say a is used in two different locations, e.g. loca and loc′a.
Remind that the BS can estimate the location of (i) the node that directly asks
for tokens —a in Figure 1; and, (ii) the nodes tokens are asked for —b in Figure
1. Once detected a cloned ID, the BS can take the appropriate actions, such as
revoking the node.

8 Simulations and Discussion

In this section, we describe the simulation results we obtained for the Sec-TMP
protocol.

We implemented a simulator of our protocol. We assumed nodes uniformly
distributed in a 50x50m2 area (nodes remain stationary after deployment). We
considered deployments with N=250, 500, 750, 1000, 2000, and 4000 nodes. In
particular, for each network size, the shown results are the average of 100 different
random network deployment.

280 A. Gabrielli et al.

Table 2. Sensor parameters for simulations

Parameter Value
Rt 10 meters
Rs 10 meters

Tx consumption 0.0074mW per bit
Rx consumption 0.003575mW per bit

Idle consumption 13.8mW per second
Sleeping consumption 0.075mW per second

Signature consumption 2% of the packet transmission cost
Initial energy of a node 60 Jules

The parameters that represent the node characteristics are reported in Table 2.
The values are similar to the hardware characteristics of the Berkeley Motes [9]
sensors. In particular, we use the energy model proposed in [22], and the Tiny-
Sec [17] model for the power consumption of symmetric cryptography operations.

In Section 8.1, we describe the simulation results related to the network cover-
age lifetime. Finally, in Section 8.2, we study the start-up completion time while
considering the presence of an adversary.

8.1 Network Lifetime and Area Coverage

In this subsection, we evaluate the ability of Sec-TMP to increase the coverage
lifetime of the network together with the increase of the number of deployed nodes.

To measure the coverage, we logically divide the entire sensing region into
adjacent 5x5m2 patches. The coverage of the deployment area is approximated
by monitoring the coverage of the top left corner of each patch, excluding those
points that are on the border of the deployment area. A similar approach is used
in [23]. The coverage lifetime is defined as the time interval from the activation of
the network until the time of the following event: the percentage of the total area
being monitored (by at least K nodes in Working state, K-coverage) drops below
a specified threshold. The coverage lifetime characterizes how long the system
ensures that the events are monitored with a probability of success higher than
the specified threshold. In particular, we considered the threshold to be 80%.
The coverage degree K is set to 1. With the minimum number of sensors in
the network being equal to 250, we are quite sure we have enough nodes for
1-coverage in the area.

Figure 3 reports the coverage lifetime (y-axis) for networks with 250, 500, 750,
1000, 2000, and 4000 nodes (x-axis). Results are reported for different values of
d (1,5, and 10), and for different values of BS arrival interval, τ (600 and 900
seconds). From Figure 3, we can conclude that Sec-TMP achieves the main goal
of a TMP, that is the network lifetime grows almost linearly with the number
of nodes. Note that, the curves trend are similar. However, while d increases,
the network lifetime gain is smaller. This is because of the greater number of
simultaneously active nodes. As discussed in the Section 7, the value d is related
to the resilience of Sec-TMP to the adversaries. More precisely, an adversary has
to compromise at least d nodes within the transmission range of a to successfully
attack node a. We can say, the greater the required resilience to adversaries,

Sec-TMP: A Secure Topology Maintenance Protocol 281

 0

 50000

 100000

 150000

 200000

 250000

 300000

 250 500 750 1000 2000 4000

T
im

e(
s)

Number of Nodes

d=1,τ=600
d=5,τ=600

d=10,τ=600
d=1,τ=900
d=5,τ=900

d=10,τ=900

Fig. 3. Network coverage lifetime

the smaller the performance of Sec-TMP. For simulations with τ equal to 600
seconds, the gain in network lifetime is bigger than for simulations with τ equal
to 900 seconds. This is expected because, as described in Section 6.3, the more
nodes fails, the more nodes go in Working state; however, the number of nodes
in Working state start decreasing with the BS arrival. Thus, when τ = 600 the
number of nodes in Working state is reduced quickly by the BS, compared to
the case of τ = 900. As a consequence, the increase in the network lifetime is
higher with smaller τ .

8.2 Start-Up Completion Time

In this section, we study the time needed by the network to end the protocol
start-up when an outsider adversary is present. In particular, we assume the
adversary is present from the moment of the initial network deployment. As
described in Section 6.1, the adversary can send P-REPLYs without any token
to maintain a node in Sleeping state. However, the adversary cannot force the
nodes that start in Working state to go in Sleeping state. In fact, to do so,
the adversary would need P-REPLYs with token that can be obtained from the
BS only. Without loss of generality, for the following simulations, we assume a
single adversary node is present in every neighbourhood: the adversary responds
to each PROBE with d P-REPLYs, using d different identities. The probability
p that a node starts in Working state is equal to 0.1.

In Figure 4, we plot the network start-up time (y-axis), that is the time from
the deployment of the network until all the nodes completed the start-up. Note
that, a node a ends the start-up when it receives a token (either from the BS, if a
is in Working state, or from a node in Working state, if a sends a PROBE). Thus,
the end of the start-up propagates in the network thanks to the nodes in Working
state. In Figure 4, we can see that the time to end the start-up decreases with
the increase of the network density. This is due to the fact that, the higher is the
network density, the higher is the probability to have a neighbour in Working
state. In fact, both the number of nodes that start in Working state and the

282 A. Gabrielli et al.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 250 500 750 1000 2000 4000

T
im

e(
s)

Number of Nodes

d=1,τ=600
d=5,τ=600

d=10,τ=600
d=1,τ=900
d=5,τ=900

d=10,τ=900

Fig. 4. Time to end the protocol start-up, when an adversary is present

number of neighbours is higher with a higher nodes density. The number of
nodes that are simultaneously in Working state grows together with values of d.
This is the reason why, when τ is fixed (i.e. τ=600), the time to end the start-up
is higher for higher values of d. Finally, we can see from Figure 4 that the time
to end the start-up increases tighter with τ . Indeed, if it takes longer for the BS
to join the WSN, it takes longer to release the tokens.

9 Concluding Remarks

In this paper, we presented the first Secure Topology Maintenance Protocol (Sec-
TMP) for Wireless Sensor Networks that enjoys the following features: it does
not require any pair-wise node confidentiality; it does not need any underlying
routing—just one-hop communications are used; and, it is highly scalable. The
aim of Sec-TMP is to enforce event delivery to the BS while providing the
functionalities of a standard topology management protocol. Sec-TMP reaches
its goal being also resilient to the known attacks on TMPs: snooze attack; sleep
deprivation attack; and, network substitution attack. Furthermore, Sec-TMP
confines node replication attack: once a node is compromised, the protocol limits
the possible usage of the corresponding node’s ID to a single neighbourhood.
Finally, simulation results support our findings.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. International Journal of Computer and Telecommunications Net-
working - Elsevier 38(4), 393–422 (2002)

2. Anastasi, G., Conti, M., Francesco, M.D., Passarella, A.: Mobile Ad Hoc and Perva-
sive Communications. In: How to Prolong the Lifetime of Wireless Sensor Networks,
ch. 6. American Scientific Publishers (2007)

Sec-TMP: A Secure Topology Maintenance Protocol 283

3. Basagni, S., Carosi, A., Melachrinoudis, E., Petrioli, C., Wang, Z.M.: Controlled
sink mobility for prolonging wireless sensor networks lifetime. ACM/Springer Jour-
nal on Wireless Networks (WINET) 14(6), 831–858 (2008)

4. Bryan, P., Perrig, A., Gligor, V.: Distributed detection of node replication attacks
in sensor networks. In: Proc. of the 26th IEEE International Symposium on Security
and Privacy (S&P 2005), pp. 49–63 (2005)

5. Cerpa, A., Estrin, D.: Ascent: Adaptive self-configuring sensor networks topologies.
IEEE Transactions on Mobile Computing 3(3), 272–285 (2004)

6. Chen, B., Jamieson, K., Balakrishnan, H., Morris, R.: Span: An energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless networks. ACM
Wireless Networks Journal 8(5), 481–494 (2002)

7. Conti, M., Di Pietro, R., Mancini, L.V.: Ecce: Enhanced cooperative channel es-
tablishment for secure pair-wise communication in wireless sensor networks. Ad
Hoc Networks (Elsevier) 5(1), 49–62 (2007)

8. Conti, M., Di Pietro, R., Mancini, L.V., Mei, A.: A randomized, efficient, and
distributed protocol for the detection of node replication attacks in wireless sensor
networks. In: Proc. of the 8th ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc 2007), pp. 80–89 (2007)

9. Crossbow Technology Inc. MICA Sensor Node, http://www.xbow.com
10. Di Pietro, R., Mancini, L.V., Mei, A.: Energy efficient node-to-node authentication

and communication confidentiality in wireless sensor networks. Wireless Sensor
Networks 12(6), 709–721 (2006)

11. Di Pietro, R., Mancini, L.V., Soriente, C., Spognardi, A., Tsudik, G.: Catch me (if
you can): Data survival in unattended sensor networks. In: Proc. of the 6th IEEE
International Conference on Pervasive Computing and Communications (PER-
COM 2008), pp. 185–194 (2008)

12. Eschenauer, L., Gligor, V.D.: A key-management scheme for distributed sensor
networks. In: Proc. of the 9th ACM International Conference on Computer and
Communications Security (CCS 2002), pp. 41–47 (2002)

13. Ye, F., Zhong, G., Lu, S., Zhang, L.: Peas: A robust energy conserving protocol for
long-lived sensor networks. In: Proc. of the 23rd IEEE International Conference on
Distributed Computing System (ICDCS 2003), pp. 28–37 (2003)

14. Gabrielli, A., Mancini, L.V.: Bio-inspired topology maintenance protocols for se-
cure wireless sensor networks. In: Liò, P., Yoneki, E., Crowcroft, J., Verma, D.C.
(eds.) BIOWIRE 2007. LNCS, vol. 5151, pp. 399–410. Springer, Heidelberg (2008)

15. Gabrielli, A., Mancini, L.V., Setia, S., Jajodia, S.: Securing topology maintenance
protocols for sensor networks: Attacks and countermeasures. In: Proc. of the 1st
IEEE/CreateNet International Conference on Security and Privacy for Emerging
Areas in Communication Networks (SecureComm 2005), pp. 101–112 (2005)

16. Jiang, Z., Wu, J., Agah, A., Lu, B.: Topology control for secured coverage in
wireless sensor networks. In: Proc. of the 4th IEEE International Conference on
Mobile Adhoc and Sensor Systems (MASS 2007), pp. 1–6 (2007)

17. Karlof, C., Sastry, N., Wagner, D.: Tinysec: A link layer security architecture for
wireless sensor networks. In: SenSys 2004, pp. 162–175 (2004)

18. Karlof, C., Wagner, D.: Secure routing in wireless sensor networks: attacks and
countermeasures. Ad Hoc Networks 1(2-3), 293–315 (2003)

19. Newsome, J., Shi, E., Song, D., Perrig, A.: The sybil attack in sensor networks:
Analysis & defenses. In: Proc. of the 3rd IEEE and ACM International Symposium
on Information Processing in Sensor Networks (IPSN 2004), pp. 259–268 (2004)

http://www.xbow.com

284 A. Gabrielli et al.

20. Rhee, I., Warrier, A., Aia, M., Min, J., Sichitiu, M.L.: Z-mac: a hybrid mac for
wireless sensor networks. IEEE/ACM Transactions on Networking 16(3), 511–524
(2008)

21. Stajano, F., Anderson, R.: The resurrecting duckling: Security issues for ad-hoc
wireless networks. In: Proc. of the 7th International Workshop on Security Proto-
cols, pp. 172–182 (1999)

22. Wander, A., Gura, N., Eberle, H., Gupta, V., Shantz, S.C.: Energy analysis of
public-key cryptography for wireless sensor networks. In: PERCOM 2005, pp. 324–
328 (2005)

23. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., Gill, C.: Integrated coverage and
connectivity configuration in wireless sensor networks. In: Proc. of the 1st ACM
International Conference on Embedded Networked Sensor Systems (SenSys 2003),
pp. 28–39 (2003)

24. Wang, Y., Li, F., Dahlberg, T.A.: Energy-efficient topology control for three-
dimensional sensor networks. International Journal of Sensor Networks 4(1/2),
68–78 (2008)

25. Xu, Y., Heidemann, J., Estrin, D.: Adaptive Energy-Conserving Routing for Mul-
tihop Ad Hoc Networks. Research Report 527, USC/Information Sciences Institute
(2000)

26. Xu, Y., Heidemann, J., Estrin, D.: Geography-informed energy conservation for
ad hoc routing. In: Proc. of the 7th ACM International Conference on Mobile
Computing and Networking (MobiCom 2001), pp. 70–84 (2001)

27. Zhu, S., Setia, S., Jajodia, S.: Leap: Efficient security mechanisms for large-scale
distributed sensor networks. In: Proc. of the 10th ACM International Conference
on Computer and Communications Security (CCS 2003), pp. 62–72 (2003)

Hierarchical Self-healing Key Distribution for
Heterogeneous Wireless Sensor Networks

Yanjiang Yang1, Jianying Zhou1, Robert H. Deng2, and Feng Bao1

1 Institute for Infocomm Research, Singapore
{yyang,jyzhou,baofeng}@i2r.a-star.edu.sg

2 School of Information Systems, Singapore Management University
robertdeng@smu.edu.sg

Abstract. Self-healing group key distribution aims to achieve robust
key distribution over lossy channels in wireless sensor networks (WSNs).
However, all existing self-healing group key distribution schemes in the
literature consider homogenous WSNs which are known to be unscalable.
Heterogeneous WSNs have better scalability and performance than ho-
mogenous ones. We are thus motivated to study hierarchial self-healing
group key distribution, tailored to the heterogeneous WSN architecture.
In particular, we revisit and adapt Dutta et al.’s model to the setting of
hierarchical self-healing group key distribution, and propose a concrete
scheme that achieves computational security and high efficiency.

Keywords: Wireless sensor network, self-healing group key distribution,
wireless sensor network security.

1 Introduction

A wireless sensor network (WSN) consists of a large number of sensor nodes
collecting and reporting the environmental data to a base station. A sensor
node is a small sensing device capable of wireless communications through radio
signals. Due to the low cost requirement, sensor nodes are extremely constrained
in hardware, having limited computation capability, storage capacity, and radio
transmission range. Worse yet, sensor nodes are usually powered by batteries,
hence restricted power supply is yet another major limitation of WSNs.

WSNs are easily susceptible to adversaries who can intercept or interrupt the
wireless communications. It is thus crucial to ensure secure communication when
WSNs are deployed for mission-critical applications. A fundamental service to
achieve secure communication is key distribution, whereby sensor nodes establish
(secret) keys. Unfortunately, it is commonly acknowledged that key distribution
in WSNs is not trivial, considering the resource-constrained nature of sensor
nodes. Hence lots of efforts have been dedicated to the study of key manage-
ment and distribution in WSNs [3,4,6,5,7,8,9,10,11,12,13,15]. These methods are
categorized into group key distribution [3,6,8,10,11] and pairwise key distribution
[4,5,7,9,12,15].

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 285–295, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

286 Y. Yang et al.

Among the existing group key distribution schemes, self-healing group key
distribution [6,11,13] particularly suits WSNs. A prominent property of this type
of group key distribution is self-healing, which allows group members to recover
lost group keys of previous sessions based solely on the key update message of
the current session. This makes group key distribution resilient to lossy wireless
communication of WSNs.

All the self-healing group key distribution schemes in the literature considered
homogeneous WSNs where all sensor nodes are assumed to be the same. However,
homogeneous WSNs are not scalable. We are thus motivated to study self-healing
group key distribution in heterogenous WSNs. A heterogenous WSN is composed
of not only resource constrained sensor nodes, but also a number of more powerful
high-end devices. Specifically, a WSN is partitioned into a number of groups, and
a high-end device is placed into each group, acting as the group manager. A group
manager is more powerful, and thus does not suffer from the resource scarceness
problem as much as a sensor node does.

Our Contributions. Tailored to the heterogeneous WSN architecture, we pro-
pose the concept of hierarchical self-healing group key distribution. In particular,
we formulate a security model for hierarchical self-healing group key distribution
by revisiting and adapting Dutta et al.’s model [6]. We then propose a concrete
scheme, proven secure under the model. Our scheme is “authenticated”, com-
pared to Dutta et al.’s schemes, in the sense that every non-revoked sensor node
can ascertain the validity of the group keys it generated from the key update
messages, without involving any extra communication overhead. As communi-
cation is more energy consuming than computation in WSNs, this property is
important to prevent sensor nodes communicating using invalid group keys.

2 Related Work

Public key cryptosystems are in general too expensive for WSNs, so symmetric
key primitives such as secret key encryption or cryptographic hash function
are often preferred. As such, key management and distribution in WSNs boils
down to sharing of secret keys among sensor nodes. To achieve this objective,
a commonly used approach is to pre-load a set of secrets inside sensor nodes
before their deployment. These pre-loaded secrets are then used either directly
as pair-wise keys between a pair of neighboring sensor nodes, i.e., pair-wise key
distribution [4,5,7,9,10,12,15], or as a basis to establish new common keys shared
by a group of sensor nodes, i.e., group key distribution [3,6,8,10,11].

Among the existing group key distribution schemes, self-healing group key
distribution is particularly suitable for WSNs, because of its self-healing and
membership revocation properties. Staddon et al. [13] first proposed the concept
and a concrete construction of self-healing group key distribution based on se-
cret sharing of two dimensional polynomials. Their construction, however, is not
efficient, suffering from high communication and storage overhead. Liu et al. [11]
then generalized the security notions in [13], and presented a new scheme with
better efficiency by combining personal secret distribution with the self-healing

Hierarchical Self-healing Key Distribution for Heterogeneous WSNs 287

technique of [13]. Blundo et al. [1] analyzed the security definitions in [11,13]
and concluded that it is impossible for any scheme to achieve all of the security
requirements formulated in [11,13]. They then formulated a new definition for
self-healing group key distribution and came up with a new scheme [2].

All the above self-healing group key distribution schemes are intended to
achieve information theoretic security. In [6], Dutta et al. proposed a novel com-
putationally secure scheme, based on a combination of a reverse one-way hash
chain and a forward one-way hash chain. Their idea in achieving self-healing is
that along the reverse hash chain, the hash value of hj(.) (associated with an
earlier session) can be computed from any pre-image hi(.) (associated with a
later session), where i < j and hi(.) = h(h(· · ·h(.)))︸ ︷︷ ︸

i times

. While Dutta et al.’s model

is weaker, their schemes tremendously improve the efficiency of the information
theoretically secure schemes. Our proposed scheme is based on Dutta et al.’s
idea of a combination of reverse and forward one-way hash chains, but we rec-
tify the vulnerability of their construction (it can be shown that their schemes
cannot achieve t-Revocation). The main differences between our scheme and
Dutta et al.’s schemes are twofold. First, our scheme is hierarchical, tailored to
the heterogeneous WSNs. Second, our scheme achieves authenticated group key
distribution, allowing every non-revoked sensor node to verify whether or not its
generated group keys are valid, without requiring any extra communications.

3 Heterogeneous WSN Architecture

We partition a WSN into a number of groups. A high-end device is placed into
each group, acting as the group manager. In contrast to sensor nodes, the high-
end group managers have relatively higher computation capability, larger storage
size, and longer radio range. They also have longer power supply, and can even be
line-powered in some circumstances, e.g., when a WSN is deployed to monitor
a building, the group managers can easily tap on the electricity lines to get
power supply. Therefore unlike sensor nodes, group managers do not suffer too
much from the resource scarceness problem. The introduction of high-end group
managers into a WSN makes the once homogeneous network heterogeneous, as
depicted in Figure 1.

In this architecture, downlink messages broadcast by the base station directly
reach sensor nodes, whereas uplink messages sent by a sensor node to the base
stattion is forwarded via its group manager, which acts as an intermediary be-
tween the base station and the sensor nodes within its jurisdiction. A sensor node
may reach the group manager directly, or by traversing a short multi-hop path.
Since group managers are not severely constrained by resources, communication
at the level of group managers (including the base station) does not suffer from
the limits upon sensor nodes.

Intuitively, the inclusion of powerful group managers provides shortcuts for
data delivered from the sensor nodes to the base station, so the overall sys-
tem performance and in turn the lifetime of the network are expected to be

288 Y. Yang et al.

Sensor
Nodes

Group
Managers

Base
Station Level 2root key

Level 1
manager key

Level 0
group key

Fig. 1. Heterogeneous Wireless Sensor Network

greatly improved. Indeed, the effect of adding powerful nodes to WSNs has been
analyzed in [14]: only a modest number of reliable, long-range backhaul links
and line-powered nodes are required to have a significant effect, and if properly
deployed, heterogeneity can triple the average delivery rate and yield a 5-fold
increase in the lifetime of a large battery-powered sensor networks.

4 Model and Definition

System Model. Three types of entities are involved in our hierarchical group
key distribution system: the base station, group managers, and a large number
of sensor nodes. The sensor nodes are partitioned into a number of nG groups,
and each group has a group manager. A group has a unique group ID, and we
use Gν to denote the ID of group ν ∈ {1, · · · , nG}. Each sensor node in a group
is uniquely identified by an ID number i, where i ∈ I ⊆ {1, · · · , n}, and I is the
set of all node ID numbers of that group and n is the largest possible ID# in
the system.

In correspondence to the heterogenous architecture, the keys held by the en-
tities form a hierarchy, as shown in Figure 1: the base station holds a root key
at level 2, each group manager has a distinct manager key at level 1, and sen-
sor nodes in every group hold a common group key during each session at level
0. Traffic generated at lower level can be decrypted or authenticated using the
keys at higher levels, but not the other way around. This key hierarchy helps to
implement “separation of duty” within the system, e.g., it is not necessary for
the sensor nodes to process the control messages broadcast by the base station
to the group managers.

Hierarchical Self-healing Key Distribution for Heterogeneous WSNs 289

A group manager takes charge of distribution of group keys within its group.
A group key is associated with each session. To distribute a group key for a new
session, the group manager broadcasts a key update message to all its sensor
nodes. The group key is then computed by a sensor node based on the received
key update message and its preloaded personal secret. Denote the personal secret
of sensor node i as Si, which is a vector of m elements where m is the maximum
number of sessions supported by the WSN. Each element in Si corresponds to a
session and we use Si[j] to denote the element corresponding to the jth session,
j ∈ {1, · · · , m}. Si[j] becomes obsolete once the group key for the jth session
is established; otherwise Si[j] is fresh. A sensor node can be revoked or non-
revoked. Only non-revoked sensor nodes are able to compute the group keys.
To be resilient to the lossy channel of WSNs, the generation of group keys is
self-healing in the sense that a non-revoked sensor node can recover group keys
of all previous sessions as long as it successfully receives the key update message
of the current session.

Adversary Model. We assume that the base station and the group managers
are trusted, as we mainly concern with the distribution of group keys among
sensor nodes. An adversary is able to passively eavesdrop on, or actively inter-
cept, modify, insert, or drop key update messages from a group manager to all
its sensor nodes. We also allow the adversary to compromise up to t sensor nodes
in a group, where t is a system parameter.

Definition. We formally define the concept and security requirements of hi-
erarchical self-healing group key distribution, by revisiting and extending the
definition in [6].

Definition 1. (Hierarchical Self-healing Group Key Distribution with t-
Revocation) Let n, m, t be system parameters. D is hierarchical self-healing group
key distribution with t-revocation, if the following holds:

a. (Key Hierarchy) The manager keys held by the group managers are derived
from the root key of the base station, but it is computationally infeasible to
compute the root key from the manager keys. The same relationship should
hold between group keys and the corresponding manager key.

b. (Secrecy of Personal Secret) For any U ⊂ {1, · · · , n}, |U | ≤ t, it is com-
putationally infeasible for the nodes in U to collectively determine the fresh
elements of Si for any i /∈ U .

c. (Authenticated Generation of Group Key) Let gKj be the group key for ses-
sion j, and Bj be the broadcast key update message from the group manager,
where j ∈ {1, · · · , m}. For any non-revoked sensor node in the group, gKj is
efficiently computed from Bj and Si[j] in an authenticated manner. On the
contrary, it is computationally infeasible to compute the group session key
from the key update message or a personal secret alone.

d. (t-Revocation) For any session j, let Rj be the set of revoked nodes at the
start of session j, where |R| ≤ t, it is computationally infeasible to compute
gKj from the broadcast message Bj and {Si}i∈Rj .

290 Y. Yang et al.

e. (t-wise Forward Secrecy) Let U ⊆ {1, · · · , n} denote the sensor nodes which
joined the group after session j. Given that |U | ≤ t, it is computationally
infeasible for all members in U to collectively compute gK1, · · · , gKj, even
with the knowledge of gKj+1, · · · , gKm.

f. (Self-healing) A non-revoked sensor node between sessions j1 and j2, 1 ≤
j1 < j2 ≤ m, can efficiently compute any gKj, j1 ≤ j ≤ j2, from Bj2 and
its personal secret.

5 Our Construction

5.1 Scheme Details

We suppose that the set of revoked users is monotonic, i.e., a revoked user never
rejoins the network. Let Fq be a finite field, where q is a large prime number.
All arithmetic operations are performed in Fq. Let h, hR, hF : {0, 1}∗ → Fq be
cryptographic hash functions, and nG, n, m, t be system parameters.

– System Initialization. The base station chooses a root key rK = [rk1, rk2],
where rk1 and rk2 are random numbers of appropriate length. For each group
Gν , ν = 1, 2, · · · , nG, the base station computes a manager key as mKGν =
[mk1, mk2], where mk1 = h(Gν , rk1) and mk2 = h(Gν , rk2). Clearly, it is
computationally infeasible to compute one manager key from another without
knowing the root key. Then the base station securely passes the manager keys
to the corresponding group managers. We do not specify how this can be done,
but it often suffices by using some out-of-band channel. Upon receipt of the
manager keys, the group managers begin the preparation for setting up group
keys. Without loss of generality, let’s consider a particular group Gν whose
manager key is mKGν . The group manager sets mk1 to be the seed sR for a
one-way hash chain of length m + 1, i.e.,

kj
R = hR(kj−1

R)

= hR(hR(kj−2
R)) = · · · = hj

R(sR), 1 ≤ j ≤ m + 1 (1)

and sets mk2 to be the seed sF for another hash chain of length m, i.e.,

kj
F = hF (kj−1

F)

= hF (hF (kj−2
F)) = · · · = hj

F (sF), 1 ≤ j ≤ m (2)

The group key gKj for session j ∈ {1, · · · , m} is defined to be:

gKj = km−j+1
R + kj

F

= hm−j+1
R (sR) + hj

F (sF) (3)

We can see that the hash chain associating with hR() is used in the re-
verse order thus called the reverse hash chain, and that associated with

Hierarchical Self-healing Key Distribution for Heterogeneous WSNs 291

hF () called the forward hash chain. The group manager then selects m ran-
dom t-degree polynomials f1(x), · · · , fm(x) ∈ Fq[x], each corresponding to
a session. The personal secret for the member sensor node i is defined to
be Si = [f1(i), · · · , fm(i)]. The group manager sends Si together with km+1

R

and sF to each node i in a secure manner. Note that km+1
R will be used

as the initial authenticator (denoted as Auth) in the process of group key
generation.

– Broadcast. At the start of each session, the group manager broadcasts a
key update message to enable sensor nodes to generate a new group key. Let
Rj = {i1, ..., iw} be the set of revoked sensor nodes upon the start of session
j ∈ {1, · · · , m} and |Rj | = w ≤ t. The group manager chooses a random set
R′

j = {i′t, · · · , i′w+1} ⊂ {1, · · · , n} \ I, where I is the set of all node IDs of
that group. That is, the group manager chooses t − w random IDs that are
not in that group. Next, the group manager computes km−j+1

R from sR by
Equation (1), and then computes the following polynomials:

rj(x) = (x − i1) · · · (x − iw)(x − i′w+1) · · · (x − i′t)

bj(x) = km−j+1
R .rj(x) + fj(x)

We call rj(x) the revocation polynomial and fj(x) the masking polynomial.
Finally, the group manager broadcasts the key update message Bj to the
sensor nodes in its group, where

Bj = Rj ∪ R′
j ∪ {bj(x)}

– Session Key Generation. Upon receipt of Bj , if node i is not revoked, it
is able to compute km−j+1

R = bj(i)−fj(i)
rj(i)

. Then it can validate km−j+1
R using

the authenticator Auth. For example, if Auth = km+1
R , then the validation

is to test Auth
?= hj

R(km−j+1
R). If the validation fails, the node aborts the

key generation. Otherwise, it continues to compute kj
F = hj

F (sF) using sF

(Equation (2)), and in turn the group key gKj = km−j+1
R + kj

F . The node
also updates Auth by setting Auth = km−j+1

R . For efficiency reason, the node
can also choose to keep kj

F instead of sF for future sessions.
– Addition of New Group Member. A newly added member in session j

is not allowed to compute group keys of previous sessions. To add a new
member with ID α ∈ {1, · · · , n} starting from session j, the group manager
computes and gives Sα = {fj(α), fj+1(α), · · · , fm(α)} and kj

F = hj
F (sF) to

the node.

5.2 Efficiency

Our scheme is highly efficient in terms of storage, communication, and computa-
tion overhead. For storage, the personal secret together with the authenticator
accounts for (m + 1) log q bits storage in each sensor node (compared to Dutta
et al.’s scheme, ours only needs log q-bit more storage for the authenticator).

292 Y. Yang et al.

For communications, our scheme generates t(log q + log n) ≈ t log q bits key up-
date message (since n � q), which is almost the same as the bit length of the
key update message in Dutta et al.’s scheme. For computation, no costly public
key primitive is involved in our scheme, and the computation overhead inflicted
upon sensor nodes includes only cryptographic hash function and polynomial
operations.

5.3 Security Analysis

Theorem 1. The above construction is a hierarchical self-healing group key dis-
tribution scheme with respect to Definition 1.

Proof. It is not difficult to check that our scheme meets the properties of key
hierarchy, authenticated computation of group key, and self-healing. We thus, in
what follows, focus on showing that our scheme satisfies other security require-
ments.

♦ Secrecy of Personal Secret. Personal secrets are computed from t-degree poly-
nomials. For any t-degree polynomial corresponding to a session, a set U of
sensor nodes, where |U | = τ ≤ t, contributes τ points over the polynomial. It is
thus impossible (in an information theoretic sense) for τ nodes to determine the
polynomial solely from the personal secrets they have, and in turn any other
value of the polynomial. It remains to check whether the broadcast key update
messages reveal information on personal secrets. Let us consider a particular
non-revoked node i in session j. From the broadcast message Bj , node i cal-
culates km−j+1

R = bj(i)−fj(i)
rj(i)

. Then with km−j+1
R , node i can actually compute

any f(i′), i′
= i, as f(i′) = bj(i′) − km−j+1
R .rj(i′). This suggests that once a

group session key is established, the element of a sensor node’s personal secret
corresponding to that session is revealed to all other non-revoked nodes. This
is exactly the reason why we distinguish between obsolete and fresh elements
within a personal secret. We stress that the fresh elements of a personal secret
remain secret, since they are computed from different polynomials.

♦ t-Revocation. Without loss of generality, let’s consider the last session m, and
assume the set of t revoked nodes Rm = {1, 2, · · · , t}, the maximum number of
allowed revoked nodes, at the start of the session. Our goal is to show that these
t revoked nodes cannot compute gKm from the broadcast key update message
Bm and their personal secrets. We model the coalition of the t revoked nodes as
a polynomial-time algorithm A, which takes View of the protocol as input and
outputs a guessed group key gK ′

m for session m. We say A breaks t-revocation
if gK ′

m is authenticated with respect to the group keys of previous sessions (or
the authenticator). We prove, by contradiction, that if A breaks t-revocation,
then we can construct a polynomial-time algorithm B for inverting one-way
hash function hR(.), using A. In particular, given y = hR(x), B computes x by
invoking A as follows.

B sets k2
R = y while leaves k1

R undefined (k1
R should be x by definition),

and then computes k3
R = hR(y), k4

R = hR(k3
R) = h2

R(y), · · · , km+1
R = hR(km

R).

Hierarchical Self-healing Key Distribution for Heterogeneous WSNs 293

B continues to select a random sF and compute the forward hash chain kj
F =

hF (kj−1
F) = hF (hF (kj−2

F)) = · · · = hj
F (sF), 1 ≤ j ≤ m. B sets the j-th group

session key as gKj = km−j+1
R + kj

F , 1 ≤ j ≤ m − 1, and leaves gKm undefined
(gKm should be x + hm

F (sF) by definition). B selects m random polynomials
f1(x), · · · , fm(x) ∈ Fq[x], each of degree t. For each node i ∈ {1, 2, · · · , t}, B
computes the personal secret Si = {f1(i), · · · , fm(i)}. For each session 1 ≤
j ≤ m − 1, B computes the broadcast key update message Bj = Rj ∪ R′

j ∪
{bj(x)}, where Rj ⊆ Rm, and bj(x) = km−j+1

R .rj(x) + fj(x), with R′
j and rj(x)

being constructed in exactly the same manner as in our scheme. To compute
the broadcast key update message for session m, B selects a random k1

R ∈ Fq,
and computes Bm = Rm ∪ {bm(x)}, where bm(x) = k1

R.rm(x) + fm(x), with
rm(x) = (x − 1)(x − 2) · · · (x − t). Then B sets View of the protocol as

View =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

km+1
R

sF

{fj(1), fj(2), · · · , fj(t)}, j = 1, · · · , m

Bj , j = 1, · · · , m

gK1, · · · , gKm−1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

Finally, B gives View to A, which in turn outputs gK ′
m, its guess for the actual

group session key gKm. B outputs gK ′
m − hm

F (sF). It is easy to see that for any
session j, 1 ≤ j ≤ m−1, the simulation by B in constructing View is perfect with
respect to the original scheme. We next show that the simulation for session m
(where a random k1

R is used) is also perfect to A. To see this, A has bm(x) (from
Bm) and {fm(1), · · · , fm(t)} at its disposal. First, from fm(1), · · · , fm(t), A can-
not determine fm(.) as it only has t points over the t-degree polynomial which
has t+1 unknown coefficients, thus A cannot compute any fm(i), i /∈ {1, · · · , t}.
Here, we need to stress that bm(x) does not help A to determine fm(x). The
reason is that bm(x) at the points of {1, · · · , t} equals fm(1), · · · , fm(t), respec-
tively, thereby revealing no more information on fm(x). Second, on bm(x), there
are two cases to be considered.

1. i ∈ {1, · · · t}: from bm(x), A can evaluate bm(i) which equates fm(i) regard-
less of k1

R. A thus can check against fm(i) which is already at its disposal.
The simulation is perfect to A.

2. i /∈ {1, · · · , t}: from A’s point of view, bm(i) = k1
R.rm(i) + fm(i) is random,

because in each bm(i) there are two unknown variables k1
R and fm(i); for

every value of k1
R, there is a corresponding value fm(i). Hence the adversary

A who cannot break the polynomial fm(.) has no way to distinguish whether
or not the genuine k1

R is used in bm(i). The simulation is thus again perfect
to A.

Combining together the above arguments, we conclude that B inverts hR with
the same advantage as A breaks t-revocation.

♦ t-wise Forward Secrecy. An intuition on t-wise forward secrecy is that if a set of
nodes U join the system in session j, they are given kj

F = hj
F (sF). To compute

294 Y. Yang et al.

the group key for an earlier session j′ < j, they need kj′
F . In our scheme, the only

information relates to kj′
F are kj

F , kj+1
F , · · · , km

F . Computing kj′
F from these group

keys of later sessions clearly involves inverting the one-way cryptographic hash
function hF (.). As it is straightforward to construct an adversary B for inverting
hF (.), based on an adversary A that breaks t-wise forward secrecy (similar to the
above proof), we omit the details of the proof. �

6 Conclusion

We studied hierarchical self-healing group key distribution for heterogenous
WSNs. In particular, we formulated a model for hierarchical self-healing group
key distribution, and proposed concrete schemes that achieve provably compu-
tational security and high efficiency.

Acknowledgement

This work is supported by A*STAR project SEDS-0721330047.

References

1. Blundo, C., D’Arco, P., Santis, A., Listo, M.: Definitions and Bounds for Self-
healing Key Distribution. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D.
(eds.) ICALP 2004. LNCS, vol. 3142, pp. 234–245. Springer, Heidelberg (2004)

2. Blundo, C., D’Arco, P., Santis, A., Listo, M.: Design of Self-healing Key Distribu-
tion Schemes. Designs, Codes and Cryptography 32(1-3), 15–44 (2004)

3. Blundo, C., Santis, A., Herzberg, A., Kutten, S., Vaccaro, U., Yung, M.: Perfectly-
secure key distribution for dynamic conferences. In: Brickell, E.F. (ed.) CRYPTO
1992. LNCS, vol. 740, pp. 471–486. Springer, Heidelberg (1993)

4. Chan, H., Perrig, A., Song, D.: Random Key Pre-distribution Schemes for Sensor
Networks. In: IEEE Symposium on Security and Privacy, pp. 197–213 (2003)

5. Du, W.L., Deng, J., Han, Y.S., Varshney, P.K.: A Pairwise Key Pre-distribution
Scheme for Wireless Sensor Networks. In: ACM Conference on Computer and Com-
munication Security, CCS 2003, pp. 42–51 (2003)

6. Dutta, R., Change, E.C., Mukhopadhyay, S.: Efficient Self-healing Key Distribution
with Revocation for Wireless Sensor Networks Using One Way Key Chains. In:
Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 385–400. Springer,
Heidelberg (2007)

7. Eschenauer, L., Gligor, V.D.: A Key-Management Scheme for Distributed Sensor
Networks. In: ACM Conference on Computer and Communication Security, CCS
2002 (2002)

8. Huang, D., Mehta, M., Medhi, D., Harn, L.: Location-aware key management
scheme for wireless sensor networks. In: 2nd ACM workshop on Security of Ad
Hoc and Sensor Networks

9. Liu, D., Ning, P.: Improving Key Pre-distribution wih Deployment Knowledge in
Static Sensor Networks. ACM Transactions on Sensor Networks (2005)

10. Liu, D., Ning, P., Du, W.L.: Group-based Key Pre-distribution in Wireless Sensor
Networks. In: ACM Workshop on Wireless Security (2005)

Hierarchical Self-healing Key Distribution for Heterogeneous WSNs 295

11. Liu, D., Ning, P., Sun, K.: Efficient Self-Healing Group Key Distribution with revo-
cation Capability. In: ACM Conference on Computer and Communication Security,
CCS 2003 (2003)

12. Perrig, A., Szewczyk, R., Wen, V., Culler, D., Tygar, J.D.: SPINS: Security Pro-
tocols for Sensor Networks. Wireless Networks Journal (WINE) (September 2002)

13. Staddon, J., Miner, S., Franklin, M., Balfanz, D., Malkin, M., Dean, D.: Self-healing
Key Distribution with Revocation. In: IEEE Symposium on Security and Privacy,
S&P 2002, pp. 241–257 (2002)

14. Yarvis, M., et al.: Exploiting Heterogeneity in Sensor Networks. In: IEEE INFO-
COM 2005 (2005)

15. Zhu, S., Setia, S., Jajodia, S.: LEAP: Efficient Security Mechanisms for Large-scale
Distributed Sensor Networks. In: ACM Conferenc on Computer and Communica-
tion Security, CCS 2003, pp. 62–72 (2003)

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 296–310, 2009.
Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

User–Centric Identity Using ePassports

Martijn Oostdijk, Dirk-Jan van Dijk, and Maarten Wegdam

Novay, P.O. Box 589, 7500AN Enschede, The Netherlands
{martijn.oostdijk,dirk-jan.vandijk,maarten.wegdam}@novay.nl

Abstract. The worldwide introduction of ePassports presents a unique opportu-
nity for the online identity community to implement trustworthy identity pro-
viders. The ePassport provides citizens with a strong authentication token
within a global Public Key Infrastructure backed by government administra-
tions. This paper studies the possibilities for leveraging the ePassport for user-
centric identity and reports on an experiment in which ePassports are combined
with the user-centric identity management framework Information Card. Note
that no changes to already deployed ePassports are needed for our solution to
work.

1 Introduction

Most online services (eCommerce, eGovernment) are only meaningful if (aspects of)
the identity of users can be established in a trustworthy manner by whoever offers the
service. At the same time users will only use a service when they feel that they are in
control over who they share identity information with. This paper investigates,
through a practical experiment, how strong authentication means (i.e. ePassports) can
be combined with user-centric identity management.

Over the last couple of years electronically readable travel documents (ePassports)
have been introduced in most countries of the world. An ePassport contains an em-
bedded chip with card holder data which allows an automated inspection system
(typically operated by border control officials) to read out data from the chip and,
more interestingly, to verify the integrity of the data and the authenticity of the chip.
The embedded chip communicates in a contactless manner based on standardized
communication protocols, ensuring that the chip can be contacted when it is in the
proximity of an inspection system.

While there are concerns about the privacy consequences of the introduction of
ePassports [5,8,10,16,17], primarily caused by the combination of contactless commu-
nication with privacy sensitive biometric data, it also presents a unique opportunity for
creating trustworthy online identities as it potentially provides citizens with a strong
authentication token within a global Public Key Infrastructure (PKI) backed by gov-
ernment administrations [9]. Moreover, the technical standards which describe how the
inspection system verifies the authenticity of ePassports are open and publicly available
from the International Civil Aviation Organization (ICAO1) [6]. Although originally not

1 See http://icao.int/

 User–Centric Identity Using ePassports 297

intended as such by ICAO, ePassports, as they are being deployed presently, seem ideal
for authenticating users of third-party online services such as web stores.

At the same time an entirely different revolution is taking place in the online iden-
tity community which places the end-user at the center by relaying all communication
between identity providers and service providers (also called relying parties) through
the user’s client. Web 2.0 services are driving this revolution, which is therefore
sometimes dubbed Identity 2.0 or user-centric identity, and it is being enabled by
identity management systems such as OpenID [13] and Information Card [12].

The objective of the research described in this paper is to study the possibilities for
leveraging the ePassport for user-centric identity. This would establish online identi-
ties backed by government issued hardware tokens in a user-centric manner. This
paper describes a prototype user-centric online identity solution based on Information
Cards which uses ePassports for authentication. The implementation makes it possible
for users to show aspects of their ePassport (aspects such as information stored in the
chip’s memory but also proof of authenticity of the chip) to relying parties (online
service providers) with the help of an identity provider. The identity provider only
needs to store minimal information about the user’s passport and can be seen as a
privacy filter from the user’s perspective.

The solution is built using open standards and is published as open source
software.

The remainder of this paper is organized as follows: Section 2 presents a brief in-
troduction to the ICAO standards and describes the various features of the ePassport.
Section 3 introduces user-centric identity management and in particular the Informa-
tion Card framework. Section 4 explains how these standards are combined into a
working prototype information card identity provider that uses ePassports for authen-
tication and lists some of the results. Section 5 discusses the lessons learned. Section
6 presents concluding remarks and pointers for future work.

2 The ICAO ePassport

This section provides a short introduction to the ICAO standard for ePassports, for
more details see [5,9,16].

The ICAO standard for ePassports is described in Doc 9309 [6], which itself is
based on many other standards and specifications. The specification consists of two
parts:The first part describes the format of the contents of the ePassport, the so-called
Logical Data Structure. The second part describes a variety of mandatory and optional
security controls which are implemented by the ePassport to protect the information
in the Logical Data Structure against various forms of attack.

2.1 Logical Data Structure

The contents of an ePassport are structured in terms of so-called data groups. To-
gether with an index file (COM) and a signature file (SOd) these form the Logical
Data Structure. Table 1 lists the data groups found in a typical Dutch ePassport.

298 M. Oostdijk, D.-J. van Dijk, and M. Wegdam

Table 1. Contents of the Logical Data Structure

COM An index of which DGs are present

DG1 The contents of the MRZ (name, date of birth, …)

DG2 JPEG or JPEG2000 image of face

DG11 Optional passport holder’s full name if too long for MRZ

DG15 Public key for Active Authentication

SOd Security document with signature over Logical Data Structure hashes

Two files are always present: COM contains an index which indicates which of the 16
possible data groups are present. SOd is the security document which contains the
issuing country’s signature over the contents of the data groups. It contains hashes for
each of the data groups present in the Logical Data Structure and a signature over
these hashes. This allows Passive Authentication as described in Section 2.2.

The first data group, DG1, contains the textual information about the passport
holder that is also (optically) printed in the Machine Readable Zone (MRZ) on the
data page of the ePassport. The information in DG1 contains the passport holder’s
name, date of birth, gender, as well as the document’s number and date of expiry. In
the Dutch case DG1 also contains the passport holder’s citizen number (the Dutch
equivalent of a social security number).

The public key in DG15 is used for a security mechanism called Active Authenti-
cation which is described in Section 2.2.

For the purposes of this paper the Logical Data Structure elements of interest are:
DG1 which contains textual information about the passport holder and the document
itself, DG15 which contains a public key, and the SOd which contains a signature
over the different data groups.

2.2 Security Controls

To protect against attacks such as skimming, altering, unauthorized access and clon-
ing the ePassport contains a number of security controls.

Basic Access Control: When attempting to read the Logical Data Structure, the
ePassport requires the inspection system to first show knowledge of an access key
comprised of three items in the MRZ: the passport document number, the date of birth
of the passport holder, and the date of expiry of the passport. By requiring the inspec-
tion system to prove knowledge of these items, the passport is convinced of the fact
that the inspection system has seen the data page of the physical passport booklet,
which means that whoever is operating the inspection system has access to the book-
let and has the passport holder’s consent to read it. BAC prevents skimming in which
an attacker gets access to an ePassport without the holder’s knowledge or consent.

Extended Access Control: Some data groups contain information of a highly sensi-
tive privacy nature, such as biometric templates. To protect against unauthorized

 User–Centric Identity Using ePassports 299

parties reading such files an additional access control mechanism may be imple-
mented on top of BAC. Whether an inspection system can complete the EAC protocol
when presented with an ePassport depends on whether it has acquired a document
verifier certificate (DVC) from the ePassport’s issuing state.

Passive Authentication (PA): The security document (SOd) attached to the Logical
Data Structure contains hashes of all data groups and a signature over these hashes.
The signature is set using a Document Signing Private Key and can be checked using
the Document Signing Public Key Certificate (DSC), which in European Union pass-
ports is included inside the SOd. The DSC, in turn, is signed using the Country Sign-
ing Private Key and can be checked using the Country Signing Public Key Certificate
(CSC). This latter certificate, at least in the Dutch case, can be downloaded from a
government website. PA prevents altering the data in the Logical Data Structure (ei-
ther by changing or replacing the chip or by intervening with the communications
between chip and inspection system).

Active Authentication (AA): The inspection system can challenge the chip to prove
authenticity by signing on request a random nonce using a document specific private
key. The corresponding public key can be read from DG15 (which is part of the Logi-
cal Data Structure, and therefore part of the signed data in the SOd) so that the inspec-
tion system can check the resulting signature. AA prevents cloning, as the private key
cannot be extracted from the ePassport by an attacker. The verification algorithm for
AA is specified as an ISO standard [7].

For European Union passports BAC is mandatory. EAC is not widely used pres-
ently, but will be as soon as fingerprints are included in ePassports across Europe
(expected mid 2009). PA is mandatory for all ICAO ePassports, however not all
European Union member states allow third party access to their CSC. AA is optional
and only a few countries implement it.

2.3 Software for Accessing ePassports

The ICAO standards have been implemented by various countries and manufacturers
of identity products since 2005/2006. Open source initiatives to read ePassports soon
followed, mostly with the purpose to test the various official implementations. Shortly
before the introduction of the Dutch ePassport in 2006, software was developed at
Radboud University to test the Dutch implementation of the ePassport [5]. Some of
the results were later disseminated as an open source project, JMRTD
(http://jmrtd.org), which we used in our prototype2. The software consists of a frame-
work for reading and verifying passports using off-the-shelf hardware as well as a
reference implementation in Java Card of the ePassport itself.

The JMRTD API offers data structures for the information stored in the Logical
Data Structure, making it possible to interpret the data. The API also implements the
various security controls used by the passport such as BAC, PA, and AA.

2 Other open source implementations are the OpenMRTD project (http://openmrtd.org) and the

RFIDIOt project (http://rfidiot.org)

300 M. Oostdijk, D.-J. van Dijk, and M. Wegdam

3 User-Centric Identity

This section introduces user-centric identity management and focuses in particular on
the Information Card specification [12].

Online identity management is a game for three: the user, the relying party, and the
identity provider. The user wants to use a service provided by the relying party. At the
same time the relying party wants to have some assurance about the client’s identity.
The identity provider helps the user and the relying party in providing this assurance.
Sections 3.1 and 3.2 explain in more detail how this game is played.

Whether the user (with the help of the identity provider) succeeds in convincing
the relying party that the claimed identity is correct depends on the level of trust that
the relying party has in the identity provider. At the same time, the user also needs to
trust the identity provider to only use information rendered for the purpose of acquir-
ing the service from relying party. This privacy problem is discussed in Section 5.2.

User-centric identity management approaches place the user (contrary to e.g. the
identity provider) in the center of the solution, which includes among others that the
flow of information goes via the user. We use here the Laws of Identity created by
Kim Cameron [4]3 to further define user-centric identity management. For brevity we
only list them:

1. User control and consent
2. Minimal disclosure for a constrained user
3. Justifiable parties
4. Directed identity
5. Pluralism of operators and technologies
6. Human integration
7. Consistent experience across contexts

There are two prominent specifications for user-centric identity management: OpenId
and Information Card. OpenID is a lightweight approach to user-centric identity that
has its origin in 2005 for preventing spam through blog post comments. It is specified
by the OpenID foundation4. Several open source initiatives exist5. For this paper
however we used Information Card since it enforces privacy sensitivity through user-
centricity, and is in the process of becoming a more formal standard.

The original Information Card specification is by Microsoft, and is called the Iden-
tity Selector Interoperability Profile. It was drafted with the above laws in mind, and
the Information Card adheres to them. This specification was used as input to the
Organization for the Advancement of Structured Information Standards (OASIS),
which is now in the process of standardizing Information Card. The main factors of
the Information Card specification that contribute to adherence to the Laws of Identity
are the use of a card metaphor, and the routing of all identity claims through the user’s
client, as we explain below.

3 An interesting side-note about Cameron’s paper: One of the laws (the law of directed iden-

tity) is illustrated with a self-service passport reader example.
4 See http://openid.net
5 See http://wiki.openid.net/Libraries

 User–Centric Identity Using ePassports 301

The user interacts with the system through a so-called Card Selector (or Identity
Selector). The selector presents the user with a number of visual cards containing
claims (called fields) about the user’s identity. The selector is a metaphor for a wallet
containing all sorts of plastic cards.

All traffic between identity provider and relying party is routed through the user’s
client, literally putting the user in the center. This keeps the user informed and more-
over gives the user the option of aborting the transaction at different stages of the
authentication process.

Microsoft’s CardSpace is a closed source card selector embedded into the Win-
dows operating system. Microsoft’s .NET framework offers building blocks for con-
structing identity providers and relying parties. Open source alternatives for card
selectors, identity providers, and relying parties exist6 as well. Some of the Informa-
tion Card implementation details in this paper are CardSpace specific, and may be
handled differently by other implementations.

3.1 Enrolling at the Identity Provider

Enrollment is the process of registering a user’s identity with the identity provider. In
Information Card enrollment results in a so-called managed card which (in the user’s
experience) is retrieved and made accessible in the Card Selector. Information Card
allows two different types of cards: Self-issued cards contain claims made by the user
about the user. Managed cards, on the other hand, contain claims by an online identity
provider about the user. Retrieving a managed card is done by selecting some authen-
tication mechanism which is used for proving possession of the managed card in the
future. The managed card is said to be backed by that authentication mechanism.
Typically a self-issued card is used as backing for a managed card but other options,
like traditional username and password or an X.509 certificate corresponding to some
private key (possibly on a hardware token), are also possible.

3.2 Using a Managed Card to Authenticate at the Relying Party

After the user has retrieved a managed card from the identity provider he or she can
start visiting relying parties. Upon such a visit the relying party sends a policy back to
the user’s client which, amongst others, contains field names (such as “Last name” or
“Date of Birth”) deemed necessary by the relying party before the service can be
acquired and specifies which identity provider the relying party trusts. The user is
now typically presented with the Card Selector which shows only those cards which
comply with the relying party’s policy. The user selects one of those cards and in case
it is the managed card the identity provider is called upon to fill in the values of those
fields specified in the relying party’s policy. The result is a so-called security token
(generated by Security Token Service, a component of the identity provider) which is
first sent back to the client.

Obviously, the token contains sensitive information and its confidentiality needs to
be protected. To do this, it may be encrypted with the relying party’s public key.

6 See, for instance, the Higgins project at http://www.eclipse.org/higgins/ and the DigitalMe

selector at http://www.bandit-project.org/index.php/Digital_Me

302 M. Oostdijk, D.-J. van Dijk, and M. Wegdam

Furthermore the token is signed by the identity provider providing proof of authentic-
ity of the originator (the identity provider) and integrity of the token itself which can
be verified by the relying party.

Since the user has to concur with the identity provider, if the security token is en-
crypted for the relying party or in a token format unknown to the card selector, a so-
called display token is also sent to the client. The display token contains the same
claims as the security token, except that the contents of the display token are en-
crypted with the user’s public key rather than the relying party’s public key, so that
the user can inspect the values filled in for each field. If the user concurs with the
identity provider that the supplied claims are correct the user’s client forwards the
security token to the relying party.

4 Combining ePassports and User-Centric Identity

This section describes how the scenarios in Section 3 change when Information Card
is combined with ePassports.

In the altered scenarios for enrollment and authentication we have the traditional
three parties involved in user-centric identity management as described in Section 3,
namely the relying party, identity provider and the user’s client. These parties are
depicted in Figure 1.

User

Card Space

Hosted at IDP

Run at client
NFC Device
(hardware)

Security
Token

Service

SOCKET

CLIENT

RELYING PARTY

IDENTITY PROVIDER

Web
Server

Fig. 1. The three parties in the ePassport Information Card scenario

 User–Centric Identity Using ePassports 303

4.1 Enrolling the ePassport at the Identity Provider

Before the user can use his ePassport at a relying party, he needs to enroll it with the
identity provider. The user visits the identity provider’s website and requests a managed
card. The managed card will be tied to the user’s ePassport. The user also supplies the
BAC keys to the identity provider at this point. The identity provider needs the BAC
keys in order to communicate with the ePassport chip during the authentication scenario
as described in 4.2. Remember that the BAC keys are based on the user’s date of birth,
the ePassport’s date of expiry, and the ePassport’s document number.

At enrollment time the user sends an empty self-issued card to the identity provider
which is used to back the managed card. The user also enters the date of birth, date of
expiry, and the document number at the identity provider’s website. The identity
provider stores this information and sends a managed card (whose picture resembles a
passport) to the user’s card selector. The managed card contains no information apart
from an id which the identity provider can use to later resolve the user’s BAC keys
(which it needs to communicate with the ePassport) and authenticate the user.

