
R. Meersman, T. Dillon, P. Herrero (Eds.): OTM 2009, Part I, LNCS 5870, pp. 389–397, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Cooperating SQL Dataflow Processes for In-DB
Analytics

Qiming Chen and Meichun Hsu

HP Labs
Palo Alto, California, USA

Hewlett Packard Co.
{qiming.chen,meichun.hsu}@hp.com

Abstract. Pushing data-intensive analytics down to database engines is the key
to high-performance and secured execution; however, the existent SQL frame-
work is unable to express general graph-based dataflow processes, and unable to
orchestrate multiple dataflow processes with inter-operation data dependencies.

In this work we extend SQL to Functional Form-SQL (FF-SQL) based on a
calculus of queries, to declaratively express complex dataflow graphs. A FF-
SQL query is constructed from conventional queries using Function Forms
(FFs). While a conventional SQL query represents a dataflow tree, a FF-SQL
query represents a more general dataflow graph. Further, with FF-SQL, a group
of SQL dataflow processes with data dependency among their operations can be
specified as a single, integrated FF-SQL definition, and executed cooperatively
inside the database engine without repeated data retrieval, duplicated computa-
tion and unnecessary data copying. A novel extension to the PostgreSQL query
engine is made to support FF-SQL dataflow processes.

1 Introduction

Executing data-intensive BI analytics inside the database engine can provide benefits
in scalability, performance and security [3,5]. However, this approach is not yet gener-
ally applicable since the SQL language and SQL engine lack the capability to express a
general graph structured dataflow process (beyond a query tree), and to orchestrate
multiple intra-process and inter-process operations for sharing database access and
query evaluation results. With the existent SQL framework, a single SQL query can
only express tree-structured operations with coincident dataflows and control-flows.
The result of a (sub)query can only be delivered to a single parent operation; in case it
is requested by multiple operations, the query, must be evaluated multiple times. These
limit the SQL framework in supporting graph-structured dataflows at both language
and implementation levels. In this paper we present our solutions to these problems.

Let us consider 3 applications that use star-joins of a fact table and multiple dimen-
sion tables, as shown in Fig. 1.

With the existing SQL framework, the fork of the star-join result to multiple desti-
nation operations is not possible; instead, multiple separate queries must perform the
star-join repeatedly; as for analytical computation, if we were to push clustering into
the database engine, SQL is unable to express the iteration and the cache of the cus-
tomer feature vectors across iterations without repeated data loading or derivation.

390 Q. Chen and M. Hsu

Association
rule mining

transactions customers
time

Star-Join

products
locations locations

transactions
customers

time
products

Star-Join

Collaborative
filtering

transactions customers
time

products
locations

Star-Join

Customer feature
vectors

Centroids

check final centers

new centroids
Next iteration

Clustering
comp
Centersextract

Fig. 1. SQL is unable to express the “share” of sub-query result, leading to duplicate evaluation

Other approaches to dealing with such problems exist. Cooperative file scan among
multiple queries [2,7] focuses on attaching queries started later to already active
scans. However, as indicated in [7], such a strategy is not effective when queries scan
different ranges rather than the full content of a table. Common Subquery Optimiza-
tion [6] focuses on sharing query plans rather than evaluation results. In contrast to
the general business process management, our work is characterized by in-DB SQL
dataflow process management.

In this work, we introduce “functional forms” to specify multiple cooperative que-
ries with user-defined functions using a single declarative expression. We propose to
(a) extend SQL to express general graph structured dataflow processes beyond query
trees; and (b) extend query engine to orchestrate multiple dataflow processes for
sharing database retrieval and query evaluation results, without repeated data re-
trieval, duplicated computation and unnecessary data copying.

Viewing queries as functions applied to relation objects, we introduce a set of
meta-operators called Functional Forms (FFs) for constructing new functions from
existing ones. We then provide an algebraic system made of queries, user-defined
Relation Valued Functions (RVFs)[4], constructive primitive functions and FFs,
referred to as the FF-SQL system. Applying a FF to query functions denotes a com-
bined function, and applying that function to relations denotes a FF-SQL query.
While a regular SQL query represents tree-structured dataflow, a FF-SQL query
represents general graph-structured dataflow. We use FF-SQL to specify a dataflow
process made of multiple correlated queries, which may invoke RVFs, for a particular
application goal. We also use FF-SQL to specify a group of correlated dataflow
processes with common data sources and data dependencies among their operations.

