
Chapter 10

Extension to Other Zeta- and L-Functions

In this chapter, based on [107], we extend the treatment and results of the
three former chapters to the setting where the Riemann zeros are replaced
by the (nontrivial) zeros of a more general zeta or L-function L(x), still fairly
similar to ζ(x). We will use the terms: primary function for this function L(x)
which supplies the new zeros in this extended setting, and Riemann case for
the former setting where ζ(x) itself was the fixed primary function.

The interest of this extension is twofold. First, it broadens the previous
results in a natural way: with little work, we will accommodate three distinct
kinds of superzeta functions as before, but now over the (nontrivial) zeros of
numerous primary functions. Second, it sheds some further light on the results
for ζ(x) itself: the origin of many final values in the previous chapters will
be clarified through their more abstract specifications. For instance, various
special values like FPs=1 Z0(s), Z0(0), . . . will now explicitly stem from the
Stirling expansion (10.12) for the trivial factor G(x), x→ +∞.

We could of course have taken this general path from the very beginning,
relegating the Riemann case to the status of just a special instance. However,
this would have gone against our plan to provide a most concrete and readily
usable handbook. The Riemann zeta function may be a special case in a
crowd, but it is important enough to deserve an autonomous presentation.

Earlier explicit descriptions of such extended superzeta functions, i.e., over
zeros other than Riemann’s, hardly exist in the literature. We set apart the
case of Selberg zeta functions: their zeros correspond to eigenvalues of hy-
perbolic Laplacians, and zeta functions over them have been analyzed by
spectral methods [15, 16, 47, 91, 100, 105]: in the cocompact case, they are
indeed examples of spectral (Minakshisundaram–Pleijel or generalized) zeta
functions; we revisit them in Appendix B. Otherwise, only Dedekind zeta
functions got some mention as primary functions [47, 51, 52, 66]; already if
we turn to L-series, then only the Cramér functions (5.14) over their zeros
were ever considered [29, 54, 59, 62], without relating them to any superzeta
functions (apart from one short note [94] on an Explicit Formula like (6.22)
but actually for Z (s | 32 ) over the zeros of specific Dirichlet L-functions).
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92 10 Extension to Other Zeta- and L-Functions

Most of the notation can be taken over from the former chapters; simply,
all objects will now be understood to depend on the chosen primary function
L, implicitly as a rule. At the same time, the Riemann zeta function as such
will continue to appear in some results.

10.1 Admissible Primary Functions L(x)

For the sake of definiteness, we choose here to stay fairly close to the Riemann
case (L(x) = ζ(x)): basically, we want to retain a reflexive functional equation
Ξ(x) = Ξ(1 − x) for a completed function built similarly to (3.24). We
therefore accept primary functions L(x) such that:

(a) L(x) is real, and meromorphic in C with at most one simple pole, x = 1:

if q def= the order of the pole x = 1, then q = 0 or 1; (10.1)

(b) L(x) �= 0 in {Rex > 1}, and L(x)→ 1 for Re x→ +∞ with

(logL)(n)(x) = o(x−N ) (∀n, N ∈ N); (10.2)

(c) a completed L-function and a functional equation exist, similar to the
Riemann case:

Ξ(x) ≡ Ξ(1− x), Ξ(x) def= G−1(x)(x − 1)qL(x), (10.3)

where both Ξ(x) and G(x) are real entire functions of order μ0 = 1, and

(c1) G(x), the “trivial factor,” is an explicitly known finite product
of inverse-Gamma (and simpler) factors, with all its zeros xk

located on the negative real axis {x ≤ 0} (they form the “trivial
zeros” of L(x));

(c2) the zeros of Ξ(x) lie in the strip {0 < Rex < 1}; since they come
in symmetrical pairs as in the Riemann case, we still label them

{ρ = 1
2 ± iτk}k=1,2,..., with Re τk > 0 and non-decreasing;

they are the “nontrivial zeros” of L(x); we exclude the excep-
tional occurrence of any of these on the real line, for simplicity.
(But see Appendix B for such a case.)

Note: all zeros, xk or ρ, are counted with multiplicities if any.
(d)

lim
x=1

(x − 1)qL(x) (= G(1)Ξ(1)) > 0 (10.4)
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(but dropping the normalization Ξ(1) = Ξ(0) = 1, too awkward to
implement in general); then, Stieltjes cumulants can extend from (3.15)
in the Riemann case, according to the general definition

log
[
(x− 1)qL(x)

] ≡
∞∑

n=0

(−1)n−1

n!
gc

n (x− 1)n : (10.5)

now gc
0 �= 0 may occur, while gc

1 extends Euler’s constant γ from (3.16).

As already said, the symbols from the previous chapters (Ξ, G, ρ, gc
n, . . .)

are consistent with their former uses in the Riemann case, but they now
designate objects attached to the changeable primary function L.

Conditions (a)–(d) above are tailored to fit two basic classes which are
immediate extensions from the Riemann case, and will be described as final
examples: L-functions of real primitive Dirichlet characters, and Dedekind
zeta functions (with ζ(x) as a special case of the latter). Our assumptions
somewhat resemble the axioms of the Selberg class [98] but are more restric-
tive on some concrete details; on the other hand these can undoubtedly be
refitted to different needs. For instance, zeta functions over zeros of Selberg
zeta functions for compact hyperbolic surfaces have yielded results compa-
rable to the Riemann case earlier [15, 16, 66, 91, 100], while they correspond
to μ0 = 2 (G contains a Barnes G-function), and q = −1 (those Selberg
zeta functions have a simple zero at x = 1, and possibly others on (0, 1)). To
illustrate the flexibility of our approach, and since results of this class have
interested physicists as well, we treat this Selberg case in Appendix B. Other
extensions are equally conceivable (e.g., to Hecke L-functions, as achieved
upon their Cramér functions [54]).

We now begin with the general results for the superzeta families, attainable
for unspecified admissible primary functions L.

