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was published in 1917 c© Ann. Acad. Sci. Fennicae A10 Nr. 11

ISSN 1862-9113
ISBN 978-3-642-05202-6 e-ISBN 978-3-642-05203-3
DOI 10.1007/978-3-642-05203-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2009940924

Mathematics Subject Classification (2000): 11Mxx, 11-02, 11M26, 11M41, 11M36, 30B40, 30B50,
30E15, 41A60

c© Springer-Verlag Berlin Heidelberg 2010
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: SPi Publisher Services

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To Estelle
To Magali and Sandrine



Preface

In the Riemann zeta function ζ(s), the non-real zeros or Riemann zeros,
denoted ρ, play an essential role mainly in number theory, and thereby gen-
erate considerable interest. However, they are very elusive objects. Thus, no
individual zero has an analytically known location; and the Riemann Hy-
pothesis, which states that all those zeros should lie on the critical line, i.e.,
have real part 1

2 , has challenged mathematicians since 1859 (exactly 150 years
ago).

For analogous symmetric sets of numbers {vk}, such as the roots of a
polynomial, the eigenvalues of a finite or infinite matrix, etc., it is well known
that symmetric functions of the {vk} tend to have more accessible properties
than the individual elements vk. And, we find the largest wealth of explicit
properties to occur in the (generalized) zeta functions of the generic form

Zeta(s, a) =
∑

k(vk + a)−s

(with the extra option of replacing vk here by selected functions f(vk)).
Not surprisingly, then, zeta functions over the Riemann zeros have been

considered, some as early as 1917. What is surprising is how small the litera-
ture on those zeta functions has remained overall. We were able to spot them
in barely a dozen research articles over the whole twentieth century and in
none of the books featuring the Riemann zeta function. So the domain exists,
but it has remained largely confidential and sporadically covered, in spite of
a recent surge of interest.

Could it then be that those zeta functions have few or uninteresting prop-
erties? In actual fact, their study yields an abundance of quite explicit results.
The significance or usefulness of the latter may then be questioned: at this
moment, we can only answer that regarding the Riemann zeros, any explicit
result, even of a collective nature, is of potential value. Hence we may turn
over the idea that zeta functions over the Riemann zeros have stagnated be-
cause they were not so interesting: it could also be that those functions have
lagged behind in their use simply because their properties never came to be
fully displayed.

vii



viii Preface

So, the primary aim of this monograph is to fill that very specific but
definite gap, by offering a coherent and synthetic description of the zeta
functions over the Riemann zeros (and immediate extensions thereof); we
call them “superzeta” functions here for brevity. Modeled on special-function
handbooks (our main reference case being the Hurwitz zeta function ζ(s, a)),
this book centers on delivering extensive lists of concrete explicit properties
and tables of handy special-value formulae for superzeta functions, grouped
in three core chapters plus Appendix B (for the variant case built over zeros
of Selberg zeta functions). In that core, we mainly wish to provide readers,
assuming they have specific queries about superzeta functions, with a broad
panel of explicit answers. For such a purpose, the key contents of the book
may be just Chap. 5 (for initial orientation) and the final results, including 20
tables of special-value formulae. The rest of the text is rather backstage mate-
rial, showing justifications, perspective, and references for those end results.

For the reasons given above, we grade no individual result or formula as
more or less “useful,” but place them all on an equal footing. Our main
justification to date for tackling those superzeta functions is simply “Because
they’re there” (like a famous mountaineer’s reply).

We now outline the contents.
Two introductory chapters review our main analytical techniques: miscel-

laneous notation and tools, specially the Mellin transformation (Chap. 1), and
zeta-regularized products (Chap. 2). The next two chapters, still introductory,
survey the Riemann zeta function itself (and close kin, the Dirichlet beta and
Hurwitz zeta functions), so as to make the book reasonably self-contained and
tutorial. All review sections are, however, filtered hierarchically: the aspects
most central to us are exposed in detail, others more sketchily (and a few just
get mentioned). We do not try to compete with the many exhaustive trea-
tises on the Riemann zeta function; on the other hand, a shorter tutorial like
ours might suit readers seeking to learn about that function from a purely
analytical, as opposed to number-theoretical, angle.

The next two chapters begin to address the superzeta functions themselves:
Chap. 5 gives an overview, and the following one introduces Explicit Formulae
from number theory, which are then applied to superzeta functions (and
compared to Selberg trace formulae for spectral zeta functions).

Chapters 7–10 form the core of the study: three kinds of superzeta func-
tions are thoroughly described in the first three chapters, then extended to
zeros of more general L- or zeta-functions in Chap. 10; except for Chap. 9,
every core chapter (plus Appendix B for the Selberg case) culminates in de-
tailed Tables of special-value formulae.

To close, Chap. 11 shows one application of a superzeta function: a recently
obtained asymptotic criterion for the Riemann Hypothesis (based on the
Keiper–Li coefficients used by Li’s criterion). Finally, four Appendices treat
extra issues (A: some numerical aspects; B: extension to zeta functions over
zeros of Selberg zeta functions; C: on (log |ζ|)(2m+1)(1

2 ), etc.; D: an English
translation of Mellin’s seminal 1917 paper in German).



Preface ix

As we aim to throw light on an unpublicized subject on which this is
the very first book as far as we know, our text is kept concrete and ex-
pository through the first half at least, favoring elementary and economical
techniques. Exercises are also proposed in the form of peripheral results left
for the reader to derive. Our wish is to have built a compact reference guide,
a kind of “Everything you always wanted to know about superzeta func-
tions . . . ” handbook. For the sake of improvement, we gratefully welcome
any error reports from readers (and will post errata as needed).

This text is thus directed at readers interested in analytical aspects of
number theory. It ought to be accessible to mathematicians from the graduate
level; its main assumed background is in analysis (real and complex: series
and integrals, analytic and special functions, asymptotics).

************

For this study, I am primarily indebted to Prof. P. Cartier who initiated our
collaboration on trace formulae in the late 80s, ushering me into an area
entirely new to me; I express to him my gratitude for his stimulating help
and encouragement.

This book could never have been born without the moral support, the help,
and guidance from colleagues in the Institut de Physique Théorique (CEA-
Saclay), the Orsay area, and the Chevaleret campus (The Math. Departments
of the Paris 6–7 Universities); I can only thank them collectively here, but
most warmly, for their assistance.

My deepest thanks to my spouse Estelle, for her enduring patience, un-
derstanding, and support at all times but specially during the completion of
the writing which seemed to stretch forever; this strain was also shared from
a greater distance by our daughters Magali and Sandrine: my thanks go to
them too.

Saclay, July 2009 André Voros
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List of Special Symbols

Occasional, or inversely universal, symbols are not listed. (For us, sets like N,
R+ include 0, while N

∗, R
∗
+, etc., exclude it.) Appendix D is not included.

AS Area of a surface S
a Parity bit (0 or 1) for a Dirichlet character
B (logΞ)′(0) for the completed Riemann zeta function Ξ(·)
Bn Bernoulli numbers
Bn(·) Bernoulli polynomials
D(x) Zeta-regularized form of trivial factor G(x)
D(x) Zeta-regularized form of completed zeta- or L-function Ξ(x)
D(v) Zeta-regularized form of Ξ(1

2 + v1/2)
d Period (“modulus”) of a Dirichlet character
dK Discriminant of an algebraic number field K
En Euler numbers
FPx=x0f Finite part of a function f(x) at x0

g Genus (for a surface)
gn Stieltjes constants (in our normalization), see γn−1

gc
n Stieltjes cumulants (in our normalization), see γ̃n−1

G(·) Trivial (entire) factor in a zeta- or L-function
Hn Harmonic numbers
Kν(·) Modified Bessel function
L(·) Generic (“primary”) zeta- or L-function
Lχ(·) L-function for a Dirichlet character χ

� Length of a periodic geodesic �
Mf Mellin transform of a function f
N(T ) Counting function of (e.g., Riemann) zeros’ ordinates
N(T ) Trivial-factor contribution to N(T )
N0(T ) Asymptotic form of N(T ) (mod O(logT ))
nK Degree of an algebraic number field K
{p} Set of prime numbers
RH Riemann Hypothesis
Rm Residue of Z0(σ) at the pole σ = 1

2 −mRm(t) Residue of Z(σ | t) at the pole σ = 1
2 −m

xv



xvi List of Special symbols

S(T ) Contribution of ζ(x) to the function N(T ) for the Riemann zeros
{uk} Sequence {ρ (1− ρ) | Im ρ > 0} over the nontrivial zeros
V (·) Cramér’s function
Z(·) Generic Zeta-type function
Z(·, ·) Generic generalized zeta function
Z ′(·, ·) Derivative of Z(·, ·) in the first argument (the exponent)
Z(s | t) Generalized zeta function over the trivial zeros of a zeta function
Z (s | t) Superzeta function of first kind
Z0(s) Z (s | t = 0)
Z∗(s) Z (s | t = 1

2 )
Z(σ | t) Superzeta function of second kind
Z0(σ) Z(σ | t = 0)
Z∗(σ) Z(σ | t = 1

2 )
Z(s | τ) Superzeta function of third kind

β(·) Dirichlet beta-function
Γ (·) Euler Gamma function
γ Euler’s constant
γj Stieltjes constants, see our modified notation gj+1

γ̃j = ηj Stieltjes “cumulants”, see our modified notation gc
j+1

Δ(·) Generic Hadamard product
Δ0(·) Generic Weierstrass product
Δ∞(·) Generic zeta-regularized product
δ1 Discrepancy in Z (s | t) at s = 1
δj,k Kronecker delta
ζ(·) Riemann zeta function
ζ(·, ·) Hurwitz zeta function
ζK(·) Dedekind zeta function for an algebraic number field K
ζS(·) Selberg zeta function for a hyperbolic surface S
ηj Stieltjes “cumulants”, see γ̃j

Θ(·) Theta-type function
κk Wavenumbers ([eigenvalues− 1

4 ]1/2) for a hyperbolic 2D Laplacian
Λ(n) von Mangoldt function
λn Keiper–Li coefficients
μ0 Order (of a sequence, of an entire function)
Ξ(·) Completed zeta- or L-function
{�} Set of primitive oriented periodic geodesics on a surface
{ρ} Set of nontrivial zeros of a zeta- or L-function (e.g., Riemann)
{τk} Sequence {i−1(ρ− 1

2 ) | Im ρ > 0} over the nontrivial zeros
χ Generic Dirichlet character
χdK Kronecker symbol for the discriminant dK

ψ(·) Digamma function [Γ ′/Γ ](·)
Ω1, Ω2 t-domains for superzeta functions of first, second kind



Chapter 1

Introduction

1.1 Symmetric Functions

The non-real zeros of the Riemann zeta function

ζ(s) def=
∞∑

k=1

k−s (Re s > 1), (1.1)

called the Riemann zeros and usually denoted ρ, are most elusive quantities.
Thus, no individual Riemann zero is analytically known; and the Riemann
Hypothesis (RH): Re ρ = 1

2 (∀ρ), has stayed unresolved since 1859 [92].
For analogous finite or infinite sets of numbers {vk}, like the roots of a

polynomial, the eigenvalues of a matrix, or the discrete spectrum of a linear
operator, the symmetric functions of {vk} tend to be much more accessible.
Some common types of additive symmetric functions, to be denoted Theta,
Zeta and (logDelta) here, are formally given by

Theta(z) def=
∑

k e−zxk ,

Zeta(s) def=
∑

k x
−s
k ,

Delta(a) def=
∏

k(xk + a) or, if this diverges,

(log Delta)(m)(a) def= (−1)m−1(m− 1)!
∑

k(xk + a)−m for some m ≥ 1,

where xk = vk or some other function f(vk) (such that no xk = 0 and, e.g.,
Re xk → +∞). It is useful to allow at least the a-shift in this remapping,
thereby obtaining a two-variable or generalized zeta function, in analogy with
the Hurwitz function ζ(s, a) def=

∑∞
k=0 (k + a)−s:

Zeta(s, a) def=
∑

k(xk + a)−s. (1.2)

Here we think of s as the main argument, the variable in which analyticity
properties and special values are studied, and of a as an (auxiliary) shift

A. Voros, Zeta Functions over Zeros of Zeta Functions, Lecture Notes
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2 1 Introduction

parameter which adds flexibility; i.e., we view Zeta(s, a) as a parametric
family in the type Zeta(s) (accordingly denoting Zeta′(s, a) def= ∂sZeta(s, a)).

The gain with Zeta(s, a) is that it encompasses the last three types above:

Zeta(s) = Zeta(s, 0),

Delta(a) def= exp[−Zeta′(0, a)]

(when Delta is an infinite product, this is zeta-regularization, see Chap. 2),

(log Delta)(m)(a) = (−1)m−1(m− 1)! Zeta(m, a);

while the Zeta type is simply a Mellin transform of the Theta type, as

Zeta(s, a) =
1

Γ (s)

∫ ∞

0

Theta(z) e−za zs−1dz.

So, formally, all those types of symmetric functions look interchangeable
and their properties convertible from one to the other. However, experience
(especially from spectral theory) tells that zeta functions are those which
display the most explicit properties, reaching to computable special values
(values at integers) as in the case of ζ(s) itself.

Again from spectral techniques we borrow the idea that, besides the above
shift operation, nonlinear remappings xk = f(vk) may prove suitable before
building the symmetric functions. For instance, if {vk} is the spectrum of a
Laplacian on a manifold, both choices xk = vk and xk =

√
vk have their own

merits: on the circle, with the spectrum {n2}n∈Z, the resulting Theta-type
functions are, respectively, a Jacobi θ function and coth z/2, a generating
function for the Poisson summation formula as in (1.13); whereas on a com-
pact hyperbolic surface (normalized to curvature −1), an even better choice
than

√
vk is xk = (vk − 1

4 )1/2, as the Selberg trace formula shows. (This
formula expresses additive symmetric functions of precisely the latter xk as
dual sums carried by the periodic geodesics of the surface, see Sect. 6.3.1.)

It is then very natural to study symmetric functions of the Riemann zeros
in a similar manner, and this has happened. Indeed,

• Some zeta functions built over the Riemann zeros have appeared in a few
works, as early as 1917

• A universal tool exists to evaluate fairly general additive symmetric func-
tions of the Riemann zeros: the Guinand–Weil “Explicit Formulae.”

Still, we feel that our subject (zeta functions over the Riemann zeros) re-
mains far from exhausted. For one thing, the existing studies are surprisingly
few over a long stretch of time; they are neither systematic nor error-free, are
often unaware of one another, and none has made it to the classic textbooks
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on ζ(s); consequently there is no comprehensive, easily accessible treatment
of zeta functions over the Riemann zeros. Calculations in this field continue
to appear on a case-by-case basis.

Neither do the classic Explicit Formulae settle the issue of these zeta
functions as mere special instances: on the contrary, the most interesting
particular zeta functions over the Riemann zeros lie outside the standard
range of validity (i.e., of convergence) of those formulae.

In contrast, a dedicated study of these zeta functions uncovers a wealth
of explicit results, many of which were not given or even suspected in the
literature. The question of the importance or usefulness of those results will
not be addressed: the answer may lie in an undefined future.

There is no standardized terminology for zeta functions over zeros of zeta
functions. Chakravarty [17] used the name “secondary zeta functions,” but to
denote several Dirichlet series apart from ζ(x) itself which is the “primary”
zeta function (that which supplies its zeros). Here, to have a short and spe-
cific name, we choose to call “superzeta” functions all second-generation zeta
functions built over zeros of other, “primary”, zeta functions.

We continue this introduction with some essential notation, then we will
recall the most basic tools that will often serve later.

1.2 Essential Basic Notation

As a rule, we refer to [1, 33].
Bernoulli polynomials (definition by generating function):

z ezy

ez −1
≡

∞∑

n=0

Bn(y)
zn

n!
(B0(y) = 1, B1(y) = y − 1

2 , . . .). (1.3)

Bernoulli numbers: Bn ≡ Bn(0) or
z

ez −1
≡

∞∑

n=0

Bn
zn

n!

(B0 = 1, B1 = − 1
2 , B2 = 1

6 , . . . ; B2m+1 = 0 for m = 1, 2, . . .).

(1.4)

Euler numbers:
1

cosh z
≡

∞∑

n=0

En
zn

n!

(E0 = 1, E2 = −1, E4 = 5, . . . ; E2m+1 = 0 for m = 0, 1, . . .).

(1.5)

Digamma function ψ(x) and Euler’s constant γ:

ψ(x) def= [Γ ′/Γ ] (x); γ = −ψ(1) ≈ 0.5772156649 . (1.6)
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The finite part of a meromorphic function z 
→ f(z) at a pole a is

FPz=af(z) def= the constant term in the Laurent series of f at a. (1.7)

For the complex functions z 
→ z−s, we use the principal determination

z−s def= |z|−s e−is arg z (−π < arg z < +π) (1.8)

in the cut plane C \ (−∞, 0].
In any generalized zeta function,

Zeta′(s, a) def= ∂sZeta(s, a). (1.9)

1.3 The Poisson Summation Formula

We mention this formula here only for later reference and comparison pur-
poses. In its simplest form, it involves a dual pair of functions (h, ĥ) : R 
→ C

which are Fourier transforms of each other:

ĥ(u) =
1
2π

∫ ∞

−∞
h(τ) e−iτu dτ, h(τ) =

∫ ∞

−∞
ĥ(u) eiτu du. (1.10)

Under rather mild conditions, they satisfy the Poisson summation formula,

∑

k∈Z

h(k) ≡ 2π
∑

r∈Z

ĥ(2πr). (1.11)

Sufficient conditions for (1.11) are, e.g., that for some δ, ε > 0,

(i) ĥ(u) = O(|u|−1−δ) for u→ ±∞
(ii) h(τ) = O(|τ |−1−ε) for τ → ±∞
(iii) (Without loss of generality) the function h (hence ĥ) is even.

Proof. (Sketched). The function H(τ) def=
∑

k∈Z

h(τ + k) is periodic of pe-

riod 1, and has the Fourier series H̃(τ) =
∑

r∈Z

hr e2πirτ , where hr =
∫ 1

0
H(τ) e−2πirτ dτ ≡ 2π ĥ(2πr); both series above converge uniformly by

(ii), resp. (i), hence both their sums H(τ) and H̃(τ) are continuous func-
tions, implying H̃(τ) = H(τ) pointwise [89, Appendix 1]. Then (1.11) just
says H(0) ≡ H̃(0) (while (iii) simply endorses the even symmetry of the
summations in (1.11)). ��
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A basic function pair (in which z is an implied parameter) is

h(τ) def= 1
2

e−z |τ |, ĥ(u) ≡ 1
2π

z

z2 + u2
(Re z > 0). (1.12)

In this case, the summation formula (1.11) expresses the partial fraction
decomposition

1
ez −1

+
1
2

(

=
1

2 tanh z/2

)

≡ lim
R→+∞

+R∑

r=−R

1
z + 2πir

. (1.13)

Conversely, (1.13) gives back the general Poisson summation formula (1.11)
simply through integration against suitable test functions [16, Sect. 1].

1.4 Euler–Maclaurin Summation Formulae

These formulae serve to approximate sums by integrals. We will use a very
basic version but in several specific forms, which we then sketch.

For a differentiable function f of a real variable u, integration by parts
against the first Bernoulli polynomial B1(u) = u− 1

2 yields 1
2

[
f(0)+ f(1)

]
=

∫ 1

0
f(u) du +

∫ 1

0
B1(u)f ′(u) du. Now let K ∈ N and K ′ ∈ N ∪ {+∞} with

K ′ > K, and just here, {u} def= the fractional part of u. Then a simple
summation of the preceding formula over successive unit intervals gives

K′
∑

k=K

f(k)− 1
2

[
f(K) + f(K ′)

]−
∫ K′

K

f(u) du =
∫ K′

K

B1

({u})f ′(u) du def= R,

(1.14)

only assuming f and f ′ to be integrable over the interval under use. If more-
over f is a monotonic function, then the difference or remainder R is easily
bounded, resulting in

K′
∑

k=K

f(k)− 1
2

[
f(K)+ f(K ′)

]
=
∫ K′

K

f(u) du+R, |R| ≤ 1
2 |f(K)− f(K ′)|.

In particular if K ′ = +∞, then f(+∞) = 0, and

+∞∑

k=K

f(k) =
∫ +∞

K

f(u) du+ O(f(K)) for K → +∞. (1.15)
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1.5 Meromorphic Properties of Mellin Transforms

The representation of meromorphic functions as Mellin transforms, the result-
ing control over their principal parts and effective meromorphic continuation,
constitute the technical tool we will constantly invoke throughout. Therefore,
although the subject is classic [36, Chap. VII.6] [58] [112, Chap. III], we give
a detailed review of the results we will use.

For a locally integrable function f(x), x ∈ (0,+∞), its Mellin transform
can be formally defined as a function of s ∈ C, as

Mf(s) =
∫ ∞

0

f(x)x−s−1dx. (1.16)

We list some increasingly detailed analytic features in s for this transform.
Stage 1 (root). If for some −∞ ≤ μ < ν ≤ +∞,

f(x) = O(xν) (x→ 0+) and f(x) = O(xμ) (x→ +∞), (1.17)

then Mf is defined and holomorphic in the strip {μ < Re s < ν} (sim-
ply by the convergence properties of the integral (1.16) in that strip). Note:
Mf(s)→ 0 for s→∞ in the strip, by the Riemann–Lebesgue lemma.

Stage 2. If moreover, for some strictly descending sequence μ0 > μ1 >
· · · > μN with μ0 < ν and some sequence of polynomials {pn(y)}, the function
f obeys a large-x asymptotic estimate

f(x) ∼
N∑

n=0

pn(log x)xμn + O(xμ′
) for x→ +∞ with μ′ < μN ,

then Mf continues to a meromorphic function of s in the wider strip {μ′ <
Re s < ν}, where its only singularities are poles at s = μn, with principal

parts pn

(− d
ds
) 1
s− μn

for n = 0, 1, . . . , N .

Proof. Let gN(x) = f(x) −
N∑

n=0
pn(log x)xμn

∣
∣
{x>1}. Then gN satisfies all as-

sumptions of Stage 1 with μ′ in place of μ, hence MgN is holomorphic in
the wider strip; while

∫∞
1

[
pn(log x)xμn

]
x−s−1dx precisely yields the stated

principal part at s = μn by direct evaluation. ��

Stage 2’. If moreover the above sequences are infinite, μn ↓ −∞, and the
function f admits a complete large-x asymptotic expansion

f(x) ∼
∞∑

n=0

pn(log x)xμn for x→ +∞, (1.18)
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then all results of Stage 2 extend to N =∞ (simply by letting μ′ → −∞ in
the above): Mf is then meromorphic in the half-plane {Re s < ν}, and its
only singularities are

poles at s = μn, with principal parts pn

(
− d

ds

) 1
s− μn

for n ∈ N. (1.19)

In particular, in the absence of logarithmic terms (pn constant), the corre-
sponding pole at μn is simple, with residue pn.

Stage 3’. Independently of Stages 2, 2’, if now for some strictly ascending
sequence ν0 < ν1 < · · · with ν0 > μ and νn ↑ +∞, the function f admits a
complete small-x asymptotic expansion (here without logarithmic terms for
simplicity)

f(x) ∼
∞∑

n=0

fn x
νn for x→ 0+, (1.20)

then Mf continues to a meromorphic function in the half-plane {Re s > μ},
where its only singularities are

simple poles at s = νn, with residues (−fn) for n ∈ N (1.21)

(arguing just as above, but with the bounds x = 0 and +∞ interchanged
under s 
→ −s; hence the residues change sign).

Note that we could more generally have allowed, e.g., suitable complex
exponents μn and νn, logarithmic terms also in the expansion (1.20) at x = 0,
etc. Here we aim at economy, and refer to [58,76] for more general settings.

Effective continuation formulae. In Stages 2–3, now assuming all asy-
mptotic conditions to be differentiable, the Mellin representations can be
explicitly modified to perform an effective meromorphic continuation. The
trick consists of successive integrations by parts, watching the growth condi-
tions at the integration bound where divergence sets in.

We illustrate the idea in the case of Stage 2 (or 2’) assuming a simple pole
at s = μ0 (i.e., p0 = const.). We then have, in principle for μ0 < Re s < ν,

Mf(s) =
∫ ∞

0

[f(x)x−μ0 ]xμ0−s−1dx =
1

s− μ0

∫ ∞

0

[f(x)x−μ0 ]′ xμ0−sdx,

(1.22)

but the latter integral satisfies all conditions of Stage 1 with μ1 in place of
μ, so it defines an analytic function in the wider strip {μ1 < Re s < ν}; the
right-hand side thus continues Mf meromorphically in this strip (note how
the pole at s = μ0 and its residue [f(x)x−μ0 ]∞0 = p0 become explicit).
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Now in the newly accessed strip {μ1 < Re s < μ0}, the integration by
parts can be reversed, but the growth conditions produce a new result,

Mf(s) =
∫ ∞

0

[f(x)x−μ0 − p0]xμ0−s−1dx =
∫ ∞

0

[f(x)− p0 x
μ0 ]x−s−1dx,

(1.23)

upon which the whole process can then be restarted to pass the next pole μ1.
A multiple pole can likewise be passed by further iterated integrations by

parts; as we will not explicitly need to do this, we simply refer to [58] [106,
Appendix A].



Chapter 2

Infinite Products and Zeta-Regularization

Our purpose here is to review some symmetric-function techniques suitable
for certain divergent sequences {xk}k=1,2,..., i.e., infinite (real or complex)
sequences with |xk| ↑ ∞. (The xk are counted with multiplicities if any.) We
specifically wish to control their symmetric functions of the Zeta and Delta
types as sketched in Sect. 1.1. We will elaborate on a scheme initiated for
positive eigenvalue spectra in [104], where Theta-type functions provided a
natural and most convenient base. For sequences such as the Riemann ze-
ros, however, Theta-type functions exhibit less accessible and rather intricate
properties, whereas Delta-type functions are openly present (as the “trivial”
Gamma factors) and thus provide a privileged gateway; at the same time, a
setting which requires positive sequences is inadequate. We must then adapt
[104] to a broader perspective better adjusted to the idiosyncrasies of se-
quences like the Riemann zeros, and favoring conditions placed on Delta-type
functions. The latter option, however, lengthens some intermediate calcula-
tions, so we emphasize that these are totally elementary (nineteenth-century
mathematics!), all the more that a parameter μ0, the order of the Delta func-
tion, remains low; and only μ0 = 1 and 1

2 will serve for the Riemann zeros.
Our goal here is to output a toolbox of basic special-value formulae that are

general enough and systematic yet economical, being tailored to our current
final needs. Alternatively, we refer to [32,53,60,61,90] for very powerful and
general, but more elaborate, frameworks. For greater convenience, Sect. 2.6
groups the main practical results to be exported for later use. Thus, the bulk
of this chapter may be skipped on first reading. (Inversely, it can serve as a
tutorial for zeta-regularization alone.)

2.1 Informal Discussion

We begin with a heuristic description of our basic targets for symmetric
functions of infinite sequences {xk} when |xk| ↑ ∞.

First, we want such a sequence to admit a zeta function Z(s | {xk}) def=∑
k x

−s
k (shortened to Z(s) except when the sequence may vary). We will need

A. Voros, Zeta Functions over Zeros of Zeta Functions, Lecture Notes
of the Unione Matematica Italiana 8, DOI 10.1007/978-3-642-05203-3 2,
c© Springer-Verlag Berlin Heidelberg 2010
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10 2 Infinite Products and Zeta-Regularization

this function Z(s) to be analytic in a complex neighborhood of s = 0, but its
defining series

∑
k x

−s
k will converge at best in some half-plane {Re s > μ0}

with 0 < μ0 < +∞; we then ask Z(s) to admit a meromorphic extension to
the whole s-plane, with computable poles (to make way for some explicit an-
alytical continuation methods). We at once assume that

∑
k |xk|−μ0 diverges

because it will always be the case for us, and otherwise extra subtleties arise.
Next, we want to have a Delta-type function: formally, Δ(x | {xk}) =

Δ(x) =
∏

k(x + xk) like a characteristic polynomial, but this nice intrin-
sic product is well defined as it stands for finite sequences only. In the case
of a diverging sequence as above, only a modified infinite product converges
(everywhere), the Weierstrass product

Δ0(x)
def=

∞∏

k=1

(
1 +

x

xk

)
exp

{
[μ0]∑

m=1

1
m

(
− x

xk

)m
}

(∀x ∈ C), (2.1)

with the usual notation [μ] def= the integer part of μ. Thus Δ0 is an entire
function, having {−xk} as its set of zeros; but conversely, the latter features
are too general to select Δ(x) = Δ0(x) uniquely.

To narrow the ambiguity on Δ we note that Δ0(x) is an entire function of
finite order μ0 [10, Theorem 2.6.5]. This discussion will then largely borrow
from the theory of such functions and their parametrization [10, Chap. 2]
[26, Sect. 11] [89, Appendix 5]. We recall that in full generality, the order of
an entire function f(x) is μ0

def= inf{μ ∈ R | f(x) = O(e|x|
μ

)}, with μ0 > 0
for all but polynomial f ; thus here for Δ0(x), 0 < μ0 <∞.

A central result is that any entire function of order μ0 with this prescribed
set of zeros {−xk} has the Hadamard product form:

Δ(x) = eP (x)
∞∏

k=1

(
1 +

x

xk

)
exp

{
[μ0]∑

m=1

1
m

(
− x

xk

)m
}

(∀x ∈ C) (2.2)

where P (x) is some polynomial P of degree ≤ [μ0]. From now on, Δ(x) will
then be the general function (2.2) of order μ0, with prescribed zeros {−xk}
but P unspecified.

Spaces of entire functions have a basic symmetry, translations in C. Now,
finite products Δf(x | {xk}) =

∏K
1 (x+ xk) are manifestly covariant:

Δf(x | {xk + y}) ≡ Δf(x + y | {xk}) (∀y ∈ C),

but not the Weierstrass product inside (2.2). Indeed, Δ0(x) as in (2.1) is also
specified by a particular Taylor series at x = 0 for its logarithm,

− logΔ0(x) =
∞∑

m=m0

Z(m)
m

(−x)m (convergent for |x| < inf
k
|xk|), (2.3)
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where m0
def= [μ0] + 1 (= the least integer > μ0); i.e., (2.4)

(logΔ0)(m)(0) = (−1)m−1(m− 1)!Z(m) for m > μ0 (2.5)
= 0 for m = 0, 1, . . . , [μ0]. (2.6)

More generally, the polynomial P in (2.2) identifies with the Taylor expansion
to order [μ0] of logΔ at x = 0. The vanishing conditions (2.6) mean P ≡ 0,
thus specifying Δ0 in particular, but they are distinguishing one base point
in C, here x = 0, and this breaks translation invariance. It is thus important
to recover this symmetry in (2.2).

Thus, the following related formula regains convergence and covariance:

(logΔ)(m0)(x) = (−1)m0−1(m0 − 1)!
∑

k

(x+ xk)−m0 ; (2.7)

inversely, (logΔ)(m0) can be seen as the basic intrinsic function, yielding
logΔ as its general m0-th primitive (only a function mod P ); whereas the
particular primitive

(logΔ0)(x) =
[∫ x

0

]m0

(logΔ)(m0), (2.8)

cannot be fully covariant since it depends on a lower bound at each integration
step. Still, if Δ0(x) continues here to mean Δ0(x | {xk}), then (2.7) implies

(logΔ0)(m0)(x | {xk + y}) = (logΔ0)(m0)(x+ y),
i.e., Δ0(x | {xk + y}) = ePy(x)

Δ0(x+ y) (2.9)
with Py(x) = a polynomial in x of degree ≤ [μ0].

Translation covariance is thus achieved, but through a multiplier ePy ; the
conditions (2.6) then fix the polynomial Py(x), as

log Δ0(x | {xk + y})
Δ0(x+ y)

= Py(x) = −
m0∑

m=0

1
m!

(logΔ0)(m)(y)xm. (2.10)

Thus, not only Py �≡ 0, but its coefficients look like (and turn out to be)
transcendental functions in the shift parameter y.

Further conditions are now required to gain some effective control over the
meromorphic properties of Z(s). At this level, details may have to be fine-
tuned to each context. While there exist very powerful general formalisms as
already mentioned, here we choose to stay fairly close to the setting of the
Riemann zeros, so as to quickly reach our final applications.
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2.2 A Class of Eligible Sequences {xk}

So, we consider infinite complex sequences {xk}k=1,2,... such that xk �= 0 (∀k),
|xk| ↑ ∞, and | arg xk| < π − φ0 for some φ0 > 0. We now deem such a
sequence eligible of order μ0 for some μ0 ∈ (0,+∞) if it satisfies two (non-
independent) conditions.
(1) As in Sect. 2.1, the series

∞∑

k=1

|xk|−s converges if (and only if) Re s > μ0, (2.11)

allowing us to define the zeta function of the sequence, by the Dirichlet series

Z(s | {xk}) ≡ Z(s) def=
∞∑

k=1

x−s
k for Re s > μ0. (2.12)

(2) Moreover, for some real sequence μ0 > μ1 > · · · > μn ↓ −∞ (with μ0 as
above) and some angle φ1 ∈ (0, φ0), the function logΔ0(x) defined through
(2.1) obeys a complete large-x asymptotic expansion of the form [106]

logΔ0(x) ∼
∞∑

n=0

(ãμn log x+ aμn)xμn , x→∞, | arg x| < φ1 , (2.13)

uniformly in arg x (to make (2.13) repeatedly differentiable [35, Sect. 1.6]).
Equation (2.13) can be called a (generalized) Stirling expansion: in the

prototypical case of the integer sequence {xk = k} of order μ0 = 1, (2.13)
amounts to the classic Stirling formula for − logΓ (1 + x), as reviewed in
Sect. 3.6. (Higher powers of log x could be allowed, as in Sect. 1.5, but they
would unnecessarily complicate both the treatment and the results.)

We will systematically extend the range of all coefficients like ãμn , aμn

having general (real-valued) indices by the convention

ãμ, aμ
def= 0 for arbitrary μ ∈ (−∞, μ0) \ {μn}. (2.14)

2.3 Meromorphic Continuation of the Zeta Function

We can now begin to use the results of Sect. 1.5.
At the root, the estimates (2.6) and (2.13) together make the following

Mellin transform of the type (1.16) well defined: for m0
def= [μ0]+1 as in (2.4),

I(s) def=
∫ ∞

0

logΔ0(y) y−s−1dy (μ0 < Re s < m0). (2.15)
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Then on the one hand, exploiting Sect. 1.5 thoroughly, I(s) continues to a
meromorphic function in all of C where its only singularities are:

• Due to (2.13), at most double poles at s = μn, with the principal parts

I(μn + ε) = ãμn ε
−2 + aμn ε

−1 + O(1)ε→0 (2.16)

• And due to (2.3), at most simple poles at the integers s = m ≥ m0, with
residues (−1)mZ(m)/m.

On the other hand, repeated integrations by parts upon (2.15) lead to

I(s) =
(−1)m0Γ (−s)
Γ (m0 − s)

∫ ∞

0

(logΔ0)(m0)(y) ym0−s−1dy (μ0 < Re s < m0);

(2.17)
and if here we substitute (2.7) for (logΔ0)(m0)(y) and integrate term by term
relying on

∫∞
0 (1 + y)−(z+w)yz−1dy = Γ (z)Γ (w)/Γ (z + w), we find

I(s) ≡ −Γ (−s)Γ (m0)
Γ (m0 − s)

∑

k

∫ ∞

0

(y + xk)−m0ym0−s−1dy ≡ · · · ≡ π

s sinπs
Z(s).

But since I(s) is meromorphic in all of C, the reverse formula

Z(s) ≡ s sinπs
π

I(s) (μ0 < Re s < m0) (2.18)

actually extends to the whole plane; it then continues Z(s) from the half-
plane {Re s > μ0} as in (2.12) to a meromorphic function in all of C, with
singularities explicitly induced by those of I(s) which we just described.

As the main qualitative consequence, the zeros of the prefactor (s sinπs)
counteract all the poles of I(s) located at integers, implying that:

• At any integer μn = m, by (2.16), Z(s) has

at most a simple pole, of residue (−1)mmãm , (2.19)
with FPs=mZ(s) = (−1)m(ãm +mam) (2.20)

(and likewise for arbitrary integers m < μ0, under the convention (2.14))
• At integers s > μ0, since all the poles of I(s) are simple, Z(s) is devoid of

poles (indeed, we know it is analytic for Re s > μ0)
• Last but not least, s = 0 is a regular point for Z(s) thanks to the double

zero of the prefactor (s sinπs)/π there, with (2.16) implying

Z(ε) = ã0 + a0ε+ O(ε2)ε→0 ⇒ Z(0) = ã0, Z ′(0) = a0 (2.21)

(again with the convention (2.14) if 0 /∈ {μn}).
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Summary

All the poles of Z(s) lie in the single descending sequence {μn}; they are at
most double in general, simple at integers, and definitely absent at s = 0
(a regular point); the values Z(m) for integer m ≤ μ0, and Z ′(0) have closed
expressions in terms of the generalized Stirling expansion coefficients.

2.4 The Generalized Zeta Function

All previous considerations about Z(s) transfer to shifted sequences
{xk + x} up to reasonable limitations on the shift parameter x (e.g.,
(x+ xk)/∈ R− (∀k)).

Thus, for an eligible sequence {xk} as in Sect. 2.2, the generalized zeta
function

Z(s, x) def=
∑

k

(xk + x)−s (Re s > μ0) (2.22)

satisfies:

• The first eligibility condition (2.11), with μ0 unchanged
• The obvious but essential functional relation

∂xZ(s, x) = −sZ(s+ 1, x); (2.23)

• Explicit covariance, since the identity Z(s,X |{xk + x}) ≡ Z(s,X+
x | {xk}), obviously obeyed for Re s > μ0, then extends to all s by mero-
morphic continuation.

The other eligibility condition (2.13) asks for a large-X expansion like

logΔ0(X | {xk + x}) ∼
∑

μ

[
ãμ(x) logX + aμ(x)

]
Xμ, (2.24)

but thanks to the covariance identity (2.10) with Px(X) polynomial in X ,

logΔ0(X | {xk + x}) ≡ Px(X) + logΔ0(X + x | {xk}); (2.25)

then this last term can have its large-(X + x) expansion (2.13) reordered
in powers of X , and the form (2.24) is obtained; this operation, which may
output a modified sequence {μ} �= {μn} (but μ0 is invariant), is algebraic at
any order, therefore:

aμ(x) for μ /∈ N, and all ãμ(x) are polynomial in x;
but am(x) for m = 0, 1, . . . , [μ0] are transcendental in x

(2.26)
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as the polynomial Px(X) adds a transcendental dependence on x, by (2.10).
This dichotomy will visibly affect all concrete outputs, see Sect. 2.6.3.

Then, all previous results about Z(s) = Z(s, 0) such as (2.19)–(2.21) ex-
tend to Z(s, x), just by replacing ãm, am by ãm(x), am(x) respectively.

In Sect. 2.3, Z(s) was derived from the function Δ0; it is now desirable
to express Z(s, x) likewise, since Delta-type functions will provide our main
input data in applications.

At integer s, just by inspection, (2.7) and its higher derivatives yield

Z(m,x) ≡ (−1)m

(m− 1)!
(− logΔ)(m)(x) for integer m ≥ m0 (2.27)

valid for general Δ, which includes Δ0 (cf. (2.5) for x = 0).
For more general s, we combine (2.18) not with the integral formula (2.15),

but with (2.17) which uses the intrinsic covariant function logΔ
(m0)
0 ; so, we

may simply shift the whole formula by x, with the result:

Z(s, x) =
(−1)m0

Γ (s)Γ (m0−s)
∫ ∞

0

(− logΔ0)(m0)(x+ y) ym0−s−1dy
(μ0 < Re s < m0), (2.28)

again also valid with general Δ in place of Δ0. (Remark. Symbolically, this
amounts to extending (2.27) to derivatives of non-integer order, as Z(s, x) ≡
Γ (s)−1(−d/dx)s(− logΔ0)(x).)

2.5 The Zeta-Regularized Product

One can now define
∏

k(x+ xk) for an infinite eligible sequence, as

Δ∞(x) def= exp
[−Z ′(0, x)

]
( ′ ≡ ∂/∂s, as in (1.9)). (2.29)

Indeed this straightforwardly works for a finite sequence {xk}, and it pre-
scribes a finite value in any case since we forced Z(s, x) to be regular at
s = 0 : Δ∞(x) is called the zeta-regularized form for the products Δ(x).

However, the prescription (2.29) is an impractical one as it needs analytical
continuation (from Re s > μ0 > 0 to s = 0), which is not a constructive
operation. Eligibility conditions, like here or in [104], are precisely tools to
pin down Δ∞(x) quite concretely.

