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IRISA, Université de Rennes 1, 35042 Rennes, France

Abstract. The Borowsky-Gafni (BG) simulation algorithm is a powerful tool
that allows a set of t+ 1 asynchronous sequential processes to wait-free simulate
(i.e., despite the crash of up to t of them) a large number n of processes under the
assumption that at most t of these processes fail (i.e., the simulated algorithm is
assumed to be t-resilient). The BG simulation has been used to prove solvability
and unsolvability results for crash-prone asynchronous shared memory systems.

In its initial form, the BG simulation applies only to colorless decision tasks,
i.e., tasks in which nothing prevents processes to decide the same value (e.g., con-
sensus or k-set agreement tasks). Said in another way, it does not apply to deci-
sion problems such as renaming where no two processes are allowed to decide the
same new name. Very recently (STOC 2009), Eli Gafni has presented an extended
BG simulation algorithm (GeBG) that generalizes the basic BG algorithm by ex-
tending it to “colored” decision tasks such as renaming. His algorithm is based
on a sequence of sub-protocols where a sub-protocol is either the base agreement
protocol that is at the core of BG simulation, or a commit-adopt protocol.

This paper presents the core of an extended BG simulation algorithm that is
particularly simple. This algorithm is based on two underlying objects: the base
agreement object used in the BG simulation (as does GeBG), and (differently
from GeBG) a new simple object that we call arbiter. More precisely, (1) while
each of the n simulated processes is simulated by each simulator, (2) each of the
first t + 1 simulated processes is associated with a predetermined simulator that
we called its “owner”. The arbiter object is used to ensure that the permanent
blocking (crash) of any of these t + 1 simulated processes can only be due to the
crash of its owner simulator. After being presented in a modular way, the pro-
posed extended BG simulation algorithm is proved correct.

Keywords: Arbiter, Asynchronous processes, Distributed computability, Fault-
Tolerance, Process crash failure, Reduction, t-Resilience, Shared memory system,
Wait-free environment.

1 Introduction

What is the Borowsky-Gafni (BG) simulation. Considering an asynchronous system
where processes can crash, the (n, k)-set agreement problem is a basic decision task
defined as follows [9]. Each of the n processes proposes a value, and every process
that does not crash has to decide a value (termination), such that a decided value is a
proposed value (validity) and at most k different values are decided (agreement). The
consensus problem corresponds to the particular case k = 1.
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A fundamental question related to asynchronous distributed computability is the fol-
lowing. Suppose we have an algorithm that solves the (15, 4)-set agreement problem.
Can we use this algorithm as a subroutine to solve the (12, 5)-set agreement problem,
assuming that at most t < 12 processes can crash? Intuitively, the answer might be
“yes” (as we have less processes and more decided values are allowed). Let us now
suppose that we want to use the same (15, 4)-set agreement subroutine to solve the
(100, 4)-set agreement problem. As we have much more proposed values, and the same
constraint on the number of decided values, an intuitive answer does not spring in an
obvious way. And what is the answer if we want to solve the (80, 7)-set agreement
problem (much more proposed values but only two more values can be decided), or
(assuming t = 4) solve the (5, 4)-set agreement problem?

Stated in more general terms, the question is: “Can we use a solution to the (n, k)-
set agreement problem as a subroutine to solve the (n′, k′)-set agreement problem,
when at most t < min(n, n′) processes may crash?” (We say that “the (n′, k′)-set
agreement is reducible to (n, k)-set agreement”.) The BG simulation (introduced in
[6] and formalized and deeply investigated in [7] where is given a formal definition of
“reducibility”) answers this fundamental question. It states that the answer is “yes” if
k′ ≥ k and “no” if k′ ≤ t < k. As we can see, the answer “yes” does not depend on the
number of processes.

To that end, a BG simulation algorithm is described that allows n′ = t + 1 processes
to simulate a large number n of processes that collectively solve a decision task in
presence of at most t crashes. Each of the n′ simulator processes simulates all the n
processes. These n′ simulator processes cooperate through underlying objects (the type
of which is called here safe agreement) that allow them to agree on a single output for
each of the non-deterministic statements issued by every simulated process.

The important lesson learned from the BG simulation is that, in a failure-prone con-
text, what is important is not the number of processes but the maximal number of pos-
sible failures and the actual number of values that are proposed to a decision task. An
interesting application of the BG simulation (among several of its applications [7]) is
the proof that there is no t-resilient (n, k)-set agreement algorithm for t ≥ k. This is
obtained as follows. As (1) the BG simulation allows reducing the (k + 1, k)-set agree-
ment problem to the (n, k)-set agreement problem in a system with up to k failures, and
(2) the (k + 1, k)-set agreement problem is known to be impossible in presence of k
failures [6,13,17], it follows that there is no k-resilient (n, k)-set agreement algorithm.