10.2 The Three Superzeta Families

We can then define the same three parametric zeta functions over the nontrivial
zeros{ρ}ofageneralprimary functionL satisfying theaboveconditions (a)–(d),
just as in the Riemann case to which we refer for details (Chap. 5):

Z (s | t) =
∑

ρ

(1
2 + t− ρ)−s ≡

∑

ρ

(ρ+ t− 1
2 )−s, Re s > 1, (10.6)

Z(σ | t) =
∞∑

k=1

(τk2 + t2)−σ, Re σ > 1
2 , (10.7)

Z(s | τ) =
∞∑

k=1

(τk + τ)−s, Re s > 1; (10.8)
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we also keep the shorthand names for the two points t of special interest:

Z0(s) = Z (s | 0), Z∗(s) = Z (s | 12 ); (10.9)
Z0(σ) = Z(σ | 0) ≡ (2 cosπσ)−1 Z0(2σ), Z∗(σ) = Z(σ | 12 ); (10.10)

more generally, all other considerations of Chap. 5 remain valid here.
We now describe the explicit results in greater detail family by family. The

logic exactly follows that of the previous chapters, so we will mainly restate
the formulae that have a significantly different abstract form.

10.3 The First Family {Z }

This will extend the treatment of Chap. 7 from the Riemann case.

10.3.1 The Zeta Function Z(s | t) over the Trivial
Zeros

A key role is played by the zeta function wholly analogous to Z (s | t) but
built on the trivial zeros of L(x) (which we call the shadow zeta function of
Z (s | t)):

Z(s | t) def=
∑

k

(1
2 + t− xk)−s (Re s > 1). (10.11)

Here this function and its properties should be taken as completely known,
just like the factor G and the trivial zeros themselves. In our later explicit
examples, Z(s | t) will be expressible in terms of the Hurwitz zeta function
(3.33).

We now specialize the results of Chap. 2 first to the trivial factor G. By
assumption (c1), the Stirling formula (3.51) will produce a large-x expansion
for logG(x) with μ0 = 1, which we treat as known and reorganize according
to allowed/banned terms, as

− logG(1
2 + t) ∼ ã1t(log t− 1) + b1t+ ã0 log t+ b0 +

∞∑

n=1

a−nt
−n; (10.12)

this expansion also governs [logΞ(1
2 + t)− q log(t− 1

2 )], by (10.2) and (10.3).
Equation (2.50) then yields the zeta-regularized forms for G and Ξ as

D(1
2 + t) def= e−Z

′(0 | t) ≡ e+b1t+b0 G(1
2 + t), (10.13)

D(1
2 + t) def= e−Z

′(0 | t) ≡ e−b1t−b0 Ξ(1
2 + t), (10.14)
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which in turn entail this zeta-regularized decomposition of L(x):

(x− 1)qL(x) ≡ D(x)D(x). (10.15)

Then, using (10.13), the specific translation of (2.53)–(2.56) with μ0 = 1 is

FPs=1 Z(s | t) ≡ (logG)′(1
2 + t) + b1, (10.16)

Z(m | t) ≡ (−1)m−1

(m−1)!
(log G)(m)(1

2 + t) for m = 2, 3, . . . .(10.17)

The shifted large-y expansion of − logD(1
2 + t + y) is then deduced as in

Sect. 2.6.1, in the form ã1(t) y(log y − 1) + ã0(t) log y +
∞∑

n=1
a−n(t) y−n : all

coefficients are computable polynomials in t and encode algebraic properties
of Z(s | t), as explained in Sect. 2.4. In more explicit terms:
• Z(s | t) extends to a meromorphic function in the whole s-plane, with

the single pole s = 1, simple, of residue ã1 (independent of t); (10.18)

• The values Z(−n | t), n ∈ N are given by closed polynomial formulae,

Z(−n | t) = − ã1

n+1
tn+1 − ã0t

n + n

n∑

j=1

(−1)j

(
n−1
j−1

)

a−jt
n−j ,

e.g., Z(0 | t) = −ã0(t) = −ã1t− ã0 .

(10.19)

More interestingly, D, Z, G can be replaced by the (less explicit)
D , Z , Ξ respectively, and similar results will arise, as described next.

10.3.2 The Basic Analytical Continuation Formula
for Z

As an extension from (7.4)–(7.5) (Riemann case), Z (s | t) admits the
following integral representation, valid in the half-plane {Re s < 1} and
for any eligible value of the parameter t avoiding the cut (−∞,+ 1

2 ]:

Z (s | t) = −Z(s | t) + q (t− 1
2 )−s +

sinπs
π

J(s | t), (10.20)

J(s | t) def=
∫ ∞

0

L′

L
(1
2 + t+ y) y−s dy (Re s < 1). (10.21)
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The real forms (7.6)–(7.7) and the description of the poles of J extend
likewise, just replacing ζ by L and 1

t− 1
2 + y

by q
t− 1

2 + y
everywhere.

As in Sect. 7.3 for the Riemann case:
• It follows that Z (s | t) is meromorphic in the whole s-plane with the same
polar structure as −Z(s | t), which now means that

Z (s | t) has the single pole s = 1, simple, of residue −ã1; (10.22)

• If L(x) admits an Euler product (like our concrete examples (10.49) and
(10.72)), then the substitution of its logarithmic derivative into (10.21), fol-
lowed by integration term by term, yields an asymptotic (s→ −∞) expansion
for J(s | t), and thereby for Z (s | t) (cf. (7.27)–(7.28) for the Riemann case).

10.3.3 Special Values of Z (s | t) for General t

As in Sect. 7.4 for the Riemann case:
• Almost all the special values of Z (s | t) (at integer s) are explicitly readable
off (10.20): as in (7.29)–(7.38) before, we get rational values for s ∈ −N,
transcendental ones for s = 2, 3, . . ., plus

Z ′(0 | t) = −Z′(0 | t)− q log(t− 1
2 ) + J(0 | t)

= b1t+ b0 + logG(1
2 + t)− log

[
(t− 1

2 )qL(1
2 + t)

]
(10.23)

FPs=1 Z (s | t) = −FPs=1 Z(s | t) +
q

t− 1
2

− Ress=1J(s | t),

= −b1 − (logG)′(1
2 + t) +

[
q

t− 1
2

+
L′

L
(1
2 + t)

]

. (10.24)

• However, the values Z (n | t) for n ∈ N
∗, now including n = 1, emerge more

directly by proceeding in full analogy with (7.39) (Riemann case):

Z (n | t) =
(−1)n−1

(n− 1)!
(logΞ)(n)(1

2 + t) (n = 1, 2, . . .) (10.25)

= −Z(n | t) +
[

q

(t− 1
2 )n

+
(−1)n−1

(n− 1)!
(log |L|)(n)(1

2 + t)
]

(10.26)

(n = 2, 3, . . .).