First and foremost, although this does not obviously show on its definition,
Δ∞(x) indeed belongs to the family (2.2), i.e., it satisfies

Δ∞(x) ≡ e−P∞(x)
Δ0(x) for a polynomial P∞(x) of degree ≤ μ0. (2.30)



16 2 Infinite Products and Zeta-Regularization

Proof. The definition (2.29) and functional relation (2.23) imply, for m ∈ N,

(− logΔ∞)(m)(x) = (−1)m∂s s(s+ 1) . . . (s+m− 1)Z(s+m,x)|s=0. (2.31)

Now, ∂s sf(s)|s=0 ≡ FPs=0 f for a function f(s) having at most a simple
pole at s = 0, and the functions Z(s+m,x) are precisely like that, by (2.19).
So, the previous formula reduces for m > 0 to

(− logΔ∞)(m)(x) = (−1)mFPs=m

[
(s−m+ 1) . . . (s− 1)Z(s, x)

]
, (2.32)

and at the regular point s = m0 (= [μ0] + 1), this boils down to

(− logΔ∞)(m0)(x) = (−1)m0(m0 − 1)!Z(m0, x) (2.33)

≡ (− logΔ)(m0)(x) by identification with (2.27). ��
In other words, Δ∞(x) is a particular Δ function; but one which has also
inherited manifest covariance (under translations) from Z(s, x) itself, by
its very definition (2.29). A serious limitation, however, is that this zeta-
regularization prescription will be stable under no other change of x-variable
than a pure translation (not even x 
→ λx).

Next, the yet unknown polynomial P∞ can be characterized in two inde-
pendent ways, where the harmonic numbers Hn will appear:

Hn
def=

n∑

j=1

1
j

= ψ(n+ 1)− ψ(1) (n ∈ N) (H0 = 0). (2.34)

• Taking successive logarithmic derivatives of (2.30) at x = 0 and enforcing
(2.6), we get

P∞(x) =
[μ0]∑

m=0

(− logΔ∞)(m)(0)
xm

m!
. (2.35)

If, in analogy with (2.5) for logΔ0, we pose

Z∞(m) def=
(−1)m

(m− 1)!
(− logΔ∞)(m)(0) for m ∈ N

∗, (2.36)

(Z∞(m) ≡ Z(m) if m ≥ m0),

then P∞(x) = P∞(0)+
[μ0]∑

m=1

Z∞(m)
m

(−x)m gets specified via (2.31)–(2.32):

P∞(0) = Z ′(0) (2.37)

Z∞(m) =
1

(m− 1)!
FPs=m

[ Γ (s)
Γ (s−m+ 1)

Z(s)
]

(m > 0)

= FPs=mZ(s) + (−1)mmHm−1 ãm (2.38)
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= Z(m) if Z(s) is regular at m (⇐⇒ ãm = 0). (2.39)

E.g., Z∞(1) ≡ FPs=1Z(s) (because H0 = 0). (2.40)

Note that P∞(x) nicely completes the Taylor series (2.3), to give

− logΔ∞(x) = Z ′(0) +
∞∑

m=1

Z∞(m)
m

(−x)m (|x| < inf
k
|xk|).

(2.41)
• A more tangible specification of P∞ involves the large-x (generalized Stir-

ling) expansion of logΔ∞(x).
By substitution into (2.37) and (2.38) of the respective values (2.21) for
Z ′(0) and (2.20) for FPs=mZ(s), the previous results become

Δ∞(x) ≡ e−P∞(x)
Δ0(x), P∞(x) =

[μ0]∑

m=0

(Hm ãm + am)xm. (2.42)

In turn, this and (2.13) imply that the large-x expansion assumes a special
(“canonical”) form in the case of logΔ∞(x):

logΔ∞(x) ∼
[μ0]∑

m=0

ãm(log x−Hm)xm +
∑

μn /∈N

(ãμn log x+ aμn)xμn ,

(2.43)
in which powers xm for m ∈ N are banned in free form (i.e., when
not paired with xm log x exactly as shown). Inversely, given an eligible
sequence {xk}, enforcing this restriction fixes the polynomial P∞ and
thereby Δ∞(x) itself.

This result can be understood in two other ways.

• By brute force: The initial asymptotic information (2.13) about logΔ0(x),
put into the integral representation (2.28) of Z(s, x), can generate a large-x
expansion for the latter (exercise!):

Z(s, x) ∼ − x−s

Γ (s)

∞∑

n=0

[(
ãμn∂μ + aμn

)Γ (s− μ)
Γ (−μ)

xμ

]

μ=μn

, (2.44)

on which the formal evaluation of −Z ′(0, x) precisely restores (2.43) (here,
the free powers xμ get killed by the pole of Γ (−μ) when μ ∈ N).

• By symbolic integration [104]: In order to continue Z(s, x) toward s = 0,
one idea is to integrate Z(m0, x) m0 times using (2.23) backwards; the
integration bound is then found by reference to m > m0, as

(logΔ)(m−1)(x) =
∫ x

+∞
(logΔ)(m)(x′) dx′. (2.45)
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This integral naturally diverges as soon as m − 1 < μ0, but it can
nevertheless be defined on the asymptotic terms of (logΔ)(m)(x) by, e.g.,∫ x

+∞ x′ μdx′ = xμ−1/(μ − 1), followed by analytical continuation and/or
differentiation in μ, plus finite-part extraction if needed. It is then easily
verified that in degrees n ∈ N, only canonical (allowed) terms xn(log x −
Hn) emerge, e.g.,

∫ x

+∞ x′ −1dx′ = log x,
∫ x

+∞ log x′dx′ = x (log x − 1), etc.
Consequently, the canonical nature of the series (2.43) symbolically means
[104]

logΔ∞(x) =
[∫ x

+∞

]m0

(logΔ)(m0), (2.46)

a covariant formula, to be compared to (2.8) for the Weierstrass product.
Warning: such a symbolic integration does not follow the usual change-of-
variable rules!

2.6 Practical Results

Our strategy is to harvest explicit properties of the zeta function Z(s, x) from
our assumed knowledge of a Delta function Δ(x) and its properties. Here we
recapitulate the facts gathered in this chapter that serve that purpose.

2.6.1 Zeta-Regularization: a Zeta-Free Recipe

The definition (2.29) of the zeta-regularized form, Δ∞(x) def= exp
[−Z ′(0, x)

]
,

goes in the wrong direction for us: it precisely uses a zeta function that we
aim at understanding (plus analytical continuation in totally abstract form).

Fortunately, given an eligible sequence {xk} of order μ0 in the sense of
Sect. 2.2, and an infinite Hadamard product Δ(x | {xk}) as in (2.2), with a
known (generalized) Stirling expansion (2.13), we now basically have a me-
chanical zeta-regularization rule. It suffices to reexpand any terms of (2.13)
having μn = m ∈ N (in finite number since m ≤ [μ0]) over the basis
{xm(log x−Hm), xm}, as

logΔ(x) ∼
[μ0]∑

m=0

(ãm(log x−Hm)+bm)xm +
∑

μn /∈N

(ãμn log x+aμn)xμn (2.47)

(recalling that Hm =
∑m

j=1 1/j are the harmonic numbers). Now (2.43)
demonstrates that in the zeta-regularized form, terms which remain in (2.47)
with coefficients denoted ãμ, aμ are allowed: namely, all terms with μn /∈ N,
and, for μn ∈ N,



2.6 Practical Results 19

· · · , ã2 x
2(log x− 3

2 ), ã1 x(log x− 1), ã0 log x ; (2.48)

while all terms with bm are banned, namely

bm xm for all m ∈ N, including additive constants (b0). (2.49)

Consequently, the zeta-regularized form has to be, simply (cf. (2.42)),

Δ∞(x) ≡ exp
[

−
[μ0]∑

m=0

bmx
m

]

Δ(x), bm = Hm ãm + am. (2.50)

With Δ∞(x) thus determined, a shifted large-x expansion of logΔ∞ yields

logΔ∞(x+ y) ∼
[μ0]∑

m=0

ãm(y) (log x−Hm)xm +
∑

μ/∈N

[
ãμ(y) log x+ aμ(y)

]
xμ,

(2.51)
in which all coefficients are now algebraically computable polynomials of y.

Such a covariant shift performed on all the above results (2.37)–(2.41)
yields our final special-value formulae in their most general and useful form:

− logΔ∞(y) = Z ′(0, y) (2.52)
(−1)m−1

(m− 1)!
(logΔ∞)(m)(y) = Z∞(m, y) (m = 1, 2, . . .), (2.53)

with

Z∞(1, y) ≡ FPs=1Z(s, y), (2.54)
Z∞(m, y) = FPs=mZ(s, y) + (−1)mmHm−1 ãm(y) (m ≥ 1) (2.55)

≡ Z(m, y) if Z(s, y) is regular at s = m. (2.56)

Our main application, concerning the Riemann zeros, only uses μ0 ≤ 1,
in which case the fully general formula (2.55) can be skipped as this makes
no difference. However, Appendix B (devoted to the zeros of Selberg zeta
functions) makes a brief incursion into μ0 = 2 territory, where that omission
would cause fatal errors.

2.6.2 A Subclass: “Theta-Eligible” Sequences

Some auxiliary sequences to be needed alongside the Riemann zeros are
specially simple (and positive) eligible sequences {xk} (called “admissible”
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sequences in [104]): they allow easier direct control through their Theta
functions Θ(z), under the following two assumptions:

(1) Θ(z) def=
∞∑

k=1

e−zxk converges for Re z > 0; (2.57)

(2) a complete small-z asymptotic expansion can be written for Θ(z),

Θ(z) ∼
∞∑

n=0

cμnz
−μn for z → 0+, | arg z| < θ; (2.58)

the sequence {μn} is as in Sect. 2.2, and 0 < θ ≤ 1
2π. In linear spectral prob-

lems of physics, Θ(z) is the trace of the heat operator (“partition function”).
Certain complex sequences {xk} can qualify as well [53, 60, 61, 90]. For the
Riemann zeros themselves, however, the simplest Θ(z) would be V (iz) where
V is Cramér’s function (5.14). Now we will see in Sect. 5.4 that the singular
structure of V (z) about the origin is only partially and indirectly available,
and much less simple than (2.58). This makes us unwilling to choose V (z) as
principal symmetric function over the Riemann zeros.

Sequences that are theta-eligible as above gain simpler formulae.
The zeta function is more readily accessed than in Sect. 2.3, as

Z(s) ≡ 1
Γ (s)

∫ ∞

0

Θ(z) zs−1dz (Re s > μ0). (2.59)

By Sect. 1.5 Stage 3’ (but with s 
→ −s), Z(s) is meromorphic in C, and
its singularities are at most simple poles at the μn, with residues cμn/Γ (μn);
this implies that all the negative integers including 0 are regular points which
give the special values

Z(−n) = (−1)nn! c−n (∀n ∈ N) (with the convention (2.14)). (2.60)

Likewise,

Z(s, x) ≡ 1
Γ (s)

∫ ∞

0

Θ(z) e−xz zs−1dz (Re s > μ0, | argx| < 1
2π + θ),

(2.61)
from which a direct calculation of the large-x expansion of −Z ′(0, x)
yields [104]

logΔ∞(x) ∼
[μ0]∑

m=0

(−1)m

m!
cm(log x−Hm)xm −

∑

μn /∈N

Γ (−μn) cμnx
μn

(x→∞, | arg x| < 1
2π + θ). (2.62)
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Thus, not only our previous eligibility conditions hold, but the generalized
Stirling expansion of logΔ∞(x) fully stems from the small-z expansion (2.58)
of Θ(z).

2.6.3 Explicit Properties of the Generalized
Zeta Function

Here we sum up the explicit properties of the function Z(s, x) which can be
gathered from the assumed knowledge of an eligible Delta function Δ(x) with
its properties. They concern two facets of the (generalized) zeta function: its
principal parts, and its values at integers.

• The singular structure: All s-plane poles of Z(s, x) have computable lo-
cations (namely, the exponents μ in the large-X expansion (2.24)), and
their principal parts involve coefficients ãμ and aμ by (2.16), excepting
am at integer points m by (2.19): such coefficients precisely give rise to
polynomials in x by (2.26), so the principal parts at the poles of Z(s, x)
are rational objects (algebraically computable).

• Explicit-value formulae: They will concern all the values (or finite parts)
of Z(s, x) at integer points s ∈ Z, plus Z ′(0, x) all by itself: we dub the
totality of them “special values.” Here an essential splitting is seen between
negative and positive integer points s [106, Sect. 4].

– The values (or finite parts) at s = −m ∈ −N are given by (2.20),
using the coefficients ã−m and a−m except a0, that again extend to
polynomials in x; hence those Z(−m,x), beginning with Z(0, x), are
rational objects as well (algebraically computable).

– The values (or finite parts) at s = +m ∈ N are given: for m > μ0, by
(2.53) and (2.56); and for m ≤ μ0, by (2.20) which involves am when
m > 0, whose parametric extension am(x) is transcendental by (2.26).
At m = 0, as an exception, (2.52)–(2.53) show that a natural companion
to the values {Z(m,x)}m>0 is Z ′(0, x) = a0(x) rather than Z(0, x)
(already put in the set {Z(−m,x)} of rational values). We then declare
our set of special values for +m ∈ N to be not {Z(m,x)}m∈N, but
{Z ′(0, x)} ∪ {Z(m,x)}m∈N∗ instead. Manifestly, all the values of this
set show a transcendental nature (e.g., as functions of x).

Therefore, all special-value tables for zeta functions will reflect this alge-
braic vs transcendental splitting. A prototype for these tables follows; it is
set with redundancies on purpose, to display a gamut of cases. In the s = 0
line of Table 2.1 we expanded the polynomial coefficient ã0(x) explicitly;
the reader is invited to do the same for the remaining polynomials ã±m

and a−m (exercise!).
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Table 2.1 Special values of the generalized zeta function Z(s, x) for a general el-
igible sequence of order μ0, in terms of the zeta-regularized product Δ∞(x) given
by (2.50) and its expansion polynomials ãm(x), am(x) given by (2.51) (upper part:
rational values, lower part: transcendental values). Notation: see (1.7), (2.29), (2.34);
m is an integer

s Z(s, x) =
∑

k
(xk + x)−s

Regular
−m < 0 −(−1)mma−m(x)

−m ≤ 0
(finite part) FPs=−mZ(s, x) = (−1)m

[
ã−m(x) −ma−m(x)

]

0 ã0(x) ≡
[μ0]∑

j=0
ãjx

j

0
(s-derivative) Z′(0, x) = − logΔ∞(x)

+1
(finite part) FPs=1Z(s, x) = (logΔ∞)′(x)

+1 ≤ m ≤ μ0
(finite part) FPs=mZ(s, x) = (−1)m−1

[ 1

(m− 1)!
(logΔ∞)(m)(x) +mHm−1ãm(x)

]

Regular
+m ≥ 1

(−1)m−1

(m − 1)!
(logΔ∞)(m)(x)



Chapter 3

The Riemann Zeta Function ζ(x):
a Primer

This chapter and the next one recall basic properties of the Riemann zeta
function ζ(x) in very elementary terms. We do not try to compete with the
many exhaustive texts on ζ(x) to which we refer the reader, e.g., [14, 26,
31, 48, 55, 57, 63, 84, 89, 101]. We mainly survey the basic facts, arguments,
and formulae to the extent that they will serve later, to make this book
reasonably self-contained. We also highlight the analytical, as opposed to the
purely arithmetical, features because those play a major role throughout.
This part can then be a tutorial to ζ(x) from an analytical angle. The end of
this chapter also reviews the Dirichlet beta and Hurwitz zeta functions.

3.1 Definition and Immediate Properties

ζ(x) =
∞∑

k=1

k−x (Re x > 1) (3.1)

=
∞∑

k=1

1
Γ (x)

∫ ∞

0

e−kz zx−1 dz =
1

Γ (x)

∫ ∞

0

∞∑

k=1

e−kz zx−1 dz

=
1

Γ (x)

∫ ∞

0

1
ez −1

zx−1 dz (Re x > 1). (3.2)

It then follows from Sect. 1.5 Stage 3’ (applied with (1.4) and x = −s), that
ζ(x) is a meromorphic function in all of C having the single pole x = 1 which
is simple and of residue 1, and that the special values at x = −n, n ∈ N are
computable, and rational:

ζ(−n) = (−1)nBn+1

n+ 1
for n ∈ N (e.g., ζ(0) = − 1

2 ), (3.3)

=⇒ ζ(−2k) = 0 (k = 1, 2, . . .) : the trivial zeros. (3.4)

A. Voros, Zeta Functions over Zeros of Zeta Functions, Lecture Notes
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24 3 The Riemann Zeta Function ζ(x): a Primer

3.2 The Euler Infinite Product

The Euler factorization over the set of prime integers (this set to be denoted
{p} throughout) is the fundamental arithmetical property of ζ(s):

ζ(x) =
∏

{p}
(1− p−x)−1 (Re x > 1); (3.5)

and it translates to Dirichlet series for log ζ(x) and [ζ′/ζ](x):

log ζ(x) =
∑

{p}

∞∑

r=1

p−rx

r
=
∑

n≥2

Λ(n)
logn

n−x (Re x > 1), (3.6)

ζ′

ζ
(x) = −

∑

{p}

∞∑

r=1

(log p) p−rx = −
∑

n≥2

Λ(n)n−x (Re x > 1), (3.7)

where

Λ(n) def=
{

log p if n = pr, p prime
0 otherwise

(the von Mangoldt function). (3.8)

3.3 The Stieltjes and Cumulant Expansions

Two Laurent expansions related to ζ(x) about x = 1 will have some relevance.
The first and more customary one introduces the Stieltjes constants γn

(their notation fluctuates in the literature, here we follow [1, Sect. 23.2]):

ζ(x) =
1

x− 1
+

∞∑

n=0

(−1)n

n!
γn(x− 1)n, (3.9)

γn = lim
K→∞

{
K∑

k=1

(log k)n

k
− (logK)n+1

n+ 1

}

(e.g., γ0 = γ). (3.10)

For instance, the γn are surveyed in [18,21], numerically tabulated in [18,64].

However, the truly useful expansion here will be [56, Sect. 5] [9]

ζ′

ζ
(x) = − 1

x− 1
−

∞∑

n=0

γ̃n(x− 1)n, (3.11)
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but the γ̃n (also called ηn) are much less studied or computed – we only saw
one table for them [56] until quite recently [77] [21, Appendix D].
Remark. There also exists a direct arithmetical specification [9, p. 286] [46],

γ̃n ≡ ηn =
(−1)n

n!
lim

K→∞

{
K∑

k=1

Λ(k)
(log k)n

k
− (logK)n+1

n+ 1

}

, (3.12)

generalizing an earlier result for γ̃0 = −γ [102, p. 251].

As none of those constants is fully standardized anyway, here we advocate
a newer notation which matches the relevant degrees of the coefficients:

gn ≡ n γn−1, and gc
n ≡ (−1)n(n− 1)! γ̃n−1; (3.13)

this way, we obtain one Taylor series vs its cumulant series,

(x− 1)ζ(x) = 1−
∞∑

n=1

(−1)n

n!
gn(x− 1)n, (3.14)

log[(x− 1)ζ(x)] = −
∞∑

n=1

(−1)n

n!
gc

n(x− 1)n. (3.15)

Only the gc
n (which we dub “Stieltjes cumulants”) will effectively enter this

work, in some special-value formulae. They relate to the Stieltjes constants
rewritten as gn by the canonical link between a sequence and its cumulant
sequence: if both gn and gc

n are assigned the degree n, then the gc
n are standard

(up to signs) homogeneous polynomials of global degree n in the gm, m ≤ n
(and vice-versa):

gc
1 = g1 = γ, gc

2 = g2 + g 2
1 , gc

3 = g3 + 3g2g1 + 2g 3
1 , . . . (3.16)

(≈ 0.577215665) (≈ 0.187546233) (≈ 0.103377264).

3.4 The Functional Equation and Completed Zeta
Function Ξ(x)

We now recall the basic Riemann’s Functional Equation for ζ(s) (capitaliz-
ing its name, to distinguish it from generic functional equations). Textbooks
on Riemann’s zeta function are keen to give more than one derivation of
this Functional Equation, and sometimes quite many. In contrast here, one
complex-analytic proof by Riemann [31, Sect. 1.6] is definitely more relevant
to our analytical approach, and we give just that one.
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R

R

0

+6πi

+4πi

+2πi

−2πi

−4πi

−6πi

C"

C’ C’

Fig. 3.1 Integration contour yielding Riemann’s functional equation

First, the integral specification (3.2) is easily transformed to a Hankel loop
integral,

ζ(x) =
Γ (1− x)

2iπ

∫

C′

(−z)x−1

ez −1
dz (x �∈ N

∗), (3.17)

where C′ is an infinite path encircling the half-axis R+ clockwise at a distance
0 < ε� 1 (Fig. 3.1); the right-hand side of (3.17) then analytically continues
ζ(x) to all of C \ N

∗.
Next, for R� 1, let C′

R be the truncation of C′ at the radius (2R+1)π, C′′
R

be the positively oriented great circular arc of that same radius connecting
the endpoints of C′

R, and CR = C′
R + C′′

R (a closed contour). Then

ζ(x) =
Γ (1− x)

2iπ
lim

R→+∞

∫

C′
R

(−z)x−1

ez −1
dz

=
Γ (1− x)

2iπ
lim

R→+∞

[∫

CR

−
∫

C′′
R

]
(−z)x−1

ez −1
dz (3.18)

where R is now restricted to integers, which ensures that (ez −1)−1 stays
bounded on C′′

R. Then, for Re x < 0,
∫

C′′
R

= O(RRe x) → 0 as R → +∞,
hence we are left with the contour integral

∫
CR

alone,



3.4 The Functional Equation and Completed Zeta Function Ξ(x) 27

ζ(x) =
Γ (1− x)

2iπ
lim

R→+∞

∫

CR

(−z)x−1

ez −1
dz, (Re x < 0) (3.19)

which is easy to evaluate by the residue calculus: specifically, the partial frac-
tion decomposition (1.13) of (ez − 1)−1 (i.e., the Poisson summation formula
(1.11) as explained in Sect. 1.3), entails

∫

CR

(−z)x−1

ez −1
dz = 2iπ

∑

0<|r|≤R

(2πir)x−1,

hence (3.19) yields ζ(x) = Γ (1− x) ∑
r∈Z∗

(2πir)x−1, or

ζ(x) ≡ Γ (1− x)
(2π)1−x

(
2 sin

πx

2

)
ζ(1 − x), (3.20)

which is Riemann’s Functional Equation; obtained here for Re x < 0, this
identity extends everywhere by meromorphic continuation. ��

The Functional Equation implies further special values, now transcenden-
tal, at nonnegative integers (mainly by transfer from (3.3)):

ζ′(0) = − 1
2 log 2π, (3.21)

FPx=1ζ(x) = γ, (3.22)

ζ(2m) =
(2π)2m

2(2m)!
|B2m| (m = 1, 2, . . .). (3.23)

Then, the completed zeta function

Ξ(x) def= G−1(x) (x − 1)ζ(x), (3.24)

with: G(x) def=
πx/2

2Γ (1 + 1
2x)

(an explicit entire factor), (3.25)

is an entire function with the same zeros as ζ(x) except the trivial ones (3.4),
and on which the Functional Equation (3.20) simplifies to

Ξ(1
2 + t) ≡ Ξ(1

2 − t) (an even function) (3.26)

i.e., the point x = 1
2 is a center of symmetry for Ξ. (Note: the traditional

completed function is ξ(x) = 1
2 Ξ(x), but Ξ(0) = 1 is a nicer normalization.)
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3.5 The Dirichlet Beta Function β(x)

Our study of ζ(x) will specifically need another Dirichlet series: the L-function
for the odd Dirichlet character mod 4 (see Chap. 10), variously denoted Lχ−4

or Dirichlet β-function [33, Sect. 1.12 (end)] [1, Sect. 23.2] [14, Sect. 1.7]

β(x) =
∞∑

k=0

(−1)k(2k + 1)−x (Re x > 1) (3.27)

≡ 1
Γ (x)

∫ ∞

0

1
2 cosh z

zx−1 dz (Re x > 1). (3.28)

Its analytical treatment fully parallels that of ζ(x) except that β(x) comes
out as an entire function. It has the rational special values

β(−n) = 1
2En for n ∈ N (e.g., β(0) = 1

2 ), (3.29)

in particular its trivial zeros are the odd negative integers. It admits a com-
pleted beta function Ξβ(x) and a functional equation, according to

Ξβ(x) def= (4/π)(x+1)/2Γ
(

1
2 (x + 1)

)
β(x) ≡ Ξβ(1− x). (3.30)

Further transcendental special values at nonnegative integers follow:

β′(0) = − 3
2 log 2− log π + 2 logΓ (1

4 ), (3.31)

β(2m+ 1) =
(π/2)2m+1

2(2m)!
|E2m| (m = 0, 1, . . .). (3.32)

3.6 The Hurwitz Zeta Function ζ(x, w)

It is a generalized zeta function [33, Sect. 1.10] [14, Sect. 1.6], defined by

ζ(x,w) def=
∞∑

k=0

(k + w)−x (Re x > 1, Re w > 0) (3.33)

≡ 1
Γ (x)

∫ ∞

0

e(1−w)z

ez −1
zx−1 dz (Re x > 1, Re w > 0), (3.34)

with the obvious functional equations

ζ(x,w + 1) = ζ(x,w) − w−x, (3.35)
∂wζ(x,w) = −x ζ(x+ 1, w). (3.36)
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Its analytical treatment initially parallels that of ζ(x) ≡ ζ(x, 1), simply
replacing the expansion (1.4) by (1.3) with y = 1 − w. Thus for fixed w,
ζ(x,w) is meromorphic in the whole x-plane, with a single pole at x = 1,
simple and of residue 1, and it has the rational special values

ζ(−n,w) = −Bn+1(w)
n+ 1

(n ∈ N) (3.37)

(e.g., ζ(0, w) = 1
2 − w).

Transcendental special-value formulae also arise for x = +n ∈ N, see below.
The contour integration argument used to get the Functional Equation

for ζ(x) (Sect. 3.4) extends to ζ(x,w) as long as 0 < Re w ≤ 1 (in order for
e(1−w)z(ez −1)−1 to remain bounded on the arc C′′

R). The outcome is still
a functional relation; however, it pairs the Hurwitz function no longer with
itself, but with another generalization of the Riemann zeta function,

F (u, x) def=
∞∑

n=1

un

nx
(a Lerch function or polylogarithm), (3.38)

according to the Jonquière relation [33, 1.11(16)] [101, Sect. 2.17],

ζ(x,w) ≡ Γ (1− x)
(2π)1−x i

[
eiπx/2 F (e2iπw, 1− x) − e−iπx/2 F (e−2iπw, 1− x)]

(3.39)
for Re x < 0, 0 < Re w ≤ 1 (a relation mentioned only for later reference).

For a general w-value, ζ(x,w) loses not only the central symmetry, but
also the arithmetical properties, of ζ(x).

We now turn to the special-value formulae for x = +n ∈ N; they involve
the Digamma function ψ(w) as in (1.6), which is transcendental:

ζ′(0, w) = log
[
Γ (w)/

√
2π
]

(3.40)
FPx=1 ζ(x,w) = −ψ(w) (3.41)

ζ(n,w) = (−1)nψ(n−1)(w)/(n− 1)! for n = 2, 3, . . . . (3.42)

These formulae are classic [33, Sect. 1.10] [14, Sect. 1.6] ((3.40) is known as
Lerch’s formula); nevertheless, we rederive them here as a first and major
illustration of the zeta-regularization formalism of Chap. 2 [104, Sect. 6c)]
[90, Ex. 3].

Proof. Basically, ζ(x, 1 + y) is just the generalized zeta function for the se-
quence of integers {xk = 1, 2, . . .}, which is theta-eligible (Sect. 2.6.2) of order
μ0 = 1, having the Theta function (cf. (1.4))

Θ(z) =
∞∑

k=1

e−kz =
1

ez −1
=

∞∑

n=−1

Bn+1

n+ 1
zn. (3.43)
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Then, by definition of the corresponding zeta-regularized product Δ∞(y),

ζ′(0, 1 + y) = − logΔ∞(y), (3.44)

and here, the general special-value formulae (2.53)–(2.56) further yield

FPx=1 ζ(x, 1 + y) = (logΔ∞)′(y) (3.45)

ζ(n, 1 + y) =
(−1)n

(n− 1)!
(− logΔ∞)(n)(y) for n = 2, 3, . . . (3.46)

If we pose D(y) def= [− logΔ∞(y)]− logΓ (1 + y), it is then only a question
of proving that this difference D(y) ≡ − 1

2 log 2π. The argument for this
proceeds from n ≥ 2 to n = 1, and finally n = 0.

The last displayed formula (which is intrinsic) turns explicit first: for n = 2,

(− logΔ∞)′′(y) = ζ(2, 1 + y) =
∞∑

k=1

(k + y)−2 = ψ′(1 + y) (3.47)

by a basic formula giving ψ′ [1, (6.4.10)], hence (− logΔ∞)′′(y) =
(logΓ )′′(1 + y) and likewise for higher derivatives: this proves (3.42), and
amounts to

D(y) = b1y + b0. (3.48)

(And by (2.26), constants such as b1 and b0 ought to be transcendental.)
Then, by applying ∂x at x = 0 to the functional relation (3.35) and using

(3.44), we find − logΔ∞(y) = − logΔ∞(y − 1) + log y, which is the same
functional equation as obeyed by logΓ (1+y): consequently, the above differ-
ence D(y) is 1-periodic, and this symmetry result forces b1 = 0 in (3.48), or
(− logΔ∞)′(y) ≡ ψ(1+y). With this, (3.45) becomes (3.41), which is thereby
proved.

Last, we can identify the constant b0 in (3.48) by setting y = 0 therein:

b0 = D(0) = ζ′(0, 1)− logΓ (1) = ζ′(0) (3.49)

= − 1
2 log 2π by (3.21), hence Δ∞(y) ≡ √2π/Γ (1 + y), establishing the last

pending special-value formula (3.40).
As an extra bonus, we can invoke the fully explicit (and rational) large-y

expansion of − logΔ∞(y) yielded by (2.62) for the case (3.43):

− logΔ∞(y) ∼ B0 y(log y−1)−B1 log y+
∞∑

m=1

(2m−2)!
B2m

(2m)!
y1−2m (3.50)

(| arg y| < π); hence the previous results also imply
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logΓ (1 + y) ∼ y(log y − 1) + 1
2 log y + 1

2 log 2π +
∞∑

m=1

B2m

2m (2m− 1)
y1−2m,

(y →∞, | arg y| < π), (3.51)

i.e., the complete Stirling expansion for log Γ (1 + y) in one shot. ��
We find this joint proof of the transcendental special-value formulae for
ζ(s, w) and of the Stirling expansion for logΓ to have a condensed and com-
pelling character, and it highlights an important connection between (3.51)
and (3.40). We finally display the derivative of (3.51), to be often invoked:

ψ(1 + y) ∼ log y + 1
2 y

−1 −
∞∑

m=1

B2m

2m
y−2m. (3.52)

The Hurwitz zeta function, and particularly its set of special values (3.37),
(3.40)–(3.42), constitute a kind of a prototype for the methods and results
that will later arise for the superzeta functions. We therefore recapitulate the
special-value formulae of ζ(x,w) in Table 3.1 below, to serve as a template
to forthcoming Tables and for later reference.

Table 3.1 Special values of ζ(x,w) (upper part:
rational, lower part: transcendental, cf. Sect. 2.6.3
and Table 2.1). Notation: see (1.3), (1.6), (1.7); n
is an integer

x ζ(x, w) =
∞∑

k=0
(k + w)−x

−n ≤ 0 −Bn+1(w)

n+ 1

0 1
2 − w

0
(x-derivative) ζ′(0, w) = log

[
Γ (w)/

√
2π
]

+1
(finite part) FPx=1ζ(x, w) = −ψ(w)

+n > 1
(−1)n

(n− 1)!
ψ(n−1)(w)



Chapter 4

Riemann Zeros and Factorizations
of the Zeta Function

This is the second half of our review on the basic properties of ζ(x).

4.1 Growth Properties of ζ(x) and Ξ(x)

The theory of entire functions of finite order (cf. Sect. 2.1) applies to
Riemann’s Ξ function in a classic way [26, Sect. 12] [89, Appendix 5].

We first bound ζ(x) and the trivial factor G−1(x) (x−1) separately in the
half-plane {Re x ≥ 1

2}.
Applying the Euler–Maclaurin formula (1.14) to f(u) = u−x with Re x > 1

and K = 1, K ′ = +∞, yields (with {u} def= the fractional part of u here)

ζ(x) =
1

x− 1
+ 1

2 − x
∫ ∞

1

B1

({u})u−x−1du; (4.1)

but as the right-hand side converges and defines an analytic function for
Re x > 0, it analytically continues ζ(x) to this half-plane. The integral is
bounded by

∫∞
1

1
2u

−Re x−1du = (2 Re x)−1 ≤ 1 if Re x ≥ 1
2 , hence as x→∞

in the latter half-plane, the bound ζ(x) = O(|x|) holds.
On the other hand, exponentiating Stirling’s formula (3.51), we see that

|G−1(x) (x − 1)| < eC|x| log |x| for any C > 1.
Hence in the half-plane {Re x ≥ 1

2},

|Ξ(x)| < eC|x| log |x| (∀C > 1); (4.2)

but this final bound, which concernsΞ, therefore extends to the whole x-plane
thanks to the Functional Equation (3.26). At the same time,

logΞ(x) ∼ 1
2x log x for x→ +∞ (4.3)

(using Stirling’s formula again, plus ζ(x) ∼ 1 for x → +∞). All that fixes
the order of the entire function Ξ(x) to be precisely μ0 = 1 in the variable x.

A. Voros, Zeta Functions over Zeros of Zeta Functions, Lecture Notes
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By the Functional Equation, Ξ is also an entire function in the variable
u = x(x − 1); its order (relative to this new variable) is then 1

2 , and this
seemingly trivial rephrasing proves quite useful for certain issues.

4.2 The Riemann Zeros (Basic Features)

By the general theory of entire functions of finite order [10, Chap. 2], a func-
tion like Ξ which has a non-integer order (1

2 , in the variable u = x(x − 1))
must have infinitely many zeros (a statement invariant under this change of
variables x↔ u). The zeros of Ξ(x) are then nontrivial zeros for ζ(x) (besides
the trivial set {−2k}): they are the Riemann zeros, usually labeled ρ.

The Euler product (3.5), convergent for Re x > 1, implies ζ(x) �= 0 there.
This plus the central symmetry restrict the ρ to lie in the strip 0 ≤ Re x ≤ 1.

In fact, ζ(x) does not vanish on the line Re x = 1 either. While this is a
key step toward the prime number theorem, a major arithmetical result, both
the fact itself and its derivation seem to lie off our main analytical track; so,
we merely quote the result (proved in all books). This further restricts the
Riemann zeros to the open critical strip 0 < Re x < 1.

No zeros can lie on the real segment (0,1) either: indeed,

(1 − 21−x) ζ(x) =
∞∑

k=1

(−1)k−1k−x converges for Re x > 0,

and for all x > 0 this series is alternating and shows a strictly positive sum.
By central symmetry, the Riemann zeros occur in pairs (ρ, 1−ρ). To make

this symmetry explicit, we will rather enumerate them in pairs as

{ρ = 1
2 ± iτk}k=1,2,..., Re τk > 0 and non-decreasing, (4.4)

and also parametrize each such pair by the single number

uk = ρ(1 − ρ) = 1
4 + τk

2. (4.5)

The Riemann Hypothesis (1859, still open) states that [92]

(RH) Re ρ = 1
2 (∀ρ) ⇐⇒ (∀k) τk ∈ R+ ⇐⇒ uk − 1

4 ∈ R+; (4.6)

all our arguments will be unconditional (independent of RH) up to Chap. 11.
Another unproved conjecture is that all zeros are simple, but we adopt the

standard convention of counting all objects with their multiplicities if any.
The first zeros’ approximate ordinates are numerically found as

{τk ≈ 14.1347251, 21.0220396, 25.0108576, 30.4248761, 32.9350616, . . .}
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4.3 Hadamard Products for Ξ(x)

By the general theory of entire functions of finite order as referred to in
Sect. 2.1, in the case of Ξ(x) of order 1, the zeros ρ satisfy

∑
ρ |ρ|−1−ε < ∞

if ε > 0, and Ξ(x) admits the Hadamard factorization

Ξ(x) = Ξ(0) e[log Ξ]′(0) x
∏

ρ

(
1− x

ρ

)
ex/ρ (∀x ∈ C).

Were
∑ |ρ|−1 to converge, this and the general bound |1 − z| ≤ e|z| would

imply Ξ(x) = O(eC|x|) for some C and all x, which is contradicted by (4.3).
Hence ∑

ρ

|ρ|−1−ε converges for ε > 0, diverges for ε = 0. (4.7)

This growth estimate for the zeros (note:
∑ |ρ|−1 =∞ is a tangible proof of

their infinite number) will be refined to the Riemann–von Mangoldt formula
soon (Sect. 4.5), but it is needed meanwhile.

Here, using (3.24) and the special values Ξ(0) = 1 and (3.21), the above
Hadamard formula boils down to

Ξ(x) = eBx
∏

ρ

(
1− x

ρ

)
ex/ρ, B

def= log 2
√
π − 1− 1

2γ (4.8)

or ζ(x) =
1

x− 1
G(x)Ξ(x) ≡ e(log 2π−1−γ/2)x

2(x− 1)Γ (1 + 1
2x)

∏

ρ

(
1− x

ρ

)
ex/ρ . (4.9)

The logarithmic derivative of the latter will also serve,

ζ′

ζ
(x) ≡ (log 2π − 1− 1

2γ)− 1
x− 1

− 1
2ψ(1 + 1

2x) +
∑

ρ

[ 1
x− ρ +

1
ρ

]
. (4.10)

Those are the classic forms given everywhere, for which the ordering of the
factors is immaterial (they converge absolutely for all x ∈ C). However,
we will critically need more symmetrical forms, which require the zeros to
be taken in pairs (ρ, 1− ρ). So from now on, all symbols

∏
ρ for products or∑

ρ for summations crucially imply this grouping of zeros in pairs.
Thereupon, following, e.g., [31, Sects. 1.10 and 2.8]: first,

∑

ρ

1
ρ

=
∑

k

[
1

1
2 + iτk

+
1

1
2 − iτk

]

=
∑

k

1
1
4 + τ 2

k

=
∑

k

1
uk

(4.11)

(the grouping restores absolute convergence). This at once motivates the
introduction of two kinds of zeta functions over the Riemann zeros; an-
ticipating our future notation (Chap. 5), we set Z∗(s)

def=
∑

ρ ρ
−s and
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Z∗(σ) def=
∑

k u
−σ
k , which translates (4.11) to Z∗(1) = Z∗(1). Then, this

other pair evaluation:

(
1− x

ρ

)(
1− x

1− ρ
)
≡ 1− x(1− x)

1
4 + τ2

, (4.12)

substituted into the initial Hadamard product (4.8) for Ξ(x), turns it into

Ξ(x) = e
[
B+

∑
ρ

1
ρ

]
x
∏

ρ

(
1− x

ρ

)
= e[B+Z∗(1)] x

∏

k

[

1− x(1 − x)
uk

]

. (4.13)

Now, the symmetry of the Functional Equation Ξ(x) = Ξ(1−x) requires the
exponents in (4.13) to vanish, or Z∗(1) = −B. All that yields the identities

Z∗(1) = Z∗(1) = −B ≡ −[logΞ]′(0) = 1 + 1
2γ − 1

2 log 4π (4.14)
( ≈ 0.0230957090).

This result appears in some textbooks [26, Sect. 12, (10)–(11)] [31, 3.8(4)]
[89, Sect. 3.1], but in isolation; we will see that it actually initiates two in-
finite sequences of such formulae for all the special values Z∗(k) and Z∗(k)
(k = 1, 2, . . .), which admit parametric generalizations as well (Chaps. 7–8).

Finally, (4.13) reduces to two manifestly symmetric product forms, less
common than (4.8) [31, Sect. 2.8] [89, Sect. 3.1] but more useful for us later,

Ξ(x) =
∏

ρ

(
1− x

ρ

)
with zeros grouped in pairs (4.15)

≡
∞∏

k=1

[

1 +
u

uk

]

, u
def= x(x − 1) (4.16)

(the latter is just a Hadamard product for Ξ as a function of u of order 1
2 ).

