
J. Koronacki et al. (Eds.): Advances in Machine Learning II, SCI 263, pp. 485–513.
springerlink.com © Springer-Verlag Berlin Heidelberg 2010

Neural Network and Artificial Immune Systems
for Malware and Network Intrusion Detection

Vladimir Golovko, Sergei Bezobrazov, Pavel Kachurka, and Leanid Vaitsekhovich

Laboratory of Artificial Neural Networks, Brest State Technical University,
Moskovskaja str. 267, 224017 Brest, Belarus

Abstract. Neural network techniques and artificial immune systems (AIS) have
been successfully applied to many problems in the area of anomaly activity de-
tection and recognition. The existing solutions use mostly static approaches,
which are based on collection viruses or intrusion signatures. Therefore the ma-
jor problem of traditional techniques is detection and recognition of new viruses
or attacks. This chapter discusses the use of neural networks and artificial im-
mune systems for intrusion and virus detection. We studied the performance of
different intelligent techniques, namely integration of neural networks and AIS
for virus and intrusion detection as well as combination of various kinds of neu-
ral networks in modular neural system for intrusion detection. This approach
has good potential to recognize novel viruses and attacks.

1 Introduction

At present one of the forms of world space globalization is cyber space globalization,
because of increasing of a number of computers connected to the Internet. The rapid
expansion of network-based computer systems has changed the computing world in
the last years. As a result the number of attacks and criminals concerning computer
networks are increasing. Due to the increasing computer incidents because of cyber-
crime, construction effective protecting systems are important for computer systems
security. There are many different techniques to build computer security systems
[1,2,3]. The traditional approaches use as a rule static models, which are based mostly
on signature analysis [4]. It consists of collecting and analyzing of viruses or intrusion
signatures. The main problem of signature approach is inability to detect new viruses
and attacks. Besides, this approach demands time for signature database updating.
The methods of heuristic analysis [5], which were developed for disadvantages re-
moval of traditional approach for malware detection, are still a long way off perfec-
tion. The heuristic analyzers are frequently finding malicious code where it absent and
vice versa.

To overcome these limitations, the AIS and neural networks can be effectively
used to build computer security systems. In order to achieve maximal performance we
study different intelligent techniques, namely artificial neural networks and artificial
immune systems. In comparison with conventional approaches such technique has
ability to detect novel viruses and attacks in real time. Besides, this allows getting
more accurate results.

486 V. Golovko et al.

The rest of the chapter is organized as follows. Section 2 presents overview of arti-
ficial immune systems (AIS), as well as integration of AIS and neural networks for
malicious code detection. Section 3 tackles different neural network techniques for in-
trusion detection and recognition.

2 Integration of Artificial Immune Systems and Neural Network
Techniques for Malicious Code Detection

The actual researches in the information security field are directed to creation on such
new methods that will be capable to detect unknown malicious code. The biologi-
cally-inspired and ready-built on basic principals of Biological Immune Systems
(BIS) [1], Artificial Immune Systems method, thanks to distributed computational
power [2, 3], is allow to detect not only known but unknown malware. Combining of
two methods of artificial intelligence (Artificial Neural Networks method [6, 7] and
Artificial Immune Systems method) let us developed a new technique of detection of
malicious code. This technique allows to avoid the main weaknesses of signature ana-
lyzers and to detect unknown malware.

2.1 The Biological Immune System Overview

The biological immune system is unique protective mechanism which defends organ-
ism from invaders: harmful bacteria and viruses. The BIS capable to detect foreign
cells and destroy them, and based on synthesis of special proteins – antibodies, which
capable to bind with foreign material. Every day BIS face with a dozens invaders and
successfully struggle against them.

The biological immune system is based on capability of antibodies to distinguish be-
tween self (cells of own body) and nonself (antigens, foreign substance) [1]. For com-
plete and successful detection of wide variety of antigens the BIS must generate a large
variety of detectors (B-lymphocytes and T-lymphocytes). Lymphocytes are formed from
the bone marrow stem cells and initially incapable of antigens detect. In order to acquire
immunological ability they have to go through maturation process. T-lymphocytes are
mature in thymus and B- lymphocytes are mature in lymph nodes. During the maturation
process only fittest lymphocytes are survived. Mature lymphocytes have on the own sur-
face specific detectors which able to react on specific antigens. Lymphocytes circulate
through the body and perform the function of antigens detection [8,9].

When lymphocyte detects an antigen the process called clonal selection is occurred
[10]. The clonal selection process consists in proliferation (cycle of cell division)
those lymphocytes who detected a virus. As a result the large population of identical
detectors is formed. These generated lymphocytes are reacting on the same antigen
and allow to BIS timely eliminating manifestation of disease.

Another important process in the BIS is immune memory [9]. Immune memory
keeps information about previous infection and owing to this information defense
body against repeated infection. Immune memory consists of detectors which in
the past detected antigens. These detectors circulate in the body at long time and form
the immune memory. By repeated infection antigens can be detected quickly since the
BIS already have lymphocytes which react on this infection. Described processes
showed in Figure 1.

 Neural Network and Artificial Immune Systems 487

Fig. 1. Basic principles of the biological immune system: stage of lymphocytes evolution

2.2 The Artificial Immune Systems Overview

The AIS is founded on the same processes as BIS: detectors generation, detectors
maturation, detection process, detectors cloning and mutation, immune memory crea-
tion. Let’s view in detail each process (Fig. 2 shows processes as flow block).

Process of detectors creation in computer system represents a random generation of
immune detectors population. Each of them can be, for example, as binary string of
fixed size [11]. At this stage generated immune detectors have analogy with immature
lymphocytes.

Fig. 2. Block-diagram model of artificial immune system: AIS interprocess communication

Clonal Selection

Immune Memory

Lymphocytes creation

Maturations Process

Antigens Detection

Bone Marrow Stem Cells

Mature Lymphocytes

Self Cells

Antigen

Memory Cell

Detectors
Generation

Detectors
Selection

Unsuitable Detectors
Elimination

Circulating in the Computer
System

Detectors Elimination When Life
Time is up

Malicious Code
Detection

Detectors Cloning and
Mutation

Immune Memory
Creation

488 V. Golovko et al.

After generation detectors undergo a selection process. During the selection proc-
ess detectors are received training in self – nonself recognition. But not all of immune
detectors can get ability to correct pattern recognition. Even after training process
some of them detect self as nonself and vice versa. These detectors named unsuitable
detectors and should be eliminating. As a result of the selection process unsuitable de-
tectors are eliminated and survive only those which able to distinguish between self
and nonself. S. Forest at al. [12] proposed negative selection algorithm based on the
principles of self – nonself discrimination in the BIS. According to negative selection
algorithm immune detectors are compared with set of self pattern. If detector is simi-
lar to self pattern, it is reputed as negative and destroyed. Only those detectors survive
which are structurally different from self data. For matching between detectors and
pattern can be applied different rules: bit-by-bit comparison, r-contiguous matching
[13] and r-chunk matching [14]. Mature detectors structurally different from self pat-
tern therefore react only against nonself pattern.

Mature detectors circulate in computer systems. For maintenance of wide variety
of structurally different detectors, each immune detector has a lifecycle [1,3]. The
lifecycle is a time during immune detector can be found in the computer system.
When the life time ends the detector is destroyed but if the detector detected anomaly
(in our case it is malicious code) then lifecycle is prolong. Lifecycle mechanism al-
lows the AIS to unload from weak detectors and permanently provide a space for new
various immune detectors.

When malware enters into the computer system it often infects a large quantity of
files. For quick reacting and eliminating virus manifestation we need a great number
of similar detectors, which react on the same malicious code. For large quantity of
similar detectors generations in AIS a cloning process is exists. During cloning proc-
ess immune detector which found malicious code undergoes a cloning mechanism.
Cloning means a large quantity of similar detectors creation. This mechanism allows
the AIS infection elimination in a short space of time. Along with cloning a mutation
mechanism is used [15]. Mutation process means introduce small random changes in
detectors structure (for example, inverting of several bits in binary string) thereby as
much as possible similar structure to finding virus acquires.

