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Foreword 

Professor Richard S. Michalski passed away on September 20, 2007. Once we learned 
about his untimely death we immediately realized that we would no longer have with 
us a truly exceptional scholar and researcher who for several decades had been influ-
encing the work of numerous scientists all over the world - not only in his area of exper-
tise, notably machine learning, but also in the broadly understood areas of data analysis, 
data mining, knowledge discovery and many others. In fact, his influence was even 
much broader due to his creative vision, integrity, scientific excellence and exception-
ally wide intellectual horizons which extended to history, political science and arts. 

Professor Michalski’s death was a particularly deep loss to the whole Polish scien-
tific community and the Polish Academy of Sciences in particular. After graduation, 
he began his research career at the Institute of Automatic Control, Polish Academy of 
Science in Warsaw. In 1970 he left his native country and hold various prestigious 
positions at top US universities. His research gained impetus and he soon established 
himself as a world authority in his areas of interest – notably, he was widely consid-
ered a father of machine learning. 

His contacts with the Polish scientific community were very close over all the 
years; in the last couple of years he was an affiliate scientist at the Institute of Com-
puter Science, Polish Academy of Sciences, Warsaw. This relation culminated some 
years ago with his election to the rank of Foreign Member of the Polish Academy of 
Sciences, a distinction granted to only a small number of world-wide best scientists, 
including numerous Nobel Prize and other prestigious awards winners. 

Professor Michalski was one of those active members of the Polish Academy of 
Sciences who were always interested in solving whatever problems we had, always 
ready to help us in shaping the research policy of the Academy and discuss with us all 
difficult issues that are these days unavoidable in any large and prestigious research 
organization with so many strong links to science worldwide. He was always ready to 
offer us his deep understanding and scholarly vision of the future of the human scien-
tific endeavor. As President of the Polish Academy of Sciences I sense very person-
ally an enormous loss coming from no longer being able to ask for his opinion and 
advice. 

I wish to congratulate the editors of these scholarly volumes, Professors Jacek 
Koronacki, Zbigniew Ra , Sławomir T. Wierzcho  and Janusz Kacprzyk, for their 
initiative to pay the tribute to the memory of Professor Michalski. Having known him 
for many years they realized that the best way to honor his life achievements would be 
to prepare a collection of high quality papers on topics broadly perceived as Professor 
Michalski’s main interest and to present in memoriam volumes of the contributions 
written by those who had the luck to be his friends or, at least, to meet him on various 
occasions. I am really impressed that so many prominent authors have accepted the 
invitation and I thank all of them most deeply. 



 Foreword VI 

I believe the memory of Professor Richard S. Michalski should remain with us for 
ever. Hopefully, these volumes will contribute to reaching this objective in the most 
appropriate and substantial way. 

Professor Michał Kleiber 
  President 

Polish Academy of Sciences 



Preface

This is the second volume of a large two-volume editorial project we wish to dedicate 
to the memory of the late Professor Ryszard S. Michalski who passed away in 2007. 
He was one of the fathers of machine learning, an exciting and relevant, both from the 
practical and theoretical points of view, area in modern computer science and infor-
mation technology. His research career started in the mid-1960s in Poland, in the 
Institute of Automation, Polish Academy of Sciences in Warsaw, Poland. He left for 
the USA in 1970, and since then had worked there at various universities, notably, at 
the University of Illinois at Urbana – Champaign and finally, until his untimely death, 
at George Mason University. We, the editors, had been lucky to be able to meet and 
collaborate with Ryszard for years, indeed some of us knew him when he was still in 
Poland. After he started working in the USA, he was a frequent visitor to Poland, 
taking part at many conferences until his death. We had also witnessed with a great 
personal pleasure honors and awards he had received over the years, notably when 
some years ago he was elected Foreign Member of the Polish Academy of Sciences 
among some top scientists and scholars from all over the world, including Nobel prize 
winners. 

Professor Michalski’s research results influenced very strongly the development of 
machine learning, data mining, and related areas. Also, he inspired many established 
and younger scholars and scientists all over the world. 

We feel very happy that so many top scientists from all over the world agreed to 
pay the last tribute to Professor Michalski by writing papers in their areas of research. 
These papers will constitute the most appropriate tribute to Professor Michalski, a 
devoted scholar and researcher. Moreover, we believe that they will inspire many 
newcomers and younger researchers in the area of broadly perceived machine learn-
ing, data analysis and data mining. 

The papers included in the two volumes, Machine Learning I and Machine Learn-
ing II, cover diverse topics, and various aspects of the fields involved. For conven-
ience of the potential readers, we will now briefly summarize the contents of the par-
ticular chapters. 

Part I, “General Issues” is concerned with some more general issues and problems 
that are relevant in various areas, notably in machine learning, data mining, knowledge 
discovery. and their applications in a multitude of domains.     

• Witold Pedrycz  (“Knowledge-Oriented and Distributed Unsupervised Learn-
ing for Concept Elicitation”) discusses a new direction of unsupervised learning 
and concept formation in which both domain knowledge and experimental evi-
dence (data) are considered together.  This is a reflection of a certain paradigm 
which could be referred to as knowledge-oriented clustering or knowledge min-
ing (as opposed to data mining). The author presents the main concepts and al-
gorithmic details.  The distributed way of forming information granules which is 
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realized at the level of individual locally available data gives rise to higher or-
der information granules (type-2 fuzzy sets, in particular).    

• Andrzej Skowron and Marcin Szczuka (“Toward Interactive Computations: 
A Rough-Granular Approach”) present an overview of Rough Granular Com-
puting (RGC)  approach to modeling complex systems and processes. They dis-
cuss the granular methodology in conjunction with paradigms originating in 
rough sets theory, such as approximation spaces. The authors attempt to show 
the methodology aimed at the construction of complex concepts from raw data 
in ahierarchical manner. They illustrate, how the inclusion of domain knowl-
edge, relevant ontologies, and interactive consensus finding leads to more poer-
ful granular models for processes and systems. 

• Stan Matwin and Tomasz Szapiro (“Data Privacy: From Technology to Eco-
nomics”) deal with an omnipresent and increasingly relevant problem of data 
privacy. They attempt to relate two different approaches to data privacy: the 
technological approach, embodied in the current privacy-preserving data mining 
work, and the economic regulations approach. The authors claim that none of 
these two approaches alone will be able to address the increasingly important 
data privacy issues. They advocate a hybrid system, combining both approaches 
in a complementary manner. A view of privacy is presented in the context of an 
accepted taxonomy of economic goods, stating the question: if privacy is ex-
changed and traded, then what kind of good is it? The authors also show that, 
viewed in the light of an established economic growth theory, the involvement 
of privacy in the growth process leads to a steady state growth. 

• Phillipa M. Avery and Zbigniew Michalewicz (“Adapting to Human Gamers 
using Coevolution”) consider a challenging task of how to mimic a human abil-
ity to adapt, and create a computer player that can adapt to its opponent’s strat-
egy. Without this ability to adapt, no matter how good a computer player is, 
given enough time human players may learn to adapt to the strategy used, and 
routinely defeat the computer player. However, by having an adaptive strategy 
for a computer player, the challenge it provides is ongoing. Additionally, a 
computer player that adapts specifically to an individual human provides a more 
personal and tailored game play experience. To address specifically this last 
need, the authors investigate the creation of such a computer player. By creating 
a computer player that changes its strategy with influence from the human strat-
egy, it is shown that the holy grail of gaming, an individually tailored gaming 
experience, is indeed possible. A computer player for the game of TEMPO, a 
zero sum military planning game, is designed. The player was created through a 
process that reversely engineers the human strategy and uses it to co-evolve the 
computer player. 

• Mirsad Hadzikadic and Min Sun (“Wisdom of Crowds in the Prisoner’s Di-
lemma Context”) provide a new way of making decisions by using the wisdom 
of crowds (collective wisdom) to handle continuous decision making problems, 
especially in a complex and rapidly changing world. By simulating the Pris-
oner’s Dilemma as a complex adaptive system, key criteria that separate a wise 
crowd from an irrational one are investigated, and different aggregation strate-
gies are suggested based on different environments. 
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Part II, “Logical and Relational Learning, and Beyond”, is concerned with two very 
important, well founded, and successful general paradigms for machine learning that 
are based on logic and relational analyses.    

• Marenglen Biba, Stefano Ferilli, and Floriana Esposito (“Towards Multis-
trategic Statistical Relational Learning”) discuss statistical relational learning, a 
growing field in machine learning that aims at the integration of logic-based 
learning approaches with probabilistic graphical models. Learning models in 
statistical relational learning consist in learning the structure (logical clauses in 
Markov logic networks) and the parameters (weights for each clause in Markov 
logic networks). Markov logic networks have been successfully applied to prob-
lems in relational and uncertain domains. So far the statistical relational learn-
ing models have mostly used the expectation-maximization (EM) for learning 
statistical parameters under missing values. In the paper, two frameworks for in-
tegrating abduction in the statistical relational learning models are proposed. 
The first approach integrates logical abduction with structure and parameter 
learning of Markov logic networks in a single step. During structure search, 
clause evaluation is performed by first trying to logically abduce missing values 
in the data and then by learning optimal pseudo-likelihood parameters using the 
completed data. The second approach integrates abduction with the structural 
EM by performing logical abductive inference in the E-step and then by trying 
to maximize parameters in the M-step. 

• Luc De Raedt (“About Knowledge and Inference in Logical and Relational 
Learning”) gives a gentle introduction to the use of knowledge, logic and infer-
ence in machine learning which can be regarded as a reinterpretation and revis-
iting  of Ryszard Michalski's work ``A theory and methodology of inductive 
learning'' within the framework of logical and relational learning. At the same 
time some contemporary issues surrounding the integration of logical and prob-
abilistic representations and types of reasoning are introduced. 

• Marta Fraňová and Yves Kodratoff (“Two examples of computational cre- 
ativity: ILP multiple predicate synthesis and the ‘assets’ in theorem prov-
ing”) provide a precise illustration of what can be the idea of “computational 
creativity”, that is, the whole set of the methods by which a computer may simu-
late creativity. The analysis is restricted to multiple predicate learning in induc-
tive logic programming and to program synthesis from its formal specification. 
The authors show heuristics the goal of which is to provide the program with 
some kind of inventiveness. The basic tool for computational creativity is what 
is called an ‘asset generator’. A detailed description of the authors’ methodol-
ogy for the generation of assets in program synthesis from its formal specifica-
tion is given. In a conclusion a result is provided, which is a kind of challenge 
for the other theorem provers, namely how to ‘invent’ a form of the Ackerman 
function which is recursive with respect to the second variable instead of the 
first variable as the usual definitions are. In inductive logic programming multi-
ple predicate synthesis, the assets have been provided by members of the induc-
tive logic programming community, while their methodology tries to make ex-
plicit a way to discover these assets when they are needed. 
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• Jan Rauch (“Logical Aspects of the Measures of Interestingness of Association 
Rules”) discusses the relations of the logical calculi of association rules and of 
the measures of interestingness of association rules. The logical calculi of asso-
ciation rules, 4ft-quantifiers, and known classes of association rules are first in-
troduced. New 4ft-quantifiers and association rules are defined by the applica-
tion of suitable thresholds to known measures of interestingness. It is proved 
that some of the new 4ft-quantifiers are related to known classes of association 
rules with important properties. It is shown that new interesting classes of associa-
tion rules can be defined on the basis of other new 4ft-quantifiers, and several re-
sults concerning new classes are proved. Some open problems are mentioned. 

Part III, “Text and Web Mining”, is concerned with various problems and aspects of 
data mining and machine learning related to a great challenge we face nowadays that 
is related to the constantly growing role of the Internet and its related Web services 
which permeate all aspects of economy and human life. The papers in this part show 
how tools and techniques from broadly perceived machine learning and data/text min-
ing can help the human being to fully utilize the power of these new services.        

• Katharina Morik and Michael Wurst (“Clustering the Web 2.0”) present two 
approaches to clustering in the scenario of Web 2.0 with a special concern of 
understandability in this new context. In contrast to the Semantic Web type ap-
proaches which advocate ontologies as a common semantics for homogeneous 
user groups, Web 2.0 aims at supporting heterogeneous user groups where users 
annotate and organize their content without a reference to a common schema so 
that the semantics is not made explicit. However, it can be extracted by using 
machine learning and hence the users are provided with new services. 

• Miroslav Kubat, Kanoksri Sarinnapakorn, and Sareewan Dendamrongvit
(“Induction in Multi-Label Text Classification Domains”) describe an original 
technique for automated classification of text documents. It is assumed, first, 
that each training or testing example can be labeled with more than two classes 
at the same time which has serious consequences not only for the induction al-
gorithms but also for how we evaluate the performance of the induced classifier. 
Second, the examples are usually described by very many attributes which 
makes induction from hundreds of thousands of training examples prohibitively 
expensive. Results of numerical experiments on a concrete text database are 
provided. 

• Boris Mirkin, Susana Nascimento, and Luís Moniz Pereira (“Cluster-Lift 
Method for Mapping Research”) present a method for representing research ac-
tivities within a research organization by doubly generalizing them. The ap-
proach is founded on Michalski’s idea of inferential concept interpretation for 
knowledge transmutation within a knowledge structure taken here to be a con-
cept tree.. To be specific, the authors concentrate on the Computer Sciences 
area represented by the ACM Computing Classification System (ACM-CCS). 
Their cluster-lift method involves two generalization steps: one on the level of 
individual activities (clustering) and the other on the concept structure level 
(lifting). Clusters are extracted from the data on similarity between ACMCCS 
topics according to the working in the organization. Lifting leads to conceptual 
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generalization of the clusters in terms of “head subjects” on the upper levels of 
ACM-CCS accompanied by their gaps and offshoots. A real-world example of 
the representation is show. 

• Marzena Kryszkiewicz, Henryk Rybi ski, and Katarzyna Cicho  (“On 
Concise Representations of Frequent Patterns Admitting Negation”) deal with 
the discovery of frequent patterns wchich is one of the most important issues in 
the data mining field. Though an extensive research has been carried out for dis-
covering positive patterns, very little has been offered for discovering patterns 
with negation. One of the main difficulties concerning frequent patterns with 
negation is huge amount of discovered patterns as it exceeds the number of fre-
quent positive patterns by orders of magnitude. The problem can be signifi-
cantly alleviated by applying concise representations that use generalized dis-
junctive rules to reason about frequent patterns, both with and without negation. 
The authors examine three types of generalized disjunction free representations 
and derive the relationships between them. They also present two variants of al-
gorithms for building such representations. The results obtained on a theoretical 
basis are verified experimentally. 

Part IV, “Classification and Beyond”, deals with many aspects, methods, tools and 
techniques related to broadly perceived classification which is a key issue in many 
areas, notably those related to the topics of the present volume. 

• Derek Sleeman, Andy Aiken, Laura Moss, John Kinsella, and Malcolm Sim
[“A system to detect inconsistencies between a domain expert’s different perspec-
tives on (classification) tasks”] discuss the range of knowledge acquisition, in-
cluding machine learning, approaches used to develop knowledge bases for in-
telligent systems. Specifically, the paper focuses on developing techniques 
which enable an expert to detect inconsistencies in two (or more) perspectives 
which the expert might have on the same (classification) task. Further, the 
INSIGHT system is developed to provide a tool which supports domain experts 
exploring, and removing, the inconsistencies in their conceptualization of a 
task. The authors show a study of intensive care physicians reconciling two per-
spectives on their patients. The high level task which the physicians had set 
themselves was to classify, on a 5 point scale (A-E), the hourly reports pro-
duced by the Unit’s patient management system. The two perspectives provided 
to INSIGHT were an annotated set of patient records where the expert had se-
lected the appropriate class to describe that snapshot of the patient, and a set of 
rules which are able to classify the various time points on the same 5-point 
scale. Inconsistencies between these two perspectives are displayed as a confu-
sion matrix; moreover INSIGHT then allows the expert to revise both the anno-
tated datasets (correcting data errors, and/or changing the assigned classes) and 
the actual rule-set. The paper concludes by outlining some of the follow-up 
studies planned with both INSIGHT and this general approach. 

• Eduardo R. Gomes and Ryszard Kowalczyk (“The Dynamics of Multiagent 
Q-learning in Commodity Market Resource Allocation”) consider the commod-
ity market (CM) economic model that offers a promising approach for the dis-
tributed resource allocation in large-scale distributed systems. The existing  
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CM-based mechanisms apply the economic equilibrium concepts, assuming that 
price-taking entities do not engage in strategic behaviour, and in this paper the 
above issue is addressed and the dynamics of strategic learning agents in a spe-
cific type of CM-based mechanism, called iterative price adjustment, is dis-
cussed. The scenario is considered in which agents use utility functions to 
describe preferences in the allocation and learn demand functions adapted to the 
market by reinforcement learning. The reward functions used during the learn-
ing process are based either on the individual utility of the agents, generating 
selfish learning agents, or the social welfare of the market, generating altruistic 
learning agents. The authors’ experiments show that the market composed exclu-
sively of selfish learning agents achieve results similar to the results obtained by 
the market composed of altruistic agents. Such an outcome is significant for a se-
ries of other domains where individual and social utility should be maximized but 
agents are not guaranteed to act cooperatively in order to achieve it or they do not 
want to reveal private preferences. This outcome is further analyzed, and an analy-
sis of the agents' behaviour from the perspective of the dynamic process generated 
by the learning algorithm employed by them is also given. For this, a theoretical 
model of multiagent Q-learning with -greedy exploration is developed and ap-
plied in a simplified version of the addressed scenario. 

• Christian Borgelt (“Simple Algorithms for Frequent Item Set Mining”) intro-
duces SaM, a split and merge algorithm for frequent item set mining. Its core 
advantages are its extremely simple data structure and processing scheme, 
which not only make it quite easy to implement, but also very convenient to 
execute on external storage, thus rendering it a highly useful method if the 
transaction database to mine cannot be loaded into main memory. Furthermore, 
the author’s RElim algorithm is shown and different optimization options for 
both SaM and RElim are discussed. Finally, some numerical experiments com-
paring SaM and RElim with classical frequent item set mining algorithms (as, 
e.g., Apriori, Eclat and FP-growth) are given. 

• Michał Drami ski, Marcin Kierczak, Jacek Koronacki, and Jan Komorowski
(“Monte Carlo feature selection and interdependency discovery in supervised classi-
fication”) consider applications of machine learning techniques in life sciences, 
Such applications force a paradigm shift in the way these techniques are used 
because rather than obtaining the best possible classifier, it is of interest which 
features contribute best to the classification of observations into distinct classes 
and what are the interdependencies between the features. A method for finding 
a cut-off between informative and non-informative features is given, followed 
by the development of a new methodology and an implementation of a proce-
dure for determining interdependencies between informative features. The reli-
ability of the approach rests on a multiple construction of tree classifiers. Essen-
tially, each classifier is trained on a randomly chosen subset of the original data 
using only a randomly selected fraction of all of the observed features.  This 
approach is conceptually simple yet computationally demanding. The method 
proposed is validated on a large and difficult task of modelling HIV-1 reverse 
transcriptase resistance to drugs which is a good example of the aforementioned 
paradigm shift. 
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• Halina Kwa nicka and Mariusz Paradowski (“Machine Learning Methods in 
Automatic Image Annotation”) are concerned with image analysis and more 
specifically automatic image annotation which grew from such research do-
mains as image recognition and cross-lingual machine translation. Because of 
an increase in computational, data storage and data transfer capabilities of to-
days' computer technology, an automatic image annotation has become possi-
ble. Automatic image annotation methods, which have appeared during last sev-
eral years, make a large use of many machine learning approaches, with cluster-
ing and classification methods as the most frequently applied techniques to an-
notate images. The chapter consists of three main parts. In the first, some gen-
eral information concerning annotation methods is presented. In the second 
part, two original annotation methods are described. The last part presents ex-
perimental studies of the proposed methods. 

Part V, “Neural Networks and Other Nature Inspired Approaches”, deals with the 
development and applications of various nature inspired paradigms, approaches and 
techniques. Notably, diverse aspects related to neural networks, evolutionary compu-
tation, artificial immune systems, swarm heuristics, etc. are considered, showing their 
potentials and applicability. 

• Nikola Kasabov (“Integrative Probabilistic Evolving Spiking Neural Networks 
Utilising Quantum Inspired Evolutionary Algorithm: A Computational Frame-
work”) considers integrative evolving connectionist systems (iECOS) that inte-
grate principles from different levels of information processing in the brain, in-
cluding cognitive, neuronal, genetic and quantum, in their dynamic interaction 
over time. A new framework of iECOS, called integrative probabilistic evolving 
spiking neural networks (ipSNN), utilizing a quantum inspired evolutionary op-
timization algorithm to optimize the probability parameters.  Both spikes and 
input features in ipESNN are represented as quantum bits being in a superposi-
tion of two states (1 and 0) defined by a probability density function which al-
lows for the state of an entire ipESNN at any time to be represented probabilis-
tically in a quantum bit register and probabilistically optimized until conver-
gence using quantum gate operators and a fitness function. The proposed 
ipESNN is a promising framework for both engineering applications and brain 
data modeling as it offers faster and more efficient feature selection and model 
optimization in a large dimensional space in addition to revealing new knowl-
edge that is not possible to obtain using other models. As a further development 
of ipESNN, the neuro-genetic models – ipESNG, are indicated. 

• Boris Kryzhanovsky, Vladimir Kryzhanovsky, and Leonid Litinskii (“Ma-
chine Learning in Vector Models of Neural Networks”) present a review and 
some extensions of their works related to the theory of vector neural networks. 
The interconnection matrix is always constructed according to the generalized 
Hebbian rule which is well-known in machine learning area. The main principles 
and ideas are emphasized.  Analytical calculations are based on the probabilistic 
approach. The obtained theoretical results are verified via computer simulations.  



XIV Preface 

• Hongbo Liu, Ajith Abraham, and Benxian Yue (“Nature Inspired Multi-
Swarm Heuristics for Multi-Knowledge Extraction”) present a novel application 
of two nature inspired population-based computational optimization techniques, 
namely the Particle Swarm Optimization (PSO) and Genetic Algorithm (GA), 
for rough set reduction and multi-knowledge extraction. A Multi-Swarm Syner-
getic Optimization (MSSO) algorithm is presented for rough set reduction and 
multi-knowledge extraction. In the MSSO approach, different individuals en-
codes different reducts. The proposed approach discovers the best feature com-
binations in an efficient way to observe the change of positive region as the par-
ticles proceed throughout the search space. An attempt is made to prove that the 
multi-swarm synergetic optimization algorithm converges with a probability of 
1 towards the global optimum. The proposed approach is shown to be very ef-
fective for multiple reduct problems and multi-knowledge extraction. 

• Tomasz Maszczyk, Marek Grochowski, and Włodzisław Duch (“Discover-
ing Data Structures using Meta-learning, Visualization and Constructive Neural 
Networks”) discuss first several visualization methods which have been used to 
reveal hidden data structures, thus facilitating discovery of simplest but appro-
priate data transformations which can then be used to build constructive neural 
networks. This is an efficient approach to meta-learning, based on the search for 
simplest models in the space of all data transformations, as shown in the paper.  
It can be used to solve problems with complex inherent logical structure that are 
very difficult for traditional machine learning algorithms. 

• Vladimir Golovko, Sergei Bezobrazov, Pavel Kachurka, and Leanid  
Vaitsekhovich (“Neural Network and Artificial Immune Systems for Malware 
and Network Intrusion Detection”) consider neural networks and artificial im-
mune systems as tools applicable to many problems in the area of anomaly de-
tection and recognition. Since the existing solutions use mostly static ap-
proaches, which are based on the collection of viruses or intrusion signatures, 
detection and recognition of new viruses or attacks becomes a major problem. 
The authors discuss how to overcome this problem by integrating neural net-
works and artificial immune systems for virus and intrusion detection, as well as 
combining various kinds of neural networks in a modular neural system for in-
trusion detection. 

• Alexander O. Tarakanov (“Immunocomputing for speaker recognition”) pro-
poses an approach to speaker recognition by intelligent signal processing based 
on mathematical models of immunocomputing,. The approach includes both 
low-level feature extraction and high-level ("intelligent") pattern recognition. 
The key model is the formal immune network including apoptosis (programmed 
cell death) and immunization both controlled by cytokines (messenger pro-
teins). Such a formal immune network can be formed from audio signals using a 
discrete tree transform, singular value decomposition, and the proposed index 
of inseparability in comparison with the Renyi entropy. An application to the 
recognition of nine male speakers by their utterances of two Japanese vowels is 
shown, and the proposed approach outperforms main state of the art approaches 
of computational intelligence.  
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and I learned a lot from him. He was kind of a godfather to machine learning those 
days, but he was open to the inductive logic programming approach which we were 
developing then. This gave me confidence that in science you don't need to have con-
nections, be famous, or offer a lot of money: just work hard, discuss, and share the 
enthusiasm, that's it. Ryszard has never lost this attitude”.

We wish to thank all the authors for their excellent contributions and an efficient col-
laboration in this huge and demanding editorial project. Special thanks are also due to 
Dr. Tom Ditzinger, Senior Editor, and Ms. Heather King, both from Engineer-
ing/Applied Sciences of Springer, who have provided much encouragement and support. 

Warsaw 
August 2009

Jacek Koronacki 
Zbigniew W. Ra

Sławomir T. Wierzcho
Janusz Kacprzyk 



Table of Contents

Part I: General Issues

Knowledge-Oriented and Distributed Unsupervised Learning for
Concept Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Witold Pedrycz

Toward Interactive Computations: A Rough-Granular Approach . . . . . . . 23
Andrzej Skowron and Marcin Szczuka

Data Privacy: From Technology to Economics . . . . . . . . . . . . . . . . . . . . . . . 43
Stan Matwin and Tomasz Szapiro

Adapting to Human Gamers Using Coevolution . . . . . . . . . . . . . . . . . . . . . . 75
Phillipa M. Avery and Zbigniew Michalewicz

Wisdom of Crowds in the Prisoner’s Dilemma Context . . . . . . . . . . . . . . . . 101
Mirsad Hadzikadic and Min Sun

Part II: Logical and Relational Learning, and Beyond

Towards Multistrategic Statistical Relational Learning . . . . . . . . . . . . . . . . 121
Marenglen Biba, Stefano Ferilli, and Floriana Esposito

About Knowledge and Inference in Logical and Relational Learning . . . . 143
Luc De Raedt

Two Examples of Computational Creativity: ILP Multiple Predicate
Synthesis and the ‘Assets’ in Theorem Proving . . . . . . . . . . . . . . . . . . . . . . 155
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Knowledge-Oriented and Distributed Unsupervised 
Learning for Concept Elicitation 

Witold Pedrycz 

Department of Electrical & Computer Engineering, 
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and 
System Research Institute, Polish Academy of Sciences, 

Warsaw, Poland  
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Abstract. In this study, we discuss a new direction of unsupervised learning 
and concept formation in which both domain knowledge and experimental 
evidence (data) are considered together.  This is a reflection of a certain 
paradigm which could be referred to as knowledge-oriented clustering or 
knowledge mining (as opposed to data mining). We offer the main concepts and 
in selected cases present algorithmic details.  The distributed way of forming 
information granules which is realized at the level of individual locally 
available data gives rise to higher order information granules (type-2 fuzzy sets, 
in particular).    

Keywords: concept elicitation, unsupervised learning, fuzzy clustering, 
collaborative processing, domain knowledge, type-2 fuzzy sets. 

1   Introduction  

Clustering and fuzzy clustering have been regarded as a synonym of structure 
discovery in data. The result, no matter what technique has been used, comes as a 
collection of information granules which serve as a quantification of concepts 
[5][6][12][serving as descriptors of the phenomenon behind the data. In essence, in 
pattern recognition and system modeling, abstraction, information granulation (and 
discretization as its particular example) and concepts are ultimate underpinnings of 
the area [3] [10][14][19][26][28].  

We witness an interesting paradigm shift: clustering is no longer a data intensive 
pursuit whose findings are exclusively based upon processing numeric entities but to 
a larger extent embraces some domain knowledge which is present in any problem of 
practical relevance. Clustering is not a “blind” pursuit any longer but enhances its 
sophistication by dealing with a variety of knowledge hints whose usage augments the 
quality of findings and quite often make them more attractive to the end user. In a 
nutshell, the processes of concept formation, discovery of relationships, building 
associations and quantifying trends. This important leitmotiv of data processing has 
been succinctly put forward in [13] in the following manner “ knowledge mining, by 
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which we mean the derivation of high-level concepts and descriptions from data 
through symbolic reasoning involving both data and relevant background knowledge”.  

The idea of knowledge-based clustering [25] has been one of the streams of 
algorithmic pursuits carried out in the realm of fuzzy clustering which can be 
regarded as a realization of the general idea presented above.  

To focus our investigations and make it more appealing from the perspective of 
algorithmic investigations and ensuing implementations, we use the Fuzzy C-Means 
(FCM) [4] that is regarded as a vehicle to illustrate the main ideas. It could be 
stressed, however, that the conceptual developments are by no means restricted to this 
category of unsupervised learning, cf. also [9][11]. 

The objective of the study is three-fold. First, we develop a concept of 
collaborative design of information granules [1][2][16][20] [27][29][30] where we 
stress a role of distributed processing which to a significant extent is implied by the 
nature of data which become distributed. Second, we construct a coherent framework 
of knowledge-based unsupervised learning showing that data and a variety of 
knowledge hints can be used in an orchestrated manner. Third, we demonstrate that 
information granules such as e.g., type-2 fuzzy sets are the constructs that emerge as 
a result of aggregation of locally constructed concepts that are within the realm  
of individual data.  These objectives imply a structure of the study. In Section 2,  
we discuss main modes of collaboration and elaborate on the architecture of 
unsupervised learning. Along with these, we also provide all necessary preliminaries. 
Section 3 is focused on the algorithmic details of the single-level scheme of 
collaboration. The knowledge-based clustering is discussed in Section 4 while 
Section 5 is concerned with a certain category of knowledge hints which come under 
the name of so-called knowledge viewpoints. Section 6 brings an idea of justifiable 
granularity which allows us to form type-2 fuzzy sets or higher order information 
granules, in general.  

2   The Modes of Collaboration and Architecture of Unsupervised 
Learning 

In this section, we discuss some prerequisites, introduce required terminology and 
notation and then move on to the main categories of collaboration along with the 
underlying architectural considerations.  

2.1   Preliminaries: Notation and Terminology 

Distributed data where the distribution could be sometimes very visible in terms of 
the location of sources of data (such as for instance those encountered in networks of 
stores, banks, health care institutions and wireless sensor networks). We can 
distinguish two ways (modes) of organization of collaboration which imply the 
corresponding optimization scheme. It is instructive to start with graphic symbols to 
be used throughout the study, Figure 1.  
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data 

information granules 

processing 

data path 

path of information granules 

control path  

Fig. 1. Basic symbols used in the study 

There are two three categories of symbols: (a) reservoirs of data (collections of 
experimental evidence) and information granules (forming an abstraction of numeric 
data), (b) algorithms (processing modules) which are used to transform numeric 
entities into information granules, and (c) communication linkages. We distinguish 
clearly between interaction (communication) realized at the level of data (e.g., 
numeric entities) and concepts (which are abstract objects) – information granules. 
Furthermore we include some control linkages whose role is to affect the parametric 
setting of the algorithms. All these graphic symbols will be beneficial in the 
visualization the essence of various architectures, especially when stressing the nature 
of collaboration and a form of the hierarchy of the emerging concepts.  

The distributed nature of processing is of general interest and can be encountered 
in the context of multievel description of data, collaborative concept formation, and 
related security and privacy issues, cf. [7][8]18][23][24]. 

The FCM clustering scheme (which we have considered as an experimental 
framework) is concerned with a finite N-element set of n-dimensional patterns (data) 

x1, x2, …,xN nR∈ N position in n-dimensional Euclidean space.  The structure in this 
data is searched for by minimizing the well-known objective function, cf. [4]. 
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with v1, v2,.., vc being a set of “c” prototypes.  vi are the prototypes and U stands for 
the  c by N partition matrix. The parameter “p”, p> 1, known as a fuzzification 
coefficient is used to control the shape of the obtained membership functions 
(information granules). The distance function used in the FCM is the standard 
Euclidean in which the corresponding features are normalized by including the 

corresponding variance, that is  ||x – y||2= ∑
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the j-th attribute (feature).We also note that once the optimization of Q has been  
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completed, the membership degrees for any new x can be derived on a basis of the 
existing prototypes, that is  
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r=1, 2, .. , c, s=1,2,…, N. 

2.2   The Single-Level Architecture of Collaboration 

In this topology, see Figure 2, each data set (data site) is available and processed 
locally. The communication is realized between all or selected nodes and is completed 
through the exchange of information granules that are concepts formed locally. The 
collaboration is intended to reconcile the differences and establish a coherent 
framework within which the findings are shared and actively exploited at the local 
level. The architecture exhibits a single layer as all nodes are located at the same 
level.  

 
 

 
Fig. 2. A single level architecture of collaborative unsupervised learning 

 
Depending on the nature of links, we can distinguish between the architectures of 

varying level of collaborative connectivity. The extreme case is the one where each 
node communicates with all remaining nodes in the structure. On the other end of the  
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spectrum of the connectivity scale positioned are the structures which are very loosely 
connected in which the communication links are very sparse. There are a wealth of 
structures which from the perspective of connectivity are positioned somewhere in-
between these extreme cases.   

2.3   Hierarchical Architecture of Collaboration 

The single-level architectures of collaboration can give rise to a vast number of 
variants of hierarchies whose some of the representative examples are included in 
Figure 3. 
 
  

 
                                   (a)                      (b) 

 
Fig. 3. Examples of single-level hierarchical structures of collaborative clustering; (a) one-directional 
(bottom-up), and (b) bidirectional with control paths to lower level of hierarchy 

 
The generic two-level structure is illustrated in Figure 3 (a). Here the collaboration 

is realized at the higher level of the structure. The processing does not concern the 
data but information granules being produced at the lower level of the hierarchy. The 
processing at the consecutive levels is completed in serial fashion. This means that 
once the information granules have been formed at the lower level, they are processed 
at the next layer. The communication is one-directional. Whatever the results 
(information granules) are constructed there; they do not affect the processing at the 
lower level (which has been completed before processing at the higher level takes 
place). The structure illustrated in Figure 3(b) differs from the previous one by the 
existence of the control mechanism whose role is to affect the processing environment 
at the lower level depending upon the nature of the computing realized at the higher 
level. The changes made to the processing environment (processing modules) are 
intended to improve the quality and consistency of the overall structural (conceptual) 
findings. For instance, the number of concepts (clusters) at the lower level could be 
adjusted. Likewise, some parameters of the clustering could be modified as well (in 
the FCM, we can adjust the values of the fuzzification coefficient which modify the 
shape of the membership functions, modify the distance function, etc.). 

The structures illustrated in Figure 4 attest to the architectural diversity of the 
hierarchies: 
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                               (a)                                                                        (b) 
 

 
  

 
                              (c)                (d) 

 

Fig. 4. Selected examples of hierarchies 

 
In Figure 4(a), there are several levels of hierarchy so the results of processing 

propagate from one layer to the next one. In some cases, several layers could be by-
passed where some findings are sent off several layers up; this topology is shown in 
Figure 4 (b). The structure visualized in Figure 4(c) exhibits an interesting effect of 
joint processing of information granules (coming from the lower level of the 
hierarchy) and numeric data provided from some other source. The way in which 
these data are processed is indicative of their relevance – they are regarded to be 
equally important as the information granules produced at the lower level of the 
hierarchy. We might envision another situation like the one portrayed in Figure 4 (c) 
where at the higher level of the hierarchy we encounter an auxiliary source of 
information granules (being reflective of the domain knowledge available there).  

3   Algorithmic Developments for a Single-Level Scheme of 
Collaboration 

In this section, we present a concise statement of the problem. Prior to that, however, 
some notation is worth fixing. To a significant extent, the notation is a standard one 
which we encounter in the literature. We use boldface to denote vectors in some  
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n-dimensional space, say, x, y, z  ∈Rn. We consider a finite number of datasites (data 
sets), denoted here by  D[1], D[2],…, D[P] which are composed of the patterns (data) 
represented in the same feature space (space of attributes). For the ii-th dataset D[ii], 
the resulting structural information is conveyed in the form of the partition matrix 
U[ii] with c[ii] clusters formed there. The standard objective function minimized by 
the FCM takes on the form  

∑∑
= =

−=
N

1k

c[ii]

1i

2

ik
m
ik ]ii[[ii]uQ[ii] vx

                               

(4) 

Along with the partition matrices, fuzzy clustering produces a collection of 
prototypes. For the ii-th datasite we have the prototypes v1[ii],  v2[ii],…, vc[ii][ii]. 

Schematically, we can portray this situation of collaboration in Figure 5 which 
underlines a fact that all communication and collaboration occurs at the level of 
information granules. 

 
 

D[1] D[ii] D[P]

FCM FCM FCM

U[1] vi[1] U[ii] vi[ii] U[P] vi[P]

 
 

Fig. 5. Mechanisms of collaboration realized through communication of granular findings 
(partition matrices) 

 
Having established the general setup, we move with the algorithmic development 

of the optimization process. In what follows, we concentrate on the optimization 
process of a collaborative formation of information granules by starting with an 
augmented objective function and deriving detailed formulas for the partition matrix 
and the prototypes. We assume that the granularity of findings at all datasites is the 
same, that is c[1] = c[2] =… = c[P] =c. This particular level of granularity of findings 
has to be agreed upon prior to any engagement in any collaborative activities. Two 
fundamental ways of communication the findings between the datasites are 
considered. They directly imply a certain format of the objective function to be 
considered. The communication of the structural findings is again realized in terms of 
the prototypes vi[jj]. The objective function to be minimized takes on the form 
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The minimization of (5) is realized with respect to the partition matrix U[ii] and the 
prototypes vi[ii]. The second term of the objective function is used to achieve 
agreement between the structures produced at the individual sites.  Not reporting here 
the detailed calculations (which are somewhat tedious but not necessarily 
complicated) the resulting formulas governing the update of the partition matrix and 
the prototypes are the following 
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r=1, 2…c; t=1, 2,…,n[ii] 
 

The detailed derivations presented so far are now embedded as the essential part of 
the organization of the overall collaboration process. There are two underlying 
processes which are carried out consecutively. We start with the fuzzy clustering 
procedures that are run independently at each datasite for a certain number iterations. 
The stopping criterion is the one that is typically used in the FCM algorithm, namely 
we monitor the changes in the values of the partition matrices obtained in the 
consecutive iterations and terminate the process when the Tchebyshev distance 
between the partition matrices does not exceed a certain predefined threshold ε; say 
maxi,k |uik(iter+1) – uik(iter)| < ε  with uik(iter) being the (i, k) th entry of the partition 
matrix produced at the iteration “iter”. At this point, datasites exchange the findings 
by transferring partition matrices, as illustrated in Figure 5, and afterwards an iterative 
process which realizes the minimization of (6) or (7) takes place. Again when the 
convergence has been reported, the results (partition matrices) are exchanged 
(communicated) between the datasites and the iterative computing of the partition 
matrices and the prototypes resumes. The communication scheme between the agents 
when they present their findings could be organized in a number of different ways. In 
the scheme presented so far, we adhered to a straightforward scenario such that  
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(a) agents broadcast their findings to all participants of the collaborative process, (b) 
once the results of clustering have been obtained (and each agent might exercise its 
own termination criterion, say the maximal number of iterations, no significant 
changes in the values of the objective function, or others) it communicates its 
readiness to share findings to others. At this moment, the granular results could be 
communicated to the other agents. Once the agent has received them from all others, 
it initiates its own clustering computing (following the scheme presented in the 
previous sections). 

4   Incorporation of Domain Knowledge in the Schemes of 
Unsupervised Learning: Selected Categories of Knowledge Hints 

Available domain knowledge which can be effectively used in the navigation of the 
search for the structure in the data can be quite diversified. The clustering realized in 
the presence of domain knowledge comprises two fundamental steps, that is (a) 
formalization of domain knowledge, and (b) incorporation the formalized knowledge 
“hints” into the optimization framework of unsupervised learning; we can envision 
that this could be realized through a suitable extension of the objective function Q that 
is to be minimized. Irrespectively of the algorithmic realization, the essence of the 
augmented objective function is the same: the modified (expanded) Q becomes a 
result of a seamless integration of data and knowledge.  

The format of knowledge hints that might arise can be quite diversified. Here we 
elaborate on some main categories and then show how they could be included in the 
objective function. 

 

A collection of labeled patterns. There is a set of labeled data whose class membership 
is available. Usually such a set is quite small in comparison with the data to be 
handled in unsupervised learning. For instance, in handwritten character recognition, 
there could be thousands of characters to organize and only a small fraction of labeled 
patterns. Those could be patterns that were found difficult to classify (say poorly 
written) or they were identified to be interesting by a human expert given the nature 
of the problem at hand. The percentage of the labeled patterns is low because of the 
classification costs so labeling all data becomes highly impractical and very tedious. 
One can envision a similar scenario when classifying temporal signals in diagnostics 
problems as these signals cannot be labeled on a continuous basis and only its small 
fraction could be inspected by human and assign to different categories. These labeled 
data can serve as a collection of “anchor” points over which the structure can be 
developed. In essence, the objective function to be formed has to include the 
component to be optimized with respect to the partition matrix and the prototypes 
(which is the same as in the “standard” clustering with not supervision) and quantify 
the closeness of this structure with the labels of the labeled patterns. The original 
objective function can be augmented in an additive fashion as follows 

∑∑∑∑
∈===

−−+−=
D

vxvx
k

2
ik

2
ikik

c

1i

2
ik

N

1k

p
ik

c

1i

||||)f(uγ||||uQ
           

(8) 



12 W. Pedrycz 

where the second term in the above expression is used to express a level of 
consistency achieved between the structure formed in the data and the constraints 
provided through the labels of the labeled data. Information about class membership 
(labels) is captured in terms of fik. The set of labeled data is denoted by D. The 
positive weight γ is used to strike a sound balance between the component of 
supervised and unsupervised learning. Higher values of γ stress the increasing 
relevance of the labeled patterns when searching for the structure in the data. One 
could note that the labeled data indicate the minimal number of clusters to be looked 
for in the entire data set however the number of clusters could be higher than that.  
The solution to this optimization problem is presented in [21][22]; to be noted that the 
solution is obtained for p = 2 (other values of “p” give rise to more complex scheme 
which includes solving polynomial equations). 

 

Proximity nature of supervision. The previous scenario implies that we have a 
detailed information about the labels of some patterns. In some cases this might not be 
feasible however we are given hints in the form of “closeness or proximity of some 
patterns. For instance, one may have a hint of the form “patterns a and b are very 
close” or “pattern a is distinct from pattern b” The nature of relationship which holds 
between some selected pairs of patterns can be represented in the form of proximity 
relationship, denoted as prox(a, b). The proximity relationship exhibits the appealing 
property of symmetry. It is also reflexive. The transitivity requirement (whose 
numeric quantification is not satisfied) is not needed here. The proximity assumes 
values in-between 0 and 1 where 1 stands for the highest level of proximity. 
Interestingly, the proximity can be easily determined on a basis of the partition 
matrix. Hence, for two patterns k1 and k2, we have  

)u,min(u)k,prox(k ik2

c

1i
ik121 ∑

=
=

                          

(9) 

Where prox(k1, k2) denotes the proximity level for this particular pair of patterns. We 
immediately take advantage of this relationship in the formation of the augmented 
objective function which reads as follows 
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The set P is a collection of pairs of patterns for which the proximity values have been 
provided that is 

P = {(k,l) | prox(k,l) =ξkl}                                    (11) 

Note that the second term of this expression quantifies an extent to which the 
proximity values formed on a basis of the partition matrix coincide with those coming 
in the form of the knowledge hints. The weight factor γ plays the same role as 
discussed with regard to (xx). It is worth stressing that the knowledge available here 
comes in a far more “relaxed” form than those present in the previous case where the 
provided patterns have been labeled in an explicit manner. The number of clusters is 
not specified at all. The well-known cases of so-called must-link and should-not-link 
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hints are subsumed by the far more general type of hints presented here by the 
proximity values. In essence, the must-link constraint corresponds to the proximity 
value equal to 1 while the should-not-link constraint comes with the proximity value 
equal to 0. The detailed optimization schemes are discussed in [17[25]. 

  

High-level functional constraints. The domain knowledge can be quantified in the 
form of some functionals expressed in terms of the corresponding membership grades 
(entries of the partition matrix). For instance, we know that some pattern xk is 
“difficult” to classify no matter how many clusters we consider. This tells us that it is 
very likely that all the membership grades could come close to 1/c.  The effect of such 
potential cluster assignment could be easily quantify by the values of entropy H 
computed for the membership grades positioned in the k-th column of the partition 
matrix uk. Recall that the entropy H(uk) assumes its maximum when uik =1/c and 
zeroes when some membership grade is equal to 1, H(uk) =0. The domain hints of the 
form “pattern xk is difficult to assign” or “there is no hesitation to allocate xk in the 
structure of data” can be quantified through the entropy values. The augmented 
objective function comes in the form  
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Here its second term of (12) weighted by γ articulates differences between the 
knowledge hints (entropy values for the selected patterns) and the entropy values 
computed for the partition matrix. The sum is taken over all data tagged by the 
knowledge hints that is those data for which the entropy values have been provided 

 

K = {k| H(uk)=ρk}                                            (13) 

One may remark here that these types of constraints imply the optimization scheme 
that is more demanding as the partition matrix is included in the objective function in 
a nonlinear fashion.  They call for the use of techniques of evolutionary optimization.  

The next category of knowledge hints, referred to as knowledge viewpoints is more 
comprehensive as not pertaining to selected patterns but rather expressed over all data.  

5   Knowledge Viewpoints in Unsupervised Learning 

The viewpoints capture some insights at data expressed by the user/designer interacting 
with data or more generally interested in a description of the underlying phenomenon 
behind the generation of the data. Formally, the viewpoints are represented as set of “p” 
r-dimensional vectors in Rr where p ≤  c and r ≤  n.  

By considering the viewpoints to be of the same relevance as the prototypes 
themselves, we include them on the list of the prototypes. From the formal standpoint, 
the viewpoints are conveniently captured by two matrices called here B and F. The 
first one is of Boolean character and comes in the form  

⎩
⎨
⎧

=
otherwise 0,

 viewpointby the determined is B of rowth -i  theof featureth -j  theif  1,
bij

 

(14) 
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Thus the entry of B equal to 1 indicates that the (i,j) the position is determined by a 
certain viewpoint. The dimensionality of B is c×n. The second matrix (F) being of the 
same dimensionality as B and includes the specific numeric values of the available 
viewpoints.  Figure 6 includes a number of illustrative examples in case n =2 and c = 4. 

 

x1 

x2 

a 

b 

x1 

x2 

a 
 

                                  (a)       (b) 
 

x1

x2 

a b

 

x1 

max

min

 
                                           (c)        (d) 

 
Fig. 6. Examples of viewpoints; see a detailed description in the text 

 
In all examples included here the viewpoints are reflective of our domain 

knowledge about the problem in which the data were generated or convey our view at 
the problem in addition to the existing data. Let us elaborate on the examples 
illustrated in Figure 6: 

In the first case shown there, Fig. 6 (a), this particular viewpoint stresses a 
relevance of a condensed cluster composed of a few patterns only (which otherwise 
could have been completely washed away given other clusters are far larger). The 
structure of viewpoints is captured by the following matrices (c=3) 
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In Figure 6(b) we encounter a single viewpoint which concerns only a single variable 
(x1) for which we form the viewpoint at x1=a (in this way partially localizing the 
representative of the data). The matrices B and F come with the entries (c=2) 
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⎢
⎣

⎡
=

01

00
B    ⎥

⎦

⎤
⎢
⎣

⎡
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0a

00
F  

The viewpoints shown in Figure 6(c) emphasize that the elongated group of data 
should be looked at by eventual split along the x1 coordinate. The matrices B and F 
are of the form (c=3) 
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The case shown in Figure 6(d) can be viewed as some temporal or spatial data (along 
x1) with x2 being the samples of amplitude. The intent of the viewpoints is to assure 
that the extreme points (max and min) are included in the structural findings provided 
by clustering. The viewpoints are described as follows (c = 4). 

6   From Fuzzy Sets to Type-2 Fuzzy Sets 

The discussed scenarios of collaborative clustering inherently invoke the concept of 
type-2 information granules (type-2 fuzzy sets) which manifest the diversity of the 
results produced at the individual data sites. In particular, the associated various 
points of view could result in different information granules and their diversified 
levels of specificity. Let us outline the essence of the processing in Figure 7.   
 

D[1] D[2] D[P]

prototypes

Clustering

Prototypes
(higher order)

Aggregation layer

 
Fig. 7. A hierarchy of processing: from granulation of individual data D[1], D[2], …, D[p] and 
fuzzy clustering realized in a two-phase mode 
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More specifically, we encounter a certain system (phenomenon) which is perceived 
from various perspectives (points of view) and on a basis of data D[1], D[2], …, D[P] 
and afterwards the structure is captured via a collection of information granules. 
Given the granulation supplied by the FCM algorithm, we encounter families of 
prototypes associated with the data. More formally, we have 

 

Data D[1]:  v1[1] , v2[1],…, [1]
1cv     with the number of clusters equal to c1 

Data D[2]:   v1[2], v2[2],...    [1]
ccv      with the number of clusters equal to c2 

 

Data D[p]:  v1[1] , v2[p],...     [1]
pcv    with the number of clusters equal to cp 

 

Note that the number of clusters (prototypes) could vary between data sets. The 
obtained prototypes are considered together and viewed as a more synthetic data set 
which is again clustered at the higher level producing generalized prototypes, say z1, 
z2, …,zc. The crucial phase is to associate each of these prototypes with the prototypes 
we started with at the lower processing level. The assignment mechanism exploits the 
maximum association between the given zj and the prototype in each D[1], D[2[, …, 
D[p] which is linked with one of the prototypes to the highest extent. By doing this, 
we end up with the arrangement of the following form (mapping) which associates zj 
with the family of the corresponding prototypes, 

 

p21

p21

iii

iii

      ,....,    ,    

[P] [2],....,  [1],

λλλ

vvv

 

 

The essence of this mapping is illustrated in Figure 8. 
 

 

Clustering

Prototypes
(higher order)

zj

 
Fig. 8. The determination of correspondence between the prototypes 

 
Given the degrees of membership of the prototypes formed at the higher level 

(when considering all prototypes obtained at the lower level), the calculations are 
governed by the expressions 
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Alluding to the components of the mapping, we can represent a collection of the 
prototypes associated with zj in a form of a certain information granule. The 
development of this information granule is guided by the principle of justifiable 
granularity. The details of the concept are presented in the Appendix.  

As the result of the above minimization, we obtain the granular (interval-valued) 
representation of the numeric data. Repeating the same procedure for all variables in 
case of the multidimensional case we end up with the prototypes in the form of 
hypercubes, H1, H2, …, and Hc. Let us stress that the granular character of the 
prototypes is a direct consequence of the variability we have encountered because of 
the processing of several views at data.  The distance of any numeric entity x from the 
hyperboxes can be determined by considering the following bounds, see Figure 9 
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Fig. 9. The determination of the distance bounds between numeric datum and hyperbox 
information granules; the distances are computed for individual coordinates and here the 
bounds are determined 

 
These two bounds of distances lead to the calculations of the membership 

functions. We obtain the following bounds on the membership grades 
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- upper membership  
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In essence the resulting information granule becomes a fuzzy set of type-2; more 
specifically an interval type-2 fuzzy set. Examples of the membership functions of 
fuzzy sets of type-2 are shown in Figure 10. The range of the interval-valued 
membership grades depends upon the granularity of the prototypes which is visible in 
Figure 10(a) and 10(c). The different granularity of the prototypes results in quite 
asymmetric behavior of membership functions as illustrated in Figure 10(b). 
 

1 2 3 4 5
0
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1
1

0
7−
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1 x( )

2 x( )

5.050.51 x  
1 2 3 4 5

0

0.5

1

1 2 3 4 5
0

0.5

1

x)

x)

x)

x)

x  

                         (a)                  (b)                    (c) 

Fig. 10. Examples of interval valued fuzzy sets defined in R for several cases of prototypes: (a) 
V1=  [-0.5  0.5]  and V2 = [5.0  6.5], (b) V1=  [0.0  0.5]  and V2 = [5.0  8.05], (c) V1=  [0.2  0.5]  
and V2 = [5.0  5.1] 

7   Conclusions  

Concept elicitation is one of the cornerstones of data analysis. The study presented 
here underlines several crucial methodological and algorithmic points that become 
more and more visible in the area. Indisputably, concepts come hand in hand with the 
formalism of information granules; irrespectively of their character (say, intervals or 
fuzzy sets). The granularity of the concepts relates to their generality. The distributed 
nature of concept formation and ways of aggregating them lead to the idea of higher 
order granular constructs. In this way, we show not only a compelling reason behind 
the emergence of constructs such as e.g., type-2 fuzzy sets but also offer a 
constructive way of their design – an issue that has not been tackled in the literature.  
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Appendix: The Principle of Justifiable Granularity 

We briefly introduce the principle of justifiable granularity. Let us consider a finite 
family of pairs X = (xi, μi) where xi ∈R and μi denotes a degree of membership or 
more generally a weight (with the values coming from the unit interval) which 
quantifies an extent   to which xi is deemed essential in the context of X.  Furthermore 
there is a typical element in X with the weight (membership) equal to 1. Describe this 
pair as (z0,1). The principle of justifiable granularity is to capture the variability 
(diversity) of numeric data X by a certain information granule in such a way that (a) 
the information granule “captures” elements of X to a significant extent, and (b) 
information granule is specific enough (so that its semantics becomes clearly 
articulated). While these requirements are intuitively appealing, there are still open 
questions as to the formalism of information granules to be used in the realization of 
this construct and the detailed construction of the granule itself (which calls for the 
formalization of the two requirements introduced above). One could easily anticipate 
a variety of approaches. In what follows, as one of the viable alternatives, we consider 
set-based formalism of information granulation.  

Given the set of pairs (xi, μi), see Figure A-1, we are interested in representing 
these membership values by spanning an interval [x-, x+] around x0 so that it realizes 
an intuitively appealing procedure: increase high membership values to 1 and reduce 
to 0 low membership values. In this sense, we form an interval capturing the diversity 
residing within the pairs (xi, μi). The formal rule behind the construction of this 
interval reads as follows 

 

                      

1  togrades membership  toelevate  then ]z,[zz  if i +−∈
 

0  togrades membership  reduce  then ],[z  if i +−∉ zz  

 
1.0 

0.0
x0 x - x+ 

 
Fig. A-1. Computing the interval representation of numeric values through the principle of 
justifiable granularity by elevating and suppressing respective membership grades 
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The bounds of the interval [x-, x+] are subject to optimization with the criterion 
such that  the total changes to the membership degrees (being equal either to 1-μi or 
μi) are made as small as possible.  The values of x - and x+ are determined in such a 
way so that they lead to the minimal value of the following performance index (which 
expresses cumulative changes made to the membership grades) 

 

∑ ∑
∈ ∉

≤∈ +−
]z,[xa ]z,[za

iix:xx,x

21i 21i

2121
}μ)μ(1{Min R

                          

(A.1) 

 

Note that the interval [x-, x+] is not necessarily symmetric around z0 and its location 
depends upon the distribution of xis and their weight values.  

We can consider another realization of the principle of the principle of justifiable 
granularity by taking into consideration not only the required changes made to the 
membership degrees (weights) but the location of the individual xi’s which leads us to 
the area–based criterion. Without any loss of generality, let us make some additional 
assumptions. Consider that x0=0. the set of elements of X which are higher than 0 are 
ordered in an increasing manner, that is x1 <x2 < xn. We compute the following sum 
(which represents areas of the corresponding regions). 

The optimal positive threshold d in R is such for which the expression S2 +(d-S1) 
attains minimum where the areas S1 and S2 are illustrated in Figure A-2.  

 

a 

S1 
S2 

1 

 
Fig. A-2. Optimization of threshold (a) with the use of the area criterion 

 
The principle of justifiable granularity produces an information granule out of 

some numeric entities. Two cases are of particular interest here: 
 

(a) if X includes numeric data (say, readings of some instrument)  then the 
interval representation of X becomes a granular measurement – an aggregate 
of a collection of numeric measurements. 

(b) if X consists of membership grades obtained for the same element of the 
universe of discourse, the obtained interval of membership degrees gives rise 
to the interval-valued fuzzy set. In other words, we can say that the diversity 
in the collection of fuzzy sets can be quantified in the form of a single type-2 
fuzzy set (here interval-valued fuzzy set). 
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Abstract. Wepresent an overviewof RoughGranularComputing (RGC)
approach tomodeling complex systems and processes. Wediscuss the gran-
ular methodology in conjunction with paradigms originating in rough sets,
such as approximation spaces. Weattempt to show the methodology aimed
at construction of complex concepts from raw data in hierarchical manner.
We illustrate, how the inclusion of domain knowledge, relevant ontologies,
and interactive consensus finding leads to more potent granular models for
processes.

Keywords: granular computing, interactive computations, rough sets,
vague concept approximation, interaction of granules.

1 Introduction

Information granulation plays an important role in the process of reasoning under
uncertainty from the experimental data and domain knowledge, where construc-
tions or computations are preformed on objects called granules. One of the key
issues in such computations is related to the approximation of granules. The
framework on which the approximations of granules are based in the rough set
approach to granularity is called Rough Granular Computing (RGC).

Complex granules, essential to approximation of vague concepts are often
learned from distributed environments using hierarchical approach. In such learn-
ing different kinds of granules may be produced. Examples include indiscerni-
bility or similarity classes, patterns, rules, sets of rules, approximation spaces,
classifiers, clusters, process models or agents. More compound granules are often
obtained as a result of interaction between more elementary ones.

In this short paper we outline some of the approaches studied within the rough
granular computing (RGC) framework and their applications in learning of com-
plex granules and granule interactions. The elements of methodology developed
on the basis of RGC were applied to real-life projects. Applications of techniques
originating in RGC are related to, among others, unmanned area vehicle (UAV)
control, robotics, prediction of risk patterns from medical and financial data,
sunspot classification, and bioinformatics.

The paper starts with brief summary of fundamental notions and paradigms in
RGC. Next, we discuss the approach to construction of complex concepts (gran-
ules) from more elementary ones using hierarchical learning. We then present the
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springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



24 A. Skowron and M. Szczuka

possible use of concept ontologies in the process of constructing complex gran-
ules. We also comment on possibilities of using the described RGC approach
to the problem of process mining. We conclude by pointing out that the issues
in RGC that we have discussed are a particular manifestation of problems taht
we try to address within the broader Wisdom Technology (WisTech) research
direction.

2 Selected Issues in RGC

In this section, we discuss some basic issues in RGC. This approach is based
on rough set methods as outlined in [32,33,35]. RGC is an approach aiming at
constructive definition of computations over basic objects called granules. The
goal is to make possible searching for solutions of problems specified with use
of vague concepts. We consider granules being (constructive) definitions of sets
used in assembling compound objects which are satisfying the given (possibly
vague) specification to, at least, satisfactory degree. Granules are usually de-
fined by means of granule systems [45,46]. In a granule system we distinguish
basic building blocks called elementary granules and we introduce operations
making it possible to build new granules from existing ones, either elementary
or constructed in previous steps. Among various possible types of operations on
granules, one can distinguish two special – fusion and decomposition. For more
readings on RGC, the reader is referred to [31,36].

The elementary granules in a given granule system are obtained in the pro-
cess called granulation. The granulation essentially divides the universe of items
(objects) in discourse into a family of blobs (granules). Each granule contains
the collection of objects that we deem indistinguishable in terms of constructed
system. Granules may or may not intersect, depending of the general assumption
regarding granule system. Granular representation can be viewed as an attempt
to mimic the human way of achieving data compression and it plays a key role
in implementing the divide-and-conquer strategy in human-like problem solving
[56]. The RGC approach combines rough set methods with methods based on
granular computing (GC) [2,36,56], borrowing also from other soft computing
paradigms.

2.1 Synthesis of Complex Objects Satisfying Vague Specifications

One of the central issues related to granule systems is the definition of inclusion
and closeness relations (measures) for granules. These measures should be defined
for granules with varying complexity structure. For this purpose we can use the
concept of rough inclusion borrowed from rough mereology [38] as a starting
point.

In real-life applications, we often deal with problems where not only is the
information about objects partial, but also, to make things even more difficult,
the specification of problems is written in natural language. Inevitably, such
specifications involve vague or/and imperfect concepts. In view of that, prob-
lems that we are trying to solve can be characterized as searching for complex
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objects satisfying a given specification to a satisfactory degree [38]. These com-
plex objects should be synthesized from more elementary ones using available
operations. This is directly corresponding to the idea of constructing compound
granules from elementary ones. In the following section, we discuss the approach
searching for relevant granules which rewrites this problem into optimization
problem in GC.

2.2 Optimization in Discovery of Compound Granules

The problem considered in this section is the one of perception evaluation as a
means of optimizing various tasks [15]. The solution to this problem hearkens
back to early research on rough set theory and approximation.

The evaluation of perception we investigate here is at the level of approxima-
tion spaces. The quality of an approximation space relative to a given approxi-
mated set of objects is a function of the description length of an approximation
of the set of objects and the approximation quality of this set. We intend to
show how the approximation spaces translate to granular computing. In GC,
the focus is on discovering granules satisfying selected criteria. These criteria are
expected to be“optimal”, in this manner taking the inspiration from the minimal
description length (MDL) principle proposed by Jorma Rissanen in 1983.

First, we recall the definition of an approximation space from [44]. They are
examples of specialized, parameterized relational structures. Tuning parameters
makes it possible to search for relevant approximation spaces relative to given
concepts. Such approximation spaces can be treated as granules used for concept
approximation.

Definition 1. A parameterized approximation space is a system
AS#,$ = (U, I#, ν$), where

– U is a non-empty set of objects,
– I# : U → P (U) is an uncertainty function, where P (U) denotes the power

set of U ,
– ν$ : P (U)× P (U)→ [0, 1] is a rough inclusion function,

and #, $ denote vectors of parameters (the indexes #, $ will be later omitted whet
it does not lead to confusion).

The uncertainty function defines for every object x ∈ U , a set of objects that
are described similarly to x. The set I(x) is called the neighborhood of x in the
sense of approximation space (see, e.g., [33,44]).

The rough inclusion function ν$ : P (U)×P (U)→ [0, 1] defines the degree of
inclusion of X in Y , where X, Y ⊆ U .

In the simplest case it can be defined by (see, e.g., [33,44]):

νSRI (X, Y ) =

{
card(X∩Y )

card(X) , if X �= ∅,
1, if X = ∅.
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The lower and the upper approximations of subsets of U are defined as follows.

Definition 2. For any approximation space AS#,$ = (U, I#, ν$) and any subset
X ⊆ U , the lower and upper approximations are defined by

LOW
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) = 1} ,

UPP
(
AS#,$, X

)
= {x ∈ U : ν$ (I# (x) , X) > 0}, respectively.

The lower approximation of a set X with respect to the approximation space
AS#,$ is the set of all objects that can be classified with certainty as objects of
X with respect to AS#,$. The upper approximation of a set X with respect to
the approximation space AS#,$ is the set of all objects which can be possibly
classified as objects of X with respect to AS#,$.

Several known approaches to concept approximation can be presented using
the language of approximation spaces (see, e.g., references in [44]). For more
specific details regarding approximation spaces, the reader is referred to [6], [35],
and [47].

The key to granular computing is the information granulation process that
leads to the formation of information aggregates (with inherent patterns) from a
set of available objects. A corresponding methodological and algorithmic issue is
the formation of transparent (understandable) information granules, inasmuch
as they should provide a clear and understandable description of patterns present
in the sample of objects [2,36]. Such a fundamental property can be formalized
by imposing a set of constraints that must be satisfied during the information
granulation process. Usefulness of these constraints is measured by quality of the
approximation space:

Quality1 : Set AS × P (U)→ [0, 1],

where U is a non-empty set of objects and Set AS is a set of possible approxi-
mation spaces with the universe U .

Example 1. If UPP (AS, X)) �= ∅ for AS ∈ Set AS and X ⊆ U then

Quality1(AS, X) = νSRI(UPP (AS, X), LOW (AS, X)) =
card(LOW (AS, X))
card(UPP (AS, X))

.

The value 1−Quality1(AS, X) expresses the degree of completeness of our knowl-
edge about X , given the approximation space AS.

Example 2. In applications, we frequently use yet another quality measure, anal-
ogous to the minimal length principle [40,49], which also takes into account de-
scription length of the approximation. Let us denote by description(AS, X) the
description length of approximation of X in AS. One way of calculating the de-
scription length of approximation is by taking the sum of description lengths of
algorithms that are testing the membership for neighborhoods used in construc-
tion of the lower approximation, the upper approximation, and the boundary
region of the set X . Then, the quality Quality2(AS, X) can be defined by

Quality2(AS, X) = g(Quality1(AS, X), description(AS, X)),
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where g is a function used for fusion of Quality1(AS, X) with description(AS, X)
(their respective values). This function g shall be made relevant to the task. It
can, for example, reflect weights given by experts relative to given criteria.

One can consider different optimization problems related to a given class Set AS
of approximation spaces. For example, for a given X ⊆ U and a threshold t ∈
[0, 1], one can search for an approximation space AS satisfying the constraint
Quality2(AS, X) ≥ t.

Set_AS 

Granulation 
X 

Set_ASg 

Fig. 1. Granulation of parameterized approximation space

Example 3. Another example involves searching for an approximation space
which additionally satisfies the constraint Cost(AS) < c, where Cost(AS) de-
notes the cost of approximation space AS (measured by the number of attributes
used to define neighborhoods in AS) and c is a given threshold. In the this exam-
ple we also consider costs of searching for relevant approximation spaces within
a given family defined by a parameterized approximation space (see Figure 1).
Since any parameterized approximation space AS#,$ = (U, I#, ν$) is a family of
approximation spaces, the cost of searching in such a family for an approxima-
tion space relevant for a given approximation of concept (set) X , can be treated
as a factor of the quality measure. Hence, the quality measure for approximation
of X in AS#,$ can be defined by

Quality3(AS#,$, X) = h(Quality2(AS, X), Cost Search(AS#,$, X)),

where AS is the result of searching in AS#,$, Cost Search(AS#,$, X) is the
cost of searching in AS#,$ for AS, and h is a fusion function. For the pur-
poses of this example we are assuming that the values of Quality2(AS, X) and
Cost Search(AS#,$, X) are normalized to interval [0, 1]. Fusion operator h can
be defined as a combination of Quality2(AS, X) and Cost Search(AS#,$, X) of
the form

λQuality2(AS, X) + (1− λ)Cost Search(AS#,$, X),
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where 0 ≤ λ ≤ 1 is a weight expressing mutual importance of quality and
cost in their fusion. Note, that we assumed that the fusion functions g, h in the
definitions of quality are monotone w.r.t each argument.

Let AS ∈ Set AS be an approximation space relevant for approximation of
X ⊆ U , i.e., AS is the optimal (or semi-optimal), relative to measure Quality2.
By Granulation(AS#,$) we denote a new parameterized approximation space
obtained by granulation of AS#,$. For example, Granulation(AS#,$) can be ob-
tained by reducing the number of attributes or alternating inclusion degrees (i.e.,
changing possible values of the inclusion function). Let AS′ be an approxima-
tion space in Granulation(AS#,$) obtained as a result of searching for optimal
(semi-optimal) approximation space in Granulation(AS#,$) for approximation
of X .

Taking into account that parameterized approximation spaces are examples of
parameterized granules, one can generalize the above example of parameterized
approximation space granulation to the case of granulation of parameterized
granule system.

2.3 Hierarchical Modeling of Granule Structures

Modeling relevant granules such as patterns, approximation spaces, clusters or
classifiers starts from relational structures corresponding to their attributes. For
any attribute (feature) a we consider a relational structure Ra = (Va, {ri}i∈I),
where Va is a set of values of the attribute a. Examples of such relational struc-
tures defined over the attribute-value set Va are: (Va, =), (Va,≤), where ≤ is a
linear order on Va, or (Va,≤, +, ·, 0, 1), where Va = R and R is the set of reals.
By La we denote a set of formulas interpreted over Ra as subsets of Va. It means
that if α ∈ La then its semantics (an object corresponding to its meaning) ‖α‖Ra

is a subset of Va. For example, one can consider an example of discretization of
R by formulas α1, . . . , αk with interpretation over Ra = (R,≤, +, ·, 0, 1), where
‖αi‖Ra for i = 1, . . . , k create a partition of R into intervals.

If A = (U, A) is an information system and a ∈ A then ‖α‖Ra can be used to
define semantics of α over A by assuming

‖α‖A = {x ∈ U : a(x) ∈ ‖α‖Ra}.
Hence, any formula α can be treated as a new binary attribute of objects from
U (see Figure 2).

If A∗ = (U∗, A∗) is an extension of A = (U, A), i.e., U ⊆ U∗, A∗ = {a∗ : a ∈
A}, and a∗(x) = a(x) for x ∈ U , then ‖α‖A ⊆ ‖α‖∗A.

In the next step of modeling, relational structures corresponding to attributes
can be fused. Let us consider an illustrative example. We assumeRai=(Vai , rRai

)
are relational structures with binary relation rRai

for i = 1, . . . , k. Then, by
Ra1 × . . .×Rak

we denote their fusion defined by a relational structure over
(Va1 × . . . Vak

)2 consisting of relation r ⊆ (Va1 × . . . Vak
)2 such that for any

(v1, . . . , vk) and (v′1, . . . , v
′
k) drawn from Va1 × . . .× Vak

we have

(v1, . . . , vk)rrRa1×...×Rak
(v′1, . . . , v

′
k)
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if and only if virRai
v′i for i = 1, . . . , k. One can extend this example by imposing

some additional constraints. For example, if Va1 = R then the constraints can
be defined by a binary relation rε ⊆ R

2 defined by x rε y iff |x− y| < ε, where
ε ∈ (0, 1) is a threshold.

In the process of searching for (sub-)optimal approximation spaces, different
strategies may be used. Let us consider an example of such strategy presented
in [48]. In this example, DT = (U, A, d) denotes a decision system (a given
sample of data), where U is a set of objects, A is a set of attributes and d
is a decision. We assume that for any object x ∈ U , only partial information
equal to the A-signature of x (object signature, for short) is accessible, i.e.,
InfA(x) = {(a, a(x)) : a ∈ A}. Analogously, for any concept we are only given

a 

x … 

α 

x … 

α ∈ La 

… …

Fig. 2. New attribute defined by a formula α from La

a 

x v1 

y w1 

…

…

…

w …

α … 

… 

v

r 

Fig. 3. Granulation to tolerance classes. r is a similarity (tolerance) relation defined
over signatures of objects.
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a partial information about this concept by means of a sample of objects, e.g.,
in the form of decision table. One can use object signatures as new objects in a
new relational structure R. In this relational structureR some relations between
object signatures are also modeled, e.g., defined by the similarities of these object
signatures (see Figure 3).

Discovery of relevant relations between object signatures is an important step
in searching for relevant approximation spaces. In this way, a class of relational
structures representing perception of objects and their parts is constructed. In
the next step, we select a language L consisting of formulas expressing properties
over the defined relational structures and we search for relevant formulas in L.
The semantics of formulas (e.g., with one free variable) from L are subsets of
object signatures. Note, that each object signature defines a neighborhood of
objects from a given sample (e.g., decision table DT ) and another set on the
whole universe of objects being an extension of U . Thus, each formula from L
defines a family of sets of objects over the sample and also another family of
sets over the universe of all objects. Such families can be used to define new
neighborhoods for a new approximation space by, e.g., taking their unions. In
the process of searching for relevant neighborhoods, we use information encoded
in the available sample. More relevant neighborhoods make it possible to define
more relevant approximation spaces (from the point of view of the optimization
criterion). Following this scheme, the next level of granulation may be related to
clusters of objects (relational structures) for a current level (see Figure 4).

a 

x v1 

y w1 

…

…

…

τ(w) 

…

β … 

… 

τ(v) 
rε,δ 

Fig. 4. Granulation of tolerance relational structures to clusters of such structures. rε,δ

is a relation with parameters ε, δ on similarity (tolerance) classes.

In Figure 4 τ denotes a similarity (tolerance) relation on vectors of attribute
values, τ(v) = {u : v τ u}, τ(v) rε,δ τ(w) iff dist(τ(v), τ(w)) ∈ [ε − δ, ε + δ],
and dist(τ(v), τ(w)) = inf{dist(v′, w′) : (v′, w′) ∈ τ(v)× τ(w)} where dist is a
distance function on vectors of attribute values.
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One more example is illustrated in Figure 5, where the next level of hierarchi-
cal modeling is created by defining an information system in which objects are
time windows and attributes are (time-related) properties of these windows.

t tT a1 … 

… 

x 

… 

… …

i rem(i,T) v1i 

… 

…

… …

α

1 j 

v1

j
vj vT 

T 

…

Fig. 5. Granulation of time points into time windows. T is the time window length,
vj = (v1j , . . . , vTj) for j = 1, . . . , T , rem(i, T ) is the remainder from division of i by T ,
α is an attribute defined over time windows.

It is worth mentioning that quite often this searching process is even more
sophisticated. For example, one can discover several relational structures (e.g.,
corresponding to different attributes) and formulas over such structures defining
different families of neighborhoods from the original approximation space. As a
next step, such families of neighborhoods can be merged into neighborhoods in
a new, higher degree approximation space.

The proposed approach is making it possible to construct information systems
(or decision tables) on a given level of hierarchical modeling from information
systems from lower level(s) by using some constraints in joining objects from
underlying information systems. In this way, structural objects can be modeled
and their properties can be expressed in constructed information systems by
selecting relevant attributes. These attributes are defined with use of a language
that makes use of attributes of systems from the lower hierarchical level as well as
relations used to define constraints. In some sense, the objects on the next level
of hierarchical modeling are defined using the syntax from the lover level of the
hierarchy. Domain knowledge is used to aid the discovery of relevant attributes
(features) on each level of hierarchy. This domain knowledge can be provided,
e.g., by concept ontology together with samples of objects illustrating concepts
from this ontology. Such knowledge is making it feasible to search for relevant
attributes (features) on different levels of hierarchical modeling (see Section 3).
In Figure 6 we symbolically illustrate the transfer of knowledge in a particular
application. It is a depiction of how the knowledge about outliers in handwritten
digit recognition is transferred from expert to a software system. We call this
process knowledge elicitation. Observe, that the explanations given by expert(s)
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are expressed using a subset of natural language limited by using concepts from
provided ontology only. Concepts from higher levels of ontology are gradually
approximated by the system from concepts on lower levels.

Fig. 6. Expert’s knowledge elicitation

This kind of approach is typical for hierarchical modeling [3]. This is, in par-
ticular, the case when we search for a relevant approximation space for objects
composed from parts for which some approximation spaces, relevant to compo-
nents, have already been found. We find that hierarchical modeling is required
for approximation of complex vague concepts, as in [27,37].

3 Ontology Approximation in RGC

Approximation of complex, possibly vague concepts requires a hierarchical mod-
eling and approximation of more elementary concepts on subsequent levels in
the hierarchy along with utilization of domain knowledge. Due to the complex-
ity of these concepts and processes on top levels in the hierarchy one can not
assume that fully automatic construction of their models, or the discovery of
data patterns required to approximate their components, would be straightfor-
ward. We propose to include in this process the discovery of approximations of
complex vague concepts, performed interactively with co-operation of domain
experts. Such interaction allows for more precise control over the complexity of
discovery process, therefore making it computationally more feasible. Thus, the
proposed approach transforms a typical data mining system into an equivalent of
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experimental laboratory in which the software system, aided by human experts,
attempts to discover: (i) approximation of complex vague concepts from data
under some domain constraints, (ii) patterns relevant to user (researcher), e.g.,
required in the approximation of vague components of complex concepts.

The research direction aiming at interactive knowledge construction has been
pursued by our team, in particular, toward the construction of classifiers for
complex concepts (see, e.g., [3,4,7,8,9] and also [11,22,25,26,28]) aided by domain
knowledge integration. Advances in recent years indicate a possible expansion
of the research conducted so far into discovery of models for processes involving
complex objects from temporal or spatio-temporal data.

The novelty of the proposed RGC approach for the discovery of approxima-
tions of complex concepts from data and domain knowledge lies in combining, on
one side, a number of novel methods of granular computing developed using the
rough set methods and other known approaches to the approximation of vague,
complex concepts (see, e.g., [3,4,6,7,8,9], [18,22,25,26,28,32,33,35,36,55,56]) with,
on the other side, the discovery of structures from data through an interactive
collaboration with domain experts (see, e.g., [3,4,6,7,8,9],[18,22,25,26,28,36]).
The developed methodology based on RGC was applied, to various extent, in
real-life projects including: unmanned area vehicle control, robotics, prediction
of risk patterns from temporal medical and financial data, sunspot classifica-
tion, and bioinformatics. For technical details please refer to [3,4,6,7,8,9] and
[18,22,25,26,28,36]).

4 Toward RGC for Process Mining

The rapid expansion of the Internet has resulted not only in the ever growing
amount of data therein stored, but also in the burgeoning complexity of the
concepts and phenomena pertaining to those data. This issue has been vividly
compared in [13] to the advances in human mobility from the period of walking
afoot to the era of jet travel. These essential changes in data have brought new
challenges to the development of new data mining methods, especially that the
treatment of these data increasingly involves complex processes that elude classic
modeling paradigms. Types of datasets currently regarded“hot”, like biomedical,
financial or net user behavior data are just a few examples. Mining such temporal
or complex data streams is on the agenda of many research centers and companies
worldwide (see, e.g., [1,41]). In the data mining community, there is a rapidly
growing interest in developing methods for process mining, e.g., for discovery
of structures of temporal processes from observations (recorded data). Works
on process mining, e.g., [10,20,52,54] have recently been undertaken by many
renowned centers worldwide1. This research is also related to functional data
analysis (cf. [39]), cognitive networks (cf. [30]), and dynamical system modeling
in biology (cf. [12]).

1 http://www.isle.org/~langley/,
http://soc.web.cse.unsw.edu.au/bibliography/discovery/index.html
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In [23,24] we outlined an approach to discovery of processes from data and
domain knowledge which is based on RGC philosophy. In the following section 5
we discuss some issues related to granule interactions in process mining that
draw on these previous publications.

5 Interaction of Granules in RGC

Interactions between granules are rudimentary for understanding the nature of
interactive computations [14]. In the RGC framework it is possible to model
interactive computations performed on granules of different complexity aiming
at construction of approximations of complex vague concepts. Approximations of
such concepts are capable of adaptive adjustment with the changes of underlying
data and domain knowledge. Hence, the decision making algorithm based on
the approximation of such vague concepts is also adaptively changing. This is
somewhat contrary to a statement from [53]: “algorithms [...] are metaphorically
dump and blind because they cannot adapt interactively while they compute”.

Models of interaction can be discrete or continuous, static (i.e., restricted
to input-output relations) or dynamic (i.e., defining computations representing
interactions). An example of static interaction is the one between a given in-
formation system IS and a value vector v of attributes returning the message
YES iff there exists in IS an object with the attribute-value vector v. Contin-
uous model of dynamic interaction can be, e.g., defined by relevant differential
equation which models a (part of) real-life dynamical system.

In this section, we discuss some examples of interactions of granules showing
the richness and complexity of granule interactions which should be modeled
in RGC. The first example is related to discovery of concurrent systems from
information systems.

Back in 1992, Zdzis�law Pawlak (cf. [34]) proposed to use data tables (infor-
mation systems) as specifications of concurrent systems. In this approach any
information system can be considered as a representation of a (traditional) con-
current system: attributes are interpreted as local processes of the concurrent
system, values of attributes – as states of these local processes, and objects –
as global states of the considered system. Several methods for synthesis of con-
current systems from data have been developed (see, e.g., [29,42,43,51]). These
methods are based on the following steps. First, for a given information system
S we generate its (formal) theory Th(S) consisting of a set of selected rules
over descriptors defined by this system. These rules describe the coexistence
constraints of local states within global states specified by S. Next, we define
a maximal extension Ext(S) of S consisting of all objects having descriptions
consistent with all rules in Th(S). Finally, a Petri net with the set of reachable
markings equal to Ext(S) is generated. There have been also developed meth-
ods for synthesis of Petri nets from information systems based on decomposition
of information systems into the so called components defined by reducts. This
approach is making it possible to represent a given information system by a set
of interacting local processes defined by some functional dependencies extracted
from data. Interactions between local processes are represented by rules over
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descriptors extracted from data too. It is worth mentioning that the ability to
produce from an information system a structure that is essentially (is similar to)
a Petri net brings significant profits. Petri nets and similar structures have been
studied for decades, and nowadays we have quite potent collection of tools that
make use of these notions, at our disposal.

Granular components 
of function 

approximation 

Interaction (analogy to 
fuzzification) 

Current object 
granule Interaction (analogy to 

defuzzification and 
conflict resolution) 

Possible degrees 
of changes for 
object granule 

New object 
granule 

Fig. 7. Interaction of currently considered granule with the granule represented by
approximation of function describing changes of states

Our second example is related to learning of state changes for agents interact-
ing with dynamically changing environments. One possible approach can be anal-
ogous to modeling by differential equations. However, instead of assuming the
definition of the functions describing these changes we propose to approximate
these functions from experimental data using domain knowledge [23,24]. Once
approximation of functions describing changes is done, we couple it with descrip-
tions of indiscernibility (similarity) classes in which the current state is included
in order to identify indiscernibility (similarity) classes for the next state(s). This
requires some special interaction of granule representing uncertain information
about the current state and the granule represented by approximation of func-
tions describing changes between consecutive states. This interaction is illus-
trated in Figure 7. First, the granule of object is interacting with components of
function approximation. This step is, in some sense, analogous to fuzzification
in fuzzy control. In the case of rule based classifier, this step involves search for
inclusion degrees of object granule and patterns represented by the left hand
sides (antecendents) of rules. This may be perceived as matching membership
degrees in fuzzy controller. Finally, the results of the interaction are fused to
form a granule representing the next state. Again, this step is analogous to de-
fuzzification in fuzzy controller. In the case of rule based classifier, this step is
based on the conflict resolution strategy or voting strategy making it possible to
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select or construct the final decision granule in presence of possibly contradictory,
partially matching rules.

We perceive the idea described above as very important direction for further
research on methods for discovery of process trajectory approximation from data
and domain knowledge.

α β 

 
P1 - set of  paths 

 
P2 - set of paths 

 
the result of the 

shuffle operation 
on P1 and P2 

α # β 

Fig. 8. Interaction of coexisting granules representing processes (sets of paths) P1 and
P2 creates a new process represented by the result of shuffle operation on P1 and P2.
α and β are satisfying the co-existing constraints.

The next example is an extension of the one from section 2.2, with the in-
formation system in which the objects are represented by time windows and at-
tributes describe properties of these time windows (see also Figure 5). Assuming
that some relations in time are preserved between time windows (such as after,
before), one can construct (on the next level of modeling) an information system
with objects representing paths (“trajectories”) of time windows and attributes
corresponding to properties of such paths. Please, observe that indiscernibility or
similarity classes of such information system are sets of paths, identified by the
vector of attribute values (or description of similarity class). Hence, each such
class can be treated as the semantics of a process represented by the description
of the corresponding indiscernibility (similarity) class. Such processes can further
interact. Constraints for vector of attribute values describing the processes are
making it possible to select processes which can, in a sense, co-exist. The process
resulting from such co-existence may be described as the result(s) of shuffling
operation, well known from formal language theory, performed on sets of paths
treated as (syntactical) description of these two processes (see Figure 8). In this
way, we construct objects (their descriptions) for new information system on the
next level of hierarchical modeling. Attributes derived for such objects describe
properties of newly constructed process(es). In this particular case, the interac-
tion is only realized on the level of selecting processes by applying constraints
on attribute value vectors.
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More advanced interaction of processes may occur if we consider the situation
when each path in a given process is represented by a vector of attribute values.
Such a situation may occur when, for instance, paths from the lower level undergo
clustering. Then, some additional constraints can be related to paths of the
resulting process constructed from paths of interacting, lower-level processes.
They may represent results of synchronization of two or more processes. For
example, in any path of the process obtained as a result of interaction between
two lower-level processes states with a certain distinguished property should
separate (appear in-between) states with another specific property.

It should be noted that in practical approaches to modeling it is often nec-
essary to use relevant names (labels) for the constructed processes, tantamount
to their position and rôle in concept hierarchy (or corresponding ontology). To
answer to this requirement one may use methods of inducing, e.g., Petri nets
from examples of paths (see, e.g., [20]).

Another way of looking at modeling of interactions is by employing the agent-
oriented framework. The depiction of agents’ interactions with environment(s)
is essentially based on observation, that each agent perceives only a partial (and
possibly vague) information about environment. On the basis of the perceived
information and its own state the agent derives (creates) some granules, with
the goal of changing the state of environment to its favor. These granules are
involved in interactions with the environment and granules originating in other
agents. Using either competitive or cooperative strategies (coalitions of) agents
involved in interactions form a resulting action which changes the environment(s)
in a way that is in some accordance with components (agent-specific granules).
The approaches that use elements of such interactive agent co-operation are
nowadays popular in multiagent systems [19,50].

In the following, final example we describe an application of domain knowl-
edge in modeling of interactions. We use sentences from (a limited subset of)
the natural language coupled with so called behavioral graphs (cf. [5]) to define
relationships (interactions) that occur between parts of a complex object. In
this example we show such description for the task of recognizing whether at a
given moment the observed road situation leads to imminent danger or not. The
modeling of the system that ultimately is capable of recognizing the extremely
compound concept of dangerous situation on the basis of low-level measurements,
is indeed hierarchical. In the Figure 9 we present a behavioral graph for a single
object-vehicle on a road. This behavioral graph appears in between the lowest
level (sensor measurements) and the highest level (dangerous situation) in the
hierarchy of concepts.

A composition of behavioral graphs, appearing on lower level in the hierar-
chy, can be used to represent behavior (and interaction) of a more compound
part consisting of, e.g., two vehicles involved in the maneuver of overtaking (see
Figure 10). Please note, that the concept of overtaking is built of components
which at some point were also approximated from the lower level concepts. This
is a case of, e.g., changing lane or A passing B (refer to Figure 10).
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Acceleration
on the right lane

Deceleration
on the right lane

Stable speed
on the right lane

Acceleration and
changing lanes from

right to left

Stable speed and
changing lanes from

right to left

Stable speed and
changing lanes from

left to right

Deceleration and
changing lanes from

left to right

Acceleration
on the left lane

Deceleration
on the left lane

Stable speed
on the left lane

Fig. 9. A behavioral graph for a single object-vehicle

1. Vehicle A is
 behind B on the right lane

2. Vehicle A is changing
lanes from right to left,

vehicle B is driving on the
right lane

3. Vehicle A  is moving back
to the right lane,

vehicle B is driving on the
right lane

4. Vehicle A is driving on
the left lane and

A is passing B (B is
driving on the right lane)

6. Vehicle A is before B on
the right lane

5. Vehicle A is changing
lanes from left to right,

vehicle B is driving on the
right lane

Fig. 10. A behavioral graph for the maneuver of overtaking

The identification of the behavioral pattern of a complex object on the ba-
sis of sensory data cannot go forward without (approximation of) ontology of
concepts. It is this ontology that makes it possible to link the low level measure-
ments (sensory concepts) with the high level description of behavioral patterns
[3,4,6,7,9,18,36]. By means of this ontology we establish that – following our road
example – in order to know what the overtaiking is, one has to define a concept
of A passing B, as well as link both A and B to an object-vehicle structure (see
Figure 9).

6 Conclusions

We discussed some issues in modeling of interactive computations over granules.
All these issues are closely related to research directions within the Wisdom
Technology (WisTech) research programme, as outlined recently in [16,17,18].
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Wisdom is commonly understood as the ability of rightly judging based on
available knowledge and interactions. This common notion can be refined. By
wisdom, we understand an adaptive ability to make judgments correctly to a
satisfactory degree (in particular, making satisfactory decisions), having in mind
real-life constraints. The intuitive nature of wisdom understood in this way can
be metaphorically expressed by the so-called wisdom equation as shown in (1).

wisdom = adaptive judgment + knowledge + interaction (1)

Wisdom could be treated as a certain kind of knowledge. Especially, this type
of knowledge is important at the highest level of hierarchy of meta-reasoning in
intelligent agents.

WisTech is a collection of techniques aimed at further advancement of tech-
nologies that make it possible to acquire, represent, store, process, discover, com-
municate, and learn wisdom in designing and implementing intelligent systems.
These techniques include approximate reasoning by agents (or agent teams)
about vague concepts describing real-life, dynamically changing, and (usually)
distributed systems in which these agents are operating. Such systems consist of
several autonomous agents operating in highly unpredictable environments and
interacting with each other. WisTech can be treated as the unifying successor
of database technology, information management, and knowledge engineering
techniques. In this sense, WisTech is the combination of the component tech-
nologies, as represented in equation (1), and offers an intuitive starting point for
a variety of approaches to designing and implementing computational models
for intelligent systems.

There are many ways to build computational models that are based on Wis-
Tech philosophy. In this paper we have outlined just one of them, which based
on the Rough Granular Computing approach.
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Abstract. In this paper, we attempt to relate two different approaches to data 
privacy – the technological approach, embodied in the current Privacy-
preserving Data Mining work, and the economic regulations approach. Our 
main thesis is that none of these two approaches alone will be able to address 
the important, growing data privacy issues. We advocate a hybrid system, com-
bining both approaches in a complementary manner. We present a view of pri-
vacy in the context of an accepted taxonomy of economic goods, stating the 
question: if privacy is exchanged and traded, then what kind of good is it? We 
also show that, viewed in the light of an established economic growth theory, 
involving privacy in the growth process leads to a steady state growth.  

1   Introduction  

Privacy-preserving Data Mining (PPDM) has produced a steady stream of advanced 
solutions addressing different aspects of privacy in the context of data mining. How-
ever, the PPDM field is still in its early days – for instance, there is no agreement 
about the meaning of privacy. The various proposed definitions are related to the data 
itself, and by and large ignore psychological and social aspects of privacy, see 
Spiekerman et al. (2001), Berendt and Teltzrow (2005) for some exceptions to the 
former). It has been observed by Clifton (2005) that interactions between people and 
organizations are an inherent aspect of privacy. Therefore, it seems interesting to turn 
to economics for inspiration and better understanding of privacy and for creative poli-
cies. Results of Varian (1996), Acquisiti (2004), Rasi (2004), as well as Kargupta  
et al. (2007) encourage us to take this view.  

The Inaugural Workshop on the Economics of Information Security at the Univer-
sity of California-Berkeley in 2002 provided the first insight into the problems of 
economics of privacy as distinct from security and of the economics of digital rights 
management1. We continue this trend, and we argue in this paper that privacy preserv-
ing techniques, as we present them here, cannot alone resolve some of the conse-
quences of loss of control of privacy. We introduce the view of privacy as an  
economic good and discuss impact of organization of market for privacy on economy. 
We show that purely administrative regulation of privacy market as well as the  

                                                           
 1 The State of Economics of Information Security, A Journal of Law and Policy in the Information 

Society, Volume 2, Number 2. 
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regulation-free (privacy) market lead to the ineffectiveness, inefficiency, and waste: 
the level of goal achievement is lower than it could have been, given level of engaged 
resources. Our claim is that market for privacy requires a complex, hybrid solution. 
Such solution, however, may appear too expensive to be economically rational. Thus 
we ponder chances of emergence of economic growth (increase of production due to 
the increase of privacy) - as a potential source of funding for the regulatory changes.  

Economic growth considered as a process was thoroughly investigated by econo-
mists (see e.g. Lucas (1998). The main goal of that research is focused on identification 
and explanation of differences in economic growth in different economic systems.  
That research identifies different factors influencing the growth, models them using 
mathematical techniques2 and verifies the models on empirical data. The list of growth 
factors involves rate of investment, capital, level of productivity, innovations, and tech-
nological progress. More recently, human3 and social capital4 are investigated also as 
growth factors. The human capital is usually measured by length of life, numerical char-
acteristics of educational systems (direct or complex, e.g. HDI - Human Development 
Index) etc., while the social indicators include criminality, participatory democracy and 
involvement in political life, see e.g. Putnam (2001).  

Such a variety of growth factors calls for a framework capable to integrate differ-
ent types of variables. This problem has been noticed in economics, which aspires to 
develop a general understanding of economic processes, and to go beyond simply 
providing intuitive explanations of specific situations. Such frameworks allow debat-
ing macroeconomics policies in a logical, reasoned manner. E.g. Robert Solow (1988) 
some thirty years after his seminal 1956 paper said “... there was [in the 1956 paper] a 
paragraph that I am proud of: it made the point that growth theory provides a frame-
work within which one can seriously discuss macroeconomic policies that not only 
achieve and maintain full employment but also make a deliberate choice between cur-
rent consumption and current investment, and therefore between current consumption 
and future consumption...". 

We accept this view when adopting Solow’s approach to investigate privacy as a 
factor of growth. In order to be able to do this, however, we have to position the con-
cept of privacy (more exactly, data privacy as we define it below) with respect to such 
basic notions of economics as goods and markets. We therefore first describe privacy 
as an economic good and discuss possible regulations of the market for privacy. 

Our main idea can be summarized as follows. As mentioned earlier, let us view 
privacy as a good in the economic sense (i.e. non-material entity consumed to satisfy 
human needs). We consume privacy by revealing information about ourselves to an 
interested party for a consideration (this consideration may be either monetary, or in-
formational, e.g. a recommendations/advice).  Abundant examples are provided by 
practices of e-commerce. They are generally consistent with the prevailing non-
technical definition by Alan Westin (1967): privacy is the ability of individuals “...to 
determine for themselves when, how, and to what extent information about them is 
communicated to others”.  

                                                           
 2 The most important classical growth models were presented by Ramsey (1928), Harrod (1939ab) 

and Domar (1946), and Robert Solow (1956). To get deeper insight, see Acemoglu (2009). 
 3 See e.g. Becker (1964) and Becker and Murphy (1990). 
 4 See e.g. Routledge and von Amsberg (2002).  
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Transactions involving privacy are price-free5, in the sense that none of the parties  
involved in a privacy transaction – the person giving away her information and the 
organization acquiring it – uses the price of the information exchanged. In particular, 
the owner (provider, or donor) of privacy is in no position to valuate (price) her in-
formation. The acquirer is at least able to assess the value of aggregated information, 
obtained from many sellers. This makes the transaction asymmetric from informa-
tional point of view. For a privacy transaction to take place, the perceived benefit to 
the seller (provider of information) must exceed the value of privacy he is giving up. 
Likewise, the expected value of the transaction to the buyer (organization) must ex-
ceed the value of the consideration given.  

The classic economics view includes two main kinds of goods (and two less fre-
quent kinds as well, see below). Private goods are normally bought from some finite 
pool of goods, thereby decreasing this pool (subtractability). Access to goods is lim-
ited to those paying for them (excludability). Public goods are normally available to 
all, and do not diminish by the fact of being consumed by one person (e.g. art in a free 
public museum). Seeing privacy as a good raises an immediate taxonomical question: 
what kind of good is it? 

It is known that free market of private goods sometimes proves to be not efficient, 
due to, among others, asymmetry of information, and requires some kind of interven-
tion. This is also the case in price-free privacy transactions. Also market of public 
goods, not always efficient (e.g. due to market externalities), calls for interventions. 
Externalities often plague privacy transactions, as the received information is di-
vulged to third parties. As observed by James Moor, “Personal information about us 
is well greased and slides rapidly through computer systems around the world, 
around the clock”, see Moor (1997).  

Privacy has characteristics of both a private good (one can refuse to “sell” it by not 
providing one’s data) and public good (consumption by one consumer does not pre-
clude other members of society from consuming them to some extent). See a more de-
tailed discussion of privacy as an economic good in sec. 3.1. 

Therefore, for at least two reasons, privacy market calls for regulatory intervention. 
While such intervention is usually understood as intervention of the state, it does not 
necessarily need to be one. For instance, it can take form of a technological frame-
work, such as the PPDM. We claim that sound PPDM has to incorporate market-
related views of exchange and communication.  

Success of a systemic change, such as a regulatory intervention, depends on ability 
to formulate a social contract and agree to it. Regulatory interventions are not cost 
free, as they involve the cost of change and new current costs of functioning of a 
changed system. Thus agreement about such a contract strongly depends on ability to 
finance the change. There are two sources of such financing – firstly, it can be cov-
ered from the budget or regulatory institution and secondly, it can be covered from  
future increase of budget achieved as result of increased performance of the changed 
system. The first possibility requires restructuring of the budgeting and thus it  
destabilizes the current political balance. Achievement of agreement is therefore very  

                                                           
 5 Acquisti and Grossklags (2005) noticed that “…First, individuals are willing to trade privacy 

for convenience or bargain the release of personal information in exchange for relatively small 
rewards. Second, individuals are seldom willing to adopt privacy protective technologies... 
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difficult as it involves losses for some stakeholders. Thus we arrive at the second  
option – expectations of economic growth resulting from the change. 

This argument leads to the question about influence of trading privacy as a good on 
the economy overall. We attempt to develop a simple growth model aimed at proving 
that - under simple assumptions, intuitively interpretable and based on a theoretical 
economic record– there exists a so called steady state of economy. Economy in a 
steady state leads to return at the same rate as invested assets. If one believes that 
regulatory changes lead to better allocation of resources, then he assumes increase of 
product. Increase of product results in increase of investment, which in turn results in 
the growth of the economy. As privacy is treated here as one of resources, we expect 
more effective allocation of privacy will also lead to increase of product and the 
growth of the economy. 

In the presentation of this early phase of research we decided to consider a natural 
and intuitive redescription of Solow model. The basic Solow model is considered by 
the economists as an appropriate tool in analyzing of growth and differences among 
countries. We change the classical Solow model in two aspects. Firstly, we are not in-
terested in further comparative analysis but in the existence of a steady state. Sec-
ondly, we neglect dynamics of labor in belief that it is relatively slow when compared 
to speed of stock (investment changes and technological changes), which put privacy 
issues in the front line of research.  

The paper is organized as follows. Sec 2 provides a review of technological tools 
for data privacy protection, and develops a simple taxonomy of the existing ap-
proaches which allows us to summarize the wealth of research in this field and estab-
lish later a connection with the economic aspects of the results of data processing. 
Sec. 3 views privacy in an economic perspective by viewing privacy as n economic 
good. We discuss the positioning of privacy within the existing categories of eco-
nomic goods. We present the concept of a steady state of market. In sec. 4 we discuss 
different types of data privacy (individual and aggregated) and their relationships. We 
argue the need for a hybrid, technological and regulatory vacy steady state in the 
growth model of economic market.  

Finally, we want to observe that this volume, dedicated to the memory of Ryszard 
Michalski, seems to us be a highly appropriate venue for the work on privacy and data 
mining. Ryszard was very interested in economic and social implications of technolo-
gies, and in the hybrid solutions to difficult problems, e.g. in combining Cognitive 
Science and Computer Science approaches to finding interesting relationships in data. 
The concept we advocate here also promotes a hybrid solution – a mix of regulation, 
market mechanism and technology to preserve privacy rights.  

2   Data Mining and Privacy Preserving Techniques 

2.1   Basic Dimensions of Privacy Techniques  

The data mining field has for the last ten years shown growing interest in the tech-
niques that ensure data privacy in the data mining context. One may identify the 
source of this work in the statistical data disclosure work of the 1970’s and 19080’s, 
see Domingo-Ferrer (2002) for a review of this work. We review here these ten years 
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of research, attempting to provide a taxonomy that can provide the main dimensions 
allowing the understanding and reviewing of this emerging research field.  

Note that since we are not presenting a complete review of PPDM work, but just 
highlight and outline different approaches, we use just one or two representative pa-
pers for the different dimensions of our taxonomy, rather than providing a thorough 
literature review.  

Privacy related techniques can be characterized by a) the kind of source data modi-
fication they perform, e.g. data perturbation, randomization, generalization and hid-
ing; b) the machine learning algorithm that works on the data and how is it modified 
to meet the privacy requirements imposed on it; and c) whether the data is centralized 
or distributed among several parties, and – in the latter case – what is the distribution 
based on.  

But even at a more basic level, it is useful to view privacy-related techniques along 
just two fundamental dimensions. The first dimension defines what are we actually 
protecting as private – is it the data itself, or the model (the results of data mining). As 
we show below, the latter knowledge can also lead to identifying and revealing in-
formation about individuals. The second dimension defines the protocol of the use of 
the data: is the data centralized and owned by a single owner, or is the data distributed 
among multiple parties? In the former case, the owner needs to protect the data from 
revealing information about individuals represented in the data when the data is being 
used to build a model by someone else. In the latter case, we assume that the parties 
have limited trust in each other, i.e. they are interested in the results of data mining 
performed on the union of the data of all the parties while not trusting the other par-
ties with seeing their own data without first protecting it against disclosure of infor-
mation about individuals to other parties.  

In this article we structure our discussion of the current work on PPDM in terms of 
the taxonomy proposed in Table 1. which gives us the following  bird’s eye view of 
this research  field: 

Table 1. Classification taxonomy to systematize the current work in PPDM 

 Centralized Distributed 

Data 

modification 

Agrawal and Srikant 
(2000), 

Evfimievski et al., (2002). 

Vaidya and Clifton 
(2002). 

Algorithm/  

result  

modification 

Oliveira et al., (2004). Jiang and Atzori, (2006). 

2.2   Data Modification 

This subfield emerged in 2000 with the seminal paper by Agrawal and Srikant (2000). 
They stated the problem as follows: given data in the standard attribute-value repre-
sentation, how can an accurate decision tree be built so that, instead of using original 
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attribute values xi, the decision tree induction algorithm takes input values xi +r, 
where r belongs to a certain distribution (Gaussian or uniform). This is a data pertur-
bation technique: the original values are changed beyond recognition, while the dis-
tributional properties of the entire data set that decision tree induction uses remain the 
same, at least up to a small (empirically, less than 5%) degradation in accuracy. There 
is a clear trade-off between the privacy assured by this approach, and the quality of 
the model compared to the model obtained from the original data. This line of  
research has been continued in Evfimievski et al., (2002), where the approach is  
extended to association rule mining. As a note of caution about these results,  
H. Kargupta et al. (2003) have shown in how the randomization approaches are sensi-
tive to attack. They demonstrate how the noise that randomly perturbs the data can be 
viewed as a random matrix, and that the original data can be accurately estimated 
from the perturbed data using a spectral filter that exploits some theoretical properties 
of random matrices. It is therefore clear that, in spite of their technical sophistication, 
technological solutions alone will not fully address the privacy problem, and that one 
has to complement them with a regulatory component.  

Other perturbation approaches targeting binary data involve changing (flipping) 
values of selected attributes with a given probability, see Zhan and Matwin (2004), 
Du and Zhan (2003), or replacing the original attribute with a value that is more gen-
eral in some pre-agreed taxonomy, see Iyengar(2002). Generalization approaches of-
ten use the concept of k-anonymity: any instance in the database is indistinguishable 
from other k-1 instances (for every row in the database there are k-1 identical rows). 
Finding the least general k-anonymous generalization of a database (i.e. moving the 
least number of edges upward in a given taxonomy) is an optimization task, known to 
be NP-complete. There are heuristic solutions proposed for it, e.g. Iyengar (2002) 
uses a genetic algorithm for this task. Friedman et al. (2006) show how to build k-
anonymity into the decision tree induction.  

The simplest and most widely used privacy preservation technique is anonymiza-
tion of data (also called de-identification). In the context of de-identification, it is use-
ful to distinguish three types of attributes.  

Explicit identifiers allow direct linking of an instance to a person, e.g. a cellular 
phone number or a driver’s license number to its holder. 

Quasi-identifiers, possibly combined with other attributes, may lead to other data 
sources capable of unique identification. For instance, Sweeney(2001) shows that the 
quasi-identifier triplet <date of birth, 5 digit postal code, gender>, combined with  
the voters’ list (publicly available in the US) uniquely identifies 87% of the population of 
the country. As a convincing application of this observation, using quasi-identifiers, 
Sweeney was able to obtain health records of the governor of Massachusetts from a pub-
lished dataset of health records of all state employees in which only explicit identifiers 
have been removed.  

Finally, non-identifying attributes are those for which there is no known inference 
linking to an explicit identifier. Usually performed as part of data preparation, ano-
nymization removes all explicit identifiers from the data. 

While anonymization is by far the most common privacy-preserving technique used 
in practice, it is also the most fallible one. In August 2006, AOL published for the bene-
fit of the Web mining research community 20 million search records (queries and URLs 
the members visited) from 658,000 of its members. AOL had performed what it  
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believed was anonymization, in the sense that it removed the names of the members. 
However, based on the queries – which often contained information that would identify 
a small set of members or a unique person – it was easy in many cases to manually re-
identify the AOL member using secondary public knowledge sources. An inquisitive 
New York Times journalist identified one member and interviewed her.  

Sweeney (2001) is to be credited with sensitizing the privacy community to the fal-
lacy of anonymization: “Shockingly, there remains a common incorrect belief that if 
the data look anonymous, it is anonymous”. Even if information is de-identified to-
day, future data sources may make re-identification possible. As anonymization is 
very commonly used prior to model building from medical data, it is interesting that 
this type of data is prone to specific kinds of re-identification, and therefore anonymi-
zation of medical data should be done with particular skill and understanding of the 
data. Malin (2005) shows how the main four de-identification techniques used in ano-
nymization of genomic data are prone to known, published attacks that can re-identify 
the data. Moreover, he points out that for quasi-identifiers there will never be cer-
tainty about de-identification, as new attributes and data sources that can lead to a 
linkage to explicitly identifying attributes are constantly being engineered as part of 
genetics research. Again, particularly for health data, technological solutions need to 
be complemented by regulations.  

2.3   Algorithm Modification 

Is it true that when the data is private, there will be no violation of privacy? The an-
swer is no. In some circumstances, the model may reveal private information about 
individuals. Atzori et al. (2005) give an example of such situation for association 
rules: suppose the association rule a1∧ a2∧ a3⇒ a4 has support sup = 80, confidence 
conf = 98.7%. This rule is 80-anonymous, but considering that  

1 2 3 4
1 2 3

({ , , , }) 80
({ , , })

.0987

sup a a a a
sup a a a

conf
= = ≈ 81.05  

and given that the pattern a1∧ a2∧ a3∧ a4 holds for 80 individuals, and the pattern a1∧ 
a2∧ a3 holds for 81 individuals, clearly the pattern a1∧ a2∧ a3∧¬ a4 holds for just one 
person. Therefore the rule unexpectedly reveals private information about a specific 
person. Atzori et al. (2005) proposes to apply k-anonymity to patterns instead of data 
as in the previous section. The authors define inference channels as itemsets from 
which it is possible to infer other itemsets which are not k-anonymous as in the above 
example. They then show an efficient way to represent and compute inference chan-
nels which, once known, can be blocked from the output of an association rule finder. 
The inference channel problem is also discussed in Oliveira et al. (2004), where an 
itemset “sanitization” removes itemsets that lead to sensitive (non-k-anonymous) rules.  

We will return to algorithmic modifications in sec. 4, where we show that it fills an 
important gap in capturing data privacy as a certain type of economic good.  

2.4   Distributed Data 

Most of the work mentioned above addresses the case of centralized data. The distrib-
uted situation, however, is often encountered and has important applications. Consider, 
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e.g., several hospitals involved in a multi-site medical trial that want to mine the data 
describing the union of their patients. This increases the size of the population subject to 
data analysis, thereby increasing the scope and the importance of the trial. In general, if 
we abstractly represent the database as a table, there are two collaborative frameworks 
in which data is distributed. Horizontally partitioned data is distributed by rows (all par-
ties have the same attributes, but different instances – as in the medical study example). 
Vertically partitioned data is distributed by columns (all parties have the same instances; 
some attributes belong to specific parties, and some, e.g. the class, are shared among all 
parties – as in the vehicle data analysis example). 

To illustrate the importance o such data protocols, we can cite the following  
real-life scenario for a vertical partition: certain models of Ford passenger cars with 
Firestone tires from a specific factory had unusually high tire failures, resulting in 
numerous rollover accidents. Both manufacturers had their own data on the accidents, 
but did not want to disclose them to each other. Only mining all the data (the union of 
Ford and Firestone data) may have led to a solution of this problem.  

Another real-life scenario illustrates the horizontal data partition: several research 
hospitals participate in a medical study. They all have patient data relevant to the 
study and obtaining collecting the same information about the patients (the same at-
tributes). If they could mine the union of their data, the study results will carry sub-
stantively more weight as based on a much larger sample, than results obtained by 
each hospital on its own data. Hospitals, however, are prevented for the reasons of 
privacy regulations in place, from disclosing their data to each other. 

Occupational Health and Safety (OHS)  is another application where distributed 
data is shared in various ways among different parties. In this application, we first 
have a combined database describing people’s jobs and their characteristics, together 
with people’s medical examination and test results. This database will be ideally fed 
by different employees that a person has had over the years, as well as by different 
medical data providers. These organizations will not necessarily wish or be able to 
share their data. We have here a vertical partition of the data. In addition, it may be 
interesting, for the purpose of a research project, to combine the data (from different 
OHS databases) about people who have over the years worked for similar types of 
employers. Again, owners of these databases may not be authorized to share their data 
with other organizations. This is the horizontal dimension of the data partition.  

An important branch of research on learning from distributed data while parties  
do not reveal their data to each other is based on results from Computer Security,  
specifically from cryptography and from the Secure Multiparty Computation (SMC). 
Particularly interesting is the case when there is no trusted external party – all the 
computation is distributed among parties that collectively hold the partitioned data. 
SMC has produced constructive results showing how any Boolean function can be 
computed from inputs belonging to different parties so that the parties never get to 
know input values that do not belong to them. These results are based on the idea of 
splitting a single data value between two parties into “shares” so that none of them 
knows the value but they can still do computation on the shares using a gate such as 
exclusive or, see Yao (1986). In particular, there is an SMC result known as Secure 
Sum: k parties have private values xi and they want to compute Σixi without disclosing 
their xi to any other party. This result, and similar results for value comparison and 
other simple functions, are the building blocks of many privacy-preserving machine 
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learning algorithms. On that basis, a number of standard classifier induction algorithms, 
in their horizontal and vertical partitioning versions, have been published, including de-
cision tree (ID3) induction, Naïve Bayes, the Apriori association rule mining algorithm, 
Vaidya and Clifton (2002), Kantarcioglu and Clifton (1998), and many others.  

We can observe that data privacy issues extend to the use of the learned model. For 
horizontal partitioning, each party can be given the model and apply it on the new 
data. For vertical partitioning, however, the situation is more difficult: the parties, all 
knowing the model, have to compute their part of the decision that the model delivers, 
and have to communicate with selected other parties after this is done. For instance, 
for decision trees, a node n applies its test, and contacts the party holding the attribute 
in the child c chosen by the test, giving c the test to perform. In this manner, a single 
party n only knows the result of its test (the corresponding attribute value) and the 
tests of its children (but not their outcomes). This is repeated recursively until the leaf 
node is reached and the decision is communicated to all parties.  

A different approach involving cryptographic tools other than Yao’s (200 circuits 
is based in the concept of homomorphic encryption , see Paillier (1999). Encryption e 
is homomorphic with respect to some operation * in the message space if there is a 
corresponding operation *’ in the ciphertext space such that for any messages m1, m2, 
e(m1)*’e(m2) = e(m1* m2). The standard RSA encryption is homomorphic with *’  
being logical multiplication and * logical addition on sequences of bytes. To give a 
flavor of the use of homomorphic encryption, let us see in detail how this kind of  
encryption is used in computing the scalar product of two binary vectors.  

Assume just two parties, Alice and Bob. They both have their private binary  
vectors A1,…,N, B1,…,N. In association rule mining, Ai and Bi represent A’s and B’s 
transactions projected on the set of items whose frequency is being computed. In our 
protocol, one of the parties is randomly chosen as a key generator. Assume Alice is 
selected as the key generator. Alice generates an encryption key (e) and a decryption 
key (d). She applies the encryption key to the sum of each value of A and a digital en-
velope Ri∗X of Ai (i.e. e(Ai i + Ri * X)), where Ri is a random integer and X is an integer 
which is greater than N. She then sends e(Ai + Ri *X)s to Bob. Bob computes the  
multiplication  

 M =
1

N

j=∏  [e(Aj + Ri *X)×Bj]  

when Bj = 1 (since when Bj j = 0, the result of multiplication doesn’t contribute to the 
frequency count). Now,  

 M= e(A1 + A2 + · · · + Aj + (R1 + R2 + · · · + R1) * X)  

due to the property of homomorphic encryption. Bob sends the result of this multipli-
cation to Alice, who computes  

 [d(e(A1 + A2 + · · · + Aj + (R1 + R2 + · · · + R1) * X)]) mod X =  

  = (A1 + A2 + · · · + A1 + (R1+ R2 + · · · + Rj) * X) mod X  

and obtains the scalar product. This scalar product is directly used in computing the 
frequency count of an itemset, where N is the number of items in the itemset, and Ai, 
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Bi are transactions of Alice and Bob projected on the itemset whose frequency is 
computed.  

While more efficient than the SMC based approaches, homomorphic encryption 
methods are more prone to attack as their security is based on a weaker security con-
cept, Paillier (1999), than Yao’s approach. In general, cryptographic solutions have 
the advantage of protecting the source data while leaving it unchanged: unlike data 
modification methods, they have no negative impact on the quality of the learned 
model. However, they have a considerable cost in terms of complexity of the algo-
rithms, computation cost of the cryptographic processes involved, and the communi-
cation cost for the transmission of partial computational results between the parties, 
Subramaniam et al. (2004). Their practical applicability on real-life sized datasets still 
needs to be demonstrated.  

The discussion above focuses on protecting the data. In terms of our diagram, we 
have to address its right column. Here, methods have been proposed to address mainly 
the North-East entry of the diagram. Vaidya and Clifton (2002) propose a method to 
compute association rules in an environment where data is distributed. In particular, 
their method addresses the case of vertically-partitioned data, where different parties 
hold different attribute sets for the same instances. The problem is solved without the 
existence of a trusted third party, using Secure Multiparty Computation (SMC). Inde-
pendently, we have obtained a different solution to this task using homomorphic en-
cryption techniques (Zhan et al. 05). Moreover, Jiang and Atzori (2006) have obtained 
a solution for the model-protection case in a distributed setting (South-East quadrant 
in Table 1). Their work is based on a cryptographic technique and addresses the case 
of vertical partitioning of the data among parties. Again, it is related to the privacy in 
aggregated goods as discussed in Sec. 4.  

2.5   Data Privacy and the Two-Tiered Data Representation 

In 1992, [Bergadano et al. 92] introduced the idea of a two-tiered concept representa-
tion, and showed how concepts in such representation can be learned from examples. 
In a two-tiered representation, the first tier captures explicitly basic concept proper-
ties, and the second tier characterizes allowable concept's modifications and context 
dependency. While the goal of this representation was to allow to capture and repre-
sent different degrees of typicality of instances, we believe that the two-tiered  
approach to data representation is also applicable to data privacy.  

In terms of the different kinds of attributes discussed in sec. 2.2 above, quasi-
identifiers do not identify the instance on their own, but when combined can provide 
such identification. Non-identifiers do not identify the data in any known way. We be-
lieve that this can be naturally rendered in a two-tiered representation in the following 
way. The first tier will consist of the attributes which are the non-identifiers and it 
will be used to learn a concept description which can then be rendered public. The 
second tier could consist of the quasi-identifier attributes together with the second-tier 
inference rules that will specify how the second tier information can be added to the 
first tier, and by whom.   

Let us see an example. Suppose a patient in an electronic health record is represented 
by her identifying number, data of birth, address, and relevant medical information: re-
cords of visits, tests, procedures, etc. Explicit identifiers and quasi-identifiers will be the 
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identifying number, the date of birth, the address, etc. We will place this kind of infor-
mation in the second tier, as we do not want it to be involved in the data mining process. 
It could later be used to infer knowledge specific to a given person, if the person author-
izes access to this knowledge about her. We can, at the same time, use and exchange the 
data in the first tier to the extent to which this data is anonymous. To ensure anonymity, 
we could subject it to one of the techniques described in sec. 2.2. 

3   Basic Economics Concepts Related to Data Privacy 

In order to discuss privacy from an economics point of view, we need to introduce the 
basic economic concepts we will use in our perspective on privacy. This Section is 
devoted to the terminology and some axiomatic principles underlying economic 
analysis of privacy. Some of presented comments may seem simplified, but expand-
ing this presentation, although possible and interesting in itself, would not serve the 
clarity of the argument. 

3.1   Motivation of Agents, Goods and Their Economic Classification 

Following Maslow (1943) we assume that human beings are motivated to act by their 
needs. Humans cannot exist if their needs in a hierarchy (from hunger to self-
actualization) are not satisfied. The need for privacy is nowadays accepted univer-
sally. Satisfaction of higher-level needs follows satisfaction of basic needs.  

Modern societies insert human rights in the middle of this hierarchy. The Declara-
tion of Independence and Bill of Rights state that satisfaction of richness of human 
needs satisfaction is unalienable right6 and demand rights’ protection7.  

Economic literature focuses on means to satisfy basic needs. Value of satisfaction 
from consumption of a good, expressed numerically, is called its utility. Individuals 
(called economic agents or shortly agents) are utility maximizers (their decisions are 
driven by utility maximization principle or homo oeconomicus rationality). This 
means that given the choice among consumption of product of higher and lower util-
ity, they will select the former. Utility is usually assumed to be non-decreasing8 and 
concave, i.e. the rate of utility growth decreases9. Advanced needs are investigated in 
psychology, sociology and law more frequently then in economics.  

Agents can take role of producers or consumers. Producers own assets transformed 
into goods. Consumers pay for the possibility of using the goods. Each individual can 
participate in different markets and in different roles.  
                                                           
 6 Declaration of Independence:… We hold these truths to be self-evident, that all men are cre-

ated equal, that they are endowed by their Creator with certain, that among these are Life, 
Liberty and the pursuit of Happiness. 

 7 Bill of Rights: …No State shall make or enforce any law which shall abridge the privileges 
or immunities of citizens of the United States; nor shall any State deprive any person of life, 
liberty, or property, without due process of law; nor deny to any person within its jurisdiction 
the equal protection of the laws. 

 8 This requirement reflects the assumption that agents are greedy – given continuity of avail-
able product they always prefer more then less. 

 9 This requirement is interpreted as risk aversion of agents: increase of utility related to con-
sumption of additional unit of a product of agent whose consumes at some level is smaller 
then in case of consumption at lower level.  
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In economics means which are consumed in order to satisfy human needs are 
called goods. Goods can be directly consumed or invested to produce consumable 
goods. Goods are exchangeable. Usually individuals acquire goods in exchange trans-
actions. Goal of a transaction is to provide parties with a good to be consumed in or-
der to satisfy needs. 

There are substantial goods and non-substantial goods. Bread bought in a store is 
an example of a substantial good as it serves to satiate hunger. Goods which indirectly 
lead to satisfaction of needs are known as non-substantial goods.  For instance, own-
ership rights purchased by a person can be used to achieve economic effect which will 
lead to satisfaction of a need. Thus copyright, license, concessions, patents, brands 
(logo) and know-how are examples of classes of non-substantial goods.  

Let us consider the following two characteristics of goods: the possibility of non-
exclusive consumption of a good and depletability (subtractability) of a good. It is the 
nature of a good that decides about of the consequence of exclusion of others. One 
can be excluded from eating pastries, because of a high prices, or because someone 
else has already eaten all the pastries. One cannot, however, be excluded from con-
suming the results of upgrading of the quality of drinking water in a city-wide system. 
The quantity of a good can either decrease as the effect of consumption (e.g. bread), 
or not (e.g. light from a street lamp). These features of goods can be considered 
jointly, i.e. a good can be non-subtractable and non-excludable:  upgraded water 
available in tubes for everybody is non-excludable, and at the same time drinking it 
does not decrease its quality for the others (non-subtractability). This discussion leads 
us to the following matrix classification of goods.  

 

Table 2. Basic features of good – excludability and subtractability – define four classes of  
economic goods 

 

 Subtractable  Non-subtractable 

Excludable Private Goods Club Goods  

Non-Excludable Common Assets  Public Goods 

 
Private Goods when consumed exclude consumption by other consumers, and they 

are subtractable, e.g. bread. Consumption of Public Good (e.g. military security or 
fire protection) neither excludes their consumption by others, nor it decreases the 
availability of the good. Club Goods (e.g. a painting in a private museum), when con-
sumed, do not become less available for the other consumers (non-subtractability), but 
some individuals (the ones who do not buy tickets) are not able to consume them (ex-
cludability). Finally Common-pool Goods (e.g.fish in the ocean) decrease availability 
when consumed but consumers cannot be excluded from consumption. 

It is important that the nature of goods be decided independently of the organiza-
tion of the market.  

3.2   Market Ineffectiveness and Regulatory Interventions 

Markets are characterized by organization of transactions. A markets is defined by the 
regulations and norms respected in transactions into which participants enter in that 
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market. Different organizations of transactions determine different markets. In free 
markets, conditions of transactions (e.g. price) are decided by parties and no external 
intervention occurs. In central planned economics, external intervention (e.g. official 
price lists) was a rule.  

There are two views on market functioning: the first is related to goal orientation, 
and the second - to performance. Evaluation of the functioning of the market from the 
goal orientation perspective is called effectiveness. Evaluation of market from the 
performance perspective is called efficiency.  

The goal-oriented evaluation of a market is related to the goals of transactions. If a 
market enables achievement of transactions’ goals, then it is effective. The existence 
of homelessness, extreme poverty, hunger and diseases show that needs of popula-
tions are difficult to satisfy universally. While the right to satisfy needs is universal, 
real economies do not provide goods at a satisfactory levels. This shows that markets 
nowadays are not effective institutions - they fail to satisfy the needs.  

The performance-oriented evaluation of a market measures the extent of goal 
achievement. This implies that the goal is not satisfied universally, but only to a cer-
tain extent. As a first approximation we can say that a market works in an optimal 
way if a higher level of performance is not attainable.  

Every market regulation attempts to organize exchanges in such way that resulting 
allocation of goods is possibly profitable. This observation leads to the concept of ef-
ficiency (and a related concept of optimality). 

The allocation A of goods is said to be more efficient than the allocation B if de-
gree of satisfaction of population is higher in the case of A10. If – given allocation A – 
there is no allocation B which is more efficient, then the allocation is said to be 
Pareto-optimal (in sequel it will be called shortly optimal). Let us observe that many 
optimal allocations may exist.  

Thus a minimal requirement for market is to be efficient, i.e. to exclude inefficient 
(non-optimal) allocations.  

Real markets for public and private goods are not effective. Moreover, markets for 
private goods are not efficient – they admit non-optimal allocations.  

Non-optimality occurs e.g. in situations when one buys the over-priced good as a 
result of lack of knowledge about the availability of this product at a lower price. 
Lack of information leads to additional cost without the increase of satisfaction. Situa-
tion when parties have different information about conditions of transactions is called 
information asymmetry.  

If likelihood of punishment can be neglected, then people (utility maximizers) are 
tempted to violate regulation (e.g. non-customers use customer parking). In these 
situations we say that they face the so called moral hazard.  

Information asymmetry and moral hazard lead to externalities and adverse selec-
tion – two mechanisms responsible for market inefficiency. To explain this, let us 
continue the parking example. If a free store parking is frequently used by non-
consumer, then cost of this service is transferred to other customers (it is reflected in 
the margins and paid for by the customers). Such transfer of cost (and sometimes of 
profit) to an external party is called an externality.  

                                                           
10 Let us notice that in reality ineffective allocations although socially undesirable can occur. 
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Unjustified usage of customer parking may result in difficulties in parking and loss 
of customers and decrease of profit of the store. The store may react to this situation 
by increasing the margins and thus may accelerate further loss of customers. This 
leads to lower profit and may encourage the store to further increase its margins and 
will cause further losses of customers. This mechanism is called adverse selection.  

Thus moral hazard and information asymmetry are mechanisms responsible for ap-
pearance of externalities and adverse selection in the market and may result in market 
inefficiency11 (Fig. 1.) 

Impacts of externalities and information asymmetry can be decreased by interven-
tions in the market12. These interventions can take form of formal regulations. 

Ineffectiveness and inefficiency of free market make people turn to state (govern-
mental) control of market organization (state-controlled economy). Historical experi-
ence and theoretical arguments show that state controlled economy is also ineffective 
and inefficient13.  

 

 
 

Fig. 1. Sources of market inefficiency have general nature – do not depend of nature of good 
 

Are there intermediate levels of market control / intervention which may lead  
to optimal states? Literature suggests two interesting solutions. One is called here tech-
nological intervention. Technological developments enable introduction of mechanism 
which exclude free-riding. Use of password-protected WiFi at airports is an example of 
technological intervention which excludes externality.  

                                                           
11 Influence of information asymmetry and externalities on decision making process was studied 

by Acquisti and Grossklags (2005).  
12 Arrow (1963) shows in medical services area that in occurrence of non-optimal states evolu-

tionally non-market regulations are introduced.  
13 Governmental institutions can be coerced by decision makers, and they can ignore the needs 

of population. Furthermore, state regulation requires non-market, administrative driven 
evaluations of product in economy and control of performance of employees. This raises the 
question of credibility of information processed in economic decisions. State control does not 
remove temptations to transfer burdens and privileges between state and agents – therefore 
does not exclude non-optimal allocations. See also Kornai (1980). 
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Another possible solution is and intervention based on social contract, called in se-
quel contractual intervention.  

Contractual solution is an attempt to improve optimality of a non-excludable good 
through change of its basic characteristics – making it exclusive. Basic research is 
good example of this situation. It is socially agreed that results of basic research are 
public – nobody can exclude any person from the use of the Maxwell equation. It is 
also accepted that basic research is funded by the state14. Therefore basic research suf-
fers all the pains of a state controlled enterprise. A social contract could turn basic re-
search into an excludable good: this can be accomplished by means of an appropriate 
legal solution. Allowing patenting of research results obtained in public universities 
changes a public good (research) into a private one. Such contractual change im-
proves efficiency of research. However, making research a private good is also not 
satisficing. Free market funding of basic research is difficult due to moral hazard  
and adverse selection. These mechanisms, together with short-term profit business 
orientation, may negatively the development of science. Higher profitability of appli-
cation-oriented research creates temptation to give up basic research (an externality, 
resulting from free availability of results of basic research) and turn to applied sci-
ence. With time, decreased investment in basic research decreases the rate of scien-
tific progress and finally results in decrease in application and decrease of profits  
(adverse selection). Thus solely contractual regulations are not sufficient. 

Let us now see a hybrid solution. Let us consider an fictitious state where by law 
there are only two public TV channels. The first channel offers information and the 
second - entertainment. There is a public regulator, with a budget to satisfy population 
needs in both areas. The budget is created from taxes and relatively low individual 
monthly payments. In this situation both channels offer public good – watching TV 
by a person does not exclude others from consumption and there is no subtraction. We 
may expect inefficiency, and in fact indeed there is a moral hazard, a temptation for 
free riding – consumers withholding their monthly payments. Cost of administrative 
procedures to recover from free riding makes the risk of punishment negligibly low. 
Decrease of income from monthly payments results in decrease of budget, which in 
turn results in the decrease of quality of programming. Lowering quality of TV pro-
gramming further weakens public’s readiness to pay for public TV. Adverse selection 
forces the public regulator to allocate additional public funds to public TV, in order to 
preserve TV quality. This is obviously an inefficient allocation, since public TV is 
supported by the taxes of people who do not own TV sets, without an increase of their 
utility. 

Contractual regulation in this context could be achieved through legal rule which 
would allow private TV to broadcast entertainment programming and commercials as 
well as collect payments for these services. Technological part of the solution consists 
of the encoding of the private TV broadcast, so that only the paying customers can re-
ceive it (why this technological solution is this generally allowed for private televi-
sion, while not for public television?) 

The mission of public television is to guarantee satisfaction of people’s needs (see 
the Section 2.1). Exclusion from access to information programming – the basic man-
date of public media - may result in information asymmetry and may lead to serious 

                                                           
14 Basic research is so expensive that collective founding is needed. 
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political consequences (in an extreme case – totalitarian abuse of authority). Thus ex-
clusion from informational services is not possible. However, exclusion from con-
sumption of entertainment is possible and therefore allowing private producers in this 
market is acceptable. Let us observe that contractual regulation of entertainment 
based on market of privately broadcasted, coded programs leads to decrease of exter-
nality of the public, fee-funded TV as described above, to a necessary.  

Let us point out that in this case – a hybrid solution involving contractual regula-
tion, and therefore the social contract – costs of change are split between the private 
and public sector. The former invested in change based on future profit predictions. 
These predictions are based on the knowledge of the business and the knowledge of 
the market. The issue of the cost of the public broadcaster requires a more complex 
cost-benefit analysis. Expected public benefits are difficult to measure, are usually not 
cost effective, and require new sources of funding (e.g. economic growth,  which re-
sults from the change of the economic regulations.) 

As shown in the above example, regulatory interventions are not free - they require 
funding. It is therefore important to check whether introduction of changes will not 
dismantle the economy. In the next chapter we briefly review the concept of an eco-
nomic growth in which investment leads to growth of the product and thus creates re-
sources to fund the change. This approach will be continued in sec. 5 in the specific 
context of privacy. 

3.3   Growth in Economy with a Privacy Market 

We consider an economic system described using the concept of its state at the time t. 
The state of economy is described using set of n attributes {xi}i=1,2,...,n. Change of at-
tributes in time (called evolution) is described as a function which is defined on a time 
interval15). When attributes can be described as input or output attributes, they then 
describe economic processes. Input attributes are usually resources, output attributes 
are products. The process is described as mapping from the input space to the output 
space.  

It is worth to remember that from purely theoretical point of view, in the rough 
analysis it is sufficient to compress the concept of resource to its most general category. 
In this Section resources are capital technology and labor. Capital includes hardware, 
land, and finance. Technology involves technical solutions, organization, knowledge 
and information processing. Labor involves not only resources of available work 
(measured e.g. in hours) but also human capital – education, entrepreneurship and 
health. The economic assumption is that they multiplicatively influence the production – 
there is no production if one of them is eliminated. Therefore production will be de-
scribed as a function defined as product of simple expressions depending on measures 
of resources. Given constant capital, we see that the product of technology and labor de-
scribes effectiveness of labor, so it is called effective labor. Let us observe that resources 
play also a dual role – if they can be consumed then they are also products.  

The dynamics of the system is described by system of axioms which can be de-
rived from the economic interpretation. This system of axioms can be represented in a 
mathematical form, usually as system of differential equations.  

                                                           
15 The functions are always assumed to be sufficiently regular to guarantee correctness of 

mathematical operations performed. Also the time interval is not specifically denoted.  
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We say that the economic system remains in a steady state if its evolution is char-
acterised by equal increases of capital and production16. This means that increase of 
capital (i.e. investment) results in increase of production (and there are resources to 
fund regulatory changes and constant costs of regulation). The additional capital can 
be invested in resources used for further production, or for regulatory changes.  

In this section we present shortly basic economic concepts used to analyse eco-
nomic growth dynamics. In next section these concepts will be extended to involve 
data privacy goods. 

Let us denote by t a time moment, by K, L, A – input attributes interpreted as capi-
tal, labour, and technology, respectively. Y denotes the output attribute describing 
product. Consequently production is described using the production function F, 
Y=sF(K,A,L) and AL is effective labor. 

We assume the following set of axioms describing interdependence of variable 
(economic mechanisms): 

 

• Production is split into consumption and savings (which is invested); 
• Invested (increase of stock) part is directly proportional to production;  
• Increase of labor at each moment is directly proportional to population size17; 
• Increase of technology at each moment is directly proportional to technology 

level; 

If we consider evolutions e(t)=[K(t),A(t)L(t)], then these axioms can be described us-
ing the following system of differential equations18. 

