Rachid Guerraoui
Franck Petit (Eds.)

Stabilization,
Safety, and Security
of Distributed Systems

11th International Symposium, SSS 2009
Lyon, France, November 2009
Proceedings

LNCS 5873

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5873

Rachid Guerraoui Franck Petit (Eds.)

Stabilization,
Satety, and Security
of Distributed Systems

1 1th International Symposium, SSS 2009

Lyon, France, November 3-6, 2009
Proceedings

@ Springer

Volume Editors

Rachid Guerraoui

Ecole Polytechnique Fédérale de Lausanne
CH 1015 Lausanne, Switzerland

E-mail: rachid.guerraoui @epfl.ch

Franck Petit

LIP

ENS Lyon

46 allée d’Italie

69364 Lyon cedex 07, France
E-mail: franck.petit@ens-lyon.fr

Library of Congress Control Number: 2009936486

CR Subject Classification (1998): C.2.4, C.3,F.1, F2.2, K.6
LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-05117-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-05117-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12779949 06/3180 543210

Preface

The papers in this volume were presented at the 11th International Sympo-
sium on Stabilization, Safety, and Security of Distributed Systems (SSS), held
November 3-6, 2009 in Lyon, France.

SSS is an international forum for researchers and practitioners in the design
and development of fault-tolerant distributed systems with self-* attributes, such
as self-stabilization, self-configuration, self-organization, self-management, self-
healing, self-optimization, self-adaptiveness, self-protection, etc. SSS started as
the Workshop on Self-Stabilizing Systems (WSS), the first two of which were held
in Austin in 1989 and in Las Vegas in 1995. Starting in 1995, the workshop began
to be held biennially; it was held in Santa Barbara (1997), Austin (1999), and
Lisbon (2001). As interest grew and the community expanded, in 2003, the title
of the forum was changed to the Symposium on Self-Stabilizing Systems (SSS).
SSS was organized in San Francisco in 2003 and in Barcelona in 2005. As SSS
broadened its scope and attracted researchers from other communities, a couple
of changes were made in 2006. It became an annual event, and the name of the
conference was changed to the International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS). The last three SSS conferences were
held in Dallas (2006), Paris (2007), and Detroit (2008).

This year the Program Committee was organized into several tracks reflect-
ing most topics related to self-* systems. The tracks were: Alternative Systems
and Models, Autonomic Computational Science, Cloud Computing, Embedded
Systems, Fault-Tolerance in Distributed Systems / Dependability, Formal Meth-
ods in Distributed Systems, Grid Computing, Mobility and Dynamic Networks,
Multicore Computing, Peer-to-Peer Systems, Self-Organizing Systems, Sensor
Networks, Stabilization, and System Safety and Security. We received 126 sub-
missions from 34 countries. Each submission was reviewed by four to six Pro-
gram Committee members with the help of external reviewers. A rebuttal phase
was added for the authors to respond to the reviews before the final delibera-
tion. Out of the 126 submitted papers, 49 papers were selected for presentation.
The symposium also included 14 brief announcements. Selected papers from the
symposium will be published in a special issue of the ACM Transactions on
Autonomous and Adaptive Systems (TAAS).

This year, we were very fortunate to have three distinguished invited speak-
ers: Anne-Marie Kermarrec, David Peleg, and Roger Wattenhofer. They also
graciously provided a summary of their talks in advance to be included in this
volume.

Among the 49 selected papers, we considered three papers for special awards.
The best paper award was given to Francois Bonnet and Michel Raynal for their
paper entitled “Looking for the Weakest Failure Detector for k-Set Agreement in
Message-Passing Systems: Is IT; the End of the Road?”. The best student paper

VI Preface

was shared by Danny Dolev, Ezra N. Hoch, and Yoram Moses for “An Opti-
mal Self-Stabilizing Firing Squad” and Gérard Wagener, Radu State, Alexandre
Dulaunoy, and Thomas Engel for “Self-Adaptive High Interaction Honeypots
Driven by Game Theory.”

On behalf of the Program Committee, we would like to thank all the authors
who submitted their work to SSS. We thank all the Vice-Program Chairs, all the
members of the Program Committee, and the external reviewers for their tremen-
dous effort and valuable reviews. We also thank the members of the Steering
Committee for their invaluable advice. The process of paper submission, selec-
tion, and compilation in the proceedings was greatly simplified due to the strong
and friendly interface of the FasyChair system (http://www.easychair.org).
We owe a lot to the EasyChair creators and maintainers for their commitment
to the scientific community. We gratefully acknowledge the Organizing Commit-
tee members for their time and invaluable effort that greatly contributed to the
success of this symposium.