When the malicious code is eliminated then most of cloning detectors die because
of lifecycle. However the fittest of them are kept as memory detectors. A set of such
detectors are formed an immune memory. The immune memory keeps information
about all malicious code which a computer system infects. The same as BIS the im-
mune memory allows the AIS to quickly react on repeated infection and to fight
against it.

2.3 Application of Neural Networks in Artificial Immune System to Malicious
Code Detection

A quality of malicious code detections depends on the structure of immune detectors.
We considered the immune detector as a binary string. This structure is comfortable,
as it corresponds with data presentation in computer systems, and allows implement
simple matching rules. However binary structure applies some restrictions. As it is
well known bit-by-bit comparison is one of the slowest operations and needs heavy
computational power. We propose the artificial neural networks (ANN) applying for

 Neural Network and Artificial Immune Systems 489

the immune detectors formation. This approach for the detectors generation should
remove weaknesses of the binary string structure and should increase a rate of the ma-
licious code detection.

The ANN for vector quantization was proposed by T. Kohonen in 1982 and named
as learning vector quantization (LVQ) [16]. The LVQ uses for classification and im-
age segmentation problems. The LVQ is a feedforward artificial neural network with
an input layer, a single hidden competitive Kohonen layer and an output layer (see
Fig.3).

The output layer has as many elements as there are classes. Processing elements of
the hidden (Kohonen) layer are grouped for each of these classes. Each class can be
represents as a number of cells of the input space of samples. The centre of each cell
corresponds to a codebook vector. One codebook vector represents one class only.
The main idea of vector quantization is to cover the input space of samples with
codebook vectors. A codebook vector can be seen as a hidden (Kohonen) neuron or a
weight vector of the weights between all input neurons and the regarded Kohonen
neuron respectively [17].

The Learning consists in modifying weights in accordance with adapting rules and,
therefore, changing the position of a code vector in the input space. Many methods
of training of the LVQ are exists [18]. We used the competitive training with one
winner.

Fig. 3. LVQ one hidden competitive layer of neurons fully connected with the input layer, and
the linear output layer consists of a number of neurons equal of a number of classes

Let’s examine the process of detectors generation based on the LVQ. First an ini-
tial population of detectors is created. Each detector represents one LVQ. Further we
will determine a set of self files consisting of different utilities of operating system,
various software files etc, and one or a few malicious code (or signature of malicious
code). Both self files and malicious virus will be used for LVQ learning. It is neces-
sary to be sure that files from the set of self’s are noninfected (without malicious
code). Presence of malicious code or its signature in a learning sample allows a ma-
ture detector to tell the difference between self and nonself. Of course the more there
are diverse files in the learning sample the more structurally different detectors are

. .

2

3

n

1

2

3

m

1

2 .
.
.

X Y

1

490 V. Golovko et al.

got. It is desirable to have all kind of malicious cod (worms, Trojans, file infectors
etc.) in the learning sample. However it is not compulsory condition. As stated above
there are differences between malicious software and noninfected files, which influ-
ence on the decision of a mature detector. By learning we denote to the LVQ where
data from noninfected files and where data from malicious code (learning by instruc-
tion). A set of mature LVQ form a population of detectors which circulate into the
computer system. In process of checking of a file the LVQ identifies unknown pattern
and determines its proximity to one or another sample vector. Depending on this the
LVQ takes a decision about the nature of files – self or malicious code.

General algorithm of neural immune detectors activity can be represents as next
iterations:

1. Neuronet immune detectors generations. Each immune detector represents one
neural network.

2. Detectors learning. The training set of self and nonself files is formed.
3. Unsuitable detectors eliminations.
4. Circulation of neuronet immune detectors in the computer system. On this stage

detectors during scanning different files perform the function of malicious code
detection.

5. Neuronet immune detectors eliminations by lifecycle.
6. Detection of malicious code.
7. Detectors cloning and mutation. On this iteration the AIS is formed a large quan-

tity of similar detectors which react on the same malicious code.
8. Immune memory creation. Detectors of immune memory keep information about

previous infections.

2.4 Description of Experimental Model of the AIS Security System

We used next structure of the LVQ for detectors formation – 128 neurons of the input
layer, 10 neurons of the hidden layer and 2 neurons of the output layer (such detector
is illustrated in Fig. 3, where ,128=n 10=m). A learning sample for one detector is
formed as follows:

• four noninfected files from self’s and one malicious code are selected randomly;
• from each selected file in fives fragments (binary string with length equal 128 bits)

are randomly chosen. Then these fragments step by step will be inputted to the
LVQ.

Competitive learning with one winner is used for the LVQ training. It is learning by
instruction that is we indicate during training to the neural network where data from
noninfected files is and where data from malicious code is. As a result of learning we
get 10 code vectors in the hidden layer and they correspond with two output classes.
The first class consists from 8 code vectors (noninfected files). The second class con-
sists from 2 code vectors (malicious code).

As a result we will have a set of structurally different mature detectors since ran-
dom process for files selecting is used for detectors learning. These detectors will be
used for file identifications and decision making – is it self file or malicious virus?
Experimental results in next section are described.

 Neural Network and Artificial Immune Systems 491

An immature detector compares any input pattern (independently of malicious
codе or noninfected file) to the first class (noninfected files) with probability 80% and
to the second class (malicious code) with probability 20% since we divide the input
space of samples in proportions 8 to 2 (see above). A mature detector (after the LVQ
learning) will correlate an input pattern from a noninfected file with the first class
with an expectancy of hitting more then 80%. Accordingly, the mature detector will
correlate an input pattern from malicious code with the second class with expectancy
of hitting more then 20%. The detector divides the under test file into pieces of 128
bytes apiece, examines them for malicious code in series and calculates total expec-
tancy of hitting in one or another class:

%100*N
XP = , (1)

where X is a number of pieces running in one of a class, N is a total number of pieces
of an under test file.

Let’s review an example:
The file diskcopy.com (utility of operation system): file size is 7168 byte – 56

pieces of 128 bytes. A detector correlated 49 pieces with the first class (self) that was

%5,87%10056
49 =⋅=SP expectancy of hitting. Accordingly an expectancy of hit-

ting in the second class (malicious code) was %5,12%10056
7 =⋅=MP . Detector’s

decision was noninfected file.
Experimental model of AIS for malicious code detection showed in Figure 4.

malware

Detectors generation
module

Detectors selection
module

Malware detection
module

Detectors cloning and
mutation module

Immune Memory
creation module

Detectors elimination
module

NID

mature
NID

correct
NID

NID

set of similar
NID

the best
NIDUnder test

file

“bad”
NID

Learning
sample

Testing
sample

Malware classification
module

Detectors learning
module

Fig. 4. Model of AIS for malicious code detection: NID – neuronet immune detector

492 V. Golovko et al.

2.5 Experimental Results

For our experiments we choose “wild” malwares, which were in the top 10 of the
most prevalence at January and February in many countries. The latest malware using
new algorithms and methods are chosen for test in order to observe the ability of neu-
ronet immune detectors to find unknown malware.

In the first experiment we train detectors using well-known, not new different
malware. They were owned to various classes: network worms (Email-Worm.Win32.
Eyeveg.m, Net-Worm.Win32.Bozori.a), Trojans (Trojan-Downloader.Win32.Adload.a),
classic viruses (Virus.Win32.Hidrag.d). Malware are classed according to Kaspersky
classification [19]. Table 1 shows the results of malware detection. In all tables we used
next parameters: SP is expectancy that the under test file is noninfected (self) and MP is

expectancy that the under test file is malicious code. If SP > 0.8 then detector takes un-

der test file as self. If SP < 0.8 then detector takes under test file as malware.

