
Chapter 6
Discretisations of Reaction-Convection-Diffusion
Problems

This chapter is concerned with discretisations of the stationary linear reaction-
convection-diffusion problem

−εdu
′′ − εcbu + cu = f in (0, 1), u(0) = γ0, u(1) = γ1,

with b ≥ 1 and c ≥ 1 on [0, 1].
In particular, we shall study the special case of scalar reaction-diffusion problems

−ε2u′′ + cu = f in (0, 1), u(0) = γ0, u(1) = γ1,

and its vector-valued counterpart

−E2u′′ + Au = f in (0, 1), u(0) = γ0, u(1) = γ1.

6.1 Reaction-Diffusion

This section is concerned with scalar reaction-diffusion problems

Lu := −ε2u′′ + cu = f in (0, 1), u(0) = γ0, u(1) = γ1, (6.1)

where c ≥ ρ2 on [0, 1] and ρ > 0 is a constant.
Analytical properties of (6.1) were studied in Sect. 3.3, while layer-adapted

meshes for it have been introduced in Sect. 2.2. The crucial quantity for reaction-
diffusion problems is

ϑ
[p]
rd(ω̄) := max

k=1,...,N

∫

Ik

{
1 + ε−1

(
e−ρx/pε + e−ρ(1−x)/pε

)}
dx.

Using (6.1) as a model problem, a convergence analysis is conducted for variants
of the linear FEM with convergence established in the energy norm.

Next a general convergence theory in the maximum norm is derived for central
differencing on arbitrary meshes. The close relationship between the differential
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184 6 Discretisations of Reaction-Convection-Diffusion Problems

operator and its discretisation is highlighted. We then move on to a maximum-norm
error analysis for the linear FEM and a special 4th-order scheme. Finally, central
differencing for systems of reaction-diffusion equations is studied.

6.1.1 Linear Finite Elements

Consider (6.1) with homogeneous boundary conditions. Its weak formulation is:
Find u ∈ H1

0 (0, 1) such that

a(u, v) := ε2 (u′, v′) + r (u, v) = f(v) for all v ∈ H1
0 (0, 1) (6.2)

with r(u, v) := (cu, v) and f(v) := (f, v) :=
∫ 1

0

(
fv
)
(s)ds.

Given a mesh ω̄, let V ω
0 be the space of continuous functions that are piecewise

linear on the mesh ω̄. Clearly V ω
0 ⊂ H1

0 (0, 1). The standard Galerkin-FEM approx-
imation is: Find uN ∈ V ω

0 such that

a(uN , v) = f(v) for all v ∈ V ω
0 .

Typically, the integrals in the bilinear form r(·, ·) and in the linear functional f(·)
cannot be evaluated exactly. Therefore, they have to be approximated:

r(w, v) ≈ r̂(w, v) and f(v) ≈ f̂(v).

Different approximations yield different variants of the FEM. Later we shall con-
sider four possible choices for r(·, ·) and f(·).

With this notation our FEM is: Find uN ∈ V ω
0 such that

â(uN , v) := ε2
(
(uN )′, v′)+ r̂

(
uN , v

)
= f̂(v) for all v ∈ V ω

0 . (6.3)

The norm naturally associated with the weak formulation is the energy norm

|||v|||ε2 :=
{

ε2 ‖v′‖2
0 + ρ2 ‖v‖2

0

}1/2

.

It is typically used in the convergence analysis of FEMs. Clearly a(·, ·) is coercive
in the energy norm:

|||v|||2ε2 ≤ a(v, v) for all v ∈ H1
0 (0, 1).

However, the coercivity of â(·, ·) depends on the approximation used for the reaction
term and has to be investigated separately. It is one ingredient in the error analysis
for (6.3). The other ingredient is bounds for the interpolation error.
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6.1.1.1 The Interpolation Error

Let again wI denote the piecewise linear interpolant of w. Throughout this section
let us assume the function ψ ∈ C2[0, 1] admits the derivative bounds

|ψ′′(x)| ≤ C
{

1 + ε−2
(
e−ρx/ε + e−ρ(1−x)/ε

)}
. (6.4)

For example, the solution u of the boundary-value problem (6.1) belongs to this
class of functions, see Sect. 3.3.1.2. And so does cu− f = ε2u whose interpolation
error will appear in the later analysis too.

Proposition 6.1. Suppose ψ satisfies (6.4). Then

∥
∥ψ − ψI

∥
∥
∞,Ii

≤ C

[∫

Ii

{
1 + ε−1

(
e−ρx/2ε + e−ρ(1−x)/2ε

)}
dx

]2

for all mesh intervals Ii = [xi−1, xi].

Proof. For x ∈ Ii and an arbitrary integrable functions χ set

(Jiχ) (x) :=
1
hi

∫

Ii

∫ x

xi−1

∫ s

ξ

χ(t)dtdξds.

For triple integrals of this structure we have the two bounds

|(Jiχ) (x)| ≤
∫

Ii

(ξ − xi−1) |χ(ξ)| dξ (6.5a)

and

|(Jiχ) (x)| ≤
∫

Ii

(xi − s) |χ(s)|ds. (6.5b)

These integrals can be further bounded using Lemma 4.16. Let χ : Ij → IR be any
function with χ ≥ 0 on Ii. Then

(Jiχ) (x) ≤ 1
2

{∫

Ii

χ(t)1/2dt

}2

if χ is decreasing, (6.6a)

and

(Jiχ) (x) ≤ 1
2

{∫

Ii

χ(t)1/2dt

}2

if χ is increasing. (6.6b)
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For the interpolation error on Ii we have the representation

(
ψ − ψI

)
(x) =

(
Ji(ψ′′)

)
(x) for x ∈ Ii. (6.7)

Next we would like to apply (6.5) and (6.6). Therefore, we split ψ′′ into two parts
that can be bounded by monotone functions—one decreasing and the other increas-
ing. Set

ψ̄I := ψ′′ − ψ̄D and ψ̄D(x) :=

{
ψ′′(x) for x ≤ 1/2,

0 otherwise.

Clearly,

∣
∣ψ̄D(x)

∣
∣ ≤ C

{
1 + ε−2e−ρx/ε

}
and

∣
∣ψ̄I(x)

∣
∣ ≤ C

{
1 + ε−2e−ρ(1−x)/ε

}
,

by (6.4). Hence, using (6.5) and (6.6), we obtain

‖Ji(ψ′′)‖∞,Ii
≤ C

∫

Ii

(
1 + ε−1e−ρx/2ε + ε−1e−ρ(1−x)/2ε

)
dx.

Recalling (6.7), we are finished. ��

Theorem 6.2. Suppose ψ satisfies (6.4). Then

∥
∥ψ − ψI

∥
∥

0
≤
∥
∥ψ − ψI

∥
∥
∞ ≤ C

(
ϑ

[2]
rd(ω̄)

)2

and

∣
∣
∣
∣
∣
∣ψ − ψI

∣
∣
∣
∣
∣
∣
ε2 ≤ C

(
ε1/2 + ϑ

[2]
rd(ω̄)

)
ϑ

[2]
rd(ω̄).

Proof. The bound on the L∞ error is an immediate consequence of Prop. 6.1 and
the definition of ϑ

[2]
rd .

For the error in the H1 norm we proceed as follows using integration by parts

∥
∥
∥
(
ψ − ψI

)′∥∥
∥

2

0
=
∫ 1

0

((
ψ − ψI

)′
(x)

)2

dx = −
∫ 1

0

ψ′′(x)
(
ψ − ψI

)
(x)dx.

Next, a Hölder inequality gives

∥
∥
∥
(
ψ − ψI

)′∥∥
∥

2

0
≤
∥
∥ψ − ψI

∥
∥
∞

∫ 1

0

|ψ′′(x)|dx ≤ Cε−1
(
ϑ

[2]
rd(ω̄)

)2

,

by (6.4). Finally, combine this with the bound for the L2 norm of the interpolation
error to obtain the energy-norm estimate. ��
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Remark 6.3. The interpolation error in the energy norm is an order of magnitude
better than for convection-diffusion problems. This is because this norm fails to
capture the wider boundary layers in reaction-diffusion problems:

∣
∣
∣
∣
∣
∣e−ρx/ε

∣
∣
∣
∣
∣
∣
ε2 = O

(
ε1/2

)
for ε → 0.

Therefore, the reaction-diffusion problem is not singularly perturbed in the energy
norm in the sense of Def. 1.1. ♣

Remark 6.4. For Lagrange interpolation with polynomials of arbitrary degree p≥ 0,
cf. Remark 5.5, we have

‖Ipu − u‖∞ ≤ C
(
ϑ

[p+1]
rd (ω̄)

)p+1

for the solution u of (6.1). ♣

6.1.1.2 Convergence in the Energy Norm

With interpolation error bounds at hand, we can now return to the convergence anal-
ysis for the FEM (6.3).

Assume the bilinear form â(·, ·) is V ω
0 -coercive with respect to the energy norm.

That is, there exists a positive constant γ such that

γ |||v|||2ε2 ≤ â(v, v) for all v ∈ V ω
0 . (6.8)

Set η := uI − u and χ := uI − uN . Then by a triangle inequality

∣
∣
∣
∣
∣
∣u − uN

∣
∣
∣
∣
∣
∣
ε2 ≤ |||η|||ε2 + |||χ|||ε2 .

Theorem 6.2 yields

|||η|||ε2 ≤ C
(
ε1/2 + ϑ

[2]
rd(ω̄)

)
ϑ

[2]
rd(ω̄),

and we are left with bounding |||χ|||ε2 .
Starting from (6.8), we get

γ |||χ|||2ε2 ≤ â(χ, χ) = r̂
(
uI , χ

)
− r(u, χ) + f(χ) − f̂(χ), (6.9)

where we have used (6.2) and (6.3).
We shall consider four variants of the FEM characterised by different approxi-

mations of the reaction term and of the source term:

FEM-0: r̂(w, v) = r(w, v) and f̂(v) = f(v), i.e., no quadrature is used.
FEM-1: r̂(w, v) = (cIw, v) and f̂(v) = (f I , v),
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FEM-2: r̂(w, v) = ((cw)I , v) and f̂(v) = (f I , v),
FEM-3: r̂(w, v) = (cw, v)ω and f̂(v) = (f, v)ω with the discrete �2-product

(w, v)ω :=
N−1∑

i=1

h̄iwivi.

This method is generated by applying the trapezium rule
∫

Ii

g(s)ds ≈ hi+1

2
(
gi + gi+1

)
=
∫

Ii

gI(s)ds

to (cw, v) and (f, v). It is equivalent to the standard central difference scheme
which will be subject of Sect. 6.1.2.

Remark 6.5. A direct calculation shows that (w, v)ω = (w, v) for all w, v ∈ V ω
0 .♣

Theorem 6.6. Let u be the solution of (6.1) and uN its approximation by FEM-0,
FEM-1 or FEM-2. Then

∣
∣
∣
∣
∣
∣uI − uN

∣
∣
∣
∣
∣
∣
ε2 ≤ C

(
ϑ

[2]
rd(ω̄)

)2

, (6.10)

and

∣
∣
∣
∣
∣
∣u − uN

∣
∣
∣
∣
∣
∣
ε2 ≤ C

(
ε1/2 + ϑ

[2]
rd(ω̄)

)
ϑ

[2]
rd(ω̄).

Corollary 6.7. For FEM-0, FEM-1 and FEM-2 we have the uniform first-order
convergence result

∣
∣
∣
∣
∣
∣u − uN

∣
∣
∣
∣
∣
∣
ε2 ≤ Cϑ

[2]
rd(ω̄).

However, the worst case is not when ε is small, but when ε = 1. This is observed in
numerical experiments [74].

We give short proofs of Theorem 6.6 for the various FEMs now.

FEM-0: r̂(w, v) = r(w, v), f̂(v) = f(v).

Clearly â(·, ·) = a(·, ·). Therefore, (6.8) holds with γ = 1. Inequality (6.9) yields

|||χ|||2ε2 ≤ r
(
uI − u, χ

)
=
(
c(uI − u), χ

)

and

|||χ|||ε2 ≤ ‖c‖∞
∥
∥uI − u

∥
∥

0
≤ C

(
ϑ

[2]
rd(ω̄)

)2

,

by Theorem 6.2.
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FEM-1: r̂(w, v) = (cIw, v), f̂(v) = (f I , v).

The coercivity of â(·, ·) is verified upon noting that

(
cIw,w

)
≥
(
ρ2w,w

)
= ρ2 ‖w‖2

0 .