The limit of the BG-simulation and the extended BG-simulation. The BG simulation
characterizes t-resilient solvability by reducing it to the question of wait-free solvability
(i.e., t-resilience in a system of n = t +1 processes). Unfortunately, the BG simulation
is limited to colorless decision tasks, i.e., tasks in which if a process decides a value
v, then all the processes can decide that value (the class of colorless tasks is formally
defined in [7]). The (n, k)-set decision problem is typically such a task. From an oper-
ational point of view, this is due to the fact that, in the BG simulation, each simulator
simulates fairly all the processes, and consequently, the crash of a simulator process can
manifest itself as the crash of any simulated process (the one it is currently simulating
a critical part of code).
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The extended BG simulation has been proposed by Eli Gafni to overcome this lim-
itation and consequently fully capture t-resilience [12]. As stated in [12] “With the
extended BG simulation we can reduce questions about t-resilience solvability to ques-
tions about wait-free solvability. The latter is characterized by the Herlihy-Shavit con-
ditions [13]”.

As a result, it applies to both colorless tasks and colored decision tasks such as the
renaming problem [3]. In that problem, each of the n processes has to decide a new
name (from a given new name space) such that no two processes have the same new
name. This problem has wait-free solutions when the new name space [1..M ] is such
that M ≥ 2n − 1 (see [8] for a deeper insight into the problem).

In his paper [12], Gafni presents several (un)decidability results that can be obtained
in a simpler way from the BG simulation. He also uses the extended BG simulation to
show that the t-resilient weak symmetry breaking problem is equivalent to t-resilient
weak renaming problem.

The core of the BG simulation relies on the following principles: (1) each of the
(t + 1) simulators fairly simulates all the processes, and this simulation is such that
(2) the crash of a simulator entails the crash of at most one simulated process. The BG
simulation is “symmetric” in the sense that each of the n processes is simulated by
every simulator, and the (t + 1) simulators are “equal” with respect to each simulated
process. One way to be able to simulate colored tasks (without preventing the simulation
of colorless tasks), consists in introducing some form of asymmetry.

The extended BG simulation [12] realizes the appropriate asymmetry as follows. In
addition of simulating an appropriate subset of the n simulated processes, each simula-
tor q is statically associated with exactly one given simulated process p (in our terminol-
ogy, q is the owner of p). This ownership notion is used to ensure that the corresponding
simulated process p will not be blocked forever (perceived as crashed) if its owner sim-
ulator q does not crash. Hence, if a simulator does not crash, it can always decide the
value decided by the simulated process p it “owns”. As noticed and demonstrated in [12]
“extending the BG simulation by this simple property results in a full characterization
of t-resilience in terms of wait-freedom”.

Content of the paper. In addition to the introduction of the notion of extended BG
simulation, and a full characterization of t-resilience, Gafni presents in [12] an extended
BG simulation algorithm (denoted here GeBG). This algorithm is based on a sequence
of sub-protocols where each sub-protocol is either the base agreement protocol used in
the BG simulation (safe agreement type objects) or a commit-adopt protocol [11]. This
algorithm is presented informally in English.

The present paper presents the core of an extended BG simulation algorithm that is
particularly simple. This algorithm is based on two underlying object types: the type
safe agreement (the one used in the BG simulation algorithm and in GeBG), and (dif-
ferently from GeBG) an object type that we call arbiter. An arbiter object allows ex-
ploiting the ownership notion in a simple way to ensure that (1) an object value is always
decided when its owner does not crash, and (2) the value of that object is determined
either by its owner simulator or by the other simulators.

As far as the whole simulation is concerned, while (as in the BG simulation) each of
the n simulated processes is simulated by each simulator, (as in GeBG) each of the first
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t + 1 simulated processes is “associated” with exactly one simulator (its “owner”). As
already said, it follows from the appropriate use of the arbiter objects that the permanent
blocking (crash) of any of these t + 1 simulated processes can only be due to the crash
of its owner simulator.

The paper is made up of 7 sections. Section 2 presents the model and the definition of
decision tasks. Section 3 explains the structure of the simulation. Section 4 defines the
base object types used by the simulators to cooperate and realize a correct simulation.
Then, the extended BG simulation algorithm is presented in an incremental and modular
way. First Section 5 briefly presents the BG simulation algorithm, and then Section 6
enriches it to solve the extended BG simulation. This algorithm is proved in Section 7.

2 Solving Decision Tasks

2.1 Decision Tasks

The problems we are interested in are called decision tasks1. In every run, each process
proposes a value and the proposed values define an input vector I where I[j] is the
value proposed by pj . Let I denote the set of allowed input vectors. Each process has
to decide a value. The decided values define an output vector O, such that O[j] is the
value decided by pj . Let O be the set of the output vectors.

