
Chapter 1

Introduction

1.1 Symmetric Functions

The non-real zeros of the Riemann zeta function

ζ(s) def=
∞∑

k=1

k−s (Re s > 1), (1.1)

called the Riemann zeros and usually denoted ρ, are most elusive quantities.
Thus, no individual Riemann zero is analytically known; and the Riemann
Hypothesis (RH): Re ρ = 1

2 (∀ρ), has stayed unresolved since 1859 [92].
For analogous finite or infinite sets of numbers {vk}, like the roots of a

polynomial, the eigenvalues of a matrix, or the discrete spectrum of a linear
operator, the symmetric functions of {vk} tend to be much more accessible.
Some common types of additive symmetric functions, to be denoted Theta,
Zeta and (logDelta) here, are formally given by

Theta(z) def=
∑

k e−zxk ,

Zeta(s) def=
∑

k x
−s
k ,

Delta(a) def=
∏

k(xk + a) or, if this diverges,

(log Delta)(m)(a) def= (−1)m−1(m− 1)!
∑

k(xk + a)−m for some m ≥ 1,

where xk = vk or some other function f(vk) (such that no xk = 0 and, e.g.,
Re xk → +∞). It is useful to allow at least the a-shift in this remapping,
thereby obtaining a two-variable or generalized zeta function, in analogy with
the Hurwitz function ζ(s, a) def=

∑∞
k=0 (k + a)−s:

Zeta(s, a) def=
∑

k(xk + a)−s. (1.2)

Here we think of s as the main argument, the variable in which analyticity
properties and special values are studied, and of a as an (auxiliary) shift
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2 1 Introduction

parameter which adds flexibility; i.e., we view Zeta(s, a) as a parametric
family in the type Zeta(s) (accordingly denoting Zeta′(s, a) def= ∂sZeta(s, a)).

The gain with Zeta(s, a) is that it encompasses the last three types above:

Zeta(s) = Zeta(s, 0),

Delta(a) def= exp[−Zeta′(0, a)]

(when Delta is an infinite product, this is zeta-regularization, see Chap. 2),

(log Delta)(m)(a) = (−1)m−1(m− 1)! Zeta(m, a);

while the Zeta type is simply a Mellin transform of the Theta type, as

Zeta(s, a) =
1

Γ (s)

∫ ∞

0

Theta(z) e−za zs−1dz.

So, formally, all those types of symmetric functions look interchangeable
and their properties convertible from one to the other. However, experience
(especially from spectral theory) tells that zeta functions are those which
display the most explicit properties, reaching to computable special values
(values at integers) as in the case of ζ(s) itself.

Again from spectral techniques we borrow the idea that, besides the above
shift operation, nonlinear remappings xk = f(vk) may prove suitable before
building the symmetric functions. For instance, if {vk} is the spectrum of a
Laplacian on a manifold, both choices xk = vk and xk =

√
vk have their own

merits: on the circle, with the spectrum {n2}n∈Z, the resulting Theta-type
functions are, respectively, a Jacobi θ function and coth z/2, a generating
function for the Poisson summation formula as in (1.13); whereas on a com-
pact hyperbolic surface (normalized to curvature −1), an even better choice
than

√
vk is xk = (vk − 1

4 )1/2, as the Selberg trace formula shows. (This
formula expresses additive symmetric functions of precisely the latter xk as
dual sums carried by the periodic geodesics of the surface, see Sect. 6.3.1.)

It is then very natural to study symmetric functions of the Riemann zeros
in a similar manner, and this has happened. Indeed,

• Some zeta functions built over the Riemann zeros have appeared in a few
works, as early as 1917

• A universal tool exists to evaluate fairly general additive symmetric func-
tions of the Riemann zeros: the Guinand–Weil “Explicit Formulae.”

Still, we feel that our subject (zeta functions over the Riemann zeros) re-
mains far from exhausted. For one thing, the existing studies are surprisingly
few over a long stretch of time; they are neither systematic nor error-free, are
often unaware of one another, and none has made it to the classic textbooks
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on ζ(s); consequently there is no comprehensive, easily accessible treatment
of zeta functions over the Riemann zeros. Calculations in this field continue
to appear on a case-by-case basis.

Neither do the classic Explicit Formulae settle the issue of these zeta
functions as mere special instances: on the contrary, the most interesting
particular zeta functions over the Riemann zeros lie outside the standard
range of validity (i.e., of convergence) of those formulae.

In contrast, a dedicated study of these zeta functions uncovers a wealth
of explicit results, many of which were not given or even suspected in the
literature. The question of the importance or usefulness of those results will
not be addressed: the answer may lie in an undefined future.

There is no standardized terminology for zeta functions over zeros of zeta
functions. Chakravarty [17] used the name “secondary zeta functions,” but to
denote several Dirichlet series apart from ζ(x) itself which is the “primary”
zeta function (that which supplies its zeros). Here, to have a short and spe-
cific name, we choose to call “superzeta” functions all second-generation zeta
functions built over zeros of other, “primary”, zeta functions.

We continue this introduction with some essential notation, then we will
recall the most basic tools that will often serve later.