4.4 Basic Bounds on ζ′/ζ

An important class of results to come, like the Riemann–von Mangoldt
formula (Sect. 4.5) and the Explicit Formulae (Sect. 6.2) (plus our basic an-
alytical continuation formula for a zeta function over the Riemann zeros in
Chap. 7), require some control over the growth of ζ′/ζ in the complex plane.
The problematic region is clearly about the critical strip, where the unknown
Riemann zeros lie; if Re x > x0 for some x0 > 1 then ζ′/ζ will be triv-
ially bounded (and the symmetrical half-plane {Re x < 1− x0} is thereupon
controlled by applying the Functional Equation to ζ′/ζ: we will skip this).
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Without loss of generality, we may now fix x0 = 2 (the customary choice),
and only consider the upper half-plane (by conjugation symmetry).

We follow the standard exposition, as condensed in [57, Sect. 1.4] for
instance; usually, however, the bounds for [ζ′/ζ](x) are intended to hold ev-
erywhere, whereas we focus on Im x � 1, which simplifies some equations.
The logic goes as follows: (1) bound ζ′/ζ for Re x ≥ 2, and specially at the
edge; (2) using this, bound the fluctuations in the distribution of the zeros’
ordinates {Im ρ}; (3) in turn, use the latter results to bound [ζ′/ζ](x) when
−1 < Re x < 2. We then develop those successive points in (partial) detail.

(1) The Dirichlet series (3.7) for [ζ′/ζ](x) immediately implies

|ζ′/ζ|(x) ≤ |ζ′/ζ|(2) = O(1) for all x with Re x ≥ 2. (4.17)

(2) This in turn constrains the distribution of the zeros’ ordinates to obey
the following two bounds:

∑

ρ

1
4 + (T − Im ρ)2

= O(logT ), (4.18)

#{ρ | | Im ρ− T | < 1} < C1 logT for some C1 > 0. (4.19)

Proof. Select xT = 2 + iT (with T � 1). These inequalities obeyed by every
zero ρ : Re 1

ρ > 0 (due to | arg ρ| < 1
2π), and

Re
1

xT − ρ =
2− Re ρ

(2− Re ρ)2 + (T − Im ρ)2
>

1
4 + (T − Im ρ)2

(due to 0 < Re ρ < 1), entail

∑

ρ

1
4 + (T − Im ρ)2

< Re
∑

ρ

[ 1
xT − ρ +

1
ρ

]
;

but if we combine the former bound (4.17) and the Stirling formula (3.52)
for ψ within the series expansion (4.10) for [ζ′/ζ](xT ), we can extract

∑

ρ

[ 1
xT − ρ +

1
ρ

]
= O(logT ) for xT = 2 + iT,

and (4.18) follows.
Now this bound secretly means that the ordinates of zeros cannot cluster

too much: indeed, in conjunction with the obvious inequality

∑

| Im ρ−T |<1

1
4 + (T − Im ρ)2

> #{ρ | | Im ρ− T | < 1} × 1
5
,
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it furnishes the more concrete bound (4.19) (the argument can more generally
yield #{ρ | | Im ρ − T | < h} < Ch logT for any fixed h > 0: the density of
the zeros’ ordinates gets bounded on any fixed scale). ��

(3) Then the following two bounds hold uniformly for x on the segment
[−1 + iT, 2 + iT ]:
(a) Provided T � 1 is not the ordinate of a zero,

ζ′

ζ
(x) =

∑

| Im ρ−T |<1

1
x− ρ + O(logT ); (4.20)

(b) Within unit distance from any T ′ � 1 there exist “good” ordinates T
that are “far enough” from all zeros’ ordinates, in the sense that for some
absolute constant c > 0,

|T − Im ρ| > c

log T ′ for all zeros ρ, (4.21)

and then, for some absolute constant C,
∣
∣
∣
∣
ζ′

ζ

∣
∣
∣
∣(x) < C log2 T uniformly for x ∈ [−1 + iT, 2 + iT ]. (4.22)

Proof. (a) Here we may slightly streamline the usual argument by making it
intrinsic (in the sense of Sect. 2.1). We write, for xT = 2 + iT as in (2),

ζ′

ζ
(x) =

∫ x

xT

[
ζ′

ζ

]′
(y) dy +

ζ′

ζ
(xT ),

where the second term is O(1) by (4.17), so it will not count here. Now (4.10),
differentiated once more, refers to the intrinsic function [ζ′/ζ]′, implying

−
[
ζ′

ζ

]′
(y) =

∑

ρ

1
(y − ρ)2 + O

( 1
T

)
; (4.23)

but, uniformly in y on the line {Im y = T },
∣
∣
∣
∣

∑

| Im ρ−T |≥1

1
(y − ρ)2

∣
∣
∣
∣ ≤

∑

| Im ρ−T |≥1

1
(T − Im ρ)2

<
∑

| Im ρ−T |≥1

5
4 + (T − Im ρ)2

which is O(logT ) by (4.18). All that implies

−
[
ζ′

ζ

]′
(y) =

∑

| Im ρ−T |<1

1
(y − ρ)2 + O(logT ). (4.24)
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Then, upon integration over the segment [x, xT ] of bounded length,

ζ′

ζ
(x) + O(logT ) =

∑

| Im ρ−T |<1

1
x− ρ −

∑

| Im ρ−T |<1

1
xT − ρ + O(logT ),

and the second sum has O(log T ) terms by (4.19), all bounded by 1: it can
be absorbed into the O(logT ) remainder, resulting in the estimate (4.20).

(b) The nonexistence of T satisfying (4.21) would immediately violate the
bound (4.19) written for T ′. Then, for such “good” T and with x on the
segment [−1 + iT, 2 + iT ], each summand in (4.20) is uniformly O(logT ′),
while the number of summands is O(logT ) by (4.19). This (plus T ′ ∼ T )
yields the final bound (4.22). ��

The proof of the Explicit Formula (Sect. 6.2) will actually need a sequence
{Tn} → +∞ of “good” ordinates fulfilling (4.22): for this, it suffices to apply
(b) with T ′ = n.

4.5 The (Asymptotic) Riemann–von Mangoldt Formula

The previous results actually allow us to describe the growth of the Riemann
zeros’ ordinates more finely.

The classic counting function for the zeros’ ordinates can be defined by

N(T ) def= #{τk | Re τk ≤ T }, (4.25)

and it obeys the fundamental estimate (the Riemann–von Mangoldt formula):

N(T ) = N0(T ) + O(logT )T→+∞ , N0(T ) def=
T

2π

(
log

T

2π
− 1
)

(4.26)

(thus the asymptotic density of zeros at the ordinate T is≈(2π)−1 log(T/ 2π)).

Proof. (As in all books, simply we focus here on T � 1.)
Let RT be the positively oriented closed rectangular path with vertices

1
2 ± 3

2 ± iT , where T is not the ordinate of any zero, and R′
T be its restriction

to the first quadrant of vertex x = 1
2 . Then by the general Rouché theo-

rem, N(T ) = (4πi)−1
∮

RT
[Ξ ′/Ξ](x) dx; but the symmetries (reality and the

Functional Equation) at once reduce the integration to the quarter path R′
T :

N(T ) = π−1 Im
∫

R′
T

[
Ξ ′

Ξ

]

(x) dx = π−1 Im
[
logΞ(x)

] 1
2+iT

2
, (4.27)
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where log means the complex logarithm followed continuously along the path
R′

T , starting from x = 2. We then invoke the factorization (3.24) of Ξ(x) to
separate the contributions from ζ(x) and the remaining trivial factor:

N(T ) = N(T ) + S(T ), (4.28)

N(T ) def= π−1 Im log
[
(iT − 1

2 )G−1(1
2 + iT )

]
(4.29)

S(T ) def= π−1 Im
∫

R′
T

[
ζ′

ζ

]

(x) dx. (4.30)

Now, N(T ) lends itself to an estimation by the Stirling formula (3.51):

N(T ) =
T

2π

(
log

T

2π
− 1
)

+
7
8

+ O
( 1
T

)
. (4.31)

In contrast, the other term S(T ) proves very irregular (fluctuating), but
can be bounded by O(logT ) – this is the key argument. Indeed, on the long
segment [2, 2+iT ] of R′

T , the Dirichlet series (3.6) holds everywhere, implying
| log ζ(2 + iT )| ≤ log ζ(2) = O(1). All the action then takes place on the other
segment [12 + iT, 2 + iT ], of fixed length, where the use of (4.20) entails

Im
∫ 2+iT

1
2+iT

[
ζ′

ζ

]

(x) dx =
∑

{| Im ρ−T |<1}

[
arg(x− ρ)]2+iT

1
2 +iT

+ O(logT );

but since the variation of each arg(x − ρ) is less than π and the number
of summands is O(logT ) by (4.19), it follows that the left-hand side and
therefore S(T ) are themselves O(logT ), and the proof is complete. ��



Chapter 5

Superzeta Functions: an Overview

In view of the central symmetry of the set of Riemann zeros, ρ ↔ 1 − ρ,
which crucially reflects the functional equation (3.26), there is no clear rea-
son to pick either the ρ themselves (with ρ ≡ 1

2 ± iτk, Re τk > 0) or the
ρ(1 − ρ) = 1

4 + τ 2
k as the basic set upon which to build zeta functions over

the Riemann zeros. This is a nonlinear remapping freedom as discussed in
Sect. 1.1, which leads to generalized zeta functions of several kinds. This chap-
ter gives an introductory overview of the various possibilities. In decreasing
order of analytical tractability, and in our older notation to be soon discarded,
we may define:
• Functions of first kind:

∑

ρ
(x− ρ)−s, Re s > 1;

• Functions of second kind:
∞∑

k=1

(τ 2
k + v)−σ, Re σ > 1

2 ;

• Functions of third kind:
∞∑

k=1

(τk + τ)−s, Re s > 1.

In all three kinds the argument (in exponent) is the principal variable,
the other one a shift parameter. Each parametric family starts as an analytic
function of its argument in its indicated half-plane of convergence, due to (4.7)
or (4.26), but it will extend to a meromorphic function in the entire complex
plane (of its argument), with a computable singular part. The domain of each
shift parameter is left as large as possible: simply, none of the quantities to
be raised to a power should lie on the cut R−; this will hardly matter with
the fairly small parameter values that we will emphasize.

The first two families will moreover display computable special values,
i.e., values at integer arguments, with explicit relationships between the two
families at those arguments. The third family forcibly selects the zeros in
only one half-plane, thus breaking the central symmetry for any parameter
τ �= 0; then it will show a more singular analytic structure than the other
two, and no known special values; it will be discussed more briefly.

We now define each superzeta family more precisely with its immediate
properties, introducing new notation henceforth for greater coherence.

A. Voros, Zeta Functions over Zeros of Zeta Functions, Lecture Notes
of the Unione Matematica Italiana 8, DOI 10.1007/978-3-642-05203-3 5,
c© Springer-Verlag Berlin Heidelberg 2010
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5.1 First Kind (Z )

Z (s | t) =
∑

ρ

(1
2 + t− ρ)−s ≡

∑

ρ

(ρ+ t− 1
2 )−s, Re s > 1 (5.1)

is the simplest generalized zeta function over the Riemann zeros: the sum
runs over all zeros symmetrically, and t is just a shift parameter varying in
the complex plane of the function t 
→ ζ(1

2 + t). With the function z 
→ z−s

defined in the cut plane z ∈ C \ R−, the t-domain for (5.1) is then (Fig. 5.1)

Ω1 = {t ∈ C | t± iτk /∈ R− (∀k)}. (5.2)

The equality between the two sums in (5.1) expresses the central symmetry
(of Riemann’s Functional Equation). Were the function z 
→ z−s single-valued
in the uncut z-plane, then that equality would translate into the functional
equation “Z (s | t) ≡ (−1)s Z (s | −t),” and this works indeed at (positive)
integers s, see Table 7.2. For non-integer s, on the other hand, when the choice
of a branch for z 
→ z−s breaks the central symmetry, our closest related
identity will be (5.11) which needs a new function Z (of third kind). We then
see no finite closed functional relation between Z (s | t) and Z (s | −t), nor any
other full translation of Riemann’s Functional Equation. We will only find
some curious further signs of the central symmetry: e.g., countably many sum
rules like (7.46) below will constrain the special values Z (2n+ 1 | t), n ∈ N,
now all at the same t. So in brief, for this first family Z :

To see or not to see (the central symmetry fully), that is the question.

As the parameter t “lives” in the complex plane of ζ(1
2 + t), we expect

privileged locations to be t = 0 (the center of symmetry), and t = 1
2 (the

pole); thus, the simple sum
∑

ρ ρ
−n is Z (n | t = 1

2 ). Indeed, the special values
reduce further at those parameter values. We then add two shorter names for
convenience:

Z0(s)
def= Z (s | 0), Z∗(s)

def= Z (s | 12 ). (5.3)

(As for t = − 1
2 , its special values can easily be drawn from the case t = + 1

2
by using the central symmetry, see later Table 7.2.)

The family of first kind Z is covered in detail in Chap. 7.

5.2 Second Kind (Z)

Z(σ | t) =
∞∑

k=1

(τk2 + t2)−σ, Re σ > 1
2 , (5.4)

is now defined in the natural t-domain (Fig. 5.1)
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Fig. 5.1 Domains of
definition in the t-plane
(schematic views) for

Z (left) and Z (right)
2Ω1 Ω

Ω2 = {t ∈ C | t± iτk /∈ ±iR− (∀k)}. (5.5)

In view of the factorization τk
2 + t2 = (t + iτk)(t − iτk), this parameter t

identifies indeed with the previous one in Z (s | t).
This family Z has one major asset: it fully embodies the central symmetry

τk ↔ −τk (or Riemann’s Functional Equation), through the identity

Z(σ | t) ≡ Z(σ | −t). (5.6)

But otherwise it proves more singular than the first family Z , and also harder
to analyze (just as, say, the function

∑
k(k2+a2)−σ vs

∑
k(k+a)−s = ζ(s, a)).

We cannot reduce it to the first family (see below), and it is better suited for
some purposes (e.g., in Chap. 11), so that both families are worth studying.
Our results for Z are now fairly on par with those for the first family, but
this required multiple angles of attack which we did not find all at once. This
operational difficulty has been our main problem with the second family Z.

Since the parameter t has preserved its meaning, we add two more short-
hand names to match (5.3),

Z0(σ) def= Z(σ | 0), Z∗(σ) def= Z(σ | 12 ). (5.7)

Just as between Z (s | −t) and Z (s | t) before, we see no obvious finite
functional relation between Z(σ | t) and Z (s | t), with two exceptions:
• The central parameter location t = 0, which is the (only) confluence point
of the two families Z and Z, according to

Z0(σ) ≡ (2 cosπσ)−1 Z0(2σ); (5.8)

• Integer arguments: The sets of special values Z(m | t) and Z (n | t) (m,n =
1, 2, . . .) will display mutual linear relationships (Sect. 8.5). Here the com-
putable special values of Z(σ | t) do refer to all integers σ just as those of
Z (s | t) refer to all integers s. Otherwise, just as we immediately did with the
parameter t, we could have tied both Z and Z to a common argument: but
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the only meaningful identification, s ≡ 2σ by (5.8), does not preserve integers.
Hence the issue of special values prompts us to keep distinct arguments,
s for Z , σ for Z.

The family of second kind Z is covered in detail in Chap. 8.

5.3 Third Kind (Z)

Z(s | τ) =
∞∑

k=1

(τk + τ)−s, Re s > 1, τ + τk /∈ R− (∀k). (5.9)

Although this family explicitly breaks the central symmetry, it is actually
expressible in terms of the family Z of the first kind and vice-versa: for
|t|, |τ | < τ1 (to avoid overlapping cuts),

Z (s | t) = eiπs/2 Z(s | it) + e−iπs/2 Z(s | −it), (5.10)

which inverts as

Z(s | τ) =
1

2i sinπs
[
eiπs/2

Z (s | −iτ)− e−iπs/2
Z (s |+iτ)

]
. (5.11)

This family shares the confluence point of the other two:

Z(s | 0) ≡ Z0(1
2s) ≡ (2 cos 1

2πs)
−1 Z0(s) =

∞∑

k=1

τ −s
k . (5.12)

Otherwise (for τ �= 0), Z proves more singular than Z or even Z, hence
we will only view it as subordinate to Z through (5.11), see Chap. 9.

5.4 Further Generalizations (Lerch, Cramér, . . . )

A Lerch-like generalization (cf. (3.38)) is

Z(s;x) =
∑

ρ

xρ ρ−s (e.g., x > 0) (5.13)

with numerous possible variants (allow complex x; replace ρ−s by (ρ+ a)−s,
|ρ|−s, . . .; select Im ρ ≷ 0 or not). At s = 0, the family also captures another
interesting symmetric function of the zeros, Cramér’s V -function [25, Chap. I]:

V (z) =
∑

Im ρ>0

eρz for Im z > 0. (5.14)
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Concerning V (z), it is mainly known [25, 29, 44, 54, 59] that the function

V (z)−(2πi)−1 log z
1− e−z is meromorphic in all of C, with a functional equation,

and with computable: poles (all simple), residues, and finite part (but nothing
more) at z = 0. Thus, V (z) itself has a rather irregular, partially known (and
hard to get) structure at z = 0; so we do not advocate it as a basic tool. (It is
actually nicer for zeros of Selberg zeta functions! [12, 15] [16, Sect. 5] [105,
Sect. 4])

Formally, the broader family Z(s;x) recovers our superzeta functions at
x = 1; however, these form a singular case. Hence the general-x family is
better seen as a vast subject of its own, which we will not address here
either: see, e.g., [40, 68, 83], [25, Chap. II.I], [61, Chap. VI].

5.5 Other Studies on Superzeta Functions

The present monograph grew up from articles written by us around 2001–
2005. It thus makes sense here to place a dividing line between “older” and
“current” literature around 2000 (a pivotal year, anyway).

We found it difficult to trace the older literature on superzeta functions. To
wit, the past publications touching those functions have been very sporadic
(we laboriously collated but a dozen articles, spanning almost one century)
and disconnected (the works largely ignore one another); even when superzeta
functions were addressed, it was never systematically and often briefly: e.g.,
amidst various examples. So overall, occurrences of our subject have tended
to be rare and inconspicuous. We then offer the following survey truly “to the
best of our knowledge”. We had to change most of the original notation to
make it globally consistent here: any translation between an earlier notation
“A” and our present notation “B” is provided below as A ≡ B.

The most ancient occurrences of this sort of symmetric functions over the
Riemann zeros concern the more general functions Z(s;x) of (5.13) in works
of Landau [68], Mellin [83] and Cramér [25]. Out of those works, only [83]
truly touches “superzeta” functions (i.e., cases for which x = 1), featuring:
• Two instances of our “functions of the 1st kind,”

Z(s) ≡ Z (s | 12 ), Z(s) ≡ Z (s | − 1
2 ); (5.15)

• Two instances of our “functions of the 3rd kind,”

Z1(s) ≡ eiπs/2 Z(s | 12 i), Z2(s) ≡ e−iπs/2 Z(s | − 1
2 i); (5.16)

• Meromorphic continuation formulae for those four cases, which exemplify
some of our later equations: successively, (7.7) at t = + 1

2 , (7.4) at t = − 1
2 ,

(9.4) at τ = − 1
2 i and at τ = + 1

2 i;
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• Explicit formulae for the polar parts of Z(s) and Z(s), plus the rational
special values at s = −n, n ∈ N, but the latter [83, (12)–(13)] are affected by
obvious computational mistakes and contradicted by our own results (upper
parts of Tables 7.1 and 7.4, from [108]).

Overall, Mellin’s article ([83], 1917) is quite pioneering and fundamental,
yet it is hardly ever referred to and never for “superzeta” functions; to make
it more accessible, we provide its English translation here as Appendix D.

The next early occurrences of a superzeta function all concern the con-
fluent case t = 0 as in (5.12). For the corresponding function

∑
k τ

−s
k ,

Guinand [43, Sect. 4(A)] gave a restricted form of the functional relation
(8.7), moreover assuming the Riemann Hypothesis, an assumption later re-
moved by Chakravarty [17]; while Delsarte [27, Sect. 7] proved that same
function (called by him φ(s)) to be meromorphic in the whole s-plane.

Much later, cases with t = 1
2 drew some attention, namely those we call

Z∗(s) (first kind) and Z∗(σ) (second kind).
• For Z∗, only the special values σn ≡ Z∗(n) (=

∑
ρ ρ

−n, n = 1, 2, . . .)
got considered: the value Z∗(1), as in (4.14), is the sole classic “superzeta”
occurrence (i.e., visible in some textbooks); results for n > 1 were given much
later, by Matsuoka [82], Lehmer [72], Keiper [64], Zhang and Williams [114].
• As for Z: the function ζ(s,ΔF ) ≡ Z∗(σ) for the more general Dedekind
zeta functions (cf. Chap. 10) was proved by Kurokawa [66] to be meromorphic
in the whole σ-plane while Matiyasevich [80] studied the special values θm ≡
2Z∗(m) (m = 1, 2, . . .); Z∗(1) and Z∗(2) resurfaced lately in studies on the
distribution of primes [93, pp. 191–193][71, (4.12)–(4.13)].

A full-fledged family arose still later, specifically Z (first kind). (Earlier it
came up only in exercises posed by Patterson [89, Ex. 3.5–7].) Deninger [28,
Theorem 3.3] for Re z > 1, followed by Schröter and Soulé [96] for general z,
described the meromorphic continuation in s of ξ(s, z) ≡ (2π)s Z (s | z − 1

2 ),
but with focus on the parametric special value z 
→ ξ′(0, z).

We found no results on the full second family Z prior to our work [106].
Then quite lately, the third family Z was proved a meromorphic function

of its argument, independently by Hirano, Kurokawa and Wakayama [51,
Sect. 3] (as Z(w, x) ≡ Z(w | −x)) and by us [106, Sect. 6.2].

As for extended superzeta functions, i.e., over zeros of more general zeta-
and L-functions than Riemann’s, their even smaller bibliography will be given
in Chap. 10, which is devoted to this extension.

So, our topic of “superzeta functions” has benefited from some seminal
contributions. Yet, these are scarce (a dozen, spread over three families and
nearly one century), and almost each of them treats an isolated case under a
single aspect: typically meromorphic continuation (often just qualitatively),
or particular instances of special values. We thus feel that those early works,
even taken together, do not do full justice to the subject.

We therefore embarked on a more systematic and dedicated coverage, but
this emerged only gradually through three papers. In [106] we described the
full families Z and Z and only sketched the family Z , which became the main
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focus of [108]. In [107] we treated all three families more efficiently but in
general notation, to accommodate other zeta and L-functions. Overall, these
three articles do not readily fuse into a neat coherent whole; their notation
and methods can also be improved. The core of the present work aims at
giving an updated synthesis (including a few new results) of the current state
of the subject.



Chapter 6

Explicit Formulae

This chapter discusses the approach to the superzeta functions (introduced
in the previous chapter) by means of Explicit Formulae.

In number theory, Explicit Formulae designate certain summation formu-
lae connecting the primes and the Riemann zeros [55, Chap. IV]. As we may
also refer to explicit formulae in their generic sense of closed-form results,
we will specifically use capital initials to distinguish that number-theoretical
meaning. We focus on just one type of Explicit Formula, the Guinand–Weil
form [42, 43, 111], which accommodates general test functions and appears
closest to the Poisson summation formula [50]. It is formally capable of eval-
uating superzeta functions, and we will try to use it for that goal.

6.1 The Guinand–Weil Explicit Formula

As in the Poisson summation formula (Sect. 1.3), the main actors are a dual
pair consisting of a fairly general test function h(τ) (R 
→ C) and its Fourier
transform ĥ(u), namely

ĥ(u) =
1
2π

∫ ∞

−∞
h(τ) e−iτu dτ, h(τ) =

∫ ∞

−∞
ĥ(u) eiτu du. (6.1)

Now, moreover, one assumes that for some δ, ε > 0,
(i) h extends to an analytic function in a strip Sδ = {| Im τ | < 1

2 + δ};
(ii1) h(τ) = O(|τ |−1−ε) for τ →∞ in Sδ;
(iii) h is an even function (hence so is ĥ) – to embody the central symmetry.

Such a pair (h, ĥ) then fulfills the Explicit Formula

∑

k

h(τk) ≡ h(± 1
2 i) +W [h]−

∑

n≥2

Λ(n)√
n
ĥ(log n), (6.2)

where the last sum is arithmetical as it runs over the prime powers pr,

A. Voros, Zeta Functions over Zeros of Zeta Functions, Lecture Notes
of the Unione Matematica Italiana 8, DOI 10.1007/978-3-642-05203-3 6,
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∑

n≥2

Λ(n)√
n
ĥ(logn) ≡

∑

{p}

∞∑

r=1

log p
exp 1

2r log p
ĥ(r log p), (6.3)

and the linear functional W (a variant of the Weil functional) has two equiva-
lent expressionsW [h] ≡ Ŵ [ĥ], by virtue of a generalized Parseval formula [60,
Part II]:

W [h] =
1
4π

∫ ∞

−∞
h(τ)

[
ψ(1

4 + 1
2 iτ)− log π

]
dτ (6.4)

≡ − 1
2 (log 4π + γ) ĥ(0)−

∫ ∞

−∞

e|u|/2 ĥ(u)− ĥ(0)
4 sinh |u| du = Ŵ [ĥ]. (6.5)

The Explicit Formula (6.2) thus “evaluates” a general additive symmetric
function of all Riemann zeros, in terms of more elementary objects indeed
(the Digamma function ψ, and the von Mangoldt function Λ).

In comparison to the Poisson summation formula (Sect. 1.3): the more
stringent condition (i) is natural as it conceals an exponential decay condition
ĥ(u) = O(e−t0u) for some t0 > 1

2 when u → +∞, needed to make the sum
(6.3) converge; (ii1), similar to the earlier (ii), causes the sum

∑
k h(τk) in

(6.2), in view of (4.7), and now the integral (6.4) as well, to converge (here
we mean the growth condition (ii1) over R; imposing it over all of Sδ may
be more of a technical trick); as for the parity condition (iii), it is formally
unchanged but the analyticity condition (i) makes it much more restrictive
here (any old h(|τ |) like (1.12) will no longer do as an even function).

6.2 Derivation of the Explicit Formula

We specifically treat the form with the termW given by (6.4). It is convenient
here to rewrite the completion formula (3.24) of the Riemann zeta function as

G(x) def=
Ξ(x)

x(x− 1)
≡ π−x/2Γ (x/2) ζ(x); (6.6)

G is a symmetric (x ↔ 1 − x) function with shares the Riemann zeros plus
the pole at x = 1 with ζ(x), and thus has the symmetric pole at x = 0 as
well.

Proof. The idea is to pick a positively oriented self-symmetric rectangular
contour LT with vertices (±t0 ± iT ) such that 1

2 < t0 < 1
2 + δ and T is

not the ordinate of any Riemann zero (Fig. 6.1), and simply to equate two
evaluations of the contour integral
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Fig. 6.1 Contour of
integration LT in the
t-plane, used to derive
the explicit formula. The
shaded areas mark the
zones where the path has
to keep “far enough”
from the zeros of Ξ(1

2 + t)
(•, not placed on scale)

1/20

T

−T

IT =
1

4πi

∮

LT

h(−it) d logG(1
2 + t) (6.7)

in a suitable T → +∞ limit.
• By the residue calculus: h being even, any two symmetric zeros and poles
of G(1

2 + t) = Ξ(1
2 + t)/(t2 − 1

4 ) contribute equally to the contour integral,
giving

IT =
∑

Re τk<T

h(τk)− h(± 1
2 i)

→
∞∑

k=1

h(τk)− h(± 1
2 i) def= I∞ for T → +∞, (6.8)

where the infinite sum converges by condition (ii1) on h and property (4.7).
• Now using the right-hand side of (6.6) for G, and again by symmetry,

2πi IT =
[∫ t0+iT

t0−iT

−
∫ t0+iT

−t0+iT

]

h(−it)
[
[ζ′/ζ](1

2 + t)+ 1
2 [ψ((1

2 + t)/2)− log π]
]
dt.

(6.9)
The first trick is now to send T to +∞ along “good” ordinates only, i.e.,
satisfying the bound (4.22) for ζ′/ζ, so that the integrand is O(h(T ) log2 T )
on the short side [−t0 + iT, t0 + iT ] of the rectangle, of length O(1), and this
integral is negligible in the T → +∞ limit again by condition (ii1) on h; by
this same condition, the integrand on the long side [t0− iT, t0 + iT ], which is
O(h(|t|) log |t|), stays integrable in the T → +∞ limit, yielding

2πi lim
T→+∞

IT =
∫ t0+i∞

t0−i∞
h(−it)

[
[ζ′/ζ](1

2 +t)+ 1
2 [ψ(1

4 + 1
2 t)− logπ]

]
dt. (6.10)
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The second ingredient is the Dirichlet series (3.7) for [ζ′/ζ](1
2 +t): it converges

uniformly on the integration line, hence its substitution here yields the con-
vergent series

−
∑

n≥2

∫ t0+i∞

t0−i∞
h(−it)

Λ(n)√
n
n−tdt+ 1

2

∫ t0+i∞

t0−i∞
h(−it)

[
ψ(1

4 + 1
2 t)− log π

]
dt.

(6.11)
The final trick is to observe that every resulting individual integrand is now
analytic and integrable in the strip 0 ≤ Re t < 1

2 + δ, due to conditions (i)
and (ii1) on h, hence each integration line can be shifted to the imaginary
axis. Up to a rotation t = iτ , and using (6.1), finally

I∞ = −
∑

n≥2

Λ(n)√
n
ĥ(logn) +

1
4π

∫ +∞

−∞
h(τ)

[
ψ(1

4 + 1
2 iτ)− log π

]
dτ, (6.12)

and the identification with (6.8) results in the formulae (6.2)–(6.4). ��
We refer the reader to [8] (up to x ≡ eu) for the second form (6.5) as we

displayed it: it has several equivalent variants [4, 42, 43, 111][13, Sect. 1.2][70,
Chap. XVII], none of which is simple or short to present, and here it will bring
us no more explicit results than the first form (6.4); however, it is useful for
the theory as its structure will warrant some comments below.

6.3 Pattern-Matching with the Selberg Trace Formula

We make a digression to sketch a domain of spectral theory which has been
much studied for its own sake, and which presents formal analogies with
Explicit Formulae: Selberg trace formulae. A number of spectral results and
techniques developed around the latter can be transposed, and valuable inspi-
ration obtained, for our present subject; but some significant differences also
arise. We will conclude that to study superzeta functions in tight parallelism
with spectral zeta functions should currently not be our best strategy.

6.3.1 The Selberg Trace Formula (Compact Surface
Case)

Let S be a hyperbolic surface, i.e., a two-dimensional manifold endowed with
a Riemannian metric of constant negative curvature (here normalized to −1);
here for simplicity we take this surface compact. Then, on the geometric
side, let � label all primitive (i.e., non-repeated) oriented periodic geodesics
of S, with 
� denoting the length of �, and AS = area(S); and on the
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spectral side, let {0 = v0 < v1 ≤ v2 ≤ · · · } describe the eigenvalues of
the positive Laplacian on S, parametrized by the hyperbolic wavenumbers
κk

def= (vk − 1
4 )1/2 (with κk ≥ 0 for vk ≥ 1

4 , else arg κk = either + 1
2π or − 1

2π
indifferently); this spectrum has the asymptotic density

#{vk ≤ 1
4 + κ2} ∼ AS

4π
κ2 for κ2 → +∞ (Weyl’s law). (6.13)

Now, let (h, ĥ) be a pair of even test functions exactly as in Sect. 6.1 above,
except that (ii1) has to be tightened to:
(ii2) h(τ) = O(|τ |−2−ε) for τ →∞ in Sδ.

Then the following summation formula (Selberg trace formula) holds:

∞∑

k=0

h(κk) ≡ I[h] +
∑

{�}

∞∑

r=1


�

2 sinh 1
2r
�

ĥ(r
�), (6.14)

where the linear functional I has two expressions, equivalent by the Parseval
formula for distributions:

I[h] =
AS

4π

∫ ∞

−∞
h(τ) τ tanhπτ dτ

≡ −AS

4π

∫ ∞

−∞

dĥ(u)
sinh 1

2u
= Î[ĥ].

(6.15)

The bound (ii2) is needed (over R) to make the sum
∑

k h(κk) in (6.14)
converge (and the integral in I[h] as well), given that the integrated spectral
density (6.13) for the eigenvalues (parametrized by κk) grows faster than its
counterpart (4.26) for the Riemann zeros (parametrized by τk).

For derivations of (6.14)–(6.15) and for further reading, see [50, 91, 97].
Explicit results can also be reached for the spectral zeta functions of this
problem by methods parallel to those we will use for superzeta functions;
those results are listed in Appendix B.

6.3.2 Comparison with the Explicit Formula

Both (6.2) and (6.14) generalize the Poisson summation formula (1.11) in
similar ways. The sum in the right-hand side of (6.14), which runs over the
lengths of periodic geodesics counted with repetitions, bears some resem-
blance to the arithmetical sum of the Explicit Formula in the form (6.3):
inspiring analogies between them are drawn in, e.g., [50, 76]. However, we
wish to rather emphasize several differences.

Since the Weyl law (6.13) is steeper than the Riemann–von Mangoldt law
(4.26), the kernel I(τ) = τ tanhπτ in (6.15) understandably grows faster
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at ∞ than the kernel W (τ) ∼ log 1
2 |τ | in (6.4). Equivalently at the Fourier-

transformed level, already Ŵ (u) = − e|u|/2

4 sinh |u| −
1
2 log π δ(u) fails to be an

integrable function at u = 0 and has to be regularized as in (6.5) to define a
proper functional, but Î(u) = AS

4π
d
du

1
sinhu/2 is even more singular there.

However, this difference at u = 0 between the two summation formulae
has a paradoxical side, if we believe that the Explicit Formula is the more
“elementary” of the two (it is “only” about the integers, after all). The main
(u = 0) singularity in Î may be stronger than in Ŵ , but it has a much simpler

structure: the function Î(u) on R has a meromorphic extension to all of C

(and its complex poles have a dynamical meaning [15][16, Sect. 5]), whereas
Ŵ (u) has a non-analytic singularity at u = 0 and a global analytic structure
which hitherto admit only quite elaborate interpretations (see, e.g., [24,41]).
Accordingly, the nonlocal regularization needed for Ŵ in (6.5) at u = 0 is
definitely more contrived [4, 8, 70, 111] than its counterpart (6.15) for Î.

The sole culprit for all that trouble might just be the plain (log T ) factor in
the asymptotic law (4.26); nevertheless, the resulting complication is vicious
enough to hamper the practical use of the Explicit Formula for superzeta
functions, mainly those of second kind (Sect. 6.4.2).

6.4 Explicit Formulae for the Superzeta Functions

From a naive standpoint, Explicit Formulae should answer our problem at
hand: formally, they evaluate additive symmetric functions of the zeros, which
the superzeta functions Z , Z precisely are. On paper, it would then “suffice”
to select a test function h that turns

∑
k h(τk) into the desired superzeta func-

tion, and take the resulting Explicit Formula (6.2) as . . . an explicit formula
for this superzeta function (picking whichever form (6.4) or (6.5) of W [h] is
nicer). Only the more singular family of the third kind Z seems intractable by
this approach (which critically uses central symmetry); however, as we saw
in Sect. 5.3, it is reducible to the family Z in another way.

We now describe the concrete implementations of Explicit Formulae for
each family Z and Z in turn, but mainly to discover their limitations.

6.4.1 The Family of the First Kind Z

In order to recover Z (s | t) ≡∑k [(t+ iτk)−s + (t− iτk)−s] from the Explicit
Formula (6.2), the appropriate test function pair is

h(τ) = (t+ iτ)−s + (t− iτ)−s, ĥ(u) =
1

Γ (s)
|u|s−1 e−t|u|, (6.16)
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where both s, t are implied parameters, with Re s > 0, Re t > 0 [34, I.3(19)].
Indeed, in the smaller domain {Re s > 1} imposed at once by (ii1),

∑

k

h(τk) ≡ Z (s | t). (6.17)

We next evaluate W [h] by contour integration and the residue calculus:

W [h] = I+ +I−, I±
def=

1
4π

∫ ∞

−∞
(t± iτ)−s

[
ψ(1

4 + 1
2 iτ)− log π

]
dτ. (6.18)

With Re s > 1, both integrands are integrable at ∞ in all τ -plane direc-
tions, but have cuts prescribed according to (1.8): [+it,+i∞) for I+, and its
opposite for I−; the function ψ(1

4 + 1
2 iτ) has poles with residues 2i at all

points τ = (2n+ 1
2 )i, n ∈ N (Fig. 6.2). Hence for I+, the integrand is analytic

in the whole lower half-plane, the real-axis integration path can be translated
all the way as {Im τ = t0}, t0 ↓ −∞, yielding I+ = 0; while for I− the path
can be translated in the opposite direction t0 ↑ +∞, but it then picks up the
contributions from all the poles of ψ, yielding

W [h] = I− = 2πi
1
4π

2i
∞∑

n=0

(t− i(2n+ 1
2 )i)−s

= −
∞∑

n=0

(2n+ 1
2 + t)−s = −2−sζ(s, 1

4 + 1
2 t) (6.19)

(a result which can also be reached from (6.5): exercise!); so that

h(± 1
2 i) +W [h] = (t− 1

2 )−s + (t+ 1
2 )−s − 2−sζ(s, 1

4 + 1
2 t)

= (t− 1
2 )−s − 2−sζ(s, 5

4 + 1
2 t). (6.20)

Re τRe τ

I+

I−it

−it

1/2

0

5/2

Im τ Im τ

0

Fig. 6.2 Path deformations in the τ -planes with cuts (zigzag lines) for the evaluation
of W [h] by the integrals I± of (6.18)
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Now the other critical condition, (i), leads to a major restriction on the
parameter,

Re t > 1
2 , (6.21)

which precisely rules out our two favorite locations, t = 1
2 (a borderline case,

see Remark below), and t = 0 (excluded outright)!
The Explicit Formula for the family of the first kind is then [28]

Z (s | t) ≡ (t− 1
2 )−s−2−sζ(s, 5

4+ 1
2 t)−

1
Γ (s)

∑

n≥2

Λ(n)
n

1
2+t

(log n)s−1 if Re t > 1
2 ,

(6.22)

initially for Re s > 1. Now, with Re t > 1
2 , the argument proving the Explicit

Formula shows the last sum to converge uniformly in s, hence it defines an
entire function. And the Hurwitz zeta function ζ(s, w) is meromorphic in
the whole s-plane (Sect. 3.6). Thus, the right-hand side of (6.22) provides a
meromorphic continuation of Z (s | t) to all s ∈ C (at fixed t with Re t > 1

2 ).
In particular, Z (s | t) then has exactly the singularities of −2−sζ(s, 5

4+ 1
2 t):

namely, the single pole s = 1, which is simple and of residue − 1
2 (independent

of t). The special values Z ′(0 | t) and Z (j | t)j∈Z can also be read from (6.22)
by mere inspection (with the help of (3.6)–(3.7) on the transcendental side).

This approach is, however, curtailed throughout by the restriction
Re t > 1

2 , which seems quite essential here. An unrestricted picture will
only emerge in the next chapter, thanks to a more flexible representation of
Z (s | t) valid for general t.
Remark. A curious effect occurs in the case Re t = 1

2 , where the analytic-
ity condition (i) is just marginally violated: the arithmetical sum in (6.22)
remains absolutely convergent, albeit more slowly, provided Re s < 0 (as in
the Bertrand series

∑
n n

−1(logn)s−1). So for Re t = 1
2 , the Explicit For-

mula (6.22) can survive but in the half-plane Re s < 0, while it originally
held for Re s > 1. (However, we see no vital use for this “borderline Explicit
Formula,” even at t = 1

2 itself, after our forthcoming extension to general t.)

6.4.2 The Family of the Second Kind Z

In order to recover Z(σ | t) =
∑

k(τ 2
k +t2)−σ from the Explicit Formula (6.2),

now the appropriate test function pair is

h(τ) = (τ2 + t2)−σ, ĥ(u) =
π−1/2

Γ (σ)

( |u|
2t

)σ− 1
2

Kσ− 1
2
(t|u|) (6.23)

for implied parameters σ, t such that Re σ > 0, Re t > 0, where Kν(z) is
the modified Bessel function [34, I.3(8)].
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Then, in the smaller domain {Re σ > 1
2} imposed at once by (ii1),

∑

k

h(τk) ≡ Z(σ | t). (6.24)

Under the further restriction Re t > 1
2 (as before) imposed by (i), the arith-

metical sum (6.3) also converges, yielding this Explicit Formula for the family
of the second kind,

Z(σ | t) ≡ (t2 − 1
4 )−σ +W [h] (6.25)

− π−1/2

Γ (σ)
(2t)

1
2−σ

∑

n≥2

Λ(n)√
n

(log n)σ− 1
2Kσ− 1

2
(t logn) if Re t > 1

2 ,

initially for Re σ > 1
2 ; for the current function pair (6.23) however, we cannot

evaluate the integral giving W [h], be it (6.4) or (6.5), in contrast to the case
Z with the function pair (6.16).