We have extended the PostgreSQL query engine to execute FF-SQL dataflow
processes cooperatively without duplicate data access and query evaluation. A spe-
cific in-DB cooperative layer is provided to control application dataflows, schedule
queries, and interact with query processing. It isolates much of the complexity of data
streaming into a well-understood system abstraction. Our implementation will be
reported separately.

The rest of this paper is organized as follows: Section 2 introduces the FF-SQL
framework; Section 3 shows the FF-SQL specification of cooperative dataflow proc-
esses; Section 4 concludes the paper.

 Cooperating SQL Dataflow Processes for In-DB Analytics 391

2 FF-SQL – An Algebraic Framework for Queries

A FF-SQL system is used to combine queries and user defined RVFs for representing
application dataflow graphs. In the following we describe the operators – functional
forms, and operands – query functions and RVFs, of a FF-SQL system.

2.1 Relation Valued Functions

As mentioned above, to extend the action capability of the database engine, we have
generalized the table valued functions with scalar input to RVFs with relation input
[3,4]. In this way RVFs can be treated as a relational operator or data source and inte-
grated to SQL queries.

2.2 Query Variables vs. Query Functions

We distinguish the notion of Query Function from the notion of Query Variable. A
query variable is just a query such as

SELECT * FROM Sales, Customers WHERE Sales.customer_id = Customers.id;

A query variable can be viewed as a relation data object, say vQ, denoting the query
result.

A query function, however, is a function applied to a sequence of parameter rela-
tions. For instance, the query function corresponding to the above query can be
expressed as

 fQ := SELECT * FROM $1, $2 WHERE $1.customer_id = $2.id;

Then applying fQ to a sequence of relations < Sales, Customers> with matched sche-
mas, is expressed by

 fQ : < Sales, Customers> vQ (bind Sales to $1 and Customers to $2)

The major constraint of query functions is schema-preserving, i.e. the schemas of the
parameter relations must match the query function. It is obvious that the above query
function is not applicable to arbitrary relations.

2.3 Functional Forms

A functional form (or function combining form), FF, is an expression denoting a func-
tion; that function depends on the functions which are the parameters of the expres-
sion. Thus, for example, if f and g are RVFs, then f•g is a functional form denoting a
new function such that, for a relation r, (f•g):r = f:(g:r) provided that r matches the
input schema of g, and g:r matches the input schema of f.

2.4 FF-SQL Framework

A FF-SQL system is founded on the use of a fixed set of FFs for combining query func-
tions (a query can invoke RVFs). These, plus simple definitions, provide the simple
means of building new functions from existing ones; they use no variables or substitu-
tion rules, and they become the operations of an associated algebra of queries. All the
functions of a FF-SQL system are of one type: they map relations into relations; and
they are the operands of FFs. In general, a FF-SQL system comprises the following.

392 Q. Chen and M. Hsu

− A set O of objects. An object is either a relation, a query variable, a sequence <r1,
…, rn> whose elements ri are objects, or ∆ (undefined), T (true), F (false), ø
(empty).

− A set F of functions which are query functions, RVFs, construct primitives and
their combinations that map objects into objects. Queries (and RVFs) are schema-
aware.

− A meta-operator, apply; applying a function f to an object r is expressed as f:r, and
in case the object is a sequence <r1, …, rn>, is expressed by f : <r1, …, rn>;

− A set C of functional forms for combining existing functions to new functions in F;
− A set D of definitions that define some functions in F and assign a name to each.