1.2 Essential Basic Notation

As a rule, we refer to [1, 33].
Bernoulli polynomials (definition by generating function):

z ezy

ez −1
≡

∞∑

n=0

Bn(y)
zn

n!
(B0(y) = 1, B1(y) = y − 1

2 , . . .). (1.3)

Bernoulli numbers: Bn ≡ Bn(0) or
z

ez −1
≡

∞∑

n=0

Bn
zn

n!

(B0 = 1, B1 = − 1
2 , B2 = 1

6 , . . . ; B2m+1 = 0 for m = 1, 2, . . .).

(1.4)

Euler numbers:
1

cosh z
≡

∞∑

n=0

En
zn

n!

(E0 = 1, E2 = −1, E4 = 5, . . . ; E2m+1 = 0 for m = 0, 1, . . .).

(1.5)

Digamma function ψ(x) and Euler’s constant γ:

ψ(x) def= [Γ ′/Γ ] (x); γ = −ψ(1) ≈ 0.5772156649 . (1.6)
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The finite part of a meromorphic function z 
→ f(z) at a pole a is

FPz=af(z) def= the constant term in the Laurent series of f at a. (1.7)

For the complex functions z 
→ z−s, we use the principal determination

z−s def= |z|−s e−is arg z (−π < arg z < +π) (1.8)

in the cut plane C \ (−∞, 0].
In any generalized zeta function,

Zeta′(s, a) def= ∂sZeta(s, a). (1.9)

1.3 The Poisson Summation Formula

We mention this formula here only for later reference and comparison pur-
poses. In its simplest form, it involves a dual pair of functions (h, ĥ) : R 
→ C

which are Fourier transforms of each other:

ĥ(u) =
1
2π

∫ ∞

−∞
h(τ) e−iτu dτ, h(τ) =

∫ ∞

−∞
ĥ(u) eiτu du. (1.10)

Under rather mild conditions, they satisfy the Poisson summation formula,

∑

k∈Z

h(k) ≡ 2π
∑

r∈Z

ĥ(2πr). (1.11)

Sufficient conditions for (1.11) are, e.g., that for some δ, ε > 0,

(i) ĥ(u) = O(|u|−1−δ) for u→ ±∞
(ii) h(τ) = O(|τ |−1−ε) for τ → ±∞
(iii) (Without loss of generality) the function h (hence ĥ) is even.

Proof. (Sketched). The function H(τ) def=
∑

k∈Z

h(τ + k) is periodic of pe-

riod 1, and has the Fourier series H̃(τ) =
∑

r∈Z

hr e2πirτ , where hr =
∫ 1

0
H(τ) e−2πirτ dτ ≡ 2π ĥ(2πr); both series above converge uniformly by

(ii), resp. (i), hence both their sums H(τ) and H̃(τ) are continuous func-
tions, implying H̃(τ) = H(τ) pointwise [89, Appendix 1]. Then (1.11) just
says H(0) ≡ H̃(0) (while (iii) simply endorses the even symmetry of the
summations in (1.11)). ��
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A basic function pair (in which z is an implied parameter) is

h(τ) def= 1
2

e−z |τ |, ĥ(u) ≡ 1
2π

z

z2 + u2
(Re z > 0). (1.12)

In this case, the summation formula (1.11) expresses the partial fraction
decomposition

1
ez −1

+
1
2

(

=
1

2 tanh z/2

)

≡ lim
R→+∞

+R∑

r=−R

1
z + 2πir

. (1.13)

Conversely, (1.13) gives back the general Poisson summation formula (1.11)
simply through integration against suitable test functions [16, Sect. 1].

1.4 Euler–Maclaurin Summation Formulae

These formulae serve to approximate sums by integrals. We will use a very
basic version but in several specific forms, which we then sketch.

For a differentiable function f of a real variable u, integration by parts
against the first Bernoulli polynomial B1(u) = u− 1

2 yields 1
2

[
f(0)+ f(1)

]
=

∫ 1

0
f(u) du +

∫ 1

0
B1(u)f ′(u) du. Now let K ∈ N and K ′ ∈ N ∪ {+∞} with

K ′ > K, and just here, {u} def= the fractional part of u. Then a simple
summation of the preceding formula over successive unit intervals gives

K′
∑

k=K

f(k)− 1
2

[
f(K) + f(K ′)

]−
∫ K′

K

f(u) du =
∫ K′

K

B1

({u})f ′(u) du def= R,

(1.14)

only assuming f and f ′ to be integrable over the interval under use. If more-
over f is a monotonic function, then the difference or remainder R is easily
bounded, resulting in

K′
∑

k=K

f(k)− 1
2

[
f(K)+ f(K ′)

]
=
∫ K′

K

f(u) du+R, |R| ≤ 1
2 |f(K)− f(K ′)|.