Thus, (6.8) is satisfied with γ = 1. Starting from (6.9) again, we get

|||χ|||2ε2 ≤
(
(cI − c)uI , χ

)
+
(
c(uI − u), χ

)
+
(
f − f I , χ

)
.

Appealing to Theorem 6.2 again, we get (6.10) for FEM-1.

FEM-2: r̂(w, v) = ((cw)I , v), f̂(v) = (f I , v).

This time establishing coercivity is slightly more involved. Let w ∈ V ω
0 be arbitrary.

A direct calculation gives

r̂(w,w) =
N−1∑

i=0

hi+1

3

(
ciw

2
i + ci+1w

2
i+1

)
+

N−1∑

i=0

hi+1

6
(ci + ci+1) wiwi+1.

We bound the second term from below:

(ci + ci+1) wiwi+1 ≥ −ci + ci+1

2
(
w2

i + w2
i+1

)

≥ −
(

ci +
hi+1

2
‖c′‖∞

)
w2

i −
(

ci+1 +
hi+1

2
‖c′‖∞

)
w2

i+1.

Thus, if the maximum step size h is sufficiently small, dependent on κ, but indepen-
dent of ε, then

r̂(w,w) ≥
N−1∑

i=0

hi+1

8

(
ciw

2
i + ci+1w

2
i+1

)

≥ ρ2
N−1∑

i=0

hi+1

8
(
w2

i + w2
i+1

)
=

ρ2

4
‖w‖2

0.

Hence, â(·, ·) is coercive and (6.8) holds true for γ = 1/4.
Next, (6.9) and the Cauchy-Schwarz inequality yield

1
4
|||χ|||ε2 ≤

∥
∥qI − q

∥
∥

0
, with q := cu − f.

Theorem 6.2 applies to q and we obtain (6.10) for FEM-2.



190 6 Discretisations of Reaction-Convection-Diffusion Problems

FEM-3: r̂(w, v) = (cw, v)ω , f̂(v) = (f, v)ω .

In view of Remark 6.5, ineq. (6.8) holds true with γ = 1. Then by (6.9)

|||χ|||2ε2 ≤ (q, χ)ω − (q, χ) =
∫ 1

0

(
(qχ)I − qχ

)
(x)dx

=
(
qI − q, χ

)
+

N−1∑

i=0

h2
i+1

6
(qi+1 − qi) χx;i,

where again q = cu − f = ε2u′′. The first term on the right-hand has just been
bounded when analysing FEM-2. Unfortunately, in view of the last term—in par-
ticular the presence of the discrete derivative χx—it seems impossible to obtain a
convergence result as general as Theorem 6.6. On a S-type mesh, one might reason
as in Sect. 5.2.1 by using an inverse inequality on the coarse-mesh region, but rely
on the small mesh sizes inside the layer to gain the necessary powers of ε.

6.1.2 Central Differencing

Given an arbitrary mesh ω̄ the most frequently considered finite-difference approx-
imation of (6.1) is: Find uN ∈ IRN+1 such that

[
LuN

]
i
= fi for i = 1, . . . , N − 1, uN

0 = γ0, uN
N = γ1 (6.11)

with

[Lv]i := −ε2vx̄x̂;i + civi for v ∈ IRN+1.

The difference operators were introduced in Sect. 4.1. As mentioned before this
difference scheme is equivalent to FEM-3 in the preceding section: Find uN ∈ V ω

0

such that

ac

(
uN , v

)
= fc

(
v
)

:= (f, v)ω for all v ∈ V ω
0 , (6.12)

where

ac (w, v) := ε2 (w′, v′) + (cw, v)ω = ε2 [wx, vx)ω + (cw, v)ω ,

and

[w, v)ω :=
N−1∑

i=0

hi+1wivi, (w, v)ω :=
N−1∑

i=1

h̄iwivi.
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Taking as test functions v the standard hat-function basis in V ω
0 , we see

that (6.11) and (6.12) are equivalent. In particular, using summation by parts
(cf. [146]) it is verified that

ac (w, v) = (Lw, v)ω = (w,Lv)ω for all w, v ∈ V ω
0 .

Apparently the operator L is self-adjoint as is its continuous counterpart L.

6.1.2.1 Stability

The matrix associated with the difference operator L is an L0-matrix because all
off-diagonal entries are non-positive. Application of the M -criterion (Lemma 3.14)
with a test vector with components ei = 1 establishes the inverse monotonicity of L.
Thus, L satisfies a comparison principle: For any mesh functions v, wIRN+1

Lv ≤ Lw on ω,

v0 ≤ w0,

vN ≤ wN

⎫
⎬

⎭
=⇒ v ≤ w on ω̄. (6.13)

This comparison principle and Lemma 3.17 provide a priori bounds for the solu-
tion of (6.11):

∥
∥uN

∥
∥

ω̄
≤ max

{
|γ0|, |γ1|

}
+ ‖f/c‖∞,ω for i = 0, . . . , N.

It also gives the stability inequality

‖v‖∞,ω̄ ≤ ‖Lv/c‖∞,ω for all v ∈ IRN+1
0 . (6.14)

Green’s function estimates

Using the discrete Green’s function G : ω̄2 → IR : (xi, ξj) �→ Gi,j = G(xi, ξj)
associated with L and Dirichlet boundary conditions, any mesh function v ∈ IRN+1

0

can be represented as

vi = ac (v,Gi,·) = (Lv,Gi,·)ω = (v, LGi,·)ω for i = 1, . . . , N − 1, (6.15)

because the operator L is self-adjoint, i.e., L = L∗. This also implies Gi,j = Gj,i

for all i, j = 0, . . . , N .
Taking for v the standard basis in V ω

0 , we see that for fixed i = 1, . . . , N − 1

[LGi,·]j = δi,j for j = 1, . . . , N − 1, Gi,0 = Gi,N = 0, (6.16)
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where

δi,j :=

{
h̄−1

i if i = j,

0 otherwise

is the discrete equivalent of the Dirac-δ distribution.

Lemma 6.8. For any fixed μ > 0

‖v‖2
∞ ≤ μ [vx, vx)ω +

(
μ−1 + 1

)
(v, v)ω for all v ∈ V ω

0 .

Proof. This is Theorem 2 in chap. V, §4 of [145]. ��

Theorem 6.9. The Green’s function G associated with the discrete operator L and
Dirichlet boundary conditions satisfies

0 ≤ Gi,j ≤ 1 + ερ−1

ερ
for 0 ≤ i, j ≤ N,

Gξ;i,j ≥ 0 for 0 ≤ j < i < N,

Gξ;i,j ≤ 0 for 0 ≤ i ≤ j < N.

Proof. The positivity of G follows from the inverse monotonicity of L.
The upper bound on G is proved using an argument from [147]. Let i be arbitrary,

but fixed. Set Γ := Gi,·. Then Lemma 6.8 with μ = ε/ρ yields

‖Γ‖2
∞,ω ≤ 1 + ερ−1

ρ

(
ε [Γξ, Γξ)ω + ε−1γ2 (Γ, Γ )ω

)

≤ 1 + ερ−1

ρ

(
ε [Γx, Γx)ω + ε−1 (cΓ, Γ )ω

)

=
1 + ερ−1

ρε
Γi,

by (6.15). The upper bound on G follows.
When proving the monotonicity, note that

ε2Gξ;i,j = ε2Gξ;i,j−1 + h̄jcjGi,j for 0 < j < i

and

ε2Gξ;i,j = ε2Gξ;i,j+1 − h̄j+1cj+1Gi,j+1 for i < j < N − 1.

The non-negativity of G implies Gξ;i,0 ≥ 0 and Gξ;i,N−1 ≤ 0. Then the piecewise
monotonicity of G follows by induction. ��



6.1 Reaction-Diffusion 193

Theorem 6.10. The Green’s function G associated with the discrete operator L
satisfies

‖cGi,·‖1,ω ≤ 1, ‖Gξ;i,·‖1,∗ω ≤
2
(
1 + ερ−1

)2

ερ
, ‖Gξξ;i,·‖1,ω ≤ 2

ε2

for all i = 1, . . . , N − 1.

Proof. First multiply (6.16) by h̄j and sum for j = 1, . . . , N − 1.

N−1∑

j=1

h̄jcjGi,j = 1 + ε2
(
Gξ̄;i,N − Gξ;i,0

)
≤ 1,

because Gξ;i,0 ≥ 0 and Gξ;i,N−1 ≤ 0. This is the bound on the c-weighted �1 norm.
Next

‖Gξ;i,·‖1,∗ω =
i−1∑

j=0

hj+1Gξ;i,j −
N−1∑

j=i

hj+1Gξ;i,j = 2Gi,i ≤
2
(
1 + ερ−1

)2

ερ
,

(6.17)

by Theorem 6.9.
Finally, a triangle inequality, (6.16) and (6.17) give the bound on Gξξ. ��

6.1.2.2 A Priori Error Bounds

The analysis follows [95, 103]. By (6.15) we have for the error u − uN in the mesh
node xi

(
u − uN

)
i
= ac

(
u − uN , Gi,·

)
= ac (u,Gi,·) − fc (Gi,·) .

For simplicity we set Γ := Gi. We identify the mesh function Γ with that function
from V ω

0 that coincides with Γ at the mesh nodes. Using the weak form of the
differential equation, we get

(
u − uN

)
i
= ac (u, Γ ) − a (u, Γ ) + f (Γ ) − fc (Γ )

= (cu − f, Γ )ω − (cu − f, Γ ) .

Note, if v0 = vN = 0 then

(w, v)ω =
∫ 1

0

(
wv

)I(x)dx, (6.18)

where wI denotes again the piecewise linear interpolant of w.
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Setting q := cu − f = ε2u′′, we obtain the error representation

(
u − uN

)
i
=
∫ 1

0

((
qΓ

)I − qΓ
)
(x)dx. (6.19)

We are left with bounding the interpolation error for qΓ . To this end we shall avail
of the derivative bounds derived in Sect. 3.3.1.2 and repeat some of the arguments
from Sect. 6.1.1.1.

By (6.7), for x ∈ [xj , xj+1] we have

(
qΓ

)
(x) −

(
qΓ

)I(x) = 2Γx;j

(
Jj(q′)

)
(x) +

(
Jj(q′′Γ )

)
(x). (6.20)

Next, we wish to apply (6.5) and (6.6) to the right-hand side of (6.20). There-
fore, we split q′ into two parts that can be bounded by monotone functions—one
decreasing and the other increasing. Set

qI := q′ − qD and qD(x) :=

{
q′(x) for x ≤ 1/2,

0 otherwise.

From Sect. 3.3.1.2 we have

ε−1 |qD(x)| ≤ C
{

1 + ε−2e−ρx/ε
}

and

ε−1 |qI(x)| ≤ C
{

1 + ε−2e−ρ(1−x)/ε
}

.

Hence, using (6.5) and (6.6), we obtain

‖Jj(q′)‖∞,Ij
≤ Cε

(
ϑ

[2]
rd(ω̄)

)2

. (6.21)

The second integral in (6.20) is bounded in a similar manner. Set

q̄I := q′′ − q̄D and q̄D(x) :=

{
q′′(x) for x ≤ 1/2,

0 otherwise.

From Sect. 3.3.1.2:

|(Γ q̄D) (x)| ≤ C (Γj + Γj+1)
{

1 + ε−2e−ρx/ε
}

and

|(Γ q̄I(x))| ≤ C (Γj + Γj+1)
{

1 + ε−2e−ρ(1−x)/ε
}

,
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since Γ is piecewise linear and positive. Thus,

‖Jj(q′′Γ )‖∞,Ij
≤ C (Γj + Γj+1)

(
ϑ

[2]
rd(ω̄)

)2

. (6.22)

Applying (6.21) and (6.22) to (6.20), we obtain
∣
∣
∣
(
Γq − (Γq)I

)
(x)

∣
∣
∣ ≤ C

(
ϑ

[2]
rd(ω̄)

)2

(εΓx̄;j + Γj+1 + Γj) for x ∈ (xj , xj+1).

Integrate over [0, 1] to get
∣
∣
∣
∣

∫ 1

0

(
(Γq) − (Γq)I

)
(x)dx

∣
∣
∣
∣ ≤ C

(
ϑ

[2]
rd(ω̄)

)2 (
ε ‖Γx‖1,∗ω + ‖Γ‖1,ω

)
.

Finally, recall (6.19) and Theorem 6.10. We arrive at the main convergence result
of this section.