A decision task is a binary relation Δ from I into O. A task is colorless if, when
a value v is decided by a process pj (i.e., O[j] = v), then v can be decided by all
the processes). Consensus, and more generally k-set agreement, are colorless tasks.
Otherwise the task is colored. Renaming is a colored task.

2.2 The Computation Model

Asynchronous processes and fault model. We are interested in distributed algorithms
the aim of which is to solve a task in a system made up of n asynchronous sequential
processes denoted p1, ..., pn. A process executes a sequence of atomic steps (as defined
by its algorithm). Each process pj is endowed with a write-once local variable outputj
where it deposits the value it decides.

A process can crash in a run. A process executes correctly the steps defined by its
algorithm until it crashes (if it ever does). After it has crashed, a process executes no
more steps. If it does not crash, a process executes an infinite number of steps.

It is assumed that an arbitrary subset (not known in advance) of up to t < n pro-
cesses can crash (the crash of one process being independent from the crash of other
processes). A process that does not crash in a run is said to be correct in that run,
otherwise it is faulty. This failure model is called the t-resilient environment, and an
algorithm designed for such an environment is said to be t-resilient. The extreme case
t = n − 1 is called wait-free environment, and the corresponding algorithms are called
wait-free algorithms.

1 The reader interested in a more formal presentation of decision tasks can consult the literature
(e.g., [2,7,12,13]).
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Communication model. The n processes cooperate through a shared memory made up
of a snapshot object [1] denoted mem. This means that a process pj can write only the
entry mem[j] but can read all the entries by invoking the operation mem.snapshot().
The write and snapshot operations appear as being executed atomically [1]. (These
operations can be built on top of a single-writer/multiple-readers atomic registers [1,4]).
Initially, mem[j] = ⊥.

Definition. The previous computation model (asynchronous crash-prone processes that
communicate through snapshot objects) is called snapshot model.

2.3 Algorithm Solving a Task

An algorithm solves a task in a t-resilient environment if, given any I ∈ I, each correct
process pj decides (i.e., writes a value v in outputj) and there is an output vector O
such that (I, O) ∈ Δ where O is defined as follows. If pj decides v, then O[j] = v. If
pj does not decide, O[j] is set to any value v′ that preserves the relation (I, O) ∈ Δ.

A task is solvable in a t-resilient environment if there is an algorithm that solves it in
that environment. As an example, consensus is not solvable in the 1-resilient environ-
ment [10,15,16]. Differently, renaming with 2n − 1 names is solvable in the wait-free
environment [3,5,13].

3 Simulated Processes vs. Simulator Processes

Aim. Let A be an n-process t-resilient algorithm that solves a decision task in the base
snapshot model described previously. The aim is to design a (t + 1)-process wait-free
algorithm A′ that simulates A in the same snapshot model. (The reader is referred to
[7] for a formal definition of a simulation.)

Notation. A simulated process is denoted pj with 1 ≤ j ≤ n. Similarly, a simulator
process (in short “simulator”) is denoted qi with 1 ≤ i ≤ t + 1.

As far as the objects accessed by the simulators are concerned, the following con-
vention is adopted. The objects denoted with upper case letters are the objects shared
by the simulators. Differently, an object denoted with lower case letters is local to a
simulator (in that case, the associated subscript denotes the corresponding simulator).

What a simulator does. Each simulator qi is given the code of all the simulated pro-
cesses p1, . . . , pn. It manages n threads, each one associated with a simulated process,
and locally executes these threads in a fair way. It also manages a local copy memi of
the snapshot memory mem shared by the simulated processes.

The code of a simulated process pj contains writes of mem[j] and invocations
of mem.snapshot(). These are the only operations used by the processes p1, . . . , pn

to cooperate. So, the core of the simulation is the definition of two algorithms. The
first (denoted sim writei,j()) has to describe what a simulator qi has to do in order
to correctly simulate a write of mem[j] issued by a process pj . The second (denoted
sim snapshoti,j()) has to describe what a simulator qi has to do in order to correctly
simulate an invocation of mem.snapshot() issued by a process pj .
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4 Base Object Types Used in the Simulation

In addition to snapshot objects, the simulator processes also cooperate through atomic
read/write register objects, and specific objects the types of which (safe agreement
and arbiter) are defined in this section. These types can be implemented from multi-
reader/multi-writer atomic registers, which in turn can be implemented from snapshot
objects. Hence, all the base objects used in the simulation can be implemented in the
snapshot computation model described in the previous section.

4.1 The safe agreement Object Type

The safe agreement type. This object type (defined in [6,7]) is at the core of the BG
simulation. It provides each simulator qi with two operations, denoted proposei(v) and
decidei(), that qi can invoke at most once, and in that order. The operation proposei(v)
allows qi to propose a value v while decidei() allows it to decide a value. The properties
satisfied by an object of the type safe agreement are the following.