Since Z(1 | t) is infinite, (10.26) cannot hold for n = 1 but a substitute
formula exists: i.e., the subtraction of (10.25) at n = 1 from (10.24) yields a
t-independent anomaly , or discrepancy formula extending (7.40):

FPs=1 Z (s | t)−Z (1 | t) =
(
log [D/Ξ]

)′
(1
2 + t) = −b1 (constant). (10.27)
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Table 10.1 [107] recapitulates the special values obtained for Z (s | t) at
general t, extending Table 7.1 from the Riemann case.

Remark. All identities stemming purely from the central symmetry of the
zeros ρ←→ (1− ρ), like Z (n | t) = (−1)n Z (n | −t) (n = 1, 2, . . .) and the
sum rules (7.46) (or (7.43)), carry over unchanged. However, the rest of Ta-
ble 7.2 needs rewriting (exercise!).

10.3.4 Special Values of Z (s | t) at t = 0 and 1
2

Under our assumption {ρ} ∩ R = ∅, Z (s | t) is regular on the real t-axis;
then, further simplifications occur at the particular parameter locations t = 0
and 1

2 .

• For t = 0, (10.25) reduces to

Z0(n) ≡ 0 for all n ≥ 1 odd; (10.28)

in combination with (10.26) and (10.24), that amounts to explicit formulae
for the primary function L itself:

(log |L|)(n)(1
2 ) = (logG)(n)(1

2 ) + 2nq (n− 1)! for all n ≥ 1 odd (10.29)

(also directly implied by the functional equation (10.3); they extend (7.48)
from the Riemann case). By (10.27) at t = 0, the case n = 1 moreover implies

FPs=1 Z0(s) = −b1. (10.30)

• For t = 1
2 , the formulae (10.23)–(10.26) bring in the Taylor series (10.5),

to yield

Z
′
∗(0) = −Z′(0 | 12 ) + gc

0;

Z∗(1) = −(logG)′(1) + gc
1, (10.31)

Z∗(n) = −Z(n | 12 ) + gc
n/(n− 1)! (n = 2, 3, . . .).

The purely combinatorial relations (7.56) between the Z∗(n) and Keiper–Li
coefficients λj remain unchanged; the latter now refer to the zeros of the
primary function L, like the rest.

It is hard to achieve further progress while keeping the primary function
L and its “accessories” (G, Z, etc.) completely unspecified. Case by case, on
the other hand, Z(s | t) can be made more explicit at t = 0 or 1

2 , just as in
the Riemann case. Thus, in our later examples for L(x) (L-functions of real
primitive Dirichlet characters; Dedekind zeta functions), both Z(s | 0) and
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Z(s | 12 ) will reduce to combinations of the two fixed Dirichlet series ζ(s) and
β(s). The resulting fully reduced special values of Z0(s) and Z∗(s) will be
displayed in Tables 10.3–10.6 [107], which conclude the chapter.

10.4 The Second Family {Z}

This will extend the treatment of Chap. 8 from the Riemann case.

10.4.1 The Confluent Case Z(σ | t = 0) ≡ Z0(σ)

The confluence identity is unchanged from (8.2):Z0(σ) ≡ (2 cosπσ)−1 Z0(2σ).
Therefore:

• The function Z0 retains the same abstract singular structure as in Sect. 8.1;
the explicit principal part formulae (8.4)–(8.5) simply extend to

Z0(1
2 + ε) =

ã1

4π
ε−2 +

b1

2π
ε−1 + O(1)ε→0 ; (10.32)

Z0(1
2 −m+ ε) = Rm ε−1 + O(1)ε→0 for m = 1, 2, . . . , (10.33)

Rm =

⎧
⎪⎨

⎪⎩

− 1
2π

FPs=1 Z0(s) =
b1

2π
, m = 0,

(−1)m

2π
[
Z(1 − 2m | 0) + q 21−2m

]
, m = 1, 2, . . . ;

(10.34)

• The special values of Z0 obey the same relations (8.8)–(8.9) as before:

Z0(m) = 1
2 (−1)m Z0(2m) (∀m ∈ Z), Z ′

0(0) = Z ′
0 (0). (10.35)

Both (10.34) and (10.35) now refer to the Z -values of Table 10.1 (at t = 0).

10.4.2 Algebraic Results for Z(σ | t) at General t

For the algebraically computable formulae, all the abstract results from
Sect. 8.3 carry over unchanged. Concretely, the principal parts (8.21)
extend to

Z(1
2 −m+ ε | t) =

ã1

4π
Γ (1

2 +m)
Γ (1

2 )m!
t2m ε−2 +Rm(t) ε−1 + O(1)ε→0 , (10.36)
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Rm(t) = Γ (1
2 +m)

[

−
ã1

∑m
j=1

1
2j−1

2π Γ (1
2 )m!

t2m +
m∑

j=0

1
Γ (1

2 +j) (m−j)!Rj t
2(m−j)

]

(10.37)

where the t = 0 residues Rj are now read from (10.34). And the rational
special values still obey (8.23), or equivalently

Z(−m | t) ≡ 1
2

m∑

�=0

(−1)m−�

(
m




)

Z0

(
2(−m+ 
)

)
t2� (m ∈ N), (10.38)

with the values Z0

(
2(−m+ 
)

)
now taken from Table 10.1 (at t = 0). So, all

the polar terms of Z(σ | t), still of order 2, and the special values Z(−m | t)
(m ∈ N) are computable polynomials in t2, as in the Riemann case.

The principal part at the leading pole σ = 1
2 , given by (10.32), and the

leading special value Z(0 | t) = 1
2 (q + ã0), remain independent of t as before.