Still, for the spectrum {vk} of a hyperbolic Laplacian as in Sect. 6.3.1,
Randol [91] used Selberg trace formulae (6.14) similar to (6.25) to achieve
the meromorphic continuation in σ of the generalized spectral zeta function∑

k(vk + ε)−σ (ε ≥ 0), which our Z(σ | t) parallels if we identify ε ≡ t2 − 1
4 .

In fact, a trace formula precisely using the function pair (6.23) works ([91]
actually focuses on ε = 0, see Remark below).

By analogy with [91], (6.25) should then be able to continue Z(σ | t)
(Re t > 1

2 ) to a meromorphic function in the whole σ-plane, but now with
greater difficulty since Weil’s W [h] is more complicated than Selberg’s I[h]
for the same function h.

Another parallel is then reached with the first family, for which the Ex-
plicit Formula (6.22) achieved the meromorphic continuation in s of Z (s | t)
(Re t > 1

2 ): but now, we lack a closed form for W [h] in (6.25), to match the
result (6.19) for the simpler case of Z .

So on all grounds of comparison, (6.25) for the family Z is an “even less
Explicit Formula.”

Overall, our discussion then indicates that:
1. Analytic properties are harder to access for the family Z than for Z
2. In neither case should we rely too much on Explicit Formulae alone.
Remark. On the boundary Re t = 1

2 , again as in (6.22), the right-hand side
sum in (6.25) stays absolutely convergent in {Re σ < 0}. This effect was
noted in [91] upon the parallel Selberg trace formula at ε = 0 (⇐⇒ t = 1

2 ),
which is now an important case as it describes the Minakshisundaram–Pleijel
spectral zeta function

∑
k 	=0 v

−σ
k [85, Sect. 7] for the hyperbolic surface.
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6.4.3 Concluding Remarks

Explicit Formulae can shed some light upon the zeta families of the first two
kinds (Z and Z) but not directly on Z. Still, they are valid (i.e., converge)
only over a parameter range which excludes the most interesting points t = 1

2
and 0; and their potential to yield explicit results is limited, mainly by their
W -functional term of an awkward singular nature.

Many variants of Explicit Formulae exist, so that better versions for su-
perzeta functions can be envisioned (as with trace formulae for spectral zeta
functions [15][16, Sect. 4]). Still at this time, we find it more economical over-
all to analyze our superzeta functions directly, rather than to coerce them
into some Explicit Formula framework.



Chapter 7

The Family of the First Kind {Z (s | t)}

We now enter the core of our study, with the detailed description of each
superzeta family in turn, in the three following Chaps. 7–9. As a rule, we refer
to Sect. 5.5 for bibliographical data most relevant to the superzeta functions
themselves. Chapter 10 will extend the whole setting to zeros of more general
zeta- and L-functions. Tables of special values conclude Chaps. 7, 8 and 10.
The present chapter is then devoted to the first family Z .

From Sect. 5.1, we recall the definition [28, 96, 108]

Z (s | t) def=
∑

ρ

(1
2 + t− ρ)−s ≡

∑

ρ

(ρ+ t− 1
2 )−s (Re s > 1), (7.1)

valid for t ∈ Ω1
def= {t ∈ C | (1

2 + t − ρ) /∈ R− (∀ρ)}, and these shorthand
names for the two most interesting cases t ∈ Ω1,

Z0(s) = Z (s | 0), Z∗(s) = Z (s | 12 ), (7.2)

to be described last in this chapter.

7.1 The Basic Analytical Continuation Formula

Let

Z(s | t) =
∞∑

k=1

(1
2 + t+ 2k)−s ≡ 2−sζ(s, 5

4 + 1
2 t) (7.3)

be the “shadow” zeta function of Z (s | t), by which we mean the same sum
as
∑

(1
2 + t−ρ)−s but now over the trivial zeros of ζ(x), a sum which is then

expressible in terms of the Hurwitz zeta function.

A. Voros, Zeta Functions over Zeros of Zeta Functions, Lecture Notes
of the Unione Matematica Italiana 8, DOI 10.1007/978-3-642-05203-3 7,
c© Springer-Verlag Berlin Heidelberg 2010
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This new sum enters an integral representation for Z (s | t), valid in the
half-plane {Re s < 1} and for all t ∈ Ω1 \ (−∞,+ 1

2 ]:

Z (s | t) = −Z(s | t) + (t− 1
2 )−s +

sinπs
π

J(s | t), (7.4)

J(s | t) def=
∫ ∞

0

ζ′

ζ
(1
2 + t+ y) y−s dy (Re s < 1); (7.5)

In fact, all discontinuities of (t − 1
2 )−s and −Z(s | t) across the real cut

(−∞,+ 1
2 ] precisely cancel against jumps of J(s | t), as seen by computing

(7.4) for t± i0, t ∈ R. So, even after this analytical continuation in s, Z (s | t)
stays a regular function of t in all of Ω1, including the real axis.

The above result easily adapts to real t < 1
2 . One way is to take the half-

sum over t ± i0 (giving a principal-value integral in (7.5), as exemplified in
(8.7) later). A more regular real form valid for t > − 1

2 (at least) is

Z (s | t) = −Z(s | t) +
sinπs
π

∫ ∞

0

[
ζ′

ζ
(1
2 + t+ y) +

1
t− 1

2 + y

]

y−sdy

(0 < Re s < 1); (7.6)

this form only converges in the stated strip of the s-plane, but unlike (7.4) it
remains well defined in the t→ + 1

2 limit, where it gives

Z∗(s) = −Z(s | 12 ) +
sinπs
π

∫ ∞

0

[
ζ′

ζ
(1 + y) +

1
y

]

y−sdy (0 < Re s < 1).

(7.7)

7.2 Derivations

We provide two distinct arguments, with pros and cons for each.

7.2.1 Derivation by Contour Integration

We start from the last term in (7.4), which we transform in parallel with the
proof of the Functional Equation in Sect. 3.4 (up to x 
→ 1 − s), using the
same notation for the integration paths, and identifying x ≡ 1

2 +t throughout:

sinπs
π

J(s | t) =
sinπs
π

∫ ∞

0

ζ′

ζ
(x+ y) y−s dy (Re s < 0) (7.8)
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=
1

2iπ

∫

C′

ζ′

ζ
(x+ y) (−y)−s dy (s ∈ C) (7.9)

...
=

1
2iπ

lim
R→+∞

∫

CR

ζ′

ζ
(x+ y) (−y)−s dy (Re s > 1), (7.10)

now true provided R is chosen to keep the contour CR “far enough” from the
zeros of ζ(x+ y), up to extra small deformations over lengths O(1) near the
negative real axis and over the critical strip: then ζ′/ζ is O(log2R) on the path
C′′

R by Sect. 4.4. Now we can evaluate (7.10) by the residue calculus: upon
R→ +∞, by construction (Fig. 7.1), the poles of ζ′/ζ at the Riemann zeros
contribute Z (s | t), those at the trivial zeros contribute Z(s | t), while the
pole of ζ itself contributes −(t− 1

2 )−s, whence (7.4) follows. ��
Disadvantages of this approach are that one must carefully fiddle with

the integration path in three zones to make the argument rigorous (at two
critical-strip and one negative-axis crossings), and rely on the nontrivial (al-
beit classic) bound (4.22), or [ζ′/ζ](x0 +iT ) = O(log2 T ) at “good” ordinates
T in the critical strip; as for the negative real axis, it suffices to cross it near
some odd integer (x + y). Extra work is also needed to reach the real form
(7.6). Finally, we cannot transpose this approach to the other families.

On the other hand, the foregoing argument is short and intuitive, and it
displays clear parallelisms:
•With the proof of the Functional Equation in Sect. 3.4, and even more when
ζ(x) is replaced by the Hurwitz zeta function as in Sect. 3.6 because then,
both resulting relations are non-reflexive: we thus view (7.4) as a full analog
for Z (s | t) of the Jonquière functional relation (3.39) for ζ(x,w);

Fig. 7.1 Integration
contour yielding the basic
analytical continuation
formula (7.4). The shaded
areas mark the zones
where the path has to
keep far enough from the
zeros of ζ(x+ y) (•): see
text (The nontrivial zeros
are not placed on scale)

Im y Im(x+y) 

Re y

Re(x+y) 
−x

−6 −2 0 1

0 C’

−4

C"R

C’R
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• With the proof of the Explicit Formula specialized to the function pair
(6.16), only with a different integration path; indeed, in Sect. 7.3 we will
interpret (7.4) as a kind of extended Explicit Formula.

7.2.2 Derivation by Eligibility of the Riemann Zeros

The key input here is that the standard Hadamard factorization (4.9) of ζ(x)
only involves infinite products over sequences eligible in the sense of (2.11)–
(2.13), of order μ0 = 1; hence the whole formalism of Chap. 2 mechanically
applies, with m0 = 2. We then begin by expounding this aspect.

First, the Gamma factor Γ (1+ 1
2x)

−1 in (4.9) is a function Δ(x) like (2.2)
of order μ0 = 1 for the sequence of negated trivial zeros {2k}k=1,2,..., whose
generalized zeta function is Z(s | t). (Again here, x ≡ 1

2 +t; zeta-regularization
being translation-invariant, it won’t matter which variable x or t is used.) And
Stirling’s formula (3.51) gives

logΓ (1 + 1
2x) ∼ 1

2

[
x(log x− 1)− (log 2)x+ log x+ log π

] [
+

∞∑

1

a′−nx
−n
]

for x→∞, | arg x| < π, (7.11)

a result which indeed meets the asymptotic requirement (2.13). We readily
underlined the terms to be banned in the zeta-regularized form; the latter
then immediately follows for the Gamma factor, by (2.50), as

D(x) def= exp
[−Z′(0 |x− 1

2 )
] ≡ 2−x/2π1/2/Γ (1 + 1

2x). (7.12)

We then recast the Hadamard factorization (4.9) of ζ(x) as

ζ(x) =
1

x− 1
D(x)D(x), (7.13)

thereby defining

D(x) def= (x− 1) 2x/2π−1/2Γ (1 + 1
2x) ζ(x) ≡ (4π)−1/2(2π)x/2Ξ(x); (7.14)

this D(x) will prove to be the zeta-regularized form of the other factor Ξ(x).
But to justify such a statement, first we must check that the zeros {ρ} of
Ξ also form an eligible sequence: indeed, their zeta function Z∗(s) satisfies
(2.11) with μ0 = 1, due to (4.7); and their Hadamard product Ξ(x) given by
(4.8) is a good function Δ(x), which also complies with (2.13):

logΞ(x) ∼ 1
2

[
x(log x− 1)− (log 2π)x+ 3 logx+ log 4π

] [
+

∞∑

1

a′′−n x
−n
]

for x→∞, | arg x| < 1
2π − ε (7.15)
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(using Stirling’s formula again upon (3.24), plus log ζ(x) = O(x−∞)). So,
Chap. 2 fully applies to the sequence {ρ}. Thereafter, (7.14) shows that
log D(x) is precisely logΞ(x) but for the banned terms suppressed, which
then qualifies D(x) for being exp[−Z ′(0 |x− 1

2 )], the zeta-regularized prod-
uct; this will ultimately be confirmed in (7.32) below.
Remark. In such conversions, monic polynomial factors like (x − 1) in (4.9)
are passive spectators (log[xq + · · · ] = q log x+O(1/x) has no banned terms).
Even more crucially, ζ(x) with log ζ(x) = O(x−∞) is untouched.

After those preliminaries, the integral representation (7.4) will follow di-
rectly from the factorization (4.9) or (7.13), actually from its logarithmic
derivative of order m0 = 2 which is intrinsic. This can be evaluated by ap-
plying (2.27), i.e.,

Z(2, x) = (− logΔ)′′(x) (for general Δ) (7.16)

with Z = Z and Z = Z in turn, resulting in

[ζ′/ζ]′(1
2 + t) = (t− 1

2 )−2 −Z (2 | t)− Z(2 | t). (7.17)

The idea is now to generalize this identity from s = 2 to some domain of the
half-plane Re s < 1, so as to get a genuine analytical continuation for Z .
The machinery of Sect. 2.4 prompts us to use the identity (2.28), i.e.,

Z(s | t) =
sinπs
π(1− s)

∫ ∞

0

Z(2 | t+ y) y1−sdy when μ0 = 1, (7.18)

for Z = Z and Z, but the latter formula only holds for 1 < Re s < 2. Now
this can be remedied using the continuation method shown in (1.23). Thus,
(7.18) successively yields

Z(s | t) = − sinπs
π(1− s)2

∫ ∞

0

d
dy
[
yZ(2 | t+ y)

]
y1−sdy (0 < Re s < 2) (7.19)

= +
sinπs
π(1− s)

∫ ∞

0

Z̃t(2, y) y1−sdy (0 < Re s < 1), (7.20)

where Z̃t(2, y) stands for Z(2 | t+y) minus its leading large-y behavior (drawn
from (7.16) and the generalized Stirling expansion (2.13) with μ0 = 1):

Z̃t(2, y)
def= Z(2 | t+ y) + ã1 y

−1 = o(y−1)y→+∞ ; (7.21)

this subtraction is mandated for a valid integration by parts in (7.20).
Accordingly, we then twist the decomposition (7.17) to

˜Zt(2, y) ≡ −̃Zt(2, y) + (t− 1
2 + y)−2 − [ζ′/ζ]′(1

2 + t+ y), (7.22)
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˜Zt(2, y)
def= Z (2 | t+ y) +

1
2y
, ˜Zt(2, y)

def= Z(2 | t+ y)− 1
2y
, (7.23)

where the last line uses the specific Stirling expansions (7.15) and (7.11).
Now, on the modified decomposition (7.22), at fixed t ∈ Ω1 \ (−∞,+ 1

2 ], we
can apply the Mellin transformation (7.20) term by term. Then, the left-hand
side yields Z (s | t); as for the right-hand side, the first term yields −Z(s | t)
by exactly the same argument, the second term trivially evaluates to (t− 1

2 )−s,
and the last term can be subjected to an ultimate integration by parts now
valid in the whole half-plane {Re t < 1

2}, using

J (s | t) def=
1

1− s
∫ ∞

0

−
[ζ′

ζ

]′
(1
2 + t+ y) y1−sdy =

∫ ∞

0

ζ′

ζ
(1
2 + t+ y) y−sdy;

(7.24)

all that yields the desired formula (7.4). If the last two terms in (7.22) are
kept together instead, (7.6) can be obtained likewise. ��

This method of derivation seems more robust than the former, as it simply
builds on the general eligible nature of the sequence of Riemann zeros, and it
(alone) will adapt to the second family Z as well. It does without the custom
estimate (4.22) for ζ′/ζ in the critical strip (however, [61, p. 40] argues that
such an estimate is automatically implied by the general zeta-regularization
axioms therein).

On the negative side, this approach obfuscates the kinship, which was
manifest in the previous derivation, between the present results for Z (s | t)
and the Jonquière formula for ζ(x,w) on the one hand, the Explicit Formula
(6.22) on the other hand.

7.3 Analytic Properties of the Family {Z (s | t)}

The subsequent statements refer to s as variable, with t fixed. It helps to
keep in mind that (7.4) is to Z (s | t) very much like the Jonquière functional
relation (3.39) to ζ(x,w). Incidentally, since neither relation is reflexive (in
contrast to the Riemann Functional Equation), we expect nothing remarkable
about the s-plane zeros of Z (so, the reader will be spared later books on
zeta functions built over zeros of zeta functions built over zeros of . . . , etc.).

First of all, (7.4) gives an explicit one-step analytical continuation of
Z (s | t) to the half-plane {Re s < 1}. It also implies its meromorphic contin-
uation in s to all of C, because as a Mellin transform, J(s | t) has a known
global meromorphic structure: with (ζ′/ζ)(x) = O(x−∞) for x → +∞, the
application of Sect. 1.5 shows J to be meromorphic in the whole s-plane,
having only simple poles at s = +1,+2, . . ., with residues

Ress=n J(s | t) = −(log |ζ|)(n)(1
2 + t)/(n− 1)! (n = 1, 2, . . .). (7.25)
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Then, sinπsJ(s | t) in (7.4) has no singularities; it follows therefrom that
Z (s | t) is meromorphic in the whole s-plane with the same polar structure
as −Z(s | t): i.e., by (7.3) and Sect. 3.6,

Z (s | t) has the single pole s = 1, simple, of residue − 1
2 . (7.26)

Next, the substitution of the Dirichlet series (3.7) for ζ′/ζ (1
2 + t+ y) into

(7.5), followed by y-integration term by term, formally yields

J(s | t) = −Γ (1− s)
∑

n≥2

Λ(n)
n

1
2+t

(log n)s−1. (7.27)

This is rigorously an identity if the Dirichlet series for ζ′/ζ (1
2 + t + y) con-

verges uniformly over the integration range {y > 0}, which is the case if
Re t > 1

2 ; then in fact, (7.3) plus (7.4) plus (7.27) just boil down to the Ex-
plicit Formula (6.22) for the family Z [28]. (For Re t = 1

2 , see the Remark
ending Sect. 6.4.1.)

But the above integration term by term stays valid even for general t
(fixed), now in the sense of asymptotic series as s → −∞. So, the Explicit
Formula (6.22) retains some meaning at all t: when its right-hand side di-
verges, it just goes into an asymptotic expansion for Z (s | t), as

Z (s | t) ∼ (t− 1
2 )−s − 2−sζ(s, 5

4 + 1
2 t)−

1
Γ (s)

∑

n≥2

Λ(n)
n

1
2+t

(log n)s−1 (7.28)

for s→ −∞ (or Re s→ −∞ in C), at any fixed t ∈ Ω1.
In reverse, (7.4)–(7.7) qualify as extensions of the Explicit Formula (6.22)

to {Re t ≤ 1
2}. Only the series (7.27) buried in (6.22) is affected in this

process: when this Dirichlet series diverges, (7.5) delivers its adequate re-
summation; this achieves a transposition of the Borel summation method
which works for divergent power series.

7.4 Special Values of Z (s | t) for General t

Again thanks to the factor (sinπs) vanishing at integers, and to the known
polar structure (7.25) of J(s | t), (7.4) immediately outputs formulae for all
the special values of Z (s | t) (in the sense of Sect. 2.6.3):

Z (−n | t) = −Z(−n | t) + (t− 1
2 )n (n ∈ N) (7.29)

= −2nζ(−n, 5
4 + 1

2 t) + (t− 1
2 )n (n ∈ N), (7.30)

Z
′(0 | t) = −Z′(0 | t)− log

[
(t− 1

2 ) ζ(1
2 + t)

]
(7.31)
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= − 1
2 (log 2) t+ 1

2 log π√
2
− logΓ (5

4 + 1
2 t)

− log
[
(t− 1

2 ) ζ(1
2 + t)

]

≡ − log D(1
2 + t), (7.32)

FPs=1 Z (s | t) = −FPs=1 Z(s | t) +
[

1
t− 1

2

+
ζ′

ζ
(1
2 + t)

]

(7.33)

= 1
2

(
log 2 + ψ(5

4 + 1
2 t)
)

+
[

1
t− 1

2

+
ζ′

ζ
(1
2 + t)

]

(7.34)

≡ (log D)′(1
2 + t), (7.35)

and, for n = 2, 3, . . . ,

Z (+n | t) = −Z(+n | t) +
[

(t− 1
2 )−n− (−1)n

(n−1)!
[log |ζ|](n)(1

2 +t)
]

(7.36)

= −2−nζ(n, 5
4 + 1

2 t)

+
[

(t− 1
2 )−n− (−1)n

(n−1)!
[log |ζ|](n)(1

2 +t)
]

(7.37)

≡ (−1)n−1

(n− 1)!
(log D)(n)(1

2 + t) (n = 2, 3, . . .), (7.38)

also using (3.40), (3.41), (7.3), (7.14). Those values are listed in Table 7.1 in
still another equivalent form which clearly shows that the quantities in square
brackets above, apparently singular for t = + 1

2 , are in fact globally regular
(for the special values reached at t = 1

2 , see Sect. 7.6.2 and Table 7.4).
At s = 0, the identity (7.32) confirms that D is the zeta-regularized form of

Ξ in the variable x (or t). Then, (7.35) and (7.38) just exemplify the general
formulae (2.53)–(2.56).

Now the point s = 1 (= μ0) deserves extra attention. Upon loga-
rithmic differentiations, the symmetric Hadamard product formula (4.15),
Ξ(1

2 + t) ≡∏
ρ

[
1− (1

2 + t)/ρ
]
, directly yields

(−1)n−1

(n− 1)!
(logΞ)(n)(1

2 + t) =
∑

ρ

(1
2 + t− ρ)−n ≡ Z (n | t), n = 1, 2, . . .

(7.39)
When n = 1, both product and sum (then only semiconvergent) must be
performed with zeros grouped in symmetrical pairs, as usual: the two terms
(t± iτk)−1 interfere sufficiently to make the grouped series converge; Z (1 | t)
thereby acquires a finite value, as exemplified earlier by (4.14) at t = 1

2 . But
here a double paradox arises.
1. Although Z (1 | t) is finite, Z (s | t) still has a pole at s = 1: thus, that
same interference inside the (convergent) series

∑
ρ(

1
2 + t−ρ)−s (s > 1) does

not keep its sum from diverging for s→ 1+.
2. A standard finite value assignment for a meromorphic function at a pole
is its finite part (1.7); but for Z (s | t) at s = 1, this prescription differs from
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(7.39) at n = 1; the discrepancy (or “anomaly”) is

δ1(t)
def= FPs=1 Z (s | t)−Z (1 | t) ≡ [log(D/Ξ)]′(1

2 + t) ≡ 1
2 log 2π (7.40)

according to (7.14), (7.35). Since FPs=1 Z (s | t) and Z (1 | t) share the same
t-derivative (−Z (2 | t)), it is clear why δ1(t) = const., but why is it not zero?
This will actually relate to a nonzero residue in the function Z of the second
kind, see (8.5), and also to one term of the Riemann–von Mangoldt formula,
see (10.40).

Due to this δ1 �= 0, in every Table for the family Z (this chapter, Chap. 10,
and Appendix A), two lines harbor values at s = 1, and these apparently
conflict.
Remark. Equation (7.39) instantly yielded all the special values Z (n | t) for
n = 1, 2, . . . as displayed in Table 7.1. However, we didn’t favor this shortcut
because it all too easily suggests that those Z (n | t) form the totality of com-
putable transcendental special values; it thus misses the first two, Z ′(0 | t)
and FPs=1 Z (s | t), which match the important special values (3.40) and
(3.41) of the Hurwitz zeta function. In contrast, our lengthier treatment sees
and includes those latter two values as well. We add that Z ′(0 | t) itself has
been computed, and its interest argued, in [28, 76, 96].

7.5 Imprints of the Central Symmetry ρ←→ (1− ρ)

The stake here is to detect manifestations of Riemann’s Functional Equation,
inasmuch as it does not simply translate into a functional equation for the
family Z (s | t) (cf. Sect. 5.1).

7.5.1 t←→ (−t) Symmetry at Integer t

A basic symmetry identity, obvious from (7.39), is

Z (n | t) = (−1)n Z (n | −t) for n = 1, 2, . . . , (7.41)

and in particular, at t = 0,

Z0(n) ≡
∑

ρ

(1
2 − ρ)−n ≡ 0 for each odd n ≥ 1. (7.42)

Symmetry relations can be expected for the nonpositive integers as well,
but possibly modified, as these other integers are only reached under an-
alytical continuation. Working directly from Table 7.1, Table 7.2 lists the
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correct symmetry relations for all the special values; e.g., for the first line,
Z (−n | t)−(−1)n Z (−n | −t) = 2n

n+1
[
Bn+1(1

4 + 1
2 t)−(−1)nBn+1(1

4− 1
2 t)
]

=
2n

n+1
[
Bn+1(1

4 + 1
2 t)+Bn+1(3

4 + 1
2 t)
]

= 1
n+1Bn+1(1

2 +t), using the symmetry
and duplication formulae for the Bernoulli polynomials [1, Sect. 23.1].

7.5.2 Sum Rules at an Arbitrary Fixed t

A less obvious effect, now for a general t kept at a single value, has the
following heuristic basis: if the central symmetry made all the odd-n values
Z (n | t = 0) redundant (≡ 0 through (7.42)), then some trace of this could
persist for t �= 0. Indeed, one extension of (7.42) to general t consists of this
countable set of “sum rules”:

Z (n | t) +
1
2

∞∑

k=n+1

(
k−1
n−1

)

(2t)k−n Z (k | t) = 0 for each odd n ≥ 1.

(7.43)

Proof. In the identity

(t− 1
2 + ρ)−n ≡ (−1)n(1

2 + t− ρ)−n
[
1− 2t/(1

2 + t− ρ)]−n
, (7.44)

do the generalized binomial expansion of the last factor (in brackets) about
t = 0, sum over the zeros grouped in pairs, then identify Z on both resulting
sides thanks to central symmetry. The said expansion converges in the domain
{t ∈ C | 2|t| < |t± τ1|} (intersection of two disks). ��

We know of no canonical, or maximally reduced, presentation for a set
of identities based on infinite series like (7.43). Still, we may strive to make
those series converge more rapidly.

For instance, if in place of (7.44) we use the identity

(1
2 − ρ)−n ≡ (1

2 + t− ρ)−n
[
1− t/(1

2 + t− ρ)]−n
, (7.45)

then expand about t = 0 and sum as before, and finally invoke (7.42), we
thus obtain variant sum rules which converge manifestly better than (7.43):

0 =
∞∑

k=n

(
k−1
n−1

)

tk−n
Z (k | t) for each odd n ≥ 1. (7.46)

We believe that the latter approach is the most symmetrical one and enjoys
the largest possible domain of convergence (the strip {| Im t| < 1

2 τ1}): we
hence advocate these newer sum rules (7.46) as superior to (7.43).
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Such sum rules then allow us to eliminate any odd-n value Z (n | t) as
a series over all higher-k values Z (k | t), from which higher odd-k values
can be eliminated again, up to any finite rank; in this precise sense, odd-n
values are finitely redundant. If we now continue indefinitely, every odd-n
value ends up formally reexpressed in a series over all higher even-n values
only, as Z (2m+1 | t) =

∑
j>mAm,j Z (2j | t) t2j−(2m+1); but then (exercise!)

these series have to be divergent for all t �= 0; while at t = 0, only (7.42) is
recovered.

7.6 Special Values of Z (s | t) at t = 0 and 1
2

For integer t, the values ζ(±n, 5
4 + 1

2 t) which occur in (7.30) and (7.37) can be
made slightly more explicit, and even simpler for half-integer t. We moreover
argued in Sect. 5.1 that remarkable parameter values had to be t = 0 and 1

2 .
At these points, (7.3) now yields

Z(s | 0) ≡ 1
2

[
(2s − 1) ζ(s) + 2sβ(s)

]− 2s, Z(s | 12 ) ≡ (1− 2−s) ζ(s) − 1;
(7.47)

then, using the special values for ζ(s) and β(s) from Chap. 3, the special
values of Z (s | 0) ≡ Z0(s) and Z (s | 12 ) ≡ Z∗(s) reduce further. The results
are displayed in Tables 7.3 and 7.4 respectively, with a few comments below.
Moreover, some numerical data are described and plotted in Appendix A.

7.6.1 The Function Z0(s) (the Confluent Case t = 0)

At t = 0, thanks to the confluence identities (5.12), Z0(s) will actually sub-
sume the superzeta functions of all three kinds.

Here, the central symmetry greatly simplifies most of the special values,
notably Z0(n) ≡ 0 for all odd n ≥ 1 by (7.42); equivalently, (logΞ)(n)(1

2 ) = 0
by the Functional Equation, and either result amounts (e.g., by (7.37)) to a
sequence of identities for ζ(x) itself:

(log |ζ|)(n)(1
2 ) ≡ −2−nψ(n−1)(1

4 ) + δn,1
1
2 log π for odd n ≥ 1, (7.48)

≡
{

1
2 (n− 1)!

[
(2n − 1) ζ(n) + 2nβ(n)

]
, n > 1,

1
2γ + 1

4π + 1
2 log 8π, n = 1,

(7.49)

in which, n being odd, 1
2 (n−1)! 2nβ(n) reduces to 1

4π
n|En−1| by (3.32) while

ζ(n) remains elusive. App. C gives more identities relevant to (log |ζ|)(n)(1
2 ).
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At n = 1, moreover, since Z0(1) = 0, the evaluation of the discrepancy δ1
by (7.40) at t = 0 implies

FPs=1 Z0(s) ≡ 1
2 log 2π (≈ 0.918938533). (7.50)

Inversely now, at n = 0, Z ′
0 (0) (≈ 0.811817944) (for t = 0) is much less

explicit than its counterpart Z ′
∗(0) for t = 1

2 (see below), as it involves ζ(1
2 )

about which very little is known.
All resulting special values of Z0(s) are listed in Table 7.3, following [108,

Table 3] (we found no earlier references).

7.6.2 The Function Z∗(s) (the Case t = 1
2
)

Here, our results (listed in Table 7.4) are the t → 1
2 limits of (7.30)–(7.38),

which make the Stieltjes cumulant expansion (3.15) emerge; equivalently,
they can be traced to the integral representation (7.7). Unlike the Z0(n), the
special values Z∗(n) have received some attention before.

• Rational special values Z∗(−n) for n ∈ N were stated in [83, (12)] but
with errors (as discussed in Sect. 5.5; see also Appendix D).
By pure observation, we report these intriguing identities:

Z∗(−n) ≡ 1 + 2n+1Z0(−n) for odd n, ≡ 1 for even n (n > 0).
(7.51)

• The explicit value Z ′
∗(0) = 1

2 log 2 (≈ 0.346573590) is much simpler than
Z ′

0 (0); it yields the zeta-regularized product of all the Riemann zeros, as

“
∏

ρ

ρ ” = e−Z
′
∗(0) = 2−1/2. (7.52)

• The transcendental special values Z∗(n) (n = 1, 2, . . .) have been the sub-
ject of a few studies (often under the name σn):

– Z∗(1) = −B = 1
2γ− 1

2 log 4π+1 (≈ 0.0230957090), as given by (4.14)
[26, Sect. 12][31, Sect. 3.8][89, Sect. 3.1]

– Every higher Z∗(n) boils down to this affine function of the n-th Stielt-
jes cumulant gc

n from (3.15) [106]

Z∗(n) =
1

(n− 1)!
gc

n − (1− 2−n) ζ(n) + 1 (n > 1); (7.53)

this formula subsumes earlier ones relating Z∗(n) to the Stieltjes con-
stants instead – at the price of greater complexity [82][64, Sect. 6][114,
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Theorem 5]. Another affine relationship [72, (12)], equivalent to (7.53)
by the Functional Equation [2, 18], is

Z∗(n) = − 1
(n− 1)!

(log |ζ|)(n)(0)− (−1)n2−nζ(n) + 1 (n > 1).

(7.54)

For numerical tables, see [72, Table 5][64, Appendix].
Those Z∗(n) (n = 1, 2, . . .) also enter two interesting countable sets of
linear identities.
1. The (infinite) sum rules (7.43) or better, (7.46), specialized to t = 1

2 ;
(remark: [64, (18)] seemingly states more sum rules than (7.43) at t = 1

2 :
i.e., Z∗(n) = (−1)n

∑∞
k=n

(
k−1
n−1

)
Z∗(k) for odd or even n; but the even-n

identities are redundant, reducing to finite linear combinations of higher
odd-k ones).
2. (Finite, triangular) relations to the Keiper–Li coefficients

λj
def=
∑

ρ

[1− (1− 1/ρ)j], j = 1, 2, . . . , (7.55)

which enter Li’s criterion for the Riemann Hypothesis, namely λj > 0 (∀j)
(see [9, 73] and Chap. 11; note: the λj of [73], used here, are j times the
earlier λj of [64]). The above-mentioned relations read as [64, (27)][9, The-
orem 2]

λj =
j∑

n=1

(−1)n+1

(
j

n

)

Z∗(n) ⇐⇒ Z∗(n) =
n∑

j=1

(−1)j+1

(
n

j

)

λj .

(7.56)

The leftmost identities follow by straightforward expansion of (7.55), upon
which a standard inversion procedure yields the converse identities. Then,
(7.53) implies affine relations of the λj to the Stieltjes cumulants gc

n with
n ≤ j; this, plus the arithmetical formula (3.12) for the cumulants, together
account for the quite intricate aspect displayed by the fully developed λj

[9, Theorem 2].

7.7 Tables of Formulae for the Special Values of Z

Note. The singular structure in s of the meromorphic functions Z (s | t) is also
explicit: their only pole, at s = 1, is simple and of residue (− 1

2 ), cf. (7.26).
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7.7.1 Function of First Kind for General t

Table 7.1 Special values of Z (s | t) (upper part: rational, lower part:
transcendental, cf. Sect. 2.6.3 and Tables 2.1 and 3.1); see also (7.29)–
(7.40). Notation: see (1.3), (1.7), (1.9), (3.24); n is an integer

s Z (s | t) =
∑

ρ
(1
2 + t− ρ)−s

−n ≤ 0
2n

n+ 1
Bn+1(

1
4 + 1

2 t) + (t+ 1
2 )n + (t− 1

2 )n †

0 1
2 (t+ 7

2 )

0
(s-derivative) Z ′(0 | t) = −1

2 (log 2π) t+ 1
4 (log 8π)− logΞ(1

2 + t)

+1
(finite part) FPs=1 Z (s | t) = 1

2 log 2π + (logΞ)′(1
2 + t)

+n ≥ 1
(−1)n−1

(n− 1)!
(logΞ)(n)(1

2 + t)

†
With (t− t0)0

def
= 1 for t = t0 (continuity in t is imperative)

Table 7.2 Special values of Z (s | −t) in terms of those at (+t)
(reflecting the central symmetry of the Functional Equation).
Notation as in Table 7.1

s Z (s | −t)

−n ≤ 0 (−1)n
Z (−n | t) +

Bn+1(
1
2 − t)

n+ 1
0 Z (0 | t)− t
0

(s-derivative) Z ′(0 | −t) = Z ′(0 | t) + (log 2π) t

+1
(finite part) FPs=1 Z (s | −t) = −FPs=1 Z (s | t) + log 2π

+n ≥ 1 (−1)n Z (+n | t)
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7.7.2 Function of First Kind at t = 0 and 1
2

Table 7.3 Special values of the function Z (s | t) at t = 0 (the confluent
case, Sect. 7.6.1). Notation: see (1.4)–(1.7); n is an integer

s Z0(s) ≡∑
ρ

(ρ − 1
2 )−s [t = 0]

even 2−n+1(1− 1
8En)

−n ≤ 0

{

odd −1
2 (1−2−n)

Bn+1
n+1

0 7/4

0
(derivative) Z ′

0(0) = log
[
211/4π1/2Γ (1

4 )−1|ζ(1
2 )|−1

]

+1
(finite part) FPs=1 Z0(s) = 1

2 log 2π

odd 0 ∗
+n ≥ 1

{

even 2n+1 − 1
2

[
(2n−1) ζ(n) + 2nβ(n)

] − (log |ζ|)(n)(1
2 )

(n− 1)!

†

∗
This amounts to the formulae (7.49) yielding (log |ζ|)(n)(1

2 ) for n odd
†
Here ζ(n) ≡ (2π)n|Bn|/(2n!), while β(n) (Sect. 3.5) and (log |ζ|)(n)(1

2 )
remain elusive

Table 7.4 As Table 7.3, but at t = 1
2 (Sect. 7.6.2)

s Z∗(s) ≡∑
ρ
ρ−s [t = 1

2 ]

−n < 0 1− (2n−1)
Bn+1
n+1

0 2

0
(derivative) Z ′∗(0) = 1

2 log 2

+1
(finite part) FPs=1 Z∗(s) = 1 − 1

2 log 2 + 1
2γ

+1 1− 1
2 log 4π + 1

2γ

+n > 1 1− (1−2−n) ζ(n)+
gcn

(n−1)!
≡ 1− (−1)n2−nζ(n)− (log |ζ|)(n)(0)

(n− 1)!

†

†
For n even, ζ(n) ≡ (2π)n|Bn|/(2n!). For the Stieltjes cumulants gcn, see (3.15)



Chapter 8

The Family of the Second Kind {Z(σ | t)}

From Sect. 5.2 (and [106], with different notation), we recall the definition

Z(σ | t) =
∞∑

k=1

(τk2 + t2)−σ, Re σ > 1
2 , (8.1)

valid for t ∈ Ω2
def= {t ∈ C | t± iτk /∈ ±iR− (∀k)}, and these shorthand names

at the two points t ∈ Ω2 of special interest:

Z0(σ) def= Z(σ | 0) ≡ (2 cosπσ)−1 Z0(2σ), Z∗(σ) def= Z(σ | 12 ), (8.2)

where the identity at t = 0 repeats the confluence relation (5.8).
This second family embodies the central symmetry of the zeros (i.e., the

Functional Equation) at once through Z(σ | t) ≡ Z(σ | −t), but other prop-
erties prove less readily accessible than in the previous case.

That first family Z benefited from a “magic formula,” the extension (7.4)
of the Explicit Formula (6.22) to general t, which sufficed to display all explicit
properties of Z by inspection. For sure, a formula parallel to (7.4) can be
worked out for the family Z (exercise!): for 1

2 < Re s < 1, |t| < τ1, t /∈
(−∞, 1

2 ],

Z(σ | t) ≡ (t2 − 1
4 )−σ +W [h] +

sinπσ
π

∫ ∞

0

ζ′

ζ
(1
2 + t+ y) [y(2t+ y)]−σdy,

W [h] =
1
4π

∫ ∞

−∞
(τ2 + t2)−σ

[
ψ(1

4 + 1
2 iτ)− log π

]
dτ ; (8.3)

this extends the Explicit Formula (6.25) beyond Re t > 1
2 all right, so it

should yield the meromorphic continuation in σ and explicit properties for
the family Z unrestrictedly, by analogy with the family Z ; but that task
now calls for the continuation in σ of two intractable integrals in (8.3), vs.
that of only W [h] in (6.25), and only J(s | t) in (7.4) for the family Z .

In contrast, for the second family Z, several natural approaches gave par-
tial or incomplete results, and only a specific combination gradually proved

A. Voros, Zeta Functions over Zeros of Zeta Functions, Lecture Notes
of the Unione Matematica Italiana 8, DOI 10.1007/978-3-642-05203-3 8,
c© Springer-Verlag Berlin Heidelberg 2010
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satisfactory: first, describe the confluent case Z0 completely by transfer
from Z0; next, use an expansion around t = 0 to get all the general-t ra-
tional formulae; and last, obtain the transcendental special values explicitly
from a symmetric zeta-regularized factorization of Ξ(1

2 +t). (Thus, our initial
results [106] were neither as complete, nor as fully reduced as they are now.)

8.1 The Confluent Case Z(σ | t = 0) ≡ Z0(σ)

We then begin by using the confluence identity from (8.2), to transfer all
previous results about Z0(s) onto Z0(σ) straightforwardly.

First, that identity makes Z0(σ) meromorphic in all of C with a double
pole at σ = 1

2 and simple poles at σ = 1
2 − m (m = 1, 2, . . .), with the

principal parts

Z0(1
2 + ε) = − 1

4π
Ress=1 Z0(s) ε−2 − 1

2π
FPs=1 Z0(s) ε−1 + O(1)ε→0

=
1
8π

ε−2 − log 2π
4π

ε−1 + O(1)ε→0 ; (8.4)

Z0(1
2−m+ ε) =

(−1)m+1

2π Z0(1−2m) ε−1 + O(1)ε→0 for m = 1, 2, . . . ;

((8.4) follows from (7.26) and (7.50)). So the residues are, by Table 7.3,

Rm
def= Resσ= 1

2−m Z0(σ) =

⎧
⎪⎨

⎪⎩

− 1
2π

FPs=1 Z0(s) = − log 2π
4π

, m = 0,

(−1)m

8πm
(1− 21−2m)B2m, m = 1, 2, . . .