A(t)L(t))sF(K(t), =
dt
dK , nL(t) =

dt
dL , gA(t)

dt
dA =  

The condition for steady state is 

  
dt
dY

dt
dK =  

The evolution of economy can be determined if production function is known. E.g. 
for Cobb-Douglas function19 F(K,L)=Y(t)=K(t)α(A(t)L(t))1-α, one gets the following 
formula for evolution starting from (K0=0,A0L0): 

  dt
dK  = sF(K(t),A(t)L(t)) = sF(t,K(t),A0L0e

(n+g)t). 

 
                                                           
16 The dynamics seem mysterious if rates are not equal, since there is difficulty with explana-

tion of reasons for outputs smaller or greater then inputs. 
17 Labor and population are equated here – as we assume that a constant part of population is in 

the workforce, so that any change in population results in an equivalent change of the work-
force, and therefore quantities of population and labor can be treated as equivalent.  

18 The derivative dK/dt – change of stock is explained as investment.  
19 The Cobb-Douglas functional form of production functions is widely used to represent the rela-

tionship of an output to inputs. It was proposed by Knut Wicksell (1851-1926), and tested 
against statistical evidence by Charles Cobb and Paul Douglas in 1928. It has important her fea-
ture of constant returns to scale, i.e. I describes situations that, if assets L and K are each  
increased by rate r, then the product Y increases by r. 
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Hence  
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To investigate the existence of steady states it is convenient to introduce auxiliary  
 

functions 
)t(L)t(A

)t(Y
)t(y =  (production resulted from “unit of effective work AL”) and 

)t(L)t(A
)t(K

)t(k =  (stock resulted for “unit of effective work AL”). Simple computation 

proves that y(t)=F(K,1)=f(k), where f(k) is simplified notation for F(K,1). 
Direct computation proves that under assumed set of axioms, there exists the evo-

lution k* of a system in steady state and it is a solution of the following equation for 
f(k)=F(K,1): 

  ( ) ( )ng*k*ksf
dt

*dk +−= .  

Let us observe that if k> k*, than 0
dt
dk < , which means that system evolution leads to 

values k’ smaller then k until k’ is not smaller than k*. If k’<k*, then 0
dt
dk > , which 

means that system evolution leads to values k” bigger than k’ until k” is not bigger k*. 
Then the state attribute starts decreasing again.  

k” k’

 

Fig. 2. Arrows show convergence to the steady state 

Thus the equation for evolution in steady state describes in fact the adjustment 
mechanism which is responsible for convergence of economy to the steady state tra-
jectory, see Figure 2. 

4   Data Privacy Goods from an Economic Viewpoint 

4.1   Data Goods 

Data influence satisfaction of human needs. According to Maslow (1943), the most 
evident human need for information occurs at cognitive level of his hierarchy – we 
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need information to know, to understand, and explore. Satisfaction of cognitive needs 
conditions self-actualization. We accept the view according to which provision of in-
formation which serves to satisfy human needs is to be treated as human right. Thus 
data are goods in economic sense. As a data serve to satisfy human need, they are 
called data goods. There are non-substantial goods. Let us consider two types of Per-
sonal Data Goods (PDG) – individual personal data goods (IPDG) and aggregated 
personal data goods (APDG).  

Data about my age and about my research achievements are my personal goods – 
my IPDGs. They allow me to satisfy my need for self-actualization. Through a  
contractual agreement, my dean can used my IPDG, merge it with others’ IPDGs, de-
termine my performance index an, e.g.  rank me within a group of peers.  In this  
manner, she creates my APDG.  

According to Alan Westin’s standard definition privacy is the ability of individuals 
“...to determine for themselves when, how, and to what extent information about them 
is communicated to other” (Westin 1967). From a purist economics point of view pri-
vacy can also be treated as need20. Everybody experienced violation of privacy and 
makes an efforts to protect themselves from a similar experiences in future. In our 
discussion, the ability to control IPDG (APDG) will be called individual (aggregated) 
personal data privacy, hence denoted IPDP (APDP). The need for privacy implies 
that means which serve to satisfy the privacy needs can be treated as goods.  

 

Table 3. Classification of data goods 
 

 Individual Aggregated 

Personal Data Good (PDG) IPDG APDG 

Personal Data Privacy (PDP) IPDP APDP 
 

They are discussed in detail in four subsequent sections devoted to IPDG, IPDP, 
APDG, and APDP respectively21.  

4.1.1   Individual Personal Data Good  
Law is to protect property - including personal goods of every person. There is no 
formal definition of personal good as it would depend on different values respected 
differently by different people. Legal regulations usually list here: health, freedom, 
honor, dignity, freedom of conscience but also name, image, confidentiality of corre-
spondence, inviolability of private property, creativity in the arts and sciences. 

Personal goods are culturally rooted and related to values shared by a given soci-
ety. They are difficult to valuate, but possessing them can influence the economic 
situation of their owner.  

Personal goods are related to every person. An individual can produce individual 
personal data goods, e.g. movie star can attempt to improve her media image image. 
                                                           
20 Probably privacy is not the basic need, see e.g. Moor (1997) for further discussion of this issue. 
21 It has been pointed out that data that is not considered private today (e.g. someone’s single hair) 

may be universally considered private with time. E.g. in ten years it may become cheap and 
easy to obtain a person’s genetic make-up, including their propensity to specific diseases, from 
a person’s single hair. 
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However, IPDG cannot be sold or inherited. Usually an individual is well-informed 
on ownership of her IPDGs.  

For example, non-regulated personal data transaction occurs when data good seller 
(IPDG) (a buyer of e.g. apples in a store) gives hers telephone number to data 
buyer/acquirer (seller of apples). In this case there is no price – no money is involved.  

Let us comment on this price free transaction. Why would a buyer provide a seller 
with his personal information? This behavior is rooted in Lucas’s (1972) theory of  
rational expectations which is based on assumption that agents’ decisions reflect  
expectations concerning future states of the economy as well as past and currents ex-
periences22. Thus investment is driven by their expected profitability. Privacy dona-
tion in form of disclosure of telephone number can be viewed therefore as investment 
which will be returned later. This donation does not exclude the possibility to disclose 
the telephone number to other parties.  

IPDGs are therefore Club Goods: they are excludable and non-subtractable. 

4.1.2   Individual Personal Data Privacy  
Processing of IPDGs is subject of scrupulous protection. This protection is strictly de-
fined especially in the area of so called sensitive personal data (e.g. ethnic or race ori-
gin, political opinions, religion, health, genetic code, personal habits, sentences).  

The perception of personal data violations is extremely subjective, culture depend-
ent23. Our perception of privacy can be very different from the reader’s one. Still, 
there are effective legal tools to cope with this problem.  

Violation of personal goods can be accepted only with permission by owner24 of per-
sonal goods or by law. Otherwise he who harms owner of a personal good is obliged by 
law to give up her actions, and if it is too late, then she has to compensate the losses to 
the harmed person. As an example of a privacy transaction, let us consider situation 
when one makes available her private flat for a film production. In this case the ex-
pected profitability usually results in the pricing of the loss of privacy (i.e. in our view, 
the sale of privacy). The price reflects the value of privacy for the owner of the flat. 

Individuals can produce privacy protecting access to his IPD (e.g. resigning from 
providing data on websites). Individual can also consume privacy (e.g. consciously 
controlling his availability for telephone calls). 

Contrary to IPDG, the IPDP can be sold, e.g. a movie star can sell rights to her im-
age to a cosmetics firm for a price (profit). Cosmetic firm then consumes the star im-
age for advertising purposes. 
                                                           
22 This approach extends framework of theory of adapted expectations, according to which only 

information on past and current states of economy are processed to build expectations used in 
decision analyses. 

23 This view is widely documented in literature of the subject. 
24 This is the issue of the so called opt-in and opt-out approach to seeking a person’s permission 

to use their data. The opt-out approach will use the data unless the person whose data is used 
explicitly disallows such use, e.g. when filling out an on-line form and submitting personal 
data when registering for a service. The opt-in approach will authorize the use of that data 
only when a person explicitly allows such use (most likely, at the time of data collection). 
Due to the differing legal frameworks, the opt-out approach prevails in North America, while 
the opt-in approach is compulsory in the European Union. Both options accompany the situa-
tion of giving away one’s privacy. Opting in gives more, and opting out – less control to the 
provider of data, who gives away some amount of his privacy. 
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An individual is usually well-informed on ownership of her IPDP.  
IPDP is a private good: it is excludable and subtractable. 

4.1.3   Aggregated Personal Data Good 
Innovation in data processing and the increase of scale of collection, storage and 
processing of massive amounts of individuals’ data results in producing  new data de-
scribing individuals – e.g. consumer profiles. Machine Learning algorithms enable 
finding patterns in personal data and lead to new knowledge about an individual.  

As an example one can consider a worker whose data are is included in the data-
base representing individuals’ records in an Occupational Health and Safety system. 
Processing of workers population data allows creating knowledge about their health 
risk. The information on health risk has obviously value for a person considering a 
given job, who could change her decision about taking this job (mechanism similar to 
use of weather forecast). But this information also has value for employers, insurance 
companies etc. Therefore this knowledge can be useful for the satisfaction of needs of 
both the worker and the employer (decreasing uncertainty related to their decisions). 
Aggregated data may also e.g. pharmaceutical companies in designing their research 
and product development efforts.  

There are three groups of actors in a typical good production and exchange scenario. 
The first one is a population of individuals whose records are collected, stored in Data 
Bases (DBs) and processed according to requests. The second group consists of subjects 
who own DBs - - we will call them Data Bases Administrating Institutions (Data Custo-
dian). The third group are market customers – usually corporations or state institutions.  

Herself, an individual cannot produce APDG since she cannot operate on DB re-
cords. However, an individual can consume APDG (e.g. finding information of about 
her health risk).  

Also Data Custodian cannot produce APDG without individuals’ participation 
since DB requires the creation and use of individual records - not possible without in-
dividual’s participation. Data Custodian can produce privacy (e.g. hiding information 
of risk related  to individual’s  health)25. However, for Data Custodian, the APDG she 
produces is usually non-personal good but common asset (excludable and non-
subtractable). We can observe here that such actions of the data custodian correspond 
the the algorithmic modification kind of PPDM, discussed in sec. 2.3.  

Market customers organizations cannot produce APDG either, but they can buy 
APDG (e.g. market surveys, or Occupational Health and Safety risk profiles). As we 
see, APDG is a common asset, but its nature is not stable. In particular, firms can re-
sell APDG, which becomes then a private good. In particular if they resell APDG 
which changes the characteristics of APDG from a common asset a to public good. 

Let us notice that right to ownership of APDG is distributed. This right is in a 
sense spread in a population and shared by this population and the Data Custodian. 

Distribution of ownership is responsible or the fact that individual is not always in-
formed on ownership of her IPDG.  

Let as summarize. The knowledge obtained from APDG processing has three im-
portant features. It cannot be obtained by individual herself since she cannot operate 
                                                           
25 The custodian could achieve this by protecting the individual data within APDG. This has not yet 

become the norm, despite the availability of technical tools that provide this kind of protection 
(Sec. 2). 
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on DB records. It can be used to satisfy human needs (i.e. is a data good). It can play 
role of personal data good, or private good or public good depending on parties who 
exchange the good. 

It seems that moral hazard and information asymmetry are unavoidable features of 
any market of IPDG. This dismantles any hope for the efficiency of such markets. 

For different actors APDG has different characteristics as a good. For individuals it 
a club good: excludable and (non)subtractable. For Data Custodian it is a Common 
Asset; for companies it is a Common Asset as well. 

4.1.4   Aggregated Personal Data Privacy 
If an individual is well-informed about her APDG, then she can consume her APDP. 
As a personal good any APDG (a profile of a personal data of a group of individuals) 
creates the issue of APDG control, i.e. creates APDP. Most PPDM tools used to  
protect IPDP fail for APDP. Data processing created a new threat for the privacy of 
individuals whom the data represent.  

We see that an individual faces difficulties with control of his APDG because she 
may not be informed on its existence (e.g. in case if Data Custodian has not informed 
individual data providers on results of data aggregation and inference - before or after 
data processing)26.  

The threat for APDP is increased by the distributed ownership. APDP requires – at 
least theoretically - control of a population and of the Data Custodian.  

If an individual is well-informed about her IPDG, then she can consume her APDP. 
Again it seems that moral hazard and information asymmetry are unavoidable fea-

tures of any market of IPDP, and that efficiency of such markets is impossible. 
APDP is a private goods: excludable and subtractable. 

4.2   Data Market Ineffectiveness and Regulatory Interventions 

Data Market is defined by regulations and norms respected in economic transactions 
dealing with data exchanges. Its main characteristics were discussed above and are 
listed in Table 4. 

Let us make two important remarks. Firstly, every data good can be transformed to 
public good through publication. Secondly any privacy is a private good. 

From sec. 3.1 we conclude that markets for personal data goods and privacy cannot 
be effective thus regulation is needed. Let us return to description of transactions and 
consider types of data market organization. 

We assume that each individual has some knowledge of his personal data (certainly 
individual, and occasionally- aggregated) and ability to control their use – data pri-
vacy. This knowledge represents a  for him a value which we call data utility (specifi-
cally: personal good utility and privacy utility). 

The efficiency (Pareto-optimality) concept applies the allocation of goods (see  
sec. 3.2) to personal data good, which characterizes states of the data market. Again, 
there can exist many optimal allocations.  

Since data privacy – individual or aggregated - is a private good, thus we may ex-
pect existence of a moral hazard and information asymmetry leading to externalities 

                                                           
26 There is no privacy for other actors: Data Custodian and market customers do not treat the 

APDG of an individual as personal good. 
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and adverse selection and to non-efficient states. As for any other good, in situation of 
information asymmetry, data/privacy provider may accept a lower than possible price.  

The temptation to undervalue one’s own privacy jeopardizes the privacy of one’s 
family, leading to moral hazard. As the result, the family may be exposed to hardship 
(e.g. unwelcome media interest), or – alternatively - enjoy extra profits, which proves 
that externalities can occur. Again, as in the general case, leads to non- optimality. 

 

Table 4. Data Market Characteristics. Table entries contain different characteristics of personal 
and aggregated data in their top part, and the classification of these kinds of data in terms of the 
economics goods in their bottom part (italics). 

 

 Individual Data  Aggregated Data 

P
er

so
na

l G
oo

d 

Culturally rooted and related to 
values shared by societies.  
Difficult to price 
Influence owner’s economic 

situation.  
Related to every person.  
Individual can produce IPDG.  
IPDG cannot be sold or inher-

ited.  
Individual is well-informed 

about ownership of her IPDGs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Club goods: excludable, non-

subtractable 

Actors: population, Data Custo-
dian, market customers.  
Herself, individual cannot pro-

duce APDG.  
Individual can consume APDG.  
Herself, Data Custodian cannot 

produce APDG.  
Data Custodian can produce 

(profit from it and own it) privacy 
(APDP) as common asset (ex-
cludable and non-subtractable).  
Market customers cannot pro-

duce APDG. 
Market customers can buy 

APDG as common asset.  
If APDG is sold to public media 

it becomes a public good. 
Ownership of APDG is distrib-

uted.  
Individual is not always informed 

about ownership of IPDG. 
For individual - club goods: ex-

cludable, (non)subtractable 
 
For Data Custodian and firms - 

Common Asset  

P
ri

va
cy

  

Individual can produce privacy. 
Individual can consume privacy. 
IPDP can be sold. 
An individual is well-informed 

on ownership of her IPDP. 
 
Private goods: excludable, sub-

tractable 

Individual cannot produce 
APDP. 
Individual can buy APDP. 
Difficult control of her APDG.  
 
 
 
Private goods: excludable, sub-

tractable 
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As far as APDP is concerned, let us consider two groups of exchanges. In the first 
group there are exchanges between individuals and the Data Custodian, in the second 
- between the Data Custodian and market customers (firms or state institutions). In the 
first group exchanges are usually price-free. In the second group transactions are 
priced. Exchange in the first group can be treated as a specific economic transaction. 
There is a flow of the investment good (personal data) to the Data Custodian. Data 
processing is usually financed and generating profit or at least cost refund. In ex-
change, the owner of personal data may have access to the APDG good (the result of 
processing of his personal data). When he connects his personal data to the this 
APDG, he creates new personal knowledge - a new good in the form of IPDG. The 
personal data owner can then control the privacy of this good.  In the second group we 
have a typical market situation. Participants of the market are Data Custodian and 
firms. Data Custodian offers aggregated or anonymous data. Both sides attempt to 
price the value of privacy. It is interesting that this is precisely a market valuation of  
privacy, since on the one hand - without individuals giving up their privacy firms 
would not get the information, and on the other – without expectation of profit firms 
would not accept the price they need to pay the individuals for their IPDG. 

Let us return to example of Occupational Health and Safety records. We have two 
groups of actors: individuals, and organizations. Both groups face temptation to abuse 
good faith of others - moral hazard.  

Firstly, the individual experiences moral hazard to hide information about his 
health in order to improve his position in the labor market or as insurance company 
customer27. This will cause adverse selection (decrease quality of labor) and will re-
sult in privacy market inefficiency.  

Secondly, employers or insurers are tempted to apply discrimination practices 
based on the acquired APDG-based knowledge. From economic point of view they 
are tempted to externalize - to decrease cost of labor.  

Conclusion is straightforward: free, unregulated data market is to suffer non-
optimality. Free market has to face regulations. And such regulations are continuously 
and gradually introduced since half of a century. Nevertheless, a partly regulated 
economy which uses only administrative mechanisms to control privacy data market 
appears not effective. Time and again we learn about serious leakages of sensitive 
data, despite the regulations in place. Again, technological solutions, from the stan-
dard data encryption to PPDM representations presented earlier, exist to alleviate (but 
not fully solve) this problem.  

The US data privacy market was thoroughly investigated in a paper by Laudon 
(1996)28. While some of the context information should be updated, e.g. due to the 
raise of internet, his analysis of roots, foundations and mechanisms of data markets 
remains right, and his conclusions seems even stronger a decade later.  

Let us reword Laudon’s original statements: data privacy market exists, it is inef-
fective and unfair and its ineffectiveness can be removed only through economically 
driven control of privacy transactions. To this end he proposes a specific market 
structure and explains its organization of transactions in the form of a National Infor-
mation Market (NIM). Laudon’s Market is organized as a stock exchange. Problems 

                                                           
27 See also Varian (2004). 
28 As we have shown in sec. 4.2, free data privacy markets cannot work. 
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of asymmetry and externalities are to a large extent- .resolved through regulation This 
solution adds some new problems similar to the ones already known to financial mar-
kets regulations29.  

Let us add, however, that another serious difficulty with NIM is related to the ex-
pected cost and complexity of this solution. 

Economic reasoning shows that all free data markets may be not effective – effective-
ness calls for regulatory intervention. Loudon has shown that existing data privacy mar-
kets are partly regulated in a purely administrative sense and that they are ineffective.  

Laudon’s proposition of the NIM seems premature although it attempts to expand 
administrative regulation with intervention of an economic regulation enabling free 
trade of personal information. Without addressing the specificity of data privacy in-
formation, Laudon addresses issues of moral hazard and asymmetry of information at-
tempting to reduce their undesired impact. He foresees problems of societal nature, 
neglects issues of non-optimality for different classes of goods, and does not take into 
account solutions provided by the IT technology (such as PPDM). 

Acquisti (2002) reveals similar doubts about the existence of satisfactory purely 
economic regulation to privacy trade - he says “…It is clear that the economic incen-
tives have failed to generate alone workable solutions: it seems like privacy is more 
difficult to sell than to protect...”  

Our claim is that including technological (data processing and algorithmic) solu-
tions some of these problems can be overcame. Still, it is not inexpensive. Therefore 
funding of this change has to be reflected in growth of economy. This issue is dis-
cussed in the next Section. 

4.3   Growth in Economy with Privacy Market 

As previously, we consider an economic system described by states at the time t. We 
consider n attributes {xi}i=1,2,...,N = πI .The attribute xN-1=πA is called the individual 
data privacy, and xN=π is called the aggregated data privacy. We assume that 
changes of labor are slow and small enough to consider them constant and negligible 
in analysis of results of fast data processing. In our view, privacy is produced by indi-
viduals as they take decisions controlling the use or non-iuse of their data, therefore 
the labor involved is the decision process that leads to the control actions. .Again, we 
consider evolutions of input and output attributes, which now describe economic 
processes involving privacy. The dynamics of the system is again described by system 
of axioms derived from economic interpretation and presented in a mathematical 
form. We say that the economic system is in a privacy steady state, if unit of growth 
of privacy results from unit of growth of an input attribute30). We assume the follow-
ing set of axioms describing interdependence of variable (economic mechanisms): 
                                                           
29 Laudon presents also a sound and honest analysis of problems related with his proposed NIM. 

A long list of difficulties shows that to set up a NIM one has win  a political and regulatory 
struggle to introduce fundamental  modifications of the social, legal and economic frameworks. 
Social and legal issues are in implementing NIM are related to the problem of social approval to 
sell a basic right (privacy), the problem of inequality (the rich and powerful would benefit from 
NIM? to a greater extent than the poor), radical changes in the American property law. Laudon 
also points out the problem of costs related to NIM (business transaction and administrative 
costs) as well as the issue of the necessary trade regulation. 

30 Other cases will be considered elsewhere. 
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• Privacy plays dual role: individual data privacy it is an input asset, while ag-
gregated data privacy is an output asset (it can be reinvested or consumed).  

• Individual data privacy can be produced using, stock products, and technology.  
• Aggregated data privacy requires individual data privacy to be produced.  
• Privacy is therefore split into individual and aggregated parts (only APDP is 

invested and the result of this investment is an increase of the capital and de-
crease of individual data privacy. 

• Increase of growth in aggregated privacy is directly proportional to level of 
individual privacy;  

• Increase of labor at each moment is directly proportional to population size; 
• Increase of technology at each moment is directly proportional to technology 

level; 

Let us denote by t a time moment, by K and A– input attributes interpreted as capital 
and technology, while πI (πA) is the attribute describing individual (aggregated) data 
privacy. Let as consider production function Y=sG(K,A,πI,πA) and aggregated data 
privacy production function PA, PA=σH(K,A,πI). 

The product J= KAπIπA is called effective information resource. We assume that  
the function G(K,A,πI,πA)=F(K,J) and that F  is homogeneous in both variables (i.e. 
F(cK,cJ)=c F(K,J)).  

If we consider evolutions ε(t)=[K(t),A(t),πI,πA], then these axioms can be described 
using the following system of differential equations31. 

dt
)t(dK  = sF(K(t),A(t) πI(t) πA(t))=sF(K,J)    (A1) 

dt
)t(dA  = gA(t),       (A2) 

dt
)t(d Iπ  = aπI(t)       (A3) 

dt
)t(d Aπ  = bπA(t)       (A4) 

We moreover assumed also that the function  

G(K,A,πI,πA)=F(K,J)=KαJ1-α, where 0<α<1, (*) 

Theorem 1. Let τ∈C1 and the superposition τ◦G is of the form: 

τ◦G = sG(K(t),A(t)L(t)H(t)) 

and it satisfies the Lipschitz condition. Then, given the initial condition K(t0)=K0, 

A(t0)=A0, 
0
I0I )t( π=π  and 0

A0A )t( π=π , there exists a neighborhood of t0, where 

the mapping τ(t)=A(t)πI(t)πA(t) has unique solution32, which we input to A1:  

                                                           
31 The derivative dK/dt – change in stock - corresponds to investment (according to the assumption 

it is equal to savings). 
32 Explicitly, A(t)= A0e

gt, at0
II e)t( π=π , and bt0

AA e)t( π=π , thus  

    τ(t)=A(t)I(t)A(t)= ( ) btatgt0
A eee)bag π++  = ( ) t)bag(0

Ae)bag ++π++  
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( ))eA)bag),t(K(sF))t()t()t(A),t(K(sF
dt
dK t)bag(0

A
0
A0AII

++ππ++=ππ=  

Theorem 2. A. The solution of the equation A1 i.e. the trajectory τ:[T0,T1]→R3, 

τ(t)=(K(t),A(t), Iπ (t) Aπ (t)), of economy G+, with production process represented by 

the Cobb-Douglas production  

Y(t)=K(t)α(A(t) Iπ (t) Iπ (t))1-α  

and the initial state τ(t0)=( 0
A

0
A00 ,,A,K ππ ), is of the form: 

A(t)= A0·egt, at0
II e)t( π=π , bt0

AA e)t( π=π ,  

( )tbag0
A

0
A01

0
A

0
A

e)A(
g

s
)t(K ++

α− ⋅ππ
π+π+

=  

B. For the economy described with production process described by the Cobb-
Douglasa function, there is a steady growth trajectory. The condition: s=g+a+b then 
holds. 

Let us denote δ=a+b 
)t(J
)t(K

)t(k = and 
)t(J
)t(Y

)t(y = . Moreover  

Lemma 1. Let f(x)=F(x,1), then 

A. )k(f)1,k(F)1,
J
K

(F
J

)J,K(F
J
Y

y =====     

B. In steady state the following equation holds 

( ) ( )bagkksf
dt
dk ++−= .  

The interpretation was given in Figure 2. It explains adjustment dynamics of market 
of privacy, as in sec. 2.3.  

5   Discussion 

In order to create the language in which we can express this result about the econom-
ics of privacy, we found it useful to view privacy as an economic good. A contribu-
tion of this paper is the discussion of privacy in the framework of the standard  
quadrant of the economic classification of goods. This taxonomy of goods introduces 
private, public, and club goods, and common assets.  We show how privacy, individ-
ual and aggregate, fits in this quadrant.  This has interesting implications both eco-
nomically, as well as for the technical work on privacy preserving methods (PPDM).  

Economics has recognized extensions to Solow’s 1956 model with human and so-
cial capital. In this paper we propose to extend it even further, by including privacy as 
yet another factor. We show that such an extension works, in the sense that the result-
ing growth in privacy, viewed as one of the resources,  leads to a steady state. 
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We also argue that it is interesting to connect this discussion with the technology of 
privacy, i.e. PPDM. We have made the first step in this direction. We want to observe 
that recent work in PPDM on protecting of privacy of models (as opposed to protec-
tion of privacy of data, as most of PPDM algorithms and representations do), when 
seen from the point of views of privacy as a good, fills an important gap, as it ad-
dresses producing privacy at the aggregate level (APDG in our notation).  

Finally, having reviewed the economic and technological aspects of trading and 
protecting privacy, we show that neither technology nor economic regulation existing 
today seem to be able to resolve issues related to fundamental challenges of markets 
for privacy.  
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Appendix – Proofs 

The proof of Theorem 1. The existence of solution is immediate consequence of ex-
istence theorem which is well known in differential equation theory, por. Dubnicki  
et al. (1996).  

The proof Theorem 2. A. The formula is derived form the direct calculation: 
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The proof of Theorem 2. B. Let us check the steady state condition.  
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Savings cannot exceed the production so 0<s<1, thus 0<g+a+b<1.                          
The proof of Lemma 1. A – immediate. To prove B let us compute LHS.  
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( ) ( )bagk ksf   0
dt
dk ++≤⇔≤  

If k* (the trajectory in steady state) solves the above equation (the graphs of functions 
sf(k)+hk and k(δ+n+g) intersect), then any perturbation of k* has to converge to k*. 
If k> k* (k> k*), then k decreases (increases). 
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Abstract. No matter how good a computer player is, given enough time human
players may learn to adapt to the strategy used, and routinely defeat the computer
player. A challenging task is to mimic this human ability to adapt, and create a
computer player that can adapt to its opposition’s strategy. By having an adaptive
strategy for a computer player, the challenge it provides is ongoing. Additionally,
a computer player that adapts specifically to an individual human provides a more
personal and tailored game play experience. To address this need we have inves-
tigated the creation of such a computer player. By creating a computer player that
changes its strategy with influence from the human strategy, we have shown that
the holy grail of gaming – an individually tailored gaming experience, is indeed
possible. We designed the computer player for the game of TEMPO, a zero sum
military planning game. The player was created through a process that reverse
engineers the human strategy and uses it to coevolve the computer player.

1 Introduction

A common method of representing a computer player is by a static strategy for game-
play. The representation of the strategy could be a neural network, a set of IF – THEN
rules (fuzzy or not), decision trees or many other means. Regardless of the representa-
tion, the use of a static strategy results in a computer player that becomes obsolete once
the human player adapts to it. When a computer player ceases to challenge the human
player, it is no longer fun to play against. Thus, a game-play experience that is unique
depending on the circumstance, and the human game strategy used, has been of sig-
nificant importance in recent years. Games such as Fable (Lionhead Studios) and Star
Wars: Knights of the Old Republic (BioWare), which change the game scenario depen-
dant on the choices the player makes (to be a good, or evil character) have been very
successful. The ‘choose your own adventure’ style has proven to be a lucrative venture,
and adaptive adversaries are key to continued success. It seems that the ability for a
computer player to adapt to an individual human player is the holy grail of game-play.

Additionally, the ability to provide an adaptive computer player that tailors itself to
the human player has a lot of potential in the training industry. It is now fairly well ac-
cepted that playing computer games is beneficial for teaching purposes [5]. The ability
to provide a fun and challenging way of learning has clear benefits. The problem lies in

J. Koronacki et al. (Eds.): Advances in Machine Learning II, SCI 263, pp. 75–100.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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finding a way to provide the individualistic training for each student. Currently this lies
in providing a level rating (e.g. easy, normal and hard) that the player can choose. This
system is inadequate however, as the classification of student levels into (normally)
three levels of expertise has obvious disadvantages. Instead, by adapting to the indi-
vidual human, the game play is not standardized for a wide category of expertise. As
identified by Charles et. al. [7], in relation to adaptation in games:

Adaptation as such is strongly connected to learning and we may use it to learn
about a player in order to respond to the way they are playing, for example by
adjusting a computer opponent’s strategy so as to present a more appropriate
challenge level.

By providing an experience that is tailored at a specific human player, the player can
experience a game that simultaneously gains in difficulty as their experience and skill
in the game increases.

The adaptation to the human has a number of advantages. Firstly, it grows in strength
with the human. When the human player first plays the game, the strategy creation for
the game is fairly weak. The human player then starts to increase in strength as under-
standing of the tactics increase, and more complex strategies are developed. The same
can be said for the coevolutionary algorithm. The initial generations of a coevolutionary
computer player create very basic and not overly intelligent rule development. Then, as
each game is played, it has a chance to encompass and counter the opposition’s strategy
of game-play and create better rules. We wanted to use this potential of the coevolu-
tionary system to create a computer player that coevolves to adapt to a human player
relative to the human’s capability. By including the human strategy into the coevolution-
ary system, the system can evolve strategies that have adapted to the human strategies.
As the human gains more experience in playing the game, so does the computer player.

To achieve the goal of creating an adaptive computer player, we needed to create a
way of including the human strategy in a form the coevolutionary system could under-
stand and use. This essentially involved creating a method of reverse engineering the
human strategy from the outcome of the game-play. We decided to create an iterative
system that would record the data (the human choices and the game environment) from
each game played, and use that data to create a model of the human. The model would
then be in a form that could be included in the coevolutionary process. To create the
model for our coevolutionary system, it would need to be of the same fuzzy logic rule
base structure as the other individuals. The human model is then added as a supplemen-
tary individual to the coevolutionary populations, so that the coevolution can evolve
with, and against the model.

By reverse engineering the human’s strategy into a set of rules and adding the model
created to the coevolutionary system, we are able to influence the coevolutionary pro-
cess. At the beginning of the human’s learning progress, he or she will not have any
experience in playing the game, and are likely to have minimal strategy development.
This stage is probably the most difficult to reverse engineer, as the human is more ran-
dom in strategic choices. Consider the idea of beginner’s luck in games such as poker,
expert players can have trouble reading beginners, as the beginner makes seemingly
random choices due to inexperience. However, even the very general (and probably
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not effective) rules reverse engineered at this stage have a chance of affecting the co-
evolution. It is unlikely that the human rules will be considered the best individual in
the population for elitism, but they still have a chance of effecting the next generation
through selection and crossover.

As the human starts to gain experience in the game, he or she develops ‘winning’
strategies. It is likely that the human will then repeat the same or similar strategies
over concurrent games if the strategy continues to work. It is here that the adaptive
coevolutionary system really comes into play. As the humans form a clearer pattern for
reverse engineering, the rules being modelled and added to the coevolutionary system
have a greater impact. Now the coevolution can act to directly overcome the human
strategy, and create new strategies that are a greater challenge to the human player.
This allows us to develop a system that grows and improves along with the human the
computer player is competing against. A tailored system that provides the best challenge
for the individual human.

This chapter discusses the issues involved with creating a computer player using co-
evolution that can adapt to humans, and the methods we used to create this system. We
begin with a brief background discussion on the game of TEMPO and related work. We
then discuss the mechanism used to create our adaptive computer player. After imple-
menting this system, we ran a user study to observe effectiveness of the system, and the
way human players interact with the computer player. The results of this user study are
provided, along with discussion and analysis. We conclude the chapter by discussing
the findings, and the areas of research that have been identified for future work.

2 The Game of TEMPO

The use of strategic thinking is not limited to game playing, and many of the strategies
used by players can be carried into real world situations. This can be seen in a num-
ber business and defence organizations, where the organization is essentially competing
against rivals for a strategic dominance in their field of expertise. This real world situ-
ation can be directly compared to a zero-sum game of strategy, where there are two or
more competitors, and only one can win.

In the area of defence, this game playing can occur when countries engage in es-
pionage and weapon research and manufacturing. The ultimate purpose of this is to
maintain sufficient utilities to win a war against rival countries if the need arises, but
not spend excessively. The maintenance of only sufficient utilities is important, as it
implies enough utilities to win a war, without neglecting other budgeting issues. To
achieve this fine line, the personnel who perform the resource allocation need to know
how to think strategically. The resource allocation is made difficult due to influences
such as the political motivations of current (and future) governments, the changing field
of the technologies used, and of course the opposing countries with their own changing
environments [13].

The US Department of Defence (DoD) realized the difficulty involved in the task,
and attempted to give their personnel an advantage through the creation of a manage-
ment system known as the Planning, Programming, and Budgeting System (PPBS).
The PPBS put into place a framework for the decision making of defence budgeting,
and incorporated a set way of planning for current and future objectives [1]. As part
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of the set-up of this new system, a major training program was initiated to enable the
personnel to use the complex new system. The game of TEMPO was created by H.
Hatry, F. Jackson and P. Leer of General Electric’s TEMPO think tank as part of this
initiative [2], and was used by the DoD in the training of their system personnel [13].
The game enabled the personnel to practice the strategies they would use in the cre-
ation of the resource allocation, and subsequent yearly DoD budget. Since its creation
in the early 1960s, the TEMPO game has been used to teach resource allocation to over
20,000 students.

The original game of TEMPO was a paper game where opponents were pitted against
each other, and their decisions recorded for review by trainers. The efficiency of this was
not optimal, as the time taken for game-play with other students limited the functional-
ity. Steps were taken to automate the game with a computer player for the opposition.
This allowed the students to play the game on their own time, and the results were auto-
matically recorded and available for the trainers. The computer player system provided
a greater learning environment for the students, and was successfully used for training
the DoD personnel. The creation of the player opened up a new area of research into
AI for resource allocation games. The next section describes player objectives for the
TEMPO game.

2.1 Game Objectives

TEMPO is a zero sum game played between two opposing parties by allocating re-
sources in a cold war style simulation. The goal of the game is to acquire more offen-
sive utilities than the opposition before war breaks out. The decision making process
requires allocating the yearly budget on the following:

1. Operating existing forces.
2. Acquiring additional forces.
3. Intelligence and counter intelligence.
4. Research and development.

The forces of the game are comprised of weapons that are grouped into four unit types:
Offensive A, Offensive B, Defensive A and Defensive B (OA, OB, DA and DB respec-
tively). Each of these units has its own weapons, such as OA1, OA2 and so on. Each
weapon has its own attributes (discussed further in the next section), with its own power
capability given as utils. It is the utils of the weapons that are currently operated for the
year that give a player his or her score.

The purchase of intelligence is also provided to give insight into the opponent’s tac-
tics. Counter intelligence is used to prevent the opposition gaining this insight. Lastly,
investment in research and development is available to provide for future weaponry.
The use of research and development in the game allows budget allocation to provide
for better weapons in future years. It was excluded in the computer player developed
for the DoD however, and was not included in this research. We would like to include
it in future research, but analysis on its implementation is required.

The resource allocation involved in the game is conceptually simple; determine what
force category is needed and allocate accordingly. The reality is however very differ-
ent, as the combinations of allocation plans can be high due to the amount of areas to
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allocate to. This complexity is then magnified by the changing environment that occurs
yearly, such as the increase in the chance of war breaking out, and the addition of new
weaponry.

The complexity is representative of a number of real world situations in the corpo-
rate and defence world alike, where resource allocation can be a very complicated and
difficult task to manage. To understand how to make an allocation, a person must have a
good understanding of the strategies and mechanisms used in the process. Only through
personal achievement and practice can they truly understand the value of various strate-
gies. This is where TEMPO is a great mechanism to practice the techniques needed to
develop a well thought out and balanced real-world allocation. The process could also
be easily translated into a business training environment instead of a military one.

Now that we have introduced the game, we delve further into its mechanisms. The
next section gives a detailed description of the game used in this research, and the rules
of play.

2.2 How to Play

The goal of playing TEMPO is to obtain more offensive utilities than your opposition
in a cold war scenario when the end of the game is reached, and war breaks out. To do
this, a player must allocate a budget on a yearly basis to operate and acquire weapons,
and purchase intelligence. Each year the environment changes, and more choices be-
come available. This section gives details on exactly how the game works, and what
information a player is given.

Player's Environment Previous Year's Data
Budget Player Enemy

Year Pwar Avail Left Type Offensive Defensive Type Offensive Defensive
2 12.00% 11530 11530 A 1518 0 A 200 0

B 200 325 B 0 465

Current Year Allocation:
Weapon MaxAcq AcCost Inventory OptCost Utils Opted Bought ToOpt ToBuy

OA1 15 75 0 150 120 30 0 0 0
OB1 25 50 0 30 20 30 0 0 0
DA1 25 40 0 20 15 25 25 0 0
OB1 25 100 0 60 50 20 20 0 0
OA2 35 75 0 35 60 0 0 0 0
DA3 25 100 0 50 200 0 0 0 0

Fig. 1. Example screen of a year’s game-play

Figure 1 shows an example year of game-play excluding the intelligence component.
The player’s environment section shows the yearly information necessary to make de-
cisions. This includes the current year of game-play (year), the percentage chance of
war occurring at the end of the current year (pwar) and the given budget for the year
(budget). The budget is represented as the amount given (available) for the year, and the
amount left after spending. Each player in the game starts with the same environmental
values, but has slightly different values for consecutive years, as each value is increased
by a limited random amount. At the end of each year, the average of the pwar values
for both players (represented in range [0..1]) is compared against a randomly generated
number from the same range, and if the generated number is less than the pwar value,
war breaks out and the game is over.
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Using the amount given in the budget, the player can purchase weapons from the
current year’s available weapon list. Each year new weapons may become available,
possibly with better attributes then previous weapons. The attributes for each weapon
are:

1. MaxAcq – the maximum acquisition number for the weapon each year.
2. AcqCost – the cost to acquire (buy) a single unit of the weapon.
3. Inventory – the amount of weapons given to the player in inventory for the year

(these are then available for operation).
4. OptCost – the cost to operate the weapon for the current year.
5. Utils – the power value for the weapon.

Each weapon can be in one of two stages during the game years. These stages are
acquisition and operation. When beginning the game, a player has initial units in their
inventory. To obtain additional weapons, they must be acquired. You can acquire up
to the MaxAcq number of weapons during a year, and each one bought will cost the
indicated amount in AcqCost. The weapons acquired in the current year of game-play,
will be available to operate the next year. Operating a weapon activates the weapon for
the year. The available weapons to operate are any weapons in inventory, any weapons
bought the previous year, and any previously operated weapons. If a weapon is not
operated in the current year it is lost for future use. If a weapon is operated, it is then
‘used’ for that year, and the utils for the weapon are added to the player’s total utils.

At the end of each year, the total weapon utils for each category/type are summed.
For example, if a player purchases units of OA1 with total utils of 300, and OA2 with
total utils of 100, then the total OA for the year is 400 utils. Offensive weapons of a
particular type are countered by defensive weapons of the same type, and vice versa.
For example, if Player A has 400 OA utils at the end of a year, and Player B has 100
utils of DA, then the result at the end of the year would be 300 utils of OA left for
Player A. Extra defensive utils however, are wasted budget. For example, if Player B
had 200 OA utils in the same scenario, and Player A had 300 DA utils, then Player B
would have 0 OA utils left, and Player A would have wasted the cost for the extra 100
DA utils. This example is extended and shown in table 1 for clarity.

Table 1. Example TEMPO net offensive util scoring

Player A Player B
Type A

OAplayerA(OA1 + OA2 + ... OAn) 400 OAplayerB(OA1 + OA2 + ... OAn) 200
DAplayerA(DA1 + DA2 + ... DAn) 300 DAplayerB(DA1 + DA2 + ... DAn) 100
Net Offensive A (OAplayerA - DAplayerB) 300 Net Offensive A (OAplayerB - DAplayerA) 0

Type B
OBplayerA(OB1 + OB2 + ... OBnn) 200 OBplayerB(OB1 + OB2 + ... OBn) 600
DBplayerA(DB1 + DB2 + ... DBn) 300 DBplayerB(DB1 + DB2 + ... DAn) 100
Net Offensive B (OBplayerA - DBplayerB) 100 Net Offensive B (OBplayerB - DBplayerA) 300

Total Net Offensive Utils 400 Total Net Offensive Utls 300
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If war had broken out in the year represented in table 1, Player A would have won
the game by 100 utils (Player A total net offensive utils - Player B total net offensive
utils). Correspondingly, Player B would have lost by -100 utils. This example shows
how a player cannot win the game simply by maximizing offensive weapons, as the
other player can cancel these with defensive ones. Additionally, a sliding scale ‘di-
minishing returns’ function is applied when currently operated utils in any one force
type (e.g. OA1) produces more than 2000 utils. The adjustments applied are shown in
table 2, with figure 2 depicting the diminishing returns distribution.

The amount of total net utils for OA, OB, DA and DB from the previous year are
displayed to the player (on the top right of the screen in figure 1). If the player pur-
chases intelligence, then they are also given the opposition results from the previous
year (which are displayed to the right of the player’s results), although these may be
skewed somewhat through the opposition purchasing counter intelligence.

Table 2. Util adjustments to reflect diminishing returns

Gross utils (GU) Adjusted utils

1 - 2000 Same as Gross utils
2001 - 3000 2000 + .9 × (GU-2000)
3001 - 4000 2900 + .8 × (GU-3000)
4001 - 5000 3700 + .7 × (GU-4000)
5001 - 6000 4400 + .6 × (GU-5000)
6001 - 7000 5000 + .5 × (GU-6000)
7001 - 8000 5500 + .4 × (GU-7000)
8001 - 9000 5900 + .3 × (GU-8000)
9001 - 10,000 6200 + .2 × (GU-9000)
10,001 - 11,000 6400 + .1 × (GU-10,000)
11,000 - ∞ 6500
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Fig. 2. Diminishing return distribution for util adjustments
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Each year of game-play gives an increase in the pwar and budget, but it also gives
new weapons with their own unique attributes. This allows the player to more choice as
time goes on, but also increases the complexity of the choices.

The intelligence component of the game involves allocating part of the budget to pur-
chase intelligence into the opposition’s allocations. The intelligence is broken into two
parts: the intelligence into the opposition’s results (INTEL), and the counter intelligence
used to stop the opposition from seeing your results (CI). When a player purchases IN-
TEL, the opposition results for the previous year are given to the player. If CI is bought,
the player is only told if opposition utils in a particular category exist or not. The original
version of TEMPO included a boolean decision for both INTEL and CI. The INTEL
was broken into offensive and defensive INTEL, with a set price that you either pur-
chase it at or not. The CI was also a set price with the same boolean choice. For various
reasons, this was then changed and INTEL and CI were broken down into the different
types of Offensive and Defensive Intelligence A and B (OIA, OIB, DIA, DIB). The
boolean mechanism of purchase was also changed and replaced with a maximum cost
for each type. The player could then decide the degree of INTEL/CI to be purchased.
The percentage of INTEL/CI purchased then effects the quality of the results obtained
back.

There are various common tactics for TEMPO that human players learn through
game-play. After witnessing a number of games being played by humans, there emerge
some common strategies that can be beneficial general tactics. These include such
things as using the pwar variable to determine how you concentrate your allocation,
for example if it is low, you might choose to focus your attention on building up your
operational offensive weapons. Another common tactic is to focus your allocations on
the weaponry that gives you value for money, that is the weapons that have the highest
amount of utils for the cost used to purchase/operate them. There are many other tactics
in addition to the ones mentioned, however as yet there is no magical strategy that will
win against any opponent.

The dynamic environment of TEMPO, combined with the increasing complexity
caused by the number of weapons available can make the allocation decision process
difficult. This is amplified by the uncertainty of what the opponent is doing at the same
time. It is only once you have committed your allocation for the year that you can find
out what purchases the opposition has made (if you chose to purchase intelligence), and
even then the information may be corrupted due to the opposition’s purchase of CI. It
can be a difficult game for human players to master, and the creation of a computer
player is a challenging task.

3 Related Work on Adapting to Humans

While there has been much research on evolving computer players to beat human play-
ers, there has not been much research on evolving computer players that are designed to
be challenging for humans. This means creating computer players that are specifically
tailored to give the human player a challenge, not just trying to find the optimal way to
beat them every time [8, 22].
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One area of research in strategic planning is that of predicting an opponent’s strategy
and modifying your strategy accordingly. This is a large area of investigation, which
ranges from opponent modelling [9] to human behaviour recognition fields [12]. Car-
berry performed a review on one of the more important techniques of plan recognition
in [6]. The plan recognition technique uses inference to determine an opponent’s plan
and goal through observed actions. This is achieved through chaining actions to goals
reachable through these actions. For example, on observation a person at the store pur-
chases eggs, milk and flour. From this it might be reasonable to infer that they plan to
bake something. They then add some Maple Syrup and ice cream to their purchase. It
now might be reasonable to infer that they are specifically making pancakes. As humans
we do this all the time, but this can be difficult for computers to achieve, especially as
the search space of possibilities expands.

The individuals developed using the TEMPO coevolutionary system create a static
rule base that human players can adapt to beat over time. Our long term goal is to
create a system where the individuals are evolving and adapting to beat a particular
human player during real-time game-play. To find a way to adapt to a human player,
we investigated two fields of research: ways to extract rules representing a human’s
strategy from the output of their game-play, and ways that the system can use these
rules to adapt.

The most relevant work is by Louis et. al. with their Case-Injected Genetic Algo-
rithm (CIGAR) research [14, 15, 16, 17, 18]. The CIGAR system uses a database (the
case base) of problems mapped to solutions (cases) to prompt the GA to come up with
better and more human-like solutions. The basic CIGAR system is a GA that starts
with an empty case base and a randomly initialized GA. Once the GA is run, the best
individuals (represented as cases) are saved in the case base. When another similar
problem comes along, instead of starting with a randomly initialized GA, the case base
from the previous problem is used to inject a percentage of the population with previ-
ously favourable individuals, and so on. The individuals to select from the case base are
chosen by similarity to the current best individual in the GA, using a hamming distance
metric. Interestingly, it was noted that individuals that were too advanced for the current
population would actually hamper the evolution. The selected individuals then replace
the worst individuals in the GA.

The work applying CIGAR to games used a strike force real time strategy (RTS)
game, where the computer player has to allocate its resources to a set of aircraft plat-
forms (the blue team). The platforms then attack the human players forces (the red
team), which are represented by buildings that the aircraft can target, and defensive in-
stallations that can attack the computer players air force. The CIGAR system for this
works in the same manner as described above. In this case it also includes cases learnt
from humans playing the blue team in previous installations, by storing the human
moves in the case base. Thus, the case base consists of human derived cases, and cases
discovered by the GA from playing against human and computer players. The cases are
then chosen using the same similarity metric, with the possibility of a human case being
chosen – and the evolution learning from human game-play.

This approach differs from ours in a number of ways. Firstly the TEMPO system uses
a coevolutionary mechanism, not a GA. This changes the way it can use the memory,
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and adapt to human players. The coevolutionary system can be run without any human
interaction, and is constantly changing and adapting. There is no search for an overall
optimum, just a way to beat the current opposition. There are also differences in the
way individuals are represented. The TEMPO coevolutionary system uses individuals
representing a strategy in fuzzy logic. To use human knowledge in the TEMPO system,
the human strategy must also be represented as a fuzzy rule base, which can be difficult.

Additionally, the TEMPO game is not a RTS game – it is a turn-based game where
each player makes his or her decisions simultaneously. Each year of game-play, the
environment of the game changes and becomes more complex, and the knowledge on
what the opposition is doing is minimal and can be misleading (if counter intelligence
has been used). The players being developed in the TEMPO system are developed to
encompass all this and develop generalised strategies for game-play.

Finally there is the way the entire adaptive system works. Our system to creates a
player that is tailored to an individual human. This means that the human rules have
to be obtained from, and added to, the currently evolving system. This differs from the
Louis et. al. research, where the human knowledge was obtained from humans playing
past games.

Other relevant research by Ponsen et. al. [19, 20, 21] extends the dynamic scripting
method developed by Spronck et. al. [23, 24, 25] for RTS games. The dynamic script-
ing method is used to change the strategy rules (the script) for an opponent during
game-play. Rules that perform well in a particular dynamic situation are given a higher
weighting, and are then more likely to be selected. The rules themselves are manually
designed for the specific game being implemented (similar to the way most current AI
for games is done).

Ponsen extends the dynamic scripting to RTS by changing the script during succes-
sive stages of the game as more resources become available. In addition, an offline evo-
lutionary algorithm was applied that attempted to create scripts to counter well-known
optimized tactics (for the game of WARGUS). Static players were used to measure
against and the fitness was adjusted for losses and wins against the static player. Aha
et. al. [3] addressed some of the disadvantages of using a static player. Aha et. al. used
case-base reasoning to select scripts for game-play against random opponents chosen
from eight different opponent scripts. The evolutionary algorithm developed by Ponsen
et. al. was used to develop scripts for each of the eight opponent scripts, and the case-
based system (CAT) then chose which tactic to use (from possibly different scripts) at
each stage of the game.

The research using dynamic scripting has many similarities to the research presented
in this paper. However, once again the research does not use coevolution, and the mech-
anisms for the research are very different. The overall goal is slightly different as well,
as the main goal for the TEMPO system is for training purposes.

Lastly, the idea of coevolving against human players was investigated by Funes
et. al. [10,11]. In this work, the game of Tron was used to evolve against human players
on the internet. The game-play involved the human playing against a strategy devel-
oped using Genetic Programming (GP) coding. The evolution process contains two
separately evolving populations. The foreground population contains a population of
100 individuals that play against human players for evaluation. Computer players are
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randomly selected from the population for game-play. In each generation the worst 10
individuals are replaced by the top 10 from the background population. The individ-
uals are evaluated by playing a set number of games (5 for the 90 ‘veteran’ players,
and 10 for the 10 ‘new’ players) against human players, the results of all games played
against a human are then used to calculate the fitness. The second population (the back-
ground population) is used to evolve strategies through self-play, training a population
of 1000 individuals against a training set consisting of the best individual from the fore-
ground population, and the top 24 individuals from the previous background population
generation.

The research using Tron showed how coevolution with humans could be effectively
used. However, the learning of the foreground population was very slow (with at least
550 games needed each generation). We are using coevolution to adapt real-time (after
every game played) to a single human player, using a method of human opponent mod-
elling to coevolve with. The method of our coevolution is also different, without a direct
evolution against the human player, and with two populations of individuals performing
self-play to learn strategies. The previously discussed differences in game and individ-
ual representation also apply. Also, our testing involved a controlled test environment,
which online learning cannot readily achieve.

4 Coevolving with Humans

It is commonly known that playing a static coevolved player against the same human
repeatedly, allows the human to determine a counter-strategy that is dominant over the
static computer player. The first time the human plays against the strategy however, it is
unknown and could possibly be difficult to beat. The question then arises as to whether
the need for adaptation is indeed necessary. Could we not just continue the coevolution-
ary process, and pick different individuals to play against the human each time? There
could well be enough difference in strategy represented through the coevolutionary pro-
cess itself to provide a challenge for each new game played.

While there has not been much recorded research on this topic, intuitively it would
seem that a similar occurrence to the static scenario would eventuate. This reasoning is
based on observation through our previous research, where the coevolution reached a
plateau. This plateau is visible through the baseline measurement technique used, where
the results show very little change. Even though it is constantly changing and undulat-
ing, the evolution does not tend to make great leaps in development. Thus, even though
the human player would be playing a different player each time, the strategies being
developed by the player are similar in strength to previous ones, and the human player
could learn to overcome them. Additionally, the tailored system allows the players to
directly counter the human strategy making, and hence provide a greater individual
challenge. In teaching terms this is a great advantage.

There are a number of ways that the human models could be used in the coevolu-
tionary process. Originally we thought of having a separate human population, similar
to the memory population in previous research. However, the extra processing time re-
quired for selecting and evaluating a separate population was deemed excessive for the
purpose. Additionally, if evaluation were the only influence the human model had on
the populations, poorer human strategies would have little to no effect when they are
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constantly beaten. Including the human models into the populations has a direct effect
on the individuals being created (through selection and crossover).

To include the human in the process, we needed to find a way to coevolve against
the human model and the other randomly evolving players. This allows the system
to create players that are still finding randomly evolving strategies that can take into
account, and counter, the human player’s actions. By including the human model in
the coevolutionary process, when a new ‘best’ individual is chosen from the system to
play against a human player, this individual has been able to incorporate and counter
the stronger elements of the human strategies. Now the individual can provide a new
challenge for the human.

5 Representing Human Strategies

Representing (modelling) humans is a research field in itself and can be very difficult
to do. To minimize this issue, we chose to very loosely reverse engineer the human
choices as a model of the strategies used. The model used would also need to be of the
same format as the coevolutionary individuals in the TEMPO system. Doing this allows
the human model to be directly inserted into the coevolutionary system for the process
described above.

The reverse engineering of the human was as follows. When a human plays a game
against the computer player, the data of the game is recorded. This data includes the
choices the human made, and the environmental data for each game year. The data
is then used in an evolutionary system to find individuals that model the human by
mimicking the human choices. To evolve the human model, individuals represented in
the same way as the coevolved individuals are randomly initialized. Each individual
then plays the exact same game as the human, against the same computer player as the
human played. The individual is evaluated as the difference in outcome and allocated
resources to what the human achieved. The closer the individual comes to the same
results as the human, the better the fitness.

Additionally we added changeable constant weightings to the evaluation. The
weightings were applied to the differences in the outcome, weapons bought and in-
telligence/counter intelligence bought between the individuals and the human value.
By adding weights, we are able to sway the evaluation importance of each of the pa-
rameters for the purpose of creating more realistic rules. For example, it might be that
getting a closer outcome (total offensive utils at the end of the game) to the human was
more important than creating rules that allocated the resources in the same manner as
the human, and vice versa. Hence the evaluation function has the following evolutionary
variables:

1. human NetUtils – the total net offensive utils for the human player at the end of
their game.

2. individuali NetUtils – the total net offensive utils the individual scored (when play-
ing the same game).

3. Years – the total number of years the game played for before war broke out.
4. human IntelChoice, human OptChoice, and human BgtChoice – the data arrays of

human allocations made for intelligence, weapons operated and weapons bought
respectively for the year.
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5. individuali IntelChoice, individuali OptChoice, and individuali BgtChoice – the
allocations the individual made for the year corresponding to the human
allocations.

6. NetUtilsWeight, IntelWeight and WeapWeight – the constant weights applied to the
different evaluation areas as described.

The described evaluation function eval is implemented as:

eval(individuali) = abs(human NetUtils− individuali NetUtils)NetUtilsWeight+
∑Years

t=1 ((abs(human IntelChoicet − individuali intelChoicet) IntelWeight)+
(abs(human OptChoicet − individuali OptChoicet )WeapWeight)+
(abs(human BgtChoicet − individuali boughtChoicet )WeapWeight)),

We experimented with different values for the constants, with different preference
weights for the resources and outcome. For the final process, the NetUtils constant was
assigned the highest preference with a weight of five, followed by the Weapon constant
with a weight of three. The INTEL/CI constant was given a weighting of one.

We implemented the human reverse engineering mechanism using an evolutionary al-
gorithm, with a single population. The variation operators used were two-point crossover
and mutation, where chosen genes were replaced with a random value. Crossover was
run on the population first, followed by mutation. To avoid premature convergence on
a suboptimal solution, we also forced the individuals to have unique genotype.

We experimented with selection operators, and used ranked selection with elitism in
the final process. After much experimentation and manual changing of the parameters to
determine a good result, the final evolutionary parameters chosen were as follows. The
process ran for 150 generations, with a population of 100 individuals. An elitism ratio of
5% was used, with a 50% crossover ratio, and a 10% mutation ratio. No rule penalty was
applied to minimize the rules used in the rule bases, as this seemed to occur naturally.

The rules evolved using this method give a rough estimation of possible strategies
the human used. It by no means represents the human strategy exactly, which is in
many ways a good thing. Our task is not to try and create an optimized computer player
against a human player, but to create a computer player that is challenging for the human
player. Even if it is only evolving against a rough estimate of the human player, for a
single game-play situation, the evolutionary process is still given the opportunity to
counter the human strategies.

6 The Human Adaptive Coevolutionary Process

To incorporate all the ideas described above, we needed to develop an entire system
for game-play. We named the system the Human Adaptive Coevolutionary Process
(HACP). This section describes the coevolutionary system used to create the computer
player, followed by an overview of how HACP is composed.

6.1 The Coevolutionary System

HACP uses a coevolutionary algorithm comprised of two populations of individuals,
and a memory population used to evaluate against. This section describes the coevolu-
tionary mechanism used.
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6.1.1 Individual Representation
The representation of the fuzzy logic system used a structure that can be seen in figure 3.
There are m = w + q rules (where w is the maximum number of weapon rules, and q
is the maximum number of intelligence rules). Each rule is built from the following
(figure 3 expands rule 3): U3 is a Boolean defining if the rule is used, Bi3 is a boolean
defining if input i is used, MFi3 is the triangular membership function used for the input
i, and Y3 is the output in range [0..1] for Rule3.

Fig. 3. Structure of a chromosome

To implement the triangular membership functions, we used a representation of the
Takagi and Sugeno fuzzy system. We created a single triangular membership function
for an input dimension, corresponding to one of the linguistic variables used. Each input
type has its own set of membership functions. The membership functions either repre-
sent the different types of input (e.g. category is either Offensive – 0, or Defensive – 1),
or a range measurement (very low – 0, low – 1, medium – 2, high – 3, very high – 4).

We also needed to represent the linguistic variables. Given the total minimum and
maximum of a particular input, and the number of membership functions needed, the
linguistic variable would create the required number of membership function objects
for the input type. Each membership function has a minimum, centre and maximum
value. A diagram showing a typical membership function is shown in figure 4. The
membership function is represented as an isosceles triangle with a y value of 1.0. The
bottom edge is of length maximum−minimum, and the centre value is used to di-
vide the triangle into the left and right right-angle triangles. When passed an input
value (u ε U), the slope-intercept equation: y = mu+b is used to calculate the member-
ship degree. In our implementation m = 1/(centre−minmax) where minmax is either
minimum or maximum depending on which half of the triangle u is in. We then use
b =−minmax/(centre−minmax).

The fuzzy controller takes each input value for the year (e.g. budget, weapon cat-
egory etc.), and matches the value against the fuzzy IF part of the rules, getting the
membership degree for each input that triggered a fuzzy rule. The fuzzy AND product
rule was used to sum all the membership values for all the used inputs in the rule. The
weighted average of all the rules was then taken as

y(u) =
∑m

l=1 wlyl

∑m
l=1 wl , (1)
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Fig. 4. Membership function example

where u is the input vector for the rule base, m is the number of rules in the rule base,
yl is the crisp output value of rule l, and wl is the product of the membership degrees
for all triggered input values. We define

wl =
n

∏
i=1

μ varl
i ui , (2)

where n is the number of inputs, and μ varl
i ui is the membership degree (μ) of input ui

in the corresponding linguistic variable vari, for the rule l.
The above process is run for each of the different weapons available, with some

common input values for all weapons (such as pwar, budget etc.), and some weapon
specific values (such as category, type, utils etc.). The total y(u) value obtained from
all the triggered rules for each weapon with its specific u vector is then used to allo-
cate a percentage of the budget (the ratio) for the specified weapon. The allocation is
performed by normalising all the weapon y(u) values with

ratioi =
y(u)i

∑m
j=1 y(u) j

,

where i is the weapon index currently being allocated a ratio, and m is the number of
weapons available for purchase at the time.

The intelligence rule base goes through the same process.

6.1.2 The Coevolutionary Algorithm Implemented
Our coevolutionary system is based on two competing populations to evolve individuals
represented by fuzzy logic rule bases. The outline of our algorithm is shown in figure 5.

To initialize the populations, each individual creates a gene array for the weapon
and intelligence rule bases, and randomly assigns integer values from the range [0..99].
These values are then mapped from genotype to the appropriate phenotype, depending
on the allele requirements, as part of the evaluation phase. For example, if the gene locus
requires a phenotype to a linguistic variable, then the minimum phenotype value is the
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procedure The Coevolutionary Algorithm
begin

t← 0
initialize P1(t)
initialize P2(t)
while(not termination-condition) do
begin

evaluate P1(t) against P2(t)
evaluate P2(t) against P1(t)
select P1 elites(t) from P1(t)
select P2 elites(t) from P2(t)
select P1 intermediate(t) from P1(t)
select P2 intermediate(t) from P2(t)
alter P1 intermediate(t)
alter P2 intermediate(t)
select P1(t + 1) from P1 elites(t)∪P1 intermediate(t)
select P2(t + 1) from P2 elites(t)∪P2 intermediate(t)
t← t + 1

end
end

Fig. 5. The coevolutionary algorithm implemented

first membership function number, and the maximum is the total number of membership
functions for the variable (e.g. 0 – 4).

After the initialization, the individuals are evaluated against the other population. The
basic system applies the following evaluation technique (with modifications introduced
later). We iterate over each population, with each individual played against r randomly
chosen individuals from the opposition population. For our experiments r = 20. A single
game-play involves a complete game, through to the final year when war breaks out and
a total net utils is allocated for the game. In each game the two players distribute their
budget as determined by the rule base. At the end of the game, the total net utils for each
player is determined and the fitness evaluation variables updated accordingly. These
variables keep track of the number of games played by the individual, the total net utils
for all games played, and the won and loss count for the games (a draw counts as a
loss for this purpose). Each individual plays a minimum n games, but with a possible
(but improbable) maximum n + (Opn) times, where Op is the opposition population
number. The maximum is due to the random selection for game-play by the opposition’s
evaluation round. The evaluation function consists of a number of evaluation variables,
defined as:

– wonRatio – the total number of wins divided by the total games played.
– totalNetUtils – the sum of all total net utils (both positive and negative) for all

games played.
– gamesPlayed – the total number of games played whilst evaluating the individual.
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– weapRulePenalty and intelRulePenalty – the constant parameters used to determine
the weight of the rule penalty for the rule bases (weapon and intelligence respec-
tively).

– usedWeaponRuleNum and usedIntelRuleNum – the number of rules that were
marked as used for each rule base.

– usedWeapInputNum and usedIntelInputNum – the number of input variables used
for each used rule, in each rule base.

– weapInputNum and intelInputNum – the total possible usable inputs for each rule
base.

– netUtilsPenalty – assigned the highest net utils scored from all games played.
– lossCounter – counts all games lost or drawn from the games played.

The evaluation function eval is then calculated as follows:

eval(individuali) = wonRatio+(10e−6 ((totalNetUtils/gamesPlayed)−
weapRulePenalty(usedWeapRuleNum+usedWeapInputNum/weapInputNum)−
intelRulePenalty(usedIntelRuleNum+usedIntelInputNum/intelInputNum)+
10e−6 (netUtilsPenalty× lossCounter/gamesPlayed)))

Once all the individuals have been evaluated, the populations are sorted by the in-
dividual’s fitness score (which maximises the evaluation function). After sorting,
the elite individuals from each population are collected as P1 elites(t) and P2 elites(t)
respectively. The number of elites saved is determined by the evolutionary parame-
ter elitismRatio, which was set to 10% for most experiments. The intermediate pop-
ulations P1 intermediate(t) and P2 intermediate(t) are then selected from P1(t) and P2(t)
through tournament selection (k = 2). The Pintermediate(t) populations are of size
Pn− (Pn×elitismRatio), where Pn is the size of the corresponding P(t) population. We
conducted experiments with rank selection, but found that tournament selection worked
better.

The intermediate populations are then altered, with either mutation or crossover ap-
plied. The evolutionary parameter xoverRatio defines the chance of crossover occurring
instead of mutation. If the mutation operator is used, the chosen parent has mutation
applied at a rate defined in the evolutionary parameter mutationRatio. If mutation is
applied to a gene, there is a 10% chance of a big mutation being applied where the
gene is randomly reassigned a value. Otherwise a small mutation of plus or minus 1
is applied (with boundary checking put in place). If the crossover operator is chosen,
a randomly selected two-point crossover is applied. The variation operators were car-
ried over from the Johnson et. al. research, but the size of the individuals make at least
two-point crossover necessary. Possible future work could investigate k-point crossover.

Once the alterations have been applied to the intermediate populations, the survivor
populations (P1(t + 1) and P2(t + 1)) are created. These are created as P1(t + 1) =
P1 elites(t)∪P1 intermediate(t) and P2(t + 1) = P2 elites(t)∪P2 intermediate(t).

In addition to this, a memory mechanism was added mimicking the short and long
term memory of humans (STM and LTM respectively). The memory consisted of an
extra population populated with the best individual from each population from each
generation. Individuals were then selected from the memory for evaluation against the
other two populations. The selection was performed using a mechanism to replicate



92 P.M. Avery and Z. Michalewicz

STM and LTM. To implement the STM function, the top ten individuals in the memory
were identified, and an additional amount of games played against them. The LTM was
then applied by playing another set of games against the entire memory. So where pre-
viously the fitness was created by playing r games, now the games against the memory
is split into r1 games against the opposition, plus r2S games played against the STM,
and r2L games against the LTM. The memory individuals selected for the LTM game-
play are selected with linear time based probability, so the more recent individuals have
a higher chance of being selected. The STM is also selected from with the same linear
time based probability, but as the size is a static 10 individuals, as the entire population
grows, the probability becomes more uniform. Our used parameters included a window
of the top ten individuals (the STM), and played against these individuals for r2S = 10
games. This was followed by r2L = 10 games against the LTM (the entire memory). The
games played against the opposition remained the same (r1 = 20).

6.2 The HACP System

HACP incorporates the described coevolutionary system with a graphical user interface
(GUI) to play against human players. This was then combined with the human reverse
engineering (modelling) system described in section 5. The process flow can be seen in
figure 6.

Fig. 6. The human adaptive coevolutionary process

The process consists of the following steps:

1. The process begins by coevolving two populations against each other and the mem-
ory population, using the STM and LTM as described previously.
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2. After a set number of generations, the best individual from the currently winning
population is chosen to play against the human.

3. The data from this game is then recorded and passed to the evolutionary human
modelling system.

4. The modelling system then evolves a rule base that mimics the actions the human
made. This system runs for a set number of generations before the best individual
is selected.

5. The best individual is then placed into the coevolutionary system, replacing the
worst individuals from each population, and the whole process iterates again from
the beginning.

To ensure the human model affects the coevolutionary populations, the population size
was cut down to 15 individuals. Thus, even if the human model has a weaker fitness
than the individuals in the population, it still has an affect through selection. The first
time the coevolution is run, it runs for 300 generations. This is enough to develop a
beginner level player that buys some form of weaponry. The consecutive iterations of
coevolution then only have 100 generations to coevolve a new player, which allows
reasonable time (generally < 1 minute) in between games with the human.

The number of sample games played against the opposition and memory for eval-
uation was also cut down to decrease the time taken. For this process, the individual
is evaluated by playing r1 = 5 games against the opposition, r2S = 5 against the Short
Term Memory, and r2L = 5 against the Long Term Memory. Crossover was applied at
rate of 30%, and if crossover was not applied to the individual, mutation was applied
for each gene at a rate of 30% with a 10% chance of a large mutation.

The final component of the process is the human modelling system. This is added
using the evolutionary process described in section 5. The human modelling system
added on average an extra minute to the entire process.

The GUI was coded in Java and communicated to the C++ code through http sockets.
Figure 7 shows a screen shot of the GUI mid game.

The environment section shows the current year, the chance of war breaking out at
the end of the current year (the pwar), the budget for the year, and the amount of the
budget left as the user allocates to weapons and INTEL/CI. The previous year’s data
section shows the total OA, OB, DA and DB utils left over from the previous year
(once the opposition’s corresponding utils have been subtracted) for both the player,
and the opposition. The opposition utils are only shown if INTEL has been purchased,
otherwise “UNKNOWN” is displayed. If the opposition has purchased CI, then the
value shown in the enemy’s previous year data may be incorrect to some degree. The
previous year’s INTEL section displays the amount of INTEL bought by the player for
the previous year. See [4] for more details on the INTEL/CI implementation used.

The Intelligence Allocation table and Counterintelligence Allocation table both have
three columns. Each row in the table represents a different type of INTEL/CI category,
with the associated cost. The last column in each table is the user entry field, where the
user can enter the budget amount allocated to the category. The cost of INTEL/CI is
deliberately low to encourage purchase.

The Weapons table displays all the weapons available for the year. Each row rep-
resents a different weapon with the corresponding attributes for the weapon. The first
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Fig. 7. Screenshot of the TEMPO GUI

column gives the name of the weapon, consisting of the category (Offensive/Defensive),
type (A/B) and number (1,2,3). The second column shows maximum number of
weapons that can be acquired (bought) each year. The third column is the cost to pur-
chase a single unit of the weapon. The fourth column represents the inventory for the
weapon – the number of weapons given to the player for ‘free’ at the beginning of
the game. The fifth column gives the cost to operate (use) a unit of the weapon for a
year. The sixth column gives the number of utils the weapon has (the power ability of
the weapon). The seventh and eighth columns show the weapons that have been opted
and bought (respectively) in the previous year. Finally, the ninth and tenth columns are
the user input columns to allocate the budget to opt previously bought and opted (or
available in inventory) weapons, and purchase new weapons for the coming year.

Once a player has made their allocations, the commit button is pressed and play either
continues into the next year, or war breaks out and the game results are displayed.

7 User Study

Using the HACP system, we ran a user study to test the effectiveness with humans. The
purpose of the user study was to obtain users with no experience of TEMPO, and use the
HACP system as a way of training these users. We also wanted to test the effectiveness
of using a system that adapts to a human, as opposed to a static player or a coevolving
player with no knowledge of the human strategy. The users represented strategic game
players of varying demographics.
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To achieve this experiment, we created an application with three consecutive stages.
Each stage would involve the human playing 4 consecutive games against a computer
player, with the results for each game recorded. We chose 4 games due to time con-
straints, but ideally more games would be beneficial. The first stage involved running
the user against the same static computer player for all 4 games. The static player was
previously evolved and consisted of 19 weapon rules, 8 intelligence rules and 8 counter
intelligence rules, with the two most active rules as:

1. IF Category IS Offensive and Type IS B
THEN Evaluation IS medium

2. IF OperationCost IS Very Low
THEN Evaluation IS high

The intelligence and counter intelligence rules were rarely activated.
After playing the 4 games against this static player, the human was then informed

that the next stage was about to start. Stage 2 consisted of the human playing 4 games
against the coevolutionary system. The system was first run for 300 generations (with
the same evolutionary parameters as described in section 6), and the individuals for
both populations in the final generation were saved. This was the starting point for all
the human players, and the best individual from this coevolutionary run was chosen
as the starting individual to play against the human for Stage 2. Once the first game
was completed, the coevolutionary system was then restarted from where it left off,
and another 100 generations were run. The best individual from the best population
(according to fitness) was then chosen to play against the human, and this process was
then iterated for the rest of the games. While the first coevolved player in Stage 2 was
the same for each test subject, consequent players were different due to the coevolution.

Stage 3 was conducted in the same manner as Stage 2. However, in this stage, the
HACP system was used, and the additional steps of finding a human model and includ-
ing it in the coevolutionary system were applied.

7.1 User Study Results

The results for Stage 1 are depicted in table 3. The table shows the results for each
human player for each game played against the static computer player. The score is the
total net utils for the human player at the end of the game. Positive results show a win,
while negative ones are a loss. The number of years the game played for is also recorded
for comparison purposes. The final column in the table shows the total number of wins
each player had in the stage. The last row in the table gives the average score and years
played for each game, and the average games won for Stage 1.

As expected, the results show that most of the players had an overall loss for this
round. The loss does however decrease over the progression of the stage, depicting
player learning. From analysing the results and questioning the players, we found that
the average games played before the players felt confident in their game-play were 4–5
games. We also note that there were some players who developed good strategies from
Stage 1, and performed well against the computer player throughout the stages.

The Stage 2 results are depicted in table 4, in the same format as the Stage 1 results.
By this stage, most of the players are confident in the game-play and begin to develop
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Table 3. User Study Stage 1 Results

Stage 1
Game 1 Game 2 Game 3 Game 4

Player No. Score Years Score Years Score Years Score Years Wins
1 -135 4 655 8 0 2 0 3 1
2 -1920 7 1165 2 2480 8 2160 6 3
3 0 3 -4275 8 -2750 4 -50 2 0
4 460 4 -7100 7 2370 8 425 3 3
5 -6661 9 3230 3 -6440 7 -6012 8 1
6 -4340 7 1660 5 0 7 -2000 6 1
7 0 7 -620 5 -1640 5 0 7 0
8 2465 8 2000 5 2610 10 1400 6 4
9 0 7 -1090 5 -99 2 1165 2 1

10 0 8 2713 3 -1290 6 -1550 4 1
11 -1190 6 -3890 7 -1820 7 2730 6 1
12 2260 5 -4820 5 -4640 5 -4940 5 1

Average -1029.18 6.36 -504.73 5.27 -598.09 6.00 -157.45 4.82 1.45

Table 4. User Study Stage 2 Results

Stage 2
Game 1 Game 2 Game 3 Game 4

Player No. Score Years Score Years Score Years Score Years Wins
1 3860 5 -540 4 -495 4 1300 3 2
2 8940 7 4412 8 6589 9 -3004 6 3
3 -2518 7 1200 2 2955 7 -2599 8 2
4 -40 3 6100 7 5039 7 1092 5 3
5 -1155 4 -3358 5 659 6 2940 3 2
6 0 8 3260 6 700 4 0 9 2
7 -1440 3 3070 5 -840 3 0 7 1
8 1065 5 2910 5 615 5 2965 4 4
9 5188 9 1210 7 1278 5 3840 2 4

10 -1236 4 4800 8 289 4 4640 2 3
11 2965 6 4070 5 2604 7 0 3 3
12 -4620 5 -7656 7 -9316 8 -9186 5 0

Average 1420.82 5.55 2466.73 5.64 1763.00 5.55 1015.82 4.73 2.64

some strategies to win. There is a dramatic increase in the average scores for the entire
stage, although there is still a slight learning curve in some participants. To note, the
first game played against is actually a simpler (but different) player than the static one
played in Stage 1, so the number of negative scores tends to show players are still
learning the game. By the end of this stage we only have a single player that has not
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Table 5. User Study Stage 3 Results

Stage 3
Game 1 Game 2 Game 3 Game 4

Player No. Score Years Score Years Score Years Score Years Wins
1 2785 6 -649 10 -2600 4 0 5 1
2 3960 6 -490 6 -3290 6 2780 6 2
3 -4601 5 -3085 6 730 4 -1899 9 1
4 3765 6 442 9 582 7 2926 8 4
5 47 3 428 3 316 3 -342 4 3
6 -1440 3 3140 4 1640 6 -2090 4 2
7 230 4 1500 6 2148 2 5750 7 4
8 2455 6 3695 7 1019 8 400 3 4
9 4705 8 -586 7 1500 1 110 6 3

10 4995 7 445 7 1500 1 5630 8 4
11 3335 6 2450 6 3210 4 1740 5 4
12 -6418 6 -4894 7 -1180 3 -5050 6 0

Average 1839.64 5.45 662.73 6.45 614.09 4.18 1364.09 5.91 2.91

won a game, with the majority of players winning at least 2 games. By the end of this
stage, players are beginning to play around with strategies, or have found a ‘winning’
strategy they continue to use.

The Stage 3 results are shown in table 4, and follow the same format as before. The
first game has the same player as Stage 2, Game 1 (the same coevolutionary starting
point), but this time round the majority of players win. At Stage 3, Game 2, the first
round of the HACP process has been performed, with the coevolution taking into ac-
count the human game-play. The Game 2 results for this stage show an overall success
with the HACP system. A large amount of the players who won in Stage 2, Game 2
either lost the game or had the amount of utils won by greatly decreased. The 3rd game
in Stage 3 shows this same trend happening with some players, while others succeed
with a new winning strategy. The same thing is seen in Stage 3, Game 4.

The other notable thing from Stage 3 is with player 12, who was the only player
that had difficulty learning the game. The results from this stage show that even though
the losses were continuing, they were not by as much. It appears that even in this case
the game-play was slowly helping. Whether this is due to a longer learning curve or the
HACP system however is still questionable.

8 Conclusions and Future Work

The total wins for Stage 3 were slightly higher than Stage 2, which was expected due to
the player learning curve continuing through into Stage 2. However, the results clearly
show that there was not a large jump in results between Stage 2 and 3, and that the
system did in fact continue to challenge and teach people. This conclusion was rein-
forced through the informal verbal feedback process at the end of the user study. The
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majority of the users stated that they found Stage 3 more challenging than Stage 2 when
asked if they noticed any difference between the two stages. There were also some users
who specifically stated that strategies they had developed and used in Stage 2 needed
re-evaluation in Stage 3 when the computer player overcame their strategy. The human
players were then forced to think of different strategies.

There were also players who were able to dominate the game from Stage 1. This is
likely due to the choices made to cater for average users. For example, to allow for an
easier starting point, we only evolved the starting computer player for 300 generations.
With a population of 15 individuals this only allows creation of a very simplistic player.
Additionally, the short number of games played meant that the HACP system in Stage 3
did not have much time to evolve against more complex human strategies. The human
modelling system also struggled more to create these strategies. Even with these de-
ficiencies however, the human players with stronger strategies noted that they thought
Stage 3 was beginning to increase in difficulty. Future research should test impact of
additional games on the adaptation.

While the HACP system does seem to have considerable benefit for the majority of
users, the extreme ends of the learning curve do not seem to benefit as much. One way
to address this problem is to adapt the evolutionary parameters to the capability of the
human player. The idea here is to adaptively restrict or encourage the coevolutionary
process to match the proficiency of the individual human player.

If a human player is doing particularly poorly and losing every game, he or she soon
feels discouraged and stops playing. Hampering the success of the coevolutionary pro-
cess can address this issue, be it through a reduction in generations or population size,
or applying an additional weight to the evaluation function. The weight could change
depending on how much the individual won by against the human player, with the re-
sult of allowing ‘lesser’ individuals to obtain a higher fitness. The human players who
continually win against the computer player also need a mechanism to make the play
more interesting. The same concept could be applied to these human players, but in re-
verse. When a computer player loses to a human, the generations and/or population size
could adaptively increase. The evaluation weighting could be applied to progressively
increase the loss penalty for successive losses. There are also many other possibilities
that could be applied.

The other area we would like to improve is the development of the human model.
Each time a new game is played, a new model is reverse engineered with no reference to
previous games. This process wastes a vast amount of data that could be used to refine
the model, as usually humans build strategies from previous game-play. One mechanism
we have thought of applying is to use the results of the previous year to influence the
fitness of the current models being evolved. If a model has some similar tactics to the
previous year, then it is rewarded. This concept also has inadequacies however, as it
only forms a single link to the previous year, and does not take into account long term
strategy.

Overall, we had a great deal of success with the implementation of the HACP system,
with a number of users stating that they had fun trying to beat the computer player. Be-
ing able to learn new and better strategies on their own time allows students individual
training that caters for their own needs. The HACP system provides a good mechanism
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for applying such training. The HACP system also has benefits for creation of com-
puter players in many commercial games (such as turn-based strategy games), where
each turn the strategy could be updated to incorporate the human player’s strategy. The
applications are many, and this research is just a beginning. We have shown that it can
work, and making it work in other games is an exciting challenge.
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Abstract. This paper provides a new way of making decisions– using the 
wisdom of crowds (collective wisdom) to handle continuous decision making 
problems, especially in a complex and rapidly changing world. By simulating the 
Prisoner’s Dilemma as a Complex Adaptive System, the key criteria that separate 
a wise crowd from an irrational one are investigated, and different aggregation 
strategies are suggested based on different environments.  

1   Introduction and Background 

Decision-making has been the subject of research from several perspectives. From a 
cognitive perspective, the decision making process is regarded as a continuous process 
characterized by the interaction with the environment. From a normative perspective, 
the analysis of individual decisions is concerned with the logic of decision making and 
rationality and the invariant choice it leads to [2]. Generally speaking, decision making 
is the process of selecting one course of action from several alternative actions. It 
involves using what you know (or can learn) to get what you want [3]. The decision 
making techniques used in everyday life include 1) flipping a coin, 2) asking friends or 
experts, 3) evaluating the disadvantages and advantages, 4) performing the cost-benefit 
analysis, etc. Since decision-making involves expertise, information, experience, 
emotions, relationships, and goals, many computer-based Decision Support Systems 
are promoted to help people make decisions in complicated situations for either 
individual or business purposes. Although knowledge-based decision support systems 
have been widely used, managers sometimes feel disappointed with their performance 
because of: 1) difficulties in collecting useful information in a specific field; 2) the cost 
of setting up and updating knowledge databases; 3) inherent inadequacies in dealing 
with complex and rapidly changing environments; and 4) difficulties in determining the 
proper decision-making model/strategy, especially for problems in social sciences or 
economics which involve numerous human interactions and uncertain personal 
feelings. With these concerns in mind, a new concept for making decisions is 
introduced-- the (modified) wisdom of crowds. 

The idea of using the wisdom of crowds for decision-making is originally introduced 
by J. Surowiecki [1]. In the book, he argues that under certain circumstances the 
performance of a crowd is often better than that of any single member of the group. 
This idea appears to be appropriate for explaining the behavior of financial markets as 
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expressed by the Nobel-winning economist William Sharpe [5].  Similarly, the concept 
of “wise crowds” might be useful to decision makers to solve complex problems.  For 
example, collective voting has already been successfully used by some search engines, 
including Google [6]. Even though there are many case studies and anecdotes which 
demonstrate the importance of collective wisdom, there are also authors supporting the 
opposite conclusion, some of them cited in the text “Extraordinary Popular Delusions 
and the Madness of Crowds,” by Charles MacKay [7]. Since Surowiecki dealt with 
these concerns in his book, we will not repeat those arguments here. 

In the following sections, Surowiecki’s theory is extended to address a continuous 
decision-making problem, one that deals with a complex and rapidly changing world 
with interactions.  The key criteria separating the wise crowd from the irrational one are 
investigated using a computer-based simulation.  Also, the ability to learn is added to 
make both individuals and crowds “smarter” over time.  Finally, a relationship between 
the size of crowds and their performance (aggregation strategies) is suggested for 
varying environments.      

2   Methodology 

In this paper, a simulation using the framework of Complex Adaptive Systems is 
designed and implemented to demonstrate the wisdom of crowds in the context of the 
Prisoner’s Dilemma problem.  The Prisoner’s Dilemma is a type of non-zero-sum game 
developed in the game theory. The basic idea is for two suspects who committed a 
crime to decide whether to “cooperate” with each other or to “defect.”  Cooperating is 
the best outcome for both--they go free as there is no proof that they committed the 
crime.  However, as they do not trust each other, they are enticed to defect from the 
agreement and confess the crime, thus getting a lighter sentence than their partner in 
crime.  Of course, the worst-case scenario is if they both defect, thus securing a lengthy 
prison sentence for both.   

In order to establish a crowd, we extended the two-player game into a many-players 
situation.  Our Prisoner’s Dilemma game involves hundreds of players (crowd) playing 
against each other pair-wise, which allows for exploration of various aggregation 
strategies.  The details describing the Prisoner’s Dilemma in this context are introduced 
in Section 3. 

The Complex Adaptive System (CAS) framework represents a dynamic network of 
agents (representing cells, species, individuals, firms, nations, etc.) acting in parallel, 
while constantly reacting to what the other agents are doing [8, 9].  A system is 
considered complex if it is agent-based and exhibits non-linear behavior, feedback 
loops, self-organization, and emergence [10].  Such a system is considered adaptive if it 
has the capacity to change and learn from experience.  

The control in a CAS is distributed.  Any coherent behavior of the system has to arise 
from the competition and cooperation among the agents (constituent parts) themselves.  
The overall behavior of the system is a result of the decisions made by individual agents 
in each cycle [8].  The system often exhibits the property of self-organization.  
Self-organization is a process in which the internal organization of the system increases 
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in complexity without being guided or managed by an outside source.  Self-organizing 
systems frequently demonstrate emergent properties [9].  

Examples of CAS include the stock market, social insect and ant colonies, the 
biosphere and the ecosystem, the brain, the immune system, and any human social 
group-based endeavor [11-13].  Hence, it is natural to describe the Prisoner’s Dilemma 
as a complex adaptive system in order to reveal spontaneous reactions among 
individual players, as well as the wisdom hidden inside the group as a whole.  

3   Wisdom of Crowds in the Context of Prisoners’ Dilemma 

3.1   Theories of Wisdom of Crowds 

A “crowd” in Surowiecki’s book [1] is any group of people who can act collectively to 
make decisions and solve problems.  The wisdom of crowds theory simply suggests 
that a collective can solve a problem better than most of the members in the group can 
by acting alone.  As MacKay [7] pointed out, not all crowds (groups) are wise.  One 
needs to look no further than the stock market and its many examples of fads and 
market bubbles.  Consequently, efforts have been made to understand under what 
circumstances the wisdom of crowds may take effect.  Surowiecki suggests the 
following key criteria to separate wise crowds from irrational ones [1]: 

• Diversity of opinion - Each person should have private information even if it's 
just an eccentric interpretation of the known facts. 

• Independence - People's opinions aren't determined by the opinions of those 
around them. 

• Decentralization - People are able to specialize and draw on local knowledge. 
• Aggregation - Some mechanism exists for turning private judgments into a 

collective decision.  

Three distinct problems have been specified in which crowds may be smarter than 
individuals [1].  The first is a needle-in-the haystack problem where some people in the 
crowd may know the answer while many, if not most, do not.  The second is a state 
estimation problem, where some person may get lucky to hit the precise answer (while 
not being aware of their “accuracy” in advance), but the group does not.  Finally, there 
is a prediction problem, where the answer has yet to be revealed [14, 15].  For the 
prediction problem, the unrevealed answer can be either fixed (e.g., the prediction of 
the next Oscar winner does not change the answer itself) or it can be “fluid” (e.g., the 
return on your next investment where your action might affect the answer). 

The well-known example for the “needle in the haystack” problem is the show “Who 
Wants to Be a Millionaire.”  In this show, a contestant is asked a series of 
multiple-choice questions leading to the ultimate prize of $1M.  The contestant can 
choose from one of three options for getting help to answer the question she does not 
know: (1) eliminate two of the four possible answers, (2) call a predetermined “expert” 
for counsel, or (3) poll the studio audience.  The results show that the experts provide 
the correct answer a respectable two-thirds of the time, while the audience – a group of 
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folks with nothing better to do on a weekday afternoon – return the correct answer over 
90 percent of the time.  The success of polling lies in the fact that, assuming 
randomness in the answers provided, even a small percentage of the people in the 
crowd who know the correct answer can add a noticeable advantage to that answer, 
which helps it stand out using the majority rule.      

The “stated estimation” problem normally defines the “guess a quantity number” 
situations.  An interesting characteristic of this type of problem is that although one or 
several of the crowd members may come close to predicting the correct value/quantity 
of the target variable, none of them know it for sure when they offer the guess.  The 
well-known example is the “Francis Galton's surprise.”  The crowd at a county fair was 
asked to guess the weight of an ox that was exhibited at the fair.  The person with the 
most accurate answer was promised a prize.  Everyone tried his or her best to provide 
the right answer, while maintaining the secrecy of the guess.  The participants included 
some experts (e.g., butchers) and many non-experts. It was obvious that the experts 
stood a better chance of wining the prize than the non-experts.  However, since the 
target number was a continuous/real number, the non-experts still had a small chance of 
hitting the most precise number by luck and win the competition.  To his surprise, 
Galton discovered that the average of all the responses was, in fact, closer to the ox's 
true butchered weight than the individual estimates of most crowd members, including 
those made by the cattle experts.  

Let’s look closer into this stated estimation problem.  The collective error can be 
described as [14]: 

Collective error = Average individual error – Prediction diversity 

The average individual error combines the squared errors of all of the participants, 
while the prediction diversity combines the squared difference between the individuals 
and the average guess.  This equation tells us [14]: 

1. The crowd’s aggregate prediction is always better than those of most 
individuals in it, regardless of whether the crowd has a normal or skewed 
distribution of answers.  Sometimes it can even be better than the best 
individual, given enough diversity in the right direction. 

2. We can reduce the collective error by either increasing the accuracy or 
increasing the diversity of the crowds.    

Other types of problems have been grouped into the third category: the prediction 
problems.  An interesting story is told in Surowiecki’s book [1], regarding a submarine 
lost at sea.  The task was to locate the submarine with a very limited knowledge of 
when and under what weather conditions the submarine went down.  A group of 
specialists with a wide range of expertise was asked to offer their best independent/ 
individual guesses regarding the various scenarios for submarine’s trajectory in the last 
moments.  Although no one knew exactly what happened, by building a composite 
picture of the projected submarines movements a remarkably accurate guess was 
formed and the submarine was found.  In this case, even though no single individual in 
the group knew any of the exact answers, the group as a whole produced them all.  This  
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story suggests that even if the crowd is not aware of how much useful information each 
individual has, the appropriate aggregation of partially available information can 
provide the best answer.  

In order to test this idea, we designed and implemented a simulation that can aggregate 
information from a “crowd” in the context of the Prisoner’s Dilemma problem.  
Furthermore, this simulation is used to explore the effectiveness of the wisdom of crowds 
when the right answer is not fixed, but rather a continuous decision-making is called for.  
The following sections provide the details of the simulation. 

3.2   Wisdom of Crowds in the Prisoner’s Dilemma Game 

Since it was first raised by Merrill Flood and Melvin Dresher in the 1950’s [16], a lot of 
research has been done on the Prisoner's Dilemma (PD) problem, especially after 
Robert Axelrod introduced the concept of the iterated prisoner’s dilemma in his book 
“The Evolution of Cooperation” [17].  The PD is a typical type of non-zero-sum game 
explored in the game theory, based on the well-known expression of PD, the Canonical 
PD payoff matrix [17], which shows the non-zero net results for the players. 

 

Player B 

 Cooperate Defect 

Cooperate 3,3 0,5 
Player A 

Defect 5,0 1,1 

Some of the best-known strategies for solving this game are listed below [17,25]: 

• Tit-For-Tat -- Repeat opponent's last choice 
• Tit-For-Two-Tats – Similar to Tit-For-Tat, except that the opponent must make 

the same choice twice in a row before it is reciprocated 
• Grudger -- Co-operate until the opponent defects. Then, always defect 

(unforgiving) 
• Pavlov - Repeat the last choice if it led to a good outcome 
• Adaptive - Start with the set of pre-selected choices (c, c, c, c, c, c, d, d, d, d, d) , 

then after the initial 11 moves, select actions which give the best average score; 
re-calculated after each move. 

Finding the strategy to gain the highest number of points is the ultimate problem for the 
Iterated Prisoner's Dilemma game.  Every year, the IPD tournament [18] is held to 
evaluate strategies from different competitors.  Also, the genetic algorithms have been 
widely used [19, 20] to discover the best strategy.  Currently, memory- and 
outcome-based strategies such as Tit-For-Tat [21] and Pavlov [21] are regarded as the 
most effective ones [22-25]. 
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Extending the “two-player” game to the “many players” context brings about the 
situation where hundreds of players (a crowd) play together/against each other.  With 
no central control, players begin to play “cooperate” or “defect” based on their own 
strategies.  After each round, points are added up for each player.  Consequently, a 
potential “smart” crowd is formed.  This decentralization of strategies for playing is 
interpreted as a set of diverse opinions held in the crowd.  Then, a simple polling of 
playing strategies serves as the aggregation method for understanding the vote/wisdom 
of the crowd. 

As opposed to the needle-in-the-haystack problem and stated estimation problem, 
Prisoner’s Dilemma states a different type of problem -- dynamic prediction problem 
[14].  The term “dynamic” is used because the outcome is influenced not only by each 
play, but also by each player’s history of previous predictions.  The introduction of this 
“dynamic” process helps us evaluate performance of various strategies in different 
crowds over time, which is similar to the decision-making process or cognitive 
behavior of agents in the real life.  

Although more complicated, the participating crowd in the context of Prisoner’s 
Dilemma satisfies the four key criteria to get a smart crowd:  

a. Diversity and Decentralization 
Page [14] divides diversity into four frameworks: 

• Perspective: ways of representing situations and problems  
• Interpretations: ways of categorizing or partitioning perspectives 
• Heuristics: ways of generating solutions to problem 
• Predictive Models: ways of inferring causes and effects. 

Definition for decentralization is the dispersion or distribution of functions and powers, 
specifically the delegation of power from a central authority to regional and local 
authorities. As one of the key criteria forming a smart crowd, decentralization 
emphasizes that people are able to specialize and draw on local knowledge [14]. 

In the Prisoner’s Dilemma setting, each agent is given a memory and a strategy.  The 
memory serves to record and accumulate new knowledge, which represents diversity in 
two ways: the agent’s game history with a certain player, and the accumulation of local 
knowledge.  The agent’s strategy is the ability to choose either to cooperate or to defect 
based on the information stored in the memory.  The strategy also represents diversity in 
two ways: diversity in the ways of generating solutions to the problem, and diversity in  
the ability to draw conclusions from the local knowledge, since the agent does so without 
the preset upper-level/centralized guidance.  This diversity and decentralization among the 
agents are guaranteed through the combination of interpretations and heuristic frameworks 
described above, as well as through the process of dispersed decision-making.  

b. Independence 
The Prisoner’s Dilemma as played in our system (the Iterated Prisoner’s Dilemma) 
allows communication between, and learning from other, agents.  This aspect is 
fundamentally different from Surowiecki’s approach.  However, we still provide a 
“controller” for ensuring agent independence in the system, which enables us to 
experiment with both independence-securing and learning-enabling environments.   
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c. Aggregation 

Aggregation means combining outputs/solutions from different entities into 
higher-level entities.  In the Prisoner’s Dilemma game, aggregation assumes deriving a 
group-level solution by combining the individual members’ contributions (or 
solutions), regardless of whether these contributions are duplicate, contradictory, or 
incomplete.  The most commonly used methods for this type of aggregation are 
sampling, polling, and voting. 

3.3   Implementation 

In order to design a CAS for the Prisoner’s Dilemma game, first we need to create: 1) 
individual “player-agents” who can “cooperate” or “defect” when playing the game 
based on their own strategy, and 2) special “aggregator-agents” who represent the 
wisdom of crowds by acting as aggregators of various groups within the crowd of 
agents.  These aggregators also participate in the game, but they have a different 
decision-making procedure.  Since agents play against each other repeatedly without a 
central control (via random selection), we assign each agent a memory that is used to 
store information (knowledge) about their previous “matches.”  The player-agents 
initially “receive” a randomly allocated strategy that they use to select their actions, 
based on the information they have.  The aggregator-agents are given the ability to 
make their decisions upon consulting with their “advisory group,” formed from the set 
of player-agents selected by each aggregator-agent. 

The question now becomes: what kind of strategies should be available to the 
agents?  One way to approach this problem is to understand how humans perceive and 
approach problems.  This is obviously related to human personality factors. Raymond 
Cattelle’s suggests that there are 16 personality factors [26] that influence human 
perception of and approach to problems.  To keep things manageable in this project, we 
selected three personality factors to describe the way people perceive problems: 
dominance, vigilance, and openness to change. 

a. Dominance 
Agents that are less dominant are: deferential, cooperative, adverse to conflict, 
submissive, humble, obedient, easily led, docile, and accommodating.  An agent that is 
perceived as dominant is characterized as: forceful, assertive, aggressive, competitive, 
stubborn, and bossy.  

b. Vigilance 
Agents low in vigilance indicate behavior that is: trusting, unsuspecting, accepting, 
unconditional, and easy-going.  A highly vigilant agent is characterized as suspicious, 
skeptical, distrustful, and oppositional. 

c. Openness to change 
Not-so-open-to-change agents are defined as: traditional, attached to the familiar, 
conservative, and respectful of traditional ideas.  Highly open agents are defined as: 
analytical, critical, freethinking, and flexible. 
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In the Prisoner’s Dilemma simulation, the action of each agent includes methods  
for perceiving and solving problems. The methods for perceiving problems can be 
described by considering the questions described in Figure 1: 

 

  

Fig. 1. Personality vs. Action Mode 

a. How many previous ticks will be considered as a recent history?  
Agents with a “conservative personality” prefer consulting a longer history; otherwise 
they are open to change and only care about the most recent history.   

b. How long will it take for an agent to react to an opponent’s change in behavior?  
Agents with a “vigilant personality” are more suspicious of negative behavior.  They 
are also easier to make hostile.  Otherwise, they are less sensitive to betrayal.  

c. How does an agent evaluate his own performance? 
Agents with a “domineering personality” are more aggressive and competitive, 
thinking of their opponents relative to their own gain or loss.  Otherwise, they care only 
about their own absolute gain. 

The methods for solving problems can be described with the following rules[4]: 

a. Repeat the opponent's last action 
b. Assume an action opposite to the opponent’s last action  
c. Co-operate  
d. Defect   
e. Repeat own last action   
f. Assume an action opposite to your own last action. 

Consequently, in the system each player-agent is described using a chromosome-like 
structure: [4] 

 

Agent Number Basic Strategy Limitation Reaction1 Reaction2 
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Where: 

• Agent Number identifies each player. 
• Basic Strategy indicates the strategy an agent chooses to guide its behavior.  
• Limitation modifies the Basic Strategy as described below.  Taken together, these 

two numbers define the judgment of the situation the agent is facing. 
• Reaction1 defines the behavior of the agent if the situation described by Basic 

Strategy + Limitation applies in the current case/match.  
• Reaction2 defines the behavior of the agent if the situation described by Basic 

Strategy + Limitation does not apply in the current case/match. 

There are five basic strategies: 

0. The agent does not care what happened before. 
1. The agent takes into consideration the total number of times the opponent 

cooperated or defected in the past.   
2. The agent takes into consideration whether during the previous X number of 

matches/time (X defined by Limitation) the opponent cooperated or defected (X 
times in a row). 

3. The agent takes into consideration the average number of points it got previously by 
cooperating/defecting when playing against the same opponent.  

4. The agent takes into consideration whether the number of points it got from the last 
play is less than three points. 

Reaction1 and Reaction2 can assume one of the following values: 

0． Repeat opponent's last action 
1． Assume an action opposite to opponent’s last action  
2． Co-operate 
3． Defect 
4． Repeat own last action 
5． Assume an action opposite to its own last action. 

For example, Competitor 001 shown below simply repeats the opponent’s last action.  
This is a typical Tit-for-Tat. 

001 0 0 0 0 

Competitor 101 repeats the opponent’s last action if its’ opponent cooperated the last 
two times/matches; otherwise it chooses an action opposite to its own last action.  

101 2 2 0 5 

As can be seen from the above, our agents do not simply “cooperate” or “defect.”  They 
choose to “repeat” or “reverse” an action performed earlier either by their opponents or by 
themselves. This may be more similar to the way people behave in real life. This process 
also aggregates redundant strategies often present in evolutionary algorithms.   



110 M. Hadzikadic and M. Sun 

Another parameter, “forgiveness,” could be added to the chromosome to represent 
the random or predefined chance to cooperate (when defecting for a long time) or to 
defect (to test the opponent after cooperating for a long time).  Using “forgiveness” the 
chromosome could represent even a greater variety of strategies. 

Also, the parameter called “history-weight” is added to the chromosome to represent 
the different attitudes that agents could have regarding their own history. They may 
choose to regard every match in their entire history equally, or they may adjust how much 
emphasis they want to put on either their earlier matches or their most recent ones.  

Aggregator-agents represent special participants (competitors) in the game.  On each 
turn, aggregator-agents choose to cooperate or to defect according to the opinions from 
their chosen player-agent group.  Unlike the regular player-agents, aggregator-agents 
have no strategy that can give them guidance regarding cooperation or defection; their 
only strategy is to decide (a) which player-agent group they want to listen to, and (b) the 
manner in which they plan to aggregate the group’s advice.  

Each Aggregator-agent is described using a chromosome-like structure: 

Agent Number Selection Strategy Select_Number Aggregation Strategy 

Where: 

• Agent Number identifies each aggregator-agent. 
• Selection Strategy indicates the strategy used to select a player-agent group. 
• Select_Number indicates how many player-agents are chosen to form the group; it 

can be any number between 1 and the total number of player-agents. 
• Aggregation Strategy indicates the strategy used for aggregation. 

There are 4 selection strategies: 

1. The agent chooses the top Select_Number player-agents ranked by points. 
2. The agent chooses the bottom Select_Number player-agents ranked by points. 
3. The agent chooses the top N and bottom (Select_Number–N) player-agents ranked 

by points. 
4. The agent chooses Select_Number player-agents randomly. 

There are 2 aggregation strategies: 

1. The agent chooses the majority opinion 
2. The agent chooses the minority opinion. 

As shown in Figure 2, all agents are scattered randomly in the display area (90*90 grid in 
the NetLogo environment) with player-agents represented by red dots and 
aggregator-agents represented by yellow person-shaped images.  A set of basic strategies 
are assigned randomly to each agent.  Agents move randomly in the display area (the 
speed of agents can be changed via the control panel).  If two agents happen to be in the 
same neighborhood (8-neighbor grid) a meeting is initiated.  Agents play a match based 
on the strategy they follow and the information they have about each other.  After each 
play, the points are added and the agents move on to the next match [4].  
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Fig. 2. Application 

4   Experiments 

We have conducted numerous experiments to demonstrate the power of the (expanded) 
wisdom of crowd concept.  This section provides a summary of the four major groups 
of experiments. 

4.1   Experiment 1: Player-Agents’ Performance in Fixed Crowds  

In this experiment, we focus on the player-agents’ performance in fixed crowds, where 
“fixed” denotes the same group of players playing the whole time, and no evolution or 
learning takes place.  These settings satisfy all four of Surowiecki’s criteria. 

The performance of the player-agents is summarized in Figure 3.  The jagged blue 
line shows the highest average-score (the winner’s score).  For each player-agent, the 
average-score is calculated as the total number of points gained from all the plays, 
divided by the total number of plays.  The purple line shows the average of player-agent 
average-scores.  It is computed as the sum of average-scores divided by the number of 
all player-agents, thus outlining the average performance of the whole society of 
agents.  Finally, the black line shows the basic strategy, denoted by its numerical 
representation, chosen by the player-agent winner [4].  

The chart in Figure 3 shows a smooth line for the best performance with a score 
slightly above 3, while the average performance records a score of slightly below 3.  In 
this fixed society, the best performer is a greedy player who takes advantage of the  
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Fig. 3. Player-agents’ performance in fixed crowds 

“naïve” cooperating players by defecting all the time.  The best recommendation for the 
aggregator-agent, therefore, is simply to listen to the best player-agent; i.e., always 
defect [4].   

The reason that this society remains stable is because neither the player-agents nor 
the whole crowd has a goal (fitness function), which in the real life rarely happens. So 
we introduce such a goal in the later experiments. 

4.2   Experiment 2: Player-Agents’ Performance in Evolutionary Crowds  

In this experiment, we focus on the player-agents’ performance in evolutionary crowds, 
where “evolutionary” means every certain number of steps/plays some of the players 
are replaced with preferred (higher scoring) player-agents. The whole society/crowds 
try to reach the goal--obtaining higher scores by eliminating the less competitive 
player-agents. These setting also satisfy all four of Surowiecki’s criteria. 

 

Fig. 4. Player-agents’ performance in evolutionary crowds 
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The chart in Figure 4 shows more volatility as the crowd is changing over time.  The 
player-agents with the highest score gradually replace the lowest scoring agents.  In the 
beginning, evolution shows preference for the greedy players and eliminates the naïve ones.  
This causes the score of the best performers to decrease and the average score to increase, 
thus making the crowd “smarter.”  Later on, after retaining too many greedy players and no 
naïve ones, the greedy ones die out and are replaced by those who are “smart” enough to 
both cooperate and defect according to a specific situation.  The crowd thus ends up with 
the score of 3, which suggests that the final outcome/strategy is to “cooperate,” and the best 
decision recommended for the aggregator-agent is simply to cooperate [4]. 

4.3   Experiment 3: Player-Agents’ and Aggregator-Agents’ Performance with the 
Learning Ability in Evolutionary Crowds  

Adding the learning ability to the player-agents enables them to learn individually and 
to improve their decisions.  Although this violates one of Surowiecki’s criteria 
–independence – it is crucial for success in real life. Experiments show that by keeping 
enough diversity of opinion in the crowd, the aggregate wisdom of the crowd can still 
perform better than most individual members, even better than the best individual.  
Consequently, in this experiment we focus on the player-agents’ performance with 
learning ability in evolutionary crowds.  

Each experiment was run ten times with a different random seed.   During each round, 
250 player-agents were placed on the grid.  After player-agents had had a chance to play 
against and learn from each other for a certain learning period, the aggregator-agents with 
different strategies were introduced into this game. Aggre1, 5, 9.., 250 represent the 
aggregator-agents with different aggregation strategies.  For example, an aggregator-agent 
whose strategy is to consult player-agents with the highest scores may choose to follow the 
advice of the group of player-agents having the current highest score, and we call it 
aggre1.  This is likely a wise strategy for the aggregator-agents.  Similar strategies include 
the best players, median players, and average players.   

The charts in Figure 5 show the performance of player-agents and aggregator-agents, 
after certain duration of learning, using ten different seeds (formation of crowds).  

By introducing the ability to learn, the performance of player-agents and 
aggregator-agents show increasing volatility reflected in their scores for different seeds 
(crowds). When no learning happens, the performance of player-agents and aggregator- 
agent keeps relatively stable no matter what seed (formation of crowds) is used.  
Although the performance line for best-players is always on the top of the chart, depicting 
their superiority, we observe that the lines for Aggre19 and Aggre29 are close to the one 
for the best players (best_people), which suggests that the best way to make the decision 
by using the wisdom of the crowd in this situation is to listen to the top 10% performers in 
the crowd, so that the aggregators’ performance will be similar (yet more stable) to the 
performance of the best individual in the crowd (though slightly lower). The best 
individual might change at each tick, while the performance of the aggregators remains 
high all the time.  

As we introduced learning, more volatility occurred and the best player is not necessarily 
the all-time winner.  In the chart in Figure 5, which shows the situation after learning for  
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Fig. 5. Performance of Player-agent and Aggregator-agent in different seeds varying in duration 
of learning 



 Wisdom of Crowds in the Prisoner’s Dilemma Context 115 

150,000 ticks, the aggregator player performs better than the best player six times out of ten.  
This suggests that more than half the time making a decision using the wisdom of the crowd 
is even better than using the advice of the best individual in the crowd.  

4.4   Experiment 4: Player-Agents’ and Aggregator-Agents’ Performance 

Varying with the Size of Crowds  

The size of crowds, which is related to the diversity of opinions in the crowd, is another 
factor of agents’ performance.  In this final experiment, we focused on the player-agents’  
 

 

 
Fig. 6. Performance of Player-agent and Aggregator-agent varying in size of crowds 
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and aggregator-agents’ performance while varying the size of the crowds.  Two sets of 
experiments were run using different random seeds: 250 player-agents and 500 
player-agents (Figure 6). 

In Figure 6, avg_people_250 and best_people_250 represent the average 
player-agent and the player-agent with the current high score in a crowd of 250 
player-agents, while aggre250 represents the aggregator-agent who chooses the 
strategy to listen to all 250 player-agents in the crowd.  Similar explanation holds for 
avg_people_500, best_people_500 and aggre500.  

The charts in Figure 6 show that despite the choice of different random seeds, the 
increased size of the crowd (which increases the diversity of opinion) results in a better 
performance for both player-agents and aggregator-agents.  The aggregator-agent using 
the wisdom of the crowd performs better, most of the time, than the best player-agents 
in those crowds. 

5   Lessons Learned and Future Work 

In this paper, we extend the concept of wisdom of crowds to a continuous decision 
making problem – The Prisoner’s Dilemma.  A simulation using the concept of 
Complex Adaptive Systems is built to demonstrate the wisdom of crowds, thus testing 
Surowiecki’s four criteria to form a smart crowd.  However, it is hard to imagine a 
continuous decision-making example from the real world where members of the crowd 
are truly independent from each other.  Therefore, by partially violating the 
independence criteria, we added the learning ability to the agents.  Our experiments 
show that this addition makes both individual players and the aggregate-players 
smarter, while still guaranteeing the diversity of opinion.  Furthermore, these 
experiments show that in a crowd where the “membership” can be defined 
dynamically, and where members of the crowd can communicate with each other and 
learn from each other, the wisdom of crowds approach is superior to the best 
performing members of the crowd.      

Future work will focus on: 

1. Characterizing the structure of crowds more precisely, using variables such 
as size, density, and diversity. 

2. Identifying the behavior of the crowds with different agent settings: heuristic 
problem solving, differing behavior patterns, degrees of social influence, 
and varying speed of learning speed. 

3. Quantifying and qualifying the characteristics of aggregators. 

6   Summary 

The research on the wisdom of crowds reported in this paper provides us with a new 
way of decision-making.  Unlike the widely used knowledge-based decision strategies 
which rely on collecting and analyzing specific knowledge for specific problems, the 
method proposed in this paper helps practitioners to better handle social science or 



 Wisdom of Crowds in the Prisoner’s Dilemma Context 117 

economics problems that involve numerous human interactions, uncertain personal 
feelings, and dynamic changes. 

By simulating the Prisoner’s Dilemma game in a Complex Adaptive System, we 
investigated the key criteria that separate wise crowds from the irrational ones.  We 
suggested different aggregation strategies for different environments.  The further 
research on the collective wisdom will provide deeper insights along many of the 
dimensions only touched upon in this paper.  
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Abstract. Statistical Relational Learning (SRL) is a growing field in Machine
Learning that aims at the integration of logic-based learning approaches with
probabilistic graphical models. Markov Logic Networks (MLNs) are one of the
state-of-the-art SRL models that combine first-order logic and Markov networks
(MNs) by attaching weights to first-order formulas and viewing these as templates
for features of MNs. Learning models in SRL consists in learning the structure
(logical clauses in MLNs) and the parameters (weights for each clause in MLNs).
Structure learning of MLNs is performed by maximizing a likelihood function
(or a function thereof) over relational databases and MLNs have been success-
fully applied to problems in relational and uncertain domains. However, most
complex domains are characterized by incomplete data. Until now SRL models
have mostly used Expectation-Maximization (EM) for learning statistical param-
eters under missing values. Multistrategic learning in the relational setting has
been a successful approach to dealing with complex problems where multiple
inference mechanisms can help solve different subproblems. Abduction is an in-
ference strategy that has been proven useful for completing missing values in
observations. In this paper we propose two frameworks for integrating abduction
in SRL models. The first tightly integrates logical abduction with structure and
parameter learning of MLNs in a single step. During structure search guided by
conditional likelihood, clause evaluation is performed by first trying to logically
abduce missing values in the data and then by learning optimal pseudo-likelihood
parameters using the completed data. The second approach integrates abduction
with Structural EM of [17] by performing logical abductive inference in the E-
step and then by trying to maximize parameters in the M-step.

1 Introduction

Traditionally, Machine Learning research has fallen into two separate subfields: one
that has focused on logical representations, and one on statistical ones. Logical Ma-
chine Learning approaches based on logic programming, description logics, classical
planning, rule induction, etc, tend to emphasize handling complexity. Statistical Ma-
chine Learning approaches like Bayesian networks, hidden Markov models, statisti-
cal parsing, neural networks, etc, tend to emphasize handling uncertainty. However,
learning systems must be able to handle both for real-world applications. The first at-
tempts to integrate logic and probability were made in Artifical Intelligence and date
back to the works in [2,22,46]. Later, several authors began using logic programs to
compactly specify Bayesian networks, an approach known as knowledge-based model
construction [68].

J. Koronacki et al. (Eds.): Advances in Machine Learning II, SCI 263, pp. 121–142.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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A central problem in Machine Learning has always been learning in rich representa-
tions that enable to deal with structure and relations. Much progress has been achieved
in the relational learning field or differently known as Inductive Logic Programming
[33]. On the other hand, successful statistical machine learning models with their roots
in statistics and pattern recognition, have made possible to deal with noisy and uncertain
domains in a robust manner. Powerful models such as Probabilistic Graphical Models
[48] and related algorithms have the power to handle uncertainty but lack the capability
of dealing with structured domains.

In Machine Learning, recently, in the burgeoning field of Statistical Relational Learn-
ing (SRL) [20] or Probabilistic Inductive Logic Programming [11], several approaches
for combining logic and probability have been proposed. A growing amount of work
has been dedicated to integrating subsets of first-order logic with probabilistic graphical
models, to extend logic programs with a probabilistic semantics or integrate other for-
malisms with probability. Some of the logic-based approaches are: Knowledge-based
Model Contruction [68], Bayesian Logic Programs [28], Stochastic Logic Programs
[9,41], Probabilistic Horn Abduction [51], Queries for Probabilistic Knowledge Bases
[44], PRISM [60], CLP(BN) [59]. Other approaches include frame-based systems such
as Probabilistic Relational Models [43] or PRMs extensions defined in [47], description
logics based approaches such as those in [8] and P-CLASSIC of [30], database query
langauges [67], [54], etc.

All these approaches combine probabilistic graphical models with subsets of first-
order logic (e.g., Horn Clauses). One of the state-of-the-art SRL approches is Markov
logic [58], a powerful representation that has finite first-order logic and probabilistic
graphical models as special cases. It extends first-order logic by attaching weights to
formulas providing the full expressiveness of graphical models and first-order logic in
finite domains and remaining well defined in many infinite domains [58,65]. Weighted
formulas are viewed as templates for constructing Markov Networks (MNs) and in
the infinite-weight limit, Markov logic reduces to standard first-order logic. In Markov
logic it is avoided the assumption of i.i.d. (independent and identically distributed) data
made by most statistical learners by using the power of first-order logic to compactly
represent dependencies among objects and relations. In this paper we will focus on this
SRL model.

The representation power and the robustness of SRL models to deal with uncertainty
does not solve all the problems present in complex domains. Dealing with unknown or
partially observed data is an important problem in Machine Learning. Most SRL mod-
els face this problem only from the parameter setting point of view by following similar
approaches developed in the statistical machine learning field. The most used approach
is Expectation-Maximization (EM) [13]. On the other side, in relational learning dif-
ferent approaches have been proposed that integrate multiple inference mechanisms in
inductive learning to deal with incomplete data [16,26].

Multistrategic approaches to Machine Learning [38] aim at combining different in-
ference strategies in order to take advantage of each of these during learning. One of
these inference mechanisms is abduction. In the general inference schema, the fun-
damental equation BK ∪ T |= O involves a language L, a background knowledge BK
and a theory T , that contains concept definitions accounting for some observations O.
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Specifically, O stands for the extensional representation of concepts, while T is an in-
tensional description, expressed in L, that explains such concepts together with BK.
Deduction traces forward the equation, deriving O given T and BK, and hence it
is a truth-preserving inference. Conversely, tracing the equation backward yields two
falsity-preserving inferences (meaning that if O is false, then the hypothesis cannot be
true): induction, when T is to be hypothesized given O and BK, or abduction, when BK
is to be hypothesized given O and T (i.e., plausible/likely causes of given observations).
Most approaches to relational learning rely on inductive mechanisms to fine-tune T in
order to achieve the learning goal, but problems might arise due to the partial relevance
of the available evidence O. Abduction could be exploited to overcome such a limitation
by bridging the observations relevance gap. Indeed, it is able to capture default reason-
ing [57], a well-known form of reasoning to deal with incomplete information [27,50].
Thus, making these inference strategies work together would allow to take advantage of
the benefits that each of them can bring. A step in this direction was proposed in [26],
where the authors show how to learn with incomplete background data about the train-
ing examples by exploiting the hypothetical reasoning of abduction. Another approach
is that in [16] where it was proposed a framework for the integration of abductive and
inductive learning in an incremental ILP system.

In this paper we propose two frameworks that integrate logical abduction in an SRL
model based on Markov logic. The novelty of the proposed approaches stands in the
tight integration of structure and parameter learning of an SRL model in a single step
inside which a logical abductive proof procedure and a statistical parameter estimation
method are exploited. The first framework integrates logical abduction with structure
and parameter learning of MLNs in a single step. During structure search guided by
conditional likelihood, structure evaluation is performed by first trying to logically ab-
duce missing values in the data and then by learning optimal pseudo-likelihood parame-
ters using the completed data. The second approach integrates abduction with Structural
EM of [17] by performing logical abductive inference in the E-step and then by trying
to maximize parameters in the M-step.

2 Markov Networks and Markov Logic Networks

A Markov network (also known as Markov random field) is a model for the joint distri-
bution of a set of variables X = (X1,X2,. . . ,Xn) ∈ χ [12]. It is composed of an undirected
graph G and a set of potential functions. The graph has a node for each variable, and
the model has a potential function φk for each clique in the graph. A potential function
is a non-negative real-valued function of the state of the corresponding clique. The joint
distribution represented by a Markov network is given by:

P(X = x) =
1
Z ∏

k

φk(x{k}) (1)

where x{k} is the state of the kth clique (i.e., the state of the variables that appear in that
clique). Z, known as the partition function, is given by:

Z = ∑
x∈χ

∏
k

φk(x{k}) (2)
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Markov networks are often conveniently represented as log-linear models, with each
clique potential replaced by an exponentiated weighted sum of features of the state,
leading to:

P(X = x) =
1
Z

exp(∑
j

w jf j(x)) (3)

A feature may be any real-valued function of the state. We will focus on binary features,
f j ∈ {0,1}. In the most direct translation from the potential-function form, there is one
feature corresponding to each possible state xk of each clique, with its weight being
log(φ(x{k}). This representation is exponential in the size of the cliques. However a
much smaller number of features (e.g., logical functions of the state of the clique) can
be specified, allowing for a more compact representation than the potential-function
form, particularly when large cliques are present. MLNs take advantage of this.

A first-order KB can be seen as a set of hard constraints on the set of possible worlds:
if a world violates even one formula, it has zero probability. The basic idea in Markov
logic is to soften these constraints: when a world violates one formula in the KB it is less
probable, but not impossible. The fewer formulas a world violates, the more probable
it is. Each formula has an associated weight that reflects how strong a constraint it is:
the higher the weight, the greater the difference in log probability between a world that
satisfies the formula and one that does not, other things being equal.

A Markov logic network [58] L is a set of pairs (Fi;wi), where Fi is a formula in
first-order logic and wi is a real number. Together with a finite set of constants C =
{c1,c2, . . . ,cp} it defines a Markov network ML;C as follows:

1. ML;C contains one binary node for each possible grounding of each predicate ap-
pearing in L. The value of the node is 1 if the ground predicate is true, and 0 otherwise.

2. ML;C contains one feature for each possible grounding of each formula Fi in L. The
value of this feature is 1 if the ground formula is true, and 0 otherwise. The weight of
the feature is the wi associated with Fi in L. Thus there is an edge between two nodes of
ML;C iff the corresponding ground predicates appear together in at least one grounding
of one formula in L. An MLN can be viewed as a template for constructing Markov
networks. The probability distribution over possible worlds x specified by the ground
Markov network ML;C is given by

P(X = x) =
1
Z

exp(
F

∑
i=1

wini(x)) =
1
Z ∏

i
φi(xi)ni(x) (4)

where F is the number of formulas in the MLN and ni(x) is the number of true ground-
ings of Fi in x. As formula weights increase, an MLN increasingly resembles a purely
logical KB, becoming equivalent to one in the limit of all infinite weights.

In this paper we focus on MLNs whose formulas are function-free clauses and as-
sume domain closure (it has been proven that no expressiveness is lost), ensuring that
the Markov networks generated are finite. In this case, the groundings of a formula are
formed simply by replacing its variables with constants in all possible ways.
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3 Structure and Parameter Learning of MLNs

3.1 Generative Structure Learning of MLNs

One of the approaches for learning MN weights is iterative scaling [12]. However, max-
imizing the likelihood (or posterior) using a quasi-Newton optimization method like L-
BFGS has recently been found to be much faster [62]. Regarding structure learning, the
authors in [12] induce conjunctive features by starting with a set of atomic features (the
original variables), conjoining each current feature with each atomic feature, adding to
the network the conjunction that most increases likelihood, and repeating. The work in
[37] extends this to the case of conditional random fields, which are Markov networks
trained to maximize the conditional likelihood of a set of outputs given a set of inputs.

The first attempt to learn MLNs was that in [58], where the authors used CLAUDIEN
[10] to learn the clauses of MLNs and then learned the weights by maximizing pseudo-
likelihood. In [29] another method was proposed that combines ideas from ILP and
feature induction of Markov networks. This algorithm, that performs a beam or shortest
first search in the space of clauses guided by a weighted pseudo-log-likelihood (WPLL)
measure [3], outperformed that of [58]. Recently, in [39] a bottom-up approach was pro-
posed in order to reduce the search space. This algorithm uses a propositional Markov
network learning method to construct template networks that guide the construction
of candidate clauses. In this way, it generates fewer candidates for evaluation. In [5],
the authors proposed an algorithm based on the iterated local search metaheuristic and
showed that using parallel computation, it is possible to improve over the previous al-
gorithms. For every candidate structure, in all these algorithms, the parameters that
optimize the WPLL are set through L-BFGS that approximates the second-derivative
of the WPLL by keeping a running finite-sized window of previous first-derivatives.

3.2 Discriminative Structure and Parameter Learning of MLNs

Learning MLNs in a discriminative fashion has produced for predictive tasks much
better results than generative approaches as the results in [64] show. In this work the
voted-perceptron algorithm was generalized to arbitrary MLNs by replacing the Viterbi
algorithm with a weighted satisfiability solver. The new algorithm is essentially gradi-
ent descent with an MPE approximation to the expected sufficient statistics (true clause
counts) and these can vary widely between clauses, causing the learning problem to
be highly ill-conditioned, and making gradient descent very slow. In [36] a precondi-
tioned scaled conjugate gradient approach is shown to outperform the algorithm in [64]
in terms of learning time and prediction accuracy. This algorithm is based on the scaled
conjugate gradient method and very good results are obtained with a simple approach:
per-weight learning weights, with the weight’s learning rate being the global one di-
vided by the corresponding clause’s empirical number of true groundings.

However, for both these algorithms the structure is supposed to be given by an expert
or learned previously and they focus only on the parameter learning task. This can lead
to suboptimal results if the clauses given by an expert do not capture the essential de-
pendencies in the domain in order to improve classification accuracy. On the other side,
since to the best of our knowledge, no attempt has been made to learn the structure of
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MLNs discriminatively, the clauses learned by generative structure learning algorithms
tend to optimize the joint distribution of all the variables and applying discriminative
weight learning after the structure has been learned generatively may lead to subopti-
mal results since the initial goal of the learned structure was not to discriminate query
predicates.

Recently different attempts have been proposed for discriminative structure learning
of MLNs. In [24] MLNs were restricted to non recursive definite clauses and the ILP
system ALEPH [66] was used to generate a large number of potentially good candi-
dates that are then scored using exact inference methods. In [4] the authors proposed
another approach, they set parameters by maximizing likelihood and choose structures
by conditional likelihood. Inference for each canidate clause is performed using the
lazy version of the MC-SAT algorithm [53]. The authors propose some simple heuris-
tics to make the problem tractable and show improvements in terms of predictive accu-
racy over generative structure learning approaches and discriminative weight learning
algorithms.

4 First-Order Logic and Inductive Logic Programming

Relational learning is mostly related to first-order logic or more restricted formalisms.
A first-order knowledge base (KB) is a set of sentences or formulas in first-order logic
(FOL) [19]. Formulas in FOL are constructed using four types of symbols: constants,
variables, functions, and predicates. Constant symbols represent objects in the domain
of interest. Variable symbols range over the objects in the domain. Function symbols
represent mappings from tuples of objects to objects. Predicate symbols represent re-
lations among objects in the domain or attributes of objects. A term is any expression
representing an object in the domain. It can be a constant, a variable, or a function ap-
plied to a tuple of terms. An atomic formula or atom is a predicate symbol applied to
a tuple of terms. A ground term is a term containing no variables. A ground atom or
ground predicate is an atomic formula all of whose arguments are ground terms. For-
mulas are recursively constructed from atomic formulas using logical connectives and
quantifiers. A positive literal is an atomic formula; a negative literal is a negated atomic
formula. A KB in clausal form is a conjunction of clauses, a clause being a disjunction
of literals. A definite clause is a clause with exactly one positive literal (the head, with
the negative literals constituting the body). A possible world or Herbrand interpretation
assigns a truth value to each possible ground predicate.

Because of the computational complexity, KBs are generally constructed using a re-
stricted subset of FOL where inference and learning is more tractable. The most widely-
used restriction is to Horn clauses, which are clauses containing at most one positive
literal. In other words, a Horn clause is an implication with all positive antecedents,
and only one (positive) literal in the consequent. A program in the Prolog language is
a set of Horn clauses. Prolog programs can be learned from examples (often relational
databases) by searching for Horn clauses that hold in the data. The field of inductive
logic programming (ILP) [33] deals exactly with this problem. The main task in ILP
is finding an hypothesis H (a logic program, i.e. a definite clause program) from a set
of positive and negative examples P and N. In particular, it is required that the hypoth-
esis H covers all positive examples in P and none of the negative examples in N. The
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representation language for representing the examples together with the covers relation
determines the ILP setting [56].

Learning from entailment is probably the most popular ILP setting and many well-
known ILP systems such as FOIL [55], Progol [42] or ALEPH [66] follow this setting.
In this setting examples are definite clauses and an example e is covered by an hy-
pothesis H, w.r.t the background theory B if and only if B∪H |= e. Most ILP systems
in this setting require ground facts as examples. They typically proceed following a
separate-and-conquer rule-learning approach [18]. This means that in the outer loop
they repeatedly search for a rule covering many positive examples and none of the neg-
atives (set-covering approach [40]). In the inner loop ILP systems generally perform
a general-to-specific heuristic search using refinement operators [45,63] based on θ -
subsumption [49]. These operators perform the steps in the search-space, by making
small modifications to a hypothesis. From a logical perspective, these refinement oper-
ators typically realize elementary generalization and specialization steps (usually under
θ -subsumption). More sophisticated systems like Progol or ALEPH employ a search
bias to reduce the search space of hypothesis.

In the ILP setting of learning from interpretations, examples are Herbrand interpre-
tations and an examle e is covered by an hypthesis H, w.r.t the background theory B,
if and only if e is a model of B∪H. A possible world is described through sets of
true ground facts which are the Herbrand interpretations. Learning from interpretations
is generally easier and computationally more tractable than learning from entailment
[56]. This is due to the fact that interpretations carry much more information than the
examples in learning from entailment. In learning from entailment, examples consist of
a single fact, while in interepretations all the facts that hold in the example are known.
The approach followed by ILP systems learning from interpretations is similar to those
that learn from entailment. The most important difference stands in the generality rela-
tionship. In learning from entailment an hypothesis H1 is more general than H2 if and
only if H1 |= H2, while in learning from interpretations when H2 |= H1. A hypothesis
H1 is more general than a hypothesis H2 if all examples covered by H2 are also covered
by H1. ILP systems that learn from interpretations are also well suited for learning from
positive examples only [10].

5 Abduction

In this section we present Abductive Logic Programing and how an abductive proof pro-
cedure can be integrated in an Inductice Logic Programming approach for incremental
theory revision.

5.1 Abuctive Logic Programming

Abductive Logic Programming (ALP) [15,31] is an extension of Logic Programming
aimed at supporting abductive reasoning with theories (logic programs) that incom-
pletely describe their problem domain. In ALP this incomplete knowledge is captured
by an abductive theory, defined as a triple (T ,A ,I ) where T is a (hierarchical) logic
program, A is a set of abducible predicates, and I is a set of integrity constraints
represented as program clauses.
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Algorithm 1. Abductive Refutation Algorithm
abduce(T , G, Δ , A D , I )

{input: T : theory, G: Datalog goal (set of literals), Δ : initial abductive assumptions, A D : the
set of abducibles and default literals, I : the integrity constraints;
output: Δ ′ final abductive assumptions;}
Δ ′ = Δ ;
while G �= /0 do

L := Select a literal from G;
if L /∈A D then

/* (A1) */ G := Resolvent of some clause of T with G on L;
else if L ∈ Δ ′ then

/* (A2) */ G := G\L;
else if LJ /∈ Δ ′ and ∃ΔC = consistency(T,L,Δ ′ ∪{L},A D,I ) then

/* (A3) */ G := G\L; Δ ′ := ΔC;
end if

end while

Algorithm 2. Consistency Derivation Algorithm
consistency(T , L, Δ , A D , I )

{input: T : theory, L ∈A D : a literal, Δ : initial abductive assumptions,
A D: the set of abducibles and default literals, I : the integrity constraints;
output: Δ ′ final abductive assumptions;}
Δ ′ := Δ ;
C :=

⋃
of goals of the form : −L1,L2, . . . ,Ln obtained by resolving the abducibles or default

literal L with the integrity constraints I with no such goal been empty;
while C �= /0 do

B := Select a goal from C; M := Select a literal from B;
if M /∈A D then

H := Resolvent of some clause of T with B on M;
C := {C \B}∪H;

else if M ∈A D and M ∈ Δ ′ then
/* (F1) */ H := B\M; C := {C \B}∪H;

else if M ∈A D and M ∈ Δ ′ then
/* (F2) */ C := C \B;

else if M ∈A D and (M /∈ Δ ′, M /∈ Δ ′) then
/* (F3) */
if ∃ΔA = abduce(T,M,Δ ′,A D ,I ) then

C := C \B; Δ ′ := ΔA
end if

end if
end while

An abductive procedure can be exploited to deal with the problem of incompleteness
by finding explanations that make hypotheses (abductive assumptions) on the state of
the world, possibly involving new abducible concepts. The procedure is generally goal-
driven by the observations that it tries to explain. Preliminarily, the top-level goal under-
goes a transformation process that converts it into sub-goals. This provides a simple and
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unique modality for dealing with non-monotonic reasoning. Algorithm 1 sketches the
classical abductive proof procedure proposed in [25]. After a literal is selected, if it is
not abducible or a default one (A1), the procedure continues with a resolution step with
clauses from T . Otherwise, if the fact has been already assumed abductively (and con-
sistently) as true in previous steps (A2) it can be dropped (a case of successful proof).
Otherwise (A3), a new fact may be assumed as true, provided that it is consistent with
the current integrity constraints I , which is verified by the consistency-check subrou-
tine reported in Algorithm 2. The various branches in the consistency-check subroutine
are similar to derivations except that, when dealing with an abducible or a default lit-
eral, if it has already been abduced (F1) then it is simply dropped (i.e. consistency is
trivially proved); otherwise, if its complement has already been abduced or can be ab-
duced (F2), the entire goal is dropped. In the last if-branch (F3), whenever the literal
to be tested is an abducible or default one, but neither it nor its complement have been
already abduced, the abductive procedure is called, in order to try hypothesizing it by
abduction. Thus, the two procedures may call each other both when a new abductive
assumption requires further consistency checks against the constraints and vice-versa.

Representing theories as hierarchical logic programs allows to maintain the Least
Herbrand Models semantics, coping with negation by means of NAF [7] rule. Indeed,
since the language of definite clauses with integrity constraints has been proven to sub-
sume NAF [14], integrity constraints can be simulated using NAF as well. The advan-
tage of adopting this semantics resides in the fact that T |= P1, T |= P2, . . . , T |= Pn implies
that T |= P1∧P2∧·· ·∧Pn. Hence, positive/negative examples can be tested separately for
completeness/consistency.