Those two invariants amount to three constants ã1, b1, and 1
2 (q+ ã0), which

also have another embodiment. As with (4.29) for the Riemann case, let

N(T ) def= π−1 Im log
[
(x− 1)qG−1(x)

]
x= 1

2+iT
(10.39)

be the contribution from the trivial factors of Ξ to the counting function
N(T ) (for its zeros {ρ}). Then the generalized Stirling formula (10.12) readily
yields

N(T ) =
ã1

π
T (logT − 1) +

b1

π
T +

1
2
(q + ã0) +O

( 1
T

)
, (10.40)

which is built from those same three constants, cf. (4.31) for the Riemann
case. We may recall that b1 also governs the discrepancy at n = 1 in (10.27).
Remark: in both our later concrete examples, the full counting function it-
self obeys N(T ) = N(T ) + O(logT ), extending the Riemann–von Mangoldt
formula (4.26): this is proved, e.g., in [26, Sect. 16] for Dirichlet L-functions
and in [69, Satz 173 p. 89] for Dedekind zeta functions.

10.4.3 Transcendental Values of Z(σ | t) at General t

As in the Riemann case (Sect. 8.4), these values most readily emerge from
a variant of the factorization (10.15), using the alternative zeta-regularized
factor

D(t2) def= e−Z′(0 | t) (10.41)
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instead of D(x). The main point here is the replacement of x = 1
2 + t by

v = t2 as basic variable: this zeta-regularization of Ξ(x) preserves the central
symmetry (x←→ 1− x).

Rewritten in the variable v → +∞, the generalized Stirling expansion
(10.12) for [logΞ(x)− q log(x− 1)] becomes

logΞ(
√
v+ 1

2 ) ∼ 1
2 ã1v

1
2 log v+(b1− ã1)v

1
2 + 1

2 (ã0 + q) log v+b0 [+O(v−
1
2 )],

(10.42)

with μ0 = 1
2 : the only “banned” terms (cf. (2.47)) are now constants, implying

D(t2) ≡ e−b0 Ξ(1
2 + t) ≡ eb1t D(1

2 + t) (10.43)

and the modified decomposition (cf. (8.18) for the Riemann case)

(t− 1
2 )qL(1

2 + t) ≡ e−b1t D(1
2 + t)D(t2). (10.44)

All transcendental special values of Z(σ | t) immediately follow: first,
Z ′(0 | t) ≡ − logD(t2) = b0 − logΞ(1

2 + t) which also expresses in terms
of log |L|(1

2 ± t); then (2.56), now applied with v = t2 as variable and μ0 = 1
2 ,

yields the same form (8.26) for Z(m | t) as before.
The overall resulting special values of Z form Table 10.2, extending

Table 8.1 from the Riemann case. The particular parameter locations t = 0
and 1

2 can be covered by Sect. 10.4.1 and Table 10.2 respectively (mimicking
Sect. 8.6.2 from the Riemann case), without need for further Tables.

The various combinatorial linear identities relating special values of Z at
positive integers to those of Z (Sect. 8.5) or to the Keiper–Li coefficients
λj ((8.34)–(8.36)) persist identically, with all objects now in their extended
meaning (linked to the function L).

10.5 The Third Family {Z}

The abstract treatment of Chap. 9 for the Riemann case extends unchanged.
So, the function Z keeps the same qualitative meromorphic structure; we just
rewrite its polar expansions (9.5)–(9.8) in their abstract extended form:

(about s = 1) Z(1 + ε | τ) =
ã1

π
ε−2 +

b1

π
ε−1 + O(1)ε→0 (10.45)

(s = 1 is a double pole with the same principal part as Z(1
2s) ≡ Z(s | 0), fixed

for all τ); and, for n = 1, 2, . . . (now using (10.34) for Rj):

Z(1−n+ε | τ) =
[

− ã1

πn
τn +2

∑

0<2m≤n

(
n− 1

2m− 1

)

Rm τn−2m

]

ε−1 +O(1)ε→0 ;

(10.46)
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for n = 1, the next term is also attained (i.e., the finite part at s = 0):

Z(ε | τ) = − ã1

π
τ ε−1 +

(
1
2 (ã0 + q)− b1

π
τ
)

+ o(1)ε→0 . (10.47)

10.6 Special Concrete Examples

We finally illustrate the preceding results upon the two classes of primary zeta
functions announced in Sect. 10.1. As a rule, it suffices to specialize the general
formulae as indicated below. To enhance the practical side of this work, we
display the ultimate results, namely the special values of Z (s | 0) ≡ Z0(s)
and Z (s | 12 ) ≡ Z∗(s), in Tables 10.3–10.6 (corresponding to Tables 7.3–7.4
for L(x) = ζ(x), which fits better here as a special case of Dedekind zeta
function). Then, any further results can be readily derived from the general
formalism, as in the Riemann case.

At the particular parameter locations t = 0 and 1
2 , the relevant values of

Z(s | t) become more explicit, using

ζ(s, 1) ≡ ζ(s); ζ(s, 1
2 ) ≡ (2s − 1) ζ(s);

2−2sζ(s, 1
2 ∓ 1

4 ) ≡ 1
2 [(1− 2−s) ζ(s)± β(s)]

(10.48)

(cf. (3.27)). Due to this, the two fixed Dirichlet series ζ(s) and β(s) (itself a
particular Dirichlet L-function, reviewed in Sect. 3.5) will continue to occur
as such in the t = 0 and 1

2 special values, concurrently with the variable
primary function L(x) itself.

We now describe those two classes in turn. At this more technical stage,
we abandon the idea of being self-contained, and instead, we will selectively
quote (without proof) the prerequisites we really need, which are classic but
often quite scattered in lengthy treatises. The most explicit properties of the
resulting functions Z0(s) and Z∗(s) are tabulated at the end.

A somewhat different third class, where the primary function L(x) is cho-
sen to be a Selberg zeta function, is moreover described in Appendix B.