Table 1. The results of malware detection

Malware Detector 1

SP / MP

Detector 2

SP / MP

Detector 3

SP / MP

Detector 4

SP / MP

Backdoor.Agobot 0.79/0.21 0.72/0.28 0.72/0.28 0.85/0.15

E-Worm.Bagle 0.69/0.31 0.51/0.49 0.99/0.01 0.74/0.26

E-Worm.Brontok 0.74/0.26 0.60/0.40 0.98/0.02 0.78/0.22

E-Worm.LovGate 0.72/0.28 0.53/0.47 0.99/0.01 0.74/0.26

E-WormMydoom 0.74/0.26 0.66/0.34 0.81/0.19 0.83/0.17

E-Worm.NetSky 0.77/0.23 0.70/0.30 0.77/0.23 0.75/0.25

E-Worm.Nyxem 0.81/0.19 0.76/0.24 0.72/0.28 0.87/0.13

E-Worm.Rays 0.93/0.07 0.86/0.14 0.79/0.21 0.88/0.12

E-Worm.Scano 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

Net-Worm.Mytob 0.69/0.31 0.54/0.46 0.97/0.03 0.75/0.25

Trojan.KillWin 1.00/0.00 1.00/0.00 0.95/0.05 1.00/0.00

Trojan.Dialer 0.82/0.18 0.76/0.24 0.80/0.20 0.87/0.13

Trojan.VB 0.91/0.09 0.86/0.14 0.69/0.31 0.91/0.09

Trojan-D.Small 0.79/0.21 0.75/0.25 0.68/0.32 0.84/0.16

Trojan-D.Zlob 0.87/0.13 0.74/0.26 0.90/0.10 0.80/0.20

The detector 1 is trained on Email-Worm.Win32.Eyeveg.m and able to detect 53%

of all amount malware. The detector 2 is trained on Net-Worm.Win32.Bozori.a and
able to detect 73% of all amount malware. The detector 3 is trained on Trojan-
Downloader.Win32.Adload.a and able to detect % of all amount malware. The detec-
tor 4 is trained on Virus.Win32.Hidrag.d and able to detect 33% of all amount
malware. In the result four detectors cover almost whole space of malware with the
exception Email-Worm.Win32.Scano.gen and Trojan.BAT.KillWin.c.

 Neural Network and Artificial Immune Systems 493

In the second experiment we had subset all collection of the newest malware in to
their classes, then we chosen a typical sample of every class and trained detectors on
selected malware. The goal of this experiment is to research how different neuronet
immune detectors react to unknown malware. Table 2 shows the results of the second
experiment.

The detector 1 is trained on Email-Worm.Win32.NetSky.c, the detector 2 is trained on
Email-Worm.Win32.Nyxem.e, the detector 3 is trained on Net-Worm.Win32.Mytob.w
and the detector 4 is trained on Trojan-Downloader.Win32.Zlob.jd. As follows from re-
sults the first, second and third detectors find email worms and net worms very well as
representatives of this class were included in learning sample for these detectors. Detec-
tion of relating to another class malware (in our case they are Trojans) is already not so
well. The picture of malware detection by the firth detector is directly opposite. The
detector 4 finds Trojans very well and net worms not so well. As a result all four detec-
tors cover the whole space of malware (except Email-Worm.Win32.Scano.gen and
Trojan.BAT.KillWin.c).

Table 2. The results of malware detection

Malware Detector 1

SP / MP

Detector 2

SP / MP

Detector 3

SP / MP

Detector 4

SP / MP

Backdoor.Agobot 0.72/0.28 0.68/0.32 0.79/0.21 0.87/0.13

E-Worm.Bagle 0.69/0.31 0.73/0.27 0.61/0.39 0.60/0.40

E-Worm.Brontok 0.73/0.27 0.77/0.23 0.68/0.32 0.66/0.34

E-Worm.LovGate 0.70/0.30 0.76/0.24 0.63/0.37 0.60/0.40

E-WormMydoom 0.70/0.30 0.64/0.36 0.74/0.26 0.82/0.18

E-Worm.NetSky 0.71/0.29 0.66/0.34 0.77/0.23 0.84/0.16

E-Worm.Nyxem 0.75/0.25 0.70/0.30 0.82/0.18 0.89/0.11

E-Worm.Rays 0.90/0.10 0.93/0.07 0.91/0.09 0.79/0.21

E-Worm.Scano 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

Net-Worm.Mytob 0.68/0.32 0.71/0.29 0.63/0.37 0.63/0.37

Trojan.KillWin 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

Trojan.Dialer 0.77/0.23 0.74/0.26 0.81/0.19 0.73/0.27

Trojan.VB 0.82/0.18 0.79/0.21 0.91/0.09 0.75/0.25

Trojan-D.Small 0.75/0.25 0.72/0.28 0.79/0.21 0.70/0.30

Trojan-D.Zlob 0.87/0.13 0.93/0.07 0.85/0.15 0.71/0.29

In the third experiment we compare malware detection results by heuristic analyzer

of ESET NOD32 antivirus software [20] and by our system. The results of experiment
are displayed in the table 3.

Both Trojan.BAT.KillWin.c and Email-Worm.Win32.Scano.gen stay undetectable
for NOD32 and AIS (we consider reason of this above). In addition NOD32 misses
two malware (Net-Worm.Win32.Mytob.q and Trojan.Win32.VB.at), while AIS detects
them.

494 V. Golovko et al.

Table 3. The comparative analysis of malware detection results

Malware NOD32 AIS

Backdoor.Win32.Agobot.gen Virus Virus

Email-Worm.Win32.Bagle.gen Virus Virus

Email-Worm.Win32.Brontok.q Virus Virus

Email-Worm.Win32.LovGate.w Virus Virus

Email-Worm.Win32.Mydoom.l Virus Virus

Email-Worm.Win32.NetSky.aa Virus Virus

Email-Worm.Win32.Nyxem.e Virus Virus

Email-Worm.Win32.Rays Virus Virus

Email-Worm.Win32.Scano.gen Ok Ok

Net-Worm.Win32.Mytob.q Ok Virus

Trojan.BAT.KillWin.c Ok Ok

Trojan.Win32.Dialer.z Ok Virus

Trojan.Win32.VB.at Ok Virus

Trojan-Downloader.Win32.Small.to Virus Virus

Trojan-Downloader.Win32.Zlob.jd Virus Virus

Thus, as was shown the AIS for malicious code detection is able to discern be-

tween noninfected files of operation system and malicious code. The feature of the
AIS consists in capability for unknown malicious code detection. Application of the
ANN for detectors generation allows us to create the powerful detectors. Undesirable
detectors are destroyed during the selection process which allows avoiding false de-
tection appearance. Uniqueness of detectors consists in capability to detect several
malicious viruses. That is detector can detect viruses analogous with that malicious
code on which training are realized. In that way we significant increased probability
of unknown malicious code detection. As experiments show it is necessary to large
population of detectors creation. Presence of random probability by detectors genera-
tion enables to create different detectors. However it is significant that detectors abil-
ity depends on files on which they are trained. It is desirable for training process a
various noninfected files and all types of malicious code to have. If your computer
system with outdated antivirus bases can be unprotected in the face of new malicious
code attack then the AIS gives you a high probability detect it. Applying of the AIS
for malicious code detection will expand the potentialities of existing antivirus soft-
ware and will increase level of computer systems security.

3 Neural Network Techniques for Intrusion Detection

The goal of Intrusion Detection Systems (IDS) is to protect computer networks from
attacks. An IDS has been widely studied in recent years. There exist two main intru-
sion detection methods: misuse detection and anomaly detection. Misuse detection
is based on the known signatures of intrusions or vulnerabilities. The main disadvan-
tage of this approach is that it cannot detect novel or unknown attacks that were not

 Neural Network and Artificial Immune Systems 495

previously defined. There are examples of misuse detection models: IDIOT [22],
STAT [23] and Snort [24]. Anomaly detection defines normal behavior and assumes
that an intrusion is any unacceptable deviation from normal behavior. The main ad-
vantage of anomaly detection model is the ability to detect unknown attacks. There
are examples of anomaly detection models: IDES [25] and EMERALD [26].

Different defense approaches exist in order to protect the computer networks,
namely, neural networks, data mining, statistical approach.

The principal component classifier is examined in [27, 28]. The data mining tech-
niques were presented in [29, 30]. The other authors proposed a geometric framework
for unsupervised anomaly detection and three algorithms: cluster, k-Nearest Neighbor
(k-NN) and Support Vector Machine (SVM) [31, 32]. The different neural networks
can be used for intrusion detection [33, 34]: Self Organizing Maps (SOM), MLP, Ra-
dial Basis Function (RBF) network.

The major problem of existing models is recognition of new attacks, low accuracy,
detection time and system adaptability. The current anomaly detection systems are not
adequate for real-time effective intrusion prevention [32]. Therefore processing a large
amount of audit data in real time is very important for practical implementation IDS.