(8.5)

(all of them are negative). Concerning the residue R0 at the double pole:
since Z0(1) = 0 by (7.42), then −2πR0 = FPs=1 Z0(s) also equals δ1, the
discrepancy (7.40) affecting the family Z at s = 1; so, δ1 �= 0 relates to the
presence of this nonzero residue R0 in the double pole σ = 1

2 of Z0.
Then, the confluence identity in (8.2) implies an integral representation

for Z0(σ) [106, (72)], just by specializing (7.4) to t = ±i0:

Z0(σ) =
−Z(2σ | 0) + 22σ e∓2πiσ

2 cosπσ
+

sinπσ
π

∫ +e±iε∞

0

ζ′

ζ
(1
2 + y) y−2σdy ; (8.6)

a real variant (among others [106, (73)–(74)]) is the half-sum of these:

Z0(σ) =
−Z(2σ | 0) + 22σ cos 2πσ

2 cosπσ
+

sinπσ
π

PV
∫ +∞

0

t−2σ ζ
′

ζ

(
1
2 + t

)
dt (8.7)

(PV = principal value); both integrals converge in the half-plane {Re σ < 1
2}.
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Finally, the confluence identity delivers all the special values of Z0(σ), as

Z0(m) = 1
2 (−1)m

Z0(2m) (∀m ∈ Z), (8.8)

Z ′
0(0) = Z

′
0 (0) (≈ 0.811817944); (8.9)

the fully explicit values then closely follow Table 7.3, see Table 8.3 below.
Remark. Although points σ = 1

2 + m, m = 1, 2, . . . also map to integer
arguments s = 2σ for Z0, these are now odd, so that in the confluence
identity, poles of (2 cosπσ)−1 get cancelled by zeros of Z0(2σ) at those points.
Hence Z0(σ) proves holomorphic for Re σ > 1

2 as it should, but it gains no
computable special values at σ = 1

2 +m in the process.
Now our main challenge is to treat general values t �= 0 of the parameter.

8.2 Meromorphic Continuation in σ for General t

Our key idea for the meromorphic continuation of Z(σ | t) is that its under-
lying sequence {xk} = {τ2

k + t2} = {ρ(1 − ρ) + t2 − 1
4} (at fixed t), of zeta

function Z(σ | {xk}) = Z(σ | t), is again eligible in the sense of Sect. 2.2. Only
the order μ0 will change: throughout this chapter,

μ0 = 1
2 . (8.10)

Indeed the first condition, convergence of Z(σ | t) if and only if Re σ > 1
2 , is

equivalent to the property (4.7), and as such was part of the definition (8.1).
Now to get hold of an explicit Delta-type function, we specialize to t2 = 1

4 ,
because the symmetric Hadamard product formula (4.16) for Ξ is tied to the
specific sequence {uk = τ2

k + 1
4}. Then,

• The Delta function Δ0 is Ξ itself but as a function of u def= x(x − 1), or

Δ0(u) =
∞∏

k=1

[

1 +
u

uk

]

≡ Ξ(x), u
def= x(x− 1); (8.11)

• By (3.24) and log ζ(x) = O(x−∞) (| arg x| < π/2−ε), the large-u expansion
of logΞ is simply the large-x expansion of − log[G(x)/(x − 1)],

logΞ ∼ x

2

(
log

x

2π
− 1
)

+ log u− 1
2 log

x

4π
+
∑

m≥1

B2m22m−1

2m(2m− 1)
x1−2m (8.12)

but with x substituted by the positive asymptotic branch x(u), namely

x(u) = 1
2 +
√
u+ 1

4 ∼ u1/2 +
1
2

+
∞∑

n=1

2−2nΓ (3/2)
n!Γ (−n+ 3/2)

u1/2−n, (8.13)
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and the result fulfills the second eligibility condition (2.13),

logΔ0(u) ∼
∞∑

n=0

[
ã 1−n

2
log u+ a 1−n

2

]
u

1−n
2 (u→∞, | arg u| < π−ε) (8.14)

= 1
4 u

1/2 log u− 1
2 (log 2π+1)u1/2+ 7

8 log u+ 1
4 log 8π + o(1). (8.15)

The sequence of exponents is {μn = 1− n
2 }n=0,1,..., and the coefficients are

algebraically computable to any order in principle. Still, a reduced general
formula for aμn looks inaccessible this way; only the ãμn , which all (aside from
ã0) arise from the single substitution of (8.13) into the leading prefactor 1

2x
of log x (∼ 1

2 log u) in (8.12), are readily expressible, in particular

ã−1−m ≡ 0, m = 0, 1, 2, . . . (8.16)

Exactly the same qualitative structure arises for all shifts t2 (except t = 0
which is more regular, see previous section): see [106, Sects. 3.2 and 4].

Then, it automatically follows from the general results (2.18)–(2.21) in
Sect. 2.3 that Z(σ | t) is meromorphic in the whole σ-plane, with double poles
at all half-integers of the form σ = 1

2 −m (m ∈ N) when t �= 0; in contrast,
all the integer σ are regular points, by (2.19) and (8.16) for σ < 0, (2.21)
for σ = 0, (8.1) for σ > 0. The principal parts at the poles, and the values
Z(−m | t) for m ∈ N, have to be algebraically computable polynomials of t
according to Sect. 2.6.3, but by and large they look intractable here. For this
reason, we will devise another scheme for practical computations.

But before that, to make a parallel with Sect. 7.2.2 and to prepare for
Sect. 8.4 below, we conclude by giving the zeta-regularized form of Δ0(v− 1

4 ),
which we will denote D(v) (v ≡ t2). When μ0 < 1 like here, this calculation
is even simpler than when μ0 = 1 (not to mention μ0 > 1). The only banned
terms in asymptotic expansions when μ0 < 1 are the additive constants, hence
a mere glance at the large-u expansion (8.15) of logΔ0 = logΞ imposes

D(t2) def= e−Z′(0 | t) ≡ (8π)−1/4Ξ(1
2 + t), (8.17)

instead of D(1
2 + t) as in (7.14). The main point here is the change of basic

variable from t to v = t2, which does not leave zeta-regularization invariant;
unlike D(1

2 +t), the new zeta-regularization of Ξ(1
2 +t) is explicitly symmetric

(under t↔ −t). The corresponding factorization of ζ(x) is [108]

ζ(1
2 + t) = (2π)t/2 1

t− 1
2

D(1
2 + t)D(t2) (8.18)

instead of (7.13), and it is inspired by an earlier factorization for hyper-
bolic Selberg zeta functions over spectral determinants [104] (see (B.18)).
The prefactor (2π)t/2 specifically corrects for the discrepancy between
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the zeta-regularizations with respect to t (as in D) and t2 (in D). (The
zeta-regularized form (8.17) is also closest to the determinant of Riemann
zeros introduced by Berry and Keating for other purposes [6].)

8.3 Algebraic Results for Z(σ | t) at General t

Our best tool here is a straightforward expansion of Z(σ | t) around t = 0
[106], convergent for |t| < τ1 (followed by analytical continuation in t, in case
we had to go to larger t):

Z(σ | t) =
∞∑

k=1

(τk2)−σ

(

1 +
t2

τ 2
k

)−σ

=
∞∑

�=0

Γ (1− σ)
Γ (1− σ − 
) 
! Z0(σ + 
) t2�.

(8.19)

This series is infinite, reflecting the generally transcendental nature of the
dependence on the shift parameter (Sect. 2.4), nevertheless it discloses some
information in closed form through finite partial sums.

Thus, the right-hand side fully reflects the σ-plane meromorphic structure
that we just found for Z(σ | t): at fixed t �= 0, the poles are all the points
σ = 1

2 −m (m ∈ N), as when t = 0, but now all of them are double, not just
σ = 1

2 . We are not sure whether (8.19) alone could prove all the meromor-
phic properties of Z(σ | t) as we did above; but it does make algebraically
computable quantities much more explicit, as follows.

• First, the principal part of Z(σ | t) at each pole only depends on a finite
stretch of the series (8.19),

Z(1
2 −m+ ε | t) =

m∑

�=0

Γ (1
2 +m−ε)

Γ (1
2 +m−
−ε) 
! Z0(1

2 −m+ 
+ ε) t2� + O(1)ε→0,

(8.20)

hence it can be extracted in closed form; specifically, upon importing the
polar structure of Z0(σ) from (8.4)–(8.5), we obtain

Z(1
2 −m+ ε | t) =

1
8π

Γ (1
2 +m)

Γ (1
2 )m!

t2m ε−2 +Rm(t) ε−1 + O(1)ε→0 , (8.21)

Rm(t) = Γ (1
2 +m)

[

−
∑m

j=1
1

2j−1

4π Γ (1
2 )m!

t2m +
m∑

j=0

1
Γ (1

2 +j) (m−j)!Rj t
2(m−j)

]

.

(8.22)

So, all the poles σ = 1
2 − m of Z(σ | t) inherit their polar parts of order 2

from the single double pole σ = 1
2 of Z0(σ); whereas each residue Rm(t) gets

contributions from all the residues Rj of Z0(σ) for j ≤ m, themselves known
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from (8.5). At m = 0, (8.21) boils down to (8.4) for all t, hence the double
pole σ = 1

2 has a principal part wholly independent of t, given by (8.4).

• Next, at the negative or null integers σ, the series (8.19) terminates:

Z(−m | t) ≡
m∑

�=0

(
m




)

Z0(−m+ 
) t2� (m ∈ N), (8.23)

with the values Z0(−m+ 
) known from (8.8) and Table 7.3; explicit rational
special values Z(−m | t) thereby result, the leading one being

Z(0 | t) = 7/8 (independent of t). (8.24)

In the end, all the principal parts of Z(σ | t), and the special values
Z(−m | t), m ∈ N (Table 8.1, upper part), are explicit polynomials in t2.
(Those which are t-independent, namely the principal part (8.4) at the lead-
ing pole σ = 1

2 and the leading special value Z(0 | t) ≡ 7/8, also shape the
counting function N(T ) described in Sect. 4.5, but this will only become clear
in the more general setting of Chap. 10, (10.40).)

8.4 Transcendental Values of Z(σ | t) for General t

These special values of Z(σ | t) now very simply follow from the general for-
malism of Chap. 2, specialized to μ0 = 1

2 .
First, invoking the new zeta-regularized product D(t2) given by (8.17),

Z ′(0 | t) ≡ − logD(t2) = 1
4 log 8π − logΞ(1

2 ± t), (8.25)

hence Z ′(0 | t) also expresses in terms of log |ζ| (1
2 ± t).

Then, (2.27) now applied to Δ = Ξ with v = t2 as variable in place of x,
Z = Z, and μ0 = 1

2 , yields

Z(m | t) =
(−1)m−1

(m− 1)!
dm

d(t2)m
logΞ(1

2 ± t), m = 1, 2, . . . . (8.26)

These special values of Z(σ | t) for general t are listed in Table 8.1, lower part.

8.5 Imprints of the Central Symmetry ρ←→ (1− ρ)

The special values Z(m | t), that we just evaluated, can be further reduced us-
ing the central symmetry. This is mainly useful for the transcendental values
(m = 1, 2, . . .) since the others are fairly explicit already.
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In the formula (8.26) for Z(m | t), by the chain rule, the right-hand side
must express as a linear combination of derivatives (logΞ)(n)(x) at x = 1

2 ± t,
which are essentially values Z (n | t) by (7.39). This change of variables t2 
→ t
can be carried out explicitly by exploiting the central symmetry, as follows.

Setting ρ ≡ 1
2 + iτ throughout here, we start from the identity (cf. (4.12))

(

1− s

t+ 1
2 − ρ

)(

1− s

t− 1
2 + ρ

)

≡ 1− s (2t− s)
τ2 + t2

, (8.27)

then expand the logarithms of both sides around s = 0, and identify like
powers of s to get a triangular sequence of linear identities,

(t+ 1
2−ρ)−n + (t− 1

2 +ρ)−n

n
≡
∑

n/2≤m≤n

(−1)n−m

(
m

n−m
)

(2t)2m−n (τ2+t2)−m

m

for n = 1, 2, . . . . (8.28)

Now, in one direction, summing this over (half) the Riemann zeros {ρ}
yields the special values of the first kind in terms of those of the second kind:

Z (n | t)
n

≡
∑

n/2≤m≤n

(−1)n−m

(
m

n−m
)

(2t)2m−n Z(m | t)
m

for n = 1, 2, . . . ;

(8.29)

this clearly extends (7.42) for n odd, and (8.8) for n even, away from t = 0.
The other way round, the triangular relations (8.28) necessarily invert

(save at the singular point t = 0) into likewise triangular relations:

(τ2 + t2)−m ≡
m∑

n=1

Vm,n(t) [(t+ 1
2 −ρ)−n +(t− 1

2 +ρ)−n] for m = 1, 2, . . . .

(8.30)

First, this specifies Vm,n(t): it has to be the coefficient of (t+ 1
2 −ρ)−n in the

Laurent series of (τ2 + t2)−m = (t+ 1
2 − ρ)−m[2t− (t+ 1

2 − ρ)]−m in powers
of (t+ 1

2 − ρ), whence Vm,n(t) =
(
2m−n−1

m−1

)
(2t)−2m+n. Then, upon summing

(8.30) over half the Riemann zeros {ρ}, we obtain the end result

Z(m | t) ≡
m∑

n=1

(
2m−n−1
m−1

)

(2t)−2m+n Z (n | t) if t �= 0,

vs
Z(m | 0) ≡ 1

2 (−1)m Z (2m | 0) (by (8.8)) at t = 0,

⎫
⎪⎪⎬

⎪⎪⎭

for m = 1, 2, . . . . (8.31)

The pair of mutually inverse relations (8.29) and (8.31) extend to general
t-values previous results written only for t = 1

2 [80, 106].
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Another useful approach to (8.31) is to view it as the general identity

(−1)m dm

d(t2)m
=

m∑

n=1

(2m− n− 1)!
(m− n)! (n− 1)!

(2t)−(2m−n)(−1)n dn

dtn
, (8.32)

applied to logΞ(1
2 + t). Then it is enough to verify (8.32) upon holomorphic

functions, i.e., to write a Cauchy integral in the t2-plane for the left-hand
side, and to evaluate it by the residue calculus in the t variable.

Finally, Table 8.2 lists all the special values of Z for general t expressed
in terms of those of Z , which were simpler to obtain. We included such a
formula for Z(−m | t), to be derived as an exercise! (See footnote in Table!)

8.6 Results for Z(σ | t) at t = 0 and t = 1
2

For the family Z, these parameter locations present no further special fea-
tures; we review their end results here mainly for convenience and to parallel
Sect. 7.6 for the family Z . Some numerical data also appear in Appendix A.

8.6.1 The Function Z0(s) (the Confluent Case t = 0)

Here this case came first, in Sect. 8.1. We repeat its special values in Table 8.3,
to match Table 7.3 for Z0. (Cf. [106]; we found no earlier occurrences.)

8.6.2 The Function Z∗(s) (the Case t = 1
2
)

This other remarkable case now simply follows by specializing the above
general-t results; still, we collate the final formulae here and in Table 8.4, to
match Sect. 7.6.2 and Table 7.4 for Z∗.

Principal parts of Z∗(σ) at σ = 1
2−m, m ∈ N (reducing to (8.4) at m = 0,

just as for any t):

Z∗(1
2−m+ε) =

2−2m

8π
Γ (1

2 +m)
Γ (1

2 )m!
ε−2 +Rm(1

2 ) ε−1 + O(1)ε→0 , (8.33)

Rm(1
2 ) =

Γ (1
2 +m)
22m

[

−
∑m

j=1
1

2j−1

4π Γ (1
2 )m!

+
m∑

j=0

22j

Γ (1
2 +j) (m−j)! Rj

]

,

where Rj are the residues of Z0(σ) at σ = 1
2 − j, as given by (8.5).
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The special values of Z∗(σ) are listed in Table 8.4. In particular,

• Z ′
∗(0) = 1

4 log 8π (≈0.806042857) is simpler than Z ′
0(0) = Z ′

∗(0)− logΞ(1
2 )

(= Z ′
0 (0) ≈ 0.811817944); cf. (8.9) and the numerical remark (A.2)

• Z∗(1) = Z∗(1) = −B (≈ 0.0230957090), cf. (4.14)
• More generally, Z∗(m) (m ≥ 1) expresses linearly in terms of the Z∗(n)

with 1 ≤ n ≤ m [80]: now this result is simply (8.31), written for t = 1
2 .

The triangular linear relations just mentioned, plus the similar ones (7.56)
between the Z∗(n) and the Keiper–Li coefficients λj , together imply that
such linear relations directly connect the Z∗(m) and the λj . The latter
relations are best found also directly [110], from the generating function
[64, 73]

d
dz

logΞ
( 1

1− z
)
≡

∞∑

j=1

λjz
j−1. (8.34)

Now the symmetric infinite product formula (4.16) for Ξ implies

logΞ
( 1

1− z
)

=
∞∑

k=1

log
[

1+
z

(1− z)2 uk

]

= −
∞∑

m=1

(−1)m

m

zm

(1 − z)2m Z∗(m);

then, expanding (1−z)−2m by the generalized binomial formula, reordering
in powers of z and substituting the output into (8.34), we get

λj = −j
j∑

m=1

(−1)m

m

(
m+ j − 1
2m− 1

)

Z∗(m), j = 1, 2, . . . . (8.35)

This, by the same technique we used to invert (8.29) into (8.31), admits
the closed-form inverse (exercise!)

Z∗(m) =
m∑

j=1

(−1)j+1

(
2m
m− j

)

λj , m = 1, 2, . . . . (8.36)

The other triangular linear relations of Table 8.2 (our “Bologna formula”),
when specialized to t = 1

2 , yield the Z∗(−m) of Table 8.4 in terms of the
Z∗(−n) of Table 7.4, which means an infinite sequence of curious affine
identities between the Euler and Bernoulli numbers,

2−2m
m∑

j=0

(
m

j

)

(−1)j E2j = (8.37)

−2(−1)m
∑

m+1
2 ≤k≤m

(
m

2k−1−m
)

22k−1−1
k

B2k +
m!2

(2m+1)!
for m = 1, 2, . . .
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8.7 Tables of Formulae for the Special Values of Z

Note. The singular structures in σ of the meromorphic functions Z(σ | t) (all
their poles and principal parts) are also explicitly computable, see Sect. 8.3.

8.7.1 Function of Second Kind for General t

Table 8.1 Special values of Z(σ | t) (upper part: rational, lower part: tran-
scendental, cf. Sect. 2.6.3 and Table 2.1). Notation: see (1.5), (1.9), (3.24);
m is an integer. Compare with Table 7.1

σ Z(σ | t) =
∞∑

k=1
(τk

2 + t2)−σ

−m ≤ 0 (t2 − 1
4 )m − 2−2m−3

m∑

j=0

(m
j

)
(−1)jE2j (2t)2(m−j) †

0 7/8

0
(σ-derivative) Z′(0 | t) = 1

4 log 8π − logΞ(1
2 ± t)

+m ≥ 1
(−1)m−1

(m−1)!

dm

d(t2)m
logΞ(1

2 ± t)
†
With (t− t0)0

def
= 1 for t = t0 (continuity in t is imperative)

Table 8.2 Special values Z(m | t) expressed in terms of the special values Z (n | t)
of first kind (given by Tables 7.1 for general t, 7.3 for t = 0, 7.4 for t = 1

2 ); m, n are
integers

σ Z(σ | t) =
∞∑

k=1
(τk

2 + t2)−σ

−m ≤ 0 1
2

2m∑

n=m

( m
n−m

)
(−1)n−m(2t)2m−n Z (−n | t)− 22m−2m!2

(2m+1)!
t2m+1 †

0 1
2 Z (0 | t)− 1

4 t

0
(σ-/s-derivatives) Z′

(σ)(0 | t) = Z ′
(s)(0 | t) + (1

2 log 2π) t

+m ≥ 1

⎧
⎨

⎩

m∑

n=1

(2m−n−1
m− 1

)
(2t)−2m+n Z (n | t) (t 	= 0)

1
2 (−1)m Z (2m | 0) (t = 0)

†
“Bologna formula” (the inspiration for this last missing formula came to the author

in the deeply serene atmosphere of a cloister in the Santo Stefano basilica in Bologna)
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8.7.2 Function of Second Kind at t = 0 and 1
2

Table 8.3 Special values of the function Z(σ | t) at t = 0 (the confluent case,
Sect. 8.1; also compare with Table 7.3). Notation: see (1.5), (3.27); m is an integer

σ Z0(σ) =
∞∑

k=1
τ −2σ

k [t = 0]

−m ≤ 0 (−1)m 2−2m(1− 1
8E2m)

0 7/8

0
(derivative) Z′

0(0) = log
[
211/4π1/2Γ (1

4 )−1|ζ(1
2 )|−1

]

+m ≥ 1 (−1)m
{
22m − 1

4

[
(22m−1) ζ(2m) + 22mβ(2m)

] − (log |ζ|)(2m)(1
2 )

2 (2m− 1)!

}†

†
ζ(2m) ≡ (2π)2m |B2m|

2 (2m)!
, while β(2m) (Sect. 3.5) and (log |ζ|)(2m)(1

2 ) remain

elusive

Table 8.4 As Table 8.3, but at t = 1
2 (Sect. 8.6.2)

σ Z∗(σ) =
∞∑

k=1
(τk

2 + 1
4 )−σ ≡

∞∑

k=1
u−σ

k [t = 1
2 ]

−m < 0 −2−2m−3
m∑

j=0

(m
j

)
(−1)jE2j

0 7/8

0
(derivative) Z′

∗(0) = 1
4 log 8π

+m ≥ 1
m∑

n=1

(2m−n−1
m− 1

)
Z∗(n) †

†
For the values Z∗(n), see Table 7.4



Chapter 9

The Family of the Third Kind {Z(s | τ )}

From Sect. 5.3, we recall the definition [51, 106]

Z(s | τ) =
∞∑

k=1

(τk + τ)−s, Re s > 1. (9.1)

For general τ (�= 0), Z(s | τ) is built on a one-sided set of zeros, say (1
2 + iτk)

only; hence it seems harder to tackle than the other two families, and the
earlier studies (just quoted) have revealed more singular features indeed.

The confluence point (5.12) is again the exception: Z(s | 0) ≡ Z0(1
2s), so it

is fully covered by Sect. 8.1. We then turn to general τ �= 0.
On the rational side, a possible approach is to expand Z(s | τ) in {|τ | < τ1},

similarly to (8.19) for Z(σ | t), see also [51]:

Z(s | τ) =
∞∑

k=0

τk
−s
(
1 +

τ

τk

)−s

=
∞∑

�=0

Γ (1− s)
Γ (1− s− 
) 
! Z0

(
1
2 (s+ 
)

)
τ �. (9.2)

This yields poles for Z(s | τ) located at s ∈ 1−N, with explicitly computable
principal parts; when τ �= 0, all the nonpositive integers are truly poles, ruling
out the possibility of any special values on the rational side.

On the transcendental side, we would need to extend the analysis of
Sect. 7.4, resp. 8.4 from the infinite products D , resp. D to products over up-
per half-plane zeros only. Now, such products are definitely more ill-behaved
[51]; we lack analogs of (7.13), resp. (8.18) for them, and we thus cannot
reach special-value formulae for Z(n | τ) at n = 2, 3, . . . either.

However, the family Z can be described quite explicitly otherwise, simply
by reducing it to the family of the first kind Z built over all zeros taken
symmetrically, paradoxical as this may seem. Still for |τ | < τ1, the obvious
linear relation

Z (s | t) = eiπs/2 Z(s | it) + e−iπs/2 Z(s | −it) (9.3)

A. Voros, Zeta Functions over Zeros of Zeta Functions, Lecture Notes
of the Unione Matematica Italiana 8, DOI 10.1007/978-3-642-05203-3 9,
c© Springer-Verlag Berlin Heidelberg 2010
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yields the simple inversion formula [83, Sect. 8] (which we missed earlier):

Z(s | τ) =
1

2i sinπs
[
eiπs/2

Z (s | −iτ)− e−iπs/2
Z (s |+iτ)

]
. (9.4)

Thus, Z mainly extracts the “symmetry-breaking component” of Z : i.e.,
the factor in brackets in (9.4), purely created by the multivaluedness of the
function z 
→ z−s for general s (giving zero for s = 1, 2, . . . by Table 7.2;
however, the use of (9.4) at s = 1 demands the same special care as before).
The more singular nature of Z shows up in the extra denominator (sinπs).

Since Z is the most accessible family, Z is best described by (9.4) alone (or
its analytical continuation, if we had to leave the disk {|τ | < τ1}). Equation
(9.4) at once implies that Z is meromorphic in the whole s-plane with poles
at integers, and details readily follow just by expanding (9.4) around each
integer:
• The point s = 1 specially comes out as a double pole:

Z(1 + ε | τ) =
1
2π

ε−2 − log 2π
2π

ε−1 + O(1)ε→0; (9.5)

it has the principal part of Z0(1
2s) ≡ Z(s | 0), independently of τ (cf. (8.4))

• Each point s = 1− n, n = 1, 2, . . . is a simple pole as soon as τ �= 0:

Z(1−n+ε | τ) = − (−i)n

2π
[Z (1−n | iτ)+(−1)n Z (1−n | −iτ)] ε−1+O(1)ε→0 ;

(9.6)
by Table 7.2, the residue at s = 1− n boils down to

− (−i)nBn(1
2 + iτ)

2πn
=

1
2πn

∑

0≤2k≤n

(−1)k

(
n

2k

)

(1− 21−2k)B2k τ
n−2k (9.7)

• Exceptionally at s = 0 where Z ′ is known in addition to Z , the expansion
attains the next order, namely the finite part:

Z(ε | τ) = − τ

2π
ε−1 +

(7
8

+
log 2π

2π
τ
)

+ o(1)ε→0 (9.8)

• Finally, around s = +2,+3, . . ., the expansion yields the finite values

Z(n | τ) =
in

2

[
(∓1)n

Z (n | ±iτ)+
i
π

(
Z

′(n | iτ)−(−1)n
Z

′(n | −iτ )
)]
. (9.9)

So indeed when τ �= 0, Z seems to lack special values as explicit as those of
Z and Z: all the points s = 1− n (n ∈ N) are singular, whereas the regular
values at n = 2, 3, . . . appear to involve derivative-values Z ′(n | ±iτ) which
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are unlikely to be computable in closed form (already the ζ′(n) aren’t!). While
we cannot guarantee that the specific combination of Z ′(n | ±iτ) entering
(9.9) isn’t computable, any alternative evidence of simpler forms for Z(n | τ)
is also absent. Only a sequence of binary relations can be made explicit, by
specializing the identity (9.3) to s ∈ N

∗,

in Z(n | it) + i−n Z(n | −it) ≡ Z (n | t), n = 1, 2, . . . , (9.10)

straightforwardly except for n = 1: then, finite parts are to be taken on the
left-hand side only , and Z (1 | t) from (7.39) used on the right-hand side.

In conclusion, the family Z is more singular than the other two and seem-
ingly devoid of computable special values (hence we provide no Tables for it);
on the other hand, it can be wholly reduced to the well-understood first family
Z through the identity (9.4).



Chapter 10

Extension to Other Zeta- and L-Functions

In this chapter, based on [107], we extend the treatment and results of the
three former chapters to the setting where the Riemann zeros are replaced
by the (nontrivial) zeros of a more general zeta or L-function L(x), still fairly
similar to ζ(x). We will use the terms: primary function for this function L(x)
which supplies the new zeros in this extended setting, and Riemann case for
the former setting where ζ(x) itself was the fixed primary function.

The interest of this extension is twofold. First, it broadens the previous
results in a natural way: with little work, we will accommodate three distinct
kinds of superzeta functions as before, but now over the (nontrivial) zeros of
numerous primary functions. Second, it sheds some further light on the results
for ζ(x) itself: the origin of many final values in the previous chapters will
be clarified through their more abstract specifications. For instance, various
special values like FPs=1 Z0(s), Z0(0), . . . will now explicitly stem from the
Stirling expansion (10.12) for the trivial factor G(x), x→ +∞.

We could of course have taken this general path from the very beginning,
relegating the Riemann case to the status of just a special instance. However,
this would have gone against our plan to provide a most concrete and readily
usable handbook. The Riemann zeta function may be a special case in a
crowd, but it is important enough to deserve an autonomous presentation.

Earlier explicit descriptions of such extended superzeta functions, i.e., over
zeros other than Riemann’s, hardly exist in the literature. We set apart the
case of Selberg zeta functions: their zeros correspond to eigenvalues of hy-
perbolic Laplacians, and zeta functions over them have been analyzed by
spectral methods [15, 16, 47, 91, 100, 105]: in the cocompact case, they are
indeed examples of spectral (Minakshisundaram–Pleijel or generalized) zeta
functions; we revisit them in Appendix B. Otherwise, only Dedekind zeta
functions got some mention as primary functions [47, 51, 52, 66]; already if
we turn to L-series, then only the Cramér functions (5.14) over their zeros
were ever considered [29, 54, 59, 62], without relating them to any superzeta
functions (apart from one short note [94] on an Explicit Formula like (6.22)
but actually for Z (s | 32 ) over the zeros of specific Dirichlet L-functions).

A. Voros, Zeta Functions over Zeros of Zeta Functions, Lecture Notes
of the Unione Matematica Italiana 8, DOI 10.1007/978-3-642-05203-3 10,
c© Springer-Verlag Berlin Heidelberg 2010
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Most of the notation can be taken over from the former chapters; simply,
all objects will now be understood to depend on the chosen primary function
L, implicitly as a rule. At the same time, the Riemann zeta function as such
will continue to appear in some results.

10.1 Admissible Primary Functions L(x)

For the sake of definiteness, we choose here to stay fairly close to the Riemann
case (L(x) = ζ(x)): basically, we want to retain a reflexive functional equation
Ξ(x) = Ξ(1 − x) for a completed function built similarly to (3.24). We
therefore accept primary functions L(x) such that:

(a) L(x) is real, and meromorphic in C with at most one simple pole, x = 1:

if q def= the order of the pole x = 1, then q = 0 or 1; (10.1)

(b) L(x) �= 0 in {Rex > 1}, and L(x)→ 1 for Re x→ +∞ with

(logL)(n)(x) = o(x−N ) (∀n, N ∈ N); (10.2)

(c) a completed L-function and a functional equation exist, similar to the
Riemann case:

Ξ(x) ≡ Ξ(1− x), Ξ(x) def= G−1(x)(x − 1)qL(x), (10.3)

where both Ξ(x) and G(x) are real entire functions of order μ0 = 1, and

(c1) G(x), the “trivial factor,” is an explicitly known finite product
of inverse-Gamma (and simpler) factors, with all its zeros xk

located on the negative real axis {x ≤ 0} (they form the “trivial
zeros” of L(x));

(c2) the zeros of Ξ(x) lie in the strip {0 < Rex < 1}; since they come
in symmetrical pairs as in the Riemann case, we still label them

{ρ = 1
2 ± iτk}k=1,2,..., with Re τk > 0 and non-decreasing;

they are the “nontrivial zeros” of L(x); we exclude the excep-
tional occurrence of any of these on the real line, for simplicity.
(But see Appendix B for such a case.)

Note: all zeros, xk or ρ, are counted with multiplicities if any.
(d)

lim
x=1

(x − 1)qL(x) (= G(1)Ξ(1)) > 0 (10.4)
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(but dropping the normalization Ξ(1) = Ξ(0) = 1, too awkward to
implement in general); then, Stieltjes cumulants can extend from (3.15)
in the Riemann case, according to the general definition

log
[
(x− 1)qL(x)

] ≡
∞∑

n=0

(−1)n−1

n!
gc

n (x− 1)n : (10.5)

now gc
0 �= 0 may occur, while gc

1 extends Euler’s constant γ from (3.16).

As already said, the symbols from the previous chapters (Ξ, G, ρ, gc
n, . . .)

are consistent with their former uses in the Riemann case, but they now
designate objects attached to the changeable primary function L.

Conditions (a)–(d) above are tailored to fit two basic classes which are
immediate extensions from the Riemann case, and will be described as final
examples: L-functions of real primitive Dirichlet characters, and Dedekind
zeta functions (with ζ(x) as a special case of the latter). Our assumptions
somewhat resemble the axioms of the Selberg class [98] but are more restric-
tive on some concrete details; on the other hand these can undoubtedly be
refitted to different needs. For instance, zeta functions over zeros of Selberg
zeta functions for compact hyperbolic surfaces have yielded results compa-
rable to the Riemann case earlier [15, 16, 66, 91, 100], while they correspond
to μ0 = 2 (G contains a Barnes G-function), and q = −1 (those Selberg
zeta functions have a simple zero at x = 1, and possibly others on (0, 1)). To
illustrate the flexibility of our approach, and since results of this class have
interested physicists as well, we treat this Selberg case in Appendix B. Other
extensions are equally conceivable (e.g., to Hecke L-functions, as achieved
upon their Cramér functions [54]).

We now begin with the general results for the superzeta families, attainable
for unspecified admissible primary functions L.

10.2 The Three Superzeta Families

We can then define the same three parametric zeta functions over the nontrivial
zeros{ρ}ofageneralprimary functionL satisfying theaboveconditions (a)–(d),
just as in the Riemann case to which we refer for details (Chap. 5):

Z (s | t) =
∑

ρ

(1
2 + t− ρ)−s ≡

∑

ρ

(ρ+ t− 1
2 )−s, Re s > 1, (10.6)

Z(σ | t) =
∞∑

k=1

(τk2 + t2)−σ, Re σ > 1
2 , (10.7)

Z(s | τ) =
∞∑

k=1

(τk + τ)−s, Re s > 1; (10.8)
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we also keep the shorthand names for the two points t of special interest:

Z0(s) = Z (s | 0), Z∗(s) = Z (s | 12 ); (10.9)
Z0(σ) = Z(σ | 0) ≡ (2 cosπσ)−1 Z0(2σ), Z∗(σ) = Z(σ | 12 ); (10.10)

more generally, all other considerations of Chap. 5 remain valid here.
We now describe the explicit results in greater detail family by family. The

logic exactly follows that of the previous chapters, so we will mainly restate
the formulae that have a significantly different abstract form.

10.3 The First Family {Z }

This will extend the treatment of Chap. 7 from the Riemann case.

10.3.1 The Zeta Function Z(s | t) over the Trivial
Zeros

A key role is played by the zeta function wholly analogous to Z (s | t) but
built on the trivial zeros of L(x) (which we call the shadow zeta function of
Z (s | t)):

Z(s | t) def=
∑

k

(1
2 + t− xk)−s (Re s > 1). (10.11)

Here this function and its properties should be taken as completely known,
just like the factor G and the trivial zeros themselves. In our later explicit
examples, Z(s | t) will be expressible in terms of the Hurwitz zeta function
(3.33).

We now specialize the results of Chap. 2 first to the trivial factor G. By
assumption (c1), the Stirling formula (3.51) will produce a large-x expansion
for logG(x) with μ0 = 1, which we treat as known and reorganize according
to allowed/banned terms, as

− logG(1
2 + t) ∼ ã1t(log t− 1) + b1t+ ã0 log t+ b0 +

∞∑

n=1

a−nt
−n; (10.12)

this expansion also governs [logΞ(1
2 + t)− q log(t− 1

2 )], by (10.2) and (10.3).
Equation (2.50) then yields the zeta-regularized forms for G and Ξ as

D(1
2 + t) def= e−Z

′(0 | t) ≡ e+b1t+b0 G(1
2 + t), (10.13)

D(1
2 + t) def= e−Z

′(0 | t) ≡ e−b1t−b0 Ξ(1
2 + t), (10.14)
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which in turn entail this zeta-regularized decomposition of L(x):

(x− 1)qL(x) ≡ D(x)D(x). (10.15)

Then, using (10.13), the specific translation of (2.53)–(2.56) with μ0 = 1 is

FPs=1 Z(s | t) ≡ (logG)′(1
2 + t) + b1, (10.16)

Z(m | t) ≡ (−1)m−1

(m−1)!
(log G)(m)(1

2 + t) for m = 2, 3, . . . .(10.17)

The shifted large-y expansion of − logD(1
2 + t + y) is then deduced as in

Sect. 2.6.1, in the form ã1(t) y(log y − 1) + ã0(t) log y +
∞∑

n=1
a−n(t) y−n : all

coefficients are computable polynomials in t and encode algebraic properties
of Z(s | t), as explained in Sect. 2.4. In more explicit terms:
• Z(s | t) extends to a meromorphic function in the whole s-plane, with

the single pole s = 1, simple, of residue ã1 (independent of t); (10.18)

• The values Z(−n | t), n ∈ N are given by closed polynomial formulae,

Z(−n | t) = − ã1

n+1
tn+1 − ã0t

n + n

n∑

j=1

(−1)j

(
n−1
j−1

)

a−jt
n−j ,

e.g., Z(0 | t) = −ã0(t) = −ã1t− ã0 .

(10.19)

More interestingly, D, Z, G can be replaced by the (less explicit)
D , Z , Ξ respectively, and similar results will arise, as described next.

10.3.2 The Basic Analytical Continuation Formula
for Z

As an extension from (7.4)–(7.5) (Riemann case), Z (s | t) admits the
following integral representation, valid in the half-plane {Re s < 1} and
for any eligible value of the parameter t avoiding the cut (−∞,+ 1

2 ]:

Z (s | t) = −Z(s | t) + q (t− 1
2 )−s +

sinπs
π

J(s | t), (10.20)

J(s | t) def=
∫ ∞

0

L′

L
(1
2 + t+ y) y−s dy (Re s < 1). (10.21)
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The real forms (7.6)–(7.7) and the description of the poles of J extend
likewise, just replacing ζ by L and 1

t− 1
2 + y

by q
t− 1

2 + y
everywhere.

As in Sect. 7.3 for the Riemann case:
• It follows that Z (s | t) is meromorphic in the whole s-plane with the same
polar structure as −Z(s | t), which now means that

Z (s | t) has the single pole s = 1, simple, of residue −ã1; (10.22)

• If L(x) admits an Euler product (like our concrete examples (10.49) and
(10.72)), then the substitution of its logarithmic derivative into (10.21), fol-
lowed by integration term by term, yields an asymptotic (s→ −∞) expansion
for J(s | t), and thereby for Z (s | t) (cf. (7.27)–(7.28) for the Riemann case).

10.3.3 Special Values of Z (s | t) for General t

As in Sect. 7.4 for the Riemann case:
• Almost all the special values of Z (s | t) (at integer s) are explicitly readable
off (10.20): as in (7.29)–(7.38) before, we get rational values for s ∈ −N,
transcendental ones for s = 2, 3, . . ., plus

Z ′(0 | t) = −Z′(0 | t)− q log(t− 1
2 ) + J(0 | t)

= b1t+ b0 + logG(1
2 + t)− log

[
(t− 1

2 )qL(1
2 + t)

]
(10.23)

FPs=1 Z (s | t) = −FPs=1 Z(s | t) +
q

t− 1
2

− Ress=1J(s | t),

= −b1 − (logG)′(1
2 + t) +

[
q

t− 1
2

+
L′

L
(1
2 + t)

]

. (10.24)

• However, the values Z (n | t) for n ∈ N
∗, now including n = 1, emerge more

directly by proceeding in full analogy with (7.39) (Riemann case):

Z (n | t) =
(−1)n−1

(n− 1)!
(logΞ)(n)(1

2 + t) (n = 1, 2, . . .) (10.25)

= −Z(n | t) +
[

q

(t− 1
2 )n

+
(−1)n−1

(n− 1)!
(log |L|)(n)(1

2 + t)
]

(10.26)

(n = 2, 3, . . .).

Since Z(1 | t) is infinite, (10.26) cannot hold for n = 1 but a substitute
formula exists: i.e., the subtraction of (10.25) at n = 1 from (10.24) yields a
t-independent anomaly , or discrepancy formula extending (7.40):

FPs=1 Z (s | t)−Z (1 | t) =
(
log [D/Ξ]

)′
(1
2 + t) = −b1 (constant). (10.27)
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Table 10.1 [107] recapitulates the special values obtained for Z (s | t) at
general t, extending Table 7.1 from the Riemann case.

Remark. All identities stemming purely from the central symmetry of the
zeros ρ←→ (1− ρ), like Z (n | t) = (−1)n Z (n | −t) (n = 1, 2, . . .) and the
sum rules (7.46) (or (7.43)), carry over unchanged. However, the rest of Ta-
ble 7.2 needs rewriting (exercise!).

10.3.4 Special Values of Z (s | t) at t = 0 and 1
2

Under our assumption {ρ} ∩ R = ∅, Z (s | t) is regular on the real t-axis;
then, further simplifications occur at the particular parameter locations t = 0
and 1

2 .

• For t = 0, (10.25) reduces to

Z0(n) ≡ 0 for all n ≥ 1 odd; (10.28)

in combination with (10.26) and (10.24), that amounts to explicit formulae
for the primary function L itself:

(log |L|)(n)(1
2 ) = (logG)(n)(1

2 ) + 2nq (n− 1)! for all n ≥ 1 odd (10.29)

(also directly implied by the functional equation (10.3); they extend (7.48)
from the Riemann case). By (10.27) at t = 0, the case n = 1 moreover implies

FPs=1 Z0(s) = −b1. (10.30)

• For t = 1
2 , the formulae (10.23)–(10.26) bring in the Taylor series (10.5),

to yield

Z
′
∗(0) = −Z′(0 | 12 ) + gc

0;

Z∗(1) = −(logG)′(1) + gc
1, (10.31)

Z∗(n) = −Z(n | 12 ) + gc
n/(n− 1)! (n = 2, 3, . . .).

