
Chapter 1
Introduction

Stationary linear reaction-convection-diffusion problems form the subject of this
monograph:

−εu′′ − bu′ + cu = f in (0, 1), u(0) = γ0, u(1) = γ1

and its two-dimensional analogue

−εΔu − b · ∇u + cu = f in Ω ⊂ IR2, u|∂Ω = g

with a small positive parameter ε.
Such problems arise in various models of fluid flow [52,53,73]; they appear in the

(linearised) Navier-Stokes and in the Oseen equations, in the equations modelling
oil extraction from underground reservoirs [32], flows in chemical reactors [3] and
convective heat transport with large Péclet number [56]. Other applications include
the simulation of semiconductor devices [130].

An Example

Consider the boundary-value problem of finding u ∈ C2(0, 1) ∩ C[0, 1] such that

−εu′′(x) − u′(x) = 1 for x ∈ (0, 1), u(0) = u(1) = 0 (1.1)

with 0 < ε � 1. Formally setting ε = 0, yields

−u′(x) = 1 for x ∈ (0, 1), u(0) = u(1) = 0.

Unlike (1.1), this problem does not possess a solution in C2(0, 1) ∩C[0, 1]. Conse-
quently, when ε approaches zero, the solution of (1.1) is badly behaved in some way.

The solution of (1.1) is

u(x, ε) =
e−1/ε − e−x/ε

1 − e−1/ε
+ 1 − x.
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2 1 Introduction

Due to the presence of the exponential e−x/ε, the solution u and its derivatives
change rapidly near x = 0 for small values of ε. Regions where this happens are
referred to as layers. Singularly perturbed problems are typically characterised by
the presence of such layers. The term boundary layer was introduced by Lud-
wig Prandtl at the Third International Congress of Mathematicians in Heidelberg
in 1904.

The solution of (1.1) may be regarded as a function of two variables:

u : [0, 1] × (0, 1] : (x, ε) �→ u(x, ε).

Taking limits of u for (x, ε) → (0, 0), we see that

lim
x→0

lim
ε→0

u(x, ε) = 1 
= 0 = lim
ε→0

lim
x→0

. (1.2)

Thus, u as a function of two variables possesses a classical singularity at the point
(0, 0) in the (x, ε)-plane. For this reason we may call (1.1) a singularly perturbed
boundary-value problem.

What Is a Singularly Perturbed Problem?

Miller et al. [121] give the following characterisation:

The justification for the name ‘singular perturbation’ is that the nature of the
differential equations changes completely in the limit case, when the singular
perturbation parameter is equal to zero. For example, . . . equations change
from being nonlinear parabolic equations to nonlinear hyperbolic equations.

This describes a phenomenon that can lead to the formation of boundary layers and
typically will—if appropriate boundary conditions are imposed. Roos et al. [141]
describe singularly perturbed problems as follows.

They are differential equations (ordinary or partial) that depend on a small
positive parameter ε and whose solutions (or their derivatives) approach a
discontinuous limit as ε approaches zero. Such problems are said to be singu-
larly perturbed, where we regard ε as a perturbation parameter.

Both sources avoid a formal definition:
In the present monograph we propose the following definition.

Definition 1.1. Let B be a function space with norm ‖ · ‖B . Let D ⊂ IRd be a
parameter domain. The continuous function u : D → B, ε �→ u(ε) is said to be
regular for ε → ε∗ ∈ ∂D if there exists a function u∗ ∈ B such that:

lim
ε→ε∗

‖uε − u∗‖B = 0,

otherwise uε is said to be singular for ε → ε∗.
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Let (Pε) be a problem with solution u(ε) ∈ B for all ε ∈ D. We say (Pε) is
singularly perturbed for ε → ε∗ ∈ ∂D in the norm ‖ · ‖B if u is singular for
ε → ε∗. ♥

Remark 1.2. The definition is norm dependent. For example (1.1), is singularly
perturbed in the C0 norm and the L∞ norm because of (1.2). However, it is not
singularly perturbed in the L2 norm. There exists a function u∗ : x �→ 1 − x with

‖uε − u∗‖0 = O
(
ε1/2

)
.