At enrollment time the user also needs to install a so-called Java policy file, allow-
ing signed mobile code coming from the identity provider’s web server to access the
contactless card reader hardware. The role of the policy file is explained in Section
4.2. As an alternative to using this Java mobile code approach the user could be asked
to install some local software, which might be perceived as being more transparent
from the average user’s perspective.

4.2 Using the ePassport to Authenticate at a Relying Party

Figure 2 shows the different entities involved in the authenticate-with-ePassport sce-
nario and the traffic that is exchanged between them.

A TCP connection from the identity provider to the user’s contactless card reader
is created as soon as the user loads the relying party’s login page. In the current im-
plementation this is accomplished by placing a Java applet owned by the identity
provider on the relying party’s web page (to be more precise, what is placed on the
relying party’s web page is an HTML applet tag linking to applet code on the identity
provider’s web server). The applet is signed by the identity provider and also loaded
from the identity provider’s web server so that the Java Runtime Environment (JRE)
at the user’s client trusts this piece of mobile code enough to allow it to set up a con-
nection back to the identity provider’s server. The JRE was given permission to con-
nect to the contactless card reader in a Java policy file which was installed during
enrollment. The TCP connection is used for subsequent communication between the
identity provider and the user’s ePassport.

Using the managed card acquired during enrollment the user can attempt to login at
the relying party. An information card policy is sent to the identity provider via the
Card Selector just like in the normal Information Card scenario. One extra step is
taken by the identity provider after receiving a token request from the client. In this
extra step the identity provider checks if the user has a valid passport and it reads the
user’s details from the passport. As soon as the client actually requests a token at the
identity provider, the identity provider will look at the provided managed card and

304 M. Oostdijk, D.-J. van Dijk, and M. Wegdam

User Relying Party WebsiteIdP

Load

Java Applet

Initialize

Open Connection

ePassport

Login

Policy

Select Managed Card

RequestToken(ManagedCard, Policy)

Check Authenication

OpenPassport
Open

BAC-Challenge

GetDG1

GetDG1

DG1

SecurityToken+DisplayToken

SecurityToken

AccessGranted

BAC-Challenge

OpenPassport(BAC-Response, AA-Challenge)

BAC-Response, AA-Challenge

AA-Reponse+AA Public Key + SOd

AA-Reponse+AA Public Key + SOd

DG1

ApproveDisplayToken

AuthenticationProof

Fig. 2. Message sequence chart of the authenticate-with-ePassport scenario

send the appropriate BAC data to the passport authenticating the identity provider at
the passport. The identity provider will request the ePassport’s AA public key and
SOd. With the SOd it can check if the public key has been signed by the issuing coun-
try. It can then send a random challenge to the ePassport which encrypts it using the
AA private key. This proves that the passport is authentic and not a simple clone. The
identity provider will request the minimal needed information from the ePassport to

 User–Centric Identity Using ePassports 305

confirm to the token request. The token is sent back to the client and from here on the
normal Information Card scenario continues.

To summarize, the identity provider uses BAC, AA, and PA and then reads DG1.
Based on the results of the security protocols the identity provider knows that the
information in DG1 correctly identifies a citizen of the issuing country (for as far as
the identity provider trusts the country’s CSC, of course). Remember that DG1 con-
tains basic textual card holder information (name, date of birth, date of expiry of
document, document number, gender, nationality, and in the Dutch case even the
citizen number). The information in this data group is used in the token created by the
identity provider and only the required fields (as requested by the relying party’s
policy) are sent to the relying party (via the user’s client). No other information is sent
to the relying party and the relying party needs to trust the identity provider that it has
done its job in checking the validity of the user’s ePassport.

5 Discussion of Lessons Learned

The previous sections of this paper report on an experiment in which ePassports are
combined with the user-centric identity management framework Information Card. It
validates that it is in principle possible to create an identity solution combining real
smart cards and ‘virtual’ information cards. This section discusses the lessons learned.

5.1 The Need for an Online Identity Provider

A surprising aspect of the described solution is that the role of the identity provider is
somewhat different from traditional Information Card identity providers. A typical
identity provider has knowledge about identities of users. The identity provider in our
experiments, on the other hand, stores no information about the user except for the
BAC access keys. The token sent to the relying party is freshly constructed based on
information read ‘live’ from the ePassport, not on information stored at the identity
provider. In fact, one could argue that the government issuing the ePassport should be
considered as the real provider of identity here and that no separate identity provider
should be needed.

Disadvantages of having a separate identity provider lie in the trust that the other
parties need to have on the identity provider’s integrity. These are discussed in Sec-
tion 5.2. Still, this identity provider is necessary to deal with limitations in Informa-
tion Card and ICAO specifications:

1. The Information Card specification simply requires an external online identity
provider. One could, of course, always choose to implement it as a client-side or
relying party-side service.

2. The ICAO specifications were never explicitly designed to allow limited disclo-
sure of data in the sense of Cameron’s second law. The information in the ePass-
port is structured in data groups and the complete data group needs to be sent to
an inspection system before it can determine whether its hash in the SOd checks
out. The online identity provider is needed to act as a privacy filter.

306 M. Oostdijk, D.-J. van Dijk, and M. Wegdam

3. The identity provider stores the BAC keys and uses these to open a secure connec-
tion to the ePassport. Other parties - on the Internet but also client-side malware -
cannot interfere with the communications between identity provider and ePassport7.
This means that the client is not a part of the Trusted Computing Base. The BAC
keys should not be distributed to untrusted parties for security and privacy reasons,
providing them to each relying parties is therefore not an option.

A smartcard solution that would be designed specifically to facilitate privacy-
sensitive assertions on identity claims, would need to be able to sign not only specific
parts of the identity data, but also derived data from these identity data. For example,
sign an ‘above 18’ claim, derived from the birth date.

5.2 The Need to Trust the Identity Provider

Since user-centric identity management introduces an online identity provider, a ques-
tion that will need to be answered is to what degree both the user and the relying party
must trust the identity provider:

• The user needs to trust the identity provider, which has full access to his ePassport,
with respect to the privacy sensitive data stored in the chip and with respect to the
authentication functionality provided by the chip. Obviously, our implementation
of the identity provider is well-behaved with respect to privacy: it will only read
relevant data groups and only use this to construct a token which is sent (via the
user’s card selector, i.e. with the user’s consent) to the relying party. Still, the user
needs to trust that our identity provider is implemented as advertised.

• The relying party needs to trust the identity provider with respect to the correct-
ness of information issued about the user. The relying party needs to trust that the
identity provider has done its job in inspecting that the ePassport is authentic (us-
ing PA) and is present during the transaction (using AA). The identity provider is
not able to convey evidence (such as a signature) that proves to the relying party
that the information in the token originates from an ePassport without sending the
complete data group DG1.

A particularly frightening threat to the user’s privacy would be an evil identity pro-
vider that keeps track of all relying parties visited by a user. Such a big-brother iden-
tity provider could even use the ePassport’s active authentication functionality to
construct undeniable proof-objects of the user’s involvement in transactions with
relying parties (i.e. have the user’s ePassport ‘sign’ the transaction so as to later con-
front the user with such proof). Note, however, that there is no need for the identity
provider to know the relying party’s identity, it only needs a public key from the rely-
ing party to encrypt the security token.

Another threat is formed by the simple challenge-response nature of the AA proto-
col. A rogue identity provider can relay challenges and responses to another identity
provider and pretend to have direct access to an ePassport.

7 Unfortunately, client-side malware can communicate with the ePassport if it manages to get

hold of the user’s date of birth and the document’s number and date of expiry through some
other (totally unrelated) means.

 User–Centric Identity Using ePassports 307

How an identity provider can build up enough trust so that both users and relying
parties trust it is a general trust problem. The following three suggestions are merely
recommendations:

• The server should be run by an independent party. Although the government can
be trusted in terms of correctness of information (i.e. the relying party would be
happy with the government as online identity provider), the general sentiment
amongst end-users may be that governments should not be present during each
and every online transaction of their citizens. Governments may not be too eager
to become online identity providers for their citizens either.

• The implementation of the identity provider should be open and transparent.
Open source helps. However, it remains impossible to validate online whether a
server is actually running the source code that is published.

• Trust in the identity provider could perhaps be established using reputation.
Reputation based Trust (occasionally referred to as web-of-trust) is a mechanism
that is sometimes part of Web 2.0 applications. CACert.org is an example of a
real-world web-of-trust: it establishes a distributed network of trust by having
people meet in real life and present their (non-electronic, old fashioned) passport
in order to gain trust points. Persons with enough trust points can get their SSL
site certificate signed by the CACert certificate authority. Web users can add the
CACert certificate authority’s root certificate in their browser’s list of trusted
certificates if they feel that the described procedure warrants that the CACert cer-
tificate authority only signs site certificates when the site’s identity has been ade-
quately checked.

The privacy problems with the identity provider are beyond the scope of the feasibil-
ity study described in this paper. A solution lies either in building up enough trust in
the identity provider or in changing the ePassport standards so that it can be used to
generate trustworthy proof of authenticity and at the same time conform to Cameron’s
second law. The latter option makes an online identity provider redundant. Recent
interest in integrating different hardware electronic identity cards8 (eID), such as
described in [3], indicates that we may be heading towards a world where online iden-
tity providers are no longer necessary or at least play a different role.

5.3 Not a Global PKI for Online User Authentication

Unfortunately our solution does not provide a global PKI for online user authentica-
tion. Apart from practical problems (not every citizen has an ePassport, contactless
card readers are not widely available yet), the ICAO standards leave countries plenty
of options in not implementing the various features which are essential to the pro-
posed identity solution. The features that have to be present to allow online verifica-
tion of an ePassport are:

• The ePassport must support passive authentication so that the authenticity and
integrity of the LDS can be verified.

8 See also the Stork European project at http://www.eid-stork.eu/

308 M. Oostdijk, D.-J. van Dijk, and M. Wegdam

• The ePassport must support active authentication so that the authenticity of the
chip can be verified.

• The data groups with identifying information must not be protected by extended
access control (unless relevant keys are know to the identity provider).

• The document signing public key certificate must be available to the Identity
Provider and its validity should be checked.

Passive authentication is present in all passports. Active authentication, on the other
hand, is optional and recent interoperability tests9 seem to indicate that less than thirty
percent of countries currently chose to implement active authentication.

The data groups of interest for this paper, DG1 and DG15, are not protected by ex-
tended access control: they are readable to an inspection system once the basic access
control protocol is successfully completed. Future versions of the ePassport may con-
tain interesting identifying information in other data groups that are protected by
extended access control. In that case the identity provider needs to be trusted by the
ICAO Public Key Directory (PKD) to get access keys for performing the extended
access control protocol.

Some countries have their country signing certificate available on a public gov-
ernment website. An overview list appeared in an ICAO published report [2]. As an
alternative to publishing this certificate on a website the PKD can be used. The PKD
shares document signing certificates rather than country signing certificates. An addi-
tional advantage of the PKD is that it provides a central online service for obtaining
validity information about certificates in the form of so-called certificate revocations
lists.

Our solution was tested using the Dutch ePassport which supports all features nec-
essary for our purposes. The ICAO standards for ePassports are definitely not de-
signed with online verification and limited disclosure of contents in mind.

6 Concluding Remarks

The main conclusion from this research is that with the help of an online identity
provider it is possible to leverage ePassports for user-centric identity management.
Our prototype validates this for Information Card, and we expect a similar outcome
for e.g. OpenID, or for a more identity provider-centric approach to identity manage-
ment such as SAML.

The online identity provider needs to be trusted by both user and relying party, but
due to specifics of the Information Card specification and the ePassport specification,
cannot be done without.

From a privacy perspective, and to enhance availability, it may be preferred to have
an identity solution which does not depend on an online identity provider at all. After
all, the ePassport can be considered as a smartcard that embeds several important
claims about a person (such as name, birthday, gender), which are already signed by a
trusted government agency. To be useful in a privacy sensitive manner, the ePassport
or another similar hardware token with embedded claims would have to be able to
sign individual claims, including derived claims such as ‘above 18”.

9 See http://www.e-passports2008.org/

 User–Centric Identity Using ePassports 309

Apart from further exploring the above, there are some technical loose ends that
require our attention for future work:

• OpenID is the other popular upcoming user-centric identity management stan-
dard. It would certainly be interesting to investigate how our solution integrates
with OpenID.

• Currently the managed information card associated with an ePassport is backed
by a self-issued information card of the user. A much more elegant alternative
would be to use the smart card framework supported by the card selector (the
Crypto API for Microsoft Windows or PKCS 11 for certain other alternatives) in-
stead. In essence this creates a “soft-token” interface for the ePassport’s active
authentication signature which can be used to back a managed card. Such an ap-
proach of integrating smart cards with Information Card would also be more in
line with [1] and commercial smart card based identity solutions such as Trust-
Bearer’s OpenID product10.

• The introduction of Near Field Communication (NFC) technology in all sorts of
mobile devices may solve the practical problem of (lack of) contactless card
reader availability. While porting ePassport software to J2ME may be an interest-
ing challenge, the eCL0WN tool11 for Nokia NFC phones proves that it is feasi-
ble to read out ePassports using NFC. Similarly, IBM is working on using
contactless cards to strengthen online authentication [12]. Combined with user-
centric identity management systems for mobile phones (IBM has demonstrated a
card selector for the Android platform [11]) this leads the way to mobile-centric
identity management, which combines user-centric with mobile phones as the
most ubiquitous and personal device people have. The ePassport could, for ex-
ample, be helpful in the provisioning process in such a mobile-centric identity
management system.

Acknowledgments. This research was funded by the NLnet (http://nlnet.nl/)
foundation.

References

1. Aussel, J.-D.: Smart Cards and Digital Identity. Teletronikk 3/4, 66–78 (2007) ISSN 0085-
7130

2. Broekhaar, S., Verschuren, J.: How to Obtain CSCA Certificates – The CSCA Overview
List, MRTD report, 2, ICAO, 32–35 (2007)

3. Bruegger, B.P., Hühnlein, D., Kreutzer, M.: Towards global eID-Interoperability. In:
BIOSIG 2007. LNI, vol. 108, pp. 127–140 (2007)

4. Cameron, K.: The Laws of Identity – as of 5/12/2005, Microsoft Corporation (2005)
5. Hoepman, J.-H., Hubbers, E., Jacobs, B., Oostdijk, M., Schreur, R.W.: Crossing Borders:

Security and Privacy Issues of the European e-Passport. In: Yoshiura, H., Sakurai, K.,
Rannenberg, K., Murayama, Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266,
pp. 152–167. Springer, Heidelberg (2006)

10 See http://www.trustbearer.com/
11 See http://seclists.org/fulldisclosure/2008/Dec/0567.html, Jeroen van Beek.

310 M. Oostdijk, D.-J. van Dijk, and M. Wegdam

6. ICAO: Machine Readable Travel Documents, ICAO Doc 9303, part 1: Specifications for
Electronically Enabled Passports with Biometric Identification Capability, 6th edn., vol. 2
(2006)

7. ISO: Information technology — Security techniques — Digital signature schemes giving
message recovery — Part 2: Integer factorization based mechanisms, ISO/IEC 9796-2, 2nd
edn. (2002)

8. Juels, A., Molnar, D., Wagner, D.: Security and Privacy Issues in E-passports. In: Proc.
SecureComm 2005, pp. 74–88. IEEE Computer Society, Los Alamitos (2005)

9. Lekkas, D., Gritzalis, D.: e-Passports as a means towards the first world-wide Public Key
Infrastructure. In: López, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI 2007. LNCS,
vol. 4582, pp. 34–48. Springer, Heidelberg (2007)

10. Liu, Y., Kasper, T., Lemke-Rust, K., Paar, C.: E-Passport - Cracking Basic Access Control
Keys. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part II. LNCS, vol. 4804, pp. 1531–
1547. Springer, Heidelberg (2007)

11. Nadalin, A.J.: Mobile Identity. In: The European e-Identity Conference, The Hague
(2008), http://www.eema.org/downloads/annual08/nadalin2c.pdf

12. Nanda, A.: Identity Selector Interoperability Profile, V1.0, Microsoft Corporation (2007)
13. OpenID: OpenID Authentication 2.0 – Final (2007),

 http://openid.net/specs/openid-authentication-2_0.html
14. Ortiz-Yepes, D.A.: Enhancing Authentication in eBanking with NFC-Enabled Mobile

Phones. ERCIM News 76, 63–64 (2009)
15. SAML, OASIS specification (2005),

 http://saml.xml.org/saml-specifications
16. Vaudenay, S., Monnerat, J., Vuagnoux, M.: About Machine-Readable Travel Documents.

In: Proc. International Conference on RFID Security 2007, pp. 15–28 (2007)
17. Vaudenay, S.: E-Passport Threats. IEEE Security & Privacy, 72–75 (November/December

2007)

Defending against Key Abuse Attacks in
KP-ABE Enabled Broadcast Systems

Shucheng Yu1, Kui Ren2, Wenjing Lou1, and Jin Li2

1 Department of ECE, Worcester Polytechnic Institute, MA 01609
yscheng@wpi.edu, wjlou@ece.wpi.edu

2 Department of ECE, Illinois Institute of Technology, IL 60616
{kren,jin.li}@ece.iit.edu

Abstract. Key-Policy Attribute-Based Encryption (KP-ABE) is a
promising cryptographic primitive which enables fine-grained access con-
trol over sensitive data. However, key abuse attacks in KP-ABE may
impede its wide application especially in copyright-sensitive systems. To
defend against this kind of attacks, this paper proposes a novel KP-ABE
scheme which is able to disclose any illegal key distributor’s ID when
key abuse is detected. In our scheme, each bit of user ID is defined as
an attribute and the user secret key is associated with his unique ID.
The tracing algorithm fulfills its task by tricking the pirate device into
decrypting the ciphertext associated with the corresponding bits of his
ID. Our proposed scheme has the salient property of black box tracing,
i.e., it traces back to the illegal key distributor’s ID only by observing the
pirate device’s outputs on certain inputs. In addition, it does not require
the pirate device’s secret keys to be well-formed as compared to some
previous work. Our proposed scheme is provably secure under the De-
cisional Bilinear Diffie-Hellman (DBDH) assumption and the Decisional
Linear (DL) assumption.

1 Introduction

There is a trend that more data are stored or delivered across third parties over
Internet for either reliable storage or ease of sharing. For example, individuals
would store their personal information on portal web sites such as Google, and
commercial content providers may deliver their product through content delivery
networks (CDNs) such as Akamai. Such a trend raises the concern that sensitive
data stored or cached by these third-party sites will be compromised. Moreover,
in some critical or copyright-sensitive application scenarios, it requires differen-
tiated service in the way that, data are defined with sets of attributes and each
user is limited to access data of some particular set of attributes or their com-
binations. In this kind of applications, each user’s access privilege is assigned
by the user’s role or the price that this user paid. One example of this kind of
applications is targeted broadcast system, e.g., a digital video recorder (DVR)
system. In such a system, the content provider might broadcast episodes of TV
shows and each of the shows may be assigned a set of attributes such as name,

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 311–329, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

312 S. Yu et al.

season number, genre, so on and so forth. Users will obtain the access privilege
to contents of some particular combination of these attributes by paying the
corresponding price to the content provider. The user’s access privilege can be
encoded as a policy such as (“name=heros” AND (“season 2” OR “season 3”)).
As content providers might provide their services across third party CDNs, for
the purpose of access control it is desirable to encrypt the media products us-
ing certain cryptographic primitive since traditional centralized access control
methods such as the reference monitor approach might not be suitable in this
scenario.

Key-policy attribute-based encryption (KP-ABE)[1] is such a cryptographic
primitive that was proposed to resolve the exact problem of fine-grained data
access control in one-to-many communications. In KP-ABE, a ciphertext is as-
sociated with a set of attributes, and each user secret key is embedded with
an access structure which is the logic combination of certain set of attributes.
Users can decrypt a ciphertext if and only if the set of attributes associated
with the ciphertext satisfy the access structures embedded in their secret keys.
Beside this property, KP-ABE also has nice properties of collusion resistance
and provable security under standard difficulty assumptions. All these proper-
ties seem to make KP-ABE a perfect tool to enforce access control in the above
copyright-sensitive applications.

However, the following issue may impede its direct application in targeted
broadcast systems of our interests: In the current KP-ABE construction [1], a
user secret key is defined over an access structure and does not have the one-
to-one correspondence with any particular user. This results in the fact that a
paid user is able to “share” his secret key and abuse his access privilege with-
out being identified. More seriously, pirates may take this advantage to make
profits by abusing the access privilege. We call this kind of misbehavior by key
abuse attacks. As a matter of fact, key abuse attacks are extremely harmful for
copyright-sensitive application scenarios. Imagine that in a DVR system pro-
tected by KP-ABE, key abusers can easily distribute content decryption keys to
others by ways such as sending via email. Due to the cost of this is extremely
low, it is more destructive than directly distributing the content itself. Therefore,
before KP-ABE can be safely applied to aforementioned applications, key abuse
attacks should be well addressed. The ideal way for defending against key abuse
attacks is to technically prevent illegal users from using others’ decryption keys.
However, it is difficult to realize since it may require on-line servers to monitor
the usage of user decryption keys, or the user secret key to be physically associ-
ated with the user. In conventional broadcast encryption, the issue of key abuse
is addressed by using a technique called traitor tracing which has been well stud-
ied by previous works [2,3,4,5]. The key idea of traitor tracing is to enable the
content provider to trace any suspicious pirate device and thus discover illegal
key distributor’s identitie(s) and collect evidences of key abuse. Then the con-
tent provider can sue the illegal key distributors by presenting these evidences
to law authorities. Specifically, the content provider would choose particular
types of ciphertexts and trick pirate devices into decrypting them. Success of

Defending against Key Abuse Attacks 313

decryption will provide the evidence of pirating. At a high level view, we can
play the same trick in KP-ABE to defend against key abuse attacks. However,
underlying techniques adopted by existing traitor tracing systems can not be
directly applied to KP-ABE because receivers are represented individually in
conventional broadcast encryption while not in KP-ABE. Therefore, it is de-
sirable to propose a novel solution for defending against key abuse attacks in
KP-ABE.

1.1 Our Contribution

In this paper, we resolve the issue and provide an abuse free KP-ABE (AFKP-
ABE) scheme based on the Decisional Bilinear Diffie-Hellman (DBDH) assump-
tion and the Decision Linear (D-Linear) assumption. AFKP-ABE has properties
of partially collusion resistance and black box tracing according to the definition
in [5]. In addition, AFKP-ABE is efficient since both the secret key size and the
ciphertext size are O(logN), where N is the total number of users. The main tech-
nical challenge of our construction of AFKP-ABE is to realize black box tracing,
i.e., tracing the pirate device only by observing its outputs on some inputs. To
achieve this goal, one frequently used method is to trick the pirate device into de-
crypting tracing ciphertexts and success of decryption will provide the evidence
of pirating as mentioned before. In the context of KP-ABE, however, this implies
that an unsuspected user may not be able to correctly decrypt a tracing cipher-
text even if the attributes embedded in the ciphertext satisfy his access structure,
and thus has the chance to detect the ongoing tracing activity. A pirate can take
advantage of this and collude with other pirates to detect tracing activities.

The main idea of our construction is as follows. Each user is assigned a unique
ID which is chosen from the identity space. Then, we define bits of user identi-
ties as attributes and embed them in user secret key. We call these attributes
by identity-related attributes and other attributes by normal attributes. Normal
(non-tracing) encryption algorithm associates the identity-related attributes to
the ciphertext in the way that all the bits of the identity space are set to “don’t
care”. The tracing algorithm just associates the suspicious identity corresponding
identity-related attributes to the ciphertext. This turns out that only the user with
the suspicious identity is able to correctly decrypt the tracing ciphertext. Note
that in this construction the only difference between a normal encryption algo-
rithm and the tracing algorithm is on the input set of identity-related attributes.
To make the tracing algorithm indistinguishable from the regular encryption al-
gorithm, we hide these identity-related attributes when encrypting so that pirate
devices are not able to tell which and how many identity-related attributes are
used. In addition we also hide some of the normal attributes. The intuition behind
this is to prevent the pirate device from being able to check if normal attributes
of the ciphertext satisfy his access structure and thus detect the tracing activ-
ity. We achieve the goal of hiding attributes using the technique from anonymous
ciphertext-policy attribute-based encryption [6] in which the ciphertext policy is
hidden to receivers. Our definition of the KP-ABE tracing system is based on the
definition of the traitor tracing system by Boneh et al. [5].

314 S. Yu et al.

1.2 Related Work

Attribute-Based Encryption. Sahai and Waters[7] first introduced attribute-
based enctyption (ABE) for encrypted access control. In an ABE system, both
the user’ private key and the ciphertext are associated with a set of attributes. If
only at least k attributes overlap between the ciphertext and his private key, can
the user decrypt the ciphertext. Based on ABE, Goyal et al. [1] proposed a key-
policy attribute-based encryption (KP-ABE) scheme and introduced the concept
of ciphertext-policy attribute-based encryption (CP-ABE). The first CP-ABE
construction was proposed by Bethencourt et al. [8]. Cheung et al. [9] proposed
the first provably secure CP-ABE. In CP-ABE, the user secret key is associated
with a set of attributes and ciphertexts are embedded with an access structure.
A user is able to decrypt the ciphertext only if the attributes associated with
his secret keys satisfy the access structure of the ciphertext. KP-ABE is defined
in the reverse way than CP-ABE. User secret keys in KP-ABE are embedded
with an access structure and ciphertexts are associated with a set of attributes.
Successful decryption of the ciphertext requires a match between the user’s access
structure and the ciphertext attribute set.

Anonymous CP-ABE. In conventional CP-ABE schemes [8,9], ciphertext
policies should be revealed in the ciphertext so that receivers are able to combine
correct secret keys for decryption. To better protect user privacy, some applica-
tion scenarios may require ciphertext policies to be hidden to receivers. We call
this branch of CP-ABE schemes by anonymous CP-ABE. The first anonymous
CP-ABE scheme was proposed by Kapadia et al. [10]. However, this scheme is
not collusion-resistant and it needs an online semi-trusted server to participate
in data encryption. Yu et al. proposed two collusion-resistant anonymous CP-
ABE schemes [11,12] based on [9]. But the security of these schemes is based on
strong assumptions. Nishide et al. [6] proposed the first provably secure anony-
mous CP-ABE based on the DBDH assumption and the D-Linear assumption.
In their proposed scheme, each attribute could have several values. A public
key component is defined over each value of an attribute. User secret key is
associated with exactly one value of each attribute. The ciphertext has a well-
formed ciphertext component for each intended attribute value and mal-formed
ciphertext components for unintended attribute values. It sets an attribute as
“don’t care” by presenting well-formed ciphertext components for all the values
of this attribute. If there is one ciphertext component corresponding to the user
attributes is mal-formed, this user will not be able to decrypt the ciphertext.
Because the scheme is designed in such a way that it is hard to distinguish well-
formed ciphertext components from mal-formed ones, receivers are not able to
tell which or how many attributes appear in the ciphertext policy. Our construc-
tion is partially based on this scheme. We refer to [6] for more details on this
scheme. Anonymous CP-ABE can also be realized by using a recently invented
cryptographic primitive called predicate encryption by Katz et al.[13]. However,
their construction requires the bilinear group to be of the order of product of
three large primes. Moreover, their security proof is based on new complexity as-
sumptions. Recently, Li et. al proposed two accountable attribute-based schemes

Defending against Key Abuse Attacks 315

[14,15] which solve the similar issue of key forgery in the setting of CP-ABE. We
claim that our work is proposed in parallel with these schemes and in different
models.

Traitor Tracing. Traitor tracing systems were proposed for use in broadcast
environments to help content providers trace back to the original source of pi-
rates. In a traitor tracing system, each user (with a decoder) is assigned a per-
sonal decryption key. The content provider encrypts the content such that only
authorized users are able to decrypt. Suppose a group of colluding users P con-
tribute their personal keys to build a pirate decoder. The tracing scheme should
be able to trace back to each member of P . The first traitor tracing system is
proposed by Chor et al[2]. Since that, many traitor tracing schemes [3,4,5] have
been proposed. These scheme can be categorized by the following properties[5]:
public key/private key broadcast encryption, public/private traceability, collu-
sion resistance, black box tracing, stateful/stateless decoder. For example, [5] is
a traitor tracing system for public key broadcast and enables private black box
tracing against arbitrary colluding stateless decoders. Other important proper-
ties of a traitor tracing system include secret key size and ciphertext size.

The rest of this paper is organized as follows. Section 2 reviews some technique
preliminaries pertaining to our construction. Section 3 presents formal definitions
and models of our proposed abuse free key-policy attribute-based encryption
scheme. In section 4 we give our construction of such a scheme as well as our
security proof to it. In section 5, we discuss potential application scenarios in
which our scheme would be applicable. We conclude this paper in Section 6.

2 Preliminaries

2.1 Bilinear Maps

Our design is based on some facts about groups with efficiently computable
bilinear maps.

Let G0 and G1 be two multiplicative cyclic groups of prime order p. Let g be
a generator of G0. A bilinear map is is an injective function e : G0 × G0 → G1
with the following properties:

1. Bilinearity: for all u, v ∈ G0 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g)
= 1.
3. Computability: There is an efficient algorithm to compute e(u, v) for all

u, v ∈ G0.

2.2 Complexity Assumptions

Decisional Bilinear Diffie-Hellman (DBDH) Assumption. Let a, b, c, z ∈ Zp be
chosen at random and g be a generator of G0. The DBDH assumption [16]
states that no probabilistic polynomial-time algorithm B can distinguish the
tuples (A = ga, B = gb, C = gc, e(g, g)abc) from the tuple (A = ga, B = gb, C =
gc, e(g, g)z) with non-negligible advantage.

316 S. Yu et al.

The Decision Linear (D-Linear) Assumption. Let z1, z2, z3, z4, z ∈ Zp be chosen
at random and g be a generator of G0. The D-Linear assumption [17] states
that that no probabilistic polynomial-time algorithm B can distinguish the tu-
ple (g, gz1, gz2 , gz1z3 , gz2z4 , gz3+z4) from the tuple (g, gz1 , gz2 , gz1z3 , gz2z4 , gz) with
non-negligible advantage.

3 Definitions and Models

In this section, we present the definition of our abuse-free KP-ABE (AFKP-
ABE) scheme as well as its security definition. The security definition of our
scheme is consistent to traitor tracing schemes [5].

3.1 Description of AFKP-ABE

The AFKP-ABE scheme has the following five algorithms:

Setup(1λ, n). The setup algorithm is a randomized algorithm. It takes as input
the security parameter 1λ and n, the length of a user identity. It outputs a master
key MK and public parameters PK.

Enc(M , γ, PK). The encryption algorithm is a randomized algorithm. It takes
as input a message M , a set of attributes γ, and the public parameters PK. It
outputs a ciphertext E. On different input γ, this algorithm can be used either
for normal (non-tracing) operations of content distribution, or for the purpose
of tracing.

KeyGen(T , MK, PK). The key generation algorithm is a randomized algo-
rithm. It takes as input an access structure T , the master secret key MK, and
the public parameters PK. It outputs a user secret key SK.

Dec(E, SK, PK). The decryption algorithm is a deterministic algorithm. It
takes as input the ciphertext E for a set of attributes γ, a user secret key SK
for an access structure T , and the public parameters PK. If γ |= T , i.e., γ
satisfies T , it outputs the message M . Otherwise it outputs ⊥ with overwhelming
probability.

TraceD(ε). This algorithm takes input a parameter ε (which should be poly-
nomially related to λ), and has black-box access to an ε-useful decoder box D
which is constructed by the adversary. It outputs a set of guilty colluders in
polynomial time.

3.2 Security Definition

The security of ABKP-ABE is defined by the following two security games.

Game 1. The first game captures the idea of Semantic Security. In our scheme
we follow the definition of the standard game used by KP-ABE [1] which proceeds
with the following steps.

Defending against Key Abuse Attacks 317

– Init. The adversary declares the set of attributes, γ, that he wishes to be
challenged upon.

– Setup. The challenger runs the Setup algorithm of AFKP-ABE and gives the
public parameters to the adversary.

– Phase 1. The adversary is allowed to issue queries for private keys for many
access structures Ti , where γ � Ti for all i.

– Challenge. The adversary submits two equal length messages M0 and M1.
The challenger flips a random coin b, and encrypts Mb with γ. The ciphertext
is passed to the adversary.

– Phase 2. Phase 1 is repeated.
– Guess. The adversary outputs a guess b0 of b.

The advantage of an adversary A winning this game is defined as AdvSS =
Pr[b0 = b] − 1

2 .

Game 2. The second game captures the notion of Traceability against partial
collusion. Our definition of the traceability game is based on that of [5]. Given
λ, n, and ε, the game proceeds with the following steps.

– Setup. The adversary A outputs a set U = {u1, u2, . . . , ut} of colluding users
with the only restriction that no pair of users have exactly the same access
privilege. The access structure associated with user ui ∈ U is denoted by Ti.

– Key Generation. The challenger runs the key generation algorithm KeyGen
to provide the user secret key for each user in U .

– The adversary A outputs a pirate device D.
– The challenger runs TraceD(ε) to obtain a set S.

We say that the adversary A wins the game if the following two conditions hold:

1. The decoder D is ε-useful, i.e., for a randomly chosen M in the finite message
space, we have that Pr[D(Enc(M, γ, PK)) = M] ≥ ε if there exists a user
ui ∈ U with γ |= Ti, where γ is chosen in the way that makes Enc run under
normal (non-tracing) operation.

2. The set S is either empty, or is not a subset of U .

We denote the probability that the adversary A wins this game by AdvTR. If U
contains exactly one user, this game captures the notion of Traceability against
single pirate.

Definition 1. We say that AFKP-ABE is secure if AdvSS and AdvTR are neg-
ligible (in λ) for any polynomial time adversary A and any constant ε > 0.

To prove the security of AFKP-ABE in Game 2, another required security game
is the Indistinguishability Game which captures the notion that, it is hard to
distinguish ciphertexts generated by normal (non-tracing) operations from those
generated by tracing operations. Its concrete security definition is given in Ap-
pendix(see Section 6.2).

318 S. Yu et al.

4 Our Construction

In this section, we present our construction of the secure AFKP-ABE scheme.

4.1 Main Idea

The intuition of our construction can be summarized as the follows. We define
a n-bit user identity space and each bit of them is defined as an attribute with
two occurrences, one for bit value 0 and the other for bit value 1. Each user is
then assigned a unique ID from the identity space. The encryption algorithm
will associate these identity-related attributes to the ciphertext in the following
way: for normal (non-tracing) operations, all these n attributes are set as “don’t
care”; for tracing operations, they are set to represent the suspicious identity. In
tracing operations, a user is able to decrypt the ciphertext only if his identity
equals the suspicious one. To make tracing ciphertexts indistinguishable from
normal ciphertexts, we hide these identity-related attributes in the way that any
user is not able to tell which and how many of them are set as “interested”
(i.e., not “don’t care”). In addition, we also hide some normal attributes so that
upon a fail decryption the user can not tell if it is caused by the mismatch of his
ID or by his access privilege (without considering his ID). Thus, he is not able
to distinguish a tracing activity from a normal (non-tracing) one. The security
goal of our construction is to build such a KP-ABE scheme in which 1) any user
without the correct decryption key is not able to tell a single bit of the message,
and 2) given a pirate device, the authority is able to trick it into decrypting
tracing ciphertexts and thus discover the identity of the original owner of the
decryption key held by this device.

Definition of Attributes. We define three set of attributes: public normal
attributes, hidden normal attributes and hidden identity-related attributes. We
denote the universe of each of them by UPN ,UHN , and UHID respectively. The
letter P in the subscription denotes the word “public”, H means “hidden”, N
represents “normal”, and ID is the abbreviation of “identity”. UPN and UHN

contain attributes to be used by normal encryptions. UHID contains identity-
related attributes for describing the suspected user’s identity and is particularly
used for tracing. In ciphertexts, the associated attributes from UHN and UHID

have to be hidden such that any receiver is not able to tell which and how
many of them are used, while attributes from UPN are public. Each attribute
in UHID has two occurrences, one for bit value 0 and the other for bit value 1.
Similarly, we assume that attributes in UHN also have binary values like those in
UHID. This assumption is just for concise presentation of our scheme. Extending
our scheme to support the non-binary case is trivial. From now on we will call
the union of UHID and UHN as hidden attributes by capturing their common
property of “hidden”. We denote the universe of hidden attributes as UH , and
thus UH = UHN ∪UHID. We denote the number of attributes in UHN by m and
that in UPN by k. Therefore, the total number of hidden attributes is m + n.

According to the above discussion, it is clear that in a ciphertext there could be
three types of attributes: attributes from UPN , attributes from UHN , and those

Defending against Key Abuse Attacks 319

attributes from UHID

TR: subtree for attributes from UPN

attributes from UHN

AND

... ...

m n
..............

Fig. 1. Illustration of the construction of our access structure

from UHID. We denote the set of these three type of attributes in a ciphertext by
γPN , γHN , and γHID respectively. Therefore, we have γ = γPN ∪ γHN ∪ γHID,
where γ represents the set of all the attributes interested by the encryptor.

Access Structure. Our definition of the access structure (implemented using
an access tree) is the same as KP-ABE [1], i.e., each interior node of the tree
is a threshold gate and the leaves are associated with attributes. However, our
construction has the following restrictions on the access structure: (1) each access
structure should deal with all the hidden attributes and all of them should
appear on the second layer of the tree; (2) the root node has to be an AND gate;
(3) all the attributes from UPN should appear in a subtree which we denote
by TR. Interior nodes of the subtree TR could be any kind of threshold gates.
The structure of the access tree in our construction is illustrated by Fig. 1. In
addition, each non-root node has a unique index given by its parent. For the
convenience of representation, we will denote a node x′s parent by xpa and x′s
index by idx(x).

4.2 AFKP-ABE Scheme

In the description, G0 is a bilinear group of prime order p and g is a generator
of G0. We use e : G0 × G0 → G1 to represent a bilinear map. The Lagrange
coefficient Δi,S(x) is defined as follows, where i ∈ Zp, x ∈ Zp are variables, and
S ⊂ Zp is some set.

Δi,S(x) :=
∏

j∈S\{i}

x − j

i − j
.

We use strings of length n to represent user IDs. “don’t care” bit of an ID is
represented by a “∗”.

Setup(1λ, n) Define UH = {1, · · ·n, n + 1, · · ·m + n}, where the first n elements
are for UHID and the last m for UHN , and UPN = {1, 2, · · ·k}. For each attribute
i ∈ UPN , choose a random number ti from Zp. Then for each hidden attribute

320 S. Yu et al.

j ∈ UH , choose random numbers {aj,t, bj,t}t=0,1 from Zp and random points
{Aj,t}t=0,1 from G0. Finally, choose a random number y from Zp. The public
parameters PK are published as

PK = (Y = e(g, g)y, {Ti = gti}i∈UPN , {Aaj,t

j,t , A
bj,t

j,t }j∈UH ,t=0,1)

and the master key MK is

MK = (y, {ti}i∈UPN , {aj,t, bj,t}j∈UH ,t=0,1)

Enc(M, γ, PK) Define γ = γPN ∪ γHN ∪ γHID as mentioned before. Let the ID
represented by γHID be XnXn−1 · · ·X1, where Xi = 0, 1 or ∗ for each 1 ≤ i ≤ n.
The encryptor generates ciphertext components for γHID as follows. First choose
a random number s from Zp. Then for each 1 ≤ i ≤ n, pick random numbers
ri,0 and ri,1 from Zp, and compute tuples {[Êi,t, Ěi,t]}t=0,1 as follows.

(1) If Xi = b, where b = 0|1, the encryptor sets [Êi,1−b, Ěi,1−b] as random
(mal-formed), and [Êi,b, Ěi,b] = [(Abi,b

i,b)ri,b , (Aai,b

i,b)s−ri,b] (well-formed).

(2) IfXi = ∗, for t = 0, 1 the encryptor sets [Êi,t, Ěi,t] = [(Abi,t

i,t)ri,t , (Aai,t

i,t)s−ri,t]
(well-formed).

Ciphertext components for γHN are generated in the same way as γHID. The
encryptor generates ciphertext components for γPN as follows. For each i ∈ γPN ,
compute Ei = T s

i . Finally, the ciphertext is output as follows.

E = (γPN , Ẽ = MY s, E0 = gs,

{Ei}i∈γPN , {{Êi,t, Ěi,t}t=0,1}i∈γHN∪γHID)

KeyGen(T , MK, PK) The access structure T is defined as mentioned before:
the root node of the tree is an AND gate, all the hidden attributes appear on the
second layer of the tree, and all the public normal attributes are in the subtree
TR. The trusted authority generates the user secret key as follows.

(1) For the subtree TR, choose a polynomial qx for each node x, including all
the leaf nodes, of the tree in the top-down manner as follows. Starting from the
root node r of TR (with the threshold value kr), choose a random number u from
Zp and set qr(0) = u. Then randomly choose kr − 1 other points to define the
(kr − 1)-degree polynomial qr completely. For any other node x, qx is generated
in the same way and qx(0) = qxpa(idx(x)).

After having defined the polynomials, the following secret key component is
generated for each leaf node x in TR:

Dx = g
qx(0)

ti

where i denotes the attribute in UPN associated with node x. We use LTR to
represent the set of all the leaf nodes in TR.

(2) Secret key components for attributes from UHID are generated as follows.
Assume the user is assigned a unique identity ID = XnXn−1 · · ·X1, where
Xi = 0|1 for each 1 ≤ i ≤ n. Then for each attribute i in UHID, the authority

Defending against Key Abuse Attacks 321

chooses random numbers vi and λi from Zp and outputs a triple [D̃i, D̂i, Ďi] as
follows.

D̃i = gvi(Ai,Xi)
ai,Xi

bi,Xi
λi , D̂i = gai,Xi

λi , Ďi = gbi,Xi
λi .

(3) Secret key components for attributes from UHN are generated in the same
way as UHID.

(4) The authority sets v =
∑

i∈UH
vi and generates a secret key component

D0 = gy−u−v.
Finally, the authority outputs the following as the user secret key (SK):

SK = (D0, {Di}i∈LTR , {D̃i, D̂i, Ďi}i∈UH)

Dec(E, SK, PK) The receiver decrypts the ciphertext E by applying his secret
key components to the ciphertext as follows.

(1) Apply secret key components for public normal attributes to the cipher-
text. For each leaf node x of TR, assuming x is associated with attribute i ∈ UPN ,
calculate the following (the result is denoted by Fx):

Fx =
{

e(Di, Ei) = e(g, g)sqx(0), if x ∈ γPN ;
⊥, otherwise.

(1)

Then execute recursively for each non-leaf node z of TR in the bottom-up manner
as follows. For each child node x of z, if Fx
=⊥ add x into a set Sz until Sz

has kz elements, where the set Sz is initialized to empty. If not able to construct
such a kz-sized set Sz , let Fz =⊥. Otherwise, calculate Fz as follows.

Fz =
∏

x∈Sz

F
Δx,Sz (0)
x

=
∏

x∈Sz

(e(g, g)sqx(0))Δx,Sz (0)

= e(g, g)sqz(0)

where derivation of the last two steps holds because qx(0) = qz(idx(x)) and
qz(0) =

∑
x∈Sz

(qz(idx(x)) · Δx,Sz(0)).
This recursion ends up with outputting Fr = e(g, g)sqr(0) if γPN |= TR. Since

qr(0) = u, we have Fr = e(g, g)su.
(2) Apply secret key components for hidden attributes to the ciphertext. If

the set of hidden attributes in the access structure contains all the attributes in
γHN and γHID, output the result FH as follows.

FH =
∏

i∈UH

e(E0, D̃i)
e(Êi, D̂i)e(Ěi, Ďi)

= e(g, g)sv

The message can be output as follows

M =
Ẽ

e(E0, D0)FrFH

322 S. Yu et al.

=
Me(g, g)ys

e(gs, gy−u−v)e(g, g)sue(g, g)sv

TraceD(ε) This algorithm takes as input ε and a ε-useful pirate device D. We
first show how to trace D which just holds one decryption key as follows. The
tracing algorithm repeats the following steps 1

ε times for each identity IDi in
the system identity list:

– Step 1. Choose a set of attributes γ = γPN ∪ γHN ∪ γHID such that γ
satisfies the access structure of IDi and γHID just contains the attributes
corresponding to bits of IDi.

– Step 2. Choose a random message M from the finite message space. Let
E ← Enc(M, γ, PK).

– Step 3. Test if D correctly decrypts E. If it does, stop and return with IDi.
Otherwise continue.

If at the end of these repetitions the algorithm does not return with any identity,
return FAIL and stop the experiment. Tracing D which holds more than one
decryption keys is similar with the exception that, in step 3 add IDi into the
guilty user set S instead of returning immediately, where S is initialized as
empty. If at the end of these repetitions S is empty, return FAIL and stop the
experiment.

4.3 Security Proof

We show the security of our scheme as follows.

Lemma 1. If a polynomial-time adversary A can win Game 1 with non-negligible
advantage AdvSS , then we can build a simulator B that is able to solve the DBDH
problem with advantage 1

2AdvSS .

Proof. Security proof of this Lemma is presented in Appendix(see Section 6.1).

Lemma 2. If a polynomial-time adversary A can win our Indistinguishability
Game (see Appendix B) with advantage AdvIND, then we can build a simulator
B that is able to solve the D-Linear problem with advantage 1

2AdvIND.

Proof. A sketch of the security proof for this Lemma is presented in Appendix(see
Section 6.2).

Lemma 3. If AdvIND and AdvSS are negligible, AdvTR is negligible.

Proof. Given a pirate device D, our tracing algorithm TraceD(ε) will try with
each identity IDi in the system identity list. We denote the attribute set chosen
for testing IDi by γi = γi

PN ∪γi
HN ∪γi

HID. We define the corresponding attribute
set used for normal (non-tracing) encryption as γ̄i = γi

PN ∪γi
HN ∪γ̄i

HID. The only
difference between the two sets of attributes is that, in γi

HID all the attributes

Defending against Key Abuse Attacks 323

corresponding to bits of IDi are set as “interested”, but in γ̄i
HID all the identity-

related attributes are set as “don’t care”. Based on this definition, we define the
following two probabilities:

pi = Pr[D(Enc(M, γi, PK)) = M]
p = Pr[D(Enc(M, γ̄i, PK)) = M]

where M is a random message picked from the message space. We distinguish
between the following three types of ε-useful pirate devices that the pirate can
generate, where ε is some fixed constant:

1. Pirate device D for which |p − pi| is non-negligible for some identity IDi.
2. Pirate device D for which |p− pi| is negligible for each identity IDi, but the

tracing algorithm TraceD(ε) outputs an empty set.
3. Pirate device D for which |p− pi| is negligible for each identity IDi, but the

tracing algorithm TraceD(ε) outputs a set which is not contained in the set
of colluding users U .

It is obvious that we can use any pirate producing type 1) devices to win the In-
distinguishability Game with non-negligible advantage. We now show the rough
idea of how we can use any pirate producing type 2) devices to win the Indis-
tinguishability Game with non-negligible advantage. Assume the set of colluding
users that the pirate claims to be able to collect is U = {u1, u2, · · · , ut}. Now
denote the challenger of the Indistinguishability Game as C, the simulator we
want to build is B, and the pirate is A. Then the simulator we build executes as
follows.

– Init. B presents C two attribute sets γ0 = γi and γ1 = γ̄i to be challenged
upon, where γi is the attribute set that can be used to test user ui ∈ U by
our tracing algorithm.

– Setup. C generates public parameters and give them to B.
– Phase 1. B asks C to give him secret keys for all the users in U . Then B

gives all these keys to A to answer key queries in the key generation phase
of Game 2.

– Challenge. B submits two equal length messages M0 and M1 to C. C flips a
coin and encrypts Mb with γb. Then the ciphertext is given to B.

– Phase 2. B submits more secret key queries.
– Guess. B asks A to decrypt the ciphertext given by C. If the message returned

by A is one of M1 and M0, B answers b0 = 1. Otherwise, B answers b0 = 0.

The advantage for our simulator B to win the Indistinguishability Game is 1
ε

times the advantage that the type 2) devices, which are generated by A, output
the empty set.

It is easy to show that type 3) devices can be used to win Game 1 (the
semantic security game). The intuition is that, type 3) devices can correctly
decrypt a message which is encrypted for users whose secret keys are not known
to type 3) devices with non-negligible advantage.

324 S. Yu et al.

4.4 Efficiency Analysis

In AFKP-ABE, both the ciphertext size and the secret key size are linear to n,
where n is the number of bits in the identity space. As the maximum number of
users it can represent is N = 2n, the complexity can be written as O(logN), where
N is the total number of users. To trace a pirate, AFKP-ABE needs to try with
every user’s identity in the system list. When the number of users in a system is
large, the tracing algorithm would be inefficient. To resolve this issue, we can first
test with some normal ciphertexts using combinations of normal attributes. For
example, we can use different combinations of attributes like location, age, etc.
In practice, this process will hopefully rule out a significant portion of users. Our
tracing algorithm can just test over the remaining set of users.

5 Application Scenarios of Our Scheme

In general, our proposed scheme is applicable to systems where 1) data can be
categorized by their attributes and a user access privilege should be defined in
the way that just allows the user to access certain intended subset of resources; 2)
abuse of the access privilege should be prohibited. As we mentioned before, one
important application scenario of our abuse free KP-ABE scheme is the area of
copyright-sensitive targeted broadcast, especially commercial media broadcast
systems. In these systems, contents usually have their commercial values and
abuse of the access privilege usually causes legal concerns. Another important
application scenario of our proposed scheme would be audit log systems. As these
systems would be widely used in applications such as network management, audit
logs may contain sensitive information and disclose of them to unauthorized
parties would cause security concerns or privacy violations. Recently, we also
witnessed application of KP-ABE in wireless networks environment. In [18], Yu
et al. proposed a fine-grained data access control scheme for wireless sensor
networks for mission-critical applications. In this paper, data access control is
well resolved by combining KP-ABE with some other cryptographic primitives.
However, the issue of access privilege abuse is not addressed since it is yet another
serious issue if we consider the application of mission-critical scenarios such as
battle fields. We believe our AFKP-ABE can serve to enhance their proposed
scheme as the complexity of AFKP-ABE in terms of ciphertext size and secret
key size is just O(logN), where N is the total number of users.

6 Conclusion and Future Work

In this paper, we focus on the key abuse attacks in KP-ABE enabled broadcast
systems and proposed an abuse free KP-ABE (AFKP-ABE) scheme. To defend
against the key abuse attacks, we introduce hidden attributes in the system such
that the tracing algorithm can use them to identify any single pirate or partial
colluding users. Our design enables black boxing tracing and does not require
the well-formness of the user secret key. The complexity of AFKP-ABE in terms

Defending against Key Abuse Attacks 325

of ciphertext size and user secret keys size is just O(logN), where N is the total
number of users. Our scheme is provably secure under DBDH assumption and
D-Linear assumption. As a future work, we may focus on designing a tracing
system against arbitrary colluders.

Acknowledgment

This work was supported in part by the US National Science Foundation un-
der grants CNS-0716306, CNS-0626601, CNS-0746977, CNS-0831628, and CNS-
0831963.

References

1. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98 (2006)

2. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)

3. Boneh, D., Franklin, M.K.: An efficient public key traitor tracing scheme. In:
Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Hei-
delberg (1999)

4. Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Hei-
delberg (2002)

5. Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 573–592. Springer, Heidelberg (2006)

6. Nishide, T., Yoneyama, K., Ohta, K.: Attribute-based encryption with partially
hidden encryptor-specified access structures. In: Bellovin, S.M., Gennaro, R.,
Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 111–129.
Springer, Heidelberg (2008)

7. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

8. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: SP 2007, Washington, DC, USA, pp. 321–334. IEEE Computer Society,
Los Alamitos (2007)

9. Cheung, L., Newport, C.: Provably secure ciphertext policy abe. In: CCS 2007, pp.
456–465. ACM, New York (2007)

10. Kapadia, A., Tsang, P., Smith, S.: Attribute-based publishing with hidden creden-
tials and hidden policies. In: NDSS 2007. LNCS, vol. 5037, pp. 179–192. Springer,
Heidelberg (2007)

11. Yu, S., Ren, K., Lou, W.: Attribute-based on-demand multicast group setup with
membership anonymity. In: Securecomm (2008)

12. Yu, S., Ren, K., Lou, W.: Attribute-based content distribution with hidden policy.
In: NPSEC (2008)

13. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

14. Li, J., Ren, K., Kim, K.: A2be: Accountable attribute-based encryption for
abuse free access control. Cryptology ePrint Archive, Report 2009/118 (2009),
http://eprint.iacr.org/

http://eprint.iacr.org/

326 S. Yu et al.

15. Li, J., Ren, K., Zhu, B., Wan, Z.: Privacy-aware attribute-based encryption with
user accountability. In: ISC (2009)

16. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

17. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

18. Yu, S., Ren, K., Lou, W.: FDAC: Toward fine-grained distributed data access
control in wireless sensor networks. In: IEEE INFOCOM (2009)

Appendix

6.1 Security Proof for Lemma 1

Proof. In the DBDH game, the challenger chooses random numbers a, b, c from
Zp and flips a fair coin μ. If μ = 0, set z = abc; If μ = 1, set z as a random
value in Zp. B is given (A, B, C, Z)=(ga, gb, gc, e(g, g)z) and asked to output μ.
To answer this challenge, B then simulates Game 1 as follows.

Init B runs A. A chooses the set of attributes γ = γPN ∪ γHN ∪ γHID it
wants to be challenged upon. We denote the identity represented by γHID by
XnXn−1 · · ·X0, where Xi = 0, 1 or ∗, for 1 ≤ i ≤ n.We denote the set γHN∪γHID

by γH .

Setup B creates public parameters as follows. First, set Y = e(A, B) = e(g, g)ab.
Then, for each attribute i ∈ UPN , generate Ti by the following steps:

– choose a random number ti ∈ Zp.
– if i ∈ γPN , sets Ti = gti ; otherwise, set Ti = gbti = Bti .

For each attribute i ∈ UHID, choose two random numbers hi,0 and hi,1 from Zp.
Then proceed as follows.

– if Xi = ∗, Ai,t = ghi,t , t = 0, 1; otherwise, Ai,Xi = ghi,Xi and Ai,1−Xi =
gbhi,1−Xi = Bhi,1−Xi .

– choose random numbers {ai,t, bi,t}t=0,1 from Zp.

Attributes in UHN are processed in the same way as UHID. Finally, output PK
as in the real scheme.

Phase I. A submits a query for secret key of access structure T , where γ � T .
Note that T has the structure of 1. B differentiates the following two cases and
answers the query accordingly:

Case 1: In this case, γPN � TR. B generates secret key components for hidden
attributes as in the real scheme. To generate secret key components for attributes
attached to TR, B defines a recursive function PolyDef(x) and runs it over the
root node r of TR. For each node x in TR, use kx and px to represent the node’s
threshold value and the number of its satisfied children respectively (the satisfied
child is a child node of x that returns true over γPN).