The purely combinatorial relations (7.56) between the Z∗(n) and Keiper–Li
coefficients λj remain unchanged; the latter now refer to the zeros of the
primary function L, like the rest.

It is hard to achieve further progress while keeping the primary function
L and its “accessories” (G, Z, etc.) completely unspecified. Case by case, on
the other hand, Z(s | t) can be made more explicit at t = 0 or 1

2 , just as in
the Riemann case. Thus, in our later examples for L(x) (L-functions of real
primitive Dirichlet characters; Dedekind zeta functions), both Z(s | 0) and
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Z(s | 12 ) will reduce to combinations of the two fixed Dirichlet series ζ(s) and
β(s). The resulting fully reduced special values of Z0(s) and Z∗(s) will be
displayed in Tables 10.3–10.6 [107], which conclude the chapter.

10.4 The Second Family {Z}

This will extend the treatment of Chap. 8 from the Riemann case.

10.4.1 The Confluent Case Z(σ | t = 0) ≡ Z0(σ)

The confluence identity is unchanged from (8.2):Z0(σ) ≡ (2 cosπσ)−1 Z0(2σ).
Therefore:

• The function Z0 retains the same abstract singular structure as in Sect. 8.1;
the explicit principal part formulae (8.4)–(8.5) simply extend to

Z0(1
2 + ε) =

ã1

4π
ε−2 +

b1

2π
ε−1 + O(1)ε→0 ; (10.32)

Z0(1
2 −m+ ε) = Rm ε−1 + O(1)ε→0 for m = 1, 2, . . . , (10.33)

Rm =

⎧
⎪⎨

⎪⎩

− 1
2π

FPs=1 Z0(s) =
b1

2π
, m = 0,

(−1)m

2π
[
Z(1 − 2m | 0) + q 21−2m

]
, m = 1, 2, . . . ;

(10.34)

• The special values of Z0 obey the same relations (8.8)–(8.9) as before:

Z0(m) = 1
2 (−1)m Z0(2m) (∀m ∈ Z), Z ′

0(0) = Z ′
0 (0). (10.35)

Both (10.34) and (10.35) now refer to the Z -values of Table 10.1 (at t = 0).

10.4.2 Algebraic Results for Z(σ | t) at General t

For the algebraically computable formulae, all the abstract results from
Sect. 8.3 carry over unchanged. Concretely, the principal parts (8.21)
extend to

Z(1
2 −m+ ε | t) =

ã1

4π
Γ (1

2 +m)
Γ (1

2 )m!
t2m ε−2 +Rm(t) ε−1 + O(1)ε→0 , (10.36)
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Rm(t) = Γ (1
2 +m)

[

−
ã1

∑m
j=1

1
2j−1

2π Γ (1
2 )m!

t2m +
m∑

j=0

1
Γ (1

2 +j) (m−j)!Rj t
2(m−j)

]

(10.37)

where the t = 0 residues Rj are now read from (10.34). And the rational
special values still obey (8.23), or equivalently

Z(−m | t) ≡ 1
2

m∑

�=0

(−1)m−�

(
m




)

Z0

(
2(−m+ 
)

)
t2� (m ∈ N), (10.38)

with the values Z0

(
2(−m+ 
)

)
now taken from Table 10.1 (at t = 0). So, all

the polar terms of Z(σ | t), still of order 2, and the special values Z(−m | t)
(m ∈ N) are computable polynomials in t2, as in the Riemann case.

The principal part at the leading pole σ = 1
2 , given by (10.32), and the

leading special value Z(0 | t) = 1
2 (q + ã0), remain independent of t as before.

Those two invariants amount to three constants ã1, b1, and 1
2 (q+ ã0), which

also have another embodiment. As with (4.29) for the Riemann case, let

N(T ) def= π−1 Im log
[
(x− 1)qG−1(x)

]
x= 1

2+iT
(10.39)

be the contribution from the trivial factors of Ξ to the counting function
N(T ) (for its zeros {ρ}). Then the generalized Stirling formula (10.12) readily
yields

N(T ) =
ã1

π
T (logT − 1) +

b1

π
T +

1
2
(q + ã0) +O

( 1
T

)
, (10.40)

which is built from those same three constants, cf. (4.31) for the Riemann
case. We may recall that b1 also governs the discrepancy at n = 1 in (10.27).
Remark: in both our later concrete examples, the full counting function it-
self obeys N(T ) = N(T ) + O(logT ), extending the Riemann–von Mangoldt
formula (4.26): this is proved, e.g., in [26, Sect. 16] for Dirichlet L-functions
and in [69, Satz 173 p. 89] for Dedekind zeta functions.

10.4.3 Transcendental Values of Z(σ | t) at General t

As in the Riemann case (Sect. 8.4), these values most readily emerge from
a variant of the factorization (10.15), using the alternative zeta-regularized
factor

D(t2) def= e−Z′(0 | t) (10.41)
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instead of D(x). The main point here is the replacement of x = 1
2 + t by

v = t2 as basic variable: this zeta-regularization of Ξ(x) preserves the central
symmetry (x←→ 1− x).

Rewritten in the variable v → +∞, the generalized Stirling expansion
(10.12) for [logΞ(x)− q log(x− 1)] becomes

logΞ(
√
v+ 1

2 ) ∼ 1
2 ã1v

1
2 log v+(b1− ã1)v

1
2 + 1

2 (ã0 + q) log v+b0 [+O(v−
1
2 )],

(10.42)

with μ0 = 1
2 : the only “banned” terms (cf. (2.47)) are now constants, implying

D(t2) ≡ e−b0 Ξ(1
2 + t) ≡ eb1t D(1

2 + t) (10.43)

and the modified decomposition (cf. (8.18) for the Riemann case)

(t− 1
2 )qL(1

2 + t) ≡ e−b1t D(1
2 + t)D(t2). (10.44)

All transcendental special values of Z(σ | t) immediately follow: first,
Z ′(0 | t) ≡ − logD(t2) = b0 − logΞ(1

2 + t) which also expresses in terms
of log |L|(1

2 ± t); then (2.56), now applied with v = t2 as variable and μ0 = 1
2 ,

yields the same form (8.26) for Z(m | t) as before.
The overall resulting special values of Z form Table 10.2, extending

Table 8.1 from the Riemann case. The particular parameter locations t = 0
and 1

2 can be covered by Sect. 10.4.1 and Table 10.2 respectively (mimicking
Sect. 8.6.2 from the Riemann case), without need for further Tables.

The various combinatorial linear identities relating special values of Z at
positive integers to those of Z (Sect. 8.5) or to the Keiper–Li coefficients
λj ((8.34)–(8.36)) persist identically, with all objects now in their extended
meaning (linked to the function L).

10.5 The Third Family {Z}

The abstract treatment of Chap. 9 for the Riemann case extends unchanged.
So, the function Z keeps the same qualitative meromorphic structure; we just
rewrite its polar expansions (9.5)–(9.8) in their abstract extended form:

(about s = 1) Z(1 + ε | τ) =
ã1

π
ε−2 +

b1

π
ε−1 + O(1)ε→0 (10.45)

(s = 1 is a double pole with the same principal part as Z(1
2s) ≡ Z(s | 0), fixed

for all τ); and, for n = 1, 2, . . . (now using (10.34) for Rj):

Z(1−n+ε | τ) =
[

− ã1

πn
τn +2

∑

0<2m≤n

(
n− 1

2m− 1

)

Rm τn−2m

]

ε−1 +O(1)ε→0 ;

(10.46)
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for n = 1, the next term is also attained (i.e., the finite part at s = 0):

Z(ε | τ) = − ã1

π
τ ε−1 +

(
1
2 (ã0 + q)− b1

π
τ
)

+ o(1)ε→0 . (10.47)

10.6 Special Concrete Examples

We finally illustrate the preceding results upon the two classes of primary zeta
functions announced in Sect. 10.1. As a rule, it suffices to specialize the general
formulae as indicated below. To enhance the practical side of this work, we
display the ultimate results, namely the special values of Z (s | 0) ≡ Z0(s)
and Z (s | 12 ) ≡ Z∗(s), in Tables 10.3–10.6 (corresponding to Tables 7.3–7.4
for L(x) = ζ(x), which fits better here as a special case of Dedekind zeta
function). Then, any further results can be readily derived from the general
formalism, as in the Riemann case.

At the particular parameter locations t = 0 and 1
2 , the relevant values of

Z(s | t) become more explicit, using

ζ(s, 1) ≡ ζ(s); ζ(s, 1
2 ) ≡ (2s − 1) ζ(s);

2−2sζ(s, 1
2 ∓ 1

4 ) ≡ 1
2 [(1− 2−s) ζ(s)± β(s)]

(10.48)

(cf. (3.27)). Due to this, the two fixed Dirichlet series ζ(s) and β(s) (itself a
particular Dirichlet L-function, reviewed in Sect. 3.5) will continue to occur
as such in the t = 0 and 1

2 special values, concurrently with the variable
primary function L(x) itself.

We now describe those two classes in turn. At this more technical stage,
we abandon the idea of being self-contained, and instead, we will selectively
quote (without proof) the prerequisites we really need, which are classic but
often quite scattered in lengthy treatises. The most explicit properties of the
resulting functions Z0(s) and Z∗(s) are tabulated at the end.

A somewhat different third class, where the primary function L(x) is cho-
sen to be a Selberg zeta function, is moreover described in Appendix B.

10.6.1 L-Functions of Real Primitive Dirichlet
Characters

A Dirichlet L-function is associated with a character χ of a multiplicative
group of integers mod d (d ∈ N

∗ is called the modulus or conductor), as
[14, 26, 33]
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Lχ(x) def=
∞∑

k=1

χ(k) k−x ≡
∏

{p}

(
1− χ(p) p−x

)−1 (Rex > 1) (10.49)

≡ d−x
d∑

n=1

χ(n) ζ(x, n/d). (10.50)

Such a character is necessarily even or odd; its parity “bit” a is defined by

a = 0 or 1, according to χ(−1) = (−1)a. (10.51)

Their Admissibility

Dirichlet L-functions satisfy conditions (a)–(b) of Sect. 10.1 without fur-
ther ado (reality apart).

We now restrict to primitive characters [26, Chap. 5], with d > 1 to exclude
the case χ ≡ 1 (for which Lχ(x) ≡ ζ(x), a case which will better fit the other
class below). Then, Lχ(x) is entire (i.e., q = 0), and has a functional equation
[26, Chap. 9]:

Ξχ(x) ≡Wχ Ξχ(1 − x), (10.52)

with

Ξχ(x) def= (2
√
π)−a(d/π)x/2 Γ

(
1
2 (x+ a)

)
Lχ(x), (10.53)

Wχ
def= (−i)ad−1/2

∑

n mod d

χ(n) e2πin/d ; (10.54)

the latter sum, called the Gaussian sum for χ, has modulus d1/2 [26, Chap. 9,
(5)], implying |Wχ| = 1. (Note: in (10.53) we chose to insert an entirely
optional prefactor (2

√
π)−a, only to streamline a part of Sect. 10.6.2 later.)

We finally keep the real (χ = χ) primitive characters only. These consist
of the Kronecker symbols for the quadratic number fields K with discrimi-
nant dK ≡ (−1)ad [26, Chap. 5], so these characters are best labeled χ(−1)ad

(see also Sect. 10.6.2). Their Gaussian sums are fully known (= iad1/2)
[49, Sect. 58, Theorem 164], now implying Wχ ≡ +1; it follows that their
L-functions (now real) satisfy condition (c) of Sect. 10.1 as well, with

q ≡ 0, G(x) ≡ (2
√
π)a (π/d)x/2

Γ
(

1
2 (x+ a)

) , a =
{

1 for χ odd
0 for χ even.

(10.55)

Finally, condition (d) with q = 0, or Lχ(1) > 0, is ensured by Dirichlet’s class
number formula giving Lχ(1) in terms of invariants of the quadratic field K
and chiefly its class number h > 0, as [115][26, Sect. 6]
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Lχ(1) =
{

2πh /W
√
d (W = #{roots of unity} <∞) if a = 1

2h log ε/
√
d (ε = fundamental unit > 1) if a = 0.

(10.56)

So in the end, L-functions of real primitive Dirichlet characters are ad-
missible primary functions for us. Any choice of such an L-function Lχ as
primary function will henceforth be abbreviated “a Dirichlet-L case.”

Results for Superzeta Functions in Dirichlet-L Cases

Based on (10.55), we can specify the other quantities needed in Table 10.1:

• The shadow zeta function (10.11) becomes

Z(s | t) = 2−sζ
(
s, 1

2 (1
2 + a+ t)

)
(10.57)

• The leading coefficients in the Stirling formula (10.12) are

ã1 = 1
2 , ã0 = 1

2 (a− 1
2 ),

b1 = 1
2 log

[
d/(2π)

]
, b0 = 1

4 log
[
(8π)1−2ad

]
.

(10.58)

This completes the tool kit needed to handle Dirichlet-L cases for general t.
We then list further results only for the particular cases t = 0 and 1

2 , in
Tables 10.3 and 10.4 respectively and in the following comments.
• t = 0: the identities (10.29), resulting from Z0(n) ≡ 0 for odd n ≥ 1, yield
more explicit formulae for the Dirichlet L-function Lχ itself:

(logLχ)(n)(12)≡−2−nψ(n−1)(1
4 + 1

2a) + δn,1
1
2 log π

d
for n ≥ 1 odd

≡
{

1
2 (n−1)!

[
(2n−1) ζ(n) + (1−2a) 2nβ(n)

]
, n > 1,

1
2γ + 1

4 (1− 2a)π + 1
2 log(8π/d), n = 1,

(10.59)

in which, n being odd, 1
2 (n−1)! 2nβ(n) reduces to 1

4π
n|En−1| by (3.32) while

ζ(n) remains elusive.
Note: for odd n > 1, (logLχ)(n)(1

2 ) = La
n depends on χ solely through its

parity bit a, with

L0
n = (log |ζ|)(n)(1

2 ) and L1
n = L0

n − 1
2π

n|En−1| for odd n > 1,
(10.60)

cf. (7.49); for more such identities bypassing ζ(n), see Appendix C.
• t = 1

2
: by (10.5) with q = 0, the lowest generalized Stieltjes cumulants are

gc
0[χ] ≡ − logLχ(1), gc

1[χ] ≡ L′
χ

Lχ
(1) (10.61)
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(we restate their χ-dependence from now on, to clarify later formulae). Then,
we can evaluate gc

0[χ] always, but gc
1[χ] only when a = 1 (odd case), as follows.

First, the general formula (10.50), together with the special values (3.37),

(3.40), (3.41) of the Hurwitz zeta function, plus χ(d) = 0 and
d∑

n=1
χ(n) = 0,

yield these special values for Lχ(x):

Lχ(0) = −1
d

d−1∑

n=1

χ(n)n (rational), (10.62)

L′
χ(0) = −Lχ(0) log d+

d−1∑

n=1

χ(n) logΓ (n/d) (transcendental), (10.63)

Lχ(1) = −1
d

d−1∑

n=1

χ(n)ψ(n/d) (transcendental). (10.64)

Next, the functional equation (10.3) using (10.55) implies the following.
– When a = 1 (the odd-χ case):

Lχ(1) = πd−1/2Lχ(0),
L′

χ

Lχ
(1) = γ + log

2π
d
− L′

χ

Lχ
(0), (10.65)

which, together with (10.62), (10.63) yield an algebraic explicit formula for
π−1Lχ(1) [26, Chap. 6, (17)] (superseding (10.64)) plus a transcendental one
for [L′

χ/Lχ](1) in terms of Gamma values, overall giving

gc
0[χ] = − logLχ(1), Lχ(1) =− π

d3/2

d−1∑

n=1

χ(n)n,

gc
1[χ] =

L′
χ

Lχ
(1) = γ + log 2π +

d−1∑

n=1
χ(n) logΓ (n/d)

1
d

d−1∑

n=1
χ(n)n

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

if a = 1. (10.66)

Example: For each of d = 3 and 4 (the lowest possible values of d), the real
primitive character is unique and odd, given by: χ−d(±1 mod d) = ±1, else
χ−d(n) = 0 (thus, Lχ−4(x) ≡ β(x) as in (3.27)); then (10.66) yields

gc
0[χ−3] = − log(π/33/2), gc

1[χ−3] = log[(2π)4/33/2] + γ − 6 logΓ (1
3 );

gc
0[χ−4] = − log(π/4), gc

1[χ−4] = log(4π3) + γ − 4 logΓ (1
4 ).

(10.67)
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– When a = 0 (the even-χ case):

Lχ(0) ≡ 0 (the first trivial zero: G(0) = 0), (10.68)
Lχ(1) = 2d−1/2L′

χ(0), (10.69)

and L′
χ(0), starting from (10.63), simplifies further through (10.68) and the

reflection formula for Γ ; we thus obtain a transcendental explicit formula for
Lχ(1) [26, Chap. 6, (18)] (still more elementary than (10.64)), giving

gc
0[χ] = − logLχ(1), Lχ(1) = − 1

d1/2

d−1∑

n=1

χ(n) log sin
πn

d
if a = 0.

(10.70)

On the other hand, gc
1[χ] stays unspecified because the functional equation

only relates L′
χ(1) to L′′

χ(0) when χ is even, leaving us no wiser: thus for an
even character, gc

1[χ] seems to generalize Euler’s constant in a nontrivial way
(actually related to the Euler–Kronecker invariant of the field K, see (10.83)
in Sect. 10.6.2).
Example: The lowest modulus for an even real primitive Dirichlet character
is d = 5, with χ+5(±1 mod 5) = +1, χ+5(±2 mod 5) = −1, else χ+5(n) = 0;
then (10.70) only yields

gc
0[χ+5] = − log

( 2√
5

log
[
2 cos

π

5

])
= − log

( 2√
5

log
√

5 + 1
2

)
. (10.71)

Remark. The gc
n[χ] for general n also relate, through (10.50), to the Laurent

coefficients γm(w) of the Hurwitz zeta function ζ(x,w) around x = 1 [5,
65, 114]; however, these generalized Stieltjes constants γm(w) are even more
elusive than the original ones γm = γm(1) from (3.9).

The overall resulting special values of Z (s | 0) and Z (s | 12 ) in Dirichlet-L
cases are presented in Tables 10.3 and 10.4 respectively, drawn from [107].

10.6.2 Dedekind Zeta Functions

For any algebraic number field K, its Dedekind zeta function is defined as

ζK(x) def=
∑

a

N(a)−x ≡
∏

p

(
1−N(p)−x

)−1 (Re x > 1), (10.72)

where a (resp. p) runs over all integral (resp. prime) ideals of K, and N(a)
is the norm of a [49, Sect. 42][23, Sect. 10.5].
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Their Admissibility

Dedekind zeta functions at once satisfy conditions (a)–(c) of Sect. 10.1 with

q ≡ 1, G(x) ≡
(
4r2πnK/|dK |

)x/2

xΓ (x/2)r1Γ (x)r2
, (10.73)

where r1 (resp. 2r2) is the number of real (resp. complex) conjugate fields
of K, nK ≡ r1 + 2r2 is the degree of K, and dK (≷ 0) its discriminant [49,
Sect. 42]. With Laurent series at x = 1 having the form

ζK(x) =
RK

x− 1
+ CK + · · · , (10.74)

condition (d) asks for RK > 0; this is now ensured by Dedekind’s class
number formula for this residue, involving further positive invariants of the
field K [49, Theorems 121, 124][23, Theorem 10.5.1]:

RK =
2r1+r2πr2hR

W
√|dK |

, (10.75)

h = the class number, R = the regulator, W = the number of roots of unity.
So, Dedekind zeta functions ζK(x) are admissible primary functions for

us: any such choice will be denoted “a Dedekind-ζ case” here. For K = Q,
which has r1 = 1, r2 = 0, and dK = 1, one recovers the Riemann case:
ζK(x) ≡ ζ(x), with the trivial factor G(x) ≡ πx/2

[
xΓ (x/2)

]−1 as in (3.24).

Results for Superzeta Functions in Dedekind-ζ Cases

Based on (10.73), we can specify the other quantities needed in Table 10.1:

• The shadow zeta function (10.11), counting all zeros of G(x) with their
multiplicities, becomes

Z(s | t) = r12−sζ(s, 1
4 + 1

2 t) + r2 ζ(s, 1
2 + t)− (1

2 + t)−s (10.76)

• The leading coefficients in the Stirling formula (10.12) are

ã1 = 1
2nK , ã0 = 1− 1

4r1,

b1 = 1
2 log

[ |dK |/(2π)nK
]
, b0 = 1

4 log
[
(8π)r1 |dK |

]
.

(10.77)

This completes the tool kit needed to handle Dedekind-ζ cases for general t.
We then list further results only for the particular cases t = 0 and 1

2 , in
Tables 10.5 and 10.6 respectively and in the following comments.
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• t = 0: the identities (10.29), resulting from Z0(n) ≡ 0 for odd n ≥ 1, yield
more explicit identities for the Dedekind zeta function ζK itself:

(log |ζK |)(n)(1
2 ) ≡ −2−nr1ψ

(n−1)(1
4 )− r2ψ(n−1)(1

2 ) + δn,1
1
2 log 4r2πnK

|dK |
for n ≥ 1 odd

≡
{

1
2 (n−1)!

[
nK(2n−1) ζ(n) + r12nβ(n)

]
, n > 1,

1
2 nK γ + 1

4 r1 π + 1
2 log

[
(8π)nK/|dK |

]
, n = 1,

(10.78)

in which, n being odd, 1
2 (n−1)! 2nβ(n) reduces to 1

4π
n|En−1| by (3.32) while

ζ(n) remains elusive. (For related identities bypassing ζ(n), see Appendix C.)

• t = 1
2
: by (10.5) with q = 1 and (10.74), the lowest generalized Stieltjes

cumulants are

gc
0{K} ≡ − logRK , gc

1{K} ≡ CK/RK (10.79)

(we restate their K-dependence to clarify the next formulae). Then, some-
what similarly to the previous example: gc

0{K} is always expressible – now
through Dedekind’s class number formula (10.75); and gc

1{K}, or equivalently
the term CK , is sometimes expressible – through certain Kronecker limit for-
mulae; gc

1{K} (also known as the Euler–Kronecker invariant γK [52]) links
to Z∗(1) =

∑
ρ−1 [47, Theorem B(2)][52, (1.4.1)], as Table 10.6 shows.

– We first consider K = Q : then ζK(x) ≡ ζ(x), and by (3.15),

gc
0{Q} = 0, gc

1{Q} = γ. (10.80)

– Next, if K is a quadratic number field: letting χ = χdK , the real primitive
character of modulus |dK | given by the Kronecker symbol for the discrimi-
nant dK (cf. Sect. 10.6.1), then [49, Sect. 49]

ζK(x) ≡ ζ(x)Lχ(x). (10.81)

(Note: this factorization nicely extends to their trivial factors, resp. completed
functions, given the factor (2

√
π)a we inserted in (10.55)). Now as a rule, zeta

functions over zeros (and their linear invariants) obviously add up when their
primary functions are multiplied. Thus, for their Stieltjes cumulants,

gc
n{K} = gc

n{Q}+ gc
n[χ] (∀n), (10.82)

and here in particular,

gc
0{K} = gc

0[χ], gc
1{K} = γ + gc

1[χ]. (10.83)
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Following a well-known practice, we can thereby pass results from the real
primitive Dirichlet characters χ to the quadratic number fields K, and vice-
versa. Results on the χ side were supplied before (Sect. 10.6.1). Now on
the K side, we can add the class number formula for gc

0{K} – which for
quadratic K reduces to Dirichlet’s (10.56), and Kronecker limit formulae
for gc

1{K}, which come in two types – one simpler form handles imaginary
quadratic K (dK < 0) using the Dedekind η-function at specific points [19,
Sect. 6][113, Sect. 2], while much more involved forms hold for real quadratic
fields (dK > 0) [113, Sect. 3]. All in all, we find the more reduced formulae to
be still those found on the χ side when they exist:

• For gc
0, either (10.66) or (10.70) (according to parity) is a more explicit

expression of Lχ(1) than the class number formula for K (here, (10.56))
• For gc

1 in the odd-χ case (dK < 0), (10.66) is more elementary than the
simpler Kronecker limit formula (which calls Dedekind η-function values)

• Inversely, for gc
1 in the even-χ case (dK > 0), only the K side provides

something new , namely Kronecker limit formulae for gc
1{K} that are now

exceedingly involved, but then Sect. 10.6.1 had left us without any closed
expression for the corresponding gc

1[χ].

Any further description of those aspects would carry us too far here, so we
simply refer the reader to the above literature.
Example: Two basic quadratic number fields, both imaginary (i.e., with r1 =
0 and r2 = 1), are: K = Q(i) (for which dK = −4, χ = χ−4 : Lχ(x) ≡ β(x)
as in (3.27)), and: K = Q(

√−3) (for which dK = −3, χ = χ−3) [14]; hence
their specific cumulants gc

0{K} and gc
1{K} most readily follow from (10.67)

and (10.83).
– More generally, gc

1{K} will also be expressible: if K is a quadratic exten-
sion of another field F , in terms of gc

1{F} [45]; if ζK factorizes in Dirichlet
L-functions (e.g., for cyclotomic fields and their subfields [23, Sect. 10.5.4]).

The overall resulting special values of Z (s | 0) and Z (s | 12 ) in Dedekind-ζ
cases are presented in Tables 10.5 and 10.6 extending Tables 7.3 and 7.4 from
the Riemann case, respectively, as drawn from [107].

10.7 Tables of Formulae for the Special Values

Note. The superzeta functions of all three kinds also have explicitly com-
putable polar decompositions, displayed in the main text.
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10.7.1 For General Primary Functions L(x)
at General t

Table 10.1 Special values of the function of first kind Z (s | t)
over the zeros {ρ} of a general primary zeta function L(x),
admissible in the sense of Sect. 10.1, and having a pole of
order q ≤ 1 at x = 1. Notation: see (10.3) for Ξ(x), (10.11)
and (10.19) for Z(−n | t), (10.12) for ãj , bj ; n is an integer.
For L(x) = ζ(x) (the Riemann case), cf. Table 7.1

s Z (s | t) =
∑

ρ
(1
2 + t− ρ)−s

−n ≤ 0 −Z(−n | t) + q(t− 1
2 )n †

0 ã1t+ ã0 + q

0
(s-derivative) Z ′(0 | t) = b1t+ b0 − logΞ(1

2 + t)

+1
(finite part) FPs=1 Z (s | t) = −b1 + (logΞ)′(1

2 + t)

+n ≥ 1
(−1)n−1

(n− 1)!
(logΞ)(n)(1

2 + t)

†
With (t− 1

2 )0
def
= 1 for t = 1

2 (continuity in t is imperative)

Table 10.2 As Table 10.1, but for the function of second kind

Z(σ | t); m is an integer. For L(x) = ζ(x) (the Riemann case), cf.
Table 8.1

σ Z(σ | t) =
∞∑

k=1
(τk

2 + t2)−σ

−m ≤ 0 1
2

[
q(t2 − 1

4 )m −
m∑

j=0

(m
j

)
(−1)j Z(−2j | 0) t2(m−j)

]
†

0 1
2 (q + ã0)

0
(σ-derivative) Z′(0 | t) = b0 − logΞ(1

2 ± t)

+m ≥ 1
(−1)m−1

(m−1)!

dm

d(t2)m
logΞ(1

2 ± t)
†
With (t− t0)0

def
= 1 for t = t0 (continuity in t is imperative)
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10.7.2 Dirichlet-L Cases, Functions of First Kind
at t = 0 and 1

2

Table 10.3 Special values of the zeta function Z (s | t) at t = 0 over the
zeros {ρ} of an L-function Lχ, for a real primitive Dirichlet character χ
with modulus d > 1 and parity bit a = 0 or 1. Notation: see (1.4)–(1.7),
(10.49)–(10.51); n is an integer

s Z0(s) ≡∑
ρ

(ρ− 1
2 )

−s
[t = 0]

even 2−n−1(a− 1
2 )En

−n ≤ 0

{

odd −1
2 (1−2−n)

Bn+1
n+1

0 1
2 (a− 1

2 )

0
(derivative) Z ′

0(0) = (3
4−a) log 2 + (a− 1

2 ) log
[
Γ (1

4 )2/π
]− logLχ(1

2 )

+1
(finite part) FPs=1 Z0(s) = 1

2

[
log 2π − log d

]

odd 0 ∗
+n ≥ 1

{

even −1
2

[
(2n−1) ζ(n) + (1−2a) 2nβ(n)

] − (logLχ)(n)(1
2 )

(n−1)!

†

∗
This amounts to the formulae (10.59) yielding (logLχ)(n)(1

2 ) for n odd
†
Here ζ(n) ≡ (2π)n|Bn|/(2n!), while β(n) (Sect. 3.5) and (logLχ)(n)(1

2 )
remain elusive

Table 10.4 As Table 10.3, but at t = 1
2 . For the gen-

eralized Stieltjes cumulants gcn[χ], see (10.5) with q = 0,
(10.66) and (10.70)

s Z∗(s) ≡∑
ρ
ρ−s [t = 1

2 ]

−n < 0
[
(a− 1)(2n − 1) + a 2n

]Bn+1
n+1

0 1
2a

0
(derivative) Z ′∗(0) = 1

2

[
(1− a) log 2 + a log π

]
+ gc0[χ]

+1
(finite part) FPs=1 Z∗(s) = (a− 1

2 ) log 2− 1
2γ + gc1[χ]

+1 (a− 1) log 2− 1
2 log(π/d)− 1

2γ + gc1[χ]

+n > 1
[
(a− 1)(1 − 2−n)− a 2−n

]
ζ(n) +

gcn[χ]
(n−1)!

†

†
For n even, ζ(n) ≡ (2π)n|Bn|/(2n!)



10.7 Tables of Formulae for the Special Values 111

10.7.3 Dedekind-ζ Cases, Functions of First Kind
at t = 0 and 1

2

Table 10.5 Special values of the zeta function Z (s | t) at t = 0 over the zeros
{ρ} of a Dedekind zeta function ζK , for an algebraic number field K. Notation:
see (1.4)–(1.7), (10.72) and (10.73); n is an integer. For K = Q (the Riemann
case), cf. Table 7.3

s Z0(s) ≡
∑

ρ
(ρ − 1

2 )
−s

[t = 0]

even 2−n+1(1− 1
8r1En)

−n ≤ 0

{

odd −1
2nK(1−2−n)

Bn+1
n+1

0 2− 1
4r1

0
(derivative) Z ′

0(0) = (2+ 3
4 r1+ 1

2 r2) log 2− 1
2 r1 log

[
Γ (1

4 )2/π
]−log |ζK |(1

2 )

+1
(finite part) FPs=1 Z0(s) = 1

2

[
nK log 2π − log |dK |

]

odd 0 ∗
+n ≥ 1

{

even 2n+1 − 1
2

[
nK(2n−1) ζ(n)+r1 2nβ(n)

]− (log |ζK |)(n)(1
2 )

(n−1)!

†

∗This amounts to the formulae (10.78) yielding (log |ζK |)(n)(1
2 ) for n odd

†Here ζ(n) ≡ (2π)n|Bn|/(2n!), while β(n) (Sect. 3.5) and (log |ζK |)(n)(1
2 )

remain elusive

Table 10.6 As Table 10.5, but at t = 1
2 . For the generalized Stieltjes

cumulants gcn{K}, see (10.5) with q = 1, (10.79)–(10.83). For K = Q

(the Riemann case), cf. Table 7.4

s Z∗(s) ≡∑
ρ
ρ−s [t = 1

2 ]

−n < 0
[−r1(2n−1) + r2

]Bn+1
n+1 + 1

0 1
2r2 + 2

0
(derivative) Z ′

∗(0) = 1
2

[
(r1+r2) log 2 + r2 log π

]
+ gc0{K}

+1
(finite part) FPs=1 Z∗(s) = 1 − 1

2r1 log 2− 1
2nKγ + gc1{K}

+1 1+ 1
2 log |dK |−(r1+r2) log 2− 1

2nK log π− 1
2nKγ + gc1{K}

+n > 1 1− [r1(1−2−n)+r2] ζ(n) +
gcn{K}
(n−1)!

†

†For n even, ζ(n) ≡ (2π)n|Bn|/(2n!)



Chapter 11

Application: an Asymptotic Criterion for
the Riemann Hypothesis

This chapter is the only one whose contents expressly link to the truth or
falsity of the Riemann Hypothesis [92]: it deals with a new and sharp criterion
for this conjecture. Many statements equivalent to the Riemann Hypothesis
already exist; they typically involve inequalities such as infinitely many pos-
itivity conditions to be all obeyed without exception; our criterion may have
an unusual form in that it gives a neat asymptotic alternative instead (actu-
ally in two variants). It links to an earlier criterion by Li, which states that
the Riemann Hypothesis is true if and only if a specific real sequence has all
its terms positive. We actually use the same sequence, but through a differ-
ent filter: from the general framework of the previous chapters, we deduce
that the Riemann Hypothesis can be expressed purely in terms of the large-n
behavior of that sequence.

11.1 Introduction to the Result

The Riemann Hypothesis (to be abbreviated RH) states that all the nontrivial
zeros ρ of ζ(x) lie on the critical axis {Re x = 1

2}, and it is still open.
Here we will translate the Riemann Hypothesis into a clear-cut and explicit
asymptotic alternative for a specific real sequence {λn}n=1,2,... introduced by
Keiper [64] and used by Li’s criterion [9,73], which says that RH is true if and
only if λn > 0 (∀n); we already briefly discussed this sequence in Sects. 7.6.2
and 8.6.2. Our present goal is to show that the λn can only follow one of two
sharply distinct and mutually exclusive asymptotic behaviors: if RH is true,
λn will grow tamely as λn ∼ n(a logn + b) (for some explicit a > 0 and b,
see (11.10) below); if RH is false, λn will oscillate with an exponentially
growing amplitude, in both + and − directions (see (11.11) below). This
dichotomy thus provides a sharp criterion of a new asymptotic type for the
Riemann Hypothesis (and it extends to other zeta-type functions as well).

A. Voros, Zeta Functions over Zeros of Zeta Functions, Lecture Notes
of the Unione Matematica Italiana 8, DOI 10.1007/978-3-642-05203-3 11,
c© Springer-Verlag Berlin Heidelberg 2010

113
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To obtain our result, we will start from our exact representation (8.35) of
λn as a finite oscillatory sum in terms of the superzeta-values Z∗(j), then
convert it to an integral formula, (11.5), which we will finally evaluate by the
saddle-point method in the n→ +∞ limit.

This chapter overall reviews our results from [109,110], which mainly con-
nect to those of Keiper [64], Li [73], Bombieri and Lagarias [9], Maślanka
[77–79], and Lagarias [67]; see also [7, Sect. 2.3][20–22, 38, 39]. Helpful in-
formation from J.C. Lagarias, K. Maślanka and J. Oesterlé is gratefully
acknowledged.

We recall the main facts we will need about the λn, from Sects. 7.6.2 and
8.6.2:
• Their definition (7.55), and the equivalent generating function (8.34):

λn
def=
∑

ρ

[
1− (1− 1/ρ)n

]
(n = 1, 2, . . .) (11.1)

∞∑

j=1

λj z
j−1 ≡ d

dz
logΞ

( 1
1− z

)
(11.2)

(we use the notation of Li [73], whose λn are n times Keiper’s [64]);
• And their relation (8.35) to the superzeta values of second kind [109,110]:

λn = −n
n∑

j=1

(−1)j

j

(
n+ j − 1
2j − 1

)

Z∗(j), (11.3)

Z∗(σ) =
∞∑

k=1

u−σ
k

(
uk

def= τ 2
k + 1

4 = ρ(1− ρ)). (11.4)

Analogous earlier expressions of the λn exist, in terms of the Stieltjes cu-
mulants ηj [9, Theorem 2] or of the superzeta values of the first kind Z∗(j)
as in (7.56) [64]. Nevertheless, the expression (11.3) for λn has some dis-
tinctive advantages: being derived from a symmetric Hadamard product (cf.
Sect. 8.6.2), it embodies the Functional Equation Ξ(1

2 + t) = Ξ(1
2 − t) ; and

unlike the Z∗(j), the Z∗(j) appear positive and monotonically decreasing.
Still, (11.3) is globally an oscillatory sum, hence difficult to control directly.

Now, there exists an integral representation fully equivalent to (11.3), as
verified simply by the residue calculus:

λn =
(−1)nn i

π

∮

C

I(σ) dσ, I(σ) =
Γ (σ + n)Γ (σ − n)

Γ (2σ + 1) Z∗(σ), (11.5)

where C is a positive contour encircling just the subset of poles σ =
+1, . . . ,+n of the integrand I(σ); moreover, C can stretch to +∞ (Fig. 11.1).
While (11.5) strictly amounts to (11.3), it will prove much more flexible, and
our analysis entirely rests on it.
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n

C Re σ

Im σ C ’?

0−1 11/2

Fig. 11.1 Contour deformation for the saddle-point evaluation of the integral (11.5).
Two saddle-points (•) are sketched, the real one very near σ = 1/2, and a putative
complex one (as the dot in “?”) in 1–1 correspondence with a Riemann zero off the
critical axis

11.2 Asymptotic Alternative for λn, n→∞

The integral formula (11.5) will lend itself to an asymptotic (n → ∞)
evaluation by the classic saddle-point method. This method asymptotically
evaluates contour integrals like

∫
C I(σ) dσ when log I is (roughly) propor-

tional to a large parameter x [35, Sect. 2.5]: first, the integration path C is
deformed in the σ-plane in the direction of decreasing |I(σ)|, as far down as
possible; this forces it to pass through some saddle-points σ∗ of |I(σ)|; then
as x→∞, the integrand I(σ) becomes more and more localized around each
saddle-point σ∗ where it gives a contribution to the integral of the order of
magnitude |I(σ∗)|; as a result, the highest saddle-point(s) set(s) the domi-
nant behavior of the integral. In parallel, the integrand I(σ) may itself be
asymptotically approximated; e.g., in (11.5) for n→ +∞, the large parame-
ter x will be logn, and the Gamma factors may be replaced by their Stirling
approximations.

This approach, for an integrand not controlled in fully closed form, partly
retains an experimental character. We now use it for this problem as a heuris-
tic, rather than rigorous, tool: it predicts the global structure of the results
at once, and it correctly yields both behaviors that may take place; more es-
tablished techniques confirm the results, but piecemeal and not as intuitively.

In the present problem, the landscape of the function |I(σ)| for large n
is dominantly shaped by the Gamma factors, which asymptotically read as
π [sinπσ Γ (2σ + 1)]−1n2σ−1 at fixed σ, except very near the poles of I(σ)
where the singular parts also contribute. For a saddle-point σ∗ in the bulk,
its contribution scales roughly like n2σ∗−1, so that the saddle-points rank
according to their real parts (the largest dominate). The ensuing contour de-
formation then starts as an expansion of C away from the poles {1, . . . , n}
in all directions, and the endpoints can go to infinity in the directions
| argσ| < π

2 − δ (Fig. 11.1). The saddle-points encountered here (once n is
large enough) can be of two types, which will compete for domination.
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1. For σ on the segment (1
2 , 1), |I(σ)| ∼ π [sinπσ Γ (2σ+1)]−1n2σ−1Z∗(σ)

always has one real minimum σr(n) (tending to 1
2 as n → ∞), which will

definitely retain the moving contour; any other real saddle-points lie below
σ = 1

2 hence cannot be reached and do not count.
2. Complex saddle-points may enter as well, for which we may focus just

on the upper half-plane, and deduce the lower-half-plane contributions as
the complex conjugates (“c.c.”). As long as the moving contour stays in-
side a half-plane {Re σ > 1

2 + ε}, the integrand can be decomposed as
I =

∑
k Ik according to (11.4); then for each individual term and within

the Stirling approximation for the Γ -ratio, the saddle-point equation is
0 = (d/dσ) log |Ik(σ)| ∼ log(σ2−n2)−2 log 2σ− log uk, yielding the complex
saddle-point location

σk(n) = n i / 2τk . (11.6)

Thus, for any zero which lies on the critical axis (τk real), the saddle-point
σk(n) comes out purely imaginary, but then it cannot be reached under the
present restrictions placed upon the path: hence it should not be counted,
and its real part is anyway dominated by σr(n). So in the end, this paragraph
is irrelevant to the summands of (11.4) for which τk is real.

The discussion then fundamentally depends on the presence or absence
of zeros off the critical axis, as this determines which of the two types of
saddle-points, (1) or (2), ultimately dominates.