5.2 Integrating Abductive Inference in Inductive Learning

Algorithm 3 sketches the integration of an incremental inductive learning framework
with an abductive proof procedure as proposed in [16]. Here, M represents the set of all
positive and negative processed examples, E is the example currently examined, T is
the theory generated so far according to M, AbdT is the abduction theory, D is the set
of facts hypothesized by the abductive derivation when successfully applied to a goal in
theory T . Generalize and Specialize are the inductive operators used by the system to
refine an incorrect theory. When a new observation is available, the abductive proof pro-
cedure is started, parameterized on the current theory, the example and the current set
of past abductive assumptions. If the procedure succeeds, the resulting set of assump-
tions, that were necessary to correctly classify the observation, is added to the example
description, otherwise the usual refinement procedure (generalization/specialization) is
performed.

Several aspects of the strategy adopted in Algorithm 3 can be useful for our pur-
poses of learning the structure of an SRL model. First, it can be useful to apply the
abductive derivation on examples that are not correctly classified (i.e., generate an omis-
sion/commission error) by the current theory using deduction only. The system checks
whether the example can be correctly explained by hypothesizing new facts by means
of the abductive procedure reported in Algorithm 1. Indeed, if successful, such an appli-
cation provides abduced facts that can be useful for extending the available knowledge
of the world. The incremental strategy exploits this feature to complete the observations
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Algorithm 3. Theory Revision extending an incremental inductive learning framework
with an abductive proof procedure

Revise (T ; E; M; AbdT );
{input: T : theory, E: example, M: historical memory, AbdT : Abductive Theory;
output: T revised theory;}
D← E
if (Abductions = Abduct(T,E,D,AbdT )) succeeds then

Add to D the abduced literals Abductions; M←M∪{E ∪D};
else M←M∪E

if E is a positive example then Generalize(T,E,M);
else Specialize(T,E,M);

in such a way that the corresponding examples are either covered (if positive) or ruled
out (if negative) by the already generated theory, in order to avoid performing a revi-
sion of the theory whenever possible (only in case of failure the refinement operators
are applied to modify/revise the theory). Abduction is thus exploited. The abductive
proof procedure can be set in such a way that the set of abduced literals for each ob-
servation is minimal, which ensures that abducibles are used only when really needed,
or maximal, which allows to make all possible consistent assumptions that can poten-
tially provide new knowledge about the world. In [16] the minimal option is adopted
in order to have a conservative behaviour, while here the maximal one could be more
suitable to gain more information about the likelihood of the candidate theories. This
is the approach that we follow here. Furthermore, in [16] the abduced information is
attached directly to the observation that generated it, in order to keep observations inde-
pendent from each other. However, this implies that the “completed” examples obtained
this way must be available to subsequent abductions, so that the hypothesized facts can
be considered in order to preserve consistency among the whole set of abduced facts.
In our case, examples are to be exploited altogether, so there is no need to keep ab-
ductions attached to the corresponding observations, but a single initial goal including
the conjunction of all available examples can be considered, which provides a unique
set of abduced facts that explain the whole set of examples, are consistent among each
other and can be exploited for the likelihood computation. Lastly, on the inductive side,
another thing that can be borrowed is the exploitation of refinement operators that can
modify a theory so that it can account for a new example on which it previously gen-
erated an omission/commission error. In our case, these operators can be exploited for
guiding the move from a theory to one of its refinements, instead of randomly trying to
apply all possible refinements.

6 Single Step Structure Learning with Abduction

In this section we describe how structure learning of MLNs in a single step can be
combined with the procedure for logical abduction presented in the previous section.
The algorithms we propose here are built upon the ideas that we presented in [4]. The
parameters are set through maximum pseudo-log-likelihood (WPLL), and the structures
are scored through conditional likelihood. The only difference regards the use of logical
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abduction to complete unknown values in the data during structure search and before
computing the WPLL score for each structure.

The first difference between the full framework of MLNs proposed by [58] and the
framework that we propose here is that in order to use ALP during structure search we
need to restrict the clauses of our model MLN to Horn clauses. Most of relational learn-
ing is performed under this expressiveness power and the successes of ILP have shown
that for many problems Horn logic is sufficient to deal with structured domains. Thus the
structure learning algorithms that we propose here are an extension of those proposed
in [4,5] in that here we perform logical abduction in the structure learning process and
the language we follow here is based on Horn logic instead of full FOL. The second
difference is that the algorithms proposed in [58], try to apply all possible refinements,
while here we use ILP refinement operators to properly explore the search space.

6.1 Pseudo-likelihood

MLN weights can be learned by maximizing the likelihood of a relational database.
Like in ILP, a closed-world assumption [19] is made, thus all ground atoms not in the
database are assumed false. If there are n possible ground atoms, then we can represent
a database as a vector x = (x1, ...,xi...,xn) and xi is the truth value of the ith ground
atom, xi = 1 if the atom appears in the database, otherwise xi = 0. Standard methods can
be used to learn MLN weights following Equation 4. If the jth formula has n j(x) true
groundings, by Equation 4 we get the derivative of the log-likelihood with respect to its
weights by:

∂
∂wj

logPw(X = x) = n j(x)−∑
x′

Pw(X = x′)n j(x′) (5)

where x′ are databases and Pw(X = x′) is P(X = x′) computed using the current weight
vector w = (w1, ...,wj). Thus, the jth component of the gradient is the difference be-
tween the number of true groundings of the jth formula in the data and its expectation
according to the model. Counting the number of true groundings of a first-order for-
mula, unfortunately, is a #P-complete problem.

The problem with Equation 5 is that not only the first component is intractable, but
also computing the expected number of true groundings is also intractable, requiring
inference over the model. Further, efficient optimization methods also require comput-
ing the log-likelihood itself (Equation 4), and thus the partition function Z. This can be
done approximately using a Monte Carlo maximum likelihood estimator (MC-MLE)
[21]. However, the authors in [58] found in their experiments that the Gibbs sampling
used to compute the MC-MLEs and gradients did not converge in reasonable time, and
using the samples from the unconverged chains yielded poor results.

In many other fields such as spatial statistics, social network modeling and language
processing, a more efficient alternative has been followed. This is optimizing pseudo-
likelihood [3] instead of likelihood. If x is a possible world (a database or truth assign-
ment) and xl is the lth ground atom’s truth value, the pseudo-likelihood of x is given by
the following equation (we follow the same notation as the authors in [58]:

P∗w(X = x) =
n

∏
l=1

Pw(Xl = xl|MBx(Xl)) (6)
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where MBx(Xl) is the state of the Markov blanket of Xl in the data. (i.e., the truth values
of the ground atoms it appears in some ground formula with). From Equation 4 we
have:

P(Xl = xl|MBx(Xl)) =
exp(∑F

i=1 wini(x))
exp(∑F

i=1 wini(x[Xl=0]))+ exp(∑F
i=1 wini(x[Xl=1]))

(7)

Or we can take the gradient of pseudo-log-likelihood:

∂
∂wi

logP∗w(X = x) =
n

∑
l=1

[ni(x)−Pw(Xl = 0|MBx(Xl))ni(x[Xl=0])−

Pw(Xl = 1|MBx(Xl))ni(x[Xl=1])]
(8)

where ni(x[Xl=1]) is the number of true groundings of the ith formula when Xl = 1
and the remaining data do not change and similarly for ni(x[Xl=0]). To compute the ex-
pressions 7 or 8, we do not need to perform inference over the model. The optimal
weights for pseudo-log-likelihood can be found using the limited-memory BFGS algo-
rithm [34].

When computing ni(x[Xl=1]) and ni(x[Xl=0]), the usually followed approach is closed
world assumption [19], i.e., all ground atoms not in the database are assumed false.
Using logical abduction we can pontentially infer the truth value of these atoms and
thus when we compute these counts we could have more accurate values that reflect
the current data. Since the optimization of the weights by L-BFGS is performed on
the estimates of the counts ni(x[Xl=1]) and ni(x[Xl=0]), an improved accuracy on these
counts would also result in a more accurate parameter learning task. Thus the use of
logical abduction is motivated by the fact that parameter estimation in satistical rela-
tional learning can benefit from completed data through logical procedures. To the best
of our knowledge, this is the first approach to integrate a pure logical procedure for
abductive inference with a statistical parameter estimation algorithm.

6.2 Structure Learning with Abduction

Structure learning can start from an empty network or from an existing KB. Algorithm
iteratively generates refinements of the current structure and scores them by conditional
likelihood. These refinements are generated using normal ILP refinement operators. Ev-
ery neighbor of the current structure is obtained by a small generalization/specialization
of a randomly chosen clause in the structure. Algorithm 5 performs Iterated Local
Search [23,35] for the best model that fits the data. It starts by randomly choosing a
clause CLC in the current MLN structure. Then it performs a greedy local search to
efficiently reach a local optimum MLNS. At this point, a restart method is applied by
randomly choosing a clause CL’C from the clauses of MLNS . Then again, a greedy local
search is applied to MLNS to reach another local optimum MLN′S . The accept function
decides whether the search must continue from the previous local optimum MLNS or
from the last local optimum MLN′S. The accept function always accepts the best solution
found so far.
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Algorithm 4. MLNs Structure Learning with Abduction
Input: P:set of predicates, MLN:Markov Logic Network, RDB:Relational Database
CLS = All clauses in MLN;
LearnWPLLWeights(MLN,RDB);
BestScore = f (MLN,RDB);
BestModel = MLN;
repeat

CurrentModel = FindBestModel(P,MLN,BestScore,CLS,RDB);
if f (CurrentModel) ≥ f (BestModel) then

BestModel = CurrentModel;
BestScore = f (MLN,RDB);

end if
until BestScore does not improve for two consecutive steps
return BestModel;
f = CLL (conditional log-likelihood)

Algorithm 5. FindBestModel
Input: P:set of predicates, MLN:Markov Logic Network, BestScore: current best score, CLS:
List of clauses, RDB:Relational Database)
CLC = Random Pick a clause in CLS;
MLNS = LocalSearchII (CLC,MLN,BestScore);
BestModel = MLNS;
repeat

CL’C = Random Pick a clause in (MLNS);
MLN’S = LocalSearchII (CL’C,MLNS,BestScore);
if f (BestModel,RDB) ≥ f (MLN’S,RDB) then

BestModel = MLN’S;
BestScore = f (MLN’S,RDB)

end if
MLNS = accept(MLNS,MLN’S);

until two consecutive steps have not produced improvement
Return BestModel
f = CLL (conditional log-likelihood)

For every candidate structure, the parameters that optimize the WPLL are set through
L-BFGS. As pointed out in [29] a potentially serious problem that arises when evalu-
ating candidate clauses using WPLL is that the optimal (maximum WPLL) weights
need to be computed for each candidate. Since this involves numerical optimization,
and needs to be done millions of times, it could easily make the algorithm too slow.
In [12,37] the problem is addressed by assuming that the weights of previous features
do not change when testing a new one. Surprisingly, the authors in [29] found this to
be unnecessary if the very simple approach of initializing L-BFGS with the current
weights (and zero weight for a new clause) is used. Although in principle all weights
could change as the result of introducing or modifying a clause, in practice this is very
rare. Second-order, quadratic-convergence methods like L-BFGS are known to be very
fast if started near the optimum [62]. This is what happened in [29]: L-BFGS typically
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Algorithm 6. LocalSearchII

Input: (CLC: clause chosen for refinement, MLNC: current model, BestScore: current best
score)
wp: walk probability, the probability of performing an improvement step or a
random step
repeat

NBHD = Neighborhood of MLNC constructed using ILP refinement operators on the clause
CLC;
for Each Candidate Structure MLN in NBHD do

if MLN satisfies ILP coverage threshold then
PerformLogicalAbduction(MLN,RDB);
if all atoms have known truth values then

LearnWPLLWeights(MLN,RDB);
else

LearnWPLLWeightswithEM(MLN,RDB);
end if

end if
end for
for Each structure scored MLN do

score = f (MLN,RDB)
if score ≥ BestScore then

BestScore = score;
MLNS = MLN

end if
end for

until two consecutive steps do not produce improvement
Return MLNS;

converges in just a few iterations, sometimes one. We use the same approach for setting
the parameters that optimize the WPLL.

In Algorithm 6, we generate NBHD, the neighborhood of MLNC, by using ILP re-
finement operators. All structures in NBHD differ from MLNC by only one clause
which is a generalization or specialization of the clause CLC. Two modifications can
be applied here with respect to the traditional setting. First of all, the structure refine-
ment is not carried out randomly, but can be guided by the examples themselves, since
they were purposely provided by an expert. Hence, each example that is not correctly
classified by the current theory can be exploited to perform a generalization (if positive)
or specialization (if negative) according to classical ILP operators. Application of such
an operator will provide one or more (depending on the operator and on the general-
ization model adopted) alternative refinements of the original structure, each of which
consists in a new structure obtained by refining a single clause in the original structure.
Moreover, pruning criteria can be set in order to avoid working on refinements that are
not regarded as promising or acceptable. For instance, one could require that each can-
didate structure fulfils a minimum coverage threshold in the logical sense, i.e., that the
accuracy from the ILP point of view (how many positive examples are covered and how
many negatives are not) is greater than a given minimum. We believe this heuristic can
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help exclude candidates that have a very low logical accuracy. Although there is a mis-
match between the coverage criterion used by most ILP systems and the likelihood (or a
function thereof) used by most statistical learners, a logical theory that does not explain
any example from a logical interpretation would be less useful, and would contradict the
idea that examples are purposely labelled by an expert and hence deserve some level of
trust. Therefore, we decided to pose a threshold on the accuracy of candidate structures
and learn weights only for those candidates that satisfy this threshold.

After the coverage check, we perform logical abduction using the theory of each
structure and the examples in RDB. When the abductive proof procedure has potentially
completed missing values in RBD, we check whether all the data have been completed.
If this is the case then we can learn optimal WPLL weights without EM, otherwise we
use EM. For very incomplete data, it is probable that the abductive proof procedure
will not complete all the missing data. However, the partial completing of the data will
potentially help the weight learning procedure to learn more accurate weights compared
to the case when more data is missing.

After setting weights with WPLL, in order to score each MLN structure in terms of
conditional likelihood (CLL), we need to perform inference over the network. A very
fast algorithm for inference in MLNs is MC-SAT [52]. Since probabilistic inference
methods like MCMC or belief propagation tend to give poor results when deterministic
or near-deterministic dependencies are present, and logical ones like satisfiability test-
ing are inapplicable to probabilistic dependencies, MC-SAT combines ideas from both
MCMC and satisfiability to handle probabilistic, deterministic and near-deterministic
dependencies that are typical of statistical relational learning. MC-SAT was shown to
greatly outperform Gibbs sampling and simulated tempering in two real-world datasets
regarding entity resolution and collective classification. MC-SAT produces probability
outputs for every grounding of the query predicate on the test fold and these values can
be used to compute the average CLL over all the groundings. In order to make the exe-
cution of MC-SAT tractable for every candidate structure, we follow the same heuristic
that were proposed in [4], i.e., we score through MC-SAT only those candidate struc-
tures that show an improvement in WPLL, we use the lazy version of MC-SAT that is
known as Lazy-MC-SAT [53] which reduces memory and time by orders of magnitude
compared to MC-SAT, we pose a memory and time limit on the inference process tho-
rugh Lazy-MC-SAT. As the experiments showed in [4], these heuristics proved quite
successful in two real world domains. We denote this framework as Structure Learning
with Abduction (SLA).

7 Structural EM with Abduction

In the presence of missing values a procedure normally used is Expectation- Maximiza-
tion (EM) [13]. In this section we describe the EM algorithm and the Structural-EM
algorithm that was first proposed in [17] to learn the structure of Bayesian Networks.
Then we sketch a framework for integrating logical abduction in the Structural-EM al-
gorithm and discuss the benefits that the statistical learning setting can have from logical
abduction.
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7.1 Expectation-Maximization and Structural EM

In the presence of missing values maximum likelihood parameter estimation is a nu-
merical optimization problem, and all known algorithms involve nonlinear, iterative
optimization and multiple calls to an inference algorithm. The most widely used al-
gorithm for parameter estimation under hidden variables is Expectation-Maximization
[13]. This algorithm proceeds in two steps, in the Expectation (E)-step it is computed
the expectation of the previous model and the observed data and in the Maximization
(M) step, the expected score is maximized. Thus, if we denote the previous model MLNk

and the parameters of the model λk,l in the l step, then in the l + 1 the algorithm per-
forms two steps:

E-Step: Computes the expectation of the log-likelihood given the old model
(MLNk,λk,l) and the observed data D, i.e.,

Q(MLNk,λ |MLNk,λk,l) = E[logP(D|MLNk,λ )|MLNk,λk,l ].

where D denotes the completion of the data. The current model MLNk , λk,l and the
observed data D give the conditional distribution and E denotes the expectation over it.
The function Q is called the expected score.

M-Step: Maximize the expected score Q(MLNk,λ |MLNk,λk,l) w.r.t. λ , i.e., λk,l+1 =
argmaxλ Q(MLNk,λ |MLNk,λk,l).

Algorithm 4 can be instantiated using the EM. The problem, however, is the huge
computational costs. To evaluate a single neighbor, the EM has to run for a reasonable
number of iterations in order to get reliable ML estimates of λk . Each EM iteration
requires a full inference on all data cases. In total, the running time per a neighbor
evaluation is at least O(#EM iterations * size of data) which is intractable even for very
simple problems. The idea of Structural EM [17] is to perform structure search inside
the EM procedure. Algorithm 7 takes the current model (MLNk,λk,l) and runs the EM
algorithm for a while to get reasonably completed data. It then fixes the completed data
cases and used them to compute the ML parameters λk of each neighbor MLNk . The
neighbor (MLNk+1,λk+1) with the best improvement of the score is chosen for the next
iteration.

7.2 Integrating Logical Abduction in Structural EM

Algorithm 8 shows how the abductive proof procedure can be plugged in the Structual
EM algorithm. The logical abduction process is performed inside the E-step, in order
to complete the available data. After the abductive process is completed, the EM ap-
proach fixes the current model (MLNk,λk,l) and computes maximum pseudo-likelihood
parameters of the neighbors of (MLNk,λk,l). The neighbors are constructed using the
ILP refinement. After weights have been set for each neighbor, the average CLL for
each structure is then computed based on these weights using MC-SAT. The best model
is the one that maximizes CLL. We call this framework Structural EM with Logical
Abduction (SEMLA).
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Algorithm 7. Structural EM
Input: (Current model: MLNk, λk,l , RDB:relational data)
Perform random assignment of λ0,0
repeat

for k = 0, 1, 2, . . .
repeat

for l = 0, 1, 2, . . .
λk,l+1 = argmaxQ(MLNk,λ |MLNk,λk,l)

until convergence is reached or l = lmax

Find a model MLNk+1 ∈ neighbors(MLNk) that maximizes
maxλ Q(MLNk+1,λ |MLNk,λk,l)
Set λk+1,0 = argmaxQ(MLNk+1,λ |MLNk,λk,l)

until convergence is reached
neighbors(MLNk) is computed using the ILP refinement operators.

Algorithm 8. Structural EM with abduction
Input: (Current model: MLNk, λk,l , RDB:relational data)
Perform random assignment of λ0,0
repeat

for k = 0, 1, 2, . . .
CLC = Random Pick a clause in MLNk;
NBHD = Neighborhood of MLNk constructed using ILP refinement operators on the clause
CLC;
repeat

for l = 0, 1, 2, . . .
PerformLogicalAbduction(MLNk ,RDB);
λk,l+1 = argmaxW PLLQ(MLNk,λ |MLNk,λk,l)

until convergence is reached or l = lmax

Find a model MLNk+1 ∈ NBHD that maximizes
maxW PLLλ Q(MLNk+1,λ |MLNk,λk,l)
score each structure with CLL using MC-SAT
Set λk+1,0 = argmaxCLLQ(MLNk+1,λ |MLNk,λk,l)

until convergence is reached

The difference with the framework proposed in the previous section is that the ab-
ductive proof procedure in SEMLA is executed on the current model trying to complete
the data based on the current theory. While in SLA the logical abductive process is
performed on each of the neighbors of the current model exploiting a different theory
which is obtained by refinement operators from the current theory. Another difference
of SLA and SEMLA is that in SEMLA the E-step is performed for the current model
with the current parameters, while in SLA the E-step is performed on each candidate
structure separately with a different set of parameters. Finally, the M-step for SEMLA
is performed on all the neighbors of the current model using the estimates on the cur-
rent model and trying to maximize the likelihood of each neighbor, while in SLA the
M-step uses the independent estimates on each of the candidate structures to maximize
its likelihood.
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From a computational complexity point of view, we expect SLA to be more expen-
sive since logical abduction and the entire E-step is performed for each of the neighbors
of the current model, while for SEMLA, both logical abduction and the E-step are per-
formed only once for the current model and then used for all the neighbors. However,
since the abduced atoms change with the available theory, in SLA the logical abduction
process would produce abducibles according to the logical theory of each neighbor,
thus the abduced truth values are directly related to each neighbor. In SEMLA this is
not the case, for each neighbor the abduced truth values with the current model are used
and these values may not be directly related with the theory of the neighbor.

8 Related Work

To the best of our knowledge this is the first proposal that tightly integrates in a task
of structure learning algorithm, a logical approach to abduction with a statistical pro-
cedure for parameter learning. Previous related work has considered mostly statistical
abduction as the principal form of inference and has considered logic simply as a rep-
resentation formalism. One of the first approaches similar to ours is that of [51] where
probabilistic Horn abduction was proposed. In this approach, a program contains non-
probabilistic definite clauses and probabilistic disjoint declarations which are of the
form h1 : p1, ...,hn : pn and an abducible atom hi is considered true with probability
pi. This work focuses on the representation language issue trying to propose a simple
language for integrating logic and probability and the authors does not deal with the
structure learning problem. Moreover, it does not integrate any form of logic-based ab-
ductive proof procedure with statistical learning. Another approach is that in [61], where
a logic-based framework is proposed and statistical abduction is introduced for repre-
senting and learning probabilistic knowledge. The abductive inference is made possible
through the definiton of a probability distribution over abducibles. This makes possible
to identify the best hypothesis as the most likely hypothesis and likelihood is maxi-
mized through statistical learning. The difference with our proposal is that the approach
of [61] is purely statistical and the role of logic is purely sintactic, i.e., there is no pure
logic-based proof procedure as in our two proposed frameworks. Moreover, the authors
in [61] do not learn the structure of the model as we do here. Instead, they hand code the
clauses of the model and only learn the statistical parameters of the model through an
EM based algorithm. Finally, our SEMLA framework modifies the EM algorithm in a
way that structure search can be performed inside the EM algorithm together with log-
ical abduction. Finally, a similar approach is that proposed in [1,6] where the authors
proposed Abductive Stochastic Logic Programs which is a framework that supports
abduction in SLPs [41] to provide a probability distribution over abductive hypothe-
sis based on a possible world semantics. Again the main difference with our proposed
frameworks is that the approaches in [1,6] suppose to have an already learned structure
in order to learn the parameters for the SLP. When the parameters of the SLP have been
learned, this probabilistic program is used to define a probability distribution over the
abducibles using a stochastic SLD derivation. The labelled hypothesised abducibles are
chosen to maximize the likelihood. Therefore, since the structure of the model is first
learned by ILP using “coverage” as guiding function, and all the following process in-
volves only parameter learning, our proposals are different since we learn the structure
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by directly optimizing a likelihood based function. For an SRL this has proven to be the
best way to learn a model as the results of [29] show, where ILP based approaches were
outperformed by likelihood-guided approaches for the task of learning the structure of
an SRL model. Moreover, we perform abduction during structure selection, while the
approach of [1,6] uses a two step approach, first learns the structure with ILP (then the
parameters) and then performs abduction. This two step approach has been shown in
[32] to be inferiror in terms of accuracy compared to the single-step structure learning
approach that we follow here.

9 Conclusion and Future Work

Statistical Relational Learning (SRL) is a growing field in Machine Learning that aims
at the integration of logic-based learning approaches with probabilistic graphical mod-
els. Markov Logic Networks are one of the state-of-the-art SRL models that combine
first-order logic and Markov networks (MNs) by attaching weights to first-order for-
mulas and viewing these as templates for features of MNs. Learning models in SRL
consists in learning the structure (logical clauses in MLNs) and the parameters (weights
for each clause in MLNs). Structure learning of MLNs is performed by maximizing a
likelihood function (or a function thereof) over relational databases and MLNs have
been successfully applied to problems in relational and uncertain domains. However,
most complex domains are characterized by incomplete data. Until now SRL models
have mostly used Expectation-Maximization for learning statistical parameters under
missing values. Multistrategic learning in the relational setting has been a success-
ful approach to dealing with complex problems where multiple inference mechanisms
can help solve different subproblems. Abduction is an inference strategy that has been
proven useful for completing missing values in observations. In this paper we propose
two frameworks for integrating abduction in an SRL model based on MLNs. The first
tightly integrates logical abduction with structure and parameter learning of MLNs in a
single step. During structure search guided by conditional likelihood, clause evaluation
is performed by first trying to logically abduce missing values in the data and then by
learning optimal parameters using the completed data. The second approach integrates
abduction with Structural EM of [17] by performing logical abductive inference in the
E-step and then by trying to maximize parameters in the M-step.

We intend to experimentally evaluate the proposed frameworks on complex rela-
tional domains with missing data. In order to evaluate the advantages of our approach,
we intend to compare the accuracy performance against a pure statistical learner that
uses EM to deal with missing values, a pure logical approach such as an ILP system
and finally against another SRL approach that does not follow our approach to structure
learning.
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2007. LNCS (LNAI), vol. 4702, pp. 200–211. Springer, Heidelberg (2007)

37. McCallum, A.: Efficiently inducing features of conditional random fields. In: Proc. UAI
2003, pp. 403–410 (2003)

38. Michalski, R.S.: Inferential theory of learning. developing foundations for multistrategy
learning. In: Michalski, R.S., Tecuci, G. (eds.) Machine Learning. A Multistrategy Approach,
vol. IV, pp. 3–61. Morgan Kaufmann, San Francisco

39. Mihalkova, L., Mooney, R.J.: Bottom-up learning of markov logic network structure. In:
Proc. 24th Int’l Conf. on Machine Learning, pp. 625–632 (2007)

40. Mitchell, T.M.: Machine Learning. The McGraw-Hill Companies, Inc., New York (1997)
41. Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in inductive logic

programming. IOS Press, Amsterdam (1996)
42. Muggleton, S.H.: Inverse entailment and progol. New Generation Computing Journal, 245–

286 (1995)
43. Koller, D., Friedman, N., Getoor, L., Pfeffer, A.: Learning probabilistic relational models. In:

Proc. 16th Int’l Joint Conf. on AI (IJCAI), pp. 1300–1307. Morgan Kaufmann, San Francisco
(1999)

44. Ngo, L., Haddawy, P.: Answering queries from context-sensitive probabilistic knowledge
bases. Theoretical Computer Science 171, 147–177 (1997)

45. Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming.
Springer, Heidelberg (1997)

46. Nilsson, N.: Probabilistic logic. Artificial Intelligence 28, 71–87 (1986)
47. Pasula, H., Russell, S.: Approximate inference for first-order probabilistic languages. In:

Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pp.
741–748. Morgan Kaufmann, Seattle (2001)



142 M. Biba, S. Ferilli, and F. Esposito

48. Pearl, J.: Probabilistic reasoning in intelligent systems: Networks of plausible inference.
Morgan Kaufmann, San Francisco (1988)

49. Plotkin, G.D.: A note on inductive generalization. Machine Intelligence 5, 153–163 (1970)
50. Poole, D.: A logical framework for default reasoning. Artif. Intell. 36, 27–47 (1988)
51. Poole, D.: Probabilistic horn abduction and bayesian networks. Artificial Intelligence 64,

81–129 (1993)
52. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and deterministic

dependencies. In: Proc. 21st Nat’l Conf. on AI (AAAI), pp. 458–463. AAAI Press, Menlo
Park (2006)

53. Poon, H., Domingos, P., Sumner, M.: A general method for reducing the complexity of rela-
tional inference and its application to mcmc. In: Proc. 23rd Nat’l Conf. on Artificial Intelli-
gence. AAAI Press, Chicago (2008)

54. Popescul, A., Ungar, L.H.: Structural logistic regression for link analysis. In: Proceedings
of the Second International Workshop on Multi-Relational Data Mining, pp. 92–106. ACM
Press, Washington (2003)

55. Quinlan, J.R.: Learning logical definitions from relations. Machine Learning 5, 239–266
(1990)

56. De Raedt, L.: Logical settings for concept-learning. Artificial Intelligence 95(1), 197–201
(1997)

57. Reiter, R.: A logic for default reasoning. J. Artif. Intell. (13), 81–132 (1980)
58. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62, 107–236

(2006)
59. Santos Costa, V., Page, D., Qazi, M., Cussens, J.: Clp(bn): Constraint logic programming

for probabilistic knowledge. In: Proceedings of the Nineteenth Conference on Uncertainty in
Artificial Intelligence, pp. 517–524. Morgan Kaufmann, Acapulco (2003)

60. Sato, T., Kameya, Y.: Prism: A symbolic-statistical modeling language. In: Proceedings of
the Fifteenth International Joint Conference on Artificial Intelligence, pp. 1330–1335. Mor-
gan Kaufmann, Nagoya (1997)

61. Sato, T., Kameya, Y.: A viterbi-like algorithm and em learning for statistical abduction. In:
Proceedings of UAI 2000 Workshop on Fusion of Domain Knowledge with Data for Decision
Support (2000)

62. Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: Proc. HLT-NAACL
2003, pp. 134–141 (2003)

63. Shapiro, E.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)
64. Singla, P., Domingos, P.: Discriminative training of markov logic networks. In: Proc. 20th

Nat’l Conf. on AI (AAAI), pp. 868–873. AAAI Press, Menlo Park (2005)
65. Singla, P., Domingos, P.: Markov logic in infinite domains. In: Proc. 23rd UAI, pp. 368–375.

AUAI Press (2007)
66. Srinivasan, A.: The Aleph Manual,

http://www.comlab.ox.ac.uk/oucl/˜esearch/areas/machlearn/
Aleph/

67. Taskar, B., Abbeel, P., Koller, D.: Discriminative probabilistic models for relational data.
In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp.
485–492. Morgan Kaufmann, Edmonton (2002)

68. Wellman, J.S., Breese, M., Goldman, R.P.: From knowledge bases to decision models.
Knowledge Engineering Review 7 (1992)

http://www.comlab.ox.ac.uk/oucl/~esearch/areas/machlearn/Aleph/
http://www.comlab.ox.ac.uk/oucl/~esearch/areas/machlearn/Aleph/


About Knowledge and Inference in Logical and
Relational Learning

Luc De Raedt

Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, BE-3001 Heverlee, Belgium

Abstract. A gentle introduction to the use of knowledge, logic and in-
ference in machine learning is given. It can be regarded as a reinterpre-
tation and revisiting of Ryzard Michalski’s “A theory and methodology
of inductive learning” within the framework of logical and relational
learning. At the same time some contemporary issues surrounding the
integration of logical and probabilistic representations and reasoning are
introduced.

1 Introduction

In his seminal paper “A theory and methodology of inductive learning” Ryszard
Michalski [1983] introduced a logic for inductive learning and reasoning and
showed how it could be used for learning structured concept descriptions from
examples and background knowledge. Many of the ideas, concepts and tech-
niques contained in this paper have influenced the field of machine learning,
and are now, almost 30 years later, still actual. This includes the use of logic
as a representation language for machine learning, the emphasis on producing
understandable and interpretable descriptions, the role of knowledge, the view
of induction as the inverse of deduction, dealing with structured and relational
data, etc.

These issues are now being studied within the field of logical and relational
learning [De Raedt, 2008]. This is the subfield of machine learning and ar-
tificial intelligence that is concerned with learning in expressive logical
or relational representations. It is the union of inductive logic program-
ming [Muggleton and De Raedt, 1994], (statistical) relational learning
[Getoor and Taskar, 2007] and multi-relational data mining [Džeroski and Lavrač,
2001] and constitutes a general class of techniques and methodology for learn-
ing from structured data (such as graphs, networks, relational databases) and
background knowledge.

The present paper provides a gentle introduction to theoretical and method-
ological aspects of the use of logic and inference in machine learning. While doing
so, it focuses on those views that now constitute the foundations of logical and
relational learning. In addition, it touches upon a popular topic of research: the
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integration of logical and probabilistic reasoning in a machine learning context
[Getoor and Taskar, 2007, De Raedt et al., 2008].

This paper is organized as follows: in Section 2, the problem of inductive
learning is introduced using an example from structure-activity-relation predic-
tion; in Section 3, various types of reasoning and logical inference are presented;
Section 4 then touches upon the integration of probabilistic and logical reasoning
for machine learning, and finally, Section 5 concludes.

2 Inductive Learning

Throughout this paper, we focus on the problem of inductive learning, which
starts from a set of observations, a background theory and aims at inducing a def-
inition of an underlying concept. Consider, for instance, the problem sketched in
Figure 1. It contains five molecules, three of which are mutagenic and two which
are not. The molecules correspond to observations or examples, and one usually
distinguishes two types of examples, the positive (here: the mutagenic) from the
negatives ones. The problem of (discriminative) inductive learning is then to find
a hypothesis that allows one to distinguish the examples that belong to different
classes. One hypothesis that can be used for this purpose is shown in grey on
the figure. The task sketched here is inspired on the work of [Srinivasan et al.,
1996] and is known under the name of structure-activity-relationship (SAR) pre-
diction, which is an important step in the drug-discovery process. The example
illustrates several important issues. First, the result of the induction process is a
hypothesis (sometimes called a pattern or in molecular applications a structural
alert) in the form of a graph, and it can be readily interpreted by human experts.
Secondly, in this task, there is chemical background knowledge that should ideally
be made available to the inductive learner. Background knowledge in this context
can take the form of certain types of ring-structures and functional groups that
have a chemical meaning. By focusing on and using such background knowledge
the learner can often generate more meaningful patterns and may even be able
to find such patterns faster.

In order to automate inductive learning, one must employ a representation
language for examples, hypotheses and background knowledge. One possible and
actually quite popular representation in data mining and machine learning is that
of graphs [Washio and Motoda, 2003]. Indeed, molecules can be represented by
their 2D graph structure (as in Figure 1). Hypotheses and functional groups
then correspond to subgraphs. While using graph-based representations is fine
for molecular datasets, it is less clear how to use them in many other types
of applications, such as natural language and robotics. Therefore, we shall, as
Ryszard Michalski, employ logical representations throughout the rest of this
paper. More specifically, we shall employ concepts from logic programming (and
logical and relational learning) to represent data, knowledge and hypotheses.

To illustrate how this works, consider the graphical structure of an example
molecule. It can be represented by means of the following tuples, called facts:
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bond(f1, f11, f12, 7)←
logmutag(f1, 0.64)← bond(f1, f12, f13, 7)←
lumo(f1,−1.785)← bond(f1, f13, f14, 7)←
logp(f1, 1.01)← bond(f1, f14, f15, 7)←
atom(f1, f11, c, 21, 0.187)← bond(f1, f18, f19, 2)←
atom(f1, f12, c, 21,−0.143)← bond(f1, f18, f110, 2)←
atom(f1, f13, c, 21,−0.143)← bond(f1, f11, f111, 1)←
atom(f1, f14, c, 21,−0.013)← bond(f1, f111, f112, 2)←
atom(f1, f15, o, 52,−0.043)← bond(f1, f111, f113, 1)←
. . .

In this encoding, each entity is given a name and the relationships among the
entities are captured. For instance, in the above example, the compound is named
f1 and its atoms f11, f12, .... Furthermore, the relation atom/5 of arity 5 states
properties of the atoms: the molecule they occur in (e.g., f1), the element (e.g.,
c denoting a carbon) and the type (e.g., 21) as well as the charge (e.g., 0.187).
The relationships amongst the atoms are then captured by the relation bond/3,
which represents the bindings amongst the atoms. Finally, there are also overall
properties or attributes of the molecule, such as their logp and lumo values.
Further properties of the compounds could be mentioned, such as the functional
groups or ring structures they contain:

ring size 5(f1, [f15, f11, f12, f13, f14])←
hetero aromatic 5 ring(f1, [f15, f11, f12, f13, f14])←
...

Fig. 1. A structure-activity-relationship prediction example. Figure courtesy of
Siegfried Nijssen.
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The first tuple states that there is a ring of size 5 in the compound f1 that
involves the atoms f15, f11, f12, f13 and f14 in molecule f1; the second one states
that this is a heteroaromatic ring.

Using this representation it is possible to describe a possible hypothesis (or
pattern) using a rule (also called clause)

mutagenic(M)← ring size 5(M, R), element(A1, R), bond(M, A1, A2, 2)

which actually can be directly transformed into English

Molecule M is mutagenic IF it contains a ring of size 5 called R and atoms
A1 and A2 that are connected by a double (2) bond such that A1 also
belongs to the ring R.

This shows that logical rules are readily interpretable and yield patterns that
can be understood by human experts.

To decide whether a hypothesis would classify an example as positive, we need
a notion of coverage. To illustrate this concept, reconsider the above example and
let us assume that the example states that f1 is mutagenic, that is, mutagenic(f1).
Then the example can be regarded as the rule:

mutagenic(f1)←
atom(f1, f11, c), . . . , atom(f1, f1n, c),
bond(f1, f11, f12, 2), . . . , bond(f1, f11, f13, 1),
ring size 5(f1, [f15, f11, f12, f13, f14]), . . .

and the hypothesis

mutagenic(M)← ring size 5(M, R), atom(M, M1, c)

then covers the example because the conditions in the rule are satisfied by the
example when setting M = f1, R = [f15, f11, f12, f13, f14] and M1 = f11. In terms
of logic, the example e is a logical consequence of the rule h, which we shall write
as h |= e. This notion of coverage forms the basis for the theory of inductive
reasoning that we revisit in the next section.

The above illustration is based on the exposition of [De Raedt, 2008]
of the well-known mutagenicity application of relational learning due to
[Srinivasan et al., 1996], where the structural alert was discovered using the in-
ductive logic programming system Progol [Muggleton, 1995] and the logical
representations shown above. The importance of this type of application is clear
when considering that the results were published in the scientific literature in
the application domain [King and Srinivasan, 1996], that they were obtained us-
ing a general-purpose machine learning algorithm and were transparent to the
experts in the domain.

3 Logical Inference

The coverage relation is one of the central concepts for inductive reasoning
[Mitchell, 1982, Michalski, 1983] as it forms the basis for reasoning about hypothe-
ses and their relationships. Especially important in this context is the notion of
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generality. One pattern is more general than another one if all examples that are
covered by the latter pattern are also covered by the former pattern.

For instance, the rule

mutagenic(M)← ring size 5(M, R), element(A1, R), bond(M, A1, A2, 2)

is more general than the rule

mutagenic(M)←
ring size 5(M, R), element(A1, R),
bond(M, A1, A2, 2), atom(M, A2, o, 52, C)

The former rule is more general (or, equivalently, the latter one is more specific)
because the latter one requires also that the atom connected to the ring of size 5
be an oxygen of atom-type 52. Therefore, all molecules satisfying the latter rule
will also satisfy the former one.

The generality relation is useful for inductive learning, because it can be used
1) to prune the search space, and 2) to guide the search towards the more
promising parts of the space. The generality relation is employed by the large
majority of logical and relational learning systems, which often search the space
in a general-to-specific fashion. This type of system starts from the most general
rule (the unconditional rule, which states that all molecules are active in our
running example), and then repeatedly specializes it using a so-called refinement
operator, which specializes a given hypotheses.

Using logical description languages for learning provides us not only with a
very expressive and understandable representation, but also with an excellent
theoretical foundation for the field. This becomes clear when looking at the gen-
erality relation. It turns out that the generality relation coincides with logical
entailment. Indeed, the above examples of the generality relation clearly show
that the more general rule logically entails the more specific one. So, the more
specific rule s is a logical consequence of the more general one g, or, formu-
lated differently, the more general rule logically entails the more specific one,
that is, g |= s. Consider the simpler example: flies(X) ← bird(X) (if X is a bird,
then X flies), which logically entails and which is clearly more general than the
rule flies(X) ← bird(X), normal(X) (only normal birds fly). This property of the
generalization relation provides us with an excellent formal basis for studying
inference operators for learning. Indeed, because one rule is more general than
another if the former entails the latter, deduction is closely related to special-
ization as deductive operators can be used as specialization operators. At the
same time, one can obtain generalization (or inductive inference) operators by
inverting deductive inference operators.

This can be illustrated using traditional deductive inference rules, which start
from a set of formulae and derive a formula that is entailed by the original set.
For instance, consider the resolution inference rule for propositional clauses:

h← g, a1, . . . , an and g ← b1, . . . , bm

h← b1, . . . , bm, a1, . . . , an
(1)
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This inference rule starts from the two rules above the line and derives the
so-called resolvent below the line. This rule can be used to infer, for instance,

flies← blackbird, normal

from

flies← bird, normal
bird← blackbird

An alternative deductive inference rule adds a condition to a rule:

h← a1, . . . , an

h← a, a1, . . . , an
(2)

This rule can be used to infer that

flies← blackbird

is more general than

flies← blackbird, normal

In general, a deductive inference rule can be written as

g

s
(3)

If s can be inferred from g and the operator is sound, then g |= s. Thus applying
a deductive inference rule realizes specialization, and hence, deductive inference
rules can be used as specialization operators. A specialization operator maps a
hypothesis onto a set of its specializations. Because specialization is the inverse
of generalization, generalization operators — which map a hypothesis onto a set
of its generalizations — can be obtained by inverting deductive inference rules.
The inverse of a deductive inference rule written in the format of Eq. 3 works
from bottom to top, that is from s to g. Such an inverted deductive inference
rule is called an inductive inference rule. This leads to the view of induction as
the inverse of deduction; cf. also [Michalski, 1983, Jevons, 1874]. This view is
operational as it implies that each deductive inference rule can be inverted into
an inductive one, and that each inference rule provides an alternative framework
for generalization.

An example generalization operator is obtained by inverting adding condition
rule in Eq. 5. It corresponds to well-known dropping condition rule; cf. [Michalski,
1983]. It is also possible to invert the resolution principle of Eq. 4; cf. [Muggleton,
1987]. For instance, the resolution rule can be rewritten as

h← g, a1, . . . , an and g ← b1, . . . , bm

h← b1, . . . , bm, a1, . . . , an and h← g, a1, . . . , an
(4)

and then it is possible to apply it in the inverse, that is, inductive direction.
Using this inverted resolution rule one can induce
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bird← blackbird

from
flies← blackbird, normal
flies← bird, normal

In addition to inductive and deductive inference, there is also abductive inference.
It can be obtained as a special case of the inverse resolution rule just mentioned.
Indeed, consider the rule

h← g and g

h← g and h
(5)

It can be used to find possible explanations for phenomena. For instance, given
the rule

flies← bird, normal

and the observation flies the abductive inference rule can infer that it may be
a bird that is normal. Although we have just shown that abductive inference
can be considered a special case of inductive inference, abductive reasoning is
typically used in a different context. While inductive reasoning aims at general-
izing specific observations into general laws, abductive reasoning seeks explana-
tions for a specific observation. The differences between abductive and inductive
reasoning have resulted in quite some discussion in the scientific literature; cf.
[Flach and Kakas, 2000].

Before deploying inference rules, it is necessary to determine their properties.
Two desirable properties are soundness and completeness. These properties are
based on the repeated application of inference rules in a proof procedure. There-
fore, we write g �r s when there exists a sequence of hypotheses h1, · · · , hn such
that

g

h1
,
h1

h2
, · · · , hn

s
using r (6)

A proof procedure with a set of inference rules r is then sound whenever g �r

s implies g |= s, and complete whenever g |= s implies g �r s. In practice,
soundness is always enforced while completeness is an ideal that is not always
achievable in deduction. Fortunately, it is not always required in a machine
learning setting. When working with an incomplete proof procedure, one should
realize that the generality relation �r is weaker than the logical one |=.

The formula g |= s can now be studied under various assumptions. These
assumptions are concerned with the class of hypotheses under consideration
and the operator �r chosen to implement the semantic notion |=. The hy-
potheses can be single rules, sets of rules (that is, clausal theories), or full
first-order and even higher-order theories. Deductive operators that have been
studied include θ-subsumption [Plotkin, 1970] (and its variants such as OI-
subsumption[Esposito et al., 1996]) among single clauses, implication among sin-
gle clauses and resolution among clausal theories. Each of these deductive no-
tions results in a different framework for specialization and generalization. Due
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to its relative simplicity, θ-subsumption is by far the most popular framework.
It is used by the vast majority of contemporary logical and relational learn-
ing systems. Rather than presenting the underlying structure in full detail, we
illustrate the basics on the propositional subset of clausal logic. When perform-
ing operations on clauses, it is often convenient to represent the clauses by the
sets of literals they contain. For instance, the clause flies ← bird, normal can be
represented as {flies,¬bird,¬normal}.

Using this notion for two propositional clauses c1 and c2,

c1 subsumes c2 if and only if c1 ⊆ c2 (7)

Thus, the clause flies ← bird, normal subsumes the clause flies ←
bird, normal, pigeon. Observe that propositional subsumption is sound, which
means that whenever c1 subsumes c2, it is the case that c1 |= c2, and complete,
which means that whenever c1 |= c2, c1 also subsumes c2.

This model of inductive reasoning can now be extended to account for back-
ground knowledge. Background knowledge typically takes the form of a set of
clauses B, which is then used by the covers relation. When learning in the pres-
ence of background knowledge B an example e is covered by a hypothesis h if
and only if B ∪ h |= e. This notion of coverage is employed in most of the work
on inductive logic programming. In the flies example, one might employ the
following two clauses for defining the bird predicate:

bird← blackbird bird← ostrich

Using these clauses as background theory B, the example flies ←
blackbird, normal is covered by the hypothesis flies← bird, normal.

The incorporation of background knowledge in the induction process has
resulted in frameworks for generality relative to a background theory. More for-
mally, a hypothesis g is more general than a hypthesis s relative to the back-
ground theory B if and only if B ∪ g |= s. The only already seen inference rules
that deal with multiple clauses are those based on (inverse) resolution. The other
frameworks can be extended to cope with this generality relation following the
logical theory of generalization. Various frameworks have been developed along
these lines. Some of the most important ones are relative subsumption [Plotkin,
1971] and generalized subsumption [Buntine, 1988], which extend θ-subsumption
towards the use of background knowledge. More details on frameworks for gen-
eralization and inductive and abductive reasoning can be found in [De Raedt,
2008, Nienhuys-Cheng and de Wolf, 1997].

4 Probabilistic Reasoning

Because the world is inherently uncertain, logic alone does not suffice for
many application areas. It also explains why a lot of recent research in ar-
tificial intelligence and machine learning is concerned with combining logical
and relational representations with probabilistic ones [Getoor and Taskar, 2007,
De Raedt et al., 2008]. This line of research has resulted in a large number of
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Table 1. Conditional probability tables for the carrier example

P (carrier(X) = true)

0.6

carrier(X) P (suffers(X) = true)

true 0.7
false 0.01

different probabilistic logical and relational representations. Rather than pro-
viding a detailed account of these representations, I provide some illustrative
examples; the first one along the lines of [Sato and Kameya, 1997, Poole, 1993]
is based on the idea of associating probabilities to facts or switches. Consider
the following adaptation of the flies example:

flies(X)← bird(X), normal(X)
bird(X)← ostrich(X)
bird(X)← blackbird(X)
normal(X)← blackbird(X)
0.8 :: blackbird(X) ∨ 0.2 :: ostrich(X)←

All formulae, except the last one, are typical rules. The last statement is a so-
called probabilistic switch. It states that any X is either a blackbird (with prob-
ability 0.8) or an ostrich (with probability 0.2). If there are multiple switches,
they are assumed to be independent of one another. A hypothesis containing
switches can be regarded as a probability distribution over a set of hypotheses,
where each hypothesis in the set contains one fact (or choice) for each switch
and the probability of that hypothesis is given by the product of the probabil-
ities of all the facts it contains. So, in the flies example, the set contains two
hypotheses, one with probability 0.8 containing the fact blackbird(X) and the
other one containing ostrich(X) with probability 0.2. Both hypotheses contain
all non-probabilistic rules.

It should be stressed that there exist alternative ways of integrating logic and
probability theory. For instance, several models, such as [Kersting and De Raedt,
2007, Costa et al., 2003, Getoor et al., 2001], integrate Bayesian networks [Pearl,
1988] with logic. These models represent joint probability distributions over re-
lational states (sets of facts) in a compact manner. They employ conditional
probability distributions for this purpose. For instance,

suffers(Person) | carrier(Person)

states that the probability that a person suffers from a disease probabilistically
depends on whether or not she is a carrier of that disease. One typically also
needs to specify the prior probability of a person being a carrier, which would
be captured by an expression of the form

carrier(Person)

Both statements would have associated probability tables, such as those in
Table 1, for specifying the probability values.
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The combination of probabilistic and logical representations affects both infer-
ence and learning. So is the coverage relation no longer a 1-0 criterion, but rather
a probabilistic one. For instance, the probability that flies(tweety) is now 0.8,
that is, the sum of the probabilities of the hypotheses in which the flies(tweety)
is entailed. Furthermore, also the inference rules and types can now take into
account the probabilistic information. For instance, it is well-known that ab-
ductive reasoning can be guided by the probabilistic information [Poole, 1993].
As an illustration, if one observes flies(tweety) there is a single abductive ex-
planation for this fact, that is, blackbird(tweety) with probability 0.8. If on the
other hand, one observes bird(tweety), there are two alternative explanations:
blackbird(tweety) with probability 0.8 and ostrich(tweety) with probability 0.2,
which shows that the probabilities of the explanations can be used to select the
most likely one. Similar observations can be made for the carrier example.

Secondly, learning becomes more complex. When working with probabilistic
representations, one now distinguishes the learning of the structure, that is, the
rules, from the estimation of the parameters. Parameter estimation is an easier
task, which explains why it has – so far – received the most attention.

To summarize, the introduction of probabilities into logical representations
puts knowledge representation, inference and learning into a new perspective.
Although there exists a consensus in the artificial intelligence community that
(various types of) logic are well-suited for knowledge representation purposes
and graphical models are well-suited for both reasoning about uncertainty and
learning, we still lack a general theory and methodology for combining probabil-
ity with logic and learning. The multitude of different alternative probabilistic
logics that exist today and the difficulties to relate them shows that such a gen-
erally accepted framework is urgently needed. More details on these issues can
be found in [Getoor and Taskar, 2007, De Raedt et al., 2008, De Raedt, 2008].

5 Conclusions

This paper has provided a gentle introduction to the use of logic, knowledge
and inference in machine learning. As such it has revisited and reinterpreted
some of the issues of Ryszard Michalski raised in his theory and methodology of
inductive learning in terms of logical and relational learning. It has also discussed
an extra dimension, the integration of probabilistic and logical representations
and reasoning with principles of learning, which forms the subject of a lot of
recent research. The reader interested in finding out more about these topics
may want to consult [De Raedt, 2008].
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Abstract. We provide a precise illustration of what can be the idea of “compu-
tational creativity”, that is, the whole set of the methods by which a computer 
may simulate creativity. This paper is restricted to multiple predicate learning in 
Inductive Logic Programming (ILP) and to Program Synthesis from its Formal 
Specification (PSFS). These two subfields of Computer Science deal with prob-
lems where creativity is of primary importance. They had to add to their basic 
formalisms, ILP and Beth’s tableaux (for PSFS), sets of heuristics enabling the 
program to solve the problem of Multiple Predicate synthesis. Some of these are 
what is usually called a heuristic, that is, a method by which the execution 
speed of the program is supposed to be boosted, at the price of a lost of some 
solutions. This paper, inversely, shows heuristics the goal of which is to provide 
the program with some kind of inventiveness. The basic tool for computational 
creativity is what we call an ‘asset generator’ a specification of which is given 
in section 4, followed by a detailed description of our methodology for the gen-
eration of assets in PSFS. Since it may seem that our ‘asset generation method-
ology’ for PSFS relies essentially on making explicit the logician’s good sense 
while performing a recursion constructive proof, and as an example of its  
efficiency, we provide in conclusion a result, a kind of challenge for the other 
theorem provers, namely: ‘invent’ a form of the Ackerman function which is 
recursive with respect to the second variable instead of the first variable as the 
usual definitions are. 

In ILP multiple predicate synthesis, the assets have been provided by mem-
bers of the ILP community, while our methodology tries to make explicit a way 
to discover these assets when they are needed. 

1   Introduction, Motivations, and What Is a “Recursive Problem”?  

The goal of this paper is presenting non trivial examples of a methodology of creativ-
ity. We could also say in a bit flaunting way that we aim at clarifying some essentials 
for a methodology of creativity, that is, to push forward the field of “computational 
creativity,” a topic we discussed already in Franova et al. (1993) This research do-
main starts with the works of Newell and Simon (1972) and it has been quite well  
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defined by Boden (1999). Our paper, however, does not aim at an analysis of the state 
of the art in computational creativity. It rather aims at showing how the specialists in 
Inductive Logic Programming (ILP) and in Programs Synthesis from their Formal 
Specifications (PSFS) have been dealing with the problem of the synthesis of multi-
ple, mutually dependent, predicates. The problems met are of a recursive kind and 
they demand some creative computing of which we shall give several examples. 

One of the hardest problems that ILP tackled is the one of the synthesis from ex-
amples of predicates that are mutually dependent. The base papers due to de Raedt 
and al. (1993a and b), and de Raedt and Lavrac (1996) provide an analysis of the 
problems raised by this question. They opened the way to a research stream illustrated 
by a score of works. Besides the authors cited in the body of this paper, one can also 
consult Martin and Vrain (1995), Zhang and Numao (1997), Fogel and Zaverucha 
(1998). The problem the ILP community worked upon is precisely what we call: a 
“recursive problem”. We should not confuse recursive programming, which is writing 
in a recursive way an already known solution for a problem that might be recursive, 
and solving recursive problems, the solution of which is still unknown. The two tech-
niques ask for very different creative methods. As an illustration, consider the follow-
ing example. This is a (somewhat simplified) problem of recognizing a dot as being 
the one ending a sentence. This example asks for no special knowledge, and it shows 
the same difficulties as the two examples central to this paper. In order to make the 
difference between a ‘sentence ending dot’ and a dot ‘part of or end of an acronym’, 
we need to combine two sources of information. The first is that a dot ending a sen-
tence (except in case of a typing error, of which we do not speak here) is always stuck 
to a string of letters forming a ‘well-known’ word. The second is that it is always fol-
lowed by an empty space (except in case of a section ending, of which we do not 
speak here) and followed by a word starting with a capital letter, this word normally 
starts with a lower case letter. As long as we do not know any formal specification 
neither for a ‘well-known word’ nor for a ‘word normally starting with a lower case 
letter’, the problem is not to write a program, be it recursive or not, on this topic. The 
problem is finding a formal specification of these two informal specifications, possi-
bly dependent on the application domain. In other words, we have to solve the ‘recur-
sive problem’: sentence ending dot / unexpected upper case. Heitz’s PhD thesis 
(2008) proposes an iterative solution to this recursive problem.   

An ILP example is the one of the automatic synthesis of the mutually dependents 
predicates odd and even as it is done by the system ATRE of Malerba and al. (1998). 
This definition may seem unexpected but if we try to “impose recursion” to the syn-
thesis system and if we give precedence to the relations that use once the successor 
function, it becomes the one to be expected:  

 

even(X) :- zero(X) 
odd(X) :- succ(Y,X), even(Y) 
even(X) :- succ(Y,X), odd(Y). 
 

This simple example shows that ATRE has been creative as compared to the defini-
tions we learn at school : even(X) :- zero(X) ; odd(X) :- succ(0,X ) ; odd(X) :- 
succ(Y,X), succ(Z,Y), odd(Z) ; even(X) :- succ(Y,X), succ(Z,Y), even(Z). 

Before going inside our methodology for generating assets in PSFS, we will show 
what are the PSFS equivalents to some of the heuristics developed by ILP. After all, a 
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formal specification can be seen as an infinite sequence of positive and negative ex-
amples that enables formally proving the equivalence between the specification and 
the synthesized program. The so-called ‘classical approach of ILP (De Raedt and L. 
Lavrac, 1996) is very similar except that it ‘only’ relies on a finite sequence of posi-
tive and negative examples and provides and informal proof of equivalence: the syn-
thesized program ‘covers’ the positive and does not cover the negative examples. 
Looking for multiple predicates makes the task of ILP much more difficult than syn-
thesizing one predicate alone. This difficulty is even greater than could be expected as 
shown by De Raedt and al. (1993a and b). Since the task includes synthesizing several 
predicates in parallel, the order in which they are synthesized is central and very hard 
to control.  

We gather these heuristics in three groups: the generalization/particularization 
methods, increasing the amount of background knowledge used and the discovery of 
new knowledge (the ‘assets’) relative to the domain. We can imagine that ‘real’ crea-
tivity belongs to the discovery of assets. One of our aims is to show that computa-
tional creativity merges the three approaches.  

2   Generalization/Particularization Methods 

As far as ILP starts from instantiated examples, it is obvious that the programs or 
predicates it will synthesize are generalizations of these instances. We will not insist 
on this point which has been much worked upon in the ILP literature, except to point 
out that two very opposite heuristics are used. Firstly, the possible clauses are built by 
generalization combined with subsequent specialization. Secondly, once some clauses 
are synthesized, it is necessary to choose which to keep by defining the notions of 
cover and of measure of interest. 

The most classical method, which received scores of variations, is the one in FOIL 
(Quinlan, 1990), namely the entropy gain brought by each synthesized clause. The 
system is shown T0 examples of which T+

0 are positive and T-
0 are negative. The  

entropy of the set of examples is  
 

E0 = -[((T+
0/T0) log2 (T

+
0/T0)) + ((T-

0/T0) log2 (T
-
0/T0))].  

 

When clause C is synthesized, it is possible to check that it is in agreement with T+
C 

positive examples and T-
C negative examples. Let TC = T+

C + T-
C , the entropy associ-

ated to C is  

EC = - TC/T0 [((T
+

C/TC) log2 (T
+

C/TC)) + ((T-
C/TC) log2 (T

-
C/TC))].  

The difference between these two values measures the gain in entropy due to clause 
C. This basic formula is one of the best-known to control the moves of the learning 
programs in the space of the possible hypotheses. In reality, it belongs partially to our 
topic because each inductive system, depending on the data it processes, can use a 
specific heuristic to find its way in the hypothesis space. For example, Kijsirikul and 
al. (1991) have developed a measure of interest that combines entropy gain and a syn-
tactic distance between the final goal and the changes due to C. The logical equivalent 
of this heuristic is quite trivial: in PSFS, the lemmas and theorems are proved in the 
order they appear during the proof. Recursion proofs use another trivial heuristic: 
prove first the base case, then the general case.  
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When only one predicate is synthesized at a time, p, the consistency of each hy-
pothesis, namely adding one clause to the knowledge base, is checked on the positive 
and negative examples. When several predicates are synthesized together, it is possi-
ble to go on using this process for each predicate pi of the multiple hypothesis. It is 
clear that logics ask for checking the consistency of all the pi in this hypothesis, with-
out making any difference among them. However, this type of intertwining of all the 
proofs obviously increases too much the computation time. This is why, in order to 
solve a real life problem of image understanding, Esposito and al. (1998, 2000) had to 
introduce what they call their strategy of ‘separate-and-parallel-conquer search’. This 
strategy relies on the classical ‘divide and conquer’ strategy. However, several ‘con-
quer’ are performed in parallel.  

More precisely, the classical ‘divide and conquer’ strategy conquers (= learns) one 
isolated clause, which is added to the knowledge base. It then divides (= rejects) the 
examples covered by this clause. The process starts again on the examples that are 
left. The strategy used by Esposito and al. starts with an over-generalization covering 
one single example. The specializations enabling to avoid covering negative examples 
are checked in parallel. Each specialization use a gain heuristic in order to choose the 
specialization that will cover the less possible negative examples. All specializations 
covering none of the negative example are possible candidates to become the clause 
that will be synthesized. 

3   Increasing Domain Knowledge 

We must at first make a clear difference between domain knowledge (also called 
‘background knowledge’) and the invention of assets. Obviously knowledge is always 
an asset but domain knowledge covers everything known about the problem. A simple 
example of it is the knowledge that recursive relations may exist, a very general type 
of knowledge. As a less simple example, which we will use in the following, is a 
‘classical’ property of recursion (Peter 1967): Suppose we are studying a partially 
false relation R(x, z) where x is the input variable and z the output variable. This sug-
gests that we need to build a new recursive predicate P(x), as we shall see later. When 
applying the induction hypothesis, it may happen that we can find a solution provided 
the condition G(x) holds. In this case, the new predicate P(x) is defined by P(x) :-
 G(x), P(pred(x)). On the contrary, asset invention is the discovery of still unknown 
structures amongst the data, and these structures are useful for finding a solution of 
the problem at hand. 

We shall not give here the huge amount of knowledge implied by the very exis-
tence of ILP. The fact of being able to think that programs may be able to synthesize 
other programs supposes also a mass of background knowledge. This theme has been 
treated for ILP in general by the creators of FOCL (see Pazzani and Kibler 1992), and 
for multiple predicate synthesis by Giordana et al. (1993). More generally, all auto-
matic learning inductive systems use what is called the “learning bias” that limit the 
size of the space of the clauses that can be learned. There are many kinds of such bias, 
such as the syntactical form of the clauses that can be learned. A quite evolved exam-
ple of this case is found in a paper of Baroglio and Botta (1995) where the authors  
introduce clause templates for the predicates to synthesize. They give an example 
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relative to the binary clauses p(x, y). They associate to these binary clauses a template 
such as p’(x, y) :- p(x, z), diff(z, y) when they need to use the predicate ‘different’ 
during the synthesis. Similarly, Brazdil and Jorge (1994) introduce ‘sketches’ that fit 
well intuition but that provide also links among the variables that are an important 
part of the solution. For example, when they want to synthesize from examples the 
predicate ‘reverse’, they use the ‘sketch’:  
 

reverse (A, Z) :- $P1 (A, B, C), reverse (C, D), $P2 (D, B, Z). This says to the synthe-
sis system that it must look for a recursive definition, the number of variables in the 
functionals $P1 and $P2, and that $P1 contains the input variable of ‘reverse’, and 
$P2 its output variable: a quite detailed ‘background knowledge’ that should be per-
haps be rather called an educated guess. 

4   Discovering New Knowledge about the Domain (The Assets) 

4.1   Including in Background Knowledge the Synthesized Clauses 

This is normal practice in ILP where the newly learned clauses are added to the 
knowledge base of the clauses already known. The classical action associated to this 
choice is to delete the examples covered by the just added clause. The process will 
then converge since the synthesis will stop when all the positive examples are cov-
ered. It is also possible, inversely, to add to the existing learning examples (‘ground 
facts’) the facts that can be deduced from the synthesized clauses. This is what Jorge 
and Brazdil (1996) call “iterative bootstrap induction.” This obviously complexifies 
the program since new facts have to be added for each new hypothesis, and old facts 
must be deleted when a clause is deleted. 

4.2   Relational Pathfinding 

Richards and Mooney (1992) introduced this notion when adding the available literals 
to a clause does not change its entropy gain. This problem is particularly significant 
when several predicates are synthesized in parallel. The solution of these authors can 
be seen as searching, within the graph of the relationships carried by the examples, 
the sub-graph of the relation carried by the predicate to synthesize. They give a heu-
ristic making the best use of the existing knowledge without attempting to solve the 
problem of finding all sub-graphs of a given graph. Suppose that, during a proof, it is 
needed to find a binary predicate P(a, b) where P is to be synthesized and ‘a’ and ‘b’ 
are two instances of the ground facts. Suppose ‘a’ and ‘b’ are not linked in the rela-
tional graph of the ground facts. They have nevertheless a set {R} of relationships 
with other instances. As a practical simplification suppose all these relations are bi-
nary. Remember that the ground facts are instantiated examples and we call here ‘in-
stances’ the values of these instantiations, such as names of persons in a family base. 
The heuristic developed by Richards and Mooney (1992) considers all the paths de-
fined by {R}. If these partial paths create one path linking ‘a’ and ‘b’, then this link is 
made of a sequence of binary predicates in {R}. It has the form Ri(a, ai), …, Rj(bj, b). 
The heuristic supposes that this path is an example of P, that is:  



160 M. Fran ˇová and Y. Kodratoff 

P(a, b) :- Ri(a, ai), …, Rj(bj, b). By replacing the instances by variables preserving the 
links amongst the instances, it easily obtains a predicate  

P(x, y) :- Ri(x, xi), …, Rj(yj, y) that, once it is added in the knowledge base, enables to 
prove P(a, b), unless it requests a unary predicate (that cannot be taken into account 
by this heuristic). This last case is dealt with by yet another heuristic explained in the 
next section. Anyhow, we have thus obtained a first sequence of the predicates that 
must be joined in order to increase the entropy gain. If the first set of partial paths do 
not create a link between ‘a’ and ‘b’, this process is repeated on the free nodes which 
still show a set of relations {R’} with the instances not yet used. If several paths are 
possible, entropy gain can again be used to choose a best candidate among them. 
When this heuristic succeeds, it puts in evidence a structure existing in the data, 
which is important for the completion of the proof. This is what we call an asset. A 
more general definition will be given in section 6.  

4.3   Failure Analysis in ILP 

An example of successful failure analysis in the problem of multiple predicates synthe-
sis is provided by Kijsirikul and al. (1992) and Zelle and al. (1994). Suppose that we 
meet a failure: too many negative examples are covered by a clause C because it 
misses a predicate P which is available among the ground facts. The problem is choos-
ing which of the available predicates must be added to clause C in order to prevent it to 
cover so many negative examples. C (as it is) is used in order to prove positive and 
negative examples. During this proof, we obtain a list of instances, L, belonging to the 
proof that C covers positive examples, and a list of instances L’ belonging to the proof 
that C covers negative examples. By analyzing the differences between the instances of 
L and of L’ , it is most often possible to single out the predicate that makes these  
differences, namely P.  

4.4   Failure Analysis in PSFS 

4.4.1   Some Basic Principles of Recursion Proofs 
Let us first recall a few basic principles of the application of recursion proofs to pro-
gram synthesis. The simplest formula that may be needed to prove has the form ∀x 
∃z, Q(x, z). This formula, F1, determines the Skolem function, SF, associated to z, 
which the value computed by this Skolem function when applied to variable x, that is 
to say ∀x, z = SF(x). In other words, due to the quantifiers of x and z, the semantics 
of an input variable are applied to x, and the semantics of an output variable are ap-
plied to z. The problem of PSFS is to find ‘the’ SF which checks F1, which amounts 
to find a constructive proof of ∀x ∃z, Q(x, z).  

Performing a proof recursion consists in the analysis of what are called “base case” 
and “general case” and to apply to the general case what is called the “induction hy-
pothesis.” Since we restrict ourselves here to the natural numbers, the base case is 
x = 0 since the simplest formula we start from includes no conditions on x. The gen-
eral case is x = s(a) where ‘s’ is the successor function. The induction hypothesis (“if 
the formula is assumed to be true for n, then we can prove that it is true for n+1”) 
writes  ∃e, Q(a, e) ⇒ ∃z, Q(s(a), z) or else, using a Skolem function, Q(a, SF(a)) ⇒ 
Q(s(a), SF(s(a))). 
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We will suppose in the following examples that we are able to prove the base case 
and that we find, for x = 0, that the formula F1 is made true by z = a0, i.e., SF(0) = a0. 

4.4.2   The ‘Hypothetical’ Program 
As a first illustration of failure recovery in PSFS, suppose that, in the general case, we 
can find a function G such that z = G(e) = G(SF(a)) at the condition that P(z) is true. 
This is a condition on the outputs which is a failure of the recursion proof since it is 
not allowed to impose conditions on an output variable we are not able to compute 
(otherwise, these conditions should have been included in F1). We propose, in this 
case, to build a program, F, we qualify of being ‘hypothetical’, which is inspired by 
what we already know about G, without including the condition P(z). We hope then 
that P(F(x)) is true for all x. Obviously, if this hope proves false in reality, we still 
have ways to react. We will now be content with an illustration of the simple case 
where ∀x P(F(x)). 

This illustration comes from proofs relative to the Ackermann function published 
in Franova (2008). The reader will have thus to accept that some computation steps 
are given elsewhere. These computations lead us to try to prove that ∀x ∀y ∃z, Ack 
(x, y) = y + z. In the base case, we have to solve the equation Ack (0, y) = y + z. The 
definition of Ack immediately yields the solution z = 1, i.e., SF (0, y) = 1. In the gen-
eral case, and after a rather long computation, we observe that we have to prove the 
lemma ∃z Ack (a+1, y) = y + z. We are thus in position to try an inductive proof on 
the second input variable, y. In the base case, y = 0 and we obtain SF (a + 1, 
0) = 1 + SF (a, 1). In the general case, we set y = b + 1 and we obtain 

SF (a+1, b+1) + 1 = SF (a + 1, b) + SF (a, b + SF (a + 1, b)). If we could prove  
that 

SF (a + 1, b) + SF (a, b + SF (a + 1, b)) > 0, we would have obtain a recursive way 
for computing SF. We are not able to do so and we are therefore in front of a failure 
of the recursion proof. As announced, we build a hypothetical function F (of which 
we do not know if it is senseless or not) without the condition on the output variable 
(z > 0). We use all the already obtained results about SF in order to build the function 
F defined by: 

 

F(0, y) = 1 
F(a + 1, 0) = 1 + F (a, 1) 
F (a+1, b+1) = F (a + 1, b) + F (a, b + F (a + 1, b)) -1 
 

We are able to prove that ∃z, F (x, y) = 1 + z, that is to say ∀x ∀y, F (x, y) > 0. It  
follows that SF which is defined in the same way has the same property.  

In this simple case, failure recovery amounts to a proof that this failure does not ac-
tually take place. In more complex cases, it often will lead to predicate generation as 
we shall see. 

4.4.3   Dealing with Partially False Formulas 
A partially false formula may be used as an indication that a new predicate needs to 
be built. 
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Consider the following formula: 

(F1) ∀a ∀b, b>0, ∃z, b = a + z 

The analysis of this formula, during an attempt at a recursion proof, shows it is par-
tially false, thus the proof fails. As did Zelle and al. (1994) in ILP, we suppose that 
there exists a hypothetical predicate P(a, b) with which we will be able to recognize 
when F1 is true. In order to build P, we use the failure cases of the proof of F1.  

In the base case, the condition b>0 implies that b = s(0). Considering the formula 
∀a ∃z, s(0) = a + z, we observe that it has two partial solutions, namely z = s(0) IF 
a = 0, and z = 0 IF a = s(0). These failure conditions provide two features of the hypo-
thetical predicate P: 

 P(a,s(0)) :- a = 0 
 P(a,s(0)) :- a = s(0) 

In the general case, we have b=s(c), c>0, and we have to prove that ∃e, c = a + e ⇒ ∃z 
s(c) = a + z. Our approach systematically uses a heuristic that urges to study, before 
using the induction hypothesis, the so-called trivial solutions to the problem 
∃z, s(c) = a + z. We at once obtain two trivial solutions, z = s(c) IF a = 0, and z = 0 IF 
a = s(c). This provides us with two new characteristics of P : 

 P(a,s(c)) :- a = 0 
 P(a,s(c)) :- a = s(c) 

Now, we can use the induction hypothesis and we find z = s(e) without any condition 
on a. The logics of the recursive features (Peter 1967) tells us to write the recursive 
feature of P as follows: 

 P(a,s(c)) :- P(a,c). 

We have built or observed five features of P that completely define the predicate P:  
∀a ∀b, b>0, (P(a,b) ⇒ ∃z, b = a + z. As you see, we do not obtain a proof of F1 but 
the conditions at which F1 is true. The proof can then go on by a study of the cases 
where non P is true. We are able in this way to obtain the largest characterization of 
the cases where the formal specification we started with can lead to a computable 
program. 

5   Abduction 

Kakas and al. (1998) proposed a new method for solving the problem of synthesis of 
multiple predicates. Their approach modifies the proof technique by using Abductive 
Logical Programming (ALP) - see Kakas and al. (1998), and Ade and Denecker 
(1995) instead of ILP. This is not a heuristic but a change of the logical setting. It is 
thus expected that we have no obvious PSFS equivalent. The definition of ALP given 
by Kakas and al. (1998) proposes to associate to the usual logical program a set of 
partially defined predicates, they call “abducible,” and a set of integrity constraints in-
suring that the inferences on the abducibles keep consistency with P. This enables 
them to replace the classical “negation by failure” used in logical programming, by a 
“negation by default,” defined as follows. To each predicative symbol, pred, used in 
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P, they associate its negation, non_pred, and they add to the set of the integrity con-
straints the supplementary constraint :- non_pred, pred. The logical derivation is no 
longer reduced to finding True or False: It becomes, as in classical abduction, a set of 
predicates that are an “abductive explanation” of the proof. This approach illustrates, 
at least, the amount of inventiveness the ILP community have shown in order to solve 
the problem of synthesis from examples of multiple predicates. 

When collecting the failures of the proof of the formula  

(F1) ∀a ∀b b>0 ∃z b = a + z,  

we used a similar approach since each of the five features of P ‘explains’ the failure to 
prove F1. This heuristics is, however, much less well formalized than the one of 
Kakas and al. (1998). This formalization work is thus still to be done in the context of 
PSFS. 

6   The Asset Generator 

An asset generator defines a human or an automated behavior. It is made of chained 
actions that are led by strategies, themselves non formally defined. It is thus impossi-
ble to give a complete formal definition of an asset generator. We shall give at first an 
incomplete formal definition we shall then complete in an informal way. 

6.1   Definitions  

An Incomplete Formal Definition 
Given a possibly incomplete undecidable formal theory, and a base theorem (the one 
to be proven), an asset to prove the base theorem is obtained by the analysis of a fail-
ure to prove the base theorem. This analysis may detect three different causes of the 
failure, each leading to a different recovery strategy. Firstly, and quite usually, a 
‘well-known’ and useful part of the domain theory has been forgotten and the asset is 
a consequence of the theory which has to be retrieved in the existing domain specific 
literature. Secondly, a very particular non classical lemma is missing and the asset has 
to be invented as a consequence of the theory. Thirdly, the theory is undecidable, and 
the asset completes the theory, just enough to be able to prove the base theorem. 

Here come now the informal commentaries that describe what is an asset genera-
tor, given this definition. 

Let us imagine humans put in the situation of proving a theorem in an undecidable 
theory. They will at first attempt to directly prove the base theorem from the given 
theory. Suppose that they are excellent mathematicians and that they fail at finding 
the proof. They at least know that the proof is going to be either difficult, or impossi-
ble. They will thus start a long process by which they will, in principle, combine two 
strategies. The first strategy looks for the tools missing for completing the proof. They 
will use their intuition and their knowledge of the constructive proofs, their knowl-
edge of the formal theory, and of the content of the theorem to prove. We call this part 
of the human behavior the “strategies for choosing the assets” because it enables to 
find (possibly undecidable) theorems that might possibly be useful in order to prove 
the base theorem. Our experience, however, is that we are unable to simulate, for the 
time being, this part of human behavior. 
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The second of these strategies generates decidable theorems from the theory, and it 
checks each of these theorems in order to know if they might or not be used some 
place in a proof of the base theorem. In order to ‘give flesh’ to this last statement, this 
paper gives examples of several derivation techniques used in ILP and PSFS.  

A Complete Informal Definition 

Consider an informally defined proof strategy that does either exist nowhere else than 
in the mathematician’s mind, or it is part of an automatic proving strategy. 

Given an undecidable formal theory and a base theorem, we call “asset generator for 
proving the base theorem,” a proof strategy showing the three following features: 1. it 
generates assets that are defined in the above formal definition. 2. All the generated as-
sets will be easier to prove than the base theorem. 3. If it generates a potentially infinite 
sequence of assets, then it exists a generalization to this infinite sequence, and this gen-
eralization is supposed to be equivalent to the infinite sequence that continues the finite 
sequence obtained in practice. In the case of an informal specification, condition 3 is 
formulated rather as excluding infinite sequences: When the asset generator generates 
an infinite sequence of assets, this amounts to a failure case. 

It follows that an asset generator does not insure that we will be able to find a for-
mal proof of the specification. It is only a strategy that gives interesting results in 
PSFS. It constitutes a strategy which, once it is made fit to the user needs, can help 
them to better manage the problems of recursion they meet while programming. 
Given the present state of the art, a real life application of all these techniques seems 
to us somewhat risky in automatic programming while it should be quite useful as an 
assistant for dealing with the difficult and counter-intuitive problems.  

6.2   Assets and Domain Knowledge 

We defined the assets as knowledge invented during a proof. It is however obvious 
that if some domain knowledge is not given, the problems may become of a very dif-
ferent nature and it may become impossible to discover the necessary assets. A simple 
ILP example is the one ‘favoring’ or not recursive calls by including, or not, a process 
that will systematically attempt to generate a recursive form. In PSFS, section 7.5 will 
illustrate how, depending of the parameters introduced in the induction hypothesis 
(knowledge of all the possible forms of the induction hypothesis is part of the domain 
knowledge), we may fail to find an asset when considering a useless branch of the 
proof tree. 

7   How to Find the Assets in PSFS 

The problem dealt with in this last section is to explain in general, and provide two 
specific examples, of how the assets can be generated in PSFS. From the ILP exam-
ples we have seen that humans are in charge to be creative. Creativity is hard to reach, 
especially in the domain based on a strong theory, such as the one of PSFS. This is 
why we have been developing a methodology (we called “CM-strategy,” see Franova 
(1985), which can help the humans to know when, where and how their creativity is  
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needed. We do not claim this methodology is able to solve all the problems – we 
however provide in conclusion a result difficult to reach without using our asset 
methodology. We do not claim it is easily automated and, as already stated, we see it 
more as an automated help to prove theorems, though it has been already partially im-
plemented as the CM-strategy, see Franova (1990). 

In order to generate assets during our proofs, we need to add two steps to the usual 
recursion proofs. The one is the management of a kind of stack into which we pile up 
the conditions needed for solving the problem at hand. We call this process “intro-
ducing abstract arguments.” The second one is a heuristic helping us to generate 
lemmas such that their proof enables to go on in the proving process. The generation 
of these special assets is called “generation of intermediary lemmas.” 

7.1   Introducing the ‘Abstract Arguments’ 

We introduce a new type of argument in the predicates a feature of which has to be 
proven true, we call abstract arguments. They are denoted by ξ (or ξ’ etc.) in the fol-
lowing. An abstract argument replaces one of the arguments of the base theorem. The 
first step is choosing which of the arguments of the base theorem will be replaced by 
an abstract argument, ξ. This argument is known and, in a usual proof, its characteris-
tics are used in order to prove the base theorem. In our approach, we ‘forget’ for some 
time these characteristics and we concentrate on studying the features ξ should have 
so as insuring that the theorem with a substituted argument is true. 

In the following, and for the sake of avoiding a too general wording, suppose for 
example that the formula to prove has two arguments, that is to say that we need to 
prove that F(t1, t2) is true, where F is the base theorem. Suppose further that we have 
chosen to work with F(ξ, t2). We shall then look for the features shown by all the ξ 
such that F(ξ, t2) is true.  

At first, we have to choose which argument will be made abstract. There are two 
ways to introduce an abstract argument, and we thus start with either F(t1, ξ) or F(ξ, 
t2) since, obviously, F(ξ, ξ’), an a priori possible choice, would hide all the character-
istics of t1 and t2. 

Supposing we are able to find the features of ξ such that (say) F(t1, ξ) is true, for all 
the ξ showing these features, F(t1, ξ) is true. In other words, calling ‘cond’ these fea-
tures and {C} the set of the ξ such that cond(ξ) is true, we define {C} by 
{C} = {ξ │ cond(ξ)}. We can also say that we try to build a ‘cond’ such that the theo-
rem: ∀ξ ∈ {C}, F(t1, ξ) is true. It is reasonable to expect that this theorem is much 
more difficult to prove than F(t1, t2). We thus propose a ‘detour’ that will enable us to 
prove the theorems that cannot be directly proven, without this ‘detour’. Using the 
characteristics of {C} and the definition axioms in order to perform evaluations, and 
also using the induction hypothesis, we shall build a form of ξ such that F(t1, ξ). Even 
though it is still ‘ξ’ and only for the sake of clarity, let us call ξC one of these forms. It 
is thus such that F(t1, ξC). We are still left with a hard work to perform: Choose the 
‘good’ ξC in the set {C} and modify it (possibly using hypothetical theorems), in such 
a way that ξC and t2 will be made identical, which finally completes the proof. Section 
7.4 will give a detailed example of this process. 

In the following, we will illustrate our methodology by two examples. The simplest 
of the two is the proof that, for the natural numbers, 2 < 4. Here F is the predicate ‘<’, 
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t1 = 2 and t2 = 4. As you will see, we will choose to replace the second argument by ξ 
and we will study the characteristics of ξ such that 2 < ξ. As already said, this is a 
generalization of the base theorem. Note also that we temporarily forget the base 
theorem and that we focus on the study of the ξ such that 2 < ξ. 

7.1.1   The Sub-problem of the Choice between F(t1, ξ) and F(ξ, t2) 
This choice is done following a heuristic as follows. The predicate F is defined by 
F(t1, t2) and the predicates or functions that define t1 and t2. All these definitions are 
given as a set of axioms and the way these axioms are defined leads to the choice be-
tween F(t1, ξ) and F(ξ, t2). In the general case, if F defined recursively with respect to 
one variable, for example the first one, as in 

F(s(a), b) IF F(a, b’), then the second argument is replaced by ξ, and we will study 
F(t1, ξ,). If the general term of F is defined by a double recursion, then consider the 
base case, such as for example, F(0, t2), and the non zero argument is replaced by ξ. If 
the two terms F(0, t2) and F(t1,0) are given in the axioms, then the same kind of con-
siderations are applied to the operators contained in F. If this does not enable to de-
cide, all the possibilities for replacing the arguments by an abstract argument must be 
studied in turn. 

7.1.2   How to Use the Abstract Argument 
Suppose we started with F(t1, ξ,). Since we wish to build solutions enabling us to 
prove the theorem, the construction process will include checking the likeness of ξ 
and t2. The general rule we use during these likeness checks is quite obvious. Suppose 
that t2 has the form f(t’2, t’’2). Then ξ cannot be matched but with a function as f(x, y) 
where x and y are variables. Thus, we reach the problem of proving ∃u ∃v, ξ = f(u, v). 
More generally, the failure of a matching between ξ and t2 leads us to introduce exis-
tentially quantified variables that insure the success of the matching of ξ and t2. The 
automation of this reasoning step can become very complex and shows many differ-
ent cases, but each case is quite general and is trivial to solve. For example, suppose 
that during an evaluation step, we realize that in order to prove the theorem, we have 
to identify ξ and s(u), then we will make the hypothesis that there indeed exists a ‘u’ 
such that ξ = s(u). This relation is looked upon as a condition on ξ: ξ is such that ∃u, 
ξ = s(u). We shall see more complex examples while going through the examples in 
7.3 and 7.4. 

7.2   The Generation of Intermediary Lemmas 

It is not enough to introduce the existential lemmas we noticed just above. Besides the 
variables necessary to insure the matching of ξ and t2, the base theorem included other 
variables, in particular in t2. If these variables were universally quantified then what 
we call an intermediary lemma needs also a universal quantification of these vari-
ables. Moreover, the base theorem looks like  

[prove that] ∀x, G(x, ξ). By the manipulations ξ undergoes, we discover that the rela-
tion G’ has to be true, where ∃u, G’(x, u). Since x is universally quantified during all 
the manipulations we did, the intermediary lemma is thus ∀x ∃u, G’(x, u), in which 
the quantifiers are obviously put in this order. Depending on the conditions on ξ, the 
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intermediary lemmas are not of the same form in the choice of the variables to quan-
tify. We are not yet able to provide a complete list of all the possible forms. The dis-
covery of these forms still relies entirely on human creativity. We shall see, however, 
that each form can be applied to many particular cases. 

7.3   An Illustrative Example Proved without Recursion 

In example, and to ease out its reading, we identify each integer with its expression in 
terms of successor of 0.  

Base theorem: Prove that 2 < 4 by using the following axioms defining the func-
tion < : 

 1. 0 < s(n)  
 2. s(m) < s(n) IF m < n 

In our approach, we shall need to implicitly use the domain knowledge about equality 
since we start by replacing t1 or t2 by ξ. Recall that the axioms defining equality are: 

 x = y ⇔ y = x 
 x = x 
 s(x) = s(y) IF x = y 
 x = y AND y = z ⇒ x = z 
 s(x) = x has the value FALSE (also given as NOT (s(x) = x)) 
 s(x) = 0 has the value FALSE. 
 

This example illustrates the detail of the reasoning steps we perform while applying 
our methodology. It is however obvious that the simple evaluation classical proof is 
much faster than ours. We will in reality prove a more general theorem than the one in 
the base theorem. This example does not illustrate the ‘power’ of our methodology 
but the way to use it. 

The classical evaluation proof is: 

2 < 4 ? By axiom 2. s(1) < s(3) IF 1 < 3, therefore IF 0 < 2 and by axiom 1, 0 < s(1) 
is TRUE. 

Our proof is a bit more complex. We at first observe that axioms are recursive with 
respect to the first variable. Thus we replace the second argument, 4, by the abstract 
argument ξ. We try now to solve the problem to find the conditions on ξ implying 
2 < ξ. The application of axiom 2 demands an auxiliary variable ξ’ by which we can 
suppose that there exists a ξ’ such that ξ = s(ξ’). Axiom 2 can then be applied to ξ, 
yielding [2 < ξ IF [∃ξ’, ξ = s(ξ’)] AND [1 < ξ’]]. Axiom 2 can be again applied pro-
vided there exists a ξ’’ such that ξ’ = s(ξ’’). Applying it yields: [1 < s(ξ’) IF ∃ξ’’] 
AND [0 < ξ’’]. We can now apply axiom 1 provided we suppose that there exists a 
ξ’’’ such that ξ’’ = s(ξ’’’). Replacing ξ’’ and ξ’ by their values, we thus obtain [2 < ξ 
IF ∃ξ’’’, ξ = s(s(s(ξ’’’)))] which is the condition ‘cond’ we have spoken of above. 
This is not yet the answer to the problem at hand. Let {C} = {ξ │ ξ = s(s(s(ξ’’’)))}. 
As announced, we just proved that [∀ ξ ∈{C} F(t1, ξ)], that is, all numbers equal to or 
greater than 3 are greater than 2. 
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We still need to prove that 4 ∈ {C}, that is ∃ξ’, s(s(s(s(0)))) = s(s(s(ξ’))), which is 
trivial in view of the axioms for equality given above, and we can exhibit ξ’ = 1 that 
fulfills the condition we looked for. 

Looking for a more than necessary complex solution shows a mathematical lack of 
taste we are quite aware of in the present case. It is however quite common that theo-
rem proving asks for a similar ‘detour’ as ours when a particular theorem cannot be 
proven without resorting to a more general one, a quite classical problem. 

7.4   An Example Using Recursion 

Let us now study yet another simple example needing an inductive proof and one of 
our ‘intermediary lemmas’, that is an asset created during the theorem proving proc-
ess. Besides, in spite of the triviality of the problem, and since we modified one of the 
axioms defining the predicate <, it follows that, to the best of our knowledge, the clas-
sical theorem provers fail proving that 
 

∀x ∀y, x -1 < x + y where x ∈ Nat – {0}, if they are given the following set of  
axioms. 
 

Definition of ≠ : NAT x NAT  BOOL 
1. s(x) ≠ s(y) IF x ≠ y 
2. s(x) ≠ x 
3. 0 ≠ s(x) 

Definition of + : NAT  NAT  
4. 0 + u = u 
5. s(u) + v = s(u + v)  

(Note that we do not provide the commutativity of +)  
Definition of -1 : NAT  NAT 

6. (x -1) is possible IFF x ≠ 0 
7. s(0) -1 = 0 
8. s(y) -1 = s(y -1) IF 0 ≠ y 

Definition of < : NAT x NAT  BOOL 
9. 0 < u IF 0 ≠ u 
10. s(u) < v IF u < v AND s(u) ≠ v 

 

In this case, the ‘lack of taste’ of our methodology is hidden behind the ‘lack of taste’ 
of the clumsy form of axiom 10 with respect to evaluation procedures. 

Let us use recursion to prove this theorem. Recall at first that it is part of the ‘clas-
sical’ domain knowledge to know that the proofs can be done after some variables be-
come parameters. A parameter represents any value of the variable it replaces, but this 
value is fixed while the proof goes on (see, for example, Kleene, 1980). Let us call 
E(x, y) the formula 

(x -1 < x + y).  

The recursive proofs can be done in various ways depending on the choice of the in-
duction variable. This is part of recursive theorem proving domain knowledge, it is 
not a part of our methodology. We shall choose to perform the recursion proof on the 
first variable. We thus will have to prove E(s(0), y) in the base case and that E(a,y) ⇒ 
E(s(a), y) in the general case, where y is a parameter. 
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The induction hypothesis shows, in fact, various possible forms depending on the 
choice done for replacing the variables by parameters. In the present case, we can use 
three possible induction hypotheses (Yashuhara, 1971). 

The one where ‘a’ and ‘y’ are made parameters, it writes: a –1 < a + y. In order to 
avoid digressing, we shall see how to use this hypothesis in section 7.5, since it leads 
to a failure. 

The one where ‘a’ only is made parameter, it writes: ∀u, a –1 < a + u. We shall use 
this one. 

For the sake of completeness since we shall not need to use it: the one where ‘x’ is 
the only variable that is made parameter, it writes: ∀t ∀q, t < x, [t -1 < t + q]. 

We shall thus use the induction hypothesis where we hypothesize that  
 

 ∀u, [a –1 < a + u] where, under this hypothesis, we have to prove that  
 [s(a) –1 < s(a) + y]. 
 

We observe that the definition of <, which leads us to replace the second argument by 
ξ in our methodology, that is: ξ = s(a) + y. We must study the conditions for s(a) –
1 < ξ, that is {C} = {ξ │ s(a) –1 < ξ}. Notice at first that by axiom 8, s(a) –1 = s(a –1) 
and that by axiom 10, s(a –1) < ξ IF ([a –1 < ξ] AND [s(a –1) ≠ ξ]). 

Thus, {C} = {ξ │ [a –1 < ξ] AND [s(a –1) ≠ ξ]}. 
Now, we will try to introduce the induction hypothesis within the definition of 

{C}. The matching of [a –1 < a + u] and [s(a –1) ≠ ξ] is not possible, while we ob-
serve it is possible with [a –1 < ξ] provided ξ ← a + u. In the case where no immedi-
ate matching is possible, we generate an intermediary lemma by which this matching 
might become possible, as we shall now do by building such an ‘intermediary 
lemma’. 

We already chose to replace t2 = s(a) + y by ξ As explained before in section 7.1, 
we have to find one element in {C}, we called ξC, that can match t2. Since we do not 
have the axiom telling us that the matching succeeds if u ← s(y), we are facing a fail-
ure case demanding the generation of an intermediary lemma so as ‘inventing’ by 
ourselves that ‘u’ has to take the value s(y). To that purpose, we choose ‘the’ ξC 
which is suggested by the induction hypothesis, ξC = a + u. We thus have to find a ‘u’ 
that makes possible the substitution ξC ← s(a) + y. We thus face the problem of exhib-
iting a ‘u’, such that [∃u, s(a) + y = a + u]. As announced, the lemma to prove has to 
regain the quantifiers of the variables in the base theorem. We thus have to prove that: 

∀a ∀y ∃u, s(a) + y = a + u 

The discovery of this lemma is an essential step of creativity and you can check that 
we discovered it through an analysis of the possible matching of t2 and ξC. Depending 
on the problem at hand, these matching can generate diverse lemmas and, as already 
said, we do not have at our disposal (and that will probably never happen) a full bat-
tery of all the possible forms. The form we just used, however, is quite standard and 
can be applied in many cases: We choose to replace t2 by ξ, then we observe that the 
induction hypothesis leads us to find a ξC which we fail to match to t2, we then gener-
ate the existential feature that, if proven, would enable the matching. 

In principle, this lemma is hard to prove because it contains a universal quantifier 
followed by an existential one. We shall nevertheless prove it by a simple recursion 
proof, as follows. 
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In the base case, we have prove that, when a = 0, ∃u, s(a) + y = a + u. We know 
that s(a) + y = s(a + y), thus that s(0) + y = s(y). Since 0 + u = u, we obtain, in the 
base case, that u = s(y). 

In the general case, we have to prove that if [∃p, s(n + y) = n + p] then [∃q, 
s(s(n + y)) = s(n) + q]. Since s(n) + y = s(n +y) this is equivalent to proving that [∃q, 
s(n + y) = n + q], which precisely is the induction hypothesis. From the domain 
knowledge relative to recursion proofs, we know that the Skolem function of ‘u’ has 
the characteristic that SF(s(b), y) = SF(b, y), thus that u = SF(x, y) = s(y). 

This completes the proof of the intermediary lemma. We come back to the base 
theorem and prove that s(a) –1 ≠ ξ, where ξ has the value “a + u.” Using the value of 
‘u’ we just found, that is 

∀a ∀y, s(a) -1 ≠ a + s(y) 

This is done easily and completes the proof of the base theorem. 

7.5   ‘Appendix’ to 7.4: Failure of the Proof Using [a –1 < a + y] 

We attempt to prove that [a –1 < a + y] ⇒ [s(a) –1 < s(a) + y] where a and y are pa-
rameters. As before, we replace s(a) + y by the abstract argument ξ. We thus must 
study the conditions for s(a) –1 < ξ, that is {C} = {ξ │ s(a) –1 < ξ}. As above, we 
note that by axiom 8, s(a) –1 = s(a –1) and by axiom 10, s(a –1) < ξ IF [[a –1 < ξ] 
AND [s(a –1) ≠ ξ]]. 

Thus, {C} = {ξ │ [a –1 < ξ] AND [s(a –1) ≠ ξ]}. We now try to find the induction 
hypothesis within {C}. The matching of [a –1 < a + y] and  

[a –1 < ξ] is possible provided ξC ← a + y and we have to solve the equation 
s(a) + y = a + y, that is s(a + y) = a + y. This is FALSE by axiom 2.  

Note that when we meet an equation we can prove to be false, we do not generate 
an intermediary lemma since it will be obviously always impossible to prove it. When 
recovery is possible, such as when finding conditions for a matching to succeed, we 
generate an ‘intermediary lemma’ which is a potential asset and this launches the 
creativity process. A bland failure such as trying to prove FALSE is TRUE should 
lead to trying something else or giving up. 

8   Conclusion 

In this paper we provided, at first, some examples of the way human researchers in 
ILP had to be creative when they wanted to solve the problem of synthesizing from 
examples multiple and mutually dependent predicates, which are naturally built by the 
means of mutually recursive definitions. This is an example of human ‘computational 
creativity’ in a domain akin to the one in which we want to build a tool for helping 
creativity, namely theorem proving by recursion. Most of the techniques illustrated 
here: the ‘abstract argument’ technique, the ‘hypothetical program’, the ‘intermediary 
lemma’ and even our ‘asset generator’ may seem a result of simple logical good 
sense, more than a real forward step in theorem proving. We partly agree since we are 
convinced that, as a matter of fact, most humans who prove theorems go through  
one or the other of these techniques. The new result we claim is to have put them in a 
coherent methodology based on the ‘abstract argument’ technique, from which all 



 Two Examples of Computational Creativity 171 

other techniques are called when they are needed. In order to illustrate that we can 
solve more difficult problems than the simple illustration we gave here, we will give 
the solution of a problem yet unsolved, as far as we know. The Ackerman function is 
usually defined by recursion with respect to its first argument. Let us call ‘ACK’ this 
definition, it is: 
 

 ACK(0,n) = n+1 
 ACK(m+1,0) = ACK(m,1) 
 ACK(m+1,n+1) = ACK(m,ACK(m+1,n)) 
 

Since this definition is so much accepted in the textbooks, we were curious to know if 
it is possible find a definition of the Ackerman function where recursion takes place 
with respect to the second argument. To find such a definition, and following the gen-
eral idea underlying the generation of the intermediate lemmas, we tried to see if there 
was a ‘z’ such that, when exhibited, it could define a second variable recursive Ac-
kerman function, AK. We thus tried to prove the two following theorems, similar to 
our ‘intermediary lemmas’: 

 

  ∀x ∃y, ACK(x, 0) = z 
  ∀x ∀y ∃z, ACK(x, y+1) = ACK(x, y) + z 

 

As you see, we did not try to prove directly ∀x ∀y [ACK(x,y) = AK(x,y)] holds 
since, anyhow, we ignored the definition of ‘AK’ which will be invented during the 
proofs of the above lemmas. The recursive proof of the first lemma asks for an auxil-
iary function AUX(x) and the proof of the second one asks for another auxiliary func-
tion AUX3(x). 

The function AK is defined by: 
 

 AK(x,0) = AUX(x) 
 AK(x,y+1) = AK(x,y) + AUX3(x,y) 
 

This solution needs two more auxiliary functions as follows: 
 

 AUX(0) = 1 
 AUX(a+1) = AUX(a) + AUX1(a)  
 

AUX1 is defined by 
 

 AUX1(0) = 1 
 AUX1(b+1) = AUX2(b,AUX(b+1)) 
 

AUX2 is defined by 
 

 AUX2(0,y) = 1 
 AUX2(a+1,0) = 1+ AUX2(a,1) 
 AUX2(a+1,b+1) = AUX2(a+1,b) + AUX2(a,b+AUX2(a+1,b)) – 1 
 

AUX3 is defined by 
 

 AUX3(0,y) = 1 
 AUX3(a+1,y) = AUX2(a,AK(a+1,y)) 
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Now that the definition of AK is found, theorem provers can attempt proving 
∀x ∀y [ACK(x,y) = AK(x,y)]. Our methodology proved it also, by ‘inventing’ AK. 
You notice that the definition of AUX2 is quite similar to the definition of ACK 
which means that our solution is still strongly biased towards the classical definition. 
More work would be needed to find other, less obvious, ‘intermediate lemmas’ lead-
ing to other definitions. In spite of this restriction, you see that a really new definition 
of the Ackerman function has been found. We did not give the complete proof be-
cause it would need too much space to be presented. More generally, as we under-
lined when presenting it, it is clear that our methodology asks for a fair amount of 
work since many ‘intermediary’ lemmas can be generated depending on the matching 
we want to prove to be possible, and each of them has to be disproved before attempt-
ing to prove another one. Creativity is expensive, we have to acknowledge this fact. 
One of us (YK) remembers Ryszard Michalski, in the beginning of the 80’s, being 
very annoyed by the people who were complaining about the computation time 
needed by his rule generation technique. He would say something like: “Even if it 
takes months of computation time to find a new rule, unknown to a human specialist, 
this is a big success!” We cannot more agree with him than by presenting our compli-
cated, cumbersome, however creative methodology. 
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Abstract. The relations of the logical calculi of association rules and
of the measures of the interestingness of association rules are studied.
The logical calculi of association rules, 4ft-quantifiers, and known classes
of association rules are briefly introduced. New 4ft-quantifiers and as-
sociation rules are defined by the application of suitable thresholds to
known measures of interestingness. It is proved that some of the new
4ft-quantifiers are related to known classes of association rules with im-
portant properties. It is shown that new interesting classes of association
rules can be defined on the basis of other new 4ft-quantifiers and several
results concerning new classes are proved. Open problems are introduced.

1 Introduction

Association rules are a known form of knowledge studied in the field of KDD
(Knowledge Discovery in Databases). There have been many findings pertaining
to the various properties of association rules. This chapter deals with the log-
ical aspects of association rules, namely with deduction rules concerning pairs
of association rules. We argue for the importance of the study of such deduc-
tion rules. An overview of the known findings on such deduction rules is given,
new findings are presented, and unsolved problems are listed. The new findings
concern known measures of interestingness of association rules.

An association rule is understood here not as an implication X → Y where
X and Y are conjunctions of simple Boolean attributes, as defined in [8]. An
example of such an association rule is the expression r ∧ s → u ∧ v which is
usually understood as an assertion saying that if a market basket contains items
r and s, then it usually also contains items u and v. Two interestingness measures
of the rule X → Y are widely used – confidence and support.

We deal with association rules of the form ϕ ≈ ψ where ϕ and ψ are general
Boolean attributes derived using the propositional connectives ∧, ∨, and ¬. The

� The work described here has been supported by the grant 201/08/0802 of the Czech
Science Foundation.

J. Koronacki et al. (Eds.): Advances in Machine Learning II, SCI 263, pp. 175–203.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010



176 J. Rauch

rule ϕ ≈ ψ means that ϕ and ψ are associated in the manner given by the sym-
bol ≈ that is called a 4ft-quantifier. Each 4ft-quantifier is a condition derived
from a measure of the interestingness of an association rule by the application
of a suitable threshold to a value of the measure of interestingness. Important
measures of the interestingness of an association rule and their properties are
widely studied; see e.g. [1,2,3,4,5]. We can define new interesting 4ft-quantifiers
by the application of suitable thresholds to additional known measures of inter-
estingness of an association rule and in this way we get new association rules of
the form ϕ ≈ ψ. The logical properties of such association rules could be useful
from various points of view.

We are interested in correct deduction rules of the form ϕ≈ψ
ϕ′≈ψ′ where ϕ, ψ,

ϕ′, and ψ′ are general Boolean attributes. If such a deduction rule is correct,
and if the rule ϕ ≈ ψ is true in a given data structure, then we can conclude
that the rule ϕ′ ≈ ψ′ is also true in this data structure. To study such deduction
rules, we need to define logical calculus formulas that correspond to association
rules of the form ϕ ≈ ψ. The logical calculi of association rules are defined and
studied in [14]; they are a special case of observational calculi introduced in [9].
There are theoretically interesting and practically important findings concerning
deduction rules of the form ϕ≈ψ

ϕ′≈ψ′ . The results are closely related to classes of
association rules.

The chapter is organized as follows. The logical calculi of association rules are
introduced in Section 2. The reasons for the study of deduction rules of the form
ϕ≈ψ

ϕ′≈ψ′ are discussed in Section 3. An overview of important and long-studied
classes of association rules, and of the related results, is in Section 4. The way in
which new 4ft-quantifiers are derived from known measures of interestingness of
association rules is described in Section 5. The relations of new 4ft-quantifiers to
important classes of association rules are presented in Section 6. These relations
determine the logical properties of 4ft-quantifiers and corresponding association
rules, and thus the related deduction rules ϕ≈ψ

ϕ′≈ψ′ are also introduced in Section 6.
An overview of additional classes defined on the basis of important measures
of interestingness of association rules, is in Section 7. Conclusions and open
problems for further work are presented in Section 8.

2 Logical Calculi of Association Rules

The logical calculi of association rules studied here belong to the observational
calculi defined and studied in [9]. Observational calculi have been defined to be
a language in which statements concerning observational data are formulated.
Monadic observational predicate calculus is a special case of observational cal-
culus. It is defined by modifications of classical monadic predicate calculi [25].
Modifications consist of adding generalized quantifiers (e.g. 4ft-quantifiers, see
below) and in allowing only finite structures as the models in which the formulas
are interpreted. The monadic observational predicate calculi were enhanced to
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calculi with qualitative values in [9]. The calculi with qualitative values were
simplified in [20] such that only formulas of the form ϕ ≈ ψ corresponding
to the association rules mentioned in Sect. 1 are allowed. These calculi can be
understood as calculi of association rules. The correctness of important deduction
rules of the form ϕ≈ψ

ϕ′≈ψ′ is proved in these calculi. These calculi are called here
the qualitative calculi of association rules, and they are informally defined in
Section 2.1.

However the theorems on the correctness of the deduction rules of the form
ϕ≈ψ

ϕ′≈ψ′ in qualitative calculi of association rules, are in some respects a bit complex
due to dealing with qualitative values. The principles of these theorems can be
fully demonstrated in the more simple predicate calculi of association rules. The
predicate calculi of association rules are (again informally) defined in Section
2.2. We will use them in this chapter to demonstrate the properties of deduction
rules of the form ϕ≈ψ

ϕ′≈ψ′ .

2.1 Qualitative Calculi of Association Rules

The Boolean attributes ϕ and ψ are derived from the columns of the analyzed
data matrixM that contains observation results. The rows ofM correspond to
observed objects, and the columns ofM correspond to attributes describing ob-
served objects. There is a finite number of possible values for each column ofM.
Possible values of the attributes (i.e. values of attributes) are called categories.

First, the basic Boolean attributes are created. The basic Boolean attribute
is an expression of the form A(α) where α ⊂ {a1, . . . ak} and {a1, . . . ak} is the
set of all possible categories of A. The basic Boolean attribute A(α) is true in
the row o of M if it is A(o) ∈ α where A(o) is the value of the attribute A in
the row o. Boolean attributes ϕ and ψ are derived from basic Boolean attributes
using the propositional connectives ∨, ∧ and ¬ in the usual way. An example
of the data matrix with n rows corresponding to the observed objects o1, . . . , on

and with the columns - attributes A, B, C, . . ., Z is the data matrix M in
Fig. 1. There are also examples of the basic Boolean attributes A(3) and Z(6, 8)
in Fig. 1 (true is denoted by 1 and false is denoted by 0).

object A B C D . . . Z A(3) Z(6, 8)

o1 3 5 4 9 . . . 8 1 1
o2 5 2 7 8 . . . 1 0 0

...
...

...
...

...
. . .

...
...

...
on 2 1 6 7 . . . 6 0 1

Fig. 1. Data Matrix M and the Basic Boolean Attributes A(3), Z(6, 8)

The rule ϕ ≈ ψ is true in M, if the condition given by the 4ft-quantifier ≈
is satisfied in the four-fold contingency table of ϕ and ψ inM, otherwise ϕ ≈ ψ
is false in M. The four-fold contingency table 4ft(ϕ, ψ,M) (the 4ft table for
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short) of ϕ and ψ in the data matrix M is the quadruple 〈a, b, c, d〉 of natural
numbers, such that a is the number of rows ofM satisfying both ϕ and ψ, and
b is the number of rows ofM satisfying ϕ and not satisfying ψ etc.; see Tab. 1.

Table 1. 4ft Table 4ft(ϕ, ψ,M) of ϕ and ψ in M

M ψ ¬ψ

ϕ a b

¬ϕ c d

An example of an association rule is the rule

D(7) ∧A(2, 3) ≡p,B B(6) ∨ C(1, 4)

in which the 4ft-quantifier ≡p,Base of founded equivalence [14] is used. This quan-
tifier is associated to the condition a+d

a+b+c+d ≥ p ∧ a ≥ Base. Thus if the rule
ϕ ≡p,B ψ is true in the data matrix M, then it is true that both, in at least
100 percent of rows of M, have ϕ and ψ the same value (either both are true
or both are false) and moreover there are at least Base rows satisfying both ϕ
and ψ.

Another example of the 4ft-quantifier is the quantifier →Cf,Sp that corre-
sponds to the condition a

a+b ≥ Cf ∧ a
a+b+c+d ≥ Sp. The rule ϕ →Cf,Sp ψ is

the “classical” association rule with confidence Cf and support Sp as defined
in [8]. A variant of the 4ft-quantifier→Cf,Sp is the quantifier⇒p,Base of founded
implication [9] defined by the condition a

a+b ≥ p ∧ a ≥ Base for 0 < p ≤ 1 and
Base ≥ 0. Additional examples of 4ft-quantifiers are in Section 6.

2.2 Predicate Calculi of Association Rules

We use informally defined simple predicate calculi of association rules (PCAR for
short) to demonstrate the deduction rules concerning association rules. Symbols
of the language of PCAR P are: (unary) predicates P1, . . . , PK , 4ft-quantifiers
≈1, . . . ,≈Q, logical connectives ∧,∨,¬ and additional usual symbols (e.g. brack-
ets). Each predicate corresponds to a basic Boolean attribute, see Sect. 2, and
derived Boolean attributes are created from basic Boolean attributes. A Boolean
attribute is either a basic Boolean attribute or derived Boolean attribute. An
association rule is each expression of the form ϕ ≈ ψ where ϕ and ψ are Boolean
attributes and ≈ is the 4ft-quantifier. There are no other formulas in P than
association rules. If PCAR P has K predicates then we say that it is of the type
〈K〉. An example of association rule in predicate calculus is the rule

P1 ∧ P3 ≡p,B P2 ∧ P4 .

Association rules (i.e., formulas of PCAR P) are interpreted in {0, 1} matrices
that we call models of PCAR. If P is PCAR of the type 〈K〉 then the model of P is
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each {0, 1} data matrixM with the columns f1, . . . , fK interpreting P1, . . . , PK

respectively. The rows of a data matrix correspond to observed objects, and we
denote them o1, . . . , on. An example of such a data matrix is in Fig. 2, where are
also examples of derived Boolean attributes. The set M = {o1, . . . , on} is called
the domain of M, and we write M = 〈M ; f1, . . . , fK〉. We denote the value of
the Boolean attribute ϕ for the object o ∈M as ||ϕ(o)||M.

Bool. attributes P1 P2 . . . PK ¬P1 P2 ∧ Pn

object f1 f2 . . . fK

o1 1 1 . . . 1 0 1
...

...
...

. . .
...

...
...

on 0 0 . . . 1 1 0

Fig. 2. An Example of {0, 1}-Data Matrix M = 〈M ; f1, . . . , fK〉

The value of ϕ ≈ ψ in the data matrix M is denoted as ||ϕ ≈ ψ||M, it is
||ϕ ≈ ψ||M =≈ 〈a, b, c, d〉 where 〈a, b, c, d〉 = 4ft(ϕ, ψ,M) is the 4ft-table of ϕ
and ψ in M, see Section 2. The association rule ϕ ≈ ψ is true in M if it is
||ϕ ≈ ψ||M = 1, otherwise ϕ ≈ ψ is false in M.

3 Why Deduction Rules of Association Rules

We are interested in the deduction rules of the form ϕ≈ψ
ϕ′≈ψ′ where ϕ, ψ, ϕ′, and

ψ′ are Boolean attributes. If such a deduction rule is correct, and if the rule
ϕ ≈ ψ is true in the data matrix M, then the association rule ϕ′ ≈ ψ′ is also
true in the data matrixM. There are at least the following reasons for studying
such deduction rules:

– the possibility of reducing the output of a data mining procedure
– the possibility of decreasing the number of actually tested rules
– working with analytical reports.

Reducing of the output of a data mining procedure: If the association rule ϕ ≈ ψ
is a part of the data mining procedure output (thus it is true in the analyzed data
matrix M), and if ϕ≈ψ

ϕ′≈ψ′ is the correct deduction rule, then it is not necessary
to put the association rule ϕ′ ≈ ψ′ into the output; however the deduction rule
used must be sufficiently transparent, from the point of view of the user of the
data mining procedure. The results of research on transparent deduction rules
of this form are in [22].

Decreasing the number of actually tested rules: If the association rule ϕ ≈ ψ is
true in the analyzed data matrixM, and if ϕ≈ψ

ϕ′≈ψ′ is the correct deduction rule,
then it is not necessary to test ϕ′ ≈ ψ′. This approach is hard to apply in the
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Apriori algorithm, but it is applied in the algorithm based on the representation
of analyzed data by strings of bits [6].

Working with analytical reports: One of the ways to present the results of data
mining to the user is to arrange them into a well-structured analytical report. The
core of such a report is a sequence of patterns resulting from the applications of
data mining procedures. It could be useful to find a “logical skeleton” of such an
analytical report and to deal only with the “logical skeletons”, instead of whole
reports. By the “logical skeleton” of an analytical report we mean a subset of
all the output patterns from which all of the patterns presented in the report
can be derived. In this way we can try to communicate the analytical reports
even on Semantic Web. Some preliminary considerations on these possibilities
are in [26]. Deduction rules (not only of the form ϕ≈ψ

ϕ′≈ψ′ ) play an important role
in identifying the “logical skeletons” of the analytical reports.

4 Classes of Association Rules

Classes of association rules are defined by classes of 4ft quantifiers. The associ-
ation rule ϕ ≈ ψ belongs to the class of equivalence rules, if the 4ft quantifier ≈
belongs to the class of equivalence quantifiers. We also say that the association
rule ϕ ≈ ψ is an equivalence rule and that the 4ft quantifier ≈ is an equivalence
quantifier. This is the same for additional classes of association rules.

The classes of 4ft-quantifiers are defined using important truth preservation
conditions, see section 4.1. There are several important truth preservation con-
ditions that are related to important results both theoretically interesting and
practically important, concerning related classes of association rules. These truth
preservation conditions are presented in Section 4.2, and related results are listed
in Section 4.3.

4.1 Classes of 4ft-Quantifiers and the Truth Preservation Condition

Remember that a condition concerning four-fold tables 〈a, b, c, d〉 is assigned to
each 4ft-quantifier. The rule ϕ ≈ ψ is true in the data matrix M if the con-
dition assigned to the 4ft-quantifier ≈ is satisfied in the four-fold contingency
4ft(ϕ, ψ,M) = 〈a, b, c, d〉; see Section 2.1. We write ≈ (a, b, c, d) = 1 if the condi-
tion assigned to ≈ is satisfied for 〈a, b, c, d〉, otherwise we write ≈ (a, b, c, d) = 0.

The classes of 4ft-quantifiers (i.e. classes of association rules) are defined
using truth preservation conditions. Each class C is defined by the condition
TPCC(a, b, c, d, a′, b′, c′, d′) called the truth preservation condition for C. This
condition concerns two contingency tables, 〈a, b, c, d〉 and 〈a′, b′, c′, d′〉. The class
C is defined according to this scheme:

The 4ft-quantifier ≈ belongs to the class C if and only if it satisfies:

≈ (a, b, c, d) = 1 ∧ TPCC(a, b, c, d, a′, b′, c′, d′) implies ≈ (a′, b′, c′, d′) = 1 .
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4.2 Important Classes of Association Rules

Important truth preservation conditions are defined and studied in [9, 14, 17].
They are listed in Tab. 2 together with the classes of association rules they
define.

Table 2. Classes of Association Rules Defined by Truth Preservation Conditions

Class Truth preservation condition

Implicational TPC⇒ a′ ≥ a ∧ b′ ≤ b

Double implicational TPC⇔ a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c

Σ-double implicational TPCΣ,⇔ a′ ≥ a ∧ b′ + c′ ≤ b + c

Equivalence TPC≡ a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c ∧ d′ ≥ d

Σ-equivalence TPCΣ,≡ a′ + d′ ≥ a + d ∧ b′ + c′ ≤ b + c

The truth preservation conditions TPC⇒ for implicational quantifiers and
truth preservation conditions TPC≡ for equivalence quantifiers are defined in [9];
for the remaining classes see e.g. [14, 17]. Note that the class of equivalence
quantifiers is in [9] defined under the name associational quantifiers.

An additional important class of association rules is the class of rules with the
F-property that is defined such that the 4ft quantifier ≈ has the F-property if it
satisfies the conditions Fbc and Fcb:

Fbc: If ≈ (a, b, c, d) = 1 and b ≥ c− 1 ≥ 0 then ≈ (a, b + 1, c− 1, d) = 1.
Fcb: If ≈ (a, b, c, d) = 1 and c ≥ b− 1 ≥ 0 then ≈ (a, b− 1, c + 1, d) = 1,

Note that this definition can be also written in the form

≈ (a, b, c, d) = 1 ∧ TPCF(a, b, c, d, a′, b′, c′, d′) implies ≈ (a′, b′, c′, d′) = 1

where it is TPCF = TPCFbc
∨ TPCFcb

, (we write only TPCF instead of
TPCF(a, b, c, d, a′, b′, c′, d′) etc.) and moreover TPCFbc

is defined as

〈a′, b′, c′, d′〉 = 〈a, b + 1, c− 1, d〉 ∧ b ≥ c− 1 ≥ 0

and TPCFcb
is defined as

〈a′, b′, c′, d′〉 = 〈a, b− 1, c + 1, d〉 ∧ c ≥ b− 1 ≥ 0 .

An overview of the results related to the classes of association rules defined by
these truth preservation conditions is in Section 4.3. Namely, of importance are
the results concerning the deduction rules for classes of implicational, Σ-double
implicational, of Σ-equivalence rules, and for rules with the F-property. These
results are provided in more details in Section 6. There are also examples of
particular 4ft-quantifiers of these classes in Section 6.
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4.3 Results on Classes of Association Rules

There are various results concerning the properties of the logical calculi of as-
sociation rules published in [9, 12, 13, 14, 16, 17, 18, 18, 19, 24]. They concern the
following topics.

– Deduction rules of the form ϕ≈ψ
ϕ′≈ψ′ where both ϕ ≈ ψ and ϕ′ ≈ ψ′ are

association rules. The results on such deduction rules are summarized in
Section 6.

– The definability of association rules in classical predicate calculi, with an
overview of results given in [18].

– The application of the principle of secured extension to the evaluation of
association rules in calculi with missing information. This approach was de-
veloped in [9], and an overview of related results is in [17].

– Tables of critical frequencies that are tools for avoiding complex computa-
tion related to 4ft-quantifiers corresponding to some of statistical hypothesis
tests, and an overview of related results is in [17]. Tables of critical frequen-
cies also have a relation to the definability of association rules in classical
predicate calculi [18].

5 Measures of Interestingness and New 4ft-Quantifiers

We deal with 4ft-quantifiers defined by the application of suitable thresholds
to the measures of interestingness studied in [1, 2, 3, 4, 5]. We use the notation
for association rules used in Section 2.1 in [3]. It means that we deal with the
association rule A ≈ B instead of ϕ ≈ ψ. Instead of the 4ft table of ϕ and ψ in
the data matrixM, we use the enhanced 4ft table 4ft(A, B,M) of the Boolean
attributes A and B in the data matrix M, see Tab. 3. Here r = a + b is the
number of rows satisfying A, s = c + d is the number of rows not satisfying A,
similarly for k, l and B. Moreover n = a + b + c + d is the number of rows ofM.

Suppose that each row of data matrix M corresponds to one market basket
(i.e. tuple) and that columns ofM correspond to particular items in the basket.
Each column is a Boolean attribute that is true in a row of the data matrix
M, if and only if the item corresponding to the column is present in the basket
corresponding to the row in question. In Tab. 4 there is another notation [3]
used for the frequencies from the enhanced 4ft table 4ft(A, B,M) of A and B
in M. We see that a = n(AB), b = n(AB), r = n(A), k = n(B) etc.

In the definitions of interestingness measures, usually used are frequencies (e.g.
n(AB), n(A)) or probabilities and conditional probabilities [3]. An example of
probability is P (A) = n(A)

N , which denotes the probability of A. An example
of conditional probability is P (B|A) = n(AB)

n(A) , which denotes the conditional
probability of B, given A. Each interestingness measure I of the rule A ≈ B
can also be expressed as the function I(a, b, c, d) of frequencies a, b, c, d from the
enhanced 4ft-table 4ft(A, B,M) of A and B inM see Tab. 3.

Each 4ft-quantifier is defined by the condition concerning the 4ft-table. The
4ft-table is the quadruple 〈a, b, c, d〉 of natural numbers; see Tab. 1 and 3. The
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Table 3. Enhanced 4ft Table 4ft(A, B,M) of A and B in M

M B ¬B

A a b r

¬A c d s

k l n

Table 4. Basket Rule Frequencies for A → B

M B B

A n(AB) n(AB) n(A)

A n(AB) n(AB) n(A)

n(B) n(B) N

conditions used in the definitions of 4ft-quantifiers studied in [9,12,13,14,16,17,
18] can be composed from simple conditions of the form like

I(a, b, c, d) ≥ T

concerning functions I(a, b, c, d) of four natural numbers a, b, c, d where T is a
suitable threshold. The used functions I(a, b, c, d) can be of course understood as
additional interestingness measures. Note that some 4ft-quantifiers are defined
by conditions like I(a, b, c, d) ≤ T .

The 4ft-quantifier ≡p,B of founded equivalence (see Sect. 2) can be defined
using the interestingness measures I≡ and I
 such that

I≡(a, b, c, d) =
a + d

a + b + c + d
and I
(a, b, c, d) = a .

The condition a+d
a+b+c+d ≥ p ∧ a ≥ Base associated to the 4ft-quantifier ≡p,B

of founded equivalence can be written as I≡ ≥ q ∧ I
 ≥ Base. The functions
I≡(a, b, c, d) and I
(a, b, c, d) are examples of additional interestingness mea-
sures derived from the 4ft-quantifiers studied in [9, 12, 13, 14, 16, 17, 18].

We are interested in 4ft-quantifiers derived from the measures of the inter-
estingness of association rules studied in [1,2, 3,4, 5] by suitable thresholds. All
these 4ft-quantifiers are of the form

I(a, b, c, d) ≥ T

where I(a, b, c, d) is the measure of interestingness in question. We are interested
in deduction rules of the form ϕ≈ψ

ϕ′≈ψ′ (i.e., A≈B
A′≈B′ ) where ≈ is the 4ft-quantifier

derived from a measure of interestingness, in the way noted.
The results concerning deduction rules are closely related to classes of associa-

tion rules. Thus we have to study the relations of defined 4ft-quantifiers to known
classes of association rules, or to define and to study new classes containing 4ft-
quantifiers not belonging to known classes. There are 20 particular measures of
interestingness and corresponding 4ft-quantifiers described in Section 6 together
with their relation to known classes of association rules.
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6 New 4ft-Quantifiers and Deduction Rules

We deal with 20 measures of interestingness and corresponding 4ft-quantifiers.
Most of the measures of interestingness are taken from [3]. Some of them are
also defined or studied in additional papers or books, e.g., in [1, 2, 4, 5, 6, 9, 23].
The additional sources are cited only if they use different names of interest-
ingness measures than used in [3]. The citations are used only in the columns
Name of Tab. 6, Tab. 8, Tab. 10, Tab. 12, and Tab. 13. There are also several
interestingness measures defined only in [9], [23] or [6]. They are used to define
important or interesting examples of 4ft-quantifiers belonging to various classes
of 4ft quantifiers (i.e., classes of association rules). Note that the book [9] is from
1978 and the book [23] is from 1983.

There are two definitions of each measure of interestingness:

– The definition by probabilities as given in [3]; this definition is in the column
Probabilities [3] of corresponding tables.

– The definition as the function I(a, b, c, d); it is in the column I≈(a, b, c, d)
of the corresponding tables. The function corresponding to the quantifier
≈ is denoted as I≈(a, b, c, d). If the measure of interestingness is defined
in [6, 9,23] then the function I≈(a, b, c, d) is taken from these sources.

The 4ft-quantifiers defined by the particular measures of interestingness are de-
scribed in the columns Condition and Symbol of corresponding tables. In the col-
umn Condition there is the condition concerning the function I≈(a, b, c, d), this
condition defines the 4ft-quantifier. If the 4ft-quantifier is defined in [6,9,23], then
the condition is taken from these sources; otherwise, the condition is defined as
≥ Threshold. All conditions are written in the form ≥ Threshold, ≤ Threshold
or < Threshold. It means that the whole condition is I≈(a, b, c, d) ≥ Threshold
etc.

The following thresholds are used: S ∈ (0; 1〉, integer B > 0, p ∈ (0; 1〉, real
q > 0, α ∈ (0; 0.5〉, real δ > 0, real r, and χ2

α is the (1 − α) quantile of the χ2

distribution function.
In the column Symbol there are symbols denoting the 4ft-quantifiers. Each

4ft-quantifier has one or two parameters that are in the lower index of the
corresponding symbol. E.g., the quantifier ⇒p of founded implication has the
parameter p; see Tab. 6. Newly defined 4ft-quantifiers are marked by *) in
the column Symbol.

There are two simple 4ft-quantifiers ⊕Sp of support and �B – base, i.e., ab-
solute support; they are described in Tab. 5, which also has the above-described
structure.

The study of classes of association rules was initiated in [9]. An overview of
results is in [17]. There are important results concerning deduction rules of the
form ϕ≈ψ

ϕ′≈ψ′ where ϕ ≈ ψ and ϕ′ ≈ ψ′ are association rules. The results concern
classes of implicational, Σ-double implicational and Σ-equivalence association
rules. These results are applicable to all 4ft-quantifiers derived from the known
measures of interestingness that belong to some of these classes. Overview of
these results and of related 4ft-quantifiers follows.
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Table 5. 4ft-quantifiers of Support and Absolute Support

Measure of interestingness 4ft-quantifier ≈
# Name Definition

I≈(a, b, c, d) Probabilities [3] Condition Symbol

1 Support [6] a
a+b+c+d

P (AB) ≥ Sp ⊕Sp

2 Base [9] a – ≥ Base �Base

6.1 Implicational Rules

There is a theorem proved in [14] that gives a relatively simple criterion of the
correctness of the deduction rule ϕ⇒∗ψ

ϕ′⇒∗ψ′ where⇒∗ is an interesting implicational
quantifier. Remember that the 4ft-quantifier ≈∗ is implicational if

≈ (a, b, c, d) = 1 ∧ a′ ≥ a ∧ b′ ≤ b implies ≈ (a′, b′, c, d) = 1 ;

see Section 4.2. It however means that each implicational quantifier is
c-independent and d-independent (i.e., its value does not depend on either c or
d). Thus we write only ⇒∗ (a, b) instead of ⇒∗ (a, b, c, d) for the implicational
quantifier ⇒∗.

Interesting implicational quantifiers are defined in [14]. We say that the im-
plicational quantifier ⇒∗ is interesting if both (i) and (ii) are satisfied:

(i) ⇒∗ is both a-dependent and b-dependent
(ii) ⇒∗ (0, 0) = 0

The 4ft-quantifier ≈ is a-dependent if there are a, a′, b, c, d such that ≈
(a, b, c, d) �=≈ (a′, b, c, d), and similarly for the b-dependent 4ft-quantifier.

We present the correctness criterion of the deduction rule ϕ⇒∗ψ
ϕ′⇒∗ψ′ for the in-

teresting implicational quantifiers in the predicate calculus of association rules
defined in Section 2.2. Note that this theorem is a simplified version of an
analogous theorem for the Qualitative Calculi of Association Rules defined in
section 2.1, and proved in [14]. The simplified version is also presented in [12]
and its proof can be based on the same principles as the proof of the full version
presented in [14].

The presented theorem deals with the notion of associated propositional for-
mula to a given Boolean attribute: If φ is an attribute, then the associated
propositional formula π(φ) is the same string of symbols, but the particular ba-
sic Boolean attributes are understood as propositional variables. For example:
P2 ∧ Pn is the derived Boolean attribute (see Fig. 2) and π(P2 ∧ Pn) is the
propositional formula P2 ∧ Pn with the propositional variables P2 and Pn.

The correctness criterion for implicational quantifiers is [14]: Let PCAR P be
the predicate calculus of association rules. In addition let ϕ, ψ, ϕ′, ψ′ be the
Boolean attributes of P . If ⇒∗ is the interesting implicational quantifier then
the deduction rule

ϕ⇒∗ ψ

ϕ′ ⇒∗ ψ′
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is correct if and only if at least one of the conditions 1) or 2) are satisfied (we
use the symbol −→ for the propositional connective of implication):

1. Both 1.a and 1.b are tautologies of propositional calculus
1.a π(ϕ ∧ ψ) −→ π(ϕ′ ∧ ψ′)
1.b π(ϕ′ ∧ ¬ψ′) −→ π(ϕ ∧ ¬ψ)

2. π(ϕ) −→ π(¬ψ) is a tautology.

There are six important implicational quantifiers defined by the application of
suitable thresholds to various measures of interestingness in Tab. 6. Note that
the notation used in the column I≈(a, b, c, d) is done in Tab. 3 and the notation
in the column Probabilities [3] is based on Tab. 4; see Section 5.

Table 6. Implicational 4ft-quantifiers

Measure of interestingness 4ft-quantifier ≈
# Name Definition

I≈(a, b, c, d) Probabilities [3] Condition Symbol

1 - Founded
implication [9] a

a+b
= a

r
P (B|A) ≥ p ⇒p

- Confidence

2 Laplace correction a+1
a+b+2

= a+1
r+2

n(AB)+1
n(A)+2

≥ p ⇒L
p *)

3 Sebag & Schoenauer a
b

P (AB)
P (A¬B)

≥ q ⇒S
q ∗)

4 Example and 1 − b
a

= a−b
a

1 − P (A¬B)
P (AB)

≥ p ⇒E
p *)

Counterexample Rate

5 Lower critical
∑r

i=a

(
r
i

)i
(1 − p)r−i – ≤ α ⇒!

p,α

implication [9]

6 Upper critical
∑a

i=0

(
r
i

)i
(1 − p)r−i – > α ⇒?

p,α

implication [9]

The quantifiers⇒p of founded implication,⇒!
p,α of lower critical implication,

and⇒?
p,α of upper critical implication (see rows 1, 5 and 6 in Tab. 6) are defined

and studied in [9]. It is proved [9] that they are implicational and in [11] that
they are interesting implicational quantifiers for 0 < p < 1 and 0 < α < 0.5.
Definitions of their values are in Tab. 7.

Table 7. Definitions of Values of ⇒p, ⇒!
p,α, and ⇒?

p,α

# 4ft quantifier ⇒∗ ⇒∗ (a, b) = 1 iff

Name ⇒∗

1 Founded implication ⇒p
a

a+b
≥ p

5 Lower critical implication ⇒!
p,α

∑r
i=a

(
r
i

)i
(1 − p)r−i ≤ α

6 Upper critical implication ⇒?
p,α

∑a
i=0

(
r
i

)i
(1 − p)r−i > α
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There are new quantifiers defined in rows 2–4 of Tab. 6, which are marked
by *) in the column Symbol. Their definitions and properties are sketched in [19],
we describe them here in more details.

The quantifier of Laplace correction is described in row 2 of Tab. 6. It is
denoted by ⇒L

p and its value is defined such that

⇒L
p (a, b) =

{
1 if a+1

a+b+2 ≥ p

0 otherwise.

It is easy to prove that the⇒L
p quantifier is an interesting implicational quantifier

for p ∈ (0.5; 1). We have to prove:

(i) ⇒L
p is implicational i.e. that

⇒L
p (a, b) = 1 ∧ a′ ≥ a ∧ b′ ≤ b implies ⇒L

p (a′, b′) = 1

(ii) ⇒L
p is both a-dependent and b-dependent

(iii) ⇒L
p (0, 0) = 0.

To prove (i) it is enough to show that

a′ ≥ a ∧ b′ ≤ b implies
a′ + 1

a′ + b′ + 2
≥ a + 1

a + b + 2
.

It however follows from several simple inequalities (remember that it is also
a′ ≥ a ≥ 0 and b ≥ b′ ≥ 0):

a′ + 1
a′ + b′ + 2

≥ a + 1
a + b′ + 2

≥ a + 1
a + b + 2

.

To prove (ii) we have to find for each p ∈ (0.5; 1):

(ii.a) a, a′, b such that ⇒L
p (a′, b) �=⇒L

p (a, b). We can set a′ = b = 0 and
a ≥ 2p−1

1−p . Then it is ⇒L
p (a′, b) = 0 because of a′+1

a′+b′+2 = 0.5 < p and

⇒L
p (a, b) = 1 due to a+1

a+b+2 = a+1
a+2 ≥

2p−1
1−p +1
2p−1
1−p

+2
= 2p−1+1−p

1−p
1−p

2p−1+2−2p = p.

(ii.b) a, b′, b such that ⇒L
p (a, b′) �=⇒L

p (a, b). We can set a ≥ 2p−1
1−p ,

b = 0 and b′ > a(1−p)+1−2p
p . Then it is ⇒L

p (a, b) = 1, see the previ-
ous point (ii.a) and ⇒L

p (a, b′) = 0 due to a+1
a+b′+2 < a+1

a+ a(1−p)+1−2p
p

+2
=

= (a + 1) p
ap+a(1−p)+1−2p+2pp = p.

Proof of (iii) is simple, as it is ⇒L
p (0, 0) = 0 due to a′+1

a′+b′+2 = 0.5 < p; see
also point (ii.a). Thus we have shown that the ⇒L

p quantifier is an interesting
implicational quantifier for p ∈ (0.5; 1).