10.6.1 L-Functions of Real Primitive Dirichlet
Characters

A Dirichlet L-function is associated with a character χ of a multiplicative
group of integers mod d (d ∈ N

∗ is called the modulus or conductor), as
[14, 26, 33]
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Lχ(x) def=
∞∑

k=1

χ(k) k−x ≡
∏

{p}

(
1− χ(p) p−x

)−1 (Rex > 1) (10.49)

≡ d−x
d∑

n=1

χ(n) ζ(x, n/d). (10.50)

Such a character is necessarily even or odd; its parity “bit” a is defined by

a = 0 or 1, according to χ(−1) = (−1)a. (10.51)

Their Admissibility

Dirichlet L-functions satisfy conditions (a)–(b) of Sect. 10.1 without fur-
ther ado (reality apart).

We now restrict to primitive characters [26, Chap. 5], with d > 1 to exclude
the case χ ≡ 1 (for which Lχ(x) ≡ ζ(x), a case which will better fit the other
class below). Then, Lχ(x) is entire (i.e., q = 0), and has a functional equation
[26, Chap. 9]:

Ξχ(x) ≡Wχ Ξχ(1 − x), (10.52)

with

Ξχ(x) def= (2
√
π)−a(d/π)x/2 Γ

(
1
2 (x+ a)

)
Lχ(x), (10.53)

Wχ
def= (−i)ad−1/2

∑

n mod d

χ(n) e2πin/d ; (10.54)

the latter sum, called the Gaussian sum for χ, has modulus d1/2 [26, Chap. 9,
(5)], implying |Wχ| = 1. (Note: in (10.53) we chose to insert an entirely
optional prefactor (2

√
π)−a, only to streamline a part of Sect. 10.6.2 later.)

We finally keep the real (χ = χ) primitive characters only. These consist
of the Kronecker symbols for the quadratic number fields K with discrimi-
nant dK ≡ (−1)ad [26, Chap. 5], so these characters are best labeled χ(−1)ad

(see also Sect. 10.6.2). Their Gaussian sums are fully known (= iad1/2)
[49, Sect. 58, Theorem 164], now implying Wχ ≡ +1; it follows that their
L-functions (now real) satisfy condition (c) of Sect. 10.1 as well, with

q ≡ 0, G(x) ≡ (2
√
π)a (π/d)x/2

Γ
(

1
2 (x+ a)

) , a =
{

1 for χ odd
0 for χ even.

(10.55)

Finally, condition (d) with q = 0, or Lχ(1) > 0, is ensured by Dirichlet’s class
number formula giving Lχ(1) in terms of invariants of the quadratic field K
and chiefly its class number h > 0, as [115][26, Sect. 6]
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Lχ(1) =
{

2πh /W
√
d (W = #{roots of unity} <∞) if a = 1

2h log ε/
√
d (ε = fundamental unit > 1) if a = 0.

(10.56)

So in the end, L-functions of real primitive Dirichlet characters are ad-
missible primary functions for us. Any choice of such an L-function Lχ as
primary function will henceforth be abbreviated “a Dirichlet-L case.”

Results for Superzeta Functions in Dirichlet-L Cases

Based on (10.55), we can specify the other quantities needed in Table 10.1:

• The shadow zeta function (10.11) becomes

Z(s | t) = 2−sζ
(
s, 1

2 (1
2 + a+ t)

)
(10.57)

• The leading coefficients in the Stirling formula (10.12) are

ã1 = 1
2 , ã0 = 1

2 (a− 1
2 ),

b1 = 1
2 log

[
d/(2π)

]
, b0 = 1

4 log
[
(8π)1−2ad

]
.

(10.58)

This completes the tool kit needed to handle Dirichlet-L cases for general t.
We then list further results only for the particular cases t = 0 and 1

2 , in
Tables 10.3 and 10.4 respectively and in the following comments.
• t = 0: the identities (10.29), resulting from Z0(n) ≡ 0 for odd n ≥ 1, yield
more explicit formulae for the Dirichlet L-function Lχ itself:

(logLχ)(n)(12)≡−2−nψ(n−1)(1
4 + 1

2a) + δn,1
1
2 log π

d
for n ≥ 1 odd

≡
{

1
2 (n−1)!

[
(2n−1) ζ(n) + (1−2a) 2nβ(n)

]
, n > 1,

1
2γ + 1

4 (1− 2a)π + 1
2 log(8π/d), n = 1,

(10.59)

in which, n being odd, 1
2 (n−1)! 2nβ(n) reduces to 1

4π
n|En−1| by (3.32) while

ζ(n) remains elusive.
Note: for odd n > 1, (logLχ)(n)(1

2 ) = La
n depends on χ solely through its

parity bit a, with

L0
n = (log |ζ|)(n)(1

2 ) and L1
n = L0

n − 1
2π

n|En−1| for odd n > 1,
(10.60)

cf. (7.49); for more such identities bypassing ζ(n), see Appendix C.
• t = 1

2
: by (10.5) with q = 0, the lowest generalized Stieltjes cumulants are

gc
0[χ] ≡ − logLχ(1), gc

1[χ] ≡ L′
χ

Lχ
(1) (10.61)
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(we restate their χ-dependence from now on, to clarify later formulae). Then,
we can evaluate gc

0[χ] always, but gc
1[χ] only when a = 1 (odd case), as follows.

First, the general formula (10.50), together with the special values (3.37),

(3.40), (3.41) of the Hurwitz zeta function, plus χ(d) = 0 and
d∑

n=1
χ(n) = 0,

yield these special values for Lχ(x):

Lχ(0) = −1
d

d−1∑

n=1

χ(n)n (rational), (10.62)

L′
χ(0) = −Lχ(0) log d+

d−1∑

n=1

χ(n) logΓ (n/d) (transcendental), (10.63)

Lχ(1) = −1
d

d−1∑

n=1

χ(n)ψ(n/d) (transcendental). (10.64)

Next, the functional equation (10.3) using (10.55) implies the following.
– When a = 1 (the odd-χ case):

Lχ(1) = πd−1/2Lχ(0),
L′

χ

Lχ
(1) = γ + log

2π
d
− L′

χ

Lχ
(0), (10.65)

which, together with (10.62), (10.63) yield an algebraic explicit formula for
π−1Lχ(1) [26, Chap. 6, (17)] (superseding (10.64)) plus a transcendental one
for [L′

χ/Lχ](1) in terms of Gamma values, overall giving

gc
0[χ] = − logLχ(1), Lχ(1) =− π

d3/2

d−1∑

n=1

χ(n)n,

gc
1[χ] =

L′
χ

Lχ
(1) = γ + log 2π +

d−1∑

n=1
χ(n) logΓ (n/d)

1
d

d−1∑

n=1
χ(n)n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

if a = 1. (10.66)

Example: For each of d = 3 and 4 (the lowest possible values of d), the real
primitive character is unique and odd, given by: χ−d(±1 mod d) = ±1, else
χ−d(n) = 0 (thus, Lχ−4(x) ≡ β(x) as in (3.27)); then (10.66) yields

gc
0[χ−3] = − log(π/33/2), gc

1[χ−3] = log[(2π)4/33/2] + γ − 6 logΓ (1
3 );

gc
0[χ−4] = − log(π/4), gc

1[χ−4] = log(4π3) + γ − 4 logΓ (1
4 ).