Theorem 6.11. Let u be the solution of the reaction-diffusion problem (6.1) and uN

its central difference approximation (6.11). Suppose c, f ∈ C2[0, 1]. Then

∥
∥u − uN

∥
∥
∞,ω

≤ C
(
ϑ

[2]
rd(ω̄)

)2

.

Corollary 6.12. Theorems 6.2 and 6.11 yield

∥
∥u − uN

∥
∥
∞ ≤ C

(
ϑ

[2]
rd(ω̄)

)2

,

by a triangle inequality and because
∥
∥uI − uN

∥
∥
∞ =

∥
∥uI − uN

∥
∥
∞,ω

.

6.1.2.3 A Posteriori Error Analysis

The first a posteriori analysis for central differencing was conducted by Kopteva;
see [66]. We slightly modify her argument. It is based on the bounds for the Green’s
function G associated with the continuous operator L; see Theorem 3.31.

Let x ∈ (0, 1) be arbitrary, but fixed. Set Γ = G(x, ·). Then

(
u − uN

)
(x) = a

(
u − uN , Γ

)
= f(Γ ) − a

(
uN , Γ

)

= f(Γ ) − fc(Γ ) + ac(uN , Γ ) − a
(
uN , Γ

)

=
(
cuN − f, Γ

)
ω
−
(
cuN − f, Γ

)
,

by (6.12). Setting q̂ := cuN − f , we have

(
u − uN

)
(x) =

∫ 1

0

((
q̂Γ

)I − q̂Γ
)
(s)ds,
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where (6.18) was used. Expand the integrand

(
q̂Γ

)I − q̂Γ =
(
q̂I − q̂

)
Γ + q̂I

(
Γ I − Γ

)
+ (q̂Γ )I − q̂IΓ I

in order to obtain the error representation

(
u − uN

)
(x) =

(
q̂I − q̂, Γ

)
+
(
q̂I , Γ I − Γ

)

+
∫ 1

0

(
(q̂Γ )I − q̂IΓ I

)
(s)ds.

(6.23)

The terms on the right-hand side are estimated separately.
A Hölder inequality and Theorem 3.31 give

∣
∣(q̂ − q̂I , Γ

)∣∣ ≤ ρ−2
∥
∥q̂ − q̂I

∥
∥
∞ .

For the second term in (6.23), integration by parts yields
∫

Ik

q̂I(s)
(
Γ I − Γ

)
(s)ds =

∫

Ik

(s − xk+1) (s − xk) Qk(s)Γ ′′(s)ds,

where

Qk(s) =
q̂k+1 + q̂k

4
+

q̂k+1 − q̂k

6hk+1

(
s − xk+1/2

)
, xk+1/2 =

xk + xk+1

2
.

Thus

∣
∣
∣
∣

∫

Ik

q̂I(x)
(
Γ I − Γ

)
(s)ds

∣
∣
∣
∣ ≤

h2
k+1

8
max

{
|q̂k| , |q̂k+1|

}∫

Ik

|Γ ′′(s)| ds.

By Theorem 3.31, we have ‖Γ ′′‖1 ≤ 2ε−2. Hence,

∣
∣(q̂I , Γ I − Γ

)∣∣ ≤ max
k=0,...,N−1

h2
k+1

4ε2
max

{
|q̂k| , |q̂k+1|

}
.

For the last term in (6.23) a direct calculation yields

∫

Ik

(
(q̂Γ )I − q̂IΓ I

)
(s)ds =

hk+1

6
(q̂k+1 − q̂k) (Γk+1 − Γk)

=
hk+1

6
(q̂k+1 − q̂k)

∫

Ik

Γ ′(s)ds.
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Thus
∣
∣
∣
∣

∫ 1

0

(
(q̂Γ )I − q̂IΓ I

)
(s)ds

∣
∣
∣
∣ ≤ max

k=0,...,N−1

hk+1

6ερ
|q̂k+1 − q̂k| ,

because ‖Γ ′‖1 ≤ 1/(ερ), by Theorem 3.31.
All terms in (6.23) have been bounded. We get

Theorem 6.13. Let u be the solution of the reaction-diffusion problem (6.1) and uN

its central difference approximation (6.11). Let q̂ := cuN − f . Then
∥
∥u − uN

∥
∥
∞ ≤ η1 + η2 + η3,

where

η1 :=
1
ρ2

∥
∥q̂ − q̂I

∥
∥
∞ , η2 := max

k=0,...,N−1

h2
k+1

4ε2
max

{
|q̂k| , |q̂k+1|

}

and

η3 := max
k=0,...,N−1

hk+1

6ερ
|q̂k+1 − q̂k| .

Remark 6.14. The term
∥
∥q̂ − q̂I

∥
∥
∞ in the a posteriori bound can be further ex-

panded as follows

q̂ − q̂I = f − f I −
(
c − cI

)
uN − cIuN +

(
cuN

)I
.

Thus

∥
∥q̂ − q̂I

∥
∥
∞ ≤

∥
∥f − f I

∥
∥
∞ +

∥
∥c − cI

∥
∥
∞
∥
∥uN

∥
∥
∞

+
1
4

max
k=0,...,N−1

∣
∣uN

k+1 − uN
k

∣
∣ · |ck+1 − ck| .

The first two terms involve (continuous) norms of the data. These have to be approx-
imated numerically with sufficient accuracy. At least O(h2) is required. However,
higher order is desirable to ensure all non explicitly computable terms in the error
estimator are of higher order and decay rapidly as the mesh is refined. ♣

Remark 6.15. Invoking the difference equation (6.11), we see that η3 implicitly con-
tains third-order discrete derivatives of uN .

hk+1

6ερ
|q̂k+1 − q̂k| =

εh2
k+1

6ρ

∣
∣uN

x̄x̂x;k

∣
∣ .

The a posteriori error bound in [66, Theorem 3.3] is given using these higher-order
operators.
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The argument in [66] proceeds to show that

∥
∥u − uN

∥
∥
∞ ≤ C max

i=0,...,N−1

{
hk+1

[
1 + |ux̄x̂;k|1/2 + |ux̄x̂;k+1|1/2

]}2

.

The constant C is independent of ε, but not specified in [66]. Therefore, this latest
inequality cannot be used for reliable a posteriori error estimation. Nonetheless, it
is useful for steering adaptive mesh generation. ♣

Adaptive mesh generation

Based on Theorem 6.13, the de Boor algorithm in Sect. 4.2.4.2 can be adapted for
the problem and method under consideration. One only needs to redefine the Qi:

Qi = Qi(uN ,Δ, ω) :=
{

κ0 + κ1η1;iκ2η2;i + κ3η3;i

}1/2

with

η1;i :=
∣
∣q̂i−1 − 2q̂i−1/2 + q̂i

∣
∣ , η2;i :=

h2
i

ε2
max

{
|q̂i−1| , |q̂i|

}
,

η3;i :=
hi

ε
|q̂i − q̂i−1|

and non-negative weights κk. Note that maxi η1;i is a second order approximation
of η1 in Theorem 6.13.

In view of Remark 6.15 one can also use the de Boor algorithm with

Qi = 1 + |ux̄x̂;i−1|1/2 + |ux̄x̂;i|1/2
.

Numerical experiment for this variant of the algorithm are documented in [68].

6.1.2.4 An Alternative Convergence Proof

Traditional finite difference analysis aims at directly exploiting the maximum-norm
stability or using barrier function techniques. In higher dimensions they are often
the only tool available, because of a lack of stronger stability results.

We now present an error analysis for central differencing on a Bakhvalov mesh
that solely uses (6.14). In the layer regions this mesh is not approximately equidis-
tant. Consequently, the truncation error of the difference scheme is apparently only
first order at points in the layers, but a more delicate analysis given in [18] shows
that the truncation error at every mesh point is in fact O(N−2) uniformly in ε. We
use the description of the mesh by a mesh generating functions, see Sect. 2.1.1.

For any ψ ∈ C4[0, 1], Taylor expansions show that

∣
∣[Lψ − Lψ]i

∣
∣ ≤ Cε2

∥
∥ψ′′∥∥

[xi−1,xi+1]
(6.24a)
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and

∣
∣[Lψ − Lψ]i

∣
∣ ≤ Cε2 |hi − hi+1|

∣
∣ψ′′′

i

∣
∣+ (hi + hi+1)2

∥
∥ψ(4)

∥
∥

[xi−1,xi+1].
(6.24b)

When σε ≥ ρq the mesh is uniform with mesh size N−1. Furthermore, ε−1 ≤ C.
Thus,

‖Lu − Lu‖ω ≤ CN−2,

by Theorem 3.35 and (6.24).
Now consider the case σε < ρq. For simplicity we will consider only the layer

at x = 0 and assume that xi = ϕ(ti) ≤ 1/2.
From the construction of ϕ one must have τ < q. It follows that 1 < χ′(τ) < q̄,

where we set q̄ = 1/(1 − 2q). Define the auxiliary points τ1 and τ2 in (0, q) by
χ′(τ1) = q̄ and χ′(τ2) = 1. Then τ2 = q − σε/ρ < τ < τ1 = q − σε(1 − 2q)/ρ
because χ′′ > 0 on [0, q).

(i) ϕ′(t) ≤ χ′(τ) ≤ q̃ for t ∈ [0, 1]. Thus,

hi =
∫ ti

ti−1

ϕ′(t)dt ≤ q̃N−1 for i = 1, . . . , N. (6.25)

(ii) For t ≤ ti < q we have ϕ′(t) ≤ χ′(t) = σε/ρ(q − t) ≤ σε/ρ(q − ti). Hence,
for ti ≤ q − N−1,

hi =
∫ ti

ti−1

ϕ′(t)dt ≤ N−1ϕ′(ti) ≤
σε

ρN(q − ti)
≤ 2σε

ρN(q − ti−1)
. (6.26)

(iii) hi+1 − hi = xi+1 − 2xi + xi−1 = ϕ′′(t∗i )N
−2 for some t∗i ∈ [ti−1, ti+1].

Now

ϕ′′(t) ≤ χ′′(τ) =
σε

ρ(q − τ)2
and

1
q − τ

≤ 1
q − τ1

=
ρq̄

σε
,

which gives

|hi+1 − hi| ≤
ρq̄2

σε
N−2. (6.27)

Furthermore, we have the bound

ϕ′′(t∗i ) ≤
σε

ρ(q − ti+1)2
≤ 4σε

ρ(q − ti)2
for ti ≤ q − 2

N
,

which yields

|hi+1 − hi| ≤
4σε

N2ρ(q − ti)2
for ti ≤ q − 2

N
. (6.28)
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(iv)

e−ρxi/ε =
(

q − ti
q

)σ

for ti ≤ τ (6.29)

and

e−ρxi/ε ≤
(

σε

ρq

)σ

for ti ≥ τ2. (6.30)

Henceforth let σ ≥ 2. Using (6.24), Theorem 3.35, (6.25) and (6.30), we get

|[Lu − Lu]i| ≤ CN−2 for τ2 ≤ ti−1,

which is the region outside the layer. For ti ≤ q − 2N−1 (the layer region),
from (6.24) and Theorem 3.35 one arrives at

|[Lu − Lu]i| ≤ C |hi − hi+1| ε2 + C |hi − hi+1| ε−1e−ρxi/ε

+ C (hi + hi+1)
2
ε2 + C (hi + hi+1)

2
ε−2e−ρxi−1/ε.

To bound the first term on the right-hand side use (6.27); for the second term, use
(6.28) and (6.29); for the third term, use (6.25); and for the fourth, use (6.26), (6.29)
and q − ti−1 ≤ 3(q − ti)/2. This yields

|[Lu − Lu]i| ≤ CN−2 for ti ≤ q − 2N−1.

We are left with the transition region where τ2 > ti−1 and ti > q − 2N−1. Thus,

q − 2
N

< ti < τ2 +
1
N

= q − σε

ρ
+

1
N

< q +
1
N

.

Notice that the first two inequalities here imply that ε < 3ρ/(σN). Use (6.24):

|[Lu − Lu]i| ≤ C
(
ε2 + e−ρxi−1/ε

)
≤ CN−2,

by (6.30) and ε ≤ CN−1.
Thus, on a Bakhvalov mesh the truncation error in the maximum norm is bounded

uniformly by O
(
N−2

)
. Application of the stability inequality (6.14) gives the uni-

form error bound

∥
∥u − uN

∥
∥
∞,ω

≤ CN−2, if σ ≥ 2.