The quantifier of Sebag & Schoenauer is described in row 3 of Tab. 6. It is
denoted by ⇒S

q and its value for q > 0 is defined as

⇒S
q (a, b) =

⎧⎨
⎩

1 if b > 0 ∧ a
b ≥ q

1 if b = 0 ∧ a > 0
0 if b = 0 ∧ a = 0 .
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We prove that the ⇒S
q quantifier is an interesting implicational quantifier for

q > 0. It is implicational, because of a′
b′ ≥ a

b′ ≥ a
b for a′ ≥ a and 0 < b ≤ b′ and

because of ⇒S
q (a, 0) = 1 for a > 0.

We choose a < q, a′ ≥ q and b = 1, it is ⇒S
q (a, 1) = 0 and ⇒S

q (a′, 1) = 1.
Note that it also works if q < 1, then we have, e.g., a = 0, a′ = 1 and b = 1, it
is ⇒S

q (0, 1) = 0 and ⇒S
q (1, 1) = 1. It means that ⇒S

q is a-dependent.
If q > 1 then we choose a > q, b = a and b′ = 1, then it is ⇒S

q (a, b) = 0
because of a

b = 1 < q and ⇒S
q (a, 1) = 1 because of a

1 = a > q. If q ≤ 1
then we choose a = 1, b > 1

q and b′ = 1, then it is ⇒S
q (a, b) = 0 because of

a
b < a

1
q

= 1
1
q

= q and ⇒S
q (a, b′) = 1 because of a

b = 1
1 = 1 ≥ q. It means that

⇒S
q is b-dependent.
It is also ⇒S

q (0, 0) = 0; see the definition above. It means that the ⇒S
q

quantifier is an interesting implicational quantifier for q > 0.
The quantifier of Example and counterexample rate is described in row 4 of

Tab. 6. It is denoted by ⇒E
p and its value for 0 < p < 1 is defined as

⇒S
q (a, b) =

{
1 if a > 0 ∧ 1− b

a ≥ p
0 otherwise.

We prove that the ⇒E
p quantifier is an interesting implicational quantifier for

0 < p < 1. It is implicational, because of 1− b′
a′ ≥ 1− b′

a ≥ b
a for a′ ≥ a > 0 and

b ≤ b′ and because of ⇒E
p (0, b) = 0 .

We choose a > 1
1−p , a′ = 1 and b = 1, then it is ⇒E

q (a′, b) = 0 and ⇒S
q

(a, b) = 1 because of 1 − b
a > 1 − 1

1
1−p

= 1 − (1 − p) = p. It means that ⇒E
p is

a-dependent. If we set a = 1, b = 1 and b′ = 0, then it is ⇒E
q (a, b) = 0 and

⇒S
q (a, b′) = 1, thus ⇒E

p is b-dependent.
We can conclude that the quantifiers ⇒L

p , ⇒S
q , and ⇒E

p defined in rows 2–4
in Tab. 6, on the basis of known measures of interestingness of association rules,
are interesting implicational quantifiers as defined in [14]. It means that the
correctness criterion of the deduction rule ϕ⇒∗ψ

ϕ′⇒∗ψ′ presented at the beginning of
this section is valid for these quantifiers.

6.2 Σ-Double Implicational Association Rules

There is an additional theorem presented in [14] that gives a relatively simple
correctness criterion of the deduction rule ϕ⇔∗ψ

ϕ′⇔∗ψ′ where⇔∗ is an interesting Σ-
double implicational quantifier. Remember that the 4ft-quantifier ≈∗ is Σ-double
implicational if

≈ (a, b, c, d) = 1 a′ ≥ a ∧ b′ + c′ ≤ b + c implies ≈ (a′, b′, c′, d′) = 1 ;

see Section 4.2. It however means that each Σ-double implicational quantifier is d-
independent (i.e., its value does not depend on d). Thus we write only⇔∗ (a, b, c)
instead of⇔∗ (a, b, c, d) for the Σ-double implicational quantifier⇒∗.
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Interesting Σ-double implicational quantifiers are defined in [14]. We say that
the Σ-double implicational quantifier ⇔∗ is interesting if both (i) and (ii) are
satisfied:

(i) ⇒∗ is both a-dependent and (b+c)-dependent
(ii) ⇔∗ (0, 0, 0) = 0

The 4ft-quantifier ≈ is (b+c)-dependent if there are a, b, c, d, b′, c′ such that
b + c �= b′ + c′ and ≈ (a, b, c, d) �=≈ (a, b′, c′, d).

Again, we present the correctness criterion of the deduction rule ϕ⇔∗ψ
ϕ′⇔∗ψ′ for

the interesting Σ-double implicational quantifiers only in the predicate calculus
of association rules defined in Section 2.2. This theorem is a simplified version
of an analogous theorem for the Qualitative Calculi of Association Rules defined
in section 2.1 that is presented in [14] and proved in [20].

The correctness criterion for Σ-double implicational quantifiers is [14]: Let
PCAR P be the predicate calculus of association rules. In addition let ϕ, ψ, ϕ′,
ψ′ be the Boolean attributes of P . If⇔∗ is the interesting Σ-double implicational
quantifier, then the deduction rule

ϕ⇔∗ ψ

ϕ′ ⇔∗ ψ′

is correct if and only if at least one of the conditions 1) or 2) are satisfied (we
use the symbol −→ for the propositional connective of implication):

1. Both π(ϕ ∧ ψ) −→ π(ϕ′ ∧ ψ′)
and
π((ϕ′ ∧ ¬ψ′) ∨ (¬ϕ′ ∧ ¬ψ′)) −→ π((ϕ ∧ ¬ψ) ∨ (¬ϕ ∧ ¬ψ))
are tautologies

2. π(ϕ) −→ π(¬ψ) or π(ψ) −→ π(¬ϕ) are tautologies.

There are three important Σ-double implicational quantifiers defined by the
application of suitable thresholds to the measures of interestingness in Tab. 8.

Table 8. Σ-double Implicational 4ft-quantifiers

Measure of interestingness 4ft-quantifier ≈
# Name Definition

I≈(a, b, c, d) Probabilities [3] Condition Symbol

- Jaccard
1 - Founded double a

a+b+c
= a

n−d
P(A|B)

P (A)+P (B)−P (AB) ≥ p ⇔p

implication [23]

2 Lower critical double
∑n−d

i=a

(
n−d

i

)
pi(1 − p)n−d−i – ≤ α ⇔!

p,α

implication [23]

3 Upper critical double
∑

a
i=0

(
n−d

i

)
pi(1 − p)n−d−i – > α ⇔?

p,α

implication [23]

These quantifiers are defined in [23] and studied in detail in [20]. It is proved
in [20] that the quantifiers ⇒p of founded double implication ⇒!

p,α of lower
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critical double implication and ⇒?
p,α of upper critical double implication are

interesting Σ-double implicational quantifiers for 0 < p < 1 and 0 < α < 0.5.
Definitions of their values are in Tab. 9.

Table 9. Definitions of Values of ⇔p, ⇔!
p,α, and ⇔?

p,α

# 4ft quantifier ⇔∗ ⇔∗ (a, b) = 1 iff

Name ⇔∗

1 Founded double implication ⇔p
a

a+b
≥ p

2 Lower critical double implication ⇔!
p,α

∑n−d
i=a

(
n−d

i

)
pi(1 − p)n−d−i ≤ α

3 Upper critical double implication ⇔?
p,α

∑a
i=0

(
n−d

i

)
pi(1 − p)n−d−i > α

Note that the quantifier of founded double implication is derived from the
measure of the interestingness of association rules that is known as Jaccard
measure [3]; see row 1 in Tab. 8.

6.3 Σ-Equivalence Association Rules

There is also a theorem presented in [14] that provides a relatively simple cor-
rectness criterion of the deduction rule ϕ≡∗ψ

ϕ′≡∗ψ′ where ≡∗ is an interesting Σ-
equivalence quantifier. Remember that the 4ft-quantifier ≈∗ is Σ-equivalence if

≈ (a, b, c, d) = 1 a′ + d′ ≥ a + d ∧ b′ + c′ ≤ b + c implies ≈ (a′, b′, c′, d) = 1 ;

see Section 4.2.
Interesting Σ-equivalence quantifiers are defined in [14]. We say that the Σ-

equivalence quantifier ≡∗ is interesting if both (i) and (ii) are satisfied:
(i) ⇒∗ is (a+d)-dependent
(ii) ⇔∗ (0, b, c, 0) = 0 for b + c > 0.

The 4ft-quantifier ≈ is (a+d)-dependent if there are a, b, c, d, a, d such that
a + d �= a′ + d′ and ≈ (a, b, c, d) �=≈ (a′, b, c, d′).

Again, we present the correctness criterion of the deduction rule ϕ≡∗ψ
ϕ′≡∗ψ′ for the

interesting Σ-equivalence quantifiers only in the predicate calculus of association
rules defined in section 2.2. This theorem is a simplified version of an analogous
theorem for the Qualitative Calculi of Association Rules defined in section 2.1
that is presented in [14] and proved in [20].

The correctness criterion for Σ-equivalence quantifiers is [14]: Let PCAR P
be the predicate calculus of association rules. In addition let ϕ, ψ, ϕ′, ψ′ be the
Boolean attributes of P . If ≡∗ is the interesting Σ-equivalence quantifier then
the deduction rule

ϕ ≡∗ ψ

ϕ′ ≡∗ ψ′

is correct if and only if the formula

π((ϕ ∧ ψ) ∨ (¬ϕ ∧ ¬ψ)) −→ π((ϕ′ ∧ ψ′) ∨ (¬ϕ′ ∧ ¬ψ′))
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is a tautology (we use the symbol −→ for the propositional connective of
implication).

There are three important Σ-equivalence quantifiers defined by the applica-
tion of suitable thresholds to measures of interestingness in Tab. 10. Again, the
notation used in the column I≈(a, b, c, d) is in accordance with Tab. 3 and the
notation in the column Probabilities [3] is based on Tab. 4; see Section 5.

Table 10. Σ-equivalence 4ft-quantifiers

Measure of interestingness 4ft-quantifier ≈
# Name Definition

I≈(a, b, c, d) Probabilities [3] Condition Symbol

- Founded
1 equivalence [23] a+d

a+b+c+d
= a+d

n
P (AB) + P (¬A¬B) ≥ p ≡p

- Accuracy
- Success rate [1]

2 Lower critical
∑n

i=a+d

(
n
i

)
pi(1 − p)n−i – ≤ α ≡!

p,α

equivalence [23]

3 Upper critical
∑a+d

i=0

(
n
i

)
pi(1 − p)n−i – > α ≡?

p,α

Equivalence [23]

These quantifiers are defined in [23] and studied in detail in [20]. It is proved
in [20] that the quantifiers ≡p of founded equivalence, ≡!

p,α of lower critical
equivalence, and ≡?

p,α of upper critical equivalence are interesting Σ-equivalence
quantifiers for 0 < p < 1 and 0 < α < 0.5. Definitions of their values are in
Tab. 11.

Table 11. Definitions of the Values of ≡p, ≡!
p,α, and ≡?

p,α

# 4ft quantifier ≡∗ ≡∗ (a, b) = 1 iff

Name ≡∗

1 Founded equivalence ≡p
a+d

a+b+c+d
≥ p

2 Lower critical equivalence ≡!
p,α

∑n
i=a+d

(
n
i

)
pi(1 − p)n−i ≤ α

3 Upper critical equivalence ≡?
p,α

∑a+d
i=0

(
n
i

)
pi(1 − p)n−i > α

Note that the quantifier of founded double implication is derived from the
measure of the interestingness of association rules that is known as Accuracy [3]
or Success rate [1]; see row 1 in Tab. 10.

6.4 Association Rules with the F-Property

The results on association rules with the F-property are presented in detail
in [16]. There is also a theorem presented in [14] that gives a (not excessively
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simple) correctness criterion of the deduction rule ϕ≈∗ψ
ϕ′≈∗ψ′ where ≈∗ is a 4ft-

quantifier belonging to an important subclass of the class of 4ft-quantifiers with
the F-property. Remember that the 4ft-quantifier ≈∗ has the F-property if it
satisfies the conditions Fbc and Fcb; see Section 4.2:

Fbc: If ≈ (a, b, c, d) = 1 and b ≥ c− 1 ≥ 0 then ≈ (a, b + 1, c− 1, d) = 1.
Fcb: If ≈ (a, b, c, d) = 1 and c ≥ b− 1 ≥ 0 then ≈ (a, b− 1, c + 1, d) = 1;

see Section 4.2. The presented correctness criterion of deduction rules con-
cerns strong symmetrical quantifiers with the F+ property. We say that the
4ft-quantifier ≈ is strong symmetrical if it is satisfied:

≈ (a, b, c, d) = ≈ (a, c, b, d) = ≈ (d, b, c, a) .

The 4ft-quantifier ≈ has the F+ property, if it has the F property and if it
satisfies the following conditions F+

1 and F+
2 :

F+
1 : It is ≈ (0, b, c, d) = 0 for each 4ft-table 〈0, b, c, d〉 and it is ≈ (a, b, c, 0) = 0

for each 4ft-table 〈a, b, c, 0〉.
F+

2 : There are 4ft-tables 〈a, b, c, d〉 and 〈a, b′, c′, d〉 such that a + b + c + d =
a + b′ + c′ + d, ≈ (a, b, c, d) = 1 and ≈ (a, b′, c′, d) = 0.

The following correctness criterion is proved in [11] and it concerns the predicate
calculus P of association rules, as defined in section 2.2:

Let ≈F be a strong symmetrical equivalence quantifier with the F+ property.
Then the deduction rule ϕ≈F ψ

ϕ′≈F ψ′ where ϕ, ψ, ϕ′ ψ′ are the Boolean attributes of
P is correct, if and only if at least one of the conditions a) – g) is satisfied. (The
symbol −→ denotes the propositional connective of implication.)

a) The following formulas are tautologies:
π(ϕ ∧ ψ) −→ π(ϕ′ ∧ ψ′), π(ϕ′ ∧ ¬ψ′) −→ π(ϕ ∧ ¬ψ),
π(¬ϕ′ ∧ ψ′) −→ π(¬ϕ ∧ ψ), π(¬ϕ ∧ ¬ψ) −→ π(¬ϕ′ ∧ ¬ψ′).

b) At least one of the formulas π(ϕ −→ ¬ψ) and π(¬ϕ −→ ψ) are tautologies.
c) The following formulas are tautologies

π(ϕ ∧ ψ) −→ π(ϕ′ ∧ ψ′), π(ϕ′ ∧ ¬ψ′) −→ π(¬ϕ ∧ ψ),
π(¬ϕ′ ∧ ψ′) −→ π(ϕ ∧ ¬ψ), π(¬ϕ ∧ ¬ψ) −→ π(¬ϕ′ ∧ ¬ψ′).

d) The following formulas are tautologies
π(ϕ ∧ ψ) −→ π(¬ϕ′ ∧ ¬ψ′), π(ϕ′ ∧ ¬ψ′) −→ π(ϕ ∧ ¬ψ),
π(¬ϕ′ ∧ ψ′) −→ π(¬ϕ ∧ ψ), π(¬ϕ ∧ ¬ψ) −→ π(ϕ′ ∧ ψ′).

e) The following formulas are tautologies
π(ϕ ∧ ψ) −→ π(¬ϕ′ ∧ ¬ψ′),
π(ϕ′ ∧ ¬ψ′) −→ π(¬ϕ ∧ ψ),
π(¬ϕ′ ∧ ψ′) −→ π(ϕ ∧ ¬ψ), π(¬ϕ ∧ ¬ψ) −→ π(ϕ′ ∧ ψ′).

f) Both of the following two formulas are tautologies
π(ϕ ∧ ψ) −→ π(ϕ′ ∧ ψ′), π(¬ϕ ∧ ¬ψ) −→ π(¬ϕ′ ∧ ¬ψ′),
and at least one of the formulas
π(ϕ′) −→ π(ψ′), π(¬ϕ′) −→ π(¬ψ′) are tautologies.
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g) Both of the following two formulas are tautologies
π(ϕ ∧ ψ) −→ π(¬ϕ′ ∧ ¬ψ′), π(¬ϕ ∧ ¬ψ) −→ π(ϕ′ ∧ ψ′),
and at least one of the formulas
π(ϕ′) −→ π(ψ′), π(¬ϕ′) −→ π(¬ψ′) are tautologies.

There are eight important quantifiers with the F-property defined by the ap-
plication of suitable thresholds to measures of interestingness in Tab. 12 and
Tab. 13. Again, the notation used in the column I≈(a, b, c, d) is in accordance
with Tab. 3 and the notation in the column Probabilities [3] is based on Tab. 4;
see Section 5.

Table 12. 4ft-quantifiers with F-property – Definitions by I≈(a, b, c, d)

Measure of interestingness 4ft-quantifier ≈
# Name I≈(a, b, c, d) Condition Symbol

1 - Simple deviation [9] ad
bc

> eδ ∼δ

- Odds ratio

2 Fisher [9]
∑min(r,k)

i=a

(k
i)(

n−k
r−i)

(r
n)

≤ α ≈α

3 χ2 [9] (ad−bc)2

rkls
n ≥ χ2

α ∼2
α

4 AA [6] ad−bc
(a+b)(a+c)

≥ q ⇒+
q

5 Yule’s Q ad−bc
ad+bc

≥ p ≈Q
p *)

6 Yule’s Y
√

ad−√
bc√

ad+
√

bc
≥ p ≈Y

p *)

7 Lift / interest an
(a+b)(a+c)

= a(a+b+c+d)
(a+b)(a+c)

≥ q ⇒L+
q *)

8 Information gain log( an
(a+b)(a+c)

) ≥ q ⇒I+
q *)

Table 13. 4ft-quantifiers with the F-property – Definitions by Probabilities [3]

Measure of interestingness 4ft-quantifier ≈
# Name Probabilities [3] Condition Symbol

1 - Simple deviation [9] P (AB)P (¬A¬B)
P (¬AB)P (A¬B)

> eδ ∼δ

- Odds ratio

2 Fisher [9] – ≤ α ≈α

3 χ2 [9] – ≥ χ2
α ∼2

α

4 AA [6] – ≥ q ⇒+
q

5 Yule’s Q P (AB)P (¬A¬B)−P (A¬B)P (¬AB)
P (AB)P (¬A¬B)+P (A¬B)P (¬AB)

≥ p ≈Q
p *)

6 Yule’s Y

√
P (AB)P (¬A¬B)−

√
P (A¬B)P (¬AB)√

P (AB)P (¬A¬B)+
√

P (A¬B)P (¬AB)
≥ p ≈Y

p *)

7 Lift / interest P (B|A)
P (B)

or P (AB)
(P (A)P (B)

≥ q ⇒L+
q *)

8 Information gain log( P (AB)
P (A)P (B)

) ≥ q ⇒I+
q *)

The quantifiers ∼δ of simple deviation, ≈α, i.e., Fisher’s quantifier, and χ2
α

i.e. χ2 quantifier (see rows 1 – 3 in Tab. 12 and Tab. 13) are defined and studied
in [9]. It is proved in [11] that they are strong symmetrical equivalence quantifiers
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with the F+ property for δ ≥ 0 and 0 < α < 0.5. The only problem is to prove
that that the Fisher’s quantifier has the F-property; the core of the proof is
published in [10]. Note that the the Fisher’s quantifier ≈α is defined in the book

[9] by the condition
∑min(r,k)

i=a
(k

i)(n−k
r−i)

(r
n)

≤ α ∧ ad > bc. Here we omit the partial

condition ad > bc because we are interested in the measure of interestingness.
The definitions of the values of these quantifiers are in Tab. 14. Note that χ2

α is
the (1− α) quantile of the χ2 distribution function.

Table 14. Definitions of the Values of ∼δ, ≈α, and ∼2
α

# 4ft quantifier ≈F ≈F (a, b) = 1 iff

Name ≈F

1 Simple deviation ∼δ
ad
bc

> eδ

2 Fisher ≈α

∑min(r,k)
i=a

(k
i)(

n−k
r−i)

(r
n)

≤ α

3 χ2 ∼2
α

(ad−bc)2

rkls
n ≥ χ2

α

AA quantifier

The AA quantifier is described in row 4 of Tab. 12. It is denoted by ⇒+
q and its

value for q > 0 is defined as

⇒+
q (a, b, c, d) =

{
1 if ad−bc

(a+b)(a+c) ≥ q

0 otherwise.

The condition ad−bc
(a+b)(a+c) ≥ q is equivalent to the condition a

r ≥ (1 + q) s
n ; see

also Tab. 3. The condition a
r ≥ (1+q) s

n means a
r ∗ n

s −1 ≥ q and it is a
r ∗ n

s −1 =
a

a+b ∗ a+b+c+d
a+c − 1 = ad−bc

(a+b)(a+c) . The condition a
r ≥ (1 + q) s

n means that if the
rule ϕ ⇒+

q ψ is true in the data matrix M, then the relative frequency of rows
satisfying ψ among rows satisfying ϕ (i.e., a

r ) is at least 100q per cent higher than
the relative frequency of rows satisfying ψ among all the rows of the analyzed
data matrix (i.e., s

n ).
It is easy to prove that the AA quantifier ⇒+

q has the property F. We prove
only the condition Fbc from the two conditions Fbc and Fcb defining the F prop-
erty above. The proof of the condition Fcb is analogous. We have to prove:

If ⇒+
q (a, b, c, d) = 1 ∧ b ≥ c− 1 ≥ 0 then ⇒+

q (a, b + 1, c− 1, d) = 1 .

We suppose ad−bc
(a+b)(a+c) ≥ q and we also have to prove that ad−(b+1)(c−1)

(a+b+1)(a+c−1) ≥ q.

Thus it is enough to prove ad−(b+1)(c−1)
(a+b+1)(a+c−1) ≥ ad−bc

(a+b)(a+c) . To finish the proof we
show that

[ad− (b + 1)(c− 1)](a + b)(a + c) ≥ (ad− bc)(a + b + 1)(a + c− 1) .
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We denote X = ad− bc, Y = (a+ b)(a+ c) and Z = b− (c−1). Simple algebraic
operations lead to the equivalent condition

(X + Z)Y ≥ X(Y − Z) and thus to ZY ≥ −XZ .

We suppose b ≥ c − 1, thus Z ≥ 0 and it remains to prove Y ≥ −X that is
equivalent to (a + b)(a + c) ≥ bc− ad.

We also suppose ⇒+
q (a, b, c, d) = 1 and q ≥ 0 that means ad−bc

(a+b)(a+c) ≥ q and
thus ad − bc ≥ 0 that implies bc − ad ≤ 0. Thus (a + b)(a + c) ≥ 0 ≥ bc − ad
and this finishes the proof of the condition Fbc. We can conclude that the AA
quantifier ⇒+

q has the F-property.
The AA quantifier⇒+

q however is not strong symmetrical. We show it for⇒+
1 ,

and for additional parameters the proof is similar. Let be 〈a, b, c, d〉 = 〈1, 1, 1, 10〉,
then the condition ≈ (a, b, c, d) = ≈ (d, b, c, a) is not satisfied: We have ⇒+

1

(1, 1, 1, 10) = 1 because of 1∗10−1∗1
(1+1)(1+1) = 9

4 > 1 while we have ⇒+
1 (10, 1, 1, 1) = 0

because of 10∗1−1∗1
(10+1)(10+1) = 9

121 < 1. It means that the above-presented correctness

theorem of the deduction rules ϕ≈F ψ
ϕ′≈F ψ′ is not applicable for the AA quantifier

⇒+
q .
It is however clear that the AA quantifier ⇒+

q is symmetrical [9]. The 4ft-
quantifier ≈ is symmetrical if it is satisfied:

≈ (a, b, c, d) = ≈ (a, c, b, d) .

Note that if the 4ft-quantifier ≈ is symmetrical, then the rule ϕ ≈ ψ is true, if
and only if the rule ψ ≈ ϕ is also true.

Yule’s Q Quantifier

The Yule’s Q quantifier is described in row 5 of Tab. 12 and of Tab. 13. It is
denoted by ≈Q

p and its value for 0 < p < 1 is defined as

≈Q
p (a, b, c, d) =

{
1 if ad−bc

ad+bc ≥ p

0 otherwise.

It is easy to prove that the Yule’s Q quantifier ≈Q
p has the property F. Again,

we prove only the condition Fbc from the two conditions Fbc and Fcb defining
the F property above. We have to prove:

If ≈Q
p (a, b, c, d) = 1 ∧ b ≥ c− 1 ≥ 0 then ≈Q

p (a, b + 1, c− 1, d) = 1 .

We assume that ad−bc
ad+bc ≥ q and we have to prove that also ad−(b+1)(c−1)

ad+(b+1)(c−1) ≥ p.

Thus it is enough to prove ad−(b+1)(c−1)
ad+(b+1)(c−1) ≥ ad−bc

ad+bc . To finish the proof we show
that

[ad− (b + 1)(c− 1)](ad + bc) ≥ (ad− bc)[ad + (b + 1)(c− 1)] .
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We denote X = ad − bc, Y = ad + bc and Z = b − (c − 1). Simple algebraic
operations lead to the equivalent condition

(X + Z)Y ≥ X(Y − Z) and thus to ZY ≥ −XZ .

We assume that b ≥ c− 1, thus Z ≥ 0 and it remains to prove Y ≥ −X that is
equivalent to ad + bc) ≥ bc− ad and also to 2ad ≥ 0.

We also assume that ≈Q
p (a, b, c, d) = 1 and p > 0 that means ad−bc

ad−bc ≥ p > 0
and thus it must be ad ≥ 0 that finishes the proof. We can conclude that the
Yule’s Q quantifier ≈Q

p has the F-property.
It is evident that

≈Q
p (a, b, c, d) = ≈Q

p (a, c, b, d) = ≈Q
p (d, b, c, a)

and thus the Yule’s Q quantifier ≈Q
p is strong symmetrical. We prove that the

Yule’s Q quantifier ≈Q
p has the F+ property for 0 < p < 1. It remains to prove

the conditions F+
1 and F+

2 defined above:

F+
1 : It is ≈Q

p (0, b, c, d) = 0 for each 4ft-table 〈0, b, c, d〉 because of 0∗d−bc
ad+bc ≤ 0 <

p, similarly it is ≈Q
p (a, b, c, 0) = 0 for each 4ft-table 〈a, b, c, 0〉.

F+
2 : There are 4ft-tables 〈a, b, c, d〉 = 〈1, 1, 1, 1〉 and 〈a, b′, c′, d〉 = 〈1, 2, 0, 1〉 such

that a+b+c+d = a+b′+c′+d, ≈Q
p (1, 2, 0, 1) = 1 because of 1∗1−2∗0

1∗1+2∗0 = 1 > p

and ≈Q
p (1, 1, 1, 1) = 0 because of 1∗1−1∗1

1∗1+1∗1 = 0 < p.

We can conclude that Yule’s Q quantifier ≈Q
p is strong symmetrical and it has

the F+ property for 0 < p < 1.

Yule’s Y quantifier

The Yule’s Y quantifier is described in row 6 of Tab. 12 and of Tab. 13. It is
denoted by ≈Y

p and its value for 0 < p < 1 is defined as

≈Y
p (a, b, c, d) =

{
1 if

√
ad−√

bc√
ad+

√
bc
≥ p

0 otherwise.

The Yule’s Y quantifier ≈Y
p is strong symmetrical and it has the F+ property

for 0 < p < 1. The proof is similar to the proof of the same assertion for the
Yule’s Q quantifier ≈Q

p that is given above.

Lift/Interest Quantifier

The lift / interest quantifier is described in row 7 of Tab. 12 and of Tab. 13. It
is denoted by ⇒L+

q and its value for q > 0 is defined as

⇒L+
q (a, b, c, d) =

{
1 if a(a+b+c+d)

(a+b)(a+c) ≥ q

0 otherwise.
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The lift / interest quantifier has similar properties to those of the AA quantifier.
It means that it has the F-property but it is not strong symmetrical and thus the
above-given correctness criterion of the deduction rules ϕ≈F ψ

ϕ′≈F ψ′ is not applicable
for the lift / interest quantifier ⇒L+

q .
We show that ⇒L+

10 is not strong symmetrical, and for additional param-
eters, the proof is similar. Let 〈a, b, c, d〉 = 〈1, 1, 1, 10〉; then the condition ≈
(a, b, c, d) = ≈ (d, b, c, a) is not satisfied: It is ⇒L+

1 (1, 1, 1, 10) = 0 because
of 1∗(1+1+1+10)

(1+1)(1+1) = 13
4 < 10 while we have ⇒L+

1 (10, 1, 1, 1) = 1 because of
10∗(1+1+1+10)

(1+1)(1+1) = 10∗13
4 > 10.

We also prove that the lift / interest quantifier ⇒L+
q satisfies the condition

Fbc from the two conditions Fbc and Fcb defining the F property. The proof for
the condition Fcb is analogous. We have to prove:

If ⇒L+
q (a, b, c, d) = 1 ∧ b ≥ c− 1 ≥ 0 then ⇒L+

q (a, b + 1, c− 1, d) = 1 .

We suppose a(a+b+c+d)
(a+b)(a+c) ≥ q and we have to prove a(a+(b+1)+(c−1)+d)

(a+b+1)(a+c−1) ≥ q. Thus

it is enough to prove a(a+(b+1)+(c−1)+d)
(a+b+1)(a+c−1) ≥ a(a+b+c+d)

(a+b)(a+c) . To finish the proof we
show that

(a + b)(a + c) ≥ (a + b + 1)(a + c− 1) .

This is equivalent to 0 ≥ −b+ c−1 and it follows from the assumption b ≥ c−1.
It finishes the proof.

Information Gain Quantifier

The information gain quantifier is described in row 8 of Tab. 12 and of Tab. 13.
It is denoted by ⇒I+

q and its value for q > 0 is defined as

⇒I+
q (a, b, c, d) =

{
1 if log( an

(a+b)(a+c) ) ≥ q

0 otherwise.

The information gain quantifier ⇒I+
q is similar to the lift / interest quantifier

⇒L+
q . It means that it has the F-property but it is not strong symmetrical, and

thus the above-given correctness criterion of the deduction rules ϕ≈F ψ
ϕ′≈F ψ′ is not

applicable for the information gain quantifier ⇒L+
q . The proof is analogous to

the proof for the lift / interest quantifier ⇒L+
q .

7 Additional Classes of Association Rules

We can distinguish two types of classes of association rules - M– independent
classes andM– dependent classes. These notions were introduced in [19] in rela-
tion to the effort to solve some problems related to deduction rules, concerning
the “classical association rule” X → Y defined, e.g., in [8]. Such rules are verified
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using the interestingness measures confidence and support. There are both M–
independent and M– dependent classes among the classes of association rules
mentioned in Section 4.

Both M–independent and M– dependent classes of association rules are in-
troduced in Section 7.1. Reasons leading to the definition of newM– dependent
classes are explained in Section 7.2, and examples of newM– dependent classes
and of their properties are in Section 7.3. There are also new M–independent
classes of association rules inspired by several interestingness measures; see
Section 7.4.

7.1 M – Independent and M – Dependent Classes of Rules

Remember that the classes of 4ft-quantifiers (i.e., classes of association rules)
are defined using truth preservation conditions TPC; see Section 4.1. Each class
C is defined by the truth preservation condition TPCC(a, b, c, d, a′, b′, c′, d′) that
concerns two contingency tables 〈a, b, c, d〉 and 〈a′, b′, c′, d′〉. The class C is defined
according to this scheme:

The 4ft-quantifier ≈ belongs to the class C if and only if it satisfies:

≈ (a, b, c, d) = 1 ∧ TPCC(a, b, c, d, a′, b′, c′, d′) implies ≈ (a′, b′, c′, d′) = 1 .

The condition TPCC(a, b, c, d, a′, b′, c′, d′) is usually simple, typically it is based
on two or three inequalities. Examples of TPC’s are in Tab. 2 in Section 4.2. Note
that neither of these TPC’s include the condition a+ b+ c+ d = a′ + b′ + c′ + d′

or allow a + b + c + d = a′ + b′ + c′ + d′ to be derived from them.
This is, however, not true for the TPCF = TPCFbc

∨ TPCFcb
(see Section 4.2)

where TPCFbc
is defined as

〈a′, b′, c′, d′〉 = 〈a, b + 1, c− 1, d〉 ∧ b ≥ c− 1 ≥ 0

and TPCFcb
is defined as

〈a′, b′, c′, d′〉 = 〈a, b− 1, c + 1, d〉 ∧ c ≥ b− 1 ≥ 0 .

Both TPCFbc
and TPCFcb

imply a + b + c + d = a′ + b′ + c′ + d′.
The condition a + b + c + d = a′ + b′ + c′ + d′ could be interpreted such that

the 4ft-tables 〈a, b, c, d〉 and 〈a′, b′, c′, d′〉 concern the one data matrixM (or at
least that 〈a, b, c, d〉 and 〈a′, b′, c′, d′〉 concern the two data matricesM andM′

with the same number of rows). Thus if the condition TPCC(a, b, c, d, a′, b′, c′, d′)
includes the condition a+ b+ c+d = a′ + b′ + c′ +d′ or if it is possible to deduce
that, then we say that the class C is M–dependent. Otherwise we say that the
class C is M–independent.

7.2 Why New M – Dependent Classes

The “classical” association rule is the implication X → Y , where X and Y
are conjunctions of simple Boolean attributes. As mentioned in Section 2.1, the



Logical Aspects of the Measures of Interestingness of Association Rules 199

association rule X → Y with confidence Cf and support Sp can be understood
as a formula of X →Cf,Sp Y of suitable calculus of association rules, where the
4ft-quantifier →Cf,Sp corresponds to the condition a

a+b ≥ Cf ∧ a
a+b+c+d ≥ Sp

concerning the 4ft-table 4ft(X, Y,M) of X and Y in the data matrix M in
question.

The 4ft-quantifier →p,Sp with confidence p and support Sp is a composition
of two 4ft-quantifiers: the quantifier ⇒p of founded implication (i.e., of confi-
dence; see row 1 in Tab. 6) and the 4ft-quantifier ⊕Sp of support (see row 1 in
Tab. 5). The problem is that the 4ft-quantifier ⊕Sp is not equivalence (i.e., not
associational in the sense of [9]). To prove it, we have to find for each Sp ∈ (0; 1〉
two quadruples 〈a, b, c, d〉 and 〈a′, b′, c′, d′〉 of natural numbers such that
a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c ∧ d′ ≥ d, a

a+b+c+d ≥ Sp, and a′
a′+b′+c′+d′ < Sp. It is

easy to verify that this is satisfied for 〈a, b, c, d〉 = 〈1, 0, 0, 0〉, and 〈a′, b′, c′, d′〉 =
〈1, 0, 0, d′〉 where d′ > 1−Sp

Sp .
Each 4ft-quantifier belonging to one of the classes of implicational quanti-

fiers, double implicational quantifiers, Σ-double implicational quantifiers, and
Σ-equivalence quantifiers is also equivalence (i.e., associational) quantifier [9,16].
The 4ft-quantifier ⊕Sp is not equivalence, and thus it is not implicational. It
means that the correctness criterion of deduction rules ϕ⇒∗ψ

ϕ′⇒∗ψ′ for the interesting
implicational quantifiers presented in section 6.1 is not applicable to “classical”
association rules ϕ→Cf,Sp ψ.

It is, however, evident that the quantifier ⊕Sp is M–dependent equivalence
where the class ofM–dependent equivalence quantifiers is defined by the truth
preservation condition TPCM≡ :

a + b + c + d = a′ + b′ + c′ + d′ ∧ a′ ≥ a ∧ b′ ≤ b ∧ c′ ≤ c ∧ d′ ≥ d .

Note that we can write TPCM
≡ = TPCM∧TPC≡ where the truth preservation

condition TPCM is defined as TPCM = a + b + c + d = a′ + b′ + c′ + d′.
Thus it is natural to ask what would happen if we derive new M–dependent
classes by adding the truth preservation condition TPCM to already known
M–independent classes.

7.3 New M – Dependent Classes

Three M–dependent classes of association rules (i.e., classes of 4ft-quantifiers)
derived by adding the truth preservation condition TPCM to known M–
independent classes are briefly introduced in this section. Their overview is in
Tab. 15, and their detailed definitions are in Tab. 16.

There are six quantifiers belonging to the class of implicational quantifiers
listed in Tab. 7. The 4ft-quantifier →p,Sp with confidence p and support Sp
corresponding to the “classical” associational rule mentioned in Section 7.2 is a
composition of the quantifiers ⇒p of founded implication and the 4ft-quantifier
⊕Sp of support, and it is thus defined by the condition a

a+b ≥ p∧ a
a+b+c+d ≥ Sp.

It is easy to prove that the 4ft-quantifier →p,Sp is M-dependent implicational.
We can derive thereby a new M-dependent implicational quantifier from each
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Table 15. Overview of New M – dependent Classes of 4ft-quantifiers

Truth preservation condition

Class Symbol Definition

M-dependent implicational TPCM
⇒ TPCM ∧ TPC⇒

M-dependent Σ-double implicational TPCM
Σ,⇔ TPCM ∧ TPCΣ,⇔

M-dependent Σ-equivalence TPCM
Σ,≡ TPCM ∧ TPCΣ,≡

Table 16. Definitions of New M – dependent Classes of 4ft-quantifiers

Truth preservation condition

Symbol Detail of definition

TPCM
⇒ a + b + c + d = a′ + b′ + c′ + d′ ∧ a′ ≥ a ∧ b′ ≤ b

TPCM
Σ,⇔ a + b + c + d = a′ + b′ + c′ + d′ ∧ a′ + c′ ≥ a + c ∧ b′ ≤ b

TPCM
Σ,≡ a + b + c + d = a′ + b′ + c′ + d′ ∧ a′ + d′ ≥ a + d ∧ b′ + c′ ≤ b + c

of the implicational quantifiers listed in Tab. 7. It means, e.g., that the M-
dependent implicational quantifier →L

p,Sp of M-dependent Laplace correction is
defined by the condition a+1

a+b+2 ≥ p ∧ a
a+b+c+d ≥ Sp etc.

We can define, in an analogous way, additionalM-dependent Σ-double impli-
cational quantifiers from the Σ-double implicational quantifiers listed in Tab. 9,
and additional M-dependent Σ-equivalence quantifiers from the Σ-equivalence
quantifiers listed in Tab. 11. Note that we can define in the same way additional
M-dependent classes for the M-independent classes introduced in Sect. 7.4.

However there are no corresponding results concerning the correctness of de-
duction rules of the form ϕ≈ψ

ϕ′≈ψ′ where ϕ, ψ for the M – dependent classes of
association rules introduced in Tab. 15. The only result is the following theorem
concerningM-dependent implicational quantifiers.

The theorem concerns interestingM-dependent implicational quantifiers. The
M-dependent implicational quantifier →∗ is interesting if it is both a-dependent
and b-dependent and if →∗ (0, 0, c, d) = 0 for each couple 〈c, d〉 of natural
numbers.

Let PCAR P be the calculus of association rules and let ϕ, ψ, ϕ′, ψ′ be
the Boolean attributes of P . If →∗ is the interesting M-dependent implica-
tional quantifier then the deduction rule ϕ→∗ψ

ϕ′→∗ψ′ is correct, if at least one of the
conditions 1) or 2) are satisfied (again, −→ is the propositional connective of
implication):

1. Both 1.a and 1.b are tautologies of propositional calculus
1.a: π(ϕ ∧ ψ) −→ π(ϕ′ ∧ ψ′)
1.b: π(ϕ′ ∧ ¬ψ′) −→ π(ϕ ∧ ¬ψ)

2. π(ϕ) −→ π(¬ψ) is a tautology.

The proof of this theorem is outlined in [19]. Note that this theorem does not
says “is correct if and only if” but only “is correct if”, however, it seems that
the “is correct if and only if” variant of this theorem could be formulated and
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proved [19] as well as the corresponding theorems for the additional
M – dependent classes of association rules introduced in Tab. 15.

7.4 New M – Independent Classes

There are numerous measures of interestingness defined and studied in [1,2,3,4,
5], and we did not mention all of them. Some of such measures of interestingness
can be used to define additionalM – independent classes of association rules.We
introduce two such measures of interestingness; see, e.g., [3]. Both of them are
somehow analogous to a founded implication (i.e. confidence), see row 1 in Tab.
6. We use the notation in accordance with Tab. 3.

The first one is the measure of recall defined as a
a+c that leads to the 4ft-

quantifier ⇒R
p of recall defined for 0 < p ≤ 1 by the condition a

a+c ≥ p. We
can define the class of recall-like quantifiers by the truth preservation condition
TPCrecc defined as a′ ≥ a ∧ c′ ≤ c.

The second one is the measure of specificity defined as d
b+d that leads to the

4ft-quantifier ⇒S
p of specificity defined for 0 < p ≤ 1 by the condition d

b+d ≥ p.
We can define the class of specificity-like quantifiers by the truth preservation
condition TPCspec defined as d′ ≥ d ∧ b′ ≤ b.

It is relatively easy to formulate and proof the corresponding correctness the-
orems of deduction rules of the form ϕ≈ψ

ϕ′≈ψ′ for the recall - like quantifiers and
specificity - like quantifiers. Of course, the correspondingM – dependent classes
of rules can be defined on the basis of the truth preservation conditions TPCrecc

and TPCspec.

8 Conclusions and Further Work

We introduced the logical calculi of association rules together with 4ft-quantifiers
and known classes of 4ft-quantifiers and of association rules. We argued for their
usefulness, and we emphasized deduction rules between association rules; see
Sect. 4.3. We defined new 4ft-quantifiers by the application of suitable thresholds
to several known measures of interest. We proved that some of new 4ft-quantifiers
belong to known classes of rules with important properties. We have also shown
that new interesting classes of rules can be defined on the basis of the other new
4ft-quantifiers, and we mentioned some interesting results concerning the new
classes. Due to the limited space of the chapter, some of the results are presented
only very briefly.

Moreover, there are various open questions concerning the relation of the
measures of interestingness of association rules and logical calculi of association
rules. Some of them are listed below, and they are subject of current research.

– What are the relations of the additional tens of interestingness measures
defined and studied, e.g., in [1,2,3,4,5] to known classes of association rules?

– Are there some additional new classes of association rules with interesting
properties?
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– Are there some unknown useful deduction rules concerning known or new
classes of rules?

– What are the relations of the properties of the interestingness measures (see,
e.g., Table V in [3]) to classes of association rules?

– What about definability of association rules corresponding to not yet studied
interestingness measures in classical predicate calculus with equality; see
[18]?
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Abstract. Ryszard Michalski has been the pioneer of Machine Learning.
His conceptual clustering focused on the understandability of clustering
results. It is a key requirement if Machine Learning is to serve users
successfully. In this chapter, we present two approaches to clustering in
the scenario of Web 2.0 with a special concern of understandability in
this new context. In contrast to semantic web approaches which advocate
ontologies as a common semantics for homogeneous user groups, Web
2.0 aims at supporting heterogeneous user groups where users annotate
and organize their content without a reference to a common schema.
Hence, the semantics is not made explicit. It can be extracted by Machine
Learning, though, hence providing users with new services.

1 Introduction

From its very beginning, Machine Learning aimed at helping people in doing their
job more effectively. Ryszard Michalski has always stressed the service to people as
a motivation for Machine Learning. Early on, classifier learning received a lot of at-
tention [18], and subsequently eased the development of knowledge-based systems
that support experts [15], [17]. Since the need of classified training examples could
become a bottleneck for applications, clustering approaches became attractive be-
cause, there, no expert is necessary, who classifies the observations. However, sta-
tistical clustering approaches often lack the understandability of the clusters. The
use of logic expressions for clustering turned precise cluster descriptions into eas-
ily understandable conditions for an observation to belong to the cluster [14]. The
understandability of learning results is a strong factor of its success. It is a necessity
for many applications. There is a large variety of understandable representations:
depending on a user’s education and school of thinking, logic, visual, or numeri-
cal representations ease understanding. Since interpretations depend on the user’s
background, it is quite difficult to supply heterogeneous user groups with one ad-
equate representations. Instead, the representation has to cope with the hetero-
geneity of users, presenting information to a user in the way he or she prefers.

In contrast to the systems supporting a user in professional performance, the
World Wide Web (WWW) offers documents, music, videos to a large variety of
users, no longer restricted to one profession but offered to and by most different
cultures and communities. The approach to organize the collections according
to ontologies (the semantic web approach) has failed possibly just because of
this heterogeneity of users. The view of the WWW as a space for collaboration

J. Koronacki et al. (Eds.): Advances in Machine Learning II, SCI 263, pp. 207–223.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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among diverse users who not only seek but also deliver information (the Web 2.0
approach) takes into account that users do not want to obey a given semantic
but use their own one without explicit declaration.

Integrating Machine Learning capabilities into the WWW hence demands to
cope with diverse representations. No longer, the same annotation of an object
can be considered to have the same meaning: for different users the same label
may have completely different meanings. Turning it the other way around, dif-
ferent annotations may mean the same. Machine Learning approaches normally
use a fixed feature set and – in supervised learning – a fixed set of class labels.
In the Web 2.0 context, this is no longer appropriate. Instead, the intensional
meaning of a feature or label can only be determined on the basis of its exten-
sion regarding one particular user. We call this the locality requirement. The
similarity of extensions can then be used to determine the similarity of features
or labels given by different users, and, hence, the similarity of users. We shall
investigate this issue in Section 21.

Moreover, the heterogeneity of users also challenges the design of user inter-
faces. Users differ in the way they like to look at a collection of items (i.e., pic-
tures, music,...). Some prefer to navigate in a step-wise deepening manner with
a small number of selectable nodes at each level. Others prefer to have many
choices and few levels. For the developer of an interface it is not at all clear how
to best organize a collection. Here, Machine Learning can be of help, if it con-
structs all possible and optimal structures and offers these to the user who can
then choose the one he or she likes. The construction of optimal structures in one
learning run technically means to learn the Pareto-optimal structures. Method-
ologically, our learning algorithm can be classified as an instance of multi-strategy
learning. It exploits frequent set mining and evolutionary optimization in order
to cluster a collection on the basis of annotations (tag sets) [13]. We shall describe
our approach to this problem in Section 32.

2 Collaboratively Structuring Collections

Media collections in the internet have become a commercial success. Companies
provide users with texts, music, and videos for downloading and even offer to
store personal collections at the company’s site. The structuring of large me-
dia collections has thus become an issue. Where general ontologies are used to
structure the central archive, personal media collections are locally structured
in very different ways by different users. The level of detail, the chosen cat-
egories, and the extensions even of categories with the same name can differ
completely from user to user. In a one year project, a collection of music was
structured by our students [10]. We found categories of mood, time of day, in-
struments, occasions (e.g., “when working” or “when chatting”), and memories
(e.g., “holiday songs from 2005” or “songs heard with Sabine”). The level of detail
1 The work on collaborative clustering is based in the Ph D thesis of Michael Wurst

[22].
2 The work on tagset clustering is based on the diploma thesis of Andreas Kaspari [12].
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depends on the interests of the collector. Where some students structure instru-
ments into electronic and unplugged, others carefully distinguish between string
quartet, chamber orchestra, symphony orchestra, requiem, opera. A specialist of
jazz designs a hierarchical clustering of several levels, each with several nodes,
where a lay person considers jazz just one category. Where the most detailed
structure could become a general taxonomy, from which less finely grained, local
structures can easily be computed, categories under headings like “occasions”
and “memories” cannot become a general structure for all users. Such categories
depend on the personal attitude and life of a user. They are truly local to the
user’s collection. Moreover, the classification into a structure is far from being
standardized. This is easily seen when thinking of a node “favorite songs”. Sev-
eral users’ structures show completely different songs under this label, because
different users have different favorites. The same is true for the other categories.
We found that even the general genre categories can extensionally vary among
users, the same song being classified, e.g., as “rock’n roll” in one collection and
“blues” in another one. Hence, even if (part of) the collections’ structure looks
the same, their extensions can differ considerably [6]. In summary, structures for
personal collections differ in the level of detail, the chosen categories, and the
extensions for even the same labels.

Can Machine Learning be of help also for structuring personal collections?
Since users do not want to have their hand-made structures overwritten, one
could deny the benefit of automatic structuring. While users like to classify some
songs into their own structure, they would appreciate it, if a learning system
would clean-up their collection “accordingly”. Moreover, users like to exchange
songs (or pictures, or videos) with others. The success of Amazon’s collaborative
recommendations shows that users appreciate to share preferences. A structure
of another user might serve as a blueprint for refining or enhancing the own
structure. The main objective seems to be that users are given a choice among
alternatives instead of providing them with just one result. To summarize, the
requirements of a learning approach are, that it should

– not overwrite hand-made structures,
– not aim at a global model, but enhance a local one,
– add structure where a category’s extension has become too large,
– take structures of others into account in a collaborative manner,
– recommend objects which fit nicely into the local structure, and
– should deliver several alternatives among which the user can choose.

2.1 The Learning Task of Localized Alternative Cluster Ensembles

The requirements listed above actually pose a new learning task. We characterize
learning tasks by their inputs and outputs. Let X denote the set of all possible
objects. A function ϕ : S → G is a function that maps objects S ⊆ X to a
(finite) set G of groups. We denote the domain of a function ϕ with Dϕ. In cases
where we have to deal with overlapping and hierarchical groups, we denote the
set of groups as 2G. The input for a learning task is a finite set of functions
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I ⊆ {ϕ|ϕ : S → G}. The same holds for the output O ⊆ {ϕ|ϕ : S → G}. We
consider the structuring of several users ui, each described by ϕi : Si → Gi. A
user with the problem of structuring her left-over objects S might now exploit
the cluster models of other users in order to enhance the own structure. Cluster
ensembles are almost what we need [3], [19], [20]. However, there are three major
drawbacks: first, for cluster ensembles, all input clusterings must be defined at
least on S. Second, the consensus model of cluster ensembles does not take the
locality of S into account. Finally, merging several heterogenous user clusterings
by a global consensus does not preserve the user’s hand-made structuring. Hence,
we have defined a new learning task [23].

Definition 1 (Localized Alternative Cluster Ensembles). Given a set
S ⊆ X, a set of input functions I ⊆ {ϕi : Si → Gi}, and a quality function

q : 2Φ × 2Φ × 2S → R (1)

with R being partially ordered, localized alternative clustering ensem-
bles delivers the output functions O ⊆ {ϕi|ϕi : Si → Gi} so that q(I, O, S) is
maximized and for each ϕi ∈ O it holds that S ⊆ Dϕi.

Note that in contrast to cluster ensembles, the input clusterings can be defined
on any subset Si of X . Since for all ϕi ∈ O it must hold that S ⊆ Dϕi , all output
clusterings must at least cover the objects in S.

2.2 The LACE Algorithm

The algorithm LACE derives a new clustering from existing ones by extending
and combining them such, that each covers a subset of objects in S. We need
two more definitions in order to describe the algorithm.

Definition 2 (Extended function). Given a function ϕi : Si → Gi, the
function ϕ′

i : S′
i → Gi is the extended function for ϕi, if Si ⊂ S′

i and
∀x ∈ Si : ϕi(x) = ϕ′

i(x).

Definition 3 (Bag of clusterings). Given a set I of functions. A bag of
clusterings is a function

ϕi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ϕ′
i1(x), if x ∈ S′

i1
...

...
ϕ′

ij(x), if x ∈ S′
ij

...
...

ϕ′
im(x), if x ∈ S′

im

(2)

where each ϕ′
ij is an extension of a ϕij ∈ I and {S′

i1, . . . , S
′
im} is a partitioning

of S.
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Now, we can define the quality for the output, i.e. the objective function for our
bag of clusterings approach to local alternative clustering ensembles.

Definition 4 (Quality of an output function). The quality of an indi-
vidual output function is measured as

q∗(I, ϕi, S) =
∑
x∈S

max
x′∈Sij

sim(x, x′) with j = hi(x) (3)

where sim is a similarity function sim : X × X → [0, 1] and hi assigns each
example to the corresponding function in the bag of clusters hi : S → {1, . . . , m}
with

hi(x) = j ⇔ x ∈ S′
ij . (4)

The quality of a set of output functions now becomes

q(I, O, S) =
∑

ϕi∈O

q∗(I, ϕi, S). (5)

Besides this quality function, we want to cover the set S with a bag of clusterings
that contains as few clusterings as possible.

The main task is to cover S by a bag of clusterings ϕ. The basic idea of this
approach is to employ a sequential covering strategy. In a first step, we search
for a function ϕi in I that best fits the set of query objects S. For all objects
not sufficiently covered by ϕi, we search for another function in I that fits the
remaining points. This process continues until either all objects are sufficiently
covered, a maximal number of steps is reached, or there are no input functions
left that could cover the remaining objects. All objects that could not be covered
are assigned to the input function ϕj containing the object which is closest to
the one to be covered. Alternative clusterings are produced by performing this
procedure several times, such that each input function is used at most once.

When is an object sufficiently covered by an input function so that it can be
removed from the query set S? We define a threshold based criterion for this
purpose. Let Zϕi be the set of objects delivered by ϕ.

Definition 5. A function ϕ sufficiently covers an object x ∈ S (written as
x �α ϕ ), iff x �α ϕ :⇔ maxx′∈Zϕ sim(x, x′) > α.

This threshold allows to balance the quality of the resulting clustering and the
number of input clusters. A small value of α allows a single input function to
cover many objects in S. This, on average, reduces the number of input functions
needed to cover the whole query set.

Turning it the other way around: when do we consider an input function to fit
the objects in S well? First, it must contain at least one similar object for each
object in S. This is essentially what is stated in the quality function q∗. Second,
it should cover as few additional objects as possible. This condition follows from
the locality demand. Using only the first condition, the algorithm would not
distinguish between input functions which span a large part of the data space and
those which only span a small local part. This distinction, however, is essential
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O = ∅
I ′ = I
while (|O| < maxalt) do

S′ = S
B = ∅
step = 0
while ((S′ �= ∅) ∧ (I ′ �= ∅) ∧ (step < maxsteps)) do

ϕi = arg max
ϕ∈J

q∗f (Zϕ, S′)

I ′ = I ′ \ {ϕi}
B = B ∪ {ϕi}
S′ = S′ \ {x ∈ S′|x �α ϕi}
step = step + 1

end while
O = O ∪ {bag(B,S)}

end while

Fig. 1. The sequential covering algorithm finds bags of clusterings in a greedy manner.
maxalt denotes the maximum number of alternatives in the output, maxsteps denotes
the maximum number of steps that are performed during sequential covering. The
function bag constructs a bag of clusterings by assigning each object x ∈ S to the
function ϕi ∈ B that contains the object most similar to x. Zϕi is the set of objects
delivered by ϕ.

for treating the locality appropriately. The situation we are facing is similar
to that in information retrieval. The target concept S – the ideal response –
is approximated by ϕ delivering a set of objects – the retrieval result. If all
members of the target concept are covered, the retrieval result has the highest
recall. If no objects in the retrieval result are not members of S, it has the
highest precision. We want to apply precision and recall to characterize how well
ϕ covers S. We can define

precision(Zϕi , S) =
1
|Zϕi |

∑
z∈Zϕi

max {sim(x, z)|x ∈ S} (6)

and

recall(Zϕi, S) =
1
|S|
∑
x∈S

max {sim(x, z)|z ∈ Zϕi}. (7)

Please note that using a similarity function which maps identical objects to 1
(and 0 otherwise) leads to the usual definition of precision and recall. The fit
between an input function and a set of objects now becomes

q∗f (Zϕi , S) =
(β2 + 1)recall(Zϕi, S)precision(Zϕi, S)
β2recall(Zϕi, S) + precision(Zϕi, S)

. (8)

Recall directly optimizes the quality function q∗, precision ensures that the result
captures local structures adequately. The fitness q∗f (Zϕi , S) balances the two
criteria.
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Deciding whether ϕi fits S or whether an object x ∈ S is sufficiently covered
requires to compute the similarity between an object and a cluster. Remember
that Zϕi is the set of objects delivered by ϕ. If the cluster is represented by
all of its objects (Zϕi = Si, as usual in single-link agglomerative clustering),
this central step becomes inefficient. If the cluster is represented by exactly one
point (|Zϕi | = 1, a centroid in k-means clustering), the similarity calculation
is very efficient, but sets of objects with irregular shape, for instance, cannot
be captured adequately. Hence, we adopt the representation by “well scattered
points” Zϕi as representation of ϕi [8], where 1 < |Zϕi | < |Si|. These points are
selected by stratified sampling according to G.

We can now compute the fitness q∗f of all Zϕi ∈ I with respect to a query set
S in order to select the best ϕi for our bag of clusterings.

The whole algorithm works as depicted in Figure 1. We start with the initial
set of input functions I and the set S of objects to be clustered. In a first step, we
select an input function that maximizes q∗f (Zϕi , S). ϕi is removed from the set
of input functions leading to a set I ′. For all objects S′ that are not sufficiently
covered by ϕi, we select a function from I ′ with maximal fit to S′. This process
is iterated until either all objects are sufficiently covered, a maximal number
of steps is reached, or there are no input functions left that could cover the
remaining objects. All input functions selected in this process are combined to
a bag of clusters, as described above. Each object x ∈ S is assigned to the input
function containing the object being most similar to x. Then, all input functions
are extended accordingly (cf. definition 2). We start this process anew with the
complete set S and the reduced set I ′ of input functions until the maximal
number of alternatives is reached.

2.3 Results of the LACE Algorithm

The LACE algorithm has been successfully applied to the collection of student
structures for the music collection. Leaving out one clustering, the learning task
was to again structure the now unstructured music. We compared our approach
with single-link agglomerative clustering using cosine measure, top down divi-
sive clustering based on recursively applying kernel k-means [5] (K k-means),
and with random clustering. Localized Alternative Cluster Ensembles were ap-
plied using cosine similarity as inner similarity measure. The parameters for all
algorithms were chosen globally optimal. In our experiments we used α = 0.1.
For β, the optimal value was 1. Kernel k-means and random clustering were
started five times with different random initializations.

Table 1 shows the results. As can be seen, the local alternative cluster ensem-
bles approach LACE performs best (see [23] for more details on the evaluation).

The application opportunities of LACE are, on the one hand, to structure
collections automatically but personalized and, on the other hand, to recommend
items mass-tailored to a user’s needs. If all not yet classified instances fit into a
hand-made structure, the structure is not changed. If, however, some instances do
not fit or a cluster has become too large, a set S is formed and other structures
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Table 1. The results for different evaluation measures

Method Correlation Absolute distance FScore
LACE 0.44 0.68 0.63
K k-means audio 0.19 2.2 0.51
K k-means ensemble 0.23 2.5 0.55
single-link audio 0.11 9.7 0.52
single-link ensemble 0.17 9.9 0.60
random 0.09 1.8 0.5

ϕi are exploited. This leads to some new structures and is accompanied by
recommendations.

Let us look at some examples for illustration.

– In the cluster “pop” of user A there might be too many instances. Now, a
structure ϕB dividing similar songs into “rock”, “metal”, and “disco” might
be found in the collection of user B under a different title, say “dance-floor”.
Integrating these clusters is accompanied by new instances from user B.
These recommendations are specific to user A’s “pop” cluster (i.e., local).

– Another example starts with several music plays S, which user A did not
find the time to structure. He might receive a structure ϕ1 according to
instruments and another one, ϕ2, with funny titles like “songs for Sabine”,
“poker nights”, and “lonely sundays”. When listening to music in the latter
clusters, user A might like them and change the tags to “romance”, “dinner
background”, and “blues”.

– Of course, memory categories (e.g., “holidays 2005”) will almost never be-
come tasks for automatic structuring, because their extension is precisely
determined and cannot be changed. However, for somebody else, also these
categories can be useful and become (under a different name) a cluster for a
larger set of instances.

The localized alternative cluster ensembles offer new services to heterogeneous
user groups. The approach opens up applications in the Web 2.0 context rang-
ing from content sharing to recommendations and community building, where
the locality requirement is essential. Machine Learning, here, does not support
professional performance but the computer use for leisure. It supports the many
small groups of users, which together are more than the main stream group.
Both from a commercial and ethical point of view, this is challenging service.

3 Structuring Tagged Collections

Collaborative tagging of resources has become popular. Systems like
Del.icio.us3, Last.fm4, or FlickR5 allow users to annotate all resources by
3 http://del.icio.us/
4 http://last.fm/
5 http://flickr.com
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freely chosen tags, without a given obligatory taxonomy of tags (ontology). Since
the users all together develop the “taxonomy” of the Web 2.0 by their tags, the
term "folksonomy" came up.

Definition 6 (Folksonomy). A folksonomy is a tuple F = (U, T, R, Y ),
where U is the set of users, T the set of tags, and R the set of resources. Y ⊆
U × T ×R is a relation of taggings. A tuple (u, t, r) ∈ Y means, that user u has
annotated resource r with tag t.

The popular view of folksonomies is currently the tag cloud, like the one shown
in Figure 2. Tags are understandable although not precisely defined. While tag
clouds support users to hop from tag to tag, inspecting the resources is cum-
bersome. When selecting a tag, the user finds all the resources annotated with
this tag. There is no extensionally based hierarchy guiding the exploration of re-
sources. For instance, a user cannot move from all photos to those being tagged
as "art", as well. Hence, navigation in folksonomies is particularly restricted.
However, the data for a more appropriate structure are already given – they just
need to be used. A resource, which has been tagged as, e.g., {art, photography}
is linked with the termsets {art}, {photography}, {art, photography} by a func-
tion g : T×R→ N. The user may now refine the selection of resources, e.g., from
all photos to those being annotated as "art", as well. As is easily seen, the power
set of tags, together with union and intersection forms a lattice (see Figure 3). If
we choose cluster sets within this lattice, these no longer need to form a lattice.
Only quite weak assumptions about valid cluster sets are necessary:

Definition 7 (Frequent Termset Clustering Conditions). A cluster set
C ⊆ P(T ) is valid, if it fulfills the following constraints:

∅ ∈ C (9a)
∀D ∈ C with D �= ∅ : ∃C : C ≺ D (9b)
∀C ∈ C : ∃r ∈ R : r∇C. (9c)

Condition (9a) states that the empty set must be contained in each cluster set.
Condition (9b) ensures that there is a path from each cluster to the empty set

fonts food free freeware fun funny furniture gallery game games google graphics green hardware

health history home howto humor illustration imported inspiration internet java

javascript jobs language library lifehacks linux mac magazine management maps marketing

media microsoft mobile movies mp3 music network networking news online opensource osx

phone photo photography photos photoshop php plugin politics portfolio productivity

programming psychology python radio rails recipes reference research resource

resources rss ruby rubyonrails science search security seo sga shop shopping slash social

Fig. 2. Tag cloud view of an excerpt of the Del.icio.us tags. More frequently used
tags are printed in a bolder style.
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Fig. 3. The frequent termsets with the lattice of possibly frequent termsets grayed

(thus the cluster set is a connected graph). Condition (9c) ensures that each
cluster contains at least one resource.

The link to the resources is given by the cover relation based on the function
g:∇ ⊆ R × P(T ) for which the following holds:

r∇C ≡ ∀t ∈ C : g(t, r) > 0 (10)

A resource is covered by a termset, if all terms in the termset are assigned to
the resource. The support of a termset is defined as the fraction of resources
it covers. The frequency of tag sets can either be defined as the number of
resources it covers, or as the number of users annotating resources with it, or as
the number of tuples U × R. Our method works with any of these frequencies.
Using FPgrowth of [9], we find the frequent sets which only need to obey the
clustering conditions 9a, 9b, and 9c.

3.1 Learning Pareto-optimal Clusterings from Frequent Sets

Having found all frequent tag sets, the task of structuring them according to
the preference of a user is to select a cluster set C among all possible valid
clusterings Γ. Since we do not know the preference of the user, we do not tweak
heuristics, such that these select a preferred clustering, as done in [21], [1], [7].
In contrast, we decompose the selection criteria into two orthogonal criteria and
apply multi-objective optimization. Given orthogonal criteria, multi-objective
optimization [2] finds all trade-offs between the criteria such that the solution
cannot be enhanced further with respect to one criterion without destroying the
achievements with respect to the other criteria – it is Pareto-optimal. The user
may then explore the Pareto-optimal solutions or select just one to guide her
through a media collection.
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Several algorithms were proposed for multi-objective optimization, almost all
of them based on evolutionary computation [2, 24]. In this work, we use the
genetic algorithm NSGA-2 [4] to approximate the set of Pareto-optimal solutions.
We used the operators implemented within the RapidMiner system, formerly
known as Yale [16]. The population consists of cluster sets. These individuals
are represented by binary vectors. A mapping from cluster sets to binary vectors
is defined such that each element of the set of frequent termsets corresponds to
one position in the vector. The result of the initial frequent termset clustering
corresponds to a vector where each component has the value 1. This hierarchy
of frequent sets is traversed in breadth-first manner when mapping to the vector
components. We are looking for optimal solutions which are part of the frequent
sets result, i.e., vectors where some of the components have the value 0. As
a illustration, Figure 4 shows the binary encoding of a cluster set, where the
frequent sets {a}, {b}, {c}, {a, b}, {b, c} had been found. In the course of mutation
and cross-over, the NSGA-2 algorithm may create vectors that correspond to
invalid cluster sets. These are repaired by deleting those clusters that are not
linked to a path which leads to the root cluster. Hence, our cluster conditions
are enforced by post-processing each individual.

{}

{b}{a} {c}

{b,c}{a,b}

1 0 1 11

Fig. 4. Each cluster corresponds to a component of the vector. The ordering corre-
sponds to breadth-first search in the result of the frequent termset clustering, i.e. the
complete search space.

The algorithm approximates the set Γ∗ ⊆ Γ of Pareto-optimal cluster sets.

Γ∗ = {C ∈ Γ |� ∃D ∈ Γ : f(D) � f (C)} (11)

where f(D) � f(C) states that there is no cluster set D that Pareto-dominates
the cluster set C with respect to the fitness functions f . Thus Γ∗ contains all
non-dominated cluster sets.

3.2 Resulting Navigation Structures

We have applied our multistrategy approach which combines frequent sets with
multi-objective optimization to data from the Bibsonomy system ( [11]), which
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is a collaborative tagging system allowing users to annotate web resources and
publications. Our data set contains the tag assignments of about 780 users. The
number of resources tagged by at least one user is about 59.000. The number of
tags used is 25.000 and the total number of tag assignments is 330.000. Since all
Pareto-optimal clusterings are found in one learning run, it does not make sense
to compare the found clusterings to a one delivered by an alternative approach.
Either the one clustering is part of the Pareto front, or it is not Pareto-optimal.

The clusterings in Figure 5 show some navigation structures from a Pareto
front minimizing overlap and maximizing coverage. In the picture, only the depth
of a node is indicated. Each node is a set of resources labeled by (a set of)
tags. Since users regularly navigate by tags, these labels are easily understood.
Also the structure is easily understood so that users can, indeed, select the
structure they like. Other approaches combine the two criteria into one heuristic
and deliver just one of the shown clusterings. A more detailed analysis of the
individual results shows the following:

– Cluster sets that fulfill the overlap criterion well are quite narrow and do
not cover many resources.

Fig. 5. Some cluster sets from the Pareto front optimizing overlap vs. coverage: starting
with a small overlap (upper left) moving to a high coverage (lower left)
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– Cluster sets that fulfill the coverage criterion well are quite broad and contain
a lot of overlap. Note, however, that overlap might be desired for navigation:
the same resource can then be retrieved using different tags or tag sets.

– All resulting cluster structures are very shallow, as neither of the criteria
forces the selection of deep clusters. Both, high coverage and low overlap
can be achieved with clusters of level one.

Multi-objective optimization requires the criteria to be orthogonal. Hence, it
has to be verified for each pair of criteria that they are negatively correlated.
Actually, on artificially generated data, the correlations of criteria has been inves-
tigated [12]. In addition to the usual clustering criteria of overlap and coverage,
we have defined criteria which take into account the hierarchy of clusters and the
given frequent tag sets, namely childcount and completeness. Since navigation
is often performed top-down, we use the number of child nodes at the root and
each inner node as indicator of the complexity of a cluster set.

Definition 8 (Child count). Given a cluster set C, we define succ: C → P(C)
as succ (C) = {D ∈ C | C ≺ D} and thus the set C′ ⊆ C as
C′ = {C ∈ C || succ(C) |> 0}. Based on this, we can define

childcountmax(C) = maxC∈C′ | succ(C) | (12)

Thus the complexity of a cluster structure is given as the most complex node.
The maximal child count will usually increase with increasing coverage, since to
cover more resources often means to add clusters.
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Fig. 7. Some cluster sets from the Pareto front optimizing child count vs. completeness:
starting with a small child count (upper left) moving to a high completeness (lower
left)

The criterion of completeness is similar to coverage, but tailored to the fre-
quent termsets that are the starting point of our clustering. The idea of complete-
ness is, that the selected clusters should represent the given frequent termsets
as completely as possible.

Definition 9 (Completeness). Given two cluster sets C and Cref . We assume
C ⊂ Cref . Then the function complete : Γ×Γ→ is defined as:

complete(C, Cref ) =
| C |
| Cref | (13)

Thus, the more of the original frequent termsets are contained in the final clus-
tering, the higher the completeness. This combines coverage and cluster depth in
one straighforward criterion. Figure 6 shows the Pareto front when minimizing
childcount and maximizing completeness. Figure 7 shows some clusterings along
the Pareto front when optimizing child count vs. completeness.
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Inspecting the Pareto optimal results more closely yields the following:

– Clusterings with a small maximum child count are narrow, but deep. This
effect can be explained, as deep clustering yield on average a higher com-
pleteness.

– Clusterings with high completeness are broader, but still deep and contain
much of the heterogeneity contained in the original data. They also show a
very high coverage.

In this way, we can actually optimize three criteria at once: the simplicity of
the cluster structure, its detailedness in terms of cluster depth, and the coverage
of resources. These criteria are furthermore not biased to remove heterogeneity
from the data, which is essential in many explorative applications.

Tag set clustering by multi-objective optimization on the basis of frequent set
mining is a multistrategy learning approach which supports the personalized ac-
cess to large collections in the Web 2.0. The decomposition of clustering criteria
into orthogonal ones allows to compute all Pareto-optimal solutions in one learn-
ing run. Again, the service is to heterogeneous user groups. Machine Learning
helps to automatically build Human Computer Interfaces that correspond to a
user’s preferences and give him or her a choice.

4 Conclusion

In this chapter, two approaches of Machine Learning serving the Web 2.0 have
been shown. Both deliver sets of clusterings in order to allow users to choose.
Both are labeled by user given tag (sets) without a formally defined semantics
but understood in the way natural language is understood. In order to serve het-
erogeneous user groups, we have focused on the locality in the LACE algorithm
and on delivering all Pareto-optimal solutions in the tagset clustering. Since
Ryszard Michalski has always been open to new approaches and, at his last visit
at Dortmund, was curious about our then emerging attempts to apply Machine
Learning to the Web 2.0, we are sorry that we cannot discuss matters with him,
anymore. Even though our methods are different from his, the impact of his
ideas about understandability, service of Machine Learning, and multistrategy
learning is illustrated also by this moderate work.
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Abstract. Automated classification of text documents has two distinctive as-
pects. First, each training or testing example can be labeled with more than two
classes at the same time—this has serious consequences not only for the induction
algorithms, but also for how we evaluate the performance of the induced classi-
fier. Second, the examples are usually described by great many attributes, which
makes induction from hundreds of thousands of training examples prohibitively
expensive. Both issues have been addressed by recent machine-learning litera-
ture, but the behaviors of existing solutions in real-world domains are still far
from satisfactory. Here, we describe our own technique and report experiments
with a concrete text database.

Keywords: Classifier induction, text classification, multi-label examples, infor-
mation fusion, Dempster-Shafer theory.

1 Introduction

The last two decades were marked by significant progress in the studies of digital
libraries, some of them containing millions of documents. The fast development of
corpuses of this size places a heavy burden on the indexing mechanisms that provide
access to the stored information. Ideally, we would like the user to be able to identify
the documents of interest either by selecting from hierarchically organized (pre-defined)
categories or by entering well-chosen keywords. In response, the system would return
those files that are relevant to the user’s request.

The indexing scheme is easy to create as long as the number of documents is manage-
able: a human operator simply labels every instance in the collection with the category
it belongs to, and—if needed—furnishes additional information such as the language,
source, or intended audience (e.g., a scientific versus a popular paper). But manual an-
notation is impractical and prohibitively expensive in the case of collections that contain
millions of documents, especially if thousands of new instances are added on a daily
basis. In such domains, we would appreciate a computer program capable of automat-
ing the process. In the scenario considered in this paper, the human expert labels a small
fraction of the documents, thus creating a training set from which the computer induces
a classifier to be used to label the rest.

This looks like a standard job for machine learning, but we must also be aware of
some traits that set this task apart. First, the number of classes can be so high as to
render the use of certain types of classifiers problematic; second, the tens of thousands

J. Koronacki et al. (Eds.): Advances in Machine Learning II, SCI 263, pp. 225–244.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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of attributes that typically describe a document impose on induction a heavy computa-
tional burden; and third, while classical machine learning assumes one class for each
example, a text document often belongs to two or more (even many) classes at the
same time. Therefore, we need new induction algorithms, and we also have to re-think
the ways to evaluate the performance of the resulting classifiers. As indicated by the
literature survey in the next section, this specific strand of research has been pursued
by several research groups, but the results are still far from satisfactory. The difficulty
of the involved problems—and their economic and practical importance—is bound to
keep the research alive for years to come.

The work reported in this paper has been inspired by the challenges posed by EU-
ROVOC, a particularly large multilingual collection, created by virtue of close collabo-
ration of the European Parliament, the European Commission’s Publications Office, and
the national organizations of the EU member states. The documents in this collection
come from such diverse fields as law, economics, trade, education, communications,
medicine, agriculture, and many others. The corpus is expected to grow to millions
of documents, each described by about 100,000 numeric features (each specifying the
relative frequency of a different word) and known to belong into a subset of more than
5,000 different classes. The classes are hierarchically organized, with 30 different labels
at the top level [9, 17].

Very soon, we learned that existing techniques would be impractical. For illustration:
having experimented with one of the best-known methods—ADTree [10]—we were as-
tonished to observe that several hours were needed to process even a highly simplified
version of the data: 20,000 documents described by 100 features. Worse still, when
we increased the number of features from the clearly inadequate 100, we realized that
the computation time grew supralinearly—induction from examples described by 1,000
features incurred much more than ten times the CPU time needed when only 100 fea-
tures were involved. Later, we learned that another technique, AdaBoost.MH, was faster
than ADTree, but it still suffered from the superlinear nature of the computational costs;
these disqualified its straightforward application.

This last observation suggested where to look for an improvement. Suppose we di-
vide the feature set into N subsets. If T is the time needed to induce a classifier from
all features, and Ti the time needed to induce a classifier from the i-th feature subset,
we have ΣTi  T . Figure 1 illustrates the point: running the same classifier on data
described by 50% of the features may take about 10% of the time consumed when all
100% are used; induction of two classifiers, each from a different set of 50% features
will then take about 20% time. We thus surmised that a lot of computation might be
saved by running a baseline induction algorithm (BIA) repeatedly on the same training
examples, each time described by a different feature subset, inducing N subclassifiers.
To classify a document, we submit the feature vector describing it to all subclassifiers
in parallel, and then merge (“fuse”) their outputs.

We put this idea to test in the course of our work on the EUROVOC problem—we
experimented with a few state-of-the-art fusion techniques, and then developed a new
one, built around certain ideas borrowed from the Dempster-Shafer theory of evidence
combination. This paper summarizes the results of experiments designed to investigate
our system’s behavior under different conditions.
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Fig. 1. Computational costs of induction often grow supralinearly, even exponentially, in the num-
ber of features describing the training examples

After a brief survey of related work (in the next section) we formally state our
goal and the requisite performance criteria in Section 3. Then, in Section 4, we out-
line AdaBoost.MH, the BIA of our choice. Section 5 describes the fusion mechanisms,
including the relevant background from the Dempster-Shafer theory. Section 6 reports
experiments that indicate that the approach indeed achieves computational savings that
are not outbalanced by impaired classification performance, and that the approach com-
pares favorably with another recently proposed technique, induction of multi-label de-
cision trees.

2 Previous Work

In the field of automated document classification, it is quite common that a document
simultaneously belongs to two or more categories—this is certainly the case of a mul-
tidisciplinary scientific paper, a patent, or a commentary on a controversial article in an
international-law magazine. Among the text-categorization domains with multi-label
examples, the best known is perhaps the Reuters-21578 dataset, consisting of docu-
ments from the 1987 Reuters newswire [30]; but the same is true for the EUROVOC
domain [24].

The fact that traditional machine learning expects each example to have one and
only one class label motivates the most straightforward solution: for each class, induce
a binary classifier that for each example returns “yes” or “no,” depending on whether
the example is or is not regarded as a representative of the class; a testing example is
then submitted to all these binary classifiers in parallel. Literature has reported sev-
eral successful attempts to employ this approach. For instance, mechanisms based on
the Bayesian decision theory were studied by [20], [13], and [22], the behavior of the
instance-based rule (nearest-neighbor classifiers) was explored by [21], and the cur-
rently popular support vector machines were addressed by [18] and [19]. Somewhat
expectedly, experiments reported in these papers indicate that the support vector ma-
chines tend to outperform more conventional approaches, but usually at the price of
very high computational costs.
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The main defect of the idea to induce a separate classifier for each class is that the
mutual relations between classes are thus neglected. By way of a rectification, [15] de-
veloped a method that trains all classifiers simultaneously (although the discriminant
function they worked with was still based on individual classes), while [16] resorted
to “stacking”: at the lower-level, they used one SVM for each class, and then fed the
outputs of these lower-level SVMs into a higher-level SVM that decided about the final
class labels. The entropy-maximizing technique proposed by [34] explicitly considered
inter-class correlations, and the authors were able to show that their method, while ex-
pensive, outperformed earlier attempts in certain domains; however, their assumption
of the mutual independence of the estimated errors in real-world domains is rarely sat-
isfied. Finally, trying to avoid the need to induce a separate classifier for each label, [7]
extended the methodology of decision tree induction to make induction from multi-label
examples more natural.

The third strand of research focusing on induction from multi-label examples relies
on the “boosting” method that was developed by [26]. The idea is to combine classifiers
that have each been induced from somewhat different training data. Perhaps the best
known from the many versions of this approach is AdaBoost [11, 12]. For domains with
multi-label examples, [27] developed two extensions, AdaBoost.MH and AdaBoost.MR.
Both of them return not only class labels, but also the classifiers’ levels of confidence in
each label. Four extended versions of these algorithms have been included in the system
BoosTexter [27].

In summary, the literature we have reviewed has approached the problem of multi-
label examples from two directions: one induces a binary classifier for each class, the
other induces a general classifier that handles all combinations of classes. Either way,
what all these approaches share is the extreme computational intensity resulting from
the circumstance that thousands of features are needed to describe each document. It
is thus only natural that computational costs constitute a critical criterion to be consid-
ered during the selection of the most appropriate technique. Without significant reduc-
tion of these costs, full-scale applications in large-scale real-world settings are all but
impossible.

3 Problem Statement and Performance Criteria

Let R p be an instance space, let X ⊂R p be a finite set of documents, and let Y be a
finite set of classes such that each xi ∈X belongs to its subset, Yi ⊆ Y . The features
describing the documents have been obtained from the relative frequencies of words or
terms. Given a set of training examples, S = {(x1,Y1), . . . ,(xn,Yn)}, the goal is to find
a classifier to carry out the mapping g : X → 2Y in a way that optimizes classifica-
tion performance. Moreover, the induction of the classifier has to be accomplished in a
realistic time.

To obtain reasonable criteria to measure classification performance, let us start with
those employed by the field of information retrieval for domains where only two class
labels are permitted: positive examples and negative examples. Let us denote by T P
(true positives) the number of correctly classified positive examples; by FN (false
negatives), the number of positive examples misclassified as negative; by FP (false
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positives), the number of negative examples misclassified as positive ones; and by TN
(true negatives), the number of correctly classified negative examples. Let us now use
these four quantities to define precision, Pr, and recall, Re, by the following simple
formulas:

Pr =
T P

T P+ FP
Re =

TP
T P+ FN

(1)

Observing that the user often wants to maximize both criteria, while balancing their
values, [23] proposed to combine precision and recall in a single formula, Fβ , parame-
terized by the user-specified β ∈ [0,∞) that quantifies the relative importance ascribed
to either criterion:

Fβ =
(β 2 + 1)×Pr×Re

β 2×Pr + Re
(2)

It is easy to see that β > 1 gives more weight to recall and β < 1 gives more weight to
precision; that Fβ converges to recall if β → ∞, and to precision if β = 0. The situation
where precision and recall are deemed equally relevant is reflected by the value β = 1,
in which case F1 degenerates to the following formula:

F1 =
2×Pr×Re

Pr + Re
(3)

Based on these preliminaries, [31] proposed two alternative ways how to generalize
these criteria for domains with multi-label examples: (1) macro-averaging, where pre-
cision and recall are first computed for each category and then averaged; and (2) micro-
averaging, where precision and recall are obtained by summing over all individual
decisions. The formulas are summarized in Table 1 where Pri,Rei,T Pi,FNi,FPi, and
T Ni stand for the precision, recall, and the four above-mentioned variables for the i-th
class.

Table 1. The macro-averaging and micro-averaging versions of the precision and recall perfor-
mance criteria for domains with multi-label examples

Precision Recall F1

Macro PrM = ∑k
i Pri
k ReM = ∑k

i Rei
k FM

1 = ∑k
i F1,i
k

Micro Prμ = ∑k
i=1 T Pi

∑k
i=1 (TPi+FPi)

Reμ = ∑k
i=1 T Pi

∑k
i=1 (TPi+FNi)

Fμ
1 = 2×Prμ×Reμ

Prμ+Reμ

For the sake of completeness, we have to mention that other performance metrics
have been recommended (and used) for performance evaluation in multi-label domains,
such as One error, Coverage, Average Precision, Hamming loss, and Ranking loss [28,
33]. To keep things simple, we will not employ them here, although we did report their
use in [24].
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4 Baseline Induction Algorithm

The first step in our research was to choose an appropriate Baseline Induction Algorithm
(BIA). We were interested in techniques whose induction time grows supralinearly in
the number of attributes (because this is what motivated our use of information fusion
in the first place), but also technique also had to induce classifiers with high classifica-
tion performance. Experience of several authors was suggesting the use of the boosting
algorithm [6, 8, 28] that had been used in text categorization tasks before. Our own
early experiments [25] indicated that, in the EUROVOC domain, good results might be
achieved by the use of AdaBoost.MH [27], an extension of the classical boosting ap-
proach to multi-label domains. An important aspect of this program is that it returns not
only class labels, but also confidence in each label. Later, the reader will realize how
we exploit this circumstance by our fusion technique.

For the sake of completeness, Figure 2 summarizes the principle of this technique.
Let X be a set of documents, and let Y be a set of class labels such that each x ∈X
is assigned some Y ⊆ Y . The algorithm maintains a distribution, Dt , over the training
examples and labels. The distribution, uniform at the beginning, is updated after each
boosting round (indexed by t). The learner selects the next training subset randomly
according to Dt , and induces from this training set the next “weak hypothesis,” ht , that
in our experiments has the form of a single-attribute test. After the training session,
AdaBoost.MH outputs a ranking function, f : X ×Y →R (where R is the set of real
values). Label l is assigned to x only if f (x, l) > 0.

This algorithm (together with some others) is included in the software package Boos-
Texter implemented by [27]. Being primarily interested in the fusion mechanisms, we
will regard AdaBoost.MH as a black box invoked by a master algorithm that will run
this BIA on specially designed versions of the training data. The reader will kindly

Given: (x1,Y1),. . . ,(xn,Yn) where xi ∈X , Yi ⊆ Y
Initialize: D1(i, l) = 1/(nk), where k is the size of Y

For t = 1, . . . ,T :
1. Pass distribution Dt to a “weak learner”
2. Induce a “weak hypothesis,” ht : X x Y → R, in the form of a single-attribute test
3. Choose αt ∈ R and update the distribution:

Dt+1(i, l) =
Dt(i, l)exp(−αtYi{l}ht (xi, l))

Zt

where Zt is a normalization factor and αt is a parameter
Obtain the final hypothesis by a weighted voting over the weak hypotheses:

f (x, l) =
T

∑
t=1

αtht(x, l).

Fig. 2. The essence of the AdaBoost.MH algorithm
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remember that each subclassifier induced by this BIA returns for each document x,
and for each class label l, a number f (x, l) ∈ (−∞,∞) that quantifies the subclassifier’s
confidence that x should be labeled with l.

5 Information Fusion

A subclassifier induced by our BIA returns for each document x, and for each class
label l, a number f (x, l) ∈ (−∞,∞) that quantifies the subclassifier’s confidence that x
should be labeled with l. Receiving these values for each document-label pair from each
subclassifier, we need a mechanism to fuse all these “opinions” into one final decision
about the classes with which x is to be labeled.

Figure 3 depicts the overall schema of our system from the classification point of
view. The classification process is triggered by the submission of a feature vector that
describes a document whose class labels are to be establish. Each the subclassifiers in-
duced by the BIA works with a different subset of these features, and returns a different
set of (ranking) functions, f (x, l). From these values, the system computes so-called
basic-belief assignments (BBA) the nature of which we will explain shortly. Finally,
the BBAs are fused by a formula derived from the Dempster-Shafer theory of evidence
combination.

To make the paper self-contained, we first briefly summarize the relevant notion
from the Dempster-Shafer theory, and only then proceed to the description of our own
solution.

5.1 Elements of the Dempster-Shafer Theory

Consider a set of mutually exclusive and exhaustive propositions, Θ = {θ1, . . . ,θk},
referred to as the frame of discernment (FoD). In our context, θi states that “document
x belongs to class θi.” Dempster-Shafer Theory (DST) operates with the Basic Belief
Assignment (BBA) that assigns to any set, A⊆Θ , a numeric value m(A) ∈ [0,1], called
a mass function, that quantifies the evidence that supports the proposition that the given
document belongs to A and only A. The mass function has to satisfy the following
conditions [29]:

m( /0) = 0; ∑
A⊆Θ

m(A) = 1 (4)

Any A such that m(A) > 0 is called a focal element. If Ā is the complement of A, then
m(A)+ m(Ā)≤ 1. A belief function, Bel(A) ∈ [0,1], assigns to every nonempty subset
A⊆Θ the degree of support for the claim that the document’s classes are all contained
in A. This is why the system’s belief in A is calculated as the sum of the masses of all
A’s subsets:

Bel(A) = ∑
B⊆A

m(B) (5)

Note that Bel(A) = m(A) if A is a singleton. The DST rule of combination makes it
possible to arrive at a new BBA by fusing the information from several BBAs that
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Fig. 3. Classifier induction system where different feature subsets are used in generating subclas-
sifiers induced by a baseline induction algorithm and Dempster-Shafer theory is used as a master
algorithm to combine subclassifiers’ evidence

span the same FoD. Let ℑ(Θ) = {A ⊆ Θ : m(A) > 0} be the set of focal elements
within a given body of evidence, BoE. Consider two bodies of evidence, {Θ ,ℑ1,m1}
and {Θ ,ℑ2,m2}. That is, m1 and m2 are BBAs for the same Θ with focal elements ℑF1

and ℑF2, respectively. The normalization constant,
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K12 = 1− ∑
Bi ∈ ℑ1;Cj ∈ ℑ2;

Bi∩Cj = /0

m1(Bi)m2(Cj),

tells us how much m1 and m2 are conflicting. If K12 > 0, then the two BoEs are said to
be compatible, and the two masses, m1 and m2, can be combined to obtain the overall
m that for any A �= /0 is calculated as follows:

m(A) ≡ (m1⊕m2)(A)

= ∑
Bi ∈ ℑ1;Cj ∈ ℑ2;

Bi∩Cj = A

m1(Bi)m2(Cj)÷K12.

The idea of applying DST to classification problems is not new. [2] reported their ex-
perimental evaluation of five ensemble methods from which the one based on DST
gave encouraging results under realistic circumstances. [1] then described their own
DST-based classifier combination technique that outperformed other classifier combi-
nation methods on three different domains. In the experiments of [3], the performance
of the best combination of different classifiers on ten benchmark domains slightly out-
performed the best individual method. A successful attempt to combine—with the help
of DST—sets of rules used in text categorization was also reported by [4]. However, all
these approaches focus on domains with single-label examples. The contribution of our
paper is the use of DST-fusion in domains with multi-label examples.

5.2 Fusion Mechanisms

Each run of the BIA induces a subclassifier that for document x and class label l returns
the value of a function, f (x, l) ∈ (−∞,∞), that quantifies the subclassifier’s confidence
in l—higher f (x, l) indicates higher confidence. To combine the returned labels and
confidence values of multiple subclassifiers, we need an appropriate fusion mechanism.

To be able to use DST, we first have to convert f (x, l) into what can be treated as a
mass function that (the reader will recall) must have values from the interval [0,1]. This
conversion can only be accomplished heuristically because literature on uncertainty
processing does not offer any straightforward analytical technique.1

Our proposed solution is summarized in Figure 4: for a given l, it calculates the
difference between f (x, l) and the minimum confidence of the subclassifier in any label,
and then divides the result by the maximum difference observed in the outputs of this
subclassifier. The idea is to make sure that the converted values can be treated as degrees
of belief where values close to 1 indicate strong belief in l, and values close to 0 indicate
strong disbelief in l. In the same spirit, if a subclassifier returns f (x, l) > 0 for all class
labels, then all converted values should fall into the interval [0.5,1] (case “a”), whereas
if the subclassifier returns f (x, l) < 0 for all class labels, then all converted values should
fall into the interval [0,0.5] (case “b”). But of course, most common is the case where
the subclassifier returns f (x, l) > 0 for some labels and f (x, l) < 0 for others (case “c”).

1 See the extensive discussion in the chapter “Attribute Data Fusion” of the monograph [5].
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1. When f (x, l)≥ 0 for all labels,

f ∗(x, l) = 0.5+
f (x,l)−min

l′
f (x,l′)

2×(max
l′

f (x,l′)−min
l′

f (x,l′))

2. When f (x, l) < 0 for all labels,

f ∗(x, l) =
f (x,l)−min

l′
f (x,l′)

2×(max
l′

f (x,l′)−min
l′

f (x,l′))

3. When some f (x, l)≥ 0 and some f (x, l) < 0,

f ∗(x, l) =

⎧⎪⎪⎨
⎪⎪⎩
−

f (x,l)−min
l′

f (x,l′)

2×min
l′

f (x,l′) , if f (x, l) < 0

0.5+ f (x,l)
2×max

l′
f (x,l′) ,if f (x, l)≥ 0

Fig. 4. Converting the ranking function of each label to a degree of belief

The next step is summarized in Figure 5: the converted confidence values are used
in the calculations of basic belief assignments (BBAs) for different class labels. Let us
denote by l̄ the negation of l (meaning that the document is not to be labeled with l).
From the DST perspective, a classifier can for each class and each document return
one out of four different labellings: Θ = {l, l̄, [l, l̄], /0} (recall that [l, l̄] is in the DST
interpreted as meaning that both l and l̄ are possible). The mass has to be calculated
for each of these outcomes separately. The formal proof that the masses thus calculated
satisfy the condition from Equation 4 was presented in [24].

Finally, the formulas obtained by the procedure from Figure 6 employ the Dempster-
Shafer rule of combination to fuse the mass values returned by the individual subclas-
sifiers for each of the four possibilities of each class label. Once this step has been
accomplished, the beliefs in the individual classes are calculated as Bel(l) = m(l) and
Bel(l̄) = m(l̄). Note that l and l̄ are singletons. The following classification rule is then
used:

Assign label l to the document if Bel(l) > Bel(l̄).

Put another way, the system assigns label l to the document if its belief in l is higher
than its belief in l̄. In the rest of the paper, the approach just described will be referred
to as DST-Fusion.

Weighted sum. Let us now briefly mention that another recently published fusion method
relies on a so-called “weighted sum” approach [14], where the confidence scores are
weighed by the accuracies of the individual subclassifiers. To be more concrete, let
fi
∗(x, l) denote the normalized confidence score (see above) that subclassifier i assigns
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1. Compute classification error probabilities for each label.

P(l̄|l) =

#of class l documents
that are not classified as class l

#of class l documents

P(l|l̄) =

#of documents not in class l
that are classified as class l

#of documents that are not class l
2. Estimate prior probability of each label.

P(l) =
#of class l documents
Total#of documents

P(l̄) = 1−P(l)

3. Compute a set of BBAs associated with each label.

m(Θ) = P(l|l̄)P(l̄)+P(l̄|l)P(l) (6)

m(l) = f ∗(x, l)∗{1−P(l|l̄)P(l̄)−P(l̄|l)P(l)} (7)

m(l̄) = f ∗(x, l̄)∗{1−P(l|l̄)P(l̄)−P(l̄|l)P(l)} (8)

= (1− f ∗(x, l))∗{1−P(l|l̄)P(l̄)−P(l̄|l)P(l)} (9)

Fig. 5. Computing the Dempster-Shafer masses for class labels

For a given l, combine two sets of BBAs, m1 and m2, associated with l:

m(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if A = /0

(m1(l)m2(l)+m1(l)m2(Θ)
+m1(Θ)m2(l))÷K12,

if A = l

(m1(l̄)m2(l̄)+m1(l̄)m2(Θ)
+m1(Θ)m2(l̄))÷K12,

if A = l̄

(m1(Θ)m2(Θ))÷K12,
if A = Θ

where
K12 = 1−{m1(l)m2(l̄)+m1(l̄)m2(l)}.

For more classifiers, continue combining the resulting BBA, m, from previous combination
with BBA from the next using the same formula.

Fig. 6. Evidence combination

to class label l for example x. The accuracy of subclassifier i in predicting class l is
obtained by the following formula:

Acci(l) = P(l|l)P(l)+ P(l̄|l̄)P(l̄).
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For the case of N subclassifiers, the weighted-sum approach assigns to document x label
l if the following condition is satisfied:

w(l) =

N
∑

i=1
Acci(l)∗ fi

∗(x, l)

N
∑

i=1
Acci(l)

> 0.5.

6 Experiments

The size of the original database makes systematic performance evaluation rather im-
practical. Given that each single experimental run on the complete data takes many
days, it is impossible to go through the hundreds of experiments needed for statistically
justified conclusions. As the next-best solution, we decided to work with a simplified
database: 10,000 documents described by 4,000 features, and labeled with only the 30
classes. We used all class labels from the top-most level of the class hierarchy, and we
selected the features by the Document Frequency criterion, an unsupervised feature se-
lection method recommended for text categorization by [32]—in principle, we picked
randomly 4,000 features from those that appeared in more than 50 documents.

We will report two sets of experiments. The first was designed to tell us more about
the behavior of DST-fusion under diverse circumstances: different numbers of features
used by the individual subclassifiers, and different numbers of subclassifiers. In partic-
ular, we wanted to know how the classification performance, as well as computational
costs, vary with the changing values of these parameters. In the second set of experi-
ments, meant to place DST-fusion in the context of related research, we compared our
technique with a completely different approach known from recent literature: the Multi-
Label C4.5 [7]. We suspected that the superiority of the one or the other may depend on
the number of features used to describe the document to be classified.

6.1 Fusion’s Performance

The basic motivation for the subclassifier combination was to reduce computational
costs. At the same time, we needed to make sure that the speed-up has not been achieved
at the cost of seriously curtailed classification performance. Finally, we wanted to learn
how DST-fusion’s behavior was affected by different sizes of the feature subsets, and
we needed to ascertain whether some general guideline could be devised for the choice
of an optimum number of subclassifiers.

In the first experiment, we randomly selected from the (reduced) feature set 500,
1,000, 2,000, and 4,000 features, respectively. For each of these selections, we created
five equally-sized overlapping feature subsets, each with 25% randomly selected fea-
tures, thus obtaining sets of 125, 250, 500, and 1,000 features, respectively. Using the
training examples described by these feature vectors, we compared the performance of
AdaBoost.MH when run on all features (in our graphs, this case is labeled with “NoFu-
sion”) with that of AdaBoost.MH when run on feature subsets with subsequent fusion.
The number of boosting rounds used by AdaBoost.MH was set at 10% of the number of
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Fig. 7. Average classification performance of fused sublcassifiers as compared to the original
“NoFusion” method: varying the number of features

features (e.g., 50 rounds for the experiment involving 500 features). Apart from the pure
DST-Fusion, we also worked with the “weighted sum” mechanism (both approaches
were described in Section 5.2). For the sake of comparison, we experimented also with
two other classifier combination methods: plain majority voting, and weighted majority
voting. In the latter, the vote of each classifier supporting class l was weighted by the
accuracy, P(l|l)P(l)+ P(l̄|l̄)P(l̄). All graphs in this section were obtained as averages
from 5-fold crossvalidation.

The graphs in Figure 7 compare the performance of the “NoFusion” case with that
of DST-Fusion, weighted majority voting, and “weighted sum.” We omitted plain ma-
jority voting because it almost always underperformed the other approaches; therefore,
the inclusion of its chart would only reduce clarity. As for performance criteria, we
used the micro- and macro-averaging of precision, recall, and F1. The graphs show that
the performances of DST-Fusion and “weighted sum” are comparable to “NoFusion”
in terms of micro-averaging F1.2 A closer look reveals that DST-Fusion and “weighted
sum” have the lowest micro-averaging precision and the highest micro-averaging recall
among the methods, while the two majority-voting schemes have poor micro-averaging

2 When subjected to the t-test, the differences in the performance of DST-Fusion and “weighted
sum” turn out to be statistically insignificant. However, this does not mean that they both
tended to label the documents with the same classes. We observed that each of them misclas-
sified different documents, but they both committed about the same number of errors.
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Fig. 8. Average classification performance of fusion methods as compared to the original “NoFu-
sion” method: varying the number of subclassifiers

recall and F1. In terms of macro-averaging, “NoFusion” outperforms the other meth-
ods. In a separate set of experiments (not detailed here) we ascertained that that DST-
Fusion, “weighted sum,” and “NoFusion” outperformed each single subclassifier, but
the weighted majority voting occasionally failed to outperform the best subclassifier.

The relatively small reduction of DST-fusion’s classification performance as com-
pared to the “NoFusion” case is particularly encouraging in view of the convincing sav-
ings in computation time. The latter are plotted in the left part of Figure 9 that shows the
exponential growth in the time needed to induce the “NoFusion” classifier as compared
to the (more or less) linear growth in the time needed to induce the DST-fusion system.
For the case of 4,000 features, the “NoFusion” approach needs six times more time than
DST-fusion.

In the second round of experiments, we wanted to know how the classification per-
formance varied with the number of subclassifiers. To this end, we divided the 4,000
features in four different ways into overlapping subsets: 5 sets of 1,000 features each,
10 sets of 500 features each, 20 sets of 250 features each, and 40 sets of 125 features
each. For each of these divisions, we compared the performance of DST-Fusion to that
of a single classifier induced from all 4,000 features. As before, the number of boosting
rounds was set to 10% of the number of features. The results are shown in the graphs
in Figure 8. The reader can see that the performance of DST-Fusion and “weighted
sum” along these criteria deteriorated with the growing number of subclassifiers,
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Fig. 9. CPU time as plotted against the growing number of features (left) and growing number of
subclassifiers (right)

although they still clearly outperformed the other voting methods. We did not observe
any discernible difference between DST-Fusion and “weighted sum.” Moving from the
“NoFusion” case to the extreme case of the fusion of 40 subclassifiers incurred perfor-
mance loss of 24%, clearly indicating that the use of 125 features was insufficient for
the induction of useful subclassifiers.

The right part of Figure 9 shows that the induction time of DST-fusion steeply drops
with the growing number of subclassifiers. Evidently, the trade-off between classifica-
tion performance and computation costs deserves closer attention in our future research.
the concrete choice of how many subclassifiers are to be induced (and combined) will
probably depend on the specific needs of a concrete application.

6.2 Comparing BoosTexter and Multi-Label C4.5

Our final task was to compare the behavior of the “fused” AdaBoost.MH with that
of the perhaps more traditional Multi-Label C4.5, a program that generalizes classical
induction of decision trees into the multi-label case. We will be interested in two per-
formance criteria: classification accuracy, and induction time; the former was evaluated
in terms of precision and recall; the latter, in minutes of CPU time. In our experiments,
we wanted to know how the classification performance and computational costs change
as we vary the number of features used to describe the individual documents.

Again, we ran both programs on a simplified version of the database, consisting
of 10,000 documents described by 4,000 features. Only the 30 top-level class labels
we used. To achieve acceptable statistical reliability of the results, we followed the
methodology of 5-fold crossvalidation. This means that in each run a classifier was
induced from 8,000 documents and then tested on the remaining 2,000 documents. We
repeated this experiment for different numbers of features, running from 500 to all 4,000
features used in the “reduced” database.

Figure 10 summarizes the results of these experiments. The first thing to observe
is that AdaBoost.MH systematically outperformed Multi-Label C4.5 in terms of both
Macro-F1 and Micro-F1, especially when a larger number of features was employed.
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Fig. 10. Classification performance of the two approaches along different criteria, as measured
on independent testing data. The AdaBoost.MH is labeled by the name of the entire package of
which it is a part, BoosTexter. The reader can see that Multi-Label C4.5 is better along precision,
whereas AdaBoost.MH is better along recall and F1. AdaBoost.MH seems to gain an edge with
the growing number of features employed.
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Fig. 11. Induction time measured in minutes. The time indicated in the graph is always the sum
total of all five runs of the 5-fold crossvalidation procedure.

Perhaps more interestingly, a closer look reveals that each method displayed a some-
what different behavior along the component criteria of F1: AdaBoost.MH turned out to
be better in terms of recall (both micro and macro), whereas Multi-Label C4.5 turned
out to be better in terms of precision, especially in situations where only a relatively
small subset of features was used. The experiments seem to indicate that the decision-
tree based Multi-Label C4.5 is able to get the most from even a very small feature set.
This may be due to the fact that AdaBoost.MH only isolated features or linear combi-
nations of features, whereas decision trees allow for more flexible representation.

The disparate behavior of the two techniques along precision and recall needs to be
properly understood before choosing the induction method. For instance, users of auto-
mated recommender systems are discouraged when offered a wrong document, even if
this happens very rarely. Ability to minimize such cases is measured by precision, and
this is why the decision-tree based system will in domains of this kind be preferred. On
the other hand, recall is important when we want to make sure that all (or almost all)
documents of the requested class have been returned. Then, the recall criterion will be
critical, which means that AdaBoost will be given preference. At the same time, we have
to be aware of the circumstance that our experiments indicate that a growing number of
features seems to mitigate the difference between the two systems’ behavior.

The next round experiments was designed to illustrate the computational complexity
of the algorithms. The results are summarized by Figure 11 that plots the CPU times
consumed by the two programs for growing numbers of features. The reader can see that
Multi-Label C4.5 is clearly more expensive than the competing program: note how fast
the costs grow with the increasing number of features. We conclude that the practical
utility of multi-label decision trees in the complete EUROVOC domain (with hundreds
of thousand of documents and tens of thousands of features) is limited.
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7 Conclusion

A popular research strand in machine learning focuses on how to induce a set of
subclassifiers—each for a somewhat different version of the training set—and then how
to combine (“fuse”) their outputs. In this paper, we concentrated on the problems posed
by the classification of text documents. Two critical circumstances deserve our atten-
tion, in this context: first, text documents are typically described by very long feature
vectors; second, each document can belong to two or more classes at the same time.
The former aspect motivates our intention to work with several features subsets, as it is
common in certain version of the boosting algorithm. The second aspect necessitates a
somewhat more sophisticated fusion mechanism than those that have been common in
the machine learning literature.

In our proposed technique, we used a well-known boosting algorithm, AdaBoost.MH,
as a “baseline induction algorithm” to be used for the induction of a set of subclassi-
fiers, each from the same training set that, however, uses a different feature subset. As
for the fusion, we did consider the use of classical voting schemes, but—feeling that
these schemes might not give full justice to all the information (such as confidence val-
ues) returned by the subclassifiers—we developed our own fusion method around the
principles of the Dempster-Shafer Theory. We call this technique DST-fusion.

Experiments with a simplified version of our application domain indicate that (1)
DST-fusion can lead to impressive savings in the computational time without seriously
impairing the classification performance, and (2) that DST-Fusion and “weighted sum”
systematically outperformed the more traditional methods of plain voting and weighted
majority voting. We did not observe statistically significant difference between the per-
formance of DST-Fusion and “weighted sum,” but since DST-Fusion is easier to imple-
ment, we may be inclined to favor the “weighted sum” approach. Yet, closer inspection
(not detailed in this paper) revealed that, although each of the two winning techniques
committed about the same number of errors, each erred on different documents. In this
sense, we think it premature to discard one in favor of the other. More systematic anal-
ysis is needed.

When comparing DST-Fusion with a more traditional approach, we observed that,
most of the time, our approach compares favorably with one based on induction of
decision trees, namely, the program known as Multi-Label C4.5. The exception is the
case when the user wants to make sure that the vast majority of the returned documents
are relevant to the query, even if many other relevant documents have been overlooked.
Then, Multi-Label C4.5 might be a better choice. Even so, the high computational costs
incurred in similar domains by decision-tree induction represent a major detriment.
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Abstract. The paper builds on the idea by R. Michalski of inferential concept
interpretation for knowledge transmutation within a knowledge structure taken
here to be a concept tree. We present a method for representing research activi-
ties within a research organization by doubly generalizing them. To be specific,
we concentrate on the Computer Sciences area represented by the ACM Com-
puting Classification System (ACM-CCS). Our cluster-lift method involves two
generalization steps: one on the level of individual activities (clustering) and the
other on the concept structure level (lifting). Clusters are extracted from the data
on similarity between ACM-CCS topics according to the working in the orga-
nization. Lifting leads to conceptual generalization of the clusters in terms of
“head subjects” on the upper levels of ACM-CCS accompanied by their gaps and
offshoots. A real-world example of the representation is provided.

Keywords: Cluster-lift method, additive clustering, concept generalization,
concept tree, knowledge transmutation.

1 Introduction: Inductive Generalization for Concept
Interpretation

In his work on inferential learning theory [5,6], R. Michalski pointed out the impor-
tance of knowledge transmutation defined as the process of deriving desirable knowl-
edge from a given input and background knowledge. He envisioned that knowledge
transmutation can be performed in terms of pairs of operations such as

selection vs. generation, replication vs. removal, reformulation vs. randomiza-
tion, abstraction vs. concretion, similization vs. dissimilization, and general-
ization vs. specialization.

[6], p. 3. In this paper, we would like to draw attention to the possibility of formalizing
the generalization step within the framework of knowledge represented by a concept
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tree, such as decision trees advocated by R. Michalski in the framework of concep-
tual clustering [7,17]. Concept trees currently are well recognized knowledge struc-
tures being important part of ontologies, taxonomies and other forms of knowledge
representation.

Consider, for example, ACM Computing Classification System (ACM-CCS), a con-
ceptual four-level classification of the Computer Science subject area, built to reflect
the vast and changing world of computer oriented writing. This classification was first
published in 1982 and then thoroughly revised in 1998, and it is being updated since
[1]. ACM-CCS comprises eleven major partitions (first-level subjects):

A. General Literature
B. Hardware
C. Computer Systems Organization
D. Software
E. Data
F. Theory of Computation
G. Mathematics of Computing
H. Information Systems
I. Computing Methodologies
J. Computer Applications
K. Computing Milieux

These are subdivided into 81 second-level subjects. For example, item I. Computing
Methodologies consists of eight subjects:

I.0 GENERAL
I.1 SYMBOLIC AND ALGEBRAIC MANIPULATION
I.2 ARTIFICIAL INTELLIGENCE
I.3 COMPUTER GRAPHICS
I.4 IMAGE PROCESSING AND COMPUTER VISION
I.5 PATTERN RECOGNITION
I.6 SIMULATION AND MODELING (G.3)
I.7 DOCUMENT AND TEXT PROCESSING (H.4, H.5)

which are further subdivided into third-layer topics as, for instance, I.5 PATTERN
RECOGNITION which consists of seven topics:

I.5.0 General
I.5.1 Models
I.5.2 Design Methodology
I.5.3 Clustering

Algorithms
Similarity measures

I.5.4 Applications
I.5.5 Implementation (C.3)
I.5.m Miscellaneous
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These are further subdivided in unlabeled subtopics such as those two shown for topic
I.5.3 Clustering.

As can be seen from the examples above, there are a number of collateral links
between topics both on the second and the third layers - they are in the parentheses
in the ends of some topics such as I.6, I.7, and I.5.5 above.

Concept tree structures such as the ACM-CCS are used, mainly, as devices for anno-
tation and search for documents or publications in collections such as that on the ACM
portal [1]. However, being adequate domain ontologies, concept trees can and should
be used for other tasks as well. For example, the ACM-CCS tree has been applied as:

– A gold standard for ontologies derived by web mining systems such as the
CORDER engine [18];

– A device for determining the semantic similarity in information retrieval [9] and
e-learning applications [21];

– A device for matching software practitioners’ needs and software researchers’ ac-
tivities [2].

Here we concentrate on yet another application of ACM-CCS, mapping research activ-
ities in Computer Sciences. However, our method can be utilized in other knowledge
domains as well. The method works for any domain if its structure has been represented
with a concept tree. We propose the use of concept tree structures for representing activ-
ities of research organizations by using a two-stage generalization of individual research
topics over the tree topology.

A concept tree such as the ACM-CCS taxonomy can be seen as a representative
generic ontology, with its explicitly expressed hierarchical subsumption relation be-
tween subject classes along with the collateral relation of association between different
nodes. The art of representation of various items on an ontology is of interest in many
areas such as text analysis, web mining, bioinformatics and genomics. In web mining,
representations are extracted from domain ontologies: the ontologies are used to auto-
matically characterize usage profiles by describing user’s interests and preferences for
web personalisation [20]. There are also recommender systems for on-line academic
research papers [8], which extract user profiles based on an ontology of research topics.
In bioinformatics several clustering techniques have been successfully applied in the
analysis of gene expression profiles and gene function prediction by incorporating gene
ontology information into clustering algorithms [4].

However, this line of thinking has never been applied for representing the activi-
ties of research organizations. The very idea of representing the activities of a research
organization as a whole may seem rather odd because conventionally it is only the
accumulated body of results that does matter in the sciences, and these always have
been and still are provided by individual efforts. The assumption of individual research
efforts implicitly underlies systems for reviewing and comparing different research de-
partments in countries such as the United Kingdom in which scientific organizations
are subject to regular comprehensive review and evaluation practices. The evaluation
is based on the analysis of individual researchers’ achievements, leaving the portrayal
of a general picture to subjective declarations by the departments [14]. Such an eval-
uation provides for the assessment of relative strengths among different departments,
which is good for addressing funding issues. Yet there exists another aspect, that of
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the integral portrayal rather than comparative analysis of the developments. This aspect
is important for decisions regarding long-term or wide-range issues of scientific de-
velopment such as national planning or addressing the so-called ‘South–North divide’
between developed and underdeveloped countries. The latter would require comparing
between integral systems of scope and capabilities of scientific organizations and uni-
versity departments in both the South and North (see, for instance, The United Nations
Millennium Project task force web-site [19]).

Representation of activities over the ACM-CCS concept tree can be used for:

1. Overviewing scientific subjects that are being developed in the organization.
2. Positioning the organization over ACM-CCS.
3. Overviewing scientific disciplines being developed in organizations over a country

or other territorial unit, with a quantitative assessment of controversial subjects, for
example, those in which the level of activity is not sufficient or the level of activities
by far exceeds the level of results.

4. Assessing the scientific issues in which the character of activities in organizations
does not fit well onto the classification; these can be potentially the growth points
or other breakthrough developments.

5. Planning research restructuring and investment.

Similar lists of objectives can be drawn for the analysis of other activities.

2 Cluster – Lift Method

We represent a research organization by clusters of ACM-CCS topics to reflect commu-
nalities between activities of members or teams working on these topics. Each of the
clusters is mapped to the ACM-CCS tree and then lifted in the tree to express its general
tendencies. The clusters are found by analyzing similarities between topics which are
derived from either automatic analysis of documents posted on web by the teams or
by explicitly surveying the members of the department. The latter option is especially
convenient in situations in which the web contents do not properly reflect the develop-
ments. If such is the case, a tool for surveying research activities of the members and
teams is needed.

Accordingly, this work involves developing:

1. e-screen based ACM-CCS topic surveying device,
2. method for deriving similarity between ACM-CCS topics,
3. method for finding possibly overlapping topic clusters from similarity data, and
4. method for parsimoniously lifting topic clusters on ACM-CCS.

In the following subsections, we describe these four.

2.1 E-Screen Survey Tool

An interactive survey tool has been developed to provide two types of functionality: i)
data collection about the research results of individual members, described in terms of
the ACM-CCS topics; ii) statistical analysis and visualization of the data and results of
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the survey. The period of research activities comprises the survey year and the previous
four years. This is supplied with interactive “focus + context” navigation functionali-
ties [16]. The respondent is asked to select up to six topics among the leaf nodes of
the ACM-CCS tree and assign each with a percentage expressing the proportion of the
topic in the total of the respondent’s research activity. Figure 1 shows a screenshot of
the interface for a respondent who has chosen six ACM-CCS topics during his/her sur-
vey session. Another, “research results” form allows to make a more detailed assess-
ment in terms of individual research results of the respondent in categories such as
refereed publications, funded projects, and theses supervised.

Fig. 1. Screenshot of the interface survey tool for selection of ACM-CCS topics

The leaf nodes of the ACM-CCS tree are populated thus by the respondent supplied
weights, which can be interpreted as fuzzy membership degrees of the respondent’s
activity with respect to ACM-CCS topics.

2.2 Deriving Similarity between ACM-CCS Topics

We define similarity between ACM-CCS topics i and j as the weighted sum of indi-
vidual similarities. The individual similarity is just the product of weights fi and f j

assigned by the respondent to the topics. Clearly, topics that are left outside of the indi-
vidual’s list, have zero similarities with other topics.

We assign weights to the surveyed individuals too. An individual’s weight is in-
versely proportional to the number of subjects they selected in the survey. This smoothes
out the differences between topic weights imposed by the selection sizes.
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It is not difficult to see that the resulting topic-to-topic similarity matrix A = (ai j) is
positive semidefinite.

2.3 Finding Overlapping Clusters

The topic clusters are to be found over similarity matrix A = (ai j) with no conventional
mandatory nonoverlapping condition imposed.

We employ the data recovery approach described in [10,11] for the case of crisp clus-
tering and in [13] for the case of fuzzy clustering. We consider only the crisp clustering
case in this paper. We find clusters one by one as subsets of ACM-CCS leaf topics S
maximizing criterion

g(S) = sT As/sT s = a(S)|S|. (1)

where

1. s = (si) denotes a binary membership vector corresponding to subset S so that si = 1
if i ∈ S and si = 0, otherwise;

2. a(S) is the average similarity ai j within S and
3. |S| is the number of topics in S.

Criterion (1) can be considered as a compromise between two contradicting criteria: (a)
maximizing the within-cluster similarity and (b) maximizing the cluster size. When
squared, the criterion expresses the proportion of the similarity data scatter, which
is taken into account by cluster S according to the data recovery model described in
[10,11].

It should be pointed out that this criterion emerges not only in the data recovery
framework but it also fits into some other frameworks such as (i) maximum density
subgraphs [3] and (ii) spectral clustering [15].

We use a version of ADDI-S algorithm from [10] for locally optimizing criterion (1)
that starts from singleton S = {i} for a topic i∈ I. Then the algorithm iteratively finds an
entity j to move in or remove from S by maximizing g(S± j) where S± j stands for S+ j
if j �∈ S or S− j if j ∈ S. It appears that this can be done easily - just by comparing the
average similarity between j and S, a( j,S), with the threshold π = a(S)/2; the greater
the difference, the better the j. The process stops when the change of the state of j with
respect to S is not beneficial anymore, that is, if π is greater than a( j,S) if j �∈ S, or
smaller than a( j,S) if j ∈ S. In this way, by starting from each i ∈ I, ADDI-S produces
a number of potentially overlapping or even coinciding locally optimal clusters Si – of
which that with the highest contribution is taken as the algorithm’s output S.

Thus produced S is rather tight because each j ∈ S has a high degree of similarity
with S, greater than half the average similarity within S, and it is also well separated
from the rest, because for each entity j �∈ S, its average similarity with S is less than
that.

Next cluster can be found with the same procedure applied to residual similarity
matrix A′ = A− a(S)ssT . Its contribution to the initial data scatter is computed as g2

where g is defined in (1) by using the residual matrix A′ rather than A. More clusters
can be extracted in a similar manner by using residual matrices obtained by subtraction
of all the previously found clusters [10].
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2.4 Parsimonious Lifting Method

To generalise the main contents of a cluster of topics, we translate it to higher layers
of the taxonomy by lifting it according to the principle: if all or almost all children of
a node in an upper layer belong to the cluster, then the node itself is taken to represent
the cluster on a higher level of ACM-CCS taxonomy. Such a lift can be done differently
leading to different portrayals of the cluster on ACM-CCS tree depending on the relative
weights of accompanying events, “gaps” and “offshoots”, as described below.

A cluster can fit quite well into the classification or not (see Fig. 2), depending on
how much its topics are dispersed among the tree nodes.
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Fig. 2. Two clusters of second-layer topics, presented with checked and diagonal-lined boxes,
respectively. The checked box cluster fits within one first-level category (with one gap only),
whereas the diagonal line box cluster is dispersed among two categories on the right. The former
fits the classification well; the latter does not fit at all.

The best possible fit would be when all topics in the subject cluster fall within a
parental node in such a way that all the siblings are covered and no gap occurs. The
parental tree node, in this case, can be considered as the head subject of the cluster. A
second best case is when one of the children does not belong to the cluster (a gap) or
when one of the children is covered by a different parent (an offshoot). A few gaps, that
is, head subject’s children topics that are not included in the cluster, although diminish
the fit, still leave the head subject unchanged. A larger misfit occurs when a cluster is
dispersed among two or more head subjects (see Fig. 3). It is not difficult to see that the
gaps and offshoots are determined by the head subjects specified in a lift.

Topic in subject cluster

Gap

Head subject

Offshoot

Fig. 3. Three types of features in mapping of a subject cluster to the ontology
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The total count of head subjects, gaps and offshoots, each type weighted accordingly,
can be used for scoring the extent of the cluster misfit needed for lifting a grouping of
research topics over the classification tree as illustrated on Fig. 4. The smaller the score,
the more parsimonious the lift and the better the fit. When the topics under consideration
relate to deeper levels of classification, such as the third layer of ACM-CCS, the scoring
may allow some tradeoffs between different gap-offshoot configurations at different
head subject structures. In the case illustrated on Fig. 4, the subject cluster of third-
layer topics presented by checked boxes, can be lifted to two head subjects as in (A) or,
just one, the upper, category in (B), with the “cost” of three more gap nodes and one
offshoot less. Depending on the relative weighting of gaps, offshoots and multiple head
subjects, either lifting can minimize the total misfit.

Head subject   1
Gap                 6
Offshoot          0

Head subject    2
Gap                  3
Offshoot          1

(A)

(B)

 

   Total  2H+3G+1O

Total  1H+6G

Fig. 4. Tradeoff between different liftings of the same subject cluster: mapping (B) is more par-
simonious than (A) if gaps are much cheaper than additional head subjects

Altogether, the set of topic clusters, their head subjects, offshoots and gaps consti-
tutes what can be referred to as a profile of the organization under consideration. Such
a representation can be easily accessed and expressed as an aggregate. It can be further
elaborated by highlighting those subjects in which members of the organization have
been especially successful (i.e., publication in best journals or award) or distinguished
by a special feature (i.e., industrial product or inclusion to a teaching program). Multiple
head subjects and offshoots, when persist at subject clusters in different organizations,
may show some tendencies in the development of the science, that the classification has
not taken into account yet.

A parsimonious lifting of a subject cluster can be achieved by recursively building
a parsimonious scenario for each node of the ACM-CCS tree based on parsimonious
scenarios for its children. In this, we assume that any head subject is automatically
present at each of the nodes it covers, unless they are gaps (as presented on Fig. 4 (B).
This assumption allows us to set the algorithm as a recursive procedure.
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The procedure determines, at each node of the tree, sets of head gain, gap and off-
shoot events to iteratively raise them to those of the parents, under each of two different
assumptions that specify the situation at the parental node. One assumption is that the
head subject has been inherited at the parental node from its own parent, and the second
assumption is that it has not been inherited but gained in the node only. In the latter
case the parental node is labeled as a head subject. Consider the parent-children system
as shown in Fig. 5, with each node assigned with sets of offshoot, gap and head gain
events under the above two inheritance of head subject assumptions.

Let us denote the total number of events, to be minimized, under the inheritance and
non-inheritance assumptions by ei and en, respectively. A lifting result at a given node is
defined by a triplet of sets (H, G, O), representing the tree nodes at which events of head
gains, gaps and offshoots, respectively, have occurred in the subtree rooted at the node.
We use (Hi, Gi, Oi) and (Hn, Gn, On) to denote lifting results under the inheritance
and non-inheritance assumptions, respectively. The algorithm computes parsimonious
scenarios for parental nodes according to the topology of the tree, proceeding from the
leaves to the root in the manner which is similar to that described in [12].

Child1 Head Gap Off

Not HS Hn1 Gn1 On1

Head S Hh1 Gh1 Oh1

Child2 Head Gap Off

Not HS Hn2 Gn2 On2

Head S Hh2 Gh2 Oh2

Child3 Head Gap Off

Not HS Hh3 Gn3 On3

Head S Hh3 Gh3 Oh3

Parent Head Gap Off

Not HS Hn Gn On

Head S Hh Gh Oh

Fig. 5. Events in a parent-children system according to a parsimonious lifting scenario; HS and
Head S stand for Head subject

At a leaf node the six sets Hi, Gi, Oi, Hn, Gn and On are empty, except that
Hn ={S} if the given leaf belongs to topic cluster S or Gi ={S} if not. The algorithm
then will compute parsimonious scenarios for parental nodes according to the topology
of the tree, proceeding from the leaves to the root. Let us, for the sake of simplicity,
consider the case when the penalty for an offshoot is taken to be zero while penalties
for the head gain and gap events are specified by arbitrary positive h and g, respec-
tively. Then, in a parsimonious scenario, the total score of events, weighted by h and
g, can be derived from those of its children (indicated by subscripts 1, 2 and 3 for the
case of three children on Fig. 5) as ei = min(en1 + en2 + en3 + g, ei1 + ei2 + ei3) or
en = min(ei1 + ei2 + ei3 + h, en1 + en2 + en3), under the inheritance or non-inheritance
assumption, respectively; the proof given in [12] for the binary tree case can be easily
extended to an arbitrary rooted tree.
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3 An Example of Implementation

Let us illustrate the approach by using the data from a survey conducted at the De-
partment of Computer Science, Faculty of Science & Technology, New University of
Lisboa (DI-FCT-UNL). The survey involved 49 members of the academic staff of the
department.

For simplicity, we use only data of the second level of ACM-CCS, each coded in the
format V.v where V=A,B,...,K, and v =1,..,mK, with mK being the number of second
level topics. Each member of the department supplied three ACM subjects most relevant
to their current research. Altogether, these comprise 26 of the 59 topics at the second
level in ACM-CCS. (Two subjects of the second level, General and Miscellaneous,
occurred in every first-level division, are omitted because they do not contribute to the
representation.)

With the algorithm ADDI-S sequentially applied to the 26 × 26 similarity matrix,
the following six sequentially extracted clusters have been obtained:

1. Cl1 (contribution 27.08%, intensity 2.17), 4 items: D.3, F.1, F.3, F.4;
2. Cl2 (contribution 17.34%, intensity 0.52), 12 items: C.2, D.1, D.2, D.3, D.4, F.3,

F.4, H.2, H.3, H.5, I.2, I.6;
3. Cl3 (contribution 5.13%, intensity 1.33), 3 items: C.1, C.2, C.3;
4. Cl4 (contribution 4.42%, intensity 0.36), 9 items: F.4, G.1, H.2, I.2, I.3, I.4, I.5, I.6,

I.7;
5. Cl5 (contribution 4.03%, intensity 0.65), 5 items: E.1, F.2, H.2, H.3, H.4;
6. Cl6 (contribution 4.00%, intensity 0.64), 5 items: C.4, D.1, D.2, D.4, K.6.

The next 7th cluster’s contribution is just 2.5%, on par with the contributions of each of
the 26 individual topics, which justifies halting the process at this point.

The six found clusters lifted in the ACM-CCS are presented on Fig. 6 along with the
relevant first-level categories.

The lifting results show the following:

– The department covers, with a few gaps and offshoots, six head subjects shown
with pentagons filled in by different patterns;

– The most contributing cluster, with the head subject F. Theory of Computation,
comprises a very tight group of a few second level topics;

– The next contributing cluster has two, not one, head subjects, D and H, and off-
shoots to every other head subject in the consideration, which shows that this cluster
currently is the structure underlying the unity of the department;

– Moreover, the two head subjects of this cluster come on top of two other clusters,
each pertaining to just one of the head subjects, D. Software or H. Information Sys-
tems. This means that the two-headed cluster signifies a new direction in Computer
Sciences, that combines D and H into a single direction, which seems a feature of
the current developments in Computer Sciences indeed; this should eventually get
reflected in an update of the ACM classification (by raising D.2 Software Engineer-
ing to the level 1?);

– There are only three offshoots outside the department’s head subjects: E.1 Data
Structures — from H. Information Systems, G.1 Numerical Analysis — from I.
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CS

D.1 D.2 D.3 D.4

D

aa
aa

E.1

H.1 H.2 H.3 H.4 H.5
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Fig. 6. Six subject clusters in the DI-FCT-UNL represented over the ACM-CCS ontology. Head
subjects are shown with differently patterned pentagons. Topic boxes shared by different clusters
are split-patterned.

Computing Methodologies, and K.6 Management of Computing and Information
Systems — from D. Software. All three seem natural and should be reflected in the
list of collateral links between different parts of the classification tree if supported
by similar findings at other departments.

4 Concluding Remarks

We have described a method in the area of knowledge transmutation – for representing
aggregated research activities over a concept tree. The method involves two generaliza-
tion steps: (a) clustering research topics according to their similarities in terms of the
efforts by individuals involved, with no relation to the concept tree in question, and (b)
generalization of clusters mapped to a concept tree by lifting them to more general cat-
egories - this is done over the tree only. Therefore, the generalization steps cover both
sides of the representing process.

This work is part of the research project Computational Ontology Profiling of Scien-
tific Research Organization (COPSRO), whose main goal is to develop a methodology
to represent a Computer Science organization such as a University department over the
ACM-CCS classification tree. Such an approach involves the following steps:

1. surveying the members of ACM-CCS topics they are working on; this can be sup-
plemented with indication of the degree of success achieved (publication in a good
journal, award, etc.);

2. deriving similarity between ACM-CCS topics resulting from the survey and clus-
tering them;

3. mapping clusters to the ACM-CCS taxonomy and lifting them in a parsimonious
way by minimizing the weighted sum of counts of head subjects, gaps and off-
shoots;
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4. aggregating results from different clusters and, potentially, different organizations
by means of the taxonomy;

5. interpretation of the results and drawing conclusions.

Current research work includes a survey that is being conducted over several C.S. de-
partments in Universities in Portugal and the U.K., the exploration of fuzzy similar-
ity measures between research topics of the ACM-CCS tree according to the weighted
choices of the respondents, and the extension of the additive clustering model to a fuzzy
additive version in the framework of the data recovery approach.

In principle, the approach can be extended to other areas of science or engineering,
provided that such an area has been systematized into a comprehensive concept tree
representation. Potentially, this approach could lead to a useful instrument for visually
feasible comprehensive representation of developments in any field of human activities.

Acknowledgements. The authors are grateful to DI-FCT-UNL members that partici-
pated in the survey. Igor Guerreiro is acknowledged for developing the interface shown
in Fig. 1. This work has been supported by the grant PTDC/EIA/69988/2006 from the
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Abstract. The discovery of frequent patterns is one of the most important issues 
in the data mining area. An extensive research has been carried out for 
discovering positive patterns, however, very little has been offered for 
discovering patterns with negation. One of the main difficulties concerning 
frequent patterns with negation is huge amount of discovered patterns. It 
exceeds the number of frequent positive patterns by orders of magnitude. The 
problem can be significantly alleviated by applying concise representations that 
use generalized disjunctive rules to reason about frequent patterns, both with 
and without negation. In this paper, we examine three types of generalized 
disjunction free representations and derive the relationships between them. We 
also present two variants of algorithms for building such representations. The 
results obtained on a theoretical basis are verified experimentally. 

1   Introduction 

The problem of discovering frequent patterns in large databases is nowadays one of 
the most important issues in the area of data mining. Introduced in [1] for a sales 
transaction database, it became a standard approach to knowledge discovery in many 
data discovering tasks, e.g. for telecom providers  [31], or text mining tasks such as  
mining grammatical patterns [11], hierarchical clustering of the sets of documents 
[32], discovering synonyms or homonyms [34, 39, 40], as well as in medical areas 
[44]. Frequent patterns, as defined there, are sets of items that co-occur more often 
than a given threshold. Frequent patterns are commonly used for building association 
rules. For example, an association rule may state that 30% of sentences with the term 
“apple” have also a term “iphone”. The rule may result from a commercial action of a 
new Apple product. Patterns and association rules can be generalized by admitting 
negations. A sample rule with negation could state that 90% of sentences that contain 
words “apple” and “pie” do not contain the word “motherboard”.  

Already a number of frequent “positive” patterns is usually huge; admitting 
negation results in exponential explosion of mined patterns, which makes analysis of 
the discovered knowledge hardly difficult, if possible at all. It is thus preferable to 
discover and store a possibly small fraction of patterns, from which one can derive all 
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other significant patterns whenever required. The problem of concise representing 
frequent positive patterns of various types was considered in [5-10, 14-30, 33, 35-38, 
41-43, 45]. In particular, the representations have been considered in the context of 
closed sets [15], generators [15], simple disjunctive rules [5-6, 15], and generalized 
disjunctive rules [7-9, 17, 19, 21-23, 28]. A disjunction-free set representation, as 
offered in [6], uses disjunctive rules with one or 2 items in the rule consequent for 
reasoning about supports of patterns. In [28] and in [19], more concise representations 
(called GDFGR and GDFSR, respectively) were offered. For reasoning about 
supports of patterns they use disjunctive rules with an unlimited number of items in 
the rule consequent. Both representations consist of main components and borders. 
All elements of GFDGR are generators. It was shown in [19] that the main component 
and infrequent part of the border of GDFSR are the same as in the case of GDFGR, 
and the frequent part of the border of GDFSR contains the frequent part of the border 
of GDFGR and possibly some non-generators. Similar representation, called non-
redundant itemsets, was offered independently in [8]. 

The problem of concise representing of frequent patterns admitting negation was 
addressed in [24-26]. As in the case of GDFGR and GDFSR, the representations 
discussed there, were based on generalized disjunctive rules. In [25], a representation 
(GDFSRN) of all frequent patterns, both with and without negation was presented, as 
a particular variant of GDFSR. In [24], a refined version of GDFSRN, namely 
GDFLR, was offered as a lossless representation. Although GDFLR represents both 
frequent positive patterns and frequent patterns with negation, it consists of only 
positive patterns. The k-GDFLR representation was offered in [26] as a variant of 
GDFLR, which represents frequent patterns admitting at most k negated items. 

Recently the use of concise representations of the frequent patterns with negation 
in practical application has started, especially for text mining, and a possibility to 
dynamically change support in the mining process. For example in [34], it is shown 
how such representations can be successfully used for discovering dominated 
meanings from WEB. In this paper, we concentrate on three concise representations, 
namely GDFSR, GDFSRN and GDFLR, which in the sequel will be called briefly 
GDF representations. We will analyze relationships between them in detail. 