11.2.1 The Case [RH False]

In case there is any zero ( 1
2 ± iτk) off the critical axis, we select arg τk > 0

for it, and assume it is a simple zero for argument’s sake (otherwise it will
suffice to count it with its multiplicity). Then paragraph (2) above fully
applies to each such zero: the complex saddle-point σk(n) given by (11.6) lies
inside the allowed domain {Re σ > 1

2} as soon as n > | Im 1/τk|−1, and for
n→ +∞ it gives an additive contribution ∼ [(τk + i/2)/(τk − i/2)

]n to λk

(in the usual quadratic approximation of log I(σ) around σk(n)), which grows
exponentially in modulus and fluctuates in phase; it will indeed exponentially
dominate the contribution of the real saddle-point σr(n) (computed later).

This result can also be confirmed rigorously via Darboux’s theorem: by
the conformal mapping x = 1

1− z 
→ z [9], the generating function (11.2) of
the λn is seen to have precisely the points zk = (τk − i/2)(τk + i/2)−1 and
z∗k as simple poles of residue 1 in the unit disk (Fig. 11.2); then a general
Darboux theorem [30, Chap. VII Sect. 2] applies here to the poles with |zk| <
1, implying that the Taylor coefficients of that function (namely, the λn)
indeed have the asymptotic form

λn ∼
∑

{|zk|<1}
z−n

k + c.c. (mod o(eεn) ∀ε > 0), n→∞. (11.7)
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Fig. 11.2 The conformal mapping x �→ z; fictitious Riemann zeros (•) are sketched,
on and off the critical axis; the lower-half-plane zeros (not drawn) are their mirror
images

Concretely, λn oscillates between exponentially growing values of both signs.
Infinitely many zeros (1

2 ± iτk) off the critical axis are perfectly admissible
in this argument: their zk satisfy |zk| < 1, zk → 1, hence the corresponding
infinite sums

∑
k z

−n
k still define valid n→ +∞ asymptotic expansions.

On the other hand, this Darboux formula (11.7) becomes ill-defined if the
infinitely many z−n

k have identical and dominant modulus, which is precisely
realized in the case [RH true], with all the zk on the unit circle; we now turn
to this case.

11.2.2 The Case [RH True]

Here, Darboux’s theorem says that λn = o(eεn) ∀ε > 0, but it fails to give
any clue as to an explicit asymptotic equivalent for λn. In contrast, the
saddle-point treatment of the integral (11.5) itself remains thoroughly ap-
plicable. Simply now, all the τk are real, Z∗(σ) = O(Z∗(Re σ) | Im σ|−3/2)
in {Re σ > 1

2}, and the contour C can be freely moved toward the bound-
ary {Re σ = 1

2} without meeting any of the σk(n), all purely imaginary
(Fig. 11.3). The sole dominant saddle-point is then σr(n) ∈ (1

2 , 1); it is shaped
by the double pole of Z∗(σ) at 1

2 (itself generated by the totality of Riemann
zeros), so that σr(n) ∼ 1

2 + 1
log n . Since this saddle-point is non-isolated (it

tends to a pole), the standard saddle-point evaluation using the quadratic
approximation of log I(σ) around σr(n) works very poorly. Here, it is at once
simpler and more accurate to keep on deforming the contour C in the vicinity
of σ = 1

2 (up to only lower-order errors) until it fully encircles this pole
clockwise, as C′′. Then a simple residue formula applies, that only uses the
principal part at σ = 1

2 of Z∗(σ), which is the same as for Z0(σ), namely
(10.32) (in general form). Then, as the end result under [RH true], λn obeys
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Fig. 11.3 Contour
deformation for the
saddle-point method
applied to λn (continued
from Fig. 11.1): for [RH
true], the contribution of
the real saddle-point
σr(n) dominates

0

Re σ
C

σIm

1

C"

C ’

1/2 σr

λn = (−1)n 2n Resσ=1/2 I(σ) + o(n),

with (−1)n 2n Resσ=1/2 I(σ) ≡ n [ã1 (ψ(1
2 + n)− 1 + γ) + b1] (11.8)

= n [ã1(log n− 1 + γ) + b1] + O(1/n)

(by the Stirling formula (3.52) for ψ). In the Riemann case itself, by (8.4),

ã1 = 1
2 , b1 = − 1

2 log 2π. (11.9)

However, we kept the result (11.8) in general form, to be ready to cover
all primary functions L(x) compliant with Chap. 10 as well (see the closing
section below).

Like (11.7) before, (11.8) can be derived quite rigorously but by still
another method, written up for the Riemann zeros by Oesterlé [88] (pri-
vate communication). We summarized his argument in [110]; it is purely
real-analytic, and ignores the [RH false] case.

11.2.3 Recapitulation and Discussion

As we ended up with two mutually exclusive large-n behaviors for the λn,
(11.7) and (11.8), together they provide a sharp equivalence result. For the
Riemann zeros, using the explicit values (11.9):

Theorem (asymptotic criterion for the Riemann Hypothesis). For n→ +∞,
the sequence {λn} built from the Riemann zeros follows one of these asymp-
totic behaviors: [109, 110]

- [RH true] gives a tempered growth to +∞ :
λn ∼ 1

2n (logn− 1 + γ − log 2π) (mod o(n)); (11.10)

- [RH false] gives non-tempered oscillations :

λn ∼
∑

{arg τk>0}

(τk + i/2
τk − i/2

)n

+ c.c. (mod o(eεn) ∀ε > 0). (11.11)
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Such a comprehensive asymptotic statement was not known to us on the
[RH false] side, and it appears to strengthen earlier results in the [RH true]
case.

The main end formula (11.10), assuming RH, had actually been written
by Keiper [64, (37)], but in a somewhat misleading context: in his words,
(11.10) required not just RH but also “very evenly distributed” zeros, and
was “much stronger than” RH (no details or proofs were ever supplied). All
that hardly suggests the actual equivalence of (11.10) to RH.

Oesterlé had proved [RH true] ⇒ (11.10) (see above), but in a neither
published nor even posted typescript [88].

Bombieri and Lagarias [9, Corollary 1(c)] showed rather weak exponential
lower bounds λn ≥ −c eεn to imply RH; the converse statement [RH true] ⇐
(11.10) thus implicitly lies in [9] (but it cannot be inferred therefrom, as [9]
never alludes to any asymptotic regarding the λn).

Furthermore, the above saddle-point analysis seems to be the only one yet
to predict both behaviors (11.10) and (11.11) in parallel; while we do not
see how Darboux’s approach could derive (11.10) in the [RH true] case, nor
how Oesterlé’s approach could derive (11.11) in the [RH false] case. Here,
in contrast, the alternative [RH true]/[RH false] boils down to finding which
saddle-point wins dominance in one integral specified at the outset.

Numerical data [64, 78] agree well with (11.10) for n < 7000 (and even
better in the mean if we add the contribution like (11.8) but from the next
pole of I(σ) at σ = 0 (cf. Table 8.4),

δλn = (−1)n2nResσ=0 I(σ) = 2Z∗(0) = +7/4, (11.12)

even though this correction seems asymptotically negligible with respect to
the oscillatory terms). However, the above numerical agreement is inconclu-
sive regarding the Riemann Hypothesis: any currently possible violation of
RH would be detectable only at much higher n (see end of the next section).

11.3 An Even More Sensitive Sequence

A slightly sharper difference of behavior follows for the special linear combi-
nations (11.13) below of the cumulants ηn (for which we now switch back to
the notation (3.12), as it is used in all related references).

Indeed, the definition Ξ(x) = Γ (x/2)π−x/2x(x − 1)ζ(x) substituted into
(11.2) readily yields a decomposition λn = Sn + Sn , where [9, Theorem 2]

Sn = −
n∑

j=1

(
n

j

)

ηj−1 (11.13)
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is the contribution of (x− 1)ζ(x), and

Sn = 1− 1
2 (log 4π+γ)n+Ŝn, with Ŝn =

n∑

j=2

(
n

j

)

(−1)j(1−2−j)ζ(j), (11.14)

is the contribution of the remaining (more explicit) factor. Now the large-n
behavior of the sum Ŝn is also computable: we apply the same saddle-point
technique we used from (11.3) to (11.8), but upon

Ŝn =
(−1)nn!

2πi

∮

C

J(σ) dσ, J(σ) =
Γ (σ − n)
Γ (σ + 1)

(1− 2−σ) ζ(σ), (11.15)

integrated around the poles σ = 2, . . . , n of J(σ): the result for n→ +∞ is

Ŝn ∼ (−1)n−1n! Resσ=1 J(σ) = 1
2n [ψ(n) + log 2− 1 + 2γ], (11.16)

now (mod O(n−∞)) because J(σ) has no singularities further to the left
(Fig. 11.4); so that finally, using the Stirling expansion (3.52) for ψ(n),

Sn ∼ 1
2n (logn−1+γ−log 2π)+ 3

4−
∞∑

k=1

B2k

4k
n1−2k (for n→∞) (11.17)

unconditionally .
This at once confirms two empirical conjectures made by Maślanka [77,

(2.5) and (2.8)]:

• mod o(n), the sequence {Sn} expresses the “trend” (11.10) obeyed by the
sequence {λn} under [RH true]

• And to all orders in n, that same sequence {Sn} has the asymptotic ex-
pansion (11.17).

We add that the latter statement holds unconditionally , and that whether
RH holds or not, it makes sense to subtract this fixed {Sn}-contribution from
the previous formulae (11.10) and (11.11), with the results [109,110]: either

Sn = o(n) [RH true] (11.18)

Fig. 11.4 Contour
deformation for the
saddle-point method
applied to Ŝn

C
Reσ

n

σIm

0 1 2
C ’

C"
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(a case further discussed in [21, 78, 99]); or else Sn ∼ λn, i.e.,

Sn ∼
∑

{arg τk>0}

(τk + i/2
τk − i/2

)n

+c.c. (mod o(eεn) ∀ε > 0) [RH false] (11.19)

which gives oscillations that grow exponentially with n.
In absolute size, however, any contribution like (11.19) from a zero vio-

lating RH would remain considerably smaller than (11.18) (the background
from all the other real τj) up to n ≈ min

{arg τk>0}
{[Im 1/τk]−1}: i.e., Sn can only

reliably signal zeros violating RH up to | Im ρ| � √n/2; as such zeros must
currently have | Im ρ| � 109, they could then only be detected at n � 1018

(see also [7, Sect. 2.3][88],[67, p. 5]).
Our asymptotic criteria thus may not surpass others in practical sensi-

tivity, still their theoretical sharpness may be of interest. For instance, Li’s
criterion λn > 0 (∀n) is now strengthened in that, beyond a finite n-range, it
refers to ever larger amplitudes either way, i.e., delicate borderline situations
such as λn → 0 for n→∞ cannot occur.

11.4 More General Cases: a Summary

For the more general zeta-type functions compliant with Chap. 10, the asymp-
totic alternative for the associated λn persists in its general form: either (11.8)
if the generalized Riemann Hypothesis (GRH) holds, or (11.7) otherwise.
That includes, but is not limited to, Dedekind zeta functions (Sect. 10.6.2)
and some Dirichlet L-functions (Sect. 10.6.1). The constants ã1, b1 in (11.8)
also enter the generalized Riemann–von Mangoldt formula (10.40) when it
holds; this then ensures ã1 ≥ 0, in line with the corresponding generalized
Li’s criterion [9, 67, 74, 75].

The λn have also been generalized to L-functions defined by Hecke oper-
ators for the congruence subgroup Γ0(N) [74][75, specially Remark 5.4].

More recently and in a broader setting (the λn for automorphic L-
functions), Lagarias presented an alternative approach to estimate the λn

with greater accuracy, mod O(
√
n logn) under GRH [67]: in the notations

of (11.13) and (11.14), he directly proves that Sn obeys (11.8) mod O(1)
unconditionally (Theorem 5.1), then that Sn = O(

√
n logn) under GRH

(Theorem 6.1).



Appendix A

Numerical Explorations

We complement our analytical study by some experimental numerical
evaluations of superzeta functions over the Riemann zeros, at real argu-
ments. Apart from very few tables for special values (where special formulae
apply), we had not seen such functions tabulated or plotted before, and we
wanted to view them. (We have not tackled cases with other zeros.)

We found it easier to concentrate on Z0(σ) = Z(σ | 0) as the basic case,
and to deduce other cases (t �= 0, Z , . . .) by subsequent expansions.

The first step is to sum the defining series Z0(σ) =
∑

k τ
−2σ

k for σ > 1
2 .

This needs large tables of Riemann zeros: we have used A.M. Odlyzko’s list
of the 100,000 first zeros he made freely available on the Web [86], for which
we express our gratitude to him. Here, the Riemann Hypothesis is de facto
implied throughout (there being no numerical counter example).

The other significant step is numerical analytical continuation, in order
to reach values of Z0(σ) for some σ < 1

2 . We tested two complementary
approaches which agreed to several digits whenever they were both usable.
However, we did not go below σ = −2, our numerical precision is rather
modest and above all we cannot estimate it reliably. The rounded values
we supply are just most likely to be correct; they intend to provide a first
glimpse of superzeta functions. Better results are certainly reachable, should
there arise a clear need.

A.1 Superzeta Functions of the Second Kind

We now sketch our computations for the function Z0. We begin by using

Z0(σ) = lim
K→∞

∑

k≤K

τ −2σ
k for σ > 1

2 , but the remainders RK(σ) def=
∑

k>K

τ −2σ
k

(∝ τ 1−2σ
K log τK) tend to 0 slowly, more and more so as σ → 1

2

+, where they
diverge. We then approximate the sum defining RK(σ) by an integral RK(σ),

123
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through an Euler–Maclaurin formula (1.15) for the function T (k)−2σ (where
T (k) def= the reciprocal function of N0(T ) defined by (4.26)):

Z0(σ) = lim
K→+∞

SK(σ), SK(σ) def=
K−1∑

k=1

τ −2σ
k + 1

2τ
−2σ

K + RK(σ), (A.1)

RK(σ) def=
∫ +∞

τK

T−2σdN0(T ) =
1
2π

τ 1−2σ
K

2σ − 1

[
log

τK
2π

+
1

2σ − 1

]

(and likewise for Z(σ | t), or derivatives, or finite parts at poles, etc.).
The residual error in (A.1), R̃K(σ) def= Z0(σ) − SK(σ), is O(τ −2σ

K S(τK))
from (4.28) (the error term from (1.15), O(τ −2σ

K ), proves smaller). So,
R̃K(σ) � RK(σ): the use of RK(σ) in (A.1) does accelerate convergence
when σ > 1

2 , and extends it to {σ > 0} [43, p. 116 last line]: therefore,
(A.1) gives one method of numerical analytical continuation. The next ob-
stacle to convergence, R̃K(σ), differs in type from RK(σ): it fluctuates in K,
on a root-mean-square scale ∝ τ −2σ

K (log log τK)1/2 according to [87, (2.5.7)],
which diverges (as K → +∞) when σ ≤ 0. Higher Euler–Maclaurin correc-
tions are pointless for such fluctuating remainders, only some damping can
help or restore convergence (as with “chaotic” spectra [3]). Here, Cesaro aver-

aging (defined by 〈S〉K def= K−1
∑K

1 SK′) appears to work initially – it gives
results verifiable at σ = 0 – but not far: already at σ = − 1

4 , even 〈S〉K(σ)
retains fluctuations > 10−3 (in standard deviation) up to K ≈ 105.

So, instead of pursuing ever more severe (and unproven, after all) numer-
ical dampings as σ decreases farther from 1

2 , we switched to another route:
to compute the analytical continuation formulae (8.6) and (8.7) themselves.
We thus first validated (8.7) against (A.1) for 0 < σ < 1

2 , then used it for
numerical analytical continuation below σ = 0. On paper this seems to be the
obvious thing to do, but in practice it proves arduous: faced with a Mellin in-
tegral, over an infinite path which moreover goes through a pole, we achieved
decent numerical stability only close to σ = 0 (and not near σ = 1

2 ).
Turning to the other interesting case Z∗(σ) = Z(s | t = 1

2 ), we evaluate it
in terms of Z0 through the expansion (8.19) about t = 0. This way, first we
capitalize on the preceding calculations, then we benefit from a very rapid nu-
merical convergence: about three terms suffice to match our accuracy for Z0

itself. Indeed, numerically Z∗(σ) stays very close to Z0(σ) for σ ≥ 0, thanks
to τ 2

k � 1
4 (∀k) (an empirical fact; τ 2

1 ≈ 199.790455). In the crudest approx-
imation of (8.19), Z∗(σ)/Z0(σ) ≈ 1 − σ/ 4τ 2

1 ≈ 1 − σ/800. We numerically
also found 0 < Z0(σ) −Z∗(σ) < 3× 10−4 for all σ > 0, and

A
def= 4[Z ′

∗(0)−Z ′
0(0)] ≈ −0.0231003495 vs B ≡ −Z∗(1) ≈ −0.0230957090;

(A.2)
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not only A is small, but given that A ≡ 4 logΞ(1
2 ) by (8.25) and B ≡

[logΞ]′(0) by (4.8), then |B − A| < 5 × 10−6 reflects how close the func-
tion logΞ(x) stays to the parabolic shape Ax(1− x) over the interval [0, 1]).

A.2 Superzeta Functions of the First Kind

These functions are now most easily reached as follows: first, Z0 from Z0

through the confluence identity (5.8) (and the known exact values at s ∈ −N);
then, Z (s | t) for t �= 0 by the analog of the expansion (8.19), namely

Z (s | t) =
∞∑

k=1

(ρ− 1
2 )−s

[

1 +
t

ρ− 1
2

]−s

=
∞∑

�=0

Γ (1− s)
Γ (1− s− 
) 
! Z0(s+ 
) t�

(for s ∈ −N, one has to cancel the poles of Z0(s + 
) and Γ (1 − s − 
) at

 = 1 − s by hand, or else directly use the special values from Table 7.1).
Again, for t = 1

2 about four terms sufficed to match our accuracy for Z0; for
s > 1, Z∗(s) stays very close to Z0(s) but no longer for s ≈ 0, contrary to
Z∗(s) vs Z0(s). Here, we could also have used Mellin integral representations
like (7.6) for s < 1 at any t, but with the same difficulties as above (plus an
extra one for t = 1

2 , when the pole merges with the integration endpoint).
We present a rough plot of the two particular functions of first kind Z0(s)

(t = 0) and Z∗(s) (t = 1
2 ) (Fig. A.1). For s ≤ −2 we show their leading asymp-

totic form, namely (7.28) cut at its (n = 2) term (−Γ (s)−1(log 2)s/2
1
2+t).

−4 −3 −2 −1 0 1 2 3 4

−12

−8

−4

0

4

Fig. A.1 The superzeta functions of first kind Z0 (◦) and Z∗ (∗) over the Riemann
zeros. The asymptotic forms (dashed curves) are shown for s ≤ −2; they are exact at
integer s
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This form is exact at integer s < 0 due to the 1/Γ (s) factor in (7.28), oth-
erwise the next asymptotic term (n = 3) is of order unity in the plotted
region. (The corresponding graphs for functions of second kind would fall to
the σ-axis very fast on the σ > 1

2 side and be chopped up by poles on the
whole σ ≤ 1

2 side, so we skip them.)

A.3 Numerical Tables

Here is a sample of our results, extending [106, Table 2]. We saw earlier such
Tables for the special values σn

def= Z∗(n) (n = 1, 2, . . .) only, albeit with
much greater accuracy and range (nmax = 400) [72, Table 5][64, Appendix].

Table A.1 Numerical values for the superzeta functions of
first kind Z0 and Z∗ over the Riemann zeros. Implied preci-
sion is expected to hold, but not guaranteed (∗: exact values)

s Z0(s) =
∑

ρ
(ρ− 1

2 )−s Z∗(s) =
∑

ρ
ρ−s

−2 9
16 = 0.5625∗ 1∗

−3/2 −0.76819 0.27288

−1 − 1
48

∗ ≈ −0.0208333 11
12

∗ ≈ 0.9166667

−1/2 1.11061 1.66919

0 7
4 = 1.75∗ 2∗

derivative at 0 0.8118179 0.3465736

+1/2 2.19070 2.27780

finite part at 1 0.9189385 0.9420342

+1 (pole!) 0∗ 0.0230957

+3/2 −0.350386 −0.346357

+2 −0.0462100 −0.0461543

+5/2 −0.0052348 −0.0055027

+3 0∗ −0.0001112

+7/2 0.0002259 0.0002022

+4 0.0000743 0.0000736
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Table A.2 As above but for the functions of second kind Z0 and Z∗
(here the finite parts at 1/2 have no analytic expressions to our knowl-
edge, and are provided purely numerically)

σ Z0(σ) =
∞∑

k=1
τ−2σ

k Z∗(σ) =
∞∑

k=1
(τ2k + 1

4 )−σ

−1 − 9
32 = −0.28125∗ − 1

16 = −0.0625∗

−3/4 0.54319 1.69388

−1/4 0.785321 0.800805

0 7
8 = 0.875∗ 7

8 = 0.875∗

Derivative at 0 0.8118179 0.8060429

+1/4 1.549060 1.548829

Finite part at 1/2 0.251637 0.251546

+3/4 0.247760 0.247730

+1 0.0231050 0.0230957

+5/4 0.0037016 0.0036988

+3/2 0.0007295 0.0007287

+7/4 0.0001597 0.0001595

+2 0.0000372 0.0000371



Appendix B

The Selberg Case

We briefly describe how the our framework of Chap. 10 also successfully
adapts to the somewhat different case of superzeta functions built over the
zeros of Selberg zeta functions for compact hyperbolic surfaces.

The close formal analogy between this “Selberg case” and the general
case (Chap. 10) allows us to keep the benefit of the whole procedure used
there. However, several differences prevent us from transferring the results
and Tables verbatim: mainly, the order of the Selberg zeta functions is μ0 = 2
vs 1 previously, and some of their nontrivial zeros are real, something we
forbade before. (A few scattered details prove simpler, though.)

We will only recall selected results, referring to the literature for details,
e.g., [12,50,91,97], and to Sect. 6.3.1 for the basic background and notation;
we just add that the Gauss–Bonnet formula is implicitly used henceforth:
AS/ 4π ≡ g−1, where g (= gS) is the genus of the surface S (an integer ≥ 2).

For a compact hyperbolic surface S (henceforth fixed, with normalized
curvature −1), its Selberg zeta function, specified by the Euler product

ζS(x) def=
∏

{�}

∞∏

k=0

(
1− e−��(x+k)

)
(Re x > 1) (B.1)

continues to an entire function of order μ0 = 2, which has a functional equa-
tion,

ζS(1
2 + t) ≡ exp

[
4(g − 1)

∫ t

0

πt′ tanπt′ dt′
]

ζS(1
2 − t), (B.2)

and two classes of zeros:
• Trivial zeros {−k} with multiplicities 2(g − 1)(2k + 1), k ∈ N

• Nontrivial zeros ρ = { 1
2 ± iκk}k=0,1,... where 1

4 + κ 2
k are the eigenvalues

of the positive Laplacian on S (both zeros and eigenvalues being counted
with multiplicities, as ever). The lowest eigenvalue 0 (the zero-mode), non-
degenerate, yields two zeros ρ = 1 (simple) and 0 (then of total multiplicity
2(g − 1) + 1). To avoid complications, we exclude the exceptional case of an
eigenvalue = 1

4 ; now, however, finitely many other eigenvalues may exist in
(0, 1

4 ), adding zeros ρ on the real segment (0, 1) save at x = 1
2 .

129
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So, ζS(x) evokes a general primary function L(x) as in Sect. 10.1, but with
order μ0 = 2 and at least one pair of real nontrivial zeros (0 and 1). We
can then still define generalized Stieltjes cumulants gc

n〈S〉 here by (10.5), but
with q = −1:

log
ζS(x)
x− 1

≡
∞∑

n=0

(−1)n−1

n!
gc

n〈S〉 (x − 1)n (B.3)

(gc
0〈S〉 = − log ζ′S(1), gc

1〈S〉 =
ζ′′S(1)

2 ζ′S(1)
, gc

2〈S〉 = −
ζ′′′S (1)
3 ζ′S(1)

+
[

ζ′′S(1)
2 ζ′S(1)

]2
, . . .).

Note: ζ′S(1) > 0, because ζS(x) > 0 for x > 1 by (B.1) and its zero at x = 1
is simple. For n ≥ 1, cf. also [47] (where γ(n−1) ≡ (−1)n−1gc

n〈S〉/(n− 1)!).

B.1 Superzeta Functions of the First Kind

We can define Z (s | t) as in (10.6), and then the allowed t-domain Ω1 also
excludes the cut (−∞,+ 1

2 ] due to the real zeros of ζS starting with x = 1.
A real t < 1

2 now needs to be specified as t±i0 (only the special values Z (n | t)
are continuous on this cut). The confluent case Z0 accordingly splits into two
functions Z0±. The limit t→ 1

2 will require us to remove the zero-mode, as

Z∗(s | t) =
∑

ρ	=(0,1)

(ρ+ t− 1
2 )−s = Z (s | t)− (t− 1

2 )−s − (t+ 1
2 )−s. (B.4)

The completion and Hadamard factorization of ζS usually involve the
Barnes G-function and elaborate fudge factors [37, 95, 103]. Instead, we will
decompose ζS directly in zeta-regularized factors. Specifically, the sequence

xk = k + 1
2 with multiplicity (2k + 1) (B.5)

is theta-eligible of order μ0 = 2, with the Theta function

θ(z) def=
∞∑

k=0

(2k + 1) e−(k+1/2)z =
d
dz

1
sinh 1

2z
(B.6)

=
∞∑

m=−1

c−2mz
2m, c−2n+2 =

2(2n− 1)
(2n)!

(1− 21−2n)B2n , (B.7)

the generalized zeta function

z(s | t) =
∞∑

k=0

(2k + 1)(k + 1
2 + t)−s (Re s > 2), (B.8)
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and the zeta-regularized product d(1
2 + t) = e−z′(0 | t). The zeta function over

the trivial zeros of ζS , patterned on (7.3), is then Z = 2(g− 1)z. Thereupon,
in analogy with (10.15), we can write [104]

ζS(x) ≡ d(x)2(g−1)D(x) ≡ d(x)2(g−1)x(x − 1)D∗(x) (x ≡ 1
2 + t), (B.9)

defining complementary (S-dependent) factors D(x) (which keeps all the non-
trivial zeros of ζS), and D∗(x) (without the zero-mode, as needed in the limit
x→ 1). The same churning as in the Riemann case (Sect. 7.2.2) then converts
(B.9) into integral representations similar to (7.4)–(7.6):

Z (s | t) = −Z(s | t) +
sinπs
π

∫ ∞

0

ζ′S
ζS

(1
2 + t+ y) y−s dy (Re s < 1), (B.10)

Z∗(s | t) = −Z(s | t)− (t+ 1
2 )−s +

sinπs
π

∫ ∞

0

[
ζ′S
ζS

(1
2 +t+y)− 1

t− 1
2 +y

]

y−sdy,

which are, however, discontinuous across the t-plane cut (−∞,+ 1
2 ].

These entail that Z (s | t) and Z∗(s | t) have exactly the s-plane singulari-
ties of −Z(s | t), and that Z has the special values

Z (−n | t) = −Z(−n | t) (n ∈ N), (B.11)

Z ′(0 | t) = −Z′(0 | t)− log ζS(1
2 + t), (B.12)

Z (+n | t) = −Z(+n | t) +
(−1)n−1

(n− 1)!
(log ζS)(n)(1

2 + t) (n ∈ N
∗), (B.13)

where finite parts apply to Z , Z for 1 ≤ n ≤ μ0 = 2; and similarly for Z∗
using (B.4). Except for the derivative formula (B.12), the special values have
(understandably) regained single-valuedness about the real-t axis.

The glitch in the Selberg case is that, unlike before, the functions z(s | t)
and hence Z(s | t) are not known in closed form for general t, making the
above formulae of little use. Rescue, however, comes from two directions.
• The theta-eligibility trivially transfers to the shifted sequence {xk + t},

∞∑

k=0

(2k + 1) e−(k+1/2+t)z = e−tz θ(z) =
∞∑

n=−2

c−n(t) zn (B.14)

with computable polynomial c−n(t), so all of the algebraic information can
now flow from (2.58), yielding that −Z(s | t) and hence Z (s | t) have: only
two poles, s = 2 and s = 1, both simple and of respective residues −4(g− 1)
and 4(g − 1) t, and the rational special values −2(g − 1)(−1)nn! c−n(t) at
s = −n; the latter result completes Table B.1 for general t, as it is shown.
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• The function Z(s | t) can be specified for particular values of t, including
our favorite locations t = 0 and 1

2 , where by simple inspection,

z(s | 0) = 2(2s−1 − 1) ζ(s− 1), z(s | 12 ) = 2 ζ(s− 1)− ζ(s), (B.15)

and this allows us to compute the corresponding special values as displayed
in Tables B.2 and B.3. We recall that the confluent-case function now has
two principal determinations Z0± corresponding to Im t ≷ 0 (Table B.2),
and that the t = 1

2 function (Table B.3) is now Z∗(s)
def= Z∗(s | 12 ), excluding

the zero mode which would cause divergence.
As a final remark, such functions of first kind for the Selberg case have

never been considered before to our knowledge.

B.2 Superzeta Functions of the Second Kind

We can define Z(σ | t) =
∞∑

k=0

(κ 2
k + t2)−σ as in (10.7), but with the extra cut

(−∞,+ 1
2 ] in the allowed t-domain due to the real zeros of ζS starting with

x = 1. A real t < 1
2 now needs to be specified as t± i0 (except for the special

values Z(n | t)). To accommodate the case t = 1
2 it is useful to also define the

sum without the zero-mode k = 0, denoted Z∗(σ | t) = Z(σ | t)− (t2 − 1
4 )−σ.

In the Selberg case, only this kind of superzeta function has attracted
some attention before, and mainly for t = 0 [15, 16][105, Sect. 4] and t = 1

2
[47, 91, 100].

Our successive techniques of Chap. 8 all adapt to the present case.
For t = 0 (the confluent case), one must now specify on which side of the

cut (−∞, 1
2 ] the limit t→ 0+ is taken; thus, two principal function determi-

nations Z0± emerge, and each satisfies the same confluence identity (8.2) as
before with Z0± (Table B.5; explicit values were given in [16, Sect. 6.4]). For
general t, the expansion (8.19) about t = 0 works as previously; now it yields
that Z(σ | t) has a single pole at σ = 1, simple and of residue (g − 1), and
rational special values Z(−m | t) as given in Table B.4 (upper part).

For the transcendental values, we again use the idea of zeta-regularizing
the nontrivial factor D of ζS(1

2 + t) but in the variable v = t2. The canonical
large-t expansion (derivable from (B.7), (2.62), and log ζS(1

2 + t) = O(t−∞)),

log D(1
2 + t) ∼ ã2 t

2(log t− 3
2 ) + ã0 log t+ O(t−2),

ã2 = −2(g − 1), ã0 = − 1
6 (g − 1) (from c2 = 2, c0 = 1

12 ),
(B.16)

becomes, in the variable v = t2,

log D(1
2 + v1/2) ∼ −(g− 1)

[
v(log v− 1)− 2 v+ 1

12 log v
]

(+O(v−1)), (B.17)
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where we have readily underlined a newly born banned term in the v variable.
This term must be killed to get the zeta-regularized form in v, which therefore
has to be D(v) = e−2(g−1)v D(1

2 + t); this enters a variant of the factorization
(B.9), analogous to (8.18) [104],

ζS(1
2 + t) =

[
et2 d(1

2 + t)
]2(g−1)D(v), v ≡ t2. (B.18)

As in the Riemann case (Table 8.2), the transcendental values of second
kind are best expressed in terms of those of first kind, already found. We
then use

logD(v) = log D(1
2 + t)− 2(g − 1)t2. (B.19)

Immediately, logD(v) ≡ −Z ′
(σ)(0 | t) and log D(1

2 + t) ≡ −Z ′
(s)(0 | t) entail

Z ′
(σ)(0 | t) = Z ′

(s)(0 | t) + 2(g − 1) t2. (B.20)

The v-derivative of (B.19), using (2.53) and (2.54) with x = v then x = t,
yields

FPσ=1Z(σ | t) = (1/ 2t) FPs=1 Z (s | t)− 2(g − 1) (t �= 0). (B.21)

As for higher v-derivatives, using (2.56) with D for which μ0 = 1, they give

Z(m | t) =
(−1)m−1

(m− 1)!
dm

d(t2)m
log D(1

2 + t) (m = 2, 3, . . .), (B.22)

which reduces to the same linear combination of the log D(n)(1
2 + t) as in

(8.32). Now it matters that the general formula (2.53) for log D(n) outputs
Z∞(n | t) and not FPs=n Z (s | t): the two differ when 1 < n ≤ μ0, and in the
t variable with μ0 = 2 there is one such n, namely n = 2. Then by (B.16),

Z∞(n | y)− FPs=n Z (n | y) = (−1)nnHn−1 ãn(y) = −δn,2 4(g − 1) (B.23)

(with ã2(y) ≡ ã2 constant here). All that accounts for Table B.4 (lower part).
As an illustration, we fully develop the first few transcendental values of

the case t = 1
2 (Table B.6), referring to our cumulants (B.3) and to Table B.3:

Z ′
∗(σ)(0) = Z ′

∗(s)(0) + 1
2 (g − 1)

= −4(g − 1) [ζ′(−1) + 1
4 log 2π] + gc

0〈S〉+ 1
2 (g − 1)

= (g − 1)
(−4ζ′(−1)− log 2π + 1

2

)
+ gc

0〈S〉, (B.24)
FPσ=1Z∗(σ) = FPs=1 Z∗(s)− 2(g − 1)

= 2(g − 1)(1 + γ) + gc
1〈S〉 − 1− 2(g − 1)

= 2(g − 1) γ + gc
1〈S〉 − 1, (B.25)
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Z∗(2) = 2 Z∗,∞(1)+Z∗,∞(2) = 2 FPσ=1 Z∗(s) + (FPσ=2 Z∗(s)+2ã2)
= 2
[
2(g − 1)(1 + γ) + gc

1〈S〉 − 1
]

+
[−4(g − 1)(γ − 1

12π
2) + gc

2〈S〉 − 1
]− 4(g − 1)

= 1
3 (g − 1)π2 + 2gc

1〈S〉+ gc
2〈S〉 − 3, (B.26)

using (B.23), and those agree with [100, (20), (21), (25)][47, Theorem A(2)].
Formulae for the general Z∗(m) are also given in [47,100] but in recursive

form, whereas Table B.6 exhibits a more closed structure.

B.3 Tables of Special-Value Formulae (Selberg Cases)

Table B.1 Special values of the function of first kind Z (s | t) over the zeros {ρ}
of the Selberg zeta function ζS(x) for a compact hyperbolic surface S of genus g.
Notation: see (1.4), (1.7), (1.9), (B.1), (B.8); n is an integer

s Z (s | t) =
∑

ρ
(ρ + t− 1

2
)−s

−n ≤ 0 − 4(g − 1)
(n+ 1)(n+ 2)

∑

0≤m≤ n
2 +1

(n+ 2
2m

)
(2m − 1)(1 − 21−2m)B2m tn−2m+2

0 −2(g − 1)(t2 + 1
12

)

0
(s-derivative) Z ′(0 | t) = −2(g − 1) z′(0 | t) − log ζS( 1

2
+ t)

+n ≥ 1 −2(g − 1) z(n | t) +
(−1)n−1

(n− 1)!
(log ζS)(n)( 1

2
+ t) †

†
At n = 1, 2 : finite parts FPs=n required for Z and z

Table B.2 Specialization of Table B.1 to t = ±i0; all the values except
the derivative are actually continuous at t = 0. Compare with Table 10.5

s Z0±(s) ≡∑
ρ

(ρ± i0− 1
2 )

−s

−n ≤ 0 −4(g − 1)(1 − 2−n−1)
Bn+2
n+ 2

†

0 −(g − 1)/6

0
(s-derivative) [Z0±]′(0) = 2(g − 1) [ 1

12 log 2 + ζ′(−1)]− log ζS(1
2 ± i0)

1 0 † ∗
+2

(finite part) FPs=2 Z0±(s) = −4(g − 1)(γ + 2 log 2)− (log ζS)′′(1
2 )

+n 	= 2 −4(g − 1)(2n−1 − 1) ζ(n− 1) +
(−1)n−1

(n− 1)!
(log ζS)(n)(1

2 ) †

†
For n odd, Z0(n) ≡ 0 which makes (log ζS)(n)(1

2 ) fully explicit, as in
(C.4)
∗
Exceptionally at t = 0, s = 1 is a regular point
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Table B.3 As Table B.1, but at t = 1
2 and with the zero-mode

removed. For the generalized Stieltjes cumulants gcn〈S〉, see (B.3).
Compare with Table 10.6

s Z∗(s) ≡ ∑

ρ �=0,1
ρ−s

−n < 0 −2(g − 1)(−1)n
[
2
Bn+2
n+ 2 +

Bn+1
n+ 1

]− 1

0 2
3 (g − 1)− 2

0
(derivative) Z ′

∗(0) = −4(g − 1) [ζ′(−1) + 1
4 log 2π] + gc0〈S〉

+1
(finite part) FPs=1 Z∗(s) = 2(g − 1)(1 + γ) + gc1〈S〉 − 1

+2
(finite part) FPs=2 Z∗(s) = −4(g − 1)(γ − 1

12π
2) + gc2〈S〉 − 1

+n > 2 −2(g − 1) [2 ζ(n− 1) − ζ(n)] +
gcn〈S〉
(n−1)!

− 1 †

†
For k even, ζ(k) ≡ (2π)k|Bk|/(2 k!)

Table B.4 As Table B.1, but for the function of second kind Z(σ | t); transcenden-
tal special values (lower part) are expressed in terms of those for Z (s | t), given by
Table B.1; m, n are integers. Compare with Tables 8.1 (upper part) and 8.2 (lower
part)

σ Z(σ | t) =
∞∑

k=0
(κ 2

k + t2)−σ

−m ≤ 0
g − 1
m+ 1

m+1∑

n=0
(−1)n

(m+1
n
)
(1 − 21−2n)B2n t2(m+1−n)

0 −(g − 1)(t2 + 1
12

)

0
(σ-/s-derivatives) Z′

(σ)(0 | t) = Z ′
(s)(0 | t) + 2(g − 1) t2

+1
(finite part) FPσ=1 Z(σ | t) = 1

2t FPs=1 Z (s | t) − 2(g − 1) (t 	= 0)∗

+m ≥ 2
m∑

n=1

(2m−n−1
m− 1

)
(2t)−2m+n Z∞(n | t) † (t 	= 0)∗

∗
For t = 0, see Table B.5 below

†
With Z∞(n | t) = FPs=n Z (s | t)− δn,2 4(g− 1), see (B.23) (FP is unneeded for n > 2)

Table B.5 As Table B.4, but at t = (1 ± i) 0; all the values
except the derivative are actually continuous at t = 0. Cf.
Table B.2

σ Z0±(σ) =
∞∑

k=0
(κ2

k ± i0)−σ

−m ≤ 0 1
2 (−1)m Z0±(−2m)

0
(σ-/s-derivatives) [Z0±]′(σ)(0) = [Z0±]′(s)(0)

+1
(finite part) FPσ=1 Z0±(σ) = −1

2FPs=2 Z0±(s)

+m ≥ 2 1
2 (−1)m Z0±(+2m)
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Table B.6 As Table B.4, but at t = 1
2 and with the zero-mode

removed (Z∗(σ) is the Minakshisundaram–Pleijel zeta function); cf.
Table B.3

σ Z∗(σ) =
∞∑

k=1
(κ 2

k + 1
4 )−σ ≡

∞∑

k=1
v−σ

k

−m < 0
g − 1
m+ 1 2−2m−1

m+1∑

n=0
(−1)n

(m+1
n
)
(22n−1 − 1)B2n

0 −1
3 (g − 1)− 1

0
(σ-/s-derivatives) Z′

∗(σ)(0) = Z ′
∗(s)(0) + 1

2 (g − 1)

+1
(finite part) FPσ=1 Z∗(σ) = FPs=1 Z∗(s)− 2(g − 1)

+m ≥ 2
m∑

n=1

(2m−n−1
m− 1

)
Z∗,∞(n) †

†
With Z∗,∞(n) = FPs=n Z∗(s) − δn,2 4(g − 1), see (B.23) (FP is

unneeded for n > 2)



Appendix C

On the Logarithmic Derivatives at 1
2

We briefly revisit the formulae that involve (log |L|)(n)(1
2 ) from the viewpoint

of the primary function L itself when, as in Sect. 10.6, the latter is either the
L-function Lχ of a real primitive Dirichlet character χ (= Dirichlet-L cases) or
the Dedekind zeta function ζK of an algebraic number field K (= Dedekind-ζ
cases, which include ζ(x) for K = Q).