We have recovered Theorem 6.11 for a Bakhvalov mesh by means of a different
kind of analysis.
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6.1.2.5 Discontinuous Data

Assume the reaction coefficient c or the source term f possess a discontinuity in a
point d ∈ (0, 1). Then (6.1) reads: Find u ∈ C1[0, 1] ∩ C2

(
(0, 1) \ {d}

)
such that

−ε2u′′ + cu = f in (0, 1) \ {d}, u(0) = γ0, u(1) = γ1.

How should the central differencing scheme (6.11) be generalised to deal with the
discontinuous data?

Assuming d = xκ ∈ ω, i.e., the discontinuity is in a mesh point, a naive finite
difference approach would seek a mesh function uN with

[
LuN

]
i
= fi for xi ∈ ω \ {xκ}, uN

x;κ = uN
x̄;κ, uN

0 = γ0, uN
N = γ1.

This method on a Shishkin mesh was analysed in [37]. Only first order (up to a
logarithmic factor) was established. The numerical experiments in [37] show that
when ε is moderate at best first order can be achieved.

The continuity of the derivative in xκ = d is discretised by imposing

uN
x;κ = uN

x̄;κ.

However, the one-sided difference operators are first-order approximation only. This
might explain the drop in accuracy.

Instead, we start from the variational formulation (6.12): Find uN ∈ V ω
0 such

that

ε2
((

uN
)′

, v′
)
−
(
cuN , v

)
ω

= (f, v)ω for all v ∈ V ω
0 ,

where

(w, v)ω :=
N−1∑

i=1

h̄iwivi =
∫ 1

0

(wv)I (s)ds.

For discontinuous functions the nodal interpolant does not exist. However, since the
point d of discontinuity is a mesh point, we can define wI element wise:

wI(x) =
xk+1 − x

hk+1
w(xk + 0) +

x − xk

hk+1
w(xk+1 − 0) for x ∈ Ik.

Clearly, when w ∈ C[0, 1], we recover the standard linear nodal interpolant.
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Evaluating
∫ 1

0
(wv)I (s)ds, we get

(w, v)ω =
N−1∑

i=1

h̄iw̃ivi, with w̃i =
hiw(xi − 0) + hi+1w(xi + 0)

2h̄i
.

Note that w̃i = w(xi) for i 
= κ.
The resulting difference scheme is: Find uN ∈ IRN+1 such that

LuN := −ε2uN
x̄x̂ + c̃uN = f̃ on ω, uN

0 = γ0, uN
N = γ1.

This scheme was analysed by Boglaev and Pack [22]. They establish uniform con-
vergence of first order. Roos and Zarin [142] consider the scheme with w̃i =
(w(xi − 0) + w(xi + 0)) /2, but in the critical point xκ they have hκ = hκ+1.
In that article uniform second order convergence is proved for Shishkin meshes and
for Bakhvalov-Shishkin meshes.

Using the derivative bounds derived in Sect. 3.3.1.3, the analysis of Sect. 6.1.2.2
needs only minor modifications to get the pointwise error bound

∥
∥u − uN

∥
∥
∞ ≤ C

(
ϑ

[2]
rdi(ω̄)

)2

,

where ϑ
[p]
rdi(ω̄) has been defined in Sect. 2.2.1.

6.1.3 A Non-Monotone Scheme

In this section we shall present maximum-norm error bounds for a FEM applied
to (6.1). We consider FEM-2. It generates the difference scheme

[
LuN

]
i
:= −ε2uN

x̄x̂;i + ĉuN
i = f̂i for i = 1, . . . , N − 1,

uN
0 = γ0, uN

N = γ1,
(6.31)

where

ŵi :=
hi

h̄i

wi−1

6
+

2wi

3
+

hi+1

h̄i

wi+1

6
.

We see that the discretisation of the reaction term cu generates positive off-diagonal
entries in the system matrix. This results in a scheme that is—unlike the central dif-
ference scheme studied before—not inverse monotone. Nonetheless, a maximum-
norm error analysis can be conducted. We follow [97].
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6.1.3.1 Stability

Although L is not inverse-monotone, it possesses a core that is:

[Λv]i := −ε2vx̄x̂;i +
2ci

3
vi.

This is the standard central finite difference approximation of −ε2u′′ + 2
3cu and

can be generated by means of the bilinear form

ε2 (w′, v′) +
2
3

∫ 1

0

(
cwv

)I(s)ds.

By (6.14) we have

‖v‖∞,ω̄ ≤ 3
2

∥
∥
∥
∥

Λv

c

∥
∥
∥
∥
∞,ω

for all v ∈ IRN+1
0 . (6.32)

Theorem 6.16. Suppose c ∈ C0,α[0, 1]. Let κ ∈ (0, 1) be arbitrary, but fixed. Then

‖v‖∞,ω̄ ≤ 3
1 − κ

∥
∥
∥
∥

Lv

c

∥
∥
∥
∥
∞,ω

for all v ∈ IRN+1
0 ,

provided that the maximum step size h is smaller than some threshold value that is
independent of ε.

Remark 6.17. Theorem 6.16 means the non-monotone scheme (6.31) is (�∞, �∞)-
stable although the underlying operator L is not inverse monotone and does not
satisfy a maximum principle. ♣
Proof. Let v ∈ IRN+1

0 be an arbitrary mesh function. Then

[Λv]i = −hi

h̄i

ci−1

6
vi−1 −

hi+1

h̄i

ci+1

6
vi+1 + [Lv]i .

Thus,

|[Λv]i| ≤
hici−1 + hi+1ci+1

6h̄i
‖v‖∞,ω̄ + |[Lv]i| for i = 1, . . . , N − 1,

and the stability inequality (6.32) yields

‖v‖∞,ω̄ ≤ 3
2

max
i=1,...,N−1

hici−1 + hi+1ci+1

6cih̄i
‖v‖∞,ω̄ +

3
2

∥
∥
∥
∥

Lv

c

∥
∥
∥
∥
∞,ω

. (6.33)

Since c ∈ C0,α[0, 1], there exists a constant M with

|c(x) − c(ξ)| ≤ M |x − ξ|α for all x, ξ ∈ [0, 1]. (6.34)
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Therefore,

hici−1 + hi+1ci+1

6cih̄i
≤ 1

3
+

Mhα

3ρ2
≤ 1 + κ

3
,

provided h is smaller than some threshold value that is independent of ε. Now, the
proposition follows from (6.33). ��

For our convergence analysis, we shall also require bounds on the discrete
Green’s function Gi associated with L and the mesh node xi. With Theorem 6.10
we have

∫ 1

0

(cGi)
I (s)ds =

N−1∑

j=1

h̄jcjGi,j ≤ 3
2

and
∫ 1

0

Gi(s)ds ≤ 3
2ρ2

. (6.35)

6.1.3.2 A Priori Error Analysis

Theorem 6.18. Let u be the solution of (6.1) and uN that of (6.31). Then

∥
∥u − uN

∥
∥
∞ ≤ C

(
ϑ

[2]
rd(ω̄)

)2

,

provided that h is smaller than some threshold value that is independent of ε.

Proof. By a triangle inequality

∥
∥u − uN

∥
∥
∞ ≤

∥
∥u − uI

∥
∥
∞ +

∥
∥u − uN

∥
∥
∞,ω̄

.

The interpolation error was studied in Sect. 6.1.1.1.
Let η = uN − u and q := f − cu. Then the Green’s-function representation and

Eqs. (6.1) and (6.31) yield—after some calculations—

ηi =
(
qI − q,Gi

)
−
(
(cη)I

, Gi

)
+

2
3

∫ 1

0

(ceGi)I (6.36)

where we used
(
(uI)′, G′

i

)
= (u′, G′

i), because G′
i is piecewise constant. The first

term on the right-hand side of (6.36) is bounded using a Hölder inequality, Theorem
6.2 and (6.35):

∣
∣(qI − q,Gi

)∣∣ ≤ C
(
ϑ

[2]
rd(ω̄)

)2

.

For the remaining terms in (6.36) a straight-forward calculation gives

2
3

∫ 1

0

(cηGi)I −
(
(cη)I

, Gi

)
= −1

3

∑ hk

2
(ckηkGi,k−1 + ck−1ηk−1Gi,k) .



6.1 Reaction-Diffusion 205

Let κ ∈ (0, 1) be arbitrary, but fixed. Then, using (6.34) and (6.35), we can estimate
as follows:

∣
∣
∣
∣
2
3

∫ 1

0

(cηGi)I −
(
(cη)I

, Gi

)∣∣
∣
∣ ≤

(
1
2

+
Mhα

2ρ2

)
‖η‖∞,ω̄ ≤ 1 + κ

2
‖η‖∞,ω̄ .

Thus,

|ηi| ≤ C
(
ϑ

[2]
rd(ω̄)

)2

+
1 + κ

2
‖η‖∞,ω̄ .

Taking the maximum over i = 1, . . . , N − 1, we get the general error bound of the
theorem. ��

Remark 6.19. In contrast to the analysis for central differencing, only bounds for the
L1 norm of the Green’s function have been used, but no bounds on its derivative.
Also no third-order derivative of u is required. Only the second-order derivative is
used when Theorem 6.2 is invoked. ♣

Remark 6.20. The proof is easily adapted to deal with discontinuities in the right-
hand side or in the reaction coefficient. ♣

6.1.3.3 A Posteriori Error Analysis

The analysis in [97] is along the lines of the analysis for central differencing in
Sect. 6.1.2.3.

Set Γ = G(x, ·) and q̂ := cuN − f . Then

(
u − uN

)
(x) =

(
q̂I − q̂, Γ

)
+
(
q̂I , Γ I − Γ

)
. (6.37)

Note that compared with (6.23) the term
∫ 1

0

(
(q̂Γ )I − q̂IΓ I

)
(s)ds

does not appear in (6.37).
Both terms on the right-hand side of (6.37) have been bounded in Sect. 6.1.2.3.

Theorem 6.21. Let u be the solution of the reaction-diffusion problem (6.1) and uN

its approximation by (6.31). Let q̂ := cuN − f . Then

∥
∥u − uN

∥
∥
∞ ≤ 1

ρ2

∥
∥q̂ − q̂I

∥
∥
∞ + max

k=0,...,N−1

h2
k+1

4ε2
max

{
|q̂k| , |q̂k+1|

}
.
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Remark 6.22. Compared with central differencing, we see the term

max
k=0,...,N−1

hk+1

6ερ
|q̂k+1 − q̂k|

does not feature in the a posteriori estimate for the non-monotone scheme.
By Remark 6.15 this term corresponds to a discrete third-order derivative of uN .

Also note that in the analysis, no bounds on the derivative of the Green’s function
are required. ♣

6.1.4 A Compact Fourth-Order Scheme

In this section we consider a compact finite difference scheme of order four. Given
an arbitrary mesh ω̄ we seek a mesh function uN ∈ IRN+1 satisfying

[
LuN

]
i
:= cl

iu
N
i−1 + cc

iu
N
i + cr

i u
N
i+1

= ql
ifi−1 + qc

i fi + qr
i fi+1 =: [Qf ]i , i = 1, . . . , N − 1.

The coefficients c and q are determined so that the scheme is exact for polynomials
up to degree four. That is [Lp]i = [Q(Lp)]i for all p ∈ Π4. This construction yields
a difference scheme whose system matrix is not inverse monotone.

A similar approach was used in [27] where in order to ensure inverse monotonic-
ity, the high-order approximation is used only when the local mesh size is small
enough to give non-positive off-diagonal entries. In all other mesh points central
differencing is used. This hybrid method is shown to be third-order convergent uni-
formly in ε on a Shishkin mesh; see [27, § 2]. An alternative approach to obtain
a higher-order difference approximation while maintaining the M -matrix property
can be found in [46]. However, the construction of that scheme requires explicit
knowledge of the derivatives of the data (c and f ) and subtle modifications in those
points where the mesh is non-uniform.

We shall follow the analysis in [98] and see that inverse monotonicity is not a
prerequisite for the maximum-norm error analysis of higher-order schemes.

6.1.4.1 Discretisation

The exactness of the scheme for polynomials up to degree four and the normalisation
condition ql;i + qc;i + qr;i = 1, i = 1, . . . , N − 1, yield the difference scheme: Find
uN ∈ IRN+1 such that

[
LuN

]
i
:= −ε2uN

x̄x̂,i +
[
Q(cuN )

]
i
= [Qf ]i for i = 1, . . . , N − 1,

uN
0 = γ0, uN

N = γ1,
(6.38)
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where

[Qv]i :=
1 − μ−

i

6
vi−1 +

4 + μ−
i + μ+

i

6
vi +

1 − μ+
i

6
vi+1

with

μ−
i :=

h2
i+1

2hih̄i
and μ+

i :=
h2

i

2hi+1h̄i
.