In the literature, the algorithms for computing concise representations for GDFGR 
(GDFGR-Apriori, [17, 28]) and GDFLR (GDFLR-Apriori [24], and GDFLR-SO-
Apriori [27]) have been proposed. As shown in [27], GDFLR-SO-Apriori is much 
faster than GDFLR-Apriori, which results from a proposed order of calculating 
supports of both positive patterns, and the ones containing negations. We provide in 
the paper GDFSR-Apriori as a special case of GDFLR-Apriori. In addition, we offer a 
modification of GDFSR-Apriori (called here GDFSR-SO-Apriori), and perform a 
number of experiments to check its efficiency. It turns out to be faster in building the 
GDFSR representation. In spite of the fact that GDFSR contains only positive 
patterns, the new algorithm determines supports of not only positive, but also non-
positive patterns, which makes possible finding if there are useful generalized 
disjunctive rules associated with candidate patterns or not. In GDFSR-SO-Apriori the 
same order of calculating supports is applied, as in the case of GDFLR-SO-Apriori. 
A simple way or calculating GDFSRN will be shown.  

The layout of the paper is as follows: Subsections 2.1-2.5 recall basic notions of 
frequent positive patterns and patterns with negation, as well as methods of inferring 
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frequencies (or supports) of patterns from frequencies of other patterns by means of 
generalized disjunctive rules. In Subsection 2.6, we provide new theorems related to 
patterns admitting negated items. Section 3 recalls the three concise representations, i.e. 
GDFSR, GDFSRN, GDFLR, and their properties. In addition, a new theorem related to 
derivable patterns in the GDFLR representation is provided in Subsection 3.3.  
In Section 4, we analyze in detail relationships between the representations. All the 
results presented there are new. In Section 5, we recall the original algorithm for finding 
the GDFLR representation, and provide algorithms for finding the GDFSR and 
GDFSRN representations, whereas in Section 6 we present the “support oriented” 
algorithms: GDFLR-SO-Apriori, as well as new algorithms GDFSR-SO-Apriori and 
GDFSRN-SO-Apriori. The experimental results are presented in Section 7. The paper 
ends with the conclusions (Section 8). 

2   Basic Notions 

2.1   Itemsets, Frequent Itemsets 

Let I = {i1, i2, ..., im}, I≠∅, be a set of distinct items. In the case of a transactional 
database, a notion of an item corresponds to a sold product, while in the case of a 
relational database an item will be a pair (attribute, value). Any set of items is called 
an itemset. An itemset consisting of k items will be called a k-itemset. Let D be a set 
of transactions (or tuples, respectively), where each transaction (tuple) T is a subset of 
I. Without any loss of generality, we will restrict further considerations to 
transactional databases. Support of itemset X is denoted by sup(X) and is defined as 
the number (or percentage) of transactions in D that contain X. Itemset X is called 
frequent if its support is greater than some user-defined threshold minSup, where 
minSup ∈ [0, |D|]. The set of all frequent itemsets will be denoted by F: 

F = {X ⊆ I| sup(X) > minSup}. 

Property 2.1.1 [2] 
 

a) Let X,Y⊆I. If X⊂Y, then sup(X) ≥ sup(Y). 
b) If X∈F, then ∀Y⊂X Y∈F. 
c) If X∉F, then ∀Y⊃X Y∉F. 

2.2   Generalized Disjunctive Sets and Generalized Disjunction-Free Sets 

In this section, we recall the notion of generalized disjunctive sets and generalized 
disjunction-free sets and their properties [17, 28]. Informally speaking, generalized 
disjunctive sets enable reasoning about supports of their supersets. To the contrary, 
the supports of generalized disjunction-free sets are not derivable. A key concept in 
the definitions of both types of sets is the notion of a generalized disjunctive rule. 

Let Z⊆I. X→a1∨ ... ∨an is defined a generalized disjunctive rule based on Z (and Z 
is the base of X→a1∨ ... ∨an) if X ⊂ Z and {a1, ..., an} = Z\X. 

In the sequel, \/A, where A = {a1, ... ,an}, will denote a1∨ ... ∨an. One can easily 
note that {Z\A→\/A)| ∅≠A⊆Z} is the set of all distinct generalized disjunctive rules 
based on Z. Hence, there are 2|Z|−1 distinct generalized disjunctive rules based on Z.  
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Support of X→a1∨ ... ∨an, is denoted by sup(X→a1∨ ... ∨an) and is defined as the 
number (or percentage) of transactions in D in which X occurs together with a1 or a2, 
or ... or  an. Please note that sup(X→a) = sup(X∪{a}). 

Error of X→a1∨ ... ∨an, is denoted by err(X→a1∨ ... ∨an) and is defined as the 
number (or percentage) of transactions containing X that do not contain any item in 
{a1, ..., an}; that is, 

err(X→a1∨ ... ∨an) = sup(X) − sup(X→a1∨ ... ∨an). 

X→a1∨ ... ∨an is defined a certain rule if err(X→a1∨ ... ∨an) = 0.  
Thus, X → a1∨ ... ∨an is certain if each transaction containing X contains also a1 or 

a2, or ... or an. 
An itemset X is defined as a generalized disjunctive set if there is a certain 

generalized disjunctive rule based on X; that is, if ∃a1, ..., an∈X such that 
X\{a1, ..., an}→a1∨ ... ∨an is a certain rule. Otherwise, X is defined a generalized 
disjunction-free set. Let us note that ∅ is a generalized disjunction-free set. 

The set of all generalized disjunction-free sets will be denoted by GDFree; that is, 

GDFree = {X⊆I| ∀a1, ..., an∈X err(X\{a1, ..., an}→a1∨ ... ∨an) > 0, n ≥ 1}. 

Example 2.2.1. Let us consider database D from Table 1. Table 2 presents all 
generalized disjunctive rules based on {ab}. None of these rules is certain. Hence, 
{ab} is generalized disjunction-free. Table 3 presents all generalized disjunctive rules 
based on {abc}, some of which are certain. Thus, {abc} is generalized disjunctive.    

 

Table 1. Sample database D  Table 2. Generalized disjunctive rules based on {ab} 

Id Transaction  r: X→a1∨ ... ∨an sup(X) sup(r) err(r) certain? 
T1 {abce}  {a}→b 5 4 1 no 
T2 {abcef}  {b}→a 5 4 1 no 
T3 {abceh}  ∅→a∨b 7 6 1 no 
T4 {abe}       
T5 {aceh}       
T6 {bce}       
T7 {h}       

 

Table 3. Generalized disjunctive rules based on {abc} 

r: X→a1∨ ... ∨an sup(X) sup(r) err(r) certain? 
{ab}→c 4 3 1 no 
{ac}→b 4 3 1 no 
{bc}→a 4 3 1 no 

{a}→b∨c 5 5 0 yes 
{b}→a∨c 5 5 0 yes 
{c}→a∨b 5 5 0 yes 
∅→a∨b∨c 7 6 1 no 
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Of course, if each occurrence of X implies the occurrence of item a1 or ... or an, then 
each occurrence of a superset of X implies the occurrence of a1 or ... or an too. 

Property 2.2.1. If X→a1∨ ... ∨an is certain, then ∀Z⊃X Z→a1∨ ... ∨an is certain. 

The next property is an immediate consequence of Property 2.2.1 and states that 
supersets of a generalized disjunctive set are generalized disjunctive. In consequence, 
all subsets of a generalized disjunction-free set are generalized disjunction-free. 

Property 2.2.2. Let X⊆I. 

a) If X∉GDFree, then ∀Y⊃X Y∉GDFree. 
b) If X∈GDFree, then ∀Y⊂X Y∈GDFree. 

It was proved in [17, 28] that each certain generalized disjunctive rule determines an 
errorless method of calculating the support of the base of that rule from the supports 
of proper subsets of this base. In addition, it was shown there that the information on 
the support of a generalized disjunctive set X and the supports of all proper subsets of 
X is sufficient to reconstruct all certain generalized disjunctive rules based on X. As a 
result, the information on the supports of all generalized disjunction-free sets and the 
supports of all minimal generalized disjunctive sets is sufficient to derive the supports 
of all other itemsets in 2I. Beneath we recall these results related to determining 
supports of rules and itemsets that will be used in the paper. 

Property 2.2.3. Let X, Y, {a} ⊂ I, Y≠∅, and X→\/Y∨a be a generalized disjunctive 
rule. Then: 

sup(X→\/Y∨a) = sup(X→\/Y) + sup(X→a) – sup(X∪{a}→\/Y). 

The main property related to calculating the support of a generalized disjunctive rule, 
which can be derived inductively from Property 2.2.3, is provided beneath: 

Property 2.2.4. Let X,Y⊂I and X→\/Y be a generalized disjunctive rule. Then: 

sup(X→\/Y) = Σ∅≠Z⊆Y (–1)|Z|–1 × sup(X∪Z). 

It follows from the presented property that the support of X→\/Y depends on the 
supports of all itemsets that belong to the left-open interval (X, X∪Y]. 

Corollary 2.2.1. Let X,Y⊂I and X→\/Y be a generalized disjunctive rule. The error of 
X→\/Y is derivable from the supports of itemsets in the interval [X, X∪Y]: 

err(X→\/Y) = ΣZ⊆Y (–1)|Z| × sup(X∪Z). 

Therefore, X→\/Y is a certain generalized disjunctive rule iff 
ΣZ⊆Y (-1)|Z|×sup(X∪Z)]=0. After transforming this equation, one obtains what follows: 

Property 2.2.5. Let X,Y⊂I and X→\/Y be a generalized disjunctive rule. Then: 

err(X→\/Y) = 0 iff sup(X∪Y) = (–1)|Y|-1 × [ΣZ⊂Y (-1)|Z| × sup(X∪Z)]. 

Thus, if X→\/Y is a certain generalized disjunctive rule, then sup(X∪Y) is 
determinable from the supports of itemsets in the right-open interval [X, X∪Y). 
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Example 2.2.2. Let the set of all items I = {abcefh} and D be the database from 
Table 1. Table 4 presents all generalized disjunction-free sets and all minimal 
generalized disjunctive sets found in this database. Values provided in square brackets 
in the subscript denote supports of itemsets. 

Table 4. GDFree and minimal generalized disjunctive sets in D from Table 1 

k k-itemsets in GDFree minimal generalized disjunctive k-itemsets 

3  {abc}[3], {ach}[2] 

2 
{ab}[4], {ac}[4], {ah}[2], {bc}[4], 

{ch}[2], {fh}[0] 
{ae}[5], {af}[1], {be}[5], {bf}[1], {bh}[1], 

{ce}[5], {cf}[1], {ef}[1], {eh}[2] 

1 {a}[5], {b}[5], {c}[5], {e}[6], {f}[1], {h}[3]  

0 ∅[7] 
 

Let us demonstrate how the information on GDFree and minimal generalized 
disjunctive sets can be used to determine supports of remaining itemsets in 2I. Let 
{ace} be an itemset for which we wish to calculate the support. We note that {ace} 
has subsets {ae} and {ce} among minimal generalized disjunctive sets (see Table 4). 
Thus, by Property 2.2.2a, {ace} is also generalized disjunctive. By Property 2.2.1, any 
certain generalized disjunctive rule based on {ae} or {ce} determines a certain 
generalized disjunctive rule based on {ace}. Let us identify an arbitrary certain 
generalized disjunctive rule based on {ae}. The only rules based on {ae} are as 
follows: {a}→e, {e}→a, and ∅→a ∨ e. Let us start with the evaluation of the first 
rule: err({a}→e) = /* by Corollary 2.2.1 */ = sup({a}) − sup({ae}) = /* see Table 4 */ 
= 5 − 5 = 0. Thus, {a}→e is certain. Having found a certain rule based on {ae}, we 
can use it to determine a certain rule based on {ace}. Otherwise, we would continue 
the evaluation of other rules based on {ae}. Since {a}→e is certain, then rule 
{ac}→e, which is based on {ace}, is also certain; that is, err({ac}→e) = 0. Hence, by 
Property 2.2.5, sup({ace}) = sup({ac}) = /* see Table 4 */ = 4. Please, see database 
D from Table 1 to verify the calculated support value for {ace}.                                 

2.3   Sets Admitting Negated Items 

In Subsections 2.3-2.5, we will introduce the notions related to patterns with negated 
items and their properties based on [24]. Let L = I ∪ {−a |a∈I}. Each element in L 
will be called a literal. Elements in L \ I will be called negative literals. By analogy, 
items in I will be also called positive literals. Each pair of literals a and −a in L is 
called contradictory. 

For the sake of convenience, we will apply the following notation: if l stands for a 
literal, then −l will stand for its contradictory literal. 

A literal set (or briefly liset) is defined as a set consisting of non-contradictory 
literals in L. A liset is called positive if all literals contained in it are positive. A liset 
is called negative if all literals contained in it are negative. 
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Lisets X and Y are called contradictory if |X| = |Y| and for each literal in X there is a 
contradictory literal in Y. A liset contradictory to X will be denoted by −X. 

Support of liset X is denoted by sup(X) and defined as the number (or percentage) 
of transactions in D that contain all positive literals in X and do not contain any 
negative literal from X.  

Liset X is called frequent if its support is greater than minSup. The set of all 
frequent lisets will be denoted by FL.  

Instead of an original database D, it is sometimes convenient to consider an 
extended database D’ in which each transaction T in D is extended with all negative 
literals contradictory to the items that do not occur in T. Table 5 is such an extended 
version of the database from Table 1. Clearly, all transactions in the extended 
database will be of the same size equal to |I|. Using the extended database, the support 
of liset X can be calculated as the number (or percentage) of transactions containing 
all literals (both positive and negative) in X. Though we do not recommend this 
method for evaluating lisets, this interpretation allows us to infer Property 2.3.1 
related to supports of subsets and supersets of lisets by analogy to Property 2.1.1. 

Table 5. Extended version D’ of database D from Table 1 

Id Transaction 
T1 {(  a)(  b)(  c)(  e)(−f)(−h)} 
T2 {(  a)(  b)(  c)(  e)(  f)(−h)} 
T3 {(  a)(  b)(  c)(  e)(−f)(  h)} 
T4 {(  a)(  b)(−c)(  e)(−f)(−h)} 
T5 {(  a)(−b)(  c)(  e)(−f)(  h)} 
T6 {(−a)(  b)(  c)(  e)(−f)(−h)} 
T7 {(−a)(−b)(−c)(−e)(−f)( h)} 

 
Property 2.3.1 
 

a) Let X,Y be lisets. If X⊂Y, then sup(X) ≥ sup(Y). 
b) If X∈FL, then ∀Y⊂X Y∈FL. 
c) If X∉FL, then ∀Y⊃X Y∉FL. 

Let X be a liset. A canonical variation of X (denoted by cv(X)) is defined as an itemset 
obtained from X by replacing all negative literals in X by contradictory literals; that is,  

cv(X) = P∪(−N), 

where P is the set of all positive literals in X and N is the set of all negative literals in 

X. Clearly, for any liset X, cv(X) = ∪x∈X cv({x}). In addition, if X is a positive liset, 
then cv(X) = X. 

All lisets having the same canonical variation as liset X are denoted by V(X); that is, 

V(X) = {Y⊆L| cv(Y) = cv(X)}. 

Each liset in V(X) is called a variation of X.  
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V(X) contains only one positive liset, which is cv(X), and only one negative liset, 
namely −cv(X). Clearly, the number of all variations of X equals 2|X| and the sum of 
the supports of all variations of X equals |D|.  

Property 2.3.2. Let X be a liset. 
 

a) V(Z) = V(X) for any Z∈V(X). 
b) |V(X)| = 2|X|. 

c) ΣZ∈V(X) sup(Z) = |D|. 

2.4   Generalized Disjunctive Lisets and Generalized Disjunction-Free Lisets 

Let us start with definitions analogous to those from Section 2.2. 
Let Z be a liset. X→a1∨ ... ∨an is defined a generalized disjunctive rule based on 

liset Z if X ⊂ Z and {a1, ..., an} = Z\X. 
Support of rule X→a1∨ ... ∨an based on a liset is denoted by sup(X→a1∨ ... ∨an) 

and defined as the number (or percentage) of transactions in the extended database 
D’ in which X occurs together with a1 or a2, or ... or  an. Error of rule X→a1∨ ... ∨an 
based on a liset is defined in usual way: err(X→a1∨ ... ∨an) = sup(X) − sup(X→a1∨ ... 
∨an). A rule r based on a liset is defined certain if err(r) = 0. 

Liset X is defined as a generalized disjunctive liset if there is a certain generalized 
disjunctive rule based on X. Otherwise, X is defined a generalized disjunction-free 
liset.  

The set of all generalized disjunction-free lisets will be denoted by GDFreeL; i.e., 

GDFreeL = {X⊆L| ∀a1, ..., an∈X err(X\{a1, ..., an}→a1∨ ... ∨an) > 0, n ≥ 1}. 

By analogy to Properties 2.2.1-2.2.2, one can easily observe: 

Property 2.4.1. Let X ∪ {a1, ..., an} be a liset. 

If X→a1∨ ... ∨an is certain, then ∀Z⊃X Z→a1∨ ... ∨an is certain. 

Property 2.4.2. Let X be a liset. 
 

a) If X∉GDFreeL, then ∀Y⊃X Y∉GDFreeL. 
b) If X∈GDFreeL, then ∀Y⊂X Y∈GDFreeL. 
 

Proof: Follows immediately from Property 2.4.1.                                                         

2.5   Errors of Generalized Disjunctive Rules and Supports of Liset Variations 

In Section 2.4, we have provided the definition of an error of a generalized disjunctive 
rule X→\/A based on a liset. Here we will provide its equivalent interpretation, which 
will be more suitable for determining the relationship between the errors of rules for a 
given liset and the supports of its variations.  

Property 2.5.1. Let A, X and Z be lisets such that A, X ⊂ Z and Z\X = A and A ≠ ∅. 
The error of rule X→\/A, which is based on Z, equals the number of transactions in the 
extended database D’ in which X occurs and no literal from the set A occurs; that is,  



 On Concise Representations of Frequent Patterns Admitting Negation 267 

err(X→\/A) = sup(X∪(−A)). 

Example 2.5.1. By Property 2.5.1,  

err({ab}→c∨d) = sup({ab(−c)(−d)}), err({ab}→(−c)∨(−d)) =  
sup({abcd}), err({(−a)b}→(−c)∨d) = sup({(−a)bc(−d)}).                                            
 

By Property 2.5.1, the antecedent (or alternatively, consequent) of a generalized 
disjunctive rule r based on a liset Z uniquely determines the variation V of Z, V ≠ Z, 
the support of which equals the error of r. Hence, we may conclude that the set of the 
supports of all distinct variations of liset Z that are different from Z equals the set of 
the errors of all distinct generalized disjunctive rules based on Z (see Theorem 2.5.1). 

Theorem 2.5.1. Let Z be a liset. 
 

a) {sup(V)| V∈V(Z) ∧ V≠Z} = {err(X→\/(Z\X))| X ⊂ Z}. 
b) {sup(V)| V∈V(Z)} = {err(X→\/(Z\X))| X ⊂ Z} ∪ {sup(Z)}. 

2.6   Generalized Disjunctive Sets and Generalized Disjunction-Free Sets versus 
Supports of Liset Variations 

In this section, we will examine more closely the relationship between supports and 
types (generalized disjunctive/generalized disjunction-free) of liset variations. We 
claim that for any liset Z with zero-support all its variations V ≠ Z are generalized 
disjunctive. 

Theorem 2.6.1. Let Z be a liset. If sup(Z) = 0, then ∀Y∈V(Z) (Y≠Z ⇒ Y∉GDFreeL). 

Proof: Let sup(Z) = 0 and Y be any liset such that Y∈V(Z) and Y≠Z. Let X = Z ∩ Y 
and A = Y\Z (hence, Z\Y = −A). Thus, Y = X ∪ A and Z = X ∪ (−A). By Property 2.5.1, 
err(X→\/A) = sup(X ∪ (−A)) = sup(Z) = 0. Since, err(X→\/A) = 0, then Y = X ∪ A is a 
generalized disjunctive liset.                                                                                          

Now, we are able to derive the equivalence between the existence of a generalized 
disjunctive variation of liset Z and the existence of a zero-support variation of Z. 

Theorem 2.6.2. Let Z be a non-empty liset. 
 

a) (∃X∈V(Z) X∉GDFreeL) iff (∃Y∈V(Z) sup(Y) = 0). 
b) (∀X∈V(Z) X∈GDFreeL) iff (∀Y∈V(Z) sup(Y) ≠ 0). 
 

Proof: Ad a) (⇒) Follows immediately from Property 2.5.1 and Property 2.3.2a. 
 

(⇐) Follows immediately from Theorem 2.6.1 and Property 2.3.2a. 
Ad b) Follows immediately from Theorem 2.6.2a.                                                         

As follows from Theorem 2.6.2b, all variations of liset Z are generalized disjunction-free 
if and only if all variations of Z have zero supports. 

Let Z be generalized disjunction-free. Since all variations of Z are supported by non-
empty disjoint subsets of transactions in the database D, the number of the variations, 
which equals 2|Z|, cannot exceed the number of transactions in D. Thus, 2|Z| ≤ |D|. 
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Corollary 2.6.1. Generalized disjunction-free lisets contain at most ⎣log2|D|⎦ literals. 
Minimal generalized disjunctive lisets contain at most ⎣log2|D|⎦ + 1 literals. 

Finally, we claim that all variations of a generalized disjunction-free liset with non-
zero support are generalized disjunction-free lisets. 

Theorem 2.6.3. Let Z be a liset such that sup(Z) ≠ 0 and Z∈GDFreeL. Then 
∀Y∈V(Z) Y∈GDFreeL. 

 

Proof: Follows from Theorem 2.5.1b and Theorem 2.6.2b.                                          

3   Generalized Disjunction-Free Set Representations 

3.1   Representing Frequent Positive Patterns with Generalized Disjunction-Free 
Set Representation (GDFSR) 

A generalized disjunction-free representation of itemsets (denoted by GDFSR, [19) is 
defined as consisting of the following components: 
 

• the main component Main = {X⊆I| (X∈F) ∧ (X∈GDFree)} enriched by the 
information on the support for each itemset in Main; 

• the infrequent border IBd – = {X⊆I| (X∉F} ∧ (∀Z⊂X Z∈Main)}; 
• the generalized disjunctive border DBd – = {X⊆I| (X∈F) ∧ (X∉GDFree) ∧ (∀Y⊂X 

Y∈Main)} enriched by the information on the support (and/or a certain generalized 
disjunctive rule) for each itemset in DBd –. 

Thus, the Main component contains frequent generalized disjunction-free itemsets. 
The infrequent border IBd – contains infrequent itemsets all proper subsets of which 
belong to Main. The generalized disjunctive border DBd – consists of frequent 
generalized disjunctive itemsets all proper subsets of which belong to Main. 

Theorem 3.1.1 
 

a) All itemsets in Main have non-zero support. 
b) If X∈Main, then ∀Y⊂X Y∈Main. 
c) Itemsets that do not belong to GDFSR have at least one proper subset in the 

border DBd – ∪ IBd –. 

The GDFSR representation is a lossless representation of all frequent itemsets; 
namely, it is sufficient to determine for any itemset, whether it is frequent, and if so, 
enables determining its support.  

Example 3.1.1.  Let us consider database D from Table 1, which consists of seven 
transactions. For minSup = 3, the following GDFSR representation will be found: 
 

Main = {∅[7], {a}[5], {b}[5], {c}[5], {e}[6], {ab}[4], {ac}[4], {bc}[4]}; 
IBd – = {{f}, {h}, {abc}}; 
DBd – = {{ae}[5, a ⇒ e], {be}[5, a ⇒ e], {ce}[5, c ⇒ e]}. 
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Now we will illustrate how to determine whether itemsets are frequent or not, and 
how to calculate the support of a frequent itemset. Let us consider itemset {aef}. We 
note that {aef} has a subset (here: {f}) in the infrequent border IBd –. This means that 
{aef} is infrequent. Now we will consider itemset {abe}. It does not have any subset 
in IBd –, but has a subset, e.g., {ae}}[5, a ⇒ e], in DBd –. Since, {a}→e is certain, then 
{ab}→e, which is based on {abe}, is also certain. So, err({ab}→e) = 0. Hence, by 
Property 2.2.5, sup({abe}) = sup({ab}). Since {ab}[4] ∈ Main, its support is already 
known (here: equal to 4). Finally, sup({abe}) = sup({ab}) = 4.                                     

3.2   Representing Frequent Positive and Negative Patterns with Generalized 
Disjunction-Free Set Representation (GDFSRN) 

A generalized disjunction-free representation of sets admitting negated items (denoted 
by GDFSRN, [25]) is defined as consisting of the following components: 

• the main component Main = {X⊆L| (X∈F) ∧ (X∈GDFreeL)} enriched by the 
information on the support for each liset in Main; 

• the infrequent border IBd – = {X⊆L| (X∉F} ∧ (∀Z⊂X Z∈Main)}; 
• the generalized disjunctive border DBd – = {X⊆L| (X∈F) ∧ (X∉GDFreeL) ∧ (∀Y⊂X 

Y∈Main)} enriched by the information on the support (and/or a certain generalized 
disjunctive rule) for each liset in DBd –. 

Thus, GDFSRN is defined in analogical way as GDFSR except that GDFSRN is built 
from lisets, while GDFSR is built only from itemsets. 

Theorem 3.2.1 
 

a) All lisets in Main have non-zero support. 
b) If X∈Main, then ∀Y⊂X Y∈Main. 
c) Lisets that do not belong to GDFSRN have at least one proper subset in the border 

DBd – ∪ IBd –. 

GDFSRN is a lossless representation of all frequent lisets and it enables determining 
for any liset, whether it is frequent, and if so, enables determining its support. 

Example 3.2.1. Let us consider database D from Table 5, which is an extended 
version of Table 1, so that the transactions from Table 1 are in Table 5 with added the 
missing items. We obtain the following  

GDFSRN for minSup = 3: 
 

Main = {∅[7], {(-f)}[6], {(-h)}[4], {a}[5], {b}[5], {c}[5], {e}[6], {ab}[4], {ac}[4], {bc}[4]}; 
IBd – = {{(-a)}, {(-b)}, {(-c)}, {(-e)}, {f}, {h}, {a(-h)}, {c(-h)}, {(-f)(-h)}, {abc}}; 
DBd – = {{ae}[5, a ⇒ e], {be}[5, b ⇒ e], {ce}[5, c ⇒ e] , {a(-f)}[4, ∅ ⇒ a∨(-f)], {b(-f)}[4, ∅ ⇒ b∨(-f)], 

{b(-h)}[4, (-h) ⇒ b], {c(-f)}[4, ∅ ⇒ c∨(-f)], {e(-f)}[5, ∅ ⇒ e∨(-f)], {e(-h)}[4, (-h) ⇒ e]}. 
 

If we wish to evaluate liset {ab(-f)(-h)}, we find that it has a subset, e.g. {a(-h)}, in IBd–, 
so it is infrequent. Now, let us consider liset {be(-h)}. It does not have any subset in 
IBd–, but has a subset {b(-h)}[4, (-h) ⇒ b] in DBd–. Since, {(-h)}→b is certain, then  
{e(-h)}→b, which is based on {be(-h)}, is also certain. So, err({e(-h)}→b) = 0. Hence, 
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by Property 2.2.5, sup({be(-h)}) = sup({e(-h)}). Since {e(-h)}[4, (-h) ⇒ e] ∈ DBd–, its 
support is already known (here: equal to 4). Finally, sup({be(-h)}) = sup({e(-h)}) = 4.  

3.3   Representing Frequent Positive and Negative Patterns with Generalized 
Disjunction-Free Literal Representation (GDFLR) 

A generalized disjunction-free representation of lisets (denoted by GDFLR, [24]) is 
defined as consisting of the following components: 

• the main component Main = {X⊆I| (∃Z∈V(X) Z∈FL) ∧ (∀V∈V(X) V∈GDFreeL)} 
enriched by the information on the support for each set in Main; 

• the infrequent border IBd – = {X⊆I| (∀Z∈V(X) Z∉FL} ∧ (∀Z⊂X Z∈Main)}; 
• the generalized disjunctive border DBd – = {X⊆I| (∃Z∈V(X) Z∈FL) (∃V∈V(X) 

V∉GDFreeL) ∧ (∀Y⊂X Y∈Main)} enriched by the information on the support 
(and/or a certain generalized disjunctive rule) for each itemset in DBd –. 

Thus, the Main component contains itemsets for which all variations are generalized 
disjunction-free (i.e., by Theorem 2.6.2b, have non-zero supports) and at least one is 
frequent. The infrequent border IBd – contains itemsets for which all variations are 
infrequent, and all proper subsets belong to Main. The generalized disjunctive border 
DBd – consists of itemsets each of which has at least one frequent variation and has at 
least one generalized disjunctive variation (i.e., by Theorem 2.6.2a, has at least one 
variation with zero support) and all proper subsets of which belong to Main. 

Theorem 3.3.1 
a) All variations of all itemsets in Main have non-zero support. 
b) If X∈Main, then ∀Y⊂X Y∈Main. 
c) Itemsets that do not belong to GDFLR have at least one proper subset in the 

border DBd – ∪ IBd –. 

GDFLR is a lossless representation of all frequent lisets and enables determining for 
any liset, whether it is frequent, and if so, enables determining its support. 

Example 3.3.1. Let us consider database D from Table 1. For minSup = 3, the 
following GDFLR representation will be found: 
 

Main = {∅[7], {a}[5], {b}[5], {c}[5], {e}[6], {f}[1] , {h}[3] ], {ab}[4], {ac}[4], {bc}[4]}; 
IBd – = {{ah}, {ch}, {fh}, {abc}}; 
DBd – = {{ae}[5, a ⇒ e], {af}[1, f ⇒ a] , {be}[5, b ⇒ e], {bf}[1, f ⇒ b], {bh}[1, h ⇒ b],  

          {ce}[5, c ⇒ e], {cf}[1, f ⇒ c], {ef}[1, f ⇒ e] , {eh}[2, ∅ ⇒ e∨h]}. 

Let us illustrate how to determine if some lisets are frequent or not, and how to 
calculate the support of a frequent liset. Let us consider liset {(−a)e(−h)}. We note 
that its canonical variation {aeh} has a subset {ah} in the infrequent border IBd –. 
Since {ah} and all its variations including {(−a)(−h)} are infrequent, then {(−a)e(−h)} 
is also infrequent as a superset of infrequent liset {(−a)(−h)}. Now, let us consider 
liset {e(−f)}. Its canonical version {ef} does not have any subset in IBd –, but has a 
subset (namely, {ef}[1, f ⇒ e] itself) in DBd –. Since the supports of {ef} and all its 



 On Concise Representations of Frequent Patterns Admitting Negation 271 

subsets are already known, we can determine the support of its variation {(e)(−f)}: 
sup({e(−f)}) = /* by Property 2.5.1 */ = err({e}→f) = /* by Corollary 2.2.1 */ = 
sup({e}) − sup({ef}) = /* see Main and DBd – */ = 6 − 1 = 5. 

Please, see Table 1 or Table 5 to verify these results.                                                

Beneath we formulate and prove a new theorem related to DBd – of GDFLR. 

Theorem 3.3.2. Frequent variations of elements of DBd – are generalized disjunctive. 

Proof: Let itemset P belong to DBd – of GDFLR. Then there is a variation of P which 
is generalized disjunctive, i.e. which is a base of a generalized disjunctive rule with 
zero-error. Hence, by Property 2.5.1, there exists a variation of P, say P’, with support 
equal to 0. Clearly, P’ is infrequent. In addition, by Theorem 2.6.1, all variations of P 
that are different from P’ are generalized disjunctive. Hence, all frequent variations of 
P are generalized disjunctive.                                                                                         

3.4   Common Properties of GDF Representations 

It has been proved in [22, 24] that upper bounds on the length of main and border 
elements in the GDF representations depend logarithmically on the number of 
transaction in the database as follows: 

Theorem 3.4.1 

a) ∀Z∈Main, |Z| ≤ ⎣log2(|D| − minSup)⎦. 
b) ∀Z∈ DBd – ∪ IBd –, |Z| ≤ ⎣log2(|D| − minSup)⎦ + 1. 

Another common feature of each GDF representation is that its border elements are 
all and only sets that do not belong to Main component, but have all their proper 
subsets in Main. 

Theorem 3.4.2 [19, 24] 

a) DBd – ∪ IBd – = {X | (X∉Main) ∧ (∀Y⊂X Y∈Main)}. 
b) IBd – = {X | (X∉Main) ∧ (∀Y⊂X Y∈Main)} \ DBd –. 

By Theorem 3.4.2a, the set being the set-theoretical union of DBd – and IBd – can be 
reconstructed based only on the knowledge of the Main component. By Theorem 
3.4.2b, IBd – can be determined based only on the knowledge of the Main and DBd –  
components. As a result, all GDF representations will remain lossless representations 
of respective frequent patterns, even after discarding IBd – component [19]. More 
advanced techniques for reducing borders were offered in [9] and in [21]. As follows 
from the experiments in [21], the combination of these two techniques reduces the 
border by up to two orders of magnitude. Finally, a simple technique for lossless 
reduction of the main component was proposed in [23]. 

4   Relationships between the GDF Representations 

In this section, we will compare all three GDF representations built for a same  
minSup value. We will use the following notation: MainGDFSR, MainGDFSRN, MainGDFLR,  
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DBd –
GDFSR, DBd –

GDFSRN, DBd –
GDFLR, IBd –

GDFSR, IBd –
GDFSRN, IBd –

GDFLR, to indicate 
respective representation to which a considered component belongs to.  

Let us start with a trivial relationship between the GDFSR and GDFSRN 
representations, namely: 

• MainGDFSR ⊆ MainGDFSRN; 
• DBd –

GDFSR ⊆ DBd –
GDFSRN; 

• IBd –
GDFSR ⊆ IBd –

GDFSRN. 

In the following subsections, we will investigate the relationships between GDFLR 
and GDFSRN, as well as between GDFLR and GDFSR. A special attention will be 
paid to a particular case, when minSup = 0. We will show that in this case the 
elements of GDFLR are identical with the elements of GDFSR, and GDFSRN 
contains all variations of each element of GDFLR (and by this, also of each element 
of GDFSR). 

4.1   Relationship between GDFLR and GDFSRN 

We start our analysis of the relationship between GDFLR and GDFSRN by 
examining the correspondence between lisets in the Main and DBd – components of 
both representations. 

Lemma 4.1.1. If itemset P belongs to MainGDFLR, then all frequent variations of P 
belong to MainGDFSRN, and there is at least one such a variation of P. 

Proof: Let itemset P belong MainGDFLR. Then all variations of P are generalized 
disjunction-free and there is a variation of P, which is frequent. Hence, all frequent 
variations of P are generalized disjunction-free and thus belongs to MainGDFSRN.        

Lemma 4.1.2. If itemset P belongs to DBd –
GDFLR, then all frequent variations of P 

belong to DBd –
GDFSRN, and there is at least one such a variation of P. 

Proof: Let itemset P belong to DBd –
GDFLR. Then at least one variation of P is 

frequent. Clearly, all subsets of all frequent variations of P are frequent (*). In 
addition, by Theorem 3.3.2, all frequent variations of P are generalized disjunctive 
(**). Since P belongs to DBd –

GDFLR, all variations of all proper subsets of P are 
generalized disjunction-free as belonging to MainGDFLR. Hence, all proper subsets of 
all frequent variations of P are generalized disjunction-free (***). By (*), (**) and 
(***), all frequent variations of P belong to DBd –

GDFSRN.                                             

Now, based on the fact that the sum of the supports of all variations of any liset equals 
the number of all transactions, we will propose a simple estimation of the maximal 
number of frequent variations of a liset. Clearly, for minSup ≥ 50%, it can be only one 
frequent variation of a liset, as the supports of all other variations of the liset do not 
exceed minSup. Now, let us consider minSup equal to, say, 34%. Then the liset may 
have at most two frequent variations. Eventually, we generalize these observations as 
follows: 

Proposition 4.1.1. A liset may have at most ⎡100% / minSup⎤ − 1 frequent variations. 
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The corollary beneath follows from Lemmas 4.1.1-2 and Proposition 4.1.1: 

Corollary 4.1.1 

a) Each itemset in MainGDFLR represents at most ⎡100% / minSup⎤ − 1 of its 
variations in MainGDFSRN. 

b) Each itemset in DBd –
GDFLR represents at most ⎡100% / minSup⎤ − 1 of its 

variations in DBd –
GDFSRN. 

c) If minSup≥50%, then |MainGDFLR| = |MainGDFSRN| and |DBd –
GDFLR| = |DBd –

GDFSRN|. 

 
Table 6. Another database    Table 7. GDFLR and GDFSRN for database from Table 6 and 

minSup = 2 
Id Transaction   GDFLR GDFSRN 
T1 {abce}  k |Maink| |DBd –

k| |IBd –
k| |Maink| |DBd –

k| |IBd –
k| 

T2 {abcef}  3 0 2 3 0 2 1 
T3 {abch}  2 9 3 3 11 5 39 
T4 {abe}  1 6 0 0 11 0 1 
T5 {acfh}  0 1 0 0 1 0 0 
T6 {bef}  0-3 16 5 6 23 7 40 
T7 {h}         
T8 {af}         

Now, we will investigate, if an element from IBd –
GDFLR has its variation in GDFSRN. 

Let us consider the database from Table 6. Table 7 shows the cardinalities of the 
representations GDFLR and GDFSRN found from Table 6 for minSup = 2. As 
follows from Table 7, each component of GDFSRN is more numerous than the 
respective component of GDFLR. Nevertheless, GDFLR contains five 3-itemsets 
(three out of which belong to IBd –

GDFLR), while GDFSRN contains three 3-lisets (one 
out of which belongs to IBd –

GDFSRN). This means that at least two 3-itemsets in  
IBd –

GDFLR do not have any of their variations in GDFSRN. Lemma 4.1.2 generalizes 
this observation. 

Lemma 4.1.3. An itemset that belongs to IBd –
GDFLR is not guaranteed to have any of 

its variations in GDFSRN. 

Let us now examine the relationship between GDFLR and GDFSRN for minSup=0. 

Lemma 4.1.4. Let minSup = 0. Itemset P belongs to MainGDFLR iff all variations of P 
are frequent generalized disjunction-free sets. 

Proof: P belongs to MainGDFLR iff all variations of P are generalized disjunction-free 
and at least one variation of P has support greater than 0 iff /* by Theorem 2.6.2b */ 
all variations of P are frequent generalized disjunction-free sets.                                  

Lemma 4.1.5 is an immediate consequence of Lemma 4.1.4. 

Lemma 4.1.5. Let minSup = 0. Itemset P belongs to MainGDFLR iff all variations of P 
belong to MainGDFSRN. 

Lemma 4.1.6. Let minSup = 0 and |D| > 0. Then IBd –
GDFLR = {}. 
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Proof: Since |D| > 0, then sup(∅) > 0 and ∅ ∉ IBd –
GDFLR. Let P be any non-empty 

liset. Then P contains more than one variation and the sum of the supports of all 
variations of P equals |D|, which is greater than 0. So, at least one variation of P has 
support different from 0. Hence, P ∉ IBd –

GDFLR. We have thus shown that neither ∅ 
nor any other liset belongs to IBd –

GDFLR. So, IBd –
GDFLR = {}.                                        

Lemma 4.1.7. Let minSup = 0 and |D| > 0. If P ∈ DBd –
GDFLR, then IBd –

GDFSRN≠{}, 
DBd –

GDFSRN≠{}, and all variations of P belong to the border of GDFSRN. 

Proof: Let P be an element DBd –
GDFLR. Thus, all proper subsets of P belong to 

MainGDFLR. Hence, by Lemma 4.1.5, all variations of all proper subsets of P belong to 
MainGDFSRN (*). Since P belongs to DBd –

GDFLR, then at least one variation of P is 
generalized disjunctive and at least one variation of P is frequent. So, by Theorem 
2.6.2a, at least one variation of P, say V, has support equal to 0 and at least one 
variation of P has support greater than 0. Thus, by Theorem 2.6.1, all variations of P 
that are different from V, are generalized disjunctive. V and all variations of P that 
have support equal to 0 are infrequent and by (*) all their proper subsets belong to 
MainGDFSRN. Hence, these variations of P belong to IBd –

GDFSRN. The remaining 
variations of P are frequent generalized disjunctive and by (*) all their proper subsets 
belong to MainGDFSRN. Thus, these variations of P belong to DBd –

GDFSRN. Hence, all 
variations of P belong to the border of GDFSRN, which consists of two non-empty 
parts.                                                                                                                               

Lemma 4.1.8. Let minSup = 0 and |D| > 0. If pattern P belongs to the border of 
GDFSRN, then the canonical variation of P belongs to the border of GDFLR. 

Proof (by contradiction): Let us assume that P belongs to the border of GDFSRN 
and cv(P) does not belong to the border of GDFLR. Then cv(P) either 1) belongs to 
MainGDFLR, or 2) does not belong to GDFLR.  

Case 1: Since cv(P) ∈ MainGDFLR, then by Lemma 4.1.1, P ∈ MainGDFSRN, which 
contradicts the assumption. 

Case 2: By Theorem 3.3.1c, there is a proper subset, say X, of cv(P) in the border of 
GDFLR. By Lemma 4.1.7, all variations of X belong to the border of GDFSRN. 
Clearly, P has a proper subset among all variations of X. Thus, there is a proper subset 
of P that does not belong to MainGDFSRN. Hence P does not belong to the border of 
GDFSRN, which contradicts the assumption.                                                                

Now, we will consider the case, when D contains no transaction. 

Lemma 4.1.9. Let minSup = 0 and D contains no transaction. Then:  

a) MainGDFLR = MainGDFSRN = {}; 
b) DBd –

GDFLR = DBd –
GDFSRN = {}; 

c) IBd –
GDFLR = IBd –

GDFSRN = {∅}. 

Proof: Since D contains no transaction, then sup(∅) = 0. Hence, ∅, which is its own 
and only variation, is a minimal infrequent set. Thus, ∅ ∈ IBd –

GDFLR and ∅ ∈  
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IBd –
GDFSRN. Therefore, IBd –

GDFLR = IBd –
GDFSRN = {∅}, MainGDFLR = MainGDFSRN = {}, 

and DBd –
GDFLR = DBd –

GDFSRN = {}.                                                                                

Lemmas 4.1.5-9 allow us to conclude: 

Theorem 4.1.1. Let minSup = 0. Pattern P belongs to GDFLR iff all (i.e. 2|P|) 
variations of P belong to GDFSRN. 

4.2   Relationship between GDFLR and GDFSR 

Now we will examine the relationship between the GDFLR and GDFSR 
representations. 

Lemma 4.2.1. If itemset P belongs to MainGDFSR, then P belongs to MainGDFLR. 

Proof: Let P ∈ MainGDFSR. Then P is a frequent generalized-disjunction free itemset 
having support greater than 0. Thus, by Theorem 2.6.3, all variations of P are 
generalized-disjunction free sets. Hence, P ∈ MainGDFLR.                                             

Lemma 4.2.2. If pattern P belongs to DBd –
GDFSR, then P belongs to DBd –

GDFLR. 

Proof: Let P belong to DBd –
GDFSR. Then P is a minimal generalized disjunctive 

itemset, which has a frequent variation (namely, itself) (*) and all its proper subsets in 
MainGDFSR. Thus, by Lemma 4.2.1, all proper subsets of P belong to MainGDFLR (**). 
By (*) and (**), P belongs to DBd –

GDFLR.                                                                     

Lemma 4.2.3. If pattern P belongs to IBd –
GDFSR, then P belongs to GDFLR. 

Proof: Let P ∈ IBd –
GDFSR. Then P is a minimal infrequent itemset, such that its all 

proper subsets belong to MainGDFSR. Thus, by Lemma 4.2.1, all proper subsets of P 
belong to MainGDFLR. Having this in mind, we will consider three mutually exclusive 
cases: 1) all variations of P are infrequent, 2) at least one variation of P is frequent 
and at least one variation of P is generalized disjunctive, 3) at least one variation of P 
is frequent and no variation of P is generalized disjunctive. 

Case 1: In this case, P ∈ IBd –
GDFLR. 

Case 2: In this case, P ∈ DBd –
GDFLR. 

Case 3: In this case, P ∈ MainGDFLR.                                                                              

Theorem 4.2.1. If pattern P belongs to GDFSR, then P belongs to GDFLR. 

Now, we will examine the relationship between GDFLR and GDFSR in the case 
when minSup = 0. 

Lemma 4.2.4. Let minSup = 0. If itemset P ∈ MainGDFLR, then P ∈ MainGDFSR. 

Proof: Let P ∈ MainGDFLR. Then all variations of P are generalized-disjunction free 
sets, so by Theorem 2.6.2b, the supports of all variations of P are greater than 0. Thus, 
P is a frequent generalized-disjunction free itemset. Hence, P ∈ MainGDFSR.                

Lemma 4.2.5. Let minSup = 0. If P ∈ DBd –
GDFLR, then P ∈ DBd –

GDFSR ∪ IBd –
GDFSR. 
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Proof: Let P ∈ DBd –
GDFLR. Then P is a minimal itemset having all proper subsets in 

MainGDFLR and either 1) sup(P) = 0 or 2) sup(P) > 0 and P is a generalized disjunctive 
set. Since all proper subsets of P belong to MainGDFLR, then by Lemma 4.2.4, all 
proper subsets of P belong to MainGDFSR. Hence, if sup(P) = 0, then P ∈ IBd –

GDFSR. 
Otherwise, P ∈ DBd –

GDFSR.                                                                                            

Lemma 4.2.6. Let minSup = 0. If itemset P ∈ IBd –
GDFLR, then P ∈ IBd –

GDFSR. 

Proof: Let P ∈ IBd–
GDFLR. Hence, all variations of P are infrequent, so the supports of 

all variations of P are equal to 0. Thus, |D| = 0. By Lemma 4.1.9, IBd–
GDFLR = {∅}. 

Hence, P = ∅ is the only minimal infrequent itemset. Thus, IBd–
GDFSR = {∅} = {P}.    

The theorem beneath follows from Theorem 4.2.1 and Lemmas 4.2.4-6: 

Theorem 4.2.2. Let minSup = 0. Itemset P belongs to GDFLR iff P belongs to 
GDFSR. 

5   Rule Error Oriented Algorithms 

5.1   Building GDFLR with GDFLR-Apriori 

In this section, we recall the GDFLR-Apriori algorithm [24], which builds GDFLR. 
The process of creating candidate elements and the calculation of their supports in 
GDFLR-Apriori are assumed to be carried out as in the Apriori-like algorithms [2] 
that discover all frequent positive patterns. However, GDFLR-Apriori differs from 
them by introducing additional tests classifying candidates to one of the three 
components Main, IBd – or DBd – respectively. In the algorithm, we apply the 
following notation: 

Notation for GDFLR-Apriori 

• Xk – candidate k-itemsets; 
• X.sup – the support field of itemset X; 

First the GDFLR-Apriori algorithm initializes the three GDFLR components. Then it 
checks if the number of transactions in the database D is greater than minSup. If so, 
then ∅, being a generalized disjunction-free set, is frequent, so it is inserted into 
Main0. Next, the set X1 is assigned all items that occur in the database D. Now, the 
following steps are performed level-wise for all k item candidates, for k ≥ 1: 

• Supports of all candidates in Xk are determined during a pass over the database. 
• For each candidate X in Xk, the errors Errs of all generalized disjunctive rules based 

on X are calculated from the supports of respective subsets of X, according to 
Corollary 2.2.1 Since {X.sup}∪Errs equals the set of the supports of all variations 
of X (by Theorem 2.5.1b), with the condition max({X.sup}∪Errs) ≤ minSup it is 
checked if all variations of X are infrequent. If so, X is classified as an element of 
the infrequent border IBd –. Otherwise, at least one variation of X is frequent. Next, 
the condition min({X.sup}∪Errs) = 0 is checked if X is generalized disjunctive or its 
support equals 0. If so, X is assigned to the border DBd –. Otherwise, it is assigned to 
the Main component. 
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• After assigning all the candidates from Xk to the respective components of GDFLR, 
candidates for frequent patterns, longer by one item, are created as Xk+1. As all 
proper subsets of each element in GDFLR must belong to Main, the creation of k+1 
item candidates is limited to merging1 appropriate pairs of k item patterns from 
Main. In addition, the newly created candidates that have missing k item subsets in 
Main are not valid GDFLR elements, and thus are removed from Xk+1. 
 

Algorithm. GDFLR-Apriori(database D, support threshold minSup); 

Main = {}; DBd – = {}; IBd – = {∅};          // initialize GDFLR 
if |D| > minSup then begin 
 ∅.sup = |D|;  
 move ∅ from IBd – to Main0;  
 X1 = {1-itemsets}; 
 for (k = 1; Xk ≠ ∅; k++) do begin 
  calculate the supports of itemsets in Xk within one scan of database D; 
  forall candidates X∈Xk do begin 
   Errs = Errors-of-rules(X, Main); 
   if max({X.sup}∪Errs) ≤ minSup then // by Th. 2.5.1b, all variations of X are infrequent 
    add X to IBd –

k 
   elseif min({X.sup}∪Errs) = 0 then //by Th. 2.6.2a, there is a gen. dis. variation of X 
    add X to DBd –

k 
   else 
    add X to Maink 
   endif 
  endfor; 
  /* create new (k+1)-candidates by merging k-itemsets in Main (by Ths. 3.3.1b & 3.4.2a) */ 
  Xk+1 = {X⊆I| ∃Y,Z ∈Maink (|Y∩Z| = k−1 ∧ X = Y∪Z)}; 
  /* remain only those candidates that have all k-subsets in Main (by Ths. 3.3.1b & 3.4.2a) */ 
  Xk+1 = Xk+1 \ {X∈Xk+1| ∃Y⊆X (|Y| = k ∧ Y∉Maink} 
 endfor; 
endif; 
return <∪k Maink, ∪k DBd –

k, ∪k IBd –
k>; 

The algorithm ends when there are no more candidates to evaluate, i.e. Xk+1 = ∅. 
Please note that the algorithm will iterate no more than ⎣log2(|D| − minSup)⎦ + 1 
times (by Theorem 3.4.1). Hence, database D will be read no more than ⎣log2(|D| − 
minSup)⎦ + 1 times. 

 
Function. Errors-of-rules(itemset X, component Main); 
   Errs = {}; 
   forall non-empty subsets Y⊆X do begin 
    calculate err(X\Y→\/Y) from the supports of subsets of X; // by Corollary 2.2.1 
    insert err(X\Y→\/Y) in Errs; 
    /* optionally break if max({X.sup}∪Errs)>minSup and min({X.sup}∪Errs)=0 */ 
   endfor; 
return Errs; 

                                                           
1 As in the Apriori algorithm [2]. 
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Let us note that the most critical operation in the GDFLR-Apriori algorithm is the 
calculation of errors of a given candidate pattern X. As follows from Corollary 2.2.1, 
the error of rule x1 … xm → xm+1 ∨ … ∨ xn built from X, which has n items in 
consequent, requires the knowledge of the supports of X and its 2n − 1 proper subsets. 

Taking into account that one can built ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

X ||  distinct rules from X that have n items in 

their consequents and a rule consequent may have from 1 to |X| items, the calculation 

of the errors of all rules based on X requires Σn=1..|X| ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

X || (2n − 1) = 3|X| - 2|X| accesses to 

proper subsets of X. In fact, the calculation of the errors of generalized disjunctive 
rules based on a candidate X can be broken as soon as we identify a frequent variation 
of X (i.e. when max({X.sup}∪Errs) > minSup) and a generalized disjunctive variation 
of X (i.e. when min({X.sup}∪Errs) = 0). Satisfaction of these two conditions 
guarantees that X is an element of the generalized disjunctive border. 

5.2   Building GDFSR and GDFSRN with GDFSR-Apriori and GDFSRN-Apriori 

For building the GDFSR representation, we provide here the algorithm GDFSR-
Apriori, as a simpler version of GDFLR-Apriori. In particular, GDFSR-Apriori does 
not calculate errors of rules for the infrequent candidates. Additionally, in the 
GDFSR-Apriori algorithm, the errors of rules built from a given frequent candidate 
are calculated until a first rule with a zero error is identified instead of calculating the 
errors of all rules based on the candidate. The main differences between the two 
algorithms are shadowed in the code below (see the Algorithm GDFSR-Apriori). 

Given the GDFSR-Apriori, we can easily modify it to the form (we call it 
GDFSRN-Apriori) which builds the GDFSRN representation. Namely, in the 
prologue we extend each transaction from the database with negations of the items 
missing in the transaction, and then run GDFSR-Apriori on the extended database. 
Schematically it is shown in the code below. Let us note that this simple mode of 
building GDFSRN, does not guarantee high efficiency, as it works on much larger 
transactions (built on much larger set of items).  

 
Algorithm. GDFSR-Apriori(database D, support threshold minSup); 

Main = {}; DBd – = {}; IBd – = {∅};          // initialize GDFSR 
if |D| > minSup then begin 
 ∅.sup = |D|;  
 move ∅ from IBd – to Main0;  
 X1 = {1-itemsets}; 
 for (k = 1; Xk ≠ ∅; k++) do begin 
  calculate the supports of itemsets in Xk within one scan of database D; 
  forall candidates X∈Xk do begin 
   if X.sup ≤ minSup then           // X is infrequent 
    add X to IBd –

k 
   else                     // X is frequent 
    /* search a generalized disjunctive rules based on X with the error = 0*/ 
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    forall non-empty subsets Y⊆X do 
     /* calculate the errors Errs of generalized disjunctive rules based on X */ 
     /* from the supports of subsets of X (according to Corollary 2.2.1)       */ 
     /* until min({X.sup}∪Errs) = 0                                                              */ 
    endfor; 
    if min({X.sup}∪Errs) = 0 then    // Is X a base of a certain gen. disjunctive rule? 
     add X to DBd –

k 
    else add X to Maink  endif 
   endif 
  endfor; 
  /* create new (k+1)-candidates by merging k item patterns in Main */ 
  Xk+1 = {X⊆I| ∃Y,Z ∈Maink (|Y∩Z| = k−1 ∧ X = Y∪Z)}; 
  /* remain only those candidates that have all k item subsets in Main */ 
  Xk+1 = Xk+1 \ {X∈Xk+1| ∃Y⊆X (|Y| = k ∧ Y∉Maink} 
 endfor 
endif; 
return <∪k Maink, ∪k DBd –

k, ∪k IBd –
k>; 

 
Algorithm. GDFSRN-Apriori(database D, support threshold minSup); 

D’ = D; 
extend all transactions in D’ with negations of missing items; 
return GDFSR-Apriori(D’, minSup); 

6   Support Oriented Algorithms 

In this section we will present possibilities of speeding up the process of building the 
concise representations GDFLR, GDFSR and GDFSRN. Our goal is to re-use 
efficiently the information of the supports of subsets (and their variations) when 
calculating the errors of rules built from a candidate pattern. Since the calculation of the 
errors of rules built from the pattern X is equivalent to the determination of the supports 
of X’s variations with negation, we will focus only on the latter task. First, we will recall 
an ordering of X’s variations, as proposed in our earlier work [27]. Based on this 
ordering, we will present a method of calculating the support of each variation from  
the supports of two patterns. We will recall here the “support oriented” algorithm 
GDFLR-SO-Apriori [27], and propose two new algorithms GDFSR-SO-Apriori, and 
GDFSRN-SO-Apriori, which are based on the ideas from GDFLR-SO-Apriori.  

6.1   Efficient Calculation of Supports of Pattern Variations 

We start with defining an ordering of the variations of the pattern X: 
Let 0 ≤ n < 2|X|. The nth variation of pattern X (Vn(X)) is defined as this variation of 

X that differs from X on all and only the bit positions having value 1 in the binary 
representation of n. For the variation Vn(X), n is called its (absolute) ordering 
number. 

Let 0 ≤ i < |X|. The ith cluster (Ci(X)) for the pattern X is defined as the set of all 
variations of X, such that i is the leftmost bit position with value 1 in the binary 
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representation of their ordering numbers. Please note that X, which is 0th variation of 
X, does not belong to any cluster Ci(X), 0 ≤ i < |X|, since the binary representation of 
its ordering number does not contain any bit position with value 1. 

Below we illustrate these concepts.  

Example 6.1.1. Let X = {abc}. V5(X) = V22+20(X) = V(101)2(X) = {(−a)b(−c)}; that is, 
5th variation of X differs from X on the positions 2 and 0. Table 8 enumerates all the 
variations of X. The variations of X that are different from X can be split to |X| = 3 
clusters: C0(X) = {V(001)2(X)}; C1(X) = {V(010)2(X), V(011)2(X)}; C2(X) = {V(100)2(X), 

V(101)2(X), V(110)2(X), V(111)2(X)}. Note that the ordering numbers of variations in 

cluster Ci(X), i ∈ {0, …, |X|-1}, can be expressed as 2i + j, where j ∈ {0, …, 2i − 1} 
(see Table 8).                                                                                                                  

Let 0 ≤ i < |X| and j ∈ {0, …, 2i − 1}. A jth variation of pattern X in cluster Ci(X) is 
defined as V2i + j(X). For variation V2i + j(X), j is called its ordering number in cluster 
Ci(X) (or relative ordering number). 

Table 8. Absolute and relative ordering of variations of pattern X = {abc} 

variation V of 
pattern X 

ordering 
number n of 
variation V 

|X| bit binary 
representatio

n of n 

cluster 
Ci(X) 

including 
variation V 

j - ordering 
number of 
variation V 

in Ci(X) 

binary 
representation 

of j 

absolute 
versus rel. 
ordering of 
variation V 

{(  a)(  b)(  c)} 0 (000)2 − − (000)2 − 
{(  a)(  b)(−c)} 1 (001)2 C0(X) 0 (000)2 1 = 20 + 0 
{(  a)(−b)(  c)} 2 (010)2 C1(X) 0 (000)2 2 = 21 + 0 
{(  a)(−b)(−c)} 3 (011)2 C1(X) 1 (001)2 3 = 21 + 1 
{(−a)(  b)(  c)} 4 (100)2 C2(X) 0 (000)2 4 = 22 + 0 
{(−a)(  b)(−c)} 5 (101)2 C2(X) 1 (001)2 5 = 22 + 1 
{(−a)(−b)(  c)} 6 (110)2 C2(X) 2 (010)2 6 = 22 + 2 
{(−a)(−b)(−c)} 7 (111)2 C2(X) 3 (011)2 7 = 22 + 3 

 
Corollary 6.1.1. Let X be a pattern. The set of all variations of X consists of X and all 
variations in the clusters Ci(X), where i ∈ {0, …, |X| − 1}: 

V(X) = {X} ∪ ∪i = 0..|X|−1 Ci(X) = {X} ∪ ∪i = 0..|X|−1, j = 0..2i−1 {V2i + j(X)}. 

Note that two variations Vj(X) and V2i + j(X), j ∈ {0, …, 2i−1}, of a non-empty pattern 

X differ only on the position i; namely, the item on ith position in V2i + j(X) is negation 

of the item on ith position in Vj(X). In addition, Vj(X) and V2i + j(X) do not differ from 
X on positions greater than i. Thus, we can formulate Theorem 6.1.1. 

Theorem 6.1.1. Let X be a non-empty pattern, i ∈ {0, …, |X| − 1} and j ∈ {0, …, 2i−1}. 
Then the following holds:  

sup(V2i + j(X)) = sup(Vj(X \ {X[i]})) − sup(Vj(X)). 
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Table 9. Calculation of supports of consecutive variations of X = {abc} 

i – X’s 
cluster 

no. 

X \ 
{X[i]} 

j – rel. ordering 
number of X’s 

variation in Ci(X) 

support calculation for jth variation of X in cluster Ci(X) 

(that is, for variation V2i + j(X)) 

0 {ab} 0 sup(V20 + 0(X)) = sup(V0(X \ X[0])) - sup(V0(X)) 
/* sup({ab(–c)}) = sup({ab}) – sup({abc}) */ 

1 {ac} 0 sup(V21 + 0(X)) = sup(V0(X \ X[1])) - sup(V0(X)) 
/* sup({a(–b)c}) = sup({ac}) – sup({abc}) */ 

  1 sup(V21 + 1(X)) = sup(V1(X \ X[1])) - sup(V1(X)) 
/* sup({a(–b)(–c)}) = sup({a(–c)}) – sup({ab(–c)}) */ 

2 {bc} 0 sup(V22 + 0(X)) = sup(V0(X \ X[2])) - sup(V0(X)) 
/* sup({(–a)bc}) = sup({bc}) – sup({abc}) */ 

  1 sup(V22 + 1(X)) = sup(V1(X \ X[2])) - sup(V1(X)) 
/* sup({(–a)b(–c)}) = sup({b(–c)}) – sup({ab(–c)}) */ 

  2 sup(V22 + 2(X)) = sup(V2(X \ X[2])) - sup(V2(X)) 
/* sup({(–a)(–b)c}) = sup({(–b)c}) – sup({a(–b)c}) */ 

  3 sup(V22 + 3(X)) = sup(V3(X \ X[2])) - sup(V3(X)) 
/* sup({(–a)(–b)(–c)}) = sup({(–b)(–c)}) – sup({a(–b)(–c)}) */ 

Corollary 6.1.2. Let X be a non-empty pattern, and i ∈ {0, …, |X| − 1}. The support 
of each variation in Ci(X) can be calculated from the support of a variation of 
X \ {X[i]}, and the support of either X or its variation belonging to a cluster Cl(X), 
where l < i. 

Table 9 illustrates how the supports of consecutive variations of a pattern X can be 
calculated based on Theorem 6.1.1 and Corollary 6.1.2. Please note that given the 
support of X, and the supports of all variations of all proper |X|−1 item subsets of X 
one can calculate the supports of all the variations of X. 

6.2   Building GDFLR with the Algorithm GDFLR-SO-Apriori  

In this section, we recall the algorithm GDFLR-SO-Apriori. The main (and only) 
difference between GDFLR-SO-Apriori and the original GDFLR-Apriori is that the 
first one determines and uses the supports of variations instead of the errors of rules 
built from candidate patterns. The difference is highlighted in the code below. 

Additional notation for GDFLR-SO-Apriori 

• X.Sup – table storing supports of all variations of pattern X; note: |X.Sup| = 2|X|. 
Example: Let X = {ab}, then: 

  X.Sup[0] = X.Sup[(00)2] = sup({(  a)(  b)});     X.Sup[1] = X.Sup[(01)2] = sup({(  a)(–b)}); 
  X.Sup[2] = X.Sup[(10)2] = sup({(–a)(  b)});     X.Sup[3] = X.Sup[(11)2] = sup({(–a)(–b)}). 

 
Algorithm. GDFLR-SO-Apriori(support threshold minSup); 

Main = {}; DBd– = {}; IBd – = {∅}; // initialize GDFLR 
if |D| > minSup then begin 
 ∅.Sup[0] = |D|;  move ∅ from IBd– to Main0;  X1 = {1 item patterns}; 
 for (k = 1; Xk ≠ ∅; k++) do begin 
  calculate supports of patterns in Xk within one scan of D 
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  forall candidates X∈Xk do begin 
   Calculate-supports-of-variations(X, Maink–1); 
   if max({X.Sup[l]| l = 0..2k–1}) ≤ minSup then add X to IBd –

k 
   elseif min({X.Sup[l]| l = 0..2k–1}) = 0 then add X to DBd–

k 
   else add X to Maink endif 
  endfor; 
  /* create new (k+1)-candidates by merging k item patterns in Main */ 
  Xk+1 = {X⊆I| ∃Y,Z ∈Maink (|Y∩Z| = k−1 ∧ X = Y∪Z)}; 
  /* remain only those candidates that have all k item subsets in Main */ 
  Xk+1 = Xk+1 \ {X∈Xk+1| ∃Y⊆X (|Y| = k ∧ Y∉Maink} 
 endfor 
endif; 
return <∪k Maink, ∪k DBd–

k, ∪k IBd–
k>; 

As one can observe, the function Errors-of-rules is replaced here by the procedure 
Calculate-supports-of-variations, which determines the supports of variations of 
candidate pattern X in two loops: the external one iterates over clusters of variations 
of X, whereas the internal one iterates over variations within a current cluster. Below 
a code of the procedure Calculate-supports-of-variations is presented. The supports of 
variations are calculated according to Theorem 6.1.1. Let us note that the procedure 
requires only |X| accesses to the proper subsets of a given candidate pattern X, instead 
of 3|X| - 2|X| accesses, which would be performed by the equivalent function Errors-of-
rules in the original algorithm GDFLR-Apriori.  

procedure. Calculate-supports-of-variations(k-pattern X, Maink–1); 
/* assert 1: X.Sup[0] stores the support of pattern X          */ 
/* assert 2: all k–1 item subsets of X are in Maink–1 and     */ 
/*               the supports of all their variations are known */ 
for (i = 0; i < k; i++) do begin        // focus on cluster Ci(X) 
 Y = X \ {X[i]};  find Y in Maink–1;      // Y⊂X is accessed once per cluster 
 for (j = 0; j < 2i; j++) do begin 
  X.Sup[2i + j] = Y.Sup[j] – X.Sup[j];    // calculate support of jth variation in cluster Ci(X) 
  /* optionally break if max{X.Sup[l]| l=0..2i + j}>minSup and min{X.Sup[l]| l=0..2i + j}=0 */ 
 endfor; 
 /* optionally break if max{X.Sup[l]| l=0..2i + j}>minSup and min{X.Sup[l]| l=0..2i + j}=0 */ 
endfor; 
return; 

Let us note, that in order to create and evaluate the (k+1)-item candidates GDFLR-
SO-Apriori requires storing the k-itemsets of the Main component in GDFLR, along 
with the supports of all their variations, whereas the GDFLR-Apriori requires storing 
all i-itemsets from Main, i=0…k, along with their supports, and does not require 
storing the supports of the variations of the Main elements. 

The Apriori-GDFLR algorithm can be further optimized by breaking the 
calculation of the supports of the variations of a candidate X as soon as the  
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Calculate-supports-of-variations procedure identifies a frequent variation of X (i.e. 
when max({X.Sup[l]| l = 0.. 2i + j}) > minSup) and a generalized disjunctive variation 
of X (i.e. when min({X.Sup[l]| l = 0.. 2i + j}) = 0). Satisfaction of these two 
conditions guarantees that X is an element of the generalized disjunctive border.  

6.3   Building GDFSR and GDFSRN with GDFSR-SO-Apriori and 
GDFSRN-SO-Apriori 

Now we introduce the GDFSR-SO-Apriori algorithm, which calculates the GDFSR 
representations based on the supports of the variations of currently maximal elements 
from Main, rather than on errors of rules. GDFSR-SO-Apriori can be obtained from 
GDFSR-Apriori in an analogical way, as GDFLR-SO-Apriori was obtained from 
GDFLR-Apriori. The introduced changes are shadowed in the code below. 

 
Algorithm. GDFSR-SO-Apriori(database D, support threshold minSup); 

Main = {}; DBd – = {}; IBd – = {∅};          // initialize GDFSR 
if |D| > minSup then begin 
 ∅.sup = |D|;  
 move ∅ from IBd – to Main0;  
 X1 = {1-itemsets}; 
 for (k = 1; Xk ≠ ∅; k++) do begin 
  calculate the supports of itemsets in Xk within one scan of database D; 
  forall candidates X∈Xk do begin 
   if X.sup ≤ minSup then add X to IBd –

k   // X is infrequent 
   else begin                 // X is frequent 
     /* calculate the supports of variants of X (according to Theorem 6.1.1) */ 
     /* until X’s variation with zero support is identified or                           */ 
     /* the supports of all variations of X are calculated;                                */ 
    if there is variation of X with zero support then  // X is a base of a certain gen. dis. rule 
     add X to DBd –

k 
    else add X to Maink  endif 
   endif 
  endfor; 
  /* create new (k+1)-candidates by merging k item patterns in Main */ 
  Xk+1 = {X⊆I| ∃Y,Z ∈Maink (|Y∩Z| = k−1 ∧ X = Y∪Z)}; 
  /* remain only those candidates that have all k item subsets in Main */ 
  Xk+1 = Xk+1 \ {X∈Xk+1| ∃Y⊆X (|Y| = k ∧ Y∉Maink} 
 endfor 
endif; 
return <∪k Maink, ∪k DBd –

k, ∪k IBd –
k>; 

 
Analogically to the modification we did in Subsection 5.2, in GDFSR-Apriori in 

order to obtain GDFSRN-Apriori, now we transform GDFSR-SO-Apriori to 
GDFSRN-SO-Apriori, which builds the GDFSRN representation with the use of an 
extended database.  
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Algorithm. GDFSRN-SO-Apriori(database D, support threshold minSup); 

D’ = D; 
extend all transactions in D’ with negations of missing items; 
return GDFSR-SO-Apriori(D’, minSup); 

7   Experimental Results 

In order to carry out experiments, we have expanded our tool [10], so that it contains 
the implementations of all the algorithms presented in this paper. A specific feature of 
our implementation is an application of hashing maps as proposed in [10], which 
guarantees a very efficient usage of main memory when searching patterns.  

The experiments producing the GDFLR and GDFSR representations were carried 
out on the benchmark mushroom and connect-4 data sets (accessible from 
http://www.ics.uci.edu/~mlearn/MLRepository.html). The mushroom dataset contains 
8124 transactions; each of which consists of 23 items; the total number of distinct 
items in this data set is 119. The connect-4 dataset contains 67557 transactions of 
length 43 items; the total number of distinct items is 129. The GDFSRN 
representation was built on extended with negations of missing items copies of the 
mushroom and connect-4 datasets.  

The experimental results are presented in Tables 10-13. The notation “N/A” used 
in the tables means that a respective representation was not built due to insufficient 
capacity of main memory or unacceptable long duration time of the calculations. 
Tables 10-11 provide the cardinalities of all three GDF representations w.r.t. minSup 
threshold value, which confirm the results obtained on a theoretical basis in Section 4. 
In particular, we observe that |MainGDFLR| = |MainGDFSRN| and |DBd –

GDFLR| =  
|DBd –

GDFSRN| for minSup ≥ 50%. On the other hand, as follows from Table 10, for 
very low minSup values (below 1%) the cardinality of GDFSR, which represents only 
frequent positive patterns in the mushroom dataset, becomes similar to the cardinality 
of GDFLR, which represents both positive patterns and patterns with negated items. 
In addition, the cardinality of GDFSRN is by an order of magnitude greater than the 
cardinality of GDFLR for minSup = 2% and this gap increases when lowering the 
value of the minSup threshold. 

Table 10. Cardinalities of GDF representations for the mushroom dataset 

Representation GDFSR GDFSRN GDFLR 
minSup |Main| |DBd-| |IBd-| Total |Main| |DBd-| |IBd-| Total |Main| |DBd-| |IBd-| Total 

0.012% 220 696 30 533 22 341 273 570 N/A N/A N/A N/A 229 382 44 253 0 273 635 
1% 33 822 15 430 22 092 71 344 3 429 417 411 625 450 517 4 291 559 229 382 44 253 0 273 635 
2% 18 336 10 128 14 042 42 506 2 355 207 337 582 289 817 2 982 606 229 382 44 253 0 273 635 
5% 7 040 4 786 6 208 18 034 1 178 303 223 955 153 541 1 555 799 229 246 44 253 90 273 589 

10% 2 542 1 923 2 410 6 875 559 469 135 521 82 876 777 866 216 881 43 945 3 799 264 625 
20% 645 528 905 2 078 187 647 61 534 36 655 285 836 134 916 37 708 14 974 187 598 
30% 207 124 369 700 74 724 30 280 17 563 122 567 66 795 24 767 13 097 104 659 
40% 89 57 233 379 31 366 16 531 9 059 56 956 30 417 15 337 8 137 53 891 
50% 30 20 149 199 13 755 9 163 4 291 27 209 13 755 9 163 4 173 27 091 
60% 15 6 121 142 6 195 5 864 2 156 14 215 6 195 5 864 2 038 14 097 
70% 9 3 114 126 2 715 4 090 1 173 7 978 2 715 4 090 1 055 7 860 
80% 8 3 115 126 1 262 2 782 610 4 654 1 262 2 782 492 4 536 
90% 5 1 117 123 417 1 739 527 2 683 417 1 739 409 2 565 
99% 1 1 118 120 35 172 285 492 35 172 167 374 
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Table 11. Cardinalities of GDF representations for the connect-4 dataset 

Representation GDFSR GDFSRN GDFLR 
minSup |Main| |DBd-| |IBd-| Total |Main| |DBd-| |IBd-| Total |Main| |DBd-| |IBd-| Total 

10% 19 471 9 696 8 388 37 555 N/A N/A N/A N/A N/A N/A N/A N/A 
20% 4 728 2 845 2 304 9 877 N/A N/A N/A N/A 3 595 988 1 964 380 692 205 6 252 573 
30% 1 625 1 595 890 4 110 1 609 513 845 398 461 542 2 916 453 1 541 747 819 120 427 568 2 788 435 
40% 819 1 247 493 2 559 590 095 328 087 201 338 1 119 520 586 324 326 662 198 503 1 111 489 
50% 462 935 382 1 779 208 774 122 113 83 740 414 627 208 774 122 113 83 611 414 498 
60% 265 629 355 1 249 68 991 49 439 30 127 148 557 68 991 49 439 29 998 148 428 
70% 161 384 245 790 21 968 21 815 10 569 54 352 21 968 21 815 10 440 54 223 
80% 83 265 199 547 5 939 6 996 5 401 18 336 5 939 6 996 5 272 18 207 
90% 22 177 141 340 646 2 170 975 3 791 646 2 170 846 3 662 
99% 9 16 133 158 41 283 313 637 41 283 184 508 

 

Table 12. Runtime of calculating 1) supports of variations by GDFxx-SO-Apriori algorithms 
and 2) errors of rules by GDFxx-Apriori algorithms for mushroom  

  runtime [s] runtime ratio 

minSup 

GDFSR-
SO-
Apriori 

GDFSR-
Apriori 

GDFSRN-
SO-
Apriori 

GDFSRN-
Apriori 

GDFLR-
SO-
Apriori 

GDFLR-
Apriori 

GDFSR-Apriori / 
GDFSR-SO-
Apriori 

GDFSRN-Apriori /
GDFSRN-SO-
Apriori 

GDFLR-Apriori / 
GDFLR-SO-
Apriori 

0.012% 4,68 N/A N/A N/A 5,32 N/A N/A N/A N/A 
1% 0,59 13,46 113,65 N/A 5,26 1 099,57 22,7 N/A 209,1 
2% 0,31 5,73 73,07 N/A 5,27 1 099,05 18,4 N/A 208,5 
5% 0,13 1,62 34,46 5 699,26 5,24 1 097,43 12,9 165,4 209,3 

10% 0,03 0,50 15,15 1 938,22 4,93 881,03 15,6 128,0 178,7 
20% 0,02 0,06 4,43 356,27 3,06 291,30 3,9 80,4 95,3 
30% 0,00 0,02 1,56 82,01 1,44 80,98   52,5 56,4 
40% 0,00 0,00 0,58 21,55 0,59 22,84   37,3 38,6 
50% 0,00 0,00 0,22 6,46 0,27 7,05   29,6 26,6 
60% 0,00 0,00 0,09 1,70 0,09 2,04   18,3 22,0 
70% 0,00 0,00 0,03 0,50 0,05 0,62   15,6 13,3 
80% 0,00 0,00 0,03 0,17 0,02 0,19   5,7 12,5 
90% 0,00 0,00 0,00 0,03 0,00 0,08       

 

Table 13. Runtime of calculating 1) supports of variations by GDFxx-SO-Apriori algorithms 
and 2) errors of rules by GDFxx-Apriori algorithms for connect-4  

  runtime [s] runtime ratio 

minSup 
GDFSR-
SO-
Apriori 

GDFSR-
Apriori 

GDFSRN-
SO-
Apriori 

GDFSRN-
Apriori 

GDFLR-SO-
Apriori 

GDFLR-
Apriori 

GDFSR-Apriori / 
GDFSR-SO-
Apriori 

GDFSRN-Apriori /
GDFSRN-SO-
Apriori 

GDFLR-Apriori / 
GDFLR-SO-
Apriori 

10% 0,31 4,24 N/A N/A N/A N/A 13,6 N/A N/A 
20% 0,06 0,51 N/A N/A N/A 11 354,27 8,2 N/A N/A 
30% 0,05 0,14 57,14 2 875,78 55,85 1 146,58 3,1 50,33 20,5 
40% 0,02 0,06 18,86 438,64 19,72 271,81 4,1 23,3 13,8 
50% 0,00 0,05 5,90 96,32 6,60 63,61  16,3 9,6 
60% 0,00 0,03 1,78 20,16 1,94 13,44  11,3 6,9 
70% 0,00 0,02 0,56 4,63 0,58 3,05  8,3 5,3 
80% 0,00 0,00 0,11 0,72 0,14 0,56  6,6 4,0 
90% 0,00 0,00 0,02 0,05 0,03 0,03  2,9 1,0 

 
The contents of Tables 12-13 allow us to compare the impact of applying support 

oriented- versus error oriented algorithms building the GDF representations. We have 
compared only the duration time of the operations that are different and crucial for the 
performance of the algorithms; namely, in the case of GDFSR-SO-Apriori, GDFSRN-
SO-Apriori, and GDFLR-SO-Apriori algorithms, we report the runtime of calculating 
supports of variations of candidate sets, while in the case of GDFSR-Apriori, 
GDFSRN-Apriori, and GDFLR-Apriori algorithms, we report the runtime of 
calculating errors of rules based on candidate sets. The speed-up obtained by applying 
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support oriented versions is particularly significant in the case of the algorithms 
building GDFSRN and GDFLR, and increases when lowering minSup value. As 
follows from Table 12, GDFLR-SO-Apriori is at least 200 times faster than GDFLR-
Apriori for minSup ≤ 5%. Nevertheless, insufficient capacity of the main memory 
may disable the usage of this method. In the case of the connect-4 dataset (see Table 
13), we were not able to build the GDFSRN and GDFLR representations with support 
oriented algorithms for minSup ≤ 10%. 

8   Summary and Conclusions 

We have reviewed three GDF representations of frequent patterns, namely: GDFSR 
that represents all frequent positive patterns, and GDFSRN, as well as, GDFLR that 
represent all frequent patterns including those with negated items. GDFSR and 
GDFLR consist of only some positive patterns (itemsets), while GDFSRN consists of 
some patterns including those with negated items (literal sets). The GDF 
representations use generalized disjunctive rules to derive the supports of patterns. 
The GDF representations store some generalized disjunction-free patterns (i.e. Main 
component), some minimal generalized disjunctive patterns (i.e. DBd – component), 
and optionally some minimal infrequent patterns (i.e. IBd – component). In the paper, 
we have formulated and proved new theorems related to generalized disjunctive sets 
and generalized disjunction-free sets versus supports of patterns variations. We have 
found that all frequent variations of elements of the DBd – component of the GDFLR 
representation are generalized disjunctive. Eventually, we have found and proved a 
number of relationships between all three GDF representations. In particular, we have 
proved that for any given minSup value: 

• MainGDFSR ∪ DBd –
GDFSR ∪ IBd –

GDFSR ⊆ MainGDFSRN ∪ DBd –
GDFSRN ∪ IBd –

GDFSRN; 

• MainGDFSR ∪ DBd –
GDFSR ∪ IBd –

GDFSR ⊆ MainGDFLR ∪ DBd –
GDFLR ∪ IBd –

GDFLR; 

• |MainGDFSR|≤|MainGDFLR|≤|MainGDFSRN| and |DBd –
GDFSR|≤|DBd –

GDFLR|≤|DBd –
GDFSRN|. 

It follows from the last dependency that the cardinality of the lossless reduced 
GDFLR representation obtained by discarding redundant IBd –

GDFLR component does 
not exceed the cardinality of the reduced GDFSRN representation obtained by 
discarding its IBd –

GDFSRN component. In addition, we have proved that for minSup = 
0, the elements of GDFLR are identical with the elements of GDFSR, and GDFSRN 
contains all variations of each element of GDFLR and GDFSR. This implies that for 
minSup = 0, the cardinality of GDFSRN is in practice by orders of magnitude greater 
than the cardinalities of GDFLR and GDFSR, since any element X of GDFLR and 
GDFSR has 2|X| variations in GDFSRN. 

In the paper, we provided a complete set of error oriented and support oriented 
versions of algorithms for calculating each GDF representation. GDFSR-Apriori and 
GDFSRN-Apriori are adapted versions of the GDFLR-SO-Apriori algorithm, while 
GDFSR-SO-Apriori and GDFSRN-SO-Apriori are adapted versions of the GDFLR-
SO-Apriori algorithm. The experiments prove that the support oriented versions of the 
algorithms, which apply a particular order of calculating the supports of variations of 
candidates, are faster than respective error oriented versions by up to two orders of 
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magnitude for low support threshold values. The experimental results confirm also the 
properties related to cardinalities of the GDF representations that we found on a 
theoretical basis. 
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Abstract. This paper discusses the range of knowledge acquisition, including 
machine learning, approaches used to develop knowledge bases for Intelligent 
Systems. Specifically, this paper focuses on developing techniques which en-
able an expert to detect inconsistencies in 2 (or more) perspectives that the ex-
pert might have on the same (classification) task. Further, the INSIGHT system 
has been developed to provide a tool which supports domain experts exploring, 
and removing, the inconsistencies in their conceptualization of a task. We report 
here a study of Intensive Care physicians reconciling 2 perspectives on their pa-
tients. The high level task which the physicians had set themselves was to clas-
sify, on a 5 point scale (A-E), the hourly reports produced by the Unit’s patient 
management system. The 2 perspectives provided to INSIGHT were an anno-
tated set of patient records where the expert had selected the appropriate cate-
gory to describe that snapshot of the patient, and a set of rules which are able to 
classify the various time points on the same 5-point scale. 

Inconsistencies between these 2 perspectives are displayed as a confusion 
matrix; moreover INSIGHT then allows the expert to revise both the annotated 
datasets (correcting data errors, and/or changing the assigned categories) and 
the actual rule-set. Each expert achieved a very high degree of consensus be-
tween his refined knowledge sources (i.e., annotated hourly patient records and 
the rule-set).  

Further, the consensus between the 2 experts was ~95%. The paper con-
cludes by outlining some of the follow-up studies planned with both INSIGHT 
and this general approach. 

1   Introduction 

Contemporary knowledge-based systems, as their expert systems predecessors (Bu-
chanan & Shortliffe 1984), have 2 principal components, namely, a task-specific infer-
ence engine, and the corresponding associated domain-specific knowledge base. If the 
area of interest is both large and complex then it is likely that knowledge engineers will 
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spend a great deal of time and effort producing the appropriate knowledge base (KB), 
and so various efforts have been made to reuse existing knowledge bases whenever pos-
sible, (Corsar & Sleeman 2007). This paper surveys a number of methods by which 
KBs can be produced from scratch including: traditional interviewing, computer-based 
tools which have incorporated classical psychological approaches such as card sort,  
systems to acquire information to support a particular problem solver (PS), the use of 
machine learning in knowledge acquisition / capture, as well as more recent attempts to 
infer information from data sets produced by large numbers of users of systems like 
Open Mind, (Singh et al, 2002). 

A central problem, since the inception of Expert Systems, is how to deal with the un-
certainty inherent in such knowledge bases (Buchanan & Shortliffe, 1984). EMYCIN 
(Buchanan & Shortliffe, 1984) associated certainty factors with particular pieces of in-
formation (both facts & rules) and evolved a calculus which allows the uncertainty  
associated with decisions to be calculated, and then reported to the user. Bayesian  
Networks have developed these ideas further, so that it is possible for decision support 
systems to identify a range of possible decisions and to associate each with strength of 
belief, (Pearl, 1988). Both these approaches provide pragmatic approaches to the han-
dling of uncertainty associated with expertise. Clearly, however there are different types 
of uncertainty associated with pieces of knowledge including the fact that even experts 
retain incorrect information, and further they can also misapply information. Develop-
ing techniques for capturing and refining expertise is an important sub-activity at the  
intersection of Cognitive Psychology & Artificial Intelligence. 

The focus of the work reported here is an attempt to get experts to provide 2 per-
spectives on a classification task, and then to provide a system / tool which enables 
the domain expert to appreciate when a particular entity has been classified differently 
by the 2 perspectives. Further, the tool provides the expert with support in revising 
one or both of the knowledge sources until a consensus is reached (or the expert 
abandons that particular task). As usual we believe it is vital that this activity is 
grounded in a real-world task and we have chosen the classification of hourly Inten-
sive Care Unit (ICU) patient records; specifically the domain expert’s task was to 
classify records (which can contain up to 60 pieces of information) on a 5-point A-E 
scale where E is severely ill. 

The rest of the paper is structured as follows: section 2 gives an overview of ICU 
patient management systems, and the types of information which they produce; addi-
tionally, patient scoring systems are discussed. Section 3 gives an overview of the 
cognitive science literature on expertise, on knowledge acquisition / capture including 
the important role which machine learning has played in these activities; thirdly we 
review cooperative knowledge acquisition and knowledge refinement systems. Sec-
tion 4 provides a conceptual overview of the INSIGHT system which takes 2 perspec-
tives on an expert’s classification knowledge, detects inconsistencies between them, 
and allows the domain expert to revise both knowledge sources to see if a consensus 
on the current task can be reached. Section 5 describes the use of INSIGHT by  
experts to reconcile 2 perspectives of their knowledge about ICU patients; namely a set  
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of annotated patient records and a rule-set which covers each of the 5 categories  
(A-E). A high level of consensus was achieved by both experts. Section 6 outlines 
several of the contributions of this work. Section 7 concludes the paper by outlining 
some planned follow-up studies. 

2   Overview of Patient Management Systems Used in Intensive 
Care Units (ICUs) 

This section gives an overview of patient monitoring systems which are used in Inten-
sive Care Units (ICUs), together with examples of parameters collected. We also dis-
cuss the need for patient scoring systems, and outline a 5-point qualitative scale which 
we have developed. 

Many ICUs have patient management systems which collect the patients’ physio-
logical parameters, records nursing activities, and other interventions (such as the ad-
ministration of drugs and boluses of fluids). This information is typically collected at 
specified time periods say every minute or hour, is recorded on a data base associated 
with the patient monitoring system, and is continuously available on a monitor at the 
patient’s bedside where it is usually displayed as a conventional chart; this is the form 
of the information which clinicians use when they attend patients.  Thus many ICUs 
are now paperless. Often this information is not systematically analysed subsequently 
for trends or inconsistencies in the data sets. This is the focus of an aspect of our work 
which has led us to produce the ACHE (Architecture for Clinical Hypothesis Evalua-
tion) infrastructure, (Moss et al., 2008). That paper also outlines one preliminary 
study which we have undertaken with ACHE to identify the occurrence of Myocardial 
Infarctions in this group of ICU patients. 

The patient management system used at Glasgow Royal Infirmary (GRI), a Phillips 
CareVue, records up to 60 parameters. Table 1 lists the principal parameters, and lists 
the frequency of recording in the current data set. It should be noted that the data sets 
which we analyse are extracted from the patient database, de-identified, and output as 
a spreadsheet; the spreadsheet is then input to the ACHE system & different analyses 
are performed on the data “off-line”. 

2.1   Patient Scoring System 

For a variety of reasons it would be helpful to clinicians if they were able to obtain a 
regular summary of each patient’s overall condition. Such information would be use-
ful to determine whether there has been any appreciable progress / deterioration, 
would be a useful summary for the next shift of clinical staff, and could be included 
as a component of a discharge summary. To date the APACHE-2 scale (Knaus et al., 
1991) is widely used in ICUs in the western world, but the APACHE score is created 
only once during a patient’s ICU stay, usually 24 hours after admission. Additionally 
this scoring system does not take into account the effect of interventions on a patient. 
For example if a patient has a very low blood pressure this is clearly a very serious 
condition, but it is even more serious if the patient has this blood pressure despite 
having received a significant dose of a drug like Adrenaline.1 
                                                           
1 Adrenaline normally raises a patient’s blood pressure through its inotropic effect. 
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Table 1. Parameters used in the study 
 

Parameter                                                          Recorded Interval 
Heart Rate  Hourly 
Temperature  Hourly 
Mean Arterial Pressure (MAP)  Hourly 
Diastolic  Hourly 
Systolic  Hourly 
FiO2  Hourly 
SpO2  Hourly 
Urine output  Hourly 
Central Venous Pressure (CVP)  Hourly 
LiDCO (If applicable to patient)  Hourly 
Drug Infusions  (eg Adrenaline, Noradrenaline) As applicable 
Fluid Infusions  As applicable 
Dialysis Sessions As applicable 

 
The clinical authors of this paper (JK & MS) have been addressing this issue for 

some while. More recently we have produced a 5-point (high-level) qualitative de-
scription of ICU patients, which can be summarized as follows: 

 

E Patient is highly unstable with say a number of his physiological parameters (e.g., 
blood pressure, heart rate) having extreme values (either low or high). 

D Patient more stable than patients in category E but is likely to be receiving con-
siderable amounts of support (e.g., fluid boluses, drugs such as Adrenaline, & 
possible high doses of oxygen ) 

C Either more stable than patients in category D or the same level of stability but on 
lower levels of support (e.g., fluids, drugs & inspired oxygen) 

B Relatively stable (i.e., near normal physiological parameters) with  low levels of 
support 

A Normal physiological parameters without use of drugs like Adrenaline, only 
small amounts of fluids, and low doses of inspired oxygen  

 
For more details on the descriptions, please see Appendix A. 

The objective of the study is to derive a series of rules which can be used with a 
high degree of consistency, to classify the hourly patient reports produced by the pa-
tient management system. The top-level outline of the study is: 

 

• The administrator of the patient management system produced listings (in spread-
sheet format) for 10 patients’ complete stays in the ICU (the number of days var-
ied from 1-23 days) 

• One of the clinical investigators (MS) annotated each of the hourly records 
(nearly 3000 records in all) with his assessment of the patient’s status on the 5-
point qualitative scale on the basis of the information  provided by the Phillips 
CareVue system i.e., that contained in the spreadsheets 

• Further we asked the same clinician to articulate rules to describe each of the 5 
categories, (i.e., A-E). 
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• We used the INSIGHT tool (described below) to help this clinician make this 
data set & his rule set more consistent by modifying, as he saw fit, either the an-
notations in the date set, his rule-set, or both. 

• The second clinician (JK) annotated 3 of the patients’ data sets, again using the 
same qualitative scale (A-E) 

• We used the INSIGHT tool to help the second clinician (JK) make his data set 
consistent with the rule set produced by the first clinician. This clinician was, of 
course, allowed to modify both his annotations of the data set & the actual rules).  

 

More details of this study are given in section 5. 

3   Literature Overview 

This section gives a Cognitive Science perspective on the acquisition of expertise 
(section 3.1), provides an overview of knowledge acquisition (including machine 
learning) approaches in section 3.2, and discusses cooperative knowledge acquisition 
and knowledge refinement systems in section 3.3. 

3.1   The Cognitive Science Perspective on the Acquisition of Expertise 

The classic book on Protocol Analysis by Ericsson & Simon (1993) argues that to ac-
quire a person’s genuine expertise it is essential that one does not get the expert to ar-
ticulate what they do in the abstract, but one should essentially observe what they do 
when solving an actual task. In the case of protocol analysis they further argue that 
the process of verbalizing the steps of problem solving does not perturb the expert’s 
actual problem solving processes. Effectively, Ericsson & Simon introduced the dis-
tinction between “active” knowledge which is used to solve tasks as opposed to “pas-
sive” knowledge which is used to discuss tasks / a domain. 

This has been a recurrent theme / perspective in much of cognitive science and in 
the study of expertise since that time, as is illustrated by the very nice study reported 
by Johnson (1983). This investigator attended a medical professor’s lectures on diag-
nosis where he explained the process. The investigator then accompanies the profes-
sor’s ward round (with a group of medical students) & noticed a difference in his pro-
cedures. When challenged about these differences the medical professor said: 

 
“Oh, I know that, but you see I don’t know how I do diagnosis, and 
yet I need to teach things to students.  I create what I think of as 
plausible means for doing tasks and hope students will be able to 
convert them into effective ones.”  

 
Thus the essential “rule” of expertise / knowledge acquisition (KA) is that one should 
ask an expert to solve specific task(s), and (preferably) explain what s/he is doing as 
the task proceeds; one should not normally ask a domain expert to discuss their ex-
pertise in the abstract (this includes asking an expert to articulate rules and procedures 
they use to solve tasks). 
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3.2   Summary of Knowledge Acquisition Including Uses of Machine Learning  
to Extract Domain Knowledge in a Number of Domains 

In a recent overview at the K-CAP 2007 conference, Sleeman (Sleeman et al, in 
press) argued that Knowledge Acquisition (KA) is “a broad church” and consists of a 
very wide range of approaches including: 

 

• Interviewing of domain experts by Knowledge Engineers: an approach which 
was dominant in the early development of Expert Systems (Buchanan & 
Shortliffe, 1984). 

• Techniques, including card sort, repertory grids, laddering, which had originally 
been developed by psychologists as “manual” techniques which Computer Scien-
tists redeveloped as a series of Computer-based systems, (Diaper, 1989). 

• Problem-Solving Method (PSM) driven systems such as MOLE, MORE, SALT 
acquire more focussed information which is sufficient to satisfy a particular type 
of problem solver / PSM. The use of these systems is less demanding for the do-
main expert as the information collected is generally less, and the purpose of the 
information collected is usually more apparent,  (Marcus & McDermott, 1989.) 

• Machine-learning approaches have played an important role of transforming sets 
of usually labelled instances into knowledge (usually rule sets). Given the context 
of this volume I provide some more detail of these approaches below. 

• Natural Language techniques (specifically Information Extraction approaches) 
have now matured to the point where they have been successfully applied to a 
number of textual sources & have extracted useful information (Etzioni et al, 
2005). 

• Captalizing on greater connectivity & the willingness of some people to provide 
samples of texts, and to complete sentences in meaningful ways. Systems like 
OpenWorld have collected vast corpora which they have then analysed using sta-
tistical techniques to extract some very interesting concepts & associations 
(Singh et al, 2002). Similarly, von Ahn has exploited peoples’ enthusiasm for on-
line game playing, von Ahn (2006). 

 
Michalski and Chilausky (1980) had a notable early success using Machine Learning 
approaches to extracting knowledge / rules from instances, in the domain of crop dis-
ease. The soya bean crop is of major importance to the state of Illinois, and so it em-
ployed a number of plant pathologists to advise farmers on crop diseases. Michalski and 
Chilausky studied the standard reference book on the subject, and also spent 40 or so 
hours interviewing an expert. This allowed them to determine, what they believed were, 
the appropriate set of descriptors for soya bean diseases. Subsequently, they developed a 
questionnaire to illicit, from farmers, examples of actual crop diseases which they had 
experienced; in fact, they obtained nearly 700 such cases. They then trained a version of 
the ID3 program (Quinlan, 1986) with 307 instances, and used the trained system to 
classify 376 test cases. The performance of the trained program was impressive; it only 
misclassified 2 instances whereas humans following the information given in the stan-
dard textbook misclassified 17% of the cases. A final step in this project was to extract a 
series of IF-THEN-ELSE rules from the ID3 tree, for day-to-day use by the plant  
pathologists and farmers. 
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For a more recent survey of the application of Machine Learning approaches to 
real-world tasks, see Langley & Simon (1995). 

3.3   Cooperative Knowledge Acquisition and Knowledge Refinement Systems 

Building large knowledge bases is a demanding task; and particularly so if one is work-
ing in a domain where the knowledge / information is still “fluid”. When one attempts 
to use such knowledge bases in conjunction with an appropriate inference engine to 
solve real-world tasks, one often finds that information is missing (and hence needs to 
be acquired), or the system gives answers to tasks which the domain expert says are in-
correct (and hence the knowledge base needs to be refined). Again, if the domain is at 
the cutting edge of human knowledge then it is not possible to draw on an existing 
source of knowledge to support the processes of acquisition and refinement noted 
above, and hence one must use a well-chosen domain expert to act as the oracle. For 
obvious reasons the systems which have been built, by our group and others, to fulfil 
this role are often referred to as Cooperative Knowledge Acquisition and Knowledge Re-
finement systems. See Sleeman (1994) for a review of such systems. Over the last dec-
ade or more we have implemented systems which are able to refine knowledge bases 
(KBs) in a variety of formalisms including rules, cases, taxonomies, and causal graphs. 
The family of systems which are most relevant to this discussion are those which are 
able to refine cases, and they are discussed in the next sub-section. 

3.3.1   The REFINER Systems 
The REFINER family of programs have been designed to detect inconsistencies in a 
set of labelled cases. That is, these systems are provided with a set of categories 
which the domain expert believes are relevant to the domain, a set of descriptors 
needed to describe the domain, and a set of labelled cases / instances. The descriptors 
can be of a variety of types including real, integer, string and hierarchical. If the latter, 
then the system requires some further information about the nature of the taxonomy 
(for example, Figure 1). Table 2 shows a set of cases including the categories as-
signed by the domain expert to each case.  At the heart of each system is an algorithm 
which forms a category description from say all the instances of category A, bearing 
in mind the actual types of the variables. This process is repeated for each of the cate-
gories. Table 3 shows the category descriptions which the algorithm infers for this 
dataset. The systems then check to see whether the set of inferred categories are con-
sistent (i.e., not overlapping with other categories). The set of cases is said to be con-
sistent if each category can be distinguished from the other categories by a particular 
feature or a particular feature-value pair. 

 

 
 

Fig. 1. The hierarchy for the Disease descriptor 
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Table 2. Sample dataset used to illustrate Refiner++ 
 

Case Heart Rate 
(HR) 

Diastolic Blood 
Pressure (DBP) 

Disease Category 

1 50 90 Disease 1 A 
2 56 90 Disease 2 A 
3 52 101 Disease 3 A 
4 50 95 Disease 3 B 
5 56 97 Disease 3 B 
6  89 Disease 5 A 
7 52 97 Disease 3 B 

 
Table 3. The category descriptions generated by Refiner++ 

 
Category HR DBP Disease 

A 50 – 56 89 – 101 Any Disease 
B 50 – 56 95 – 97 Disease 3 

 
If the set of cases is inconsistent then the algorithm further suggests ways in which 

the inconsistency(s) might be removed, these include: 
 

• Changing a value of a feature of a case (due perhaps to a typing error) 
• Reclassifying a case / instance 
• Shelving a case to work on it subsequently 
• Adding an additional descriptor to all the cases 
• Creating a disjunction by excluding a value or range of values from a category 

description 
 

Considering the dataset shown in Table 2, the category descriptions are inconsistent (a 
case with a DBP value in the range 95 – 97 and a Disease value of Disease 3 could 
not be unambiguously categorised) and so the user would be presented with a set of 
disambiguation options such as: 

 

• Exclude 95 – 97 from category A’s DBP range 
• Change the value of DBP in case 4 to 97 
• Change the value of Disease in case 3 to Disease 1, Disease 2 or Disease 5 
• Add a new descriptor to distinguish between these categories 

 

If, for example, the user opts to create a disjunction, the categories are now distinct. 
Table 4 shows the updated (non-overlapping) category. 

 
Table 4. Updated category descriptions 

 
Category HR DBP Disease 

A 50 – 56 89 – 101, except 95 – 97 Any Disease 
B 50 – 56 95 – 97 Disease 3 
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We have so far effectively implemented 3 systems: 
 

• REFINER (Sharma & Sleeman, 1988) was the first system; it was incremental in 
that it processed a single case / instance and attempted at each stage to remove 
any inconsistencies detected. 

• REFINER+: The clear disadvantage of REFINER was that a change made to ac-
commodate an inconsistency associated with case(n) might be reversed when 
case(n+1) was considered, and so REFINER+ implemented a “batch” algorithm. 
Namely all the instances were available before any of the category descriptions 
were created, and hence it was able to avoid much of the unnecessary work done 
in the initial system. 

When REFINER+ was used with a small number of cases it was quite effec-
tive, however the number of inconsistencies noted in a sizable data set could be 
overwhelming for the expert. To help contain the situation we evolved several 
heuristics namely: 
• A change which removes a considerable number of inconsistencies is pre-

ferred over one which removes a smaller number of inconsistencies; 
• A change which makes a smaller number of changes to the data set is pre-

ferred over one which makes more extensive changes 
• REFINER DA: The essential difference between REFINER DA & its predeces-

sor REFINER+ is that it combined aspects of the two earlier systems. Namely the 
domain expert is asked to suggest several cases which he/she thought were proto-
typical of the several categories, from which descriptions of the several catego-
ries were inferred as described above. Then this version of REFINER attempted 
to cover additional cases without causing the set of category descriptors to be-
come inconsistent. 

3.3.2   Critique of REFINER DA and Effectively the REFINER Family of 
Systems 

The machine learning algorithm attempts to create, in each version of  REFINER, a 
set of non-overlapping descriptions for the categories; moreover,  each of the descrip-
tors is used in each of the categories. Further, the descriptor-value pair which effec-
tively discriminates category A from category B is produced by the machine learning 
algorithm, and hence is greatly influenced by the set of cases presented to the system. 
The domain expert’s intuitions are not used in guiding this selection of features. So in 
principle the feature-value pair SpO2 (96-100) could be used to determine that a pa-
tient was in category A (i.e., dischargeable), whereas if that same case had a further 
feature-value pair of FiO2: (95-100), this would be clinically described as a very sick 
patient. So from working with REFINER DA with this data set we made two impor-
tant observations: 

 

• The feature-value pairs chosen to make a category distinct are often not very in-
tuitive to a domain expert. (The same comment can of course be made of the out-
put from other machine learning algorithms such the decision trees created by  
C4.5) 

• An expert might effectively sub-divide a category like E into a number of sub-
categories, which he might not initially articulate. (That is a patient can be in 
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category E for one of several distinct reasons: e.g., poor heart rate, or poor oxy-
gen saturation.) If the domain expert does not articulate these sub-categories then 
category E will be an amorphous category which will influence the descriptions 
inferred and this in turn will affect the other categories inferred by REFINER. 
Additionally if the sub-categories are articulated then it is likely that there will 
only be a small number of examples in each of the sub-categories, which again 
will mean that the machine learning algorithms will have difficulties in extracting 
domain-relevant descriptions. 

 
In the next section we outline a further system which we have developed, called 
INSIGHT, which addresses these issues. 

4   Conceptual Design of INSIGHT  

Below we give the design criteria for a system, INSIGHT, which we believe ad-
dresses (some of) the difficulties noted at the end of the last section. 

 

• Have the experts describe each of the categories & sub-categories in terms of fea-
tures which the expert believes are appropriate. Effectively the expert provides 
us with a set of classification rules for the domain. (This knowledge source will 
be considered to be a perspective which the expert holds on this domain.) 

• All the REFINER systems require the domain expert to assign a category (a la-
bel) to each of the instances. We are continuing with this practise here as it gives 
us a further perspective on the set of cases / instances. 

• Compare the expert’s two perspectives on the domain; namely, the rules the ex-
pert has articulated for each of the categories versus the annotations he /she has 
associated with each of the cases. 

• We have implemented a system, INSIGHT, which compares these two perspec-
tives. So instead of using a machine learning algorithm as the core of the system 
we are, in this approach, using a system to check the consistency between the 2 
expert-provided perspectives.2 

 
As noted above, INSIGHT is a development of the REFINER family of systems, yet 
incorporates a somewhat different approach. Whereas the REFINER systems are able 
to infer descriptions of categories from a set of instances and to detect inconsistencies 
and suggest how they might be resolved, the INSIGHT system highlights discrepan-
cies in two perspectives of an expert on a particular (classification) task, and brings 
these to the attention of the domain expert. In particular this realization of the check-
ing tool, INSIGHT is able to handle annotated cases where the expert assigns each  
instance to one of the pre-designated set of categories. The second source of informa-
tion is a set of rules which are able to classify each of the cases / instances. INSIGHT 
displays the results of such comparisons as a confusion matrix; an example of a con-
fusion matrix for this domain is shown in Figure 2. The first row of the matrix con-
sists of all the case which have been classified by the domain expert as “A”s whereas 
the cell (A, B) corresponds to cases which have been annotated by the expert as an 

                                                           
2 We shall see later that one of INSIGHT’s modes does use machine learning techniques. 
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“A” but have been classified by the  rule set as a ”B”. Similarly the cases in the right 
hand cell in that row, cell (A, E), have been annotated by the expert as “A” but have 
been classified by the rules set as “E”s. Clearly all the diagonal cells [ie (A, A) (B, B), 
…(E, E) ]  contain instances which have been classified identically by both the ex-
pert’s annotation & by the rule-set. 

 

 

Fig. 2. A confusion matrix 

 
INSIGHT provides a range of facilities to enable the expert to view the instances 

which have been misclassified and to either edit the data set (say to change the anno-
tation of an instance, or correct a clearly incorrect data value) or to revise or enhance 
the current rule-set. 

The Confusion Matrix (CM) seems to be a very intuitive way of presenting the  
results to experts; so far all the experts who have used it, have had no problem under-
standing it. Additionally it suggests a procedure for tackling the revision of the dis-
crepancies. Clearly some discrepancies are more surprising than others. For example 
as all the categories are in a sense ordered, instances in the cell (A, E) can be consid-
ered to be  more surprising than those only one category away, say those in cell (A, 
B). Thus this distance measure suggests that the domain expert should be encouraged 
to consider discrepancies in the following order: 

 

• (A, E) & (E, A); (Distance between categories of 4). 
• (A, D), (B, E), (E, B) &  (D, A); (Distance between categories of 3) 
• (A, C), (B, D), (C, E), (E, C) (D, B) & (C, A); (Distance between categories of 2) 
• (A, B) (B, C) (C, D) (D, E) (E, D) (D, C) (C, B) & (B, A); (Distance between 

categories of 1) 
 

A further strategy which we suggested to the domain experts was for the first period 
to concentrate on removing the discrepancies from the data-set (incorrect annotations 
& data points) and only at a later stage make changes to the rule-set. This heuristic is 
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based on the perspective that changes to the data set are localized, whereas a change 
to a rule could, in principle, effect all of the instances / cases. 

A third strategy suggested was initially to refine each of the patient data sets indi-
vidually, before attempting to refine the complete set of instances. 

4.1   The Rule Interpreter 

Essentially each rule consists of a set of one or more conjunctive conditions, and a 
single action which is to assign a particular instance to a category. To date we have 
implemented only a single conflict resolution strategy, namely the first rule which is 
satisfied, fires. This means that it is necessary for the domain expert (supported by the 
analyst) to ensure that the most specific rules are placed at the top of the list, and the 
more general rules are placed at the bottom of the list. In many situations the rules are 
mutually exclusive, as they include non-overlapping conditions (or in the extreme 
case use completely different descriptors) in which case they are order-independent. 
However if a set of rules has related conditions, then it is important to ensure they are 
appropriately ordered. 

We have kept the format of the rules and the rule interpreter simple for a number of 
reasons: firstly, this meant the system could be implemented quickly; secondly, the 
form of the current rules, and the interpreter’s decision making appear to be easily 
understandable by domain experts. (The interpreter and the form of the rules may be 
enhanced subsequently if there is a clear need.) 

4.2   Inferring Rules from Instances 

INSIGHT has a mode which infers a rule when it is provided with several instances of 
a particular category. This mode was added so that an expert would not be forced to 
specify rules for each of the categories ab initio. However, such rules contain a fea-
ture-value pair corresponding to each of the descriptors used to describe instances. 
Our recent work with INSIGHT has made us aware of the need to select relevant de-
scriptors from the inferred rule, in order to achieve effective distinctions between the 
categories. So even in this mode, we believe the process will require some involve-
ment by the domain expert who will need to refine each rule by, for example, select-
ing descriptors from the set inferred by the Machine Learning algorithm. 

This mode has still to be used by a domain expert with a demanding application.  

5   Use/Evaluation of the INSIGHT System 

Section 2 gives an overview of the evaluation to be undertaken; as mentioned in that 
section, the system’s administrators provided us with a spreadsheet which contained 
the complete ICU stays for 10 patients. Each of these records was de-identified before 
this information was passed to us. Table 5 gives the code name for each of the pa-
tients and the number of recorded time points associated with each patient. 

It should be noted that the patients’ datasets represent their complete stay in the 
ICU, and hence it is to be expected that the quality and completeness of the records 
will not be high at both the beginning and end of the patients’ stays. For example, 
usually when a patient is first admitted to an ICU, they are in need of resuscitation, 
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and as some of this involves manual infusion of drugs, the patient management sys-
tem does not capture all the actual activities, nor all of the patient’s physiological pa-
rameters. Thus associated with each patient’s stay there may be a number of time 
points which do not contain all the “core” parameters, and hence, it might be argued,  
these time points should not be used for this analysis (note that after the first 6 hours 
in the ICU, a complete set of “core” parameters is normally collected for the patient). 
It should be noted that some of the descriptors in this dataset (such as urine output and 
heart rate) were extrapolated to fill in certain missing values; the algorithm used to 
calculate these missing values was agreed with the clinicians. 

 
Table 5. Patient codes and the number of records provided for each patient; there being in total 
2761 patient records 

 
Patient Code 696 705 707 708 720 728 733 738 751 782 
Number of time 
points 

 
129 

 
576 

 
475 

 
40 

 
188 

 
281 

 
396 

 
110 

 
493 

 
73 

 
This section describes a two-stage study conducted with clinician-1 (sections 5.1 & 

5.2), and a related 1-stage study undertaken with clinician-2 (section 5.3). 

5.1   Review of Study with Clinician-1 (Phase-1) 

Clinician-1 (MS) chose initially to concentrate on Patient 705 which has 576 time 
points (or instances). When he started this session there was a 45.0% (259/576) 
agreement between his annotations and his initial rule-set, however if the unclassifi-
able records are ignored that figure becomes 45.7% (258/564). 

Further, at the end of the session (with just this one patient) the agreement was 
97.0% (559 of 576) or 100% (556 of 556) if we ignore the effects of the (20) unclassi-
fiable records.  This session took about 5 hours, and was relatively slow as this was 
the first time INSIGHT had been used “in anger”, and at the beginning of the session 
it was necessary, for example,  to change annotations of instances singly, which was 
painstaking when the expert wanted to change a group of such values. This and other 
functionalities have subsequently been added, so the tool is now very much faster to 
use. One thing which this clinician did at an early stage was to reduce the number of 
parameters viewed for each instance from the original 41 to just 6; this also speeded 
up his handling of instances considerably. The parameters which he chose to view 
were: Adrenaline, FiO2, HR, Mean Arterial Pressure (MAP), Noradrenaline and SpO2. 

In section 2.1, we outlined the nature of the knowledge available in this domain, 
and in section 4 we outlined the simple rule interpreter which we have implemented. 
Here we give some examples of the rules which have been implemented for several 
categories. For example, the rule associated with category A has the following form: 

 

HR (normal-range) AND BLOOD-PRESSURE (normal-range) AND SPO2  
(normal-range) AND FIO2 (normal-range) AND ADRENALINE (none) AND 

NORADRENALINE (none) 
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Note this is a conjunctive rule, and all the conditions have to be satisfied before a time 
point is classified as an “A”. 

On the other hand, there are a number of disjunctive rules which represent each of 
the conditions which correspond to a patient being assigned to category “E”, namely: 

 

HR (extremely low) OR HR (extremely high) OR MAP (extremely low) OR MAP 
(extremely high) OR ADRENALINE (extremely high) OR NORADRENALINE  

(extremely high) 

 
Table 6. We have used the notation “nn A B” to indicate that nn items which had been anno-
tated initial by the clinician as an “A”, have since been reclassified by the expert as a “B”. If the 
item is followed by a “*” this implies that the changed annotation is now consistent with that 
predicted by the then-current version of the rule-set. (Remember that when the rule-set changes 
all the instances are re-evaluated against the revised rule-set.) 

 
Expert Rule A Rule B Rule C Rule D Rule E 

A  157 A B* 
2 A C 
3 rule edits 
2 left as 
original 
annotation 

11 A B 
7 A C* 
1 A D 
 

2 A D* 
2 rule edits 

3 data edits3 
 

B 14 B A*  1 rule edit 
1 B U 
11 B C* 

2 B C 
1 B D* 
 

1 data edit2  
1 B E* 

C  12 C B*  15 C D* 
1 C E 
2 rule edits 
4 left as 
original 
annotation 

1 C E* 
 

D  13 D C 
4 D E 
3 D U 

11 D C* 
1 D E 
2 D U 
1 rule edit 

 21 D E* 
1 rule edit 
1 data edit2 
 

E      

 
The rules associated with categories B, C & D are also largely disjunctive, and tend 

to have values on a continuum from those associated with category “A” to those asso-
ciated to category “E”, as section 2.1 suggests. 

Clinician-1 (MS) followed roughly the refinement strategy suggested in section 4; 
note there are no E rows in this CM which means that none of the instances classified 
by the expert as an “E” was classified as anything else by the rule set. In fact the ex-
pert chose to consider cells (A, E), (B, E) (C, E) followed by (B, D), (D, B) & then 
(A, C) (A, B) (B, A) (D, E) (D, C) (B, C) (D, C) (B, D) (C, B) & (C, D). In the early 

                                                           
3 To remove impermissible values. 
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stages of the analysis, very obvious inconsistencies were encountered & dealt with, 
and later it became often an issue of fine-tuning the rule-set and / or the data–set to 
achieve the classification which the expert wanted between two “adjacent” (1-
distance apart) classifications. Table 6 gives a summary of the changes made to the 
“cells”.  

Here we provide an overview of the typical decisions made by the domain expert: 
 

• Inadmissible Readings: In cell (A, E), the expert considered that 3 of the values 
given in the data-set for heart rate were clearly inadmissible (values of 372, 7, 3); 
he changed those values to null values, and reclassified each of the cases as “un-
classified” as he felt he then had insufficient information to make a classification. 
He dealt with a further instance in cell (B, E) similarly. 

• Extrapolated Data Points: Several times the expert agreed that the actual in-
formation provided in an instance was not sufficient to make a decision, and 
agreed, for several of the missing values, he had looked at the corresponding val-
ues in the immediately preceding and following time-periods and had effectively 
used extrapolated values when making his decisions. In all cases he agreed that 
the instances should have their classifications changed to “unclassified”. (This 
raises the issue of whether a further trending feature should be developed for 
INSIGHT and used with selected features.) 

• Significant values overlooked: In many instances, e.g., cell (D, B), the expert 
agreed that the annotation should be changed as he had failed, when doing his 
initial classification, to note an important feature-value pair, in this case FiO2 
values of .55. 

• Deciding borderline values: In handling many of the “adjacent” cells where the 
distance between them is just one (e.g., cells such as (A, B) (B, C) (C, B) etc); the 
expert in some circumstances reclassified the instances, and in others he modified 
the appropriate rules to achieve his desired classification for the instances. 

 
This expert made 3004 changes to annotations. Note some annotations might well 
have been changed several times: an instance originally annotated as an A, might ini-
tially be re-annotated as a “D”, and finally following a rule change, might be re-
annotated  as a “C”. 

In summary, this expert during the process of this refinement modified 52.1% 
(300/576) of his annotations. 7 changes (1.2%) were to reclassify an instance as  
unclassifiable (due to missing information, which in some cases the expert had over-
come by “extrapolation” as discussed above); 274 changes (47.6%) were to adjust  
instances which were on the borderline between two of the A-E categories; and the 
remaining 25 (4.3%) were due to the expert overlooking a piece of information in  
the patient record which he accepted was important when it had been brought to his 
attention (by INSIGHT). 

5.1.1   Rule Refinements 
To date we have observed two significant types of rules / rule-sets refinements, 
namely: 

                                                           
4 307 annotations were viewed, but 7 of these were left as the original annotation. 
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• Adding a new rule, e.g., clinician-1 in phase 2 added a new conjunctive rule to 
category “E”: ADRENALINE (high) AND NORADRENALINE (high) 

• Refining the conditions of a set of rules based on a common feature, say FiO2. 
Note that all the values returned for FiO2 are effectively integers; also note that 
all the ranges for FiO2 are continuous. Below we give the values for FiO2 for a 
number of categories, both before and after refinement: 

 
Table 7. FiO2 Values Before and After Refinement 

 

Category Before refinement After Refinement 
C 0.55 – 0.69 0.55 – 0.69 
D 0.70 – 0.84 0.70 – 0.83 
E 0.85 – 1.00 0.84 – 1.00 
 

Below we give an overall summary of the actions taken during this analysis: 
 

Table 8. Summary of Actions taken by Clinician-1 in Phase 1 
 

Number of instances in the set 576 
Number of instances / annotations viewed 307  
Number of data values edited / removed 5 
Number of annotations changed to unclassified 7 
Number of annotations left as “inconsistencies” 7 
Number of annotations changed to another A-E level (excluding 
“unclassified”) 

46 

Number of annotations changed to be consistent with the rules 
(excluding unclassified) 

242 

Number of changes to the rule-set 10 

5.2   Review of Study with Clinician-1 (Phase-2) 

In this session, which lasted about 5 hours, we started with the rule-set which had 
been produced in this first session (when the expert had processed the data associated 
with Patient 705), and used that as the starting point to make the annotations of the 
remaining 9 patients (see table 5) consistent with this rule-set or a variant of this rule 
set. In this session the number of annotated instances to be dealt with was 2130 (ie 
2706 – 576). It should be noted that as a result of the changes made earlier to 
INSIGHT the progress in this session was considerably faster. 

At the start of this session, the rule-set produced in Phase 1 gave a 58.3% (1609 of 
2760) agreement with the annotations created by the domain expert across all 10 pa-
tients; when the 135 unclassifiable instances are removed we get a 58.9% (1545 of 
2625) agreement. By the end of the refinement session this agreement had increased 
to 96.4% (2663 of 2761), or when the 170 unclassifiable instances had been removed, 
to 100.0% (2591 of 2591). The expert initially chose to view the same parameters as 
he did at the end of the first session, but part way through he added Dobutamine. The 
strategy followed by the expert for refining these instances was very similar to that 
given above. 



A System to Detect Inconsistencies between a Domain Expert’s Different Perspectives 309 

Again we conclude this section by providing a similar summary to the one given in 
the previous section, see Table 9. 

Given that the number of instances considered here is nearly four times as large as 
considered in Phase 1, there are a relatively smaller number of changes, the exception 
being the number of instances which have been reclassified as “Unclassified”. As 
noted before many instances are unclassified as “core” data elements are missing; 
clearly one is never going to capture all the data, but the expert noticed that data is of-
ten missing at critical points when patients experience a significant deterioration; this 
issue will be raised with nursing staff to see if the overall data collection rates can be 
improved. We also noted earlier that data tends to be sparse when patients first come 
to the ICU and just before they are discharged. 

 
Table 9. Summary of Actions taken by Clinician-1 in Phase 2 

 

Number of instances in the set 2130 
Number of instances / annotations viewed 2255 
Number of data values edited / removed 7 
Number of annotations changed to unclassified 97 
Number of annotations left as “inconsistencies” 16 
Number of annotations changed to another A-E level (excluding “unclassi-
fied”) 

1 

Number of annotations changed to be consistent with the rules (excluding 
unclassified) 

104 

Number of changes to the rule-set 6 
 

5.3   Review of Study with Clinician-2 

In this session with clinician-2 (JK), which lasted about 2 hours, we started with the 
rule-set which had been produced in the second session by clinician-1 as the result of 
reviewing all 10 patients (see table 5). Further this clinician, clinician-2, had anno-
tated three patient data-sets, namely those of patients 708, 728 and 733, giving a total 
of 717 instances. (Clinician-1 annotated time points from 10 patients; the smaller 
number of 3 patients was chosen for subsequent clinicians to make the task more 
manageable.) This clinician also decided it was hard to review all the parameters re-
ported for each time instance and chose, generally, to limit the ones he considered to 
Adrenaline, blood pump speed, CVP, Dobutamine, FiO2, Gelofusin, Hartmanns, heart 
rate (HR), LiDCO Cl, MAP, Noradrenaline, PiCCO, Propofol, Sodium Chloride, 
SpO2, temperature, urine output, and Vasopressin (18 parameters). 

The strategy followed by the expert for refining these instances was very similar to 
that used by clinician-1. At the start of this session the final rule-set produced by clini-
cian-1 gave a 40% agreement with the annotations created by this domain expert for pa-
tient 708, and by the end of this session the agreement had increased to 97.5%. These 
percentages are further improved, as one can see from Table 10 when the unclassifiable 
instances are removed. This table also gives results for patients 728 & 733 as well as for 
all three patients; in all cases results including & excluding unclassifiable instances, are 

                                                           
5 This figure is approximate as there are several ways in which it could be calculated. 
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reported. The percentage agreement, after data set & rule refinements, for all these data 
sets is remarkably high: being ~97.5% when unclassified cases are included and ~99% 
when they are not. Note too that initially 5 unclassifiable instances had been detected, 
after the refinement process this number rose to 11. 

 
Table 10. Summary of Clinician-2’s Refinement 

 
 P708  

(before) 
P708 

(after) 
P728 

(before) 
P728 

(after) 
P733 

(before) 
P733 

(after) 
All instances 
considered 

40% 
16/40 

97.5% 
39/40 

10.7% 
30/281 

97.5% 
274/281 

8.1% 
32/396 

97.6% 
387/396 

Unclassifable 
instances 
excluded 

40% 
16/40 

100% 
39/39 

10.8% 
30/278 

99.6% 
274/275 

8.1% 
32/394 

98.7% 
387/392 

 
 All 3 patients 

(before) 
All 3 patients 

(after) 
All instances considered 10.7% 

77/717 
97.6% 

700/717 
Unclassifable instances 
excluded 

10.8% 
77/712 

99.6% 
700/703 

5.4   COMPARISON between Final Data-Sets and Rule-Sets for Clinician-1 and 
Clinician-2 

The results in the diagonal cells of Table 11 are those for the individual clinicians and 
as such are reported at the end of sections 5.2 & 5.3 respectively. The figures in the 
off-diagonal cells give the agreements between the final rule-set & datasets of the 2 
clinicians. As can be seen when unclassified instances are included in the analyses the 
results are 94.0% & 93.0% & when the unclassified items are removed from the 
analyses the agreement becomes: ~96% in both cases. 
 

Table 11. Comparison between final data-sets & rule-sets for Clinician-1 & Clinician-2 
 

 Clinician-1’s final data-set Clinician-2’s final data-set 
Clinician-1’s final rule-
set 

96.4%  
(2663 of 2761)  
100.0%* 
(2591 of 2591) 

94.0%  
(674 of 717) 
95.9%* 
(674 of 703) 
 

Clinician-2’s final rule-
set 

93.0% 
(2567 of 2761) 
96.3%* 
(2495 of 2591) 

97.6%    
(700 of 717) 
99.6%* 
(700  of 703) 
 

* These results correspond to analyses when the Unclassified instances are removed from the  
calculation. 
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These analyses suggest extremely high correlations between both the annotations 
& the rule-sets produced by these clinicians.  

6   Contributions of This Work 

• Produced a simple and useful tool to help experts appreciate how two perspec-
tives on the same task is inconsistent and allows them to explore ways in which 
the two sources of knowledge can be made (more) consistent 

• Confirmed the advantage, in some circumstance, of a simple information check-
ing system as opposed to a more complex system which is able to (semi-) auto-
matically extract the knowledge from a set of labelled instances. 

• Challenged the accepted wisdom of Cognitive Science (Expertise Studies) that a 
domain expert’s “active” knowledge is more reliable than his “passive” knowledge 

• Confirmed the need, when acquiring knowledge from domain experts, to deter-
mine whether a particular category has sub-categories & if so to get the expert to 
articulate them. 

• Confirmed the need for sizable numbers of instances for each of the (sub)-
categories when Machine Learning algorithms are used to infer associations. 

• Confirmed the need to have a domain expert critically review any rules (knowl-
edge) produced by an automated system. More particularly, INSIGHT has shown 
the benefits of experts being able to see their knowledge applied on a series of 
relevant tasks, and being able to comment on the outcome. 

7   Further Work 

The following are some of the activities planned: 
 

Plan to evaluate the ICU scoring system across several ICUs & with a larger 
number of experts. The central task which INSIGHT has been used to investigate, to 
date, is the development of a reliable patient scoring / classification system. So far, we 
have applied INSIGHT to data from only 10 patients from a single ICU, and this in-
formation has been evaluated by just two domain experts. Clearly, if the scoring sys-
tem is to be used widely it will need to be evaluated with a larger and more disparate 
group of patients and with considerably more domain experts. This evaluation is cur-
rently being planned. 

 
Excluding “unclassifiable” records from the analysis. Modify the rule-set such that 
all records which do not contain values for the core parameters will be excluded from 
the analysis. Before this can be implemented, a decision will have to be made about 
what constitutes this set of core parameters. 

 
Use of INSIGHT with other domains. We plan to use INSIGHT with a range of 
other tasks including the classification of botanical species and other clinical diseases. 
In many situations, experts find it hard to articulate the actual distinctions between 
different categories; INSIGHT should help with this process. 
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Extend INSIGHT so that it could be used to achieve consistency between more 
that 2 knowledge sources. 

 

Use of INSIGHT’s mode to create rules from instances. We noted in section 4 that 
INSIGHT had such a mode, and that to date it had not been used by domain experts 
on a range of demanding real-world tasks. Clearly, we believe that this mode will be 
valuable for domain experts who will not then need to create a set of rules which cor-
respond to each of the categories. We need to test this hypothesis with a number of 
domains and with a range of experts. 

 

Develop a variant of INSIGHT to apply to planning / synthetic tasks. This will be 
more demanding than for classification tasks, but we believe it is possible, and more-
over that it would be a useful additional tool in assessing Expertise. 
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APPENDIX A: High Level Summary of Qualitative Assessments 

Below we give outline descriptions for each of the 5 categories, where E corresponds 
to the most severely ill patients: 

 
A.  Patient’s cardiovascular system (CVS) normal, with no Adrenaline or 

Noradrenaline (ADR / NADR) and low levels of Oxygen; Urine production 
often essentially normal (or is well established on renal replacement therapy). 

 
B. Patient CVS nearly normal, probably needs low levels of ADR / NADR and 

Oxygen. 
 

C. Patient CVS system is effectively stable; probably on moderate dosages of 
ADR / NADR and Oxygen. 

Most parameters suggest the time-slot is in category A or B, but if any of 
the following conditions are met, then it should be assigned to category C: 
- Heart rate: Moderately Low OR Moderately High  
- MAP: Moderately Low OR Moderately High  
- Adrenaline: Moderate dose 
- Noradrenaline: Moderate dose 
- FiO2: Moderate 
- SpO2: Moderately Low 

 
D. Patient’s CVS system is moderately unstable and / or on high doses of ADR 

/ NADR/ fluid to retain stability. 
Most parameters suggest the time-slot is in category A or B, but if any of 

the following conditions are met, then it should be assigned to category D: 
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- Heart rate: Low OR High 
- MAP: Low or High 
- Adrenaline: High dose 
- Noradrenaline: High dose 
- FiO2:  High 
- SpO2: Low 

 
E. Patient’s CVS is very unstable (which is usually true in early phases of re-

suscitation, or following a new event) with low BP and high HR or rapidly 
changing ADR / NADR dosage, and requires substantial fluid inputs. 

Most parameters suggest the time-slot is in category A or B, but if any of 
the following conditions are met, then it should be assigned to category E: 
- Heart rate: Extremely Low OR Extremely High 
- MAP: Extremely Low OR Extremely High 
- Adrenaline: Extremely High dose 
- Noradrenaline: Extremely High dose 
- FiO2: Extremely High 
- SpO2: Extremely Low  
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Abstract. The Commodity Market (CM) economic model offers a promising ap-
proach for the distributed resource allocation in large-scale distributed systems.
Existing CM-based mechanisms apply the Economic Equilibrium concepts, as-
suming price-taking entities that will not engage in strategic behaviour. In this pa-
per we address the above issue and investigate the dynamics of strategic learning
agents in a specific type of CM-based mechanism called Iterative Price Adjust-
ment. We investigate the scenario where agents use utility functions to describe
preferences in the allocation and learn demand functions adapted to the market by
Reinforcement Learning. The reward functions used during the learning process
are based either on the individual utility of the agents, generating selfish learning
agents, or the social welfare of the market, generating altruistic learning agents.
Our experiments show that the market composed exclusively of selfish learning
agents achieve results similar to the results obtained by the market composed of
altruistic agents. Such an outcome is significant for a series of other domains
where individual and social utility should be maximized but agents are not guar-
anteed to act cooperatively in order to achieve it or they do not want to reveal
private preferences. We further investigate this outcome and present an analysis
of the agents’ behaviour from the perspective of the dynamic process generated
by the learning algorithm employed by them. For this, we develop a theoretical
model of Multiagent Q-learning with ε-greedy exploration and apply it in simpli-
fied version of the addressed scenario.

1 Introduction

This paper investigates the impacts of the introduction of participants with learning ca-
pabilities in market-based resource allocation mechanisms. More specifically, it studies
the individual and the social dynamics of participants that apply the Q-learning with
ε-greedy exploration algorithm to develop strategic behaviour in a commodity-market
mechanism based on the Walrasian economic equilibrium principles.

Market-based mechanisms for resource allocation have been attracting increasingly
research interest over the last years. Most of this interest results from the emergence of
large-scale distributed systems, such as the Grid [13], peer-to-peer (P2P) [23] networks
and service-oriented architectures (SOAs) [11], and their needs for efficient and flexible
resource allocation, qualities usually endowed to market-based approaches [42]. There
are several advantages in framing the distributed resource allocation problem into eco-
nomic terms [42]. In the Grid context, for example, if users are willing to share or trade

J. Koronacki et al. (Eds.): Advances in Machine Learning II, SCI 263, pp. 315–349.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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access to their idle resources, they need to somehow account for the ratio between the
benefits and costs of doing it. A similar need is clearly present in P2P and SOAs where
sharing and using the resources require incentives and mutual benefits for the providers
and consumers. Market-based mechanisms are suitable for these types of problem be-
cause they intrinsically incorporate the notion of relative worth, usually abstracting it
into a price or other type of exchange unit. Additionally, most economic models are
well-understood as they have been subject of study in the Economics disciplines along
the years, making it possible to utilise this body of knowledge also to analyse and design
market-based resource allocation (MBRA) mechanisms.

A promising approach for MBRA is based on the Commodity Market (CM) eco-
nomic model [6, 8, 30, 32, 39, 40]. A CM offers a marketplace where sellers and buyers
trade resources based on a common price known by all the participants. The price is
defined by the market using a pricing mechanism usually driven by the economic equi-
librium principles founded by the nineteenth-century French economist Walras [36] and
its law of demand-and-supply. Walras proposed that markets are able to coordinate the
allocation of resources by finding an equilibrium price where the total demand matches
the total supply. When this price is found, the market enters into a state of economic
equilibrium that, by the First Fundamental Theorem of Welfare Economics, is a Pareto-
Optimal (PO) solution for the resource allocation problem. A solution is PO if there is
no other solution that can improve one agents’ outcome without deteriorating others’.

One of the conditions for the Walrasian economic equilibrium is the existence of
a Perfect Competition market, that is, a market where no participant (buyer or seller)
has the power to influence the price. To obtain perfect competition, participants are
assumed to be price-taking entities that consider the price as a given aspect of their
decision making, an aspect outside their control. In other words, the participants are
regarded as passive entities that will not actively attempt to influence the mechanism in
order to obtain higher profits. One participant’s role is thus reduced to solving simple
optimization problems, perhaps taking into account its budget and the costs and rev-
enues derived from the allocation, but with no perceived dependence on the actions of
other agents.

The assumption of price-taking participants is a convenient condition imposed by
Walrasian-based approaches in order to ensure PO allocations. It is, however, hard to be
satisfied in large-scale distributed systems. In such systems there is little control over the
behaviour of the participants, making it impossible to guarantee that they will behave in
an ordered manner. Buyers and sellers will typically have different objectives, prefer-
ences and demand/supply patterns which they will try to satisfy. Therefore, one cannot
assume they will not attempt to exploit the system by engaging in strategic behaviour to
obtain higher profits, possibly decreasing the overall quality of the allocation. Hence, to
understand the impacts of these attempts and to develop mechanisms that are robust in
the presence of strategic participants, being able to deliver optimal allocation also in this
situation, are important aspects to enable the next generation of large-scale distributed
systems. Moreover, most current CM-based mechanisms focus on the achievement of
a PO allocation, but usually disregard how fair and how desirable the allocation is for
both the system and the participants. Different PO outcomes generate different utility
gains to the parties involved in the resource allocation process. Being able to find a fair
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PO outcome, in which all the participants are equally or near-equally satisfied, is an
important aspect of the problem.