– Termination. If no simulator qx crashes while executing proposex(), then any cor-
rect simulator qi that invokes decidei(), returns from that invocation.

– Agreement. At most one value is decided.
– Validity. A decided value is a proposed value.

An implementation. The implementation of the safe agreement type described in Fig-
ure 1 is from [7]. This construction is based on a snapshot object SM (with one entry
per simulator qi). Each entry SM [i] of the snapshot object has two fields: SM [i].value
that contains a value and SM [i].level that stores its level. The level 0 means the corre-
sponding value is meaningless, 1 means it is unstable, while 2 means it is stable.

When a simulator qi invokes proposei(v), it first writes the pair (v, 1) in SM [i] (line
01), and then reads the snapshot object SM (line 02). If there is a stable value in SM ,
pi “cancels” the value it proposes, otherwise it makes it stable (line 03).

A simulator qi invokes decidei() after it has invoked proposei(). Its aim is to return
the same stable value to all the simulators that invoke this operation (line 06). To that
end, qi repeatedly computes a snapshot of SM until it sees no unstable value in SM
(line 04). Let us observe that, as a simulator qi invokes decidei() after it has invoked
proposei(v), there is at least one stable value in SM when it executes line 05. Finally,
in order that the same stable value be returned to all, qi returns the stable value proposed
by the simulator with the smallest id (line 05).

A formal proof that this algorithm implements the safe agreement type is given [7].
Another proof is also given [14].

4.2 The arbiter Object Type

Definition. Each object of the type arbiter has a statically predefined owner simulator
qj . Such an object provides the simulators with a single operation denoted arbitratei,j()
(where i is the id of the invoking simulator and j the id of the owner). A simulator qi

invokes arbitratei,j() at most once, and, when it terminates, this invocation returns a
value to qi. The properties of an object of the type arbiter owned by qj are the following.
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init: for each x : 1 ≤ x ≤ t + 1 do SM [x]← (⊥, 0) end for.

operation proposei(v): % 1 ≤ i ≤ t + 1 %
(01) SM [i]← (v, 1);
(02) smi ← SM.snapshot();
(03) if (∃x : smi[x].level = 2) then SM [i]← (v, 0) else SM [i]← (v, 2) end if.

operation decidei(): % 1 ≤ i ≤ t + 1 %
(04) repeat smi ← SM.snapshot() until (∀x : smi[x].level �= 1) end repeat;
(05) let x = min({k | smi[k].level = 2); res← smi[x].value;
(06) return(res).

Fig. 1. An implementation of the safe agreement type [7] (code for qi)

– Termination. If the owner qj invokes arbitratej,j() and is correct, or does not in-
voke arbitratej,j(), or if a simulator qi returns from its invocation arbitratei,j(),
then all the correct simulators return from their arbitratei,j() invocation.

– Agreement. No two processes return different values.
– Validity. The returned value is 1 (owner) or 0 (not owner). Moreover, if the owner

does not invoke arbitratej,j(), 1 cannot be returned, and if only the owner invokes
arbitratei,j(), 0 cannot be returned.

An implementation. An implementation of an object of the type arbiter is described in
Figure 2. It is based on a snapshot object PART (initialized to [false, . . . , false]), and
a multi-writer/multi-reader atomic register WINNER (initialized to ⊥).

When it invokes arbitratei,j(), the simulator qi announces that it participates (line
01), and issues a snapshot to know the simulators that are currently participating (line
02). If qi is the owner of the object (i = j, line 03), it checks if it is the first participant
(predicate parti = {i}). If it is, it sets WINNER to 1, otherwise it sets it to 0 (line
04). If qi is not the owner of the object (i �= j), it checks if the owner is a participating
simulator (predicate j ∈ parti). If it is, qi waits to know which value has been assigned
to WINNER. If it is not, it sets WINNER to 0. Finally, qi terminates by returning the
value of WINNER.

A proof that this construction implements the arbiter object type is given in [14].

operation arbitratei,j(): % 1 ≤ i, j ≤ t + 1 %
(01) PART [i]← true ;
(02) auxi ← PART .snapshot(); parti ← {x | auxi[x]};
(03) if (i = j) % pi is the owner of the associated arbiter type object %
(04) then if (part i = {i}) then WINNER ← 1 else WINNER ← 0 end if
(05) else if (j ∈ part i) then wait (WINNER �= ⊥) else WINNER ← 0 end if
(06) end if;
(07) return(WINNER).

Fig. 2. The arbitratei,j() operation of the arbiter object type (code for qi)
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5 The BG Simulation

This section presents the BG simulation [6,7]: its main principles and the algorithms
implementing its base operations sim writei,j() and sim snapshoti,j().