A set of constructive-primitives are provided but we only list the ones used in this
report, such as

− Selector $i : <r1, …, rn> = ri
− Identity id : r = r
− Constant !y : x = y (can also be treated as a FF but we opt to treat it as a function)
− Union union: < r1, r2 > = r1 ∪ r2

A FF is an expression denoting a function. A FF is primarily used to combine queries
with RVFs into higher level ones for expressing dataflow graphs, in a style not ex-
pressible by the conventional SQL. A subset of FF primitives used later in this paper
is listed below (schema preserving is implied):

− Composition (f•g) : r = f(g:r)
− Construction [f1 ….. fn] : r = < f1:r ….. fn:r>
− Condition (p→ f, g) : r = ((p:r)=T→f:r; g:r
− Map (Apply to all) αf : <r1 ….. rn> = < f:r1 ….. f:rn>
− Reduce /f : r = r==<r1> r1;
 r==<r1 ….. rn> & n>=2 f:<r1, /f: <r2 ….. rn>>

Map represents data-parallelism, construction represents task-parallelism. Reduce can
be generally used for stepwise merge and aggregate purposes, such as

 /$2 : <r1 ….. rn> = rn (last)

 /union : <r1 ….. rn> = r1 ∪ r2 … ∪ rn

To be specific to relational data manipulation, in the FF-SQL system we do not intro-
duce computation primitives other than queries and user-defined RVFs; and we do not
introduce constant values such as a number or a string. To have a non-relation con-
stant passed in an RVF, the “constant” primitive can be used. For instance, given the
RVF grvf with argument list (R1, R2, k) where k is an integer and R1, R2 are relations,
then, for applying grvf to a sequence of relations <R1, R2>, a composite function G can
be defined by (denoted as :=)

 G := grvf • [$1, $2, !k]

Applying G to <R1, R2> can be expressed as

 G : <R1, R2> = grvf • [$1, $2, !k] : <R1, R2> = grvf : <R1, R2, k> = grvf(R1, R2, k)

 Cooperating SQL Dataflow Processes for In-DB Analytics 393

In the FF-SQL system, functions can be defined level by level from query func-
tions/RVFs in terms of FFs. Apply a FF to functions denotes a new function; and
apply that function to relations denotes a FF-SQL query. A FF-SQL query has the
expressive power for specifying a dataflow graph, in the way not possible by a regular
query. In the other words, a regular SQL query represents tree-structured dataflows, a
FF-SQL query can further represent graph structured dataflows.

The notion of FF is analogous to the function combining form found in FP system
[2], however, the FF-SQL system is a declarative system rather than a functional pro-
gramming system. Besides queries and RVFs, we do not introduce any computational
primitives (such as +, - *, /); instead, we only introduce several constructive primitive
functions. Note that FFs are also constructive rather than computational. FF-SQL further
differs from FP in taking strongly typed (i.e. schema-aware) relations as data objects,
where a query is viewed as a relation data consumer and producer, i.e. a data source.

3 FF-SQL Specification of Cooperative Dataflow Processes

In this section we shall illustrate how to use the proposed FF-SQL to express some
typical dataflow schemes in the way not expressible by using regular SQL queries.

As shown in Fig 2, the modulated version of Fig. 1, we assume a table, Sales, hold-
ing shopping transaction data is retrieved, filtered and aggregated by a star-join query
Q1, resulting a relation, Txs with the following schema.

[TxDetailID, Customer, Item, DayOfWeek, Amount, Subtotal]

The attribute Location is left for further dimensioning the analysis by state, which is
not referred to here for simplicity.

In addition, customer shopping behavior is described by a “feature vector” express-
ing the average daily spending in a week. A feature vector has 7 values (since a week
has 7 days) thus can be viewed as a 7 dimension point in the feature space. For cus-
tomer segmentation, they are clustered based on such feature vectors representing one
aspect of their shopping behaviors. We also assume the existence of initial clusters,
each identified by a cid and having a centroid feature vector, cv.

3.1 The High-Level Function

The star-join result of query Q1 is delivered to RVF CF for generating collaborative
filtering matrix, RVF AR for generating association rules, and a composite function CL
for clustering the customers based on their shopping behavior feature vectors. The fea-
ture vectors are extracted from the result of Q1 by query functions Qf followed by RVF
“extract”. The initial and updated clusters are kept in relation Centroids [cid, cv].

[Query Variables]

 Q1 = SELECT txDetail-id, item, customer, dayOfWeek, amount, subtotal
 FROM Sales, Customers, Product, Time WHERE /* star-join conditions */;

 Q2 = SELECT cid, cv FROM Centroids;

[RVFs]
 AR(Q1) - mining cross-selling association rules
 CF(Q1) - collaborative filtering of customer shopping preference

394 Q. Chen and M. Hsu

[Composite Function]
 CL(Q1, Q2) - cluster customers based on the “feature vectors” representing their
 average daily spending in a week

Then multiple cooperative dataflow processes are expressed by the following single
FF-SQL function.