In this paper we address the above issues by introducing participants with learning
capabilities into the market. We approach the market-based resource allocation prob-
lem from the premise that the participants can behave like the entities composing real
economies and will engage in strategic behaviour in order to satisfy their preferences.
We present the IPA with RL, a market-based resource allocation mechanism that en-
hances the original Iterative Price Adjustment (IPA) [12, 41] mechanism. The IPA is
a Walrasian-based mechanism in which the equilibrium price is calculated through an
iterative process. The mechanism cyclically asks the agents for the amount of resources
they would be willing to buy at a particular price and uses this information to update the
price, which then is increased if the total demand requested by the agents is higher than
the supply and decreased otherwise. This iterative process continues until the equilib-
rium between demand and supply is found, when the market is cleared and the resources
are sold. In the IPA with RL the agents use utility functions to describe preferences over
different resources attributes and develop strategic behaviour by learning demand func-
tions adapted to the market through Reinforcement Learning (RL). We apply this ap-
proach to investigate the market in the presence of two types of agents: selfish learning
agents, whose learning goal is to improve their individual utility; and altruistic learning
agents, whose learning objective is to improve the social welfare of the market.

The paper is organised in two main parts. The first part, Section 2, presents results of
experimental investigation in the IPA with RL. Our focus is to study the impacts of the
introduction of the strategic learning agents on the individual and social performance
of the IPA market. The second part, Section 3, presents the theoretical analysis of the
results obtained in Section 2. We examine the dynamics generated by the learning al-
gorithm and analyse how it affects the individual and the social results of the market.
For this, we develop a theoretical model of Multiagent Q-learning with ε-greedy explo-
ration and apply it in a simplified version of the scenario addressed in Section 2. The
related works are presented in Section 4 and the conclusions and future directions in
Section 5.

2 The IPA with RL

This section presents the experimental investigation in the IPA with RL. In the next
sub-section we introduce the general scenario addressed in the paper. We review the
IPA mechanism and the RL algorithm used in the experiments and present the mod-
elling of the IPA as a RL problem. Sub-section 2.2 presents the experiments in the
mechanism. We investigate the individual and the social performance of the market in
two cases: when the market is composed of learning and non-learning agents and when
it is composed exclusively of learning agents.

2.1 Scenario

We address the scenario in which a limited amount of resources has to be allocated
to a set of agents in a commodity-market resource allocation system using the IPA
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mechanism. Agents use utility functions to describe preferences in the allocation and
learn their demand functions from interaction with the market using RL (as illustrated
in Figure 1).

Market Agent

Client Agent 1

Client Agent n

demand

price

IPA Market

Resources

Demand Function

Learning

Utility Functions

Client Agent 2

Fig. 1. The IPA mechanism with RL

2.1.1 Iterative Price Adjustment
The IPA decomposes the resource allocation optimization problem into smaller and
easier sub-problems. Its behaviour mimics the law of demand and supply. The price is
increased if the demand exceeds the supply and decreased otherwise. The mechanism
process is a cycle that begins with a facilitator (the market) announcing the initial prices
for the resources. Based on the initial price, agents decide on the amount of resources
that maximize their private utilities (the sub-problems) and send these values to the
facilitator. The facilitator adjusts the prices according to the total demand received and
announces the new prices. The process continues until an equilibrium price is reached,
when we say that the market is cleared and the resources are sold. In the equilibrium,
the total demand equals the supply or the price of the excessive supply is zero. Under
some circumstances, the equilibrium price may not exist [19], but that problem is out
of the scope of this thesis.

The standard IPA method is formalized as follows. Let C = {C1, · · · ,Ci, · · · ,Cm} be
the total supply of resources available, where Ci is the total supply of resource i; Let
P(t) = {p1(t), · · · , pi(t), · · · , pm(t)} be the price vector for the resources C at time t,
where pi is the price for the resource i; there are n self-interested agents and each agent
has a utility function u j(D j), which is the utility over {d1, j,d2, j, · · · ,dm, j}, where di, j

is the amount of resource i that the agent j requires. Let D j(t) = {d1, j(t),d2, j(t), · · · ,
dm, j(t)} be the total amount of resources agent j requires at time t. At time t, the ob-
jective of the agent j is to find D j(t) = argDj(t) max(u j(D j(t))). At time t +1, the price
can change, and the new price of resource i is given by:

pi(t + 1) = max{0, pi(t)+ α(
n

∑
j=1

di, j(t)−Ci)}, 1≤ i≤ m (1)

where α is a small positive constant.
It should be noted that the agent’s utility maximization task in the IPA is actually the

maximization of its instantaneous profit. As described by [41], an agent has a revenue
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function and a cost function over the resources and, at each time step, its task is to find
the demand request that maximizes the difference between these two functions given the
current price. The result is the existence of a demand function, in which all the points
lying in the characteristic curve are equally preferred by the agent. This approach limits
the power of the agents. As they cannot express preferences over different attributes
of the allocation, in particular over the price and the amount of resources, they cannot
develop a strategic behaviour to influence the mechanism.

In our approach to the IPA the agents use utility functions to describe their prefer-
ences in the allocation and learn demand functions optimized for the market by RL.
The idea is that, given a particular market configuration, there is at least one demand
function that maximizes the utility obtained from the aggregation of the agent’s utility
functions. Learning such a demand function leads to the development of the agent’s
strategic behaviour.

2.1.2 Reinforcement Learning
The task of a RL agent is to learn a mapping from environment states to actions so
as to maximize a numerical reward signal [33]. The RL framework is formalized by a
tuple (S,A,T,R), where S is a discrete set of environment states, A is a discrete set of
actions, T is a state transition function S×A× S→ [0,1], and R is a reward function
S×A→ R. On each step the agent receives a signal from the environment indicating
its state s ∈ S and chooses an action a ∈ A. Once the action is performed, it changes the
state of the environment, what generate a reinforcement signal r ∈ R. The agent uses
this reinforcement signal to evaluate the quality of the decision. The task of the agent is
then to maximize (or minimize) some long-run measure of the reinforcement signal.

Q-learning [37] is a commonly used algorithm for RL. The main attractive of Q-
learning is that it assumes no knowledge about state transitions and reward functions,
that is, the agent does not need to have a model of the environment, enabling the prob-
lem to be approached on-line. For this, the agent maintains a table of Q(s, a)-values that
are updated as it gathers more experience in the environment. Q-values are estimations
of Q*(s, a)-values, which are the sum of the immediate reward r obtained by perform-
ing an action a in a state s and the total discounted expected future rewards obtained
by following the optimal policy thereafter. By updating Q(s, a), the agent eventually
makes it converge to Q*(s, a). The optimal policy π∗ is then followed by selecting the
actions where the Q*-values are maximum. The algorithm is to indefinitely perform the
following 4 steps:

1. Observe the current state s, select an action a and execute it
2. Observe the new state s′ and the reward r(s,a)
3. Update the Q-table according to:

Q(s,a) := Q(s,a)+ α(r(s,a)+ γ maxa′Q(s′,a′)−Q(s,a))
4. Make the new state s′ the current state s

where α ∈ ]0,1[ is the learning rate and γ ∈ ]0,1[ is the discount rate. Considering that
the probability of making transitions T and receiving specific reward signals R do not
change over time, i.e. a stationary environment, if each action is executed in each state
an infinite number of times and α is decayed appropriately, the Q-values will converge
with probability 1 to the optimal ones [33].



320 E.R. Gomes and R. Kowalczyk

An important component of Q-learning is the action selection mechanism. This
mechanism is responsible for selecting the actions that the agent will perform during
the learning process. Its purpose is to harmonize the trade-off between exploitation and
exploration such that the agent can reinforce the evaluation of the actions it already
knows to be good but also explore new actions.

In our experiments in the IPA with RL we have applied the ε-greedy action-selection
mechanism. This mechanism selects a random action with probability ε and the best
action, i.e. the one that has the highest Q-value at the moment, with probability 1-ε . As
such, it can be seen as defining a probability vector over the action set of the agent for
each state. If we let x = (x1,x2, ...,x j) be one of these vectors, then the probability xi of
playing action i is given by:

xi =

{
(1− ε)+ (ε/n), if Q(s,a) is currently the highest

ε/n, otherwise
(2)

where n is the number of actions in the set.
Multiagent Q-learning is a natural extension of single-agent Q-learning to multia-

gent scenarios. In this approach, the agents are equipped with a standard Q-learning
algorithm each and learn independently without considering the presence of each other
in the environment. The rewards and the state transitions, however, depend on the joint
actions of all agents. The problem is formalized as a tuple (n,S,A1···n,T, R1···n), where
n is the number of players, S is the set of states, Ai is the set of actions available to
agent i with A being the joint action space A1× ·· · ×An, T is the transition function
S×A×S→ [0,1], and Ri is the reward function for the ith player S×A→ R. Note that
both T and R are defined over the joint action space.

2.1.3 The IPA as a RL Problem
The first task to apply the Q-learning algorithm is to define what are the states, the
actions and the rewards. We use the current price of the resources as the environment
states and the possible demand requests as the actions of the agents. In this case, Q-
values represent estimations of how good it is for the agent to request demand d at price
p, so Q(p,d). The optimal policy π∗ is then an optimal demand function and is followed
by selecting the demand requests with highest Q*-values.

The application of RL in the IPA changes the objective of the agents in the resource
allocation. Instead of maximizing their private utility functions in an immediate fashion,
they now have to maximize the accumulated reward:

∞

∑
t=0

γt rt (3)

where r is the reward given by the reward function in use and γ ∈ ]0,1[ is the discounting
factor for infinite horizon problems.

During the experiments we evaluate the application of two different reward
functions:

– The Individual Reward Function (IRF) is based on the private utility of the
agents. Using only local information, the agent receives a positive reward equal
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to its utility when the market reaches an equilibrium state, and zero for all the other
states:

r =

{
U if equilibrium found,

0 otherwise

– The Social Reward Function (SRF) uses global information. The agent receives
a reward equal to the SW of the market for the equilibrium states, and zero for the
others:

r =

{
SW if equilibrium found,

0 otherwise

The idea for the individual reward function is to develop strategic agents that present
selfish behaviour. This function generates a competitive learning problem where the
objective of one agent is to learn a demand function that maximizes its discounted ex-
pected individual utility. The idea for the social reward function, on the other hand, is to
develop strategic agents with altruistic behaviour. The function generates a cooperative
learning problem, where one agent’s goal is to learn a demand function that maximizes
the discounted expected SW of the market.

To calculate the market’s SW we use the Nash Product (NP) function. The NP is
given by the product of the individual utility of the agents:

SW = NP =
n

∏
i=1

Ui (4)

where Ui is the utility of agent i. It is suitable for the resource allocation scenario be-
cause it emphasizes the improvement and the balance among the utility of the agents. In
addition, this function is regarded as a good compromise between the Utilitarian Social
Welfare (USW), obtained from the sum of the individual utilities, and the Egalitarian
Social Welfare (ESW), given by the utility of the agent which is worst off [7].

2.2 Experimental Investigation

The general configuration for the experiments is as follows. The agents have preferences
over price and amount of resources. They use an utility function for each attribute,
U1(p) for price and U2(m) for amount of resource. The total utility of an agent is given
by the product of these two utility functions,U(p,m)=U1(p)∗U2(m). The actual utility
functions used by the agents in the experiments are shown in Figure 2.

During the experiments price and demand requests were bounded in [0,10].
Q-learning formally relies on discrete sets, so both prices and demand requests were
rounded to 1 decimal place. Therefore, the market has 101 possible states and each
agent has 101 actions to choose from. In the IPA market, the only information available
to the agents is the current price of the resources. Therefore, the agents do not know the
actions taken and the rewards received by the other agents.

We set the market with 5 units of resources per agent. From the analysis of the utility
functions, we can note that such an amount does not allow for all the agents to have a
complete satisfaction in the allocation, but it permits the analysis of the market and the
learning under a condition of limited supply.
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Fig. 2. Agents’ utility functions

A series of preliminary experiments had been performed to identify a feasible con-
figuration for the values of the parameters used in the learning algorithm. Based on
these experiments we set α = 0.1, γ = 0.9 and ε = 0.4. The price of the resources is
adjusted by the IPA market using a constant parameter α set to 0.05.

We evaluate the agents’ and market’s performance using demand functions obtained
at pre-defined intervals of learning episodes: 5000 for the experiments shown in
Section 2.2.1 and 100 for Section 2.2.2. The evaluations are done with the trends of the
actual demand functions learnt by the agents. One of the reasons for using the trends
is that to implement the learning algorithm we had to transform prices (states) and de-
mands (actions) into discrete sets. However, in the IPA market, such a discretization
may lead to small losses of economical efficiency. Other reason is that by using the
trends we avoid local instabilities present in the learnt demand functions. The trends
were obtained by a process of curve fitting using the Sigmoidal-Boltzmann model. This
monotonic model is described by the equation:

y = a +
b−a

1 + e−
x−c

d
(5)

2.2.1 Learning with Static Agents
This section reports on the case of agents learning in the presence of other agents with
static demand functions. The demand functions of the static agents, shown in Figure 3,
were defined “by hand” and based on subjective criteria. They also use the utility func-
tions U1(p) and U2(m) to evaluate the quality of the allocation.
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Fig. 3. Static Agents demand functions

We ran learning experiments with both reward functions using 3 agents at a time and
iterating the number of learning agents per static agent. Each configuration was run 10
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times of 500 000 learning episodes. The demand functions were extracted and evaluated
in intervals of 5000 learning episodes. Next section presents the results.

Results

We first discuss the results for this scenario from the social perspective. Figure 4 shows
the evolution of the average NP resulting from the use of the individual and the so-
cial reward functions over the learning episodes. The main point to note is that the
NP achieves a level of relative stability quickly for both reward functions. This level
is reached before 100 000 learning episodes in most of the experiments, suggesting
that the learning process may be shorter than the 450 000 learning episodes we have
originally applied in [16, 17].
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Fig. 4. Evolution of Average NP obtained using the individual and the social reward functions
over the learning episodes
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Figure 4 also shows that the stability of the average NP depends on the number of
learning agents in the market. For experiments with 1 learning agent, a very stable level
is achieved early and maintained along the learning episodes. Experiments with 2 learn-
ing agents presented only a relative stability. It evolves to a level, which is maintained,
but fluctuates around it. We defer the discussion of the causes for this to the next section.

Still in Figure 4, the reward function based on social welfare improves the NP of
the market in all cases. In addition, the average NP using the individual reward function
increases with the number of learning agents. The application of the social reward func-
tion follows the same pattern, with the exception of S3, where a decrease was found.
The analysis of S3’s demand function (see Figure 3) and market configuration point that
the equilibrium price is found at a lower level when only S3 agents are used, which im-
proves the social welfare. When the social reward function is applied with these agents,
the learners are able to follow that same strategy, but not as efficiently as S3’s, generat-
ing the decrease. In the case of the individual reward function, the decrease is not seen
because the learning agents develop a strategy to exploit S3’s demand function, leaving
to it a few resources. The more S3 agents are used in this case, the lower the social
welfare.

The case of S3 suggests that a good strategy for the IPA would be to wait until the
price is lower enough and then request the desired demand. However, this strategy only
works when the agents have complete information, which is not realistic. In the case
of agents with same demand functions this strategy is adopted implicitly. The implicit
coordination contributes to the good social performance achieved when only learning
agents are used in the market, shown in the next section.

Figure 4 e) presents an interesting point. It shows the average NP of the market de-
creasing over the learning episodes for the case of 1 learning and 2 S3 using the individ-
ual reward function. This decrease results from the fact that the learning agent develops
a demand function which is able to exploit S3’s demand function. This exploitation has
been commented above and is clearly understood from Figure 5 e), which shows a large
difference when the individual utilities received by those agents are compared. In that
graph, it is also noticeable a decrease in the utility received by S3 along the learning
episodes.

Figure 5 shows the evolution of the average utility obtained by learning and static
agents using both reward functions over the learning episodes. The main point to note
is the quick evolution of the individual utilities to a level of relative stability, which is
achieved around or before 100 000 learning episodes for most of the agents.

In general, the application of the social reward function slightly decreases the indi-
vidual utilities obtained by the learning agents and sharply increases the utility of the
static clients. The application of the social reward causes a small movement of the de-
mand function to the left. This small movement is able to lower the equilibrium price
of the market. A lower equilibrium price means more resources to the static agents, in-
creasing their utility in two components (price and amount of resource). In addition, the
same small movement increases the learner utility in the price component, compensat-
ing a little bit the losses made in the resource component. Besides, the decrease noticed
in the utilities received by the learning agents with the application of the social reward
function is reduced with the addition of learning agents.
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Fig. 5. Evolution of Average Utility obtained by the agents using the individual and the social
reward functions over the learning episodes

It is important to comment that the application of the individual reward function does
not imply in the learning agents beating the static ones by reaching higher utility. The
goal for them is to get the most they can from the allocation taking into account the
utility functions and static agents’ demand functions. On the other hand, the application
of the social reward function implies in the learning agents working to maximize the
social welfare, even if it means to present lower individual performance. Therefore, the
individual and social behaviours found are coherent.

2.2.2 Learning with Learning Agents
In this section we investigate the case where only learning agents are used in the market.
We ran learning experiments with both reward functions using 2, 4, 6 and 8 agents. Each
configuration was run 20 times of 10 000 learning episodes. The demand functions were
extracted and evaluated in intervals of 100 learning episodes.
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Results

Figure 6 shows the evolution of the market’s average NP using the individual and the
social reward functions. The first point to note is the quick evolution to a level of relative
stability. It evolves to this level before 1000 learning episodes and fluctuates around
it afterwards. The same type of instability was also seen in Figures 4 b), d) and f).
They are caused by a non-appropriate decay rule for the learning parameter and by the
application of Q-learning in a multiagent learning scenario. Q-learning is only proven
to converge in stationary environments. With more than one learner, the environment
becomes dynamic given the co-adaptation effect [28, 38]. There are RL algorithms that
are more appropriate than Q-learning for the multiagent configuration [31]. They will
be considered in our further investigations. Nevertheless, Q-learning has been applied
with success in multiagent environments in the past [14, 20] and the results obtained in
this research with this algorithm are satisfactory.

Results in the previous section have shown the social welfare improved with the
application of the social reward function. This improvement is not clearly seen here.
In fact, both reward functions presented similar results, approaching the optimal social
welfare. It is not possible to identify which one performed better in general. The same
type of result was found in the individual utilities received by the agents, shown in
Figure 7.

The most important observation we can draw from the experiments is that, using both
reward functions, there is a trend for the learning agents to divide the resources equally.
While this strategy seems obvious for the case of the social reward function, since the
optimal reward is received when the price is low enough and all the agents receive the
same share of the allocation, it is not so intuitive for the individual reward function.
Similar behaviour was observed in the results shown in the previous section. There,
the agents using the individual reward function get the most utility they can from the
allocation, but divide the resources more or less equally between them. So, the social
welfare between the learning agents approaches the optimal value, given the demand
functions of the static agents.
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Fig. 6. Comparison of Average NP obtained by the market using the individual and the social
reward functions over the learning episodes
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Fig. 7. Comparison of Average NP obtained by the market using the individual and the social
reward functions over the learning episodes

An important comment to make is that a number of experiments in this scenario
presented some problems in the curve-fitting in each checkpoint, generating demand
functions unable to achieve equilibrium or not converging at all. These problems are
due to the short learning process used here. Experiments made using the same amounts
of learning used in the previous section, with checkpoints at each 100 000 learning
episodes for a total of 500 000, presented less problems. Nevertheless, the experiments
that have not presented problems, achieved good outcomes, as the graphs show.

3 Dynamic Analysis

In this section we present the analysis of agents’ behaviour in the IPA with RL from
the perspective of the dynamic process generated by the learning algorithm. Our focus
is to gain some understanding on the reasons for the results shown in the previous
section, which are particularly interesting since the learning problem generated by the
social reward function is cooperative while the problem generated by the individual
reward function is competitive. To understand the results, we first develop a model for
the dynamics of Multiagent Q-learning with ε-greedy exploration. We then apply this
model to theoretically analyse two games formulated with basis on the IPA with RL and
that reproduce the application of the individual and the social reward functions.

3.1 A Model of Multiagent Q-Learning with ε-Greedy Exploration

The problem of modelling the dynamics of multiagent learning algorithms is challeng-
ing for a series of reasons. One of the difficulties is to cope with the very dynamic
environment generated by multiple learners. There is also the co-adaptation effect, in
which one agent adapts its strategy to the others’, and vice-versa, in a cyclic fashion. In
addition, the rewards that one agent receives depend on the actions of the other agents.
All these features make it especially difficult to predict and to model the learning be-
haviour [24].
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An important research in the area is the work of [34]. The authors studied the case
of Q-learning agents with Boltzmann exploration. They developed a continuous time
model for the learning process and have shown a link between the model and the Repli-
cator Dynamics (RD) of Evolutionary Game Theory [18]. The main principle of the RD
is that the growth in the probability of playing a given action is directly proportional to
the performance of that action against the others. The ε-greedy mechanism, however,
produces different dynamics. This mechanism defines a semi-uniform probability dis-
tribution in which the current best action is selected with probability 1−ε and a random
action with probability ε . Hence, that research cannot be directly applied in our case.

In another approach, [35] present a framework to track the error in one agent’s de-
cision during the multiagent learning process. The framework is generic enough to
cover several different algorithms. However, it requires the tuning of some parame-
ters that might not be known a priori or even impossible to obtain without extensive
simulations.

As in our research, the above works share the property of being based on the anal-
ysis of differential or difference equations [26]. The topic has a long research tradition
in the mathematical disciplines, a considerable theoretical framework and forms the
standard approach to the study of dynamical systems. Other examples of the applica-
tion of the approach to analyse multiagent reinforcement algorithms are the works of
[3], who applied differential equations to study the dynamics of the Weighted Policy
Learner algorithm [1], and [22], who studied the asymptotic behaviour of variants of
the Boltzmann-based multiagent Q-learning. The approach has also been used for the
analysis of single-agent reinforcement learning algorithms [4, 5].

As far as we are aware, none of the existing approaches has explored the specific
case of Multiagent Q-learning with ε-greedy exploration. Apart from the necessity of
explaining our results in the IPA with RL, the importance of obtaining such a model
is justified through its large number of applications. For example [14] applies the algo-
rithm to develop a decentralized resource allocation mechanism and [43] investigates
the development of bidding strategies.

To develop the model we study how the ε-greedy mechanism and the presence of
other agents affect the learning process of one agent. For this, we first show the deriva-
tion of a continuous time equation for the Q-learning rule. We then analyse the limits
of this equation for the case of a single learner and show how they change dynamically
when multiple learners are considered. Finally, we show how the ε-greedy mechanism
affects the shape of the modelled function. The observations and results from this study
are used to develop a system of difference equations to model the behaviour of the
learners.

For simplicity of explanation, to develop the model we consider scenarios composed
of 2 agents with 2 actions each1. The reward functions of the agents in this case can be
described using payoff tables of the form:

A =

[
a11 a12

a21 a22

]
B =

[
b11 b12

b21 b22

]
1 This constraint is relaxed in our evaluation of the market-based resource allocation games

(Section 3.2).
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where A describes the rewards, or payoffs, for the first agent and B the rewards for
the second. Given the existence of only one state, the Q-learning update rule can be
simplified to

Qai := Qai + α(rai−Qai) (6)

where Qai is the Q-value of agent a for action i and rai is reward that agent a receives for
executing action i. Please note that this notation is slightly different from the notation
applied in Section 2.

3.1.1 Analysis
We start the study by rewriting the update rule for the first agent as follows:

Qai(k + 1)−Qai(k) = α(rai(k + 1)−Qai(k)) (7)

This difference equation describes the absolute growth in Qai between times k and k+1.
To obtain its continuous time version, consider Δ t ∈ [0,1] to be a small amount of time
and

Qai(k + Δ t)−Qai(k)≈ Δ t×α(rai(k + Δ t)−Qai(k))

to be the approximate growth in Qai during Δ t. Note that this equation becomes: an
identity when Δ t = 0; Equation 7 when Δ t = 1; and a linear approximation when Δ t is
between 0 and 1. Dividing both sides of the equation by Δ t,

Qai(k + Δ t)−Qai(k)
Δ t

≈ α(rai(k + Δ t)−Qai(k))

and taking the limit for Δ t → 0,

lim
Δ t→0

Qai(k + Δ t)−Qai(k)
Δ t

≈ α(rai(k)−Qai(k))

we obtain
dQai(k)

dt
≈ α(rai(k)−Qai(k)) (8)

which is an approximation for the continuous time version of Equation 7. This result is
in line with [34].

The general solution for Equation 8 can be found by integration:

Qai(k) = Ce−αt + rai (9)

where C is the constant of integration. As e−x is a monotonic function and limx→∞ e−x =
0, it is easy to observe that the limit of Equation 9 when t→ ∞ is rai :

lim
t→∞

Qai(k) = lim
t→∞

Ce−αt︸ ︷︷ ︸
0

+ lim
t→∞

rai︸ ︷︷ ︸
rai

= rai

If we consider that only the first agent is learning and that the second is using a pure
strategy, and assuming that the rewards are noise-free, playing a particular action will
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always generate the same reward for the first agent. In this case, the derivation above
is enough to confirm that Qai will monotonically increase or decrease towards rai , for
any initial value of Qai . More specifically, the function is monotonically increasing if
Qai(0) < rai and monotonically decreasing if Qai(0) > rai . Examples of this behaviour
are shown in Figure 8, which also shows the slope field associated with Equation 8. The
figure plots the slope field obtained when α = 0.2 and rai = 5, and the sample paths for
Qai(0) equal to 0, 2, 8 and 10. The line at Qai = 5 is the equilibrium point for the slope
field and the limit for the sample paths.

Fig. 8. Slope field associated with Equation 8 (α = 0.2 and rai = 5) and examples of specific
solutions obtained when Qai(0) ∈ {0,2,8,10}

If the second agent is using a mixed strategy and the game is played repeatedly, then
rai can be replaced by

E[rai ] = ∑
j

ai jy j (10)

which is the expected payoff of the first agent given the mixed strategy y of the second.
Note that a pure strategy is the specific case of a mixed strategy in which probability 1
is given to one of the actions. We then rewrite Equation 8 and 9 respectively as

dQai(k)
dt

≈ α(E[rai(k)]−Qai(k)) (11)

Qai(k) = Ce−αt + E[rai ] (12)

Thus, if the adversary is not learning, Qai will move in expectation towards E[rai ] in a
monotonic fashion. With a learning adversary, however, the situation is more complex.
In this case, there is a possibility that the expected reward will change over time. A
learning adversary can change its probability vector, which affects the expected reward.
If we first look at Equation 11, changes in the expected reward will modify the associ-
ated direction field and, consequently, the equilibrium points of it. At this level, every
time the expected reward changes, a new direction field is generated. If we now look
at Equation 12, the changes will modify the limit and, possibly, the direction of Qai .
Hence, it is important to identify when they will occur.
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The ε-greedy mechanism updates the probability vector whenever a new action be-
comes the one with the highest Q-value. Thus, we need to identify the intersection
points in the functions of the adversary. It follows that the overall behaviour of the agent
depends on these intersection points as they define which values Qai will converge to.

From the analysis point of view, the fact that the expected rewards can change over
time implies that Equation 11 cannot be solved in the same way we solved Equation 8.
However, one can easily derive the paths given the initial Q-values.

Another important aspect to be considered in the model is the speed in which the Q-
values are updated. During the learning process, the actions have different probabilities
of being played. For example, if ε = 0.2, the Q-value of the current best action has a
probability of 0.9 of being updated, while the other has a probability of 0.1 (consider-
ing a 2-actions game). It means that the Q-values are updated at different speeds. To
simulate this behaviour, we define the growth in the Q-values as directly proportional
to the probabilities. Then, Equation 11 becomes

dQai(k)
dt

≈ xi(k)α(E[rai(k)]−Qai(k)) (13)

where xi(k) is the probability of playing action i at time k.
It is important to emphasize that the speed of the updates affects the shape of the

functions and, as a consequence, the points at which they will intersect each other. As
such, this component plays a very significant role in the model. Roughly speaking, the
expected reward indicates the values Qai will converge to, the speed of the updates
defines the paths that it will follow to get there and the presence of intersection points
in the functions of the adversary determines if it is ever going to get there.

It should be clarified, however, that while the presence of intersection points in one
agent’s function does not affect the limits of its equations and the equilibrium points
of the associated slope fields, it does affect the speed of the convergence and the slope
field itself. To illustrate it, suppose that xi and E[rai ] are constants. Then, by integration
we can find the general solution for Equation 13:

Qai(k) = Ce−xiαt + E[rai ] (14)

Note that the only difference between this equation and Equation 12 is the exponential
term. Because the limit of this term is 0 for t → ∞, the limit of the equation remains
E[rai ], regardless of the value of xi. On the other hand, different values of xi generate
different slope fields. This can be seen in Figure 9 where we plotted the slope fields
obtained when E[rai ] = 5 and α = 0.2 for xi ∈ {0.1,0.9}. For the sake of comparison,
we have also plotted the sample paths for Qai(0) equal to 0, 2, 8 and 10.

In the next section we show how the observations above come together to model the
behaviour of the Q-values during the multiagent learning process.

3.1.2 The Model
For the first and the second players, respectively, let A and B be the payoff matrices, x
and y be the probability vectors, and Qa and Qb be the vectors of Q-values. Then, based
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Fig. 9. Slope fields associated with Equation 13 (α = 0.2 and rai = 5) for xi = 0.1 (Left) and
xi = 0.9 (Right), and examples of specific solutions obtained when Qai(0) ∈ {0,2,8,10}

on the analysis above, the expected behaviour for the Q-values can be modelled by the
system of equations:

Qai(k + 1) = Qai(k)+ xi(k)α(∑
j

ai jy j(k)−Qai(k))

Qbi(k + 1) = Qbi(k)+ yi(k)α(∑
j

bi jx j(k)−Qbi(k))

xi(k) =

{
(1− ε)+ (ε/n), if Qai(k) is currently the highest

ε/n, otherwise

yi(k) =

{
(1− ε)+ (ε/n), if Qbi(k) is currently the highest

ε/n, otherwise
(15)

Having the above model for the Q-values, the expected behaviour of the agents can be
derived by tracking the actions with highest Q-value over the learning process of each
agent.

3.2 Analysis of the Market-Based Resource Allocation Games

We now apply the model to analyse the dynamics of the learning agents in the IPA with
RL. For the sake of simplicity, without losing the generality, we use a simplified version
of the scenario addressed in the previous section. We consider agents with preferences
over the amount of resources, using an increasing utility function to describe it, and a
single IPA market with 4 units of indivisible resources, so only discrete units can be
sold or requested. The price of the resources is not important at this stage as we are
more interested in explaining why the agents reach the equilibrium that optimizes the
SW. So, we consider the price to be constant.

Based on the simplified scenario we can define a two-player five-action stage game
for each reward function. Tables 1 and 2 show the games. The actions represent the
possible demand requests. Note that the joint-actions in the minor diagonal represent
the possible equilibrium states for the market. Also note that the payoffs simulate the
reward functions, generating a competitive game with symmetric payoff table for the
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Table 1. Social Reward Game

0 1 2 3 4
0 0,0 0,0 0,0 0,0 0,0
1 0,0 0,0 0,0 3,3 0,0
2 0,0 0,0 4,4 0,0 0,0
3 0,0 3,3 0,0 0, 0 0,0
4 0,0 0,0 0,0 0, 0 0,0

Table 2. Individual Reward Game

0 1 2 3 4
0 0,0 0,0 0,0 0,0 0,4
1 0,0 0,0 0,0 1,3 0,0
2 0,0 0,0 2,2 0,0 0,0
3 0,0 3,1 0,0 0,0 0,0
4 4,0 0,0 0,0 0,0 0,0

individual reward function and a cooperative game for the social reward function. In
the tables, pure Nash Equilibria (NEs) are presented in bold and Pareto-Optimal (PO)
joint-actions in italic.

According to the results presented in the previous section, the agents learn to request
2 units of resources (joint-action < 3,3 >) in both games, which maximizes the SW.
The analysis of the social reward game (Table 1) shows that this strategy is the only one
that is PO and a NE. Furthermore, the strategy is the most profitable, so the convergence
to this strategy is not surprising. The analysis of the individual reward game (Table 2),
however, shows Pareto-Optimality and NE in all the strategies in the minor-diagonal.
Supported by the model, in the next-subsections we investigate why and how the agents
develop those strategies.

3.2.1 The Social Reward Game
We first focus on the analysis of the social reward game. This game has seven pure
NEs: < 1,5 >, < 2,4 >, < 3,3 >, < 4,2 >, < 5,1 >, < 5,5 > and < 1,1 >. And only
one PO solution: < 3,3 >. The payoff matrices for the first and the second players are
respectively:

A =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 3 0
0 0 4 0 0
0 3 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 3 0
0 0 4 0 0
0 3 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

The results presented in the previous section were obtained with all the initial Q-values
set to 0, so Qa = [0,0,0,0,0] and Qb = [0,0,0,0,0]. This configuration generates a
uniform probability distribution in which both agents play each action with probability
1/5 in the first round of the learning process. Figure 10 presents the graphs obtained
in this situation when α = 0.1 and ε = 0.45. The graphs on the left-hand side of the
figure show the theoretical evolution of the Q-values. The graphs on the center show the
median Q-values aggregated from 100 learning experiments. The graphs on the right-
hand side show the frequency in which each action has been adopted by the agents. By
adopted action or strategy we mean the action or strategy with the highest Q-value at
that particular time.

As seen in Figure 10, the dynamics of the agents’ Q-values follow the dynamics ob-
tained by the model relatively well. There is, however, a small difference in the shape of
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Fig. 10. Graphs for the Social Reward Game when the initial Q-values are Qa = Qb = [0,0,0,0,0]:
the theoretical Q-values derived by the model (left); the median Q-values observed in the exper-
iments (center); the observed frequency of the actions adopted by the agents (right) during the
experiments

the curves of action 3 in the initial part of the learning process. This difference results
from the uniform probability distribution applied by the agents in the first round, which
has different impacts in the model and the experiments. For the model, the uniform
distribution gives to action 3 the highest expected reward and, therefore, the highest Q-
value from the second round on. Consequently, from the model point of view, the evo-
lution of the Q-values is quite similar to the evolution obtained when strategy < 3,3 >
is the initial strategy of the agents, as shall be seen later. For the experiments, on the
other hand, the uniform distribution gives to any strategy the same probability of being
played. However, only strategies < 2,4 >, < 3,3 > and < 4,2 > are able to modify the
Q-values as they are the only ones that return a payoff other than 0. Therefore, the first
time any of these strategies is played, it will become the one with highest Q-values and
the learning process from that point on will be similar to the process obtained when the
initial strategy of the agents is set to < 2,4 >, < 3,3 > or < 4,2 >, depending on which
one is played first. Therefore, the impact that the initial uniform probability distribution
has in the model is different from the impact that it has in the experiments. While in
the model the strategy < 3,3 > will be certainly adopted by the agents from the second
round on, in the experiments strategies < 2,4 >, < 3,3 > and < 4,2 > have the same
probability of being adopted. This difference generates the discrepancy between model
and experiments in the initial part of the learning process. This behaviour is further il-
lustrated by the graphs showing the frequencies of the actions, where it can be seen the
equilibrium between actions 2, 3 and 4 during the initial part of the learning process.

Still in Figure 10, despite the different starting points between model and exper-
iments, the observed Q-values end up stabilizing around the expected levels. In or-
der to explain this behaviour, it is necessary to investigate the dynamics of the agents
when they start the learning process playing specific strategies. For this, we modify
the starting Q-value vectors in order to reflect the desired starting strategy. In particu-
lar we investigate the starting strategies < 1,5 >, < 2,4 > and < 3,3 > as they are the
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strategies that would be able to equilibrate demand and supply in the actual IPA with RL
scenario. The analysis of initial strategies < 5,1 > and < 4,2 > are not shown because
they are symmetric to strategies < 1,5 > and < 2,4 >, respectively.

Figure 11 plots the graphs obtained when the agents start the process playing strategy
< 1,5 >. The initial Q-values are set to Qa = [0.01,0,0,0,0] and Qb = [0,0,0,0,0.01],
the learning parameters are set to α = 0.1 and ε = 0.45. The results found for this case
are quite similar to the results found in the previous case. The dynamics of the agents
follow the dynamics obtained by the model with a small difference in the initial shapes
of the action 3’s curves. From the model perspective, as the payoff of actions 1 and 5 is
0, action 3 will have the highest expected reward and, consequently, the highest Q-value
from the second round on, making the process similar to the one obtained in the first
case. From the experimental perspective, as strategy < 1,5 > returns 0, the first time
any of the strategies < 2,4 >, < 3,3 > and < 4,2 > is played, it will be adopted by
the agents from that point on. As the three strategies have the same probability of being
played, then the process from the experimental perspective is also similar to the process
obtained in the first case.
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Fig. 11. Graphs for the Social Reward Game when the initial strategy is < 1,5 >: the theoretical
Q-values derived by the model (left); the median Q-values observed in the experiments (center);
the observed frequency of the actions adopted by the agents (right) during the experiments

Figure 12 plots the graphs obtained when the agents start the process playing strategy
< 2,4 >. The initial Q-values are set to Qa = [0,0.01,0,0,0] and Qb = [0,0,0,0.01,0],
the learning parameters are set to α = 0.1 and ε = 0.45. The results obtained for this
case are quite interesting. The dynamics of the agents in the initial part of the learning
process is similar to the dynamics predicted by the model. After episode 2000, how-
ever, there are a sudden increase in the median Q-values of action 3 and a drecrease in
the median Q-values of actions 2 and 4 of the first and second agents respectively. This
strategy change, from < 2,4 > to < 3,3 >, is not captured by the model, which pre-
dicts that strategy < 2,4 > will be kept throughout the learning process. The graphs that
show the frequency of the strategies further illustrate the fact that the agents eventually
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converge to strategy < 3,3 > during the learning process. We will get back to this ex-
ample later when we show the typical behaviour found in the analysis of the individual
runs of the learning experiments.

 0

 1

 2

 3

 4

 5

 0  2000  4000  6000  8000  10000

Agent 1 - Theoretical
Q

t

Action 1
Action 2
Action 3
Action 4
Action 5

 0

 1

 2

 3

 4

 5

 0  2000  4000  6000  8000  10000

Agent 1 - Observed
Q

t

 0

 20

 40

 60

 80

 100

 0  2000  4000  6000  8000  10000

Agent 1 - Frequency
n

t

 0

 1

 2

 3

 4

 5

 0  2000  4000  6000  8000  10000

Agent 2 - Theoretical
Q

t

 0

 1

 2

 3

 4

 5

 0  2000  4000  6000  8000  10000

Agent 2 - Observed
Q

t

 0

 20

 40

 60

 80

 100

 0  2000  4000  6000  8000  10000

Agent 2 - Frequency
n

t

Fig. 12. Graphs for the Social Reward Game when the initial strategy is < 2,4 >: the theoretical
Q-values derived by the model (left); the median Q-values observed in the experiments (center);
the observed frequency of the actions adopted by the agent (right) during the experiments

In Figure 13 we plot the graphs obtained when the agents start playing strategy
< 3,3 >. The initial Q-values in this case are set to Qa = Qb = [0,0,0.01,0,0] and
the learning parameters set to α = 0.1 and ε = 0.45. The main point to note in this case
is that the agents follow the dynamics described by the model remarkably well. The
median Q-values of action 3 increases quite quickly and stabilizes around the expected
levels. As commented above, the curves of theoretical Q-values are quite similar to the
curves shown in Figure 10. Recall that in that case the agents apply a uniform prob-
ability distribution in the first round of the learning process, which gives to action 3
the highest expected reward and, therefore, the highest Q-value from the second round
on. Consequently, both processes have similar starting points from the model perspec-
tive. From the experimental perspective, however, the starting points are significantly
different. The uniform probability distribution of that case gives to strategies < 2,4 >,
< 3,3 > and < 4,2 > the same probability of being adopted in the second round. The
pre-defined distribution of this case, on the other hand, will always give to strategy
< 3,3 > the highest probability. Such a difference can be seen in the graphs that show
the frequency of the agents’ strategies. Note that, while in Figure 10 there is an ini-
tial equilibrium between the frequencies, which is generated by the uniform probability
distribution, in Figure 13 the frequency of action 3 is always higher than the others and
kept stable.

To conclude the discussion on the Social Reward Game, Figure 14 and 15 present the
typical behaviours found during the learning experiments. The analysis of the individual
runs revealed the presence of two types of typical behaviour. In the first type (Figure 14)
the agents converge quite quickly to strategy < 3,3 > and keep this strategy throughout
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Fig. 13. Graphs for the Social Reward Game when the initial strategy is < 3,3 >: the theoretical
Q-values derived by the model (left); the median Q-values observed in the experiments (center);
the observed frequency of the actions adopted by the agents (right) during the experiments

the learning process. In the second type (Figure 15) the agents converge initially to
strategies < 2,4 > or < 4,2 > and then change to strategy < 3,3 >, keeping it during
the rest of the learning process. These behaviours were obtained from the analysis of
experiments performed with initial Q-values set to 0, which is the configuration used
in the actual IPA with RL. Nevertheless, they are illustrative of the typical behaviours
found in the other configurations adopted in this section and can be used to further
explain the results found for them. In particular, the second type of behaviour shows
that when agents start playing strategy < 2,4 > they will eventually converge to strategy
< 3,3 >, which is the general behaviour presented in Figure 12. One point to note is
that when the agents are playing strategy < 3,3 >, the behaviour of the observed Q-
values is similar to the behaviour predicted by the model when the starting strategy of
the agents is modified to < 3,3 >, shown in Figure 13. Likewise, the behaviour when
the agents are playing strategy < 2,4 > is similar to the behaviour predicted when the
starting strategy is modified to < 2,4 >, shown in Figure 12.

3.2.2 The Individual Reward Game
We now focus on the analysis of the individual reward game. This game has six pure
NEs: < 1,5 >, < 2,4 >, < 3,3 >, < 4,2 >, < 5,1 > and < 5,5 >. And five PO solu-
tions: < 1,5 >, < 2,4 >, < 3,3 >, < 4,2 >, < 5,1 >. The payoff matrices for the first
and the second players are respectively:

A =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 1 0
0 0 2 0 0
0 3 0 0 0
4 0 0 0 0

⎤
⎥⎥⎥⎥⎦ B =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 4
0 0 0 3 0
0 0 2 0 0
0 1 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

As for the social reward game, we first show the results obtained when Qa = [0,0,0,0,0]
and Qb = [0,0,0,0,0], which has been the configuration applied in experiments in the
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Fig. 14. Example of the typical behaviour found in the learning experiments with the Social Re-
ward Game when the initial Q-values are Qa = Qb = [0,0,0,0,0]
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Fig. 15. Example of the typical behaviour found in the learning experiments with the Social Re-
ward Game when the initial Q-values are Qa = Qb = [0,0,0,0,0]

IPA with RL. This configuration generates a uniform probability distribution in which
both agents play each action with probability 1/5 in the first round of the learning
process. Figure 16 presents the graphs obtained in this situation when α = 0.1 and
ε = 0.45. The graphs on the left-hand side of the figure show the theoretical evolution
of the Q-values. The graphs on the center show the median Q-values aggregated from
100 learning experiments. The graphs on the right-hand side show the frequency in
which each action is adopted by the agents during the experiments. Again, by adopted
action or strategy we mean the action or strategy that has the highest Q-value at that
particular time.

As seen in Figure 16, the dynamics of the agents follow the dynamics predicted by
the model relatively well in the beginning of the learning process. However, there is
an increase in the median Q-value of action 3 around the learning episode 4000 that is
not predicted. According to the model, the Q-values would converge constantly towards
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Fig. 16. Graphs for the Individual Reward Game when the initial Q-values are Qa = Qb =
[0,0,0,0,0]: the theoretical Q-values derived by the model (left); the median Q-values observed
in the experiments (center); the observed frequency of the actions adopted by the agents (right)
during the experiments

Qa = Qb = [0,0.09,0.18,0.27,0.36]. These values are the expected rewards when the
agents play strategy < 5,5 >. The development of this strategy is a consequence of
the uniform probability distribution applied in the first round of the process, which
gives to action 5 the highest expected reward and, therefore, the highest Q-value in
the second round. As there are no intersection points in the curves of either agent, the
Q-values would stabilize around those values. The experimental results show the me-
dian Q-values following this dynamic relatively well during the first learning episodes.
Around episode 4000, however, there is a sudden increase in the median Q-value of
action 3, which is not captured.

As commented above, the uniform distribution gives to action 5 the highest Q-value
in the second round of the learning process according to the model. Therefore, it is
necessary to investigate the dynamics of the agents when they start the learning process
playing strategy < 5,5 >. The graphs for this case are presented in Figure 17. The
initial Q-values are set to Qa = Qb = [0,0,0,0,0.01] and the learning parameters set to
α = 0.1 and ε = 0.45. As it can be seen, the results obtained in this case are similar to
the results obtained in the previous case. The main difference between them is in the
observed frequency of the actions during the very beginning part of the learning process.
While in the first case the frequency of action 5 starts at the same level as the frequency
of actions 2, 3 and 4, which is a result of the uniform probability distribution, in this
case it starts higher. In both situations, however, the frequency of action 5 decreases
quite quickly and action 3 ends up dominating the learning process.

Figure 18 plots the graphs when the agents starting the learning process playing strat-
egy < 1,5 >. The initial Q-values are set to Qa=[0.01,0,0,0,0] and Qb=[0,0,0,0,0.01]
and the learning parameters set to α = 0.1 and ε = 0.45. The results obtained in this
case are also quite similar to the results obtained in the previous two cases. The median
Q-values follow the theoretical Q-values relatively well in the first part of the learning
process. In the second part there is a sudden increase in the Q-values of action 3, which
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Fig. 17. Graphs for the Individual Reward Game when the initial strategy is < 5,5 >: the the-
oretical Q-values derived by the model (left); the median Q-values observed in the experi-
ments (center); the observed frequency of the actions adopted by the agents (right) during the
experiments
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Fig. 18. Graphs for the Individual Reward Game when the initial strategy is < 1,5 >: the the-
oretical Q-values derivated by the model (left); the median Q-values observed in the experi-
ments (center); the observed frequency of the actions adopted by the agents (right) during the
experiments

is not predicted by the model. The frequency of the actions also reveals an interesting
behaviour. For the first agent, the frequency of action 1 starts higher than the others but
decrease rather quickly because the payoff of playing < 1,5 > is 0. Since the other ac-
tions have the same probability ε/n of being played, their frequencies start at the same
level. As the learning process progress, however, the frequency of action 5 decreases
quickly while the frequency of actions 2, 3 and 4 are kept in equilibrium until action 3
dominates the process. For the second agent, the behaviour is similar to the behaviour
found when the starting strategy is set to < 5,5 >: the frequency of action 5 starts higher
than the others but decreases quickly and action 3 dominates the process.
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The previous three examples have presented the similar behaviour in which the me-
dian Q-values follow the dynamics derived by the model relatively well during the first
part of the learning process, when a sudden increase in the Q-values of action 3 is not
captured. In the three cases the model predicts the convergence of the agents to strategy
< 5,5 >. When this strategy is adopted, however, the experiments show the frequency
of action 5 decreasing quite quickly and the convergence to strategy < 3,3 >. Addition-
ally, the experiments show the frequency of actions 2, 3 and 4 in equilibrium for some
time before the frequency of action 3 starts to rise. We will next present the analysis
of the dynamics when the starting strategies are < 2,4 > and < 3,3 >. Before that,
however, we will present the analysis of the individual runs of the learning experiments
as it will help in identifying why the agents always converge to strategy < 3,3 >.

The analysis of the individual runs of the learning experiments has revealed the ex-
istence of two types of typical behaviour. In the first type the agents converge to joint-
action < 3,3 > in the beginning of the learning process and keep this strategy quite
stable during the rest of it. In the second type the agents converge initially to joint-
actions < 2,4 > or < 4,2 >, which are kept quite unstable, particularly by the agent
that is playing action 2, until they eventually converge to strategy < 3,3 >. In some
cases the agents alternate between strategies < 2,4 > and < 4,2 > before converging
to < 3,3 >.

Figures 19 and 20 show examples of the typical behaviours. Figure 19 plots the
example for the first type. Note the quick convergence to action 3 and the very few
changes of strategy that occurs throughout the learning process. Figure 20 plots the
example for the second type. Note the initial convergence to strategy < 2,4 > and then
the convergence to strategy < 3,3 >. Also note the high number of changes that occurs
in the strategy of the first agent while it is playing action 2. From these observations
we can infer that strategy < 3,3 > is more stable than strategies < 2,4 > and < 4,2 >.
We can then justify the rise in the Q-values of action 3: if the typical behaviour is to
eventually converge to strategy < 3,3 > and if such a strategy is more stable than the
others, then it is reasonable to say that it will dominate the learning process in the long
run.

In Figure 21 we plot the graphs obtained when the agents start the process play-
ing strategy < 2,4 >. The initial Q-values are set to Qa = [0,0.01,0,0,0] and Qb =
[0,0,0,0.01,0], the learning parameters are set to α = 0.1 and ε = 0.45. The results for
this case are quite interesting. According to the model the Q-values would converge to
Qa = [0,0.63,0.18,0.27,0.36] and Qb = [0,0.09,0.18,1.92,0.36], so the agents would
keep playing strategy < 2,4 >. This dynamic is followed by the experiments during the
first learning episodes, but then there is a decrease in the median Q-values of actions 2
and 4 for the first and second agent respectivelly. At the same time, there is an increase
in the median Q-value of action 3. This behaviour is also noticed in the graphs for the
frequency of the strategies, which show the frequency of actions 2 and 4 decreasing
while the frequency of action 3 is increasing. These observations illustrate the instabil-
ity of strategy < 2,4 >. It is important to mention that the values found by the model
are coherent with the values shown in Figure 20 for the periods where the agents are
playing strategy < 2,4 >. Furthermore, the typical behaviour found is similar to the
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Fig. 19. Example of the typical behaviour found in the learning experiments with the Individual
Reward Game when the initial Q-values are Qa = Qb = [0,0,0,0,0]
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Fig. 20. Example of the typical behaviour found in the learning experiments with the Individual
Reward Game when the initial Q-values are Qa = Qb = [0,0,0,0,0]

type of typical behaviour shown in Figure 20: the agents start playing strategy < 2,4 >
and eventually converge to < 3,3 >, which is then kept very stable.

In Figure 22 we plot the graphs obtained when the agents start the process playing
strategy < 3,3 >. The initial Q-values are set to Qa = Qb = [0,0,0.01,0,0] and the
learning parameters set to α = 0.1 and ε = 0.45. The first point to note in the graphs
is that, in this case, the dynamics found in the experiments is captured very well by
the model. It can also be seen that the frequency of strategy < 3,3 > is kept constant
throughout the learning process, which illustrates the stability of this strategy. Another
point to note is that the theoretical Q-values described by the model is coherent with the
values found in the individual runs of the learning experiments for the periods where
the agents are playing strategy < 3,3 > (see Figure 19). As in the previous example,
the typical behaviour found in this case is similar to the first type of typical behaviour
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Fig. 21. Graphs for the Individual Reward Game when the initial Q-values strategy is < 2,4 >:
the theoretical Q-values derived by the model (left); the median Q-values observed in the exper-
iments (center); the observed frequency of the actions adopted by the agents (right) during the
experiments
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Fig. 22. Graphs for the Individual Reward Game when the initial strategy is < 3,3 >: the the-
oretical Q-values derived by the model (left); the median Q-values observed in the experi-
ments (center); the observed frequency of the actions adopted by the agents (right) during the
experiments

shown in that Figure: the agents converge to strategy < 3,3 > in the beginning of the
process and keep this strategy quite stable during the rest of it.

The experiments indicate the existence of certain relationships between the payoffs
tables, the learning rate and the exploration rate of the ε-greedy mechanism. In the gen-
eral case, these relationships may be responsible for inaccuracies of the model in the
sense that the model is not able to capture the actual stochasticity present in the ex-
periments. For instance, consider the case where the Q-values of two actions are quite
close to each other (the theoretical Q-values shown in Figure 16 can serve as an exam-
ple). With a high exploration, there is a high chance for the occurrence of intersections
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between these two curves during the real experimentation, even if the model does not
predict it. The occurrence of non-predicted intersections can decrease the quality of the
model as they can change the expected rewards, changing the curves in general. In our
particular case of the individual reward game, the relationships are responsible for the
instability presented by strategies < 2,4 >, < 4,2 >, < 1,5 > and < 5,1 >, and con-
tribute to the convergence of the system to strategy < 3,3 >, once this strategy is the
most stable of them. To identify those relationships can improve the general quality of
the model and constitute an important future work for this research.

4 Related Works

There is a significant amount of work on learning for market-based systems. While
most of the approaches have not been developed specifically for resource allocation,
they can be naturally extended for this end. One branch of research corresponds to the
improvement of bidding and asking strategies in auction mechanisms. For example, [27]
investigate the use of belief-based learning in simultaneous English Auctions. Agents
build belief functions to model the valuations held by other participants and coordinate
their bids accordingly in multiple auction houses. [15] apply a similar approach but for
single Double Auctions. Another area of research is the use of learning on Mechanism
Design [9, 25]. Mechanism design studies the problem of optimizing auction parameters
in order to maximize an objective function (e.g. auctioneer revenue).

There is also some work on the automated pricing. [20] studied the use of Q-Learning
in a scenario where two competitive “pricebots” have to set the price of a commodity.
[21] investigated a similar problem for the scenario in which one agent has the power
to enforce its strategy on the other.

[42] surveyed 35 different market-based mechanisms for resource allocation in large-
scale distributed systems. From those, learning is applied only in Catnets [29]. Catnets’
agents apply an evolutionary-like approach to learn negotiation strategies in a com-
pletely decentralized bargaining model. Most of work on learning for negotiation can
be naturally transferred to the resource allocation field and, therefore, can be used to
improve bargaining models.

The fundamental difference between the above works and our approach is the expres-
sion of the preferences of the agents. Previous works usually consider the utility of one
agent as a function of the profit it makes in the market. Our agents, in contrast, describe
their preferences by explicitly modelling utility functions for attributes of the alloca-
tion. It has the advantage of providing more power to the agents in developing strategic
behaviours, which is particularly interesting in small markets where the possible gains
from strategic attempts are larger, and achieving fair-optimal allocations.

Learning has also been explored to improve non-market-based resource allocation.
In [14], agents learn which resource nodes to submit their jobs to, given that the nodes
are managed by local schedulers. [2] proposed a gradient ascent learning algorithm and
applied it in distributed task allocation. [10] modelled a resource allocation problem
with precedence constraints as a Markov Decision Process and applied a distributed RL
approach to solve it. Those works also follow a different approach for the preferences
of the agents, which are typically modelled as functions of scheduling parameters, such
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as reducing the time interval between a job submission and its completion. Utility func-
tions are not considered.

Finally, the work of [8] is also related to ours. The authors develop a pricing mecha-
nism to maximize the aggregated utility for resource allocation in the Grid. Apart from
the fact that learning is not applied, they also follow a different approach for agents’
preferences. Their experiments use the maximization of resource usage as resource
owners’ preferences and functions of concrete parameters (e.g. price of the resources
and time to complete a task) as users’ preferences.

To the best of our knowledge, the approach presented herein is the first attempt to
address the problem of learning demand functions based on the agents’ preferences.

5 Conclusion

The commodity-market economic model offers a promising approach for resource al-
location in large-scale distributed systems. Existing mechanisms based on this model
usually employ the Walrasian Economic Equilibrium concepts, assuming that all the
participants of the allocation process are price-taking entities that will not attempt to
strategically influence the mechanism in order to improve their profits or welfare. Such
a condition is hardly satisfied in large-scale distributed systems where there is little
control over the behaviour of the agents, making it impossible to guarantee that they
will behave in an ordered manner. To understand the impacts of these attempts and to
develop mechanisms that are robust in the presence of strategic participants, being able
to deliver optimal allocation also in this situation, are important aspects of the problem.
Additionally, most mechanisms focus on the achievement of a Pareto-Optimal alloca-
tion but usually disregard how fair and how desirable the allocation is for both the
system and the participants.

In this paper we have addressed the above issues and studied the dynamics of strate-
gic learning agents in the IPA with RL. This mechanism enhances the original Iterative
Price Adjustment (IPA) mechanism by introducing into the market participants with
learning capabilities. These participants use utility functions to describe preferences
over different resources attributes and develop strategic behaviour by learning demand
functions adapted to the market through RL. The reward function used during the learn-
ing process are based either on the individual utility of the participants, generating self-
ish learning agents, or the social welfare of the market, generating altruistic learning
agents.

The study has been conducted in two parts. In the first part we have experimentally
investigated the impacts of the learning agents on the individual and social performance
of the market. The results of this step have shown that the market composed exclusively
of selfish agents achieved social performance similar to the performance obtained by
the market composed exclusively of altruistic agents, both achieving near-optimal SW,
measured by the NP social welfare function. Such an outcome is significant not only
for the market-based resource allocation domain but also for a series of other domains
where individual and social utility should be maximized but agents are not guaranteed to
act cooperatively in order to achieve it or they do not want to reveal private preferences.
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The second part of the study involved the analysis of the behaviour of the agents from
the perspective of the dynamic process generated by the learning algorithm employed
by them. The focus was to gain some understanding on the reasons for the results found
in the experimental investigation, which are particularly interesting since the learning
problem generated by the social reward function is cooperative while the problem gen-
erated by the individual reward function is competitive. For this, we first developed a
model for the dynamics of Multiagent Q-learning with ε-greedy exploration. We then
applied this model to theoretically analyse two games formulated with basis on the
IPA with RL and that reproduce the application of the individual and the social reward
functions.

The game-theoretical analysis of the games has shown Pareto-optimality and a Nash
Equilibrium at the joint-strategies in which the agents request the same amount of re-
sources, maximizing the social welfare. While in the social reward game this strategy
returns the most profitable payoff, in the individual reward game there are strategies
that are more profitable. The analysis supported by the model, however, has shown that
such strategies are less stable, therefore, justifying the interesting results in which the
selfish agents end up optimising the social welfare.

There are several opportunities for future works in this research. One area for ex-
tension involves the further reduction of the required learning episodes in the market,
which is in general related to well-known scalability issues of RL. Moreover, it is nec-
essary to evaluate the approach in extended scenarios, including agents with prefer-
ences described over multiple attributes, multiple markets, and the existence of resource
provider agents. The later deals with a limitation of the IPA mechanism. In particular,
the IPA does not model resource provider agents. Simply adding those agents to the
model may change its theoretical implications as the resource supply becomes dynamic
and, therefore, has to be carefully considered.

There are also several opportunities for future works in our model of Multiagent
Q-learning with ε-greedy exploration. In particular, its application in the market-based
resource allocation games has indicated the existence of some relationships between the
payoffs, the exploration and the learning rate that may be responsible for inaccuracies
of the model. To identify what are those relationships constitute an important future
work. It is also important to extend the approach to multi-state scenarios. One of the
ideas for this extension is to consider each state as a separated game and then analyse
the basins of attraction in between the games/states. To enable it, however, we first need
to explore ways of obtaining a more complete view of the expected joint-policy of the
agents. Our current work in this area involves aggregating different starting Q-values
with similar dynamics. From this aggregation we will generate a single graph of the
joint policy space, which is discrete in our case, relating each starting point with its
attracting basin in the asymptotic case. Another area for future work is to develop new
techniques to allow the analysis of scenarios composed of multiple states and multiple
agents. Currently, the dynamics of the algorithm is analysed in 2-dimensional graphs
that show the development of the expected Q-values and strategies of the agents over
the time, two graphs per agent. Such a technique is not scalable to the multi-state multi-
agent scenario.
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Abstract. In this paper I introduce SaM, a split and merge algorithm for frequent
item set mining. Its core advantages are its extremely simple data structure and
processing scheme, which not only make it quite easy to implement, but also
very convenient to execute on external storage, thus rendering it a highly useful
method if the transaction database to mine cannot be loaded into main memory.
Furthermore, I review RElim (an algorithm I proposed in an earlier paper and
improved in the meantime) and discuss different optimization options for both
SaM and RElim. Finally, I present experiments comparing SaM and RElim with
classical frequent item set mining algorithms (like Apriori, Eclat and FP-growth).

1 Introduction

It is hardly an exaggeration to say that the popular research area of data mining was
started by the tasks of frequent item set mining and association rule induction. At
the very least, these tasks have a strong and long-standing tradition in data mining
and knowledge discovery in databases and triggered an abundance of publications in
data mining conferences and journals. The huge research efforts devoted to these tasks
have led to a variety of sophisticated and efficient algorithms to find frequent item sets.
Among the best known approaches are Apriori [1,2], Eclat [17] and FP-growth [11].

Nevertheless, there is still room for improvement: while Eclat, which is the sim-
plest of the mentioned algorithms, can be relatively slow on some data sets (compared
to other algorithms, see the experimental results reported in Section 5), FP-growth,
which is usually the fastest algorithm, employs a sophisticated and rather complex data
structure and thus requires to load the transaction database into main memory. Hence
a simpler processing scheme, which maintains efficiency, is desirable. Other lines of
improvement include filtering found frequent item sets and association rules (see, e.g.,
[22,23]), identifying temporal changes in discovered patterns (see, e.g., [4,5]), and dis-
covering fault-tolerant or approximate frequent item sets (see, e.g., [9,14,21]).

In this paper I introduce SaM, a split and merge algorithm for frequent item set min-
ing. Its core advantages are its extremely simple data structure and processing scheme,
which not only make it very easy to implement, but also convenient to execute on ex-
ternal storage, thus rendering it a highly useful method if the transaction database to
mine cannot be loaded into main memory. Furthermore, I review RElim, an also very
simple algorithm, which I proposed in an earlier paper [8] and which can be seen as a
precursor of SaM. In addition, I study different ways of optimizing RElim and SaM,
while preserving, as far as possible, the simplicity of their basic processing schemes.
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The rest of this paper is structured as follows: Section 2 briefly reviews the task of
frequent item set mining and especially the basic divide-and-conquer scheme under-
lying many frequent item set mining algorithms. In Section 3 I present my new SaM
(Split and Merge) algorithm for frequent item set mining, while in Section 4 I review its
precursor, the RElim algorithm, which I proposed in an earlier paper [8]. In Section 5
the basic versions of both SaM and RElim are compared experimentally to classical
frequent item set mining algorithms like Apriori, Eclat, and FP-growth, and the results
are analyzed. Based on this analysis, I suggest in Section 6 several optimization options
for both SaM and RElim and then present the corresponding experimental results in
Section 7. Finally, in Section 8, I draw conclusions from the discussion.

2 Frequent Item Set Mining

Frequent item set mining is a data analysis method, which was originally developed for
market basket analysis and which aims at finding regularities in the shopping behavior
of the customers of supermarkets, mail-order companies and online shops. In particular,
it tries to identify sets of products that are frequently bought together. Once identified,
such sets of associated products may be used to optimize the organization of the offered
products on the shelves of a supermarket or the pages of a mail-order catalog or web
shop, or may give hints which products may conveniently be bundled.

Formally, the task of frequent item set mining can be described as follows: we are
given a set B of items, called the item base, and a database T of transactions. Each item
represents a product, and the item base represents the set of all products offered by a
store. The term item set refers to any subset of the item base B. Each transaction is an
item set and represents a set of products that has been bought by an actual customer.
Since two or even more customers may have bought the exact same set of products, the
total of all transactions must be represented as a vector, a bag or a multiset, since in
a simple set each transaction could occur at most once.1 Note that the item base B is
usually not given explicitly, but only implicitly as the union of all transactions.

The support sT (I) of an item set I ⊆ B is the number of transactions in the
database T , it is contained in. Given a user-specified minimum support smin ∈ IN, an
item set I is called frequent in T iff sT (I) ≥ smin. The goal of frequent item set mining
is to identify all item sets I ⊆ B that are frequent in a given transaction database T .
Note that the task of frequent item set mining may also be defined with a relative mini-
mum support, which is the fraction of transactions in T that must contain an item set I
in order to make I frequent. However, this alternative definition is obviously equivalent.

A standard approach to find all frequent item sets w.r.t. a given database T and sup-
port threshold smin, which is adopted by basically all frequent item set mining algo-
rithms (except those of the Apriori family), is a depth-first search in the subset lattice of
the item base B. Viewed properly, this approach can be interpreted as a simple divide-
and-conquer scheme. For some chosen item i, the problem to find all frequent item sets
is split into two subproblems: (1) find all frequent item sets containing the item i and
(2) find all frequent item sets not containing the item i. Each subproblem is then further

1 Alternatively, each transaction may be enhanced by a unique transaction identifier, and these
enhanced transactions may then be combined in a simple set.
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divided based on another item j: find all frequent item sets containing (1.1) both items i
and j, (1.2) item i, but not j, (2.1) item j, but not i, (2.2) neither item i nor j, and so on.

All subproblems that occur in this divide-and-conquer recursion can be defined by a
conditional transaction database and a prefix. The prefix is a set of items that has to be
added to all frequent item sets that are discovered in the conditional database. Formally,
all subproblems are tuples S = (C, P ), where C is a conditional database and P ⊆ B
is a prefix. The initial problem, with which the recursion is started, is S = (T, ∅),
where T is the transaction database to mine and the prefix is empty. A subproblem
S0 = (C0, P0) is processed as follows: Choose an item i ∈ B0, where B0 is the set
of items occurring in C0. This choice is arbitrary, but usually follows some predefined
order of the items. If sC0(i) ≥ smin, then report the item set P0 ∪ {i} as frequent with
the support sC0(i), and form the subproblem S1 = (C1, P1) with P1 = P0 ∪ {i}.
The conditional database C1 comprises all transactions in C0 that contain the item i,
but with the item i removed. This also implies that transactions that contain no other
item than i are entirely removed: no empty transactions are ever kept. If C1 is not empty,
process S1 recursively. In any case (that is, regardless of whether sC0(i) ≥ smin or not),
form the subproblem S2 = (C2, P2), where P2 = P0 and the conditional database C2

comprises all transactions in C0 (including those that do not contain the item i), but
again with the item i removed. If C2 is not empty, process S2 recursively.

Eclat, FP-growth, RElim and several other frequent item set mining algorithms rely
on this basic scheme, but differ in how they represent the conditional databases. The
main approaches are horizontal and vertical representations. In a horizontal representa-
tion, the database is stored as a list (or array) of transactions, each of which is a list (or
array) of the items contained in it. In a vertical representation, a database is represented
by first referring with a list (or array) to the different items. For each item a list (or
array) of identifiers is stored, which indicate the transactions that contain the item.

However, this distinction is not pure, since there are many algorithms that use a
combination of the two forms of representing a database. For example, while Eclat
uses a purely vertical representation, FP-growth combines in its FP-tree structure a
vertical representation (links between branches) and a (compressed) horizontal repre-
sentation (prefix tree of transactions). RElim uses basically a horizontal representation,
but groups transactions w.r.t. their leading item, which is, at least partially, a vertical
representation. The SaM algorithm presented in the next section is, to the best of my
knowledge, the first frequent item set mining algorithm that is based on the general
processing scheme outlined above and uses a purely horizontal representation.2

The basic processing scheme can easily be improved with so-called perfect extension
pruning, which relies on the following simple idea: given an item set I , an item i /∈ I
is called a perfect extension of I , iff I and I ∪ {i} have the same support, that is, if
i is contained in all transactions containing I . Perfect extensions have the following
properties: (1) if the item i is a perfect extension of an item set I , then it is also a perfect
extension of any item set J ⊇ I as long as i /∈ J and (2) if I is a frequent item set and
K is the set of all perfect extensions of I , then all sets I ∪ J with J ∈ 2K (where 2K

denotes the power set of K) are also frequent and have the same support as I .

2 Note that Apriori, which also uses a purely horizontal representation, relies on a different
processing scheme, since it traverses the subset lattice level-wise rather than depth-first.
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These properties can be exploited by collecting in the recursion not only prefix items,
but also, in a third element of a subproblem description, perfect extension items. Once
identified, perfect extension items are no longer processed in the recursion, but are only
used to generate all supersets of the prefix that have the same support. Depending on the
data set, this can lead to a considerable speed-up. It should be clear that this optimization
can, in principle, be applied in all frequent item set mining algorithms.

3 A Split and Merge Algorithm

The SaM (Split and Merge) algorithm I introduce in this paper can be seen as a simpli-
fication of the already fairly simple RElim (Recursive Elimination) algorithm, which I
proposed in [8]. While RElim represents a (conditional) database by storing one trans-
action list for each item (partially vertical representation), the split and merge algorithm
presented here employs only a single transaction list (purely horizontal representation),
stored as an array. This array is processed with a simple split and merge scheme, which
computes a conditional database, processes this conditional database recursively, and
finally eliminates the split item from the original (conditional) database.

SaM preprocesses a given transaction database in a way that is very similar to the
preprocessing used by many other frequent item set mining algorithms. The steps are
illustrated in Figure 1 for a simple example transaction database. Step 1 shows the
transaction database in its original form. In step 2 the frequencies of individual items
are determined from this input in order to be able to discard infrequent items immedi-
ately. If we assume a minimum support of three transactions for our example, there are
no infrequent items, so all items are kept. In step 3 the (frequent) items in each transac-
tion are sorted according to their frequency in the transaction database, since it is well
known that processing the items in the order of increasing frequency usually leads to
the shortest execution times. In step 4 the transactions are sorted lexicographically into
descending order, with item comparisons again being decided by the item frequencies,
although here the item with the lower frequency precedes the item with the higher fre-
quency. In step 5 the data structure on which SaM operates is built by combining equal
transactions and setting up an array, in which each element consists of two fields: an
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Fig. 1. The example database: original form (1), item frequencies (2), transactions with sorted
items (3), lexicographically sorted transactions (4), and the data structure used by SaM (5)
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Fig. 2. The basic operations of the SaM algorithm: split (left) and merge (right)

occurrence counter and a pointer to the sorted transaction (array of contained items).
This data structure is then processed recursively to find the frequent item sets.

The basic operations of the recursive processing, which follows the general depth-
first/divide-and-conquer scheme reviewed in Section 2, are illustrated in Figure 2. In the
split step (see the left part of Figure 2) the given array is split w.r.t. the leading item of
the first transaction (item e in our example): all array elements referring to transactions
starting with this item are transferred to a new array. In this process the pointer (in)to
the transaction is advanced by one item, so that the common leading item is “removed”
from all transactions. Obviously, this new array represents the conditional database of
the first subproblem (see Section 2), which is then processed recursively to find all
frequent items sets containing the split item (provided this item is frequent).

The conditional database for frequent item sets not containing this item (needed for
the second subproblem, see Section 2) is obtained with a simple merge step (see the
right part of Figure 2). The new array created in the split step and the rest of the original
array (which refers to transactions starting with a different item) are combined with a
procedure that is almost identical to one phase of the well-known mergesort algorithm.
Since both arrays are obviously lexicographically sorted, a single traversal suffices to
create a lexicographically sorted merged array. The only difference to a mergesort phase
is that equal transactions (or transaction suffixes) are combined. That is, there is always
just one instance of each transaction (suffix), while its number of occurrences is kept
in the occurrence counter. In our example this results in the merged array having two
elements less than the input arrays together: the transaction (suffixes) cbd and bd, which
occur in both arrays, are combined and their occurrence counters are increased to 2.

Note that in both the split and the merge step only the array elements (that is, the
occurrence counter and the (advanced) transaction pointer) are copied to a new array.
There is no need to copy the transactions themselves (that is, the item arrays), since
no changes are ever made to them. (In the split step the leading item is not actually
removed, but only skipped by advancing the pointer (in)to the transaction.) Hence it
suffices to have one global copy of all transactions, which is merely referred to in dif-
ferent ways from different arrays used in the recursive processing.

Note also that the merge result may be created in the array that represented the orig-
inal (conditional) database, since its front elements have been cleared in the split step.
In addition, the array for the split database can be reused after the recursion for the split
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function SaM (a: array of transactions, (∗ conditional database to process ∗)
p: array of items, (∗ prefix of the conditional database a ∗)
smin: int) : int (∗ minimum support of an item set ∗)

var i: item; (∗ buffer for the split item ∗)
s: int; (∗ support of the current split item ∗)
n: int; (∗ number of found frequent item sets ∗)
b, c: array of transactions; (∗ split item and merged database ∗)

begin (∗ — split and merge recursion — ∗)
n := 0; (∗ initialize the number of found item sets ∗)
while a is not empty do (∗ while conditional database is not empty ∗)

i := a[0].items[0]; s := 0; (∗ get leading item of the first transaction ∗)
while a is not empty and a[0].items[0] = i do (∗ split database w.r.t. this item ∗)

s := s + a[0].wgt; (∗ sum the occurrences (compute support) ∗)
remove i from a[0].items; (∗ remove the split item from the transaction ∗)
if a[0].items is not empty (∗ if the transaction has not become empty ∗)
then remove a[0] from a and append it to b;
else remove a[0] from a; end; (∗ move it to the conditional database, ∗)

end; (∗ otherwise simply remove it ∗)
c := empty; (∗ initialize the output array ∗)
while a and b are both not empty do (∗ merge split and rest of database ∗)

if a[0].items > b[0].items (∗ copy lex. smaller transaction from a ∗)
then remove a[0] from a and append it to c;
else if a[0].items < b[0].items (∗ copy lex. smaller transaction from b ∗)
then remove b[0] from b and append it to c;
else b[0].wgt := b[0].wgt +a[0].wgt; (∗ sum the occurrence counters/weights ∗)

remove b[0] from b and append it to c;
remove a[0] from a; (∗ move combined transaction and ∗)

end; (∗ delete the other, equal transaction: ∗)
end; (∗ keep only one instance per transaction ∗)
while a is not empty do (∗ copy the rest of the transactions in a ∗)

remove a[0] from a and append it to c; end;
while b is not empty do (∗ copy the rest of the transactions in b ∗)

remove b[0] from b and append it to c; end;
a := c; (∗ second recursion is executed by the loop ∗)
if s ≥ smin then (∗ if the split item is frequent: ∗)

append i to p; (∗ extend the prefix item set and ∗)
report p with support s; (∗ report the found frequent item set ∗)
n := n + 1 + SaM(b, p, smin); (∗ process the created database recursively ∗)
remove i from p; (∗ and sum the found frequent item sets, ∗)

end; (∗ then restore the original item set prefix ∗)
end;
return n; (∗ return the number of frequent item sets ∗)

end; (∗ function SaM() ∗)

Fig. 3. Pseudo-code of the SaM algorithm. The actual C code is even shorter than this description,
despite the fact that it contains additional functionality, because certain operations needed in this
algorithm can be written very concisely in C (using pointer arithmetic to process arrays).
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w.r.t. to the next item. As a consequence, each recursion step, which expands the prefix
of the conditional database, only needs to allocate one new array, with a size that is
limited to the size of the input array of that recursion step. This makes the algorithm
not only simple in structure, but also very efficient in terms of memory consumption.

Finally, note that due to the fact that only a simple array is used as the data structure,
the algorithm can fairly easily be implemented to work on external storage or a (rela-
tional) database system. There is, in principle, no need to load the transactions into main
memory and even the array may easily be stored as a simple (relational) table. The split
operation can then be implemented as an SQL select statement, the merge operation is
very similar to a join, even though it may require a more sophisticated comparison of
transactions (depending on how the transactions are actually stored).

Pseudo-code of the recursive procedure is shown in Figure 3. As can be seen, a single
page of code is sufficient to describe the whole recursion in detail. The actual C code I
developed is even shorter than this pseudo-code, despite the fact that the C code contains
additional functionality (like, for example, perfect extension pruning, see Section 2),
because certain operations needed in this algorithm can be written very concisely in C
(especially when using pointer arithmetic to process arrays).

4 A Recursive Elimination Algorithm

The RElim (Recursive Elimination) algorithm [8] can be seen as a precursor of the
SaM algorithm introduced in the preceding section. It also employs a basically hori-
zontal transaction representation, but separates the transactions (or transaction suffixes)
according to their leading item, thus introducing a vertical representation aspect.

The transaction database to mine is preprocessed in essentially the same way as for
the SaM algorithm (cf. Figure 1). Only the final step (step 5), in which the data structure
to work on is constructed, differs: instead of listing all transactions in one array, they
are grouped according to their leading item (see Figure 4 on the right). In addition,
the transactions are organized as lists (at least in my implementation), even though,
in principle, using arrays would also be possible. These lists are sorted descendingly
w.r.t. the frequency of their associated items in the transaction database: the first list is
associated with the most frequent item, the last list with the least frequent item.
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Fig. 4. Preprocessing the example database for the RElim algorithm and the initial data structure
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Fig. 5. The basic operations of the RElim algorithm. The rightmost list is traversed and reas-
signed: once to an initially empty list array (conditional database for the prefix e, see top right)
and once to the original list array (eliminating item e, see bottom left). These two databases are
then both processed recursively.

Note that each transaction list contains in its header a counter for the number of
transactions. For the last (rightmost) list, this counter states the support of the associ-
ated item in the represented (conditional) database. For a preceding list, however, the
value of this counter may be lower than the support of the item associated with the list,
because this item may also occur in transactions starting with items following it in the
item order (that is, with items that occur less frequently in the transaction database).

Note also that the leading item of each transaction has already been removed from
all transactions, as it is implicitly represented by which list a transaction is contained in
and thus need not be explicitly present. As a consequence, the counter associated with
each transaction list need not be equal to the sum of the weights of the transactions in
the list (even though this is the case in the example), because transactions (or transaction
suffixes) that contain only the item (and thus become empty if the item is removed) are
not explicitly represented by a list element, but only implicitly in the counter.

The basic operations of the RElim algorithm are illustrated in Figure 5. The next
item to be processed is the one associated with the last (rightmost) list (in the example
this is item e). If the counter associated with the list, which states the support of the
item, exceeds the minimum support, the item set consisting of this item and the prefix
of the conditional database (which is empty for the example) is reported as frequent. In
addition, the list is traversed and its elements are copied to construct a new list array,
which represents the conditional database of transactions containing the item. In this
operation the leading item of each transaction (suffix) is used as an index into the list
array to find the list it has to be added to. In addition, the leading item is removed (see
Figure 5 on the right). The resulting conditional database is then processed recursively
to find all frequent item sets containing the list item (first subproblem in Section 2).
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function RElim (a: array of transaction lists, (∗ conditional database to process ∗)
p: array of items, (∗ prefix of the conditional database a ∗)
smin: int) : int (∗ minimum support of an item set ∗)

var i, k: int; (∗ buffer for the current item ∗)
s: int; (∗ support of the current item ∗)
n: int; (∗ number of found frequent item sets ∗)
b: array of transaction lists; (∗ conditional database for current item ∗)
t, u: transaction list element; (∗ to traverse the transaction lists ∗)

begin (∗ — recursive elimination — ∗)
n := 0; (∗ initialize the number of found item sets ∗)
while a is not empty do (∗ while conditional database is not empty ∗)

i := length(a) − 1; s := a[i].wgt; (∗ get the next item to process ∗)
if s ≥ smin then (∗ if the current item is frequent: ∗)

append item(i) to p; (∗ extend the prefix item set and ∗)
report p with support s; (∗ report the found frequent item set ∗)
b := array [0..i−1] of transaction lists; (∗ create an empty list array ∗)
t := a[i].head; (∗ get the list associated with the item ∗)
while t �= nil do (∗ while not at the end of the list ∗)

u := copy of t; t := t.succ; (∗ copy the transaction list element, ∗)
k := u.items[0]; (∗ go to the next list element, and ∗)
remove k from u.items; (∗ remove the leading item from the copy ∗)
if u.items is not empty (∗ add the copy to the conditional database ∗)
then u.succ = b[k].head; b[k].head = u; end;
b[k].wgt := b[k].wgt +u.wgt; (∗ sum the transaction weight ∗)

end; (∗ in the list weight/transaction counter ∗)
n := n + 1 + RElim(b, p, smin); (∗ process the created database recursively ∗)
remove item(i) from p; (∗ and sum the found frequent item sets, ∗)

end; (∗ then restore the original item set prefix ∗)
t := a[i].head; (∗ get the list associated with the item ∗)
while t �= nil do (∗ while not at the end of the list ∗)

u := t; t := t.succ; (∗ note the current list element, ∗)
k := u.items[0]; (∗ go to the next list element, and ∗)
remove k from u.items; (∗ remove the leading item from current ∗)
if u.items is not empty (∗ reassign the noted list element ∗)
then u.succ = a[k].head; a[k].head = u; end;
a[k].wgt := a[k].wgt +u.wgt; (∗ sum the transaction weight ∗)

end; (∗ in the list weight/transaction counter ∗)
remove a[i] from a; (∗ remove the processed list ∗)

end;
return n; (∗ return the number of frequent item sets ∗)

end; (∗ function RElim() ∗)

Fig. 6. Pseudo-code of the RElim algorithm. The function “item” yields the actual item coded
with the integer number that is given as an argument. As for the SaM algorithm the removal of
items from the transactions (or transaction suffixes) is realized by pointer arithmetic in the actual
C implementation, thus avoiding copies of the item arrays. In addition, the same list array is
always reused for the created conditional databases b.



360 C. Borgelt

In any case, the last list is traversed and its elements are reassigned to other lists
in the original array, again using the leading item as an index into the list array and
removing this item (see Figure 5 at the bottom left). This operation eliminates the item
associated with the last list and thus yields the conditional database needed to find all
frequent item sets not containing this item (second subproblem in Section 2).

Pseudo-code of the RElim algorithm can be found in Figure 6. It assumes that items
are coded by consecutive integer numbers starting at 0 in the order of descending fre-
quency in the transaction database to mine. The actual item can be retrieved by applying
a function “item” to the code. As for the SaM algorithm the actual C implementation
makes use of pointer arithmetic in order to avoid copying item arrays.

5 Experiments with the Basic Versions

In order to evaluate SaM and RElim in their basic forms, I ran them against my own im-
plementations of Apriori [6], Eclat [6], and FP-growth [7], all of which rely on the same
code to read the transaction database and to report found frequent item sets. Of course,
using my own implementations has the disadvantage that not all of these implemen-
tations reach the speed of the fastest known implementations.3 However, it has the
important advantage that any differences in execution time can only be attributed to dif-
ferences in the actual processing scheme, as all other parts of the programs are identical.
Therefore I believe that the measured execution times are still reasonably expressive and
allow me to compare the different approaches in an reliable manner.

I ran experiments on five data sets, which were also used in [6,7,8]. As they ex-
hibit different characteristics, the advantages and disadvantages of the different algo-
rithms can be observed well. These data sets are: census (a data set derived from an
extract of the US census bureau data of 1994, which was preprocessed by discretiz-
ing numeric attributes), chess (a data set listing chess end game positions for king vs.
king and rook), mushroom (a data set describing poisonous and edible mushrooms by
different attributes), T10I4D100K (an artificial data set generated with IBM’s data gen-
erator [24]), and BMS-Webview-1 (a web click stream from a leg-care company that
no longer exists, which has been used in the KDD cup 2000 [12]). The first three data
sets are available from the UCI machine learning repository [3]. The shell script used to
discretize the numeric attributes of the census data set can be found at the URLs men-
tioned below. The first three data sets can be characterized as “dense”, meaning that on
average a rather high fraction of all items is present in a transaction (the number of dif-
ferent items divided by the average transaction length is 0.1, 0.5, and 0.2, respectively,
for these data sets), while the last two are rather “sparse” (the number of different items
divided by the average transaction length is 0.01 and 0.005, respectively).

For the experiments I used an IBM/Lenovo Thinkpad X60s laptop with an Intel Cen-
trino Duo L2400 processor and 1 GB of main memory running openSuSE Linux 10.3
(32 bit) and gcc (Gnu C Compiler) version 4.2.1. The results for the five data sets men-
tioned above are shown in Figure 7. Each diagram refers to one data set and shows
the decimal logarithm of the execution time in seconds (excluding the time to load the

3 In particular, in [15] an FP-growth implementation was presented, which is highly optimized
to how modern processor access their main memory [16].
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Fig. 7. Experimental results on five different data sets. Each diagram shows the minimum support
(as the minimum number of transactions that contain an item set) on the horizontal axis and the
decimal logarithm of the execution time in seconds on the vertical axis. The data sets underlying
the diagrams on the left are rather dense, those underlying the diagrams on the right are rather
sparse.

transaction database) over the minimum support (stated as the number of transactions
that must contain an item set in order to render it frequent).

These results show a fairly clear picture: SaM performs extremely well on “dense”
data sets. It is the fastest algorithm for the census data set and (though only by a very
small margin) on the chess data set. On the mushroom data set it performs on par with
FP-growth, while it is clearly faster than Eclat and Apriori. On “sparse” data sets, how-
ever, SaM struggles. On the artificial data set T10I4D100K it performs particularly
badly and catches up with the performance of other algorithms only at the lowest sup-
port levels.4 On BMS-Webview-1 it performs somewhat better, but again reaches the
performance of other algorithms only for fairly low support values.

4 It should be noted, though, that SaM’s execution times on T10I4D100K are always around
8–10 seconds and thus not unbearable.
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RElim, on the other hand, performs excellently on “sparse” datasets. On the artificial
data set T10I4D100K it beats all other algorithms by a quite large margin, while on
BMS-Webview-1 it is fairly close to the best performance (achieved by FP-growth).
On “dense” data sets, however, RElim has serious problems. While on census it at least
comes close to being competitive, at least for low support values, it performs very badly
on chess and is the slowest algorithm on mushroom.

Even though their performance is uneven, these results give clear hints how to choose
between these two algorithms: for “dense” data sets (that is, a high fraction of all items
is present in a transaction) use SaM, for “sparse” data sets use RElim. This yields ex-
cellent performance, as each algorithm is applied to its “area of expertise”.

6 Optimizations

Given SaM’s processing scheme (cf. Section 3), the cause of the behavior observed in
the preceding section is easily found: it is clearly the merge operation. Such a merge
operation is most efficient if the two lists to merge do not differ too much in length.
Because of this, the recursive procedure of the mergesort algorithm splits its input into
two lists of roughly equal length. If, to consider an extreme case, it would always merge
single elements with the (recursively sorted) rest of the list, its time complexity would
deteriorate from O(n log n) to O(n2) (as it would actually execute a processing scheme
that is equivalent to insertion sort). The same applies to SaM: in a “dense” data set it is
more likely that the two transaction lists do not differ considerably in length, while in a
“sparse” data set it can be expected that the list of transactions containing the split item
will be rather short compared to the rest. As a consequence, SaM performs very well
on “dense” data sets, but rather poorly on “sparse” ones.

The main reason for the merge operation in SaM is to keep the list sorted, so that (1)
all transactions with the same leading item are grouped together and (2) equal transac-
tions (or transaction suffixes) can be combined, thus reducing the number of objects to
process. The obvious alternative to achieve (1), namely to set up a separate list (or array)
for each item, is employed by the RElim algorithm, which, as these experiments show,
performs considerably better on sparse data sets. On the other hand, the RElim algo-
rithm does not combine equal transactions except in the initial database, since searching
a list, to which an element is reassigned, for an equal entry would be too costly. As a
consequence, (several) duplicate list elements may occur (see Figure 5 at the bottom
left), which slow down RElim’s operation on “dense” data sets.

This analysis immediately provides several ideas for optimizations. In the first place,
RElim may be improved by removing duplicates from its transaction lists. Of course,
this should not be done each time a new list element is added (as this would be too
time consuming), but only when a transaction list is processed to form the conditional
database for its associated item. To achieve this, a transaction list to be copied to a
new list array is first sorted with a modified mergesort, which combines equal elements
(similar to the merge phase used by SaM). In addition, one may use some heuristic
in order to determine whether sorting the list leads to sufficient gains that outweigh
the sorting costs. Such a simple heuristic is to sort the list only if the number of items
occurring in the transactions is less than a user-specified threshold: the fewer items are
left, the higher the chances that there are equal transactions (or transaction suffixes).
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function merge (a, b: array of transactions) : array of transactions
var l, m, r: int; (∗ binary search variables ∗)

c: array of transactions; (∗ output transaction array ∗)
begin (∗ — binary search based merge — ∗)

c := empty; (∗ initialize the output array ∗)
while a and b are both not empty do (∗ merge projection and rest of database ∗)

l := 0; r := length(a); (∗ initialize the binary search range ∗)
while l < r do (∗ while the search range is not empty ∗)

m := � l+r
2
�; (∗ compute the middle index in the range ∗)

if a[m] < b[0] (∗ compare the transaction to insert ∗)
then l := m + 1; else r := m; (∗ and adapt the binary search range ∗)

end; (∗ according to the comparison result ∗)
while l > 0 do (∗ copy lexicographically larger transactions ∗)

remove a[0] from a and append it to c; l := l − 1; end;
remove b[0] from b and append it to c; (∗ copy the transaction to insert and ∗)
i := length(c) − 1; (∗ get its index in the output array ∗)
if a is not empty and a[0].items = c[i].items
then c[i].wgt = c[i].wgt +a[0].wgt; (∗ if there is a transaction in the rest ∗)

remove a[0] from a; (∗ that is equal to the one just appended, ∗)
end; (∗ then sum the transaction weights and ∗)

end; (∗ remove the transaction from the rest ∗)
while a is not empty do (∗ copy the rest of the transactions in a ∗)

remove a[0] from a and append it to c; end;
while b is not empty do (∗ copy the rest of the transactions in b ∗)

remove b[0] from b and append it to c; end;
return c; (∗ return the resulting transaction array ∗)

end; (∗ function merge() ∗)

Fig. 8. Pseudo-code of a binary search based merge procedure

For SaM, at least two possible improvements come to mind. The first is to check,
before the merge operation, how unequal in length the two arrays are. If the lengths are
considerably different, a modified merge operation, which employs a binary search to
find the locations where the elements of the shorter array have to be inserted into the
longer one, can be used. Pseudo-code of such a binary search based merge operation is
shown in Figure 8. Its advantage is that it needs less comparisons between transactions
if the length ratio of the arrays exceeds a certain threshold. Experiments with different
thresholds revealed that best results are obtained if a binary search based merge is used
if the length ratio of the arrays exceeds 16:1 and a standard merge otherwise.

A second approach to improve the SaM algorithm relies deviating from using only
one transaction array. The idea is to maintain two “source” arrays, and always merging
the split result to the shorter one, which increases the chances that the array lengths
do not differ so much. Of course, such an approach adds complexity to the split step,
because now the two source arrays have to be traversed to collect transactions with the
same leading item, and these may even have to be merged. However, the costs for the
merge operation may be considerably reduced, especially for sparse data sets, so that
overall gains can be expected. Furthermore, if both source arrays have grown beyond a
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user-specified length threshold, they may be merged, in an additional step, into one, so
that one source gets cleared. In this way, it becomes more likely that a short split result
can be merged to an equally short source array. Experiments showed that using a length
threshold of 8192 (that is, the source arrays are merged if both are longer than 8192
elements) yields good results (see the following section).

7 Experiments with the Optimized Versions

The different optimization options for SaM and RElim discussed in the preceding sec-
tion were tested on the same data sets as in Section 5. The results are shown for RElim
in Figure 9 and for SaM in Figures 10 and 11, while Figure 12 shows the results of the
best optimization options in comparison with Apriori, Eclat and FP-growth.
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Fig. 9. Experimental results for different versions of the RElim algorithm. “-x” means that perfect
extension pruning was switched off and “-h0” that no transactions lists, “-h*” that all transaction
lists were sorted before processing. Without any “-h” option transaction lists were sorted if no
more than 32 items were left in the conditional database.
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Figure 9 shows the effects of sorting (or not sorting) a transaction list before it is pro-
cessed, but also illustrates the effect of perfect extension pruning (see Section 2).5 The
option “-h” refers to the threshold for the number of items in a transaction list, below
which the list is sorted before processing. Therefore “-h0” means that no transaction
list is ever sorted, while “-h*” means that every transaction list is sorted, regardless of
the number of items it contains. Without any “-h” option, a transaction list is sorted if
it contains less than 32 items. The option “-x” refers to perfect extension pruning and
indicates that it was disabled. The results show that perfect extension pruning is clearly
advantageous in RElim, except for T10I4D100K, where the gains are negligible. Sim-
ilarly, sorting a transaction list before processing is clearly beneficial on “dense” data
sets and yields particularly high gains for census (though mainly for larger minimum
support values) and chess. On “sparse” data sets, however, sorting causes higher costs
than what can be gained by having fewer transactions to process.

Figure 10 show the effects of using, in SaM, a binary search based merge operation
for arrays that differ considerably in length and also illustrates the gains that can result
from pruning with perfect extensions. As before, the option “-x” refers to perfect ex-
tension pruning and indicates that it was disabled. The option “-y” switches off the use
of a binary search based merge for arrays with a length ratio exceeding 16:1 (that is,
with “-y” all merging is done with a standard merge operation). As can be seen from
these diagrams, SaM also benefits from perfect extension pruning, though less strongly
than RElim. Using an optional binary search based merge operation has only minor ef-
fects on “dense” data sets and even on BMS-Webview-1, but yields significant gains on
T10I4D100K, almost cutting the execution time in half.

The effects of a double “source” buffering approach for SaM are shown in Figure 11.
On all data sets except T10I4D100K the double source buffering approach performs
completely on par with the standard algorithm, which is why the figure shows only
the results on census (to illustrate the identical performance) and T10I4D100K. On the
latter, clear gains result, which, with all option described in Section 6 activated, re-
duces the execution time by about 30% over those obtained with an optional binary
search based merge. Of course, for the merge operations in the double source buffer-
ing approach, such an optional binary search based merge may also be used (option
“-y”). Although it again improves performance, the gains are smaller, because the dou-
ble buffering reduces the number of times it is exploited. The option “-h” disables the
optional additional merging of the two source arrays if they both exceed 8192 elements,
which was described in Section 6. Although the gains from this option are smaller than
those resulting from the binary search based merge, they are not negligible.

Finally, Figure 12 compares the performance of the optimized versions of SaM and
RElim to Apriori, Eclat and FP-growth. Clearly, RElim has become highly competitive
on “dense” data sets without losing (much) of its excellent performance on “sparse”
data sets. Optimized SaM, on the other hand, performs much better on “sparse” data
sets, but is truly competitive only for (very) low support values. Its excellent behavior
on “dense” data sets, however, is preserved.

5 All results reported in Figure 7 were obtained with perfect extension pruning, because it is
easy to add to all algorithms and causes no cost, but rather always improves performance.
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Fig. 10. Experimental results for different versions of the SaM algorithm. “-x” means that perfect
extension pruning was disabled and “-y” that the binary search based merge procedure for highly
unequal transaction arrays was switched off (that is, all merge operations use the standard merge
procedure).
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Fig. 12. Experimental results with the optimized versions. Each diagram shows the minimum
support (as the minimum number of transactions that contain an item set) on the horizontal axis
and the decimal logarithm of the execution time in seconds on the vertical axis. The data sets
underlying the diagrams on the left are rather dense, those underlying the diagrams on the right
are rather sparse.

8 Conclusions

In this paper I introduced the simple SaM (Split and Merge) algorithm and reviewed
(an improved version) of the RElim algorithm, both of which distinguish themselves
from other algorithms for frequent item set mining by their simple processing scheme
and data structure. By comparing them to classical frequent item set mining algorithms
like Apriori, Eclat and FP-growth the strength and weaknesses of these algorithms were
analyzed. This led to several ideas for optimizations, which could improve the perfor-
mance of both algorithms on those data sets on which they struggled in their basic form.
The resulting optimized version are competitive with other frequent item set mining al-
gorithms (with the exception of SaM on sparse data sets) and are only slightly more
complex than the basic versions. In addition, it should be noted that SaM in particular is
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very well suited for an implementation that works on external storage, since it employs
a simple array that can easily be represented as a table in a relational database system.

Software

Implementation of SaM and RElim in C can be found at:

http://www.borgelt.net/sam.html
http://www.borgelt.net/relim.html
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Abstract. Applications of machine learning techniques in Life Sciences are the
main applications forcing a paradigm shift in the way these techniques are used.
Rather than obtaining the best possible supervised classifier, the Life Scientist
needs to know which features contribute best to classifying observations into dis-
tinct classes and what are the interdependencies between the features. To this end
we significantly extend our earlier work [Dramiński et al. (2008)] that introduced
an effective and reliable method for ranking features according to their importance
for classification. We begin with adding a method for finding a cut-off between
informative and non-informative features and then continue with a development
of a methodology and an implementation of a procedure for determining interde-
pendencies between informative features. The reliability of our approach rests on
multiple construction of tree classifiers. Essentially, each classifier is trained on
a randomly chosen subset of the original data using only a fraction of all of the
observed features. This approach is conceptually simple yet computer-intensive.
The methodology is validated on a large and difficult task of modelling HIV-1
reverse transcriptase resistance to drugs which is a good example of the afore-
mentioned paradigm shift. In this task, of the main interest is the identification of
mutation points (i.e. features) and their combinations that model drug resistance.

1 Introduction

A major challenge in the analysis of many data sets, especially those presently gener-
ated by advanced biotechnologies, is their size: a very small number of records (sam-
ples, observations), of the order of tens, versus thousands of attributes or features per
each record. Typical examples include microarray gene expression experiments (where
the features are gene expression levels) or data coming from next generation DNA or
RNA sequencing projects. Another obvious example are transactional data of commer-
cial origin. In all these tasks supervised classification is quite different from a typical
data mining problem in which every class has a large number of examples. In the latter
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context, the main task is to propose a classifier of the highest possible quality of clas-
sification. In class prediction for typical gene expression data it is not the classifier per
se that is crucial; rather, selection of informative (discriminative) features and the dis-
covered interdependencies among them are to give the Life Scientists a much desired
possibility of the interpretation of the classification results.

Given such data, all reasonable classifiers can be claimed to be capable of pro-
viding essentially similar results (if measured by error rate or the like criteria; cf.
[Dudoit and Fridlyand (2003)]). However, since it is rather a rule than an exception that
most features in the data are not informative, it is indeed of utmost interest to select the
few ones that are informative and that may form the bases for class prediction. Equally
interesting is a discovery of interdependencies between the informative features.

Generally speaking, feature selection may be performed either prior to building the
classifier, or as an inherent part of this process. These two approaches are referred to as
filter methods and wrapper methods, respectively. Currently, the wrapper methods are
often divided into two subclasses: one retaining the name “wrapper methods” and the
other, termed embedded methods. Within this finer taxonomy, the former refer to such
classification methods in which feature selection is “wrapped” around the classifier
construction and the latter one to those in which feature selection is directly built into
the classifier construction.

A significant progress in these areas of research has been achieved in recent
years; for a brief account, up to 2002, see [Dudoit and Fridlyand (2003)] and for
an extensive survey and later developments see [Saeys et al. (2007)]. Regarding the
wrapper and embedded approaches, an early successful method, not mentioned by
[Saeys et al. (2007)], was developed by Tibshirani et al. (see [Tibshirani et al. (2002),
Tibshirani et al. (2003)]) and is called nearest shrunken centroids. Most recently, a
Bayesian technique of automatic relevance determination, the use of support vector
machines, and the use of ensembles of classifiers, all these either alone or in com-
bination, have proved particularly promising. For further details see [Li et al. (2002),
Lu et al. (2007), Chrysostomou et al. (2008)] and the literature there. In the context of
feature selection the last developments by the late Leo Breiman deserve special atten-
tion. In his Random Forests, he proposed to make use of the so-called variable (i.e.
feature) importance for feature selection. Determination of the importance of the vari-
able is not necessary for random forest construction, but it is a subroutine performed
in parallel to building the forest; cf. [Breiman and Cutler (2008)]. Ranking features by
variable importance can thus be considered to be a by-product of building the classi-
fier. While ranking variables according to their importance is a natural basis for a filter,
nothing prevents one from using such importances within, say, the embedded approach;
cf., e.g., [Diaz-Uriarte and de Andres (2006)]. In any case, feature selection by measur-
ing variable importance in random forests should be seen as a very promising method,
albeit under one proviso. Namely, the problem with variable importance as originally
defined is that it is biased towards variables with many categories and variables that
are correlated; cf. [Strobl et al. (2007), Archer and Kimes (2008)]. Accordingly, proper
debiasing is needed, in order to obtain true ranking of features; cf. [Strobl et al. (2008)].

One potential advantage of the filter approach is that it constructs a group of fea-
tures that contribute the most to the classification task, and therefore are informative
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or “relatively important”, to a given classification task regardless of the classifier that
will be used. In other words, the filter approach should be seen as a way of providing
an objective measure of relative importance of each feature for a particular classifica-
tion task. Of course, for this to be the case, a filter method used for feature selection
should be capable of incorporating interdependencies between the features. Indeed, the
fact that a feature may prove informative only in conjunction with some other features,
but not alone, should be taken into account. Clearly, the aforementioned algorithms for
measuring variable importance in random forests possess the last capability.

Recently, a novel, effective and reliable filter method for ranking features accord-
ing to their importance for a given supervised classification task has been introduced
by [Dramiński et al. (2008)]. The method is capable of incorporating interdependen-
cies between features. It bears some remote similarity to the Random Forest method-
ology, but differs entirely in the way features ranking is performed. Specifically, our
method does not use bootstrapping and is conceptually simpler. A more important and
new result is that it provides explicit information about interdependencies among fea-
tures. Within our approach, discovering interdependencies builds on identifying fea-
tures which “cooperate” in determining that samples belong to the same classes. It is
worthwhile to emphasize that this is completely different from the usual approach which
aims at finding features that are similar in some sense.

The procedure from [Dramiński et al. (2008)] for Monte Carlo feature selection is
briefly recapitulated in Section 2. Since the original aim was only to rank features ac-
cording to their classification ability, no distinction was made among informative and
non-informative features. In that section we introduce an additional procedure to find a
cut-off separating informative from non-informative features in the ranking list. In Sec-
tion 3, a way to discover interdependencies between features is provided. In Section 4
application of the method is illustrated on the HIV-1 resistance to Didanosine. Interpre-
tation of the obtained results is provided in Subsection 4.1. We close with concluding
remarks in Section 5.

2 Monte Carlo Feature Selection

The Monte Carlo feature selection (MCFS) part of the algorithm is conceptually simple,
albeit computer-intensive. We consider a particular feature to be important, or informa-
tive, if it is likely to take part in the process of classifying samples into classes “more
often than not”. This “readiness” of a feature to take part in the classification process,
termed relative importance of a feature, is measured via intensive use of classification
trees. The use of classification trees is motivated by the fact that they can be considered
to be the most flexible classifiers within the family of all classification methods. In our
method, however, the classifiers are used for measuring relative importance of features,
not for classification per se.

In the main step of the procedure, we estimate relative importance of features by
constructing thousands of trees for randomly selected subsets of the features. More
precisely, out of all d features, we select s subsets of m features, m being fixed and
m << d, and for each subset of features, t trees are constructed and their performance
assessed. Each of the t trees in the inner loop is trained and evaluated on a different,
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Fig. 1. Block diagram of the main step of the MCFS procedure

randomly selected training and test data sets. These sets come from a random split of
the full data set into two subsets. Every time, about 66% out of all n samples, is used for
training and the remaining samples are used for testing. The split is performed so that
the proportions of classes in the original data set are preserved. See Fig. 1 for a block
diagram of the procedure.

Eventually, s · t trees are constructed and evaluated in the main step of the procedure.
Both s and t should be sufficiently large, so that each feature has a chance to appear in
many different subsets of features and that randomness due to inherent variability in the
data is properly accounted for. A crude measure of relative importance of a particular
feature could be defined as the overall number of splits made on that feature in all nodes
of all the s ·t trees. However, it is clear that for any particular split, its contribution to the
overall relative importance of the feature should be weighted by the information gain
achieved by the split, the number of samples in the split node and by the classification
ability of the whole tree.

In order to determine relative importance of a particular feature, we first recall
weighted accuracy of a tree as a means to assess classification ability of the tree on a
test set. For a classification problem with c classes, let ni j denote the number of samples
from class i classified as those from class j; clearly, i, j,= 1,2, . . . ,c and ∑i, j ni j = n,
the number of all samples. Now, we define weighted accuracy as

wAcc =
1
c

c

∑
i=1

nii

ni1 + ni2 + · · ·+ nic
, (1)

i.e., as the mean of c true positive rates.
Further, if a particular split is made on feature gk, then the more informative this

feature is, the greater is wAcc for the whole tree. Similarly, both the information gain
on the split and the number of samples in the split node are greater. Information gain can
be measured, e.g., by Gini Index or Gain Ratio, and the relative importance of feature
gk, RIgk , can be defined as
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RIgk =
st

∑
τ=1

(wAcc)u ∑
ngk (τ)

IG(ngk(τ))
(

no. in ngk(τ)
no. in τ

)v

, (2)

where summation is over all the s ·t trees and, within each τ-th tree, overall nodes ngk(τ)
of the tree on which the split is made on feature gk, IG(ngk(τ)) stands for information
gain for node ngk(τ), (no. in ngk(τ)) denotes the number of samples in node ngk(τ),
(no. in τ) denotes the number of samples in the root of the τ-th tree, and u and v are
fixed positive reals.

Note that by taking, say, u = 2, trees with low wAcc are penalized more severely
than when taking u = 1. Similarly, the greater is v, the smaller is the influence of node
ngk(τ) with a given ratio (no. in ngk(τ))/(no. in τ) on RIgk , unless ngk(τ) is the root
of the tree. And, for any fixed positive v, the influence of any particular node on RIgk

decreases monotonically with the number of samples in this node. In this way, and
especially for low level nodes in a tree, the fact that information gains can be very high
is taken into account, while only very small subsets of data are split.

There are five parameters, m, s, t, u and v to be set by an experimenter. A
detailed discussion on how to set values of these parameters can be found in
[Dramiński et al. (2008)]. Our experience suggests to use u and v set to 1 as the default
value. The choice of subset size m of features selected for each series of t experiments
should take into account the trade-off between the need to prevent informative features
from being masked too severely by the relatively most important ones and the natural
requirement that s be not too large. Indeed, the smaller m, the smaller the chance of
masking the occurrence of a feature. However, a larger s is then needed, since all fea-
tures should have a high chance of being selected into many subsets of the features.
For classification problems of dimension d ranging from several thousands to tens of
thousands, we have found that taking m equal to a few hundreds (say, m = 300−500)
and t equal to maximum 20 (even t = 5 usually suffices) is a good choice in terms of
reliability and overall computational cost of the procedure.

Now, for a given m, s can be made a running parameter of the procedure, and the
procedure executed for s = s1,s1 + 10,s1 + 20, . . . until the rankings of the top scoring
p% features prove (almost) the same for successive values of s. Minimal number of
subsets, s1, should in fact be random and such that the ranking based on these subsets
includes p% of all the features present in the full data sample. Note that after having
used s subsets of m features, at most s ·m features can be ranked, and the probability of
achieving this upper bound practically equals zero. More precisely, a distance between
two successive rankings is defined, and the procedure is run until the values of the
distance stabilize at some acceptably low level, i.e., close to zero. The distance between
the ranking obtained after s subsets of m features have been used in the procedure and
the ranking reached after using s−10 subsets is defined as follows:

Dist(s,s−10) =
1
dp

∑
gk

|rank(gk,s)− rank(gk,s−10)|, (3)

where summation is over top p% features obtained after having used s− 10 subsets;
rank(gk,r) is the rank of feature gk after having used r subsets, and dp is the normalizing
constant equal to the number of features taken into account (dp = d p/100).
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Note that the number of features ranked accordingly to their relative importance, dp,
should not be too large. Indeed, if dp is such that only, say, dp/10 features are infor-
mative, convergence of the distance function given by (3) to some positive value as s
increases will be slow and this distance, as a function of s, will show a persistently
oscillatory behavior. A moment of thought suffices to realize, as was amply confirmed
by simulations, that distance (3) converges to some positive value, however erratically,
even if all features are non-informative, i.e. the vector of all features is independent
of the decision or class attribute.) Summarizing, while dp should be such that all in-
formative features are included in the ranking, distance (3) should not only converge
but it should approach its asymptote smoothly as s increases (the latter property can be
considered as an indication that the convergence is possibly fast).

The above calls for a means to discern between informative and non-informative
features, as measured by their relative importance. Only in this way we can learn that
all informative features indeed have been found and ranked. We address this issue by
comparing the ranking obtained for the original data with the one obtained for the data
modified in such a way that the class attribute (label) becomes independent of the vector
of all features. Such a data set is obtained via a random permutation of the values of the
class attribute (i.e. of the class labels of the samples). Note that this modification does
not change the multivariate distribution of feature vectors.

Let Π such permutations be made and thus Π modified data sets with no relation-
ship between the features and the class attribute be obtained. For each π-th data set,
π = 1,2, . . . ,Π , rank the features according to their relative importance (2) and retain
the maximal value of importance (2) among all the features. This value will be denoted
maxRIπ . Obviously, these maxRIπ values are random. It follows from our experiments
performed on many different data sets that maxRIπ may be considered normally dis-
tributed (if judged, e.g., by the Shapiro-Wilk test). In all experiments, it was sufficient
to set Π to 30. If this is the case, then the way to find statistically significant, that
is informative, features in the original data set is straightforward. Since maxRIπ has,
after proper normalization, Student’s t-distribution with Π − 1 degrees of freedom, it
suffices to provide a critical value for the one-sided Student’s t-test at any given sig-
nificance level. A feature gk is declared informative (at a given significance level) if its
relative importance RIgk in the original ranking (without any permutation) exceeds the
desired critical value.

For the two data sets that we analyzed in [Dramiński et al. (2008)], namely
the leukemia data of [Golub et al. (1999)] and the second one: lymphoma data of
[Alizadeh et al. (2000)], we found that, at significance level of 0.05, there are 22 in-
formative features in the first data set and 50 informative features in the second data set.
Concluding this section we should note that the above significance analysis does not tell
anything about the validity of the ranking itself. However, in [Dramiński et al. (2008)]
we describe in detail additional steps of the MCFS procedure that allow appraising the
statistical significance of the resulting ranking of features.

3 Discovering Feature Interdependencies

Ranking features by the MCFS procedure is an efficient method of selecting the set
of informative (discriminative) features. The other natural issue to be raised concerns
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possible interdependencies among features. Likewise in experimental design and
analysis of variance, these interdependencies are often modeled using interactions.
Perhaps the most widely used approach to recognizing interdependencies is finding
correlations between features or finding groups of features that behave in some sense
similarly across samples. A typical bioinformatics example of this problem is finding
co-regulated features, most often genes or, rather more precisely, their expression pro-
files. Searching groups of similar features is usually done with the help of various cluster-
ing techniques, frequently specially tailored to a task at hand. See [Smyth et al. (2003),
Hastie et al. (2001), Saeys et al. (2007), Gyenesei, A. et al. (2007)] and the literature
there.

Our approach to interdependency discovery (abbreviated MCFSID) is significantly
different in that we focus on identifying features that “cooperate” in determining that a
sample belongs to a particular class. To be more specific, assume that for a given train-
ing set of samples, a rule-based classifier, a decision or a classification tree, has been
constructed. Now, for each class, a set of decision rules defining this class is provided.
Each decision rule is in fact a conjunction of conditions imposed on particular separate
features and, thus, points to some interdependencies between the features appearing in
the conditions.

The given idea of looking at interdependencies among features seems to be rather
plausible but we need to refine it so that it is not dependent on just one classifier. Given
a single classifier, our trust in the decision rules that are learned, and thus in the discov-
ered interdependencies, is naturally limited by the predictive ability of that classifier.
Even more importantly, the classifier is trained on just one training set and the final
set of rules is dependent on the classifier. Therefore, our conclusions are necessarily
dependent on the classifier and are conditional upon the training set, since they follow
from just one solution of the classification problem. In the case of decisions trees, the
problem is aggravated by their high variance, i.e., their tendency to provide varying re-
sults even for slightly different training sets. It should now be obvious, however, that
the way out of the trouble is through an aggregation of the information provided by all
the s · t trees, which anyhow are built within the MCFS part of the MCFSID algorithm.

In each of the s · t trees the nodes represent features; i.e. a given node represents
the feature on which the split is made. For each path in a tree, we define the distance
between two nodes as the number of edges between these two nodes. For example, in
Fig. 2 the distance between node n1 and n5 is equal to 2 and between n1 and n9 is equal
to 3. In turn, one may define the strength of the interdependence between features gi

and g j as

Dep(gi,g j) =
st

∑
τ=1

∑
ξτ

∑
ngi (ξτ ),ng j (ξτ )

1
dist(ngi(ξτ ),ng j(ξτ ))

, (4)

where summation is over all the s · t trees, within each τ-th tree over all paths ξτ and,
within each path ξτ , over all pairs of nodes (ngi(ξτ ),ng j(ξτ)) on which the splits are
made, respectively, on feature gi and feature g j; Dep(gi,g j) = 0 if in none of the trees
there is a path along which there are two splits made, respectively, on gi and g j. The
rationale behind this definition is obvious. Dep(gi,g j), calculated on the basis of thou-
sands of trees provides an incomparably more stable and reliable information about the
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Fig. 2. An example of a tree graph

strength of interdependency between two features than that derived from just one single
tree.

Analysis of all pairs of nodes for all decision trees is a time consuming task. To
deal with this problem we introduce a parameter k that determines a maximum distance
between two nodes to be taken into account in (4). By default, we set k to 3. Final results
of the analysis may be presented in the form of a graph with nodes representing features
and edges showing strength of dependence among the connected nodes as measured
by Dep(gi,g j). Only the nodes corresponding to the informative features should be
included in the graph. If the graph proves hardly readable due to a large number of
nodes and edges, it can be easily simplified by showing only these edges that represent
a desired fraction of the strongest interdependencies. Typically, we show 20% of all
the edges found for a selected set of features. Despite the obvious advantages of the
presented approach, it should be kept in mind that it is a heuristic and, in particular,
definition (4) is arbitrary. The real value of the presented method can be assessed by
tests only. This can be achieved by examining a number of examples where the resulting
graphs are scrutinized by domain experts who are able to verify and explain (or falsify)
the claimed interdependencies.

4 Biological Validation Study

In one of our applications, we constructed classifiers for modeling drug resistance. We
used publicly available HIV-1 drug resistance data from the Stanford HIV Resistance
Database [HIV Resistance Database]. Using our domain knowledge, we evaluated the
interdependencies discovered with the MCFSID methodology.

The data set consists of several protein sequences of the HIV-1 reverse transcrip-
tase (RT) enzyme annotated with their drug resistance fold relative to the wild-type
HIV-1 strain. Following [Rhee et al. (2006)], we have discretized these continuous
resistance values into three classes: “susceptible”, “intermediately resistant” and “re-
sistant”. These classes are commonly used by clinicians while deciding upon the
treatment regimen. Every amino acid in the sequence is subsequently represented as
a 7-vector of its biochemical properties (values relative to the wild-type virus). Af-
ter [Rudnicki and Komorowski (2004)], we have used the following set of biochemical
descriptors:
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– D1 - Transfer free energy from octanol to water.
– D2 - Normalized van der Waals volume.
– D3 - Isoelectric point.
– D4 - Polarity.
– D5 - Normalized frequency of turn.
– D6 - Normalized frequency of alpha-helix.
– D7 - Free energy of solution in water.

In the sequel, we present and discuss the results that were obtained for Didanosine, a
nucleoside analogue of adenosine, and a commonly administered anti-viral drug. Our
results for the 6 other anti-varial drugs: Abacavir, Efavirenz, Nevirapine, Stavudine,
Tenofovir and Zidovudine constitute a large problem that will appear in a separate paper.

Didanosine belongs to the so-called nucleoside RT inhibitors (NRTI) that mimic
nucleosides that are natural substrates for the enzyme. Once inside the cell, the nu-
cleoside analogs are phosphorylated to their triphosphate (TP) form and, as soon
as they are incorporated into a newly synthetized HIV-1 DNA chain, they termi-
nate its elongation and, thus, inhibit viral replication [Jonckheere, H. et al. (2000),
Bauman, JD et al. (2008), Menédez-Arias, L. (2008)].

In this 3-class classification task, there were 706 samples, each described by 3920
features. We recall that they are coming from 560 amino acids in RT. Each aa is rep-
resented by 7 easy-to-interpret, low-correlated biochemical properties. The following
parameters have been used in the MCFS part of the MCFSID algorithm: s = 2500,
t = 5, m = 0.05 ·3920 = 196, u = 1 and v = 1. The resulting graph of interdependencies
is given in Fig. 3. The darker is the label of a graph node, the higher is the RI value
of the corresponding feature. Following the default rule, only 20% of the strongest

Fig. 3. Interdependencies graph for Didanosine important features
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interdependencies are shown in the graph. This graph was created by a JAVA applica-
tion called graphViewer that uses jgraph library [JGraph].

As it can be seen in the graph 3, there are 5 different biochemical properties were
most frequently used by the MCFSID in constructing the trees.

4.1 Interpreation of the Interdependencies

Reverse Transcriptase is a viral enzyme responsible for transcribing single-stranded
HIV-1 RNA genome into a double-stranded DNA provirus. In the course of infection,
the provirus is incorporated into the host cell genome and may be replicated and tran-
scribed by the native molecular machinery of the host. This results in new viral par-
ticles that are capable of infecting subsequent cells and thus complete the HIV life
cycle [Jonckheere, H. et al. (2000), Menédez-Arias, L. (2008)]. The entire RT enzyme
is a heterodimer consisting of two similar subunits: p51 (51 kDa) and p66 (66 kDa).
The heavier p66 subunit contains two distinct domains: the N-terminal polymerase do-
main and the C-terminal RNase H domain. The lighter p51 is a product of the p66
proteolytic cleavage. It lacks RNase H domain and catalytic activity. Often, the ternary
structure of the p66 domain is compared to the right hand and, accordingly, the palm,
thumb and finger domains are distinguished (see Fig. 4). The palm domain contains
three catalytically active re-si-du-es: Asp 110, Asp 185 and Asp 186 embedded in
a hydrophobic region; cf. [Valverde-Garduño et al. (1998), Menédez-Arias, L. (2008),

Fig. 4. Structure of the HIV-1 RT enzyme fragment (PDB structure 1RTD). Thumb domain (red),
finger domains (yellow) and palm domain (green) constitute p66 subunit. Residues constituting
dNTP binding pocket are shown in magenta, YXDD motif members are within the red circle. The
incoming dNTP and two magnesium ions are shown in light green. (For clarity, the structure to
the right is rotated 180◦).
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Fig. 5. Structure of the HIV-1 RT enzyme p66 subunit. Alpha-atoms of the residues selected by
MCFSID as contributing to resistance to Didanosine represented as red spheres. The incoming
dNTP and two magnesium ions shown in light green. (For clarity, the structure to the right is
rotated 180◦).

Ren, J. and Stammers, DK. (2008)]. The two latter residues, together with Tyr 183 and
Met 184, constitute a highly conserved YXDD motif that is common to all reverse tran-
scriptases ( [Kaushik et al. (1996)]).

The fingers and both alpha-helices of the thumb are thought to form a clamp
that holds the nucleic acid in place over the palm part that is required for polymer-
ization. The template/primer interactions occur between the sugar-phosphate back-
bone of the DNA/RNA and p66 residues [Sarafianos, SG. et al. (1999)]. Apart from
the catalytic triad, the palm domain contains a dNTP-binding pocket; cf. Fig. 4. As
polymerization proceeds, new deoxyribonucleotide-triphosphates (dNTPs) come to the
binding pocket and are incorporated into a newly synthesized provirus DNA strand.
The catalytic triad plays crucial role in this process by interacting with magnesium
cations that serve as activators of the enzymatic reaction. Mutagenesis studies described
in [Valverde-Garduño et al. (1998), Harris, D. et al. (1998), Bauman, JD et al. (2008)]
suggest that mutations surrounding the catalytic triad may lead to incorporation of non-
specific nucleotides.

Our results for Didanosine are presented in Fig. 5. We show alpha-atoms of the
residues selected as contributing to resistance to the drug.

The algorithm identified 5 biochemical properties that span over 6 aa residues. Both
Fig. 6, graph 1 and Fig. 6, graph 4 contain site 184 and either of the 215 or the 218
sites. The two latter sites are both located on the side of the dNTP binding pocket
opposite to residue 184. While the amino acids at positions 184 and 215 are known
to be directly interacting with the incoming nucleotide, Asp 218 interacts directly
with Lys 219 that is a part of the dNTP binding pocket; cf. [Harris, D. et al. (1998),
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Fig. 6. Block diagram of the interdependencies between aminoacids descriptors of the didanosine.
Shape corresponds to property, color to site number.

Menédez-Arias, L. (2008)]. “Polarity” has been selected as important at site 218, “free
energy of solution in water” at site 215 and both “normalized van der Waals volume”
and “free energy of solution in water” at site 184. While mutations at sites 184 and 215
may directly disturb properties of the dNTP binding pocket, mutations at site 218 may
affect its geometry in an indirect way.

Pairs involving residues 41, 74 and 75 (Fig. 6, graphs: 2 and 3) appear to be
good descriptors of the fingers domain properties. The fingers domain is known to
be involved in the viral RNA template positioning; cf. [Sarafianos, SG. et al. (1999),
Menédez-Arias, L. (2008)].
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We conclude that two distinct resistance mechanisms characterize Didanosine: one
is induced by mutations directly affecting the dNTP binding pocket and the other is
caused by changes in the template positioning.

5 Concluding Remarks

The MCFSID algorithm provides an effective and reliable method for ranking fea-
tures according to their importance in supervised classification. It achieves that by
determining the set of informative features as contrasted with the remaining non-
informative ones, and by discovering interdependencies between the informative
features that jointly are instrumental in determining which samples belong to their
particular classes and to what degree.

Reliability of the algorithm follows from the Monte Carlo approach; resampling is
sufficiently numerous and extensive, and the tree classifier amply flexible. It also is
a consequence of (i) the way in which we choose the number s of subsets of features
while other parameters remain fixed (here we mean the requirement that the distance (3)
between successive rankings stabilizes at some acceptably low level); and (ii) the way
in which the strength of dependence among features is defined. It should be emphasized
that the algorithm has been designed specifically to rank features with respect to their
classification ability, not only to find those features that are important for classification.

Effectiveness and reliability of the algorithm has been confirmed on many data sets of
biological and commercial origin. In addition to the HIV-1 case, we used the MCFSIF
approach to identify interdependent features important to post-translational modifica-
tions of proteins. Our analyses also included transactional data from a major multina-
tional FMCG company, geological data from oil wells operated by a major American
company and data sets of samples with attributes being some functions of U.S. Census
data. At the moment of completing this paper the MCFS part of the algorithm has been
successfully used on some 15 data sets and the whole MCFSID algorithm on about 10.

In our opinion, the MCFSID approach appears to be quite promising in the area
of systems biology where important features must be identified among hundreds if not
thousands of them. In the case of HIV-1 we were able to automatically rediscover all the
parameters that previously were identified by human experts as the important ones and
thus rediscover known mechanisms of drug resistance. It is likely that applications of
this approach for unknown problems will allow in silico discovery of new mechanisms
that so far avoided human explanations.
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Abstract. Machine learning methods are successfully applied in many branches
of Computer Science. One of these branches is image analysis, and being more
specific – Automatic Image Annotation. Automatic Image Annotation was found
an important research domain several years ago. It grew from such research do-
mains as image recognition and cross-lingual machine translation. Increase of
computational, data storage and data transfer abilities of todays’ computers has
been one of key factors, making Automatic Image Annotation possible. Auto-
matic Image Annotation methods, which have appeared during last several years,
make a large use of many machine learning approaches. Clustering and classifica-
tion methods are most frequently applied to annotate images. The chapter consists
of three main parts. In the first, some general information concerning annotation
methods is presented. In the second part, two original annotation methods are
described. The last part presents experimental studies of the proposed methods.

Keywords: Automatic Image Annotation, Decision Trees.

1 Image Auto-annotation Methods – An Introduction

Automatic Image Annotation is a relatively new research topic. During last several
years, various approaches and methods of automatic image annotation have been pro-
posed. This research was made possible thanks to increase of computational power of
todays computers. Data storage and transfer abilities have increased, making Internet
a popular medium for transferring lots of visual data. A large part of the visual data
are static images, often without any description or categorization. Such growth, both in
number of images and in need of automatic captioning them, has made an automatic
image annotation a very important and vital research area. Automatic image annota-
tion methods try to answer the growing requirements for processing huge collections
of image data available both in the Internet and large multimedia databases. Informally
saying, the task of automatic image annotation is to assign a subset of words from the
given dictionary to a previously unseen image on the basis of weakly (incompletely,
imprecisely, subjectively) annotated training set of images, without knowledge which
parts of an image lead to which words.

Machine learning methods are successfully applied in many branches of Computer
Science, one of them is Automatic Image Annotation. In a certain way, the automatic im-
age annotation tries to mimic the behavior of a human being, and thus usage of machine
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learning methods is almost natural. A host of methods developed within machine learn-
ing, especially classification and clustering methods, are now key components of au-
tomatic image annotation algorithms. These include nonparametric models [1, 2, 3, 4],
neural networks [5, 6], Support Vector Machines [7, 8, 9], decision trees [10], ensembles
of classifiers [11], K–Means clustering [12, 13], hierarchical clustering, dimensionality
reduction [14, 15, 16], feature space discretization [17, 18], and others. Automatic an-
notation methods are often combinations of more than one of the mentioned machine
learning methods.

Another important aspect of automatic image annotation is the availability vs. un-
availability of semantic knowledge. Most of researchers, including the authors of this
chapter, assume that the semantic knowledge is not available for the annotation pro-
cess. However, one should notice that much research has been done on using semantic
knowledge to advantage for automatic image annotation [19, 20, 21, 22, 23].

There are many similarities between image recognition and automatic image an-
notation. However, while many concepts and ideas are shared by these two research
branches, there are also several important differences between them.

The main aim of image recognition (pattern recognition, pattern classification) meth-
ods is the identification of objects in images. It can thus be considered as assigning a
given image to one of the predefined classes [24, 25, 26, 27]. The key differences be-
tween the stated goals of image recognition and automatic image annotation are the
following. The first difference is that in the former, a class – which can be identified
as a word – is assigned to an image, while in the latter, many words are assigned. The
second difference is the weakly annotated training set (’weakly annotated’ means that
the descriptions in the training set may be incomplete, imprecise or subjective). The
third difference is the lack of information which image parts cause which words in its
description.

In order to formally define the problem of automatic image annotation, let us first
define some useful basic terms.

Dictionary W is a set of n words wy, y = 1, . . . ,n:

W = {w1,w2, ...,wn}. (1)

Description WIx of an image Ix is a subset of words from the dictionary W :

WIx ∈W. (2)

I denotes an annotated training set, which contains m pairs (Ix,WIx), where Ix represents
image number x and WIx ⊆W its description, x = 1, . . . ,m:

I = {(I1,WI1 ),(I2,WI2), . . . ,(Im,WIm)}. (3)

Selection of a subset of words from dictionary W may be formulated as ranking all
words in dictionary W and selecting a subset of top ranked words. Automatic image
annotation method A is then formulated in terms of ranking words from dictionary W :

A(I,J,W ) =

⎡
⎢⎢⎢⎣

pJ
w1

pJ
w2
...

pJ
wn

⎤
⎥⎥⎥⎦ , (4)
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where: J denotes a previously unseen image to be annotated, and pJ
wy

is the value (score)
generated by annotator A for word wy.

The values generated by the automatic image annotator, according to which the rank-
ing is done, may have various interpretations. They can be defined in terms of probabil-
ity (pJ

wy
can be seen as a posteriori probability of word wy, given the image J) or may

be less formally defined in terms of word support or score values. Automatic image
annotation method definitions are usually approach specific, but generally they follow
the presented idea.

In the next section, a taxonomy of automatic image annotation methods is presented,
which takes into account methods being used for images annotation. In section 3, data
preparation phase, which is of vital importance for the final result of automatic image
annotation, is briefly described. Image segmentation as well as feature selection and
extraction methods are presented. In section 4, the application of decision trees as a
classification method for use in automatic image annotation is discussed. Also, two
authors’ annotation methods are presented: Binary Machine Learning (BML) and Multi
Class Machine Learning (MCML); see [10]. The fifth section summarizes performed
experiments, the proposed methods are compared with the selected reference method.
In the last section, some concluding remarks are given and possible future research
directions are pointed out.

2 Automatic Image Annotation Taxonomy

During last years many approaches have been proposed for automatic image annota-
tion. Majority of them rely on machine learning methods, especially various types of
clustering and classification. In this section some important approaches to automatic
image annotation are shortly presented. Annotation methods are categorized according
to the main mechanism, they are built with.

2.1 Approaches to Taxonomy

Several taxonomies are defined for automatic image annotation. We focus on two of
them. The first one takes into account the data being processed by the methods. The
second one focuses on methods being used to annotate images.

The first taxonomy is presented by Shah and it focuses on the data being processed by
automatic image annotation methods [28]. On the highest level of taxonomy, automatic
image annotation is split into two categories:

I. Image-based methods:
– Global feature-based methods (features extraction, annotation using single feature

vector per image),
– Regional feature-based methods (segmentation process, features extraction applied

for every segment, annotation using a set of feature vectors per image – single feature
vector per each segment).
II. Text-based methods
The first category represents all methods in which the image is the most important
source of information, the second ones are methods which use available text data pre-
sented in a context of the image.
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We are dealing with Image-based methods with the regional feature-based approach.
This category is much more prominent and it is the key issue in this chapter.

The second taxonomy is much less strict, and is loosely used by many automatic
image annotation researchers. It focuses mainly on methods being used to describe
(annotate) an image. Taking into account this criterion one can distinguish two main
categories.

I. Annotations in which distances between features play the main role:
– Clustering,
– Feature space discretization.

II. Annotations in which classification methods play the main role:
– Bayesian approaches,
– Binary classification,
– Multi-class classification.

These two approaches are the most interesting and they are shortly described in the next
subsections.

2.2 Considering Distances between Features – Clustering and Feature Space
Discretization

Clustering methods are used in many automatic annotation methods. Such methods
usually split the feature space into similar regions. These feature space regions (clusters)
are variously called by different researchers (visterms, blobs, visual words), however
common ground is very similar. Instead of generating image description directly on the
basis of feature values, various cluster properties are used.

From the historical point of view, one of the first methods, called Mori, is based on
K-means clustering [12]. The concept of K-means usage is refined in later research in
Cross-Media Relevance Model (CMRM) method [13]. Another idea of automatic image
annotation combines clustering with machine translation methods [24, 29]. However,
further research shows that hierarchical clustering increases results quality [30].

Feature space discretization constitutes other group of approaches based on distances
between features. Both, fixed and information gain based discretization approaches are
employed in Dichotomic IMAge TEXt annotation (DIMATEX) method [17]. We have
developed DIMATEX into the method called FastDiM [18], by employing fixed, very
dense feature space discretization. It makes make distance calculation much faster, but
as similar as possible to the distance calculation on a continuous feature space.

Another interesting automatic image annotation method is based on Self Organizing
Map, and is called ”Picture” and the self-organizing map (PicSOM) [5, 6] . Neurons
in SOM network represent image feature vectors and thus similar feature vectors are
located near to each other in the network. The method is based on hierarchical TS-
SOM algorithm, which allows to reduce the computational complexity of similar feature
vectors search procedure.

Clustering based methods are usually very fast, because they do not have to search
through the training set (lazy classification) but just refer to proper clusters. They also
contain some level of generalization, which is given by the clustering process itself.
However, it has been observed by researchers [1], that a priori unknown number of
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clusters (proper granularity of clustering) and other clustering parameters pose a large
problem from the results quality point of view. Methods belonging to this category are
usually very sensitive for clustering settings and these parameters have to be selected
with great care.

2.3 Bayesian Approaches

Bayes probability framework is successfully applied in a number of automatic image
annotation methods. These methods usually estimate a posteriori probability of sin-
gle words given an input image. Conditional class densities are usually estimated by
parametric or nonparametric models.

Continuous Relevance Model (CRM) [1] and its various modifications are very well
known methods based on nonparametric model and Gaussian kernel. Nonparametric
model is used to estimate conditional class densities for both features and word fre-
quencies (this approach is called doubly nonparametric). Normalized CRM [2] assumes
that all descriptions in the training set have equal length. Missing words are filled by
empty words. Such approach is designed to nullify negative effects of description length
differences, especially very short descriptions. Modified CRM [3] employs an additional
distance measure between image segments, which is combined together with the Gaus-
sian kernel. Multiple Bernoulli Relevance Model (MBRM) [4] employs a different word
frequency distribution than the original CRM method. Authors of the original CRM
method have observed that used word frequency distribution is not well suited to differ-
ent annotated image collections.