PolyDef(x): It is defined by the following steps:

Defending against Key Abuse Attacks 327

– Define qx as follows.
– If x is not r, set qx(0) = qxpa(idx(x)); otherwise, set qx(0) = ab + br′, r′

is randomly chosen from Zp.
– Select d (= kx − 1) children of x. For each selected child i, choose a

random number r′i from Zp and let qx(idx(i)) = br′i. This completes the
construction of polynomial qx. Note that, if px ≤ d, the set of selected
children should include all the px satisfied ones; otherwise, all the d
selected children should be satisfied ones. We denote the set of these
selected children of x plus x itself by Xs.

– For each remaining child j (not selected by the above step), calculate qx(j) =∑
i∈Xs

qx(idx(i))Δi,Sx(j).
– For each child i of x, run PolyDef(i).

When PolyDef(r) terminates, B completes the construction of the polynomi-
als for all the nodes in TR. In particular, pr(0) = ab + br′. Note that, in our
construction of polynomials, for each node x, the polynomial values have the
following properties:

(1) If qx(0) has the form of Rxb, then for each of its children i, qi(0) (=
qx(idx(i))) has the form of Rib.

(2) If qx(0) has the form of Cxab + Rxb, then for each of its children i, (i) if
i ∈ Xs (selected), qi(0) has the form of Rib; otherwise, (ii) qi(0) has the form of
Ciab + Rib.

(3) In (1) and (2), Cx, Rx, Ci, and Ri are functions of Lagrange coefficients
and random numbers (i.e., r′j ’s), and independent of a and b.

From these properties, we may categorize a leaf nodes x into one of the fol-
lowing three types:

(1) Type A: x ∈ γPN , i.e., x is a satisfied node. qx(0) has the form of Rxb.
(2) Type B: x /∈ γPN but one of x’s ancestors (including x itself) is selected

by its parent. qx(0) has the form of Rxb.
(3) Type C: all the other leaf nodes, qx(0) has the form of Cxab + Rxb.

Therefore, the secret key component corresponding to each leaf node x of TR is
given as follows

Dx =

⎧⎪⎨⎪⎩
g

Rxb
tx = B

Rx
tx , x in Type A.

g
Rxb
txb = g

Rx
tx , x in Type B.

g
Cxab+Rxb

txb = A
Cx
tx g

Rx
tx , x in Type C.

(2)

The secret key component D0 of SK is output as follows

gy−u−v = gab−qr(0)−v = g−br′
g−v = B−r′

g−v

where v is generated when constructing secret key components for hidden at-
tributes. All the other components are generated as in the real scheme.

Case 2: In this case, γPN |= TR, but the hidden attributes of T do not match
with γH . Let a hidden attribute j that is not intended by γHID be the witness.

328 S. Yu et al.

B generates secret key components corresponding to TR as in the real scheme.
B generates secret key components for hidden attributes as follows.

– For hidden attributes 1 ≤ i ≤ m + n, pick v′i randomly from Zp. Set vj =
ab+v′j and vi = v′i for every i
= j. Finally set v =

∑m+n
i=1 vi = ab+

∑m+n
i=1 v′i.

– compute the secret key components [D̃j, D̂j , Ďj] of attribute j as follows.

D̃j = gvj (Aj,Xj)
aj,Xj

bj,Xj
λj

= gab+v′
j (Aj,Xj)

aj,Xj
bj,Xj

λj

= gab+v′
j (gbhj,Xj)aj,Xj

bj,Xj
λj

= gv′
j (gbhj,Xj)aj,Xj

bj,Xj
λ′

j

where λ′
j is chosen by B and λj = a

hj,Xj
aj,Xj

bj,Xj
+ λ′

j . B calculates [D̂j , Ďj]

and [D̃i, D̂i, Ďi] for i
= j as in the real scheme.
– Output D0 of SK as: D0 = gab−u−v = g−u−∑m+n

i=1 v′
i , where u is generated

when constructing secret key components for TR.

All the other components are generated as in the real scheme.
From the above description, we can see that B is able to construct a secret

key of T in both cases. Furthermore, the distribution of the secret key of T is
the same as that in the original scheme. The adversary A can repeat this step
for polynomial times.

Challenge. The adversaryA submits two equal length challengemessagesm0 and
m1 toB.B flips a fair binary coin v and picks outmv. The ciphertext ofmv is output
as: E = (γPN , Ẽ = mvZ, E0 = C, {Ei = Cti}i∈γPN , {{Êi,t, Ěi,t}t=0,1}i∈γH).
Note that B can construct {{Êi,t, Ěi,t}t=0,1}i∈γH because if the occurrence t of
attribute i is in γH , Ai,t doesnot contain the unknown value b, and if the occurrence
t of i is not in γH , {Êi,t, Ěi,t} are just chosen at random. If μ = 0 it is easy to show
that the ciphertext is a valid random encryption of message mv. Otherwise, if μ =
1, then Z = e(g, g)z and Ẽ = mve(g, g)z. Since z is random, Ẽ is just a random
element of G1 from the adversary’s view and contains no information about mv.

Phase II. The simulator acts exactly as it did in Phase I.

Guess. The adversary A submits a guess v′ of v. If v′ = v, B outputs μ′ = 0,
indicating that the given DBDH-tuple is a valid one. Otherwise it outputs μ′ = 1,
indicating that the given DBDH-tuple is just a random quadruple. In the case
of μ = 1, the ciphertext E contains no information about mv. Therefore, v′ is
just a random guess of v, and thus μ′ is just a random guess of μ. Thus, we have
Pr[μ′ = μ|μ = 1] = 1

2 . If μ = 0, the ciphertext E is a valid encryption of mv.
Since by definition A has the advantage of AdvSS to output a correct guess, i.e.,
v′ = v, B outputs μ′ = 0 with the probability of 1

2 + AdvSS , i.e., Pr[μ′ = μ|μ =
0] = 1

2 + AdvSS . Therefore, the overall advantage of B in the DBDH game is
1
2Pr[μ′ = μ|μ = 0]+ 1

2Pr[μ′ = μ|μ = 1]− 1
2 = 1

2 (1
2 +AdvSS)+ 1

2
1
2 − 1

2 = 1
2AdvSS .

Defending against Key Abuse Attacks 329

6.2 Indistinguishability Game

This game captures the idea that ciphetexts generated by tracing operations
are indistinguishable from those generated by normal (non-tracing) operations.
In AFKP-ABE, these two types of ciphertexts are generated by running our
encryption algorithm over different sets of attributes. To differentiate these two
types of ciphertexts is actually equal to telling which set of attributes are used
in a given data encryption operation. As we discussed, the attribute set γ used
for an encryption operation is composed of three disjunctive subsets, i.e., γ =
γPN∪γHN∪γHID. In a tracing operation, we set γHID to represent the suspicious
identity, while in a normal (non-tracing) operation we set γHID to represent the
identity of “∗ ∗ · · · ∗”, i.e., each bit if ID is set as “don’t care”. We define the
Indistinguishability Game by the following steps:

Init. The adversary A selects two sets of attributes to be challenged upon: γ0 =
γPN ∪γHN ∪γHID and γ1 = γPN ∪γHN ∪γ∗

HID, where γHID represents a certain
identity IDi, and γ∗

HID denotes the identity of “∗ ∗ · · · ∗”, i.e., each bit if ID is set
as “don’t care”. A submits these two sets of attributes to the challenger C.

Setup. The challenger B runs the setup algorithm of AFKP-ABE and give public
parameters PK to A.

Phase 1. A asks for the secret key of access structure T . If (γ0 |= T ∧ γ1 |= T)
or (γ0 � T ∧ γ1 � T), the challenger B answers the query and gives A the cor-
responding secret key SKT . The adversary A can repeat this step polynomially
many times.

Challenge. A submits two equal length messages M0 and M1 to B. If A a secret
key SKT for which (γ0 |= T ∧ γ1 |= T), it is required that M0 = M1. B flips
a binary fair coin b and encrypts Mb using attribute set γb. The ciphertext is
given to A.

Phase 2. Repeat Phase 1. If M0
= M1, A can not submit secret key query for
access structure T for which (γ0 |= T ∧ γ1 |= T).

Guess. The adversary A outputs a guess b′ of b.

Proof. We use a series of games to prove the security of this game as [6]. Game
Ind1 is defined in the same way as the original game except that in γ0, γHID

represents the identity of “∗ ∗ · · · ∗ X1”, i.e., the upper n − 1 bits are set as
“don’t care” but keep the first bit the same as in the original game. Game Ind2
is defined in the same way that γHID represents the identity of “∗ ∗ · · · ∗X2X1”,
i.e., the upper n−2 bits are set as “don’t care” but keep the first bit the same as
in the original game, so on and so forth. Our original game is thus Game Indn. To
prove the security of our scheme, it is enough to prove that it is indistinguishable
between Game Ind i and Game Ind i+1. We can use the similar technique used
by [6] to prove this. For the space limit, we will present the complete proof of
our Indistinguishability Game in the full version.

Breaking and Building of Group Inside Signature

S. Sree Vivek�, S. Sharmila Deva Selvi, S. Gopi Nath, and C. Pandu Rangan�

Indian Institute of Technology Madras,
Theoretical Computer Science Laboratory,

Department of Computer Science and Engineering,
Chennai, India

{svivek,sharmila,gopinath,prangan}@cse.iitm.ac.in

Abstract. Group Inside Signature (GIS) is a signature scheme that al-
lows the signer to designate his signature to be verified by a group of
people. Members other than the designated group cannot verify the sig-
nature generated by the signer. In Broadcast Group Oriented Signature
(BGOS), a user from one group can designate his signature to be verified
by members of another group. An Adaptable Designated Group Signa-
ture (ADGS), is one in which an user can designate his signature to be
verified by a selected set of members who are from different groups. The
two GIS schemes [5], [6] and the BGOS scheme [7], we consider are cer-
tificateless schemes and the ADGS scheme [8] which we consider here is
an identity based scheme. In this paper, we present the cryptanalysis of
all the four schemes that appeared in [5], [6], [7] and [8]. We also present
a new identity based ADGS (N-ADGS) scheme and prove its security in
the random oracle model. The existing model described in [8] for ADGS
did not consider unlinkability which is one of the key properties required
for ADGS. We provide the security model for unlinkability and also prove
our scheme is unlinkable.

Keywords: Cryptanalysis, Group Inside Signature, Broadcast Group
Oriented Signature, Adaptable Designated Group Signature, Provable
Security, Random Oracle model.

1 Introduction

In general, digital signatures are publicly verifiable. Jackbson et.al (1996) [4]
proposed the concept of Designated Verifier Signatures (DVS) and strong DVS
(SDVS). In DVS, only a designated person can verify the signature, which is
signed by a signer. DVS achieves this property by providing an ability called
Simulatability to the designated verifier, which allows him to simulate the actual
signers signature. In SDVS, any third party cannot verify the validity of the
signature unless the private key of the designated verifier or the actual signer is
exposed.
� Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Se-

cure Communication and Computation sponsored by Department of Information
Technology, Government of India.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 330–339, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Breaking and Building of Group Inside Signature 331

Extending a single party verification scheme to a designated group verifica-
tion scheme is a challenging problem. In practice, there may be different group
models. First, in networks like Local Area Networks, all group members reside
in a single network and no member of the group may hang outside network. Cer-
tificateless GIS schemes [5] and [6] provide solutions for designating a signature
to be verified inside such a group. Secondly, in distributed networks, the users of
different companies or institutions naturally come under different work groups. If
a member of one group wants to send a signed document to members of another
group, BGOS [7] can be used. Moreover the signer wants to prevent the mem-
bers outside the designated group from verifying the signature. The scheme in
[7] focuses on this problem. Finally, in distributed networks, a signer may want
several members to verify his signature, no matter whether those members are
in same or different groups. The signer wants to prevent the members outside
the defined group from verifying the signature. This model can be visualized as a
more generalized version of the previous two models. ADGS scheme in [8] focuses
on this problem. In fact even if a designated verifier vi belongs to a group say
G, while vi can verify the signature of the sender, other members of G cannot
verify the signature.

Suppose that a organization initiates a call for tender, asking for quotations
to some companies for a set of instruments and tasks to be accomplished. Here,
the requirement is that, the competing companies should not be able to verify
the quotations quoted by their counter parts. So each company will encrypt
and sign the quotation and send it to the organization. But nothing prevents
the organization from revealing the quoted values once decrypted, since the
organizations goal is to obtain quotations with low price. In this situation the
organization could show the signed offers to some other companies and influence
them to make better quotations. Here, we can use the ADGS scheme, because
the company which proposes the quotation can designate the signature to the
organization who has called for the tender and other companies can not verify
the validity unless the verifier uses the private key of the organization.

Simulatability vs Unlinkability. The notion ”Simulatability” in the context
of DVS ensures that the designated verifier has the ability to simulate the tran-
script as if it is generated by the actual signer i.e., we can say that the designated
verifier is also capable of generating the signature of the signer. Where as the
notion of ”Unlinkability” in the context of ADGS ensures that only the des-
ignated group members can verify the signature designated to them, members
other than the designated group can not verify the signature. Thus, Unlinkability
is different from Simulatability and should not be confused with each other.

Our Contribution. In this paper, we show that GIS in [5] and BGOS in [7]
are not secure against both Type-I and Type-II adversaries, and the GIS in [6] is
not secure against Type-I adversary. We also show that the basic ADGS scheme
[8] is universally forgeable. We also propose a new Adaptable Designated Group
Signature scheme (New-ADGS) and prove its security formally in the random
oracle model. Due to page limitation, we omit the reviews of the broken schemes

332 S.S. Vivek et al.

and the security proofs of the newly proposed ADGS scheme and is given in the
full version of this paper [10].

2 Preliminaries

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P , with prime order q, and G2
be a multiplicative cyclic group of the same order q. A bilinear pairing is a map
ê : G1 × G1 → G2 with the following properties.

– Bilinearity. For all P, Q, R ∈R G1 and a, b ∈R Z∗
q , ê(P + Q, R) = ê(P, R)

ê(Q, R), ê(P, Q + R) = ê(P, Q)ê(P, R) and ê(aP, bQ) = ê(P, Q)ab

– Non-Degeneracy. There exist P, Q ∈ G1 such that ê(P, Q)
= IG2 , where
IG2 is the identity element of G2.

– Computability. There exists an efficient algorithm to compute ê(P, Q) for
all P, Q ∈ G1.

3 Cryptanalysis of Certificateless GIS and BGOS
Schemes

In this section we show the weaknesses in two certificateless GIS schemes [5], [6]
and a certificateless BGOS scheme [7].

3.1 Cryptanalysis of Certificateless GIS Scheme [5]

GIS scheme given in [5] allows the signer to designate his signature to be verified
by a group of people who belong to the signer’s group. Members other than the
designated group should not be able to verify the signature generated by him.
The scheme in [5] is not secure against Type-I and Type-II attacks.

Type-I Attack. On seeing a valid signature by an user on some message,
anyone can commit a forgery on any message. During the unforgeability game
between the challenger C and adversary AI , C gives AI the public parameters
params and AI gives to C a target identity ID∗. AI is supposed to generate a
valid forgery for the target identity ID∗ on some message and AI is not allowed
to query partial private key for the target identity ID∗. AI interacts with C
and access all the oracles with the restrictions given in the model. AI can query
signature on any message and user identity pair 〈m, ID〉. AI can replace the
public keys of suppose any user including user with identity ID∗. During the
training-phase AI receives a valid signature σ = 〈m, U, V 〉 on a message m with
target identity ID∗ using the Sign oracle. Now we show how AI can generate a
valid signature σ∗ on an arbitrary message m∗ for the target identity ID∗, such
that σ∗ is not the output of previous queries to Sign oracle. This can be shown
by the following computation done by AI

Breaking and Building of Group Inside Signature 333

– Computes U∗ = U + hPi1 - H0(ID∗), where h= H1(m, U) computed from
σ.

– Computes h∗ = H1(m∗, U∗)
– Replaces public keys of ID∗ as P ∗

i1 = 1
h∗ H0(ID∗) and P ∗

i2 = 1
h∗ P .

– V ∗ = V .

Now we claim that σ∗ = 〈m∗, U∗, V ∗〉 is a valid signature on the message m∗

by the user with identity ID∗ (with respect to its newly replaced public key). C
can check the validity of the forged signature σ∗ as follows.

Correctness of public keys. It is clear that 〈P ∗
i1, P ∗

i2〉 satisfies the verification
e(P ∗

i1, P) ?= e(P ∗
i2, H0(IDi)).

Correctness of forged signature. Note that C will use the current public key of
ID∗ that was set by AI .
– C has to check whether e(V ∗, Pj1)

?= e(U∗, Dj1) e(h∗P ∗
i1, Dj1). In fact

R.H.S = e(U∗, Dj1) e(h∗P ∗
i1, Dj1)

= e(U + hPi1 − H0(ID∗), Dj1) e(h∗P ∗
i1, Dj1)

= e(U + hPi1 − H0(ID∗), Dj1) e(H0(ID∗), Dj1)
= e(U, Dj1) e(hPi1, Dj1).
= e(V, Pj1).
= e(V ∗, Pj1)
= L.H.S

Thus the forged signature σ∗ passes the verification successfully.

Type-II Attack. Type-II attack is also possible on the same scheme. During
the unforgeability game between the challenger C and adversary AII , AII can
interacts with C and access the Sign oracle with the restrictions given in the
model. AII can ask signature on any message and identity pair 〈m, ID〉. AII has
access to the master private key. So it can compute the private key of any user
from its public keys 〈Pi1Pi2〉 as Di = kPi1. Since the public key Pi1=xiH0(IDi),
so AII can generate signature on behalf of any user and AII can verify the
signature of any user. Here, we can visualize AII as the KGC because it knows
the master private key in the scheme.

3.2 Cryptanalysis of Another Certificateless GIS Scheme [6]

Chunbo Ma et al. have proposed another GIS [6] scheme. In this section, we
present Type-I forgery on the scheme [6]. Here adversary AI who considered
to be inside the group can sign on behalf of any user on any message. During
the unforgeability game between the challenger C and adversary AI , C gives AI

the public parameters params and a target identity IDA. AI is supposed to
generate a valid forgery for the target identity IDA on some message and it is
not allowed to query partial private key for the target identity IDA. AI interacts
with C and access all the oracles with the restrictions given in the model. AI

334 S.S. Vivek et al.

can query signature on any message and user identity pair 〈m, ID〉. AI can
replace the public keys of any user including user with identity IDA. During
the training-phase AI receives a valid signature σ = 〈m, U, V 〉 on a message m
with target identity IDA as the signer from the Sign oracle and also obtains
the private key of some other user say IDB from the Key Extract oracle. Now
AI can generate a valid signature σ∗ on a message m∗ for the target identity
IDA by using the private key of IDB, such that σ∗ is not the output of previous
queries to Sign oracle. This can be shown by the following computation done
by AI .First AI computes the value e(g, gk) even though AI may not know the
value e(g, gk) directly, it can compute e(g, gk) as follows.

e(DB, Ppub2)e(DB, (Ppub1)H1(IDB))= e(g
k2

k+H1(IDB) , g)e(g
kH1(IDB)

k+H1(IDB) , g)

= e(g
k2

k+H1(IDB) g
kH1(IDB)

k+H1(IDB) , g)
= e(g, gk)

Hence, e(g, gk) can be computed by AI and subsequently AI generates the
forgery by performing the following:

– Computes r∗ = e(g, gk)a∗
.

– Computes V ∗ = H0(m∗||r∗).
– Computes U∗ = SK

(a∗+v∗)
B .

– Replaces IDA’s public keys X∗
A = XA and Y ∗

A = X
(−H1(IDA))
A X

H1(IDB)
B YB .

– Broadcasts the signature σ∗ (m∗, U∗, V ∗, IDA).

Now challenger C can verify the validity of the signature using the private key
of any group member say C as follows:

Computes r
′
as

e(U∗,(X∗
A)H1(IDA).Y ∗

A)e(SC , X
H1(IDC)
C YC)−V ∗

=
=e(U∗, XH1(IDA)

A .X
−H1(IDA)
A X

H1(IDB)
B YB) e(SC , X

H1(IDC)
C .YC)−V ∗

=e(g, g)k(a∗+V ∗)e(g, g)−V ∗k.
=e(g, g)ka∗

=r′

Checks V ∗ ?= H0(m∗||r′
) if it holds σ∗ is a valid forgery other wise not.

Since σ∗ is a valid forgery which we showed now, we can claim that the scheme
given in [6] is having Type-I forgery.

3.3 Cryptanalysis of Broadcast Group Oriented Signature [7]

In BGOS, an user from one group can designate its signature to be verifiable by
members of other group. In this section we present the cryptanalysis of BGOS
scheme, which too has both Type-I and Type-II attacks.

Breaking and Building of Group Inside Signature 335

Type-I Attack on BGOS Scheme [7]. On seeing a valid signature by an
user on some message, anyone can commit a forgery on any message. During
the unforgeability game between the challenger C and adversary AI , C gives AI

the public parameters params and AI gives to C a target identity ID∗
bi. AI is

supposed to generate a valid forgery for the target identity ID∗
bi on some message

and it is not allowed to query partial private key for target identity ID∗
bi. AI

interacts with C and access all the oracles with the restrictions given in the
model. AI can query signature on any message and user identity pair 〈m, ID〉.
AI can replace the public keys of suppose any user including user with identity
ID∗

bi. During the training-phase AI receive a valid signature σ = 〈m, U1, U2, V 〉
on a message m with target identity ID∗

bi using the Sign oracle. Now we show
how AI can generate a valid signature σ∗ on an arbitrary message m∗ for the
target identity ID∗

bi, such that σ∗ is not the output of previous queries to Sign
oracle. This can be shown by the following computation done by AI

– Computes U∗
1 = U1 + hPbi-H0(ID∗

bi) and U∗
2 = U2 + hP

(2)
A - P .

– Computes h∗ = H1(m∗, U∗
1).

– Replaces ID∗
bi’s public keys as P ∗

bi = 1
h∗ H0(ID∗

bi) and Q∗
bi = 1

h∗ P .
– Replaces group A’s public keys as P

(2)∗
A = 1

h∗ P and Q
(2)∗
A = 1

h∗ H0(IDA).
– V ∗ = V .

Now we claim that σ∗ = 〈m∗, U∗
1 , U∗

2 , V ∗〉 is a valid signature on the message m∗

by the user with identity ID∗. C can check the validity of the forged signature
σ∗ as follows.

Correctness of Public Keys: The replaced public keys of group A 〈P (2)∗
A , Q

(2)∗
A 〉

passes the verification

e(P (2)∗

A , H0(IDA)) ?= e(P, Q
(2)∗

A)

The replaced public keys of user bi 〈P ∗
bi,Q

∗
bi〉 also passes the following

verification:
e(P ∗

bi, P) ?= e(Q∗
bi, H0(IDbi))

Correctness of forged signature: Note that C will use the current public key of
ID∗ that was set by AI . C has to check e(V ∗, Pai)

?= e(h∗P ∗
bi + U∗

1 , D
(2)
aj)

e(h∗P (2)∗
A + U∗

2 , D
(1)
aj). Now,

R .H.S =
=e(h∗P ∗

bi + U∗
1 , D

(2)
aj)e(h∗P (2)∗

A + U∗
2 , D

(1)
aj)

=e(h∗P ∗
bi + U1 + hPbi − H0(ID∗

bi), D
(2)
aj)e(h∗P 2∗

A + U2 + hP
(2)
A − P, D

(1)
aj)

=e(hPbi + U1, D
(2)
aj)e(hP

(2)
A + U2, D

(1)
aj)

=e(V, Pai)
=e(V ∗, Pai)
=L.H.S

Thus the forged signature σ∗ passes the verification successfully.

336 S.S. Vivek et al.

Type-II Attack on BGOS Scheme [7]. Type-II attack is also possible on
BGOS [7] scheme. During the Unforgeability game between the challenger C
and adversary AII , AII can interact with C and can access Sign oracle with
the restrictions given in the model. AII can ask signature on any message and
identity pair 〈m, ID〉. The adversary AII can access the master private key. So,
AII can compute the full private key of any user from group A using the public
keys 〈Pai, Qai〉 as 〈{D(1)

ai , D
(2)
ai }〉 = 〈sPai, tPai〉 and any user from group B with

public keys 〈Pbi, Qbi〉 as 〈{D(1)
bi , D

(2)
bi }〉 = 〈sPbi, tPbi〉 . As a result the KGC can

generate signature on behalf of any user and also verify the signature of any user
in any group, which contradicts the statement of the authors.

4 Cryptanalysis of Identity Based ADGS Scheme [8]

In this section, we present the cryptanalysis of an identity based ADGS scheme
[8]. We show that the ADGS scheme in [8], is universally forgeable by demon-
strating two different ways to proceed with the attack.

Universal Forgery Without Having Access to Any Previous Signature.
The scheme ADGS described above is universally forgeable. The adversary A
can forge the signature of any user without seeing any valid signature previously
signed by any user. A selects r∗, k∗, t∗ ∈R Z∗

q , computes T ∗
i = k∗Qi for(i = 1

to n ai ∈ U). and then computes the following values.

– V ∗
0 = t∗s∗P .

– V ∗
1 = t∗k∗P .

– V ∗
2 = r∗k∗P .

– h∗ = H1(m∗).
– T ∗

0 = 1
h∗ k∗P .

– V ∗ = r∗P + Ppub.
A produces σ∗ = (m∗, V ∗, V ∗

0 , V ∗
1 , V ∗

2 , T ∗
0 , ..., T ∗

n) as a valid signature on
message m∗.

Now the correctness of the forged signature σ∗ can be shown as follows:

Correctness: The L.H.S is

e(V ∗, T ∗
i) = e(r∗P + Ppub, k

∗Qi)
= e(r∗P, k∗Qi)e(Ppub, k

∗Qi)
= e(r∗k∗P, Qi)e(k∗P, sQi)
= e(V ∗

2 , Qi)e(1
h∗ T ∗

0 , Di)
= R.H.S

Thus, we show that A is capable of generating a valid ADGS on behalf of user
with out knowing users secret key.

Breaking and Building of Group Inside Signature 337

Universal Forgery on Seeing a Signature of an User. On seeing a valid
signature by an user on some message, anyone can commit a forgery on any
message. During the unforgeability game between the challenger C and adversary
A, C gives A the public parameters params and a target identity ID∗. A is
supposed to generate a valid forgery for the target identity ID∗ on some message
and it is restricted to query private key for the target identity ID∗. A interacts
with C and accesses all the oracles with the restrictions given in the model.
A can query signature on any message and user identity pair 〈m, ID〉. A can
replace the public keys of any user including user with identity ID∗. During the
training-phase on receiving a valid signature σ = 〈m, V, V0, V1, V2, T0, ..., Tn〉 on
a message m with target identity ID∗ from the Sign oracle, A can generate a
valid signature σ∗ on a message m∗ for the target identity ID∗, such that σ∗

is not the output of previous queries to Sign oracle. This can be shown by the
following computation done by A
– Dividing V by h. 1

hV = (r
h + 1)D0 where h = H1(m).

– Computes h∗ = H1(m∗).
– V ∗

0 = V0 and V ∗
1 = V1.

– V ∗
2 = h∗

h V2.
– The remaining parameters T0, ..., Tn, V0 and V1 are same as that of original

signature.
– V ∗ = h∗ V

h .

Now σ∗ = σ∗ (m∗, V ∗, V0, V1, V
∗
2 , T0, ..., Tn) is a valid signature on the message

by the user with identity ID∗. C can check the validity of the forged signature
σ∗ as follows.

Correctness: The L.H.S is

e(V ∗, Ti) = e((h∗
h r + h∗)D0, k

∗Qi)
= e(h∗

h rD0, kQi)e(h∗D0, kQi)
= e(h∗

h rkD0, Qi)e(h∗kQ0, Di)
= e(V ∗

2 , Qi)e(1
h∗ T ∗

0 , Di)
= R.H.S

Now, it is clear that the forged signature σ∗ passes the verification successfully.

5 New ADGS Scheme(N-ADGS)

In this section we present a new identity based ADGS scheme. Assume that
a signer a0 has to designate his signature to be verified by n users namely
{a1, ..., an}. All the n users may be from different groups and are selected by a0.
The signer a0 forms the set U = {a1, ..., an} to generate the signature. In our
scheme designated members of the group cannot simulate the signers signature.

– N-ADGS Initialize:
The PKG initializes the system by executing this algorithm. This algorithm
takes the security parameter 1k as input and produces two groups G1 and

338 S.S. Vivek et al.

G2 of prime order q, where |q| = k, a generator P of G1, a bilinear map e :
G1 ×G1 → G2 and two cryptographic hash functions H1 :{0, 1}∗ × G2 × G1
× G1 × G1 → Z∗

q and H2 :{0, 1}∗ → G1. The master private key is s ∈R Z∗
q

and the master public key is set to be Ppub = sP . Sets θ = e(Ppub, R) where
R ∈R G1. The public parameters are 〈G1, G2, e, P, Ppub, Ppub, H1, H2, θ, R〉.

– N-ADGS Key Generation/Extract: This algorithm is executed by the
PKG and on input of identity IDi, PKG computes Qi = H2(IDi) and sets
the private key as Di = sQi. Now, Di is sent to the user in a secure way.

– N-ADGS Sign: To sign a message m for a designated group of users U =
(a1, ..., an) with identities (ID1, ..., IDn) the user with identity ID0, private
key D0 and public key Q0 performs the following steps:
• Chooses r,k,t ∈R Z∗

q and computes Ti = 〈Ti1, Ti2〉 as 〈t(Qi + R), kQi〉
for(i = 1 to n).

• Computes U1 = rQ0, U2 = rkP and U3 = tP .
• Computes ω = e(D0, U3) and Computes W = θtω.
• Computes h = H1(m, ω, U1, U2, U3) and V = rPpub + hD0.

Now σ = (m, V, W, U1, U2, U3, T1, ..., Tn, U) is a valid signature on mes-
sage m by ID0, with the user group U as designated verifiers.

– N-ADGS Verify: Verification is a two step process. First step is to verify
whether the verifier belongs to the group U and second step is to verify the
validity of the signature.
• Judge Verifier: Using the value Ti2 = kQi, the verifier checks whether

e(Ti2, Q0)
?= e(Qi, U1). If the verification holds then user with public key

Qi will do the next step in verification.
• Verify Signature: Each designated verifier ai ∈ U can verify the signature

by performing the following steps.
∗ Computes ω

′
= We(Di, U3)e(Ppub, Ti1)−1.

∗ Computes h
′
= H1(m, ω

′
, U1, U2, U3).

∗ Checks whether e(V, Ti2)
?= e(h

′
U1, Di)e(U2, Di).

If the above check hold then the signature is valid. Otherwise the signa-
ture is invalid.

5.1 Security Proof for N-ADGS

Unforgeability Proof

Theorem 1. Our N-ADGS scheme is existentially unforgeable under chosen
message and identity attack if CDHP (Computational Diffie Hellman Problem)
is hard in G1.

This proof appears in the full version of the paper [10].

Unlinkability Proof

Theorem 2. Our N-ADGS scheme is unlinkable in the sense that members out-
side the group cannot verify the signature if DBDHP (Decisional Bilinear Diffie
Hellman Problem) is hard in (G1, G1, ê).

This proof appears in the full version of the paper [10].

Breaking and Building of Group Inside Signature 339

6 Conclusion

In this paper, we have presented attacks on two certificateless GIS schemes [5],
[6], a certificateless BGOS scheme [7] and an identity based ADGS [8] scheme.
We have proposed a new identity-based ADGS scheme. We leave as an open
problem to construct efficient identity based ADGS with constant size signature
independent of the number of designated verifiers. Our scheme is secure against
existential forgery on adaptively chosen message and ID attack under the CDH
assumption in the random oracle model and is unlinkable under the DBDH
assumption.

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

2. Boneh, D., Franklin, M.K.: Identity-based encryption from the weil pairing. SIAM
J. Comput. 32(3), 586–615 (2003)

3. Hu, B.C., Wong, D.S., Zhang, Z., Deng, X.: Key replacement attack against a
generic construction of certificateless signature. In: Batten, L.M., Safavi-Naini, R.
(eds.) ACISP 2006. LNCS, vol. 4058, pp. 235–246. Springer, Heidelberg (2006)

4. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their
applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp.
143–154. Springer, Heidelberg (1996)

5. Ma, C., Ao, F., He, D.: Certificateless group inside signature. In: Proceedings, April
2005, pp. 194–200 (2005)

6. Ma, C., Ao, J.: Certificateless group oriented signature secure against key replace-
ment attack. Cryptology ePrint Archive, Report 2009/139 (2009),
http://eprint.iacr.org/

7. Ma, C., He, D., Ao, J.: Broadcast group oriented signature. In: 2005 Fifth Inter-
national Conference on Information, Communications and Signal Processing, pp.
454–458 (2005)

8. Ma, C., Li, J.: Adaptable designated group signature. In: Huang, D.-S., Li, K., Ir-
win, G.W. (eds.) ICIC 2006. LNCS, vol. 4113, pp. 1053–1061. Springer, Heidelberg
(2006)

9. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

10. Sree Vivek, S., Sharmila Deva Selvi, S., Gopinath, S., Pandu Rangan, C.: Breaking
and building of group inside signature. Cryptology ePrint Archive, Report 2009/188
(2009), http://eprint.iacr.org/

http://eprint.iacr.org/
http://eprint.iacr.org/

Use of ID-Based Cryptography for the Efficient
Verification of the Integrity and Authenticity of

Web Resources

Thanassis Tiropanis1 and Tassos Dimitriou2

1 University of Southampton, UK
tt2@ecs.soton.ac.uk

2 Athens Information Technology, Greece
tdim@ait.edu.gr

Abstract. As the amount of information resources on the Web keeps
increasing so are the concerns for information integrity, confidentiality
and authenticity. In Web 2.0 users are producers as well as consumers of
content and metadata, which makes guaranteeing the authenticity and
integrity of information critical. The scale of the Web requires that any
proposals in this direction require minimal (if any) infrastructural or
administrative changes. This paper proposes the use of ID-based cryp-
tography (IBC) to address requirements for integrity and authenticity of
Web resources using either the URL/URI of a resource or the DNS name
part of if. This approach presents certain challenges, which are discussed
along with the pros and cons of different designs and implementations.

Keywords: Identity Based Cryptography, Integrity, Authenticity, Web
2.0.

1 Introduction

The number of Internet and Web users has been increasing at very high rates
over the last decade and, considering that Internet penetration in developing
countries is still relatively low there is space for ongoing increase in the coming
years. The amount of content that is exchanged is constantly growing and a
number of content distribution and delivery infrastructures (peer-to-peer, con-
tent repositories) are proving particularly popular. Web 2.0 applications allow
users to be not just content consumers but also producers. The importance of
content in this emerging paradigm of Web-service deployment and use has al-
ready been identified; according to O’Reilly [10] ”data is the next Intel inside”.

Currently there is research in progress on a new content-centric communica-
tion paradigm that aspires to transform networking by focusing not on enabling
the communication between network end-points but on identifying content to
be obtained from networks using client-server, peer-to-peer or other types of
exchanges. There are expectations that this effort will lead to more efficient
networks in terms of content distribution and more efficient services ([9], [11]).

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 340–349, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Use of IBC for the Efficient Verification of the Integrity and Authenticity 341

This vision of content-centric communication however, is based on the as-
sumption that a network infrastructure will be able to (i) identify each Web
resource uniquely and (ii) provide guarantees on the integrity and authenticity
of Web resources since they can be obtained not exclusively from their source
network end-point but over a peer-to-peer or other type of content distribution
network. The requirements of integrity and authenticity are increasingly critical
as the content currently produced by an already large user base is set to keep
growing. To this end we propose the use of Identity-Based Cryptography (IBC)
as an efficient and scalable way of guaranteeing the authenticity and integrity
of Web resources using an IBC-based system for efficiently signing and verifying
Web based content. Our proposal involves the use of the URL/URIs (or the
DNS name part of URL/URIs) of resources as IBC identifiers of every resource
to be disseminated over the Web, Peer-to-Peer or other content dissemination
networks combined. We also propose the use of identity-based digital signatures.

The proposed approach does not require infrastructural changes and we be-
lieve it can therefore be seamlessly introduced, making use of the existing XML
Signature Syntax and Processing Standard of the W3C [14].

The rest of the paper is organized as follows: Section 2 reviews the existing
literature on Identify-Based Cryptography (IBC), on Web 2.0 applications and
on content dissemination infrastructure. Section 3 describes in detail how IBC
can provide an efficient and scalable way to address integrity and authenticity
concerns in content-centric communication. Section 4 discusses different deploy-
ment scenarios over the existing Web infrastructure, while Section 5 provides
a discussion on the proposed approach and identifies further work items and
related research directions.

2 Background

2.1 Supporting Identity Based Cryptography (IBC) on the Internet

Identity-based cryptography (IBC) was first introduced by Shamir back in 1984
[13]. While the original scheme of Shamir supported only signature operations,
recently, there has been an increased interest in the use of IBC which was due
to the discovery of a secure Identity Based Encryption scheme based on pairings
over elliptic curves by Boneh and Franklin [1].

In an identity-based cryptosystem, public keys can be derived from arbitrary
strings while the corresponding private keys are generated and distributed by an
associated Trusted Authority (TA). Thus an identity-based cryptosystem enjoys
most of the benefits of public key cryptography without the need for certificates
and the problems they present. This in turn leads to a more lightweight approach
to deploying public key cryptography [12]. In the sequel we review some basic
IBC systems that have been proposed to date.

Boneh et al. [2] proposed a new approach to certificate revocation centered
around the concept of an on-line SEmi-trusted Mediator called the SEM. The
use of the SEM in conjunction with a simple threshold variant of the RSA

342 T. Tiropanis and T. Dimitriou

cryptosystem enables the quick revocation of all security capabilities of a user.
The proposal of mediated RSA was then used in an identity based setting in [3]
as a simple solution and alternative to the Weil pairing scheme of [1].

One of the advantages of PKIs is that they can be organized into hierarchies
which reflect the internal structure of a large organization or group. Recent
work, however, has demonstrated the ability to implement similar hierarchies in
an IBC context ([6,7]). In [17], this is taken one step further and an attempt was
made to integrate this approach into existing standards and software, so as to
ease deployment.

Finally, Crampton et al. [4] discuss how various Identity-based cryptographic
techniques can be used to provide web services security. In particular, the au-
thors compare Identity-based with traditional, certificate based techniques and
they show how the first type can be used to secure XML messages in a more
lightweight way compared to the second one.

2.2 Digital Signatures for Web Resources

The need to provide digital signatures for Web resources has been identified
by the W3C and the IETF which engaged in common standardization activ-
ity (www.w3.org/Signature) and compiled requirements for XML Signatures
in terms of a data model, syntax, format and processing (RFC2807 [15]). The
core standard to emerge from this activity is the “XML Signature Syntax
and Processing” [14] standard, which provides for digital signatures as XML
documents.

XMLDsig can be used to sign not only XML documents but also resources in
other formats. To verify the authenticity and integrity of a resource, one needs
to have or obtain the key to be used; in a PKI setting, this is the public key
of the entity that signed the resource. Considering that a large number of Web
resources are specified in XML and that the use of the XML-compatible version
of HTML (xHTML) is widely used today, it seems that XMLDsig provides a
number of ways to package signatures into a large number of Web resources
without changes to existing Web infrastructure.

3 IBC for Web Resources

Our proposal is based on mediated RSA that can be used to guarantee the
integrity and authenticity of Web resources. The main idea behind this scheme
(and any other IBC solution) is to generate and use public keys based on publicly
available information that can be used to identify users or resources. On the
other hand, private keys are generated by the Trusted Authority (TA) who
possesses a master secret key (Section 3.1). Then, in Section 3.2, we explain
what modifications (and simplifications) will be made in order to apply it for
verifying Web resources.

Use of IBC for the Efficient Verification of the Integrity and Authenticity 343

3.1 Mediated RSA (mRSA)

One of the mRSA advantages is its transparency: in signature mode, mRSA
yields standard RSA signatures which are much easier to incorporate with exist-
ing protocols. Mediated RSA involves a special entity called the SEM (SEcurity
Mediator) which is a partially trusted server. To sign or decrypt a message,
user Alice (one of the characters featuring in most cryptography scenarios) must
obtain a message-specific token from the SEM.

The main idea behind mRSA is the splitting of an RSA private key into
two parts using threshold cryptography. One part is given to the user while the
other is given to the SEM. When the user and the SEM cooperate, the sys-
tem is functionally equivalent to standard RSA. The fact that the private key
is not held entirely by any one party is transparent to the outside, i.e. to those
who use the corresponding public key to verify the signature (for more details
see [3]).

3.2 Creating an Identity Based Infrastructure for Resource
Authenticity

Our proposal uses mRSA to address the problem of authenticity and integrity
of Web resources. Consider a set of services offered by some organization and
a set of recourses associated with each such service. Ideally, we would like any
third party to be able to authenticate these resources without the use of public
key infrastructures or complicated protocols.

The basic idea behind mRSA is the use of a single common RSA modulus N
among all users of a system. In our case, however, the “users” are the services
offered by the organization with resources tied to these services. These resources
must be integrity protected and authenticated by anyone interacting with a
particular service. Thus, these resources correspond to the “messages” that need
to be signed and must bear the signature of the corresponding service.

Using the same modulus by multiple entities in a normal RSA setting is totally
insecure since anyone, using its own knowledge of a single key-pair, can factor
the modulus and compute the other entities’ private keys. However, this does
not apply in our setting since the private key is shared between the entity and
the SEM. Thus an attacker must compromise both to undermine the security of
the system.

In the following, we use the full name of a service as the unique identifier
(public key) for that service. We use the notation IDService to denote the identity
that will be used to compute the public RSA exponent. During initialization,
a trusted authority (TA) sets up the RSA modulus N for all the services of
the organization. N is equal to the product of two large safe primes p and q.
The public exponent eService is the result of a hash function such as SHA1 on
IDService, with the rightmost bit set to one so that with high probability eService

is relatively prime to φ(N). This process is shown below:

344 T. Tiropanis and T. Dimitriou

Generate Public Key for IDService

Let k be the security parameter (say k = 2048)

– Generate random k/2-bit primes r and s such that p = 2r + 1
and q = 2s + 1 are also primes.

– Set N = pq
– For a particular service identified by IDService

1. Set eService = hash(IDService) ‖ 1
2. Set d = 1/eService mod φ(N)
3. Set dService equal to a random number in ZN − {0}
4. Set dSEM = d − dService mod φ(N)

Once the private key is generated for a particular service, it can be used
to sign a resource R through collaboration with the SEM. In what follows, we
assume the existence of an appropriate encoding scheme that can be used to
break the multiplicative properties of RSA. Typically, one can use the Proba-
bilistic Signature Scheme (PSS) for RSA that can be found in then Public-Key
Cryptography family of Standards PKCS#1. RSA-PSS incorporates processing
schemes designed to provide additional security for RSA signatures. This en-
coding scheme, although not shown in detail, should be used and is denoted by
Hash-PSS in the following description:

Sign resource R

– Set h equal to Hash-PSS(R)
– Compute partial signatures PSSEM and PSService as follows:

1. PSSEM = hdSEM mod N
2. PSService = hdService mod N

– Set S = PSSEM · PSService mod N
– Return signature S

Finally, any interested party that wants to ensure the authenticity of the
resource R, it can do so by first computing the public key eService from available
information and then verifying the signature S.

Verify Signature S on resource R

– Retrieve domain modulus N
– Set eService = hash(IDService) ‖ 1
– Compute h = SeService mod N
– Verify whether h is equal to Hash-PSS(R)

Use of IBC for the Efficient Verification of the Integrity and Authenticity 345

Security Issues

The security of this scheme depends on whether someone can break into the
SEM and the server and retrieve the corresponding private keys. In general, this
is a safe assumption to make since the SEM can reside in hardened server that
is more resistant to break-ins than usual machines.

This also solves the problem of the common modulus since even if a server
is compromised, no attacker can use the key dService to sign resources without
the collaboration of the SEM. Additionally, knowing dService for a particular
service does not leak any information about either the primes that constitute
the modulus or the private keys of other services. This is because both keys dSEM

and dService are random quantities. Using a simulation argument, one can show
that any attack that takes advantage of one of the two keys could be turned into
an attack to standard RSA [3]. Thus knowledge of one of these keys does enable
the attacker to sign fake resources (details omitted due to space restrictions).

4 IBC over the Existing Web Infrastructure

4.1 IBC over the Existing Web Protocols

In our proposal, IBC is to be used to verify Web resources that can be identified
by their original URL or URI. This is achieved by applying the IBC scheme of
Section 3.2, using the URL/URI (or the DNS name portion of it) as part of
the key and by using the XMLDsig standard format and processes. In this way,
checking the authenticity and integrity of a resource can be more efficient in
comparison to PKI-based schemes as the URL/URI of the obtained resource is
well known and the modulus N for the domain of the resource can be known or
promptly obtained from a secure server or DNSSEC [5].

Although the role of the URL is to provide the location of resources instead
of identification, we assume that when a resource is not identified by a URI, its
URL serves as its identifier. We make a distinction between an administrative
domain and a DNS name. An administrative domain can manage one or more
DNS names. The DNS name portion of a URL/URI is the host field of the
authority component of a URL or URI [16].

The digital signature for a resource can indicate whether the signature was
produced using the whole of the URL/URI as key or just the DNS name in it,
depending on the policy of the domain from which the resource originates. Effec-
tively, our proposal is for two different modes of IBC-based resource validation:

– MODE 1: The ‘modulus N ’ of the domain is used in combination with the
DNS name part of the resource URL/URI to sign it. This means that the
same private key can be used to sign any document in a specific domain
regardless of its URL/URI. This can be flexible in terms of private key and
digital signature management. On the other hand, there is a higher risk in
using a single private key to sign all domain resources.

346 T. Tiropanis and T. Dimitriou

– MODE 2: The ‘modulus N ’ of the domain is used in combination with
the whole URL/URI to sign it. This requires a different private key for each
URL/URI in a domain. This makes the management of private keys and
digital signatures in a domain more complex but is ideal in cases when URIs
represent user identities, such as OpenIDs.

Our proposal requires no changes to existing protocols and infrastructure, only
some extra functionality on the client (e.g. Web browser) side, which can be
implemented as a client plug-in. The KeyInfo element of a XMLDsig signature
can be used to indicate the mode of validation the client is expected to use
(Mode 1 or Mode 2).

Figure 1 shows an example of an administrative domain myserver.com, which
runs three different servers with three different DNS names (www.myserver.com,
betamyserver.com and other.myserver.com). The TA of the administrative do-
main myserver.com will provide the modulus N for all three DNS names and
the SEM of myserver.com will sign each resource as detailed in Section 3.2. A
client (Web browser, P2P client or other) can obtain and cache the ‘modulus
N ’ for any of the three DNS domains that can appear in URL/URIs, using a
trusted server or secure DNS. When a client obtains a signed resource from these
domains it will be able to verify its authenticity and integrity.

In order to support authenticity and integrity checks for non URL-based re-
sources, the use of IBC for URI-identified resources can be implemented. Unlike
a URL, a URI does not necessarily correspond to a communication end-point
from which a resource can be obtained – it can be just an identifier. However,
both URLs and URIs are expected to be maintained by the domain they belong

Fig. 1. Domain-wide IBC deployment for verifying Web resources

Use of IBC for the Efficient Verification of the Integrity and Authenticity 347

to. For this reason, resources that claim to be identified by a URI can be checked
for their authenticity and integrity by a browser, program or user by using the
‘modulus N ’ of the domain name portion of the URI. In this way, it would be
possible to obtain any resource identifiable by a URI/URL via any type of con-
tent dissemination infrastructure and still be able to verify its authenticity and
integrity. The ’modulus N ’ can be obtained in a number of ways as discussed
next in Section 4.2.

The proposed two modes of resource validation can cater for different re-
quirements of authenticity and integrity checks and support both domain-signed
resources (Mode 1) or resources signed by individuals (Mode 2 for OpenID).

4.2 Scenarios for IBC Deployment on the Web

The following scenarios are envisaged for the deployment of IBC based authen-
tication and integrity of Web resources that can be identified by a URL or URI.
In these scenarios, the content identified by a URL or URI can be obtained over
a number of different content delivery channels, not necessarily the Web. How-
ever, the Web infrastructure is used to obtain the ‘modulus N ’ for the domains
of each URL/URI.

Scenario 1: IBC for URL-Based or URI-Identified Resources
(‘Modulus N ’ Maintained Per DNS Domain)

In this scenario the ‘modulus N ’ for the domain can be obtained by the client:

– From a Web server on the domain of the specific URL/URI. This requires
the client to issue an HTTP GET request for a standard relative URL
on the domain. For example, ‘modulus N ’ for URL/URI of domain www.
myserver.com could be obtained by issuing a GET request for the reserved
relative URL ‘modulusN.xml ’ to the server of the domain, with absolute
URL: http://www.myserver.com/modulusN.xml.

– If infrastructural changes for DNSSEC are adopted, ‘modulus N ’ for a do-
main could be obtained by the DNSSEC [5] or by alternative directory ser-
vices [8].

In all the above approaches, a client will obtain the ‘modulus N ’ for the corre-
sponding URL/URI domain and, when the URL-based resource is retrieved by
the specific URL, will isolate the XMLDsig and proceed as detailed in Section
4.1. This approach is scalable and has the advantage that it can be easily de-
ployed without necessarily making infrastructural changes. On the other hand,
this scheme may have to rely on using a reserved relative URL on every domain
(e.g. ‘modulusN’) and an agreed XML schema for ‘modulus N ’ distribution (e.g.
for file ‘modulusN.xml ’ in the example above).

Scenario 2: IBC for URL-Based or URI Identified Resources
(‘Modulus N ’ Obtained from Dedicated Secure Server)

This scenario applies when multiple DNS domains are shared within an organi-
zation or a virtual community. In this case, we assume that a dedicated secure

348 T. Tiropanis and T. Dimitriou

server can be employed for the distribution of the ‘modulus N ’ for URLs and
URIs available for the participating domains. The client software (or browser
plug-ins) can be configured to contact the designated secure server to obtain
‘modulus N ’ when necessary. This approach has the benefit that it does not
require a separate ‘modulus N ’ for each DNS domain but it is not scalable and
may require manual configuration by the user.

5 Conclusions and Further Work

In this work we described a new approach for authenticity of web resources. Our
proposal has a number of advantages ranging from transparency, ease of use,
and implicit authentication of resources to seamless introduction and support
of context-centric networking and collaboration in virtual communities. Rather
than using certificate based Public Key Cryptography (PKI), our proposal is
based on the use of the more intuitive Identity Based Cryptography. Once re-
sources are signed using a version of RSA called mediated RSA, anybody can
verify the authenticity of these resources simply by using the name (URL/URI)
of the resource as the verification key. In our proposal, we still need to use a type
of domain certificate that includes the common RSA modulus N , but we should
stress that this “certificate” is not like a normal public key certificate but rather
a long lived attribute certificate for the entire domain that can be retrieved ei-
ther by a dedicated server or by using DNSSEC if infrastructural changes are
adopted (Section 4.2).

One other difference with traditional PKI systems is that the private key
is generated by the trusted authority (TA). This enforcement, in general, may
raise concerns related to key escrow and privacy surrounding the management of
private keys. The first concern is not really an issue in our case since we are only
dealing with signature (correspondingly client verification) of resources, so no
encryption takes place. For the second concern which may lead to compromise of
private keys and signature non-repudiation once a server has been compromised,
one could use multiple servers and threshold cryptography. Furthermore, the use
of the SEM ensures that an attacker must compromise both to undermine the
security of the system.

Our approach opens some interesting directions for research. We plan to in-
vestigate performance issues when signing content of different types and sizes.
This is an issue that needs to be addressed since most of the web traffic increase
over the last few years has been attributed to the exchange of large volume mul-
timedia content. We also plan to identify further requirements to support col-
laborative authoring of resources in virtual communities and investigate the use
of OpenID to let authors sign portions of collaboratively produced documents,
which, in turn, could be double signed by the domain of the community. The
management of resources, private keys and signatures to support both modes
can be a challenging task that we aim to explore further.

Use of IBC for the Efficient Verification of the Integrity and Authenticity 349

References

1. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

2. Boneh, D., Ding, X., Tsudik, G., Wong, M., Wong, M.: Method for Fast Revocation
of Public Key Certificates and Security Capabilities. In: 10th USENIX Security
Symposium, pp. 297–308 (2001)

3. Boneh, D., Ding, X., Tsudik: Identity-Based Mediated RSA. In: Proceedings of
3rd International Workshop on Information and Security Applications, WISA 2002
(2002)

4. Crampton, J., Lim, H.W., Paterson, K.G.: What can identity-based cryptography
offer to web services? In: Proceedings of the 2007 ACM Workshop on Secure Web
Services, pp. 26–36. ACM, New York (2007)

5. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Introduc-
tion and Requirements. IETF draft: draft-ietf-dnsext-dnssec-intro-13, October 10
(2004)

6. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

7. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

8. Jones, J.P., Berger, D.F., Ravishankar, C.V.: Layering public key distribution over
secure DNS using authenticated delegation. In: 21st Annual Computer Security
Applications Conference (2005)

9. Metz, C., Bsales, J.: Five Ideas That Will Reinvent Modern Computing. PC Mag-
azine (2007)

10. O’Reilly, T.: What Is Web 2.0. Design Patterns and Business Models for the Next
Generation of Software. O’Reilly, Sebastopol (2005)

11. PARC (Palo Alto Research Center). Content-Centric Networking: PARC’s Strategy
for Pioneering a Self-Organizing Network That Meets Information Needs. Media
Backgrounder (2006),
http://www.parc.com/content/newsroom/CCN_backgrounder.pdf

12. Paterson, K.G., Price, G.: A comparison between traditional public key infrastruc-
tures and identity-based cryptography. Information Security Technical Report, vol.
8(3), pp. 57–72 (July 2003)

13. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

14. Eastlake, D., Reagle, J., Solo, D., Hirsch, F., Roessler, T.: XMLDsig - XML Sig-
nature Syntax and Processing, 2nd edn. W3C Recommendation (2008),
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/

15. RFC2807. XML Signature Requirements. IETF (July 2000),
http://www.ietf.org/rfc/rfc2807.txt

16. RFC3986. Uniform Resource Identifier (URI): Generic Syntax. IETF (January
2005),
http://www.ietf.org/rfc/rfc3986.txt

17. Smetters, D.K., Durfee, G.: Domain-Based Administration of Identity-Based Cryp-
tosystems for Secure Email and IPsec. In: Proceedings of 12th USENIX Security
Symposium, pp. 215–229 (2003)

http://www.parc.com/content/newsroom/CCN_backgrounder.pdf
http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/
http://www.ietf.org/rfc/rfc2807.txt
http://www.ietf.org/rfc/rfc3986.txt

Self-organized Anonymous Authentication in
Mobile Ad Hoc Networks

Julien Freudiger, Maxim Raya, and Jean-Pierre Hubaux

LCA1, EPFL, Switzerland
firstname.lastname@epfl.ch

Abstract. Pervasive communications bring along new privacy chal-
lenges, fueled by the capability of mobile devices to communicate with,
and thus “sniff on”, each other directly. We design a new mechanism
that aims at achieving location privacy in these forthcoming mobile net-
works, whereby mobile nodes collect the pseudonyms of the nodes they
encounter to generate their own privacy cloaks. Thus, privacy emerges
from the mobile network and users gain control over the disclosure of
their locations. We call this new paradigm self-organized location pri-
vacy. In this work, we focus on the problem of self-organized anonymous
authentication that is a necessary prerequisite for location privacy. We
investigate, using graph theory, the optimality of different cloak construc-
tions and evaluate with simulations the achievable anonymity in various
network topologies. We show that peer-to-peer wireless communications
and mobility help in the establishment of self-organized anonymous au-
thentication in mobile networks.