6.1.4.2 Stability

For the stability analysis we consider an arbitrary mesh ω̄ with maximal step size h.
Although L is not inverse-monotone, it possesses a core that is:

[Λv]i := −ε2
[
δ2
xv
]
i
+

α−
i

6
rivi−1 +

4 + μ−
i + μ+

i

6
rivi +

α+
i

6
rivi+1

where

α−
i = min

{
0, 1 − μ−

i

}
, α+

i = min
{
0, 1 − μ+

i

}
.

The matrix associated with Λ is an L0 matrix with row sums βi/6, where

βi := 4 + α−
i + α+

i + μ−
i + μ+

i .

Therefore, it is an M -matrix and we can conclude that

‖v‖ω̄ ≤ max
i=1,...,N−1

∣
∣
∣
∣
6 [Λv]i
ciβi

∣
∣
∣
∣ for all v ∈ IRN+1

0 , (6.39)

by Lemma 3.17.

Theorem 6.23. Suppose c ∈ C1[0, 1]. Let κ ∈ (0, 1) be arbitrary, but fixed. Then

‖v‖ω̄ ≤ 3
2 − κ

∥
∥
∥
∥

Lv

c

∥
∥
∥
∥

ω

for all v ∈ IRN+1
0 ,

provided that h is smaller than some threshold value that depends on κ and c only.

Proof. First, note that

μ−
i + μ+

i =
h3

i+1 + h3
i

hihi+1(hi + hi+1)
≥ 1, (6.40)

by the relation between cubic, arithmetic and geometric means.
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Furthermore,

hi+1 ≥ hi =⇒ α+
i = 0, and hi+1 ≤ hi =⇒ α−

i = 0.

Therefore, at least one of α−
i and α+

i is zero. Without loss of generality we assume
α−

i = 0. This implies 0 ≤ 1 − μ−
i ≤ 1.

We distinguish two cases α+
i = 0 and α+

i = 1 − μ+
i .

(i) Suppose 0 = α+
i . Then 0 ≤ 1 − μ+

i ≤ 1 and

[Λv]i = [Lv]i −
1 − μ−

i

6
civi−1 −

1 − μ+
i

6
civi+1

− 1 − μ−
i

6
(ci−1 − ci) vi−1 −

1 − μ+
i

6
(ci+1 − ci) vi+1.

We estimate as follows:

∣
∣(1 − μ−

i

)
(ci−1 − ci)

∣
∣ ≤ hi‖c′‖∞ ≤ κci .

Similarly,

∣
∣(1 − μ+

i

)
(ci+1 − ci)

∣
∣ ≤ hi+1‖c′‖∞ ≤ κci ,

provided h is sufficiently small—depending on κ and c only. We also have

∣
∣1 − μ−

i

∣
∣+

∣
∣1 − μ+

i

∣
∣ = 2 − μ−

i − μ+
i ≤ 1, by (6.40).

Therefore,

|[Λv]i| ≤ |[Lv]i| +
1 + 2κ

6
‖v‖ω̄ . (6.41)

Note that βi = 4 + μ−
i + μ+

i ≥ 5, by (6.40). Hence,

∣
∣
∣
∣
6 [Λv]i
ciβi

∣
∣
∣
∣ ≤

6
5

∣
∣
∣
∣
[Lεv]i

ci

∣
∣
∣
∣+

1 + 2κ
5

‖v‖ω̄ . (6.42)

(ii) If α+
i = 1 − μ+

i ≤ 0 then

[Λv]i = [Lv]i −
1 − μ−

i

6
civi−1 −

1 − μ−
i

6
(ci−1 − ci) vi−1

− 1 − μ+
i

6
(ci+1 − ci) vi+1 .
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The second and third term on the right-hand side are bounded as in case (i). For the
last term note that 1 − μ+

i ≤ 0 yields
∣
∣1 − μ+

i

∣
∣ ≤ μ+

i and therefore,

∣
∣(1 − μ+

i

)
(ci+1 − ci)

∣
∣ ≤ μ+

i hi+1‖c′‖∞ ≤ hi‖c′‖∞ ≤ κci,

for sufficiently small h. Thus, (6.41) holds for this case too. Furthermore, for βi we
have βi = 5 + μ−

i ≥ 5. Consequently, (6.42) holds for all i = 1, . . . , N − 1.
Combining (6.39) with (6.42), we are finished. ��

Remark 6.24. The discretisation (6.38) is (�∞, �∞)-stable although the underlying
operator is in general not inverse monotone and therefore does not satisfy a maxi-
mum principle. ♣

Remark 6.25. The argument presented here sharpens Theorem 1 in [98] by giving a
smaller stability constant. ♣

6.1.4.3 Nodal Error Analysis

We shall apply the difference scheme (6.38) on a Shishkin mesh with σ ≥ 4. For
this we have h ≤ N−1/(1 − 2q).

Let η = u− uN denote the error of the scheme. We start our analysis by decom-
posing the error of the scheme as η = ψ + ϕ, where the two parts ψ,ϕ ∈ IRN+1

0

solve

[Λψ]i = [Lη]i = ε2 [Q(u′′) − ux̄x̂]i on ω,

and

[Λϕ]i = −ci−1

6
ηi−1 −

ci+1

6
ηi+1

+
μ−

i

6
(ci−1 − ci) ηi−1 +

μ+
i

6
(ci+1 − ci) ηi+1 on ω.

Let κ ∈ (0, 1) be arbitrary, but fixed. Then using arguments from our stability anal-
ysis, we get

∣
∣
∣
∣
6 [Λϕ]i
βici

∣
∣
∣
∣ ≤

1 + 2κ

5
‖η‖ω̄ for i = 1, . . . , N − 1,

if N is greater than some threshold value that is independent of ε. The stability
inequality (6.39) yields

‖ϕ‖ω ≤ 1 + 2κ

5
‖η‖ω̄ .
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Application of a triangle inequality gives

‖η‖ω̄ ≤ ‖ψ‖ω̄ + ‖ϕ‖ω̄ ≤ ‖ψ‖ω̄ +
1 + 2κ

5
‖η‖ω̄ .

Hence, the error can be bounded in terms of ψ:

∥
∥u − uN

∥
∥

ω̄
≤ 5

4 − 2κ
‖ψ‖ω̄ . (6.43)

We are left with estimating ψ which will be done using a truncation error and
barrier function technique.

Let g ∈ C6[xi−1, xi+1]. Then Taylor expansions give

∣
∣
∣[Q(g′′) − gx̄x̂]i

∣
∣
∣ ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C ‖g′′‖[xi−1,xi+1]
if hi = hi+1,

C ‖g′′‖[xi,xi+1]
+ Cμ−

i hi ‖g′′′‖[xi−1,xi]
if hi ≤ hi+1,

C (hi + hi+1)
3 ∥∥g(5)

∥
∥

[xi−1,xi+1]
and

Ch4
i

∥
∥g(6)

∥
∥

[xi−1,xi+1]
if hi = hi+1.

(6.44)

We consider the two distinct cases for the mesh transition point: τ = q and τ < q.
In the first case, the mesh is uniform with hi = 1/N for i = 1, . . . , N . Moreover,
ε−1 ≤ C ln N . Thus,

∥
∥u(6)

∥
∥ ≤ Cε−2 ln4 N , by Theorem 3.35. Now the fourth

bound of (6.44) yields

|[Λψ]i| = ε2
∣
∣
∣[Q(u′′) − ux̄x̂]i

∣
∣
∣ ≤ CN−4 ln4 N, i = 1, . . . , N − 1.

Hence,

‖ψ‖ω̄ ≤ CN−4 ln4 N if τ = q, (6.45)

by (6.39).
The case when τ < q requires a more detailed argument employing the decom-

position of u.

(i) For xi ∈ (0, τ) ∪ (1 − τ, 1), use the fourth bound of (6.44),
∥
∥u(6)

∥
∥ ≤ Cε−6

and hi = hi+1 ≤ CεN−1 ln N to get

|[Λψ]i| = ε2
∣
∣
∣[Q(u′′) − ux̄x̂]i

∣
∣
∣ ≤ CN−4 ln4 N for xi ∈ (0, τ) ∪ (1 − τ, 1).

(ii) For xi ∈ (τ, 1 − τ), split the truncation error according to the decomposition
of u:

ε2 |[Q(u′′) − ux̄x̂]i| = ε2 |[Q(v′′) − vx̄x̂]i| + ε2 |[Q(w′′) − wx̄x̂]i| .
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The first term is bounded using the fourth estimate of (6.44), ε2
∥
∥v(6)

∥
∥ ≤ C

and hi = hi+1 ≤ CN−1. We obtain ε2 |[Q(v′′) − vx̄x̂]i| ≤ CN−4. In order to
bound the truncation error with respect to the layer part w, use the first estimate
of (6.44) to get ε2 |[Q(w′′) − wx̄x̂]i| ≤ CN−σ . Hence,

|[Λψ]i| ≤ CN−4 for xi ∈ (τ, 1 − τ).

(iii) For xi ∈ {τ, 1 − τ}, split the truncation error again. For the regular solution
component v the third estimate of (6.44) gives

ε2 |[Q(v′′) − vx̄x̂]i| ≤ CεN−3,

while for w we have by the second bound of (6.44)

ε2
∣
∣
∣[Q(w′′) − wx̄x̂]qN

∣
∣
∣ ≤ C

(
e−ρxqN /ε + μ−

qNN−1 ln Ne−ρ(1−x(1−q)N+1)/ε
)

≤ CN−σ + CNσ/qNN−σ−1μ−
qN ln N

≤ CN−σ + CN−σ−1μ−
qN ln N,

with an analogous estimate for i = (1 − q)N . Collecting the various bounds
for the truncation error, we get (for τ < q)

ε2 |[Q(u′′) − ux̄x̂]i|

≤ CN−4 ln4 N +

⎧
⎪⎪⎨

⎪⎪⎩

CεN−3 + CN−5μ−
i ln N if i = qN,

CεN−3 + CN−5μ+
i ln N if i = (1 − q)N,

0 otherwise.
(6.46)

Finally, we use an idea from [122]. Define the mesh function z ∈ IRN+1
0 by

zi :=

⎧
⎪⎪⎨

⎪⎪⎩

xi/τ for i = 0, . . . , qN,

1 for i = qN, . . . , (1 − q)N, and

(1 − xi)/τ for i = (1 − q)N, . . . , N.

A direct calculation verifies

[Λz]i =
2ci

3
zi +

1
qN

⎧
⎪⎪⎨

⎪⎪⎩

ε2

hih̄i
+ μ−

i ri

6 if i = qN,
ε2

hi+1h̄i
+ μ+

i ri

6 if i = (1 − q)N and

0 otherwise.
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Note that

ε2

hqN h̄qN
,

ε2

h(1−q)N+1h̄(1−q)N
≥ ερ(1 − 2q)N

2σ ln N
.

Therefore, recalling the truncation error bound (6.46), we can use the discrete
comparison principle (6.13) with the barrier function CN−4

(
ln4 N + zi ln N

)

to see that (6.45) holds for τ < q too.

Finally, (6.43) yields the main convergence result of this section.

Theorem 6.26. Let u be the solution of the boundary value problem (6.1) and uN

that of the finite difference scheme (6.38) on a Shishkin mesh with σ ≥ 4. Then

∥
∥u − uN

∥
∥
∞,ω̄

≤ CN−4 ln4 N,

provided that N is larger than some threshold value that depends on c only.

Corollary 6.27. Clustering three adjacent and equidistant mesh intervals and fit-
ting a cubic function through the numerical approximation on the four associated
mesh points, we obtain a cubic C0-spline SuN that approximates u on the whole
domain:

∥
∥u − SuN

∥
∥
∞ ≤ CN−4 ln4 N.

Remark 6.28. Approximations of the derivatives can be obtained by differentiat-
ing SuN :

εk
∥
∥(u − SuN )(k)

∥
∥ ≤ C

(
N−1 ln N

)(4−k)
for k = 1, 2, 3.

Note that in those mesh points where two different cubic functions are concatenated
to give SuN , we have different left- and right-sided derivatives, however for both,
the above bound holds.

Better approximations of the second-order derivative are obtained by appealing
to (6.1):

u′′(x) ≈ m(x) := ε−2
(
cSuN − f

)
(x).

We have the error bound

ε2 ‖u′′ − m‖ ≤ CN−4 ln4 N.