Parametric models, especially Gaussian mixture models (GMM) are also used in
automatic image annotation. Mix-Hier (MH) [31] and Supervised Multiclass Labeling
(SML) [32, 33] methods introduce the concept of multi-class classification based on
GMM. Gaussian mixture model parameters are estimated using the Expectation Max-
imization method. Additionally, both methods recognize the problem of formulating
negative training examples in the training set, due to weak training set annotation. To
reduce the problem and increase results quality, both methods are based on the concept
of multiple instance learning.

2.4 Soft, Binary and Multi-class Classification

Binary and multi-class classification categories of automatic image annotation meth-
ods are based on various types of classification. In such approaches, a set of classi-
fiers is used. Each classifier is usually responsible for learning a single word from the
dictionary. After the classification process is completed, the results are gathered and
combined together to form the final image annotation.

One of the most popular classifiers used by automatic image annotation researchers
is Support Vector Machine. A method based on multi-class Support Vector Machine
constructed according to one-per-class rule is presented by Cusano [7]. CSD-Support
Vector Machine (CSD-SVM) [9] is also based on the multi-class approach. The method
employs MPEG–7 Colour Structure Descriptor [34] which, according to the cited pa-
per, is an efficient way to represent image features in automatic image annotation.
Content-Based Soft Annotation (CBSA) [8] employs soft classification. Each classifier



392 H. Kwaśnicka and M. Paradowski

is responsible for classification to a single word. Two kinds of classifiers were tested:
Support Vector Machine and Bayes Point Machine. According to the presented results
Bayes Point Machine achieves better results quality than Support Vector Machine. Other
method, Confidence-based Dynamic Ensemble (CDE) [11] employs ensemble of clas-
sifiers and bagging technique. Output of binary Support Vector Machines is combined
into a multi-class classifier. The method is an adaptive one, it dynamically improves its
work.

Classification based methods usually results in good quality of annotation results,
especially if they are based on multi-class concept. On the other hand, they require very
large training time, generated classifiers often require large amounts of memory, and
additionally, extending the available image dataset poses a great difficulty.

3 Image Segmentation, Feature Selection and Extraction

Image segmentation and feature selection are very important steps in automatic image
annotation task. They provide data for the whole annotation process, the selected fea-
tures strongly influence the annotation results: the better data produce the better anno-
tation results. It can be said that one of the goals of automatic image annotation studies
is to verify the set of features defined for this task [24].

3.1 Image Segmentation

There are two main approaches to image segmentation in automatic image annotation
methods. They represent the conceptual way of splitting objects in the image [35]:
region-based segmentation and block-based segmentation.

Fig. 1. Exemplary input image for segmentation procedures

Region-based segmentation methods try to split into separate segments objects ex-
isting in the considered image. They represent the core idea of what image segmen-
tation should be. Such approaches usually employ various machine learning methods
and different kinds of similarity criteria. We have performed research on application
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of K-means clustering algorithm, enforced with such visual features like: pixel color,
pixel neighborhood and pixel localization [18]. Such simple approach gives satisfying
results, however generated regions have to be post-processed by such methods like seg-
ment merging or splitting of disjoint pixel groups. An exemplary image is presented in
Fig. 1, and its region based segmentation in Fig. 2. A very popular method of image
segmentation, used in several automatic annotation benchmark datasets is Normalized
Cuts [36]. Normalized Cuts algorithm represents an image as a graph, segmentation is
defined as graph split according to a given criterion. In the algorithm we use a criterion
which measures differences between segmented areas.

Fig. 2. Exemplary region-based segmentation. Image is split into eight visually and spatially sim-
ilar segments.

Block-based segmentation is based on a simple concept of image segmentation. The
image is split into a set of predefined areas, each image is segmented in the same way.
Generated segments do not have any resemblance to objects existing in the image, they
are just arbitrary defined pieces of the image. Such methods may seem awkward in the
first glance, however their properties are very interesting. Resulting segments are com-
pletely insensitive to small changes in visual properties of the image. Such sensitivity
is one of key weaknesses of region-based methods. It is enough to have the same ob-
ject photographed in different lighting condition, scale or rotation and the segmentation
results may vary very much. This behavior is very problematic from automatic image
annotation point of view because feature vectors may differ very much for the simi-
lar objects in the image. Experiments performed by many researchers has shown that
block-based segmentation yields in better quality of automatic image annotation. Fig. 3
presents an exemplary block-based segmentation for the image shown in Fig. 1.

3.2 Feature Selection and Extraction

Feature selection and extraction are image domain specific. For example, different fea-
tures should be used for automatic annotation of landscape images and medical images.
Most of researches in automatic image annotation field are performed for large col-
lections of general topic images, containing among many others: landscapes, human
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Fig. 3. Exemplary block-based segmentation. Image is split into 25 fixed rectangles.

beings, animals, wildlife, city scenes, plants, flowers, sea scenes or cars. These images
are usually well described by such features as color, texture, localization and shape. In
this section we present the most important approaches for feature extraction.

One of the most prominent features of an image segment is usually color information.
Various color models are used for calculation of color features, among others: RGB [12,
14, 24], Lab [6, 24], HSV [7], gray-scale [37].

Textural information is usually an addition to color information. Using textural in-
formation allows to differentiate between objects with similar color, but with different
structure, e.g. sky and sea. Various textural properties are used as features for automatic
image annotation. Edge information [12] allows to differentiate between smoothly tex-
tured objects and objects with rough textures. Directional filters [24] provide informa-
tion about directions of objects texture changes. There are many other approaches to
extract textural information, such as: SIFT descriptor [38], Gabor filters [37, 38], tex-
ture correlation and energy [18]. Another frequently used approach is based on usage
of coefficients extracted by the discrete cosine transform [31, 33, 39, 40]. Discrete co-
sine transform allows to extract very important image information in context of lossy
image compression. Lossy image compression is usually designed to keep the essence
of the image and maximally reduce the amount of necessary data. In these terms, such
features operate on information which is important from the visual point of view.

Localization and shape are another examples of features used in automatic image
annotation. These features are usually helpful to differentiate between objects which
should have more or less fixed position and shape in the image. Exemplary features from
this category are: normalized image region coordinates [24], shape convexity [24, 30]
or localization descriptors [18].

Some automatic image annotation methods have inbuilt automated feature selection
methods, however usually only basic approaches are used. Applied methods are usually
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treated by researchers more like feature space dimensionality reduction. We can men-
tion Singular Value Decomposition [15] as an example of such approach. Also we can
find research on feature verification and selection, e.g., a method that uses Principal
Component Analysis and Fisher Discriminant Analysis [41].

4 Decision Trees in Automatic Image Annotation

This section presents our research in automatic image annotation area. We decided
to use decision trees as binary and multi-class classifiers in the proposed annotation
method. Decision trees are selected as classifiers for several reasons, namely:

– Decision trees offer a very fast processing phase with logarithmic computational com-
plexity.
– Training phase is also relatively fast, comparing to other machine learning approaches.
– Additionally, training algorithms do not require randomization, which is not feasible
in automatic image annotation case.
– Generated decision trees can be easily reformulated into a set of decision rules.

Our research is mainly focused on the quality of annotation, however great care is
placed to computational complexity properties of the proposed solutions. We describe
the methods which are constantly developed and improved in our research, they are:
Binary Machine Learning (BML) and Multi Class Machine Learning (MCML). Both
methods are improved and much more formally defined and deeper examined versions
of those presented in [10].

4.1 General Concept

Although there are important differences between Binary Machine Learning and Multi
Class Machine Learning methods, there are still a common ground and ideas. At the
beginning, common architecture of both methods are presented and all aspects that
these methods share.

Both methods take advantage of ’divide and conquer’ approach: the annotation task
is split into many smaller classification subtasks, and then the results are aggregated.
Single subtask is a classification of feature vectors, extracted from the input image,
performed for a single word in the dictionary. It must be done for every word in the
dictionary. Given that there are n words in the dictionary W and there are q feature
vectors extracted from the input image J, a number of classification tasks is equal to nq.
As the result we receive specialized classifiers built for each word in the dictionary. It
means that a number of specialized classifiers is equal to a size of the dictionary.

In both method we use C4.5 decision trees. Decision trees are responsible for clas-
sification of specific words presence in the given image feature vectors. After classi-
fication problems are solved, the second part is executed, i.e., aggregation of results.
Results from all classifications are combined together, normalized and presented as an
answer of the automatic image annotation method.
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4.1.1 Resulted Word Counts Optimization
Very important aspect of the automatic annotation process is a proper modification of
output produced by the automatic annotation method. Its goal is to adjust the word
frequency distribution produced by the annotator to this observed in the training set.
We call this step the optimization procedure of an annotator. It is worth mentioning that
optimization procedure strongly influences the annotators quality. This problem is not
trivial and have been explored by many researchers [4, 14, 38, 42, 43, 44].

In this chapter we briefly present the optimization method called Resulted Word
Counts Optimization (RWCO). This method is presented with more details in [45], it
represents a general approach to conform a given annotator to the required word fre-
quencies (according to the training data).

The idea of optimization procedure is to introduce a vector of coefficients V (one
coefficient per each word), which correct the results generated by the ’raw’ annotator:

OA(I,J,W,V ) =

⎛
⎜⎜⎜⎝A(I,J,W )T

⎡
⎢⎢⎢⎣

vw1 0 · · · 0
0 vw2 · · · 0
...

...
. . .

...
0 0 · · · vwn

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

T

=

=
[
vw1 pJ

w1
vw2 pJ

w2
. . .vwn pJ

wn

]T
=

⎡
⎢⎢⎢⎣

vw1 pJ
w1

vw2 pJ
w2

...
vwn pJ

wn

⎤
⎥⎥⎥⎦ . (5)

where: OA denotes an optimized annotator, vwi – coefficient for ith word from the dic-
tionary, A(I,J,W ) and pJ

wi
as in eq. 4.

A key factor in the annotator optimization is estimation of V vector. It is performed
on the basis of the training set I. The training set is split into two disjoint parts. There
are two iterations in the estimation procedure. In the first iteration, the first part of the
training set is used as the training part, the second one plays the role of the test subset.
In the second iteration an opposite setup is performed.

In each of above two iterations, vector of coefficients V is estimated by a specialized
optimization method (a heuristic), which is designed to solve the following optimization
task [45]:

V ∗ = arg min
V∈R

|W |
+

∑
w∈W

1
ew

max(ew− rw(V ),0), (6)

where: V ∗ – set of coefficients for optimized annotator OA, ew – number of images from
the test subset (part of the initial training set I) manually annotated by word w (ground
truth), rw – number of images from the test subset (part of the initial training set I)
automatically annotated by word w using the automatic image annotator.

The results of two above iterations are aggregated giving the estimation of V ∗ vec-
tor of coefficients. Averaged vector is the output of the whole Resulted Word Counts
Optimization method.

Both Binary Machine Learning and Multi Class Machine Learning methods employ
the described optimization procedure. It is an important part of these methods and it
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results in large increase of quality of the annotations. Lots of automatic image anno-
tation methods presented by various researchers contain specific routines for word fre-
quency corrections. These routines usually assume some word frequency probability
distributions. Parameters of these distributions are estimated during training phases of
these methods. Such solution makes them method specific, it means that migration from
one method to another is often conceptually and technically difficult, or even not possi-
ble. The proposed optimization method (RWCO) does not require any embedding, it is
a wrapper like procedure, which can be applied to various image annotation methods.

4.1.2 Training Set Oversampling
During the research and development of both proposed methods, we have observed that
training set oversampling can noticeably increase the quality of results. Various ap-
proaches to oversampling have been examined and, after this study, we have selected
the approach presented below. In training set construction procedure we use an over-
sampling method similar to the one described in Machine Learning literature [46, 47].

The oversampling method is based on entropy calculation. The total value of entropy
of a given training set is defined as follows:

H =
z

∑
i=1

p(i) log
1

p(i)
=−

z

∑
i=1

p(i) log p(i), (7)

where: H – total training set entropy, z – number of possible random events,
p(i) – probability of i-th random event.

Let us assume that there are only two possible random events (z = 2):

– description of a given image contains word wy,
– description of a given image does not contain word wy.

Entropy is maximal when both of these random events have identical probabilities. In
the such case, the entropy is equal to:

H =−1
2

log2
1
2

+−1
2

log2
1
2

= 1. (8)

According to entropy calculation and the oversampling, training samples in the training
set have to be duplicated. Parameters of the duplication routine are estimated on the
basis of training set, using the following concept. In both BML and MCML methods we
use the same parameters defined as follows. p+

wy
represents the total number of feature

vectors for all images in training set I annotated by word wy:

p+
wy

= ∑
(Ix,WIx )∈I

|FIx |
∣∣WIx ∩{wy}

∣∣, (9)

where: FIx – feature vector set for image Ix.
p−wy

represents the total number of feature vectors for all images in training set I not
annotated by word wy:

p−wy
= ∑

(Ix,WIx )∈I

|FIx |
(
1− ∣∣WIx ∩{wy}

∣∣). (10)
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We denote by t+wy
the oversampling factor (how many times a training example has to

be duplicated) for all feature vectors annotated by word wy:

t+wy
=

⎧⎨
⎩
⌊

max

(
p+

wy+p−wy

2p+
wy

,1

)
+ 1

2

⌋
p+

wy
> 0

0 p+
wy

= 0
(11)

Analogously we denotes by t−wy
the oversampling factor (how many times a training

example has to be duplicated) for all feature vectors not annotated by word wy:

t−wy
=

⎧⎨
⎩
⌊

max

(
p+

wy+p−wy

2p−wy
,1

)
+ 1

2

⌋
p−wy

> 0

0 p−wy
= 0

(12)

Presented values are calculated for each word from dictionary W . After parameter val-
ues calculation is completed, a training set construction method is executed. Details of
the training set construction are presented in a form of pseudo-code in Algorithms 1
and 2.

4.2 Binary Machine Learning

Binary Machine Learning (BML) automatic annotation method follows all concepts
described in the previous section. It consists of a set of n binary C4.5 decision trees and
each tree is responsible for classification of a single word (n denotes a number of words
in dictionary W). The training phase of the annotator requires training of all classifiers
and the processing phase requires running all of them on the given feature vectors. The
key idea of Binary Machine Learning is to classify only single word per each classifier.
This concept of classification in automatic image annotation is known as supervised
one-versus-all annotation [31].

Construction of the BML C4.5 training set is performed according to Algorithm 1.
The presented approach builds a training set for a single tree corresponding to word wy.
This tree produces the answer YES for presence or NO for absence of this word in the
description of the analyzed image segment.

Processing phase applies the forest of constructed decision trees. Decision trees clas-
sify input feature vectors, their results are averaged. Formally, automatic image annota-
tor BML is defined as follows:

ABML(I,J,W ) =

⎡
⎢⎢⎢⎣

ASBML(I,J,w1)
ASBML(I,J,w2)

...
ASBML(I,J,wn)

⎤
⎥⎥⎥⎦ , (13)

where: ASBML(I,J,wy) – automatic image annotator for a single word wy.

ASBML(I,J,wy) =
1
|FJ| ∑

Fr
J ∈FJ

C45
wy
BML(F

r
J ), (14)
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Algorithm 1. BML build decision tree training set
Require: Word wy

Require: Annotated training set I
Ensure: Decision tree training set T BML

wy

1: Calculate t+wy
on the basis of eq. 11

2: Calculate t−wy
on the basis of eq. 12

3: T BML
wy

⇐ /0
4: for all (Ix,WIx) ∈ I do
5: FIx ⇐ feature vector set of Ix

6: for all Fq
Ix
∈ FIx do

7: if wy ∈WIx then
8: for t⇐ 1 to t+wy

do

9: T BML
wy

⇐ T BML
wy
⊕ (Fq

Ix
,true) {⊕ – add to the end}

10: end for
11: else
12: for t⇐ 1 to t−wy

do

13: T BML
wy

⇐ T BML
wy
⊕ (Fq

Ix
, f alse)

14: end for
15: end if
16: end for
17: end for
18: return T BML

wy

where: FJ – feature vector set extracted for image J; C45
wy
BML(F

r
J ) – classification pro-

cedure for a single feature vector Fr
J , r = 1, ...,q, q – a number of segments.

C45
wy
BML(F

r
J ) =

{
1 i f Fr

J belongs to class wy

0 otherwise
. (15)

The answer of each decision tree is binary. Output value 1 represents the case in which
decision tree classifies Fr

J as belonging to class wy, value 0 represents the case it does
not belong to the class.

4.3 Multi Class Machine Learning

Multi Class Machine Learning (MCML) method is an extension of Binary Machine
Learning (BML) approach. The key idea of MCML method is to eliminate a serious
weakness of BML. As it was mentioned earlier, automatic image annotation should
effectively work on training sets which are weakly labeled. Weakly labeled images usu-
ally do not contain all words in their descriptions, which are present as objects in the
image. This has a very important consequence: a missing word in the description does
not necessary mean that the word related object is not present in the image, what re-
sults in large difficulties of forming negative training examples. The concept of prob-
lems with negative training examples is presented in [31] and it is suggested not to use
negative training examples.
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We propose to replace all negative examples from the training set with positive ex-
amples representing other words from the annotations. Such idea leads to reformulation
of binary classification which now becomes multi-class classification, with as many
classes as many words there are in the dictionary. Instead of being able to answer YES
or NO, each decision tree, even if specialized for classification of a single word, can
answer with any word from the dictionary. This concept is the key idea of Multi Class
Machine Learning method and the essential difference to Binary Machine Learning
method.

Algorithm 2. MCML build decision tree training set
Require: Word wy

Require: Annotated training set I
Ensure: Decision tree training set T MCML

wy

1: Calculate t+wy
on the basis of eq. 11

2: Calculate t−wy
on the basis of eq. 12

3: T MCML
wy

⇐ /0
4: for all (Ix,WIx) ∈ I do
5: FIx ⇐ feature vector set of Ix

6: for all Fq
Ix
∈ FIx do

7: if wy ∈WIx then
8: for t⇐ 1 to t+wy

do

9: T MCML
wy

⇐ T MCML
wy

⊕ (Fq
Ix
,wy) {⊕ – add to the end}

10: end for
11: else
12: wz⇐ select a word with index (x+q+y) mod |WIx | from WIx

13: for t⇐ 1 to t−wy
do

14: T MCML
wy

⇐ T MCML
wy

⊕ (Fq
Ix
,wz)

15: end for
16: end if
17: end for
18: end for
19: return T MCML

wy

A pseudo-code of the training phase is presented as Algorithm 2. There is large simi-
larity to the one used in BML method, however there is an important difference. Gener-
ated training set has multi-class decisions instead of binary ones. To handle multi-class
decisions, standard oversampling method has to be modified. The described oversam-
pling method is fully deterministic and is based on modulo operator. A randomization
element is removed from a practical reason. Training of decision trees for a single an-
notated dataset takes up to a week. Training of annotators requires training of many
decision trees. Generated trees are usually large. Volume of these decision trees may
reach several gigabytes of disk storage, using a compact representation. Usage of ran-
dom version of the oversampling method and repeating the experiments to get proper
average and standard deviation values is impractical on todays computers. The key as-
pect of automatic image annotation is to solve practical problems and thus the proposed
approach may be seen as the proper one.
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Processing phase of MCML annotation method uses C4.5 decision trees constructed
in the training phase. Automatic image annotator MCML is denoted by AMCML(I,J,W )
and defined as follows:

AMCML(I,J,W ) =

⎡
⎢⎢⎢⎣

ASMCML(I,J,w1)
ASMCML(I,J,w2)

...
ASMCML(I,J,wn)

⎤
⎥⎥⎥⎦ , (16)

where: ASMCML(I,J,wy) – automatic image annotator for a single word wy.

ASMCML(I,J,wy) =
1
|FJ| ∑

Fr
J ∈FJ

ASF
MCML(I,Fr

J ,wy), (17)

where: FJ – feature vector set extracted from image J, ASF
MCML(I,Fr

J ,wy) – automatic
image annotator for a single word and single feature vector r, extracted from image J.

ASF
MCML(I,Fq

J ,wy) =
1
n ∑

w∈W

∣∣{C45w
MCML(Fr

J )}∩{wy}
∣∣, (18)

where: C45wy(F
r
J ) – classification procedure of a single feature vector Fr

J done by deci-
sion tree trained for word wy.

C45
wy
MCML(Fr

J ) = wz ∈W, (19)

where: wz – answer of the decision tree, it is a word from the dictionary W (we use
multi-class classification in this process).

4.4 Computational Complexity Analysis

Usually automatic image annotation methods are used to process large collections of
images, therefore processing of a single image should be as fast as possible. The most
important factors in complexity analysis are: number of images in the training set –
m, size of the dictionary – n. Both, number of words in the dictionary and number of
examples in the training set are growing constantly.

We postulate that every annotation method which describes a single image in time
smaller than O(mn) can be classified as a fast image annotation method. Such com-
plexity limitation is very important from a practical point of view. Many researchers are
experimenting with datasets containing thousands of images.

Computational complexity analysis for annotation of a single image is presented
in this section. Calculations are valid for both described annotation methods – Binary
Machine Learning and Multi Class Machine Learning.

Computational complexity of a single classification process done by the decision tree
is:

Ttree(dC4.5) = O(dC4.5), (20)

where: dC4.5 denotes the tree depth.
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Each tree depth is much smaller than the total number of images in the training set
multiplied by the average number of segments per image:

dC4.5 m favg, (21)

where: favg – average number of segments per image in the training set.
Aggregation of all classification results requires looping through all words in the

dictionary and all segments of the image:

Tagr(n, favg) = O(n favg). (22)

Optimization of annotator results, done by the Resulted Word Counts Optimizer requires
multiplying all aggregated results by the optimization coefficients:

Tnorm(n) = O(n). (23)

Total complexity of a single annotation process of both MCML and BML methods is
equal to:

Ttotal(n, favg,dC4.5) = Ttree(dC4.5)Tagr(n, favg)+ Tnorm(n) = (24)

= O(dC4.5)O(n favg)+ O(n) = O(dC4.5n favg).

Let us now compare the calculated computational complexity with the assumed bound-
ary computational complexity:

O(dC4.5n favg) < O(m favgn favg) = O(mn). (25)

Computational complexities of both proposed methods are lower than the assumed
boundary computational complexity, then both methods can be recognized as fast auto-
matic image annotation methods.

5 Experimental Study of the Proposed Auto-annotation Methods

This section presents the experiments which the authors performed to test the quality of
the proposed methods. Three annotators are compared – two authors’ methods Binary
Machine Learning (BML), Multi Class Machine Learning (MCML) and Continuous
Relevance Model (CRM) which is the reference method. In all experiments authors’
implementations were used. Achieved results for the reference method, as well as for
other methods described in literature, are almost identical (differences oscillate around
1%), what confirms that both the implementation and testing environment may be seen
as identical to the ones presented in literature. Additionally, a list of results taken from
the available research literature is presented with reference to the proposed methods.

5.1 The Aim of Experiments

The main goal of the experiments is to verify the quality of two proposed methods
Binary Machine Learning and Multi Class Machine Learning against the reference
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method – Continuous Relevance Model. Continuous Relevance Model is chosen as the
reference method because it is one of the best image annotation methods, very often
cited by many researchers. Selection of this method should make quality comparison
easier for the reader.

All experiments are performed on four annotated image sets: MGV 2006, ICPR 2004,
JMLR 2003 and ECCV 2002. They are large, automatic image annotation benchmark
datasets. Datasets are both weakly and strongly annotated, they contain various num-
bers of images and various sizes of dictionaries. Feature vector generation and image
segmentation are identical for MGV 2006 and ICPR 2004 datasets [18]. ECCV 2002
and JMLR 2004 use different set of feature vectors and Normalized Cuts method for
image segmentation. Main characteristics of all tested datasets are presented in Table 1.

Table 1. The main characteristics of used datasets

Characteristic \ dataset MGV ICPR ECCV JMLR
Number of images 751 1109 5000 ∼16000
Number of words in dictionary 74 407 374 ∼160
Number of words used to annotate 74 407 260 ∼160
Weakly annotated dataset no yes yes yes
Average annotation length 5.00 5.79 3.52 3.11
Maximum annotation length 9 23 5 5
Minimum annotation length 2 1 1 1
Length standard deviation 1.27 3.48 0.67 0.85
Segmentation method rect. grid rect. grid N-Cuts N-Cuts
Number of segments 25 25 3 – 10 3 – 10
Feature vector length 28 28 36 46
Validation dataset splits 3/4 - 1/4 3/4 - 1/4 1 split (4500 – 500) 10 splits

5.2 Annotation Quality

To evaluate our methods, we should be able to measure the quality of image annotation.
Quality measures used for automatic image annotation reflect various important aspects
of achieved results and have to be shown and discussed together. They are: precision,
recall, and accuracy. Precision and recall quality measures are well known in cross-
lingual machine translation applications. Accuracy is much more frequently used for
classification problems. Precision and recall reflect the quality of annotation for single
words, accuracy – for single images. Later on, to represent the whole dataset, their
values are averaged. Let us recall the definitions of above measures.

Precision is defined by equation 26 [1, 4, 15, 20, 24, 30, 31, 42, 48, 49, 50, 51].

precwy =
cwy

rwy

, (26)

where: cwy – number of correctly annotated images by word wy, rwy – number of images
which are annotated by word wy in the automatic annotation process.

Recall quality measure is defined by equation 27 [1, 4, 15, 20, 24, 30, 31, 42, 48, 49,
50, 51].
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recwy =
cwy

ewy

, (27)

where: cwy – number of correctly annotated images by word wy, ewy – number of images,
which should be annotated by word wy (ground truth).

Accuracy quality measure is defined by equation 28 [52].

accJ =
cJ

lJ
, (28)

where: cJ – number of correctly generated words for image J, lJ – length of image J
annotation.

As mentioned before, all quality measures are averaged for the whole dataset. Re-
call and precision measures are averaged for all words in the dictionary or for a subset
of these words. Accuracy is averaged for all images in the test set. All achieved re-
sults, shown in the next section, are presented using averaged values of these quality
measures.

5.3 The Results

All experiments are grouped according to used datasets. For all datasets, the mentioned
quality measures are calculated. Additionally, quality results reported in the literature
are presented in Table 2. It makes easier the comparison the quality of the proposed
methods with the results of other researchers.

Figure 4 presents the results achieved for MGV dataset. The results are very similar
for all three methods, however both Continuous Relevance Model (CRM) and Multi
Class Machine Learning (MCML) are slightly better than Binary Machine Learning
(BML) method. The proposed optimization procedure Resulted Word Counts Optimiza-
tion (RWCO) is used with two authors methods: BML and MCML. CRM has built-in
specific optimization procedure, therefore using RWCO is not necessary. Large results
similarity for various annotation methods indicates that, probably, the process of auto-
matic image annotation has reached its maximum potentiality for this dataset. It seems
that the results for this dataset can be further improved by introducing a new feature set
or by using another segmentation routine.

Figure 5 presents the results achieved for ICPR dataset. Binary Machine Learn-
ing method achieves similar quality as CRM method. Quality of Multi Class Machine
Learning annotation results are better than the other two methods.

Figure 6 presents the results achieved for JMLR dataset. The Multi Class Machine
Learning annotation method outperforms all other tested annotation methods in all qual-
ity measures. The differences are large, because the dataset is weakly annotated. Au-
tomatic image annotator based on binary decision trees has the worst results, CRM is
placed in the middle. One may note, that the conceptual change between binary decision
trees and multi–class decision trees yielded in such large quality increase. Accuracy is
increased from 28% to 41%, precision from 20% to 32% and recall from 20% to 33%.

Figure 7 presents the results achieved for ECCV dataset. The experiment with this
dataset shows the highest differences between the quality of the used annotation meth-
ods. It should be stressed that it is definitely the hardest dataset to annotate. Results
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Fig. 4. The results quality for MGV dataset and three annotators: CRM, BML and MCML

Fig. 5. The results quality for ICPR dataset and the three tested auto-annotators

achieved by the proposed Multi Class Machine Learning method combined with Re-
sulted Word Counts Optimizer easily challenge the selected reference method. In com-
parison to CRM, achieved accuracy is increased from 39% to 48%, precision from 20%
to 30%, and recall from 16% to 20%.

Table 2 presents values of precision and recall for various automatic image anno-
tation methods, reported in the literature. All presented methods are tested on COREL
image database. The ECCV 2002 dataset is built using COREL images. However, not
all researchers have used the same image segmentation methods and feature vectors. It
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Fig. 6. Results quality for JMLR dataset

Fig. 7. Results quality for ECCV dataset

is worth mentioning that both, used segmentation method and selected set of features,
strongly influence the quality of an annotation process. In general, using the original
ECCV 2002 dataset, the results are the worst. All modifications of the dataset prepara-
tion make the comparison very hard, or sometimes even impossible. These results are
also presented in the table, however marked by an adequate comment on feature vec-
tor construction and image segmentation method. Fortunately, most researchers use the
original ECCV 2002 dataset, which makes the comparison reliable. Together with the
method name, a literature reference is done where the cited results may be found.
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Table 2. Annotation quality results of the COREL image dataset, taken from the available research
literature

Automatic image annotation method precision recall
Dataset ECCV 2002 based on COREL images
Segmentation: Normalized Cuts, feature vector length: 36
Mori Coocc. [31] 0.03 0.02
MT [4] 0.06 0.04
Binary Unigram [53] 0.08 0.11
Binary Unigram+Binary Bigram [53] 0.09 0.12
CMRM [1] 0.10 0.09
BA [54] 0.12 0.21
BA-T [54] 0.13 0.21
BA-TW [54] 0.14 0.22
SvdCos [55] 0.15 0.15
CRM [1] 0.16 0.19
EMD [49] 0.16 0.19
InfNet [56] 0.17 0.24
MCML+RWCO (presented method) 0.20 0.30
Images identical with ECCV 2002
Segmentation: rect. grid, features as in ECCV 2002
CRM-Rect [31] 0.22 0.23
MBRM [4] 0.24 0.25
Images identical with ECCV 2002
Segmentation: rect. grid, feature values generated using DCT
CRM-Rect-DCT [31] 0.21 0.22
Mix-Hier [31] 0.23 0.29
SML [33] 0.23 0.29
Images identical with ECCV 2002
Segmentation: N.A., features values generated using MPEG–7 CSD
CSD-Prop [55] 0.20 0.27
CSD-SVM [9] 0.25 0.28

Results achieved by the Multi Class Machine Learning method place it in the group
of the best automatic image annotation methods. The method achieves the best results
for all tested datasets, in all quality measures except of just one. Precision, recall and
accuracy values for MCML are significantly higher than for the two other tested meth-
ods. Only precision value achieved for MGV 2006 dataset is almost identical to the one
calculated for Continuous Relevance Model. The concept of negative training examples
removal helps to effectively process weakly annotated datasets. It is especially visible
on the results achieved for the ECCV 2002 dataset (Figure 7), which is one of the most
difficult datasets for auto-annotation task due to existence of weak annotations.

Binary Machine Learning method is able to achieve satisfying results on easier
datasets: ICPR 2004 and MGV 2006. Only a small part of images is weakly annotated
in these two datasets. The method performs only slightly worse than both Multi Class
Machine Learning and Continuous Relevance Model. However on the most diffi-
cult dataset – ECCV 2002, the difference is much higher. Due to negative training
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examples usage, the method is not able to process weakly annotated images with
satisfying quality.

It is important mentioning that one of the key components in both proposed anno-
tation methods is the optimization routine, briefly described in section 4.1.1. Resulted
Word Counts Optimization allows to construct good automatic image annotation meth-
ods relatively easy. It removes the problem of word frequencies correction from the de-
signer of automatic image annotators, allowing to focus mostly on classification quality.

6 Concluding Remarks

Machine learning methods play an important role in automatic image annotation. Clus-
tering and classification techniques are used in many approaches, proposed by various
researchers. Recent researches indicate that classification based methods achieve better
and better results, making it a potentially interesting direction for further work.

We have presented two annotation methods based on C4.5 decision tree classifier.
One of these methods, Multi Class Machine Learning can successfully compete with
other state-of-the-art annotation methods. The concept of multi-class classification
achieved by negative examples removal, allowed to increase results quality. Multi Class
Machine Learning combined together with Resulted Word Counts Optimization proved
to be able to annotate large and difficult datasets both in terms of high quality and low
computational complexity. Experiments performed on several datasets show that the
presented multi-class, decision tree based annotation concept is very promising.

Computational complexity analysis allowed to rank both presented solutions as fast
automatic image annotation methods. Linear dependency on the training set size is
avoided due to decision tree usage. C4.5 decision trees introduce logarithmic compu-
tational complexity on the training set size. Such low computational complexity makes
presented methods an interesting candidate for training and processing using very large
image datasets.

Further research will be mostly focused on examination of different approaches to
decision tree construction. Quality of annotation will be addressed especially in terms of
training set construction, to include even more the features of weakly described image
sets. Detection and retraining of decision trees with low classification quality will be
introduced. Additionally, decision tree construction time has to be reduced to allow
both efficient training and more effective research.
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Higher Education resources in 2007 - 2009 years as a research project N518 020 32/1454.

References

1. Lavrenko, V., Manmatha, R., Jeon, J.: A model for learning the semantics of pictures. In:
Proceedings of NIPS. MIT Press, Cambridge (2003)

2. Lavrenko, V., Feng, S.L., Manmatha, R.: Statistical models for automatic video annotation
and retrieval. In: Proceedings of IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2004), vol. 3, pp. 1044–1047 (2004)



Machine Learning Methods in Automatic Image Annotation 409

3. Jeon, J., Manmatha, R.: Automatic image annotation of news images with large vocabularies
and low quality training data. MM 368, University of Massachusetts (2004)

4. Feng, S.L., Manmatha, R., Lavrenko, V.: Multiple bernoulli relevance models for image and
video annotation. In: Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2004), vol. 2, pp. 1002–1009 (2004)

5. Laaksonen, J., Koskela, M., Oja, E.: Picsom-self-organizing image retrieval with mpeg-7
content descriptors. IEEE Transactions on Neural Networks 13(4), 841–853 (2002)

6. Viitaniemi, V., Laaksonen, J.: Keyword-detection approach to automatic image annotation.
In: Proceedings of 2nd European Workshop on the Integration of Knowledge, Semantic and
Digital Media Technologies (EWIMT 2005), pp. 15–22 (2005)

7. Cusano, C., Ciocca, G., Schettini, R.: Image annotation using SVM. In: Proceedings of SPIE,
Internet Imaging V, vol. 5304, pp. 330–338 (2003)

8. Chang, E., Goh, K., Sychay, G., Wu, G.: Cbsa: content-based soft annotation for multimodal
image retrieval using bayes point machines. IEEE Transactions on Circuits and Systems for
Video Technology 13(1), 26–38 (2003)

9. Tang, J., Lewis, P.H.: A study of quality issues for image auto-annotation with the corel
data-set. IEEE Transactions on Circuits and Systems for Video Technology 17(3), 384–389
(2007)

10. Kwaænicka, H., Paradowski, M.: Multiple class machine learning approach for image auto-
annotation problem. In: Proceedings of The Sixth International Conference on Intelligent
Systems Design and Applications (ISDA 2006), vol. 2, pp. 347–352 (2006)

11. Goh, K.-S., Chang, E.Y., Li, B.: Transactions on Knowledge and Data Engineering 17(10),
1333–1346 (2005)

12. Yasuhide, M., Hironobu, T., Ryuichi, O.: Image-to-word transformation based on dividing
and vector quantizing images with words. In: Proceedings of the International Workshop on
Multimedia Intelligent Storage and Retrieval Management (1999)

13. Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-
media relevance models. In: Proceedings of the ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 119–126 (2003)

14. Monay, F., Gatica-Perez, D.: On image auto-annotation with latent space models. In: Pro-
ceedings of the eleventh ACM international conference on Multimedia, pp. 275–278 (2003)

15. Pan, J.-Y., Yang, H.-J., Duygulu, P., Faloutsos, C.: Automatic image captioning. In: Proceed-
ings of the 2004 IEEE International Conference on Multimedia and Expo. (ICME 2004),
vol. 3, pp. 1987–1990 (2004)

16. Liu, W., Tang, X.: Learning an image-word embedding for image auto-annotation on the
nonlinear latent space. In: Proceedings of the 13th annual ACM international conference on
Multimedia, pp. 451–454 (2005)

17. Glotin, H., Tollari, S.: Fast image auto-annotation with visual vector approximation clusters.
In: Proceedings of Fourth International Workshop on Content-Based Multimedia Indexing,
CBMI 2005 (2005)

18. Kwaænicka, H., Paradowski, M.: Fast image auto-annotation with discretized feature dis-
tance measures. Machine Graphics and Vision 15(2), 123–140 (2006)

19. Hollink, L., Nguyen, G., Schreiber, G., Wielemaker, J., Wielinga, B., Worring, M.: Adding
spatial semantics to image annotations. In: Proceedings of the 4th International Workshop
on Knowledge Markup and Semantic Annotation at ISWC 2004 (2004)

20. Bashir, A., Khan, L.: A framework for image annotation using semantic web. In: Proceedings
of ACM SIGKDD First International Workshop on Mining for and from the Semantic Web
(MSW 2004) (2004)

21. Srikanth, M., Varner, J., Bowden, M., Moldovan, D.: Exploiting ontologies for automatic
image annotation. In: Proceedings of the 28th annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 552–558 (2005)
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Abstract. Integrative evolving connectionist systems (iECOS) integrate principles 
from different levels of information processing in the brain, including cognitive-, 
neuronal-, genetic- and quantum, in their dynamic interaction over time. The 
paper introduces a new framework of iECOS called integrative probabilistic 
evolving spiking neural networks (ipSNN) that incorporate probability learning 
parameters. ipSNN utilize a quantum inspired evolutionary optimization 
algorithm to optimize the probability parameters as these algorithms belong to the 
class of estimation of distribution algorithms (EDA).  Both spikes and input 
features in ipESNN are represented as quantum bits being in a superposition of 
two states (1 and 0) defined by a probability density function. This representation 
allows for the state of an entire ipESNN at any time to be represented 
probabilistically in a quantum bit register and probabilistically optimised until 
convergence using quantum gate operators and a fitness function. The proposed 
ipESNN is a promising framework for both engineering applications and brain 
data modeling as it offers faster and more efficient feature selection and model 
optimization in a large dimensional space in addition to revealing new knowledge 
that is not possible to obtain using other models. Further development of ipESNN 
are the neuro-genetic models – ipESNG, that are introduced too, along with open 
research questions. 

1   Introduction: Integrative Evolving Connectionist Systems 
(iECOS) 

Many successful artificial neural network (ANN) models have been developed and 
applied to date [3,9,10,19,21,26,30,32], the most recent ones being Spiking Neural 
Networks (SNN) [14,15,23-25,33-37]. SNN have a great potential for brain data 
analysis [1,4,5,7,45] and data modelling [8,38,40,42,44,46-48]. However, despite 
some past work [2,14,35,36,41], current SNN models cannot model probabilistically 
data that are large, complex, noisy and dynamically changing in a way that reflects 
the stochastic nature of many real-world problems and brain processes [4,16,28,38].  
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The brain is a dynamic information processing system that evolves its structure and 
functionality in time through information processing at different levels: cognitive-, 
ensemble of neurons-, single neuron-, molecular (genetic)-, quantum [26-29]. The 
information processes at each level are very complex and difficult to understand as 
they evolve in time, but much more difficult to understand is the interaction between 
them and how this interaction affects learning and cognition in the brain. These 
information processes are manifested at different time scales, e.g. cognitive processes 
happen in seconds, neuronal – in milliseconds, molecular- in minutes, and quantum - 
in nano-seconds. They also happen in different dimensional spaces, but they “work” 
together in the brain and contribute together to its intelligence.  

Recently new information about neuronal- [1,25], genetic- [5,31,45] and quantum 
[6,22,43] levels of information processes in the brain has been obtained. For example, 
whether a neuron spikes or does not spike at any given time could depend not only on 
input signals but also on other factors such as gene and protein expression levels or 
physical properties [22,31,45]. The paradigm of Integrative Evolving Connectionist 
Systems (iECOS) [27-29, 39], previously proposed by the author, considers the 
integrated optimisation of all these factors represented as parameters and features 
(input variables) of an ANN model. This approach will be used here to develop a 
principally new framework - integrative probabilistic evolving SNN (ipESNN). 

2   Evolving Spiking Neural Network Models  

2.1   SNN – General Principles  

SNN represent information as trains of spikes, rather than as single scalars, thus 
allowing the use of such features as frequency, phase, incremental accumulation of 
input signals, time of activation, etc. [3,5,14,23,47]. Neuronal dynamics of a spiking 
neuron are based on the increase in the inner potential of a neuron (post synaptic 
potential, PSP), after every input spike arrival. When a PSP reaches a certain 
threshold, the neuron emits a spike at its output (Fig. 1).  

A wide range of models to simulate spiking neuronal activity have been proposed 
(for a review, see [25]). The Hodgkin- Huxley model is based on experimental study 
of the influence of conductance of three ion channels on the spike activity of the axon. 
The spike activity is modelled by an electric circuit, where the chloride channel is 
modelled with a parallel resistor-capacitor circuit, and the sodium and potassium 
channels are represented by voltage-dependent resistors.  

In another model - the spike response model (SRM), a neuron i receives input 
spikes from pre-synaptic neurons j ∈ Γi, where Γi is a pool of all neurons pre-synaptic 
to neuron i. The state of the neuron i is described by the state variable ui(t) that can be 
interpreted as a total postsynaptic potential (PSP) at the membrane of soma – fig.1. 
When ui(t) reaches a firing threshold ϑi(t), neuron i fires, i.e. emits a spike. The value 
of the state variable ui(t)  is the sum of all postsynaptic potentials, i.e.  
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where: the weight of synaptic connection from neuron j to neuron i is denoted by Jij, 
which takes positive (negative) values for excitatory (inhibitory) connections, 
respectively; depending on the sign of Jij, a pre-synaptic spike, generated at time tj 
increases (or decreases) ui(t) by an amount of )( ax

ijjij tt Δ−−ε , where 
ax
ijΔ  is an axonal 

delay between neurons i and j which increases with Euclidean distance between 
neurons. The positive kernel )()( stt ij

ax
ijjij εε =Δ−−  expresses an individual 

postsynaptic potential (PSP) evoked by a pre-synaptic neuron j on neuron i and can be 
expressed by a double exponential formula (2): 
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where: synapse
risedecay /τ  are time constants of the rise and fall of an individual PSP;  A is the 

PSP's amplitude; the parameter synapse represents the type of the activity of the 
synapse from the neuron j to neuron i, that can be measured and modeled separately 
for a fast_excitation, fast_inhibition, slow_excitation, and slow_inhibition.   

 

 

 

u i ( t )  

T i m e  ( m s )  

ϑ 0  

t i
1 t i

2

ϑ i  ( t  –  t i )   

 

Fig. 1. A schematic representation of a spiking neuron model (from [5]) 

External inputs from the input layer of a SNN are added at each time step, thus 
incorporating the background noise and/or the background oscillations. Each external 

input has its own weight 
inputext

ikJ _

 and amount of signal  )(tkε , such that: 
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2.2   Evolving Spiking Neural Networks (ESNN) 

ESNN evolve/develop their structure and functionality in an incremental way from 
incoming data based on the following principles [26]:  
 

(i) New spiking neurons are created to accommodate new data, e.g. new patterns 
belonging to a class or new output classes, such as faces in a face recognition 
system; 

(ii) Spiking neurons are merged if they represent the same concept (class) and have 
similar connection weights (defined by a threshold of similarity). 

 

In [40] an ESNN architecture is proposed where the change in a synaptic weight is 
achieved through a simple spike time dependent plasticity (STDP) learning rule: 
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)(
, mod jorder
ijw =Δ  (4) 

where: wj,i is the weight between neuron j and neuron i, mod ∈ (0,1) is the modulation 
factor, order(j) is the order of arrival of a spike produced by neuron j to neuron i.  

For each training sample, it is the winner-takes-all approach used, where only the 
neuron that has the highest PSP value has its weights updated. The postsynaptic 
threshold (PSPTh) of a neuron is calculated as a proportion c ∈ [0, 1] of the maximum 
postsynaptic potential, max(PSP), generated with the propagation of the training 
sample into the updated weights, such that: 

)max(PSPcPSPTh =  (5) 

Creating and merging neurons based on localised incoming information and on 
system’s performance are main operations of the ESNN architecture that make it 
continuously evolvable. Successful applications of ESNN for taste recognition, face 
recognition and multimodal audio-visual information processing, have been 
previously reported [40,46,47].  

2.3   Computational Neurogenetic Models as iECOS   

A further extension of the SRM, that takes into account the ion channel activity (and 
thus brings the benefits of both Hodging-Huxley model and the SRM), that is also 
based on neurobiology, is called computational neuro-genetic model (CNGM) as 
proposed in [5,26]. Here different synaptic activities that are influencing the spiking 
activity of a neuron are represented as functions of different proteins (neuro-
transmitters, neuro-receptors and ion channels) that affect the PSP value and the PSP 
threshold. Some proteins and genes known to be affecting the spiking activity of a 
neuron such as fast_excitation, fast_inhibition, slow_excitation, and slow_inhibition 
(see formula (2)) are summarized in Table 1. Besides the genes coding for the 
proteins mentioned above and directly affecting the spiking dynamics of a neuron, a 
CNGM may include other genes relevant to a problem in hand, e.g. modeling a brain  
 
 
Table 1. Neuronal parameters and related proteins: PSP - postsynaptic potential, AMPAR - 
(amino- methylisoxazole- propionic acid) AMPA receptor, NMDR - (n-methyl-d-aspartate acid) 
NMDA receptor, GABRA - (gamma-aminobutyric acid) GABAA receptor, GABRB - GABAB 
receptor, SCN - sodium voltage-gated channel, KCN = kalium (potassium) voltage-gated channel, 
CLC = chloride channel (from [5]) 
 

Neuronal parameter 
 

Protein 

Fast excitation PSP AMPAR 
Slow excitation PSP NMDAR 
Fast inhibition PSP GABRA 
Slow inhibition PSP GABRB 
Firing threshold SCN, KCN, CLC 
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function or a brain disease, for example: c-jun, mGLuR3, Jerky, BDNF, FGF-2, IGF-
I, GALR1, NOS, S100beta [5,45]). CNGM are iECOS as they integrate principles 
from neuronal and molecular level of information processing in the brain.    

However, it is also known that the spiking activity of the brain is stochastic [1,5,6,7 ]. 
And this is what is missing in the above SNN-, ESNN- and CNGM models that leave 
them not very suitable so far as large scale modeling techniques to model complex 
tasks. The problem is how to represent and process probabilities associated with spiking 
activity and how to build large ESNN probabilistic models.  

3   Integrative Probabilistic Evolving SNN (ipESNN)   

3.1   Biological Motivations 

Some biological facts support the idea of ipESNN models [1,5,6,7]: 
 

− For a neuron to spike or not to spike at a time t, is a “matter” of probability. 
− Transmission of an electrical signal in a chemical synapse upon arrival of action 

potential into the terminal is probabilistic and depends on the probability of 
neurotransmitters to be released and ion channels to be open. 

− Emission of a spike on the axon is also probabilistic.  
 

The challenge is to develop a probabilistic neuronal model and to build ipESNN and 
ipESNG models for brain study and engineering applications. As the proposed below 
ipESNN model use quantum computation to deal with probabilities, we fist introduce 
some principles of quantum computing.   

3.2   The Quantum Principle of Superposition 

The smallest information unit in today's digital computers is one bit, existing as state 
‘1’ or ‘0’ at any given time. The corresponding analogue in a quantum inspired 
representation is the quantum bit (qbit) [12,18,20]. Similar to classical bits a qbit may 
be in ‘1’or ‘0’ states, but also in a superposition of both states. A qbit state Ψ  can 
be described as:  

10 βα +=Ψ     (6) 

where α  and β  are complex numbers that are used to define the probability of 
which of the corresponding states is likely to appear when a qbit is read (measured, 
collapsed). 

2α and 
2β  give the probability of a qbit being found in state ‘0’ or ‘1’ 

respectively. Normalization of the states to unity guarantees: 

1
22 =+ βα  (7) 

at any time. The qbit is not a single value entity, but is a function of parameters which 
values are complex numbers. In order to modify the probability amplitudes, quantum  
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gate operators can be applied to the states of a qbit or a qbit vector. A quantum gate 
is represented by a square matrix, operating on the amplitudes α and β  in a 
Hilbert space, with the only condition that the operation is reversible. Such gates are: 
NOT-gate, rotation gate, Hadamard gate, and others [18, 20].  

Another quantum principle is entanglement  - two or more particles, regardless of 
their location, can be viewed as “correlated”, undistinguishable, “synchronized”, 
coherent. If one particle is “measured” and “collapsed”, it causes for all other 
entangled particles to “collapse” too.  

The main motivations for the development of the ipSNN that utilize quantum 
computation are: (1) The biological facts about stochastic behavior of spiking neurons 
and SNN; (2) The properties of a quantum representation of probabilities; (3) The 
recent manifestation that quantum inspired evolutionary algorithms (QiEA) are 
probability estimation of distribution algorithms (EDA) [11].  

3.3   QiEA belong to the Class of EDA Algorithms 

It was proven in [11] that QiEA, such as the vQEA, belong to the class of EDA. 
Using a quantum gate operator over consecutive iterations would lead to a change of 
the global state of a system described by a qbit chromosome(s) as shown in fig. 2. At 
the beginning (fig.2a) all states are equally probable and in the end – (fig2.c) the 
system converges to a local minimum according to a chosen fitness function. 

 

 
         (a)                                               (b)                                             (c) 

Fig. 2. An example of state convergence to local minima for a system described by a qbit 
register (chromosome) over 2 applications of a rotation quantum gate operator. The darker 
points represent states  that have a higher probability of occurrence (the figure is produced by 
Stefan Schliebs).  

3.4   The  ipESNN Framework 

The proposed here ipESNN framework is based on the following principles: 

(a) A quantum probabilistic representation of a spike: A spike, at any time t, is both 
present (1) and not present (0), which is represented as a qbit defined by a probability 
density amplitude. When the spike is evaluated, it is either present or not present. To 
modify the probability amplitudes, a quantum gate operator is used, for example the 
rotation gate:  
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More precisely, a spike arriving at a moment t at each synapse Sij connecting a 
neuron Ni to a pre-synaptic neuron Nj, is represented as a qbit Qij(t)with a probability 
to be in state “1” βij(t) (probability for state “0” is αij(t)) . From the SNN architecture 
perspective this is equivalent to the existence (non-existence) of a connection Cij 
between neurons Nj and Ni.   

(b) A quantum probabilistic model of a spiking neuron for ipSNN:  A neuron Ni is 
represented as a qbit vector, representing all  m synaptic connections to this neuron: 

. . .1 2

. . .1 2

m

m

αα α
ββ β

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦  

(9) 

At a time t each synaptic qbit represents the probability for a spike to arrive at the 
neuron. The post-synaptic inputs to the neuron are collapsed into spikes (or no spikes) 
and the cumulative input ui(t) to the neuron Ni is calculated as per. eq.(1).   

Based on the above principles two architectures of a feed-forward ipESNN and a 
recurrent ipESNN are developed as illustrated in fig.3(a) and 3(b) respectively. All 
input features (x1, x2,…,xn), the ESNN parameters (q1,q2,.., qs), the connections  
between the inputs and the neurons, including recurrent connections  (C1, C1, …, Ck) 
and the probability of the neurons to spike (p1,p2,…,pm) at time (t) are represented in  
an integrated qbit register that is operated upon as a whole [27,29] (fig.3c). 

This framework goes beyond the traditional “wrapper” mode for feature selection 
and modelling [16]. The ipESNN single qbit vector (a chromosome) is optimised 
through vQEA, therefore an ipESNN is a probabilistic EDA model. It was 
demonstrated that the vQEA is efficient for integrated feature and SNN parameter 
optimisation in a large dimensional space and also useful for extracting unique 
information from the modelled data [11,39]. All probability amplitudes together 
define a probability density ψ of the state of the ipESNN in a Hilbert space. This 
density will change if a quantum gate operator is applied according to an objective 
criterion (fitness function). This representation can be used for both tracing the 
learning process in an ipESNN system or the reaction of the system to an input vector.   

(c) ipSNN learning rules: As the ipESNN model is an ESNN, in addition to the ESNN 
learning rules (formulas 4,5) there are rules to change the probability density 
amplitudes of spiking activity of a neuron. The probability βij(t) of a spike to arrive 
from neuron Nj to neuron Ni (the connection between the two be present) will change 
according to STDP rule, which is implemented using the quantum rotation gate. In a 
more detailed model, βij(t) will depend on the strength and the frequency of the 
spikes, on the distance Dij between neurons Nj and Ni, and on many other physical 
and chemical parameters that are ignored in this model but can be added if necessary.    

(d) The principle of feature superposition representation [27,29]: A vector of n qbits 
represents the probability of using each input variable x1,x2,…,xn in the model at a 
time t. When the model computes, all features are “collapsed”, where  “0” represents 
that a  variable is not used,  and “1” – the variable is used.  

The above principles can also be used to develop more sophisticated ipESNN 
models, as the one presented below – the ipESNG model.  
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Input     X1

On- 0.7 (t) 

Off  - 0.3 (t)

Weight: W11,1(t)

Probability: P1 1,1(t)   

Output 1

Probability P1(t)

Output 2

Probability P2(t)

Weight: W21,1(t)

Probability: P2 1,1(t)   

  
(a) 

 
(b) 

 

x1   .. xn  q1  …  qs  C1  C2  ….  Ck  p1  p2  p3  …  pm  

(c) 

Fig. 3. (a) A schematic diagram of a feed-forward ipESNN; (b) and a recurrent ipESNN. (c)All 
input features (x1, x2,…,xn), the ESNN parameters (q1,q2,.., qs), the connections  between 
neurons (C1, C2,., Ck) and the probability of the neurons to spike (p1,p2,…,pm) at time (t) are 
represented as an integrated qbit register that is operated  as a whole [27,29].  

4   Integrative Probabilistic Evolving Spiking Neuro-Genetic 
Models (ipESNG)  

A schematic diagram of an ipESNG model is given in fig.4a. The framework combines 
ipESNN and a gene regulatory network (GRN) similar to the CNGM [5] from 2.3. The 
qbit vector for optimization through the QEA is given in fig.4b. In addition to the 
ipESNN parameters from fig.3c, the ipESNG model has gene expression parameters 
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g1,g2,… gl, each of them also represented as a qbit with two states (state “1” – gene is 
expressed; state “0” – gene is not expressed”0). Each link Li (i=1,2,…,r) between two 
genes in the GRN is represented as a quantum bit with 3 states (“1” positive connection; 
“0” – no connection; “-1” – negative connection).  

 

 
(a) 

The whole qbit vector from fig.3c g1 .. gl L1 ... Lr 

(b) 

Fig. 4. (a )A schematic diagram of an ipSNG model (similar to the CNGM from [5]; (b) In 
addition to the parameters shown in fig.3c, an ipESNG represents in a qbit register also gene 
expression levels (g1,g2,…,gl) and the connections between the genes (L1,…,Lr) from a GRN 

5   Open Questions and Future Research  

A significant originality of the proposed ipSNN models is that for the first time elements 
from the mathematical apparatus of quantum computation are used to develop a 
probabilistic ESNN model. Both input features, SNN parameters and output neuronal 
activities are represented as an integrated qbit vector defined by a probability wave 
function and used to calculate probabilistically the state of the whole system at any 
given time. The learning process of an ipSNN involves not only changing the 
connection weights by using learning rules, but also changing the probability density 
function of the qbit vector by the application of a quantum-inspired evolutionary 
algorithm [11]. The proposed ipSNN framework will be used for the development of a 
feed-forward, and a recurrent models as shown in fig.3a,b,c. The feed-forward ipSNN 
will be tested on a large-scale multimodal audiovisual information processing task [47]. 
Our hypothesis is that the ipSNN model will be faster and more accurate than other 
techniques, revealing useful information such as new features. The recurrent ipSNN 
model will be used to create and test an associative memory that is anticipated to be 
capable of storing and retrieving much larger number of patterns when compared to 
traditional associative memories [13,21]. Other QEA will be tested for probability 
estimation, such as quantum inspired particle swarm optimization. These models will 
also be used for a single neuron modeling on data from a 2-photon Laser Laboratory 
[31] with the hypothesis that they are applicable to modeling processes in a neuron. We 
expect that new information about learning processes in the brain can be discovered.  
 

Acknowledgement. Stefan Schliebs and Peter Hwang for technical support, Prof. H. 
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Machine Learning in Vector Models of Neural Networks 

Boris Kryzhanovsky, Vladimir Kryzhanovsky, and Leonid Litinskii  
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System Analysis of Russian Academy of Sciences, Moscow 

Abstract. We present the review of our works related to the theory of vector 
neural networks. The interconnection matrix always is constructed according to 
the generalized Hebb’s rule, which is well-known in the Machine Learning. We 
accentuate the main principles and ideas.  Analytical calculations are based on 
the probability approach. The obtained theoretical results are verified with the 
aid of computer simulations.  

1   Introduction 

The Hopfield Model (HM) is a well-known version of a binary auto-associative neu-
ral network.  With the aid of this approach one can retrieve binary N-dimensional  
initial patterns when their distorted copies are given. As is well known, the storage 
capacity of HM is rather small1. The statistical physics approach gives the estimate 

~ 0.14HMM N⋅ , where HMM  is a number of randomized patterns, which can be re-

stored by HM [1].  At the same time, elementary calculations show that if the number 
of initial patterns is less than N, the most effective approach is to store patterns in the 
computer directly and to associate the input vector with that pattern, the distance to 
which is the smallest one. Thus, small storage capacity of HM makes it useless for 
practical applications. 

In the end of 80-th attempts were made to improve recognizing characteristics of 
auto-associative memory by considering q-ary patterns, whose coordinates can take q 
different values, where  q > 2 ([2]-[5]). These models were designed for processing of 
color images.  The number q in this case is the number of different colors and in order 
of magnitude 2 3~ 10 10q − . All these models (with one exception) had the storage 

capacity even smaller than HM. The exception was the Potts-glass neural network 
(PG), for which the statistical physics approach gave the estimate 

( 1)
~

2PG HM

q q
M M

−
 [3]. Since in this case the storage capacity is rather large, 

4~ 10PGM N⋅ , the recognizing characteristics of  Potts-glass neural network are of 

interest for practical applications. Unfortunately, the reasons of large storage capacity 
of Potts-glass neural network were not understood. The statistical physics approach 
does not provide an explanation for this result. 

                                                           
1 All over this article by the storage capacity we mean the number of stored patterns, which can 

be retrieved from distortions.  
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On the other hand, in [6], [7] the optical model of auto-associative memory was 
examined. Such a network is capable to hold and handle information that is encoded 
in the form of the phase-frequency modulation. In the network the signals propagate 
along interconnections in the form of quasi-monochromatic pulses at q different fre-
quencies. The model is based on a parametrical neuron that is a cubic nonlinear ele-
ment capable to transform and generate pulses in four-wave mixing processes [8].  If 
the interconnections have a generalized Hebbian form, the storage capacity of such a 

network also exceeds the storage capacity of Hopfield model in 
( 1)

2

q q −
 times. The 

authors of [6], [7] called their model the parametrical neural network (PNN).  
Further analysis of PNN showed that it can be described adequately in the frame-

work of the vector formalism, when q different states of neurons are described by ba-
sis vectors of q-dimensional space. Everything else in this model (interconnections, a 
dynamical rule) is a direct generalization of HM.  

The vector formalism allowed us to determine the identity of basic principles of 
Potts-glass neural network and PNN. We succeeded in the understanding of the mecha-
nism of suppression of internal noise, which guarantees high recognizing properties for 
both architectures. Some variants of auto-associative PNN-architectures were suggested, 
including the one that has the record storage capacity for today (PNN-2).  Moreover, we 
managed to build up: i) hetero-associative variant of a q-ary neural network that in  
orders of magnitude exceeds the auto-associative PNN with respect to the speed of op-
erations; ii) decorrelating PNN that is an architecture aimed at processing of binary pat-
terns; it allows one to retrieve a polynomially many patterns, ~ RN , where 2 4R ≈ − ;  
iii) binarized variant of PNN, when one cuts elements of the connection matrix by signs. 
After that the matrix elements are significantly simpler, however the storage capacity of 
the binarized network is remained rather large.  

In the present review we summarize the results obtained in [10]-[28] by a group  
of authors from Center of Optical Neural Technologies Scientific Research Institute 
for System Analysis of Russian Academy of Sciences. This chapter is an extended 
version of the paper originally published in [20]. 

2   Vector Formalism for q-Ary Networks 

To describe different states of neurons we will use unit vectors le  of the space qR , 

1q ≥ : 

0

, 1, , .1

0

l l q

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

e …                                          (1) 

The state of the ith neuron is given by the column-vector ix , 

1, , , 1 , 1,..., .
i ii i l i l ix x l q i N= ∈ ∈ ≤ ≤ =qx e R e R                          (2) 
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Always the real scalar ix  in the expression (2) is equal 1 in modulus: 1ix = .  Mod-

els in which the scalar ix  can be equal to 1± , are called phase PNN. If ix  is equal to 

1 identically, 1ix ≡ , the models are called phaseless PNN. These names of PNN are 

related to the fact that if we compare the vector formalism with the original optical 
model [6], [7], the unit vectors le  are modeling  q different frequencies lω  of quasi-

monochromatic pulses, while a binary variable ix  is modeling the presence of a phase 

{0 / }φ π=  of a pulse. In fact, for the phase PNN we use the product of the spin vari-

able 1ix = ±  and the vector variable le  to describe the neuron states. Formally, here 

the number of different states of neurons is equal to 2q. The presence of the spin vari-
able leads to substantial differences in properties of the phase and phaseless networks. 
Below we discuss these differences. Now we continue to describe general principles 
that are the same for all the PNN-architectures.  

An N-dimensional image with q-ary coordinates is given by a set of  N  q-
dimensional vectors ix : 1( ,..., )NX = x x .  Initial patterns are M  given in advance 

sets of q-dimensional vectors: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
1 , , , , 1, , , 1,..., , [1, ]

i
N i i il

X x M i N l qμ
μ μ μ μ μ μμ= = = = ∈x x x e… … ;    (3) 

We will call input vectors the distorted copies these patterns. The network has to  
retrieve the initial patterns from their distorted copies.  

The local field at the ith  neuron has the usual form 

1

1
,

N

i ij j
jN =

= ∑h T x                                               (4) 

where ( )q q× -matrix ijT  defines interconnection between ith and jth vector-neurons. 

The interconnections are chosen in the generalized Hebbian form:  

( ) ( ) ( )

1

1 , , 1, ,
M

ij ij i j i j Nμ μ

μ
δ +

=

= − =∑T x x … .                                   (5)  

Here +x  denotes q-dimensional vector-row, and +xy  denotes the product of vector-

column x  and vector-row +y  carried out according the matrix product rule.  In other 

words, +xy  is a tensor product of two q-dimensional vectors.  Analogously to the 

standard Hebb’s rule the interconnection ijT  is determined by superposition of the 

states of ith and jth neurons over all patterns only. This allows us to interpret rule (5) 
as the Hebbian-like.  

In the expression (4) for the local field ih  the matrices ijT  act on the vectors 

j ∈ qx R . After summation over all  j, the local field at the ith neuron will be a linear 

combination of unit vectors le . The dynamic rule generalizing the standard asynchro-

nous dynamics of the HM is defined as follows: at the moment 1t +  the ith neuron is 
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oriented in the direction that is the nearest to the direction of the local field  ih  at the 

moment t . In other words, if at the moment  t  

( ) ( ) ( )( )( ) ( ) ( ) ( )

1 ( ) 1

, where ~ ,
q N M

i i
i l l l l i j j

l j i

t A A tμ μ

μ= ≠ =

= ∑ ∑∑h e e x x x                     (6) 

and  ( )i
kA  is the largest in modulus amplitude, ( ) ( )

1
max ,i i

k l
l q

A A
≤ ≤

=  then 

( ) ( )( )1 sign .i
i k kt A+ =x e                                        (7) 

The evolution of the system consists in successive orientation of vector-neurons ac-
cording this rule. It is not difficult to show that during the process of evolution the en-
ergy of the state, 

( ) ( )
1

( ) ~
N

i ii
E t t t+

=
−∑ x h , 

decreases monotonically. Finally the system falls down to the energy minimum that is 
a fixed point of the network.   

Here the description of the vector formalism relating to all PNN-architectures can 
be finished. In many respects the vector formalism resembles the approach that was 
suggested previously in the paper [9]. We find out this paper after working out our 
approach. The authors of [9] used not a proper dynamic rule that differs from Eq. (7). 
However, it seems that authors of [9] were the first who formulated clearly the vector 
approach for describing q -ary neurons.  

3   Basic PNN-Architectures and Their Recognizing Characteristics  

The estimates of recognizing characteristics of PNN can be obtained with the aid of 
the standard probability-theoretical approach [1]. The local field ih  (6) is divided into 

two parts, which are the useful signal s  and the internal noise η , and their mean val-

ues and dispersions are calculated. As a rule, it is possible to do that when N → ∞  

the dispersion of the signal 2 ( )sσ  as well as the mean value of the internal noise η  

tend to zero.  In this approach an important role plays the “ratio signal/noise” that is 
the ratio of the mean value of the signal s  to the standard deviation of the noise 

( )σ η , / ( )sγ σ η= . The greater γ , the greater is the probability to recognize the ini-

tial pattern. In contrast to the standard situation described in [1], here partial noise 
components are not independent random variables, but uncorrelated variables only. 
This does not allow us to use the Central Limit Theorem to estimate the characteris-
tics of internal noise. However, one can use the Chebyshev-Chernov statistical 
method [24], which allows us to obtain the exponential part of the estimated value in 
the case of uncorrelated random variables also. 

3.1   Phase PNN 

PNN-2. For a phase PNN, just the presence of spin variables 1ix = ±  leads to uncor-

related partial noise components. The corresponding neural network is called PNN-2. 
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Firstly it was described in [10], [11]. All calculations were performed accurately in 
[12], [13]. It was found that comparing with HM the dispersion of the internal noise is 

2q  times less: 2 ( ) ~ ( ) /PNN HM qσ η σ η− . This is because overwhelming majority of the 

summands ( ) ( )
i j j

μ μ +x x x , arising when calculating partial noisy components, vanish. 

At that the dispersion of the internal noise decreases. While for HM, the analogous 
terms ( ) ( )

i j jx x xμ μ  can be “+1” or “-1” only. Consequently, each of these summands 

contributes to increase of the dispersion of the internal noise. 
Let us right down the final expression for the probability of error of recognizing 

the initial pattern from its distorted copy. Let a  be the probability of distortion of co-
ordinates of the pattern in spin variable ix , and let b  be the probability of distortion 

of its coordinates in one of possible directions le . (In terms of the original optical 

model [6], [7] a is the probability of a distortion of the quasi-monochromatic pulse in 
its phase, and b is the probability of a distortion in its frequency.)  We suggested that 
the initial patterns (3) are randomized, e.g. their coordinates are independently and 
equiprobable distributed. Then, we obtain the estimate for the retrieval error probabil-
ity of the pattern in one-step approximation (when the output pattern is evaluated 
from the input vector after one synchronous parallel calculation of all neurons): 

( )( )
2(2 1)

Pr ~ exp , where 1 2 1 .
22

err

N q N
q a b

M

γ γ
πγ

⎛ ⎞− − = ⋅ − −⎜ ⎟
⎝ ⎠

   (8) 

When ,N M → ∞  this probability tends to zero for all patterns, if the number of pat-
terns M  does not exceeds the critical value  

( )
( ) ( )

2
22

2 3 / 2

1 2
1 .

4 ln
PNN

N a
M q b

Nq
−

−
= ⋅ −                             (9) 

The last quantity can be considered as asymptotically obtainable storage capacity of 
PNN-2. 

When 1q =  expressions (8), (9) turn into the known results for HM (in this case 

there is no frequency noise and it follows that we have to set 0b = ).  When  q  in-
creases the retrieval error probability falls down exponentially: The noise immunity of 
the network increases significantly. In the same time the storage capacity (9) increases 
proportionally 2q . If we have in mind a processing of colored  images,  the neurons 

are pixels of the screen, and q is the number of different colors.  It can be considered 
that 2 3~ 10 10q − . With such value of  q  the storage capacity of  PNN-2  by  4-6 or-

ders of magnitude greater than the storage capacity of HM. 
PNN-2 allows one to store the number of patterns that is many times exceeds the 

number of neurons N.  For example, let us set a constant value Pr 0.01err = . In the 

Hopfield model, with this error probability we can store /10M N=  patterns only, 
each of which is less then 30% noisy. In the same time, PNN-2 with  64q =  allows 

us to retrieve any of  5M N=  patterns with 90% noise, or any of 50M N=  patterns 
with 65% noise. Computer simulations confirm these estimates.  
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3.2   Phaseless PNNs 

PNN-3. From the point of view of realization of PNN in the form of electronic device 
it is of interest a phaseless variant of PNN, when there are lacking of phases of quasi-
monochromatic pulses. If we use the language of the vector formalism, this means 
that to describe different states of neurons one use unit vectors (1) only, and the spin 
variable ix  is absent: 

, , 1 , 1, , .
i i

q
i l l il q i N= ∈ ≤ ≤ =x e e R …                                  (10) 

Note, now neurons can be found in one of  q  different states, while for PNN-2 the 
number of different states of neurons is equal to 2q (due to the spin variable ix  - see 

Eq. (2)). 
This model was analyzed in [13]-[15]. It was found that if as before the intercon-

nection matrices ijT  are chosen in the form (5), the dispersion of internal noise in-

creases disastrous. The way allowing us to overcome this problem is analogous to the 
one that is used in the sparse coding  method [29], [30]: when calculating the matrices 

ijT , it is necessary to subtract  the value of the averaged neuron activity from the vec-

tor coordinates ( )
i

μx .  For randomized patterns the averaged neuron activity is equal 

to  / qe , where e  is the sum of  all the unit vectors le : 
1

q

l=∑e e .  So, in place of Eq. 

(5) the interconnection matrices have the form 

( ) ( ) ( )

1

1 ( / )( / ) , , 1, ,
M

ij ij i jq q i j Nμ μ

μ
δ +

=

= − − − =∑T x e x e … .                   (11) 

The neural architecture that is determined by Eqs. (10), (11), is called PNN-3. The 
analogues of the expressions (8), (9) here are 

( )
2( 1) ( 1)

Pr ~ exp , where 1
2 22

err

N q N q q
b

M

γ γ
πγ

⎛ ⎞− −− = ⋅ −⎜ ⎟
⎝ ⎠

, (12) 

and  

( )
( )

2

3 3 / 2

1 ( 1)
,

2 -14 ln ( 1)
PNN

N b q q q
M b b

qN q
−

− −= ⋅ =
−

.                       (13) 

When 2q = , the expressions (12), (13) turn into the known results for the HM. 

The storage capacity of PNN-3 is two times less comparing with PNN-2. The supe-
riority of  PNN-2  is related to the presence of the spin variables 1ix = ± . Let us dis-

cuss this in details. Generally speaking, to double the storage capacity of PNN-3 it is 

necessary to increase the number of neuron states in 2  times.  Indeed, if in Eq. (13) 

we replace q  by 2Q q= , the approximately doubled storage capacity is obtained. 

However, in the same time the number of elements of the matrix ijT  is doubled too: 
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2 22Q q= . Consequently, we need the computer memory (RAM) that is two times 

greater. On the contrary, when for PNN-2 we use the spin variable, we avoid the dou-
bling of RAM. In other words, the spin variable ix  is very effective for increasing the 

storage capacity. 

Note 1. The detailed analysis shows, that PNN-3 is a refined version of the Potts-glass 
neural network that was examined for the first time in [3]. For this publication poorly 
chosen notations and its brief style built up a reputation of a difficult for understand-
ing text (see for example [9]). In reality, the Potts-glass neural network is almost co-
incides with PNN-3. In both models interconnection matrices ijT  are defined by the 

same Eq. (11), with the aid of the Potts vectors /l l q= −d e e . The only difference be-

tween these models is that in the Potts-glass model the vectors ld  are used to describe 

q different states of neurons, however in PNN-3 for this purpose one use unit vectors 

le . Recognizing characteristics of PNN-3 and Potts-glass neural network are identi-

cal. In the same time the computer realization of PNN- 3 is q  times quicker than the 

Potts-glass network. 

PNN-4. One other phaseless neural network that is defined by Eq.(5) and Eq.(10) is of 
interest. The connection matrices of the type (5) are built with the aid of the unit vec-
tors le  (1) without the subtraction of the averaged neuron activity as it was done in 

Eq.(11). In fact we have a modified Potts-glass neural network. It was called PNN-4. 
Its matrix elements are very simple, and they are not negative always.  

For PNN-4 expressions that are analogous to the expressions (8), (9) are: 

( )2 1
Pr ~ exp , where .

22 1 /
err

q bNq N

M N q

γ γ
πγ

−⎛ ⎞
− = ⋅⎜ ⎟

+⎝ ⎠
                 (14) 

and 

( )

( )

2

2
4 3/ 2

1

4 1 / ln
1 /

PNN

N b
M q

Nq
N q

N q

−

−
= ⋅

⎛ ⎞
+ ⎜ ⎟+⎝ ⎠

                     (15) 

It is easy to see that when N  increases, the increase of the storage capacity of PNN-4 
is only up to a critical value 0N . Its value is defined from an transcendental equation  

0 01 / ln( )N q qN+ = . 

For 0N N>  the storage capacity is slowly (logarithmically) decreases. Such a behav-

ior of the storage capacity is not interesting from the point of view of practical appli-
cations.  It was found that PNN-4 is very effective when we deal with binarization of 
matrix elements (see below). Mainly it is due to the simplicity of matrix elements of 
PNN-4.  

In conclusion of this item we note again that recognizing characteristics of PNN-
architectures improve when the number of states of neurons q increases. We actively 
use this property in the next item. 
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4   Special Neural Architectures Based on PNN 

Outstanding recognizing characteristics of PNN can be used to develop other architec-
tures, directed onto solutions of one or other special problems. The decorrelating 
PNN allows one to store a polynomial large number of binary patterns, and, this is 
most important, even if these patterns are strongly correlated. The q-ary identifier al-
lows one to accelerate the recognizing process by orders of magnitude, and in the 
same time to decrease the working memory (RAM).  Binarization of matrix elements 
(clipping) allows one to construct a neural-architecture that is the most suitable for re-
alization in the form of optoelectronic device.  

4.1   The Decorrelating PNN 

It is known that the memory capacity of HM falls down drastically if there are corre-
lations between patterns. The way out is so named sparse coding [29], [30]. The 
decorrelating PNN (DPNN) is an alternative to this approach [16]-[20]. 

The main idea of DPNN is as follows. The initial binary patterns are one-to-one 
mapped into internal representation using vector-neurons of large dimension q. Then, 
one of above-mentioned PNN-architectures is being constructed on the basis of  
the obtained vector-neuron patterns. The mapping has the following properties: First, 
correlations between vector-neuron patterns become negligible, and, second, the  
dimension q of vector-neurons increases exponentially as a function of the mapping 
parameter. The algorithm of binary patterns recognition consists of three stages. At 
first, the input binary vector is mapped into the q-ary representation. Then with the 
aid of PNN its recognition occurs: it is identified with one of the q-ary patterns. At 
last, the inverse mapping of the q-ary pattern into its binary representation takes place. 
We can expect substantial increase of the storage capacity of the network, because the 
dimension q of vector-neurons increases exponentially, and we know: the larger the 
dimension of vector-neurons, the better recognizing properties of PNN.  

This scheme can be realized for any of above-mentioned PNNs. We explain the 
approach for the case of PNN-2. The algorithm of binary patterns mapping into vec-
tor-neuron ones is very simple.  Let ( )1 2, , , NY y y y= …  be N-dimensional binary vec-

tor, 1iy = ± . We divide it into n fragments of k+1 elements each, ( 1)N n k= + .  With 

each fragment we associate a signed integer number y l⋅  according the following 

rules:  
 

1) the first element of the binary fragment defines the sign 1y = ±  of the number;  

2) the other  k  elements of the fragment determine the absolute value  l, 

( )
1

2

1 1 2 , 1 2 .
k

k i k
i

i

l y l
+

−

=

= + + ⋅ ≤ ≤∑  

In fact, we interpret the last k binary coordinates of the fragment as the binary nota-
tion of the integer l.  

After that we associate each fragment 1 2 1( , , , )ky y y +…  with a vector 1 ly=x e , 

where le  is the lth unit vector in the space qR  of dimensionality 2kq = , and the sign 
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of the vector is given by the first element 1y  of the fragment. So, the mapping of  

binary fragment into 2k -dimensional unit vector occurs as follows: 

( )1 2 1 1 1, , , R , 2 .q k
k ly y y y l y q+ → ⋅ → = ∈ =x e…                     (16) 

According this scheme any binary vector Y ∈ NR  can be one-to-one mapped into a set 
of n q-dimensional unit vectors 

( ) ( )1 1 2 2 2 1 2, , , , , ,.., , , , , , .k k k N k N nY y y y y y y X+ + + −= → = x x x… … … …  

The result of this mapping is the vector-neuron image X.  The number k is called  the 
mapping parameter.  

When the mapping for the given set of binary patterns  ( )
1{ }MY μ  is done, we obtain 

vector-neuron images ( )
1{ }MX μ . Note, even if binary patterns ( )Y μ  are correlated, 

their vector-neuron images are practically not correlated. Such is the property of the 
mapping (16): It eliminates the correlations between patterns. Indeed, for two binary 
fragments it is sufficient to differ even in one coordinate, and the fragments are 
mapped into two absolutely different orthogonal unit vectors of the space qR . 

Now, making use of the vector-neuron images ( )
1{ }MX μ  we construct PNN-2 – see 

formula (5). Since the images ( )X μ  can be considered randomized, we use estimates 
(8), (9) obtained previously. If a is the probability of distortion of binary coordinates 
(the level of binary noise), for constructed PNN-2 we obtain: 

( )2 21 2 (2(1 ))
.

4 ln ( 1)(1 / ln )

k

DPNN

N a a
M

N k k N

− −≈ ⋅
+ +

                   (17) 

The first factor in the right-hand side is the storage capacity of HM. The second factor 
provides exponential increase of the storage capacity when the mapping parameter k 
increases (since always the inequality 2(1 ) 1a− >  is fulfilled). 

However, it is necessary to be careful: the parameter k cannot be an arbitrary large. 
First, the number of vector-neurons n must be sufficiently large to make it possible to 
use probability-theoretic estimates. Experiments show that as far as the dimension of 
vector-neuron patterns is greater than 100, 100n ≥ , asymptotical estimates (8), (9) 
are fulfilled  to a high accuracy. This leads to the first restriction on the value of  k: 

1 .
100

N
k + ≤                                                    (18) 

Second, among the vector-coordinates of the distorted vector-neuron image at least 
one coordinate must be undistorted. Its contribution to the local field ih  allows one to 

retrieve the correct value of the ith vector-coordinate. From these argumentations it 
follows that correct recognition can be guaranteed only if the number of undistorted 
vector-coordinates is not less than two. It is easy to estimate the average number of 
undistorted vector-coordinates of the image X: 1(1 )kn a +− . So, we obtain the second 

restriction on the value of  k: 
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1(1 ) 2kn a +− ≥ .                                                (19) 

Thus, maximal possible value ck  must fulfill the inequalities (18), (19). 

When k changes from 0 to ck , the storage capacity of the network increases rap-

idly. When k becomes greater than ck , the network no longer retrieves the patterns. 

However, even before k reaches the limiting value ck , the storage capacity of the net-

work can be done sufficiently large.  
Let us write down the storage capacity of DPNN (17) for the critical value ck  in 

the form  

( ) ~ .R
DPNN cM k N                                            (20) 

In Fig.1 the dependences of ck  (the top panel) and the exponent R in the expression 

(20) (the bottom panel) on the level of the binary noise a are shown for the dimension 
of the binary patterns N=1000. We see (the top panel) that for the most part of the 
variation interval of the noise a, the main restriction for ck  is inequality (18). This is 

because the dimension of binary patterns is comparatively small. Apparently, the  
 

 
Fig. 1. For N=1000 the dependence of ck  (the top panel) and exponent R in the expression 

(20) (the bottom panel) on the level of the binary noise a [0.05,0.4]∈  (abscissa axis) 
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Fig. 2. The same as in Fig.1 for the dimension N=10000 of binary patterns 

 
reasonable level of the noise is 0.25a ≤ . The bottom panel shows that in this region 
DPNN allows us to store RN  patterns with [1, 2]R ∈ . The Hopfield Model allows us 

to store in this region less than N patterns only.  
The greater a binary dimension N, the large is the superiority of DPPN onto HM. 

In Fig.2 the analogous graphs are shown for the dimension of binary patterns 
N=10000. Now the main restriction for ck  is the inequality (19). From the graph on 

the bottom panel it follows that for this dimension N and the level of the noise a=0.1 
the network can store 5.7~ N  of binary patterns, and for a=0.15 we obtain 

3.7~DPNNM N . Note these results are valid for any level of correlations between the 

binary patterns. 

4.2   q-Ary Identifier 

The main idea of the given architecture is based on the following result: when PNN is 
working far from the limits of its possibility (for example, when the number of pat-
terns is less than the critical value cM ), the retrieval of the correct value of each co-

ordinate occurs at once, during the first processing of this coordinate by the network. 
This is because the retrieval error probability falls down exponentially when the num-
ber of patterns decreases (see expressions (8) and (12)). In other words, to retrieve the 



438 B. Kryzhanovsky, V. Kryzhanovsky, and L. Litinskii 

pattern correctly the network runs over all the coordinates only once. Then the follow-
ing approach can be realized [21]-[23]. 

Suppose we have M  initial patterns each of which is described by a set of N q-ary 
coordinates. As it is done for PNN-3, we represent these coordinates by unit vectors 
of q-dimensional space qR  (see the expressions (10)). We would like to emphasize, 
for us substantial meaning of the coordinates are of no importance. It is important 
only that coordinates can take q different values, and in the framework of the vector 
formalism they are described by unit vectors l ∈ qe R : 

( )( ) ( ) ( ) ( ) ( )
1 2 1, , , , { } , 1, , .q

N i lX Mμ μ μ μ μ μ= ∈ =x x x x e… …                      (21) 

We number all the patterns and write down their numbers in q-ary number system. To 
do this we need logqn M=  q-ary positions. Let us treat these n q-ary numbers as ad-

ditional - enumerated – coordinates of patterns. Then we add them to the description 
of each initial pattern as first n coordinates. The enumerated coordinate takes one of q 
possible values, and from this point of view it does not differ from the true coordi-
nates of the patterns. When we pass to the vector formalism, we also represent the 
values of these enumerated coordinates by q-dimensional unit vectors  1{ }q

j l∈y e . If 

previously to represent a pattern we needed N q-ary coordinates, now it is represented 
by n+N such coordinates. In place of the expression (21) we use expanded description 
of the patterns,  

( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

enumerated coordinates true coordinates

ˆ , , , , , , , { } , 1, , .q
n N i j lX Mμ μ μ μ μ μ μ μ

⎛ ⎞
⎜ ⎟= ∈ =
⎜ ⎟
⎝ ⎠

y y x x x y e… … …  

We use these M patterns ( )X̂ μ  of the dimensionality n+N  to construct PNN-like ar-
chitecture, whose interconnection matrix, generally speaking, consists of 2( )n N+  

( )q q× -matrices. However, we suppose that only interconnections ˆ
ijT   from true co-

ordinates to enumerated coordinates are nonzero. Other interconnections we forcedly 
replace by zero (we break these interconnections).  

Assuming PNN-3 as the basis architecture, we use formula (11) for  [1, ]i n∈  and 

[ 1, ]j n N n∈ + +  when calculating the nonzero interconnection matrices,  

from Eq.(7), , ,ˆ , [1, ]
, in the rest cases,

ij
ij

i n j n
i j N n

≤ >⎧
= ∈ +⎨
⎩

T
T

0
,                  (22) 

where 

( ) ( )

1

( / )( / )
M

ij i jq qμ μ

μ

+

=

= − −∑T y e x e . 

The principle of work of such a network is as follows. Suppose we need to recognize 
distortion of what an initial pattern ( )X μ  (21) is N-dimensional q-ary input image  

X. We transform N-dimensional image X into (n+N)-dimensional X̂ , using some  
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arbitrary integers from the interval [1,q] in place of the first  n  enumerated coordi-
nates (in what follows we show that it is not significant what  n  integers namely are 
used). In terms of the vector formalism this means that from the image 

1 2( , ,..., )NX = x x x  we pass to 1 2 1 2
ˆ ( , ,..., , , ,..., )n NX = y y y x x x .   

Just the image X̂  of the extended dimensionality n+N  is presented  for recogni-
tion at the input of PNN-like architecture  (22).  From the construction of the network 
it is seen that when working the network retrieves the enumerated coordinates only. 
Consequently, if we work far from the limits of PNN-3 possibilities, the correct value 
of each enumerated coordinate is obtained at once during the first processing (see 
above). No additional runs over all the coordinates of the pattern will be necessary. 
So, the number of the initial pattern, whose distorted copy is the input image X, will 
be retrieve at once during one run over  n enumerated coordinates. But if the number 
of the pattern is known, it is not necessary to retrieve correct values of its N true coor-
dinates ( )

i
μx . We simply extract this pattern from the database! 

Here the main questions are: How much is the number n of the enumerated coordi-
nates? How large is the additional distortion when we pass from the N-dimensional 

input image X to the (n+N)-dimensional image X̂ ?  It turns out that the number n of 
the enumerated coordinates is rather small. We remind that logqn M= . If as M we 

take the storage capacity of PNN-3 given by the expression (13), it is easy to obtain 
the asymptotic estimate for  n: 

ln
~ 2 , 1.

ln

N
n N

q
+ >>  

For example, if the number of pixels of the screen is 6~ 10N  and the number of the 
colors is 2~ 10q , we obtain: 5n ≈ . In other words, the number of the enumerated 

coordinates n is negligible small comparing with the number of the true coordinates 
N. Since there are no connections between enumerated coordinates (see Eq.(22)), the 
usage of an arbitrary integers as first n enumerated coordinates does not lead to addi-
tional distortions. 
 

 

Fig. 3. The scheme of the vector perceptron 



440 B. Kryzhanovsky, V. Kryzhanovsky, and L. Litinskii 

In this case the network ceases to be auto-associative one. It works like a q-ary 
perceptron whose interconnections are arranged according the generalized Hebb rule 
(11) – see Fig.3. The procedure of recognition of the pattern itself (the retrieval of the 
correct values of its true coordinates) is absent. Instead of it identification of the num-
ber of the pattern takes place. That is why this architecture was called q-ary identifier. 

The advantages of the q-ary identifier are evident. First, the process of recognition 
speeds up significantly – the network has to retrieve correct values of  ~ 5n  enumer-

ated coordinates only, instead of doing the same for 6~ 10N  coordinates. Second, the 
computer memory necessary to store interconnections ijT  decreases substantially: 

now we need only Nn ( )q q× -matrices, but not 2( )n N+ .  

4.3   Binarization of PNN 

The binarization of matrix elements (the clipping) consists in the following proce-
dure: positive elements are replaced by “+1”, negative elements are replaced by “-1”, 
and zero matrix elements do not change. The binarized matrices possess evident ad-
vantages: RAM is economized more than an order of magnitude and the calculations 
speed up by the same order of magnitude. The recognizing properties of the binarized 
networks are examined for the Hopfield model only [1]. The binarization of the Hebb 
matrix decreases the storage capacity by a factor of / 2π . If this result takes place 
also for PNN, then with the aid of the binarization we should simplify the calculation 
scheme and in the same time keep rather large storage capacity. However, it turns out 
that the result of binarization differs for different PNN-architectures [25]-[28]. 

PNN-2. For this architecture the above-mentioned result for HM is true. Namely, for 
sufficiently large dimensionality of the problem, when 5ln( )N Nq> , the storage ca-

pacity of the binarized PNN-2 is / 2π  times less than the storage capacity of the 
original PNN-2. Note, that this not significant deterioration of recognizing character-
istics is accompanied by significant simplification of the calculations. Firstly, RAM 
that we need to store the binarized matrix is an order of magnitude less. Secondly, the 
speed of calculations becomes at least an order of magnitude faster. It is easy to imag-
ine a situation, when such an economy of computational resources is rather important. 

It was found out that for networks of small dimensions, when 5ln( )N Nq< , the  

binarized PNN-2 works better than its nonbinarized prototype. In this case for the  
binarized network the ratio “signal/noise” exceeds the analogous characteristic of PNN-2 

by a factor of 2 . In other words, the binarized network is capable to retrieve patterns 
from larger distortions than the standard PNN-2. This theoretical result is confirmed by 
computer simulations. 
 
PNN-3 (the Potts-glass network). Computer experiments show that binarization of 
PNN-3 matrix destroys the capability of this network to be an associative memory. 
Our analysis shows that for PNN-3 the distribution of matrix elements crucially dif-
fers from the normal distribution. It is strongly asymmetric and it has several peaks. 
Evidently, too much information is lost when the true matrix elements are replaced by 
their simplified values +/-1.  
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PNN-4. Since in this case all matrix elements are positive, binarization of the connec-
tion matrix decreases RAM by a factor of 30, and the speed of calculation becomes 
more than q times larger. Computer simulations show that the storage capacity of 
PNN-4 always increases as a result of binarization. This rather unexpected result is 
confirmed not only by experiments, but also by the theoretical analysis.  

For the binarized variant of PNN-4 one cannot use the standard probability-
theoretical method based on the derivation of an explicit expression for the ratio “sig-
nal/noise”. This is due to the fact that in this case the distribution of local fields differs 
from the normal distribution significantly. One needs to use combinatorial calculus to 
estimate the probability of pattern recognition. This way leads to a complicated nonlin-
ear equation that has to be solved numerically.  In Fig.4 for q=8 we show the depend-
ence of the storage capacity M on the dimensionality of the problem N for PNN-4 (the 
lower graph) and its binarized variant (the upper graph). The dots show the results of the 
computer simulations, the solid lines correspond to the theoretical curves.  

 

 
 

Fig. 4. The dependence of the PNN-4 storage capacity M on the dimensionality of the problem 
N   for q=8. The lower plot corresponds to PNN-4, the upper to its binarized variant. The dots 
are the results of a computer experiments, the solid lines are theoretical curves. 

 
For both networks we see a good agreement of our experiments with the theory. 

On the lower graph we clearly see the slow (logarithmical) decrease of the storage 
capacity when N increases (we mentioned that in the previous Section when describ-
ing PNN-4 characteristics – see Eq.(14) and Eq.(15)). On the contrary, the storage ca-
pacity of the binarized PNN-4 increases slowly but steadily. For large values of N this 
curve can be roughly approximated by the expression 2 ln( )q Nq . Let β  be the ratio 

of the storage capacity of binarized PNN-4 to the storage capacity of nonbinarized 
network: 4 4/bin

PNN PNNM Mβ = . When N increases, the value of β  is steadily increasing 
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approximately as 2ln ( )Nq . In our experiments for different q and N it reaches the 

value 30β = . These properties make the binarized PNN-4 very attractive. 

5   Conclusions 

In the previous Section we described some architectures each of which allows us to in-
tensify different characteristics of neural network: to increase the binary storage capac-
ity and noise immunity, to increase the speed of operation, to decrease RAM and/or to 
simplify computer realization of a neural network and so on. Note that one can combine 
these architectures in order to produce new, may be more effective, neural networks. 
For example, we can combine in one calculation scheme the decorrelating PNN with the 
q-ary identifier. Then we can apply the binarization procedure in order to estimate the 
resulting efficiency. In our plans we have the development of some other new architec-
tures, which would extend the spectrum of neural instruments. 

In conclusion it is necessary to say that in fact, up to now associative neural net-
works were not used for solving complicated practical problems. Seemingly, it is be-
cause of the poor recognition characteristics of HM. From this point of view PNNs 
are very fruitful and promising architectures. We hope that the development of PNNs 
and other architectures based on PNNs, will lead to increase of interest to the theory 
of associative neural networks, as well as their practical application. 
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Abstract. Multi-knowledge extraction is significant for many real-world
applications. The nature inspired population-based reduction approaches
are attractive to find multiple reducts in the decision systems, which
could be applied to generate multi-knowledge and to improve decision
accuracy. In this Chapter, we introduce two nature inspired population-
based computational optimization techniques namely Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA) for rough set reduc-
tion and multi-knowledge extraction. A Multi-Swarm Synergetic Opti-
mization (MSSO) algorithm is presented for rough set reduction and
multi-knowledge extraction. In the MSSO approach, different individu-
als encodes different reducts. The proposed approach discovers the best
feature combinations in an efficient way to observe the change of pos-
itive region as the particles proceed throughout the search space. We
also attempt to theoretically prove that the multi-swarm synergetic opti-
mization algorithm converges with a probability of 1 towards the global
optimal. The performance of the proposed approach is evaluated and
compared with Standard Particle Swarm Optimization (SPSO) and Ge-
netic Algorithms (GA). Empirical results illustrate that the approach can
be applied for multiple reduct problems and multi-knowledge extraction
very effectively.

1 Introduction

Rough set theory [1,2,3] provides a mathematical tool that can be used for both
feature selection and knowledge discovery. It helps us to find out the minimal
attribute sets called ‘reducts ’ to classify objects without deterioration of clas-
sification quality and induce minimal length decision rules inherent in a given
information system. The idea of reducts has encouraged many researchers in
studying the effectiveness of rough set theory in a number of real world do-
mains, including medicine, pharmacology, control systems, fault-diagnosis, text
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categorization, social sciences, switching circuits, economic/financial prediction,
image processing, and so on [4,5,6,7,8,9,10].

The reduct of an information system is not unique. There may be many subsets
of attributes, which preserve the equivalence class structure (i.e., the knowledge)
expressed in the information system. Although several variants of reduct algo-
rithms are reported in the literature, at the moment, there is no accredited best
heuristic reduct algorithm. So far, it is still an open research area in rough sets
theory.

Particle swarm algorithm is inspired by social behavior patterns of organ-
isms that live and interact within large groups. In particular, it incorporates
swarming behaviors observed in flocks of birds, schools of fish, or swarms of
bees, and even human social behavior, from which the Swarm Intelligence (SI)
paradigm has emerged [11]. The swarm intelligent model helps to find optimal
regions of complex search spaces through interaction of individuals in a pop-
ulation of particles [12,13,14]. As an algorithm, its main strength is its fast
convergence, which compares favorably with many other global optimization
algorithms [15,16]. It has exhibited good performance across a wide range of
applications [17,18,19,20,21]. The particle swarm algorithm is particularly at-
tractive for feature selection as there seems to be no heuristic that can guide
search to the optimal minimal feature subset. Additionally, it can be the case
that particles discover the best feature combinations as they proceed throughout
the search space.

The main focus of this Chapter is to investigate Multi-Swarm Synergetic Op-
timization (MSSO) algorithm and its application in finding multiple reducts for
difficult problems. The rest of the Chapter is organized as follows. Some related
terms and theorems on rough set theory are explained briefly in Section 3. Parti-
cle swarm model is presented and the effects on the change of the neighborhoods
of particles are analyzed in Section 4. The proposed approach based on particle
swarm algorithm is presented in Section 5. In this Section, we describe the MSSO
model in detail and theoretically prove the properties related to the convergence
of the proposed algorithm. Experiment settings, results and discussions are given
in Section 6 and finally conclusions are given in Section 7.

2 Related Research Works

Usually real world objects are the corresponding tuple in some decision tables.
They store a huge quantity of data, which is hard to manage from a compu-
tational point of view. Finding reducts in a large information system is still
an NP-hard problem [22]. The high complexity of this problem has motivated
investigators to apply various approximation techniques to find near-optimal so-
lutions. Many approaches have been proposed for finding reducts, e.g., discerni-
bility matrices, dynamic reducts, and others [23,24]. The heuristic algorithm is
a better choice. Hu et al. [25] proposed a heuristic algorithm using discernibility
matrix. The approach provided a weighting mechanism to rank attributes. Zhong
and Dong [26] presented a wrapper approach using rough sets theory with greedy
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heuristics for feature subset selection. The aim of feature subset selection is to
find out a minimum set of relevant attributes that describe the dataset as well
as the original all attributes do. So finding reduct is similar to feature selection.
Zhong’s algorithm employed the number of consistent instances as heuristics.
Banerjee et al. [27] presented various attempts of using Genetic Algorithms in
order to obtain reducts.

Conventional approaches for knowledge discovery always try to find a good
reduct or to select a set of features [28]. In the knowledge discovery applications,
only the good reduct can be applied to represent knowledge, which is called a
single body of knowledge. In fact, many information systems in the real world
have multiple reducts, and each reduct can be applied to generate a single body
of knowledge. Therefore, multi-knowledge based on multiple reducts has the po-
tential to improve knowledge representation and decision accuracy [29]. However,
it would be exceedingly time-consuming to find multiple reducts in an instance
information system with larger numbers of attributes and instances. In most of
strategies, different reducts are obtained by changing the order of condition at-
tributes and calculating the significance of different condition attribute combina-
tions against decision attribute(s). It is a complex multi-restart processing about
condition attribute increasing or decreasing in quantity. Population-based search
approaches are of great benefits in the multiple reduction problems, because dif-
ferent individual trends to be encoded to different reduct. So it is attractive to
find multiple reducts in the decision systems.

3 Rough Set Reduction

The basic concepts of rough set theory and its philosophy are presented and illus-
trated with examples in [1,2,3,26,28,30,31]. Here, we illustrate only the relevant
basic ideas of rough sets that are relevant to the present work.

In rough set theory, an information system is denoted in 4-tuple by S =
(U, A, V, f), where U is the universe of discourse, a non-empty finite set of N
objects {x1, x2, · · · , xN}. A is a non-empty finite set of attributes such that
a : U → Va for every a ∈ A (Va is the value set of the attribute a).

V =
⋃
a∈A

Va

f : U×A→ V is the total decision function (also called the information function)
such that f(x, a) ∈ Va for every a ∈ A, x ∈ U . The information system can also
be defined as a decision table by S = (U, C, D, V, f). For the decision table, C
and D are two subsets of attributes. A = {C∪D}, C∩D = ∅, where C is the set
of input features and D is the set of class indices. They are also called condition
and decision attributes, respectively.

Let a ∈ C ∪D, P ⊆ C ∪D. A binary relation IND(P ), called an equivalence
(indiscernibility) relation, is defined as follows:

IND(P ) = {(x, y) ∈ U × U | ∀a ∈ P, f(x, a) = f(y, a)} (1)
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The equivalence relation IND(P ) partitions the set U into disjoint subsets. Let
U/IND(P ) denote the family of all equivalence classes of the relation IND(P ).
For simplicity of notation, U/P will be written instead of U/IND(P ). Such a
partition of the universe is denoted by U/P = {P1, P2, · · · , Pi, · · · }, where Pi is
an equivalence class of P , which is denoted [xi]P . Equivalence classes U/C and
U/D will be called condition and decision classes, respectively.

Lower Approximation: Given a decision table T = (U, C, D, V, f). Let R ⊆ C∪D,
X ⊆ U and U/R = {R1, R2, · · · , Ri, · · · }. The R-lower approximation set of X
is the set of all elements of U which can be with certainty classified as elements
of X , assuming knowledge R. It can be presented formally as

APR−
R(X) =

⋃
{Ri | Ri ∈ U/R, Ri ⊆ X} (2)

Positive Region: Given a decision table T = (U, C, D, V, f). Let B ⊆ C, U/D =
{D1, D2, · · · , Di, · · · } and U/B = {B1, B2, · · · , Bi, · · · }. The B-positive region
of D is the set of all objects from the universe U which can be classified with
certainty to classes of U/D employing features from B, i.e.,

POSB(D) =
⋃

Di∈U/D

APR−
B(Di) (3)

Positive Region: Given a decision table T = (U, C, D, V, f). Let B ⊆ C, U/D =
{D1, D2, · · · , Di, · · · } and U/B = {B1, B2, · · · , Bi, · · · }. The B-positive region
of D is the set of all objects from the universe U which can be classified with
certainty to classes of U/D employing features from B, i.e.,

POSB(D) =
⋃

Di∈U/D

B−(Di) (4)

Reduct : Given a decision table T = (U, C, D, V, f). The attribute a ∈ B ⊆ C is
D − dispensable in B, if POSB(D) = POS(B−{a})(D); otherwise the attribute
a is D − indispensable in B. If all attributes a ∈ B are D − indispensable in
B, then B will be called D − independent. A subset of attributes B ⊆ C is
a D − reduct of C, iff POSB(D) = POSC(D) and B is D − independent. It
means that a reduct is the minimal subset of attributes that enables the same
classification of elements of the universe as the whole set of attributes. In other
words, attributes that do not belong to a reduct are superfluous with regard
to classification of elements of the universe. Usually, there are many reducts in
an instance information system. Let 2|A| represent all possible attribute subsets
{{a1}, · · · , {a|A|}, {a1, a2}, · · · , {a1, · · · , a|A|}}. Let RED represent the set of
reducts, i.e.,

RED = {B | POSB(D) = POSC(D), POS(B−{a})(D) < POSB(D)} (5)

Multi-knowledge: Given a decision table T = (U, C, D, V, f). Let RED represent
the set of reducts, Let ϕ is a mapping from the condition space to the decision
space. Then multi-knowledge can be defined as follows:

Ψ = {ϕB | B ∈ RED} (6)
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Reduced Positive Universe and Reduced Positive Region: Given a decision ta-
ble T = (U, C, D, V, f). Let U/C = {[u′

1]C , [u
′
2]C , · · · , [u′

m]C}, Reduced Positive
Universe U

′
can be written as:

U
′
= {u′

1, u
′
2, · · · , u

′
m}. (7)

and
POSC(D) = [u

′
i1 ]C ∪ [u

′
i2 ]C ∪ · · · ∪ [u

′
it
]C . (8)

Where ∀u′
is
∈ U

′
and |[u′

is
]C/D| = 1(s = 1, 2, · · · , t). Reduced positive universe

can be written as:
U

′
pos = {u′

i1 , u
′
i2 , · · · , u

′
it
}. (9)

and ∀B ⊆ C, reduced positive region

POS
′
B(D) =

⋃
X∈U ′/B∧X⊆U ′

pos∧|X/D|=1

X (10)

where |X/D| represents the cardinality of the set X/D. ∀B ⊆ C, POSB(D) =
POSC(D) if POS

′
B = U

′
pos [31]. It is to be noted that U

′
is the reduced universe,

which usually would reduce significantly the scale of datasets. It provides a more
efficient method to observe the change of positive region when we search the
reducts. We didn’t have to calculate U/C, U/D, U/B, POSC(D), POSB(D)
and then compare POSB(D) with POSC(D) to determine whether they are
equal to each other or not. We only calculate U/C, U

′
, U

′
pos, POS

′
B and then

compare POS
′
B with U

′
pos.

4 Particle Swarm Optimization Algorithm

The classical particle swarm model consists of a swarm of particles, which are
initialized with a population of random candidate solutions. They move itera-
tively through the d-dimension problem space to search the new solutions, where
the fitness f can be measured by calculating the number of condition attributes
in the potential reduction solution. Each particle has a position represented by
a position-vector pi (i is the index of the particle), and a velocity represented by
a velocity-vector vi. Each particle remembers its own best position so far in a
vector p#

i , and its j-th dimensional value is p#
ij . The best position-vector among

the swarm so far is then stored in a vector p∗, and its j-th dimensional value is
p∗j . When the particle moves in a state space restricted to zero and one on each
dimension, the change of probability with time steps is defined as follows:

P (pij(t) = 1) = f(pij(t− 1), vij(t− 1), p#
ij(t− 1), p∗j(t− 1)). (11)

where the probability function is

sig(vij(t)) =
1

1 + e−vij(t)
. (12)
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At each time step, each particle updates its velocity and moves to a new position
according to Eqs.(13) and (14):

vij(t) = wvij(t− 1) + c1r1(p
#
ij(t− 1)− pij(t− 1))

+ c2r2(p∗j (t− 1)− pij(t− 1))
(13)

pij(t) =

{
1 if ρ < sig(vij(t));
0 otherwise.

(14)

Where c1 is a positive constant, called as coefficient of the self-recognition com-
ponent, c2 is a positive constant, called as coefficient of the social component. r1

and r2 are the random numbers in the interval [0,1]. The variable w is called as
the inertia factor, which value is typically setup to vary linearly from 1 to near
0 during the iterated processing. ρ is random number in the closed interval [0,1].
From Eq. (13), a particle decides where to move next, considering its current
state, its own experience, which is the memory of its best past position, and the
experience of its most successful particle in the swarm. Figure 1 illustrates how
the position is reacted on by its velocity. The pseudo-code for particle swarm
optimization algorithm is illustrated in Algorithm 1.
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Fig. 1. Sigmoid function for PSO

The particle swarm algorithm can be described generally as a population of
vectors whose trajectories oscillate around a region which is defined by each
individual’s previous best success and the success of some other particle. Some
previous studies have discussed the trajectory of particles and its convergence
[14,12,32,33]. Bergh and Engelbrecht [33] overviewed the theoretical studies, and
extended these studies to investigate particle trajectories for general swarms to
include the influence of the inertia term. They also provided a formal proof that
each particle converges to a stable point. It has been shown that the trajecto-
ries of the particles oscillate as different sinusoidal waves and converge quickly,
sometimes prematurely. Various methods have been used to identify some other
particle to influence the individual.
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Algorithm 1. Particle Swarm Optimization Algorithm
01. Initialize the size of the particle swarm n, and other parameters.
02. Initialize the positions and the velocities for all the particles randomly.
03. While (the end criterion is not met) do
04. t = 1;
05. Calculate the fitness value of each particle;
06. p∗ = argminn

i=1(f(p∗(t − 1)), f(p1(t)), f(p2(t)), · · · , f(pi(t)), · · · , f(pn(t)));
07. For i= 1 to n
08. p#

i (t) = argminn
i=1(f(p#

i (t − 1)), f(pi(t));
09. For j = 1 to d
10. Update the j-th dimension value of pi and vi

10. according to Eqs.(13),(14),(12);
12. Next j
13. Next i
13. t + +
14. End While.

Eberhart and Kennedy called the two basic methods as “gbest model” and
“lbest model” [11]. In the gbest model, the trajectory for each particle’s search is
influenced by the best point found by any member of the entire population. The
best particle acts as an attractor, pulling all the particles towards it. Eventually
all particles will converge to this position. In the lbest model, particles have
information only of their own and their nearest array neighbors’ best (lbest),
rather than that of the whole swarm. Namely, in Eq. (13), gbest is replaced by
lbest in the model. The lbest model allows each individual to be influenced by
some smaller number of adjacent members of the population array. The particles
selected to be in one subset of the swarm have no direct relationship to the other
particles in the other neighborhood. Typically lbest neighborhoods comprise
exactly two neighbors. When the number of neighbors increases to all but itself
in the lbest model, the case is equivalent to the gbest model. Unfortunately
there is a large computational cost to explore the neighborhood relation in each
iteration when the number of neighbors is too little. Some previous studies has
been shown that gbest model converges quickly on problem solutions but has
a weakness for becoming trapped in local optima, while lbest model converges
slowly on problem solutions but is able to “flow around” local optima, as the
individuals explore different regions [36]. Some related research and development
during the recent years are also reported in [21,34,35,37].

5 Rough Set Reduction Algorithm Based on Swarms

Blackwell and Branke [38] investigated a multi-swarm optimization specifically
designed to work well in dynamic environments. The main idea is to split the pop-
ulation of particles into a set of interacting swarms. These swarms interact locally
by an exclusion parameter and globally through a new anti-convergence operator.
The results illustrated that the multiswarm optimizer significantly outperformed
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the other considered approaches. Niu et al. [39] presented a multi-swarm coop-
erative particle swarm optimizer, inspired by the phenomenon of symbiosis in
natural ecosystems. The approach is based on a master - slave model, in which
a population consists of one master swarm and several slave swarms. The slave
swarms execute a single PSO or its variants independently to maintain the di-
versity of particles, while the master swarm evolves based on its own knowledge
and also the knowledge of the slave swarms. In the simulation studies, several
benchmark functions are performed, and the performances of their algorithms are
compared with the standard PSO (SPSO) to demonstrate the superiority. The
multi swarm approaches let several swarms of particles cooperate to find good
solutions. Usually they have to be designed for specific problems. In this Section,
we design a multi-swarm synergetic optimization algorithm for rough set reduc-
tion and multi-knowledge extraction. The sub-swarms are encoded with different
reducts, which is suitable for searching multiple reducts in decision systems.

5.1 Coding and Evaluation

Given a decision table T = (U, C, D, V, f), the set of condition attributes, C,
consists of m attributes. We set up a search space of m dimensions for the re-
duction problem. Accordingly, each particle’s position is represented as a binary
bit string of length m. Each dimension of the particle’s position maps one con-
dition attribute. The domain for each dimension is limited to 0 or 1. The value
‘1’ means the corresponding attribute is selected while ‘0’ not selected. Each
position can be “decoded” to a potential reduction solution, a subset of C. The
particle’s position is a series of priority levels of the attributes. The sequence
of the attribute will not be changed during the iteration. But after updating
the velocity and position of the particles, the particle’s position may appear
real values such as 0.4, etc. It is meaningless for the reduction. Therefore, we
introduce a discrete particle swarm optimization technique for this reduction
problem. The particles updates its velocity according to Eq. (13), considering
its current state, its own experience, and the experience of its successful particle
in its neighborhood swarm. Each dimension of the particles’ position would be
explored between 0 and 1 through Eqs. (12) and (14).

During the search procedure, each individual is evaluated using the fitness.
According to the definition of rough set reduct, the reduction solution must
ensure the decision ability is the same as the primary decision table and the
number of attributes in the feasible solution is kept as low as possible. In our
algorithm, we first evaluate whether the potential reduction solution satisfies
POS

′
E = U

′
pos or not (E is the subset of attributes represented by the potential

reduction solution). If it is a feasible solution, we calculate the number of ‘1’
in it. The solution with the lowest number of ‘1’ would be selected. For the
particle swarm, the lower number of ‘1’ in its position, the better the fitness of
the individual is. POS

′
E = U

′
pos is used as the criterion of the solution validity.

In the proposed encoding representations, we consider particle’s position en-
coding as the binary representation of an integer. The step size is equal to 1, that
is, the dimension of the search space is then 1. In practice, when the binary string
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is too long for a large scale attribute reduction problem, it is difficult to use it
as an integer. It is time-consuming for each iteration. So we split it into a small
number (say H) of shorter binary strings, each one is seen as an integer. Then
the dimension of the problem is not anymore 1, but H . The swarm algorithm
with two strategies is called as Bi-metrics Binary PSO (Figures 2 and 3).

c12c1 c2 c6 c7 c8 c9

0

c10 c11c5c3 c4

10101010001

Fig. 2. Bi-metrics Binary Representation 1

cmc1 c2 ck ck+1 ck+2

0

cm-2c3

10110001

cm-1

0~7 0~7 0~7

Fig. 3. Bi-metrics Binary Representation 2

5.2 Multi-Swarm Synergetic Model

To employ a multi-swarm, the solution vector is split amongst the different pop-
ulations according to some rule in such a way that the simplest of the schemes
does not allow any overlap between the spaces covered by different populations.
To find a solution to the original problem, representatives from all the popu-
lations are combined to form the potential solution vector, which, in turn, is
passed on the error function. This adds a new dimension to the survival game:
cooperation between different populations [33,40].

As mentioned above, one of the most important applications is to solve multi-
ple reduct problems and multi-knowledge extraction. Those reducts usually share
some common classification characteristics in the information systems. They are
apt to cluster into different groups. Sometime they are also the members of sev-
eral groups at the same time [41]. To match the classification characteristics, we
introduce a multi-swarm search algorithm for them. In the algorithm, all parti-
cles are clustered spontaneously into different sub-swarms of the whole swarm.
Every particle can connect to more than one sub-swarm, and a crossover neigh-
borhood topology is constructed between different sub-swarms. The particles in
the same sub-swarm would carry some similar functions as possible and search
their optimal. Each sub-swarm would approach its appropriate position (solu-
tion), which would be helpful for the whole swarm to keep in a good balance
state. Figure 4 illustrates a multi-swarm topology. In the swarm system, a swarm
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Fig. 4. A multi-swarm topology

with 30 particles is organized into 10 sub-swarms, each sub-swarm consisting of
5 particles. Particles 3 and 13 have the maximum membership level, 3. During
the iteration process, the particle updates its velocity followed by the location
of the best fitness achieved so far by the particle itself and by the location of
the best fitness achieved so far across all its neighbors in all sub-swarms it be-
longs to. The process makes an important influence on the particles’ ergodic and
synergetic performance. The multi-swarm algorithm for the reduction problem
is illustrated as follows:

Step 1. Calculate U
′
, U

′
pos using Eqs. (7) and (9).

Step 2. Initialize the size of the particle swarm n, and other parameters. Ini-
tialize the positions and the velocities for all the particles randomly.
Step 3. Multiple sub-swarms n are organized into a crossover neighborhood
topology. A particle can join more than one sub-swarm. Each particle has the
maximum membership level l, and each sub-swarm accommodates default num-
ber of particles m.
Step 4. Decode the positions and evaluate the fitness for each particles, if
POS

′
E �= U

′
pos, the fitness is punished as the total number of the condition

attributes, else the fitness is the number of ‘1’ in the position.
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Step 5. Find the best particle in the swarm, and find the best one in each
sub-swarms. If the “global best” of the swarm is improved, noimprove = 0,
otherwise, noimprove = 1. Update velocity and position for each particle at the
iteration t.

5.01 For m = 1 to subs
5.02 p∗ = argminsubsm

i=1 (f(p∗(t− 1)), f(p1(t)),
5.02 f(p2(t)), · · · , f(pi(t)), · · · , f(psubsm(t)));
5.03 For ss = 1 to subsm

5.04 p#
i (t) = argmin(f(p#

i (t− 1)), f(pi(t));
5.05 For d = 1 to D
5.06 Update the d-th dimension value of pi and vi

5.06 according to Eqs.(13), (12), and (14);
5.07 Next d
5.08 Next ss
5.09 Next m

Step 6. If noimprove = 1, goto Step 3, the topology is re-organized. If the end
criterion is not met, goto Step 4. Otherwise, provide the best solution (output),
the fitness.

5.3 Algorithm Analysis

For analyzing the convergence of the multi-swarm algorithm, we first introduce
the definitions and lemmas [42,43,44], and then theoretically prove that the
algorithm converges with a probability 1 or strongly towards the global optimal.

Xu et al. [45] analyzed the search capability of an algebraic crossover through
classifying the individual space of genetic algorithms, which is helpful to com-
prehend the search of genetic algorithms such that premature convergence and
deceptive problems [46] could be avoided. In this Subsection, we also attempt
to theoretically analyze the performance of the multi-swarm algorithm with
crossover neighborhood topology. For the sake of convenience, let crossover op-
erator |c denote the wheeling-round-the-best-particles process.

Consider the problem (P ) as

(P ) = min{f(x) : x ∈ D} (15)

where x = (x1, x2, · · · , xn)T , f(x) : D → R is the objective function and D is
a compact Hausdorff space. Applying our algorithm the problem (P ) may be
transformed to P ′ as

(P ′) =

{
minf(x)
x ∈ Ω = [−s, s]n

(16)

where Ω is the set of feasible solutions of the problem. A swarm is a set, which
consists of some feasible solutions of the problem. Assume S as the encoding
space of D. A neighborhood function is a mapping N : Ω → 2Ω, which defines
for each solution S ∈ Ω a subset N (S) of Ω, called a neighborhood. Each
solution in N (S) is a neighbor of S. A local search algorithm starts off with an
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initial solution and then continually tries to find better solutions by searching
neighborhoods [47]. Most generally said, in swarm algorithms the encoding types
S of particles in the search space D are often represented as strings of a fixed-
length L over an alphabet. Without loss of generality, S can be described as

S = zm × · · · × zm︸ ︷︷ ︸
L

(17)

where zm is a finite field about integer number mod m. Most often, it is the
binary alphabet, i.e. m = 2.

Proposition 1. If k alleles are ‘0’s in the nontrivial ideal Ω, i.e. L− k alleles
are uncertain, then θΩ partitions Ω into 2k disjoint subsets as equivalence classes
corresponding to Holland’s schema theorem [48,49], i.e., each equivalence class
consists of some ‘1’s which k alleles in Ω with ‘0’ are replaced by ‘1’s. Let A ∈
S/θΩ, then there is an minimal element m of A under partial order (S,∨,∧,¬),
such that A = {m ∨ x | x ∈ Ω}.
Theorem 1. Let A, B, C are three equivalence classes on θΩ, where θΩ is the
congruence relation about Ω. ∃ x ∈ A, y ∈ B, and x |c y ∈ C, then C = {x |c
y | x ∈ A, y ∈ B}.
Proof. Firstly, we verify that for any d1, d2 ∈ Ω, if x |c y ∈ C, then (x ∨ d1) |c
(y ∨ d2) ∈ C. In fact,

(x ∨ d1) |c (y ∨ d2) =(x ∨ d1)c ∨ (y ∨ d2)c̄
(xc ∨ yc̄) ∨ (d1c ∨ d2c̄)
(x |c y) ∨ (d1c ∨ d2c̄)

(18)

Obviously, (d1c ∨ d2c̄) ∈ Ω, so (x ∨ d1) |c (y ∨ d2) ≡ (x |c y)( mod θΩ), i.e.
(x ∨ d1) |c (y ∨ d2) ∈ Ω.

Secondly, from Proposition 1, ∃m, n, d3, d4 ∈ Ω of A, B, such that x = m∨d3,
y = n ∨ d4. As a result of analysis in Eq.(18), x |c y ≡ (m |c n)( mod θΩ), i.e.,
m |c n ∈ C.

Finally, we verify that m |c n is a minimal element of C and (m |c n) ∨ d =
(m ∨ d) |c (n ∨ d). As a result of analysis in Eq.(18), if d1 = d2 = d, then
m |c n ∨ d = (m ∨ d) |c (n ∨ d). Therefore m |c n is a minimal element of C.

To conclude, C = {(m |c n) ∨ d | d ∈ Ω} = {x |c y | x ∈ A, y ∈ B}. The
theorem is proven.

Proposition 2. Let A, B are two equivalence classes on θΩ, and there exist
x ∈ A, y ∈ B, such that x |c y ∈ C, then, x |c y makes ergodic search C while x
and y make ergodic search A and B, respectively.

Definition 1 (Convergence in terms of probability). Let ξn a sequence of
random variables, and ξ a random variable, and all of them are defined on the
same probability space. The sequence ξn converges with a probability of ξ if

lim
n→∞P (|ξn − ξ| < ε) = 1 (19)

for every ε > 0.
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Definition 2 (Convergence with a probability of 1). Let ξn a sequence
of random variables, and ξ a random variable, and all of them are defined on
the same probability space. The sequence ξn converges almost surely or almost
everywhere or with probability of 1 or strongly towards ξ if

P

(
lim

n→∞ ξn = ξ

)
= 1; (20)

or

P

( ∞⋂
n=1

⋃
k≥n

[|ξn − ξ| ≥ ε]
)

= 0 (21)

for every ε > 0.

Theorem 2. Let x∗ is the global optimal solution to the problem (P ′), and
f∗ = f(x∗). Assume that the clubs-based multi-swarm algorithm provides posi-
tion series xi(t) (i = 1, 2, · · · , n) at time t by the iterated procedure. p∗ is the
best position among all the swarms explored so far, i.e.

p∗(t) = arg min
1≤i≤n

(f(p∗(t− 1)), f(pi(t))) (22)

Then,

P

(
lim

t→∞ f(p∗(t)) = f∗
)

= 1 (23)

Proof. Let

D0 = {x ∈ Ω|f(x)− f∗ < ε} (24)
D1 = Ω \D0

for every ε > 0.
While the different swarm searches their feasible solutions by themselves, as-

sume Δp is the difference of the particle’s position among different club swarms
at the iteration time t. Therefore −s ≤ Δp ≤ s. Rand(−1, 1) is a normal dis-
tributed random number within the interval [-1,1]. According to the update of
the velocity and position by Eqs.(13)∼(14), Δp belongs to the normal distribu-
tion, i.e. Δp ∼ [−s, s]. During the iterated procedure from the time t to t + 1,
let qij denote that x(t) ∈ Di and x(t + 1) ∈ Dj . Accordingly the particles’
positions in the swarm could be classified into four states: q00, q01, q10 and q01.
Obviously q00 + q01 = 1, q10 + q11 = 1. According to Borel-Cantelli Lemma and
Particle State Transference [21], proving by the same methods, q01 = 0; q00 = 1;
q11 ≤ c ∈ (0, 1) and q10 ≥ 1− c ∈ (0, 1).

For ∀ε > 0, let pk = P{|f(p∗(k))− f∗| ≥ ε}, then

pk =

{
0 if ∃T ∈ {1, 2, · · · , k}, p∗(T ) ∈ D0

p̄k if p∗(t) /∈ D0, t = 1, 2, · · · , k (25)
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According to Particle State Transference Lemma,

p̄k = P{p∗(t) /∈ D0, t = 1, 2, · · · , k} = qk
11 ≤ ck. (26)

Hence,
∞∑

k=1

pk ≤
∞∑

k=1

ck =
c

1− c
<∞. (27)

According to Borel-Cantelli Lemma,

P

( ∞⋂
t=1

⋃
k≥t

|f(p∗(k))− f∗| ≥ ε

)
= 0 (28)

As defined in Definition 2, the sequence f(p∗(t)) converges almost surely or
almost everywhere or with probability 1 or strongly towards f∗. The theorem is
proven.

6 Experiment Results and Discussions

The algorithms used for performance comparison were the Standard Particle
Swarm Optimization (SPSO) ([11]) and a Genetic Algorithm (GA) ([50,51]).
These algorithms share many similarities. GA is powerful stochastic global search
and optimization methods, which are also inspired from the nature like the PSO.
Genetic algorithms mimic an evolutionary natural selection process. Generations
of solutions are evaluated according to a fitness value and only those candi-
dates with high fitness values are used to create further solutions via crossover
and mutation procedures. Both methods are valid and efficient methods in
numeric programming and have been employed in various fields due to their
strong convergence properties. Specific parameter settings for the algorithms
are described in Table 1, where D is the dimension of the position, i.e., the
number of condition attributes. Besides the first small scale rough set reduc-
tion problem shown in Table 2, the maximum number of iterations is set as

Table 1. Parameter settings for the algorithms

Algorithm Parameter name Value

Size of the population (even)(int)(10 + 2 ∗ sqrt(D))
GA Probability of crossover 0.8

Probability of mutation 0.01
Swarm size (even)(int)(10 + 2 ∗ sqrt(D))
Self coefficient c1 0.5 + log(2)

PSO(s) Social coefficient c2 0.5 + log(2)
Inertia weight w 0.91
Clamping Coefficient ρ 0.5
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(int)(0.1 ∗ recnum+10 ∗ (nfields−1)) for each trial, where recnum is the num-
ber of records/rows and nfields− 1 is the number of condition attributes. Each
experiment (for each algorithm) was repeated 10 times with different random
seeds. If the standard deviation is larger than 20%, the number of trials were
increased to 20.

To analyze the effectiveness and performance of the considered algorithms,
first we tested a small scale rough set reduction problem shown in Table 2.
In the experiments, the maximum number of iterations was fixed as 10. Each
experiment were repeated 10 times with different random seeds. The results (the
number of reduced attributes) for 10 GA runs were all 2. The results of 10 PSO
runs were also all 2. The optimal result is supposed to be 2. But the reduction
result for 10 GA runs is {2, 3} while the reduction result for 10 PSO runs are
{1, 4} and {2, 3}. Table 3 depicts the reducts for Table 2 (Please also see Figure
5). For the small scale rough set reduction problem, GA has a same result than
PSO. GA only provides one reduct, while PSOs provide one more reduct. There
seems a conflict between the instances 13 and 15. It depends on conflict analysis
and how to explain the knowledge, which will be tackled in future publications.

Table 2. A decision table

Instance c1 c2 c3 c4 d

x1 1 1 1 1 0
x2 2 2 2 1 1
x3 1 1 1 1 0
x4 2 3 2 3 0
x5 2 2 2 1 1
x6 3 1 2 1 0
x7 1 2 3 2 2
x8 2 3 1 2 3
x9 3 1 2 1 1
x10 1 2 3 2 2
x11 3 1 2 1 1
x12 2 3 1 2 3
x13 4 3 4 2 1
x14 1 2 3 2 3
x15 4 3 4 2 2

Further we considered the datasets in Table 4 from AFS1, AiLab2 and UCI3.
Figures 6, 7 and 8 illustrate the performance of the algorithms for lung-cancer,
lymphography and mofn-3-7-10 datasets, respectively. For lung-cancer dataset,
the results (the number of reduced attributes) for 10 GA runs were 10: { 1, 4, 8,
13, 18, 34, 38, 40, 50, 55 } (The number before the colon is the number of con-
dition attributes, the numbers in brackets are attribute index, which represents
1 http://sra.itc.it/research/afs/
2 http://www.ailab.si/orange/datasets.asp
3 http://www.datalab.uci.edu/data/mldb-sgi/data/
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Table 3. A reduction of the data in Table 2

Reduct Instance c1 c2 c3 c4 d

{1, 4}
x1 1 1 0
x2 2 1 1
x4 2 3 0
x6 3 1 0
x7 1 2 2
x8 2 2 3
x9 3 1 1
x13 4 2 1
x14 1 2 3
x15 4 2 2

{2, 3}
x1 1 1 0
x2 2 2 1
x4 3 2 0
x6 1 2 0
x7 2 3 2
x8 3 1 3
x9 1 2 1
x13 3 4 1
x14 2 3 3
x15 3 4 2

Table 4. Datasets used in the experiments

GA PSO MSSO
Dataset Size |C| Class

L R L R L R

lung-cancer 27 56 3 10 1 6 3 6 3
zoo 101 16 7 5 1 5 2 5 3
corral 128 6 2 4 1 4 1 4 1
lymphography 148 18 4 7 1 6 2 6 1
hayes-roth 160 4 3 3 1 3 1 3 1
shuttle-landing-control 253 6 2 6 - 6 - 6 -
soybean-large-test 296 35 15 12 1 10 3 8 3
monks 432 6 2 3 1 3 1 3 1
xd6-test 512 9 2 9 - 9 - 9 -
balance-scale 625 4 3 4 - 4 - 4 -
breast-cancer-wisconsin 683 9 2 4 1 4 2 4 3
mofn-3-7-10 1024 10 2 7 1 7 1 7 1
parity5+5 1024 10 2 5 1 5 1 5 1

a reduction solution); the results of 10 PSO runs were PSO 7: { 1, 6, 12, 27, 29,
35, 41 }, 6: { 2, 3, 12, 22, 25, 56 }, 7: { 2, 3, 8, 12, 22, 31, 49 }; the results of 10
MSSO runs were 6: { 4, 6, 14, 31, 49, 53 }, 6: { 4, 6, 9, 23, 27, 54 }, 6: { 3, 10,
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20, 32, 34, 56 }. For lymphography dataset, the results of 10 GA runs all were
7: { 2, 11, 12, 13, 14, 16, 18 }; the results of 10 PSO runs were PSO 7: { 3, 8, 11,
12, 13, 14, 15 }, 6: { 2, 13, 14, 15, 16, 18 }, 6: { 2, 13, 14, 15, 16, 18 }; the results
of 10 MSSO runs were 6:{ 2, 13, 14, 15, 16, 18 }. For soybean-large-test dataset,
the results of 10 GA runs all were 12: { 1, 3, 4, 5, 6, 7, 13, 15, 16, 22, 32, 35 };
the results of 10 PSO runs were 10:{ 1, 3, 5, 6, 7, 12, 15, 18, 22, 31 }, 10: { 1,
3, 5, 6, 7, 15, 23, 26, 28, 30 }, 10: { 1, 2, 3, 6, 7, 9, 15, 21, 22, 30 }; the results
of 10 MSSO runs were 9: { 1, 3, 5, 6, 7, 15, 22, 30, 34 }, 8: { 1, 3, 4, 6, 7, 10,
15, 22 }, 9: { 1, 3, 5, 6, 7, 13, 22, 25, 31 }. Other results are shown in Table 4,
in which L is the minimum length and R is the number of the obtained reducts.
“-” means that all features cannot be reduced. MSSO usually obtained better
results than GA and PSO, specially for the large scale problems. Although the
three algorithms achieved the same-length results for some datasets, MSSO usu-
ally can provide more reducts for multi-knowledge extraction. It indicates that
MSSO has a better performance than other two algorithms for the larger scale
rough set reduction problem. It is to be noted that PSO usually can obtain more
candidate solutions for the reduction problems.
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Fig. 5. Rule networks based on Table 3
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Fig. 6. Performance of rough set reduction for lung-cancer dataset
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Fig. 7. Performance of rough set reduction for lymphography dataset
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Fig. 8. Performance of rough set reduction for soybean-large-test dataset

7 Conclusions

In this Chapter, we investigated multi-knowledge extraction using particle swarm
optimization and genetic algorithm techniques. The considered approaches dis-
covered the good feature combinations in an efficient way to observe the change
of positive region as the particles explored the search space. The multi-swarm
search approach offer great benefits for multiple reduction problems, because
different individuals encode different reducts. Empirical results indicate that the
proposed approach usually obtained better results than GA and standard PSO,
specially for large scale problems, although its stability need to be improved
in further research. MSSO has better convergence than GA for the larger scale
rough set reduction problem, although MSSO is worst for some small scale rough
set reduction problems. MSSO also can obtain more candidate solutions for the
reduction problems. Empirical results illustrated that the multi-swarm search
approach was an effective approach to solve multi-knowledge extraction.
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Abstract. Several visualization methods have been used to reveal hidden data
structures, facilitating discovery of simplest data models. Insights gained in this
way are used to create constructive neural networks implementing appropriate
transformations that provide simplest models of data. This is an efficient approach
to meta-learning, guiding the search for best models in the space of all data trans-
formations. It can solve problems with complex inherent logical structure that are
very difficult for traditional machine learning algorithms.

Keywords: Meta-learning, machine learning, constructive neural networks, pro-
jection pursuit, visualization.

1 Introduction

Ryszard Michalski has always been interested in discovering comprehensible structures
in the data, and has developed his own multistrategy learning approach [10]. In this
paper we shall look at the problem of finding the best set of transformations to solve
classification and regression problems in the spirit of multistrategy learning. Searching
for transformations that will reveal the inherent structure in the data is very difficult.
Instead of trying to solve all problems with the same universal tool, such as one of the
neural networks, or support vector machine (SVM) algorithms [21], a meta-learning
approach [8] builds the final data model from components that are heterogeneous [7].

Each data model depends on some specific assumptions about the data distribution
in the input space, and is successfully applicable only to some types of problems. For
example SVM and many other statistical learning methods [21] rely on the assumption
of uniform resolution, local similarity between data samples, and may completely fail
in case of high-dimensional functions that are not sufficiently smooth [2]. In such case
accurate solution may require an extremely large number of training samples that will
be used as reference vectors, leading to high cost of computations and creating complex
models that do not generalize well.

The type of solution offered by a given data model may not be appropriate for the
particular data. Each data model defines a hypotheses space, that is a set of functions
that this model may easily learn, providing a particular bias for the model. Although
many basis set expansion networks, including the multilayer perceptron neural networks
(MLPs), are universal approximators (given sufficient number of functions they may
approximate arbitrary data distributions), models created by such networks are not nec-
essarily optimal from the complexity point of view. Linear discrimination models are

J. Koronacki et al. (Eds.): Advances in Machine Learning II, SCI 263, pp. 467–484.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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obviously not suitable for spherical distributions of data, requiring O(N2) parameters to
approximately cover each spherical distribution in N dimensions, where an expansion
in radial functions requires only O(N) parameters. On the other hand many spherical
functions are needed to approximate a hyperplane. Some problems, such as the mul-
tidimensional parity problem, cannot be easily approximated neither by radial nor by
hyperplane functions [6]. An optimal solution may only be found if a model based on
suitable transformations is defined.