(10.67)
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– When a = 0 (the even-χ case):

Lχ(0) ≡ 0 (the first trivial zero: G(0) = 0), (10.68)
Lχ(1) = 2d−1/2L′

χ(0), (10.69)

and L′
χ(0), starting from (10.63), simplifies further through (10.68) and the

reflection formula for Γ ; we thus obtain a transcendental explicit formula for
Lχ(1) [26, Chap. 6, (18)] (still more elementary than (10.64)), giving

gc
0[χ] = − logLχ(1), Lχ(1) = − 1

d1/2

d−1∑

n=1

χ(n) log sin
πn

d
if a = 0.

(10.70)

On the other hand, gc
1[χ] stays unspecified because the functional equation

only relates L′
χ(1) to L′′

χ(0) when χ is even, leaving us no wiser: thus for an
even character, gc

1[χ] seems to generalize Euler’s constant in a nontrivial way
(actually related to the Euler–Kronecker invariant of the field K, see (10.83)
in Sect. 10.6.2).
Example: The lowest modulus for an even real primitive Dirichlet character
is d = 5, with χ+5(±1 mod 5) = +1, χ+5(±2 mod 5) = −1, else χ+5(n) = 0;
then (10.70) only yields

gc
0[χ+5] = − log

( 2√
5

log
[
2 cos

π

5

])
= − log

( 2√
5

log
√

5 + 1
2

)
. (10.71)

Remark. The gc
n[χ] for general n also relate, through (10.50), to the Laurent

coefficients γm(w) of the Hurwitz zeta function ζ(x,w) around x = 1 [5,
65, 114]; however, these generalized Stieltjes constants γm(w) are even more
elusive than the original ones γm = γm(1) from (3.9).

The overall resulting special values of Z (s | 0) and Z (s | 12 ) in Dirichlet-L
cases are presented in Tables 10.3 and 10.4 respectively, drawn from [107].

10.6.2 Dedekind Zeta Functions

For any algebraic number field K, its Dedekind zeta function is defined as

ζK(x) def=
∑

a

N(a)−x ≡
∏

p

(
1−N(p)−x

)−1 (Re x > 1), (10.72)

where a (resp. p) runs over all integral (resp. prime) ideals of K, and N(a)
is the norm of a [49, Sect. 42][23, Sect. 10.5].
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Their Admissibility

Dedekind zeta functions at once satisfy conditions (a)–(c) of Sect. 10.1 with

q ≡ 1, G(x) ≡
(
4r2πnK/|dK |

)x/2

xΓ (x/2)r1Γ (x)r2
, (10.73)

where r1 (resp. 2r2) is the number of real (resp. complex) conjugate fields
of K, nK ≡ r1 + 2r2 is the degree of K, and dK (≷ 0) its discriminant [49,
Sect. 42]. With Laurent series at x = 1 having the form

ζK(x) =
RK

x− 1
+ CK + · · · , (10.74)

condition (d) asks for RK > 0; this is now ensured by Dedekind’s class
number formula for this residue, involving further positive invariants of the
field K [49, Theorems 121, 124][23, Theorem 10.5.1]:

RK =
2r1+r2πr2hR

W
√|dK |

, (10.75)

h = the class number, R = the regulator, W = the number of roots of unity.
So, Dedekind zeta functions ζK(x) are admissible primary functions for

us: any such choice will be denoted “a Dedekind-ζ case” here. For K = Q,
which has r1 = 1, r2 = 0, and dK = 1, one recovers the Riemann case:
ζK(x) ≡ ζ(x), with the trivial factor G(x) ≡ πx/2

[
xΓ (x/2)

]−1 as in (3.24).

Results for Superzeta Functions in Dedekind-ζ Cases

Based on (10.73), we can specify the other quantities needed in Table 10.1:

• The shadow zeta function (10.11), counting all zeros of G(x) with their
multiplicities, becomes

Z(s | t) = r12−sζ(s, 1
4 + 1

2 t) + r2 ζ(s, 1
2 + t)− (1

2 + t)−s (10.76)

• The leading coefficients in the Stirling formula (10.12) are

ã1 = 1
2nK , ã0 = 1− 1

4r1,

b1 = 1
2 log

[ |dK |/(2π)nK
]
, b0 = 1

4 log
[
(8π)r1 |dK |

]
.

(10.77)

This completes the tool kit needed to handle Dedekind-ζ cases for general t.
We then list further results only for the particular cases t = 0 and 1

2 , in
Tables 10.5 and 10.6 respectively and in the following comments.
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• t = 0: the identities (10.29), resulting from Z0(n) ≡ 0 for odd n ≥ 1, yield
more explicit identities for the Dedekind zeta function ζK itself:

(log |ζK |)(n)(1
2 ) ≡ −2−nr1ψ

(n−1)(1
4 )− r2ψ(n−1)(1

2 ) + δn,1
1
2 log 4r2πnK

|dK |
for n ≥ 1 odd

≡
{

1
2 (n−1)!

[
nK(2n−1) ζ(n) + r12nβ(n)

]
, n > 1,

1
2 nK γ + 1

4 r1 π + 1
2 log

[
(8π)nK/|dK |

]
, n = 1,

(10.78)

in which, n being odd, 1
2 (n−1)! 2nβ(n) reduces to 1

4π
n|En−1| by (3.32) while

ζ(n) remains elusive. (For related identities bypassing ζ(n), see Appendix C.)