November 2009 Rachid Guerraoui
Franck Petit

Conference Organization

General Chair

Ajoy K. Datta UNLV, Las Vegas, USA

Program Chairs

Rachid Guerraoui EPFL, Lausanne, Switzerland
Franck Petit INRIA/LIP, ENS Lyon, France

Program Vice-Chairs

Tarek Abdelzaher
Anish Arora

Raouf Boutaba
Giovanna Di Marzo Serugendo
Pascal Felber
Christof Fetzer

Eric Fleury

Thomas Fuhrmann
Mohamed G. Gouda
Indranil Gupta
Jason Hallstrom

Local Arrangements Chair

Eddy Caron

Webmaster

Benjamin Depardon

Publication Chairs

Stéphane Devismes
Cédric Tedeschi

Salima Hassas
Ted Herman
Martin Hutle
Sandeep Kulkarni
Sayan Mitra
Manish Parashar
Franck Petit
Thierry Priol
Omer F. Rana
Josef Widder

Publicity Chairs

Doina Bein

Borzoo Bonakdarpour
Jiannong Cao
Stéphane Devismes
Yoshiaki Katayama
Ji-Cherng Lin

VIII Organization

Program Committee

Alternative Systems and Models

Murat Demirbas
Hoai Ha Phuong
Ted Herman (Chair)
Mehmet Karaata
Xenofon Koutsoukos

Autonomic Computational Science

Rosa Badia

Jose Fortes

Geoffrey Fox

Shantenu Jha
Nagarajan Kandasamy
Zhiling Lan

Cloud Computing

Marcos Aguilera
Mahesh Balakrishnan
Gregory Chockler
Brian Cooper

John Dunagan
Indranil Gupta (Chair)
Anthony Joseph

Embedded Systems

Tarek Abdelzaher (Chair)
Karl-Erik Arzen

Hakan Aydin

Ted Baker

Riccardo Bettati

Albert Cheng

Chris Gill

Vana Kalogeraki

Insup Lee

Xue Liu

Hakan Sundell
Paulo Tabuada

Suresh Venkatasubramanian

Lin Zhong

Manish Parashar (Chair)
Thierry Priol

Omer F. Rana (Chair)
Jordi Torres

David Walker

Dongyan Xu

Flavio Junqueira

Petr Kuznetsov
Arvind Krishnamurthy
Gopal Pandurangan
Hakim Weatherspoon
Praveen Yalagandula

Lucia Lo Bello
Chenyang Lu
Ying Lu

Frank Mueller
Binoy Ravindran
Bruno Sinopoli
Oleg Sokolsky
Eduardo Tovar
Dakai Zhu

Organization

Fault-Tolerance in Distributed Systems / Dependability

James Anderson
Xavier Défago

Felix Freiling

Martin Hutle (Chair)
Ricardo Jimenez
Zbigniew Kalbarczyk
Miroslaw Malek
Achour Mostefaoui

Dave Powell

Luis E.T. Rodrigues
Nicola Santoro
Neeraj Suri
Tatsuhiro Tsuchiya
Paulo Verissimo
Jennifer Welch

Josef Widder (Chair)

Formal Methods in Distributed Systems

Gul Agha

Borzoo Bonakdarpour
Ali Ebnenasir

Vijay Garg

Seth Gilbert

Sandeep Kulkarni (Chair)

Grid Computing

Artur Andrzejak
Alvaro Arenas
Jean-Pierre Banatre
Rajkumar Buyya
Franck Cappello
Eddy Caron

José C. Cunha
Marco Danelutto
Frédéric Desprez
Thomas Fahringer
Geoffrey Fox
Paraskevi Fragopoulou
Sergei Gorlatch

Mobility and Dynamic Networks

Stefano Basagni

Marin Bertier

Jiannong Cao

Pierluigi Crescenzi
Marcelo Dias de Amorim
Andras Farago

Eric Fleury (Chair)

Oded Maler

Jose Meseguer
Sayan Mitra (Chair)
Aditya Nori
Natarajan Shankar
Scott Smolka

Hai Jin

Dieter Kranzlmueller
Craig Lee

Norbert Meyer

Zsolt Nemeth Sztaki
Manish Parashar
Ronald H. Perrott
Thierry Priol (Chair)
Domenico Talia
Dora Varvarigou
Zhiwei Xu