This readily follows from Theorem 6.26. ♣
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6.1.4.4 Numerical Results

To illustrate the theoretical results, we consider the problem

−ε2u′′ + (1 + x2 + cos x)u = x9/2 + sin x, in (0, 1), (6.47)

with homogeneous Dirichlet boundary conditions.
The exact solution is not available. Therefore, we estimate the error for uN and

SuN by comparing them to the numerical solution ũN obtained on a mesh ω̃ that is
seven times as fine. More precisely ω̃ is constructed from ω by uniformly dividing
each of its mesh intervals into seven equidistant subintervals. We take the estimates

∥
∥u − uN

∥
∥
∞,ω

≈ ηN :=
∥
∥ũN − uN

∥
∥
∞,ω

and

∥
∥u − SuN

∥
∥
∞ ≈ η̃N :=

∥
∥ũN − SuN

∥
∥
∞,ω̃

.

Since we have an error bound of the form C
(
N−1 ln N

)p
, we also compute the

“Shishkin” rates of convergence:

pN =
ln ηN − ln η2N

ln(2 ln N) − ln(ln(2N))
.

We choose N divisible by three and define SuN on macro intervals [x3k, x3(k+1)],
k = 0, . . . , N/3 − 1.

The left half of Table 6.1 displays the results of our test computations for the
Shishkin mesh. They are in good agreement with Theorem 6.26 and Corollary 6.27.
The right half of the table contains results for a modified Bakhvalov mesh: First

Table 6.1 Compact fourth order scheme for (6.47), ε = 10−4 (identical numbers for ε =

10−4k, k = 2, . . . , 6)
Shishkin mesh Bakhvalov mesh

N ηN pN η̃N p̃N ηN πN η̃N π̃N

3 · 27 1.151e-05 3.99 3.979e-04 3.66 2.644e-08 4.01 4.915e-07 3.99
3 · 28 1.123e-06 4.00 4.701e-05 3.81 1.641e-09 4.00 3.090e-08 4.00
3 · 29 1.045e-07 4.00 4.890e-06 3.89 1.024e-10 4.00 1.936e-09 4.00
3 · 210 9.375e-09 4.00 4.672e-07 3.94 6.394e-12 4.00 1.212e-10 4.00
3 · 211 8.160e-10 4.00 4.212e-08 3.97 3.996e-13 4.00 7.580e-12 4.00
3 · 212 6.925e-11 4.00 3.644e-09 3.98 2.497e-14 4.00 4.739e-13 4.00
3 · 213 5.750e-12 4.00 3.058e-10 3.99 1.561e-15 4.00 2.963e-14 4.00
3 · 214 4.686e-13 4.00 2.506e-11 4.00 9.756e-17 4.00 1.852e-15 4.00
3 · 215 3.756e-14 4.00 2.014e-12 4.00 6.097e-18 4.00 1.157e-16 4.00
3 · 216 2.967e-15 — 1.594e-13 — 3.811e-19 — 7.234e-18 —
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we construct a standard Bakhvalov mesh with N/3 mesh intervals, which are then
subdivided into three subintervals of equal length. This gives our computational
mesh ω. This modification is necessary because the stability constant of S depends
on the local ratio of the mesh sizes, which on a Bakhvalov mesh depends on ε. For
this mesh, we expect uniform convergence of order N−4. This is clearly observed
in the numerical experiments.

6.2 Systems of Reaction-Diffusion Type

We now leave the scalar problems and move on to systems of reaction-diffusion
equations: Find u ∈

(
C2(0, 1) ∩ C[0, 1]

)�
such that

Lu := −E2u′′ + Au = f in (0, 1), u(0) = u(1) = 0, (6.48)

where E = diag(ε1, . . . , ε�) and the small parameters εk are in (0, 1].
The analytical behaviour of the solution to (6.48) has been studied in Sect. 3.3.2.

Again we assume the coupling matrix A has positive diagonal entries and is diago-
nally dominant with

β := max
k=1,...,�

�∑

m=1
m �=k

∥
∥
∥
∥

akm

akk

∥
∥
∥
∥
∞

< 1. (6.49)

Define κ > 0 by

κ2 := (1 − β) min
k=1,...,�

min
x∈[0,1]

akk(x).

For simplicity in our presentation we assume that

ε1 ≥ ε2 ≥ · · · ≥ ε� and ε1 ≤ κ

4
.

The first chain of inequalities can always be achieved by renumbering the equations,
while the last inequality provides a threshold value for the validity of our analysis.

6.2.1 The Interpolation Error

We consider piecewise linear interpolation. Using the derivative bounds of Theorem
3.43 for the solution of (6.48), we can apply the technique in Section 6.1.1.1 to
establish interpolation error bounds for the components of u.
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Theorem 6.29. Suppose the assumptions of Theorem 3.43 hold true. Then

∥
∥uk − uI

k

∥
∥

0
≤
∥
∥uk − uI

k

∥
∥
∞ ≤ C

(
ϑ

[2]
rd,k(ω̄)

)2

, k = 1, . . . , �,

and

εk

∣
∣uk − uI

k

∣
∣
1
≤ Cε

1/2
k ϑ

[2]
rd,k(ω̄), k = 1, . . . , �,

where

ϑ
[p]
rd,k(ω̄) := max

i=0,...,N−1

∫

Ii

(

1 +
k∑

m=1

ε−1
m

(
e−κs/pεm + e−κ(1−s)/pεm

)
)

ds

for k = 1, . . . , �.

6.2.2 Linear Finite Elements

In view of Lemma 3.40 we may assume without loss of generality that A is coercive,
i.e., there exists a positive constant α such that

vT A(x)v ≥ αvT v for all x ∈ [0, 1], and v ∈ IR�. (6.50)

As usual with finite element discretisations, we consider the weak formulation
of (6.48): Find u ∈ H1

0 (0, 1)� such that

B(u,v) = F (v) for all v ∈ H1
0 (0, 1)�,

with

B(u,v) :=
�∑

m=1

ε2
m(u′

m, v′
m) +

�∑

m=1

�∑

k=1

(amkuk, vm)

and

F (v) :=
�∑

m=1

(fm, vm), (w, v) =
∫ 1

0

(
wv

)
(s)ds.

The natural norm on H1
0 (0, 1)� associated with the bilinear form B(·, ·) is the

energy norm |||·|||ε2 defined by

|||v|||2ε2 :=
�∑

m=1

ε2
m |vm|21 + α ‖v‖2

0 , ‖v‖2
0 :=

�∑

m=1

‖vm‖2
0 .
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Because of (6.50) the bilinear form B(·, ·) is coercive with respect to the energy
norm, i.e.,

|||v|||2ε2 ≤ B(v,v) for all v ∈ H1
0 (0, 1)�.

If f ∈ L2(0, 1)� then F is a linear continuous functional on H1
0 (0, 1)�. Therefore,

the Lax-Milgram Lemma ensures the existence of a unique solution u ∈ H1
0 (0, 1)�

of the variational formulation of (6.48).
Given a mesh ω̄, we seek an approximation uN ∈ (V ω

0 )� such that

B̂(uN ,v) = F̂ (v) for all v ∈ (V ω
0 )�

, (6.51)

where

B̂(u,v) :=
�∑

m=1

ε2
m(u′

m, v′
m) +

�∑

m=1

�∑

k=1

(aI
mkuk, vm)

and

F̂ (v) :=
�∑

m=1

(f I
m, vm).

Thus, our FEM incorporates quadrature to approximate the integrals.
The coercivity of A, i.e. (6.50), implies the coercivity of its piecewise linear

interpolant AI :

vT AI(x)v ≥ αvT v for all x ∈ [0, 1], and v ∈ IR�.

Consequently, the bilinear form B̂(·, ·) is also coercive with

|||v|||2ε2 ≤ B̂(v,v) for all v ∈ H1
0 (0, 1)�. (6.52)

Set η := uI − u and χ := uI − uN . Then by a triangle inequality

∣
∣
∣
∣
∣
∣u − uN

∣
∣
∣
∣
∣
∣
ε2 ≤ |||η|||ε2 + |||χ|||ε2 .

Theorem 6.29 yields

|||η|||ε2 ≤ C
(
ε
1/2
1 + ϑ

[2]
rd,�(ω)

)
ϑ

[2]
rd,�(ω),

and we are left with bounding |||χ|||ε2 .
Starting from (6.52), we get

|||χ|||2ε2 ≤ B̂(χ, χ) =
�∑

m=1

(
�∑

k=1

(
aI

mkuI
k − amkuk

)
+ fm − f I

m, χm

)

.
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Use

aI
mkuI

k − amkuk =
(
aI

mk − amk

)
uI

k + amk

(
uI

k − uk

)
,

the Cauchy-Schwarz inequality and Theorem 6.29 to get

|||χ|||2ε2 ≤ C
(
ε
1/2
1 + ϑ

[2]
rd,�(ω)

)
ϑ

[2]
rd,�(ω) ‖χ‖0 .

We obtain the following convergence results in the energy norm.

Theorem 6.30. Let u be the solution of (6.48) and uN its approximation by (6.51).
Then

∣
∣
∣
∣
∣
∣uI − uN

∣
∣
∣
∣
∣
∣
ε2 ≤ C

(
ϑ

[2]
rd,�(ω̄)

)2

,

and

∣
∣
∣
∣
∣
∣u − uN

∣
∣
∣
∣
∣
∣
ε2 ≤ C

(
ε
1/2
1 + ϑ

[2]
rd,�(ω̄)

)
ϑ

[2]
rd,�(ω̄).

Remark 6.31. A similar result is given in [99], but there the effect of numerical
integration is not taken into account. ♣
Remark 6.32. Like in the scalar case, the energy norm |||·|||ε2 fails to capture the
layers present in the solution. ♣

6.2.3 Central Differencing

We consider the discretisation of (6.48) by standard central differencing on meshes
ω̄ that for the moment are arbitrary. That is, we seek uN ∈

(
IRN+1

0

)�
such that

[
LuN

]
i
:= −diag(E)2uN

x̄x̂;i + Aiu
N
i = f i for i = 1, . . . , N − 1,

uN
0 = uN

N = 0.
(6.53)

6.2.3.1 Stability

Our analysis follows that of [104] and is based on the stability properties of
Section 6.1.2.1 for scalar operators.

Let v ∈
(
IRN+1

0

)�
be arbitrary. Then

−ε2
kvk;x̄x̂ + akkvk = (Lv)k −

�∑

m=1
m �=k

akmvm for k = 1, . . . , �.
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The stability inequality (6.14) and a triangle inequality then yield

‖vk‖∞,ω̄ −
�∑

m=1
m �=k

∥
∥
∥
∥

akm

akk

∥
∥
∥
∥
∞

‖um‖∞,ω ≤
∥
∥
∥
∥

(Lv)k

akk

∥
∥
∥
∥
∞,ω

.

Define the � × � constant matrix Γ = Γ (A) = (γkm) by

γkk = 1 and γkm = −
∥
∥
∥
∥

akm

akk

∥
∥
∥
∥
∞

for k 
= m.

Suppose that Γ is inverse-monotone, i.e., that Γ is invertible and Γ−1 ≥ 0. Then
we obtain the following stability result for the difference operator L.

Theorem 6.33. Assume the matrix A has positive diagonal entries. Assume that
Γ (A) is inverse-monotone. Then for k = 1, . . . , � one has

‖vk‖∞,ω̄ ≤
�∑

m=1

(
Γ−1

)
km

∥
∥
∥
∥

(Lv)m

amm

∥
∥
∥
∥
∞,ω

for any function mesh function v ∈
(
IRN+1

0

)�
.

Corollary 6.34. Under the hypotheses of Theorem 6.33 the discrete problem (6.53)
has a unique solution uN , and

∥
∥uN

∥
∥
∞,ω̄

≤ C ‖f‖∞,ω for some constant C.
Thus, the operator L is (�∞, �∞) stable, or maximum-norm stable although in

general it is not inverse-monotone.

6.2.3.2 A Priori Error Bounds

Let η := u−uN denote the error of the discrete solution. We decompose the solu-
tion error as η = ϕ+ψ, where the components ϕk and ψk of ϕ and ψ respectively
are the solutions of

−ε2
kϕk;x̄x̂ + akkϕk = −ε2

k

(
uk,x̄x̂ − u′′

k

)
on ω, ϕk;0 = ϕk;N = 0

and

−ε2
i ψk;x̄x̂ + akkψk = −

�∑

m=1
m �=k

akmηm on ω, ψk;0 = ψk;N = 0.