In particular if K ′ = +∞, then f(+∞) = 0, and

+∞∑

k=K

f(k) =
∫ +∞

K

f(u) du+ O(f(K)) for K → +∞. (1.15)
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1.5 Meromorphic Properties of Mellin Transforms

The representation of meromorphic functions as Mellin transforms, the result-
ing control over their principal parts and effective meromorphic continuation,
constitute the technical tool we will constantly invoke throughout. Therefore,
although the subject is classic [36, Chap. VII.6] [58] [112, Chap. III], we give
a detailed review of the results we will use.

For a locally integrable function f(x), x ∈ (0,+∞), its Mellin transform
can be formally defined as a function of s ∈ C, as

Mf(s) =
∫ ∞

0

f(x)x−s−1dx. (1.16)

We list some increasingly detailed analytic features in s for this transform.
Stage 1 (root). If for some −∞ ≤ μ < ν ≤ +∞,

f(x) = O(xν) (x→ 0+) and f(x) = O(xμ) (x→ +∞), (1.17)

then Mf is defined and holomorphic in the strip {μ < Re s < ν} (sim-
ply by the convergence properties of the integral (1.16) in that strip). Note:
Mf(s)→ 0 for s→∞ in the strip, by the Riemann–Lebesgue lemma.

Stage 2. If moreover, for some strictly descending sequence μ0 > μ1 >
· · · > μN with μ0 < ν and some sequence of polynomials {pn(y)}, the function
f obeys a large-x asymptotic estimate

f(x) ∼
N∑

n=0

pn(log x)xμn + O(xμ′
) for x→ +∞ with μ′ < μN ,

then Mf continues to a meromorphic function of s in the wider strip {μ′ <
Re s < ν}, where its only singularities are poles at s = μn, with principal

parts pn

(− d
ds
) 1
s− μn

for n = 0, 1, . . . , N .

Proof. Let gN(x) = f(x) −
N∑

n=0
pn(log x)xμn

∣
∣
{x>1}. Then gN satisfies all as-

sumptions of Stage 1 with μ′ in place of μ, hence MgN is holomorphic in
the wider strip; while

∫∞
1

[
pn(log x)xμn

]
x−s−1dx precisely yields the stated

principal part at s = μn by direct evaluation. ��

Stage 2’. If moreover the above sequences are infinite, μn ↓ −∞, and the
function f admits a complete large-x asymptotic expansion

f(x) ∼
∞∑

n=0

pn(log x)xμn for x→ +∞, (1.18)
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then all results of Stage 2 extend to N =∞ (simply by letting μ′ → −∞ in
the above): Mf is then meromorphic in the half-plane {Re s < ν}, and its
only singularities are

poles at s = μn, with principal parts pn

(
− d

ds

) 1
s− μn

for n ∈ N. (1.19)

In particular, in the absence of logarithmic terms (pn constant), the corre-
sponding pole at μn is simple, with residue pn.

Stage 3’. Independently of Stages 2, 2’, if now for some strictly ascending
sequence ν0 < ν1 < · · · with ν0 > μ and νn ↑ +∞, the function f admits a
complete small-x asymptotic expansion (here without logarithmic terms for
simplicity)

f(x) ∼
∞∑

n=0

fn x
νn for x→ 0+, (1.20)

then Mf continues to a meromorphic function in the half-plane {Re s > μ},
where its only singularities are

simple poles at s = νn, with residues (−fn) for n ∈ N (1.21)

(arguing just as above, but with the bounds x = 0 and +∞ interchanged
under s 
→ −s; hence the residues change sign).

Note that we could more generally have allowed, e.g., suitable complex
exponents μn and νn, logarithmic terms also in the expansion (1.20) at x = 0,
etc. Here we aim at economy, and refer to [58,76] for more general settings.

Effective continuation formulae. In Stages 2–3, now assuming all asy-
mptotic conditions to be differentiable, the Mellin representations can be
explicitly modified to perform an effective meromorphic continuation. The
trick consists of successive integrations by parts, watching the growth condi-
tions at the integration bound where divergence sets in.

We illustrate the idea in the case of Stage 2 (or 2’) assuming a simple pole
at s = μ0 (i.e., p0 = const.). We then have, in principle for μ0 < Re s < ν,

Mf(s) =
∫ ∞

0

[f(x)x−μ0 ]xμ0−s−1dx =
1

s− μ0

∫ ∞

0

[f(x)x−μ0 ]′ xμ0−sdx,

(1.22)

but the latter integral satisfies all conditions of Stage 1 with μ1 in place of
μ, so it defines an analytic function in the wider strip {μ1 < Re s < ν}; the
right-hand side thus continues Mf meromorphically in this strip (note how
the pole at s = μ0 and its residue [f(x)x−μ0 ]∞0 = p0 become explicit).
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Now in the newly accessed strip {μ1 < Re s < μ0}, the integration by
parts can be reversed, but the growth conditions produce a new result,

Mf(s) =
∫ ∞

0

[f(x)x−μ0 − p0]xμ0−s−1dx =
∫ ∞

0

[f(x)− p0 x
μ0 ]x−s−1dx,

(1.23)

upon which the whole process can then be restarted to pass the next pole μ1.
A multiple pole can likewise be passed by further iterated integrations by

parts; as we will not explicitly need to do this, we simply refer to [58] [106,
Appendix A].
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