We use the KDD-99 data set [35] for training and testing of our approach. The data
set contains approximately 5 000 000 connection records. Each record in the data set
is a network connection pattern, which is defined as a sequence of TCP packets start-
ing and ending at some well defined times, between which data flows to and from a
source IP address to a target IP address under some well defined protocol.

Every record is described by 41 features and labeled either as an attack or non-
attack. Every connection record consists of about 100 bytes. Among these features, 34
are numeric and 7 are symbolic. For instance, the first one is the duration of connec-
tion time, the second is protocol type, and the third is service name, and so on.

The goal of IDS is to detect and recognize attacks. There are 22 types of attacks in
KDD-99 data set. All the attacks fall into four main classes: DoS – denial of service
attack. This attack leads to overloading or crashing of networks; U2R – unauthorized
access to local super user privileges; R2L – unauthorized access from remote user;
Probe – scanning and probing for getting confidential data.

Every class consists of different attack types (Smurf, Neptune, Buffer Overflow, etc.)

3.1 Intrusion Detection Based on Recirculation Neural Networks

In the following sections, the recirculation neural network (RNN) based detectors to
construct intrusion detection systems are discussed. The fusion classifier built up of
these detectors is introduced to perform detection and recognition of network attacks.

3.1.1 RNN Based Detectors

The Anomaly Detector
Recirculation neural networks (Figure 5) differ from others ANNs that on the input
information in the same kind is reconstructed on an output. They are applied to com-
pression and restoration of the information (direct and return distribution of the in-
formation in the networks «with a narrow throat») [36], for definition of outliers on a
background of the general file of entrance data [37].

496 V. Golovko et al.

Fig. 5. M layers RNN structure Ni – quantity of neural elements in i-th layer, NM=N1 – quanti-
ties of neural elements in entrance and target layers are equal

Nonlinear RNNs have shown good results as the detector of anomalies [38, 39]:
training RNN is made on normal connections so that input vectors on an output were
reconstructed in themselves, thus the connection is more similar on normal, the less
reconstruction error is:

,)(2
_

∑ −=
j

k
j

k
j

k XXE (2)

where k
jX – j-th element of k-th input vector,

k
jX – j-th element k-th output vector.

Whether TE k > , where T– certain threshold for given RNN connection admits
anomaly, or attack, differently – normal connection. Thus there is a problem of a
threshold T value determination, providing the most qualitative detection of abnormal
connections. It is possible to get threshold value minimizing the sum of false positive
(FP) and false negative (FN) errors, basing on cost characteristics of the given errors –
FN error seems to be more expensive, than FP error, and its cost should be higher [39].

Private Classifiers
The described technique of definition of an input vector accessory to one of two
classes – "normal" or "attacks", that is "not-normal" – it is possible to use in opposite
way. If at training the detector of anomalies we used normal vectors which were re-
stored in itself, and the conclusion about their accessory to a class "normal" was
made, training the detector on vectors-attacks which should be restored in itself, it is
possible to do a conclusion about their accessory to a class of "attack". Thus, if during
functioning of this detector the reconstruction error (3) exceeds the certain threshold,
given connection it is possible to carry to a class "not-attacks", that is normal connec-
tions. As training is conducted on vectors-attacks the given approach realizes technol-
ogy of misuse detection, and its use together with previous technique is righteous.

Thus, one RNN can be applied to definition of an accessory of input vector to one

of two classes – to on what it was trained (class A), or to the second (class A), to
which correspond outliers:

⎪⎩

⎪
⎨
⎧

>∈

≤∈

.,

,,

TEifAX

TEifAX

kk

kk

 (3)

 Neural Network and Artificial Immune Systems 497

Worth to note that it is possible to train RNN in the special way [39] on connections
of both classes so that to raise quality of detection on conditions (4).

As already it was mentioned above, database KDD includes normal connections
and also attacks of four classes which considerably differ from each other. Therefore
it is advisable to train detectors for each of five classes separately, not uniting all
classes of attacks in a single whole.

Here again there is a problem of a choice of a threshold T for each concrete detec-
tor. If for the anomaly detector it was possible to speak at once, that cost of FN error
is higher, than cost of FP error, in case of the detector for a class of attacks R2L it is
hard to tell what will be worse – FP error (that is to name “R2L” connection to this
class not concerning – attack of other class or normal connection) or FN detection of
the given attack (on the contrary).

Many researchers [40] use a cost matrix for definition of cost of errors F (Table 4).
Average values of FP and FN errors (Table 5) for each class can be calculated as
follows:

,
1

,
1

,,

−
=

−
=

∑∑
≠≠

N

F

F
N

F

F
jij

ij

FN
i

ijj
ji

FP
i (4)

where N – quantity of classes (N=5).

Table 4. The cost matrix F of incorrect classification of attacks and average costs of errors of
detectors of each class

Cost of false prediction Av. cost
Real class

normal dos probe r2l u2r
FP

iF
FN

iF

1 normal 0 2 1 2 2 2,5 1,75

2 dos 2 0 1 2 2 2 1,75

3 probe 1 2 0 2 2 1,5 1,75

4 r2l 4 2 2 0 2 2 2,5

5 u2r 3 2 2 2 0 2 2,25

On the basis of the given costs it is possible to choose value of a threshold which

minimizes a total average error on training or validation data base.

Experimental Results
For an estimation of efficiency of the offered approach a number of experiments is
lead. Private detectors for each class are trained, and all over again the training set
got out of all base KDD, then from connections on concrete services – HTTP,
FTP_DATA, TELNET. Nonlinear RNNs were used with one hidden layer with func-
tion of activation a hyperbolic tangent and logical sigmoid function of activation in a
target layer. Quantity of neural elements in input and target layers according to quan-
tity of parameters of input data – 41, in the hidden layer – 50. The training dataset con-
tained 350 vectors of normalized values for each class. The RNNs were trained with
layer-by-layer learning [36].

498 V. Golovko et al.

After each detector was trained the validation on training samples was conducted
with the purpose of a finding of value of threshold T at which average cost of an error
is minimal. In the further the testing of trained detectors was made on test samples
with threshold values received before (Table 5). 10% of KDD database was used for
testing purposes.

Table 5. Results of detectors testing

Service Threshold FP, % FN, % Av. cost Service Threshold FP, % FN, % Av. cost

ALL HTTP

normal 0,00070 12,56 6,68 0,1844 normal 0,00123 6,8 2,72 0,0841

dos 0,00214 4,33 1,09 0,0542 dos 0,00340 0 0 0

probe 0,00120 7,79 14,21 0,1675 probe 0,00132 0 0 0

r2l 0,00116 2,87 5,38 0,0947 r2l 0,00114 5,17 0,25 0,0463

u2r 0,00112 7,07 5,54 0,1323 u2r 0,00126 0 0,07 0,0009

HTTP TELNET

normal 0,00620 2,4 0,17 0,0214 normal 0,00036 44,4 1,31 0,2394

dos 0,00290 1,5 0 0,0098 dos 0,00650 0 0 0

probe 0,00114 0 0 0 probe 0,00162 0 0 0

r2l 0,00110 0 0 0 r2l 0,00136 3,33 0 0,0294

 u2r 0,00076 5,91 2 0,0907

3.1.2 Fusion of Private Classifiers

Joint Functioning
As it was told above the best classification results can be achieved using several inde-
pendent classifiers of the identical nature, because construction of the general estima-
tion from private can be made by greater number of methods. We shall unite the
private detectors trained in the previous section in one general (Figure 6).

Fig. 6. Fusion of independent private classifiers in one general

Class NORMAL detector

Class DOS detector

Class PROBE detector

Class U2R detector

Class R2L detector

DCS Traffic
preprocessing

Network
traffic

Result

 Neural Network and Artificial Immune Systems 499

The basic problem in construction of such a classifier becomes definition of a cu-
mulative estimation proceeding from estimations of private detectors. In works of
various researchers (for example [41]) the set of methods, such as a finding of average
value for each class on the basis of indications of all classifiers, the sum of votes for
each class, methods of an estimation «a priori» and «a posteriori» is considered.
These methods mean that each classifier states a private estimation concerning an op-
portunity of an accessory of input image to at once several classes, and these classes
are identical to all classifiers. However in our case classes, about an accessory to
which each classifier judges, first, are various, secondly, are crossed. Therefore all the
methods listed above are not applicable.