• t = 1
2
: by (10.5) with q = 1 and (10.74), the lowest generalized Stieltjes

cumulants are

gc
0{K} ≡ − logRK , gc

1{K} ≡ CK/RK (10.79)

(we restate their K-dependence to clarify the next formulae). Then, some-
what similarly to the previous example: gc

0{K} is always expressible – now
through Dedekind’s class number formula (10.75); and gc

1{K}, or equivalently
the term CK , is sometimes expressible – through certain Kronecker limit for-
mulae; gc

1{K} (also known as the Euler–Kronecker invariant γK [52]) links
to Z∗(1) =

∑
ρ−1 [47, Theorem B(2)][52, (1.4.1)], as Table 10.6 shows.

– We first consider K = Q : then ζK(x) ≡ ζ(x), and by (3.15),

gc
0{Q} = 0, gc

1{Q} = γ. (10.80)

– Next, if K is a quadratic number field: letting χ = χdK , the real primitive
character of modulus |dK | given by the Kronecker symbol for the discrimi-
nant dK (cf. Sect. 10.6.1), then [49, Sect. 49]

ζK(x) ≡ ζ(x)Lχ(x). (10.81)

(Note: this factorization nicely extends to their trivial factors, resp. completed
functions, given the factor (2

√
π)a we inserted in (10.55)). Now as a rule, zeta

functions over zeros (and their linear invariants) obviously add up when their
primary functions are multiplied. Thus, for their Stieltjes cumulants,

gc
n{K} = gc

n{Q}+ gc
n[χ] (∀n), (10.82)

and here in particular,

gc
0{K} = gc

0[χ], gc
1{K} = γ + gc

1[χ]. (10.83)
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Following a well-known practice, we can thereby pass results from the real
primitive Dirichlet characters χ to the quadratic number fields K, and vice-
versa. Results on the χ side were supplied before (Sect. 10.6.1). Now on
the K side, we can add the class number formula for gc

0{K} – which for
quadratic K reduces to Dirichlet’s (10.56), and Kronecker limit formulae
for gc

1{K}, which come in two types – one simpler form handles imaginary
quadratic K (dK < 0) using the Dedekind η-function at specific points [19,
Sect. 6][113, Sect. 2], while much more involved forms hold for real quadratic
fields (dK > 0) [113, Sect. 3]. All in all, we find the more reduced formulae to
be still those found on the χ side when they exist:

• For gc
0, either (10.66) or (10.70) (according to parity) is a more explicit

expression of Lχ(1) than the class number formula for K (here, (10.56))
• For gc

1 in the odd-χ case (dK < 0), (10.66) is more elementary than the
simpler Kronecker limit formula (which calls Dedekind η-function values)

• Inversely, for gc
1 in the even-χ case (dK > 0), only the K side provides

something new , namely Kronecker limit formulae for gc
1{K} that are now

exceedingly involved, but then Sect. 10.6.1 had left us without any closed
expression for the corresponding gc

1[χ].

Any further description of those aspects would carry us too far here, so we
simply refer the reader to the above literature.
Example: Two basic quadratic number fields, both imaginary (i.e., with r1 =
0 and r2 = 1), are: K = Q(i) (for which dK = −4, χ = χ−4 : Lχ(x) ≡ β(x)
as in (3.27)), and: K = Q(

√−3) (for which dK = −3, χ = χ−3) [14]; hence
their specific cumulants gc

0{K} and gc
1{K} most readily follow from (10.67)

and (10.83).
– More generally, gc

1{K} will also be expressible: if K is a quadratic exten-
sion of another field F , in terms of gc

1{F} [45]; if ζK factorizes in Dirichlet
L-functions (e.g., for cyclotomic fields and their subfields [23, Sect. 10.5.4]).

The overall resulting special values of Z (s | 0) and Z (s | 12 ) in Dedekind-ζ
cases are presented in Tables 10.5 and 10.6 extending Tables 7.3 and 7.4 from
the Riemann case, respectively, as drawn from [107].

10.7 Tables of Formulae for the Special Values

Note. The superzeta functions of all three kinds also have explicitly com-
putable polar decompositions, displayed in the main text.
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10.7.1 For General Primary Functions L(x)
at General t

Table 10.1 Special values of the function of first kind Z (s | t)
over the zeros {ρ} of a general primary zeta function L(x),
admissible in the sense of Sect. 10.1, and having a pole of
order q ≤ 1 at x = 1. Notation: see (10.3) for Ξ(x), (10.11)
and (10.19) for Z(−n | t), (10.12) for ãj , bj ; n is an integer.
For L(x) = ζ(x) (the Riemann case), cf. Table 7.1

s Z (s | t) =
∑

ρ
(1
2 + t− ρ)−s

−n ≤ 0 −Z(−n | t) + q(t− 1
2 )n †

0 ã1t+ ã0 + q

0
(s-derivative) Z ′(0 | t) = b1t+ b0 − logΞ(1

2 + t)

+1
(finite part) FPs=1 Z (s | t) = −b1 + (logΞ)′(1

2 + t)

+n ≥ 1
(−1)n−1

(n− 1)!
(logΞ)(n)(1

2 + t)

†
With (t− 1

2 )0
def
= 1 for t = 1

2 (continuity in t is imperative)

Table 10.2 As Table 10.1, but for the function of second kind

Z(σ | t); m is an integer. For L(x) = ζ(x) (the Riemann case), cf.
Table 8.1

σ Z(σ | t) =
∞∑

k=1
(τk

2 + t2)−σ

−m ≤ 0 1
2

[
q(t2 − 1

4 )m −
m∑

j=0

(m
j

)
(−1)j Z(−2j | 0) t2(m−j)

]
†

0 1
2 (q + ã0)

0
(σ-derivative) Z′(0 | t) = b0 − logΞ(1

2 ± t)

+m ≥ 1
(−1)m−1

(m−1)!

dm

d(t2)m
logΞ(1

2 ± t)
†
With (t− t0)0

def
= 1 for t = t0 (continuity in t is imperative)
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10.7.2 Dirichlet-L Cases, Functions of First Kind
at t = 0 and 1