The L2 norm fails to capture the boundary layer in u. ♣

Remark 1.3. Boundary conditions play an important role. Consider the boundary-
value problem

−εu′′(x) − u′(x) = 1 for x ∈ (0, 1), u′(0) = u(1) = 0.

This problem is singularly perturbed in the C1 norm, but it is not perturbed in the
C0 norm. The Neumann boundary condition at x = 0 leads to the formation of a
weak layer only. The first-order derivative remains bounded when ε → 0. ♣

Uniform Convergence

Classical convergence results for numerical methods for boundary-value problems
have the structure

∥
∥u − uh

∥
∥ ≤ Khk,

with the maximum mesh size h. The constant K depends on certain derivatives of u
and typically tends to infinity as the perturbation parameter ε approaches zero. This
means that the maximal step size h has to be chosen proportional to some positive
power of ε which is impractical. Therefore, we are looking for so-called uniform
or robust methods where the numerical costs are independent of the perturbation
parameter ε. More precisely, we are looking for robust methods in the sense of the
following definition:

Definition 1.4. Let uε be the solution of a singularly perturbed problem, and let
uN

ε be a numerical approximation of uε obtained by a numerical method with N
degrees of freedom. The numerical method is said to be uniformly convergent or
robust with respect to the perturbation parameter ε in the norm ‖ · ‖ if

∥
∥uε − uN

ε

∥
∥ ≤ ϑ(N) for N ≥ N0
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with a function ϑ satisfying

lim
N→∞

ϑ(N) = 0 and ∂εϑ ≡ 0,

and with some threshold value N0 > 0 that is independent of ε. ♥

Scope of the Monograph

Well-developed techniques are available for the computation of solutions outside
layers [123, 141], but the problem of resolving layers—which is of great practical
importance—is still under investigation. This field has witnessed a stormy devel-
opment. Layer-adapted meshes have first been proposed by Bakhvalov [18] in the
context of reaction-diffusion problems. In the late 1970s and early 1980s, special
meshes for convection-diffusion problems were investigated by Gartland [45], Li-
seikin [113, 114, 116], Vulanović [163–166] and others in order to achieve uniform
convergence. The discussion has been livened up by the introduction of special
piecewise-uniform meshes by Shishkin [150]. They will be described in more de-
tail in Section 2.1.3. Because of their simple structure, they have attracted much
attention and are now widely referred to as Shishkin meshes. A small survey of
these meshes can be found in the monograph [141], while [109, 121] and [134] are
devoted exclusively to them.

The performance of Shishkin meshes is however inferior to that of Bakhvalov
meshes, which has prompted efforts to improve them while retaining some of their
simplicity, in particular, the mesh uniformity outside the layers and the choice of
mesh transition point where the mesh changes from fine to coarse. For instance,
Vulanović [169] uses a piecewise-uniform mesh with more than one transition point.
Linß [81, 82] combines the ideas of Bakhvalov and Shishkin, while Beckett and
Mackenzie [20] combine an equidistribution idea [31] with a Shishkin-type transi-
tion point. With all these various mesh-construction ideas a natural question is:

Can a general theory be derived that allows one to immediately deduce the
robust convergence of standard schemes on special meshes and a guaranteed
rate of convergence?

A first attempt towards this can be found in [137], where a first-order upwind scheme
and a Galerkin FEM are studied on a class of so-called Shishkin-type meshes. A
more general criterion was derived in [84, 85] for an upwind-difference scheme in
one dimension.

The main purpose of this monograph is to give a survey of recent developments
and present the state of the art in the analysis of layer-adapted meshes for a wide
range of reaction-convection-diffusion problems.
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