1 Introduction

The current model of wireless communication relies heavily on infrastructure:
Two mobile phones have to go through cellular base stations to exchange calls
and data for which users pay, even if they are only a few meters apart. But as
more mobile devices become equipped with ad hoc (peer-to-peer) communica-
tion technologies, such as WiFi and Bluetooth, the coexistence of both peer-to-
peer and infrastructure-based communications is inevitable. Moreover, the recent
surge in mobile social networks [1,2] reinforces the need for mobile devices, such
as phones, to be able to talk to each other without going through the infrastruc-
ture. These peer-to-peer communications enable context-based applications, such
as dating [3], gaming [4], as well as distributed location-based services [43]. But
these communications also make possible the continuous tracking of the location
of these devices. Thus, whereas the standard privacy threat model focuses on
protecting users with respect to the infrastructure (be it the cellular network
or the Internet), pervasive communications will expand it to the whole set of
mobile devices.

The promised ad hoc sharing of information might turn into a pervasive night-
mare if undesired communications cannot be filtered out: For example, if mobile
nodes cannot verify the source of information, they are susceptible to mobile

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 350–372, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

Self-organized Anonymous Authentication in Mobile Ad Hoc Networks 351

spam. To thwart rogue devices from polluting the network, nodes should au-
thenticate each other: The existence of an authentication feature (and the im-
plied procedure to obtain the appropriate credentials) makes it more difficult
for attackers to join the network in the first place and thus increases the cost
of misbehavior. Hence, by verifying the authenticity of their interlocutor before
exchanging information, mobile nodes reduce the amount of undesired data.
For example, users of context-based applications would obtain authentication
credentials by subscribing to the service. They could subsequently verify that
received messages were sent by other subscribers to the service. But if this is
done without appropriate precautions, the authentication mechanism would then
reveal the identity of the nodes, thus rendering the privacy problem particularly
challenging.

The location privacy of mobile devices is guaranteed if and only if devices
are anonymous and untraceable. Hence, our quest for location privacy in the
upcoming generation of mobile computing becomes an attempt to devise mech-
anisms for untraceable anonymous authentication. More specifically, mobile de-
vices must authenticate themselves directly to other devices without revealing
privacy-sensitive information. In this paper, we assume that the authentication
mechanism should not rely on the constant presence of a central authority be-
cause of the scalability and accessibility problems that this would cause. We also
leave the privacy threat of authentication towards the infrastructure out of the
scope of the paper. We show that the seeming disadvantage, privacy-wise, of peer-
to-peer communications can actually be turned into an advantage, thus allowing
each node to create its own privacy cloak without the need for a central privacy
coordination service. We coin this new paradigm self-organized location privacy.

In this work, we focus on the analysis of anonymity as it is a prerequisite
for untraceability: If nodes cannot be anonymous, they cannot be untraceable.
The key enablers of our solution are the groups of users themselves and a crypto-
graphic construction called ring signatures [34] that allows a node to authenticate
itself to other nodes by using a ring of pseudonyms, instead of its pseudonym
alone. This ring constitutes the anonymity set of the node and can be constructed
out of the pseudonyms of the node’s past and present encounters without any
interactive protocols. Hence, our mechanism provides self-organized anonymous
authentication. The advantage of this approach is that each user only owns a
single authenticated pseudonym. But we show that rings alone are insufficient
to protect user privacy: By analyzing the different pseudonyms used in rings,
an eavesdropper can link - with a sufficiently high probability - some rings to
users. As described in this paper, the problem gets worse if the network of nodes
grows. Hence, it is crucial to construct rings using mechanisms that maximize
user anonymity. We develop a graph-theoretic model to evaluate different ring
construction strategies and derive the optimal (in terms of achieved anonymity)
ring constructions. Leveraging on each node’s local knowledge and history of en-
counters, we devise self-organizing methods to achieve, in practice, near-optimal
anonymity. We show with simulations that mobility and peer-to-peer communi-
cations are beneficial for the emergence of self-organized location privacy.

352 J. Freudiger, M. Raya, and J.-P. Hubaux

The paper is organized as follows: In Section 2, we review the state of the
art. In Section 3, we present the system and threat models assumed throughout
the paper. After introducing our proposed solution in Section 4, we analyze in
Section 5 the achievable anonymity using a graph-theoretic model and evaluate
the solution in Section 6. Finally, in Section 7 we discuss the cost of our approach
and present remaining challenges. In that section, we also provide preliminary
results addressing the untraceability requirement before concluding in Section 8.

2 Related Work

There are several techniques available to achieve anonymous authentication.
A large body of work focuses on the use of multiple pseudonyms [15] and,

in particular, in mobile scenarios [7,24]. Instead of using a single pseudonym,
mobile devices are preloaded with a set of pseudonyms and change over time
the pseudonym used for sending messages. To impede an adversary from link-
ing old and new pseudonyms, the change of pseudonyms must be spatially and
temporally coordinated among mobile nodes in regions called mix zones [8]. The
analysis in [7,20,21] shows that the achieved location privacy depends on the
node density and on the unpredictability of node movements in mix zones. The
main drawbacks of mix zones is that they are inefficient when the node density in
the mix zone is low and can be costly in terms of pseudonym management. A re-
lated technique uses frequently changing pseudonyms, silent periods, and power
control to hide privacy-sensitive information [26]. As we will see, our approach
alleviates the problem of low densities in mix zones by relying on the history
of encounters of mobile nodes, instead of strictly using their current neighbors.
In addition, we alleviate the problem of pseudonym management by allowing a
single pseudonym per device.

Another solution relies on group signatures [16] that allow a group member to
sign on behalf of a group without revealing the identity of the signer. Nowadays,
highly efficient group signatures schemes exist with constant size signatures and
efficient signing and verification even when nodes are revoked [10,13,31]. But
group signatures require a group manager to add and revoke group members,
thus making the flexibility of groups dependent on the availability and compu-
tational capacity of the group manager. In contrast, with ring signatures, nodes
can change the members of their rings without central coordination.

Anonymous credential systems (e.g., Idemix [11]) allow mobile nodes to anony-
mously authenticate to third parties with the help of an online credential issuer.
The online availability of a credential issuer is often not possible in wireless
networks. To circumvent the issue, techniques based on unclonable identifiers,
such as e-tokens [12], allow nodes to anonymously authenticate themselves a
given number of times per period. However, such techniques lack flexibility, in
particular in the case of a prolonged unavailability of the credential issuer.

To the best of our knowledge, we are the first to investigate the potential
of ring signatures to achieve anonymity and untraceability in mobile networks.
Until now, most of the work focused on proving properties of ring signatures [41]
or on the anonymity and unlinkability of the signature generation process [28].

Self-organized Anonymous Authentication in Mobile Ad Hoc Networks 353

Recently, ring signatures were proposed in [29] as a building block for anonymous
routing in MANET but without investigation of the ring creation process.

3 Preliminaries

3.1 System Model

We assume a mobile network with n mobile nodes and a single offline Certifi-
cation Authority (CA) run by an independent trusted third party. We focus on
scenarios where the mobile nodes are autonomous entities equipped with WiFi
or Bluetooth-enabled devices that communicate with each other upon coming in
range. In other words, we describe a pervasive communication system in which
mobile nodes automatically exchange information upon meeting.

Prior to entering the network, each mobile node registers with the CA that
preloads a single public/private key pair (Ki, K

−1
i) and a digital certificate in the

nodes’ device. The CA verifies the identity of each user upon registration. The
public key Ki serves as the identifier of node i and is referred to as its pseudonym
Pi. The private key K−1

i permits mobile node i to digitally sign messages, while
the digital certificate validates the authenticity of the signature.

We assume that mobile nodes automatically exchange information as soon
as they are in communication range. To do so, mobile nodes advertise their
presence by periodically broadcasting proximity beacons containing the node’s
authenticating information (i.e., the sender attaches its pseudonym to signed
messages). When a node receives a beacon, it verifies the authenticity of the
sender before reading the message.

3.2 Threat Model

We assume that a passive adversary A aims to track the location of mobile nodes.
In practice, the adversary can be a rogue individual, a set of malicious mobile
nodes or may even deploy its own infrastructure (e.g., by placing eavesdrop-
ping devices in the network). In the worst case, A obtains a complete coverage
and tracks nodes throughout the entire network. We characterize this type of
adversary as global.

A collects identifying information (i.e., pseudonyms) from the entire network
and attempts to break the anonymity provided by ring signatures in order to
track the location of mobile nodes. If the adversary is successful, it can implicitly
obtain the true identity of the owner of a mobile node from the analysis of its
mobility [27]. Hence, the location privacy of mobile nodes cannot be taken for
granted.

Finally, we assume that the key-pair generation process cannot be altered or
controlled by the adversary.

3.3 Problem Statement

The location of mobile nodes can be tracked based on the information leaked
from authentication messages. To thwart this threat, we define the following
design goals:

354 J. Freudiger, M. Raya, and J.-P. Hubaux

– Anonymous authentication: The nodes should be able to authenticate
to each other without being identifiable. Anonymous authentication permits
mobile nodes to verify the origin of received messages without revealing their
identity (neither to the receiver, nor to an eavesdropper).

– Self-Organization: The anonymity of nodes should not depend on the con-
stant presence of a central authority because of the scalability and accessi-
bility problems this would cause (the CA distributes pseudonyms to nodes
prior to their entrance in the network but is not always accessible). With
self-organization, the cost of anonymity management is distributed among
all the nodes.

It should be noted that we do not consider accountability as a design goal. Indeed,
like many Internet applications, the peer-to-peer wireless scenarios we study do
not require it.

4 Self-organized Anonymous Authentication

In this section, we describe the techniques that permit the emergence of self-
organized anonymous authentication.

4.1 Overview

With standard asymmetric cryptography, nodes authenticate themselves to oth-
ers by signing their messages with their private key and providing the public key
for signature verification, thereby revealing their identity. Instead, self-organized
anonymous authentication, explained in detail in the next section, allows a node
to select a set of pseudonyms called a ring and then sign its messages with a Ring
Signature (RS) [34]. A RS preserves the cryptographic anonymity of the signer
because it cannot be distinguished among the members of the ring.1 Besides,
rings are setup-free: The knowledge of the pseudonyms of the other nodes is suf-
ficient to create a ring without any interaction. Hence, unlike group signatures,
RSs have no group managers and do not require any coordination among ring
members. Finally, two signatures generated by the same signer with the same
ring are cryptographically unlinkable. Of course, to be able to generate a RS,
each node must always use its own pseudonym in its ring, thus guaranteeing the
authentication requirement.

The pseudonyms used for constructing rings can be collected by downloading
sets of rings from online databases, much like PGP keyrings, or, in the case of
the mobile network considered here, by recording the pseudonyms of neighboring
nodes in a history Si. Each node constructs a ring of pseudonyms by selecting a
subset of pseudonyms from its history of encounters. This allows nodes to have
an anonymity set without any central coordination: Rings are dynamically and
1 In this paper, anonymity and untraceability are evaluated with respect to the pseu-

donyms used in rings and not with respect to the signature generation process, thus
the distinction “cryptographic”.

Self-organized Anonymous Authentication in Mobile Ad Hoc Networks 355

independently created by mobile nodes. A node i can thus authenticate itself to
other nodes at time t by sending a message m with a ring signature RSi,t(m)
created with ring Ri,t. It is worth making a clear distinction between the notions
of “node” i, “pseudonym” Pi and “ring” Ri,t. Mobile nodes are indexed by a
counter i (that does not refer to any ordering of the nodes). A mobile node i is
represented in the network by its pseudonym Pi. In order to avoid being tracked
by its pseudonym, i actually uses a set of pseudonyms of other nodes together
with its own pseudonym Pi, to create its ring Ri,t at time t.

Authenticating the source of information is a crucial primitive in pervasive
communication systems to limit the spread of undesired data. By signing a mes-
sage with a ring of pseudonyms, a signer proves its membership to a club of nodes
(e.g., a mobile social network). The verifier can then be sure that a message orig-
inates from a member of the club. Of course, all members of a ring should have
the appropriate credentials - the pseudonyms have been certified by the CA -
and belong to the club; otherwise their presence in the ring would invalidate its
authenticity. For simplicity of presentation, we consider in the rest of the paper
that there is a single club of members encompassing all the legitimate nodes of
the network.

4.2 Anonymous Authentication with Ring Signatures

Ring signatures were formalized by Rivest, Shamir and Tauman in [34] as an
anonymous signature scheme. A ring signature allows a member of an ad hoc
collection of users, i.e., the ring, to prove to any verifier that a message was sent
by a member of the ring. An authenticated message does not leak the identity of
its signer. Every node i has a ring Ri,t at time t that is composed of a finite subset
of the collection P of all pseudonyms in the network: Ri,t = {..., Pi, Pj , ...}. Let
Rt = {R1,t, R2,t, ...} be the set of rings in the network at time t. Based on the
pseudonyms in their local histories, mobile nodes decide which pseudonyms to
use in their rings. We call this the ring construction strategy.

Ring signatures can be constructed upon any type of public key cryptographic
primitive [6]. What is common to these schemes is that ring signatures are based
on combining functions:

CH,v(T0, T1, ..., Tri−1) = v (1)

where H is a secure cryptographic hash function, v is a random glue value, ri is
the size of the ring (constant over time) and Tk, k = 0, ..., ri − 1, are randomly
generated values except for one that requires the knowledge of a secret key to
solve (1).

For efficiency reasons, we consider the ring signature scheme presented in [41]
in which the combining function C relies on bilinear pairings and the public key
cryptosystem is identity-based (i.e., ID-based cryptography [36]). In ID-based
cryptography, the knowledge of the identifier (i.e., pseudonym) of a node is suf-
ficient to validate the authenticity of its signature. This reduces the communica-
tion overhead because it avoids the use of certificates accompanying signatures

356 J. Freudiger, M. Raya, and J.-P. Hubaux

generated by traditional cryptosystems such as RSA and ECC. The Achilles’
heel of ID-based cryptosystems has always been their slower speed compared
to other cryptosystems. But the recent introduction of efficient algorithms for
computing pairings starts showing its feasibility on mobile devices [40]. We will
elaborate more on the corresponding costs in Section 7. In ID-based cryptogra-
phy the CA must be replaced by a Private Key Generator (PKG). A common
critique of ID-based cryptography is that the PKG must be trusted to gener-
ate/protect private keys, and can forge signatures on behalf of the nodes (i.e.,
the key escrow problem). But for the applications considered here, we assume
that the PKG (i.e., the CA) is trusted.

Let G be a Gap Diffie Hellman (GDH) group of prime order q. When a mobile
node i wants to send a message m at time t, it first constructs a ring Ri,t by
selecting ri pseudonyms (including its own pseudonym) out of its history. The
ring signature is an ri + 1 tuple of random values Tk ∈ G for k = 0, 1, ..., ri − 1
and of c0 ∈ G:

(c0, T0, T1, ..., Tri−1) (2)

where c0 is an initialization value for the ring creation; it contains the hash of
the message m. Tk are randomly generated values except for one (only known
to user i) that solves (1) with v = 0 and requires the knowledge of the secret
key K−1

i . We denote RSi,t(m) = (c0, T0, T1, ..., Tri−1) the ring signature on a
message m sent by node i. To avoid replay attacks, the message m also contains
a timestamp. The entire packet sent over the air looks as follows:

m, Ri,t, RSi,t(m) (3)

4.3 Anonymous Communications

Upon receiving a message, a node validates its signature before reading it. The
receiver can reply to the message to initiate a communication session. To do
so, two nodes establish a security association through an authenticated key ex-
change, e.g., ring signatures can be used in conjunction with the Diffie-Hellman
protocol [29].

However, in order to allow for bidirectional communications, mobile nodes
must be identifiable in the short term. Much to the detriment of privacy, mobile
nodes already make use of long term identifiers, such as MAC (Medium Access
Control) addresses, to communicate on the data link. For example, in IEEE
802.11, the MAC addresses are 48-bit values included in frames to identify the
source or destination of a frame. Hence, whereas rings can provide an appro-
priate layer of anonymity at the application layer, the MAC addresses have to
be anonymized to serve uniquely for short term communications. One approach
consists in changing the MAC address [24] every time the ring changes, to pre-
serve the anonymity created by the ring while still being able to identify nodes
in the short term. The MAC address can be generated randomly, taking into
account that collisions must be avoided. In [23], the authors suggest another
approach based on an identifier-free link layer protocol. Basically, their solution

Self-organized Anonymous Authentication in Mobile Ad Hoc Networks 357

increases the difficulty of profiling users from the link layer by obscuring long
term explicit identifiers.

Finally, it must be noted that, at the physical layer, the wireless transceiver
has a wireless fingerprint that can identify mobile devices in the long term [33].
However, this requires a costly installation for the adversary and stringent con-
ditions on the wireless medium. A more generic approach consists in the analysis
of the signal power of mobile devices to track their locations. It is still an open
problem to determine how much identifying information a sophisticated adver-
sary can extract from the physical layer.

5 Anonymity Analysis

In this section, we evaluate the anonymity provided by rings, considering a pas-
sive adversary. We show how to optimally construct rings to maximize the achiev-
able anonymity.

5.1 Attack Description

A global and passive adversary observes the rings used by the nodes to authen-
ticate each other over time (Fig. 1). Based on this information, it attempts to
de-anonymize rings signatures.

Given a ring alone, an adversary is unable to determine the identity of the
ring owner because of the cryptographic anonymity of ring signatures. However,
if an adversary obtains all the rings used at time t in the network, it can infer the
most probable owner of each ring by analyzing the ring members. For example,
node i constructs a ring Ri,t of size ri. It uses its pseudonym Pi and selects ri −1
pseudonyms out of its history. If no other ring in the network uses pseudonym
Pi, the adversary can conclude that ring Ri corresponds to pseudonym Pi (e.g.,
node u4 in Fig. 2 (a)). A methodic analysis of ring members can thus reverse
the anonymity provided by rings. Repeating this attack for each t, the adversary
can track the locations of mobile nodes. In this section, we focus on the analysis
of anonymity, which, as explained above, is a prerequisite to untraceability. The
adversary will thus analyze snapshots of rings (columns in Fig. 1). Without loss

t

R1,1

...

R1,2 R1,3

...

R2,1 R2,2 R2,3

R3,1 R3,2 R3,3

Rn,1 Rn,2 Rn,3

1 2 3

Fig. 1. Rings over time. An adversary will observe sets of rings changing over time and
try to track the locations of mobile nodes. Ri,t is the ring of node i at time t.

358 J. Freudiger, M. Raya, and J.-P. Hubaux

u1

u2

u3

u4

P1

P2

P3

P4

U V

R1

(a)

u1

u2

u3

u4

P1

P2

P3

P4

U V

(b)

Fig. 2. Two examples of bipartite graphs G. (a) Rings are R1 = {P1, P2}, R2 =
{P2, P3}, R3 = {P3, P4}, and R4 = {P4}. (b) Rings are R1 = {P1, P2, P3}, R2 =
{P1, P2, P3}, R3 = {P3}, and R4 = {P2, P4}.

of generality, we write in the following Ri,t = Ri and RSi,t(m) = RSi(m). The
adversary can also try to defeat the untraceability of rings by linking resembling
rings over time to the same ring owner (rows of Fig. 1). Section 7 will give
preliminary results on the untraceability analysis.

5.2 Graph-Theoretic Model

A set of rings can be modeled with a bipartite graph G = (U ∪ V, E), where
U = {ui}n

i=1 is the set of nodes, V = {Pj}n
j=1 is the set of pseudonyms and

E ⊆ U×V is the set of edges. A graph is bipartite if its vertices can be partitioned
into two sets such that no edge connects vertices in the same set. If a pseudonym
Pj is in Ri, then we say that the node ui using Ri is connected to Pj and we
create an edge (ui, Pj) ∈ E. We consider a balanced graph, that is, there are
|U | = |V | = n nodes in the system. There are |E| = e edges directed from U to
V . We denote din the in-degree of a node in V , i.e., the number of edges directed
towards the node. Similarly, dout denotes the out-degree of a node in U , i.e.,
the number of edges directed away from the node (the size of the ring). Two
possible bipartite graphs are illustrated in Fig. 2. Graphs are simple if there are
no multiple edges between two nodes.

After modeling rings with a graph G, A aims to discover which among the
pseudonym Pj ∈ Ri corresponds to the node ui. To do so, A must find the most
likely mapping of pseudonyms in V onto nodes in U . In graph-theoretic terms,
A is looking for an assignment of nodes in V to nodes in U in the bipartite
graph G. An assignment is a matching if no two edges share a common vertex.
A perfect matching is a matching that covers all vertices of the graph. A must
thus find the most probable perfect matching.

To do so, A assigns probabilities to all edges of the graph: pj|i is the probability
that pseudonym Pj in V corresponds to node ui in U . Hence, the graph G
is weighted with probabilities computed by the adversary. Finally, A can find

Self-organized Anonymous Authentication in Mobile Ad Hoc Networks 359

the most probable perfect matching by computing the maximum-weight perfect
matching over the weighted bipartite graph G.

Measuring Anonymity. The individual anonymity of a node ui (i.e., the
uncertainty of an adversary about the identity of node ui [35]) can be measured
by:

Hi = −
ri∑

j=1

pj|i log2(pj|i) (4)

which is the entropy of the random variable pj|i and where ri = |Ri| is the size
of the ring of node ui.

A priori, the adversary will choose probability pj|i equal to 1/dout
i as each

outgoing edge is equally likely to be chosen. In Fig. 6(a), the entropy yields with
this approach a non-zero anonymity for all but the last node. However, by doing
so, the adversary focuses on the anonymity of individual nodes and overlooks
some important properties of the system as a whole [19]. A clever adversary
would eliminate many possible assignments by working backwards from vertices
with a degree of one and the entropy would then yield a zero anonymity for all
nodes.

A can thus first consider all assignments mk of the elements of V onto U
before computing pj|i a posteriori [7,38]. The probability of an assignment mk

is given by:
p(mk) =

∏
l∈mk

wl

where wl is the weight of edge l in G. The weight is the a priori probability pj|i
and we write wl = 1/dout

i where node ui is the origin of edge l. Because all the
weights of the edges leaving a node are equal, all perfect matchings are equally
likely and we have: p(mk) = p(m).

Hence, the probability of a perfect matching, i.e., the probability that an
assignment is perfect knowing the set of all perfect matchings M , is:

p(mk|M) =
p(mk, M)

p(M)
=

p(mk)
p(M)

=
p(mk)∑|M|

k=1 p(mk)
=

1
|M |

where mk ∈ M for k ∈ [0, |M |], and p(M) is the sum of probabilities of all perfect
matchings. The a posteriori probability pj|i is finally computed by considering
all perfect matchings containing the pair (ui, Pj).

pj|i =
∑

mk∈M|(ui,Pj)∈mk

p(mk|M) (5)

In words, the number of perfect matchings going over an edge determines the
weight of an edge. Hence, the anonymity of a node not only depends on its out-
degree but also on the distribution of perfect matchings, i.e., the structure of the
bipartite graph. Considering again the example in Fig. 2 (a), there is a single
perfect matching in the graph, and consequently the anonymity of each node

360 J. Freudiger, M. Raya, and J.-P. Hubaux

Si

Ri

fi

…

Pj

…

…
Pj

...

Pi

Pi

Fig. 3. Ring construction. To construct its ring Ri, node ui uses its pseudonym Pi and
selects, according to its strategy fi, ri − 1 pseudonyms out of its history Si.

is null. To further illustrate the result, consider the example in Fig. 2 (b) and
observe node 4. To compute p4|4, we consider all the perfect matchings with the
pair (4, 4). In fact, every perfect matching in the graph contains that pair because
din
4 = 1, hence p4|4 = 1. The same analysis is true for node 3 as dout

3 = 1. Still,
nodes 1 and 2 have a non-zero anonymity. In other words, both the in-degrees
of nodes in V and out-degrees of nodes in U affect the distribution of perfect
matchings and determine the probability pj|i.

Complexity. The analysis presented above is difficult to carry out in prac-
tice because of its complexity: All perfect matchings must be found. Itai et al.
introduce in [25] a polynomial time algorithm to find all perfect matchings in
a bipartite graph. The algorithm starts from a perfect matching to iteratively
produce them all in O(e · (√n+ |M |)) time. The algorithm remains hard to use,
as the number of nodes n can be extremely large and the number of matchings
|M | increases exponentially with the number of nodes. The adversary could thus
focus on small sets of rings using, for example, the divide and conquer approach
presented in [22].

5.3 Ring Construction Problem

Fig. 3 illustrates the ring construction process: Each node ui obtains a ring Ri

of size ri by using its pseudonym Pi and choosing ri − 1 pseudonyms from its
history Si. Rings must be carefully created to obtain high anonymity. The ring
construction strategy of node ui gives the criteria to include a pseudonym from
ui’s history in its ring. We define it as a function fi : 2P → 2P . The selected
pseudonyms must belong to ui’s history: fi(X) ⊆ X where X ⊆ P is a set
of pseudonyms. The number of selected pseudonyms must not exceed the ring
size: |fi(X)| ≤ ri. In this paper, we consider that all nodes use the same ring
construction strategy: fi = f .

The ring construction problem consists in finding the ring construction that
maximizes anonymity. To do so, we must obtain the optimal graph that maxi-

Self-organized Anonymous Authentication in Mobile Ad Hoc Networks 361

mizes the achievable anonymity for all nodes:

max
G

(Hi) ∀ui ∈ U (6)

subject to:

1 ≤ dout
i ≤ dmax (7)

(ui, Pj) ∈ E ⇔ Pj ∈ f(Si) (8)

Equation (7) confines the out-degrees dout
i to a maximum dmax. The graph con-

struction is constrained by (8): The resulting graph G depends on the informa-
tion collected by the nodes (their knowledge of pseudonyms). In other words,
we seek to obtain a graph that maximizes the level of anonymity of every node
constrained by the maximum out-degree and using a distributed construction
function f (i.e., self-organization).

Optimal Graph G. As illustrated in Fig. 2, the distribution of the node in-
/out-degrees affects the anonymity of each node. Let us introduce the following
notation: G\(ui,Pj) corresponds to graph G without the edge (ui, Pj).

The following Theorem identifies the graphs that provide the maximum
anonymity. The proof is provided in the Appendix.
Theorem 1. Anonymity is maximal if and only if every vertex in the bipartite
graph G has the same degree dmax and for each i, the subgraphs G\(ui,Pj) ⊆ G
for all Pj ∈ Ri are isomorphic to each other. The anonymity of each node is
then log2(d

max).
Theorem 1 characterizes the optimal graph G that maximizes the achievable
anonymity. Basically, all subgraphs of G obtained by removing an edge starting
at one node must be isomorphic. The isomorphism property captures the notion
of similarity between subgraphs: If subgraphs are similar (i.e., have the same
structure), it is more difficult to distinguish nodes in G. A large body of work has
studied the existence of graph isomorphism and shown that the problem is NP: It
belongs to its own complexity class, neither known to be solvable in polynomial
time nor NP-complete [9,17]. In other words, theory says that it might be hard
to determine whether two graphs are isomorphic. However, in practice, the graph
isomorphism problem is easy to solve in polynomial time with heuristics [5]. It is
thus possible in principle to determine whether subgraphs are isomorphic and,
as a consequence, whether a graph G provides maximum anonymity.

In the following, we will compare the anonymity provided by different graph
constructions and will see that regular graphs perform best. In fact, the local
structure of the graph (i.e., the way each node is connected) determines whether
subgraph isomorphisms can exist. In particular, the regularity of graphs is a
necessary condition in our scenario for subgraphs to be isomorphic to each other
(see Appendix).

6 Ring Construction Strategies

In the previous section, we examined the achievable anonymity with rings and
derived necessary conditions (i.e., regular and isomorphic) to maximize it. In

362 J. Freudiger, M. Raya, and J.-P. Hubaux

this section, we evaluate the performance of different graph constructions by
means of simulations. The simulations are carried out in C++ using the LEDA
library [30] to manipulate graphs. First, we assume that the nodes know the
entire network and show the superiority of regular constructions over random
graphs. The results are averaged over 20 runs with a running example of 10
nodes, which is sufficient to evaluate the effect of ring construction strategies
with a reasonable simulation complexity. Then, we approximate the achievable
anonymity on geometric graphs with 100 mobile nodes that only know a portion
of the entire network.

6.1 Random Graphs

Let us assume that the nodes are aware of all the pseudonyms in the network
(i.e., Si = P , ∀ui). With a random graph construction f rand, mobile nodes
choose pseudonyms randomly: We consider a bipartite Erdos-Renyi random
graph G(n, p) where n is the number of nodes and each edge is included in
the graph with probability p independently of others. With such graphs, the
in-/out-degree distribution is binomial Pr(di = k) =

(
n
k

)
pk(1 − p)(n−k) with av-

erage E[di] = np and variance var[di] = np(1 − p). Fig. 4 (a) shows the average
distribution of the achieved entropy. We observe that the average anonymity
increases with the edge density p, whereas the average variance decreases when
p approaches 0 or 1. In other words, with a low or high density of edges, the
achievable anonymity has a narrow distribution. As p → 1, the graph becomes
complete (i.e., all nodes are connected) and thus optimal in terms of anonymity.

We compare the performance of random and r-regular graphs in Fig. 4 (b) by
computing their minimum and mean anonymity. We observe that regular graphs
have a near-optimal behavior as they approach the maximum achievable anony-

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entropy [bits]

Fr
ac

ti
on

of
no

de
s

p=0.2
p=0.5
p=0.9

(a)

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

Ring size r

E
nt

ro
py

[b
it
s]

Min Random
Mean Random
Min r-Regular
Mean r-Regular

(b)

Fig. 4. Comparison of random and regular graphs. (a) Entropy distribution of random
graphs with an increasing edge density p. The x-axis is divided into bins of size 0.3
and the y-axis represents the fraction of nodes in each bin. (b) Minimum and mean
entropy levels of random and r-regular graph constructions.

Self-organized Anonymous Authentication in Mobile Ad Hoc Networks 363

mity log2(r). Random graphs perform poorly, illustrating the importance of
regular degree distributions: Nodes with a low in-/out-degree have lower anony-
mity, which is hardly compensated by nodes with a higher degree as the anony-
mity is logarithmic. The node degree variance induces a larger anonymity vari-
ance. Thus, to guarantee a minimal level of anonymity, the mean degree must
be even larger.

As n → ∞, the node degree distribution is approximated by a Poisson dis-
tribution with parameter λ = np. As the variance of the degree distribution
equals the mean, it will be large and reduce the average anonymity. Bollobas
in [9] notably investigates the asymptotic distribution of the degree sequence of
graphs and proves that random graph constructions do not permit to guarantee
predictable minimal and maximal degrees: the minimum and maximum degrees
are essentially determined (by a function whose exact value is unknown). Bol-
lobas further demonstrates that for some values of p (Theorem 3.5, [9]), there is
a minimal degree dmin ≥ 2. However, in this case, the maximum degree is not
finite. In other words, as the graph grows larger, the degree sequence of random
graphs is unpredictable and the performance gap with regular graphs increases.

6.2 Kout Graphs

We evaluate whether introducing a structure in the graph construction increases
the achievable anonymity. We impose the same fixed out-degree dout = K to
every node to obtain a Kout graph [9]. We consider various ring construction
strategies with and without the help of a central entity.

Centralized Algorithm. The central entity is a network coordinator that
knows the in-/out-degrees of each node and generates regular graphs from Kout

graphs. Bollobas in [9] suggests a pairing model (i.e., a ring construction f reg)
to construct regular graphs with a centralized algorithm: Every vertex of the
graph is connected to K nodes uniformly at random forming Kn pairs. If there
are no multiple edges between two same nodes, the resulting graph is a random
regular graph.

Distributed Algorithm. In the absence of a central entity, the nodes must
decide individually with whom to connect. Each vertex ui ∈ U uses its pseudo-
nym Pi and randomly selects K − 1 vertices from V . As all

(
n−1
K−1

)
choices are

equiprobable, the probability that a pseudonym Pj is chosen by another node is
the ratio of assignments containing Pj over all possible assignments:

p = Pr(“Node ui picks Pj after K − 1 tries”)

=

(
n−2
K−2

)(
n−1
K−1

) =
K − 1
n − 1

(9)

The node in-degree distribution is then Pr(din
i = k) =

(
n
k

)
pk(1 − p)n−k. Thus,

the average in-degree distribution is E[din
i] = n

n−1 (K − 1) and the variance is

364 J. Freudiger, M. Raya, and J.-P. Hubaux

0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Entropy [bits]

Fr
ac

ti
on

of
no

de
s

f rand

f kRand

f reg

(a)

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ring size r

Fr
ac

ti
on

of
co

rr
ec

tl
y

m
at

ch
ed

no
de

s

f rand

f kRand

f reg

(b)

Fig. 5. Comparison of various ring constructions f . (a) Entropy distributions. The x-
axis is divided into bins of size 0.3 and the y-axis represents the fraction of nodes in
each bin. (b) Fraction of correctly matched pseudonyms to rings.

var[din
i] = n

n−1 (K − 1)(1− K−1
n−1). Consequently, with the distributed algorithm,

the ring construction strategy fkRand heavily depends on the degree K.
Fig. 5 (a) compares the entropy distribution for various ring constructions.

We consider equivalent graphs constructions with n = 10 nodes, p = 4/10,
K = 4 and d = 4 for d-regular graphs. We observe that fkRand obtains a nar-
rower distribution of entropies than f rand, thus illustrating the importance of
a regular out-degree. If random graphs obtain the maximum entropy among all
constructions, they also have a smaller minimum entropy and lower average en-
tropy. f reg obtains very good results, close to the maximum achievable entropy
log2(d). This is due to the regularity of the in-degree distribution. With f reg

and d = 4, the majority of the nodes are indistinguishable as their entropy is
22 = 4 equal to d. Like with random graphs, as n → ∞, the in-degree distribu-
tion of Kout graphs is Poissonian: The mean and variance approach K − 1. In
other words, the difference between regular and Kout graphs will increase as K
becomes large.

In Fig. 5 (b), we observe that the proportion of successful matchings of pseu-
donyms onto nodes (i.e., the adversary success ratio) varies significantly among
graphs. In the worst case, the adversary cannot infer information statistically
and thus makes random attempts. The probability of success of the adversary is
then equal to 1/r. For regular graphs, A’s success is limited and approaches its
worst case strategy. In other words, A would do better by randomly matching
rings to pseudonyms. With random constructions however, the adversary can
infer significant information: Even with rings composed of 6 nodes, 5 out of 10
nodes in the example are correctly matched.

6.3 Geometric Graphs

As discussed above, the introduction of a structure in the ring construction
dramatically increases the achievable anonymity. Still, the nodes were aware of

Self-organized Anonymous Authentication in Mobile Ad Hoc Networks 365

all the pseudonyms in the network. In practice, mobile nodes will only have access
to information gathered from the network, i.e., the rings of their encounters. In
this section, we evaluate how the topology affects the achievable anonymity.
In particular, as regular graph provide high anonymity, we study several ring
construction strategies to obtain a regular graph G. To take the network topology
into account, we consider a geometric graph Gg in which each vertex is associated
with a physical device. Two vertices are connected (i.e., learn each other’s rings)
if and only if they are within distance D(u, v) ≤ Γ of each other, where Γ is a
fixed radius (i.e., the unit disk graph model). The geometric graph Gg models
the connection between nodes. We assume that the nodes are homogeneous (i.e.,
identical devices) and equipped with omnidirectional antennas. We consider both
static and mobile scenarios.

Static Scenario. In static scenarios, nodes learn the pseudonyms in the rings of
their direct neighbors. Indirectly, they also learn the pseudonyms of the neighbors
of their neighbors as they are passed along. Given a history Si and a ring size
ri = r, ∀ui, the probability that node ui chooses pseudonym Pj from its history
in its ring is: Pr(Pj ∈ Ri) = min (1, r/|Si|). For first-hop neighbors of ui, the
probability of learning Pj corresponds to the probability that ui uses Pj , i.e.,
Pr(Pj ∈ Ri). In other words, the ring size determines the propagation rate of
pseudonyms in the network. For a x-hop neighbor ul of ui where x is larger
than 1, the probability that pseudonym Pj is used by all rings on a path Δi,l

from node ui to node ul is: Pr(Pj ∈ Rk, ∀k ∈ Δi,l) =
∏

∀k∈Δi,l
min(1, r/|Sk|).

However, nodes belonging to disconnected sets of the graph Gg are isolated
from each other and have zero probability of learning each other’s pseudonyms.
Hence, the propagation of pseudonyms is limited by the graph connectivity as
well, reducing the potential size of anonymity sets. The topology of the network
thus critically affects the achievable privacy. With the ring construction fstatic,
we consider that mobile nodes randomly choose pseudonyms from their local
history to construct their rings.

Mobile Scenario. We examine how mobility can lessen the negative impact
of topology: As nodes move in the network, they discover a larger portion of
the set of pseudonyms P . We consider the restricted random waypoint model
introduced in [14]. In the random waypoint model, a mobile node moves on a
continuous plane from its current position to a new position by randomly choos-
ing its destination coordinates, its speed and the amount of time it will pause
when it reaches the destination. After its pause, a node chooses a new destina-
tion and speed. This is repeated for each node until the end of the simulation
time. In the restricted model, the choice of destination points is restricted with
some probability φ to a set Ψ of fixed points on a plane. With probability φ a
node randomly chooses a point from Ψ , and with probability 1 − φ, a node will
choose a random point on the plane. This model is close to reality as users do
not choose their destinations randomly, but instead meet at cafés, bus stops, etc.

In this mobile environment, we evaluate various ring construction strategies
that aim at obtaining the most regular graph. These strategies capitalize on the
frequency and freshness of the appearance of pseudonyms.

366 J. Freudiger, M. Raya, and J.-P. Hubaux

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

3.5

4

Time

A
ve

ra
ge

A
no

ny
m

it
y

Se
t

Si
ze

fkRand

fcLeast

foLeast

fsLeast

fMost

fstatic

(a)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Anonymity Set

C
D

F

fkRand

fcLeast

foLeast

fsLeast

fMost

fstatic

(b)

Fig. 6. Average anonymity set size for several ring construction strategies f in a mobile
scenario with φ = 0.5 and r = 4. (a) Average anonymity set size over time. (b)
Cumulative distribution function of the anonymity set.

Least Popular Strategy. With the least popular ring construction strategy,
each node maintains a counter for each pseudonym and selects the pseudonyms
with the lowest counter value (i.e., the least popular). We consider three vari-
ations of the strategy: In f cLeast, a central server informs the nodes of the in-
degree of members of their histories. In fsLeast, nodes choose in their histories
the pseudonyms that were used the least often. In foLeast, nodes choose in their
histories the pseudonyms that were used the least often in the rings of others.

Most Popular Strategy. We consider a most popular ring construction strategy
fMost in which the most popular nodes are chosen with the help of a central
server.

Random Strategy. With the random construction strategy fkRand, nodes
choose their ring members randomly from their local history.

We ran 20 simulations on a 500 × 500 m2 torus with n = 100 nodes, trans-
mission range = 25m, pause = 20s, history |S| = 10, ring size r = 4, |Ψ | = 5
and φ = 0.5. For simplicity and clarity, instead of computing the entropy, we
compute the anonymity sets of mobile nodes, which corresponds to the in-degree
distribution of graph Gg.

Fig. 6 (a) shows the evolution over time of the average anonymity set size of
mobile nodes. We observe that the achieved anonymity set in mobile scenarios
surpasses by far the static scenario but takes longer to converge. In general, we
observe a percolation region ([10, 102] seconds) where the anonymity set of the
nodes increases quickly, and then a region of convergence ([102, 103] seconds).
fstatic reaches a small anonymity set and is topped by all mobile strategies. Com-
paring mobility scenarios, we observe that f cLeast, foLeast and fsLeast improve
the average size of the anonymity set with respect to the fkRand (10% to 20%
improvement). We notice that foLeast performs slightly better than fsLeast as
it takes better advantage of mobility (i.e., nodes have a better global knowledge

Self-organized Anonymous Authentication in Mobile Ad Hoc Networks 367

of rings) and approaches the performance of the centralized algorithm f cLeast.
The fMost approach seems to perform as well as the least popular approaches.

Fig. 6 (b) gives the cumulative distribution function (CDF) of the anonymity
set showing the fraction of nodes per anonymity set size. The spread of the
curve represents the variance across mobile nodes in the anonymity set sizes. We
observe that f cLeast performs well: It has a small variance as the majority of
the nodes has an anonymity set size equal to 4 (i.e., the ring size). foLeast and
fsLeast have a smaller variance than fkRand. Notably, with the foLeast approach,
fewer nodes (20% less) have a small anonymity set. Finally, we observe that the
fMost approach actually performs worse than all other strategies: As a small
number of nodes become extremely popular, the majority of nodes (90%) has
a small anonymity set. Hence, although the average anonymity set size is large
(Fig. 6 (a)), only a few nodes are actually anonymous, while others are easily
identifiable. As social networks (usually modeled with scale-free graphs) tend to
have this form, social networks based ring constructions would perform poorly.

In conclusion, the knowledge of the popularity of a pseudonym helps to achieve
high anonymity (i.e., the least popular strategy). The nodes can thus indepen-
dently aggregate information about their encounters and achieve anonymity in
a self-organized way (without harming the anonymity of other nodes). Hence,
peer-to-peer communications between mobile nodes enable privacy to emerge in
ad hoc wireless networks.

7 Discussion

In this section, we present preliminary results on the untraceability of rings,
explain their resilience to Sybil attacks, detail how revocation works and finally
discuss the cost of ring signatures.

7.1 Untraceability

Untraceability of rings is also required in order to achieve self-organized location
privacy. Similar to mix zones [7], mobile nodes can change their rings simulta-
neously upon meeting in the network. An external adversary will have to infer
the most probable matching of old and new rings. Mobile nodes are untrace-
able if the adversary is unlikely to successfully match rings. Unlike the multiple
pseudonym approach, in self-organized location privacy rings are correlated over
time. Hence, by analyzing the similarity of ring members over time, an adver-
sary could statistically estimate the matching of rings and track mobile nodes
in the network. For example, if ring members remain constant, an adversary
trivially tracks the whereabouts of mobile nodes. Ring members must thus vary:
Except for the pseudonym Pi of the ring creator ui, a ring Ri,t+1 can be entirely
different from the previous ring Ri,t. Still, if all but one pseudonym are system-
atically updated, an adversary tracks mobile nodes by identifying persistent ring
members.

In order to defeat an attack on untraceability by an external adversary A,
ring members must evolve with time depending on both past ring members and

368 J. Freudiger, M. Raya, and J.-P. Hubaux

new encounters. Therefore, on top of the self-organization involved to achieve
anonymity, mobile nodes must coordinate the evolution of their ring members to
obtain untraceability. One possible way to coordinate the evolution of rings is to
cluster ring members. The clustering coefficient of a vertex is used to quantify
how close the vertex and its neighbors are to being a complete graph [39]. In our
case, the clustering coefficient of a node measures the number of common ring
members it shares with nearby nodes. The clustering coefficient of ring members
results in an overlap of rings, which hardens the attack by A. Mobile nodes
can cluster their rings in a self-organized way by favoring pseudonyms recently
observed: Newly acquired pseudonyms have a higher probability of being chosen
in a ring. Preliminary results have demonstrated the success of this approach.
We leave the formal investigation of this method for future work.

7.2 Sybil Attacks and Revocation

If a single node can present multiple identities, it can control a substantial frac-
tion of the system and thereby undermine its security. These Sybil attacks [18]
are not possible if there is a central entity to vouch for a one-to-one correspon-
dence between entity and identity. In our model, the offline CA attributes a single
pseudonym to every node after proper identification and rings are only used for
authentication purposes. Hence, rings are unaffected by Sybil attacks. Actually,
as privacy is generated by the nodes, RSs can be viewed as a Sybil defense that
exploits the redundancy of mobile networks to generate a self-cloak.

Typical misbehavior remains possible in peer-to-peer wireless networks: For
example, a mobile node can engage in denial of service attacks. However, the CA
can exclude misbehaving nodes by revoking their keying material (as a signer
must own a private key to generate a ring signature). Thus, keys can be black-
listed using certificate revocation lists (CRLs) like traditional revocation algo-
rithms [42].

7.3 Cost

As ring sizes affect the anonymity level, users will tend to create the largest
possible rings. But as ring signatures incur a communication and computation
overhead, ring sizes will be bounded by the acceptable performance overhead.

Computation Overhead. RS computational requirements depend on the un-
derlying trapdoor permutation, i.e., with ID-based ring signatures, one bilinear
pairing computation is required for each member of the ring. In other words, for
a node ui, the signature cost Csign is:

Csign ≈ ri · CBP (10)

where CBP captures the cost of a Bilinear Pairing. The verification of a mes-
sage has the same complexity. Using FPGA hardware accelerators for bilinear
pairings [37], one bilinear pairing takes 61μs. In total, for a ring of size ri = 10,
Csign = 610μs. Without hardware accelerators, the efficiency of ring signatures

Self-organized Anonymous Authentication in Mobile Ad Hoc Networks 369

in mobile phones depends on software optimizations: Currently, one bilinear pair-
ing takes 478ms on a 225MHz ARM9 processor [40]. If this is not usable, the
computation cost will eventually decrease as mobiles’ hardware improves.

Transmission Overhead. To sign messages with ring signatures, only the
first authenticated message between two nodes must contain the ring. Subse-
quent messages will thus have a smaller overhead. A RS is an ri + 1 tuple:
(c0, T1, ..., Tri−1). Each of those tuples is taken out of the group G of prime order
q. Hence, the total size of the signature is (ri + 1) · M bits where M = log2(q).
On top of the signature, a ring Ri is composed of ri pseudonyms of M bits.
Hence, the size of the signature grows linearly with the size of the ring. The
transmission cost Ctrans is:

Ctrans ≈ (ri + 1) · M + ri · M = (2ri + 1)M (11)

For example, assume that a node ui with pseudonym Pi creates a ring of size
ri = 10. For 128-bit security, NIST [32] recommends M = 283 with elliptic
curves defined over a binary underlying finite field of characteristic two (F2M).
The communication overhead of the first message of each node is then 21 · M
bits and 11 · M for subsequent messages.

8 Conclusion

We introduced the self-organized location privacy paradigm to solve the problem
of location privacy in wireless mobile networks. With this approach, the network
protects the location privacy of its nodes in a self-organized manner relying on
Ring Signatures. Using graph theory, we theoretically measured the efficiency of
the approach to provide anonymous authentication and derived its optimum. We
examined numerically different ring construction strategies at the mobile nodes
and showed that regular constructions achieve near-optimal anonymity. Then,
we demonstrated that enabling nodes to communicate with each other increases
their respective privacy levels by means of simulations. Despite their lack of
knowledge of the entire network, mobile nodes achieve a high anonymity level by
relying, for example, on the popularity of pseudonyms. In particular, choosing to
connect to the least popular pseudonyms tops the achievable anonymity. Another
particularly interesting result is that mobility helps in establishing self-organized
anonymous authentication by improving the network awareness of every node
without compromising their anonymity.

Future Work. We will investigate the effect of stronger adversary models on
the achievable anonymity, such as an adversary that compromises members of
the network. We will also extend the study of the effect of social networks on the
construction of rings. In particular, social networks could provide information
(e.g., the social graph) to improve the efficiency of ring constructions. Finally,
we intend to complete our preliminary study on the untraceability of rings.

370 J. Freudiger, M. Raya, and J.-P. Hubaux

Acknowledgments

We would like to thank Levente Buttyan, Rafik Chaabouni, Mario Cagalj, Marcin
Poturalski, and Serge Vaudenay for their insights and suggestions on earlier
versions of this work, and the anonymous reviewers for their helpful feedback.

References

1. http://www.techcrunch.com/2007/09/11/the-holy-grail-for-

mobile-socialnetworks

2. http://www.aka-aki.com/

3. http://en.wikipedia.org/wiki/Bluedating/

4. http://www.gamemobile.co.uk/bluetoothmobilegames/

5. http://cs.anu.edu.au/~bdm/nauty/

6. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,
Heidelberg (2002)

7. Beresford, A.R.: Location privacy in ubiquitous computing. Ph.D. thesis, Univer-
sity of Cambridge (2005)

8. Beresford, A.R., Stajano, F.: Mix zones: User privacy in location-aware services.
In: PerSec (2004)

9. Bollobas, B.: Random Graphs. Cambridge University Press, Cambridge (2004)
10. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)

CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)
11. Camenisch, J., Van Herreweghen, E.: Design and implementation of the Idemix

anonymous credential system. In: CCS (2002)
12. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.:

How to win the clone wars: efficient periodic n-times anonymous authentication.
In: CCS (2006)

13. Camenisch, J.L., Lysyanskaya, A.: Dynamic accumulators and application to ef-
ficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, p. 61. Springer, Heidelberg (2002)

14. Capkun, S., Hubaux, J.-P., Buttyan, L.: Mobility helps peer-to-peer security. IEEE
Transactions on Mobile Computing (2006)

15. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2) (1981)

16. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)

17. Corneil, D.G., Gotlieb, C.C.: An efficient algorithm for graph isomorphism. J.
ACM 17(1), 51–64 (1970)

18. Douceur, J.R., Donath, J.S.: The sybil attack. In: Druschel, P., Kaashoek, M.F.,
Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, p. 251. Springer, Heidelberg
(2002)

19. Edman, M., Sivrikaya, F., Yener, B.: A combinatorial approach to measuring
anonymity. Intelligence and Security Informatics (2007)

20. Freudiger, J., Raya, M., Felegyhazi, M., Papadimitratos, P., Hubaux, J.-P.: Mix
zones for location privacy in vehicular networks. In: WiN-ITS (2007)

21. Freudiger, J., Shokri, R., Hubaux, J.-P.: On the optimal placement of mix zones.
In: PETS (2009)

http://www.techcrunch.com/2007/09/11/the-holy-grail-for-mobile-socialnetworks
http://www.techcrunch.com/2007/09/11/the-holy-grail-for-mobile-socialnetworks
http://www.aka-aki.com/
http://en.wikipedia.org/wiki/Bluedating/
http://www.gamemobile.co.uk/bluetoothmobilegames/
http://cs.anu.edu.au/~bdm/nauty/

Self-organized Anonymous Authentication in Mobile Ad Hoc Networks 371

22. Gierlichs, B., Troncoso, C., Diaz, C., Preneel, B., Verbauwhede, I.: Revisiting a
combinatorial approach toward measuring anonymity. In: WPES (2008)

23. Greenstein, B., McCoy, D., Pang, J., Kohno, T., Seshan, S., Wetherall, D.: Im-
proving wireless privacy with an identifier-free link layer protocol. In: MobiSys
(2008)

24. Gruteser, M., Grunwald, D.: Enhancing location privacy in wireless LAN through
disposable interface identifiers: a quantitative analysis. Mob. Netw. Appl. (2005)

25. Itai, A., Rodeh, M., Tanimoto, S.: Some matching problems for bipartite graphs.
Journal of the Association for Computing Machinery (1978)

26. Jiang, T., Wang, H.J., Hu, Y.-C.: Preserving location privacy in wireless LANs.
In: MobiSys (2007)

27. Krumm, J.: Inference attacks on location tracks. In: LaMarca, A., Langheinrich,
M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 127–143. Springer,
Heidelberg (2007)

28. Lin, H.-C., Yen, S.-M., Chen, H.-S.: Protection of mobile agent data collection
by using ring signature. In: International Conference on Networking, Sensing and
Control (2004)

29. Lin, X., Lu, R., Zhu, H., Ho, P., Shen, X., Cao, Z.: ASRPAKE: An anonymous
secure routing protocol with authenticated key exchange for wireless ad hoc net-
works. In: ICC (2007)

30. Mehlhorn, K., Naher, St.: The LEDA Platform of Combinatorial and Geometric
Computing. Cambridge University Press, Cambridge (1999)

31. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: PKC (2009)

32. NIST. Recommended elliptic curves for government use. White Paper (1999)
33. Rasmussen, B., Capkun, S.: Implications of radio fingerprinting on the security of

sensor networks. In: SecureComm (2007)
34. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)

ASIACRYPT 2001. LNCS, vol. 2248, p. 552. Springer, Heidelberg (2001)
35. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.

In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53.
Springer, Heidelberg (2003)

36. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

37. Shu, C., Kwon, S., Gaj, K.: FPGA accelerated Tate pairing based cryptosystem
over binary fields. In: FPT (2006)

38. Tóth, G., Hornák, Z.: Measuring anonymity in a non-adaptive, real-time system.
In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 226–241.
Springer, Heidelberg (2005)

39. Watts, D.J., Strogatz, S.: Collective dynamics of small-world networks. Nature
(1998)

40. Yoshitomi, M., Takagi, T., Kiyomoto, S., Tanaka, T.: Efficient implementation of
the pairing on mobile phones using BREW. IEICE Transactions on Information
and Systems (2008)

41. Zhang, F., Kim, K.: ID-based blind signature and ring signature from pairings.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer,
Heidelberg (2002)

42. Zheng, P.: Tradeoffs in certificate revocation schemes. SIGCOMM Comput. Com-
mun. Rev. (2003)

372 J. Freudiger, M. Raya, and J.-P. Hubaux

43. Zhong, G., Goldberg, I., Hengartner, U.: Louis, lester and pierre: Three protocols
for location privacy. In: Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776,
pp. 62–76. Springer, Heidelberg (2007)

A Proof of Theorem 1

Proof. We first show that each node ui must have an out-degree dout
i = dmax and

then obtain the condition for achieving maximum anonymity. Assume a bipartite
graph G′ where at least one node ui ∈ U has dout

i < dmax. We add new edges
to G′ such that dout

i = dmax ∀ui, and obtain the graph G. Because no edges
were removed, G will contain at least the same number of perfect matchings
as G′. Adding new edges might actually increase the number of existing perfect
matchings and consequently increase the anonymity of the nodes. In other words,
to maximize their anonymity, each node must choose dout

i = dmax.
To maximize the entropy of each node, the random variable pj|i must have a

uniform distribution. Given a node ui, pj|i is uniform if and only if the number
of perfect matchings over (ui, Pj) is the same for all Pj ∈ Ri. A simple way to
verify this consists in comparing whether the subgraphs obtained by removing
any pair G\(ui,Pj) ⊆ G ∀Pj ∈ Ri yield the same number of perfect matchings.
The number of perfect matchings without (ui, Pj) will be the same for any
pair (ui, Pj) with Pj ∈ Ri, if and only if all subgraphs G\(ui,Pj) have the same
number of perfect matchings. This will be true if all subgraphs are isomorphic to
each other (i.e., belong to the same equivalence class). Consider two subgraphs
G\(ui,P1) and G\(ui,P2). An isomorphism of graphs G\(ui,P1) and G\(ui,P2) is
defined as I : V(G\(ui,P1)) � V(G\(ui,P2)) where V(G\(ui,P1)) is the vertex set of
graph G\(ui,P1). I defines an assignment of the nodes of G\(ui,P1) onto the nodes
of G\(ui,P2) such that ∀(ui, Pj) ∈ G\(ui,P1), there is (I(ui), I(Pj)) ∈ G\(ui,P2). A
necessary (but not sufficient) condition for the graph isomorphism to exist in this
case is that the graph is d-regular : Each vertex has the same degree d. Indeed,
if the degrees of vertices of two subgraphs cannot be matched (e.g., a subgraph
has a node of degree 5 while the other does not), then it is impossible for the
subgraphs to be isomorphic. Hence, we know that the graph will be dmax-regular
and that the entropy of each node will be log2(d

max).