Dynamic Classifier Selection
The general classifier consists from N=5 private detectors, each of which has a

threshold iT . Values of thresholds got out proceeding from minimization of average

cost of errors. To make estimation values comparable it is enough to scale recon-
struction error on a threshold. Then (4) will be:

⎪⎩

⎪
⎨
⎧

>∈

≤∈

,1,

,1,

k
ii

k

k
ii

k

ifAX

ifAX

δ

δ
 (5)

where
i

k
ik

i T

E
=δ - a relative reconstruction error. Thus, than less k

iδ , the probability

of accessory of an input image kX to a class iA is higher. Therefore it is possible to

allocate the method of determination of a cumulative estimation – by the minimal
relative reconstruction error:

⎪⎩

⎪
⎨
⎧

=

∈

.min

,
k
i

i

k
m

m
k AX

δδ
 (6)

As the purpose of improvement of efficiency of classification is the minimization of
erroneous classification expressed in minimization of average cost of classification, in
construction of a cumulative estimation it is possible to act the same as at the choice

of a threshold in private detectors – to consider cost of erroneous classification. If k
iδ

- a characteristic of probability of error of classification on i-th detector the estimation
of possible average cost of error on each of detectors will be equal:

.
1

,

−
=Ω
∑

≠

N

F
ijj

ji
k
i

k
i

δ
 (7)

The estimation (8) shows, what ability of loss in cost if we shall name a vector belong-
ing to j-th class by a vector of i-th class, i. e. i-th classifier instead of j-th will be chosen.

500 V. Golovko et al.

On the basis of the given estimation we shall allocate the second method of a cumula-
tive estimation determination – on the minimal possible cost of false classification:

⎪⎩

⎪
⎨
⎧

Ω=Ω

∈

.min

,
k
i

i

k
m

m
k AX

 (8)

Besides it is possible to consider mutual influence of possible errors – to add up an es-

timation k
iΩ and an estimation of a prize in cost if i-th classifier instead of wrong j-th

will be chosen:

.
1

)(
,

−

−
−=Ψ
∑

≠

N

F
ijj

ij
k
i

k
j

k
i

δδ
 (9)

Then on the basis of estimations (8) and (10) it is possible to allocate the third rule of
winner detector selection – on the minimal possible mutual cost of false classification:

⎪⎩

⎪
⎨
⎧

Ψ+Ω=Ψ+Ω

∈

).(min

,
k

i
k
i

i

k
m

k
m

m
k AX

 (10)

Experimental Results
Efficiency of the general classifier functioning we shall check up experimentally us-
ing the private detectors trained in section 3.1.1. Results are presented in Tables 6-8.

Table 6. Results of attack detection and recognition by fusion of classifiers with minimal rela-
tive reconstruction error DCS

Recognized, %
Service FP, % FN, % MC, %

dos probe r2l u2r

ALL 10,80 2,34 3,76 98,17 96,55 91,88 100

HTTP 0 0,08 0,25 99,75 100 100 –

FTP_DATA 0,66 1,09 1,45 100 100 96,66 100

Table 7. Results of attack detection and recognition by fusion of classifiers with the minimal
possible cost of false classification DCS

Recognized, %
Service FP, % FN, % MC, %

dos probe r2l u2r

ALL 30,80 0,9 30,80 97,8 99,3 92,5 100

HTTP 0 0,08 0 99,8 100 0 –

FTP_DATA 0,70 1,06 0,70 100 100 96,7 100

 Neural Network and Artificial Immune Systems 501

Table 8. Results of attack detection and recognition by fusion of classifiers with the minimal
possible mutual cost of false classification DCS

Recognized, %
Service FP, % FN, % MC, %

dos probe r2l u2r

ALL 18,8 0,7 18,8 98,3 98,0 93,1 98,2

HTTP 0 0,08 0 99,8 100 100 –

FTP_DATA 27,3 0,4 27,3 100 77,6 98,7 100

Apparently from results, the unequivocal answer to a question – which method is

better – is not present. The method of a choice of a final class with use of mutual cost
can minimize a error, but with substantial growth of quantity of false detection, meth-
ods with minimal relative reconstruction error and possible cost give basically compa-
rable results, on some service one is better, on some – another.

3.2 Modular Neural Network Detectors

In the following sections, several modular neural network detectors to construct Intru-
sion Detection Systems (IDS) are discussed. They are based on the integration of dif-
ferent artificial neural networks each of which performs complex classification task.
Each neural network is intended for carrying out a specific function in the system.
The proposed approaches are results of evolution from a single neural network detec-
tors to multi-agent systems [42, 43, 44].

3.2.1 Basic Element of Intrusion Detection System
Let’s examine the basic neural element to construct Intrusion Detection Systems
(Fig.7). As input data, the 41 features from KDD-99 dataset will be used, which con-
tain the TCP-connection information. The main goal of IDS is to detect and recognize
the type of attack. Therefore, 5-dimensional vectors will be used for output data, be-
cause the number of attack classes plus normal connection is five. We propose to use
the integration of PCA (principal component analysis neural network) and MLP (mul-
tilayer perceptron) as for basic element of IDS. We will name it the first variant of
IDS.

Fig. 7. The first variant of IDS (Model 1)

The PCA network, which is also called a recirculation network (RNN), transforms
41-dimensional input vectors into 12-dimensional output vectors. The MLP processes
those given compressed data to recognize type of attacks or normal transactions.

In this section we present two neural networks based on principal component
analyses techniques, namely linear and nonlinear RNN networks.

1
2

41
…

MLP

1
2

5
…

1
2

12
…

RNN

502 V. Golovko et al.

Fig. 8. RNN architecture

Let’s consider an auto-encoder, which is also called a recirculation neural network
(see Fig. 8). It is represented by MLP, which performs the linear or nonlinear com-
pression of the dataset through a bottleneck in the hidden layer. As shown in the fig-
ure, the nodes are partitioned into three layers. The bottleneck layer performs the
compression of the input dataset. The output of the j-th hidden unit is given by

),(jj SFy = (11)

i
i

ijj xwS ∑
=

⋅=
41

1

, (12)

where F is activation function; Sj is weighted sum of the output from j-th neuron; wij
is the weight from the i-th input unit to the j-th hidden unit; xi is the input to the i-th
unit.

The output from the i-th unit is given by

),(ii SFx = (13)

j
i

jii ywS ∑
=

⋅=
12

1

' . (14)

We use two algorithms for RNN training. One is the linear Oja rule and the other is
the backpropagation algorithm for nonlinear RNN.

The weights of the linear RNN are updated iteratively in accordance with the Oja
rule [45]:

)()(')1(' iijjiji xxytwtw −⋅⋅+=+ α ,

(15)

jiij ww '= .

Such a RNN is known to perform a linear dimensionality reduction. In this procedure,
the input space is rotated in such a way that the output values are as uncorrelated as
possible and the energy or variances of the data is mainly concentrated in a few first
principal components.

1

2
.
.
.
41

1

2

12

.

.

.

1

2

41

.

.

.

ijw jiw'1x

2x

41x

1x

2x

41x

iX jY iX

 Neural Network and Artificial Immune Systems 503

As already mentioned, the backpropagation approach is used for training nonlinear
RNN. The weights are updated iteratively in accordance with the following rule:

,)(')()1(ijjijij xSFtwtw ⋅⋅⋅−=+ γα (16)

))((')(')1(' iiijjiji xxSFytwtw −⋅⋅−=+ α (17)

where jγ is error of j-th neuron:

jii

n

i
iij wSFxx ')(')(

1

⋅⋅−=∑
=

γ . (18)

The weights data in the hidden layer must be re-orthonormalized by using the Gram-
Schmidt procedure [44].

Let’s consider the mapping of input space data for the normal state and Neptune
type of attack on the plane of the two first principal components. As we can see in
Fig. 9(a), the data which belong to one type of attack can be located in different areas.
The visualization of such data obtained by using only linear RNN will not be satisfac-
tory because of complex relationship between the features. One of the ways to solve
this problem is to use the nonlinear RNN network.