Ramin Yahyapour
Wolfgang Ziegler

Paola Flocchini
Pierre Fraigniaud
Seth Gilbert

Jean Loup Guillaume
Shay Kutten

Thomas Moscibroda
David Peleg

IX

X Organization

Christian Poellabauer
Violet R. Syrotiuk
Sébastien Tixeuil

Multicore Computing

Andrea Acquaviva
Ali-Reza Adl-Tabatabai
Cedric Bastoul

Pascal Felber (Chair)
Christof Fetzer (Chair)
Tim Harris

Peer-to-Peer Systems

James Aspnes
Olivier Beaumont
Giuseppe Ciaccio
Paolo Costa
Fabrice Le Fessant
Davide Frey
Thomas Fuhrmann (Chair)
JoAnne Holliday
Riko Jacob

Mark Jelasity
Kendy Kutzner

Self-organizing Systems

Matthias Baumgarten
Jake Beal

Yuriy Brun

Vincent Chevrier
Rogerio De Lemos
Giovanna Di Marzo Serugendo (Chair)
Simon Dobson

Bruce Edmonds
Carlos Gershenson
Marie-Pierre Gleizes
Michael Grottke
David Hales

Koichi Wada
Masafumi Yamashita

Maurice Herlihy
Michael Hohmuth
Gilles Muller

Nir Shavit

Per Stenstrom
Osman Unsal

Massouli Laurent
Giancarlo Ruffo
Christian Scheideler
Christian Schindelhauer
Pierre Sens

Georgios Smaragdakis
Burkhard Stiller

Kurt Tutschku

Nalini Venkatasubramanian
Spyros Voulgaris

Klaus Wehrle

Salima Hassas (Chair)
Christian Igel

Mark Jelasity
Anthony Karageorgos
Marco Mamei

Gero Muehl
Wolfgang Renz
Martijn Schut
Mikhail Smirnov

Aad Van Morsell
Rolf Wuertz

Sensor Networks

Anish Arora (Chair)
Habib M. Ammari

Jan Beutel

David Du

Jason Hallstrom (Chair)
Bhaskar Krishnamachari

Stabilization

James Aspnes
Joffroy Beauquier
Doina Bein
Christian Boulinier
Alain Cournier
Sylvie Delaét
Stéphane Devismes
Shlomi Dolev
Bertrand Ducourthial
Hugues Fauconnier
Paola Flocchini

Felix Freiling
Sukumar Ghosh
Hirotsugu Kakugawa

System Safety and Security

Raouf Boutaba (Chair)
Jorge Cobb

Mourad Debbabi

Mohamed G. Gouda (Chair)
Stefanos Gritzalis

Urs Hengartner

Jiankun Hu

Chin-Tser Huang

Eunjin (E.J.) Jung

Steering Committee

Sukumar Ghosh
Anish Arora
Ajoy K. Datta
Shlomi Dolev

Organization XI

Santosh Kumar
Chenyang Lu
Nigamanth Sridhar
Andreas Terzis
Yu-Chee Tseng
Hongwei Zhang

Mehmet H. Karaata
Yoshiaki Katayama
Lawrence L. Larmore
Toshimitsu Masuzawa
Fabien Mathieu
Mikhail Nesterenko
Boaz Patt-Shamir
Franck Petit (Chair)
Maria Gradinariu Potop-Butucaru
Cédric Tedeschi
Sébastien Tixeuil
Vincent Villain
Masafumi Yamashita

Ninghui Li

Alex X. Liu

Dan Massey

Neeraj Mittal

Refik Molva

Peter Muller

Radu State

Gene Tsudik

Carlos Becker Westphall

Mohamed G. Gouda
Ted Herman
Toshimitsu Masuzawa
Vincent Villain

XII Organization

Additional Reviewers

Hrishikesh B. Acharya
Luca Maria Aiello
Ismet Aktas
Mishari Almishari
Habib M. Ammari
Zakia Asad
Thomas Aynaud
Rosa M. Badia
Zinaida Benenson
Andrew Berns
Josep Berral

Jan Beutel
Hamad Binsalleh
Francois Bonnet
Amine Boukhetouta
Zohir Bouzid
Olga Brukman
Janna Burman
Jan Calta