In general each supervised learning system may be represented by an operator T
that transforms a given vector X into some output vector Y

T X = Y

The goal is to find an operator T that not only gives correct answers on the training
data but also provides a model that has low Kolmogorov complexity, facilitating easy
interpretation. Operator T may in general be created as a sequence of transformations
(for simplicity recurrent processes are not considered here):

T = T1T2 . . .Tk

For example, initial transformations may define data preprocessing based on linear scal-
ing (standardization or normalization), projection on a low-dimensional space defined
by principal components or by other criteria, or just select a subset of features. Data
preparation may have a crucial influence on algorithms applicable for further training.
Some computationally expensive algorithms require dimensionality reduction to deal
with large datasets. Therefore model selection should not focus only on searching for
suitable classifier or regression tool, selection of supportive transformations is also very
important. Each layer of the MLP network can be seen as a single mapping Ti, although
taken separately these transformations do not have a well-defined goal. The final trans-
formation should provide desired output; for classification tasks this output Y takes the
form of discrete values of class labels, or estimations of probabilities of class labels.
Composition of transformations covers also combinations of many learning algorithms
(classifier committees, boosting etc).

With no a priori knowledge about a given problem finding an optimal sequence of
transformations is a great challenge. Many meta-learning techniques have recently been
developed to deal with the problem of model selection [22,3]. Most of them search for
optimal model characterizing a given problem by some meta-features (e.g. statistical
properties, landmarking, model-based characterization), and by referring to some meta-
knowledge gained earlier. For a given data one can use the classifier that gave the best
result on a similar dataset in the StatLog Project [18]. However, choosing good meta-
features is not a trivial issue as most features do not characterize the complexity of data
distributions. In addition the space of possible solutions generated by this approach is
bounded to already known types of algorithms. General meta-learning algorithm should
browse through all interesting models, searching for the best composition of transfor-
mations. The meta-learning problem may thus be seen as a search in the space of all
possible models composed of transformations. These class of admissible transforma-
tions may be restricted, as for example it has been done in the similarity-based approach
[8]. General search in model space requires a very sophisticated intelligent system and
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search strategies. Some ideas for building such systems and for controlling the process
of composing transformations based on monitoring of model complexity have recently
been proposed in [13,14].

Initial transformation Visualization Final transformation

Fig. 1. After initial transformation and visualization the final transformation is selected

Judicious transformation performed at the beginning of learning does not only lead
to simplification of further learning, but also provides useful information guiding re-
searcher through the set of possible models. Based on structures emerging in low-
dimensional visualizations of a given problem an experienced researcher is able to
construct the best learning strategies to learn from this data. Such approach to meta-
learning is introduced and tested in this paper. In the next section a few dimensionality
reduction algorithms suitable for visualization are presented, and applied in the third
section to the real and artificial data. Upon visual inspection it becomes quite clear
which type of transformation should be applied to the data to create it simplest model.
Numerical tests confirm the superiority of models selected in this way.

2 Visualization Algorithms

Visualization methods are discussed in details in many books, for example [20,23].
Many visualization methods may be useful in our approach to meta-learning, but here
only 5 methods are used. Below a short description of these algorithms is given: first
three well known methods – principal component analysis (PCA), Fisher discriminant
analysis (FDA), and multidimensional scaling (MDS), followed by a description of
two new approaches recently introduced by us – SVM projections [17] and Quality
of Projected Clusters (QPC) projections [16]. Only PCA and MDS are unsupervised
methods, and only MDS is non-linear.

Principal Component Analysis (PCA) is a linear projection method that finds or-
thogonal combinations of input features X = {x1,x2, ...,xN}, with each new direction
accounting for the largest remaining variation in the data. Since no information about
class labels is used PCA transformation may be performed on all available data. Prin-
cipal components Pi that result from diagonalization of data covariance matrix guaran-
tee minimal loss of information when position of points are recreated from their low-
dimensional projections. Taking 1, 2 or 3 principal components and projecting the data
into the space defined by these components yi j = Pi ·X j provides for each input vector
its representative

(
y1 j,y2 j, ...yk j

)
in the target space.

Fisher Discriminant Analysis (FDA) is a supervised method that uses information
about the classes to find projections separating samples from these classes. This pop-
ular algorithm maximizes the ratio of between-class to within-class scatter, seeking a
direction W such that

max
W

JW =
WT SBW
WT SIW

(1)
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where the scatter matrices SB and SI are defined by

SB =
C

∑
i=1

ni

n
(mi−m)(mi−m)T ; SI =

C

∑
i=1

ni

n
Σ̂i (2)

where mi and Σ̂i are the means and covariance matrices for each class and m is the total
mean vector [23]. FDA is frequently used for classification projecting data on a single
line. For visualization generating the second FDA vector in a two-class problem is not
so trivial. This is due to the fact that the rank of the SB matrix for the C-class problems
is C−1. Cheng et al. [4] proposed several solutions to this problem:

– stabilize the SI matrix by adding a small perturbation matrix;
– use pseudoinverse, replacing S−1

I by the pseudoinverse matrix S†
I ;

– use rank decomposition method.

In our implementation pseudoinverse matrix has been used to generate higher FDA
directions.

Multidimensional scaling (MDS) is a non-linear technique used for proximity vi-
sualization [5]. The main idea is to decrease dimensionality of data while preserving
original distances between data points as defined in the high-dimensional space. MDS
methods need only similarities between objects, so explicit vector representation of ob-
jects is not necessary. In metric scaling quantitative evaluation of similarity based on
numerical distance measures (Euclidean, cosine, or any other measure) is used, while
for non-metric scaling qualitative information about the pairwise similarities is suffi-
cient. MDS methods also differ by their cost functions, optimization algorithms, the
number of similarity matrices used, and the use of feature weighting. There are many
measures of topographical distortions due to the reduction of dimensionality, most of
them variants of the stress function:

ST (d) =
n

∑
i> j

(Di j−di j)2 (3)

where di j are distances (dissimilarities) in the target (low-dimensional) space, and Di j

are distances in the input space, pre-processed or calculated directly using some metric
functions. These measures are minimized over positions of all target points, with large
distances dominating in the ST (d). In the k-dimensional target space there are kn pa-
rameters for minimization. For visualization purposes the dimension of the target space
is k = 1− 3. The sum runs over all pairs of vectors and has O(n2) terms. The number
of vectors n may be quite large, making the approximation to the minimization process
necessary [19]. MDS cost functions are not easy to minimize, with multiple local min-
ima representing different mappings. Initial configuration is either selected randomly or
based on projection of data to the space spanned by principal components. Orientation
of axes in the MDS mapping is arbitrary, and the values of coordinates do not have any
simple interpretation, as only relative distances are important. However, if the data has
clear clusters in the input space MDS may show it.

Linear SVM algorithm creates a hyperplane that provides a large margin of classi-
fication, using regularization term and quadratic programming. Non-linear versions are
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based on a kernel trick [21] that allows for implicit mapping of data vectors to a high-
dimensional feature space where the best separating hyperplane (the maximum margin
hyperplane) is constructed. Linear discriminant function is defined by:

gW(X) = WT ·X+ w0 (4)

The best discriminating hyperplane should maximize the distance between decision hy-
perplane defined by gW(X) = 0 and the vectors that are nearest to it, maxW D(W,X(i)).
The largest classification margin is obtained from minimization of the norm ‖W‖2 with
constraints:

Y (i)gW(X(i))≥ 1 (5)

for all training vectors X(i) that belong to class Y (i). Vector W, orthogonal to the dis-
criminant hyperplane, defines direction on which the data vectors are projected, and
thus may be used to create one-dimensional projection. The same may be done using
non-linear SVM based on kernel discriminant:

gW(X) =
Nsv

∑
i=1

αiK(X(i),X)+ w0 (6)

where the summation is over support vectors X(i) that are selected from the training
set. The x = gW(X) values for different classes may be smoothed and displayed as
a histogram, estimating either the p(x|C) class-conditionals or posterior probabilities
p(C|x) = p(x|C)p(C)/p(x).

SVM visualization in more than one dimension requires generation of additional dis-
criminating directions. The first projection on W1 line should give gW1(X) < 0 for vec-
tors from the first class, and gW1(X) > 0 for the second class. This is obviously possible
only for linearly separable data. More directions may be found in the space orthogonal-
ized to the first direction. An alternative approach is to select a subset D(W1) of all
vectors that have projections in the [a(W1),b(W1)] interval containing the zero point
is selected. This interval should include all vectors for which p(x|Ci) class-conditionals
estimated along the x = gW1(X) direction overlap. The second best direction may then
be obtained by repeating SVM calculations in the space orthogonalized to the already
obtained W1 direction, using only the subset of D(W1) vectors, as the remaining vec-
tors are already well separated in the first dimension. SVM training in its final phase
is using anyway mainly support vectors that belong to this subset. However, vectors in
the [a(W1),b(W1)] interval should not include outliers that are far from the decision
border, and therefore may generate a significantly different direction. This process may
be repeated to obtain more dimensions. Each additional dimension should help to de-
crease errors, and the optimal dimensionality is obtained when new dimensions stop
decreasing the number of errors in crossvalidation tests.

In the case of non-linear kernel, gW(X) provides the first direction, while the second
direction may be generated in several ways. The simplest approach is to repeat training
on D(W) subset of vectors that are close to the hyperplane in the extended space using
another kernel.
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The Quality of Projected Clusters (QPC) is a supervised projection pursuit method
that finds most interesting and informative linear projection maximizing the following
index [16]:

QPC(w) = ∑
x

(
A+ ∑

xk∈Cx

G
(
wT (x− xk)

)−A− ∑
xk /∈Cx

G
(
wT (x− xk)

))
(7)

where G(x) is a function with localized support and maximum for x = 0 (e.g. a Gaussian
function), and Cx denotes the set of all vectors that have the same label as x. This index
achieves maximum value for projections on the direction w that group vectors belonging
to the same class into a compact and well separated clusters. It does not enforce linear
separability and is suitable for multi-modal data. Parameters A+,A− control influence
of each term in Eq. (7). For large value of A− strong separation between classes is
enforced, while increasing A+ impacts mostly compactness and purity of clusters. The
shape and width of the G(x) function used in E.q. (7) has influence on convergence.
For continuous G(X) functions gradient-based methods may be used to maximize QPC
index.

Visualizations of data presented in the next section have been obtained by maximiza-
tion of QPC index based on an inverse quartic function

G(x) =
1

1 +(bx)4 (8)

but any bell-shaped function (e.g. Gaussian or bicentral function) that achieves maxi-
mum value for x = 0 and vanish for x→±∞ is suitable here. The QPC index provides
a leave-one-out estimator that measures quality of clusters projected on w direction.
Direct calculation of the QPC index (7), as in the case of all nearest neighbor methods,
requires O(n2) operations. The greatest advantage of using this index is that it is able
to discover non-local structures and multimodal class distributions (e.g. k-separable
datasets with k > 2 [6]). The QPC may be used also (in the same way as the SVM
approach described above) as a base for creation of feature ranking and feature selec-
tion methods. Projection coefficients wi indicate then significance of the i-th feature.
For noisy and non-informative variables values of associated weights should decrease
to zero during QPC optimization.

Not only global, but also local extrema of the QPC index are of interest, as they
may also provide useful insight into data structures and may be used in a committee-
based approach that combines different views on the same data. For complex problems
usually more than one projection is required, therefore one should search for more linear
projections either in the orthogonalized space, or using additional penalty term:

QPC(w;w1) = QPC(w)−λ f (w,w1) . (9)

This term should provide punishment for solutions that are too similar to those already
found, therefore the value of f (w,w1) should become large for directions w close to
the previous direction w1. Powers of the scalar product between these two directions
may be used for this purpose, f (w,w1) = (w1

T ·w)2. Repeating this procedure leads to
creation of a sequence of unique interesting projections [16].
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3 Illustrative Examples

Visualization methods described above will be used to determine what kind of trans-
formations should be used to discover structures hidden in the multidimensional data.
The usefulness of this meta-learning approach has been tested on several datasets: one
artificial binary dataset, four real datasets downloaded from the UCI Machine Learn-
ing Repository [1], and a microarray gene expression data [11]. A summary of these
datasets is presented in Tab. 1; their short description follows:

1. Parity 8, 8-bit parity dataset, with 8 binary features and 256 vectors.
2. Heart disease dataset consisting of 270 samples, each described by 13 attributes,

150 cases labeled as “absence”, and 120 as “presence” of heart disease.
3. Wisconsin breast cancer dataset [24] contains samples describing results of biop-

sies on 699 patients, with 458 biopsies labeled as “benign”, and 241 as “malig-
nant”. Feature 6 has 16 missing values, removing corresponding vectors leaves 683
examples.

4. Leukemia, microarray gene expressions for two types of leukemia (ALL and
AML), with a total of 47 ALL and 25 AML samples measured with 7129 probes
[11]. Visualization and evaluations of this data is based here on pre-selected 100
best features, done by simple feature ranking using FDA index.

5. Monks 1 dataset contains 124 cases, where 62 samples belong to the first class, and
the remaining 62 to the second. Each sample is described by 6 attributes. Logical
function has been used to created class labels.

Table 1. Summary of used datasets

Title #Features #Samples #Samples per class Source
Parity 8 8 256 128 C0 128 C1 artificial

Heart 13 270 150 “absence” 120 “presence” [1]
Wisconsin 10 683 444 “benign” 239 “malignant” [24]
Leukemia 100 72 47 “ALL” 25 “AML” [11]
Monks 1 6 124 62 C0 62 C1 [1]

For each dataset one and two-dimensional mappings have been created using MDS,
PCA, FDA, SVM and QPC algorithms (Figs. 2-6). On the basis of these visualizations
classifier that should be most appropriate for particular data distribution has been chosen
from the following list:

1. Naive Bayesian Classifier (NBC)
2. k-Nearest Neighbours (kNN)
3. Separability Split Value Tree (SSV) [12]
4. Support Vector Machines with Linear Kernel (SVML)
5. Support Vector Machines with Gaussian Kernel (SVMG)
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Fig. 2. 8-bit parity dataset, from top to bottom: MDS, PCA, FDA, SVM and QPC
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Fig. 3. Heart data set, from top to bottom: MDS, PCA, FDA, SVM and QPC
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Fig. 4. Wisconsin data set, from top to bottom: MDS, PCA, FDA, SVM and QPC
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Fig. 5. Leukemia data set, from top to bottom: MDS, PCA, FDA, SVM and QPC
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Fig. 6. Monks 1 data set, from top to bottom: MDS, PCA, FDA, SVM and QPC
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Some methods require standardization of data before classification. Analyzing the one-
dimensional probability distributions and two-dimensional scatterograms, Figs. 2 – 6 it
is not difficult to determine the particular classifier bias that should lead to the simplest
model of a given dataset. To check if an optimal choice has been made comparison with
classification accuracies for each dataset using all classifiers listed above has been done,
in the original as well as reduced one and two-dimensional spaces. 10-fold crossvali-
dation tests results are collected in Tables 2-6, with accuracies and standard deviations
given for each dataset. For the kNN classifier the number of nearest neighbours has been
automatically selected from the 1−10 range using crossvalidation estimation. Also the
SVM parameters C and σ have been optimized in an automatic way using crossvalida-
tion estimations. All calculations have been performed using the Ghostminer package
developed in our group [9].

For all datasets visualization helped to estimate reliability of predictions for indi-
vidual data samples, showing how far each case is from the decision border and how
strong are the overlaps between different classes in this region. Estimation of confidence
of predictions is very important in many applications. It may be particularly useful in
problems when decision borders are quite complex, and as a result simple rule-based
systems will not be able to provide good approximation. The only way to understand
such data will then be to use flexible classifiers with visualization of results, making the
solution more comprehensible.

High-dimensional parity problem is very difficult for most classification methods.
Many papers have been published on special neural network models for parity func-
tions, and the reason is quite obvious, as Fig. 2 illustrates: linear separation cannot be
achieved by simple transformations because this is a k-separable problem that for n bit
strings may be easily separated only into n+1 intervals [15,6]. MDS is completely lost
and does not show any interesting structure, as all vectors from one class have their
nearest neighbors from the opposite class. PCA and SVM find a very useful projection
direction [1,1..1], but the second direction does not help at all. FDA shows significant
overlaps for projection on the first direction.

Only the QPC index finds both directions that are quite useful. Points that are in
small clusters projected on the first direction belong to a large cluster projected on the
second direction, giving much better chance for correct classification. This is a very
interesting example showing that visualization may help to solve a difficult problem in
a perfect way even when almost all classifiers fail. Looking at these pictures one can
notice that because data are not linearly separable, probably the best classifier to solve
this problem should be:

– any decision tree, after transformation to one or two-dimensions by PCA, SVM or
QPC;

– NBC, in one or two-dimensions, combining directions for the most robust solution,
provided that it will use density estimation based on a sum of Gaussian functions
or similar localized kernels;

– kNN on the 1D data reduced by PCA, SVM or QPC, with k=1, although it will
make a small error for the two extreme points.

This choice agrees with the results from tables 2-6, where the highest accuracy (99.6±
1.2) is obtained by the SSV classifier on the 2D data transformed by SVM or QPC
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Table 2. NBC 10-fold crossvalidation accuracy for datasets with reduced features

# Features Parity 8 Heart Wisconsin Leukemia Monks1

PCA 1 99.21±1.65 80.74±6.24 97.36±2.27 98.57±4.51 56.98±14.12
PCA 2 99.23±1.62 78.88±10.91 96.18±2.95 98.57±4.51 54.67±13.93
MDS 1 38.35±7.00 75.55±6.80 96.63±1.95 92.85±7.52 67.94±11.24
MDS 2 30.49±13.79 80.74±9.36 95.16±1.70 98.57±4.51 63.52±16.02
FDA 1 75.84±10.63 85.18±9.07 97.07±0.97 100±0.00 72.05±12.03
FDA 2 74.56±10.69 84.07±8.01 95.46±1.89 100±0.00 64.48±17.54
SVM 1 99.23±1.62 85.92±6.93 95.90±1.64 100±0.00 70.38±10.73
SVM 2 99.21±1.65 83.70±5.57 97.21±1.89 100±0.00 71.79±8.78
QPC 1 99.20±2.52 81.48±6.53 96.33±3.12 100±0.00 72.56±9.70
QPC 2 98.41±2.04 84.44±7.96 97.21±2.44 100±0.00 100±0

ALL 23.38±6.74 72.22±4.70 95.46±2.77 78.28±13.55 69.35±16.54

Table 3. kNN 10-fold crossvalidation accuracy for datasets with reduced features (optimal k value
in parenthesis)

# Features Parity 8 Heart Wisconsin Leukemia Monks1

PCA 1 99.20±1.68 (1) 75.92±9.44 (10) 96.92±1.61 (7) 98.57±4.51 (2) 53.97±15.61 (8)
PCA 2 99.21±1.65 (1) 80.74±8.51 (9) 96.34±2.69 (7) 98.57±4.51 (3) 61.28±17.07 (9)
MDS 1 43.73±7.44 (4) 72.96±7.62 (8) 95.60±1.84 (7) 91.78±7.10 (4) 69.48±10.83 (8)
MDS 2 48.46±7.77 (1) 80.37±8.19 (6) 96.48±2.60 (3) 97.32±5.66 (8) 67.75±16.51 (9)
FDA 1 76.60±7.37 (10) 84.81±5.64 (8) 97.35±1.93 (5) 100±0.00 (1) 69.35±8.72 (7)
FDA 2 99.23±1.62 (1) 82.96±6.34 (10) 96.77±1.51 (9) 100±0.00 (1) 69.29±13.70 (9)
SVM 1 99.61±1.21 (1) 82.59±7.81 (9) 97.22±1.98 (9) 100±0.00 (1) 70.12±8.55 (9)
SVM 2 99.61±1.21 (1) 82.96±7.44 (10) 97.36±3.51 (10) 100±0.00 (1) 69.29±10.93 (9)
QPC 1 99.21±1.65 (1) 81.85±8.80 (10) 97.22±1.74 (7) 100±0.00 (1) 81.34±12.49 (3)
QPC 2 98.44±2.70 (1) 85.55±4.76 (10) 96.62±1.84 (7) 100±0.00 (1) 100±0 (1)

ALL 1.16±1.88 (10) 79.62±11.61 (9) 96.34±2.52 (7) 98.57±4.51 (2) 71.15±12.68(10)

method. NBC and kNN results are not worse from the statistical point of view (results
are within one standard deviation). kNN results on the original data with k≤ 10 are
always wrong, as all 8 closest neighbors belong to the opposite class. After dimension-
ality reduction k=1 is sufficient.

It is also interesting to note the complexity of other models: SVM takes all 256 vec-
tors as support vectors, achieving results around the base rate of 50%, with the exception
of SVM with Gaussian kernel that does quite well on the one and two-dimensional data
reduced by SVM and QPC projections. SSV creates moderately complex tree with 7
leaves and a total of 13 nodes.

Visualization in Fig. 2 also suggest that using 2D QPC projected data the nearest
neighbor rule may be easily modified: instead of a fixed number of neighbors for vector
X, take its projections y1,y2 on the two dimensions, and count the number of neighbors
ki(εi) in the largest interval yi± εi around yi that contain vectors from a single class
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Table 4. SSV 10-fold crossvalidation accuracy for datasets with reduced features (total number
of nodes/leaves in parenthesis)

# Features Parity 8 Heart Wisconsin Leukemia Monks1

PCA 1 99.21±1.65 (13/7) 79.25±10.64 (3/2) 97.07±1.68 (3/2) 95.71±6.90 (7/4) 57.94±11.00 (3/2)
PCA 2 99.23±1.62 (13/7) 79.62±7.03 (15/8) 97.36±1.92 (3/2) 95.81±5.16 (7/4) 61.34±11.82 (11/6)
MDS 1 47.66±4.69 (1/1) 77.40±6.16 (3/2) 97.07±1.83 (3/2) 91.78±14.87 (3/2) 68.58±10.44 (3/2)
MDS 2 49.20±1.03 (1/1) 81.11±4.76 (3/2) 96.19±2.51 (9/5) 95.71±6.90 (7/4) 66.98±12.21 (35/18)
FDA 1 73.83±6.97 (17/9) 84.07±6.77 (3/2) 96.92±2.34 (3/2) 100±0.00 (3/2) 67.82±9.10 (3/2)
FDA 2 96.87±3.54 (35/18) 83.70±6.34 (3/2) 96.93±1.86 (11/6) 100±0.00 (3/2) 68.65±14.74 (3/2)
SVM 1 99.23±1.62 (13/7) 83.33±7.25 (3/2) 97.22±1.99 (3/2) 100±0.00 (3/2) 70.32±16.06 (3/2)
SVM 2 99.61±1.21 (13/7) 84.81±6.63 (3/2) 97.22±1.73 (3/2) 100±0.00 (3/2) 69.35±9.80 (3/2)
QPC 1 99.20±2.52 (13/7) 82.22±5.46 (9/5) 96.91±2.01 (3/2) 100±0.00 (3/2) 82.43±12.22 (47/24)
QPC 2 99.61±1.21 (13/7) 83.33±7.25 (13/7) 96.33±2.32 (3/2) 100±0.00 (3/2) 98.46±3.24 (7/4)

ALL 49.2±1.03 (1/1) 81.48±4.61 (7/4) 95.60±3.30 (7/4) 90.00±9.64 (5/3) 83.26±14.13 (35/18)

Table 5. SVML 10-fold crossvalidation accuracy for datasets with reduced features (number of
support vectors in parenthesis)

# Features Parity 8 Heart Wisconsin Leukemia Monks1

PCA 1 39.15±13.47 (256) 81.11±8.08 (118) 96.78±2.46 (52) 98.57±4.51 (4) 63.71±10.68 (98)
PCA 2 43.36±7.02 (256) 82.96±7.02 (113) 96.92±2.33 (53) 97.14±6.02 (4) 63.71±10.05 (95)
MDS 1 42.98±5.84 (256) 77.03±7.15 (170) 95.60±2.59 (54) 91.78±9.78 (28) 69.61±11.77 (88)
MDS 2 43.83±8.72 (256) 82.96±6.09 (112) 96.92±2.43 (52) 97.32±5.66 (5) 64.74±16.52 (103)
FDA 1 45.73±6.83 (256) 85.18±4.61 (92) 97.21±1.88 (52) 100±0.00 (2) 69.93±11.32 (80)
FDA 2 44.16±5.67 (256) 84.81±5.36 (92) 96.77±2.65 (51) 100±0.00 (3) 69.23±10.57 (80)
SVM 1 54.61±6.36 (256) 85.55±5.36 (92) 97.22±1.26 (46) 100±0.00 (2) 71.98±13.14 (78)
SVM 2 50.29±9.28 (256) 85.55±7.69 (92) 96.92±2.88 (47) 100±0.00 (5) 72.75±10.80 (80)
QPC 1 41.46±9.57 (256) 82.59±8.73 (118) 96.34±2.78 (62) 100±0.00 (2) 67.50±13.54 (82)
QPC 2 43.01±8.21 (256) 85.92±5.46 (103) 96.62±1.40 (54) 100±0.00 (2) 66.92±16.68 (83)

ALL 31.61±8.31 (256) 84.44±5.17 (99) 96.63±2.68 (50) 98.57±4.51 (16) 65.38±10.75 (83)

Table 6. SVMG 10-fold crossvalidation accuracy for datasets with reduced features (number of
support vectors in parenthesis)

# Features Parity 8 Heart Wisconsin Leukemia Monks1

PCA 1 99.20±1.68 (256) 80.00±9.43 (128) 97.36±2.15 (76) 98.57±4.51 (20) 58.84±12.08 (102)
PCA 2 98.83±1.88 (256) 80.00±9.99 (125) 97.22±2.22 (79) 97.14±6.02 (22) 67.17±17.05 (99)
MDS 1 44.10±8.50 (256) 73.70±8.27 (171) 95.74±2.45 (86) 91.78±7.10 (36) 64.67±10.88 (92)
MDS 2 43.04±8.91 (256) 82.59±7.20 (121) 96.63±2.58 (78) 98.75±3.95 (27) 62.17±15.47 (104)
FDA 1 77.76±7.89 (256) 85.18±4.61 (106) 97.65±1.86 (70) 100±0.00 (12) 72.37±9.29 (85)
FDA 2 98.84±1.85 (256) 84.81±6.16 (110) 97.07±2.06 (74) 100±0.00 (15) 70.96±10.63 (85)
SVM 1 99.61±1.21 (9) 85.18±4.61 (107) 96.93±1.73 (69) 100±0.00 (14) 72.82±10.20 (77)
SVM 2 99.61±1.21 (43) 84.07±7.20 (131) 96.92±3.28 (86) 100±0.00 (21) 68.65±13.99 (93)
QPC 1 99.21±1.65 (256) 82.59±10.33 (130) 97.07±1.82 (84) 100±0.00 (10) 67.43±17.05 (84)
QPC 2 98.44±2.70 (24) 85.18±4.93 (132) 96.33±1.87 (107) 100±0.00 (12) 99.16±2.63 (45)

ALL 16.80±22.76 (256) 82.22±5.17 (162) 96.63±2.59 (93) 98.57±4.51 (72) 78.20±8.65 (87)

only, summing results from both dimensions k1(ε1)+ k2(ε2). This is an interesting new
version of the kNN method, but it will not be explored here further.

Cleveland Heart data Fig. 3 is rather typical for biomedical data. The information
contained in the test data is not really sufficient to make a perfect diagnosis. Almost all
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projections show comparable separation of a significant portion of the data, although
looking at probability distributions in one dimension SVM and FDA seem to have a bit
of an advantage. In such case strong regularization is advised to improve generalization.
For kNN this means rather large number of neighbors (in most cases 10, the maximum
allowed here, was optimal), for decision tree strong pruning (SSV after FDA has only
a root node and two leaves), while for SVM rather large value of C parameter and (for
Gaussian kernels) large dispersions, that will lead to a significant number of support
vectors.

The best recommendation for this dataset is to apply the simplest classifier – SSV or
linear SVM on FDA projected data. Comparing this recommendation with calculations
presented in tables 2-6 confirms that this is the best choice.

Wisconsin breast cancer dataset is similar to Cleveland Heart data. It shows much
stronger separation (Fig. 4) of the cases that belong to the two classes for all types
of visualization. It is quite likely that this data contains several outliers. All methods
give comparable results, although reduction of dimensionality to two dimensions helps
quite a bit to decrease the complexity of the data models, except for the SVM that
achieves essentially the same accuracy requiring similar number of support vectors for
the original and for the reduced data.

Again, the simplest classifier is quite sufficient here, SSV on FDA or QPC projec-
tions with a single threshold (a tree with just two leaves), or more complex (about 50
support vectors) SVM model with linear kernel on 2D data reduced by linear projection.
One should not expect that more information can be extracted from this data.

Leukemia data showed a remarkable separation using both one and two-dimensional
QPC, SVM and FDA projections (Fig. 5), providing more interesting solution than
MDS or PCA methods. Choosing one of the three linear transformations (for exam-
ple the QPC), and projecting original data to the one-dimensional space, SSV decision
tree, kNN, NBC and SVM classifiers, give 100% accuracy in the 10CV tests (Table 5).
All these models are very simple, with k=1 for kNN, or decision trees with 3 nodes, or
only 2 support vectors for linear SVM. Results on the whole data are much worse than
on the projected features.

In this case dimensionality reduction is the most important factor, combining the
activity of many genes into a single profile. As the projection coefficients are linear the
importance of each gene in this profile may be easily evaluated.

The last dataset used in this section is Monks 1. This data provides a very interest-
ing example how visualization can help to choose which classificator should be used.
Almost all visualization methods (MDS, PCA, FDA and SVM, Fig. 6) for one and two-
dimensional projections do not show interesting structure. However, the 2D scatterplot
of the QPC projection shows quite clear structure that can easily be separated using
decision tree as classifier (SSV) on the reduced data. Moreover, a very simple tree with
7 nodes and 4 leaves is created. Comparing this with the results in Table 4 one can con-
firm that this is really the best possible classification method for this data, giving in most
crossvalidations 100% accuracy. Moreover, analysis of the QPC projection coefficients
helps to convert the obtained solution to a set of logical rules in the original space.
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4 Conclusions

The holy grail of computational intelligence is to create algorithms that will automati-
cally discover the best model for any data. There is no hope that a single method will
be always the best and therefore multistrategy approaches [10] should be developed.
Most machine learning methods developed so far may be presented as sequences of
transformations. Searching in the space of all possible transformations may be done in
an automatic way if a restricted framework for building models is provided, such as
the similarity based framework [8]. Even in such restricted frameworks the space of
possible transformations is huge, and thus the search for good models is very difficult.
Linear separability is the most common, but not the best goal of learning. Initial trans-
formation may show non-linear structures in the data that – if noticed – may be easy to
handle with specific transformations.

Visualization may help to notice what type of algorithms are the most promising.
Several linear and nonlinear visualization methods presented here proved to be useful
in dimensionality reduction, evaluation of the reliability of classification for individual
cases, but also discovering whether simple linear classifier, nearest neighbor approach,
radial basis function expansion, naive Bayes, or a decision tree will provide simplest
data model. In particular the QPC index recently introduced [16] proved to be quite
helpful, showing structures in the Monk 1 problem that other methods were not able
to reveal. Combining visualization and transformation-based systems should bring us
significantly closer to practical systems that use meta-learning to create automatically
the best data models.
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Abstract. Neural network techniques and artificial immune systems (AIS) have 
been successfully applied to many problems in the area of anomaly activity de-
tection and recognition. The existing solutions use mostly static approaches, 
which are based on collection viruses or intrusion signatures. Therefore the ma-
jor problem of traditional techniques is detection and recognition of new viruses 
or attacks. This chapter discusses the use of neural networks and artificial im-
mune systems for intrusion and virus detection. We studied the performance of 
different intelligent techniques, namely integration of neural networks and AIS 
for virus and intrusion detection as well as combination of various kinds of neu-
ral networks in modular neural system for intrusion detection. This approach 
has good potential to recognize novel viruses and attacks.  

1   Introduction 

At present one of the forms of world space globalization is cyber space globalization, 
because of increasing of a number of computers connected to the Internet. The rapid 
expansion of network-based computer systems has changed the computing world in 
the last years. As a result the number of attacks and criminals concerning computer 
networks are increasing. Due to the increasing computer incidents because of cyber-
crime, construction effective protecting systems are important for computer systems 
security. There are many different techniques to build computer security systems 
[1,2,3]. The traditional approaches use as a rule static models, which are based mostly 
on signature analysis [4]. It consists of collecting and analyzing of viruses or intrusion 
signatures. The main problem of signature approach is inability to detect new viruses 
and attacks. Besides, this approach demands time for signature database updating. 
The methods of heuristic analysis [5], which were developed for disadvantages re-
moval of traditional approach for malware detection, are still a long way off perfec-
tion. The heuristic analyzers are frequently finding malicious code where it absent and 
vice versa. 

To overcome these limitations, the AIS and neural networks can be effectively 
used to build computer security systems. In order to achieve maximal performance we 
study different intelligent techniques, namely artificial neural networks and artificial 
immune systems. In comparison with conventional approaches such technique has 
ability to detect novel viruses and attacks in real time. Besides, this allows getting 
more accurate results. 
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The rest of the chapter is organized as follows. Section 2 presents overview of arti-
ficial immune systems (AIS), as well as integration of AIS and neural networks for 
malicious code detection. Section 3 tackles different neural network techniques for in-
trusion detection and recognition. 

2   Integration of Artificial Immune Systems and Neural Network 
Techniques for Malicious Code Detection 

The actual researches in the information security field are directed to creation on such 
new methods that will be capable to detect unknown malicious code. The biologi-
cally-inspired and ready-built on basic principals of Biological Immune Systems 
(BIS) [1], Artificial Immune Systems method, thanks to distributed computational 
power [2, 3], is allow to detect not only known but unknown malware. Combining of 
two methods of artificial intelligence (Artificial Neural Networks method [6, 7] and 
Artificial Immune Systems method) let us developed a new technique of detection of 
malicious code. This technique allows to avoid the main weaknesses of signature ana-
lyzers and to detect unknown malware. 

2.1   The Biological Immune System Overview 

The biological immune system is unique protective mechanism which defends organ-
ism from invaders: harmful bacteria and viruses. The BIS capable to detect foreign 
cells and destroy them, and based on synthesis of special proteins – antibodies, which 
capable to bind with foreign material. Every day BIS face with a dozens invaders and 
successfully struggle against them. 

The biological immune system is based on capability of antibodies to distinguish be-
tween self (cells of own body) and nonself (antigens, foreign substance) [1]. For com-
plete and successful detection of wide variety of antigens the BIS must generate a large 
variety of detectors (B-lymphocytes and T-lymphocytes). Lymphocytes are formed from 
the bone marrow stem cells and initially incapable of antigens detect. In order to acquire 
immunological ability they have to go through maturation process. T-lymphocytes are 
mature in thymus and B- lymphocytes are mature in lymph nodes. During the maturation 
process only fittest lymphocytes are survived. Mature lymphocytes have on the own sur-
face specific detectors which able to react on specific antigens. Lymphocytes circulate 
through the body and perform the function of antigens detection [8,9]. 

When lymphocyte detects an antigen the process called clonal selection is occurred 
[10]. The clonal selection process consists in proliferation (cycle of cell division) 
those lymphocytes who detected a virus. As a result the large population of identical 
detectors is formed. These generated lymphocytes are reacting on the same antigen 
and allow to BIS timely eliminating manifestation of disease. 

Another important process in the BIS is immune memory [9]. Immune memory 
keeps information about previous infection and owing to this information defense 
body against repeated infection. Immune memory consists of detectors which in  
the past detected antigens. These detectors circulate in the body at long time and form  
the immune memory. By repeated infection antigens can be detected quickly since the 
BIS already have lymphocytes which react on this infection. Described processes 
showed in Figure 1. 
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Fig. 1. Basic principles of the biological immune system: stage of lymphocytes evolution 

2.2   The Artificial Immune Systems Overview 

The AIS is founded on the same processes as BIS: detectors generation, detectors 
maturation, detection process, detectors cloning and mutation, immune memory crea-
tion. Let’s view in detail each process (Fig. 2 shows processes as flow block). 

Process of detectors creation in computer system represents a random generation of 
immune detectors population. Each of them can be, for example, as binary string of 
fixed size [11]. At this stage generated immune detectors have analogy with immature 
lymphocytes. 

 

 
 

Fig. 2. Block-diagram model of artificial immune system: AIS interprocess communication 
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After generation detectors undergo a selection process. During the selection proc-
ess detectors are received training in self – nonself recognition. But not all of immune 
detectors can get ability to correct pattern recognition. Even after training process 
some of them detect self as nonself and vice versa. These detectors named unsuitable 
detectors and should be eliminating. As a result of the selection process unsuitable de-
tectors are eliminated and survive only those which able to distinguish between self 
and nonself. S. Forest at al. [12] proposed negative selection algorithm based on the 
principles of self – nonself discrimination in the BIS. According to negative selection 
algorithm immune detectors are compared with set of self pattern. If detector is simi-
lar to self pattern, it is reputed as negative and destroyed. Only those detectors survive 
which are structurally different from self data. For matching between detectors and 
pattern can be applied different rules: bit-by-bit comparison, r-contiguous matching 
[13] and r-chunk matching [14]. Mature detectors structurally different from self pat-
tern therefore react only against nonself pattern. 

Mature detectors circulate in computer systems. For maintenance of wide variety 
of structurally different detectors, each immune detector has a lifecycle [1,3]. The 
lifecycle is a time during immune detector can be found in the computer system. 
When the life time ends the detector is destroyed but if the detector detected anomaly 
(in our case it is malicious code) then lifecycle is prolong. Lifecycle mechanism al-
lows the AIS to unload from weak detectors and permanently provide a space for new 
various immune detectors. 

When malware enters into the computer system it often infects a large quantity of 
files. For quick reacting and eliminating virus manifestation we need a great number 
of similar detectors, which react on the same malicious code. For large quantity of 
similar detectors generations in AIS a cloning process is exists. During cloning proc-
ess immune detector which found malicious code undergoes a cloning mechanism. 
Cloning means a large quantity of similar detectors creation. This mechanism allows 
the AIS infection elimination in a short space of time. Along with cloning a mutation 
mechanism is used [15]. Mutation process means introduce small random changes in 
detectors structure (for example, inverting of several bits in binary string) thereby as 
much as possible similar structure to finding virus acquires. 

When the malicious code is eliminated then most of cloning detectors die because 
of lifecycle. However the fittest of them are kept as memory detectors. A set of such 
detectors are formed an immune memory. The immune memory keeps information 
about all malicious code which a computer system infects. The same as BIS the im-
mune memory allows the AIS to quickly react on repeated infection and to fight 
against it. 

2.3   Application of Neural Networks in Artificial Immune System to Malicious 
Code Detection 

A quality of malicious code detections depends on the structure of immune detectors. 
We considered the immune detector as a binary string. This structure is comfortable, 
as it corresponds with data presentation in computer systems, and allows implement 
simple matching rules. However binary structure applies some restrictions. As it is 
well known bit-by-bit comparison is one of the slowest operations and needs heavy 
computational power. We propose the artificial neural networks (ANN) applying for 
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the immune detectors formation. This approach for the detectors generation should 
remove weaknesses of the binary string structure and should increase a rate of the ma-
licious code detection. 

The ANN for vector quantization was proposed by T. Kohonen in 1982 and named 
as learning vector quantization (LVQ) [16]. The LVQ uses for classification and im-
age segmentation problems. The LVQ is a feedforward artificial neural network with 
an input layer, a single hidden competitive Kohonen layer and an output layer (see 
Fig.3). 

The output layer has as many elements as there are classes. Processing elements of 
the hidden (Kohonen) layer are grouped for each of these classes. Each class can be 
represents as a number of cells of the input space of samples. The centre of each cell 
corresponds to a codebook vector. One codebook vector represents one class only. 
The main idea of vector quantization is to cover the input space of samples with 
codebook vectors. A codebook vector can be seen as a hidden (Kohonen) neuron or a 
weight vector of the weights between all input neurons and the regarded Kohonen 
neuron respectively [17]. 

The Learning consists in modifying weights in accordance with adapting rules and, 
therefore, changing the position of a code vector in the input space. Many methods  
of training of the LVQ are exists [18]. We used the competitive training with one  
winner.  

 

 

Fig. 3. LVQ one hidden competitive layer of neurons fully connected with the input layer, and 
the linear output layer consists of a number of neurons equal of a number of classes 

Let’s examine the process of detectors generation based on the LVQ. First an ini-
tial population of detectors is created. Each detector represents one LVQ. Further we 
will determine a set of self files consisting of different utilities of operating system, 
various software files etc, and one or a few malicious code (or signature of malicious 
code). Both self files and malicious virus will be used for LVQ learning. It is neces-
sary to be sure that files from the set of self’s are noninfected (without malicious 
code). Presence of malicious code or its signature in a learning sample allows a ma-
ture detector to tell the difference between self and nonself. Of course the more there 
are diverse files in the learning sample the more structurally different detectors are 
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got. It is desirable to have all kind of malicious cod (worms, Trojans, file infectors 
etc.) in the learning sample. However it is not compulsory condition. As stated above 
there are differences between malicious software and noninfected files, which influ-
ence on the decision of a mature detector. By learning we denote to the LVQ where 
data from noninfected files and where data from malicious code (learning by instruc-
tion). A set of mature LVQ form a population of detectors which circulate into the 
computer system. In process of checking of a file the LVQ identifies unknown pattern 
and determines its proximity to one or another sample vector. Depending on this the 
LVQ takes a decision about the nature of files – self or malicious code. 

General algorithm of neural immune detectors activity can be represents as next  
iterations: 

 

1. Neuronet immune detectors generations. Each immune detector represents one 
neural network. 

2. Detectors learning. The training set of self and nonself files is formed. 
3. Unsuitable detectors eliminations. 
4. Circulation of neuronet immune detectors in the computer system. On this stage 

detectors during scanning different files perform the function of malicious code  
detection. 

5. Neuronet immune detectors eliminations by lifecycle. 
6. Detection of malicious code. 
7. Detectors cloning and mutation. On this iteration the AIS is formed a large quan-

tity of similar detectors which react on the same malicious code. 
8. Immune memory creation. Detectors of immune memory keep information about 

previous infections. 

2.4   Description of Experimental Model of the AIS Security System 

We used next structure of the LVQ for detectors formation – 128 neurons of the input 
layer, 10 neurons of the hidden layer and 2 neurons of the output layer (such detector 
is illustrated in Fig. 3, where ,128=n 10=m ). A learning sample for one detector is 
formed as follows: 

• four noninfected files from self’s and one malicious code are selected randomly; 
• from each selected file in fives fragments (binary string with length equal 128 bits) 

are randomly chosen. Then these fragments step by step will be inputted to the 
LVQ. 

Competitive learning with one winner is used for the LVQ training. It is learning by 
instruction that is we indicate during training to the neural network where data from 
noninfected files is and where data from malicious code is. As a result of learning we 
get 10 code vectors in the hidden layer and they correspond with two output classes. 
The first class consists from 8 code vectors (noninfected files). The second class con-
sists from 2 code vectors (malicious code). 

As a result we will have a set of structurally different mature detectors since ran-
dom process for files selecting is used for detectors learning. These detectors will be 
used for file identifications and decision making – is it self file or malicious virus? 
Experimental results in next section are described. 
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An immature detector compares any input pattern (independently of malicious 
codе or noninfected file) to the first class (noninfected files) with probability 80% and 
to the second class (malicious code) with probability 20% since we divide the input 
space of samples in proportions 8 to 2 (see above). A mature detector (after the LVQ 
learning) will correlate an input pattern from a noninfected file with the first class 
with an expectancy of hitting more then 80%. Accordingly, the mature detector will 
correlate an input pattern from malicious code with the second class with expectancy 
of hitting more then 20%. The detector divides the under test file into pieces of 128 
bytes apiece, examines them for malicious code in series and calculates total expec-
tancy of hitting in one or another class: 

%100*N
XP = ,                                            (1) 

where X is a number of pieces running in one of a class, N is a total number of pieces 
of an under test file. 

Let’s review an example: 
The file diskcopy.com (utility of operation system): file size is 7168 byte – 56 

pieces of 128 bytes. A detector correlated 49 pieces with the first class (self) that was 

%5,87%10056
49 =⋅=SP  expectancy of hitting. Accordingly an expectancy of hit-

ting in the second class (malicious code) was %5,12%10056
7 =⋅=MP . Detector’s 

decision was noninfected file. 
Experimental model of AIS for malicious code detection showed in Figure 4. 
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Fig. 4. Model of AIS for malicious code detection: NID – neuronet immune detector 
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2.5   Experimental Results 

For our experiments we choose “wild” malwares, which were in the top 10 of the 
most prevalence at January and February in many countries. The latest malware using 
new algorithms and methods are chosen for test in order to observe the ability of neu-
ronet immune detectors to find unknown malware. 

In the first experiment we train detectors using well-known, not new different  
malware. They were owned to various classes: network worms (Email-Worm.Win32. 
Eyeveg.m, Net-Worm.Win32.Bozori.a), Trojans (Trojan-Downloader.Win32.Adload.a), 
classic viruses (Virus.Win32.Hidrag.d). Malware are classed according to Kaspersky 
classification [19]. Table 1 shows the results of malware detection. In all tables we used 
next parameters: SP is expectancy that the under test file is noninfected (self) and MP is 

expectancy that the under test file is malicious code. If SP > 0.8 then detector takes un-

der test file as self. If SP < 0.8 then detector takes under test file as malware. 

Table 1. The results of malware detection 

Malware Detector 1 

SP / MP  

Detector 2 

SP / MP  

Detector 3 

SP / MP  

Detector 4 

SP / MP  

Backdoor.Agobot  0.79/0.21 0.72/0.28 0.72/0.28 0.85/0.15 

E-Worm.Bagle  0.69/0.31 0.51/0.49 0.99/0.01 0.74/0.26 

E-Worm.Brontok  0.74/0.26 0.60/0.40 0.98/0.02 0.78/0.22 

E-Worm.LovGate  0.72/0.28 0.53/0.47 0.99/0.01 0.74/0.26 

E-WormMydoom  0.74/0.26 0.66/0.34 0.81/0.19 0.83/0.17 

E-Worm.NetSky  0.77/0.23 0.70/0.30 0.77/0.23 0.75/0.25 

E-Worm.Nyxem  0.81/0.19 0.76/0.24 0.72/0.28 0.87/0.13 

E-Worm.Rays  0.93/0.07 0.86/0.14 0.79/0.21 0.88/0.12 

E-Worm.Scano  1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 

Net-Worm.Mytob  0.69/0.31 0.54/0.46 0.97/0.03 0.75/0.25 

Trojan.KillWin  1.00/0.00 1.00/0.00 0.95/0.05 1.00/0.00 

Trojan.Dialer  0.82/0.18 0.76/0.24 0.80/0.20 0.87/0.13 

Trojan.VB  0.91/0.09 0.86/0.14 0.69/0.31 0.91/0.09 

Trojan-D.Small  0.79/0.21 0.75/0.25 0.68/0.32 0.84/0.16 

Trojan-D.Zlob  0.87/0.13 0.74/0.26 0.90/0.10 0.80/0.20 

 
The detector 1 is trained on Email-Worm.Win32.Eyeveg.m and able to detect 53% 

of all amount malware. The detector 2 is trained on Net-Worm.Win32.Bozori.a and 
able to detect 73% of all amount malware. The detector 3 is trained on Trojan-
Downloader.Win32.Adload.a and able to detect % of all amount malware. The detec-
tor 4 is trained on Virus.Win32.Hidrag.d and able to detect 33% of all amount  
malware. In the result four detectors cover almost whole space of malware with the  
exception Email-Worm.Win32.Scano.gen and Trojan.BAT.KillWin.c. 
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In the second experiment we had subset all collection of the newest malware in to 
their classes, then we chosen a typical sample of every class and trained detectors on 
selected malware. The goal of this experiment is to research how different neuronet 
immune detectors react to unknown malware. Table 2 shows the results of the second 
experiment. 

The detector 1 is trained on Email-Worm.Win32.NetSky.c, the detector 2 is trained on 
Email-Worm.Win32.Nyxem.e, the detector 3 is trained on Net-Worm.Win32.Mytob.w 
and the detector 4 is trained on Trojan-Downloader.Win32.Zlob.jd. As follows from re-
sults the first, second and third detectors find email worms and net worms very well as 
representatives of this class were included in learning sample for these detectors. Detec-
tion of relating to another class malware (in our case they are Trojans) is already not so 
well. The picture of malware detection by the firth detector is directly opposite. The  
detector 4 finds Trojans very well and net worms not so well. As a result all four detec-
tors cover the whole space of malware (except Email-Worm.Win32.Scano.gen and  
Trojan.BAT.KillWin.c). 

Table 2. The results of malware detection 

Malware Detector 1 

SP / MP  

Detector 2 

SP / MP  

Detector 3 

SP / MP  

Detector 4 

SP / MP  

Backdoor.Agobot  0.72/0.28 0.68/0.32 0.79/0.21 0.87/0.13 

E-Worm.Bagle  0.69/0.31 0.73/0.27 0.61/0.39 0.60/0.40 

E-Worm.Brontok  0.73/0.27 0.77/0.23 0.68/0.32 0.66/0.34 

E-Worm.LovGate  0.70/0.30 0.76/0.24 0.63/0.37 0.60/0.40 

E-WormMydoom  0.70/0.30 0.64/0.36 0.74/0.26 0.82/0.18 

E-Worm.NetSky  0.71/0.29 0.66/0.34 0.77/0.23 0.84/0.16 

E-Worm.Nyxem  0.75/0.25 0.70/0.30 0.82/0.18 0.89/0.11 

E-Worm.Rays  0.90/0.10 0.93/0.07 0.91/0.09 0.79/0.21 

E-Worm.Scano  1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 

Net-Worm.Mytob  0.68/0.32 0.71/0.29 0.63/0.37 0.63/0.37 

Trojan.KillWin  1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 

Trojan.Dialer  0.77/0.23 0.74/0.26 0.81/0.19 0.73/0.27 

Trojan.VB  0.82/0.18 0.79/0.21 0.91/0.09 0.75/0.25 

Trojan-D.Small  0.75/0.25 0.72/0.28 0.79/0.21 0.70/0.30 

Trojan-D.Zlob  0.87/0.13 0.93/0.07 0.85/0.15 0.71/0.29 

 
In the third experiment we compare malware detection results by heuristic analyzer 

of ESET NOD32 antivirus software [20] and by our system. The results of experiment 
are displayed in the table 3. 

Both Trojan.BAT.KillWin.c and Email-Worm.Win32.Scano.gen stay undetectable 
for NOD32 and AIS (we consider reason of this above). In addition NOD32 misses 
two malware (Net-Worm.Win32.Mytob.q and Trojan.Win32.VB.at), while AIS detects 
them. 
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Table 3. The comparative analysis of malware detection results 

Malware NOD32 AIS 

Backdoor.Win32.Agobot.gen Virus Virus 

Email-Worm.Win32.Bagle.gen Virus Virus 

Email-Worm.Win32.Brontok.q Virus Virus 

Email-Worm.Win32.LovGate.w Virus Virus 

Email-Worm.Win32.Mydoom.l Virus Virus 

Email-Worm.Win32.NetSky.aa Virus Virus 

Email-Worm.Win32.Nyxem.e Virus Virus 

Email-Worm.Win32.Rays Virus Virus 

Email-Worm.Win32.Scano.gen Ok Ok 

Net-Worm.Win32.Mytob.q Ok Virus 

Trojan.BAT.KillWin.c Ok Ok 

Trojan.Win32.Dialer.z Ok Virus 

Trojan.Win32.VB.at Ok Virus 

Trojan-Downloader.Win32.Small.to Virus Virus 

Trojan-Downloader.Win32.Zlob.jd Virus Virus 

 
Thus, as was shown the AIS for malicious code detection is able to discern be-

tween noninfected files of operation system and malicious code. The feature of the 
AIS consists in capability for unknown malicious code detection. Application of the 
ANN for detectors generation allows us to create the powerful detectors. Undesirable 
detectors are destroyed during the selection process which allows avoiding false de-
tection appearance. Uniqueness of detectors consists in capability to detect several 
malicious viruses. That is detector can detect viruses analogous with that malicious 
code on which training are realized. In that way we significant increased probability 
of unknown malicious code detection. As experiments show it is necessary to large 
population of detectors creation. Presence of random probability by detectors genera-
tion enables to create different detectors. However it is significant that detectors abil-
ity depends on files on which they are trained. It is desirable for training process a 
various noninfected files and all types of malicious code to have. If your computer 
system with outdated antivirus bases can be unprotected in the face of new malicious 
code attack then the AIS gives you a high probability detect it. Applying of the AIS 
for malicious code detection will expand the potentialities of existing antivirus soft-
ware and will increase level of computer systems security. 

3   Neural Network Techniques for Intrusion Detection 

The goal of Intrusion Detection Systems (IDS) is to protect computer networks from 
attacks. An IDS has been widely studied in recent years. There exist two main intru-
sion detection methods: misuse detection and anomaly detection. Misuse detection  
is based on the known signatures of intrusions or vulnerabilities. The main disadvan-
tage of this approach is that it cannot detect novel or unknown attacks that were not 
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previously defined. There are examples of misuse detection models: IDIOT [22], 
STAT [23] and Snort [24]. Anomaly detection defines normal behavior and assumes 
that an intrusion is any unacceptable deviation from normal behavior. The main ad-
vantage of anomaly detection model is the ability to detect unknown attacks. There 
are examples of anomaly detection models: IDES [25] and EMERALD [26]. 

Different defense approaches exist in order to protect the computer networks, 
namely, neural networks, data mining, statistical approach. 

The principal component classifier is examined in [27, 28]. The data mining tech-
niques were presented in [29, 30]. The other authors proposed a geometric framework 
for unsupervised anomaly detection and three algorithms: cluster, k-Nearest Neighbor 
(k-NN) and Support Vector Machine (SVM) [31, 32]. The different neural networks 
can be used for intrusion detection [33, 34]: Self Organizing Maps (SOM), MLP, Ra-
dial Basis Function (RBF) network. 

The major problem of existing models is recognition of new attacks, low accuracy, 
detection time and system adaptability. The current anomaly detection systems are not 
adequate for real-time effective intrusion prevention [32]. Therefore processing a large 
amount of audit data in real time is very important for practical implementation IDS. 

We use the KDD-99 data set [35] for training and testing of our approach. The data 
set contains approximately 5 000 000 connection records. Each record in the data set 
is a network connection pattern, which is defined as a sequence of TCP packets start-
ing and ending at some well defined times, between which data flows to and from a 
source IP address to a target IP address under some well defined protocol. 

Every record is described by 41 features and labeled either as an attack or non-
attack. Every connection record consists of about 100 bytes. Among these features, 34 
are numeric and 7 are symbolic. For instance, the first one is the duration of connec-
tion time, the second is protocol type, and the third is service name, and so on.  

The goal of IDS is to detect and recognize attacks. There are 22 types of attacks in 
KDD-99 data set. All the attacks fall into four main classes: DoS – denial of service 
attack. This attack leads to overloading or crashing of networks; U2R – unauthorized 
access to local super user privileges; R2L – unauthorized access from remote user; 
Probe – scanning and probing for getting confidential data. 

Every class consists of different attack types (Smurf, Neptune, Buffer Overflow, etc.) 

3.1   Intrusion Detection Based on Recirculation Neural Networks 

In the following sections, the recirculation neural network (RNN) based detectors to 
construct intrusion detection systems are discussed.  The fusion classifier built up of 
these detectors is introduced to perform detection and recognition of network attacks. 

3.1.1   RNN Based Detectors 

The Anomaly Detector 
Recirculation neural networks (Figure 5) differ from others ANNs that on the input 
information in the same kind is reconstructed on an output. They are applied to com-
pression and restoration of the information (direct and return distribution of the in-
formation in the networks «with a narrow throat») [36], for definition of outliers on a 
background of the general file of entrance data [37].  



496 V. Golovko et al. 

 

Fig. 5. M layers RNN structure Ni – quantity of neural elements in i-th layer, NM=N1 – quanti-
ties of neural elements in entrance and target layers are equal 

Nonlinear RNNs have shown good results as the detector of anomalies [38, 39]: 
training RNN is made on normal connections so that input vectors on an output were 
reconstructed in themselves, thus the connection is more similar on normal, the less 
reconstruction error is: 
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Whether TE k > , where T– certain threshold for given RNN connection admits 
anomaly, or attack, differently – normal connection. Thus there is a problem of a 
threshold T value determination, providing the most qualitative detection of abnormal 
connections. It is possible to get threshold value minimizing the sum of false positive 
(FP) and false negative (FN) errors, basing on cost characteristics of the given errors – 
FN error seems to be more expensive, than FP error, and its cost should be higher [39].  

Private Classifiers 
The described technique of definition of an input vector accessory to one of two 
classes – "normal" or "attacks", that is "not-normal" – it is possible to use in opposite 
way. If at training the detector of anomalies we used normal vectors which were re-
stored in itself, and the conclusion about their accessory to a class "normal" was 
made, training the detector on vectors-attacks which should be restored in itself, it is 
possible to do a conclusion about their accessory to a class of "attack". Thus, if during 
functioning of this detector the reconstruction error (3) exceeds the certain threshold, 
given connection it is possible to carry to a class "not-attacks", that is normal connec-
tions. As training is conducted on vectors-attacks the given approach realizes technol-
ogy of misuse detection, and its use together with previous technique is righteous. 

Thus, one RNN can be applied to definition of an accessory of input vector to one 

of two classes – to on what it was trained (class A ), or to the second (class A ), to 
which correspond outliers: 
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Worth to note that it is possible to train RNN in the special way [39] on connections 
of both classes so that to raise quality of detection on conditions (4). 

As already it was mentioned above, database KDD includes normal connections 
and also attacks of four classes which considerably differ from each other. Therefore 
it is advisable to train detectors for each of five classes separately, not uniting all 
classes of attacks in a single whole. 

Here again there is a problem of a choice of a threshold T for each concrete detec-
tor. If for the anomaly detector it was possible to speak at once, that cost of  FN error 
is higher, than cost of  FP error, in case of the detector for a class of attacks R2L it is 
hard to tell what will be worse – FP error (that is to name “R2L” connection to this 
class not concerning – attack of other class or normal connection) or FN detection of 
the given attack (on the contrary). 

Many researchers [40] use a cost matrix for definition of cost of errors F  (Table 4). 
Average values of FP and FN errors (Table 5) for each class can be calculated as  
follows:  
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where N – quantity of classes (N=5).  

Table 4. The cost matrix F of incorrect classification of attacks and average costs of errors of 
detectors of each class 

Cost of false prediction Av. cost 
Real class 

normal dos probe r2l u2r 
FP

iF  
FN

iF  

1 normal 0 2 1 2 2 2,5 1,75 

2 dos 2 0 1 2 2 2 1,75 

3 probe 1 2 0 2 2 1,5 1,75 

4 r2l 4 2 2 0 2 2 2,5 

5 u2r 3 2 2 2 0 2 2,25 

 
On the basis of the given costs it is possible to choose value of a threshold which 

minimizes a total average error on training or validation data base. 

Experimental Results 
For an estimation of efficiency of the offered approach a number of experiments is 
lead. Private detectors for each class are trained, and all over again the training set  
got out of all base KDD, then from connections on concrete services – HTTP, 
FTP_DATA, TELNET. Nonlinear RNNs were used with one hidden layer with func-
tion of activation a hyperbolic tangent and logical sigmoid function of activation in a 
target layer. Quantity of neural elements in input and target layers according to quan-
tity of parameters of input data – 41, in the hidden layer – 50. The training dataset con-
tained 350 vectors of normalized values for each class. The RNNs  were trained with 
layer-by-layer learning [36]. 
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After each detector was trained the validation on training samples was conducted 
with the purpose of a finding of value of threshold T at which average cost of an error 
is minimal. In the further the testing of trained detectors was made on test samples 
with threshold values received before (Table 5). 10% of KDD database was used for 
testing purposes. 

Table 5. Results of detectors testing 

Service Threshold FP, % FN, % Av. cost Service Threshold FP, % FN, % Av. cost 

ALL HTTP  

normal 0,00070 12,56 6,68 0,1844 normal 0,00123 6,8 2,72 0,0841 

dos 0,00214 4,33 1,09 0,0542 dos 0,00340 0 0 0 

probe 0,00120 7,79 14,21 0,1675 probe 0,00132 0 0 0 

r2l 0,00116 2,87 5,38 0,0947 r2l 0,00114 5,17 0,25 0,0463 

u2r 0,00112 7,07 5,54 0,1323 u2r 0,00126 0 0,07 0,0009 

HTTP TELNET 

normal 0,00620 2,4 0,17 0,0214 normal 0,00036 44,4 1,31 0,2394 

dos 0,00290 1,5 0 0,0098 dos 0,00650 0 0 0 

probe 0,00114 0 0 0 probe 0,00162 0 0 0 

r2l 0,00110 0 0 0 r2l 0,00136 3,33 0 0,0294 

     u2r 0,00076 5,91 2 0,0907 

3.1.2   Fusion of Private Classifiers 

Joint Functioning 
As it was told above the best classification results can be achieved using several inde-
pendent classifiers of the identical nature,  because construction of the general estima-
tion from private can be made by greater number of methods. We shall unite the  
private detectors trained in the previous section in one general (Figure 6). 

 

 

Fig. 6. Fusion of independent private classifiers in one general 
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The basic problem in construction of such a classifier becomes definition of a cu-
mulative estimation proceeding from estimations of private detectors. In works of 
various researchers (for example [41]) the set of methods, such as a finding of average 
value for each class on the basis of indications of all classifiers, the sum of votes for 
each class, methods of an estimation «a priori» and «a posteriori» is considered. 
These methods mean that each classifier states a private estimation concerning an op-
portunity of an accessory of input image to at once several classes, and these classes 
are identical to all classifiers. However in our case classes, about an accessory to 
which each classifier judges, first, are various, secondly, are crossed. Therefore all the 
methods listed above are not applicable. 

Dynamic Classifier Selection 
The general classifier consists from N=5 private detectors, each of which has a 

threshold iT . Values of thresholds got out proceeding from minimization of average 

cost of errors.  To make   estimation values comparable it is enough to scale recon-
struction error on a threshold. Then (4) will be: 
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of accessory of an input image kX  to a class iA is higher. Therefore it is possible to 

allocate the method of determination of a cumulative estimation – by the minimal 
relative reconstruction error: 
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As the purpose of improvement of efficiency of classification is the minimization of 
erroneous classification expressed in minimization of average cost of classification, in 
construction of a cumulative estimation it is possible to act the same as at the choice 

of a threshold in private detectors – to consider cost of erroneous classification. If k
iδ  

- a characteristic of probability of error of classification on i-th detector the estimation 
of possible average cost of error on each of detectors will be equal: 
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The estimation (8) shows, what ability of loss in cost if we shall name a vector belong-
ing to j-th class by a vector of i-th class, i. e. i-th classifier instead of j-th will be chosen. 
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On the basis of the given estimation we shall allocate the second method of a cumula-
tive estimation determination – on the minimal possible cost of false classification: 
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Besides it is possible to consider mutual influence of possible errors – to add up an es-

timation k
iΩ  and an estimation of a prize in cost if i-th classifier instead of wrong j-th 

will be chosen: 
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Then on the basis of estimations (8) and (10) it is possible to allocate the third rule of 
winner detector selection – on the minimal possible mutual cost of false classification: 
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Experimental Results 
Efficiency of the general classifier functioning we shall check up experimentally us-
ing the private detectors trained in section 3.1.1. Results are presented in Tables 6-8. 

Table 6. Results of attack detection and recognition by fusion of classifiers with minimal rela-
tive reconstruction error DCS 

Recognized, % 
Service FP, % FN, % MC, % 

dos probe r2l u2r 

ALL 10,80 2,34 3,76 98,17 96,55 91,88 100 

HTTP 0 0,08 0,25 99,75 100 100 – 

FTP_DATA 0,66 1,09 1,45 100 100 96,66 100 

Table 7. Results of attack detection and recognition by fusion of classifiers with the minimal 
possible cost of false classification DCS  

Recognized, % 
Service FP, % FN, % MC, % 

dos probe r2l u2r 

ALL 30,80 0,9 30,80 97,8 99,3 92,5 100 

HTTP 0 0,08 0 99,8 100 0 – 

FTP_DATA 0,70 1,06 0,70 100 100 96,7 100 
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Table 8. Results of attack detection and recognition by fusion of classifiers with the minimal 
possible mutual cost of false classification DCS 

Recognized, % 
Service FP, % FN, % MC, % 

dos probe r2l u2r 

ALL 18,8 0,7 18,8 98,3 98,0 93,1 98,2 

HTTP 0 0,08 0 99,8 100 100 –  

FTP_DATA 27,3 0,4 27,3 100 77,6 98,7 100 

 
Apparently from results, the unequivocal answer to a question – which method is 

better – is not present. The method of a choice of a final class with use of mutual cost 
can minimize a error, but with substantial growth of quantity of false detection, meth-
ods with minimal relative reconstruction error and possible cost give basically compa-
rable results, on some service one is better, on some – another. 

3.2   Modular Neural Network Detectors 

In the following sections, several modular neural network detectors to construct Intru-
sion Detection Systems (IDS) are discussed. They are based on the integration of dif-
ferent artificial neural networks each of which performs complex classification task. 
Each neural network is intended for carrying out a specific function in the system. 
The proposed approaches are results of evolution from a single neural network detec-
tors to multi-agent systems [42, 43, 44].  

3.2.1   Basic Element of Intrusion Detection System 
Let’s examine the basic neural element to construct Intrusion Detection Systems 
(Fig.7). As input data, the 41 features from KDD-99 dataset will be used, which con-
tain the TCP-connection information. The main goal of IDS is to detect and recognize 
the type of attack. Therefore, 5-dimensional vectors will be used for  output data, be-
cause the number of attack classes plus normal connection is five. We propose to use 
the integration of PCA (principal component analysis neural network) and MLP (mul-
tilayer perceptron) as for basic element of IDS. We will name it the first variant of 
IDS. 

 

Fig. 7. The first variant of IDS (Model 1) 

The PCA network, which is also called a recirculation network (RNN), transforms 
41-dimensional input vectors into 12-dimensional output vectors. The MLP processes 
those given compressed data to recognize type of attacks or normal transactions. 

In this section we present two neural networks based on principal component 
analyses techniques, namely linear and nonlinear RNN networks. 

1 
2 

41 
… 

MLP 

1 
2 

5 
…

1 
2 

12 
… 

RNN 



502 V. Golovko et al. 

 

Fig. 8. RNN architecture 

Let’s consider an auto-encoder, which is also called a recirculation neural network 
(see Fig. 8). It is represented by MLP, which performs the linear or nonlinear com-
pression of the dataset through a bottleneck in the hidden layer. As shown in the fig-
ure, the nodes are partitioned into three layers. The bottleneck layer performs the 
compression of the input dataset. The output of the j-th hidden unit is given by 
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where F is activation function; Sj is weighted sum of the output from j-th neuron; wij 
is the weight from the i-th input unit to the j-th hidden unit; xi is the input to the i-th 
unit. 

The output from the i-th unit is given by 
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We use two algorithms for RNN training. One is the linear Oja rule and the other is 
the backpropagation algorithm for nonlinear RNN.  

The weights of the linear RNN are updated iteratively in accordance with the Oja 
rule [45]: 

)()(')1(' iijjiji xxytwtw −⋅⋅+=+ α , 

(15) 
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Such a RNN is known to perform a linear dimensionality reduction. In this procedure, 
the input space is rotated in such a way that the output values are as uncorrelated as 
possible and the energy or variances of the data is mainly concentrated in a few first 
principal components. 
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As already mentioned, the backpropagation approach is used for training nonlinear 
RNN. The weights are updated iteratively in accordance with the following rule: 

,)(')()1( ijjijij xSFtwtw ⋅⋅⋅−=+ γα                           (16) 

))((')(')1(' iiijjiji xxSFytwtw −⋅⋅−=+ α                  (17) 

where jγ  is error of j-th neuron: 
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γ .                                  (18) 

The weights data in the hidden layer must be re-orthonormalized by using the Gram-
Schmidt procedure [44]. 

Let’s consider the mapping of input space data for the normal state and Neptune 
type of attack on the plane of the two first principal components. As we can see in 
Fig. 9(a), the data which belong to one type of attack can be located in different areas. 
The visualization of such data obtained by using only linear RNN will not be satisfac-
tory because of complex relationship between the features. One of the ways to solve 
this problem is to use the nonlinear RNN network. 

As we can see in Fig. 9(b), the nonlinear RNN performs better in visualizing data-
set in comparison with a linear RNN. 

 

 

a) linear RNN b) nonlinear RNN  

Fig. 9. Data processed with: a – linear RNN, b – nonlinear RNN 

There is a problem in Principal Components Analysis (PCA). We do not know the 
number of principal components. 
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Table 9. Recognition Rates for Some Set of Samples Depending on Number of Principal  
Components 

Number of 
principal 
components 

2 4 5 7 10 12 15 20 41 

Recognition 
rates 

39,24% 47,15% 71,84% 78,16% 95,25% 95,70% 96,84% 96,52% 96,84% 

 
We have tried several neural network classifiers with different number of principal 

components, and analyzed the results of recognition by choosing the number of prin-
cipal components which gave the best performance in efficiency in each of  those 
classification model. 

Our experiments (see Table 9) show that the optimal number of principal compo-
nents lies near 12. 

As already mentioned, the MLP is intended to classify attacks on the basis of com-
ponents, which are obtained by using RNN. The number of output units depends on 
number of attack classes. The backpropagation algorithm is used for training MLP. 
After training of neural networks they are combined together for an intrusion detec-
tion system. 

3.2.2   Generation of Different Intrusion Detection Structures 
Using the results presented in the section 3.2.1, we can suggest several neural network 
classification models for development of intrusion detection systems. 
 

 

Fig. 10. The second variant of IDS (Model 2) 

The second variant of IDS structure is shown in Fig. 10. It consists of four MLP 
networks. As we can see, every MLP network is intended to recognize the class of at-
tack, that is, DoS, U2R, R2L or Probe. The output data from 4 multilayer perceptrons 
enter the Arbiter, which accepts the final decision according to the class of attack. A 
one-layer perceptron can be used as the Arbiter. The training of the Arbiter is per-
formed after leaning of RNN and MLP neural networks. This approach enables to 
make a hierarchical classification of attacks. In this case, the Arbiter can distinguish 
one of the 5 attack classes by the corresponding MLP.  
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Complex computational problems can be solved by dividing them into a number of 
small and simple tasks. Then the results of each task are integrated for a general conclu-
sion. An appropriate simplicity is achieved by distributing those training tasks to several 
experts. The combination of such experts is known as Committee Machine. This inte-
grated knowledge has priority over the opinion taken separately from each expert. We 
have prepared two modular neural networks for the purpose of intrusion detection.  

The third variant of IDS is based on this idea, and is shown in Fig. 11. Expert is 
represented by a single classification system. We use basic intrusion detection system 
as an expert (see Fig. 7). Training data sets for each expert are not the same with each 
other. They are self-organizing during the training process as a result of classification 
performed by the previous experts. The rule that was chosen for this purpose is Boost-
ing by filtering algorithm [46]. After training, the neural networks have an ability to 
detect intrusions. In testing mode, every expert is intended for processing the original 
41-demensional vectors. The Arbiter performs vote functions and accepts the final 
joint resolution of three experts. Arbiter is represented by the two-layer perceptron. 

 

1. Train a first expert network using some training set; 
2. A training set for a second expert is obtained in the following manner: 

– Toss a fair coin to select a 50% from NEW training set and add this data to the 
training set for the second expert network; 

– Train the second expert; 
3. A third expert is obtained in the following way: 

– pass NEW data through the first two expert networks. If the two experts dis-
agree, then add this data to the training set for the third expert: 

– Train the third expert network.  
4. Vote to select output. 

 

 

Fig. 11. The third variant of IDS, based on boosting by filtering algorithm (Model 3) 
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Fig. 12. The fourth variant of IDS, based on AdaBoost algorithm (Model 4) 

In the case of AdaBoost algorithm [47] (Fig. 12), Summator performs the functions 
of the Arbiter. This analog of the Arbiter generates the result of the voting by summa-
rizing private decisions. 

3.2.3   Experimental Results 
To assess the effectiveness of proposed intrusion detection approaches, a series of ex-
periments were performed. The KDD99 cup network data set was used for training 
and testing different neural network models, because it is one of only a few publicly 
available data set of intrusion detection that attracts the researchers’ attention due to 
its well-defined nature.  

So we used 10% data selected from KDD dataset (almost 500000 records) to gen-
erate a subset for training and testing afterwards. To be more specific, we used 6186 
samples for training neural networks, and used all records for testing the system (see 
Table 10).  

Table 10. Training and Testing Samples 

 DoS U2R R2L Probe Normal 
Total 
count 

training samples 3571 37 278 800 1500 6186 

testing samples 391458 52 1126 4107 97277 494020 

 
The same data sets were applied for model 1 and model 2 as well, so that we can 

compare the performance of those proposed models here. The approaches proposed 
are designed to detect 5 classes of attacks from this dataset which includes DoS, U2R, 
R2L, Probe and Normal. 

To evaluate our system, we used three major indicators, that is, the detection rate and 
recognition rate for each attack class and false positive rate. The detection rate (true  
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attack alarms) is defined as the number of intrusion instances detected by the system di-
vided by the total number of intrusion instances in the test set. The recognition rate is 
defined in a similar manner. The false positive rate (false attack alarms) represents the 
total number of normal instances that were classified as intrusions divided by the total 
number of normal instances. 

Let’s examine the recognition of attacks using the model 1. This model is quite 
simple. Table 11 shows statistics of recognition depending on attack class. 

Table 11. Attack Classification with Model 1 

class count detected recognized 

DoS 391458 391441 (99.99%) 370741 (94.71%) 

U2R 52 48 (92.31%) 42 (80.77%) 

R2L 1126 1113 (98.85%) 658 (58.44%) 

Probe 4107 4094 (99.68%) 4081 (99.37%) 

Normal 97277 --- 50831 (52.25%) 

 
The above results show that the best detection rate and recognition rates were 

achieved for attacks by DoS and Probe connection. U2R and R2L attack instances 
were detected a bit worse (80.77% and 58.44%, respectively). Besides, the bottom 
row in Table 11 shows that some normal instances were (incorrectly) classified as  
intrusions.  

The number of false positives emerged from the first model is considerable. This 
can be corrected by the second model described above. As shown in table 12, the sec-
ond model performed quite well in terms of false positives. This is due to the four 
single multilayer perceptrons corresponding to each of the four attack classes.  

Table 12. Attack Classification with Model 2 

class count detected recognized 

DoS 391458 391063 (99.90%) 370544 (94.66%) 

U2R 52 49 (94.23%) 37 (71.15%) 

R2L 1126 1088 (96.63%) 1075 (95.47%) 

Probe 4107 3749 (91.28%) 3735 (90.94%) 

Normal 97277 --- 83879 (86.22%) 

 
As mentioned above, each expert in Model 3 and Model 4 is represented by a sin-

gle classification system. We use model 1 as an expert in the experiments here as 
shown in Table 13 and 14. But every subsequent expert influences the outputs of 
other performing aggregated opinions of the several neural networks.  
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Table 13. Attack Classification with Model 3 

class count detected recognized 

DoS 391458 391443 (99.99%) 370663 (94.69%) 

U2R 52 50 (96.15%) 42 (80.76%) 

R2L 1126 1102 (97.87%) 1086 (96.45%) 

Probe 4107 3954 (96.27%) 3939 (95.91%) 

Normal 97277 --- 84728 (87.09%) 

Table 14. Attack Classification with Model 4 

class count detected recognized 

DoS 391458 389917 (99.61%) 369088 (94.29%) 

U2R 52 51 (98.08%) 44 (84.62%) 

R2L 1126 1119 (99.37%) 636 (56.48%) 

Probe 4107 3908 (95.15%) 3668 (89.31%) 

Normal 97277 --- 77212 (79.37%) 

 
The total results of the detection rates and false positive rates related with each 

model are shown in Table 15. 

Table 15. Total Results for each Model 

model 
True attack 
alarms 

False attack 
alarms 

Recognized cor-
rectly 

Total recog-
nized % 

Model 1 396696 

(99.98%) 

46446 

(47.75%) 

375522 

(94,65%) 
86.30% 

Model 2 395949 

(99.80%) 

13398 

(13.77%) 

375391 

(94.61%) 
92.97% 

Model 3 396549 

(99.95%) 

12549 

(12.90%) 

375730 

(94.70%) 
93.21% 

Model 4 394995 

(99.56%) 

20065 

(20.62%) 

373436 

(94.13%) 
91.22% 

 
In general, model 3 is shown to achieve the lowest false positive rate and the high-

est accuracy (93.21%). In fact, it is more accurate than the model 2 (92.97%) and the 
model 4 (91.22%). So, the three last models can be effectively used for the classifica-
tion of huge input data set with a complicated structure. 

3.2.4   Multiagent Neural Networks 
Multiagent neural networks use several detectors that specialize different fields of 
knowledge. 
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In our work artificial immune system has been exploited for a development of mul-
tiagent IDS. Several important questions that strongly influence the efficiency of the 
model arise in the course of designing multiagent structures: obtaining of the general-
ized decision on the basis of the set of detector opinions, selection of detectors, clon-
ing and mutation, destruction of bad and/or irrelevant detectors. 

First of all, it is necessary to define what we will use as a detector to classify at-
tacks. As shown in Fig. 13, we offer the model slightly modified the model proposed 
in the previous sections. See section 3.2.1 for more in detail. 

 

 

Fig. 13. Modified detector for immune system construction 

Each detector is represented by artificial neural network consisted of recirculation 
neural network and multilayer perceptron, which functions were already discussed 
above. Such a detector specializes certain type of attack. There are two output values 
“yes” (when the entrance pattern relates to the given type of attack) and ”no” (when 
the entrance pattern is not attack of the considered type). 

The detectors, which represent the same type of attack, are combined in groups 
from 3 to 10. Generally, all the detectors in the group give the diverse conclusions 
which is the results of casual processes during the training. Theoretically, the number 
of detectors in the system is not limited and their number can be easily varied, but in 
real world problems with computational resources such as operative memory, speed 
etc…, arise. 

Recognition process of an entrance pattern consists of the following sequence of 
steps: 

 

1. Input pattern is transmitted to the multiagent system. 
2. Each detector gives a conclusion about entrance activity. 
3. So-called factor of reliability on each group of the detectors is formed. This factor 

reflects percent of voices in the group, given for the type of attack the group is 
specialized in. 

4. The analysis of factors of reliability, obtained from each group, is carried out. A 
decision of the group with the maximum value of the factor is considered to be the 
final decision. 
 

The obvious advantage of such an approach is, (i) Training process is made compara-
tively easily; (ii) Detectors are trained on a smaller number of samples than models 
considered in the previous sections; (iii) It allows to increase quality of their training 
and to considerably reduce time spent for preparation of the next detector. 

Let’s consider how such a multiagent system work from an example of a popula-
tion of detectors. The population consists of 110 detectors (5 detectors in a group for 
each attack type from the KDD99 dataset). The results were prepared in the same way 
as the models in the previous sections (Table 16) so that we can compare them. As we 
can see, the results are similar to each other. 
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Table 16. Attack Classification with the Multiagent Neural Network 

class count detected Recognized 

DoS 391458 383953 (98.08%) 368779 (94.21%) 

U2R 52 47 (90.39%) 46 (88.46%) 

R2L 1126 1122 (99.67%) 359 (31.88%) 

Probe 4107 4105 (99.95%) 2369 (57.68%) 

Normal 97277 --- 75538 (77.65%) 

 
The second experiment is related with the recognition of new attacks. For this pur-

pose, we prepared a special set of samples for testing and training. The testing sam-
ples consist of network connection records that represent some of the most popular 
network services taken from the KDD99 dataset (http, ftp, ftp data, smtp, pop3, tel-
net). As dataset for testing, we generated a considerably reducing number of samples 
for each attack type. Also what is necessary to draw attention is that the records of 
some scanty attack types were entirely excluded from the training set. Therefore, only 
9 types of attacks have been selected here. Accordingly, 9 groups (5 detectors in each) 
have been generated. So, the quantity of the population has made up 45 detectors. 

Table 17. New Attack Detection with the Multiagent Neural Network 

type count detected type count detected 

Normal 75952 71338 (93.93%) Multihop* 7 7 (100.00%) 

Land* 1 1 (100.00%) Phf* 4 0 ( 0.00%) 

Neptune 901 901 (100.00%) Spy* 2 1 (50.00%) 

Buffer_overflow 30 30 (100.00%) Warezclient 1015 1003 (98.82%) 

Loadmodule 9 9 (100.00%) Warezmaster 20 20 (100.00%) 

Perl* 3 1 (33.33%) Ipsweep 9 9 (100.00%) 

Rootkit* 7 3 (42.86%) Nmap* 2 2 (100.00%) 

ftp_write* 6 6 (100.00%) Portsweep 15 15 (100.00%) 

guess_passwd 53 53 (100.00%) Satan 10 9 (90.00%) 
  * - the attacks that were absent in the training set. 

 
The results shown in Table 17 show a lot of records corresponding to new attacks 

were detected and classified as an “attack”. It means that multiagent systems are ca-
pable of detecting new attacks and have high generalization capacity. 

We have discussed only the prototype of one population. Nevertheless, the results 
are promising due to the fact that many unknown records were detected. Extension of 
the proposed approach based on multiagent neural networks with the basic mecha-
nisms of immune system (which exploits selection, mutation, cloning, etc.) will allow 
us to build a real time intrusion detection system. 
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4   Conclusion 

In this chapter the artificial immune systems and neural network techniques for com-
puter viruses and intrusion detection have been addressed. The AIS allow detecting 
unknown computer viruses. Integration of AIS and neural networks permits to in-
crease performance of the security system. The IDS structure is based on integration 
of the different neural networks. As a result fusion classifier, modular neural networks 
and multiagent systems were proposed. The KDD-99 dataset was used for experi-
ments performing. Experimental results show that the neural intrusion detection sys-
tem has possibilities for detection and recognition computer attacks.  

Proposed techniques have been shown powerful tools with respect to conventional 
approaches. 

References 

[1] de Castro, L.N., Timmis, J.I.: Artificial Immune Systems: A New Computational Intelli-
gence Approach. Springer, Heidelberg (2002) 

[2] Janeway, C.A.: How the Immune System Recognizers Invaders. Scientific Ameri-
can 269(3), 72–79 (1993) 

[3] Dasgupta, D.: Artificial immune systems and their applications. Springer, New York 
(1999) 

[4] Computer virus, http://en.wikipedia.org/wiki/Computer_virus 
[5] Traditional antivirus solutions – are they effective against today’s threats? (2008), 

http://www.viruslist.com 
[6] Proactive protection: a panacea for Viruses? (2008), http://www.viruslist.com 
[7] de Castro, L.N., Timmis, J.I.: Artificial Immune Systems: A New Computational Intelli-

gence Approach. Springer, Heidelberg (2002) 
[8] Janeway, C.A.: How the Immune System Recognizers Invaders. Scientific Ameri-

can 269(3), 72–79 (1993) 
[9] Handbook of neural network processing. CRC Press LLC, Boca Raton (2002) 

[10] Ezhov, A., Shumsky, S.: Neurocomputing and its application in economics and business, 
Moscow, MIPHI (1998) 

[11] Ayara, M., Timmis, J., de Lemos, L., de Castro, R., Duncan, R.: Negative selection: How 
to generate detectors. In: Timmis, J., Bentley, P.J. (eds.) Proceedings of the 1st Interna-
tional Conference on Artificial Immune Systems (ICARIS), pp. 89–98. University of 
Kent at Canterbury Printing Unit, Canterbury (2002) 

[12] Forrest, S., Hofmeyr, S.A.: Immunology as information processing. In: Segel, L.A., 
Cohen, I. (eds.) Design principles for the immune system and other distributed autono-
mous systems, Oxford University Press, New York (2000) 

[13] Jerne, N.K.: Clonal Selection in a Lymphocyte Network, pp. 39–48. Raven Press (1974) 
[14] Bezobrazov, S., Golovko, V.: Neural Networks for Artificial Immune Systems: LVQ for 

Detectors Construction. In: Proceedings of the IEEE International Workshop on Intelli-
gent Data Acquisition and Advanced Computing Systems: Technology and Applications 
(IDAACS 2007), Dortmund, Germany (2007) 

[15] Forest, S., Perelson, F., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a Com-
puter. In: Proceedings IEEE Symposium on Research in Security and Privacy, pp. 202–
212. IEEE Computer Society Press, Los Alamitos (1994) 



512 V. Golovko et al. 

[16] Balthrop, J., Esponda, F., Forrest, S., Glickman, M.: Coverage and Generalization in an 
Artificial Immune System. In: Proceedings of the Genetic and Evolutionary Computation 
Conference (GECCO), pp. 3–10. Morgan Kaufmann Publishers, San Francisco (2002) 

[17] Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. EvolutionaryCom-
putation 8(4), 443–473 (2000) 

[18] Hofmeyr, S.A.: An interpretative introduction to the immune system. In: Cohen, I., Segel, 
L. (eds.) Design principles for the immune system and other distributed autonomous sys-
tems, Oxford University Press, New York (2000) 

[19] Kohonen, T.: Self-organized Formation of Topologically Correct Feature Maps. Biologi-
cal Cybernetics 43, 59–69 (1982) 

[20] Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design, 1st edn. PWS Pub. 
Co. (1995) 

[21] Golovko, V.: Neural networks: training, organization and application, Moscow, IPRZHR 
(2001) 

[22] Kaspersky Lab: Antivirus software (2008), http://www.kaspersky.com 
[23] ESET NOD32 antivirus software (2008), http://www.eset.com 
[24] Kumar, S., Spafford, E.H.: A Software architecture to support misuse intrusion detection. 

In: Proceedings of the 18th National Information Security Conference, pp. 194–204 
(1995) 

[25] Ilgun, K., Kemmerer, R.A., Porras, P.A.: State transition analysis: A rule-based intrusion 
detection approach. IEEE Transaction on Software Engineering 21(3), 181–199 (1995) 

[26] SNORT, http://www.snort.org 
[27] Lunt, T., Tamaru, A., Gilham, F., et al.: A Real-time Intrusion Detection Expert System 

(IDES) – final technical report. Technical report, Computer Science Laboratory, SRI In-
ternational, Menlo Park, California (February 1992) 

[28] Porras, P.A., Neumann, P.G.: EMERALD: Event monitoring enabling responses to 
anomalous live disturbances. In: Proceedings of National Information Systems Security 
Conference, Baltimore, MD (October 1997) 

[29] Denning, D.E.: An intrusion-detection model. IEEE Transaction on Software Engineer-
ing 13(2), 222–232 (1987) 

[30] Lee, W., Stolfo, S., Mok, K.: A data mining framework for adaptive intrusion detection. 
In: Proceedings of the 1999 IEEE Symposium on Security and Privacy, Los Alamos, CA, 
pp. 120–132 (1999) 

[31] Lee, W., Stolfo, S.: A Framework for constructing features and models for intrusion de-
tection systems. ACM Transactions on Information and System Security 3(4), 227–261 
(2000) 

[32] Liu, Y., Chen, K., Liao, X., et al.: A genetic clustering method for intrusion detection. 
Pattern Recognition 37(5), 927–934 (2004) 

[33] Eskin, E., Rnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A Geometric framework for un-
supervised anomaly detection. In: Applications of Data Mining in Computer Security. 
Kluwer Academics, Dordrecht (2002) 

[34] Shyu, M., Chen, S., Sarinnapakorn, K., Chang, L.: A Novel Anomaly Detection Scheme 
Based on Principal Component Classifier. In: Proceedings of the IEEE Foundations and 
New Directions of Data Mining Workshop, in conjunction with the Third IEEE Interna-
tional Conference on Data Mining (ICDM 2003), pp. 172–179 (2003) 

[35] Kayacik, H., Zincir-Heywood, A., Heywood, M.: On the capability of an SOM based in-
trusion detection system. In: Proc. IEEE Int. Joint Conf. Neural Networks (IJCNN 2003), 
pp. 1808–1813 (2003) 



 Neural Network and Artificial Immune Systems 513 

[36] Zhang, Z., Li, J., Manikopoulos, C.N., Jorgenson, J., Ucles, J.: HIDE: a Hierarchical 
Network Intrusion Detection System Using Statistical Preprocessing and Neural Network 
Classification. In: Proceedings of the 2001 IEEE Workshop on Information Assurance 
and Security United States Military Academy, West Point, NY, pp. 85–90 (2001) 

[37] 1999 KDD Cup Competition, 
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 

[38] Golovko, V., Ignatiuk, O., Savitsky, Y., Laopoulos, T., Sachenko, A., Grandinetti, L.: 
Unsupervised learning for dimensionality reduction. In: Proc. of Second Int. ICSC Sym-
posium on Engineering of Intelligent Systems EIS 2000, University of Paisley, Scotland, 
pp. 140–144. ICSS Academic Press, Canada (2000) 

[39] Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier Detection Using Replicator Neural 
Networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. 
LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002) 

[40] Golovko, V., Kochurko, P.: Some Aspects of Neural Network: Approach for Intrusion 
Detection. In: Kowalik, Janusz, S., Gorski, J., Sachenko, A. (eds.) Cyberspace Security 
and Defense: Research Issues. NATO Science Series II: Mathematics, Physics and Chem-
istry, vol. 196, pp. 367–382. Springer, Heidelberg (2005); VIII, p. 382 

[41] Kochurko, P., Golovko, V.: Neural Network Approach to Anomaly Detection Improve-
ment. In: Proc. of 8th International Conference on Pattern Recognition and Information 
Processing (PRIP 2005), Minsk, Belarus, May18-20, pp. 416–419 (2005) 

[42] Giacinto, G., Roli, F., Didaci, L.: Fusion of multiple classifiers for intrusion detection in 
computer networks. Pattern Recognition Letters 24, 1795–1803 (2003) 

[43] Giacinto, G., Roli, F., Fumera, G.: Selection of image classifier. Electron 26(5), 420–422 
(2000) 

[44] Golovko, V., Vaitsekhovich, L.: Neural Network Techniques for Intrusion Detection. In: 
Proceedings of the International Conference on Neural Networks and Artificial Intelli-
gence (ICNNAI 2006), Brest State Technical University - Brest, pp. 65–69 (2006) 

[45] Golovko, V., Kachurka, P., Vaitsekhovich, L.: Neural Network Ensembles for Intrusion 
Detection. In: Proceedings of the 4th IEEE Workshop on Intelligent Data Acquisition and 
Advanced Computing Systems: Technology and Applications (IDAACS 2007), Research 
Institute of Intelligent Computer Systems, Ternopil National Economic University and 
University of Applied Sciences Fachhochschule Dortmund - Dortmund, Germany, pp. 
578–583 (2007) 

[46] Golovko, V., Vaitsekhovich, L., Kochurko, P., Rubanau, U.: Dimensionality Reduction 
and Attack Recognition using Neural Network Approaches. In: Proceedings of the Joint 
Conference on Neural Networks (IJCNN 2007), Orlando, FL, USA, pp. 2734–2739. 
IEEE Computer Society, Los Alamitos (2007) 

[47] Oja, E.: Principal components, minor components and linear networks. Neural Net-
works 5, 927–935 (1992) 

[48] Drucker, H., Schapire, R., Simard, P.: Improving performance in neural networks using a 
boosting algorithm. In: Hanson, S.J., Cowan, J.D., Giles, C.L. (eds.) Advanced in Neural 
Information Processing Systems, Denver, CO, vol. 5, pp. 42–49. Morgan Kaufmann, San 
Mateo (1993) 

[49] Freund, Y., Schapire, R.E.: A short introduction to boosting. Journal of Japanese Society 
for Artificial Intelligence 14(5), 771–780 (1999) 



J. Koronacki et al. (Eds.): Advances in Machine Learning II, SCI 263, pp. 515–529. 
springerlink.com                                      © Springer-Verlag Berlin Heidelberg 2010 

Immunocomputing for Speaker Recognition 

Alexander O. Tarakanov 

St. Petersburg Institute for Informatics and Automation, Russian Academy of Sciences,  
14-line 39, St. Petersburg, 199178, Russia 

tar@iias.spb.su 

Abstract. Based on mathematical models of immunocomputing, this chapter 
proposes an approach to speaker recognition by intelligent signal processing. 
The approach includes both low-level feature extraction and high-level ("intel-
ligent") pattern recognition. The key model is the formal immune network 
(FIN) including apoptosis (programmed cell death) and immunization both con-
trolled by cytokines (messenger proteins). Such FIN can be formed from audio 
signals using discrete tree transform (DTT), singular value decomposition 
(SVD), and the proposed index of inseparability in comparison with the Renyi 
entropy. Application is demonstrated on the task of recognizing nine male 
speakers by their utterances of two Japanese vowels. The obtained results sug-
gest that the proposed approach outperforms state of the art approaches of com-
putational intelligence.  

1   Introduction 

Artificial immune systems (AISs) (Dasgupta 1999; de Castro and Timmis 2002) and 
immunocomputing (IC) (Tarakanov et al. 2003; Zhao 2005) are developing with the 
branches of computational intelligence (Tarakanov and Nicosia 2007; Dasgupta and 
Nino 2008; Tarakanov 2008) like genetic algorithms (GAs) and artificial neural net-
works (ANNs) also called neurocomputing. Recent advances in AISs include a sto-
chastic model of immune response (Chao et al. 2004), an aircraft fault detection (Das-
gupta et al. 2004), intrusion detection (Dasgupta and Gonzalez 2005) and 
computational models based on the negative selection process that occurs in the thy-
mus (Dasgupta 2006; Dasgupta and Nino 2008).  

Recent advances in IC include a concept of biomolecular immunocomputer as a 
computer controlled fragment of the natural immune system (Goncharova et al. 2005). 
A connection of IC with cellular automata (CA) (Adamatzky 1994) leads to encourag-
ing results in three-dimensional (3D) computer graphics (Tarakanov and Adamatzky 
2002) and inspires a novel method of identification of CA (Tarakanov and Prokaev 
2007). A connection of IC with brain research helps to discover and study at least 
three deep functional similarities and the fundamental communicative mechanisms 
the neural and immune system have in common: a) cytokine networks of brain and 
immunity (Goncharova and Tarakanov 2007), b) nanotubes at neural and immune 
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synapses including ion channels, microtubules and tunneling nanotubes (Goncharova 
and Tarakanov 2008a), and c) receptor mosaics of neural and immune communication 
(Agnati et al. 2005ab, 2008; Goncharova and Tarakanov 2008b). Understanding these 
issues could lead to new therapeutic targets and tools, especially in neurodegenerative 
disorders related to microglia, like in Parkinson's disease (Fuxe et al. 2008).  

Apart from brain research and molecular medicine, recent advances in real-world 
applications of IC (Tarakanov 2007a) also include intelligent simulation and forecast 
of hydro-physical fields (Tarakanov et al. 2007b; Tarakanov 2009a), intrusion detec-
tion (Tarakanov 2008) and signal processing (Atreas et al. 2003, 2004; Tarakanov et 
al. 2005b, 2007a). This chapter proposes the IC approach to speaker recognition based 
on intelligent signal processing.  

2   Background 

According to (Tarakanov et al. 2003), IC is based on the principles (especially, 
mathematical models) of information processing by proteins and immune networks. 
Some similarities and differences between neurocomputing and IC are shown in Tab. 
1. Since ANN represents a "hardwired" network of artificial neurons, essential dif-
ference of IC is that formal immune network (FIN) represents a network of free 
bindings between formal proteins. For example, the IC approach to pattern recogni-
tion is abstracted from the principle of molecular recognition between proteins, in-
cluding antibody (also called immunoglobulin: Ig) of natural immune system and 
any other antigen (including another antibody). Let Ig1 and Ig2 be two antibodies, 
while Ag be antigen. The strength of biophysical interaction between any pair of pro-
teins can be measured by their binding energy. Let FIN[1] and FIN[2] be values of 
binding energy between Ag and Ig1, Ig2, correspondingly. Then any protein (includ-
ing antibody) can be represented and recognized by the corresponding couple of 
numbers FIN[1] and FIN[2] in such 2D immune network of interactions (formed by 
two antibodies Ig1, Ig2). Accordingly, any high-dimensional input vector Ag (anti-
gen which can include several Ig-binding sites also called epitopes) can be projected 
to such low-dimensional space of FIN and recognized by the class of the nearest 
point of FIN (Fig. 1). 

Table 1. Similarities and differences between neuro- and immunocomputing 

Approach Neurocomputing Immunocomputing 

Basic Element Artificial Neuron (AN) Formal Protein (FP) 

Network Artificial Neural Network Formal Immune Network 

Plasticity Rigid connections of ANs Free bindings of FPs 

Learning Weights of connections Binding energies 

Hardware  Neurochip Immunochip 
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Fig. 1. Immunocomputing approach to intelligent speaker recognition 

In such background, the key model of the IC approach to intelligent speaker recog-
nition is the FIN. In the training mode, FIN is formed from audio signals using discrete 
tree transform (DTT) (Atreas et al. 2003, 2004) and singular value decomposition 
(SVD) (Horn and Johnson 1986). After the procedures of apoptosis (programmed cell 
death) and immunization both controlled by cytokines (messenger proteins) (Taraka-
nov et al. 2005a), the result of such feature extraction by FIN is estimated by the pro-
posed index of inseparability (Tarakanov 2007b) in comparison with the Renyi entropy 
(Renyi 1961). In the recognition mode, the current audio signals are processed by 
DTT, mapped to the FIN, and the speaker is recognized by a "cytokine class" of the 
nearest cell (point) of the FIN.  

3   Mathematical Models 

3.1   Formal Immune Network 

Let vector-matrix transposing be designated by upper stroke ( ][ ′ ). For example, if X  

is column vector then X ′  is row vector.  

Definition 1. Cell is a pair V = (f, P), where f is real value ("cytokine value") Rf ∈ , 

whereas ),...,( 1 qppP =  is a point of  q-dimensional space: qRP ∈  with the restricted 

coordinates: 1|}||,...,max{| 1 ≤qpp . 

Let distance ("affinity") ),( jiij VVdd =  between cells iV  and jV is defined by any 

norm P  (Euclidean, Tchebyshev, Manhattan, etc.) so that jiij PPd −= . 

Fix some finite non-empty set of cells ("innate immunity"): ),...,( 10 mVVW = . 

Definition 2. FIN is a set of cells: 0WW ⊆ .  



518 A.O. Tarakanov 

Definition 3. Cell iV  recognizes cell kV  if the following conditions are satisfied:  

ρ<− ki ff , hdik < , ijik dd < , WV j ∈∀ , ij ≠ , jk ≠ , 

where ρ  and h  are non-negative real values ("recognition threshold" and "affinity 

threshold"). 

Let us define the behavior of FIN by the following two rules. 

Rule 1 (apoptosis). If cell WVi ∈ recognizes cell WVk ∈ then remove iV  from FIN.  

Rule 2 (immunization). If cell WVk ∈  is nearest to cell WWVi \0∈  among all cells of 

FIN: ijik dd < , WV j ∈∀ , whereas ρ≥− ki ff , then add iV  to FIN.  

Note that the immunization in Rule 2 is actually "auto-immunization" since the im-
munizer cell belongs to the set of "innate immunity" 0W . Let AW  be FIN as a conse-

quent of application of apoptosis to all cells of 0W . Let  IW  be FIN as a consequence 

of immunization of all cells of  AW  by all cells of 0W . Note that the resulting sets AW  

and IW  depend on the ordering of cells in 0W . Further it will be assumed that the or-

dering is given. It will be also assumed that 0≠ijd , ji ≠∀ . Consider some general 

mathematical properties of FIN. The following Properties 1-3 look obvious while 
Proposition states more important and less evident feature of FIN. 

Property 1. Neither the result of apoptosis AW  nor the result of immunization IW  

can overcome 0W  for any innate immunity and both thresholds:  

ρ,,,, 000 hWWWWW IA ∀⊆⊆ . 

Property 2. For any innate immunity 0W  and recognition threshold ρ  there exists 

such affinity threshold 0h  that apoptosis does not change 0W  for any h  less than 0h : 

0WWA = , 0hh <∀ . 

Property 3. For any innate immunity 0W  and affinity threshold h  there exists such 

recognition threshold 0ρ  that apoptosis does not change 0W  for any ρ  less than 0ρ : 

0WWA = , 0ρρ <∀ . 

Proposition. For any innate immunity 0W  and recognition threshold ρ  there exists 

affinity threshold 1h  such that consequence of apoptosis and immunization 

)( 11 hWW I=  provides the minimal number of cells 0|| 1 >W  for given 0W  and ρ  and 

any h: |)(||| 1 hWW I≤ , h∀ , 0WWI ⊆∀ . 

The proof of this Proposition can be found in (Tarakanov 2007a). Actually, the 
Proposition states that the minimal number of cells after apoptosis and immunization 
is a kind of "inner invariant" of any FIN, which depends on the innate immunity and 
the recognition threshold but does not depend on the affinity threshold. Practically, it 
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means that such invariant can be found for any FIN by apoptosis and immunization 
without considering any affinity threshold (in Definition 3) at all.  

Now we can define a model of molecular recognition in terms of FIN. Let "epitope" 

(antigenic determinant) be any point ),...,( 1 qppP =  of q-dimensional space: qRP ∈ . 

Note that any cell of FIN also contains an epitope, according to Definition 1. 

Definition 4. Cell iV  recognizes epitope P by assigning him value if  if the distance 

),( PVd i  between the cell and the epitope is minimal among all cells of FIN: 

)},(min{),( PVdPVd ji = , WV j ∈∀ . 

If value f  (in Definition 1) is natural number cf = , Nc ∈  (i.e. "cytokine class"), 

whereas recognition threshold (in Definition 3) 1<ρ , then we obtain a special case 

of cytokine FIN proposed by Tarakanov et al. (2005a) and applied to pattern recogni-
tion. Note that innate immunity 0W  and its ordering of cells are determined by the set 

and the order of raw data of a particular application. For example, this order is natu-
rally determined by time series in intrusion detection (Tarakanov 2008), spatio-
temporal forecast (Tarakanov 2009a), and signal processing (Tarakanov 2009b). 

3.2   Singular Value Decomposition 

Let pattern ("molecule") be any n-dimensional column-vector ]',...,[ 1 nzz=Z , where 

nzz ,...,1  are real values. Let pattern recognition be mapping P→Z  of the pattern to 

a q -dimensional epitope, and recognition of the epitope by the value f  of the near-

est cell of FIN. Consider a mathematical model of such mapping of any pattern: 
qn RR → . Let mZZ ,...,1  be n-dimensional training patterns with known values 

mff ,...,1 . Let ],...,[ 1 ′= mZZA  be training matrix of dimension nm × . Consider SVD 

of this matrix (Horn and Johnson 1986): 

''
111 ... rrrss YXYXA ++= ,                                    (1) 

where r is rank of the matrix, ks  are singular values and kk YX ,  are left and right 

singular vectors with the following properties:  

1' =kk XX , 1' =kk YY , 0' =ik XX , 0' =ik YY ,  ki ≠ , rk ,...,1= .          (2) 

Consider the following map qn RRP →:)(Z , where Z  is any n-dimensional pattern 
nR∈Z  and  qYY ,...,1  are left singular vectors of SVD (1): 

ZYk
k

k s
p ′= 1

, qk ,...,1= .                                      (3) 

Property 4. Any epitope )( iP Z  obtained by the application of formula (3) to any 

training pattern iZ , mi ,...,1= ,  lies within unit cube of FIN (see Definition 1).  

This property can be proved using the properties (2) of singular vectors.  
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3.3   Discrete Tree Transform 

Consider the mathematical model of forming pattern from any one-dimensional signal 
(time series). Let },...,{ 1 nttT =  be a fragment of signal, where Rt ∈  be real value in 

general case, 02Nn =  and 0N is some number exponent so that n  is a power of 2.  

Let 12Nu = , 01 NN ≤ . According to (Atreas et al. 2003), the dyadic DTT of T  is the 

following map:  

}{ ,kuaT → , ∑
−+

=
ku

uk
iku t

n
a

)1(1
,

1
, 102,...,1 NNk −= . 

Let 1Nl =  be DTT level: 00 Nl ≤≤ . Let us denote the DDT map as follows: 

)(lTT → , },...,{ )()(
1

)( l
n

ll ttT = , ku
l

i at ,
)( = , kuiuk ≤≤−+ )1(1 .              (4) 

Consider the values )(l
jj tz = , nj ,...,1= , as the pattern (vector) ],...,[ 1 ′= nzzZ  ob-

tained by the processing of any fragment T  of the signal. 

3.4   Index of Inseparability 

According to the above models, the feature extraction method by IC is as follows.  

1. Extract m  training patterns from the signal. 
2. Form q -dimensional FIN1 with mm =1  cells (using DTT and SVD). 

3. Find its inner invariant FIN2 with 12 mm ≤  cells (using apoptosis and immunization). 

As the result, the q -dimensional points of FIN2 
2

,...,1 mPP can be considered as the 

feature vectors that represent the signal.  
The following task is to estimate a quality of such feature extraction. This can be 

done using the special entropy proposed in (Renyi 1961) and proved to be rather use-
ful metric of very large networks regarding the task of intrusion detection (Johnson 
2005). According to (Renyi 1961; Johnson 2005), the Renyi entropy of j-th dimension 
of FIN can be defined as follows: 

∑
=

−=
m

i
ijjR p

m
I

1

2
2 )(log

1
][ ,                                               (5) 

where mjj pp ,...,1  are the values of  j-th coordinate of the points of FIN mPP ,...,1 . 

According to (Tarakanov 2007b), let us consider the maximal entropy as the Renyi 
entropy of FIN: 

}]max{[ jRR II = , qj ,...,1= .                                     (6) 

Usually, entropy represents a measure of disorder. The lower is entropy the lower is 
disorder of the system and vice versa. Consider another metric which is more specific 
to FIN. According to (Tarakanov 2007b), the index of inseparability of FIN2 can be 
defined as follows: 



 Immunocomputing for Speaker Recognition 521 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

min1

2
2 ln

hm

m
I ,                                                 (7) 

where 1m  is number of cells in FIN1 and 2m  is number of cells in FIN2 (after apop-

tosis and immunization), whereas minh  is the minimal distance between any pair of 

cells of FIN with different values of f : 

}min{min ijdh = , ji ≠ , ρ>− || ji ff .                             (8) 

Consider that 12 mm =  for FIN1. Then the index of FIN1 can be derived from (7) as 

follows:  

)ln( min1 hI −= .                                                 (9) 

Thus, the greater is minimal distance minh  the lower is the index and the better is the 

separability between different cells of FIN. 

4   Speaker Recognition 

The IC scheme of intelligent speaker recognition is shown in Fig. 2. In both training 
and recognition modes, the fragment is extracted from the signal and processed by 
DTT to form the pattern (antigen). Steps 1-11 below describe the IC algorithm. Steps 
1-8 form the training, whereas Steps 9-11 form the recognition.  
 

 
Fig. 2. Immunocomputing scheme of intelligent speaker recognition 
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Step 1. Fix integers: qlumn ,,,, , where 1≥n  is the number of time points (fragment) 

of one signal (if speaker should be recognized by one signal) or number of signals (if 
speaker should be recognized by several signals); 1≥m  is the number of training 

counts of the signal(s); 12Nu =  is the window size for DTT; 10 Nl ≤≤  is the level of 

DTT (so that 0=l  means no DTT); 1≥q  is the dimension of FIN. 

Step 2. Compute DTT (4) of each fragment of the training signal(s): ),...,( 1++nii tt , 

mi ,...,1= . 

Step 3. Form training vector ],...,[ 1 ′= inii zzZ , where )(l
jiij tz +=  for one signal or 

l
jij tz =  for several signals, nj ,...,1= , and assign the speaker number (class) for this 

vector: )()( ii cf ZZ = . 

Step 4. Form training matrix ]...[ 1 ′= mZZA  of the dimension nm × . 

Step 5. Compute first q  singular values qss ,...,1  and corresponding right singular 

vectors qYY ,...,1  by SVD (1) of the training matrix, where rq ≤  and r  is rank of the 

matrix: },min{ nmr ≤ .  

Step 6. Form the points of FIN1 qPP ,...,1  by the mapping (3) of each training vector 

iZ , mi ,...,1=  to the q -dimensional space of FIN: 

ii s
p ZY1

1
1

1 ′= , … , iq
q

iq s
p ZY′= 1

. 

Step 7. Compute the index of inseparability of FIN1 (9). If 501 >I then go to Step 9 

without apoptosis and immunization at Step 8. This means that 21
min 10−<h  and, 

thus, the training data are conflicting so that at least a couple of actually coincident 
patterns belongs to different classes (speakers):  

)()( ji cc ZZ ≠ , ji ZZ ≅ , ji ≠ . 

Step 8. Using the apoptosis and immunization, reduce mm =1  training points of FIN1 

to 2mk =  points of FIN2, where the number of the points k  is self-defined by the in-

ner invariant of FIN (see Proposition). 

Step 9. Compute DTT of the fragment of test signal, form n-dimensional vector Z  
and compute mapping (3) to the q -dimensional space of FIN (FIN1 or FIN2, depend-

ing on Step 7): 

ZY1
1

1
1 ′=
s

p , … , ZYq
q

q s
p ′= 1

. 
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Step 10. Among the training points of FIN kPP ,,1 …  (where 1mk = or 2mk = , de-

pending on Step 7), determine the nearest point to )(ZP .  

Step 11.  The class of this point )(Zc  is the recognizing speaker.  

Note the following important property of the IC algorithm. 

Property 5. If test vector is equal to any training vector: ,iZZ =  mi ,,1…= , then ex-

actly )()( iff ZZ = . 

The proof of this property can be found in (Tarakanov 2007a). Thus, the IC algorithm 
recognizes exactly any pattern it has been trained. Simply say, the IC approach does 
not make mistakes on any non-conflicting training set.  

5   Numerical Examples 

Data for numerical experiments have been taken from KDD archive (KDD 1999). The 
task is to distinguish 9 male speakers by their utterances of 2 Japanese vowels 'ae' 
successively (Kudo et al. 1999). For each utterance, Kudo et al. (1999) obtained a dis-
crete-time series with 12 linear predictive coding (LPC) cepstrum coefficients 
(Rabiner and Juang 1993; Antoniol et al. 2005). This means that one utterance by a 
speaker forms a time series whose length is in the range 7-29 and each point of a time 
series is of 12 features (12 coefficients).  

The number of the time series is 640 in total. Kudo et al. (1999) used one set of 
270 time series for training and the other set of 370 time series for testing. Number of 
instances (utterances) is 270 for the training file (30 utterances by 9 speakers) and 370 
for the test file (24-88 utterances by the same 9 speakers in different opportunities). 
Each line in the training or test file represents 12 LPC coefficients in the increasing 
order separated by spaces. Lines are organized into blocks, which are a set of 7-29 
lines separated by blank lines and corresponded to a single speech utterance of 'ae'. 
Each speaker is a set of consecutive blocks. In the training file, there are 30 blocks for 
each speaker. Blocks 1-30 represent speaker 1, blocks 31-60 represent speaker 2, and 
so on up to speaker 9. In the test file, speakers 1 to 9 have the corresponding number 
of blocks (31, 35, 88, 44, 29, 24, 40, 50, 29). Thus, blocks 1-31 represent speaker 1 
(31 utterances of 'ae'), blocks 32-66 represent speaker 2 (35 utterances of 'ae'), and so 
on. For example, first 3 lines (points of time series) of block 1 (speaker 1) are shown 
below (from the training file):  

1.86 -0.21 0.26 -0.21 -0.17 -0.12 -0.28 0.03 0.13 -0.31 -0.21 0.09  
1.89 -0.19 0.24 -0.25 -0.11 -0.11 -0.31 -0.03 0.17 -0.29 -0.25 0.09  
1.94 -0.24 0.26 -0.29 -0.04 -0.10 -0.38 0.02 0.17 -0.31 -0.23 0.07  

Let )( ji xt  be values (time series) of LPC coefficients 12,...,1=j  in time points 

4274...,1=i . Thus, 4274=m , 12=n , 86.1)( 11 =xt , 89.1)( 12 =xt , 94.1)( 13 =xt , 

etc. A fragment of this time series for 520<i  is shown in Fig. 3, whereas an example 
of DTT of this time series is shown in Fig. 4.  

According to the test file, number of the testing patterns (time points) is 5687. The 
obtained results are collected in Tab. 2 for one signal (LPC coefficient 1) and Tab. 3 
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for all signals (LPC coefficients 1-12). Example of FIN for the best recognition rate 
(99.1% in Tab. 3) is shown in Fig. 5. The values of parameters of such FIN are as fol-
lows (see Step 1): number of signals is 12=n , number of time points for the training 
is 4211=m , window size (DTT frame) is 64=u , DTT level is 4=l , and dimension 
of FIN is 7=q . Actually, Fig. 5 shows 3D projection of 7D FIN, where cells with 

different degree of gray represent 9 different speakers. 
 
 

 

Fig. 3. Time series (LPC coefficient 1) of speaker 1 training (upper) and testing (lower) 

 

Fig. 4. DTT of time series in Fig. 3 
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Table 2. Speaker recognition by one signal 

window 

size 

DTT 

level

cells in FIN1 cells in FIN2 minimal  

distance 

entropy index test 

errors 

 

correct  

recognition 

notes 

4 0 4271 3454 5.3E-5 12.4 9.6 4145 27.1%  

8 0 4267 3240 1.0E-4 11.0 8.9 3978 30.0%  

16 0 4259 3181 7.9E-5 10.5 9.2 3909 31.1%  

32 0 4243 2990 1.7E-4 10.0 8.4 3684 34.9%  

64 0 4211 2609 1.2E-4 8.8 8.5 3290 41.5%  

 1  3081 1.1E-4 10.4 8.8 3482 38.1%  

 2  3279 7.7E-5 11.0 9.2 3417 39.2%  

 3  3456 9.1E-5 11.6 9.1 3051 45.8%  

 4  3431 1.05E-4 11.8 9.0 2910 48.3% max% 

 5  3431 2.7E-5 11.8 10.3 2982 47.0%  

 6  3100 7.4E-5 10.7 9.2 3123 44.5%  
 

Table 3. Speaker recognition by 12 signals 

Dimension 

of FIN 

Cells 

in FIN2 

minimal 

distance 

entropy index test  

errors 

correct  

recognition

notes 

3 3440 8.6E-5 12.3 9.1 984 82.7%  

4 3348 1.4E-4 11.8 8.7 324 94.3%  

5 2805 2.9E-4 10.0 7.7 245 95.7%  

6 2677 3.6E-4 9.5 7.5 120 97.9%  

7 2258 6.3E-4 8.3 6.7 49 99.1% max% 

8 2533 6.5E-4 9.6 6.8 105 98.2%  

9 2079 6.7E-4 7.8 6.6 153 97.3%  

10 2898 6.8E-4 10.6 6.9 157 97.2%  

11 2980 7.7E-4 10.8 6.8 138 97.6%  

12 2894 9.5E-4 10.5 6.6 183 96.8%  
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Fig. 5. Example of FIN for speaker recognition by 12 signals 

6   Discussion 

The classifier proposed by Kudo et al. (1999) showed the classification rate of 94.1%, 
while a 5-state continuous Hidden Markov Model also considered in their paper and 
attained up to 96.2%. However, the IC approach shows better classification rate 
99.1% (Tab. 3). This advantage of the IC approach has been also confirmed by a row 
of other comparisons with ANN (Tarakanov A and Tarakanov Y 2004; Tarakanov 
and Prokaev 2007; Tarakanov et al. 2007b; Tarakanov 2008) and GA (Tarakanov A 
and Tarakanov Y 2005) as well as nearest neighbor method and support vector ma-
chines (Tarakanov 2008, 2009ab).  

Main idea of the IC algorithm is the mapping of any high-dimensional vector (an-
tigen) to low-dimensional space of FIN using binding energies between the antigen 
and antibodies. Apoptosis and immunization also reduce the number of storing cells 
of FIN without loss of the accuracy of recognition. Due to these mathematically rig-
orous features, the IC algorithm outperforms state-of-the-art approaches of computa-
tional intelligence (Tarakanov 2008, 2009ab). 

Another mathematically rigorous property of FIN is the exact recognition of any 
pattern it has been trained. This property allows using FIN to disclose the ambiguities 
in any data, e.g., like in the task of identification of cellular automata (Tarakanov and 
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Prokaev 2007). Such possibility is beyond the capabilities of ANN due to irreducible 
training errors and the known effect of overtraining when the attempts to reduce  
the errors may lead to their drastic increase (Tarakanov A and Tarakanov Y 2004). 
Therefore, FIN demonstrates the combination of faultless recognition with rather low 
training time. This looks unobtainable for its main competitors in the field of compu-
tational intelligence. For example, a comparison in (Tarakanov et al. 2007b) shows 
that FIN needs just 20 seconds to determine its optimal parameters where ANN 
trained by the error back propagation needs about 24 hours (!) for the similar purpose.  

It is also worth noting that the proposed IC approach to speaker recognition has 
nothing common with a statistical analysis technique. Moreover, it is well-known that 
statistical methods (e.g. Markov chains, Bayesian networks etc.) are too slow and in-
accurate to cope with real-world signals. For example, our comparison (Tarakanov et 
al. 2002) showed that the IC worked at least 10 times faster and much more accurate 
than conventional statistics. At the same time, the IC is able to sharply focus attention 
at most dangerous situations like the forecast of plague outburst (Sokolova 2003), 
which is beyond the capabilities of the traditional statistics. No wonder that more and 
more of modern approaches to signal processing turn to wavelet analysis, where the 
dyadic DTT (Section 3.3) is also a wavelet-type transform (Kozyrev 2002). 

7   Concluding Remarks 

The proposed IC approach to speaker recognition belongs to the field of computational 
intelligence (Tarakanov 2008). This approach is based essentially on the mathematical 
models of information processing by proteins and immune networks (Tarakanov et al. 
2003). On such background, the mathematical model of FIN with apoptosis and immu-
nization controlled by cytokines (Tarakanov et al. 2005a) represents the key model of 
the approach. On the other hand, it is worth noting that the SVD can also model the 
binding energy between two proteins (Tarakanov et al. 2003), whereas the dyadic DTT 
can model an immune-type antigen processing (Atreas et al. 2003, 2004). 

The results of comparisons reported by now suggest that the speed and accuracy of 
the IC approach is probably unobtainable for other robust methods of computational 
intelligence (in particular, neurocomputing and evolutionary algorithms). These ad-
vances of the IC approach together with its biological nature probably mean a further 
step toward an intelligent immunochip in-silicon. 
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ň


	Title Page
	Foreword
	Preface
	Table of Contents
	Part I General Issues
	Knowledge-Oriented and Distributed Unsupervised Learning for Concept Elicitation
	Introduction
	The Modes of Collaboration and Architecture of Unsupervised Learning
	Preliminaries: Notation and Terminology
	The Single-Level Architecture of Collaboration
	Hierarchical Architecture of Collaboration

	Algorithmic Developments for a Single-Level Scheme of Collaboration
	Incorporation of Domain Knowledge in the Schemes of Unsupervised Learning: Selected Categories of Knowledge Hints
	Knowledge Viewpoints in Unsupervised Learning
	From Fuzzy Sets to Type-2 Fuzzy Sets
	Conclusions
	References
	Appendix: The Principle of Justifiable Granularity

	Toward Interactive Computations: A Rough-Granular Approach
	Introduction
	Selected Issues in RGC
	Synthesis of Complex Objects Satisfying Vague Specifications
	Optimization in Discovery of Compound Granules
	Hierarchical Modeling of Granule Structures

	Ontology Approximation in RGC
	Toward RGC for Process Mining
	Interaction of Granules in RGC
	Conclusions
	References

	Data Privacy: From Technology to Economics
	Introduction
	Data Mining and Privacy Preserving Techniques
	Basic Dimensions of Privacy Techniques
	Data Modification
	Algorithm Modification
	Distributed Data
	Data Privacy and the Two-Tiered Data Representation

	Basic Economics Concepts Related to Data Privacy
	Motivation of Agents, Goods and Their Economic Classification
	Market Ineffectiveness and Regulatory Interventions
	Growth in Economy with a Privacy Market

	Data Privacy Goods from an Economic Viewpoint
	Data Goods
	Data Market Ineffectiveness and Regulatory Interventions
	Growth in Economy with Privacy Market

	Discussion
	References
	Appendix – Proofs

	Adapting to Human Gamers Using Coevolution
	Introduction
	The Game of TEMPO
	Game Objectives
	How to Play

	Related Work on Adapting to Humans
	Coevolving with Humans
	Representing Human Strategies
	The Human Adaptive Coevolutionary Process
	The Coevolutionary System
	The HACP System

	User Study
	User Study Results

	Conclusions and Future Work
	References

	Wisdom of Crowds in the Prisoner’s Dilemma Context
	Introduction and Background
	Methodology
	Wisdom of Crowds in the Context of Prisoners’ Dilemma
	Theories of Wisdom of Crowds
	Wisdom of Crowds in the Prisoner’s Dilemma Game
	Implementation

	Experiments
	Experiment 1: Player-Agents’ Performance in Fixed Crowds
	Experiment 2: Player-Agents’ Performance in Evolutionary Crowds
	Experiment 3: Player-Agents’ and Aggregator-Agents’ Performance with the Learning Ability in Evolutionary Crowds
	Experiment 4: Player-Agents’ and Aggregator-Agents’ Performance Varying with the Size of Crowds

	Lessons Learned and Future Work
	Summary
	References


	Part II Logical and Relational Learning, and Beyond
	Towards Multistrategic Statistical Relational Learning
	Introduction
	Markov Networks and Markov Logic Networks
	Structure and Parameter Learning of MLNs
	Generative Structure Learning of MLNs
	Discriminative Structure and Parameter Learning of MLNs

	First-Order Logic and Inductive Logic Programming
	Abduction
	Abuctive Logic Programming
	Integrating Abductive Inference in Inductive Learning

	Single Step Structure Learning with Abduction
	Pseudo-likelihood
	Structure Learning with Abduction

	Structural EM with Abduction
	Expectation-Maximization and Structural EM
	Integrating Logical Abduction in Structural EM

	Related Work
	Conclusion and Future Work
	References

	About Knowledge and Inference in Logical and Relational Learning
	Introduction
	Inductive Learning
	Logical Inference
	Probabilistic Reasoning
	Conclusions
	References

	Two Examples of Computational Creativity: ILP Multiple Predicate Synthesis and the ‘Assets’ in Theorem Proving
	Introduction, Motivations, and What Is a “Recursive Problem”?
	Generalization/Particularization Methods
	Increasing Domain Knowledge
	Discovering New Knowledge about the Domain (The Assets)
	Including in Background Knowledge the Synthesized Clauses
	Relational Pathfinding
	Failure Analysis in ILP
	Failure Analysis in PSFS

	Abduction
	The Asset Generator
	Definitions
	Assets and Domain Knowledge

	How to Find the Assets in PSFS
	Introducing the ‘Abstract Arguments’
	The Generation of Intermediary Lemmas
	An Illustrative Example Proved without Recursion
	An Example Using Recursion
	‘Appendix’ to 7.4: Failure of the Proof Using [a –1 < a + y]

	Conclusion
	References

	Logical Aspects of the Measures of Interestingness of Association Rules
	Introduction
	Logical Calculi of Association Rules
	Qualitative Calculi of Association Rules
	Predicate Calculi of Association Rules

	Why Deduction Rules of Association Rules
	Classes of Association Rules
	Classes of 4ft-Quantifiers and the Truth Preservation Condition
	Important Classes of Association Rules
	Results on Classes of Association Rules

	Measures of Interestingness and New 4ft-Quantifiers
	New 4ft-Quantifiers and Deduction Rules
	Implicational Rules
	Σ-Double Implicational Association Rules
	Σ-Equivalence Association Rules
	Association Rules with the F-Property

	Additional Classes of Association Rules
	${\mathcal M}$ – Independent and ${\mathcal M}$ – Dependent Classes of Rules
	Why New ${\mathcal M}$ – Dependent Classes
	New ${\mathcal M}$ – Dependent Classes
	New ${\mathcal M}$ – Independent Classes

	Conclusions and Further Work
	References


	Part III Text and Web Mining
	Clustering the Web 2.0
	Introduction
	Collaboratively Structuring Collections
	The Learning Task of Localized Alternative Cluster Ensembles
	The LACE Algorithm
	Results of the LACE Algorithm

	Structuring Tagged Collections
	Learning Pareto-optimal Clusterings from Frequent Sets
	Resulting Navigation Structures

	Conclusion
	References

	Induction in Multi-Label Text Classification Domains
	Introduction
	Previous Work
	Problem Statement and Performance Criteria
	Baseline Induction Algorithm
	Information Fusion
	Elements of the Dempster-Shafer Theory
	Fusion Mechanisms

	Experiments
	Fusion’s Performance
	Comparing BoosTexter and Multi-Label C4.5

	Conclusion
	References

	Cluster-Lift Method for Mapping Research Activities over a Concept Tree
	Introduction: Inductive Generalization for Concept Interpretation
	Cluster – Lift Method
	E-Screen Survey Tool
	Deriving Similarity between ACM-CCS Topics
	Finding Overlapping Clusters
	Parsimonious Lifting Method

	An Example of Implementation
	Concluding Remarks
	References

	On Concise Representations of Frequent Patterns Admitting Negation
	Introduction
	Basic Notions
	Itemsets, Frequent Itemsets
	Generalized Disjunctive Sets and Generalized Disjunction-Free Sets
	Sets Admitting Negated Items
	Generalized Disjunctive Lisets and Generalized Disjunction-Free Lisets
	Errors of Generalized Disjunctive Rules and Supports of Liset Variations
	Generalized Disjunctive Sets and Generalized Disjunction-Free Sets versus Supports of Liset Variations

	Generalized Disjunction-Free Set Representations
	Representing Frequent Positive Patterns with Generalized Disjunction-Free Set Representation (GDFSR)
	Representing Frequent Positive and Negative Patterns with Generalized Disjunction-Free Set Representation (GDFSRN)
	Representing Frequent Positive and Negative Patterns with Generalized Disjunction-Free Literal Representation (GDFLR)
	Common Properties of GDF Representations

	Relationships between the GDF Representations
	Relationship between GDFLR and GDFSRN
	Relationship between GDFLR and GDFSR

	Rule Error Oriented Algorithms
	Building GDFLR with $GDFLR-Apriori$
	Building GDFSR and GDFSRN with $GDFSR-Apriori$ and $GDFSRN-Apriori$

	Support Oriented Algorithms
	Efficient Calculation of Supports of Pattern Variations
	Building GDFLR with the Algorithm $GDFLR-SO-Apriori$
	Building GDFSR and GDFSRN with $GDFSR-SO-Apriori$ and $GDFSRN-SO-Apriori$

	Experimental Results
	Summary and Conclusions
	References


	Part IV Classification and Beyond
	A System to Detect Inconsistencies between a Domain Expert’s Different Perspectives on (Classification) Tasks
	Introduction
	Overview of Patient Management Systems Used in Intensive Care Units (ICUs)
	Patient Scoring System

	Literature Overview
	The Cognitive Science Perspective on the Acquisition of Expertise
	Summary of Knowledge Acquisition Including Uses of Machine Learning to Extract Domain Knowledge in a Number of Domains
	Cooperative Knowledge Acquisition and Knowledge Refinement Systems

	Conceptual Design of INSIGHT
	The Rule Interpreter
	Inferring Rules from Instances

	Use/Evaluation of the INSIGHT System
	Review of Study with Clinician-1 (Phase-1)
	Review of Study with Clinician-1 (Phase-2)
	Review of Study with Clinician-2
	COMPARISON between Final Data-Sets and Rule-Sets for Clinician-1 and Clinician-2

	Contributions of This Work
	Further Work
	References
	APPENDIX A: High Level Summary of Qualitative Assessments

	The Dynamics of Multiagent $Q$-Learning in Commodity Market Resource Allocation
	Introduction
	The IPA with RL
	Scenario
	Experimental Investigation

	Dynamic Analysis
	A Model of Multiagent $Q$-Learning with ε-Greedy Exploration
	Analysis of the Market-Based Resource Allocation Games

	Related Works
	Conclusion
	References

	Simple Algorithms for Frequent Item Set Mining
	Introduction
	Frequent Item Set Mining
	A Split and Merge Algorithm
	A Recursive Elimination Algorithm
	Experiments with the Basic Versions
	Optimizations
	Experiments with the Optimized Versions
	Conclusions
	References

	Monte Carlo Feature Selection and Interdependency Discovery in Supervised Classification
	Introduction
	Monte Carlo Feature Selection
	Discovering Feature Interdependencies
	Biological Validation Study
	Interpreation of the Interdependencies

	Concluding Remarks
	References

	Machine Learning Methods in Automatic Image Annotation
	Image Auto-annotation Methods – An Introduction
	Automatic Image Annotation Taxonomy
	Approaches to Taxonomy
	Considering Distances between Features – Clustering and Feature Space Discretization
	Bayesian Approaches
	Soft, Binary and Multi-class Classification

	Image Segmentation, Feature Selection and Extraction
	Image Segmentation
	Feature Selection and Extraction

	Decision Trees in Automatic Image Annotation
	General Concept
	Binary Machine Learning
	Multi Class Machine Learning
	Computational Complexity Analysis

	Experimental Study of the Proposed Auto-annotation Methods
	The Aim of Experiments
	Annotation Quality
	The Results

	Concluding Remarks
	References


	Part V Neural Networks and Other Nature Inspired Approaches
	Integrative Probabilistic Evolving Spiking Neural Networks Utilising Quantum Inspired Evolutionary Algorithm: A Computational Framework
	Introduction: Integrative Evolving Connectionist Systems (iECOS)
	Evolving Spiking Neural Network Models
	SNN – General Principles
	Evolving Spiking Neural Networks (ESNN)
	Computational Neurogenetic Models as iECOS

	Integrative Probabilistic Evolving SNN (ipESNN)
	Biological Motivations
	The Quantum Principle of $Superposition$
	QiEA belong to the Class of EDA Algorithms
	The ipESNN Framework

	Integrative Probabilistic Evolving Spiking Neuro-Genetic Models (ipESNG)
	Open Questions and Future Research
	References

	Machine Learning in Vector Models of Neural Networks
	Introduction
	Vector Formalism for $q$-Ary Networks
	Basic PNN-Architectures and Their Recognizing Characteristics
	Phase PNN
	Phaseless PNNs

	Special Neural Architectures Based on PNN
	The Decorrelating PNN
	q-Ary Identifier
	Binarization of PNN

	Conclusions
	References

	Nature Inspired Multi-Swarm Heuristics for Multi-Knowledge Extraction
	Introduction
	Related Research Works
	Rough Set Reduction
	Particle Swarm Optimization Algorithm
	Rough Set Reduction Algorithm Based on Swarms
	Coding and Evaluation
	Multi-Swarm Synergetic Model
	Algorithm Analysis

	Experiment Results and Discussions
	Conclusions
	References

	Discovering Data Structures Using Meta-learning, Visualization and Constructive Neural Networks
	Introduction
	Visualization Algorithms
	Illustrative Examples
	Conclusions
	References

	Neural Network and Artificial Immune Systems for Malware and Network Intrusion Detection
	Introduction
	Integration of Artificial Immune Systems and Neural Network Techniques for Malicious Code Detection
	The Biological Immune System Overview
	The Artificial Immune Systems Overview
	Application of Neural Networks in Artificial Immune System to Malicious Code Detection
	Description of Experimental Model of the AIS Security System
	Experimental Results

	Neural Network Techniques for Intrusion Detection
	Intrusion Detection Based on Recirculation Neural Networks
	Modular Neural Network Detectors

	Conclusion
	References

	Immunocomputing for Speaker Recognition
	Introduction
	Background
	Mathematical Models
	Formal Immune Network
	Singular Value Decomposition
	Discrete Tree Transform
	Index of Inseparability

	Speaker Recognition
	Numerical Examples
	Discussion
	Concluding Remarks
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