An Active Global Attack Model for Sensor Source
Location Privacy: Analysis and Countermeasures

Yi Yang, Sencun Zhu, Guohong Cao, and Thomas LaPorta

Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA 16802, USA

{yy5,szhu,gcao,tlp}@cse.psu.edu

Abstract. Source locations of events are sensitive contextual information that
needs to be protected in sensor networks. Previous work focuses on either an
active local attacker that traces back to a real source in a hop-by-hop fashion, or
a passive global attacker that eavesdrops/analyzes all network traffic to discover
real sources. An active global attack model, which is more realistic and powerful
than current ones, has not been studied yet. In this paper, we not only formalize
this strong attack model, but also propose countermeasures against it.

As case studies, we first apply such an attack model to two previous schemes,
with results indicating that even these theoretically sound constructions are vul-
nerable. We then propose a lightweight dynamic source anonymity scheme that
seamlessly switches from a statistically strong source anonymity scheme to a k-
anonymity scheme on demand. Moreover, we enhance the traditional k-anonymity
scheme with a spatial l-diversity capability by cautiously placing fake sources, to
thwart attacker’s on-site examinations. Simulation results demonstrate that the at-
tacker’s gain in our scheme is greatly reduced when compared to the k-anonymity
scheme.

Keywords: Active Global Attacker, Source Location Privacy, Wireless Sensor
Network, L-diversity, K-anonymity.

1 Introduction

Source location privacy is an important privacy issue in both civilian and military ap-
plications of sensor networks, because the exposure of source location information may
result in catastrophic damages. In an asset monitoring network [1,2], when an endan-
gered animal (e.g., panda) appears in the network, an event notification message will
be delivered to the base station (BS). A nonconforming hunter may identify the source
location and capture the animal by monitoring network traffic. In a battlefield scenario,
the communication between soldiers and their surrounding sensors could reveal the po-
sitions of the soldiers, putting them in great danger as the opposing force may locate
and accurately attack them.

Prior work on sensor source location privacy has explored two different adversarial
models. In an active local attack model1 [1,2,3], an attacker’s hearing range is assumed

1 Note that our differentiation of “active” and “passive” attackers is based on whether the at-
tacker actively takes actions to visit suspicious spots or not. This is different from the tradi-
tional one based on whether the attacker actively manipulates packets or not.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 373–393, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

374 Y. Yang et al.

to be comparable to that of regular sensors. The attacker tries to trace back to the real
source in a hop-by-hop fashion, given that the real event source emits packets continu-
ously for a period of time. Countermeasures in this category [1,2] focus on confusing or
misleading the attacker by introducing random or additional paths. Although such solu-
tions have been shown to be effective, the local adversarial model is relatively weak. An
attacker, with a hearing range more than three times of individual sensors, may locate
the real source with a chance as high as 97% [1].

Recently, a passive global attack model has been studied [4,5,6,7], where the attacker
is assumed to be capable of monitoring all the network traffic by either deploying sim-
ple sensors covering the network or employing powerful site surveillance devices with
hearing range no less than the network radius. With the collected network-wide traffic,
the attacker can conduct traffic analysis to identify the potentially real sources. Under
such a strong attack model, the corresponding countermeasures focus on making all
sensors [4,5,6,7] or k sensors [4] transmit (dummy) messages at the same or similar
pattern to disguise the real source location. In general, such approaches are more robust
to traffic analysis, at the cost of higher message overhead. This passive global attack
model, however, is not realistic because it assumes that an attacker merely monitors the
traffic without taking any action. Thus, although it is theoretically interesting, its real-
world application is unclear. We believe in a real attack, an attacker will try to locate
the real source by all means, as in the local attack model.

In this work, we focus on an active global attack model, in which the attacker is not
only a global eavesdropper but also a realistic tracker that devises an optimal route to
traverse suspicious spots one by one to find real events, under certain constraints, such
as time, resource, and event duration. Compared with previous attack models, this is a
more practical and powerful attack model. We formalize such a strong attack model,
analyze it, and propose countermeasures against it.

In particular, we devise a dynamic programming algorithm and a greedy algorithm,
based on which the attacker can derive the optimal traversal route to identify real events.
To demonstrate both the procedure and the effectiveness of this attack model, we apply
it to two existing schemes: a statistically strong source anonymity scheme [5] (referred
to as SSSA scheme hereinafter) and a k-anonymity scheme [4]. We show that although
the SSSA scheme provides strong source location privacy with statistical testing, un-
der our attack model an attacker can gain some information about the locations of real
sources when the message rate of a real event becomes high. The second scheme cannot
provide actual k-anonymity because on average the attacker needs to check k/2 sources
to find out the real one. Indeed, no schemes are perfectly secure under our attack model,
because there is always some chance for the attacker to find out the real sources through
his investigation, even if the attacker just randomly picks up places to check. For exam-
ple, the constant-rate based schemes [4,7] are just the special case of the k-anonymity
scheme where k equals to n, the total number of cells in the network.

Our research is not only to demonstrate the power of this attack, but also to pro-
pose viable solutions to defend against such an attack. Specifically, as no schemes
can completely prevent the real sources from being identified, our goal is to devise
efficient mechanisms which will minimize the location information disclosure, under
certain resource constraints of the attacker. We notice that while the SSSA scheme

An Active Global Attack Model for Sensor Source Location Privacy 375

has the advantage of greatly reducing the transmission latency for real event messages
compared to the constant-rate schemes, it also introduces continuous, network-wide
dummy messages. For high message rate applications, the transmission overhead could
be prohibitively high. As a tradeoff between privacy and performance overhead, the k-
anonymity scheme could largely reduce the message overhead, not only because only
k data sources are involved, but also because dummy messages are triggered by real
events and stop once the events complete.

To leverage the advantages from both the worlds, we propose a lightweight dynamic
source anonymity scheme that seamlessly switches from a low-rate SSSA scheme to a
k-anonymity scheme on demand. Moreover, we enhance the k-anonymity scheme with
the property of spatial l-diversity to maximize the attacker’s cost. Our simulation results
show that with our defense the attacker’s gain can be much reduced while his cost is
increased compared to the k-anonymity scheme.

The main contributions of this work are summarized below.

– First, we formalize a new attack model, where an active global attacker designs an
optimal route to check suspicious spots in the whole network;

– Second, we apply this attack model to the existing source anonymity schemes and
demonstrate their limitations;

– Third, to thwart the attack, we propose a new dynamic scheme that seamlessly
transits from a low-rate SSSA scheme to a spatial l-diversity enhanced k-anonymity
scheme.

The rest of this paper is organized as follows. The active global adversary model is built
up in Section 2. Case studies on existing source anonymity schemes are addressed in
Section 3. Then, the dynamic source anonymity scheme is discussed in Section 4. Fi-
nally, after describing the related work in Section 5, we conclude this paper in
Section 6.

2 An Active Global Adversary Model

In this section, we formalize the active global attack model and discuss details of the
attacker’s investigation. The attacker may employ a dynamic programming algorithm
or a greedy algorithm to devise an optimal route for the investigation. We compare
the results of these two algorithms through simulation and make clear the application
scenario for each algorithm.

2.1 Modeling of Network

We consider a cell-based (or grid-based) network model. Deployment area of the net-
work is partitioned into cells, which is the smallest unit of event detection: N =
{c1, c2, · · · , cn}, where n is the total number of cells. Every cell has a unique id i(1 ≤
i ≤ n) and multiple sensors may reside in one cell. Each pair of sensors in neighboring
cells could directly communicate with each other. A cell head, which is elected and ro-
tated among all sensors in the cell, coordinates all the operations inside the cell. A base
station (BS), connecting to the outside infrastructure such as the Internet, collects data
from the network and reports them to a remote commander.

376 Y. Yang et al.

2.2 Modeling of Events

We assume that the total information quantity of a real event is y0(> 0) and a real
event will last for time t0(> 0) once it happens. We model the information quantity of
a real event at any time t as a function f(t). In general, the choice of f(t) is subject to
the characteristics of the application. To be concrete, here we select a linear decrease
function. If the attacker checks a real event after time t, the remaining information
quantity could be modeled by:

f(t) =
{

y0 − y0
t0

t, 0 ≤ t ≤ t0
0, t > t0.

(1)

This means that if the attacker reaches the spot at the very first beginning of the real
event then the attacker can get the maximum information y0. The quantity of informa-
tion that the attacker may obtain decreases after that. If the attacker reaches the real
event spot after t0, then he cannot obtain any information.

2.3 Investigation of Attacker

Although an attacker may have resources to check all the cells one by one, this is not
an intelligent choice because real events often last only for a short time period. If the
attacker spends too much time on fake sources and thus reaches the real source too late,
real events may have already disappeared. Hence, the attacker faces the following two
challenges:

– First, how many suspicious cells to check?
– Second, what is their visiting sequence to maximize the attacker’s gain in informa-

tion quantity?

Next, we discuss how these challenges can be addressed. After observing and collect-
ing network traffic for some time, the attacker first determines a suspicion level for each
cell through traffic analysis (a specific way to determine suspicion levels of cells is dis-
cussed later in Section 3.1). Then, the attacker decides a threshold. If a cell’s suspicion
level is higher than this threshold, this cell will be marked as a suspicious cell. The de-
termination of this threshold value depends on many factors, e.g., the balance between
the attacker’s gain and the cost involved to achieve that gain. Note that even in the worst
case for the attacker: every source have the same communication pattern, the attacker
can still randomly select places for investigation and there is a certain chance for the
attacker to find out the real sources.

Given the positions of all suspicious cells, the attacker optimizes the checking route.
Clearly, the attacker’s ultimate goal is to maximize the overall gain. Therefore, suspi-
cious cells with higher suspicion levels should be checked at higher priorities. As shown
in Figure 1, we assume that the attacker always starts from the center of the deployment
area, traversing along a predetermined checking path under a specific velocity v. The
main constraints of the attacker are time and resources. For each round of the real event
investigation, there is a time limit τ , by which the attacker shall return to the starting
point to start the next-round investigation based on newly collected data. τ could be the
same as t0 or other values determined by the attacker’s resources.

An Active Global Attack Model for Sensor Source Location Privacy 377

Fig. 1. The attacker traverses suspicious cells (highlighted as gray squares). We consider a net-
work with n(=

√
n ×√

n) cells that cover a rectangle deployment area. Each cell has a unique
id, ranging from 1 to n.

Here we define weighted gain, which equals to the information gained from the sus-
picious cell if this cell is a real source times the probability of the cell being a real
source. Assume there are totally s suspicious cells. The weighted quantity of informa-
tion that the attacker could obtain from the jth (1 ≤ j ≤ s) suspicious cell is:

ψ(j) = f(tj) · ξj , (2)

where tj is the time to reach the jth suspicious cell and ξj is the suspicion level of the

jth cell. Note that tj =
∑j

k=1 τk, in which τk = distance(ck−1,ck)
v is the time to travel

from the (k-1)th cell to the kth cell. Therefore, the total information quantity that the
attacker could obtain is

infototal =
∑s

j=1 ψ(j). (3)

Given all the suspicious cells, intuitively, we can have a brute force method to design
an optimal route for the attacker’s investigation. In this brute force method, the attacker
permutes all the possible traverse sequences and finds one with the maximum gain. For
s suspicious cells, there are s! permutations. For each permutation, the total number of
summations is s. Hence, the time complexity of a brute force solution is O(s∗s!). Since
the factorial time complexity in brute force is too high, in the following we discuss other
two more efficient algorithms.

A Greedy Algorithm. The attacker prefers to checking the most suspicious cells while
trying to maximize the total number of cells that he can check in a limited time τ . In a
greedy algorithm (Algorithm 1), at his current location, each time when the attacker se-
lects the next suspicious cell, he chooses the one with the maximum ratio of suspicious
level to its distance from the current location. The greedy algorithm is efficient since it
finishes in polynomial time. However, because every time a local optimum is chosen,
there is no guarantee that a global optimum will be output from the greedy algorithm
finally.

A Dynamic Programming Algorithm. We also propose a dynamic programming [8]
based solution for path selection. This algorithm could output a global optimal result in
a relatively efficient way.

378 Y. Yang et al.

Algorithm 1. Attacker’s Greedy Traversal Algorithm
Input: a set of suspicious cells: S = {1, 2, · · · , s}; each cell i’s corresponding suspicion level

ξi(1 ≤ i ≤ s); starting point SP;
Output: whether there are real events in suspect cells;
Procedure:
1: current point is SP;
2: time = 0;
3: repeat
4: select a cell c from S with maximum ratio of ξc/distance(current point, c);
5: go to cell c to check;
6: time += distance(current point, c)/v;
7: output whether there is real event in cell c;
8: current point is cell c;
9: S = S − {c};

10: until S = ∅ or time≈ τ

The basic idea is as follows. Let S be a subset of {1, 2, · · · , s} and tS is
∑

j∈S τj .
We denote C(S) as the maximum gain that could be obtained by traveling all cells in
S until time tS . For l ∈ S, let S − l denote a set obtained by removing element l from
set S. Then, the following recurrence could be derived. When the size of S is 1, for any
l ∈ S, we have

C({l}) = ψ(l); (4)

when the size of S is larger than 1,

C(S) = maxl∈S [C(S − l) + ψS(l)], (5)

where the subscript S in ψS(l) denotes the weighted information quantity obtained from
cell l influenced by traversed cells in subset S prior to cell l in the sequence. That is, in
an optimal traversal sequence for the cells with indices in S, a certain cell with index
l must be the last one to visit and the remaining cells must be traversed in an optimal
order in the time interval [0, tS−l]. Then the overall maximum gain by such an ordering
will be C(S − l) + ψS(l). Taking the maximum over all the choices of l, we can derive
the above equation (5). Due to page limit, we do not show the details of this algorithm
here. We analyze the time complexity of this algorithm, which is O(s2s). Although
it is still exponential, it is better than the factorial time complexity of the brute force
algorithm.

Simulation Results. We use simulations to compare the results of greedy algorithm
(Algorithm 1) and dynamic programming algorithm. In the simulation setting2, the total
number of cells numcell = 100(10 × 10). The number of suspicious cells that are
checked is s = 9 and t0 = 50, y0 = 50.

The results from our dynamic programming algorithm match those from the brute
force method very well, which means dynamic programming algorithm can output the
optimal traversal sequence accurately. When s is relatively small, e.g., less than 10, this

2 This is a default setting in the following simulations.

An Active Global Attack Model for Sensor Source Location Privacy 379

algorithm could output results within ten seconds in a 2.0GHz processor PC. On the
other hand, we find the greedy algorithm can generate sequences close to those from
the brute force method. This algorithm can generate data in one second even when s is
relatively large (e.g., in tens).

In conclusion, the dynamic programming algorithm is more accurate but slower,
whereas the greedy algorithm quickly generates solutions close to the optimal ones.
Which algorithm the attacker should choose depends on the relative criticality of accu-
racy and time consumption to the attacker. In the following sections, to achieve accu-
racy, we use the dynamic programming algorithm to find an optimal route for attacker’s
investigation.

3 Case Studies

To examine the impact of the proposed attack model, we apply it to two existing
schemes, an SSSA scheme [5] and a k-anonymity scheme [4]), as case studies. Both
schemes exhibit limitations under our attack model.

3.1 The SSSA Scheme

We first apply the active global attack model to the SSSA scheme [5]. We briefly in-
troduce this scheme, followed by simulations to illustrate the attacker’s investigation
process as well as results.

Scheme Overview. To hide real messages that report the occurrence of real events, a
straightforward solution is to employ network-wide constant-rate traffic. Since every
cell has the same transmission pattern, an attacker would not be able to distinguish the
real sources from the fake ones. To reduce the network-wide message overhead, mes-
sage transmission rate should be as low as possible. In this case, however, the transmis-
sion of real messages will need to be delayed more until the next transmission point.
Therefore, there is an intrinsic difficulty to determine the message transmission rate
because of the necessary tradeoff among privacy level, message overhead and real mes-
sage latency.

In [5], a statistically strong source anonymity scheme (SSSA) is proposed to trade
privacy level for reduced real message latency. In this scheme, real messages at the
sources are transmitted as early as possible while the overall transmission pattern of
a cell remains the same, in the sense that some existing well-known statistical testing
methods [9,10,11] would not be able to detect the changes. As an instance, if the normal
inter-message time intervals follow a predetermined exponential distribution, then after
the changes (perturbation) made for real messages, the overall distribution looks the
same under statistical tests. As such, the real message transmission latency is reduced
and meanwhile a statistically strong source anonymity property for sensor networks is
achieved.

Attacker’s Detection. We discuss the attacker’s operation in two steps: Step I identi-
fying the suspicious cells and Step II investigating suspicious cells.

380 Y. Yang et al.

0,1)(0,
1

1
1)(≥<≤

+
−= xxg

x
xg

Fig. 2. Suspicion function to evaluate a cell’s suspicious level

Step I: Identifying Suspicious Cells Intuitively, when real messages are relatively rare,
it is unlikely for an attacker to notice the perturbation of the distribution due to the ran-
dom nature of the variables forming the distribution. However, when a real event lasts
for some time t0(t0 > 0) or when an event report has to be divided into multiple pack-
ets (in Mica motes, the typical packet size is only 36 bytes), a real source will need to
transmit multiple real messages continuously. Since the SSSA scheme tries to reduce
the waiting times of multiple real messages, our intuition is that the the actual distribu-
tion will become farther and farther away from the ideal one. In [5], Anderson-Darling
test [9] and Kolmogorov-Smirnov Test [10] are employed for goodness of fit test and
Sequential Probability Ratio Test (SPRT) [11] is proposed for mean test. Although un-
der these test models the SSSA scheme has been shown to be statistically strong, an
attacker may apply some other testing methods. To identify suspicious cells, the at-
tacker may check continuous small message time intervals from each cell and quantify
its suspicion level.

Small message time intervals are defined as those smaller than the mean. If the num-
ber of continuous small message time intervals is larger than a threshold, say three, then
it is called a cluster and the number of continuous small time intervals is called cluster
size ns. Denote the number of clusters as nc. An attacker may infer the suspicious level
of a cell based on x =

∑
ns ∗ nc. More formally, to normalize the suspicion level of a

cell into the [0, 1) range, the attacker may construct a suspicion function g(x) (Figure 2)
with x as input parameter:

g(x) = 1 − 1
x + 1

, 0 ≤ g(x) < 1, x ≥ 0. (6)

For example, if message time intervals from a cell has two clusters of size five, then the
suspicion level of this cell is quantified as 90.9%; suppose message time intervals from
another cell has three clusters of size six, then the suspicion level of this cell will be
quantified to 94.7%.

We use simulations to check the distribution of cells’ suspicious levels under high
and low real message rates, with results shown in Figure 3 and Figure 4, respectively.
In the simulation, the dummy message rate is 0.05. The probability for a cell to become
the real source is 0.1. The attacker keeps the most recent 50 message time intervals
from each cell. When real message rate is high (i.e., ratereal = 0.2), in most cases
the suspicion levels of cells range from 94% to 97%, because the suspicion levels of

An Active Global Attack Model for Sensor Source Location Privacy 381

84 86 88 90 92 94 96 98
0

5

10

15

20

25

30

35

40

Suspicious Levels (%)

N
um

be
r

of
 C

el
ls

num
cell

=100,m=50,rate
dummy

=0.05,rate
real

=0.2,t
0
=50,p

r
=0.1

Fig. 3. Distribution of cells’ sus-
picion levels when real message
rate is high

86 88 90 92 94 96
0

5

10

15

20

Suspicious Levels (%)

N
um

be
r

of
 C

el
ls

num
cell

=100,m=50,rate
dummy

=0.05,rate
real

=0.02,t
0
=50,p

r
=0.1

Fig. 4. Distribution of cells’ sus-
picion levels when real message
rate is low

86 88 90 92 94 96
0

5

10

15

20

Suspicious Levels (%)

N
um

be
r

of
 C

el
ls

num
cell

=100(10×10),m=50,rate
dummy

=0.05

Fig. 5. Distribution of cells’ sus-
picion levels when there are no
real messages

real sources are normally high. On the other hand, when real message rate is low (i.e.,
ratereal = 0.02), The suspicion levels of cells are more uniformly distributed over the
whole range. The attacker is able to determine a threshold accordingly. Considering
the cost in checking suspicious cells, the attacker may want to control the number of
suspicious cells to be checked as a relatively low value, e.g., about 10 out of 100 cells.
In this case, 96% may be a good choice for the threshold.

In addition, we compare the distribution of suspicion levels under low real message
rate with that when there are no real messages (i.e., when no events happen and all mes-
sages are dummy). Our purpose is to show the false positive of the attacker’s detection.
From Figure 4 and Figure 5, we can observe that there are no big difference between
these two figures. Thus, the attacker will not gain more from the low-rate SSSA scheme
than a perfect secure scheme. Therefore, in our following dynamic source anonymity
scheme, we switch from a low-rate SSSA scheme to a k-anonymity scheme.

Step II: Investigating Suspicious Cells After identifying the suspicious levels of cells
in Step I, the attacker will arrange an optimal route to check these suspicious cells in
Step II. In this section, we use simulations to check the attacker’s gain in the SSSA
scheme.

We first evaluate the attacker’s gain and cost as a function of s, the number of suspi-
cious cells to be checked. As shown in Figure 6, when the number of suspicious cells
checked is increased from 3 to 9, the attacker’s maximum gain is increased from 124.9
to 342.2. This is because if the attacker checks more suspicious cells a real source is
more likely to be discovered. On the other hand, we observe that the attacker’s travel-
ing distance also increases from 15.1 to 29.5. This indicates that if the attacker wants
to increase the maximum gain by checking more suspicious cells his cost will also in-
crease. In practice, the attacker can decide a maximum traveling distance according to
the maximum cost the attacker is willing to pay.

Next, we show how the attacker’s gain varies with the real message rate in Figure 7.
In the simulation, the probability of a cell being a real source is 0.1, and the average
message rate of each cell is 0.05. We observe that when under a fixed t0, the attacker’s
gain increases with the real message rate. This is because of two factors. First, with
more real messages, more clusters will be observed in a real source and hence the
suspicion levels of the real sources will increase. Second, s, the number of suspicious

382 Y. Yang et al.

3 4 5 6 7 8 9

50

100

150

200

250

300

num
cell

=100(10×10), t
0
=50, y

0
=50

s: 3 ~ 9

Attacker’s Gain
Attacker’s Travelling Distance

Fig. 6. The attacker’s gain and
cost as a function of s

0.05 0.1 0.15 0.2 0.25
0

50

100

150

200

250

300

350

400

Real Message Rate: 0.02 ~ 0.25

T
he

 A
tta

ck
er

’s
 G

ai
n

num
cell

=100, y
0
=50

t
0
=50

t
0
=30

t
0
=10

Fig. 7. The attacker’s gain in-
creases with the real message
rate

3 4 5 6 7 8 9
0

50

100

150

200

250

300

350

k: 3 ~ 9

A
tta

ck
er

’s
 G

ai
n

in
 T

er
m

s
of

 W
ei

gh
te

d
In

fo
rm

at
io

n
Q

ua
nt

ity

num
cell

=100(10×10),t
0
=50,y

0
=50

Active Attacker
Passive Attacker

Fig. 8. Comparing the gains of
passive and active attackers in
k-anonymity scheme

cells that are actually checked by the attacker, could also increase as more cells have a
suspicion level over the threshold value. We also observe that the attacker’s information
gain increases with real event’s duration t0. This is because the remaining information
f(t) increases with t0 at the same t.

From the above simulation results, we can see that the SSSA scheme, a theoreti-
cally sound privacy scheme, exhibit some limitations under the active global attacker
model: the information quantity that the attacker could obtain increases with the real
message rate. To address this problem, the SSSA scheme has to increase the overall
message rate (including dummy and real ones). In other words, dummy message rate
has to be adjusted to a larger value to cover the real messages, resulting in potentially
prohibitively high message overhead for resource constrained sensor networks. Hence,
the SSSA scheme is best applicable when real message rate is low.

3.2 The k-Anonymity Scheme

Next we apply the proposed active global attack model to the k-anonymity scheme [4].
We first briefly introduce this scheme, then check the active global attacker’s gain in
this scheme and compare it with the gain under a passive global attack.

Scheme Overview. k-anonymity used to be employed to improve the privacy of
database without influencing data usability. The basic idea is that each individual data
record can be released only when there are at least k − 1 other distinct individuals
whose associated records are indistinguishable from this record with respect to the
quasi-identifiers [12,13,14].

In [4], the idea of k-anonymity is adopted to provide source location privacy un-
der global passive attacks. Basically, to disguise a real source, k − 1 fake sources are
randomly selected. All k sources start to transmit messages at the similar patterns to
confuse the attacker. On one hand, to effectively hide a real source, k should be large
enough in the k-anonymity scheme. On the other hand, a large k will lead to higher traf-
fic overhead as more dummy messages will be introduced. One extreme case is when
k = n, the total number of cells in the network. The highest level of privacy is achieved
at the cost of the highest message overhead. Even so, we notice that the k-anonymity
scheme has the advantage of on-demand traffic, compared to a constant-rate scheme [4].

An Active Global Attack Model for Sensor Source Location Privacy 383

That is, fake sources are introduced when real events occur and they are dismissed when
real events complete. By adjusting the parameter k, we can have the flexibility of on-
demand message overhead rather than a constant quantity of high-volume traffic.

Attacker’s Detection. To attack the k-anonymity scheme, Step I for the attacker is to
identify suspicious cells. This is quite simple, because it is obvious that the real source
is one of the k cells that transmit messages to the BS. Also, according to the property of
k-anonymity, ideally all these k cells have the same suspicion level. Then, the attacker
may design an optimum route to check the k cells with these k cells as input. The only
difference from the attack in the SSSA scheme is that the algorithm runs until the real
source has been discovered (instead of time limit τ being reached). Since the real source
could be any cell in the k sources, on average the algorithm will stop until k/2 sources
have been traversed.

We use simulation to check the attacker’s gain under the active global attack model.
We also compare the result to that from the passive global attack model. Based on the
property of k-anonymity, a passive attacker cannot differentiate the k sources, so the
only thing he can do is to randomly select a source and claim it to be the real source.
It is equivalent to pick up and check one out of k cells for the attacker. Actually, the
probability for this cell to be the real source is only ξ = 1/k. Therefore, according to
Equation (2), the weighted information quantity that a passive attacker could obtain is
ψ = y0 · ξ = y0/k. As shown in Figure 8, the gain of a passive attacker is much less
than that of the active attacker. Clearly, we must take some steps to reduce the active
attacker’s gain.

4 A Dynamic Source Anonymity Scheme

Our previous discussion showed that a low-rate SSSA scheme is robust to the active
global attack. It also has low message overhead. However, it does not adapt well to
the case of high-rate real messages. With more real messages, the buffer of the real
source might be overflowed if the messages are not delivered promptly. Also, the deliv-
ery latency of all the real messages will become very high. In a k-anonymity scheme,
as long as the transmission pattern of a high-rate real source can be estimated, k − 1
fake sources can be dynamically selected. Based on these observations, we devise a
dynamic source anonymity scheme, which seamlessly integrates the merits of both the
SSSA scheme and the k-anonymity scheme. The basic idea is when the real event rate
exceeds a threshold, the network switches to a k-anonymity scheme. The process starts
with an event notification message from the real source to the BS. This message con-
tains information such as how many packets are to be sent and the transmission pattern
(e.g., constant rate). It is encrypted and looks the same as all the other messages in the
network. The BS then selects k − 1 fake sources and notify them to start transmissions
at the similar patterns.

Although conceptually straightforward, our scheme has to answer the following
questions.

– First, what is an appropriate switching point?
– Second, how to securely bootstrap the k-anonymity scheme?

384 Y. Yang et al.

– Third, how to enhance the security of our dynamic scheme against the active global
attack?

– Fourth, how to evaluate the privacy level of our scheme?

The answer to the first question has to take into account many factors, including mes-
sage overhead, latency, and privacy level. As message overhead is normally the biggest
energy expenditure for sensor networks, here we will consider message overhead as the
premier criterion in determining the switching point. Note that our proposed techniques
are independent of the way a switching point is selected. The second question exists be-
cause upon the occurrence of a real event, the event notification message is also under
the monitoring of the attacker. If the attacker can figure out which message is an event
notification message, he will be able to easily identify the real source. Note that in [4] it
does not mention how to bootstrap the k-anonymity scheme. The third question arises
because the k-anonymity scheme is not very robust to active attacks, as shown previ-
ously. Correspondingly, we will reduce the information gain of the attacker as much as
possible. The fourth question has to be answered when evaluating our scheme.

To clearly explain our solutions to the questions, we will first need to make some
formal definitions (Section 4.1), then describe the solutions in details in the remaining
subsections.

4.1 Problem Definitions

Let N denote the set of all the n cells in the network. In our case, first, we have a
definition of temporal k-anonymity as follows.

Definition 1. (Temporal k-anonymity). A real source r ∈ N is temporal k-anonymous
if there exist at least k − 1 other cells c1, c2, · · · , ck−1 ∈ N such that transmission
patterns of all the sources cr, c1, c2, · · · , ck−1 are indistinguishable from each other.

Two transmission patterns are indistinguishable from each other, if their message trans-
mission time intervals follow the same distribution with the same parameters. For ex-
ample, if message time intervals from two cells follow an exponential distribution with
the same mean, we can say that transmission patterns of these two cells are indistin-
guishable.

According to [15], k-anonymity alone is not sufficient to guarantee database privacy.
For example, a person with background knowledge is able to figure out sensitive infor-
mation from a table with k-anonymity property. l-diversity, which means that for each
sensitive attribute there are at least l well-represented different values, is thereby pre-
sented to improve the diversity and also the robustness of data items against the above
attack. Different from l-diversity in database privacy, we propose a definition of spatial
l-diversity, which is adapted properly to our case, in order to improve location diversity
of fake sources (and to decrease the attacker’s gain). To be more specific, suppose the
deployment area of the network is divided into L(L > 0) partitions with almost the
same size. Let C(C ⊆ N) denote a set of cells and P(C) denote the total number of
different partitions that cells in C are from. We then have the following definition of
spatial l-diversity:

Definition 2. (Spatial l-diversity). A set of cells C(C ⊆ N) has the property of spatial
l-diversity if P(C) ≥ l(0 < l ≤ L).

An Active Global Attack Model for Sensor Source Location Privacy 385

To quantify the level of source location privacy, next, we exploit the metric of normal-
ized entropy proposed in [16]. This metric is defined based on probability: after the
observation, the attacker assigns to the ith subject a probability pi to be the source,
with the sum of probabilities for all the subjects in the set of size n to be 1. For a
given distribution of probabilities, the concept of entropy in information theory [17]
provides a measure of the information contained in that distribution. Let X be the
discrete random variable with probability mass function pi = Pr(X = i), where
i(1 ≤ i ≤ n) represents each possible value that X may take. The entropy of X
is denoted as H(X) = −∑n

i=1 pi log2(pi). The maximum entropy of the scheme
HM = log2(n), which could be achieved when all subjects have the same probabil-
ity 1

n to become the source so that the attacker obtains no information about the source
after observation. Therefore, the information that could be learned by the attacker is ex-
pressed as HM −H(X). Apparently, we want the entropy of the scheme H(X) to be as
large as possible so that the possible information that could be obtained by the attacker
is minimized, since the maximum entropy HM is fixed under a specific n. Accordingly,
we have the following definition on privacy level.

Definition 3. (Privacy level). The level of source location privacy is defined as lp =
H(X)
HM

, where H(X) is the entropy of the scheme and HM is the maximum entropy of
the scheme.

4.2 Scheme Description

Determining the Switching Point. To cover high-rate real messages, suppose the over-
all message rate (including dummy and real ones) in the SSSA scheme needs to be
increased from λ1 to λ2. If λ2 − λ1 > δ1 where δ1 is a predetermined threshold, the
increase in message overhead is considered intolerable. Then the SSSA scheme needs
to be switched to the k-anonymity scheme. Given the total number of cells n, we may
determine a proper value for k. Assuming there is a system parameter δ2 > 0. Then, k
needs to satisfy the following two constraints: 1 < k < n and nλ1 − kλ2 > δ2. Such a
switch can reduce the overall message overhead significantly.

Secure Bootstrapping. The on-demand switching process is bootstrapped securely as
follows. When there are no or low-rate real events, cells send dummy messages to the
BS at a low rate following the SSSA scheme. After a real event is detected or a switching
is needed, the cell detecting this event will send an event notification message to the
BS. After the BS receives this message, it selects k − 1 fake sources to generate bogus
messages (note that fake sources are carefully chosen). Because the event notification
message is just one message and it is easily hidden among the dummy traffic in the SSSA
scheme. All the following data messages from the real source are covered by the bogus
messages from the fake sources, so these k cells are indistinguishable from each other
in the attacker’s view. Hence, the k-anonymity scheme can be bootstrapped securely.

In more detail, as shown in Figure 9, after cell u detects a real event:

– Cell u notifies the BS that a real event happens (message 1 in Figure 9(a));
– After an appropriate delay ζ (which will be discussed later), the BS sends out no-

tifications to k − 1 fake sources as well as the real source, asking them to start
transmitting messages (message 2 in Figure 9(a)) at the same rate or same pattern;

386 Y. Yang et al.

(a) BS picks up fake sources. (b) Fake sources send bogus
msgs.

Fig. 9. The notification of fake sources in the dynamic source anonymity scheme

– All the cells receiving the notifications start to send messages to the BS (message 3
in Figure 9(b)).

We notice that when the BS receives an event notification message it should not send
out k source nomination messages right away. Otherwise, a global observer will eas-
ily realize that the message coming to the BS just before BS emits those k messages
corresponds to a real source. Therefore, in order to cover the real event notification mes-
sage, the BS will need to wait for an appropriate time ζ before transmitting k source
nomination messages.

To determine ζ, the BS will need to first collect k messages from k different cells
including the real source. As can be seen in Figure 10, to keep the k-anonymity property
and make the notification message indistinguishable from other k − 1 normal messages
received by the BS, the BS picks kd, a random number between 0 and k. It will wait until
another k − kd messages are received. These k messages form an anonymity set and
their sources are selected as the k sources. After that, it distributes source nomination
messages to these cells. Hence, from the attacker’s point of view all these k messages
are equally likely to be a real notification message and their sources are equally likely
to be a real source.

Given a proper k, the average delay ζ before the BS sends out k source nomination
messages could be derived as follows. In the SSSA scheme, all the nodes send bogus

t i m e l i n e i n B S

R e a l e v e n t
n o t i f i c a t i o n

kd m e s s a g e s d e l a y : t i m e f o r k - k d m e s s a g e s

Fig. 10. The introduction of delay in the BS after a real event notification is received

An Active Global Attack Model for Sensor Source Location Privacy 387

messages with intervals following a mean 1/λ1. Then, in the BS, the event of incoming
messages could be modeled as the sum of n distributions with an overall mean 1

nλ1
.

The delay is related to the time for k − kd messages received by the BS, which is k
2 on

average since kd is a random value between 0 and k. Therefore, the average delay in
the BS is

ζ =
k

2nλ1
. (7)

Introduction of Spatial l-Diversity. We notice that if it happens that all the k sources
are close to each other then the attacker gain a lot within a short time. Therefore, in
practice, the BS may selectively choose fake sources that are separated far away from
each other. After the BS divides the deployment area into L logical partitions evenly
with approximately the same size, we have an algorithm by which the BS achieves
spatial l-diversity, as shown in Algorithm 2.

Note that in practice an application may have an upper bound on event notification
delay, which is denoted as ω. Hence, the ideal l-diversity may not be attainable because
it requires to receive k messages from l partitions (which could take a longer time). So
the basic idea of the algorithm is as following. The BS keeps a set C, which is initialized
to include the real source and k − 1 cells that the first k − 1 messages originate from.
Each time when a message is received by the BS, the BS tries to swap its source cell
with every other cell except the real source in the current set, as long as such a swap
could increase the overall distance of the cells in set C. This procedure is repeated until
the limit of latency ω is reached and the total number of partitions is larger than l. At
this time, the current set C will be output.

The result of the algorithm is related to the values of ω and l. If they are larger, then
k sources may be farther away from each other. Therefore, to reduce the attacker’s gain
and increase his traversal cost, the BS may wait for a longer time to choose the k − 1
fake sources, so that all the k sources are from at least l different partitions.

We use simulation to verify the above statement. First, we check the attacker’s gain
as a function of the total number of sources k. We compare two options for fake source
selection: random selection [4] and spatial l-diversity. In the simulation, the deployment
area (10 × 10) is divided into nine partitions with approximately the same size. l = k
under different ks (3 ≤ k ≤ 9). As shown in Figure 11, the attacker’s gain increases
with k and y0 (the total information quantity of a real event). Also, the technique of spa-
tial l-diversity could largely reduce the quantity of information that the attacker obtains,
compared with random selection.

Second, we check the attacker’s traveling distance as a function of k. As shown in
Figure 12, the attacker’s traveling distance is increased by about 1.5 times because of
the spatial l-diversity technique, compared with random selection of fake sources. When
k = 8, the attacker’s traveling distances in random selection of fake sources and spatial
l-diversity are 39.7 and 55.9, respectively.

Analysis of Privacy Level. First, we have the following theorem about the initial pri-
vacy level of our dynamic scheme (before the attacker’s check).

Theorem 1. The k-anonymity scheme with n cells and one real source has an initial
privacy level of lp = log2 k

log2 n , where k − 1 is the number of fake sources.

388 Y. Yang et al.

Algorithm 2. The Spatial l-Diversity Algorithm by the BS
Input: a sequence of messages from different cells {msg1, msg2, · · ·}, each message carries

such information as which cell and partition it is from;
Output: a set C of size k indicating where sources are, including the real source as a default

item and k − 1 fake sources;
Procedure:
1: C is initialized to be a set including the real source cr and cells c1, · · · , ck−1 where the first

k − 1 messages are from;
2: calculate d = sum distance(C);{function sum distance() returns the sum of distances of

cells in set C, starting from cr;}
3: P is initialized to be a set including the partition pr of real source cr;
4: for j = 1 to k − 1 do
5: pj is the partition of cj ;
6: if pj �= any partition from set P then
7: put pj into set P ;
8: end if
9: end for

10: repeat
11: take an incoming message msg as input;
12: obtain the cell c and partition p of msg;
13: for i = 1 to k − 1 do
14: C′ = swap(ci, c);{replace ci with c in set C}
15: d′ = sum distance(C′);
16: if d′ > d then
17: d = d′;
18: C = C′;{record set C with maximum distance}
19: if p �= any partition from set P then
20: put p into set P ;
21: end if
22: end if
23: end for
24: until (latency ω is reached)&&(size(P) ≥ l)
25: return current set C;

Proof: Although there are n cells in the network, the number of active cells transmitting
messages at a specific time is only k. Therefore, at any time, the attacker knows the
probability for each of the rest n − k cells to be the source is 0. Since the first message
sent by the real source is buried in the dummy traffic and the paces of sending messages
for all the fake sources as well as the real source are synchronized, the attacker cannot
differentiate these k cells. Hence, from the attacker’s view the probability for each of
the k cells to be the real source is the same. The sum of these probabilities is 1, so every
probability equals to 1/k. Then, the entropy of this scheme

H(X) = −
n∑

i=1

pi log2(pi) = −
k∑

i=1

1
k

log2(
1
k

) = log2(k),

An Active Global Attack Model for Sensor Source Location Privacy 389

3 4 5 6 7 8 9
50

100

150

200

250

300

350

k: 3 ~ 9

T
he

 A
tta

ck
er

’s
 G

ai
n

num
cell

=100(10×10), t
0
=50

Random Selection (y
0
=50)

l−Diversity (y
0
=50)

Random Selection (y
0
=30)

l−Diversity (y
0
=30)

Fig. 11. The attacker’s gain in
the dynamic source anonymity
scheme

3 4 5 6 7 8 9
10

20

30

40

50

60

70

80

90

100

k: 3 ~ 9

T
he

 A
tta

ck
er

’s
 T

ra
ve

lli
ng

 D
is

ta
nc

e

num
cell

=100(10×10), t
0
=50, y

0
=50

Randome Selection
l−Diversity

Fig. 12. The attacker’s travel-
ing distance in the dynamic
source anonymity scheme

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

of Real Sources: 0 ~ 10

M
es

sa
ge

 O
ve

rh
ea

d
(M

sg
s

pe
r

S
ec

on
d)

SSSA Scheme(n=100, λ
1
=0.1)

Dynamic Source Anonymity (k=10, λ
2
=0.2)

Fig. 13. Comparison of
schemes in overhead

whereas the maximum entropy of this scheme is HM = log2(n). Therefore, the initial
privacy level for this scheme before the attacker’s check is H(X)

HM
= log2(k)

log2(n) .
We notice that during the attacker’s check the k-anonymity scheme has a dynamic

privacy level as follows.

Corollary 1. During the attacker’s check, the k-anonymity scheme with n cells and
one real source has a dynamic privacy level:

lp =

{
0, if real source;
log2(k′)
log2(n) , otherwise,

(8)

where k′(k′ ≤ k) is the number of sources that have not been checked by the attacker.

Proof: As presented in Theorem 1, the initial privacy level of the k-anonymity scheme is
log2(k)
log2(n) . After the attacker checks one out of k sources, the privacy level of this scheme
becomes:

lp =

{
0, if real source;
log2(k−1)
log2(n) , otherwise.

In general, when there are k′(k′ ≤ k) sources that have not been checked by the at-
tacker, all these k′ sources have the equal probability 1

k′ to be the real source. Hence,
the entropy of the scheme at this time is

H(X) = −
k′∑

i=1

1
k′ log2

1
k′ = log2(k

′).

The privacy level is log2(k′)
log2(n) . However, at any time when the attacker discovers the real

source, the privacy level of this scheme becomes 0.
Clearly, the selection of k reflects a tradeoff between performance and privacy. A

larger k means higher latency and message overhead. Simultaneously, a larger k also

390 Y. Yang et al.

leads to higher privacy level based on Theorem 1. In practice, we can decide k according
to the application’s requirement in latency and overhead. After k is decided, actually
the privacy level of the scheme has already been determined. The privacy level of the k-
anonymity scheme depends on the ratio of k(0 < k < n) and n. Since the privacy level
of the SSSA scheme is close to 100%, normally, the privacy level of the k-anonymity
scheme is lower than that of the SSSA scheme.

4.3 Discussions

Mobility of Object. In many cases, an object may go through several cells, which
is referred to as a handoff problem. After an object moves to another cell, if the BS
randomly chooses another k − 1 fake sources, the attacker may be able to detect the
real source. This is because the locations of the real sources that report the movement
of this object actually form a trajectory, whereas the locations of the randomly chosen
fake sources do not form a real trajectory. To address this problem, the next fake source
should be picked up based on the position of the old fake source, to ensure that positions
of these fake sources also form a seemingly real trajectory. This is a hard problem while
implementation because building and simulating the object’s mobility profile are still
open research topics [4]. We may investigate more on this issue, e.g., how to solve the
handoff problem in a secure and distributed manner, in our future work.

Multiple Real Sources. Considering the different mobility pattern of different objects,
we cannot use the same set of fake sources for different real sources. The starting and
ending time for different objects may be different, so using a fake source to serve mul-
tiple real sources is not feasible. Therefore, for each real source, the BS needs to assign
a group of k − 1 fake sources to simulate the real source. The maximum number of real
sources that could be serviced at the same time will be �n/k�. The message overhead of
our dynamic scheme increases with the number of real sources. At some point, it may be
increased to a value that is more than that of the SSSA scheme (Figure 13). Therefore,
the dynamic scheme is best applicable when there are few real sources continuously
sending messages at a relatively high rate.

5 Related Work

Protecting location privacy in the context of location-based services has been extensively
discussed in the past [18,19,20,21,22]. Location privacy in wireless sensor networks has
gained a lot of attention recently. In [23], techniques for hiding the base station (mes-
sage destination) from an external global adversary are studied. In their schemes, secure
multi-path routing to multiple destination base stations is designed to provide intrusion
tolerance against isolation of base station and anti-traffic analysis is proposed to dis-
guise the location of base station. [24] proposes a location-privacy routing protocol that
provides path diversity combined with fake packet injection to protect receiver-location
privacy. Complementary to their work, we are interested in source location privacy.

In [1,2], a random walk based phantom routing scheme is proposed to defend against
an external adversary who attempts to trace back to the data source in a sensor network,
where sensor nodes report sensing data to a fixed base station for a certain period. A

An Active Global Attack Model for Sensor Source Location Privacy 391

more recent work [3] proposes a two-way random walk algorithm, in which the routing
path is obfuscated from both the source and sink. In [25], a path confusion algorithm
is presented to increase source location anonymity. Note that these schemes work for a
local adversary model. In our scheme, we consider a global attacker who has the view
of all the network traffic.

[26] presents pDCS, a privacy-enhanced Data-Centric Sensor networks that offers
different levels of data privacy based on different types of cryptographic keys. Under a
global attacker model, in [27], two schemes are proposed. The first one is a ConstRate
scheme; the second one is a k-anonymity based source-simulation scheme. Analytical
results show how much communication overhead is needed to achieve a certain level of
privacy. [7] addresses source location privacy against laptop-class attackers by propos-
ing four schemes: naive, global, greedy, and probabilistic. In [6], to provide source event
unobservability, schemes like ConstRate or ProbRate are used by the sensors. The fo-
cus of this work is to reduce the overall network traffic by proactively dropping dummy
messages on their way to the BS.

[5] concentrates on reducing the latency of real messages under a global attacker
model, by sending real messages as early as possible, in a way that the disturbance can-
not be detected by available statistical tests. [28] also considers anonymous networking
with minimum latency. Mixes are used for individual relays. The introduction of a lim-
ited number of dummy messages leads to a significant reduction in network latency.
Information theoretical measurement is employed to analyze the relationship between
anonymity level and latency. [29] provides temporal privacy protection for wireless sen-
sor networks. In our work, we further improve the power of the attacker and consider
a more realistic global attacker model in which the attacker can go to suspicious spots
and check real events by himself.

6 Conclusion and Future Work

Previous work in sensor source location privacy mainly considers either a local tracker
or a global eavesdropper in the attack model. We study a even more powerful and re-
alistic attack model, in which a global attacker goes to suspicious spots and check real
events by himself after monitoring all the network traffic. We formalize such a strong
attack model and discuss countermeasures against it. An important future direction will
be the development of a distributed way to solve the handoff problem under a mobile
object in the dynamic source anonymity scheme. Other adversary models such as in-
sider attackers are also of interest to us.

Acknowledgement. We thank the anonymous reviewers for their valuable suggestions.
This work was supported in part by NSF 0627382, NSF-0643906 and MURI/ARO
W911NF-07-1-0318.

References

1. Ozturk, C., Zhang, Y., Trappe, W.: Source-location privacy in energy-constrained sensor net-
works routing (SASN 2004) (October 2004)

2. Kamat, P., Zhang, Y., Trappe, W., Ozturk, C.: Enhancing source-location privacy in sensor
network routing. In: ICDCS 2005 (June 2005)

392 Y. Yang et al.

3. Xi, Y., Schwiebert, L., Shi, W.: Preserving source location privacy in monitoring-based wire-
less sensor networks. In: SSN 2006 (2006)

4. Mehta, K., Liu, D., Wright, M.: Location privacy in sensor networks against a global eaves-
dropper. In: ICNP 2007 (October 2007)

5. Shao, M., Yang, Y., Zhu, S., Cao, G.: Towards statistically strong source anonymity for sensor
networks. In: Infocom 2008 (April 2008)

6. Yang, Y., Shao, M., Zhu, S., Urgaonkar, B., Cao, G.: Towards event source unobservability
with minimum network traffic in sensor networks. In: WiSec (2008)

7. Ouyang, Y., Le, Z., Liu, D., Ford, J., Makedon, F.: Source location privacy against laptop-
class attacks in sensor networks. In: SecureComm (2008)

8. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc.
Indust. Appl. Math. (March 1962)

9. Anderson, T.W., Darling, D.A.: A test of goodness of fit. Journal of the American Statistical
Association 49(268) (December 1954)

10. Romeu, J.L.: Kolmogorov-simirnov: A goodness of fit test for small samples. START: Se-
lected Topics in Assurance Related Technologies 10(6) (2003)

11. Wald, A.: Sequential Analysis. J. Wiley & Sons, New York (1947)
12. Samarati, P.: Protecting respondents’ identities in microdata release. IEEE Transactions on

Knowledge and Data Engineering 13(6), 1010–1027 (2001)
13. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal on Uncer-

tainty. Fuzziness and Knowledge-based Systems 10(5), 557–570 (2002)
14. Gedik, B., Liu, L.: A customizable k-anonymity model for protecting location privacy. In:

ICDCS (2005)
15. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-diversity: Privacy

beyond k-anonymity. In: ICDE 2006 (2006)
16. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine,

R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003)
17. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Inc.,

Chichester (1991)
18. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through spatial

and temporal cloaking. In: Proceedings of the 1st international conference on Mobile sys-
tems, applications and services (2003)

19. Myles, G., Friday, A., Davies, N.: Preserving privacy in environments with location-based
applications. IEEE Pervasive Computing 2(1) (2003)

20. Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique using dum-
mies for location-based services. In: PICPS (2005)

21. Bettini, C., Wang, X.S., Jajodia, S.: Protecting privacy against location-based personal iden-
tification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674, pp. 185–199.
Springer, Heidelberg (2005)

22. Gunter, C.A., May, M.J., Stubblebine, S.G.: A formal privacy system and its application to
location based services. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424,
pp. 256–282. Springer, Heidelberg (2005)

23. Deng, J., Han, R., Mishra, S.: Intrusion tolerance and anti-traffic analysis strategies for wire-
less sensor networks. In: DSN 2004 (2004)

24. Jian, Y., Chen, S., Zhang, Z., Zhang, L.: Protecting receiver-location privacy in wireless
sensor networks. In: INFOCOM (2007)

25. Hoh, B., Gruteser, M.: Protecting location privacy through path confusion. In: Securecomm,
pp. 194–205 (2005)

26. Shao, M., Zhu, S., Zhang, W., Cao, G.: pdcs: Security and privacy support for data-centric
sensor networks. In: INFOCOM (2007)

An Active Global Attack Model for Sensor Source Location Privacy 393

27. Mehta, K., Liu, D., Wright, M.: Location privacy in sensor networks against a global eaves-
dropper. In: ICNP (2007)

28. Venkitasubramaniam, P., Tong, L.: Anonymous networking with minimum latency in multi-
hop networks. IEEE Security and Privacy (2008)

29. Kamat, P., Xu, W., Trappe, W., Zhang, Y.: Temporal privacy in wireless sensor networks. In:
ICDCS 2007 (2007)

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 394–416, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Rogue Access Point Detection
Using Innate Characteristics of the 802.11 MAC

Aravind Venkataraman and Raheem Beyah

Cigital Inc. and Georgia State University
avenkataraman@cigital.com, rbeyah@cs.gsu.edu

Abstract. Attacks on wireless networks can be classified into two categories: ex-
ternal wireless and internal wired. In external wireless attacks, an attacker uses a
wireless device to target the access point (AP), other wireless nodes or the com-
munications on the network. In internal wired attacks, an attacker or authorized
insider inserts an unauthorized (or rogue) AP into the wired backbone for mali-
cious activity or misfeasance. This paper addresses detecting the internal wired
attack of inserting rogue APs (RAPs) in a network by monitoring on the wired-
side for characteristics of wireless traffic. We focus on two 802.11 medium ac-
cess control (MAC) layer features as a means of fingerprinting wireless traffic in
a wired network. In particular, we study the effect of the Distributed Coordina-
tion Function (DCF) and rate adaptation specifications on wireless traffic by ob-
serving their influence on arrival delays. By focusing on fundamental traits of
wireless communications, unlike existing techniques, we demonstrate that it is
possible to extract wireless components from a flow without having to train our
system with network-specific wired and wireless traces. Unlike some existing
anomaly based detection schemes, our approach is generic as it does not assume
that the wired network is inherently faster than the wireless network, is effective
for networks that do not have sample wireless traffic, and is independent of net-
work speed/type/protocol. We evaluate our approach using experiments and
simulations. Using a Bayesian classifier we show that we can correctly identify
wireless traffic on a wired link with 86-90% accuracy. This coupled with an ap-
propriate switch port policy allows the identification of RAPs.

Keywords: Rogue Access Point Detection, 802.11 MAC Protocol, Rate Adap-
tation, Distributed Coordination Function.

1 Introduction

A dangerous insider attack is one where cheaply available APs are illicitly plugged
into the network with the motivation of extending connectivity. Like other insider
attacks, the AP stays invisible to a firewall as it is actually behind it, thus making it
difficult to detect. Hence, the AP creates a back door for attackers, obviating the need
to go through the firewall. This paper presents a practical solution for this attack
which can happen in one of two scenarios - wired networks with or without existing
legitimate APs.

The core of our detection scheme is an agent sitting atop a switch, or a separate
monitoring device that is connected to the mirror port of a switch, that passively sniffs

 Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC 395

passing traffic streams on the wired-side. Using inherent differences in wireless char-
acteristics as compared to wired traffic, this agent is able to deem the originating link
as being wired or wireless. This inference is then followed up with a switch port AP
authorization policy to differentiate between rogue and legitimate APs.

Though some of the existing methods work with proven efficacy, they do not try to
exploit the underlying facets of the wireless MAC protocol to detect RAPs, but in-
stead attempt to classify wireless traffic based on the greater delay observed in net-
work statistics (e.g., round-trip-time (RTT), inter-packet arrival time (IAT)). This is
based on an assumption that the wireless link capacity will never reach that of wired.
A more general solution is needed as this may not always be the case. Also, since
many of the previous algorithms need to be trained on both wired and wireless traffic
for a given network, they cannot be used in networks without existing APs as there
would be no prior wireless trace available.