Jian Chang

Xin Che
Hyun-Chul Chung
Kendra Cooper
Scott Coull

Brian DeVries
Carole Delporte
Benjamin Depardon
Yoann Dieudonné
Andreas Dittrich
Jing Dong

Swan Dubois
Yong Fu

Matthias Fiigger
Daniel Graff
Vincent Gramoli

Gregory Hackmann
Sammy Haddad
Rachid Hadid
Daniel Hagimont
Kai Han

Claus Hertling

Yu Hua
Shing-Tsaan Huang
Taisuke Izumi
Tomoko Izumi
Georgios Kambourakis
Sayaka Kamei
Giorgos Karopoulos
Vincent Keller
Matthew Kellett
Kyungbaek Kim
Sebastian Kniesburges
Toannis Krontiris
Petr Kuznetsov
Hyunyoung Lee
Julien Legriel

Joao Leitao

Yawei Li

Yan Li

Peter Likarish

Jé Agila Bitsch Link
Xijaohui Liu
Miroslaw Malek
Nicolas Markey
Marco Milanesio
Neeraj Mittal
Noman Mohammed
Nicolas Nisse
Stephen Olivier
Lucia Draque Penso

Olivier Peres
Marie-Laure Potet
Giuseppe Prencipe
Michel Raynal
Ryan Riley

Yvan Rivierre
Paolo Romano
Gautam Roy
Srikanth Sastry
Gregor Schiele
Elad Michael Schiller
Stefan Schmid
Florian Schmidt
Klaus Schneider
Michael Segal
Massoud Seifi
Zubair Shafiq
John Solis

Anil Somayaji
Claudio Soriente
Srdjan Stipic
Andreas Tielmann
Peter Troger
Kasturi Varadarajan
Kapil Vaswani
Saira Viqar
Ramesh Viswanathan
Sally Wahba
Christopher Weyer
Qiao Xiang

Alex Yakovlev
Yukiko Yamauchi
Ziming Zheng

Liu Xuan

Table of Contents

Invited Talks

Challenges in Personalizing and Decentralizing the Web: An Overview
of GOSSPLE . ..o

Anne-Marie Kermarrec

Local Algorithms: Self-stabilization on Speed
Christoph Lenzen, Jukka Suomela, and Roger Wattenhofer

As Good as It Gets: Competitive Fault Tolerance in Network
SEIUCHUTES .« ottt
David Peleg

Regular Papers

Multicore Constraint-Based Automated Stabilization
Fuad Abujarad and Sandeep S. Kulkarni

A Theory of Network Tracingoo ...
Hrishikesh B. Acharya and Mohamed G. Gouda

Developing Autonomic and Secure Virtual Organisations with Chemical
Programming.
Alvaro E. Arenas, Jean-Pierre Banatre, and Thierry Priol

Making Population Protocols Self-stabilizing
Joffroy Beauquier, Janna Burman, and Shay Kutten

Analysis of Wireless Sensor Network Protocols in Dynamic Scenarios . . .
Cinzia Bernardeschi, Paolo Masci, and Holger Pfeifer

Consensus When All Processes May Be Byzantine for Some Time
Martin Biely and Martin Hutle

A Superstabilizing log(n)-Approximation Algorithm for Dynamic
Steiner Treest
Lélia Blin, Maria Gradinariuv Potop-Butucaru, and
Stephane Rovedakis

Looking for the Weakest Failure Detector for k-Set Agreement in
Message-Passing Systems: Is ITj; the End of the Road?................
Frangois Bonnet and Michel Raynal

17

35

47

62

75

90

149

X1V Table of Contents

Optimal Byzantine Resilient Convergence in Asynchronous Robot

NEtWOTKS v ottt 165
Zohir Bouzid, Maria Gradinariu Potop-Butucaru, and
Sébastien Tizewil

FoG: Fighting the Achilles’ Heel of Gossip Protocols with Fountain

COdes vt 180
Mary-Luc Champel, Anne-Marie Kermarrec, and
Nicolas Le Scouarnec

How to Improve Snap-Stabilizing Point-to-Point Communication Space
Complexity? ... 195
Alain Cournier, Swan Dubois, and Vincent Villain

Fault-Containment in Weakly-Stabilizing Systems 209
Anurag Dasgupta, Sukumar Ghosh, and Xin Xiao