5.1 The Shared Memory MEM [1..(t + 1)]

The snapshot memory mem shared by the processes p1, . . . , pn is emulated by a snap-
shot object MEM shared by the simulators (so, MEM has (t + 1) entries).

More specifically, MEM [i] is an (unbounded) atomic register that contains an array
with one entry per simulated process pj . Each MEM [i][j] is made up of two fields: a
field MEM [i][j].value that contains the last value of mem[j] written by pj , and a field
MEM [i][j].sn that contains the associated sequence number. (This sequence number,
introduced by the simulation, is a control data that will be used to produce a consistent
simulation of the mem.snapshot() operations issued by the simulated processes).

5.2 The sim writei,j() Operation

The algorithm, denoted sim writei,j(v), executed by qi to simulate the write by pj of the
value v into mem[j] is described in Figure 3 [7]. Its code is pretty simple. The simulator
qi first increases a local sequence number w sni[j] that will be associated with the value
v written by pj into mem[j]. Then, qi writes the pair (v, w sni[j]) into memi[j] (where
memi is its local copy of the memory shared by the simulated processes) and finally
writes atomically its local copy memi into MEM [i].

operation sim writei,j(v):
(01) w sni[j]← w sni[j] + 1;
(02) memi[j]← (v, w sni[j]);
(03) MEM [i]← memi.

Fig. 3. sim writei,j(v) executed by qi to simulate write(v) issued by pj (from [7])

5.3 The sim snapshoti,j() Operation

This operation is implemented by the algorithm described in Figure 4 [7].

Additional local and shared objects. For each process pj , a simulator qi manages a local
sequence number generator snap sni[j] used to associate a sequence number with each
mem.snapshot() it simulates on behalf of pj (line 04).

In addition to the snapshot object MEM [1..(t + 1)], the simulators q1, . . . , qt+1 co-
operate through an array SAFE AG[1..n, 0...] of safe agreement type objects.

Underlying principle of the BG simulation [6,7]: obtaining a consistent value. In order
to agree on the very same output of the snapsn-th invocation of mem.snapshot() that
is issued by pj , the simulators q1, . . . , qt+1 use the object SAFE AG[j, snapsn].

Each simulator qi proposes a value (denoted inputi) to that object (line 05) and,
due to its agreement property, that object will deliver them the same output at line 06.
In order to ensure the consistent progress of the simulation, the input value inputi
proposed by the simulator qi to SAFE AG[j, snapsn] is defined as follows.
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operation sim snapshoti,j():
(01) smi ← MEM .snapshot():
(02) for each y : 1 ≤ y ≤ n: do inputi[y] = smi[s][y].value
(03) where ∀x : 1 ≤ x ≤ t + 1 : smi[s][y].sn ≥ smi[x][y].sn end for;
(04) snap sni[j]← snap sni[j] + 1; let snapsn = snap sni[j];
(05) enter mutex; SAFE AG[j, snapsn].proposei(inputi); exit mutex;
(06) res← SAFE AG [j, snapsn].decidei()
(07) return(res).

Fig. 4. sim snapshoti,j() executed by qi to simulate mem.snapshot() issued by pj (from [7])

– First, qi issues a snapshot of MEM in order to obtain a consistent view of the
simulation state. The value of this snapshot is kept in smi (line 01).
Let us observe that smi[x][y] is such that (1) smi[x][y].sn is the number of writes
issued by py into mem[y] that have been simulated up to now by qx, and (2)
smi[x][y].value is the value of the last write into mem[y] as simulated by qx on
behalf of py .

– Then, for each py , qi computes inputi[y]. To that end, it extracts from smi[1..t +
1][y] the value written by the more advanced simulator qs as far as the simulation
of py is concerned. This is expressed in lines 02-03.

Once inputi has been computed, qi proposes it to SAFE AG[j, snapsn] (line 05), and
then returns the value decided by that object (lines 06-07).

The previous description shows an important feature of the BG simulation. A value
inputi[y] = smi[s][y].value proposed by simulator qi can be such that smi[s][y].sn >
smi[i][y].sn, i.e., the simulator qs is more advanced than qi as far as the simulation
of py is concerned. This causes no problem, as when qi will simulate mem.snapshot()
operations for py (if any) that are between the (smi[i][y].sn)-th and the (smi[s][y].sn)-
th write operations of py , it will obtain a value that has already been computed and is
currently kept in the corresponding SAFE AG[y,−] object.