As in other wired-side detection approaches from academia1, in our method we study
the arrival pattern of upstream traffic towards the gateway router (and possibly the
Internet) for traces of the 802.11 MAC protocol. Though downstream TCP flows are
likely to occupy a significant portion of traffic on the link, our approach is not limited in
scope. This is because, as will be shown in Section 4.3, our classifier can work with a
minimal input trace. It works with an accuracy ranging from 87% to 91% for upstream
data inputs of size ranging from 250 packets to 1000 packets respectively2. At any given
time, there may be various activities that the RAP is used for in a corporate network,
such as, web browsing, email, document uploads to file servers, etc. Web browsing
contributes varying levels of upstream data - mostly in the form of HTTP requests -
depending on the content and the load of requests. When a web site is crawled by visit-
ing, say five URLs recursively, the amount of upstream data generated varies from 75
data packets (for primarily text based web pages like www.craigslist.com) up to 400
packets (for relatively graphic intensive web pages like www.facebook.com). Further, it
takes about 500 packets to deliver an email of size 750Kb and about 1000 packets to
upload a file of 1.5Mb (e.g., saving a file to the company file server). Thus, upstream
monitoring is a viable option.

Our first approach exploits the collision avoidance process of the DCF in the
802.11 MAC. To avoid collisions while transmitting, a wireless node has to sense the
channel prior to an attempt at sending. Once the channel is clear, the node will wait
for a random time period (chosen from 0 time units to a fixed upper bound) before
attempting to transmit. If the node senses that the channel is occupied, or in case of a
collision, the node has to back-off exponentially before retransmitting (i.e., the fixed
upper bound increases exponentially, increasing the probability of choosing a higher
back-off value). This procedure, carrier sense multiple access with collision avoid-
ance (CSMA/CA), of the DCF has both fixed components and bounded random com-
ponents that can be artificially produced and used as a signature for wireless traffic.

The second approach exploits the process of rate adaptation in the 802.11 MAC.
Rate adaptation algorithms allow wireless hosts to alter their encoding scheme
(transmission rate) to account for channel interference during transmission. When
interference is detected, the node adapts its rate and transmits at a slower rate in an

1 The wired-side approaches will be discussed in Section 2.
2 Refer to Figure 8, the details of which will be discussed in Section 4.4.

396 A. Venkataraman and R. Beyah

attempt at reducing packet loss. As the rate adjusts (lower or higher), there are notice-
able and unique ‘jumps’ in the packet IAT. These ‘jumps’ can be artificially produced
and used as a signature for wireless traffic.

For both of the above techniques, we show that the signature created stays intact
and can be detected on the wired-side allowing us to deem specific traffic as originat-
ing from a wireless node.

Each of the two approaches work best in specific cases. The first approach works
best when there is little interference and the transmission rate essentially stays con-
stant. Intuitively, the second approach works best when the network is more volatile
as more ‘jumps’ are produced during that period. Since network stability is unpredict-
able, we combine the two schemes and present a solution that accounts for realistic,
unpredictable network conditions.

The remainder of this paper is organized as follows. Section 2 outlines previous
work in RAP detection. In Section 3 we briefly illustrate why magnitude-based ap-
proaches are not optimal. An introduction to the 802.11 MAC protocol collision
avoidance mechanism and a breakdown of the delay induced by it on wireless traffic
is presented in Section 4. A mathematical representation is derived from its inherent
mechanism following which we validate the model using a Bayesian classifier. A
similar pattern of presentation is taken in Section 5 as in Section 4, where we perform
an analysis of the manner in which rate adaptation occurs, followed by accuracy
measures of our model. In Section 6, we perform a comparative study of the two
techniques in an attempt to come up with a bridged solution. We present the scalabil-
ity of our techniques in Section 7 and conclude in Section 8.

2 Related Work

Current work on RAP detection can be classified into three categories. The first two
categories contain techniques that use the magnitude of statistics (mean, median,
entropy, etc.) of IATs and RTTs as the primary metrics for classification respectively.
The third category contains industry work that primarily make use of radio frequency
scanning to discover wireless activity within a network.

References [1-6] fall in the first category. Beyah R., et al., [1] were among the ear-
liest to suggest the possibility of using temporal characteristics, such as IATs, for
RAP detection. They used the IATs of data packets and TCP ACK packets to identify
the type of traffic flow. The authors in [2] take a similar approach as that taken in [1]
but extend the work by creating an automated classifier. Wei W., et al., in [3-4] pre-
sent two similar proposals that examine IATs of TCP ACK pairs to identify the type
of traffic flow. However, the use of ACK pairs limits this technique to TCP traffic. A
noteworthy effort in the area of traffic classification is [5] which attempts to catego-
rize different types of access links using median and entropy of packet IATs. The
approach is however not applicable to detecting RAPs because it is active (requires
probing) and requires cooperation (probe responses) from malicious nodes. In [6], the
authors create a spectral profile for WLANs based on the entropy of IATs. They as-
sume link quality and unpredictability of the wireless medium as the cause for greater
wireless 'uncertainty' and do not study the effect of the DCF.

 Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC 397

In the second category, [7-9] make use of RTT as a metric for classification. Since
these methods rely on RTT, they cannot accommodate traffic streams other than TCP.
Though [7] briefly mentions the effect of the DCF, it does not go into detail to study
its mechanics. Reference [8] uses a distinctive approach for segregating network
types, complete with traffic conditioning to eliminate noise. However, it demarcates
wired and wireless traffic with the help of mean and deviation of the RTT dataset
which is not advisable as these parameters differ with varying types, speeds, and con-
gestion levels of networks. Their approach is claimed to be non-intrusive. However,
since it involves conditioning of traffic it is still, at minimum, pseudo-active. In [9],
although for a disparate motive and in a dissimilar context, Cheng L., et al., were
among the first to work on identifying wireless traffic for the purpose of access link
type recognition. However, their model employs a probing process to gain informa-
tion about nodes in the network and thus not likely to be of assistance in the RAP
problem space for the same reason that [5], as mentioned above, falls short.

The third category includes several industry solutions [10-17], many of which exhibit
non-scalability and limited effectiveness because of the use of either radio frequency
(RF) scanning and/or MAC address based authentication. The use of RF scanning is not
practical as the malicious user can use directional antennas, can adjust the power of the
AP as to not be detected, and in large networks it becomes analogous to finding a needle
in a haystack. The use of the MAC address as a parameter for authentication is not
appropriate because of the ease of spoofing.

Outside of the three categories, [18-20] propose hybrid frameworks consolidating
the above mentioned wired and wireless-side detection models and inherit the flaws
from each type.

As previous schemes primarily compare the relative behavior of traffic on each
link, they require traces of each class of network traffic for their scheme to be effec-
tive. This approach is limiting, as a network without existing legitimate APs (e.g.,
government labs) would not be able to easily provide a wireless trace. Further, be-
cause many use threshold-based separation metrics, another limiting assumption made
is that wireless networks will always be slower than their wired counterparts. As will
be shown in subsequent sections, our method is free of each of the aforementioned
assumptions.

3 Problem with Magnitude-Based Classification

As mentioned in the previous section, many of the existing works focus on the differ-
ence, in some form, of the magnitude of the IAT or RTT to differentiate wireless from
wired traffic. In this section, we illustrate, via simulation, the challenge with these
approaches as wireless speeds begin to approach that of wired traffic.

Simulations were performed using ns2 [24]. The cumulative distribution functions
(CDFs) of the IAT and RTT values are shown in Figures (1a, 1b) and (2a, 2b) respec-
tively. Figures 1a and 2a illustrate why the magnitude-based approaches work when
the assumption is that WLANs are slower than LANs ({IATwl, RTTwl} > {IATwd,
RTTwd}). However, as shown in Figures 1b and 2b, these schemes will breakdown if
the WLAN speed reaches that of the LAN ({IATwl, RTTwl} ≃ {IATwd, RTTwd}).

398 A. Venkataraman and R. Beyah

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IAT (us)

C
D

F

100Mbps LAN
11Mbps WLAN

0 1000 2000 3000 4000 5000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IAT (us)

C
D

F

10 Mbps LAN
24Mbps WLAN

Fig. 1. IAT distribution for (a) slower WLAN, (b) faster WLAN

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT (us)

C
D

F

100 Mbps LAN
11 Mbps WLAN

0 500 1000 1500 2000 2500 3000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RTT (us)

C
D

F

10Mbps LAN
24Mbps WLAN

Fig. 2. RTT distribution for (a) slower WLAN, (b) faster WLAN

The results shown in Figures 1 and 2 were obtained from within single trials each of
1000 packets of upstream data for various network type/speeds (LAN - 10Mbps,
100Mbps; WLAN - 11Mbps, 24Mbps). Ethernet and wireless senders were made to
send FTP data to a server one hop away on the wired-side. Simulations were performed
on a setup similar to the experimental setup that will be described in Section 4.3.

Partially motivated by this argument against threshold based detection, we propose
an adaptable solution that makes no assumption about the link speed. In the next
section, we introduce our first scheme beginning with an introductory analysis.

4 Scheme I – DCF Based Detection

A wireless node’s packet transmission mechanism is regulated by the specifications of
the 802.11 MAC layer protocol, the Distributed Coordination Function (DCF). The
DCF employs a CSMA/CA distributed algorithm for collision avoidance. In this
method, a node that wants to transmit data on a wireless link has to wait for a fixed
duration, namely Distributed Inter Frame Space (DIFS) and a bounded random
amount of time, called back-off (σ), before using the channel. Upon receiving the
data, the node at the other end waits for a fixed period, called the Short Inter Frame
Space (SIFS), before answering with a MAC-level acknowledgment (MAC-ACK),
and the cycle follows thereon. Further, if the channel is sensed busy or if a collision is
detected the originating node backs-off before trying again. The bounded random

 Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC 399

delay - Contention window (CW) has an exponentially increasing upper bound to
reduce the chances of collisions.

Accordingly, the DCF has both fixed components and bounded random compo-
nents that can be artificially produced and used as a signature for wireless traffic. The
process employed for transmission in a wireless medium and the delay between
packet arrivals (IATwl) as observed at the receiver are shown in Figure 3.

Fig. 3. Illustration of the DCF in 802.11 networks

Drawing from the DCF’s basic mode of operation, we deduce a pattern unique to
wireless streams that allows one to anticipate packet arrivals at known intervals. This
property enables us to artificially construct packet arrival time series that represent
wireless traffic.

4.1 Analysis

First, in order to demonstrate the effect of the DCF on the delay, we arrive at repre-
sentations for the IATs of wired and wireless networks (IATwd and IATwl).

In Equations 1 and 2, dtrans, dprop and dqueue are the transmission, propagation
and queuing delays for a network respectively. Since dtrans >> dprop, the propaga-
tion delay is neglected in our analysis. The queuing delay dqueue plays an important
part in determining the efficacy of wired-side detection. This will be discussed with
experimental results in Section 4.3.

wdwdwdwd dqueue +dprop +dtrans = IAT (1)

wlwlwlwl dqueue +dprop +dtrans = IAT (2)

wdoverheaddtrans +framedtrans = wddtrans (3)

randomconstant

wloverheadframewl

DCF +DCF +

dtrans +dtrans =dtrans
 (4)

In Equations 3 and 4, dtransframe is the transmission time per frame; dtransoverhead is the
overhead incurred in transmitting the packet header in the wired case, and transmit-
ting the packet header and MAC-ACK in the wireless case.

ACK-MACoverhead +pktoverhead =
wloverheaddtrans (5)

400 A. Venkataraman and R. Beyah

Note that dtranswl additionally comprises of the waiting time incurred because of the
DCF, the constituents of which are shown in Equations 6 and 7.

 SIFS+ DIFS =constantDCF (6)

σ=randomDCF (7)

The fixed delay element within the DCF contributed delay is a combination of the
DIFS and SIFS periods.

The back-off (σ) is the random period for which the sender has to wait in addition
to the DIFS. This is repeated for each unsuccessful transmission attempt. The back-
off for the ith retransmission (σi) is randomly chosen from within the CWi which is an
increasing function of the number of retransmission attempts and the number of times
the channel was sensed as busy by the sender. The DCF uses an exponential algo-
rithm, where for each retry, the CW size is doubled starting at a lower bound (CWmin)
until a maximum value (CWmax) is reached.

()iCWiσ 0,∈ (8)

[] []maxmin
i

maxii CW,CWmin=CW,min=CW 22CW 1− (9)

minii CWCWσ ∝∝ (10)

Hence, arrival times can be predicted as a function of CWmin in the form of a finite
random variable. This is an important result which shows that the DCF provides us

with an increasing trend for wireless links, one whose base frequency (θ) is given in
Equation 11.

[]⎟
⎠
⎞⎜

⎝
⎛

minCW+constantDCF +framedtrans=θ 0,/1 (11)

Equation 11 forms the basis for our scheme. Specifically, we seek to discover a wire-
less segment by extracting a basic recurring pattern that exists in all wireless streams.
Further, a wireless series can be generated synthetically which spares us from having
to train a classifier with real traces.

Since the RAP environment would likely involve a single client node (the mali-
cious intruder), our primary focus is the case where there are minimal collisions as a
result of competing traffic in the network, and thus assume that σ varies between 0
and CWmin. We plan to address the scenario where multiple users access the RAP in
the future.

This wireless time series is not uniform for different traffic types. In light of Equa-
tion 4, it is important to consider two transport protocols - TCP and UDP. Figures 4
and 5 show how the IAT distribution would look for the two different classes.

The frame transmission time for each case would differ as shown in Hypothesis 4.1.

 Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC 401

Fig. 4. Packet arrival pattern - UDP

Fig. 5. Packet arrival pattern - TCP

Hypothesis 4.1
1: if trafficUDP then
2: dtransframe = dtransdata

3: else if trafficTCP then
4: dtransframe = dtransdata + dtranstcpACK

5: end if

Because of the difference in characteristics, considering an 802.11b network as an

example, the transmission delay for the two classes would follow from the informa-
tion in Table 1 (taken from [21]) as shown in Equations 12 and 13.

This difference must be factored in when modeling the traffic behavior.

σ+=

+++σ+=
wloverheaddtrans+datadtrans+randomDCF+constantDCF=
wloverheaddtrans+framedtrans+randomDCF+constantDCF=

UDPwldtrans
UDPwlIAT

1303

10215101860

≅

(12)

()
2σ1618

1021523010182σ120

2dtrans

2DCF2DCF

2dtrans2DCF2DCF

+=

+++++=
wloverhead+

tcpACKdtrans+datadtrans+random+constant=
wloverhead+framedtrans+random+constant=

TCPwldtrans
TCPwlIAT ≅

 (13)

Note that TCP does not always have to wait for an ACK before transmitting the next
packet. In fact, when a node is transmitting TCP traffic with a congestion window
size W greater than one (that is, W>1), it is likely to exhibit UDP-like behavior (in the

402 A. Venkataraman and R. Beyah

form of multiple sequential packets) except for the time when it is waiting for ACKs.
In fact, in the case of upstream TCP traffic to the Internet, a node is highly likely to
transmit in bursts. Thus, TCP’s IAT distribution would resemble that of UDP for the
most part. Hence, having taken into account the frequency of packet arrivals for both
UDP in Equation 12 and the extreme-case TCP (that is, W = 1) in Equation 13, our
model is scalable for all traffic types.

As part of our groundwork, we used the expression from Equation 4 - which re-
peats with the frequency shown in Equation 11, combined with the expected values
for each type of WLAN (for example, the data from Table 1 was imported for a
802.11b WLAN) to artificially build a profile set. We used values for DCFconstant from
the 802.11 standard. Also, we used a pseudo random number generator to emulate
DCFrandom, where random values were generated from within a range equivalent to the
initial CW, that is, (0,CWmin).

Table 1. 802.11b MAC Transmission Overhead

Variable Parameter Time
(µs)

Formula

DCFconstant

DIFS
SIFS

50
10

2 * slot time + SIFS = 50
SIFS

DCFrandom Average σ 310
 (# of slots * slot time)/2 = (31 * 20)/2 =

310

dtransframe

dtransdata

dtransTCP-ACK

1018
30

Packet size/data rate = (1400 * 8)/11 =
1018

TCP-ACK/data rate = (40 * 8)/11 = 30

dtransoverhead

overheadpkt

overheadMAC-ACK

215

10

(Preamble + PLCP hdr.)/data rate + MAC
hdr./data rate + MAC CRC bits/data rate
= (144 + 48)/1 + (30 * 8)/11 + (4 * 8)/11

= 192 + 21 + 2 = 215
MAC-ACK/data rate = (14 * 8)/11 = 10

Figures 6a and 6b display the CDF of the IAT of TCP and UDP flows generated

via experimentation and simulation, as well as those constructed artificially using
Equations 12 and 13. The figures illustrate how closely the experimental and simu-
lated delay distributions follow the ones artificially created.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IAT (us)

C
D

F

Simulation 802.11g
Experimental 802.11g
Analytical 802.11g
Simulation 802.11b
Experimental 802.11b
Analytical 802.11b

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IAT Values (us)

C
D

F

Simulation 802.11g
Experimental 802.11g
Analytical 802.11g
Simulation 802.11b
Experimental 802.11b
Analytical 802.11b

Fig. 6. (a) CDF of IAT for UDP. (b) CDF of IAT for TCP.

 Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC 403

Also from Figure 6b, while more than 90% of the sample set follows a uniform
random dispersal over the window size, a fraction of the flow tends to deviate out of
bounds. We attribute this to the overhead in the network caused by dpropwl, possible
link-layer retransmissions and packet collisions during transmission.

To arrive at the results in Figure 6, separate TCP and UDP experiments and simu-
lations were performed individually for the 802.11b and 802.11g configurations. For
each transport protocol and each WLAN speed setting, 1000 data packets were sent
from the wireless client using a socket program to the wired-side server and the IATs
were recorded on the wired-side. Correspondingly, the artificial profiles each com-
prise of 1000 IAT values.

The experiments that produced part of the results in Figure 6 were performed in
a lab testbed that will be discussed in Section 4.3. The simulations associated with
Figure 6 were performed in a similar setup as the lab testbed using ns2.

In this sub-section, we showed that it is possible to independently conjecture how a
wireless stream would behave in different types of networks. To demonstrate the
accuracy of the technique, a Bayesian classifier is used to compare incoming streams'
IAT distributions with the training IAT profile set. The foundation for this classifica-
tion is presented in the next sub-section.

4.2 Classification Scheme

We use a Naïve Bayes classifier which bins the IAT datasets (the artificial profiles
and experimental/simulation traces used for the purpose of testing the system), calcu-
lates for each dataset the number of occurrences in each bin, compares the bin fre-
quencies of each profile with those of the trace and predicts the trace as being akin to
the profile whose frequency distribution closest resembles that of the trace. The Chi-
square Goodness of Fit test is employed to determine the fit between each profile and
the unknown trace.

The inputs are binned into ‘b’ number of bins, where b depends on the bin width
and input data size. For both the bin width and input data size, different values are
tried with the goal of optimizing 'b' to furnish maximum accuracy. Details about these
experiments will be discussed in Section 4.4.

Profiles fi are compared with an unknown sample fx based on the frequency of oc-
currences in each bin. The Bayes theorem is based on the conditional probability
model, where the posterior probability is a function of the prior probability and the
likelihood.

Because the nature of incoming traffic cannot be predicted, prior probability is un-
known and is assumed equally distributed over the n profiles.

() n=ifPbilityPriorProba /1 (14)

Likelihood (measure of how similar the unknown trace is to a given profile) is calcu-
lated for each profile using a two-sample Chi-square test which is run independently
on all sample-profile bin frequency pairs.

ifxfPLikelihood (15)

404 A. Venkataraman and R. Beyah

Posterior probability (measure of how likely a profile is the closest match for the
unknown) is calculated as follows:

()ifPifxfxfifProbabilityPosteriorP .P = (16)

Since fx is a random variable {x1,x2,…xd},

() ()ifPifdx,2x,xP=xfifP1 (17)

() ifkx
d

=k
PifP=xfifP ∏
1

. (18)

Since the prior probability is constant, the posterior probability essentially depends on
the likelihood measures. It is derived by aggregating the Likelihood measures, each of
which is calculated using the Pearson's Chi-square test. This test estimates the prob-
ability that an unknown distribution fits a Chi-square distribution given a null hy-
pothesis. This null hypothesis is rejected (or accepted) based on the probability of the
unknown trace's fit to the Chi-square distribution. This probability is determined as a
function of the Chi-square statistic which is obtained as follows:

()∑ ⎟
⎠
⎞⎜

⎝
⎛ −

k

=i
iPiPiX=

1
/22χ (19)

Xi and Pi are the bin frequencies of bin i of the two samples to be compared - the
unknown and a profile. Note that the profile P is the null hypothesis. In our case, P is
the synthetically created wireless profile. The Chi-square statistic is calculated over
the bin frequencies of k bins.

4.3 Experimental Setup and Validation of Wired-Side Approach

In this sub-section, we discuss: (i) preliminary experiments that were performed to
validate the general idea behind our wired-side approach and (ii) the outline of the
experimental test plan we used to evaluate the system's accuracy.

1.2098 1.21 1.2102 1.2104 1.2106 1.2108

x 10
9

0

20

40

60

80

100

120

140

160

180

200

Time (us)

P
ac

ke
ts

Wired-side arrival times
Wireless-side arrival times

Fig. 7. Packet arrival times on wired and wireless sides

 Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC 405

An experimental testbed was built using three Lenovo laptops, three Dell desktops,
a Netgear 10/100 Mbps Fast Ethernet switch and a Linksys 2.4Ghz 802.11b-g AP.
The laptops were made to connect to a server on the wired-side through the AP and
switch. A desktop was set up as a sink server to receive data from both LAN and
WLAN senders. The classifier resides on a desktop connected to the switch immedi-
ately linking the AP to the LAN.

To ensure that our technique for wired-side detection is viable, we first determined
whether the temporal characteristics of the IAT observed on the wireless link were
intact on the wired-side. It is important to check if the DCF induced delay is carried
over to the Ethernet backbone with minimal additional overhead delay added to it. In
a single hop scenario, the overhead is primarily a function of the router queuing delay
and processing delay.

The results shown in Figure 7 are a representative sample of the arrival times of
about 200 packets extracted from a trace of a total of 10,000 packets of upstream TCP
data sent from a wireless-side sender using a socket program to the wired-side server.
The arrival times on the wired-side were recorded at the receiver node. On the wire-
less side, a laptop acting as a sniffer was used in promiscuous mode to capture traffic
from the wireless sender. We observed that the arrival rates were retained albeit with
a uniformly witnessed lag (as a result of router queuing) as shown in Figure 7.

Given the simple one-hop path from the WLAN to the classifier on the wired-side,
a switch with minimal traffic load exhibits a nearly constant queuing delay (dqueue)3
which is illustrated by the nearly fixed distance between the lines in Figure 7. In
Section 7, we discuss how the model scales to networks where the classifier is placed
several hops away from the AP.

4.4 Accuracy Measures

Having visually shown why it is likely that the packet IAT from the wireless side is
carried over to the wired-side, we evaluate the scheme's accuracy in extracting the
DCF imposed delay to determine the packet's originating link.

First, we tuned the bin width and input data size to find the optimal pair - one that
maximizes True Positive Rate (TPR) and minimizes False Positive Rate (FPR). This
is followed by additional testing with the chosen optimal parameters to obtain the
system accuracy.

The classifier was tested on traces from both wired and wireless TCP/UDP data
transfers. Sample trials on the LAN were used to measure the FPR and trials on the
WLAN to measure the TPR. Trials were performed on the WLAN for both 802.11b
and 802.11g specifications by configuring the AP to operate in the required mode. For
each network type (WLAN/LAN) and protocol (TCP/UDP), 50 sets of data were fed
into the classifier. The detections from the 50 trials were used in determining
TPR/FPR measures for the classifier. This process was repeated for different bin
width and input data size combinations. The results shown in Figure 8 are an average
of the results from the TCP and UDP trials.

An optimal bin width of 500µs and input size of 1000 packets were chosen, as the
pair gives the minimum FPR of 2% and maximum TPR of 91%. On testing the system

3 Refer to Equations 1and 2 for the definition and Section IV.A for a discussion on dqueue.

406 A. Venkataraman and R. Beyah

with the chosen parameters (Bin width = 500us, Input size = 1000 packets, and FPR =
2%) for a total of 10 additional trials, it was observed that the technique is accurate in
detection approximately 92% of the time for UDP and 89% of the time for TCP traffic,
as can be seen from Figure 9.

In the RAP attack scenario, the attacker would likely often hop on the connection
for short bursts of time to avoid detection. Given the attacker's short-lived stay online,
it is important that the classifier be able to work on a minimum amount of data. Also,
considering the relatively negligible portion of WLAN traffic occupied by upstream
data (in comparison with TCP downstream data), the classifier might not have much
to work with and hence, must be trained accordingly.

0 500 1000 1500 2000
0

10

20

30

40

50

60

70

80

90

100

Bin width (us)

A
cc

ur
ac

y
(%

)

TPR: Input size = 250 packets
TPR: Input size = 500 packets
TPR: Input size = 1000 packets
FPR: Input size = 250 packets
FPR: Input size = 500 packets
FPR: Input size = 1000 packets

0 2 4 6 8 10

30

40

50

60

70

80

90

100

Trials

T
P

R
 (%

)

UDP
TCP

Fig. 8. Parameter tuning Fig. 9. TPR for chosen bin width and FPR

Each input data size may correspond to different application data on the RAP be-
cause each application (e.g., web browsing, email, file upload) contributes different
amounts of upstream traffic to the classifier. Accordingly, the results shown in Figure 8
provide a sample of the system's accuracy for different classes of applications - each
pertaining to a different input size. For a bin width of 500us, the system exhibits
maximum accuracy that ranges from 87% to 91% for input sizes varying from 250
packets to 1000 packets. As a result, the attacker is slightly more likely to be detected
if he were uploading a file of 1Mb than if he were reading the news at say,
www.cnn.com, because the former would contribute the sufficient amount of data
faster than the latter.

In this section, we discussed our first scheme of detection. In this method, our clas-
sifier is trained artificially on IAT signatures individually for different network speeds
and different transport protocols for both the LAN and WLAN. We also showed the
accuracy measures from lab experiments. This scheme is optimal when there is no
interference on the channel and the link is stable. As will be shown in Section 6, its
performance degrades as rate adaptation occurs in response to poor link quality.
Therefore, in the next section we present a scheme that thrives during rate adaptation.

5 Scheme II – Rate Adaptation Based Detection

The 802.11 MAC protocol provides wireless entities with the ability to change their
encoding scheme (data transmission rate) when the need arises. Using automatic rate
fallback (ARF), when a node reaches a threshold of not receiving MAC-layer ACKs,

 Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC 407

it reduces its rate to one that corresponds to a stronger encoding algorithm in order to
ensure more robust transmission.

As shown in [21], rate adaptation occurs regularly in WLANs because signal and
link-layer interference are common phenomena. Given that rate adaptation occurs regu-
larly, we seek to exploit this property that is specific to wireless streams to distinguish
them from their wired counterparts. Particularly, the switching of the physical-layer data
rate creates a variation in throughput and packet delay in a wireless transmission that is
rarely found in wired traffic. We exploit the unique behavioral characteristics at the time
of rate switching to identify wireless traffic.

In this section, we first examine the behavior of the IAT during switches in data
rate. Based on this, we derive an artificial profile for the IATs during such shifts in data
rate. The artificial profiles are incorporated into a classifier, which is then evaluated for
accuracy.

5.1 Analysis

In this sub-section, we illustrate the effect of rate adaptation on a series of packets.
Specifically, we show that there exists an IAT pattern that is exhibited only during
rate adaptation and not when a pair of successively transmitted packets is sent at a
constant physical layer data rate.

First, we visually illustrate how rate adaptation alters the arrival periods of packets
transmitted at different data rates. Figure 10 is an example representation of the ex-
pected packet arrival sequence for a sample wireless transfer. In Figure 10, note that
the IATs vary for each rate Ri because slower rates trigger greater packet delays.

Fig. 10. Packet arrivals during rate adaptation

The probability Pi of the event Ri occurring depends on what we call the channel

interference index (Ω) which has a range {0↔1}.

iP
i

iIAT=wlIAT ∑ (20)

()
() kPiPΩk<iIf

kPiPΩk<iIf

≥→∧

≤→∧

1

0
 (21)

In other words, the probability of occurrence of a lower transmission rate (in Equation
21, rate i is lower than rate k) is inversely proportional to signal interference and colli-

sions. Our model safely assumes that the measure of interference Ω is not known
prior and hence Pi is unknown.

This being the case, unlike Scheme I which assumes minimal to no rate adaptation,
we choose to focus not on sets of IATi (that is, the IAT of two packets transferred at
same rate) but instead on IATj (that is, the IAT of two packets transferred at different
rates).

408 A. Venkataraman and R. Beyah

Having abstractly shown the influence of rate adaptation on the IATs and having
settled on the idea that the inference model should be based on the IAT behavior dur-
ing the transition in data rate (IATj), we proceed to study IATj.

Fig. 11. IAT pattern during a rate switch

As shown in Figure 11, IATj is the delay during the ‘jump’ from one rate to the
next. Note that in Figure 11, IATj is of a different magnitude than IATi, where IATi is
the IAT during rate Ri and i = {1,2}. Accordingly, in our classifier, we associate IATwl

with IATj. To determine which link type the test data (that exhibits IATx) belongs to,
we use the basic premise given in Hypothesis 5.1.

To illustrate the behavior of the jumps, an initial set of experiments were performed
on an 802.11b WLAN; IATs for packet pairs transmitted at the same rate as well as
different rates were extracted. In the absence of notable real channel interference, to
stimulate rate adaptation in a simple lab testbed, the experiments were performed in the
presence of a running microwave. A laptop was used as a sniffer on the wireless-side to
collect the data rates corresponding to the packets within a transmission.

A sample of the IATs from a two minute upstream data transfer is shown in Figure 12.
Although the interference resulting from the microwave usage was strong enough to
invoke rate switches down to 2Mbps and sometimes 1Mbps, for the purpose of the
current argument, the aggregated IATs of packets transmitted at 11Mbps, 5Mbps and

Hypothesis 5.1

1: if IATx ≈ IATj then
2: Report Wireless
3: else
4: Report Wired

5: end if

Hypothesis 5.2

1: if Ri < Ri+1 then
2: IATi > IATj > IATi+1
3: else
4: IATi < IATj < IATi+1
5: end if

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IAT (us)

C
D

F

11mbps
5mbps to 11mbps
11mbps to 5mbps
5mbps

0 500 1000 1500 2000 2500 3000 3500 4000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IAT (us)

C
D

F

Experimental 36mbps to 54mbps
Analytical 36mbps to 54mbps
Experimental 54mbps to 36mbps
Analytical 54mbps to 36mbps

Fig. 12. IAT behavior during a rate switch – TCP Fig. 13. TCP Analytical vs. Experimental
Signatures – 802.11g WLAN

 Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC 409

packets transmitted immediately after changes in data rate both ways are the only
IATs shown in Figure 12.

It can be seen in Figure 12 that the IAT distributions of the jumps fall in between
those of the stable rate phases before and after. This leaves us with Hypothesis 5.2.

The rationale behind this (as shown in Figure 14) is that during the transition from
R1 to R2, the MAC-level ACK is transmitted at R1 and the subsequent data frame at R2.
That is, a node which decides to reduce its data rate transmits the next data packet at
the new rate but the MAC ACK for the previous data packet would still be sent from
the AP at the old rate. Also, as can be seen from Figure 12, because of the difference
in frame and MAC ACK sizes, the IAT distribution during the jump (IATj) is biased
towards that corresponding to the rate following the jump. That is, since the frame
size >> MAC ACK size and because the data frame is sent at the new rate, IATj is
closer to the IAT associated with the new rate.

Fig. 14. DCF behavior during a rate switch

This difference in behavior during a rate switch can be exploited by studying how it
reflects on individual delay components of the corresponding IATs, as shown below:

() ()

() ()1,21,2

1,21,2

pktACKMAC

randomconstantframewl

overhead+overhead+

DCF+DCF+dtrans=dtrans

−
 (22)

21

2

pktACKMAC

randomconstantframejwl

overhead+overhead+

DCF+DCF+dtrans=dtrans

−
 (23)

Using Equation 23 as the base for our synthetic profiles, substituting jump-specific
dtransframe and dtransoverhead values, our classifier can be trained as shown in Figure 13.
Similar to the synthetic IAT profiles shown for the (36Mbps, 54Mbps) pair in Figure
13, multiple such jump signatures were constructed for different data rate pairs as
training sets for the classifier. Additionally, the training sets included IAT signatures
for 10Mbps and 100Mbps LANs.

5.2 Classification Scheme

The classifier used for this method is similar to the one explained in Section 4.2, with
appropriate changes made to incorporate the fact that only the IAT values during
jumps in rates are considered for training and testing as opposed to the values during a
stable rate period. In the Bayesian classifier, instead of comparing the entire trace
of IAT readings with the profiles, individual values are inspected for possible jumps.
That is, a comparison of two datasets (training and testing sets) is not required;

410 A. Venkataraman and R. Beyah

instead, it is sufficient to check individual incoming IAT values to see which IAT
jump signatures they are closest to.

5.3 Experimental Setup and Validation of Wired-Side Approach

The experimental setup used to validate the scheme is similar to that used for Scheme
I discussed in Section 4.3. As in [21], we use a synthetic means (microwave interfer-
ence) to force rate switching to investigate Scheme II. One of the laptops is used as a
sniffer on the wireless side, while another laptop is used to transfer data to the wired-
side desktop sink server.

0 10 20 30 40 50
0

2

4

6

8

10

12

Packets

D
at

a
ra

te
 (m

bp
s)

Wireless-side rate observations
Wired-side rate detections

Fig. 15. Rate detection on wired and wireless sides

To determine whether a node is switching rates when capturing packets on the
wireless side is simple, as its physical layer header contains the actual transmission
rate. However, the rate in the wireless frame is not carried over to the wired-side.
Accordingly, on the wired-side, we have to infer the rate by observing the packets’
IAT pattern. We verified that this approach is viable by capturing traffic both on the
wireless-side and the wired-side, and comparing the data rate observations made on
the wireless-side with the data rate predictions made by the classifier on the wired-
side. We observed packets that switch rates on the wireless side with a laptop acting
as a sniffer capturing promiscuously (by looking at the radiotap header in the wireless
frame) and concurrently on the wired-side by feeding captured IATs of the same
packets into the classifier. From this, we were able to determine that specific IAT
values on the wired-side correlated to confirmed rate adaptations on the wireless side.

Figure 15 gives a representative sample of the rates of the packets extracted on the
wireless side and the rates inferred by the classifier on the wired-side, illustrating the
correlation of rates of the same packets observed at both points. A total of 6000 up-
stream TCP data packets were transmitted with 81% of the rates predicted correctly. It
is important to note that though the accuracy of classification of the data rates on the
wired-side was 81%, the classifier is accurate in access link type classification up to
an average TPR of 97% for UDP and 91% for TCP (refer to Figure 18). This is be-
cause even the IATs corresponding to the incorrectly inferred rates are closer to the
synthetic jump IAT profiles that the classifier was trained on as opposed to the
Ethernet IAT signatures.

The accuracy measures of the classifier used to test Scheme II are shown in the
next sub-section.

 Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC 411

5.4 Accuracy Measures

As in Scheme I, to validate the system, the bin width used in the Bayesian binning
approach was first tuned to determine an optimum value for the classifier. Note that
Scheme II operates independent of the input size as it does not compare the dataset as
a whole with the profiles and instead studies the input trace a packet at a time.

For each bin width, ten trials were performed, in each of which the classifier was
tested on TCP/UDP data packet pairs of upstream Ethernet and WLAN traffic.
TPR/FPR were generated as a function of the fraction of the input trace accurately
classified each time (Figure 16).

0 100 200 300 400 500
10

20

30

40

50

60

70

80

90

100

Bin width (us)

A
cc

u
ra

cy
 (%

)

TPR
FPR

0 2 4 6 8 10 12

20

30

40

50

60

70

80

90

100

Trials

T
P

R
 (%

)

TCP
UDP

Fig. 16. Bin width tuning Fig. 17. TPR for chosen bin width and FPR

In order to optimize the effectiveness of this technique, we calculate what we call
the Effective Accuracy and find the optimum value that maximizes this difference
between TPR and FPR in an attempt to make a balanced trade-off between the two
metrics. For the chosen parameters (Bin width = 20µs and FPR = 14%), 12 additional
trials are run to observe the TPR distribution (Figure 17).

Note that the accuracy measures shown in Figure 17 hold for WLANs with consid-
erable rate adaptation. As will be shown in the next section, the accuracy of this
scheme increases as a function of the amount of interference on the network and thus
the method is not suitable for networks with minimal rate adaptation. In the next sec-
tion, we propose a technique that bridges the strengths of the two schemes discussed
so far in an effort to arrive at a comprehensive solution for normal networks (i.e.,
networks with varying levels of interference).

6 Consolidated Model

While Scheme I compares input sample traces as a whole with each of the profiles,
Scheme II checks individual packet pairs within a trace for a switch in data rate. This
implies that since the input sample trace to be compared may encompass several rates,
Scheme I’s accuracy is likely to subside with increased rate adaptation. Conversely,
Scheme II will not accurately classify wireless traffic in the absence of a minimum
degree of rate adaptation.

412 A. Venkataraman and R. Beyah

6.1 Analysis

In an effort to present a general solution that works both when the link is stable as

well as when rate adaptation occurs, we revisit the channel interference index (Ω)4
defining it as follows:

SchemeIAccuracy
SchemeIIAccuracy

Ω ∝ (24)

Equation 24 essentially captures the inverse relationship between Schemes I and II.
Scheme I works better when there is little to no interference, while Scheme II works
better during interference. Thus, it is important to consolidate the pros of the two ap-
proaches in a way that the resulting system is effective regardless of the link stability.

6.2 Classification Scheme

To combine the two schemes, we partition the input data set into blocks of a constant
size with the expectation that each block will be comprised of data at a specific rate.
Of course this need not be the case. So, in addition to this, we exploit the fact that
Scheme I detects the access link types of stable rate periods well and Scheme II de-
tects the jumps well. For the combined solution, the input trace is fed into the classi-
fier one block at a time. Scheme I contributes the network type/speed observation for
each of the partitions and Scheme II points out where two stable rate periods intersect
(that is, the jumps in data rate), the aggregation of which gives us the temporal distri-
bution of rates for a series of packet pairs. This technique is illustrated in Figure 18,
where x and y are the inferred data rates. Based on the inferred rates, the combined
scheme determines the access link type of the individual partitions. The final access
link type classification decision for the whole block of data is made as a function of
the WLAN-to-Ethernet classification ratio of individual partitions. That is, the classi-
fier decides between WLAN and Ethernet based on which link type is classified in
majority of the partitions. The general idea behind this unified model is that if one of
the two schemes fail, a healthy net effect is maintained as the other scheme chips in.

Fig. 18. Depiction of combined scheme

6.3 Experimental Setup

The experimental setup used to test the first two schemes is employed to validate the
combined scheme. A block size of 250 packets is chosen. Accordingly, in our ex-
periments, each input trace of 1000 packets is partitioned into four blocks of 250
packets each.

4 Note that this metric was previously introduced in Section V.A.

 Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC 413

In the next section, we evaluate the accuracy of the combined scheme (in compari-

son with that of the first two schemes) as a function of Ω by testing against data sets
that differ in the number of times rate adaptation is invoked.

6.4 Accuracy Measures

The accuracy measures of the consolidated system (in comparison with those of the
other two schemes) are shown in Figures 19.

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

Number of switches in data rate

T
P

R
 (

%
)

Scheme I
Scheme II
Combined Scheme

Fig. 19. Scheme accuracy comparison

A total of 14 trials were performed to assess how the TPR varies with an increase
in the degree of rate adaptation. This testing set comprised of 2 trials each for the 7
different degrees of rate adaptation. The degree of rate adaptation is devised as a func-
tion of the number of switches in data rate invoked within the 1000 packet input data
set. Figure 19 shows the results of such experiments performed individually for each
of the three schemes. Results shown in Figure 19 are an average of the outcomes from
separate TCP and UDP trials. Note that the combined scheme's accuracy is not as high
as that of Scheme I. However, this technique is nonetheless effective and unlike the
initial two schemes, the combined technique is realistic as it makes no assumption
about the link quality.

7 Measure of Robustness and Scalability

In this section, we discuss how the system's performance scales to larger, more realis-
tic networks. We evaluate the system's scalability in two scenarios - (i) a network
where the classifier is placed multiple hops away from the AP via simulation, and (ii)
a real network (as opposed to a lab testbed).

First, to test the combined scheme’s scalability as a function of the classifier's dis-
tance from the AP, simulations were performed where detection takes place several
hops upstream instead of the switch immediately connecting the AP to the LAN. This is
important because the AP to be detected may not always be one hop away from the
classifier node. We consider the effect of different fixed access-link and bottleneck
delays at each hop, including the best-case (1ms, 10ms, and 50ms) as well the worst-
case (300ms and 500ms) delays. The measurements observed indicate that despite a
decrease in accuracy with an increase in the distance, the system averages a worst-case
accuracy of above 60%, average-case accuracy of above 75% and best-case accuracy of

414 A. Venkataraman and R. Beyah

above 85% (Figure 20a). The results shown in Figure 20a were obtained from simula-
tions done using ns2 and varying the number of hops between the AP and the classifier
node. The TPR measurements shown in the figure are an average of results from 10
trials - each of 10,000 upstream data packets - performed separately for each delay value
and tested individually for a given number of hops. The 10 trials comprised of 5 TCP
and 5 UDP trials. The trace of 10,000 packets in each trial was fed into the classifier
1000 packets at a time.

0 2 4 6 8 10
0

10

20

30

40

50

60

70

80

90

100

Number of hops

T
P

R
 (%

)

Delay = 0.1ms
Delay = 1ms
Delay = 10ms
Delay = 50ms
Delay = 100ms
Delay = 300ms
Delay = 500ms

0 5 10 15 20

30

40

50

60

70

80

90

100

Trials

T
P

R
 (%

)

TCP - 802.11b
TCP - 802.11g
UDP - 802.11b
UDP - 802.11g

Fig. 20. Multi-hop accuracy: (a) Simulation, (b) Experiment

Next, we conducted experiments on a real network to arrive at the accuracy meas-
ures of the classifier when tested with traces from a real environment. Trials were
performed on a multi-hop fiber-optic university backbone. A wireless node was made
to connect via an AP from a classroom building to the wired-side server three blocks
away in the Computer Science Department. The accuracy of the combined scheme
was measured over a total of 20 trials performed individually for TCP/UDP data
transfers and for 802.11b/g network configurations. In each trial, the classifier was
tested on a 10 minute long trace for TPR measures. As shown in Figure 20b, the clas-
sifier is accurate up to approximately 90% of the time for UDP and 85% of the time
for TCP.

8 Conclusion and Future Work

The proposed method detects RAPs by extracting characteristics unique to a wireless
stream from network traffic. It makes use of two 802.11 MAC specifications to finger-
print wireless attributes from the wired-side making the process simple and scalable.

In this paper, we have studied the working and validated the accuracy of our detec-
tion techniques in several environments. This method is immediately deployable and
is shown to scale well to realistic scenarios outside of a lab testbed. In the future, we
will continue in this direction and further test the system for robustness to other use
cases.

We plan to extend this work by scaling it to networks of greater traffic density by
taking into consideration the effect of collisions in the network as a result of multiple
users on the RAP. To this end we will study various error models and incorporate the
traffic behavior during each of these into our design. Further, we intend to study the
effect of link delay on the accuracy of the system in an attempt to derive a metric that
the classifier shall be tuned for when placed multiple hops away from the AP. Also,

 Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC 415

we will test the system's robustness using different real network traces from publicly
available archived sources (e.g., CRAWDAD).

Further, looking ahead in RAP detection, we must assume that the misfeasor could
be tech savvy and aware of RAP defenses. To this end, we will analyze possible op-
tions that an attacker has to evade detection by cleverly altering his transmission pat-
tern. Threat strategies that an attacker may employ include reducing or increasing his
packet delay and interleaving his wireless transmissions with other types of traffic to
bypass the classifier's signatures. Note that the DCF parameters can be manipulated in
open source 802.11 drivers.

References

1. Beyah, R., Kangude, S., Yu, G., Strickland, B., Copeland, J.: Rogue access point detection
using temporal traffic characteristics. In: IEEE GLOBECOM (2004)

2. Shetty, S., Song, M., Ma, L.: Rogue Access Point Detection by Analyzing Network Traffic
Characteristics. In: MILCOM (2007)

3. Wei, W., Suh, K., Gu, Y., Wang, B., Kurose, J.: Passive online rogue access point detec-
tion using sequential hypothesis testing with tcp ack-pairs. In: IMC (2007)

4. Wei, W., Jaiswal, S., Kurose, J., Towsley, D.: Identifying 802.11 Traffic from Passive
Measurements Using Iterative Bayesian Inference. In: IEEE INFOCOM (2006)

5. Wei, W., Wang, B., Zhg, C., Kurose, J., Towsley, D.: Classification of access network
types: Ethernet, Wireless LAN, ADSL, Cable Modem or Dialup? In: IEEE INFOCOM
(2005)

6. Baiamonte, V., Papagiannaki, K., Iannaccone, G.: Detecting 802.11 wireless hosts from
remote passive observations. IFIP/TC6 Networking (2007)

7. Beyah, R., Watkins, L., Corbett, C.: A Passive Approach to Rogue Access Point Detection.
In: GLOBECOM (2007)

8. Mano, C., Blaich, A., Liao, Q., Jiang, Y., Cieslak, D., Salyers, D., Striegel, A.: RIPPS:
Rogue Identifying Packet Payload Slicer Detecting Unauthorized Wireless Hosts Through
Network Traffic Conditioning. ACM TISSEC 11(2) (2007)

9. Cheng, L., Marsic, I.: Fuzzy reasoning for wireless awareness. International Journal of
Wireless Information Networks 8(1) (2001)

10. Bahl, P., Padhye, J., Ravindranath, L.: Enhancing the Security of Corporate WI-FI Net-
works Using DAIR. In: ACM MobiSys (2006)

11. http://www.netstumbler.com
12. http://www.wimetrics.com/Products/WAPD.htm
13. http://www.proxim.com/learn/library/whitepapers/

Rogue_Access_Point_Detection.pdf
14. http://www.airdefense.net
15. http://www.airmagnet.com
16. http://www.airwave.com
17. http://www.cisco.com/en/US/products/sw/cscowork/ps3915
18. Chirumamilla, M.K., Ramamurthy, B.: Agent based intrusion detection and response sys-

tem for wireless LANs. In: ICC (2003)
19. Ma, L., Cheng, X.: A Hybrid Rogue Access Point Protection Framework for Commodity

Wi-Fi Networks. In: IEEE INFOCOM (2008)
20. Songrit, S., Kitti, W., Anan, P.: Integrated Wireless Rogue Access Point Detection and

Counterattack System. In: ISA (2008)

416 A. Venkataraman and R. Beyah

21. Beyah, R., Corbett, C., Copeland, J.: A Passive Approach to Wireless NIC Identification.
In: ICC (2006)

22. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function.
Journal on Selected Areas of Communications 18(3) (2000)

23. Bing, B.: Measured Performance of the IEEE 802.11 Wireless LAN. LCN (1999)
24. Chatzimisios, P., Vitsas, V., Boucouvalas, A.C.: Throughput and Delay analysis of IEEE

802.11 protocol. In: 5th IWNA (2002)
25. http://www.isi.edu/nsnam/ns

A Novel Architecture for Secure and Scalable
Multicast over IP Network

Yawen Wei, Zhen Yu, and Yong Guan

Department of Electrical and Computer Engineering,
Iowa State University, Ames IA 50011, USA
{weiyawen,yuzhen,yguan}@iastate.edu

Abstract. Currently, multicast services can be implemented at the IP
layer or the application layer. While IP multicast violates the stateless
paradigm of Internet and incurs great difficulties to congestion and flow
control, application-layer multicast is lack of scalability due to the un-
reliability and resource constraints of end-hosts. Moreover, security is
a main weakness in Internet-wide group communications. We propose
in this paper a novel architecture for secure and scalable multicast in
the Internet. In our architecture, a Multicast Agent in each Autonomous
System (AS) is responsible for delivering multicast packets at the AS-
level, relaying packets to end-hosts, and generating and updating keys
to secure group communications. The proposed membership manage-
ment protocol enables no-delay to membership updating; the proposed
inter-domain routing protocol reduces the worst-case link stress by one
magnitude compared to state-of-the-art protocols, and bounds the extra
bandwidth cost within one percent compared to traditional IP multicast.

Keywords: IP Multicast, Routing protocol, Security, Inter-domain,
Source-encoding.

1 Introduction

Multicast is an important and efficient mechanism to support many applica-
tions such as multimedia teleconferencing, news distribution, software updates
and network games. Previous research efforts have been devoted to implement-
ing multicast service either at the IP-layer or at the application-layer, however,
the protocols implemented at both layers have drawbacks and have never been
Internet-widely deployed.

In application-layer multicast protocols [5,6,7,8,11,13,14,16,20,22,27], end-
hosts are organized into tree-based or mesh-based overlays to forward packets.
Since end-hosts are limited in bandwidth and often experience abrupt crashes or
failures, the overlay they form always suffers from large end-to-end latency and
low data delivery rate. Meanwhile, since end-hosts need to periodically measure
link quality to add/drop certain overlay links to improve tree or mesh topol-
ogy, expensive operation overhead will be incurred, especially for large groups.
Therefore, application-layer protocols cannot become a practical solution for
large-scale group communications in the Internet.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 417–436, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

418 Y. Wei, Z. Yu, and Y. Guan

We thus pass the hope on network-layer protocols [3,4,9,10,12,15,17,21,24].
However, IP multicast also has some limitations and has not been deployed
through the Internet either. First, IP multicast requires routers to maintain per-
group state and violates the stateless paradigm of the Internet. Second, it raises
great difficulties in providing reliability, flow and congestion control at higher
layers. Finally, IP multicast lacks a strategic business model and a security ar-
chitecture. In the current open usage model, any host may send packets to an
existing multicast group. Besides, flooding and DoS attacks will render multi-
cast service unreliable or unavailable, and make the accounting for providing
multicast service infeasible.

In this paper, we propose a secure and scalable architecture for Internet-
wide multicast applications. In the proposed architecture, a border router called
Multicast Agent (MA) exists in each Autonomous System (AS). These MAes
are in charge of delivering multicast packets at the inter-domain level, relaying
multicast packets to end-hosts at the intra-domain level, and generating and
updating keys to secure group communications. The security are achieved in
a hierarchical manner: the packets delivered between MAes are encrypted by
a global key, and the packets delivered between end-hosts in a local domain is
encrypted using a local key.

In the proposed architecture, we first design a membership and key manage-
ment protocol. In our protocol, the membership information is explicitly dis-
tributed using augmented-packets, rather than using the traditional way that
membership information are periodically exchanged between neighboring do-
mains. By our design, not only bandwidth is saved from the exchanging traffic
but also the propagation latency is reduced.

To achieve efficient inter-domain routing, we design an inter-domain routing
protocol using the source-encoding technique. The MA at the source domain con-
structs and encodes dissemination tree information into each multicast packet.
The benefits of such source-encoding are as follows: (1) The source domain knows
all in-group domains, thus service fee can be properly charge by ISPs based on
the scalability of the multicast group. (2) The privilege of receiving/sending
packets is restricted only to in-group members, so a more secure usage model
can be enforced. (3) No state information needs to be maintained at intermediate
routers, i.e., the stateless nature of Internet is maintained. (4) Since the source
can specify the targeted recipients of each packet, hence, subgroup communica-
tions can be conveniently supported. The last feature is especially beneficial in
some applications where the participating members have heterogeneous inter-
ests. For example, in the Commercial Mobile Alert System (CMAS) [1], the text
alerts related to disaster, immanent and child abductions are required to send
to geographically targeted subgroups of people’s cell phones.

In our inter-domain routing protocol, instead of requiring all tree information
to be encoded into the packet header, we decompose in-tree nodes into two
hierarchical levels, and shim header and shim payload of a packet encodes the two
levels respectively. Such hierarchical design can effectively mitigate the packet
duplication problem. It is proved by simulations that our protocol can achieve

A Novel Architecture for Secure and Scalable Multicast 419

good scaling, e.g., the number of duplicated packets is around twenty on the
most stressful link.

The rest of this paper is organized as follows. Section 2 provides an overview of
our proposed multicast architecture. Section 3 describes the group membership
management protocol. Section 4 describes the key management issues. Section
5 proposes an inter-domain multicast routing protocol. Section 6 evaluates the
proposed multicast architecture through simulations and compares it with state-
of-the-art multicast protocols. We discuss the related work in Section 7 and
conclude the paper in Section 8.

2 Overview

In our proposed multicast architecture, we assume a border router called Mul-
ticast Agent (MA) exists in each AS. The MAes are in charge of delivering
multicast packets at the AS-level, relaying multicast packets to end-hosts that
are interested in sending/receiving these packets, and generating and updating
keys to secure group communications. All multicast traffic in and out of an AS
will be handled by the responsible MA (we will discuss multiple MAes within a
local domain in the Discussion Section 3.3).

At the source domain, when the MA receives a multicast packet from an
end-host, it first constructs an AS-level dissemination tree then inserts the tree
information into the multicast packet. The encoded tree information can lead
downstream MAs to correctly forward the packet. When a border router receives
the packet, it forwards it to the local MA. The MA checks if any end-hosts in its
domain are interested about this packet. If yes, it multicasts the packet within
the local domain; otherwise, it does not perform the intra-domain multicasting.
Then, the MA decodes the tree information in the packet and forwards the
packet to border routers in other domains. In our architecture, the security are
achieved in a hierarchical manner: the packets delivered at the inter-domain level
are encrypted using a global key shared by MAes, while the packets within a local
domain are encrypted using a local key shared by end-hosts and the local MA.

In the following, we will describe the group membership management protocol
in Section 3. We then discuss the key management issues in Section 4. In Section
5, we propose the inter-domain routing protocol which is used to construct,
decompose and encode/decode AS-level dissemination trees.

3 Group Membership Management

3.1 Intra-domain Management

To multicast a packet to end-hosts in a local domain, the MA should know which
end-hosts are group members. We do not specify any intra-domain multicast
protocols used in a local AS, because most existing protocols can scale well at
the domain level. Specifically, if PIM-SM or CBT protocol is used, then the
MA constructs a unicast tunnel to the local Rendezvous Point (RP) from which

420 Y. Wei, Z. Yu, and Y. Guan

it knows the membership information; it also relays multicast packets through
the tunnel to/from the RP. If PIM-DM or MOSPF protocol is used, then the
MA can participate as an active member and perform like a normal end-host to
multicast to the group.

3.2 Inter-domain Management

The inter-domain level group membership is managed by MAes. Since any in-
group MA may become the source of a multicast packet and need to know
destination domains to construct a dissemination tree, the membership informa-
tion should be available to every in-group MA. A simple approach to achieve
such group-wide awareness is maintaining membership information at a cen-
tral server. However, this will lead to large query traffic towards the server and
cause it overloaded or even out-of-service. Therefore, we suggest every in-group
MA keeps a copy of the member list and collaboratively updates the list when
membership changes.