2

Table 10.3 Special values of the zeta function Z (s | t) at t = 0 over the
zeros {ρ} of an L-function Lχ, for a real primitive Dirichlet character χ
with modulus d > 1 and parity bit a = 0 or 1. Notation: see (1.4)–(1.7),
(10.49)–(10.51); n is an integer

s Z0(s) ≡∑
ρ

(ρ− 1
2 )

−s
[t = 0]

even 2−n−1(a− 1
2 )En

−n ≤ 0

{

odd −1
2 (1−2−n)

Bn+1
n+1

0 1
2 (a− 1

2 )

0
(derivative) Z ′

0(0) = (3
4−a) log 2 + (a− 1

2 ) log
[
Γ (1

4 )2/π
]− logLχ(1

2 )

+1
(finite part) FPs=1 Z0(s) = 1

2

[
log 2π − log d

]

odd 0 ∗
+n ≥ 1

{

even −1
2

[
(2n−1) ζ(n) + (1−2a) 2nβ(n)

] − (logLχ)(n)(1
2 )

(n−1)!

†

∗
This amounts to the formulae (10.59) yielding (logLχ)(n)(1

2 ) for n odd
†
Here ζ(n) ≡ (2π)n|Bn|/(2n!), while β(n) (Sect. 3.5) and (logLχ)(n)(1

2 )
remain elusive

Table 10.4 As Table 10.3, but at t = 1
2 . For the gen-

eralized Stieltjes cumulants gcn[χ], see (10.5) with q = 0,
(10.66) and (10.70)

s Z∗(s) ≡∑
ρ
ρ−s [t = 1

2 ]

−n < 0
[
(a− 1)(2n − 1) + a 2n

]Bn+1
n+1

0 1
2a

0
(derivative) Z ′∗(0) = 1

2

[
(1− a) log 2 + a log π

]
+ gc0[χ]

+1
(finite part) FPs=1 Z∗(s) = (a− 1

2 ) log 2− 1
2γ + gc1[χ]

+1 (a− 1) log 2− 1
2 log(π/d)− 1

2γ + gc1[χ]

+n > 1
[
(a− 1)(1 − 2−n)− a 2−n

]
ζ(n) +

gcn[χ]
(n−1)!

†

†
For n even, ζ(n) ≡ (2π)n|Bn|/(2n!)
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10.7.3 Dedekind-ζ Cases, Functions of First Kind
at t = 0 and 1

2

Table 10.5 Special values of the zeta function Z (s | t) at t = 0 over the zeros
{ρ} of a Dedekind zeta function ζK , for an algebraic number field K. Notation:
see (1.4)–(1.7), (10.72) and (10.73); n is an integer. For K = Q (the Riemann
case), cf. Table 7.3

s Z0(s) ≡
∑

ρ
(ρ − 1

2 )
−s

[t = 0]

even 2−n+1(1− 1
8r1En)

−n ≤ 0

{

odd −1
2nK(1−2−n)

Bn+1
n+1

0 2− 1
4r1

0
(derivative) Z ′

0(0) = (2+ 3
4 r1+ 1

2 r2) log 2− 1
2 r1 log

[
Γ (1

4 )2/π
]−log |ζK |(1

2 )

+1
(finite part) FPs=1 Z0(s) = 1

2

[
nK log 2π − log |dK |

]

odd 0 ∗
+n ≥ 1

{

even 2n+1 − 1
2

[
nK(2n−1) ζ(n)+r1 2nβ(n)

]− (log |ζK |)(n)(1
2 )

(n−1)!

†

∗This amounts to the formulae (10.78) yielding (log |ζK |)(n)(1
2 ) for n odd

†Here ζ(n) ≡ (2π)n|Bn|/(2n!), while β(n) (Sect. 3.5) and (log |ζK |)(n)(1
2 )

remain elusive

Table 10.6 As Table 10.5, but at t = 1
2 . For the generalized Stieltjes

cumulants gcn{K}, see (10.5) with q = 1, (10.79)–(10.83). For K = Q

(the Riemann case), cf. Table 7.4

s Z∗(s) ≡∑
ρ
ρ−s [t = 1

2 ]

−n < 0
[−r1(2n−1) + r2

]Bn+1
n+1 + 1

0 1
2r2 + 2

0
(derivative) Z ′

∗(0) = 1
2

[
(r1+r2) log 2 + r2 log π

]
+ gc0{K}

+1
(finite part) FPs=1 Z∗(s) = 1 − 1

2r1 log 2− 1
2nKγ + gc1{K}

+1 1+ 1
2 log |dK |−(r1+r2) log 2− 1

2nK log π− 1
2nKγ + gc1{K}

+n > 1 1− [r1(1−2−n)+r2] ζ(n) +
gcn{K}
(n−1)!

†

†For n even, ζ(n) ≡ (2π)n|Bn|/(2n!)


	Zeta Functions
over Zeros of
Zeta Functions

	10 Extension to Other Zeta- and L-Functions
	10.1 Admissible Primary Functions L(x)
	10.2 The Three Superzeta Families
	10.3 The First Family { Z}
	10.3.1 The Zeta Function Z (s |t) over the Trivial Zeros
	10.3.2 The Basic Analytical Continuation Formula for Z
	10.3.3 Special Values of Z(s |t) for General t
	10.3.4 Special Values of Z(s |t) at t=0 and 1 2

	10.4 The Second Family { Z}
	10.4.1 The Confluent Case Z(|t=0) Z0()
	10.4.2 Algebraic Results for Z(|t) at General t
	10.4.3 Transcendental Values of Z(|t) at General t

	10.5 The Third Family { Z}
	10.6 Special Concrete Examples
	10.6.1 L-Functions of Real Primitive Dirichlet Characters
	10.6.2 Dedekind Zeta Functions

	10.7 Tables of Formulae for the Special Values
	10.7.1 For General Primary Functions L(x) at General t
	10.7.2 Dirichlet-L Cases, Functions of First Kind at  t=0 and  1 2
	10.7.3 Dedekind- Cases, Functions of First Kind at  t=0 and  1 2