[FF-SQL main function]

 [AR • $1, CF • $1, CL] : <Q1, Q2>

Applying it to data objects <Q1, Q2> forms the following FF-SQL query

 [AR • $1, CF • $1, CL] : <Q1, Q2>

extract Association
rule mining Cust omer

features

Centroids

comp
Centers check final centroids

new centroids
Next iteration Qf

Q2

AR

Collaborative
filtering

Q1

CF CL
extract

Fig. 2. Cooperative analytics applications with query result sharing

3.2 The Cluster Function

Now let us refine the clustering function CL. It is based on the k-means algorithm to
cluster n objects based on attributes into k partitions, k < n. It is similar to the expecta-
tion-maximization algorithm for mixtures of Gaussians in that they both attempt to
find the centroids of natural clusters in the data. It assumes that the object attributes
form a vector space. The objective it tries to achieve is to minimize total intra-cluster
variance. In our example, customers are clustered by the average daily spending in a
week which is represented as a 7-valued vector corresponding to the 7 days in a week,
or a 7 dimension point in the feature space.

In this K-Means clustering example, the customers are kept in a derived relation

 CustomerFeatures [customer, pv]

where pv stands for the feature vector of a customer. The clusters are stored in
relation

 Centroids [cid, cv])

where cid stands for the ID of a given centroid, and cv stands for its feature vector.
For simplicity, let us abbreviate relation CustomerFeatures by P (since a vector can

be considered as a 7-dimension Point), and Centroids by C.

[Query Function]

 Qf = SELECT customer, dayOfWeek, SUM(subtotal) AS spending FROM $1
 GROUP BY customer, dayOfWeek;

 Cooperating SQL Dataflow Processes for In-DB Analytics 395

[RVFs]

The RVF
 extract(Qf (Q1))

is used to build feature vectors; it returns relation P (CustomerFeatures). The RVF

 compCenters: <P, C> C’

is used to derive a new set of centroids, i.e. a new instance of relation C, from rela-
tions P and C in a single iteration; which has the following two steps:

− the first step is for each customer in relation P to compute its distances to all cen-
troids in relation C and assign its membership to the closest one, resulting an in-
termediate relation Nearest_centroids [pv, cid];

− the second step is to re-compute the set of new centroids based on the average loca-
tion of member vector points.

After each iteration, the newly derived centroids, C’, are compared to the old ones, C,
by another RVF

 check : <C’, C> {T; F}

for checking the convergence of the sets of new and old centroids to determine
whether to terminate the K-Means computation or to launch the next iteration, using
the current centroids, C’, as well as the original points, P, as input data.

 Our goal is to define a FF-SQL query
 CL : <P, C>

that derives, in multiple iterations, the centroids of the clusters with minimal total intra-
cluster variance, from the initial C relations towards the final instance of relation C.

During the CL computation, the relation C is updated in each iteration, but the rela-
tion P remains the same. A key requirement is to avoid repeated retrieval/derivation
of either relation C or relation P from the database, which should be explicitly
expressible at the language presentation level.

The function CL is defined by the following.

 comp := [$1, $2, compCenters];

 renew := (check • [$2, $3] $3; renew • comp • [$1, $3]) ;

 CL := renew • comp • [extract • Qf • $1, $2];

Applying function CL to the points, P, and the initial centroids, C, for generating the
converged centroids is expressed by the FF-SQL query

 CL : <P, C>

The execution of FF-SQL query CL : <P, C> is explained as below.

− comp, i.e. [$1, $2, compCenters], maps relations P and C to a list of relations P, C
and C’.

 [$1, $2, compCenters] : <P, C> <P, C, C’>

 where C’ is derived by compCenters : <P, C>

− then <P, C, C’> becomes the input of renew, where check • [$2, $3] is applied to C
and C’, i.e.

 check • [$2, $3] : <P, C, C’> = check : <C, C’> {T; F}

396 Q. Chen and M. Hsu

If T is returned the CL function terminates with C’ (the 3rd element in the above se-
quence) as its result; otherwise goes to the next iteration;

else if the above check fails, renew • comp • [$1, $3] is applied for the next iteration
for re-generating a set of centroids, say C”, as

•

 renew • comp • [$1, $3] : <P, C, C’> = renew • comp : <P, C’>
 = renew • [$1, $2, compCenters] : <P, C’> = renew : <P, C’, C”>

With the above CL definition, the refined main function for these three cooperative
applications is specified in the following way.