For even n > 0, those derivatives relate to the corresponding superzeta
values Z0(n) according to Tables 10.3 and 10.5 (last lines), which is far from
an explicit evaluation. At n = 0, log |L|(1

2 ) gets related to Z ′
0 (0). And even

in the basic case: L = ζ, n = 0, very little seems to be known about ζ(1
2 )

[81][11, Knuth’s sequence pp. 16–17].
In contrast, for odd n > 0, by virtue of (10.59) and (10.78) (which follow

from the functional equation (10.3)), those derivatives get specified, as

(log |L|)(n)(1
2 ) ≡

{
1
2 (n−1)!

[
c (2n−1) ζ(n) + c′ 2nβ(n)

]
, n = 3, 5, . . .

1
2 c γ + 1

4 c
′ π + 1

2 log
[
(8π)c/d

]
, n = 1,

(C.1)

for suitable (integers) c, c′, d: thus in a Dirichlet-L case, by (10.59), c = 1,
c′ = 1 − 2a and d = the modulus (or period) of the character χ; while
in a Dedekind-ζ case, by (10.78), c = nK , c′ = r1, and d = |dK |. These
formulae are more explicit than for even n but not yet fully: with n being
odd, 1

2 (n − 1)! 2nβ(n) reduces to 1
4π

n|En−1| by (3.32), but ζ(n) (and γ for
n = 1) remain elusive (irreducible); e.g., (log |ζ|)′(1

2 ) = 1
2γ + 1

4π + 1
2 log 8π.

However, related odd-n identities can manage to eliminate ζ(n) and γ:
if (L1, L2) is any pair of such functions, each indifferently Dirichlet-L or
Dedekind-ζ, then a linear combination (with obvious notation) yields the
fully explicit relations

c2(log |L1|)(n)(1
2 )− c1(log |L2|)(n)(1

2 ) ≡ (C.2)
(c2c′1 − c1c′2) 1

4π
n|En−1|+ δn,1

1
2 log(dc1

2 /d
c2
1 ) for odd n ≥ 1.
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2

An immediate example is L1 = ζ, L2 = β, giving [106, (90)]

(log |ζ|)(n)(1
2 )−(log β)(n)(1

2 ) ≡ 1
2π

n|En−1|+δn,1 log 2 for odd n ≥ 1; (C.3)

see also (10.60) for another simple case.
Incidentally, the situation is simpler with Selberg zeta functions ζS as in

Appendix B: for any odd n ≥ 1, either the identity Z0(n) = 0, or Selberg’s
functional equation (B.2), entails the fully explicit values

(log |ζS |)(n)(1
2 ) ≡ 4(g − 1)(n− 1)! (2n−1 − 1) ζ(n− 1)

= 2(g − 1)(2n−1 − 1)(2π)n−1|Bn−1|
}

for odd n ≥ 1,

(C.4)
where in particular n = 1 gives (log |ζS |)′(1

2 ) ≡ 0.



Appendix D

On the Zeros of the Zeta Function
by Hj. Mellin (1917)

Annotated translation from German, by A. Voros, of the article:

Über die Nullstellen der Zetafunktion
Ann. Acad. Sci. Fennicae A10 Nr 11 (1917).

We include this English translation of Mellin’s seminal paper featuring the
first zeta functions over the Riemann zeros to our knowledge. The original
is written in German and available in few libraries, hence we believe this
Appendix can make that article accessible to a wider audience.

We indicate the errors and misprints we noticed, but we did not carry out
a systematic verification. We have strictly preserved the author’s notation,
which is therefore not consistent with the rest of this book (cf. our discussion
of this article in Sect. 5.5). We have not indexed the contents either.

Numbered footnotes are the author’s, the others are translator’s
notes (A.V.).
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On the zeros of the zeta function

§ 1.

The series, extended over all the complex zeros ρ of the zeta function,

∑

ρ

1
|ρ|κ ,

is known to converge 1) for all κ > 1 and to diverge for κ < 1.
It follows that the series ∑

ρ

xρ

ρs
, x > 0,

where x is a positive parameter, converges absolutely and uniformly in every
finite part of the half-plane

�(s) ≥ 1 + ε ε > 0.

In an important work 2) dedicated to the above series, Mr Landau among
others proved that the series converges for 0 < s < 1 if and only if x is neither
1 nor pm nor p−m, where p is any prime number and m a positive integer.

I will now prove some of the analytical continuation properties of the same
series in question, that I noticed several years ago.

Let these functions be defined by the following series:

(1) Z(s, x) =
∑

ρ

xρ

ρs
,

(2) Z
(
s,

1
x

)
=
∑

ρ

x−ρ

ρs
,

(3) Z̄(s, x) =
∑

ρ

xs

(−ρ)s
,†

(4) Z̄
(
s,

1
x

)
=
∑

ρ

x−s

(−ρ)s
,†

(5) Z(s) =
∑

ρ

1
ρs
,

(6) Z̄(s) =
∑

ρ

1
(−ρ)s

.

1) See Landau, Handbuch der Lehre von der Verteilung der Primzahlen [Lessons
on the distribution of the prime numbers], I, p. 314.
2) See Landau, Über die Nullstellen der Zetafunktion [On the zeros of the Zeta
function], Math. Annalen 71, p. 548, 1911. [Actually : 1912. (A.V.)]
† Misprints: xs should read xρ in (3); x−s should read x−ρ in (4). (A.V.)
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I always assume the parameter x > 1 in the first four series. The expressions

ρs, (−ρ)s, xρ, x−ρ

are defined through

ρs = es[log |ρ|+i arc (ρ)],

(−ρ)s = es[log |ρ|+i arc (−ρ)],

xρ =
1
x−ρ

= eρ log x

with the arc taken between −π and +π.
It now follows that:
The functions Z and Z̄ defined by the first four series (1) to (4) are, for all

x > 1, entire functions of s, which become rational functions of x for s = 0
and for negative integer values s = −n, so that

(7)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z(0, x) = x−
∞∑

ν=1

x−2ν = x− 1
x2 − 1

,

Z(−n, x) = x−
∞∑

ν=1

(−2ν)nx−2ν = x−
(
x
d

dx

)n 1
x2 − 1

,

(8)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z
(
0,

1
x

)
= −1−

∞∑

ν=1

x−2ν−1 = −1− 1
x(x2 − 1)

,

Z
(
−n, 1

x

)
= −

∞∑

ν=1

(2ν + 1)nx−2ν−1 = (−1)n+1
(
x
d

dx

)n 1
x(x2 − 1)

,

(9)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z̄(0, x) = x−
∞∑

ν=1

x−2ν = x− 1
x2 − 1

,

Z̄(−n, x) = (−1)nx−
∞∑

ν=1

(2ν)nx−2ν = (−1)n

[

x−
(
x
d

dx

)n 1
x2 − 1

]

,

(10)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Z̄
(
0,

1
x

)
= −1−

∞∑

ν=1

x−2ν−1 = −1− 1
x(x2 − 1)

,

Z̄
(
−n, 1

x

)
= −(−1)n

∞∑

ν=1

(2ν + 1)nx−2ν−1 = −
(
x
d

dx

)n 1
x(x2 − 1)

.

In these formulas
(
x
d

dx

)n

means the n-th iteration of the operator x
d

dx
.

The functions Z and Z̄ defined by the series (5) and (6) are regular in the
whole s-plane, except for the simple pole s = 1, with the common residue

(11) lim
s=1

(s− 1)Z(s) = lim
s=1

(s− 1)Z̄(s) = −1
2
.
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For s = 0 and for negative integers s = −n,

(12)

{
Z(0) = 1, †

Z(−n) = (2n − 1) ζ(−n), †

(13)

⎧
⎨

⎩

Z̄(0) = −1
2
, ‡

Z̄(−n) = (−1)n+1 − 2n ζ(−n). ‡

§ 2.

The function

Z
(
s,

1
x

)
=
∑

ρ

x−ρ

ρs
.

I use the well-known formula 1)

(14) F (x, t) =
x1−t

1− t +
∞∑

ν=1

x−2ν−t

2ν + t
−
∑

ρ

xρ−t

ρ− t −
ζ′(t)
ζ(t)

,

which is valid for x > 1, and where

(15) F (x, t) =
∑

pm≤x

′ log p
pmt

.

The dash means that when x is a prime power, the last term will carry the
factor 1

2 .
First, I write (14) as follows:

(16) F (x, t)xt +
ζ′(t)
ζ(t)

xt − x

1− t =
∞∑

ν=1

x−2ν

2ν + t
+
∑

ρ

xρ

−ρ+ t
.

Since the series considered here converge uniformly 2) in any finite root-
free regions of t, it is permitted to differentiate term by term, which yields:

(17) G(x, t) − x

(1 − t)2 =
∞∑

ν=1

x−2ν

(2ν + t)2
+
∑

ρ

xρ

(−ρ+ t)2
.

† Error: (12) should read Z(0) = 2, Z(−n) = (2n − 1)ζ(−n) + 1, upon correcting
(26) below. (A.V.)
‡ Error: (13) should read Z̄(0) = 3

2 , Z̄(−n) = (−1)n−2nζ(−n) upon the corrections
in §. 5 below. (A.V.)
1) See Landau, Handbuch, I. p. 353.
2) See Landau, Handbuch, I. p. 354.



D On the zeros of the zeta function by Hj. Mellin (1917) 143

Here the abbreviation

(18) G(x, t) = − ∂

∂t

{
F (x, t)xt +

ζ′(t)
ζ(t)

xt
}

is used. Because of (15) and
ζ′(t)
ζ(t)

= −
∑

p,m

log p
pmt

�(t) > 1,

G can be represented in the half-plane

�(t) ≥ 1 + ε ε > 0

by the absolutely and uniformly convergent series

(19) G(x, t) =
∑

pm≥x

( x

pm

)t

log p log
( x

pm

)
.

In case x = a prime power, the first term in (19) vanishes, so that in the
angular sector

−π
2

+ ε ≤ arc (t) ≤ +
π

2
− ε

for any constant k and any constant x > 1,

(20) lim
t=∞ tk G(x, t) = 0

uniformly. The corresponding expression in (16),

F (x, t)xt +
ζ′(t)
ζ(t)

xt = −
∑

pm≥x

′ ( x

pm

)t

log p,

does not have this property in the case mentioned, because it contains a
t-independent, non-vanishing term.

In (17), I now replace t by 1 + t, multiply by ts−1dt and integrate from
t = 0 to t =∞. By using the formula

∫ ∞

0

ts−1dt

(a+ t)z
=
Γ (s)Γ (z − s)

Γ (z)
· 1
az−s

0 < �(s) < z

−π < arc (a) < +π

i.e., in this case
∫ ∞

0

ts−1dt

(a+ t)2
=
π(1 − s)
sinπs

· 1
a2−s

,

then the result is

(21)
∫ ∞

0

{
G(x, 1+t)−xt−2

}
ts−1dt =

π(1− s)
sinπs

[ ∞∑

ν=1

x−2ν

(2ν + 1)2−s
+
∑

ρ

xρ

(1− ρ)2−s

]

.
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The first series on the right-hand side converges when x > 1 for all s, the
second one is absolutely convergent for �(s) < 1. The left-hand side integral,
which converges for

0 < �(s) < 2,

can be transformed as follows. In the vicinity of t = 0,

G(x, 1 + t)− xt−2

can be developed in an ordinary power series:

G(x, 1 + t)− xt−2 =
∞∑

ν=0

Cνt
ν .

Let r be positive and smaller than the radius of convergence of this series.
Then ∫ r

0

{
G(x, 1 + t)− xt−2

}
ts−1dt =

∞∑

ν=0

Cν
rs+ν

s+ ν
.

The right-hand side is a regular function in the whole s-plane except at the
poles s = 0, −1, −2, . . .. Next,

∫ ∞

r

{
G(x, 1 + t)− xt−2

}
ts−1dt =

∫ ∞

r

G(x, 1 + t) ts−1dt+ x
rs−2

s− 2
.

The right-hand side integral, because of (20), is an entire function H(s) of s.
Setting these expressions for

∫ ∞

0

{ }
ts−1dt =

∫ r

0

+
∫ ∞

r

in (21), one gets the formula

∞∑

ν=0

Cν
rs+ν

s+ ν
+H(s)+x

rs−2

s− 2
=
π(1 − s)
sinπs

[ ∞∑

ν=1

x−2ν

(2ν + 1)2−s
+
∑

ρ

xρ

(1 − ρ)2−s

]

,

or, if one substitutes s by 2− s and observes that 1− ρ simultaneously with
ρ run over all nonreal roots,

(22)
∞∑

ν=1

x−2ν−1

(2ν + 1)s
+
∑

ρ

x−ρ

ρs
= x−1 sinπs

π(1− s)

[ ∞∑

ν=0

Cν
r2−s+ν

2− s+ ν
+H(2−s)−x r

−s

s

]

.

The right-hand side is now manifestly an entire function of s, which has
the value −1 for s = 0 and vanishes for all negative integer values of s. Since
the first series on the left (x > 1) is also an entire function of s, which for
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s = 0, −1, −2, −3, . . . yields certain rational functions of x, so the function

Z
(
s,

1
x

)
has the properties stated in §. 1.

§ 3.

The function

Z̄(s, x) =
∑

ρ

xρ

(−ρ)s
.

In this case I multiply (17) by ts−1dt and integrate along the straight lines

0 ∞ eiθ 0 < θ <
π

2
.

Let θ be small enough so that no root ρ lies in the angle

0 < arc (t) ≤ θ.

Then for 0 < �(s) < 1,

(23)
∫ ∞eiθ

0

{
G(x, t) − x

(1− t)2
}
ts−1dt =

=
∫ ∞eiθ

0

{ ∞∑

ν=1

x−2ν

(2ν + t)2
+
∑

ρ

xρ

(−ρ+ t)2

}

ts−1dt

=
∫ ∞

0

{ ∞∑

ν=1

x−2ν

(2ν + t)2
+
∑

ρ

xρ

(−ρ+ t)2

}

ts−1dt

=
π(1 − s)
sinπs

[ ∞∑

ν=1

x−2ν

(2ν)2−s
+
∑

ρ

xρ

(−ρ)2−s

]

.

The integral (23) can be transformed as follows:

∫ ∞eiθ

0

{ }
ts−1dt =

∫ ∞eiθ

0

G(x, t) ts−1dt+ x

∫ ∞eiθ

0

ts−1dt

(−1 + t)2

=
∫ reiθ

0

Gts−1dt+
∫ ∞eiθ

reiθ

Gts−1dt+ x

∫ −∞

0

ts−1dt

(−1 + t)2

=
∫ reiθ

0

Gts−1dt+
∫ ∞eiθ

reiθ

Gts−1dt+ x eπis

∫ ∞

0

ts−1dt

(1 + t)2
.

r is smaller than the radius of convergence of

G(x, t) =
∞∑

ν=0

bνt
ν ,
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so that
∫ reiθ

0

Gts−1dt =
∞∑

ν=0

bν
(reiθ)s+ν

s+ ν
.

The second integral on the right is, because of (20), an entire function: H̄(s)
of s:

∫ ∞eiθ

reiθ

Gts−1dt = H̄(s),

while ∫ ∞

0

ts−1dt

(1 + t)2
=
π(1 − s)
sinπs

.

This puts (23) in the form

∞∑

ν=0

bν
(reiθ)s+ν

s+ ν
+H̄(s)+xeπis π(1 − s)

sinπs
=
π(1− s)
sinπs

[∞∑

ν=1

x−2ν

(2ν)2−s
+
∑

ρ

xρ

(−ρ)2−s

]

.

Replacing s by 2− s, one finally gets

(24)
∞∑

ν=1

x−2ν

(2ν)s
+
∑

ρ

xρ

(−ρ)s
=

sinπs
π(1− s)

[ ∞∑

ν=0

bν
(reiθ)2−s+ν

2− s+ ν
+ H̄(2− s)

]

+ x eπis.

The right-hand side is obviously an entire function of s, which is equal to
(−1)n x for s = 0 and for negative integer values s = −n. The first series on
the left of (24) is manifestly (x > 1) also an entire function of s, which for
s = 0, −1, −2, . . . gives some easily determined rational functions of x. It
follows directly that Z̄(s, x) has the properties listed in §. 1.

§ 4.

The function

Z(s) =
∑

ρ

1
ρs
.

From the known formula 1)

ζ′(t)
ζ(t)

= C − 1
t− 1

− 1
2
Γ ′( t

2 + 1)
Γ ( t

2 + 1)
+
∑

ρ

( 1
t− ρ +

1
ρ

)

= C1 − 1
t− 1

+
1

t+ 2
+

∞∑

ν=1

( 1
t+ 2 + 2ν

− 1
2ν

)
+
∑

ρ

( 1
t− ρ +

1
ρ

)

1) See Landau, Handbuch, I. p. 316.
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it follows by differentiation

(25) −
(ζ′(t)
ζ(t)

)′
+

1
(t− 1)2

=
∞∑

ν=1

1
(t+ 2ν)2

+
∑

ρ

1
(t− ρ)2 .

I replace t by t+ 1 and, through integration for 0 < �(s) < 1, obtain

−
∫ ∞

0

{( ζ′(1 + t)

ζ(1 + t)

)′
− 1

t2

}

ts−1dt =
π(1 − s)

sin πs

[ ∞∑

ν=1

1

(2ν + 1)2−s
+
∑

ρ

1

(1 − ρ)2−s

]

.

The integral allows exactly the same transformations as the corresponding
integral in §. 2. One thus arrives, after replacing 2− s by s, at the end result

(26)
∞∑

ν=1

1
(2ν + 1)s

+
∑

ρ

1
ρs

=
(
1− 1

2s

)
ζ(s) + Z(s) †

=
sinπs
π(1 − s)

[ ∞∑

ν=0

Cν
r2−s+ν

2− s+ ν
+
r−s

s
+H(2− s)

]

,

where H is an entire function. This results in the properties listed in §. 2 ‡

concerning Z(s).
§ 5.

The function

Z̄(s) =
∑

ρ

1
(−ρ)s

.

From (25) one obtains, by integration along the lines

0 ∞ eiθ 0 < θ <
π

2
,

−
∫ ∞eiθ

0

( ζ′(t)
ζ(t)

)′
ts−1dt =

= −
∫ ∞eiθ

0

ts−1dt

(−1 + t)2
+

∫ ∞eiθ

0

ts−1
∞∑

ν=1

1

(2ν + t)2
dt +

∫ ∞eiθ

0

ts−1
∑

ρ

1

(−ρ + t)2
dt

= −
∫ −∞

0

ts−1dt

(−1 + t)2
+

∫ +∞

0

ts−1
∞∑

ν=1

1

(2ν + t)2
dt +

∫ +∞

0

ts−1
∑

ρ

1

(−ρ + t)2
dt

=
π(1 − s)

sin πs

[

eπis +
∞∑

ν=1

1

(2ν)2−s
+
∑

ρ

1

(−ρ)2−s

] ∗

,

† Error: the middle member of (26) should read (1 − 1
2s )ζ(s) − 1 + Z(s), and this

affects the results (12) above. (A.V.)
‡ Actually : §. 1. (A.V.)
∗ Error: the term eπis inside the brackets should read −eπis, and this error propa-
gates to (27) then to (13). (A.V.)
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where θ is so small that it can be presumed there is no ρ in the angle

0 < arc (t) ≤ θ.

Just as in §. 3, the first integral can be brought to the form

∞∑

ν=0

Cν
(reiθ)s+ν

s+ ν
+ H̄(s),

where H̄ is an entire function. The final result is, after replacing 2− s by s,

(27) e−πis +
∞∑

ν=1

1
(2ν)s

+
∑

ρ

1
(−ρ)s

= e−πis +
1
2s
ζ(s) + Z̄(s) †

=
sinπs
π(1 − s)

[ ∞∑

ν=0

Cν
(reiθ)2−s+ν

2− s+ ν
+ H̄(2− s)

]

.

There follows the validity of the claims issued in §. 1 concerning Z̄(s).

§ 6.
The function

Z(s, x) =
∑

ρ

xρ

ρs
.

In formula (14) I replace t by −t and use the formula

ζ′(−t)
ζ(−t) = − log(2π) +

π

2
cot

πt

2
+
Γ ′(1 + t)
Γ (1 + t)

+
ζ′(1 + t)
ζ(1 + t)

.

Multiplying the resulting formula by x−t and differentiating, one gets

(28)
∂

∂t

{

F (x,−t) x−t + x−t log(2π) − x−t Γ ′(1 + t)

Γ (1 + t)
− x−t

(π

2
cot

πt

2
+

ζ′(1 + t)

ζ(1 + t)

)}

= − x

(1 + t)2
+

∞∑

ν=1

x−2ν

(2ν − t)2
+
∑

ρ

xρ

(ρ + t)2
.

In the vicinity of t = 0, the left-hand side can be expanded in a standard
power series

∂

∂t

{ }

=
∞∑

ν=0

Cνt
ν .

† Error: both terms e−πis in (27) should read −e−πis, and this affects the results
(13) above. (A.V.)
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Next, in the angle
−π

2
+ ε ≤ arc (t) ≤ +

π

2
− ε

(ε positive, and arbitrarily small), this function behaves everywhere regularly,
and upon multiplication with an arbitrary high power of t, it tends to the
limit zero uniformly for increasing |t| (x > 1). Also, r is positive and smaller
than the radius of convergence of the above series, hence along the lines

0 ∞ eiθ 0 < θ <
π

2
,

the integral of the left-hand side of (28) multiplied by ts−1dt,
∫ ∞eiθ

0

ts−1 ∂

∂t

{ }

dt

can be brought to the form

∫ ∞eiθ

0

ts−1 ∂

∂t

{ }

dt =
∞∑

ν=0

Cν
(reiθ)s−ν

s+ ν
+H(s), †

where H is an entire function. The integrals performed on the right-hand side
of (28) give the following results,

−x
∫ ∞eiθ

0

ts−1

(1 + t)2
= −x

∫ ∞

0

ts−1

(1 + t)2
= −x π(1− s)

sinπs
,

∫ ∞eiθ

0

ts−1
∞∑

ν=1

x−2ν

(2ν − t)2 dt =
∫ −∞

0

ts−1
∞∑

ν=1

x−2ν

(2ν − t)2 dt

= eπis

∫ +∞

0

ts−1
∞∑

ν=0

x−2ν

(2ν + t)2
dt ‡ = eπis π(1 − s)

sinπs

∞∑

ν=1

x−2ν

(2ν)2−s
,

∫ ∞eiθ

0

ts−1
∑

ρ

xρ

(ρ+ t)2
dt =

∫ +∞

0

ts−1
∑

ρ

xρ

(ρ+ t)2
dt =

π(1 − s)
sinπs

∑

ρ

xρ

ρ2−s
,

where θ is so small that it can be presumed there is no ρ in the angle
0 < arc (t) ≤ θ. One also has, upon replacing 2− s by s:

(29) e−πis
∞∑

ν=1

x−2ν

(2ν)s
+
∑

ρ

xρ

ρs
= x+

sinπs
π(1 − s)

[ ∞∑

ν=0

Cν
(reiθ)2−s+ν

2− s+ ν
+H(2−s)

]

.

† Misprint: the exponent in the right-hand side should read s+ ν. (A.V.)

‡ Misprint: the summation
∞∑

ν=0
should read

∞∑

ν=1
. (A.V.)
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The right-hand side is obviously an entire function of s, which takes the
value x for s = 0 and for negative integer values s = −n. The first series on
the left-hand side is also (x > 1) an entire function of s, which for s = 0 and
for negative integer values s = −n turns into some rational functions of x, so
that ∞∑

ν=1

(−2ν)n x−2ν =
(
x
d

dx

)n 1
x2 − 1

.

Hence without further ado, one obtains the validity of the claims in §. 1
concerning Z(s, x).

§ 7.

The function

Z̄
(
s,

1
x

)
=
∑

ρ

x−ρ

(−ρ)s
.

Replacing t by t− 1 in the formula (28), and bringing the term

− x
t2

to the left-hand side, one is led by the above method (bearing in mind that
1− ρ and ρ both run through the complex roots of ζ(t)) to the formula

(30) eπis
∞∑

ν=1

x−2ν−1

(2ν + 1)s
+
∑

ρ

x−ρ

(−ρ)s

= x−1 sinπs
π(1 − s)

[

−x (reiθ)−s

s
+

∞∑

ν=0

Cν
(reiθ)2−s+ν

2− s+ ν
+H(2− s)

]

,

which yields all that was said in §. 1 regarding Z̄
(
s,

1
x

)
.

§ 8.

The functions

Z1(s, x) =
∑

γ>0

xρ

ρs
, Z2(s, x) =

∑

γ<0

xρ

ρs
,

Z1

(
s,

1
x

)
=
∑

γ>0

x−s

ρs
, † Z2

(
s,

1
x

)
=
∑

γ<0

xs

ρs
, †

† Misprints: both x−s and xs should read x−ρ. (A.V.)



D On the zeros of the zeta function by Hj. Mellin (1917) 151

Z1(s) =
∑

γ>0

1
ρs
, Z2(s) =

∑

γ<0

1
ρs
,

ρ = β + iγ, x > 1.

The nature of the functions defined by those series is now also easily ob-
tained, if one notes that

(31)

{
Z(s, x) = Z1(s, x) + Z2(s, x),

Z̄(s, x) = eπisZ1(s, x) + e−πisZ2(s, x);

(32)

⎧
⎪⎨

⎪⎩

Z
(
s,

1
x

)
= Z1

(
s,

1
x

)
+ Z2

(
s,

1
x

)
,

Z̄
(
s,

1
x

)
= eπisZ1

(
s,

1
x

)
+ e−πisZ2

(
s,

1
x

)
;

(33)

{
Z(s) = Z1(s) + Z2(s),

Z̄(s) = eπisZ1(s) + e−πisZ2(s).

From (31), for instance, it follows that

2i Z1(s, x) =
Z̄(s, x)− e−πisZ(s, x)

sinπs
.

The numerator is an entire function of s, which vanishes not only at the
points s = 1, 2, 3, · · · , ∞ but also at the points s = 0, −1, −2, · · · , −∞.
The former is due to the series 1) for Z(s, x) and Z̄(s, x), the latter to the
formulas (7) and (9). The same obviously apply also to the functions Z2(s, x),

Z1

(
s,

1
x

)
, Z2

(
s,

1
x

)
.

1) By a result of von Mangoldt, the series

∑

ρ

xρ

ρ

converges for all x > 0. Concerning the point s = 1, one needs to prove that

lim
s=1

Z(s, x) =
∑

ρ

xρ

ρ
and lim

s=1
Z̄(s, x) =

∑

ρ

xρ

−ρ ,

but I will not elaborate on this further.
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The functions Z1(s, x), Z2(s, x), Z1

(
s,

1
x

)
, Z2

(
s,

1
x

)
are also entire func-

tions of s for every x > 1.
From the formulae (33), in conjunction with (12) and (13), it follows that:

The functions Z1(s) and Z2(s) are meromorphic in the whole s-plane,
with a double pole at the point s = 1 and with simple poles at the points
s = 0, −1, −2, · · · , −∞.

The results developed in this work can be generalized without difficulty.
I will only allude to that. Setting

Z(s, x, a) =
∑

ρ

xρ+a

(ρ+ a)s
,

where x is positive, and initially different from 1, then Z is an entire function
of s. If a = m

n is rational, then for s = 0 and for negative integer s, Z turns
into certain rational functions of n

√
x.

Helsingfors, January 1917.
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57. A. Ivić, The Riemann Zeta-Function. The Theory of the Riemann Zeta-Function
with Applications, Wiley (1985).

58. P. Jeanquartier, Transformation de Mellin et développements asymptotiques,
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Page numbers in bold indicate primary references. Symbols are listed by
full name (cf. List of special symbols) whenever possible. Mellin’s article in
Appendix D is not indexed.

A
algebraic number field, see number fields
allowed terms (in zeta-regularized

form), see Stirling expansion or
formula, generalized, canonical

analytical continuation, see specific
function name, meromorphic
structure

asymptotic criterion for RH, see Rie-
mann Hypothesis, asymptotic
criterion

asymptotic expansions, 6–7, 17, 20–21,
117, 120

for superzeta functions of 1st kind
(Z (s | t), s→ −∞), 65, 96, 125

Stirling (or generalized –), see
Stirling expansion or formula

B
B (≡ [logΞ]′(0)), 35–36, 70, 83,

124–125
banned terms (in zeta-regularized form),

see Stirling expansion or
formula, generalized, canonical

Barnes G-function, 93, 130
Bernoulli numbers, 3, 23, 27, 29–31, 73,

83, 110–111, 130, 134–136, 138
Bernoulli polynomials, 3, 5, 29, 31, 68,

72
Bessel function (modified: Kν), 56–57
beta-function, see Dirichlet L-functions,

β-function
Bologna formula, 83, 84

C
canonical asymptotic expansion, see

Stirling expansion or formula,
generalized, canonical

class number formula
Dedekind’s, 106, 107
Dirichlet’s, 102–103, 108

completed Riemann zeta function (Ξ(·)),
27, 33–34, 50, 69, 72, 84, 114,
119

Hadamard product, 35, 62
symmetrical –, 35–36, 66, 77, 80,

83
zeta-regularized forms, 62–63, 66,

78–79, 80
completed (zeta- or L-)functions (Ξ(·)),

28, 92–93, 94, 96, 100, 102,
109

confluence identity, 43, 44, 75–77, 87,
94, 98, 125, 132, 135

counting function, exact (N(T )) or
approximate, 39–40, 80, 99,
124

see also Riemann–von Mangoldt
formula

Cramér’s function (V (·)), 20, 44–45, 91,
93

D
Darboux (theorem and formula),

116–117
Dedekind η-function, 108
Dedekind zeta functions, 99, 105–106,

107, 121, 137

159
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zeta functions over zeros of –, see
superzeta functions (extended),
Dedekind-ζ cases

Digamma function (ψ(·)), 3, 29–31, 35,
37, 50–52, 55, 66, 69, 103, 104,
107, 118, 120

Dirichlet characters, 28, 101–105,
108

parity bit (a), 102, 103–105, 107–108,
110, 137

Dirichlet L-functions, 99, 101–105, 121,
137

β-function, 28, 69, 73, 85, 101, 103,
104, 107, 110, 111, 138

zeta functions over zeros of –, see
superzeta functions (extended),
Dirichlet-L cases

discrepancy (δ1) in Z (s | t) at s = 1,
see finite part at a pole
(FP), in a superzeta function,
discrepancy . . .

E
eigenvalues (of hyperbolic 2D Lapla-

cians), 53, 57, 91, 129–130,
132

eligible sequences, 12, 14–15, 18, 62,
77–78

see also theta-eligible sequences
entire functions of finite order, 9, 10,

33–35, 62, 77, 92, 129
Euler numbers, 3, 28, 69, 73, 83–85, 103,

107, 110–111, 137–138
Euler product, 24, 96, 102, 105, 129
Euler–Kronecker invariant, 105,

107–108
Euler–Maclaurin summation formula, 5,

33, 124
exercise!, 17, 21, 55, 69, 75, 82, 83,

97
expansions in the shift parameter for

superzeta functions
1st kind, 68–69, 125
2nd kind, 76, 79–80, 124, 132
3rd kind, 87

Explicit Formulae (Guinand–Weil), 2,
49–52, 53–54

for superzeta functions, 3, 54–58, 62,
65, 75, 91

extended superzeta functions, see
superzeta functions (extended)

F
factorization, see infinite product
finite part at a pole (FP), 4, 13, 16–17,

19, 21, 27, 29–30, 95
in a superzeta function, 66, 67,

70, 72–73, 88, 89, 96–98,
109–111, 126–127, 131,
133–136

discrepancy (δ1) in Z (s | t) at
s = 1, 66–67, 76, 96, 99

Fourier transforms, 4, 49, 50, 53, 54,
56

Functional Equation (Riemann ζ-
function), 25–27, 29, 33, 34,
36, 39, 69, 71, 114

central symmetry, 27, 34, 41–44,
49–51, 67–69, 72, 75, 80–81

functional equations
like Riemann’s, 28, 92, 97, 102–106,

129, 137–138
central symmetry, 97, 100

other, 14, 28–30, 43, 45

G
Generalized Riemann Hypothesis,

see Riemann Hypothesis,
Generalized

generalized zeta functions, see zeta
functions, generalized

geodesics (periodic), 52–53, 129
“good” ordinates, 38–39, 51, 61

H
Hadamard product, see infinite product,

Hadamard
harmonic numbers, 16, 17–22
Hurwitz zeta function (ζ(·, ·)), 28–31,

55–56, 59, 61, 64–66, 69,
101–106

I
infinite product, 2, 9–11, 87

Euler, see Euler product
Hadamard, 10–11, 35–36, 62, 66,

77, 83
Weierstrass, 10–11, 12–13
zeta-regularized, 15–19, 20, 21, 30,

62, 70, 78–80, 131, 133
intrinsic (function or formula), 11, 13,

15, 30, 38, 63
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J
Jonquière relation, 29, 61, 64

K
Keiper–Li coefficients (λn), 71, 83, 97,

100, 114
asymptotic behavior, see Riemann

Hypothesis, asymptotic
criterion

positivity, see Riemann Hypothesis,
Li’s criterion

Kronecker limit formulae, 107–108
Kronecker symbols, 102, 107

L
L-functions, 91, 93, 121

Dirichlet –, see Dirichlet L-functions
Lerch formula, 29–30
Lerch function, 29, 44
Li coefficients (λn), see Keiper–Li

coefficients
Li’s criterion, see Riemann Hypothesis,

Li’s criterion
logarithmic derivatives at 1

2 , see values

(log |ζ|)(n)(1
2 ), (log |L|)(n)(1

2 )

M
Mangoldt (von), see von Mangoldt
Mellin transforms, 2, 6–8, 12–13, 15,

20, 23, 28, 60, 63–65, 76, 95,
124, 131

Mellin’s article (1917), 45–46, 70,
139

meromorphic (continuation, structure),
see specific function name,
meromorphic structure

Minakshisundaram–Pleijel zeta func-
tions, see zeta functions,
spectral –, Minakshisundaram–
Pleijel

N
number fields, 105–108

quadratic –, 102, 107–108
numerical results, 25, 34, 36, 70, 77, 83,

123–127

O
order

of an eligible sequence, 12, 62, 77,
130

of an entire function, see entire
functions of finite order

P
parity bit (a) of a Dirichlet character,

see Dirichlet characters, parity
bit (a)

Parseval formula, 50, 53
Poisson summation formula, 2, 4–5, 27,

50, 53
primary (zeta- or L-)function, 3, 91–93,

97, 101–103, 106, 109
meromorphic structure, 92, 102, 106,

109
prime numbers ({p}), 24, 34, 46, 49–50,

102
principal part (of a function at a pole),

6–7, 13, 21
in a superzeta function, 76, 79–80,

82, 88, 98–100, 117
for simple poles, see residue values

principal-value (PV) integral, 60, 76
product representation, see infinite

product

R
residue values (in superzeta functions),

56, 65, 67, 76, 79–80, 82, 88,
96, 98–101, 131, 132

RH, see Riemann Hypothesis
Riemann Hypothesis

asymptotic criterion, 113–121
Generalized – (GRH), 121
Li’s criterion, 71, 113, 121

Riemann–von Mangoldt formula, 35,
39–40, 53, 67, 99, 121, 124

Riemann zeros, 1, 34–40, 41, 49, 62–63,
87, 113, 123, 139

zeta function over the –, see superzeta
function over the Riemann
zeros

Riemann zeta function (ζ(·)), 23–27,
33–40, 69, 103, 106, 107,
119–120, 132, 137–138

Hadamard product, 35, 62
in superzeta values, 70–71, 73, 85,

101, 110–111, 133–136
nontrivial zeros, see Riemann zeros
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trivial zeros, 23, 59, 62
ζ′/ζ, 24, 35, 40, 51–52, 69, 103, 138

bounds for –, 36–39, 40, 51, 61,
64

in superzeta values, 60–61, 63–66,
71, 73, 75–76, 85

S
saddle-point method, 115–117, 119–120
Selberg trace formula, 2, 52–53, 54, 57
Selberg zeta functions, 129, 131, 138

zeros of –, 19, 45, 129
zeta functions over zeros of –, see

superzeta functions (extended),
Selberg cases

shadow zeta functions (Z), see zeta
functions, over the trivial zeros

special values, 2, 9, 19–21
of superzeta functions, 36, 41–44,

56, 67–68, 72–73, 77, 84–85,
98, 109–111, 126, 131–134,
134–136

rational, 46, 65, 70, 80, 82, 96, 99
transcendental, 46, 65–67, 68–71,

80–83, 96–97, 99–100, 114
of zeta- or L-functions, 35, 69, 101,

103–105, 107
rational, 23, 28–29, 31, 131
transcendental, 27–31, 137–138

spectral zeta functions, see zeta
functions, spectral

spectrum, see eigenvalues
Stieltjes constants, 24, 25, 70

generalized, 105
Stieltjes cumulants, 24–25, 70–71, 73,

119
generalized, 93, 97

Dedekind-ζ cases, 107–108, 111
Dirichlet-L cases, 103–105, 110
Selberg cases, 130, 133–135

Stirling expansion or formula
for log Γ or ψ, 40, 62–63

approximate (top-order), 33, 37,
64, 115, 116, 118

complete (to all orders), 12,
30–31, 77, 94, 120

generalized, 63, 91, 99–100, 103, 106,
132

canonical, 17–19, 62–63, 78, 95,
100, 132, 133

complete (to all orders), 12,
14–15, 17, 19–21, 78, 94, 95

sum rules for superzeta values of 1st
kind, 68–69, 71, 97

superzeta function over the Riemann
zeros, 2, 41, 45–47, 54, 139

1st kind (Z ), 42, 54–56, 59–71,
81–82, 84, 87–89, 125–126

asymptotic form (s → −∞), 65,
125–126

meromorphic structure, 41, 45–46,
56, 64–65, 66–67

Tables, 71–73, 126

2nd kind (Z), 42–44, 56–57, 75–83,
123–124

meromorphic structure, 41, 46,
76, 78–80

Tables, 84–85, 127

3rd kind (Z), 44, 87–89

meromorphic structure, 41, 45–46,
87–88

at confluence point (t = 0), 43–44,
46, 69–70, 73, 76–77, 85, 87,
123–127

at the point (t = 1
2 )

1st kind (Z ), 42, 45–46, 56,
70–71, 73, 83, 126

2nd kind (Z), 43, 46, 57, 82–83,
85, 124, 127

special values, see special values, of
superzeta functions

superzeta functions (extended), 91–94,
129

1st kind (Z ), 93–98, 130–132

asymptotic form (s→ −∞), 96

meromorphic structure, 96, 131

Tables, 108–111, 134–136

2nd kind (Z), 93, 98–100, 132–134

meromorphic structure, 98–99,
132

Tables, 109, 136

3rd kind (Z), 93, 100–101

meromorphic structure, 100–101

at confluence point (t = 0), 97–98,
103, 107, 110–111, 130, 132,
134–135, 137–138

at the point (t = 1
2 )

1st kind (Z ), 97–98, 103, 107,
110–111, 135

2nd kind (Z), 100, 132–134, 136

Dedekind-ζ cases, 91, 106–108

Tables, 111

Dirichlet-L cases, 91, 103–105

Tables, 110



Index 163

Selberg cases, 91, 93, 129–134
Tables, 134–136

special values, see special values, of
superzeta functions

symbols, list of, xv–xvi

T
tables of superzeta values, see specific

function name, Tables
Theta(-type) functions, 1–2, 9, 19–21,

29, 130
theta-eligible sequences, 19–21, 29, 130,

131
trivial zeros

of the Riemann ζ-function, see
Riemann zeta function (ζ(·)),
trivial zeros

of zeta- or L-functions, see zeros of
zeta- or L-functions, trivial

zeta functions over –, see zeta
functions, over the trivial zeros
(Z)

V
values at integers, see special values
values (log |ζ|)(n)(1

2 ), (log |L|)(n)(1
2 ),

69, 97, 103, 107, 137–138
von Mangoldt function (Λ(n)), 24, 25,

49–50, 52, 56, 57, 65

W
Weierstrass product, see infinite

product, Weierstrass
Weyl’s law, 53

Z
zeros of entire functions, 10, 27
zeros of zeta- or L-functions

nontrivial –, 91, 92, 129–130
for the Riemann ζ-function, see

Riemann zeros
trivial –, 23, 28, 92, 94, 105, 129

zeta function, see under specific name
zeta functions, 1–2, 9–10, 12–14, 20

generalized –, 1–2, 4, 14–15, 19,
20–21

over the trivial zeros (Z)
meromorphic structure, 65, 95,

131
of the Riemann ζ-function, 59–60,

61–66, 69, 76
other cases, 94–96, 97–98, 101,

103, 106, 109, 131–132, 134
over zeros of zeta functions, see

superzeta function(s)
spectral –, 53, 57–58, 91, 93, 129–136

Minakshisundaram–Pleijel, 57,
136

zeta-regularization, see infinite product,
zeta-regularized
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