Underlying principle of the BG simulation [6,7]: from wait-freedom to t-resilience.
Each simulator qi simulates the n processes p1, . . . , pn “in parallel” and in a fair way.
But any simulator qi can crash. The crash of qi while it is engaged in the simulation
of mem.snapshot() on behalf of several processes pj , pj′ , etc., can entail their defini-
tive blocking, i.e., their crash. This is because each SAFE AG[j,−] object guarantees
that its SAFE AG[j,−].decide() invocations do terminate only if no simulator crashes
while executing SAFE AG[j,−].propose() (line 05 of Figure 4).

The simple (and bright) idea of the BG simulation to solve this problem consists in
allowing a simulator to be engaged in only one SAFE AG[−,−].propose() invocation
at a time. Hence, if qi crashes while executing SAFE AG[j,−].propose(), it can entail
the crash of pj only. This is obtained by using an additional mutual exclusion object
offering the operations enter mutex and exit mutex. (Let us notice that such a mutex
object is purely local to each simulator: it solves conflicts among the simulating threads
inside each simulator, and has nothing to do with the memory shared by the simulators).
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From t-resilience to wait-freedom. As an example let us consider we have a t-resilient
algorithm that solves the (n, t) agreement problem. We obtain a wait-free algorithm that
solves the (t + 1, t) agreement problem as follows. Each simulator qi (1 ≤ i ≤ t + 1)
is initially given a proposed value vi, and the base objects SAFE AG[1..n, 0] are used
by the (t + 1) simulators as follows to determine the value proposed by pj . For each
j, 1 ≤ j ≤ n, the simulator qi invokes first SAFE AG[j, 0].proposei(vi) and then
SAFE AG[j, 0].decidei() that returns it a value that it considers as the value proposed
by pj . It is easy to see that, for any j, all the simulators obtain the same value for pj .
Moreover, this value is one of the t + 1 values proposed by the simulators. Finally,
simulator process qi can decide any of the values decided by the processes pj it is
simulating. (It is easy to see that the BG simulation is for colorless decision tasks.) A
formal proof of this reduction (based on input/output automata) can be found in [7].

From wait-freedom to t-resilience. For colorless decision tasks, t-resilience can easily
be reduced to wait-freedom as follows. First, each application process deposits its input
value in a shared register. Then, every process of the t + 1 processes of the wait-free
algorithm takes one of those values as its input value and executes its code. Finally, each
application process decides any value decided by a process of the wait-free algorithm.

6 The Extended BG Simulation

This section extends the previous algorithms in order to solve the extended BG sim-
ulation. Our aim is to obtain an implementation that is “as simple as possible”. To
that end, we proceed incrementally by “only” enriching the previous base BG simula-
tion. The proposed implementation uses the same snapshot object MEM and the same
sim writei,j() operation (Figure 3) as the base BG simulation. It also uses the same
SAFE AG[1..n, 0...] array made up of safe agreement type objects.

This section presents the additional shared objects that are used, the underlying prin-
ciples on which relies the implementation of mem.snaspshot() issued by a simulator
qi on behalf of a simulated process pj , and the algorithm (denoted e sim snapshoti,j())
that implements it.

6.1 The Additional Shared Objects

In addition to MEM and SAFE AG[1..n, 0...], the memory shared by the simulators
q1, . . . , qt+1 contains the following objects.

– ARBITER[1..t + 1, 0...] is an array of arbiter objects. The objects contained in
ARBITER[j,−] are owned by the simulator qj (1 ≤ j ≤ t + 1).
The object ARBITER[j, snapsn] is used by a simulator qi when it simulates
its snapsn-th invocation mem.snapshot() on behalf of the simulated process pj

for 1 ≤ j ≤ t + 1. (As we will see, when t + 1 < j ≤ n, the simulation of
mem.snapshot() on behalf of pj does not require the help of an arbiter object.)

– ARB VAL[1..t + 1, 0...][0..1] is an array of pairs of atomic registers. The pair of
atomic registers ARB VAL[j, snapsn][0..1] is used in conjunction with the arbiter
object ARBITER[j, snapsn].
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The aim of ARB VAL[j, snapsn][1] is to contain the value that has to be re-
turned to the snapsn-th invocation mem.snapshot(), on behalf of the simulated
process pj , if the owner qj is designated as the winner by the associated object
ARBITER[j, snapsn]. If the owner qj is not the winner, the value that has to be
returned is the one kept in ARB VAL[j, snapsn][0].

6.2 The e sim snapshoti,j() Operation

The enriched algorithm. The algorithm implementing the operation e sim snapshoti,j()
executed by qi to simulate a mem.snapshot() operation issued by pj is described in
Figure 5. Its first four lines and its last line are exactly the same as in Figure 4. The lines
05-06 are replaced by the new lines N01-N14 that constitutes the “addition” that allows
going from the BG to the extended BG simulation.