Assume that the matrix Γ (A) is inverse-monotone. Then for each k one has

‖ηi‖∞,ω̄ ≤ ‖ϕi‖∞,ω̄ + ‖ψi‖∞,ω̄ ≤ ‖ϕi‖∞,ω̄ +
�∑

m=1
m �=k

∥
∥
∥
∥

akm

akk

∥
∥
∥
∥
∞

‖ηm‖∞,ω̄ ,
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by (6.14). Gathering together the η terms and invoking the inverse-monotonicity of
Γ (A), we get

∥
∥u − uN

∥
∥
∞,ω̄

≤ C ‖ϕ‖∞,ω̄ .

Each component ϕi of ϕ is the solution of a scalar problem and can be anal-
ysed using the technique in Sect. 6.1.2.2 combined with the derivative bounds of
Theorem 3.43. This was done in [104, § 3.2] to deduce the following result:

Theorem 6.35. Let the matrix A and the source term f be twice continuously dif-
ferentiable. Assume A possesses positive diagonal entries and satisfies (6.49). Then
the error in the solution of (6.53) satisfies

∥
∥u − uN

∥
∥
∞,ω̄

≤ C
(
ϑ

[2]
rd,�(ω̄)

)2

.

Corollary 6.36. Identifying uN with a piecewise linear function on ω̄, we have

∥
∥u − uN

∥
∥
∞ ≤ C

(
ϑ

[2]
rd,�(ω̄)

)2

,

by Theorems 6.29 and 6.35.

Remark 6.37. An alternative analysis based on comparison principles with special
barrier functions was used in [102, 118]. This technique has the more restrictive
condition that A be an M -matrix and up to now has been applied successfully only
to Shishkin meshes. ♣

6.2.3.3 Numerical Results

We now present the results of some numerical experiments in order to illustrate
the conclusions of the preceding section, and to check if the error estimates of
Theorem 6.35 are sharp.

The test problem is

−ε2
1u

′′
1 + 3u1 + (1 − x)(u2 − u3) = ex, u1(0) = u1(1) = 0,

−ε2
2u

′′
2 + 2u1 + (4 + x)u2 − u3 = cos x, u2(0) = u2(1) = 0,

−ε2
3u

′′
3 + 2u1 + 3u3 = 1 + x2, u3(0) = u3(1) = 0.

In the construction of the Bakhvalov and the Shishkin mesh (see Sect. 2.2.2) we take
κ/p = 0.8.

The exact solutions to the test problems is not available, so we estimate the ac-
curacy of the numerical solution by comparing it to the numerical solution of the
Richardson extrapolation method, which is of higher order: Let uN

ε be the solution
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of the difference scheme on the original mesh and ũ2N
ε that on the mesh obtained

by uniformly bisecting the original mesh. This yields the estimated error

ηN
ε :=

4
3

∥
∥uN

ε − ũ2N
ε

∥
∥
∞,ω

.

The uniform errors for a fixed N are estimated by taking the maximum error over a
wide range of ε, namely

ηN := max
ε1,...,ε�=10−0,...,10−24

ηN
ε .

For the Shishkin mesh we have an error bound of the form C
(
N−1 ln N

)p
. There-

fore, we compute the “Shishkin” rates of convergence using the formula

pN =
ln ηN − ln η2N

ln(2 ln N) − ln(ln(2N))
,

while for the Bakhvalov mesh, the standard formula

ρN =
(
ln ηN − ln η2N

)
/ ln 2

is used.
The results of our test computations displayed in Table 6.2 are in agreement with

Theorem 6.35. The Bakhvalov mesh gives second order accuracy, while the results
for the Shishkin mesh are spoiled by the typical logarithmic factor.

Table 6.2 Central differencing on layer-adapted
meshes for systems of reaction-diffusion type

Shishkin mesh Bakhvalov mesh
N ηN pN ηN ρN

8 · 23 4.895e-02 1.22 4.910e-03 2.08
8 · 24 2.276e-02 1.50 1.157e-03 2.05
8 · 25 8.854e-03 1.67 2.790e-04 2.04
8 · 26 3.091e-03 1.77 6.771e-05 2.01
8 · 27 1.014e-03 1.83 1.676e-05 2.00
8 · 28 3.201e-04 1.88 4.179e-06 2.00
8 · 29 9.831e-05 1.91 1.044e-06 2.00
8 · 210 2.955e-05 1.94 2.610e-07 2.00
8 · 211 8.725e-06 1.96 6.527e-08 2.00
8 · 212 2.537e-06 — 1.632e-08 —
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6.2.3.4 A Posteriori Error Bounds

By interpreting the components of uN as piecewise linear functions, one can con-
duct an a posteriori error analysis that combines the technique in Sect. 6.1.2.3 with
Theorem 3.36 to give

∥
∥uk − uN

k

∥
∥
∞ ≤

�∑

m=1

(
Γ−1

)
km

(η1;m + η2;m + η3;m) , k = 1, . . . , �,

where

η1;m :=

∥
∥q̂m − q̂I

m

∥
∥
∞

ρ2
m

, η2;m := max
i=0,...,N−1

h2
i+1

4ε2
k

max {|qk;i| , |qk;i+1|}

η3;m := max
i=0,...,N−1

hi+1

6εmρm
|q̂m;i+1 − q̂m;i|

q̂m = fm −
�∑

ν=1

amνuN
ν and ρm = min

x∈[0,1]
amm(x)1/2.

Remark 6.38. Since the a posteriori analysis uses the stability of the differential
operator, a posteriori bounds can also be derived for non-monotone discretisations,
like schemes generated by FEMs. If for example, FEM-2 (see p. 187) is used, then
the η3 terms in the above estimate will disappear; cf. Sect. 6.1.3.3. ♣

6.3 Reaction-Convection-Diffusion

Consider the scalar reaction-convection-diffusion problem

Lu := −εdu
′′ − εcbu

′ + cu = f in (0, 1), u(0) = γ0, u(1) = γ1, (6.54)

where b ≥ 1 and c ≥ 1 on [0, 1], εd ∈ (0, 1] and εc ∈ [0, 1].
Analytical properties of (6.54) were studied in Sect. 3.2, while layer-adapted

meshes for it have been introduced in Sect. 2.2.
We briefly recall some of the notation. Let λ0 < 0 and λ1 > 0 be the solution of

−εdλ(x)2 − εcb(x)λ(x) + c(x) = 0. (6.55)

Set

μ0 := max
x∈[0,1]

λ0(x) < 0 and μ1 := min
x∈[0,1]

λ1(x) > 0.
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The quantity used for presenting a priori error bounds is

ϑ
[p]
rd(ω̄) := max

i=1,...,N

∫

Ii

{
1 + |μ0| eμ0s/pε + μ1e−μ1(1−s)/pε

}
ds.

6.3.1 The Interpolation Error

Let wI denote the piecewise linear interpolant of w again. Adapting the techniques
from Sects. 5.1 and 6.1.1.1, and using the derivative bounds of Theorem 3.29 we
obtain the following result.

Proposition 6.39. Let u be the solution of (6.54). Let p > 2 be arbitrary, but fixed.
Then

∥
∥u − uI

∥
∥
∞,Ii

≤ C

{∫

Ii

(
1 + |μ0| eμ0s/pε + μ1e−μ1(1−s)/pε

)
ds

}2

for all mesh intervals Ii = [xi−1, xi].

Define the εd-weighted energy norm by

|||v|||2εd
:= εd |v|21 + ‖v‖2

0 .

Theorem 6.40. Let u be the solution of (6.54). Let p > 2 be arbitrary, but fixed.
Then

∥
∥u − uI

∥
∥
∞ ≤ C

(
ϑ

[p]
rcd(ω̄)

)2

and
∣
∣
∣
∣
∣
∣u − uI

∣
∣
∣
∣
∣
∣
εd

≤ C
(
μ
−1/2
1 + ϑ

[p]
rcd(ω̄)

)
ϑ

[p]
rcd(ω̄).

for any p > 2.

Proof. The bound on the L∞ error is an immediate consequence of Prop. 6.39 and
the definition of ϑ

[p]
rcd.

For the error in the H1 semi-norm use integration by parts to get

∣
∣u − uI

∣
∣2
1

= −
∫ 1

0

u′′(x)
(
u − uI

)
(x)dx.

Note, that

εd

∫ 1

0

|u′′(x)|dx ≤ Cεd |μ0| ≤ Cμ−1
1 .

The assertion of the theorem follows. ��
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Remark 6.41. The results of Theorem 6.40 hold for arbitrary p > 2, but not for
p = 2. This is because of the derivative bounds provided by Theorem 3.29.

6.3.2 Simple Upwinding

This section studies a simple first-order upwind difference scheme for (6.54). The
analysis essentially follows [95].

Our scheme is: Find uN ∈ IRN+1 such that

[
LuN

]
i
:= −εdu

N
x̄x;i − εcbiu

N
x;i + ciu

N
i = fi for i = 1, . . . , N − 1,

uN
0 = γ0, uN

N = γ1.
(6.56)

The difference operators were introduced in Sect. 4.1.
The variational formulation of (6.56) is: Find uN ∈ V ω with uN

0 = γ0 and
uN

N = γ1 such that

au

(
uN , v

)
= fu

(
v
)

:= (f, v)ω for all v ∈ V ω
0 , (6.57)

where

au (w, v) := εd [wx, vx)ω − (εcbux − cw, v)ω

and

[w, v)ω :=
N−1∑

i=0

hi+1wivi, (w, v)ω :=
N−1∑

i=1

hi+1wivi.

Taking as test functions v the standard hat-function basis in V ω
0 , we see

that (6.56) and (6.57) are equivalent. In particular, using summation by parts it
is verified that

au (w, v) = (Lw, v)ω = (w,L∗v)ω for all w, v ∈ V ω
0 ,

where

[
L∗v

]
i
:= −εdvx̄x;i + εc (bv)x̆;i + civi .

is the adjoint operator to L with respect to the scalar product (·, ·)ω .
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6.3.2.1 Stability

The matrix associated with the difference operator L is an L0-matrix. Application
of Lemma 3.14 with a constant positive test function establishes the inverse mono-
tonicity of L. Thus, L satisfies a comparison principle. This comparison principle
gives the (�∞, �∞)-stability inequality

‖v‖∞,ω̄ ≤ ‖Lv/c‖∞,ω for all v ∈ IRN+1
0

and provides a priori bounds for the solution of (6.56):

∥
∥uN

∥
∥

ω̄
≤ max

{
|γ0|, |γ1|

}
+ ‖f/c‖∞,ω for i = 0, . . . , N.

Green’s function estimates

Using the discrete Green’s function G : ω̄2 → IR : (xi, ξj) �→ Gi,j = G(xi, ξj)
associated with L and Dirichlet boundary conditions, any mesh function v ∈ IRN+1

0

can be represented as

vi = au (v,Gi,·) = (Lv,Gi,·)ω = (v, L∗Gi,·)ω for i = 1, . . . , N − 1.

Taking for v the standard hat basis in V ω
0 , we see that for fixed i = 1, . . . , N − 1

[L∗Gi,·]j = δi,j for j = 1, . . . , N − 1, Gi,0 = Gi,N = 0, (6.58)

where

δi,j :=

{
h−1

i+1 if i = j,

0 otherwise

is the discrete equivalent of the Dirac-δ distribution.

Theorem 6.42. Assume that b ≥ 1 and c ≥ 1 on [0, 1], then there exists a positive
constant C such that

0 ≤ Gi,j ≤ Kμ1 for i, j = 0, . . . , N,

where

K :=

{
‖b‖∞‖c‖∞ max

{
‖b‖∞, ‖c‖∞

}
if εc > 0,

‖c‖3/2
∞ if εc = 0.

Furthermore, if b′ ≥ 0 on [0, 1] then

Gξ;i,j ≥ 0 for 0 ≤ j < i < N,

Gξ;i,j ≤ 0 for 0 ≤ i ≤ j < N.
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Proof. Let j be fixed. Set

Γi :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

j∏

k=i+1

(1 + μ1hk)−1 for 0 ≤ i < j ≤ N,

1 for 0 ≤ i = j ≤ N,
i∏

k=j+1

(1 − μ0hk)−1 for 0 ≤ j < i ≤ N.

We shall use the discrete comparison principle to show that Kμ1Γ is an upper bound
for G·,j .

Clearly Γ0 ≥ 0 and ΓN ≥ 0.
Next, a direct calculation gives

Γx;i = Γi

⎧
⎨

⎩

μ1 for 0 ≤ i < j ≤ N,
μ0

1 − μ0hi+1
for 0 ≤ j ≤ i < N

and

Γx̄;i = Γi

⎧
⎨

⎩

μ1

1 + μ1hi+1
for 0 < i ≤ j ≤ N,

μ0 for 0 ≤ j < i ≤ N.