As we can see in Fig. 9(b), the nonlinear RNN performs better in visualizing data-
set in comparison with a linear RNN.

a) linear RNN b) nonlinear RNN

Fig. 9. Data processed with: a – linear RNN, b – nonlinear RNN

There is a problem in Principal Components Analysis (PCA). We do not know the
number of principal components.

504 V. Golovko et al.

Table 9. Recognition Rates for Some Set of Samples Depending on Number of Principal
Components

Number of
principal
components

2 4 5 7 10 12 15 20 41

Recognition
rates

39,24% 47,15% 71,84% 78,16% 95,25% 95,70% 96,84% 96,52% 96,84%

We have tried several neural network classifiers with different number of principal

components, and analyzed the results of recognition by choosing the number of prin-
cipal components which gave the best performance in efficiency in each of those
classification model.

Our experiments (see Table 9) show that the optimal number of principal compo-
nents lies near 12.

As already mentioned, the MLP is intended to classify attacks on the basis of com-
ponents, which are obtained by using RNN. The number of output units depends on
number of attack classes. The backpropagation algorithm is used for training MLP.
After training of neural networks they are combined together for an intrusion detec-
tion system.

3.2.2 Generation of Different Intrusion Detection Structures
Using the results presented in the section 3.2.1, we can suggest several neural network
classification models for development of intrusion detection systems.

Fig. 10. The second variant of IDS (Model 2)

The second variant of IDS structure is shown in Fig. 10. It consists of four MLP
networks. As we can see, every MLP network is intended to recognize the class of at-
tack, that is, DoS, U2R, R2L or Probe. The output data from 4 multilayer perceptrons
enter the Arbiter, which accepts the final decision according to the class of attack. A
one-layer perceptron can be used as the Arbiter. The training of the Arbiter is per-
formed after leaning of RNN and MLP neural networks. This approach enables to
make a hierarchical classification of attacks. In this case, the Arbiter can distinguish
one of the 5 attack classes by the corresponding MLP.

MLP
(DoS)

1
2

41
…

MLP
(U2R)

MLP
(R2L)

MLP
(Probe)

RNN A

1
2

5
…

 Neural Network and Artificial Immune Systems 505

Complex computational problems can be solved by dividing them into a number of
small and simple tasks. Then the results of each task are integrated for a general conclu-
sion. An appropriate simplicity is achieved by distributing those training tasks to several
experts. The combination of such experts is known as Committee Machine. This inte-
grated knowledge has priority over the opinion taken separately from each expert. We
have prepared two modular neural networks for the purpose of intrusion detection.

The third variant of IDS is based on this idea, and is shown in Fig. 11. Expert is
represented by a single classification system. We use basic intrusion detection system
as an expert (see Fig. 7). Training data sets for each expert are not the same with each
other. They are self-organizing during the training process as a result of classification
performed by the previous experts. The rule that was chosen for this purpose is Boost-
ing by filtering algorithm [46]. After training, the neural networks have an ability to
detect intrusions. In testing mode, every expert is intended for processing the original
41-demensional vectors. The Arbiter performs vote functions and accepts the final
joint resolution of three experts. Arbiter is represented by the two-layer perceptron.

1. Train a first expert network using some training set;
2. A training set for a second expert is obtained in the following manner:

– Toss a fair coin to select a 50% from NEW training set and add this data to the
training set for the second expert network;

– Train the second expert;
3. A third expert is obtained in the following way:

– pass NEW data through the first two expert networks. If the two experts dis-
agree, then add this data to the training set for the third expert:

– Train the third expert network.
4. Vote to select output.

Fig. 11. The third variant of IDS, based on boosting by filtering algorithm (Model 3)

EXP 1

A

1
2

5
…

EXP 2

EXP 3

Y1(5)

Y2(5)

Y3(5)

Training set
exp 1-2

Training set
exp 2-3

Source training
set X(41)

EXP 1

A

1
2

5
… EXP 2

EXP 3

Y1(5)

Y2(5)

Y3(5)

Source testing
set X(41)

a) training phase

b) testing phase

506 V. Golovko et al.

Fig. 12. The fourth variant of IDS, based on AdaBoost algorithm (Model 4)

In the case of AdaBoost algorithm [47] (Fig. 12), Summator performs the functions
of the Arbiter. This analog of the Arbiter generates the result of the voting by summa-
rizing private decisions.

3.2.3 Experimental Results
To assess the effectiveness of proposed intrusion detection approaches, a series of ex-
periments were performed. The KDD99 cup network data set was used for training
and testing different neural network models, because it is one of only a few publicly
available data set of intrusion detection that attracts the researchers’ attention due to
its well-defined nature.

So we used 10% data selected from KDD dataset (almost 500000 records) to gen-
erate a subset for training and testing afterwards. To be more specific, we used 6186
samples for training neural networks, and used all records for testing the system (see
Table 10).

Table 10. Training and Testing Samples

 DoS U2R R2L Probe Normal
Total
count

training samples 3571 37 278 800 1500 6186

testing samples 391458 52 1126 4107 97277 494020

The same data sets were applied for model 1 and model 2 as well, so that we can

compare the performance of those proposed models here. The approaches proposed
are designed to detect 5 classes of attacks from this dataset which includes DoS, U2R,
R2L, Probe and Normal.

To evaluate our system, we used three major indicators, that is, the detection rate and
recognition rate for each attack class and false positive rate. The detection rate (true

X(41)

EXP 1

1
2

5
…

EXP 2

EXP T

Y1(5)

Y2(5)

YT(5)

+

…

 Neural Network and Artificial Immune Systems 507

attack alarms) is defined as the number of intrusion instances detected by the system di-
vided by the total number of intrusion instances in the test set. The recognition rate is
defined in a similar manner. The false positive rate (false attack alarms) represents the
total number of normal instances that were classified as intrusions divided by the total
number of normal instances.

Let’s examine the recognition of attacks using the model 1. This model is quite
simple. Table 11 shows statistics of recognition depending on attack class.

Table 11. Attack Classification with Model 1

class count detected recognized

DoS 391458 391441 (99.99%) 370741 (94.71%)

U2R 52 48 (92.31%) 42 (80.77%)

R2L 1126 1113 (98.85%) 658 (58.44%)

Probe 4107 4094 (99.68%) 4081 (99.37%)

Normal 97277 --- 50831 (52.25%)

The above results show that the best detection rate and recognition rates were

achieved for attacks by DoS and Probe connection. U2R and R2L attack instances
were detected a bit worse (80.77% and 58.44%, respectively). Besides, the bottom
row in Table 11 shows that some normal instances were (incorrectly) classified as
intrusions.

The number of false positives emerged from the first model is considerable. This
can be corrected by the second model described above. As shown in table 12, the sec-
ond model performed quite well in terms of false positives. This is due to the four
single multilayer perceptrons corresponding to each of the four attack classes.

Table 12. Attack Classification with Model 2

class count detected recognized

DoS 391458 391063 (99.90%) 370544 (94.66%)

U2R 52 49 (94.23%) 37 (71.15%)

R2L 1126 1088 (96.63%) 1075 (95.47%)

Probe 4107 3749 (91.28%) 3735 (90.94%)

Normal 97277 --- 83879 (86.22%)

As mentioned above, each expert in Model 3 and Model 4 is represented by a sin-

gle classification system. We use model 1 as an expert in the experiments here as
shown in Table 13 and 14. But every subsequent expert influences the outputs of
other performing aggregated opinions of the several neural networks.

508 V. Golovko et al.

Table 13. Attack Classification with Model 3

class count detected recognized

DoS 391458 391443 (99.99%) 370663 (94.69%)

U2R 52 50 (96.15%) 42 (80.76%)

R2L 1126 1102 (97.87%) 1086 (96.45%)

Probe 4107 3954 (96.27%) 3939 (95.91%)

Normal 97277 --- 84728 (87.09%)

Table 14. Attack Classification with Model 4

class count detected recognized

DoS 391458 389917 (99.61%) 369088 (94.29%)

U2R 52 51 (98.08%) 44 (84.62%)

R2L 1126 1119 (99.37%) 636 (56.48%)

Probe 4107 3908 (95.15%) 3668 (89.31%)

Normal 97277 --- 77212 (79.37%)

The total results of the detection rates and false positive rates related with each

model are shown in Table 15.