Underlying principle. Albeit each simulated process pj (1 ≤ j ≤ n) is simulated
by each simulator qi (1 ≤ i ≤ t + 1) as in the BG simulation, each simulated pro-
cess pj such that 1 ≤ j ≤ t + 1 is associated with exactly one simulator that is its
“owner”: qi is the owner of pj if j = i (and also the owner of the corresponding objects
ARBITER[j,−]). The aim is, for any snapsn ≥ 0, to associate a single returned
value with the snapsn-th invocations of e sim snapshoti,j() issued by the simulators.
The idea is to use the ownership notion to “shortcut” the use of SAFE AG[j, snapsn]
object in appropriate circumstances.

The operation e sim snapshoti,j() for the simulated processes pj such that t + 2 ≤
j ≤ n, is exactly the same as sim snapshoti,j(). This appears in the lines N02-N03 that
are the same as the lines 06-07 of Figure 4 (in that case, there is no ownership notion).

operation e sim snapshoti,j():
(01) smi ← MEM .snapshot():
(02) for each y : 1 ≤ y ≤ n: do inputi[y] = smi[s, y].value
(03) where ∀x : 1 ≤ x ≤ t + 1 : smi[s, y].sn ≥ smi[x, y].sn end for;
(04) snap sni[j]← snap sni[j] + 1; let snapsn = snap sni[j];
(N01) if (j > t + 1)
(N02) then enter mutex; SAFE AG [j, snapsn].proposei(inputi); exit mutex;
(N03) res← SAFE AG [j, snapsn].decidei()
(N04) else if (i = j)
(N05) then ARB VAL[j, snapsn][1]← inputi;
(N06) enter mutex; win← ARBITER[j, snapsn].arbitratei,j(); exit mutex;
(N07) if (win = 1) then res← inputi

(N08) else res← ARB VAL[j, snapsn][0] end if;
(N09) else enter mutex; SAFE AG [j, snapsn].propose(inputi); exit mutex;
(N10) ARB VAL[j, snapsn][0]← SAFE AG [j, snapsn].decidei();
(N11) r ← ARBITER[j, snapsn].arbitratei,j();
(N12) res← ARB VAL[j, snapsn][r]
(N13) end if
(N14) end if;
(07) return(res).

Fig. 5. e sim snapshoti,j() executed by qi to simulate mem.snapshot() issued by pj
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The new lines N04-N14 address the case of the simulated processes owned by a sim-
ulator, i.e., the processes p1, . . . , pt+1. The idea is the following: if qi does not crash,
pi must not crash. In that way, if qi is correct, pi will always terminate whatever the be-
havior of the other simulators. To that end, qi on one side, and all the other simulators
on the other side, compete to define the snapshot value returned by the snapsn-th invo-
cations e sim snapshoti,j() issued by each of them. To attain this goal, the additional
objects ARBITER[j, snapsn] and ARB VAL[j, snapsn] are used as follows.

All the simulators invoke ARBITER[j, snapsn].arbitratei,j() (at line N06 if qi is
the owner, and line N11 if it is not). According to the specification of the arbiter type,
these invocations do not return different values, and do return at least when the owner
qj is correct and invokes that operation (as indicated in the specification, there are other
cases where the invocations do terminate). Finally, the value returned indicates if the
winner is the owner (1) or not (0).

If the winner is the owner qj , the value returned by the snapsn-th invocations of
e sim snapshoti,j() (one invocation by simulator) is the value inputj computed by the
owner. That value is kept in the atomic register ARB VAL[j, snapsn][1] (line N05).

If the owner is not the winner, the value returned is the one determined by the
other simulators that invoked SAFE AG[j, snapsn].proposei(inputi) (line N09) and
SAFE AG[j, snapsn].decidei() (line N10). The value they have computed has been
deposited in ARB VAL[j, snapsn][0] (line N10), and this value is used as the result of
the SAFE AG[j, snapsn] object.

It is important to notice that the owner qj does not invoke the proposej() and decidej()
operations on the objects it owns. Moreover, the simulator qj is the only simulator that
can write ARB VAL[j, snapsn][1], while the other simulators can only write
ARB VAL[j, snapsn][0].

To summarize, if a simulator qi crashes, it entails the crash of at most one simulated
process. This is ensured thanks to the mutex algorithm. If the simulator qi crashes,
1 ≤ i ≤ t + 1, as far the simulated processes are concerned, it can entail either no
crash at all (if qi crashes outside a critical section), or the crash of pi (if it crashes while
executing arbitratei,j() inside the critical section at line N06), or the crash of a process
pj such that 1 ≤ j �= i ≤ t + 1 (this can occur only if qj has crashed and was not
winner, and qi crashes inside the critical section at line N09), or the crash of one of the
processes pt+2, ..., pn (if it crashes at line N02 inside the critical section).

t-Resilience vs wait-freedom. Given a BG simulation algorithm where a simulated pro-
cess pj (1 ≤ j ≤ t + 1 ≤ n) can be blocked forever only if simulator qj crashes, Gafni
shows in [12] that wait-freedom and t-resilience are equivalent for decision tasks (he
also shows strong results on equivalence between weak renaming and weak symmetry
breaking).