In this subsection, by membership we refer to the membership at the domain-
level. In other words, only when the number of end-hosts in an AS domain
rises above zero or decreases to zero, the MA of this domain joins or leaves the
multicast group and becomes an in-group or out-group MA.

Augmented Packet. We first introduce the Augmented Packet which is a basic
technique used in our inter-domain membership management. The format of an
augmented packet is shown in Fig. 1 where a normal packet is augmented with
a membership payload. In this membership payload, a header contains 32 bits.
The first 8 bits (denoted by nj) indicate the number of newly-joined MAes; the
second 8 bits (denoted by nl) indicate the number of leaving MAes; the last 16
bits are the checksum computed over the entire membership payload to ensure
its integrity. Followed the header are the IDs of joining MAes then the IDs of
leaving MAes.

The reason for introducing such augmented packet is to avoid the extensive
traffic caused by sending a separate updating message for every member join or
leave, especially if we consider the fact that millions of multicast groups may
exist in the Internet simultaneously.

Now the question is which MA should be in charge of appending the member-
ship payload to its multicast packet? A reasonable answer is that the first MA

IP Header Data Payload Membership Payload

nj nl checksum
ID1 ID2
ID3 ID4
… … Padding

Fig. 1. Augmented packet format

A Novel Architecture for Secure and Scalable Multicast 421

that multicasts packet after membership changes should take the responsibility,
because the delay in membership updating can be minimized. However, the next
source MA is not directly available except for some application (for example,
in IPTV, all data are originated from a source domain where the TV station
resides). In our approach, we suggest MAes use self-learning algorithms to make
predictions based on historical records on previous source domains. They can use
those algorithms that are used to handle page replacements in virtual memory
management, or they can predict the next source domain as the one that most
recently or most frequently sends packets, or they can consider both frequency
and recentness and apply aging algorithm for the prediction.

Membership Updates upon Member Joins. The detailed process for MA
to join a multicast group is described in the following steps (Fig. 2).

– Step 0: If a MA (say, MA-1) wants to join a group, it should first con-
tact the group registry server and get bootstrapped with a list of in-group
MAes. (Here, we consider close usage model in which every member explicitly
goes through registration process to obtain the privilege of sending/receiving
packets from this group. Close usage model provides many benefits such as
better control, traffic engineering and accounting.) The list obtained in boot-
strap does not need to be complete, i.e., it may just contain several in-group
MAes.

– Step 1: The new member MA-1 randomly selects a MA (say, MA-2) from its
bootstrap list, and sends to it a join message.

– Step 2: MA-2 predicts the next source MA based on the record of source
domains during a past period of time, and transmits the AS number of this
MA (say, MA-3) together with a full list of all in-group MAes back to MA-1.

– Step 3: If MA-1 happens to have a multicast packet originated from its
domain at this moment, it directly multicasts an augmented packet with
its ID included in the membership payload, then goes to step 6. Otherwise,
MA-1 will solicit help from MA-3 by sending to it a request, asking MA-3
to send an augmented-packet with MA-1’s membership information.

MA-2 MA-1

1. join
2. full List, MA-3

MA-3
(predicted by MA-2)

3. request

5. request
4. data
6. stop

foster parent new member

MA-4
(predicted by MA-1)

Register Server

0. bootstrap

Fig. 2. A new MA joins a multicast group

422 Y. Wei, Z. Yu, and Y. Guan

– Step 4: Notice the next source prediction may not be accurate, i.e., MA-3
may not become the source during a period of time in the future. In this
case, MA-1 will not receive any data for this group during this time since
other in-group MAes are not aware of the existence of the new member.
To mitigate this problem, we designate MA-2 as the foster-parent of MA-1.
That is, when MA-2 receives any packet for this multicast group, it should
relay the packet to MA-1 through a unicast tunnel between them.

– Step 5: If after a certain period of time t after joining, MA-1 has not received
any packet containing its ID in the membership payload, it knows MA-3 has
not sent out any augmented-packet yet. Then MA-1 will predict another
MA (say, MA-4) based on its own historical record of the source domains,
and send to it a request message. MA-1 repeats this step by periodically
contacting different MAes until its membership can be group-widely noti-
fied. However, if more than a certain number of predications fail, MA-1 will
multicast a separate message by itself to announce its membership.

– Step 6: In the end, MA-1 informs its foster-parent to remove it from the
foster-children list.

Membership Updates upon Member Leaves. If an existing MA wants
to leave a multicast group, it either multicasts an augmented-packet itself, or
predicts the next source MA and informs it about its leaving. We notice that
before a leaving MA is finally removed from the member list, the MA may
continue receiving multicast packets, so it should perform as an in-group MA
for a period of time to guarantee correct data delivery.

3.3 Discussion

In this subsection, we would like to discuss the consistency issue and multiple
MAes issue associated with our inter-domain group membership management
protocol.

Consistency. We notice that there may be some timing and delay in commu-
nicating MA joins/leaves at the inter-domain level. Consider a scenario where
a users is channel surfing. The corresponding MA, MA-1, will first announce
join then announce leave. Assume MA-1 contacts a predicted source MA, MA-2,
and sends a join request to it. Later, MA-1 contacts another predicted source
MA, MA-3, and announces its leave. Due to the possible timing/delay, some
MAes may receive leave information by MA-3 prior to join information from
MA-2, which may create a situation where not all MAes have a consistent view
about MA-1’s membership. Our fix to this problem is to use sequence numbers
for each MA in sending out join/leave updates. Therefore, when in-group MAes
receive conflicting group membership information, they can ignore the obsolete
information and only keep the latest information to achieve consistency.

Multiple MAes. In our architecture, we assume one border router plays the
role as the local MA. The selection can be based on which border router is the

A Novel Architecture for Secure and Scalable Multicast 423

exit point to most other ASes, or which has the smallest IP address in the local
domain. However, the vulnerability and unreliability associated with a single MA
is present. First, when the current MA crashes or reboots, another border router
has to take over the responsibility and the handoff process will introduce some
delay. Second, since all group traffic in/out of the domain is through a single
MA, the traffic concentration problem is obvious given the inter-domain traffic
is high in the backbone. We are considering to allow multiple MAes to share
the workload of handling group traffic in a local domain. Some design challenges
exist to guarantee a consistent view among multiple MAes of both the intra- and
inter-domain membership, and achieve the smooth cooperations between them,
and these will be our interested research subjects in the future.

4 Group Key Management

Given that security is one of the main weaknesses of IP multicast, the need to
secure multicast packets is particularly apparent and crucial. Secure group com-
munication systems mostly rely on a group key, which is a secret only known
to group members and used to encrypt multicast messages. When group mem-
bership changes, a new group key should be established to guarantee forward
security and backward security, that is, members who have left the group cannot
decrypt messages in later sessions, and new members cannot decrypt messages in
previous sessions. The challenging problem is to design key management schemes
that can scale to large groups or groups with highly dynamic memberships. Pre-
vious key management schemes, including the key graph approach [25,26] and
its extensions, require at least O(logN) computation and communication per re-
keying operation, where N is the number of group members. In many Internet
multicast applications such as the massive multiplayer games, the value of N,
i.e. the number of participating players, can be several millions, which will make
rekeying overhead particularly huge.

Instead of requiring all end-hosts use a single group key to secure their com-
munications, in our architecture, we suggest to organize the end-hosts into a hi-
erarchy that is consistent to the Internet topology. Namely, the end-hosts within
an AS form a subgroup, and the domain’s MA is the subgroup head. Within
a local domain, multicast packets are encrypted using a local key shared by all
in-group end-hosts and the local MA; at the inter-domain level, packets are en-
crypted using a global key shared by all in-group MAes. Therefore, if an end-host
joins or leaves a group, only the local key needs to be changed, but the global
key is maintained the same, which can greatly mitigate the scalability problem.

When a multicast packet enters/leaves a domain, decryption and re-encryption
should be performed. Precisely, when a MA relays a multicast packet into its do-
main, it needs to decrypt the packet using the global key then re-encrypt it us-
ing the local key. To enhance the efficiency of the cryptographical operations, we
can adopt techniques suggested by previous works such as [18]. Such that the lo-
cal/global keys are not used to encrypt and decrypt a packet directly, instead,
they are used to encrypt and decrypt a random session key, and the session key is

424 Y. Wei, Z. Yu, and Y. Guan

the real key that encrypts the packet. In this way, decrypting and re-encrypting
a packet is reduced to decrypting and re-encrypting the session key.

In the following subsections, we discuss the key management at the intra- and
inter-domain level in more detail.

4.1 Local Key Management

The MA serves as key server within each domain. The MA is responsible to
distribute a local key for each group, and update the key whenever membership
changes. We emphasize that when an end-host leaves or a new end-host joins
the group, only the local key has to be updated, while the global key will remain
the same. The MA shares a pair-wise secret key with every end-host. (1) When
a new host joins, the MA generates a new local key, encrypts it using the shared
key with the new host and unicasts to the host. Meanwhile, it encrypts the
new local key using the old local key, and multicasts to previous hosts. (2)
When an existing host leaves, the MA also generates a new local key, encrypts it
using each of the shared keys with the remaining members, and multicasts one
message containing all the encrypted keys to them. The computation overhead
for member join and leave is O(1) and O(n) respectively, where n is the local
group size. Although scalability may not be a severe issue within a local domain
(compared to Internet-wide groups), we do not limit ourselves to adopt any key
management algorithms that have less computation, communication or storage
overhead.

4.2 Global Key Management

We assume each MA shares a pair-wise key with every other MA in the Internet.
Since it is not reasonable to assume a single Internet-wide key server for all
multicast groups, we require the global key for each group is maintained by
in-group MAes. Precisely, for a group, one in-group MA is selected as the key
server, and is responsible of distributing a new global key to the current in-group
MAes, whenever a new MA joins or an existing MA leaves the group. We can
adopt any re-keying algorithm for the key server to update the global key.

If the key server itself wishes to leave, it has the authority to designate another
in-group MA to be the key server. The designation can be based on reliability,
bandwidth, membership length and local group size. For instance, the MA with
the largest number of participating end-hosts is less possible than other MAes
to quit the group, thus it can be selected as the next key server. For a newly-
joined MA whose membership have not been notified to other in-group MAes
(thus not known to the key server either), the multicast packets relayed from its
foster-parent to the new member can be encrypted and decrypted using their
pair-wise key.

5 Inter-domain Multicast Protocol

In this section, we propose an efficient inter-domain multicast protocol. We first
discuss how a dissemination tree is constructed, decomposed and encoded at

A Novel Architecture for Secure and Scalable Multicast 425

AS Number AS Path Next Router Interface
4515 34225 41692 3491 4515 193.138.164.1 m0
6356 34225 1299 6830

22773 22318 6356
193.138.164.1 m1

… … … … … … … …

Fig. 3. Routing table at MA34225

the source MA, and then we describe how the tree information is decoded and
updated at downstream MAes.

5.1 Preliminary Work

Before we introduce our inter-domain routing protocol, we first take a look at a
previous work related to our protocol, i.e., the Free Riding Multicast (FRM) [21]
protocol. In FRM, the border router of a source AS computes a dissemination
tree from the union of unicast paths, then puts the tree information into the
fixed-size shim header of each multicast packet. If the tree is very large, then
multiple packets have to be transmitted to carry the encoded tree information.
The packet duplication problem can be very severe, e.g., it is reported that when
the dissemination tree spans on all AS domains in the Internet, the worst-case
physical link has to transmit about 150 duplicated packets.

Although two approximation methods were suggested to mitigate packet du-
plication problem associated with FRM, there are some practical issues with the
suggested methods. (1) The first method is to omit customer ASes at tree leaves
when encoding the dissemination tree. However, this requires the border router
at the source AS to know customer-provider relationships between other ASes.
Although some techniques [23] can help guess AS relationships by exploring the
AS graph, the guess cannot be validated because the customer information is
proprietary information of an ISP. Therefore, the guesses would be wrong and
packets would not be able to be delivered to some valid in-group members at
the leaves. (2) The second approximation method is to replace all the tree links
connecting a node by one aggregated link, if the number of tree edges from the
node is a large fraction of its total edges. It is claimed that an AS domain A
forwards packets to its neighbor B only when B-X (X is a neighbor of B) lies
on the path from A to some destination domain. However, this cannot ensure
A-B is an in-tree link because the path containing B-X do not necessarily pass
domain A. The consequence is that some packets will be sent on non-tree links.

In the following, we propose a novel inter-domain multicast protocol that can
effectively mitigate packet duplications and achieve efficient data delivery.

5.2 Construction of Hierarchical Dissemination Tree

For a multicast group, the source MA can learn all in-group MAes from the
membership management protocol we have described in Section 3. To construct
a dissemination tree, the source MA looks up its MA routing table to find out

426 Y. Wei, Z. Yu, and Y. Guan

A

JIHG

FED

CB

NMLK O

A

H

F
EB

NM

LK O

Level 0

Level 1

Level 2

Virtual Tree

Real Trees

B

H

G

D

LK

A

FE

C

B

F

J

O

Level 3

I

Out-group MA
In-group MA

Virtual Link
Real Link

Fig. 4. Decomposition of the flat tree

the unicast path leading to each in-group domain (an example is shown in
Fig. 3). The routing table is indexed by AS numbers and each entry provides
the AS paths, next-hop, interface, and other path attribute information. This
table can be easily constructed using BGP RIB and updated using BGP routing
updates. If multiple policy-permitted paths exist leading to a same AS, then
the best-quality path can be selected. For instance, the path with the smallest
AS-hops or the shortest geographical distance [19] can be selected.

After consulting this table, the source MA can construct a flat tree by the
union of unicast pathes leading to all destination domains. Then, it decomposes
the flat tree into one virtual tree and multiple real trees. Fig. 4 presents an ex-
ample of the decomposition. The virtual tree consists of virtual links connecting
in-group MAes, and the real trees consist of real links connecting out-group
MAes. The source MA puts the information about the virtual tree and the real
tree rooted at itself into the packet. The real tree information can guide out-
group MAes to forward the packet properly until it reaches in-group MAes at
level 1 in the virtual tree. Then, each level-1 MA replaces the real tree in the
packet with the one rooted at itself, which leads the packet to level-2 MAes, and
so forth. Finally, the packet will traverse through the whole tree and visit every
in-group MA.

5.3 Shim Header and Shim Payload

Now the problem is how the source MA encodes and attaches tree information
to each multicast packet. Since real-tree information is used by out-group MAes
and virtual-tree information is used by in-group MAes, we can encode them into
shim header and shim payload of a packet, respectively (Fig. 5).

We adopt the technique of bloom filter to encode tree information into shim
header and shim payload. Bloom filter is a space-efficient probabilistic data struc-
ture that can support membership queries. It uses k independent hash functions
to map every member to k different positions in a m-bit vector. When using

A Novel Architecture for Secure and Scalable Multicast 427

IP

Header
Shim

Header
Data

Payload
Shim

Payload
Membership

Payload

kv nv checksum

BF1 (length=20 Byte)

BF2 (length=20 Byte)

kr checksum
BF (length=8 Byte)

Fig. 5. Shim header and shim payload formats

bloom filter, false negative is guaranteed to be zero, but false positives is nonzero
and will increase with the number of members hashed into the filter. Given the
highest acceptable false positive, the maximum number of members one bloom
filter can afford can be determined. We assume all MAes in the Internet share
a same set of hash functions, therefore, an MA can use the set of functions to
decode the links from filters constructed by other MAes.

Fig. 5 shows the format of shim header and shim payload. Shim header consists
of 32 control bits and a 8-byte bloom filter to contain real tree links. The control
bits include 4 bits (denoted by kr) that indicate the number of hash functions,
16 bits checksum that are computed over the entire shim header to ensure the
integrity, and the remaining 12 bits for future use. Shim payload consists of 32
control bits and multiple fixed-length bloom filters (20 bytes in our design) .
The control bits include 4 bits (denoted by kv) that indicate the number of hash
functions, 12 bits (denoted by nv) that indicate the number of bloom filters, and
16 bits of checksum that are computed over the entire shim payload to ensure
its integrity.

5.4 Tree Encoding on Source MA

In this subsection, we give an example that illustrates the tree encoding process
at a source MA. As we can see in Fig. 6, source node A sends packet P1 to an
in-group node (node B) and packet P2 to an out-group node (node C). In packet
P1, the shim header contains link A:B, which is both a real link and a virtual
link, and the shim payload contains virtual links B:K, B:L and B:H. In packet
P2, the shim header contains links A:C, C:E and C:F, and the shim payload
contains two bloom filters corresponding to two subtrees, one with virtual link
F:O and the other with virtual links E:I, I:M and I:N. In this example, the
whole dissemination tree is first decomposed into one virtual tree and three real
trees, then the virtual tree is decomposed into three sub virtual trees. Given the
maximum number a bloom filter can afford, the decomposition of the virtual
tree is to ensure no bloom filter contain more links than the threshold.

5.5 Tree Decoding and Updating on Transit MAes

We now discuss the checking and updating process at downstream MAes. If the
MA is an out-group MA, it simply checks all its AS-neighbor-links to find out

428 Y. Wei, Z. Yu, and Y. Guan

A

JIHG

FED

CB

NMLK O

P1

Shim Header Shim Payload

P3

P2

P4

P1 IP
header B:K, B:L, B:HDataA:B

P2 IP
header A:C, C:E, C:F Data E:I, I:M,I:N

IP
header DataP3 F:J, J:O

P4 IP
header B:K, B:L, B:HB:D,D:H,D:G

G:K,G:L Data

F:OP2P2

F:O

Fig. 6. Example of tree encoding, decoding and updating

the present ones in the shim header, then forwards the packet accordingly. No
updating on the shim header or payload is needed. If the MA is an in-group
MA, it first checks the shim payload and decodes the present virtual links, then
it rewrites the shim head to encode the links of the real tree rooted at itself,
and removes some bloom filters in the shim payload. As the example shown in
Fig. 6, a transit MA node, node F, receives packet P2 and sends packet P3. It
rewrites the shim head to contain links F:J and J:O, then it removes the second
bloom filter in the shim payload, because none of the virtual links E:I, I:M and
I:N in that filter will be of future use as the packet traverses deeper into the tree
through node F.

When an in-group MA checks the bloom filters in the shim payload, it does
not need to check the virtual links connecting itself and every other in-group MA,
instead, it only needs to check those connecting itself and its children MAes in
the virtual tree rooted at itself. We can prove the correctness of such checking
by the following proposition.

Preposition 1. In a multicast group G, node i’s child in a virtual tree rooted
at node j (j
= i) must be i’s child in the virtual tree rooted at itself.

Proof. We prove by contradiction. We denote the virtual tree constructed for
multicast group G and rooted at node t by T G

t . Assume in the virtual tree T G
j ,

there exists a child k of node i, such that k is not i’s child in the virtual tree T G
i ,

which means another node s must lie on the shortest path from node i to node
k in T G

i , denoted by Lik. Since Lik must be a part of Ljk in T G
j (otherwise Ljk

will not be the shortest), node s will also lie between node i and k in the path
Ljk in T G

j , which implies that node k is not a child of i in T G
j . Contradicted.

5.6 Discussions

We now discuss some properties of our proposed inter-domain routing protocol.

IP Fragments. During the packet delivery process, IP fragmentation may take
place at an intermediate router. Our protocol deals with such situations by doing
the followings: first, both the IP header and the shim header from the original IP

A Novel Architecture for Secure and Scalable Multicast 429

datagram should be copied to new datagrams. Therefore, the shim header is per-
packet based, which enables out-group MAes to solely look at a packet’s shim
header to forward it correctly. Second, the shim payload should be fragmented
and inserted into multiple packets. Since in-group MAes are the destinations of
all the fragmented packets, IP reassembly will be performed at every in-group
MA and the shim payload will be recovered.

Bandwidth Consumption. The bandwidth consumption is minimized in our
protocol by adopting two important techniques.

First, the hierarchical decomposition effectively alleviates packet duplications.
In the basic source-encoding approaches, the entire flat tree is encoded into
the shim header of a packet. Since the shim header has very limited length
and cannot accommodate too many links, multiple shim headers have to be
constructed, which directly causes duplicated packets. In our protocol, the virtual
tree is inserted into a packet’s payload which can contain up to 65KB data. Only
a small real tree needs to be inserted into the shim header. Fig. 6 showcases the
benefits. The shim header of packet P2 only contains three links A:C, C:E and
C:F in our protocol; without tree decomposition, the shim header would have to
contain eight links A:C, C:E, C:F, E:I, I:M, I:N, F:J and J:O.

Second, we encode virtual links into multiple bloom filters instead of a single
large one, which further reduce bandwidth consumptions. As a packet traverse
deeper into the dissemination tree, in-group MAes can continuously remove some
“useless” filters that contain virtual links not present in its subtrees. Therefore,
packet size can be reduced and bandwidth can be saved. This advantage can be
seen clearly in Fig. 6, where node F removes the second bloom filter in the shim
payload, since none of the virtual links E:I, I:M and I:N will be of future use.

Processing Delay. In our protocol, there are three procedures where delay
may be introduced.

First, the processing delay can be introduced at the source MA by constructing
shim header and shim payload. However, we notice a MA can pre-construct the
dissemination tree and cache the shim header and payload information. For
example, a MA will cache for groups for which it has a large number of end-
host users, because it is very probable for it to become the source MA in the
future.

Second, since an out-group/in-group MA should check the shim header/
payload for present real/virtual links, there is a delay associated with the look-
ups in bloom filters. Fortunately, bloom filters can be implemented using very
efficient hardware like TCAM [28], such that the to-be-checked links can be
hashed into multiple rows and accessed in parallel to achieve high efficiency.

Third, delay may be incurred at an in-group MA by the rewriting operation of
the shim header of a packet. To mitigate this delay, a MA can pre-compute and
cache the bloom filter containing the real links associated with each virtual link,
then it can rapidly construct the shim header by simply XORing these filters. As
an example, node B in Fig. 6 can cache three bloom filters: filter-1 contains B:D
and D:H corresponding to the virtual link B:H, filter-2 contains B:D, D:G and

430 Y. Wei, Z. Yu, and Y. Guan

G:K corresponding to virtual link B:K, and filter-3 contains B:D, D:G and G:L
corresponding to the virtual link B:L. After receiving packet P1, node B checks
the presence of virtual link B:H, B:K and B:L. So it XORs filter-1, filter-2 and
filter-3 and inserts the result into the shim header of packet P4. Currently, less
than 30,000 AS domains exist in the Internet, which means the memory cost
for caching the bloom filters associated with virtual links will be no more than
240KB at all MAes.

6 Simulation Result

In this section, we conduct simulations to evaluate the performance of the pro-
posed multicast architecture. We mainly focus on the network cost of our inter-
domain multicast protocol and compare it with other state-of-the-art protocols.
The protocols we use to compare with our protocol include the followings. (1)
IP multicast: the dissemination tree is composed of shortest reverse paths from
the source AS to destination ASes. (2) Per-AS unicast: the source AS sends a
separate unicast packet to each destination AS. (3) FRM: the dissemination tree
is constructed by the union of unicast paths from the source AS to destination
ASes, and the whole tree is encoded into shim header of every packet. (4) AS-
level overlay: the dissemination tree is constructed using our proposed protocol,
but the packets are unicast between different MAes.

We use the following metrics to measure the network costs associated with
different multicast protocols. (1) Link stress is defined as the number of dupli-
cate packets transmitted on a physical link. By duplicate packets we mean the
packets that have identical application payload, though they may have different
protocol-related headers or payloads. Obviously, the stress on all physical links is
one in IP multicast. (2) Protocol overhead is defined as the extra bandwidth con-
sumed by the protocol-related data in the packets. In IP multicast and per-AS
unicast, the protocol overhead is zero; in FRM, AS-level overlay and our pro-
tocol, the protocol overhead is not zero because the tree information is present
in the packets’ headers/payloads. (3) Bandwidth cost : This metric evaluates the
total bandwidth consumption to multicast one packet to all receivers. Essen-
tially, this metric reflects the combined impacts of the link stresses and protocol
overheads.

Our simulations are conducted using real BGP data from RIS [2]. RIS is a
RIPE NCC project that collects and stores routing data from the Internet. We
download one day’s files of BGP data collected by the Remote Route Collec-
tors (RRCs) in MRT format. After removing the incomplete measurements and
IPv6 paths, we select twenty IPv4 full tables as the basis of our experiments.
The results are averaged over 200 runs using the 20 BGP tables with 10 runs
per table. In our further work, we will implement our protocol on real border
routers for better understanding of the protocol’s behavior in dynamic real-world
environments.

A Novel Architecture for Secure and Scalable Multicast 431

6.1 Link Stress

Fig. 7(a) compares the CDF of link stresses of our protocol and other multicast
protocols in a typical run when the multicast group consists of 10,000 in-group
domains. The per-AS unicast and AS-level overlay have very high link stresses,
with the worst-case link stress reaches four and three orders of magnitude re-
spectively. In FRM, about 99.6% links see one transmission, but the worst link
stress is over one hundred. Since the worst case always happens on links between
the root and its children domains in the dissemination tree, the congestion of
these links will impact many downstream members. Our protocol effectively re-
duces the stresses on all physical links: more than 99.9% links see exactly one
transmission, and the worst-case stress can be reduced to only 14.

Fig. 7(b) plots the worst link stress for our protocol and other multicast pro-
tocols for different group sizes. We select in-group AS domains randomly and
increase group size from 10 domains to 20,000 domains. In per-AS unicast pro-
tocol, the worst stress increases linearly with the group size. In AS-level overlay,
the worst link stress first increases then decreases to a few hundreds. This is
because the duplicate transmissions are incurred by the unicast between over-
lay nodes. As the group size increases, an overlay node will have more children,
resulting in more stresses on physical links leading to these children domains.
However, when the group gets even larger, in-group ASes get closer and the
unicast paths between them become shorter, thus, less links are shared between
the unicast paths and the link stresses drop accordingly. In FRM, the worst link
stress gradually increases with the group size, with the highest one around 100.
In our protocol, the max worst link stress is only 21 and happens when group
size is around 5,000. Since the duplicate packets are caused by multiple shim
headers that encode real tree links, hence, the fact that the size of real trees first
increases then decreases with the group sizes directly causes the same tendency
on link stresses.

99.6% 99.8% 100%
10

0

10
1

10
2

10
3

10
4

Physical links on tree

St
re

ss
es

 (
pe

r-
lin

k)

Per-AS ucast
AS-level overlay
FRM
SIMP/AMP

(a) Stresses on physical links

0 5,000 10,000 15,000 20,000
10

0

10
1

10
2

10
3

10
4

Number of ASes

St
re

ss
 (

w
or

st
 li

nk
)

Per-AS ucast
AS-level overlay
FRM
SIMP/AMP

(b) Worst stress vs. group size

Fig. 7. Link stress distribution and worst-case Links stress

432 Y. Wei, Z. Yu, and Y. Guan

6.2 Protocol Overhead

Fig. 8 plots the total protocol overhead involved in our protocol and FRM for
different group sizes. Since this metric measures overhead due to shim headers
and payloads, the overhead increases with the to-be-encoded tree size for both
schemes. However, the growing speed is quite different. In FRM, the protocol
overhead grows almost linearly with the group size, which is expected because
the shim header encodes all tree links. In our protocol, the protocol overhead
grows much more slowly, and when in-group domains is 20,000, a total of 0.5MB
bandwidth is consumed. We attribute the conservation on protocol overhead
when using our protocol by two major reasons: first, the tree decomposition hides
the real tree links from virtual tree, resulting in less information to be encoded
in shim headers; second, the shim payload updating at in-group domains enables
further reducing of shim payloads.

5,000 10,000 15,000 20,000
0

0.5M

1M

1.5M

2M

Number of ASes

Pr
ot

oc
ol

 o
ve

rh
ea

d
(t

ot
al

)

FRM
SIMP/AMP

Fig. 8. Protocol overhead vs. group size

6.3 Bandwidth Cost

Fig. 9 shows the bandwidth cost against group sizes. We use 1 KB as the size of
the data packet, and normalize the bandwidth costs of different multicast pro-
tocols with respect to IP multicast. We have repeated this study with different
packet sizes and observed similar ratios for all protocols, which implies that the
bandwidth consumption is largely due to packet duplications rather than the
protocol overheads. This also explains the similar shapes of the curves in this
figure compared to the curves in Fig. 7(b). The two upper curves correspond to
per-AS unicast and AS-level overlay, which show that they introduce at least
100% and 10% more bandwidth cost respectively. The other two curves corre-
spond to FRM and our protocol. We see our protocol performs the best again,
and incurs extra bandwidth cost no more than 1% in the worst case compared
to traditional IP multicast.

A Novel Architecture for Secure and Scalable Multicast 433

0 5,000 10,000 15,000 20,000
100.1%

101%

110%

200%

Number of ASes

B
an

dw
id

th
 c

os
t (

rp
t.

pa
ck

et
-s

iz
e)

Per-AS ucast
AS-level overlay
FRM
SIMP/AMP

Fig. 9. Bandwidth cost vs. group size

7 Related Work

Numerous protocols have been proposed to provide multicast service at the net-
work layer. Intra-domain multicast protocols include DVMRP [24], PIM-DM
[3] and MOSPF [17], etc. Inter-domain multicast protocols include CBT [4],
PIM-SM [10], BGMP [15], PIM-SSM [12], etc. In DVMRP/PIM-DM [24,3], the
multicast data is first broadcast to all routers, then every router that receives
unwanted multicast data sends a pruning packet to its parent. MOSPF [17] pro-
tocol is an extension to OSPF protocol. Every router refers to the link state
database and the group membership knowledge, and constructs shortest-path
tree from any source to all receivers. CBT [4] and PIM-SM [10] constructs a
shared tree rooted at a group-specific Rendezvous Point (RP). BGMP [15] con-
structs bidirectional shared tree that is rooted at the home domain whose address
allocation includes the group’s address. However, all of above protocols cannot
become efficient solutions for Internet-wide multicast services because of their
scalability limitations. PIM-SSM [12] protocol bypasses the discovery of RP, and
constructs shortest path trees rooted at the single source domain. This protocol
can be used only for single-source multicast model.

FRM [21] uses the source-encoding forwarding technique, where the source
router forms the dissemination tree and inserts the tree information into the
header of multicast packet. Their protocol has severe packet duplications espe-
cially when the group size is large. While our protocol utilizes hierarchical de-
composition and shim payload (instead of shim header) to accommodate large
trees, we can effectively reduces the number of duplicated packets.

Many application-layer protocols have been proposed in recent years. They
can be classified as tree-based [5,11,13,20,27] or mesh-based [7,8,16] protocols,
depending on whether the dissemination tree is maintained directly, or a mesh
is maintained and the tree is constructed over the mesh on demand. The proxy
based overlays [6,14,22] can provide more reliable and efficient multicast service,

434 Y. Wei, Z. Yu, and Y. Guan

where the proxies are application servers deployed throughout the Internet. They
self-organize into overlays to disseminate multicasting packets, and relay packets
to attached end-hosts.

Our protocol can be viewed as a variant of proxy based overlay where the MA
in each domain plays the role of multicast proxy. However, both the membership
management and the routing method in our protocol are completely different
from those in traditional proxy overlays. (1) To manage membership informa-
tion, proxy overlays propagate updating information to all members through
periodically neighboring exchanging. We do not adopt such techniques in our
protocol because of the following reasons: first, MA servers are much more re-
liable than end-hosts, it is not worthwhile to detect the rare abrupt failures of
members using periodic refreshing messages at the expense of high bandwidth
consumptions. Second, the constraints on the exchange frequency between bor-
der routers introduce latency to the propagations of membership information.
In our protocol, we use foster-parent technique to reduce the join-delay, and use
augmented-packets to minimize the communication overhead. (2) For the routing
mechanisms, proxy overlays construct mesh and measure link qualities periodi-
cally, our protocol explores the knowledge about the domain-level unicast paths
available at BGP border routers, and constructs source-optimal dissemination
trees directly.

8 Conclusion

In this paper, we proposed a secure and scalable multicast architecture over IP
Network. In our architecture, the AS-level group membership are explicitly main-
tained by in-group Multicast Agents (MA), the inter-domain routing is based
on source-encoded information in multicast packet, and the multicast packets
are encrypted using two-level keys: a global key at the inter-domain level and a
local key at the intra-domain level. Our future work involves implementing the
proposed multicast architecture in real Internet environments.

Acknowledgments

This work was partially supported by NSF under grants No. CNS-0644238, CNS-
0626822, and CNS-0831470. We appreciate anonymous reviewers for their valu-
able suggestions and comments.

References

1. Rules for Delivery of CM Alerts to the Public During Emergencies (April 2008),
http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-08-99A1.pdf

2. Routing Information Service (October 2007),
http://www.ripe.net/projects/ris/index.html

3. Adams, A., Nicholas, J., Siadak, W.: Protocol Independent Multicast - Dense Mode
(PIM-DM) Protocol specification (Revised). Internet Draft (October 2003)

http://hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-08-99A1.pdf
http://www.ripe.net/projects/ris/index.html

A Novel Architecture for Secure and Scalable Multicast 435

4. Ballardie, T., Francis, P., Crowcroft, J.: Core based trees (CBT) an architecture
for scalable inter-domain multicast routing. Technical report, San Francisco, CA
(September 1993)

5. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable application layer mul-
ticast. In: Proceedings of ACM SIGCOMM (September 2002)

6. Banerjee, S., Kommareddy, C., Kar, K., Bhattacharjee, B., Khuller, S.: Construc-
tion of an efficient overlay multicast infrastructure for real-time applications. In:
Proceedings of IEEE INFOCOM (April 2003)

7. Chawathe, Y.: Scattercast: An Architecture for Internet Broadcast Distribution as
an Infrastructure Service, Ph.D. Thesis, University of California, Berkeley (Decem-
ber 2000)

8. Chu, Y., Rao, S.G., Zhang, H.: A case for end system multicast. In: Proceedings
of ACM SIGMETRICS (June 2000)

9. Deering, S., Cheriton, D.: Multicast routing in datagram internetworks and ex-
tended LANs. ACM Transactions on Computer Systems 8(2), 85–110 (1990)

10. Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.: Protocol Independent Multi-
cast sparse mode (PIM-SM): Protocol specification (October 2003); Internet Draft

11. Francis, P.: Yoid: your own internet distribution (March 2001),
http://www.isi.edu/div7/yoid/

12. Fenner, B., Handley, M., Holbrook, H., Kouvelas, I.: Protocol Independent Mul-
ticast - Sparse Mode (PIM-SM): Protocol Specification (Revised). Internet Draft
(March 2001)

13. Helder, D.A., Jamin, S.: End-host multicast communication using switch-tree pro-
tocols. In: Proceedings of the Workshop on Global and PeertoPeer Computing on
Large Scale Distributed Systems (GP2PC) (May 2002)

14. Jannotti, J., Gifford, D., Johnson, K., Kaashoek, M., OToole, J.: Overcast: reli-
able multicasting with an overlay network. In: Proceedings of the Symposium on
Operating Systems Design and Implementation (October 2000)

15. Kumar, K., Radolavov, P., Thaler, D., Alaettinoglu, D., Estrin, D., Handley, M.:
The MASC/BGMP architecture for inter-domain multicast routing. In: Proceed-
ings of SIGCOMM, Vancouver, Canada (September 1998)

16. Liebeherr, J., Beam, T.: HyperCast: a protocol for maintaining multicast group
members in a logical hypercube topology. Networked Group Communication, 72–
89 (1999)

17. Moy, J.: RFC 1585: MOSPF. Analisys and Experience. Proteon Inc. (March 1994)
18. Mittra, S.: Iolus: A framework for scalable secure multicasting. In: ACM SIG-

COMM, pp. 277–288 (1997)
19. Oliveira, R., Lad, M., Zhang, B., Zhang, L.: Geographically Informed Inter-domain

Routing. In: Proceeding of IEEE International Conference on Network Protocols
(ICNP) (October 2007)

20. Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.: ALMI: An Application Level
Multicast Infrastructure. In: Proceedings of 3rd Usenix Symposium on Internet
Technologies & Systems (USITS) (March 2001)

21. Ratnasamy, S., Ermolinskiy, A., Shenker, S.: Revisiting IP Multicast. In: Proceed-
ing of SIGCOMM 2006, Pisa, Italy, September 2006, pp. 11–15 (2006)

22. Shi, S., Turner, J.: Routing in overlay multicast networks. In: Proceedings of IEEE
INFOCOM (June 2002)

23. Subramanian, L., Agarwal, S., Rexford, J., Katz, R.H.: Characterizing the Internet
Hierarchy from Multiple Vantage Points. In: Proceedings of IEEE INFOCOM (June
2002)

http://www.isi.edu/div7/yoid/

436 Y. Wei, Z. Yu, and Y. Guan

24. Waitzman, D., Partridge, C., Deering, S.: Distance Vector Multicast Routing Proto-
col. ARPANETWorking Group Requests for Comment, DDN Network Information
Center (November 1988); RFC-1075

25. Wallner, D., Harder, E., Agee, R.: Key management for multicast: Issues and ar-
chitectures. IETF Request For Comments, RFC 2627 (June 1999)

26. Wong, C.K., Gouda, M.G., Lam, S.S.: Secure group communications using key
graphs. In: ACM SIGCOMM, pp. 68-79 (1998)

27. Zhang, B., Jamin, S., Zhang, L.: Universal IP multicast delivery. In: Proceedings of
the International Workshop on Networked Group Communication (NGC) (October
2002)

28. Content Addressable Memory Cypress Semiconductor, http://www.cypress.com

http://www.cypress.com

Reliable Resource Searching in P2P Networks�

Michael T. Goodrich1, Jonathan Z. Sun2,
Roberto Tamassia3, and Nikos Triandopoulos3,4

1 Dept. of Computer Science, U. California, Irvine, USA
2 School of Computing, Univ. of Southern Mississippi, USA

3 Dept. of Computer Science, Brown University, USA
4 Dept. of Computer Science, Boston University, USA

Abstract. We study the problem of securely searching for resources in
p2p networks where a constant fraction of the peers may act maliciously.
We present two novel hashing-based schemes that can be employed to
reliably support resource location and content retrieval queries, limiting
the ability of adversarial nodes to carry out attacks. Our schemes achieve
scalability and load balancing and have small authentication overhead.
In particular, for a network with n peers, resources are securely located
with O(log2 n) messages and content from a collection of m data items
is securely retrieved with O(log n log m) messages.

Keywords: peer-to-peer, overlay networks, distributed hash tables, one-
way hash functions, digital signatures.

1 Introduction

An overlay peer-to-peer (p2p) network is a distributed structure imposed on a
set of machines, called nodes or peers, for sharing data and computing resources.
A p2p network can achieve load balancing and scalability by allowing peers to
efficiently join and leave the network and users to efficiently store and retrieve
data content. Data storage is typically supported by realizing a distributed hash
table (DHT) that exports a basic put/get API. A data item can be inserted into
the DHT with a put operation under a key and can be retrieved from the DHT
with a get operation given its key. At a lower level, any resource is mapped to
some peer that is responsible for this resource and can be efficiently located.

In this paper, we study the problem of verifying the resource searching func-
tionality in a p2p network in the presence of faulty or malicious nodes. While
faulty nodes are trouble enough, adversarial p2p nodes—a considerable threat
since most p2p systems do not impose any restrictions on membership in the
network—can be especially troublesome. For example, a coalition of adversarial
nodes may wish to degrade the network performance by falsifying responses to
redirection queries during resource location. Alternatively, nodes responsible for
� Work supported in part by NSF grants 0713046, 0713403, and 0724806, the RISCS

Center at Boston University and the Center for Geometric Computing at Brown
University.

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 437–447, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

438 M.T. Goodrich et al.

some stored data may respond with content that appears to be a file of interest,
but is in fact of degraded quality, virus infected, or outdated. Even more insidi-
ously, adversaries may collude to systematically misdirect queries to a “parallel”
p2p network that has invalid content. Finally, a group of nodes may mimic nor-
mal behavior and only aim at taking control over a small set of target items, by
maliciously subverting resource locations or falsifying content retrievals.

To defend against such attacks, we are interested in designing techniques that
protect the integrity of resource location at the network level and of content re-
trieval at the application level. That is, we wish to authenticate the p2p routing
paths (followed by the distributed location process) as well as the p2p content
(returned through a get operation over a DHT). With respect to routing protec-
tion, we aim at defending against shunting attacks, where adversaries misdirect
queries and updates to malicious nodes. With respect to content protection, we
would like to detect content forgery, where invalid data is returned, and replay
attacks, where out-of-date content is retrieved.

We consider an adversary that inserts corrupted machines into the system
and controls their behavior, stored content and routing information. However,
we assume that at all times the adversary controls a constant fraction of the
participating peers— 1

4 in our case, which is reasonable for any large-scale p2p
network. Thus, we do not consider denial-of-service attacks. Our goal is to design
crypto-enhanced schemes that employ lightweight cryptographic primitives, such
as collision-resistant hashing. When malicious behavior is sporadic or selective,
we additionally wish that if no attack is in place, our verification mechanisms
asymptotically incur no extra overhead. To the best of our knowledge no existing
work has this mode-adaptability property for crypto-based secure routing. Ap-
plying standard techniques for content authentication results in solutions that
do not achieve either scalability or load balancing. For instance, storing signed
items results in a linear-size overhead as all items must be resigned to prevent re-
ply attacks. Also, hash-tree based schemes introduce “hot-spots” in the system,
as nodes storing hash values close to the root are more heavily accessed.

We assume the existence of a PKI where the public keys of the users (not
necessarily peers of the p2p network) publishing data into the DHT are known
to all parties. In addition, for an owner of a data collection of size m we assume
the availability of a public and reliable storage of size O(log m) (e.g., a web
page managed by the owner). Thus far, existing works have addressed the two
problems in isolation, solely providing either route or content verification.

Related work. Early work on secure routing [3] in p2p networks tolerates
certain attacks by assigning verifiable identifiers to network nodes. Numerous
DHTs (e.g., [14,17]) have been shown to tolerate random failures. Other schemes
(e.g., [10,16]) have been designed to deter misbehavior in adversarial models,
and in particular some schemes (e.g., [2,5,6]) use quorum-based approaches,
where regular network nodes correspond to large random blocks of machines
and faulty behavior is prevented through majority-voting. Schemes using redun-
dancy in searching (e.g., [9,11]) have also been proposed to tolerate random
Byzantine behaviors. Most p2p storage systems (e.g., [4,15]) support content

Reliable Resource Searching in P2P Networks 439

authentication using “sign-all” techniques where data items are each individu-
ally signed. Signature amortization (i.e., signing a single digest) is used in some
systems by storing the so-called self-certified data [7], but only for large individ-
ual items in static data sets. A distributed Merkle tree (DMT) is presented in [18];
realizing a p2p extension of Merkle’s hash tree, this scheme lacks load-balancing.

Our contributions. We present two new authentication schemes for efficiently
and securely verifying resource location and content retrieval operations, respec-
tively. Our schemes are based on corresponding novel hashing schemes, which
constitute extensions of hash trees to general directed acyclic graphs (DAGs).

Our first authentication scheme, called skip-DHT, is based on skip graphs [1].
Its hashing scheme embeds a set of DAGs in a skip graph so that source-to-
sink paths in each DAG correspond to search paths in the skip graph. Our
construction efficiently authenticates all possible search paths that can be used
for resource location. By combining this scheme with quorum-based techniques
(e.g., [2]), an n-node skip-DHT supports resource locations that are cryptograph-
ically verifiable with O(log n) messages in O(log n) time, has near-optimal query
complexity in the absence of faulty nodes and is attack-resistant in the presence
of a constant fraction ≤ 1

4 of adversarial nodes using O(log2 n) messages.
Our second authentication scheme is a middleware component that can oper-

ate on top of any DHT to efficiently verify put/get operations on a data set of size
m owned by a given data source. We define a hashing scheme of high expansion
over the data items and we store this structure in the DHT so that retrieved con-
tent can be associated with many equivalent verification hash paths, linking each
item to one of O(log m) publicly available digests that are signed by the data
source. As paths can be retrieved with uniform workload, we obtain a distributed
implementation of Merkle’s hash tree where load balancing is preserved. Using
certain algorithmic techniques, item insertions and delayed item deletions can
be supported with O(log n log m) amortized time and communication overheads.

Combined together, our two schemes yield a new distributed hash table with
certain unique features: (i) it is the first DHT to provide cryptographic security
guarantees for both resource location and content retrieval; (ii) it has near opti-
mal searching performance in the absence of adversarial nodes; (iii) it achieves

Table 1. Qualitative comparison of our authentication schemes with other approaches

path verification secure routing quorum-based redundancy scheme 1

attack-resistant • • • •
crypto-enhanced – – – •
mode-adaptable • – – •

content verification self-certified sign-all DMT scheme 2

dynamic – • • •
replay-safe N/A – • •

load-balanced – • – •

440 M.T. Goodrich et al.

both scalability and load balancing. Table 1 compares our work with previous
approaches for path and content verification.

2 Resource Location Authentication

In this section, we describe a new attack-resistant DHT that is based on the
structure induced by skip graphs [1]. To authenticate the search paths in the
DHT, we design a hashing scheme that is defined over its graph structure.

A skip graph on a set K of keys is a distributed structure that supports
operation suc(k), returning the smallest key k′ ∈ K such that k′ ≥ k. Although
designed for the purpose of supporting order-based queries, skip graphs provide
a natural method for support put/get operations. The structure of a skip graph
can be viewed as a distributed extension of skip lists [13]. Both skip lists and skip
graphs consist of a set of increasingly sparse, sorted, doubly-linked lists ordered
by levels starting at level 0, where membership of a particular key k ∈ K in a
list at level i is determined by the first i bits of a potentially infinite sequence of
random bits associated with k, referred to as the membership vector of k, and
denoted by m(k). We denote the first i bits of m(k) by m(k)|i. In the case of
skip lists, level i has only one list, for each i, which contains all keys k such that
m(k)|i = 1i, i.e., all keys whose first i coin flips all came up heads. As this leads
to a bottleneck at the single node present in the uppermost list, skip graphs have
2i lists at level i, which we will index from 0 to 2i − 1. Key k belongs to the jth
list of level i if and only if m(k)|i corresponds to the binary representation of j.
Hence, each key is present in one list of every level until it eventually becomes
the only member of a singleton list. The set of all lists to which a particular key k
belongs meets the definition of a skip list, with membership in level i determined
by comparison to m(k)|i rather than to 1i. We refer to such a skip list as the
skip list defined by m(k) and denote it by SL(m(k)) or SL(k).

To search for the successor of k′ we begin from the sparsest list at, say, level
x and traverse the list by pointers to the right as far as possible without moving
to a node whose key is greater than the key sought; we proceed downward to
the list at level x − 1 in the same way, until level 0 is reached, where we move
rightward to get the result. In a distributed setting, we map each graph node at
level i in to a network node, so that each node stores only four links: pointers
L and R for the network addresses of the machines assigned to the nodes of the
list immediately before and after the given node, and pointers U and D for the
machines responsible for the same key at levels i+1 and i− 1. To search for the
successor of key k′, a machine mapped to key k performs a search in the skip
list SL(k) defined by m(k). If k < k′, a rightward search is performed beginning
at the top-most list of SL(k), which we refer to as the root of k and denote by
r(k). This root list must contain key k and hence can be reached by following
the U pointers of the lower level nodes of k. Based on the analysis in [13] it can
be shown that queries in a skip graph take O(log n) time and messages.

Reliable Resource Searching in P2P Networks 441

Search-path hashing scheme. We present a hashing scheme consisting of a
collection of DAGs embedded in the skip graph so that the authenticity of any
root-to-leaf search path may be verified by the querier. Overall, our hashing
scheme is an extension of the one used in [8]. Let h be a cryptographic collision-
resistant hash function, and let h(a, b) � h(h(a)‖h(b)). Let v be a level-i node in
a skip list SL(k), with neighboring nodes w = R(v) and u = D(v), and denote
by d(v) the digest of v. Node w is called a plateau node if its key does not appear
at level i+1 in SL(k) or a tower node otherwise. Then skip list SL(k) is hashed
as follows: If v is at level 0, then d(v) = h(ID(v), ID(w)) if w is a tower node
or d(v) = h(ID(v), d(w)) if w is a plateau node; if v is not at level 0, then
d(v) = d(u) if w is a tower node or d(v) = h(d(u), d(w)) if w is a plateau node.
All these digests can be computed efficiently.

Lemma 1. If L is a distributed skip list with n nodes with a longest search path
of size H and where each node maps to a machine, then the digests of L can
be computed by respective nodes in H rounds using at most three messages per
node (sent plus received) and n − 1 messages in total.

Given the true digest of a root node digest in the above hashing scheme, a
querier is able to verify the value returned by the node at the end of the search
path, since every search in a skip graph is also a search in a skip list. Thus,
if the digests of every skip list in the skip graph were computed and stored at
those nodes, the searches could be verified given the true value of the root node’s
digest. On the surface, this seems an unsatisfactory solution, as nodes are present
in as many as n

log n different skip lists, and hence would seem to need to store
an equally large number of digests. However, consider a level-i list L in a skip
graph corresponding to membership prefix s. Suppose the above hashing scheme
is applied to two skip lists, which have membership prefix sb, b ∈ 0, 1. Then the
digests of all nodes in L are identical between the two skip lists. Therefore, it
turns out that each node takes on only two distinct digest values, one for those
skip lists in which the node is a plateau and one for those in which it is not.

Lemma 2. A skip graph can be hashed to authenticate the search path of each
membership query, with each node maintaining two digests. The two digest values
at each node can be computed using O(1) messages per node and O(n) messages
for all nodes. With high probability, this process takes O(log n) rounds.

Quorum-based extension. To make this path authentication scheme resilient
to shunting attacks, we need to satisfy the following requirements: 1) the digests
are computed correctly at each node and passed correctly to neighboring nodes,
and 2) the querier machine knows the true value of the root node’s digest. We
observe that the only machines that begin a query from a particular root node
v are those machines assigned to v or some node directly below v. As such,
the hashing algorithm should pass each root digest down to the nodes directly
beneath it. We therefore need a message-passing scheme that is resistant to
adversarial tampering in order to satisfy these both requirements.

442 M.T. Goodrich et al.

We consider the quorum-based extension (e.g., as in [2]) of our skip-graph,
where each skip-graph node corresponds to a supernode consisting of Θ(log n)
machines. Members of a supernode are completely connected, forming a clique,
edges between supernodes correspond to complete sets of edges between their
members, and data mapped to a supernode is stored by all of its members. Doing
so increases the degree of each machine and the number of stored keys by a factor
of O(log n). For a constant fraction of adversarial nodes, if it is guaranteed
that each supernode contains a random subset of machines, then, with high
probability, every supernode will consist of a majority of honest machines.

In this redundant DHT, reliable search and update operations can be per-
formed using a voting scheme in which each step in the traversal of the skip
graph is verified by requesting the correct local answer from every machine in
the current supernode. Also, when a search reaches the supernode responsible
for the key sought, all of its members are polled to determine what data, if any,
matches the search key. Our scheme employs this polling-based search when-
ever the path-verification protocol indicates an error in the resource location
execution. Furthermore, we use voting-based computations to ensure that the
digests are correctly reported to neighboring supernodes and the root digests are
correctly reported to the supernodes beneath the root. This increases the asymp-
totic message costs by a factor of log2 n, as each node-to-node communication
because hash updates now uses O(log2 n) messages.

Updates. As described, our authentication scheme supports secure resource
locations in a static collection of keys, since the digests of all root nodes need to
change when a key is added or removed from the skip graph. We regain efficient
support for updates as follows. We assume that the fraction of bad nodes is less
than 1

4 and use the construction of [2] to assign node identifiers from the interval
[0, 1) to the machines in such a way that w.h.p. every interval of length c log n

n
contains a 3

4 -majority-good supernode of Θ(log n) machines. We construct a skip
graph whose keys consist of the node identifiers of the smallest member of each
supernode. Data items are stored to supernodes through a pseudo-random hash
function mapping arbitrary strings to [0, 1) and then to the closest supernode
identifier. Thus, exact searches for data items are supported by searching for the
hash of the desired key. We refer to this structure as a skip-DHT.

We use the skip-graph hashing scheme to certify query results in the skip-
DHT in a way that avoids recomputing the digests after every key or machine
update. We use the machine identifiers in a supernode as the data that will be
hashed as the digest of leaf nodes. Therefore, data updates no longer must yield
an update in the root digests, since supernode membership is verified instead—
we do not need to know the current list of machines in a supernode to have
confidence in the query results. Instead, we rely upon knowing that the majority
of the remaining original machines can be trusted. This is true as long as less
than 1

2 of the original nodes have left the network.
Overall, when a resource location query is executed, a non-redundant search is

carried out given the query resource key—that is, a pointer to a single, arbitrary
member of the next node in the search path is requested from a (single, arbitrary)

Reliable Resource Searching in P2P Networks 443

member of the current node. When a destination machine is reached that claims
to be a member of the supernode nearest the search key, it must provide a list of
the identifiers of the original members of the supernode to which it belongs. The
querier then computes the hash of this list and checks it against the verification
path. This verifies the successor supernode in the skip list, thus the correct
resource location. Each of these steps requires O(log n) messages.

Theorem 1. An n-node skip-DHT satisfies the following properties: (1) In the
absence of faulty nodes, verifiable exact-match queries are executed with O(log n)
messages in O(log n) time; (2) In the presence of a constant fraction of adversar-
ial nodes, queries are answered and securely verified with O(log2 n) messages in
O(log n) time; (3) The hashing scheme adds only a constant number of messages
to amortized bandwidth usage for adding and removing machines.

3 Content Retrieval Authentication

In this section, we study the problem of authenticating content at the application
level through the put/get core functionality of any DHT. Our goal is to design
a distributed scheme that verifies that data items claimed to have been added
by a data source were really put in the DHT by this entity and have not been
modified by malicious nodes. We wish this scheme to achieve load balancing,
that is, to evenly distribute the workload related to authentication across the
network nodes. We consider a standard query model where an underlying DHT
stores key-value pairs of the type (k, x), each added through operation put(k, x),
where keys are unique identifiers and values are associated with keys. We assume
that the DHT supports operation get(k), which returns the value associated with
key k, with O(log n) expected time and message costs.

For simplicity, we assume that a single data source is storing items in the
system; for more data sources, we make use multiple invocations of our scheme.
We assume that the public key of each data source storing data in the DHT is
known to any entity querying the DHT. Also, we assume the availability of some
public reliable storage that is associated to a given data source and that can be
easily accessed and updated independently of the underlying DHT. The size of
this information is only logarithmic in the number of data items published by
the source. In practice, this assumption is easily implementable through a web
service that posts to a web-site a small amount of data regarding a data source.

Load-balanced hashing scheme. Our data structure achieves signature amor-
tization by applying a hashing scheme over the data items stored in the DHT.
The main idea in our construction is to use a hashing scheme G of high expan-
sion rate, namely with a structure that resembles the FFT computation graph
or a butterfly network, such that for any data item, there exist many equivalent
verification paths. We distribute DAG G to the network nodes of the underly-
ing DHT by appropriately indexing the digests and storing them as special data
items. We preserve the structure of the hashing scheme G in the DHT as follows:
the network node storing the digest of node v in G also stores the keys under

444 M.T. Goodrich et al.

which the digests of the immediate successors and predecessors of v in G are
stored in the DHT. We then randomize the generation of the verification paths
to achieve a uniform workload over the visited network nodes.