For i < j we have

[
LΓ

]
i
= Γi

(
−εdμ

2
1

1 + μ1hi+1
− εcbiμ1 + ci

)
≥ Γi

(
−εdμ

2
1 − εcbiμ1 + ci

)
≥ 0,

by Proposition 3.19.
For i > j

[
LΓ

]
i
= Γi

(
−εdμ

2
0 − εcbiμ0

1 − μ0hi+1
+ ci

)
≥ Γi

−εdμ
2
0 − εcbiμ0 + ci

1 − μ0hi+1
≥ 0,

where Proposition 3.19 was used again.
For i = j

[
LΓ

]
j

= − εd

hj+1

(
μ0

1 − μ0hj+1
− μ1

1 + μ1hj

)
− εcbj

μ0

1 − μ0hj+1
+ cj

≥ −εdμ0 − (εcbjμ0 − cj) hj+1

hj+1 (1 − μ0hj+1)
.
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The function x �→ λ0(x) is continuous. Therefore there exists a ξ ∈ [0, 1] such that
λ0(ξ) = μ0. Furthermore, recall b ≥ 1, c ≥ 1 and μ0 < 0. Hence,

[
LΓ

]
j
≥ 1

max {bj , cj}
−εdμ0 −

(
εcb(ξ)μ0 − c(ξ)

)
hj+1

hj+1 (1 − μ0hj+1)

=
−εdμ0

hj+1 max {bj , cj}
=

c(ξ)
hj+1 max {bj , cj}λ1(ξ)

, by (6.55)

≥ 1
hj+1Kμ1

, by (3.6).

Thus, Kμ1Γ is a barrier function for G·,j , for all j.
In order to verify the monotonicity of Gi,· use the argument from the proof of

Theorem 4.1. ��

Theorem 6.43. Assume that b ≥ 1 and c ≥ 1 on [0, 1], then there exists a positive
constant C such that

‖cGi,·‖1,ω ≤ 1 for i = 0, . . . , N,

Furthermore, if b′ ≥ 0 on [0, 1] then

‖Gξ;i,·‖1,ω ≤ Cμ1 for i = 0, . . . , N.

Proof. To verify the bound on the �1-norm of G multiply (6.58) by hj+1 and sum
for j = 1, . . . , N − 1. Then use the positivity of G.

For the bound on Gξ use the piecewise monotonicity of Gξ to get

‖Gξ;i,·‖1,ω ≤ 2Gi,i ≤ Cμ1,

by Theorem 6.42. ��

6.3.2.2 A Priori Error Analysis

Theorem 6.44. Let the assumptions of Theorems 3.29 and 6.43 be satisfied. Let u
be the solution of (6.54) and uN its approximation by (6.56). Then

∥
∥uN − u

∥
∥
∞ ≤ Cϑ

[p]
rcd(ω̄)

for any p > 1.
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Proof. Let Γ := Gi,· ∈ V ω
0 be the Green’s function associated with L and the mesh

node xi. Then

uN
i − ui = au

(
uN − u, Γ

)
= fu(Γ ) − au(u, Γ )

= fu(Γ ) − f(Γ ) + a(u, Γ ) − au(u, Γ ), by (6.54)
= (εcbux − cu + f, Γ )ω − (εcbu

′ − cu + f, Γ ) .

We obtain the representation for the nodal error:

uN
i − ui = εc

N−1∑

i=0

∫

Ii+1

u′(s)
[
(bΓ )(s) − biΓi

]
ds

+
N−1∑

i=0

∫

Ii+1

[
(cu − f)iΓi − (cu − f)(s)Γ (s)

]
ds

=: T1 + T0 .

(6.59)

To bound the first term we proceed as follows:

|(bΓ )(s) − biΓi| ≤ ‖b‖∞ |Γi+1 − Γi| + ‖b′‖∞hi+1Γi ,

because Γ is piecewise linear. Thus,

|T1| ≤ Cεcϑ
[p]
rcd(ω̄)

{
‖b‖∞ ‖Γx‖1,ω + ‖b′‖∞ ‖Γ‖1,ω

}
(6.60)

for any p > 1, by Theorem 3.29.
Next we estimate T0.

T0 =
N−1∑

i=0

∫

Ii+1

[
(cu − f)i − (cu − f)(s)

]
Γids

+
N−1∑

i=0

∫

Ii+1

(cu − f)(s)
[
Γi − Γ (s)

]
ds.

Hence,

|T0| ≤ ‖Γ‖1,ω max
i=1,...,N

∫

Ii

∣
∣(f − cu)′(s)

∣
∣ds

+ ‖Γx‖1,ω max
i=1,...,N

∫

Ii

∣
∣εdu

′′(s) + εcb(s)u′(s)
∣
∣ds ,
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where (6.54) was used. To bound u′ and u′′ apply Theorem 3.29. Then, for any
p > 1,

|T0| ≤ Cϑ
[p]
rcd(ω̄)

(
‖Γ‖1,ω + μ−1

1 ‖Γx‖1,ω

)
,

where we have used that εd|μ0| + εd|μ1| ≤ Cμ−1
1 and εc ≤ Cμ−1

1 .
Finally, combining the last inequality with (6.59) and (6.60), we get

∣
∣uN

i − ui

∣
∣ ≤ Cϑ

[p]
rcd(ω̄)

(
‖Γ‖1,ω + μ−1

1 ‖Γx‖1,ω

)
.

Application of Theorem 6.43 completes the analysis. ��

Remark 6.45. The truncation error and barrier function technique (see Sect. 4.2.6)
was used in [80, 105] when studying the difference scheme

−εdu
N
x̄x̂;i − εcbiu

N
x;i + ciu

N
i = fi (6.61)

on a Shishkin mesh. The authors establish the typical rate of N−1 ln N if the critical
mesh parameter satisfies σ > 2. In [80, 105] hybrid difference schemes were also
studied that raise the order of convergence to almost second order. ♣

Remark 6.46. Gracia et al. [47] combine (6.61) with the mid-point upwind scheme

−εdu
N
x̄x̂;i − εcbi+1/2u

N
x;i + ci+1/2

(
uN

i + uN
i+1

)
/2 = fi+1/2

and central differencing

−εdu
N
x̄x̂;i − εcbiu

N
x̊;i + ciu

N
i = fi

in order to obtain an inverse monotone method that is second-order consistent in the
maximum norm for all values of εd, εc and N .

In [47] that scheme is shown to be uniformly convergent on a Shishkin mesh with

∥
∥uN − u

∥
∥ω ≤ CN−2 ln3 N.

The analysis in [47], using solution decompositions and distinguishing different pa-
rameter regimes, is very tedious. Results for general meshes are not available.

Surla et al. [158] design an inverse monotone spline difference scheme. They
prove uniform convergence on a Shishkin mesh with

∥
∥uN − u

∥
∥ω ≤ CN−2 ln2 N,

if εd, εc ≤ CN−1. ♣
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6.3.2.3 A Numerical Example

In this section a brief illustration for the a priori error bounds of Theorem 6.44 is
shown. The test problem is:

−εdu
′′ + εcu

′ + u = cos πx in (0, 1), u(0) = u(1) = 0.

Its solution is easily computed using, e. g., MAPLE.
Indicating by uN

εd,εc
that the numerical approximation depends on N , εd and εc,

and by uεd,εc
that the exact solution depends on εd and εc, we estimate the uniform

error by

ηN := max
εd=1,10−1,...,10−12

εc=1,10−1,...,10−12,0

∥
∥uN

εd,εc
− uI

εd,εc

∥
∥
∞.

The rates of convergence are computed using the standard formula rN =
log2

(
ηN

/
η2N

)
. We also compute the constant in the error estimate, i. e., for a

given theoretical error bound ηN ≤ Cϑ(N), we approximate the constant in the
error estimate by CN = ηN/ϑ(N).

Table 6.3 displays the results of our test computations. The numbers confirm the
results of Theorem 6.44 for both the Shishkin and the Bakhvalov mesh.

6.3.2.4 A Posteriori Error Analysis

The analysis for all schemes starts from the Green’s-function representation (3.1)
and utilises Theorem 3.23, when bounds on the norms of the Green’s function G are
required.

Table 6.3 Uniform nodal errors of the upwind difference scheme ap-
plied to a model reaction-convection-diffusion problem

Shishkin mesh Bakhvalov mesh
N ηN rN CN ηN rN CN

29 1.227e-2 0.83 1.007 3.404e-3 0.99 1.743
210 6.905e-3 0.85 1.020 1.713e-3 1.00 1.754
211 3.824e-3 0.87 1.027 8.592e-4 1.00 1.760
212 2.093e-3 0.88 1.031 4.302e-4 1.00 1.762
213 1.136e-3 0.89 1.032 2.153e-4 1.00 1.763
214 6.119e-4 0.90 1.033 1.077e-4 1.00 1.764
215 3.279e-4 0.91 1.033 5.384e-5 1.00 1.764
216 1.749e-4 0.91 1.033 2.692e-5 1.00 1.764
217 9.290e-5 0.92 1.033 1.346e-5 1.00 1.764
218 4.922e-5 — 1.034 6.731e-6 — 1.764
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Let

q := f − cuN + εcb
(
uN

)′
.

Clearly q may have discontinuities at the mesh points because uN ∈ V ω . Therefore,
set

q+
i = lim

x→xi+0
q(x) and q−i = lim

x→xi−0
q(x)

for all mesh nodes xi.
Fix x ∈ (0, 1) and set Γ := G(x, ·). Then (3.1) and (6.54) yield

(
u − uN

)
(x) = a

(
u − uN , Γ

)
= f(Γ ) − a

(
uN , Γ

)

= (f − fu) (Γ ) + (au − a)
(
uN , Γ

)

=
N∑

i=1

[
q+
i−1Γi−1hi −

∫

Ii

(
qΓ

)
(s)ds

]
.

We see the approximation error is bounded by the error of the one-sided rectangle
rule used for integrating qΓ . A Taylor expansion gives

∣
∣
∣
∣hiq

+
i−1Γi−1 −

∫

Ii

(
bΓ

)
(ξ)dξ

∣
∣
∣
∣

≤ hi

{∫

Ii

|q′(s)|Γ (s)ds +
∫

Ii

|q(s)| |Γ ′(s)|ds

}

≤ hi

{
‖q′/c‖∞,Ii

∫

Ii

c(s)Γ (s)ds + ‖q‖∞,Ii

∫

Ii

|Γ ′(s)|ds

}
.

Using the bounds on the Green’s function from Theorem 3.23, we arrive at the main
result of this section.

Theorem 6.47. Suppose (3.8) is satisfied, then the error of the first-order upwind
scheme (6.56) satisfies

∥
∥u − uN

∥
∥
∞ ≤ ηu

1 + ηu
2 ,

where ηu
k := max

i=1,...,N
ηu

k,i and

ηu
1,i := hi ‖q′/c‖∞,Ii

, ηu
2,i :=

2hi

εd (μ1 − μ0)
‖q‖∞,Ii

.
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Remark 6.48. The error has been bounded in terms of the numerical solution uN

and of the data of the problem. The two parts of the error bound can be further
expanded. For example:

hi

∥
∥
∥
∥

q′

c

∥
∥
∥
∥
∞,Ii

≤
{

hi

∥
∥
∥
∥

f ′ − c′uN

c

∥
∥
∥
∥
∞,Ii

+
∥
∥
∥
∥

εcb
′

c
− 1

∥
∥
∥
∥
∞,Ii

∣
∣uN

i+1 − uN
i

∣
∣
}

. (6.62)

Apparently, sampling of the data is inevitable. However, instead of sampling (6.62)
it seems advisable to sample the ηu

i :

ηu
1,i ≈ η̃u

1,i :=

∣
∣
∣
∣
∣
q−i − q+

i−1

ci−1/2

∣
∣
∣
∣
∣

and ηu
2,i ≈ η̃u

2,i :=
2hi

εd(μ1 − μ0)

∣
∣qi−1/2

∣
∣

This avoids the use of a triangle inequality and therefore gives in general sharper
upper bounds for the error. ♣

Remark 6.49. The leading term in the estimate of Theorem 6.47 is a discrete first-
order derivative. Therefore, the de Boor algorithm of Sect. 4.2.4.2 equidistributing
the arc-length of the numerical solution can be used for adaptive mesh gener-
ation, when the simple upwind scheme (6.56) is applied to the boundary-value
problem (6.54). ♣
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