7 Proof of the Extended BG Simulation

Lemma 1. A simulator can block the progression of only one simulated process at a
time.

Proof. A simulator can block the simulation of a process only during the execution of an
e sim snapshot() operation, when the simulator uses a safe agreement (lines N02-N03
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or N09-N10) or an arbiter object because it is its owner (line N06). All these invocations
are placed in mutual exclusion. Thus a simulator can block the simulation of only a
single process at a time. �Lemma 1

Lemma 2. The simulated process pi is never blocked at the simulator qi.

Proof. The e sim snapshot() operation, when invoked by simulator qi for the simulated
process pi (line N04, i = j) does not include any wait statement and does not use a
safe agreement object. Due to the properties of the arbiter object type, it cannot be
blocked during its invocation of arbitrate(). Thus, the simulated process pi can never
be blocked at simulator qi. �Lemma 2

Lemma 3. Each simulator receives the decision value of at least n − t simulated
processes.

Proof. Because at most t simulators may crash, and a simulator can block at most a
single simulated process at a time (Lemma 1), each simulator can execute the code of
at least n− t simulated processes without being blocked forever. Because the simulated
algorithm is t-resilient, these n − t processes will then decide a value. �Lemma 3

Lemma 4. All the simulators that return from the simulation of the k-th snapshot issued
by the the simulated process pj do return the same value for that snapshot.

Proof. If pj isn’t owned by any simulator (j > t + 1), because of the properties of the
safe agreement objects, the same value is always returned (lines N02-N03 of Figure 5).

If the owner of pj chooses the value it has computed for pj’s k-th snapshot, it has
written this value in ARB V AL[j, snapsn][1] (line N05), and is the winner of the
arbiter object (line N06). All other simulators will then read its value (line N12).

If the simulated process pj has an owner but another process chooses the value it
has computed for pj’s k-th snapshot, this process has already agreed on a value with all
other non owner processes (safe agreement object, lines N09-N10) and is the winner
of the arbiter object (lines N11-N12). All non-owner processes will then write the same
value in ARB V AL[j, snapsn][0] (line N10) and the owner will read it (line N08).

Thus, all the simulators that return a value for the k-th snapshot of the simulated
process pj return the same value. �Lemma 4

Lemma 5. At most one decision value can be decided by a simulated process on any
simulator.

Proof. Because every simulator computes the same value for any given snapshot and
because the snapshot operations are the only non-deterministic parts of codes of the
simulated processes, all simulators that decide a value for a given simulated process
decide the same value. �Lemma 5

Lemma 6. The sequences of all writes and snapshots for each simulated process cor-
respond to a correct execution of the simulated algorithm.
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Proof. Every simulator that is not blocked while simulating a process simulates it in
the same way (same values written and same snapshots read, Lemma 4).

When simulator qi executes e sim snapshot() for pj (i.e. the simulation of a snap-
shot for pj), it stores in its input i variable the values written by the simulators that have
advanced the most for each simulated process (Figure 3 and lines 01-03 of Figure 5). It
can choose its own input i snapshot value only if no other simulator has already ended
the execution of this e sim snapshot() (Lemma 4 implies that safe agreement objects
have a “memory” effect). Thus, for each e sim snapshot(), qi returns an input value
computed by itself or another simulator. Let us notice that, when this input value has
been determined, no simulator had terminated its associated e sim snapshot(). (If this
was not the case, that simulator would have provided the other simulators with its own
input value.) Because processes are simulated deterministically, the input value re-
turned contains the last value written by pj as seen by qi. This shows that the simulated
process order is respected.

To ensure that the simulation is correct, we then have to show that the writes and
snapshots of all processes can be linearized. The linearization point of the writes is
placed at line 03 of Figure 3 of the first simulator that executes it. The linearization
point of the snapshots is placed at line 01 of Figure 5 of the simulator qi that imposes
its input i value.

Because the simulator qi that imposes its input i value in a e sim snapshot() oper-
ation reads the most advanced values at the time of its snapshot (lines 02-03 of Figure
5), and because once a simulator finishes the execution of e sim snapshot(), the value
for this e sim snapshot() cannot change (Lemma 4), the linearization correspond to a
linearization of a correct execution of the simulated algorithm. �Lemma 6

Theorem 1. The extended BG simulation algorithms described in Figures 3 and 5 are
correct.

Proof. Lemmas 2, 3, 5 and 6 show that the extended BG simulation algorithms pre-
sented here are correct. �Theorem 1
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