Table 15. Total Results for each Model

model
True attack
alarms

False attack
alarms

Recognized cor-
rectly

Total recog-
nized %

Model 1 396696

(99.98%)

46446

(47.75%)

375522

(94,65%)
86.30%

Model 2 395949

(99.80%)

13398

(13.77%)

375391

(94.61%)
92.97%

Model 3 396549

(99.95%)

12549

(12.90%)

375730

(94.70%)
93.21%

Model 4 394995

(99.56%)

20065

(20.62%)

373436

(94.13%)
91.22%

In general, model 3 is shown to achieve the lowest false positive rate and the high-

est accuracy (93.21%). In fact, it is more accurate than the model 2 (92.97%) and the
model 4 (91.22%). So, the three last models can be effectively used for the classifica-
tion of huge input data set with a complicated structure.

3.2.4 Multiagent Neural Networks
Multiagent neural networks use several detectors that specialize different fields of
knowledge.

 Neural Network and Artificial Immune Systems 509

In our work artificial immune system has been exploited for a development of mul-
tiagent IDS. Several important questions that strongly influence the efficiency of the
model arise in the course of designing multiagent structures: obtaining of the general-
ized decision on the basis of the set of detector opinions, selection of detectors, clon-
ing and mutation, destruction of bad and/or irrelevant detectors.

First of all, it is necessary to define what we will use as a detector to classify at-
tacks. As shown in Fig. 13, we offer the model slightly modified the model proposed
in the previous sections. See section 3.2.1 for more in detail.

Fig. 13. Modified detector for immune system construction

Each detector is represented by artificial neural network consisted of recirculation
neural network and multilayer perceptron, which functions were already discussed
above. Such a detector specializes certain type of attack. There are two output values
“yes” (when the entrance pattern relates to the given type of attack) and ”no” (when
the entrance pattern is not attack of the considered type).

The detectors, which represent the same type of attack, are combined in groups
from 3 to 10. Generally, all the detectors in the group give the diverse conclusions
which is the results of casual processes during the training. Theoretically, the number
of detectors in the system is not limited and their number can be easily varied, but in
real world problems with computational resources such as operative memory, speed
etc…, arise.

Recognition process of an entrance pattern consists of the following sequence of
steps:

1. Input pattern is transmitted to the multiagent system.
2. Each detector gives a conclusion about entrance activity.
3. So-called factor of reliability on each group of the detectors is formed. This factor

reflects percent of voices in the group, given for the type of attack the group is
specialized in.

4. The analysis of factors of reliability, obtained from each group, is carried out. A
decision of the group with the maximum value of the factor is considered to be the
final decision.

The obvious advantage of such an approach is, (i) Training process is made compara-
tively easily; (ii) Detectors are trained on a smaller number of samples than models
considered in the previous sections; (iii) It allows to increase quality of their training
and to considerably reduce time spent for preparation of the next detector.

Let’s consider how such a multiagent system work from an example of a popula-
tion of detectors. The population consists of 110 detectors (5 detectors in a group for
each attack type from the KDD99 dataset). The results were prepared in the same way
as the models in the previous sections (Table 16) so that we can compare them. As we
can see, the results are similar to each other.

1
2

41
…

MLP
attack
not attack

1
2

12
…

RNN

510 V. Golovko et al.

Table 16. Attack Classification with the Multiagent Neural Network

class count detected Recognized

DoS 391458 383953 (98.08%) 368779 (94.21%)

U2R 52 47 (90.39%) 46 (88.46%)

R2L 1126 1122 (99.67%) 359 (31.88%)

Probe 4107 4105 (99.95%) 2369 (57.68%)

Normal 97277 --- 75538 (77.65%)

The second experiment is related with the recognition of new attacks. For this pur-

pose, we prepared a special set of samples for testing and training. The testing sam-
ples consist of network connection records that represent some of the most popular
network services taken from the KDD99 dataset (http, ftp, ftp data, smtp, pop3, tel-
net). As dataset for testing, we generated a considerably reducing number of samples
for each attack type. Also what is necessary to draw attention is that the records of
some scanty attack types were entirely excluded from the training set. Therefore, only
9 types of attacks have been selected here. Accordingly, 9 groups (5 detectors in each)
have been generated. So, the quantity of the population has made up 45 detectors.

Table 17. New Attack Detection with the Multiagent Neural Network

type count detected type count detected

Normal 75952 71338 (93.93%) Multihop* 7 7 (100.00%)

Land* 1 1 (100.00%) Phf* 4 0 (0.00%)

Neptune 901 901 (100.00%) Spy* 2 1 (50.00%)

Buffer_overflow 30 30 (100.00%) Warezclient 1015 1003 (98.82%)

Loadmodule 9 9 (100.00%) Warezmaster 20 20 (100.00%)

Perl* 3 1 (33.33%) Ipsweep 9 9 (100.00%)

Rootkit* 7 3 (42.86%) Nmap* 2 2 (100.00%)

ftp_write* 6 6 (100.00%) Portsweep 15 15 (100.00%)

guess_passwd 53 53 (100.00%) Satan 10 9 (90.00%)
 * - the attacks that were absent in the training set.

The results shown in Table 17 show a lot of records corresponding to new attacks

were detected and classified as an “attack”. It means that multiagent systems are ca-
pable of detecting new attacks and have high generalization capacity.

We have discussed only the prototype of one population. Nevertheless, the results
are promising due to the fact that many unknown records were detected. Extension of
the proposed approach based on multiagent neural networks with the basic mecha-
nisms of immune system (which exploits selection, mutation, cloning, etc.) will allow
us to build a real time intrusion detection system.

 Neural Network and Artificial Immune Systems 511

4 Conclusion

In this chapter the artificial immune systems and neural network techniques for com-
puter viruses and intrusion detection have been addressed. The AIS allow detecting
unknown computer viruses. Integration of AIS and neural networks permits to in-
crease performance of the security system. The IDS structure is based on integration
of the different neural networks. As a result fusion classifier, modular neural networks
and multiagent systems were proposed. The KDD-99 dataset was used for experi-
ments performing. Experimental results show that the neural intrusion detection sys-
tem has possibilities for detection and recognition computer attacks.

Proposed techniques have been shown powerful tools with respect to conventional
approaches.

References

[1] de Castro, L.N., Timmis, J.I.: Artificial Immune Systems: A New Computational Intelli-
gence Approach. Springer, Heidelberg (2002)

[2] Janeway, C.A.: How the Immune System Recognizers Invaders. Scientific Ameri-
can 269(3), 72–79 (1993)

[3] Dasgupta, D.: Artificial immune systems and their applications. Springer, New York
(1999)

[4] Computer virus, http://en.wikipedia.org/wiki/Computer_virus
[5] Traditional antivirus solutions – are they effective against today’s threats? (2008),

http://www.viruslist.com
[6] Proactive protection: a panacea for Viruses? (2008), http://www.viruslist.com
[7] de Castro, L.N., Timmis, J.I.: Artificial Immune Systems: A New Computational Intelli-

gence Approach. Springer, Heidelberg (2002)
[8] Janeway, C.A.: How the Immune System Recognizers Invaders. Scientific Ameri-

can 269(3), 72–79 (1993)
[9] Handbook of neural network processing. CRC Press LLC, Boca Raton (2002)

[10] Ezhov, A., Shumsky, S.: Neurocomputing and its application in economics and business,
Moscow, MIPHI (1998)

[11] Ayara, M., Timmis, J., de Lemos, L., de Castro, R., Duncan, R.: Negative selection: How
to generate detectors. In: Timmis, J., Bentley, P.J. (eds.) Proceedings of the 1st Interna-
tional Conference on Artificial Immune Systems (ICARIS), pp. 89–98. University of
Kent at Canterbury Printing Unit, Canterbury (2002)

[12] Forrest, S., Hofmeyr, S.A.: Immunology as information processing. In: Segel, L.A.,
Cohen, I. (eds.) Design principles for the immune system and other distributed autono-
mous systems, Oxford University Press, New York (2000)