[FF-SQL main function]

 main := [AR • $1, CF • $1, CL]

 := [AR • $1, CF • $1, renew • comp • [extract • Qf • $1, $2]]

 comp := [$1, $2, compCenters];

 renew := (check • [$2, $3] $3; renew • comp • [$1, $3]) ;

The FF-SQL query for applying main to the data objects, i.e. the results returned from
queries Q1, Q2, is expressed by the following.

main : <Q1, Q2> = [AR • $1, CF • $1, CL] : <Q1, Q2> = <AR:Q1, CF:Q1, CL:< Q1, Q2>>

As described later, the different versions of the instances of relation C output from
compCenters in multiple iterations, actually occupy the same memory space.

4 Conclusions

In this work we proposed an approach for pushing data-intensive analytics down to
database engines for high-performance and secured execution: integrating general
analytic operations into SQL queries, handling general graph structured dataflows,
and executing multiple dataflow processes with common subqueries or data sources.

To allow general analytic operations to be naturally and efficiently integrated with
SQL queries, we support RVF at SQL language level. To declaratively express graph
based dataflow we extend SQL to FF-SQL. To execute a group of correlated dataflow
processes cooperatively without repeated data retrieval, duplicated computation and
unnecessary buffering, we extend the query engine with a memory-based, embedded
middleware layer.

The major advantage of FF-SQL lies in its expressive power for specifying com-
plex dataflows. Specifically, a group of correlated SQL dataflow processes with
common data sources or subqueries can be specified by a single, integrated FF-SQL
dataflow definition, which provides the basis for their cooperation inside the database
engine. The advantage of FF-SQL also lies in its simplicity, as it uses only the most
elementary fixed naming system (naming a query) with a simple fixed rule of substi-
tuting a query for its name. Most importantly, they treat names as functions that can
be combined with other functions without special treatment.

In this paper we described FF-SQL informally; the detailed formalisms, including
the algebraic laws on FFs, will be documented separately. We are also developing sup-
port for FF-SQL by building a middleware layer inside the PostgreSQL database en-
gine that deals with data buffering, dataflows, control flows and function scheduling.

 Cooperating SQL Dataflow Processes for In-DB Analytics 397

References

1. Backus, J.: Can Programming Be Liberated from the von Neumann Style? A Functional
Style and Its Algebra of Programs. ACM Turing award lecture (1977)

2. Cao, Y., Das, G.C., Chan, C.-Y., Tan, K.-L.: Optimizing Complex Queries with Multiple
Relation Instances. In: ACM SIGMOD 2008 (2008)

3. Chen, Q., Hsu, M.: Data-Continuous SQL Process Model. In: Proc. 16th International
Conference on Cooperative Information Systems, CoopIS 2008 (2008)

4. Chen, Q., Hsu, M., Liu, R.: Extend UDF Technology for Integrated Analytics. In: Proc.
10th Int. Conf. on Data Warehousing and Knowledge Discovery, DaWaK 2009 (2009)

5. DeWitt, D.J., Paulson, E., Robinson, E., Naughton, J., Royalty, J., Shankar, S., Krioukov,
A.: Clustera: An Integrated Computation And Data Management System. In: VLDB 2008
(2008)

6. Tao, Y., Zhu, Q., Zuzarte, C.: Exploring Common Subqueries for Complex Query Optimi-
zation. In: IBM Centre for Advanced Studies Conference (2002)

7. Zukowski, M., Héman, S., Nes, N., Boncz, P.: Cooperative Scans: Dynamic Bandwidth
Sharing in a DBMS. In: VLDB (2007)

	Cooperating SQL Dataflow Processes for In-DB Analytics
	Introduction
	FF-SQL – An Algebraic Framework for Queries
	Relation Valued Functions
	Query Variables vs. Query Functions
	Functional Forms
	FF-SQL Framework

	FF-SQL Specification of Cooperative Dataflow Processes
	The High-Level Function
	The Cluster Function

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