We describe our hashing scheme G for m data items and its embedding into
an n-node DHT. For simplicity and without loss of generality, we assume that
m = 2k. The nodes of G are partitioned into k + 1 levels, each having m nodes.
The nodes at level 0 are source DAG nodes, each associated with a data item.
Each of the nodes at one of the remaining levels has two predecessors nodes
at the previous level. The edges in G are defined so that the nodes at level k
are the roots of m perfect binary trees over the data set. More formally, let us
number the nodes on each level and denote with vi,j the j-th node of G on level
i, i = 0, . . . , k, j = 0, . . . , m − 1. For i > 0, node vi,j has two incoming edges
from nodes vi−1,j and vi−1,j+δ(i,j), where δ(i, j) = (−1)
j/2i−1�2i−1. Let h be
a cryptographic collision-resistant hash function. For i = 0, we set d(vi,j) =
h(k||x), where (k, x) is the data item associated with vi,j . For i > 0, we set
d(vi,j) = h(d(vi−1,j) || d(vi−1,j+δ(i,j))). By symmetry, the nodes of G at level
i store 2k−i distinct digests. The data source signs the single digest stored at
nodes of level k and makes it available as public information. Then, each DAG
node vi,j is indexed by a unique identifier idi,j , where in particular node v0,j

that is associated with data item (k, x) is indexed by k, and is inserted in the
DHT as a special data item, using idi,j as the key and the digest and identifiers
of its predecessors and successors in G (O(1) information) as the value.

Query and verification. We now describe how get operations are handled.
We begin by performing a query according to the underlying DHT structure
(e.g., as discussed in the previous section). Given that data item (k, x) stored
at network node W is located by the DHT, node W initiates a randomized
process for generating a verification path for (k, x). Namely, W flips a coin to
determine which of its two parents at level 1 (next node in the path) to contact
next (through a resource location operation, first). In general, a network node
V at level j randomly chooses the next network node (to be contacted while
forming the verification path) independently and with probability 1

2 . Thus, any
query results in a verification path of length O(log m), using O(log m) location
operations, with O(log m log n) computation and communication costs. Through
the randomized search process, every verification path for a fixed data item is
actually an independent and identically distributed random variable and no hot-
spots are created while accessing the authentication structure. The verification
path is returned by the DHT and given this, one can authenticate the answer
of operation get by processing the digests contained in the path, verifying the
publicly available signed digest and checking their consistency. The total storage
required is O(m log m); that is, assuming perfect mapping functions from keys
to network nodes (usually through a cryptographic hash function), the storage
is logarithmic in n per network node, when m = O(n)—i.e., still optimal, since
most DHTs use routing tables of logarithmic size. Using a caching technique as
in [18], we can further improve the creation of the verification paths.

Reliable Resource Searching in P2P Networks 445

Updates. To support updates, we modify the scheme described above using a
dynamization technique due to Overmars [12], which allows to transform a static
data structure into a corresponding dynamic structure. The idea is to partition
a data set of size m into sequence of O(log m) blocks, where the size of each
block is twice the size of the previous block, and to completely rebuilt blocks
after updates, as necessary. We apply this technique to support insertions of data
items with new keys. Let D be a data set of size m and let (bk, bk−1, . . . , b1, b0)2
be number m written in binary, with bk = 1. Note that items in D are not
assumed to be sorted. We partition D into �log m� + 1 blocks B0, B1, . . . , Bk,
each a subset of D, according to the weights of the bits of m, i.e., |Bi| = bi · 2i.
Let then G(i), 0 ≤ i ≤ k, denote the hashing DAG described in previous section
that is built for the items of block Bi. DAG G(i) has bi · 2i · i nodes. DAGs
G(0), G(1), . . . , G(k) are used separately as authentication structures: that is,
for i = 0, . . . , k, if bi = 1, the source signs the top-level digest hi of DAG G(i)
and each G(i) is distributed over the network nodes as before. For any queried
data item in block Bi, the corresponding verification path in G(i) is retrieved
using O(i) location operations. Thus, O(log m) signed time-stamped digests (one
for each block) are made available as public information.

We perform insertions of data items through operations put as follows. Let i be
the smallest i such that bi = 0 or i = k+1 if no such i exists. To insert an item x
into D, we merge DAGs G(0), G(1), . . . , G(i−1) to create DAG G(i) for the new
block Bi = B0∪. . .∪Bi−1∪x. Note that |Bi| = 1+

∑i−1
j=0 2j = 2i. The insertion of

a data item into a set of size m stored into a DHT of size n takes O(log m log n)
expected amortized time. Accordingly, we update the public information: the
data source creates new fresh time-stamps and re-signs the publicly available
digests. This occurs for all blocks after every update of a block, independently
of whether or not the corresponding block structure has been altered in the
most recent update. Thus, at any point in time, we maintain O(log m) fresh
signed digests as public information. At asymptotically no additional cost and
using similar ideas with the verification of queries, the data source can verify
the correctness of an operation put performed by the DHT: any change in the
hashing scheme is checked for consistency with the O(log m) signed digests.

We can also support delayed deletions, defined in our context as item removals
that do not actually occur on-line, but instead occur at some future time and dur-
ing the insertion of new items. Asymptotically, these deletions incur no additional
communication or computational cost. In particular, we schedule the deletion of
an item in block Bi during the construction phase of a new DAG G(j), j > i,
where j depends on the exact state of the authentication structure. This deletion
procedure requires minor modifications to the above insertion algorithm. Replay
attacks are eliminated by having the data source S performing controlled delayed
deletions of items before they are replaced by new items in the system. Moreover,
using delayed deletions, our structure supports data item expiration and content
revocation: we remove expired or revoked items during the construction of some
particular new DAG G(j). In this case, our structure has the following important
self-correction property that limits the window of opportunity for replay attacks:

446 M.T. Goodrich et al.

any expired or revoked item is automatically removed from the structure the first
time that the corresponding block containing the item is restructured (rebuilt).
Thus, the system supports item expiration/revocation in the sense that no old
item can stay forever in the system; in particular, no item can be more than m/2
steps old, where m is the current number of items, and depending in the exact ap-
plication, items can be scheduled to leave the storage system such that no replay-
attacks can be launched by the DHT.

Theorem 2. Given an n-node DHT where resource location has O(log n) ex-
pected time and message cost, there exists a distributed authentication scheme
for verifying content from an m-item data set such that: (1) The scheme uses
O(log m) public reliable storage and O(m log m) distributed storage; (2) Retrieved
content is verified in O(log m) time with one signature and proofs of O(log m)
size computed with O(log n log m) expected time and message cost and with uni-
form workload over the DHT nodes; (3) Data-item insertions have O(log n log m)
expected amortized time and message cost; (4) The scheme is resilient to content
forgery and replay attacks and supports delayed data-item deletions.

References

1. Aspnes, J., Shah, G.: Skip graphs. In: SODA, pp. 384–393. ACM, New York (2003)
2. Awerbuch, B., Scheideler, C.: Towards a scalable and robust DHT. In: SPAA,

pp. 318–327. ACM, New York (2006)
3. Castro, M., Druschel, P., Ganesh, A., Rowstron, A., Wallach, D.S.: Secure routing

for structured P2P overlay networks. In: OSDI, pp. 299–314. ACM, New York
(2002)

4. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooper-
ative storage with CFS. In: SOSP, pp. 202–215. ACM, New York (2001)

5. Fiat, A., Saia, J.: Censorship resistant peer-to-peer content addressable networks.
In: SODA, pp. 94–103. ACM, New York (2002)

6. Fiat, A., Saia, J., Young, M.: Making Chord robust to Byzantine attacks. In:
Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 803–814. Springer,
Heidelberg (2005)

7. Fu, K., Kaashoek, M.F., Mazieres, D.: Fast and secure distributed read-only file
system. Transactions on Computer Systems 20(1), 1–24 (2002)

8. Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated
dictionary with skip lists and commutative hashing. In: DISCEX 2002, p. 1068.
IEEE, Los Alamitos (2001)

9. Kapadia, A., Triandopoulos, N.: Halo: High assurance locate for distributed hash
tables. In: NDSS, pp. 61–79 (2008); Internet Society

10. Kothapalli, K., Scheideler, C.: Supervised peer-to-peer systems. In: I-SPAN,
pp. 188–193. IEEE, Los Alamitos (2005)

11. Nambiar, A., Wright, M.: Salsa: a structured approach to large-scale anonymity.
In: CCS, pp. 17–26. ACM, New York (2006)

12. Overmars, M.H.: The Design of Dynamic Data Structures, vol. 156. Springer,
Heidelberg (1983)

13. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications
of the ACM 33(6), 668–676 (1990)

Reliable Resource Searching in P2P Networks 447

14. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: SIGCOMM, pp. 161–172. ACM, New York (2001)

15. Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Sto-
ica, I., Yu, H.: OpenDHT: A public DHT service and its uses. In: SIGCOMM,
pp. 73–84. ACM, New York (2005)

16. Saia, J., Fiat, A., Gribble, S.D., Karlin, A.R., Saroiu, S.: Dynamically fault-tolerant
content addressable networks. In: IPTPS, pp. 270–279. Springer, Heidelberg (2002)

17. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scal-
able P2P lookup service for Internet applications. In: SIGCOMM, pp. 149–160
(2001)

18. Tamassia, R., Triandopoulos, N.: Efficient content authentication in peer-to-peer
networks. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 354–372.
Springer, Heidelberg (2007)

The Frog-Boiling Attack:
Limitations of Anomaly Detection for Secure Network

Coordinate Systems

Eric Chan-Tin, Daniel Feldman, Nicholas Hopper, and Yongdae Kim

University of Minnesota
{dchantin,feldman,hopper,kyd}@cs.umn.edu

Abstract. A network coordinate system assigns Euclidean “virtual” coordinates
to every node in a network to allow easy estimation of network latency between
pairs of nodes that have never contacted each other. These systems have been
implemented in a variety of applications, most notably the popular Azureus/Vuze
BitTorrent client. Zage and Nita-Rotaru (CCS 2007) and independently, Kaafar
et al. (SIGCOMM 2007), demonstrated that several widely-cited network coor-
dinate systems are prone to simple attacks, and proposed mechanisms to defeat
these attacks using outlier detection to filter out adversarial inputs. We propose
a new attack, Frog-Boiling, that defeats anomaly-detection based defenses in the
context of network coordinate systems, and demonstrate empirically that Frog-
Boiling is more disruptive than the previously known attacks. Our results sug-
gest that a new approach is needed to solve this problem: outlier detection alone
cannot be used to secure network coordinate systems.

Keywords: Vivaldi, Anomaly Detection, Network Coordinate Systems.

1 Introduction

Network coordinate systems assign virtual coordinates to every node in a network.
These coordinates allow efficient estimation of the latency between any pair of nodes
in the network: instead of directly measuring the O(n2) pairwise latencies, each of the
n nodes computes its coordinates based on the round-trip time to a few other nodes
and their coordinates, greatly reducing the communication costs. Several possible uses
of network coordinate systems include choosing peers to download from in a fileshar-
ing network [1], choosing peers for routing in a DHT [2], or finding the closest node
in a content-distribution network. A popular BitTorrent client, Azureus (now called
Vuze [3]), is currently using a network coordinate system to prioritize lookups based on
network distance and to find closer nodes [4].

There have been several network coordinate systems proposed in the literature; these
schemes can be categorized into centralized or “landmark”-based systems [1, 5, 6] that
depend on a small set of “trusted” nodes, and decentralized systems [7, 8]. A widely-
implemented and studied example of decentralized coordinate systems is Vivaldi [7],
which has been shown to produce accurate estimations and converge quickly under
various network conditions. Although it is decentralized, Vivaldi can be easily disrupted

Y. Chen et al. (Eds.): SecureComm 2009, LNICST 19, pp. 448–458, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

The Frog-Boiling Attack: Limitations of Anomaly Detection 449

by spurious or malicious nodes, rendering the network coordinate system useless and
impractical since the nodes never reach a stable coordinate. Zage and Nita-Rotaru [9]
proposed a mechanism, based on real-time statistical analysis of nodes’ coordinates, to
detect and discard adversarial inputs. A similar mechanism was proposed and evaluated
by Kaafar et al. [10]. Both methods rely on outlier detection using statistical models –
respectively, the Mahalanobis distance and Kalman filters – of coordinate evolution.

In this paper, we demonstrate the inherent challenge in designing a secure network
coordinate system using outlier detection. We propose the Frog-Boiling attack, where
an adversary disrupts the network while consistently operating within the threshold
of outlier detection. This is analogous to the popular account that a frog put in hot
water will quickly jump out but a frog placed in cold water that is gradually brought
to a boil will not notice the change and boil to death. The adversary sends “small-
step” fake updates (fake RTTs or self-reported error or coordinate)1 to nodes in the
network. The “step” is small enough that it does not trigger the anomaly detection but
the nodes attacked are still affected. Thus, the coordinates of the nodes in the attacked
network quickly become very different from the coordinates of the same nodes in the
original network. The effectiveness of the attack can also be significantly increased
when conducted in conjunction with a Sybil attack.

We implement, and empirically evaluate, three variants of the Frog-Boiling attack
to demonstrate its effectiveness against outlier-detection based defenses. All three at-
tacks rely on a simple concept: lying can be harmful but telling consistent, believable
lies is even more harmful. Our evaluation on a PlanetLab deployment of Vivaldi shows
that even the basic frog-boiling attack is more disruptive against the security mecha-
nism proposed in [9] than the attacks they defend against. In particular, with only 5%
of attackers in the network, Frog-boiling causes a median relative error of 0.28 after
two hours and 0.57 after 14. The same network with no attackers has a median relative
error of 0.11, and under Zage and Nita-Rotaru’s “random” attack, the insecure coordi-
nate scheme has a maximum median relative error of 0.22, even when the fraction of
attackers is above 10%. Thus the outlier detection mechanism is completely ineffective
against frog-boiling. We note that while the step size of the attack is small – nodes are
pushed “little by little” – the result of the attack is neither slow nor small, resulting in
similar errors just as quickly as previously known attacks but causing greater damage
over time. See Section 5.3 for more details.

While similar attacks on outlier detection mechanisms appear in the literature (in-
cluding [12, 13]), to our knowledge we are the first to demonstrate the effectiveness of
frog-boiling in the context of network coordinate systems. Furthermore, we demonstrate
that the attacks are more disruptive than previous work and are completely unmitigated
by the existing approaches to securing network coordinate systems. These results sug-
gest that new approaches and/or stronger assumptions are needed to construct secure
network coordinate systems.

The remainder of the paper is organized as follows. We give a brief background on
network coordinate systems, existing attacks, and the outlier detection mechanisms in
Section 2. A detailed description of the attacks outlined above is given in Section 3.

1 This is possible since updates are usually done via the application level, and an adversary can
easily delay or hasten [11] replies.

450 E. Chan-Tin et al.

The evaluations of our experiments on a wide area network are shown in Section 4 and
Section 5. Finally, we conclude in Section 6.

2 Background

2.1 Network Coordinate Systems

The first network coordinate systems developed were centralized – trusted infrastructure
nodes compute coordinates for all other nodes. Centralized systems typically require a
significant fraction of all network nodes to act as trusted servers, which is not possi-
ble for large networks. Centralized network coordinate systems include IDMaps [6],
GNP [1] and NPS [5].

To improve the ease of deployment of network coordinate systems, decentralized
network coordinate systems were introduced. A decentralized network coordinate sys-
tem has no infrastructure nodes. Instead, normal nodes pick peers out of the set of all
nodes, and compute their own coordinates with respect to those peers only. Finding
potential peers is delegated to the underlying network. Decentralized network coordi-
nate systems are attractive for P2P applications, since they can be deployed alongside
the client software. Moreover, decentralized network coordinate systems are scalable as
there are no centralized servers which could become overloaded.

Vivaldi. Vivaldi [7] is a decentralized network coordinate system. It is based on a
spring model. Its behavior is analogous to a physical model made of springs and balls,
in which each ball represents a network node and the spring connecting any two balls is
longer when the latency between those nodes is larger. Over time, such a model reaches
a stable equilibrium. A Vivaldi node begins by selecting an arbitrary set of peers, and
sets its initial coordinate to the origin. It then begins an iterative algorithm that pulls it
closer to peers with lower latencies, and pushes it away from peers with higher latencies.
After many iterations, the coordinate system reaches an equilibrium, and subsequent
changes are due only to the changing latency between nodes. Each node will pick 64
other nodes in its reference set – 32 nodes are “close” and 32 nodes are “far”. On
each iteration, a Vivaldi node sends a probe packet (which could be piggybacked on
top of application-level messages) to each of its peers. It receives a response to each
probe packet containing the peer’s current coordinate and self-reported error estimate
(can also be piggybacked on top of application-level messages), and learns its latency
to that peer from the RTT of the transaction. It then computes a new position that is
closer to the peer if the estimated latency is too large, and farther from the peer if the
estimated latency is too small. Vivaldi’s coordinate system is n-dimensional. It was
shown in [7] that 2 dimensions plus height work well for most cases. Moreover, Vivaldi
boasts a low convergence time, a low reported error, and an accurate mapping of the
virtual coordinate network. Vivaldi also deals well with churn – the constant change in
membership of a P2P network due to its public nature – because of its low convergence
time. However, Vivaldi was not designed for an adversarial environment and it is simple
for an attacker to disrupt the whole network.

The Frog-Boiling Attack: Limitations of Anomaly Detection 451

Pyxida. Pyxida [14] implements a virtual coordinate network. It is being used in both
academia and commercially – to track the coordinates of all the PlanetLab [15] nodes;
in the Azureus [3] BitTorrent client; and to study selfish neighbor selection in P2P
networks [16]. It is designed to work on a P2P network and implements the Vivaldi al-
gorithm. Pyxida coordinates use 4 dimensions plus height. Moreover, it is open-source,
enabling easy modification to implement the countermeasures and attacks. We used
Pyxida in our experiments since it implements the Vivaldi algorithm, provides a sta-
ble network coordinate system, and has been used in a large-scale deployment [17]. A
detailed description of Pyxida is given in [18].

2.2 Existing Attacks

Several attacks have been proposed [19,10,9]. They are the Disorder attack, Repulsion
attack, Colluding Isolation attack, Inflation/Deflation attack, and the Oscillation attack.
The Repulsion and Colluding Isolation attacker sends the same coordinates each time in
an attempt to move the victim nodes to some coordinate space. The other attacks consist
of the attacker reporting random coordinates and a low error. The reader is referred to
those papers for a more detailed description of the attacks.

2.3 Countermeasures

Several mechanisms, based on outlier detection, have recently been proposed to secure
network coordinate systems.

Kalman Filter. Kaafar et al. [10] propose to implement a Kalman filter [20] to detect
outlier hosts in the network, that is, hosts that are lying or behaving strangely. The
Kalman filter works by comparing the previous trajectory of a node’s coordinates with
its coordinates after an update. If the distance between the expected coordinates and the
update is larger than the threshold for the Kalman filter, then the update is rejected. The
authors estimate that in order to resist the disorder attack, about 10% of the network
must be trusted “surveyor” nodes.

Mahalanobis Distance. Zage et al. [9] proposed a countermeasure that uses two statis-
tical filters to ignore peers that report unusually large or rapidly changing coordinates.
The first filter is called the spatial filter, while the second is called the temporal filter.
Each node applies both filters to incoming data from its peers, and discards data that
do not pass both filters. The Mahalanobis outlier detection function used by the spatial
filter determines if the new spatial vector falls inside an ellipsoid defined by previously-
seen vectors. The temporal filter looks at the change in the last iteration. Since the data
set is much larger, a constant-time and constant-space but slightly less accurate variant
of the Mahalanobis function is used for this filter. Since the cost of a false positive is
small, nodes can afford to set their thresholds very low. However, if the thresholds are
too low, nodes will only accept data points that fit into a small range, leading to in-
accurate coordinates. To our knowledge, the correct choice of thresholds to maximize
security vs correctness has not been studied. When a peer’s data fails either the spatial
or temporal filter, there are two consequences. First, that peer’s data is not used to up-
date the node’s current coordinate. Second, that peer’s data is not used as history for

452 E. Chan-Tin et al.

the filters in the next iteration. However, there is no permanent blacklist of nodes which
failed the filters. For a more detailed description, see [9].

In this paper, we attack Pyxida with Mahalanobis distance-based outlier detection.
However, because the Kalman filter approach also features a threshold region in which
updates will be accepted (and incorporated into the filter) we do not expect the Kalman
filter to offer any significant defense against frog-boiling.

3 Proposed Attacks

Recall that the ellipsoid used to determine whether a new data point falls within accept-
able bounds has axes with lengths that are multiples of the variances of the variables
used in each filter. New data points are accepted if they fall inside this ellipsoid, and re-
jected otherwise. This mechanism correctly identifies a small number of spurious nodes
that return random coordinates with low error. Since correctly operating nodes are un-
likely to change coordinates much faster than average while still reporting low error,
nodes that do so must be spurious.

However, an intelligent adversary can send “random” data points that still fall in-
side the Mahalanobis ellipsoid. Thus, the data points will be accepted although they are
“wrong”. We call this approach the Frog-Boiling attack. If the adversary lies too much,
its peers won’t accept its updates. If it lies too little, the attack won’t succeed in disrupt-
ing the network. The Frog-Boiling attack can be used to disrupt the whole network by
continuously lying to all the nodes.

As a simple example, assume there are only two nodes A and B in the network
and they have converged to stable coordinates. An attacker node C is introduced and
obtains its coordinates from both A and B. However, each time C receives a request
(say from A), it replies with CoordC = CoordC + δ, where δ is a small offset. For
example, if its coordinates in 2-dimensions (Pyxida uses 4-dimensions with height) are
(120, 100), the reported coordinate will be (120.5, 100.5). Since the coordinate reported
is not outside of the Mahalanobis thresholds, A will accept the coordinate and update
its own coordinate accordingly. Then whenever B queries A, the response will be a
coordinate that is slightly higher than what the “real” coordinate should have been.
Thus, B’s coordinate changes slightly as well. This process continues with the attacker
continuously lying in small increments about its own coordinate. This whole process
might just shift the coordinates, but not affect the estimated distance between any two
nodes. Thus a targeted attack can be performed and as we show in Section 5, our attack
effectively renders the network coordinate ineffective.

The targeted frog-boiling attack works as follows. The attacker attempts to move
some victim nodes (a fraction of the whole network) to some arbitrary network coor-
dinates. The targeted location in this case is far from the rest of the network. Although
those nodes can still communicate with the rest of the network, they will not be able to
calculate a correct coordinate for themselves and will report a “false” coordinate and
error to the rest of the network. The Mahalanobis distance will flag those nodes as out-
liers and will not accept their updates. This effectively isolates the victim nodes from
the rest of the network.

One way of performing this attack is for the attacker to consistently report its coor-
dinates to the victim nodes so that the latter end up to coordinate space A. Note that the

The Frog-Boiling Attack: Limitations of Anomaly Detection 453

attacker will not be able to pull the victim nodes all the way to A, but the victims will
be closer to A than the rest of the network. This is because, although the rest of the net-
work might not accept updates from the victim nodes, the latter will still accept updates
from the rest of the network. Thus, the victims are pushed to A by the attacker but also
pulled back to the rest of the network. The success of the attack is for the attacker nodes
to exert a greater force on the victim nodes than the rest of the network.

In this paper we evaluate three variants of this attack against Zage and Nita-Rotaru’s
secure network coordinate system. All three attacks rely on the same concept of consis-
tently and progressively lying:

– The Basic-Targeted attack is as described above.
– The Network-Partition attack is an extension of the previous attack, where the

whole network is partitioned into two subnetworks or clusters.
– The Closest-Node attacker tries to become the closest node (in terms of coordinate

space) to the victim nodes. Becoming the closest node might not be important by
itself. However, if the network coordinate system is used with an application such
as in Azureus, then the closest node could be used to initiate file transfer. If the
attacker becomes the closest node to a victim node, it will then be the first node that
the victim contacts for a file. This can have various implications such as preventing
any node in a file-sharing network from being able to download a file. This attack is
performed in a similar way to the targeted attack. Instead of pulling the victim node
to a certain coordinate space, the attacker pushes itself close to the victim node. One
way of doing this is for the attacker (after learning the victim’s coordinate) to report
its network coordinates as being very close to that of the victim’s.

4 Experimental Setup

To evaluate the impact of our attacks on a secure network coordinate system, we de-
ployed a standalone Pyxida service (see Section 2) on PlanetLab [15]. Since the original
Pyxida code implements the basic Vivaldi coordinate system, the Mahalanobis distance
outlier detection mechanism proposed in [9] was added to the Pyxida code using a
third-party library [21].

We made some small modifications to Pyxida before deploying it. The neighbor
list was modified to contain a maximum of 32 nodes (due to an estimated PlanetLab
network size of 400). We used 50 nodes as the common “bootstrap” nodes, that is, all
the Pyxida nodes contact those nodes when they first start. We wait until the network
stabilizes before introducing any adversaries in the network.

The metric we used is the median relative error (henceforth just called error). It is
calculated as |RTTestimated−RTTactual|

RTTactual
, where RTTactual is the actual RTT between

two nodes and RTTestimated is the RTT obtained by taking the difference in the co-
ordinates of the two nodes. The lower this number is, the more accurate the network
coordinate system is (each node believes it has the right coordinate). This is the same
metric used in various other papers [9, 17, 18].

We use both a spatial and temporal threshold of 5 for our experiments. The network
starts to stabilize after only 2 hours, indicating a low convergence time. The median rel-
ative error was 0.1. The attackers join the network at time 2 hours. The experiments for

454 E. Chan-Tin et al.

determining the best thresholds, as well as the other metrics used (such as relative rank
loss [22]), will be described in the full version of this paper. We note that most of the
experiments were also performed using a simulated network to verify implementation
correctness. The results of these simulations are consistent with experimental results
and are thus omitted due to space constraints.

5 Attack Evaluations

5.1 Previous Attacks

To establish a baseline for comparison with the effectiveness of our attacks, we imple-
mented the previously proposed “coordinate oscillation” attack [9] (in which attacker
nodes report completely random coordinates with low relative error) and measure the
performance of the attack against our Pyxida deployment (without the Mahalanobis
distance filter). The progress over time of the median relative error with 11% attacker
nodes is shown below.

Time (mins) 100 250 500 750 1000
Relative Error 0.23 0.21 0.23 0.22 0.2

5.2 Basic-Targeted Attack

The Basic-Targeted attacker targets a victim node and attempts to change the victim’s
coordinate in small steps. We attempt to change the coordinate of the victim nodes to
be LocT = (2000, 2000, 2000, 2000) with height 2000. Initially, for each victim node
(say coordinate C), the attacker node will report its coordinate to be C′ = C + δ. For
each subsequent time that victim node contacts our attacker node, the latter reports its
coordinate as C′′ = C′ + δ, until C′′ = LocT . Thus, the victim’s coordinate is moved
in small steps to the target coordinate.

Recall from Section 2 that a Pyxida node only updates its coordinate when it has
sent a “ping” request. Thus, the victim nodes have to contact the attacker nodes for the
attack to work. With 10% of attackers, the victim will contact one attacker node 10%
of the time. Once an attacker node becomes a neighbor of the victim, it will stay in
the neighbor’s list for at least the next 32 iterations, which is long enough for another
attacker to be contacted and added to the list. The probability of an attacker node being
part of the neighbor list after 32 iterations is 1 − 0.932 = 96.5%. Thus, there is a very
high probability that a victim node will have at least one attacker node in its neighbor
list. Recall that the neighbor list is used every 10 seconds in Pyxida to calculate the
current force. Since the attacker is updating its coordinate to be closer to the target
coordinate at each time step, the victim will thus go closer to the target coordinate
progressively. The Mahalanobis distance does not work in this case because the attacker
is within the thresholds (since δ is small). The attacker only attacks the victim nodes and
does not respond to other nodes in the network. Since there is no gossiping in Pyxida,
this does not affect the attack.

The Frog-Boiling Attack: Limitations of Anomaly Detection 455

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20 25

M
ed

ia
n

R
el

at
iv

e
E

rr
or

% of Attackers

250
500

1000
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 2 4 6 8 10 12 14 16 18 20

M
ed

ia
n

R
el

at
iv

e
E

rr
or

Time (hours)

1
2
5

10

(a) (b)

Fig. 1. The average median relative error for (a) varying % of attackers at different timestamps,
(b) the targeted nodes with 11% of attackers over time and with different values of δ

Figure 1(a) shows the error with varying percentage of attackers. (We note that 20%
of attacker nodes may seem high, but many of the applications that implement network
coordinate systems are vulnerable to Sybil attacks that make it trivial to control a large
fraction of the nodes) The different lines show the error at different times (250 minutes,
500 minutes, and 1000 minutes). Adding more adversaries significantly increases the
error (by more than 100% with only 11% of attackers). The error is increased from
0.12 with no attackers to 0.25 with 11% of attackers, an increase of 108%. After 1000
minutes (a little over 16 hours), it can be seen that the network coordinate is unusable
even with only 5% of the network being malicious – the error is greater than 0.5.

The frog-boiling attack on the secure network coordinate system is as effective as
a random attack on the original network coordinate system. At time 500 minutes, the
error for the random attack is 0.23 while the error for the frog-boiling attack is 0.25 with
11% of attackers. This means that the Mahalanobis distance does not provide any extra
protection to a network coordinate system. This reinforces our belief that an outlier
detection system is not suitable to secure a network coordinate system.

5.3 Aggressive Frog-Boiling

Our attack works by moving the victims in small steps to some coordinate. In the previ-
ous section, the step size δ was 2ms. In this section, we varied the value of δ to test the
effect of a more aggressive attack, which will produce an impact on the network earlier
– in other terms, we show how quickly our attack can have an impact on the network.
Figure 1(b) shows the error with 11% of attackers in the network. The different lines
show the different δ values used – 1, 2, 5, and 10. With δ equal to 1 and 2, the error stays
the same until time 6 hours, so it take 4 hours for the attack to start having an effect.
On the other hand, with δ equal to 5 or 10, the relative error starts to increase at time 4
hours – after only 2 hours, the victim’s network coordinates start to be disrupted. Thus,
out attack is fast and efficient.

5.4 Network-Partition Attack

The Network-Partition attack is similar to the Basic-Targeted attack. Instead of just mov-
ing the victim nodes (Network1) to some far-away coordinate, the rest of the network

456 E. Chan-Tin et al.

 100

 200

 300

 400

 500

 600

 700

 800

 0 500 1000 1500 2000 2500 3000 3500 4000

D
is

ta
nc

e
to

 c
en

tr
oi

d
dc

 (
m

se
c)

Time (minutes)

Network2
Network1

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6

 0 5 10 15 20 25

In
te

rc
lu

st
er

 /
In

tr
ac

lu
st

er
 d

is
ta

nc
e

Time (hours)

6%
13%
23%

(a) (b)

Fig. 2. (a) The coordinate distance to the centroid and (b) the intercluster / intracluster ratio for
the Network-Partition attack

(Network2) is also moved to some other location. This effectively partitions the net-
work into two subnetworks. The targeted coordinate for Network1 was set to P1 =
(1000, 1000, 1000, 1000) with height 1000 and the targeted coordinate for Network2
was set to P2 = (−1000,−1000,−1000,−1000) with height −1000.

In our experiment, 6% of the nodes were adversaries, 37% of the network was as-
signed to Network1 and 57% of the network was assigned to Network2. Figure 2(a)
shows the distance to the origin of the network for Network1 and Network2. At the
beginning, the two clusters are close together. At time 500 minutes, which is how long
it takes for the attack to have an effect, the two networks start to diverge. Network1 is
pushed toward P1 while Network2 is pushed toward P2. Since the two clusters con-
tinue to exert some pull on each other, the intended coordinates are not reached, but the
network is still effectively partitioned.

Figure 2(b) shows the ratio of the intercluster distance to the intracluster distance.
The intercluster distance is the average of the distance from Network1 to the centroid
of Network2 and the distance from Network2 to the centroid of Network1. The intra-
cluster distance is the average of all the nodes in a cluster to the centroid of that cluster.
The ratio shows how far apart the two clusters are moving from each other. The figure
shows that over time, the two networks are getting pulled further apart from each other.
The different lines show different fractions of attackers. This shows that our attack ef-
fectively partitions the whole network into two smaller networks far apart from each
other. We note that this attack could easily be extended to support partitioning into an
arbitrary (constant) number of clusters with arbitrary membership ratios.

5.5 Closest-Node Attack

An adversary tries to become the closest node (in terms of coordinate space) to a victim
in the Closest-Node attack. The attacker node queries the victim nodes constantly to
obtain their coordinates. When a victim node queries the attacker node, it will reply
back with that victim node’s coordinate +δ. The attacker node does not reply to other
nodes in the network. We took a snapshot at 500 minutes and determine how many
times one of the attacker nodes was reported as being the closest neighbor of a victim

The Frog-Boiling Attack: Limitations of Anomaly Detection 457

node (this reporting is done every 10 minutes). With only 11% of attackers, we find that
an attacker is able to become the closest neighbor to a victim node 41% of the time.

6 Conclusion

A stable, decentralized network coordinate system could potentially provide a beneficial
service for many Internet applications. However, existing systems provide no protection
against malicious participants: even a single adversary can cause the entire coordinate
system to fail. The apparent solution to such a dilemma is to add an anomaly detection
mechanism to the coordinate system. Previous studies have shown that such a mecha-
nism can prevent adversaries from disrupting the network. However, protection against
more complicated adversaries is fraught with difficulty.

Consider a node in a network coordinate system that has some outlier detection
mechanism. In order for the node to determine its coordinates, it must learn about the
coordinates of its peers – it must accept some updates. The range of updates it accepts
must be based on recent history, since network topologies and conditions vary widely.
However, under these two assumptions an adversary can slowly expand the range of data
accepted by the node by influencing the node’s recent history. We call this attack the
Frog-Boiling attack. In this paper we have introduced three variants of the frog-boiling
attack and empirically demonstrated that the attack effectively disrupts the Vivaldi net-
work coordinate system to a greater extent than previous attacks, and that the attack
is completely unmitigated by Mahalanobis distance-based outlier detection. There is
no reason to believe that Frog-Boiling would not be equally effective against Kalman
filter-based outlier detection; we leave the evaluation of this claim for future work.

The task of securing a distributed network coordinate system against adversaries
seems very challenging. The problem is that the current distributed network coordinate
system mechanisms (secure or not) rely only on a node’s local view of the network.
Because of this, it is a challenge for a node to know whether a reported coordinate and
RTT is correct or faked. Thus, a secure network coordinate system will need to provide
some mechanism to verify a node’s reported coordinates and/or RTTs. The success of
the Frog-Boiling attack demonstrates that outlier detection is not a secure mechanism
to provide this service. Recent work based on reputation or trust mechanisms [23, 24]
may provide an alternative approach, but the difficulty of constructing secure reputation
systems suggests that these schemes will also require careful evaluation.

Acknowledgments. We thank Jonathan Ledlie and Peter Pietzuch for their help with
Pyxida, and Eugene Vasserman for pointing out the analogy to “boiling a frog.” This
work was supported by the NSF under grant CNS-0716025. No frogs were harmed in
the writing of this paper.

References

1. Ng, T.S.E., Zhang, H.: Predicting Internet Network Distance with Coordinates-Based Ap-
proaches. In: Proceedings of IEEE, INFOCOM (2002)

2. Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, M.F., Morris, R.: Designing a DHT for low
latency and high throughput. In: Proceedings of the 1st USENIX Symposium on Networked
Systems Design and Implementation, NSDI (2004)

458 E. Chan-Tin et al.

3. Azureus, http://azureus.sourceforge.net
4. Vuze Forums, http://forum.vuze.com/thread.jspa?threadID=80764
5. Ng, T.S.E., Zhang, H.: A network positioning system for the internet. In: Proceedings of the

USENIX annual technical conference (2004)
6. Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., Zhang, L.: IDMaps: A Global

Internet Host Distance Estimation Service. IEEE/ACM Trans. Netw. 9(5), 525–540 (2001)
7. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A Decentralized Network Coordinate

System. In: Proceedings of ACM SIGCOMM (2004)
8. Costa, M., Castro, M., Rowstron, A., Key, P.: PIC: Practical Internet Coordinates for Distance

Estimation. In: Proceedings of the IEEE International Conference on Distributed Computing
Systems (ICDCS) (2004)

9. Zage, D.J., Nita-Rotaru, C.: On the accuracy of decentralized virtual coordinate systems in
adversarial networks. In: Proceedings of the 14th ACM conference on Computer and com-
munications security, CCS (2007)

10. Kaafar, M.A., Mathy, L., Barakat, C., Salamatian, K., Turletti, T., Dabbous, W.: Securing
Internet Coordinate Embedding Systems. In: Proceedings of ACM SIGCOMM (2007)

11. Su, A.J., Choffnes, D.R., Kuzmanovic, A., Bustamante, F.E.: Drafting Behind Akamai
(Travelocity-Based Detouring). In: Proceedings of ACM SIGCOMM (2006)

12. Denning, D.E.: An Intrusion-Detection Model. IEEE Transactions on Software Engineer-
ing SE-13(2) (1987)

13. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can Machine Learning Be
Secure? In: Proceedings of the ACM Symposium on InformAtion, Computer and Commu-
nications Security, ASIACCS (2006)

14. Pyxida, http://pyxida.sourceforge.net
15. PlanetLab, http://planet-lab.org
16. Selfish Neighbor Selection, http://csr.bu.edu/sns
17. Ledlie, J., Pietzuch, P., Seltzer, M.: Network coordinates in the wild. In: Proceedings of the

USENIX Symposium on Networked Systems Design and Implementation, NSDI (2007)
18. Ledlie, J., Pietzuch, P., Seltzer, M.: Stable and accurate network coordinates. In: Proceedings

of the IEEE International Conference on Distributed Computing Systems (ICDCS) (2006)
19. Kaafar, M.A., Mathy, L., Turletti, T., Dabbous, W.: Real attacks on virtual networks: Vivaldi

out of tune. In: Proceedings of the SIGCOMM workshop on Large-scale Attack Defense
(2006)

20. Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of
the ASME–Journal of Basic Engineering 82(Series D), 35–45 (1960)

21. CommonSense,
http://www.kimvdlinde.com/professional/programming/
statistics/commonSense/body.html

22. Lua, E.K., Griffin, T., Pias, M., Zheng, H., Crowcroft, J.: On the Accuracy of Embeddings
for Internet Coordinate Systems. In: Proceedings of ACM SIGCOMM-Usenix Internet Mea-
surement Conference, IMC (2005)

23. Sherr, M., Blaze, M., Loo, B.T.: Veracity: Practical Secure Network Coordinates via Vote-
based Agreements. In: USENIX Annual Technical Conference (2009)

24. Zhao, X., Lua, E.K., Chen, Y., Song, X., Deng, B., Li, X.: Sniper: Social-link De-
fense for Network Coordinate Systems. IEEE Conference on Computer Communications
(INFOCOM) (2009); poster

http://azureus.sourceforge.net
http://forum.vuze.com/thread.jspa?threadID=80764
http://pyxida.sourceforge.net
http://planet-lab.org
http://csr.bu.edu/sns
http://www.kimvdlinde.com/professional/programming/statistics/commonSense/body.html
http://www.kimvdlinde.com/professional/programming/statistics/commonSense/body.html

Author Index

Alicherry, Mansoor 41
Anker, Tal 71

Bao, Feng 285
Beyah, Raheem 394
Bowen, Brian M. 51
Broustis, Ioannis 21

Cai, Liang 1
Čagalj, Mario 228
Cao, Guohong 373
Čapkun, Srdjan 121
Chan-Tin, Eric 448
Chen, Hao 1
Chen, Yan 185
Conti, Mauro 265

Deng, Robert H. 285
Dimitriou, Tassos 340
Di Pietro, Roberto 265
Dolev, Danny 71

Feldman, Daniel 448
Fernandes, Guilherme 91
Ferrer-Gomila, Josep L. 101
Freudiger, Julien 350

Gabrielli, Andrea 265
Garnaev, Andrey 142
Goodrich, Michael T. 437
Guan, Yong 417
Gubler, David 121

Hershkop, Shlomo 51
Hopper, Nicholas 448
Hubaux, Jean-Pierre 350
Huguet-Rotger, Llorenç 101

Isern-Deyà, Andreu Pere 101

Karame, Ghassan 121
Keromytis, Angelos D. 41, 51
Kim, Yongdae 448
Kozma Jr., William 207
Krishnamurthy, Srikanth V. 21

LaPorta, Thomas 373
Lauradoux, Cédric 248
Lazos, Loukas 207
Li, Jin 311
Lou, Wenjing 311

Maganis, Gabriel 1
Malǐsa, Luka 228
Mancini, Luigi V. 265
Mao, Z. Morley 163
Minier, Marine 248
Mut-Puigserver, Macià 101

Nath, S. Gopi 330

Oostdijk, Martijn 296
Owezarski, Philippe 91

Payeras-Capellà, Magdalena 101
Pelechrinis, Konstantinos 21
Perković, Toni 228
Prakash, Atul 163

Qian, Feng 163
Qian, Zhiyun 163

Rangan, C. Pandu 330
Raya, Maxim 350
Ren, Kui 311

Selvi, S. Sharmila Deva 330
Stančić, Ivo 228
Stavrou, Angelos 41
Stolfo, Salvatore J. 51
Sun, Jonathan Z. 437
Syrivelis, Dimitris 21

Tamassia, Roberto 437
Tassiulas, Leandros 21
Tiropanis, Thanassis 340
Trappe, Wade 142
Triandopoulos, Nikos 437
Tzur-David, Shimrit 71

460 Author Index

van Dijk, Dirk-Jan 296
Venkataraman, Aravind 394
Vivek, S. Sree 330

Wegdam, Maarten 296
Wei, Yawen 417

Yang, Yanjiang 285
Yang, Yi 373

Yegneswaran, Vinod 185
Yu, Shucheng 311
Yu, Zhen 417

Zang, Hui 1
Zhou, Jianying 285
Zhu, Sencun 373
Zhu, Zhaosheng 185
Znaidi, Wassim 248

	Title Page
	Preface
	Organization
	Table of Contents
	Wireless Network Security I
	Mitigating DoS Attacks on the Paging Channel by Efficient Encoding in Page Messages
	Introduction
	Paging Channel Operation
	Paging Channel Operation
	Paging Message Format
	Paging Operation in Other Mobile Networks
	Paging Channel Overload Problem

	Efficient Encoding in Page Records
	Approaches
	Bandwidth Gain
	Implementation Requirements
	Advantages

	Evaluation
	Evaluation Based on Partial DoS Attack on Live Cellular Network
	Simulating a Paging System

	Related Work
	Conclusion
	References

	FIJI: Fighting Implicit Jamming in 802.11 WLANs
	Introduction
	Background and PreviousWork
	Performance Anomaly in 802.11WLANs
	Jamming in Wireless Networks

	FIJI to Combat the Implicit Jamming Attack
	Detecting the Implicit-Jamming Attack
	Shaping the Traffic at the AP to Alleviate Jammers

	Implementation and Evaluation
	The Implementation of FIJI
	Experimental Set-Up and Methodology
	Does FIJI Deliver?

	The Scope of Our Study
	Conclusion
	References

	Deny-by-Default Distributed Security Policy Enforcement in Mobile Ad Hoc Networks
	Introduction
	Threat Model
	System Architecture
	Feasibility
	Capability Definition
	Security Analysis

	Related Work
	Conclusions and Future Work
	References

	Network Intrusion Detection
	Baiting Inside Attackers Using Decoy Documents
	Introduction
	Related Work
	Threat Model - Level of Sophistication of the Attacker
	Generating and Distributing Bait
	Decoy Properties
	The Decoy Document Distributor (D3) System
	Decoy Document Design

	Evaluation
	Masquerade Detection Using Decoy Documents as Bait
	Beacon Implementation Tests

	Conclusions
	References

	MULAN: Multi-Level Adaptive Network Filter
	Introduction
	Related Work
	DoS Attacks
	Notations and Definitions
	The MULAN-Filter Design
	Anticipated Traffic Behavior Profile
	Data Structure
	Special Levels for Specific Protocols

	The Algorithm
	Training Mode
	Verification Mode
	The Algorithm Parameters
	Modeling Non-self-similar Traffic
	Handling Short Attacks

	Optimal Implementation
	Experimental Results
	Scalability
	Accuracy
	Controlling the Tree Size

	Discussion and Future Work
	References

	Automated Classification of Network Traffic Anomalies
	Introduction
	Related Work
	Anomaly Classification
	Gathering Information
	Classification

	Validation
	Data
	Methodology
	Results and Discussion

	Conclusions
	References

	Security and Privacy for the General Internet
	Formal Analysis of FPH Contract Signing Protocol Using Colored Petri Nets
	Introduction
	FPH Contract Signing Protocol
	Ideal Features of a Contract Signing Protocol
	Description of FPH Contract Signing Protocol
	Informal Analysis of Fairness and Non-repudiation of FPH Protocol

	Description of the Model Used for the Formal Analysis of Fair Exchange Protocols
	Colored Petri Nets
	General Assumptions and Methodology
	Description of the Model
	Query Functions

	Formal Analysis of FPH Contract Signing Protocol
	Evaluation of the Vulnerability to Previously Defined Attacks
	Fairness Analysis

	Conclusions and Future Work
	References

	On the Security of Bottleneck Bandwidth Estimation Techniques
	Introduction
	Bottleneck Bandwidth Estimation
	Bandwidth Manipulation Attacks
	System and Attacker Model
	Attacks on Current Techniques
	Demonstration of Delay Attacks

	Trusted Infrastructure Support for Bandwidth Measurement
	“Best-Effort” Solutions for Current Bandwidth Estimation Techniques
	Mitigating Spoofing and Rushing Attacks
	Alleviating Delay Attacks

	Discussion and Outlook
	Conclusions
	References

	An Eavesdropping Game with SINR as an Objective Function
	Introduction
	Problem Overview
	Optimization with SINR as the Objective Function
	An Eavesdropping Game with Unknown Gains
	Either the Eavesdropper’s Channels Gains or the Main Channels Gains Are Unknown
	The Worst Case for the Main Gains Are Known
	The Optimization Problem with Unknown Noise and Eavesdropper’s Channel Gains
	The Game with Unknown Noise in the Main Subchannels
	Conclusion
	References
	A Appendix

	Malware and Misbehavior
	Ensemble: Community-Based Anomaly Detection for Popular Applications
	Introduction
	Related Work
	Methodology
	Profile Generation
	The Environment Diversity Challenge
	Anomaly Detection

	Implementation
	Generating Profiles and Anomaly Detection
	Operational Model
	Limitations of the Prototype

	Evaluation and Experiments
	Small Scale Real Deployment
	Experimental Infrastructure
	Local Profiles
	Global Profiles
	False Positives
	False Negatives
	Performance Evaluation

	Limitations of Ensemble
	Over-Generalization
	Mimicry Attacks

	Conclusions
	References

	Using Failure Information Analysis to Detect Enterprise Zombies
	Introduction
	An Empirical Survey of Application Failure Anomalies
	Malware Trace Analysis
	Failure Patterns of Normal Applications
	On the Potential of Failure Analysis to Uncover Suspicious Activities

	Architecture
	System Overview
	Building an FIA from Wireshark
	L7-Based Automatic Protocol Inference
	Multipoint Deployment

	Correlation and Clustering Engine
	Detecting Suspicious Hosts
	Detecting Failure Groups

	Evaluation
	Classification and Detection Results

	Related Work
	Conclusion
	References

	Dealing with Liars: Misbehavior Identification via R\'{e}nyi-Ulam Games
	Introduction
	Related Work
	Network and Adversarial Models
	Misbehavior Identification
	Motivation and Problem Mapping
	R\'{e}nyi-Ulam Inspired Auditing Strategies
	Misbehaving Node Identification
	Mobility

	The Audit Mechanism
	Performance Evaluation
	Simulation Setup
	Auditing Strategy Comparison
	Comparison with Other Schemes

	Conclusion
	References

	Wireless Network Security II, Sensor Networks
	Multichannel Protocols for User-Friendly and Scalable Initialization of Sensor Networks
	Introduction
	Problem Statement and System Model
	System Model
	Attacker Model

	Secret Key Deployment
	Key Transmission and Verification
	Sensor Node State Diagram
	Initial Security Assessment

	Public Key Deployment
	Attacks on Visible Light Channel
	“Public Key”–Based Deployment Protocol
	Short Security Analysis

	Implementation
	Random Number Generator

	Related Work
	Conclusion
	References

	Aggregated Authentication (AMAC) Using Universal Hash Functions
	Introduction
	Preliminaries
	Formal Definition of Aggregation and Related Work
	MACs Based Upon Universal Hash Functions

	New Designs
	XOR Aggregation: How to Adapt the Krawczyk’s Approaches for WSNs
	Aggregation over ${\mathbb F}_{p}$
	Security Analysis in the AMAC Model

	Performance Comparison
	LEACH: Low-Energy Adaptative Clustering Hierarchy
	Different Scenarios and Evaluation Parameters
	Simulation and Results

	Conclusion
	References

	Sec-TMP: A Secure Topology Maintenance Protocol for Event Delivery Enforcement in WSN
	Introduction
	Related Work
	System Assumptions and Notation
	Threat Model
	Protocol Overview
	Protocol Description
	Protocol Start-Up
	Probing State
	Working State
	Sleeping State

	Security Analysis
	Sec-TMP Security Property
	Sec-TMP Resilience to Standard TMPs Attacks
	Sec-TMP to Thwart Node Replication Attack

	Simulations and Discussion
	Network Lifetime and Area Coverage
	Start-Up Completion Time

	Concluding Remarks
	References

	Hierarchical Self-healing Key Distribution for Heterogeneous Wireless Sensor Networks
	Introduction
	Related Work
	Heterogeneous WSN Architecture
	Model and Definition
	Our Construction
	Scheme Details
	Efficiency
	Security Analysis

	Conclusion
	References

	Key Management, Credentials, Authentications
	User–Centric Identity Using ePassports
	Introduction
	The ICAO ePassport
	Logical Data Structure
	Security Controls
	Software for Accessing ePassports

	User-Centric Identity
	Enrolling at the Identity Provider
	Using a Managed Card to Authenticate at the Relying Party

	Combining ePassports and User-Centric Identity
	Enrolling the ePassport at the Identity Provider
	Using the ePassport to Authenticate at a Relying Party

	Discussion of Lessons Learned
	The Need for an Online Identity Provider
	The Need to Trust the Identity Provider
	Not a Global PKI for Online User Authentication

	Concluding Remarks
	References

	Defending against Key Abuse Attacks in KP-ABE Enabled Broadcast Systems
	Introduction
	Our Contribution
	Related Work

	Preliminaries
	Bilinear Maps
	Complexity Assumptions

	Definitions and Models
	Description of AFKP-ABE
	Security Definition

	Our Construction
	Main Idea
	AFKP-ABE Scheme
	Security Proof
	Efficiency Analysis

	Application Scenarios of Our Scheme
	Conclusion and Future Work
	References
	Appendix

	Breaking and Building of Group Inside Signature
	Introduction
	Preliminaries
	Bilinear Pairing

	Cryptanalysis of Certificateless GIS and BGOS Schemes
	Cryptanalysis of Certificateless GIS Scheme [5]
	Cryptanalysis of Another Certificateless GIS Scheme [6]
	Cryptanalysis of Broadcast Group Oriented Signature [7]

	Cryptanalysis of Identity Based ADGS Scheme [8]
	New ADGS Scheme(N-ADGS)
	Security Proof for N-ADGS

	Conclusion
	References

	Use of ID-Based Cryptography for the Efficient Verification of the Integrity and Authenticity of Web Resources
	Introduction
	Background
	Supporting Identity Based Cryptography (IBC) on the Internet
	Digital Signatures for Web Resources

	IBC for Web Resources
	Mediated RSA (mRSA)
	Creating an Identity Based Infrastructure for Resource Authenticity

	IBC over the Existing Web Infrastructure
	IBC over the Existing Web Protocols
	Scenarios for IBC Deployment on the Web

	Conclusions and Further Work
	References

	Wireless Network Security III
	Self-organized Anonymous Authentication in Mobile Ad Hoc Networks
	Introduction
	Related Work
	Preliminaries
	System Model
	Threat Model
	Problem Statement

	Self-organized Anonymous Authentication
	Overview
	Anonymous Authentication with Ring Signatures
	Anonymous Communications

	Anonymity Analysis
	Attack Description
	Graph-Theoretic Model
	Ring Construction Problem

	Ring Construction Strategies
	Random Graphs
	Kout Graphs
	Geometric Graphs

	Discussion
	Untraceability
	Sybil Attacks and Revocation
	Cost

	Conclusion
	References
	A Proof of Theorem 1

	An Active Global Attack Model for Sensor Source Location Privacy: Analysis and Countermeasures
	Introduction
	An Active Global Adversary Model
	Modeling of Network
	Modeling of Events
	Investigation of Attacker

	Case Studies
	The SSSA Scheme
	The k-Anonymity Scheme

	A Dynamic Source Anonymity Scheme
	Problem Definitions
	Scheme Description
	Discussions

	Related Work
	Conclusion and Future Work
	References

	Rogue Access Point Detection Using Innate Characteristics of the 802.11 MAC
	Introduction
	Related Work
	Problem with Magnitude-Based Classification
	Scheme I – DCF Based Detection
	Analysis
	Classification Scheme
	Experimental Setup and Validation of Wired-Side Approach
	Accuracy Measures

	Scheme II – Rate Adaptation Based Detection
	Analysis
	Classification Scheme
	Experimental Setup and Validation of Wired-Side Approach
	Accuracy Measures

	Consolidated Model
	Analysis
	Classification Scheme
	Experimental Setup
	Accuracy Measures

	Measure of Robustness and Scalability
	Conclusion and Future Work
	References

	Secure Multicast, Emerging Technologies
	A Novel Architecture for Secure and Scalable Multicast over IP Network
	Introduction
	Overview
	Group Membership Management
	Intra-domain Management
	Inter-domain Management
	Discussion

	Group Key Management
	Local Key Management
	Global Key Management

	Inter-domain Multicast Protocol
	Preliminary Work
	Construction of Hierarchical Dissemination Tree
	Shim Header and Shim Payload
	Tree Encoding on Source MA
	Tree Decoding and Updating on Transit MAes
	Discussions

	Simulation Result
	Link Stress
	Protocol Overhead
	Bandwidth Cost

	Related Work
	Conclusion
	References

	Reliable Resource Searching in P2P Networks
	Introduction
	Resource Location Authentication
	Content Retrieval Authentication
	References

	The Frog-Boiling Attack: Limitations of Anomaly Detection for Secure Network Coordinate Systems
	Introduction
	Background
	Network Coordinate Systems
	Existing Attacks
	Countermeasures

	Proposed Attacks
	Experimental Setup
	Attack Evaluations
	Previous Attacks
	Basic-Targeted Attack
	Aggressive Frog-Boiling
	Network-Partition Attack
	Closest-Node Attack

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