[13] Jerne, N.K.: Clonal Selection in a Lymphocyte Network, pp. 39–48. Raven Press (1974)
[14] Bezobrazov, S., Golovko, V.: Neural Networks for Artificial Immune Systems: LVQ for

Detectors Construction. In: Proceedings of the IEEE International Workshop on Intelli-
gent Data Acquisition and Advanced Computing Systems: Technology and Applications
(IDAACS 2007), Dortmund, Germany (2007)

[15] Forest, S., Perelson, F., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a Com-
puter. In: Proceedings IEEE Symposium on Research in Security and Privacy, pp. 202–
212. IEEE Computer Society Press, Los Alamitos (1994)

512 V. Golovko et al.

[16] Balthrop, J., Esponda, F., Forrest, S., Glickman, M.: Coverage and Generalization in an
Artificial Immune System. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), pp. 3–10. Morgan Kaufmann Publishers, San Francisco (2002)

[17] Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. EvolutionaryCom-
putation 8(4), 443–473 (2000)

[18] Hofmeyr, S.A.: An interpretative introduction to the immune system. In: Cohen, I., Segel,
L. (eds.) Design principles for the immune system and other distributed autonomous sys-
tems, Oxford University Press, New York (2000)

[19] Kohonen, T.: Self-organized Formation of Topologically Correct Feature Maps. Biologi-
cal Cybernetics 43, 59–69 (1982)

[20] Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design, 1st edn. PWS Pub.
Co. (1995)

[21] Golovko, V.: Neural networks: training, organization and application, Moscow, IPRZHR
(2001)

[22] Kaspersky Lab: Antivirus software (2008), http://www.kaspersky.com
[23] ESET NOD32 antivirus software (2008), http://www.eset.com
[24] Kumar, S., Spafford, E.H.: A Software architecture to support misuse intrusion detection.

In: Proceedings of the 18th National Information Security Conference, pp. 194–204
(1995)

[25] Ilgun, K., Kemmerer, R.A., Porras, P.A.: State transition analysis: A rule-based intrusion
detection approach. IEEE Transaction on Software Engineering 21(3), 181–199 (1995)

[26] SNORT, http://www.snort.org
[27] Lunt, T., Tamaru, A., Gilham, F., et al.: A Real-time Intrusion Detection Expert System

(IDES) – final technical report. Technical report, Computer Science Laboratory, SRI In-
ternational, Menlo Park, California (February 1992)

[28] Porras, P.A., Neumann, P.G.: EMERALD: Event monitoring enabling responses to
anomalous live disturbances. In: Proceedings of National Information Systems Security
Conference, Baltimore, MD (October 1997)

[29] Denning, D.E.: An intrusion-detection model. IEEE Transaction on Software Engineer-
ing 13(2), 222–232 (1987)

[30] Lee, W., Stolfo, S., Mok, K.: A data mining framework for adaptive intrusion detection.
In: Proceedings of the 1999 IEEE Symposium on Security and Privacy, Los Alamos, CA,
pp. 120–132 (1999)

[31] Lee, W., Stolfo, S.: A Framework for constructing features and models for intrusion de-
tection systems. ACM Transactions on Information and System Security 3(4), 227–261
(2000)

[32] Liu, Y., Chen, K., Liao, X., et al.: A genetic clustering method for intrusion detection.
Pattern Recognition 37(5), 927–934 (2004)

[33] Eskin, E., Rnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A Geometric framework for un-
supervised anomaly detection. In: Applications of Data Mining in Computer Security.
Kluwer Academics, Dordrecht (2002)

[34] Shyu, M., Chen, S., Sarinnapakorn, K., Chang, L.: A Novel Anomaly Detection Scheme
Based on Principal Component Classifier. In: Proceedings of the IEEE Foundations and
New Directions of Data Mining Workshop, in conjunction with the Third IEEE Interna-
tional Conference on Data Mining (ICDM 2003), pp. 172–179 (2003)

[35] Kayacik, H., Zincir-Heywood, A., Heywood, M.: On the capability of an SOM based in-
trusion detection system. In: Proc. IEEE Int. Joint Conf. Neural Networks (IJCNN 2003),
pp. 1808–1813 (2003)

 Neural Network and Artificial Immune Systems 513

[36] Zhang, Z., Li, J., Manikopoulos, C.N., Jorgenson, J., Ucles, J.: HIDE: a Hierarchical
Network Intrusion Detection System Using Statistical Preprocessing and Neural Network
Classification. In: Proceedings of the 2001 IEEE Workshop on Information Assurance
and Security United States Military Academy, West Point, NY, pp. 85–90 (2001)

[37] 1999 KDD Cup Competition,
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[38] Golovko, V., Ignatiuk, O., Savitsky, Y., Laopoulos, T., Sachenko, A., Grandinetti, L.:
Unsupervised learning for dimensionality reduction. In: Proc. of Second Int. ICSC Sym-
posium on Engineering of Intelligent Systems EIS 2000, University of Paisley, Scotland,
pp. 140–144. ICSS Academic Press, Canada (2000)

[39] Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier Detection Using Replicator Neural
Networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002.
LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002)

[40] Golovko, V., Kochurko, P.: Some Aspects of Neural Network: Approach for Intrusion
Detection. In: Kowalik, Janusz, S., Gorski, J., Sachenko, A. (eds.) Cyberspace Security
and Defense: Research Issues. NATO Science Series II: Mathematics, Physics and Chem-
istry, vol. 196, pp. 367–382. Springer, Heidelberg (2005); VIII, p. 382

[41] Kochurko, P., Golovko, V.: Neural Network Approach to Anomaly Detection Improve-
ment. In: Proc. of 8th International Conference on Pattern Recognition and Information
Processing (PRIP 2005), Minsk, Belarus, May18-20, pp. 416–419 (2005)

[42] Giacinto, G., Roli, F., Didaci, L.: Fusion of multiple classifiers for intrusion detection in
computer networks. Pattern Recognition Letters 24, 1795–1803 (2003)

[43] Giacinto, G., Roli, F., Fumera, G.: Selection of image classifier. Electron 26(5), 420–422
(2000)

[44] Golovko, V., Vaitsekhovich, L.: Neural Network Techniques for Intrusion Detection. In:
Proceedings of the International Conference on Neural Networks and Artificial Intelli-
gence (ICNNAI 2006), Brest State Technical University - Brest, pp. 65–69 (2006)

[45] Golovko, V., Kachurka, P., Vaitsekhovich, L.: Neural Network Ensembles for Intrusion
Detection. In: Proceedings of the 4th IEEE Workshop on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS 2007), Research
Institute of Intelligent Computer Systems, Ternopil National Economic University and
University of Applied Sciences Fachhochschule Dortmund - Dortmund, Germany, pp.
578–583 (2007)

[46] Golovko, V., Vaitsekhovich, L., Kochurko, P., Rubanau, U.: Dimensionality Reduction
and Attack Recognition using Neural Network Approaches. In: Proceedings of the Joint
Conference on Neural Networks (IJCNN 2007), Orlando, FL, USA, pp. 2734–2739.
IEEE Computer Society, Los Alamitos (2007)

[47] Oja, E.: Principal components, minor components and linear networks. Neural Net-
works 5, 927–935 (1992)

[48] Drucker, H., Schapire, R., Simard, P.: Improving performance in neural networks using a
boosting algorithm. In: Hanson, S.J., Cowan, J.D., Giles, C.L. (eds.) Advanced in Neural
Information Processing Systems, Denver, CO, vol. 5, pp. 42–49. Morgan Kaufmann, San
Mateo (1993)

[49] Freund, Y., Schapire, R.E.: A short introduction to boosting. Journal of Japanese Society
for Artificial Intelligence 14(5), 771–780 (1999)

	Neural Network and Artificial Immune Systems for Malware and Network Intrusion Detection
	Introduction
	Integration of Artificial Immune Systems and Neural Network Techniques for Malicious Code Detection
	The Biological Immune System Overview
	The Artificial Immune Systems Overview
	Application of Neural Networks in Artificial Immune System to Malicious Code Detection
	Description of Experimental Model of the AIS Security System
	Experimental Results

	Neural Network Techniques for Intrusion Detection
	Intrusion Detection Based on Recirculation Neural Networks
	Modular Neural Network Detectors

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