Stability of Distributed Algorithms in the Face of Incessant Faults 224
Robert E. Lee DeVille and Sayan Mitra

Dependability Engineering of Silent Self-stabilizing Systems 238
Abhishek Dhama, Oliver Theel, Pepijn Crouzen, Holger Hermanns,
Ralf Wimmer, and Bernd Becker

Robustness and Dependability of Self-Organizing Systems - A Safety
Engineering Perspective. 254
Giovanna Di Marzo Serugendo

Efficient Robust Storage Using Secret Tokens 269
Dan Dobre, Matthias Majuntke, Marco Serafini, and Neeraj Suri

An Optimal Self-stabilizing Firing Squad........... 284
Danny Dolev, Ezra N. Hoch, and Yoram Moses

Anonymous Transactions in Computer Networks (Extended
Abstract)o 297
Shlomi Dolev and Marina Kopeetsky

Nash Equilibria in Stabilizing Systems 311
Mohamed G. Gouda and Hrishikesh B. Acharya

ACCADA: A Framework for Continuous Context-Aware Deployment
and Adaptation. 325
Ning Gui, Vincenzo De Florio, Hong Sun, and Chris Blondia

A Self-stabilizing Approximation Algorithm for Vertex Cover in
Anonymous Networks i 341
Volker Turau and Bernd Hauck

Table of Contents

Separation of Circulating Tokens.........
Kajari Ghosh Dastidar and Ted Herman

Visiting Gafni’s Reduction Land: From the BG Simulation to the
Extended BG Simulation
Damien Imbs and Michel Raynal

Randomized Gathering of Mobile Robots with Local-Multiplicity
Detection e
Taisuke Izumi, Tomoko Izumi, Sayaka Kamei, and Fukuhito QOoshita

Scalable P2P Overlays of Very Small Constant Degree: An Emerging
Security Threato
Mark Jelasity and Vilmos Bilicki

CFlood: A Constrained Flooding Protocol for Real-time Data Delivery
in Wireless Sensor Networks
Bo Jiang, Binoy Ravindran, and Hyeonjoong Cho

Cached Sensornet Transformation of Non-silent Self-stabilizing

Algorithms with Unreliable Links
Hirotsugu Kakugawa, Yukiko Yamauchi, Sayaka Kamei, and
Toshimitsu Masuzawa

Analysis of an Intentional Fault Which Is Undetectable by Local
Checks under an Unfair Scheduler..........
Jun Kiniwa and Kensaku Kikuta

Exploring Polygonal Environments by Simple Robots with Faulty
Combinatorial VISIOn
Anvesh Komuravelli and Matus Mihaldk

Finding Good Partners in Availability-Aware P2P Networks...........
Stevens Le Blond, Fabrice Le Fessant, and Erwan Le Merrer

Churn-Resilient Replication Strategy for Peer-to-Peer Distributed
Hash-Tables
Sergey Legtchenko, Sébastien Monnet, Pierre Sens, and Gilles Muller

Distributed Power Control with Multiple Agents in a Distributed Base
Station Scheme Using Macrodiversity
Philippe Leroux and Sébastien Roy

Redundancy Maintenance and Garbage Collection Strategies in
Peer-to-Peer Storage Systems i
Xin Liu and Anwitaman Datta

XV

354

369

384

399

413

428

XVI Table of Contents

Model Checking Coalition Nash Equilibria in MAD Distributed
SYSEEINS . .ot
Federico Mari, Igor Melatti, Ivano Salvo, Enrico Tronci,
Lorenzo Alvisi, Allen Clement, and Harry Li

OpenMP Support for NBTI-Induced Aging Tolerance in MPSoCs
Andrea Marongiu, Andrea Acquaviva, and Luca Benini

A Self-stabilizing Algorithm for Graph Searching in Trees
Rodica Mihai and Morten Mjelde

A Metastability-Free Multi-synchronous Communication Scheme for
SO0 vt
Thomas Polzer, Thomas Handl, and Andreas Steininger

From Local Impact Functions to Global Adaptation of Service
COMPOSITIONS .« + ¢ ot ettt e e e
Liliana Rosa, Luis Rodrigues, Antonia Lopes, Matti Hiltunen, and

Richard Schlichting

A Wireless Security Framework without Shared Secrets
Lifeng Sang and Anish Arora

Read-Write-Codes: An Erasure Resilient Encoding System for Flexible
Reading and Writing in Storage Networks
Mario Mense and Christian Schindelhauer

Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional
Domatic Partitioning
André Schumacher and Harri Haanpdd

Network-Friendly Qossiping
Sabina Serbu, Etienne Riviere, and Pascal Felber

Black Hole Search with Tokens in Interconnected Networks............
Wei Shi

Oracle-Based Flocking of Mobile Robots in Crash-Recovery Model
Samia Souissi, Taisuke Izumi, and Koichi Wada

Speculation for Parallelizing Runtime Checks
Martin Sufkraut, Stefan Weigert, Ute Schiffel, Thomas Knauth,
Martin Nowack, Diogo Becker de Brum, and Christof Fetzer

Optimistic Fair Exchange Using Trusted Devices
Mohammad Torabi Dashti

Application Data Consistency Checking for Anomaly Based Intrusion
Detection
Olivier Sarrouy, Eric Totel, and Bernard Jouga

Table of Contents XVII

Self Adaptive High Interaction Honeypots Driven by Game Theory 741
Gérard Wagener, Radu State, Alerandre Dulaunoy, and
Thomas Engel

Cooperative Autonomic Management in Dynamic Distributed
SYSTEIMS . . ottt 756
Jing Xu, Ming Zhao, and José A.B. Fortes

Brief Announcements

Consistent Fixed Points and Negative Gain. 771
Hrishikesh B. Acharya, Fhab S. Elmallah, and Mohamed G. Gouda

Induced Churn to Face Adversarial Behavior in Peer-to-Peer Systems ... 773
Emmanuelle Anceaume, Francisco Brasileiro, Romaric Ludinard,
Bruno Sericola, and Frederic Tronel

Safer Than Safe: On the Initial State of Self-stabilizing Systems. 775
Sylvie Delaét, Shlomi Dolev, and Olivier Peres

Unique Permutation Hashing i
Shlomi Dolev, Limor Lahiani, and Yinnon Haviv

Randomization Adaptive Self-stabilization 779
Shlomi Dolev and Nir Tzachar

On the Time Complexity of Distributed Topological Self-stabilization... 781
Dominik Gall, Riko Jacob, Andrea Richa, Christian Scheideler,
Stefan Schmid, and Hanjo Tdubig

An OS Architecture for Device Self-protection 783
Ruan He, Marc Lacoste, and Jean Leneutre

Towards Secure Cloud Computing.coo ... 785
Christian Henrich, Matthias Huber, Carmen Kempka,
Jorn Miller-Quade, and Mario Strefler

Robust Self-stabilizing Construction of Bounded Size Weight-Based
CIUSEETS .« vttt 787
Colette Johnen and Fouzi Mekhaldi

A Stabilizing Algorithm for Finding Two Disjoint Paths in Arbitrary
NetworKks ..o 789
Mehmet Hakan Karaata and Rachid Hadid

Relocation Analysis of Stabilizing MAC Algorithms for Large-Scale
Mobile Ad Hoc Networks 791
Pierre Leone, Marina Papatriantafilou, and Elad M. Schiller

XVIII Table of Contents

A Simple and Quiescent Omega Algorithm in the Crash-Recovery
Model ... 793
Cristian Martin and Mikel Larrea

How to Overcome the Limits of Bounds............ 795
Olivier Peres

The Design and Evaluation of a Distributed Reliable File System 797
Dalibor Peric, Thomas Bocek, Fabio Hecht, David Hausheer, and
Burkhard Stiller

Author Index 799

Challenges in Personalizing and Decentralizing the
Web: An Overview of GOSSPLE*

Anne-Marie Kermarrec

INRIA, Rennes Bretagne-Atlantique, France
Anne-Marie.Kermarrec@inria. fr

Abstract. Social networks and collaborative tagging systems have taken off at an
unexpected scale and speed (Facebook, YouTube, Flickr, Last.fm, Delicious, etc).
Web content is now generated by you, me, our friends and millions of others. This
represents a revolution in usage and a great opportunity to leverage collaborative
knowledge to enhance the user’s Internet experience. The GOSSPLE project aims
at precisely achieving this: automatically capturing affinities between users that
are potentially unknown yet share similar interests, or exhibiting similar behav-
iors on the Web. This fully personalizes the search process, increasing the ability
of a user to find relevant content. This personalization calls for decentralization.
(1) Centralized servers might dissuade users from generating new content for they
expose their privacy and represent a single point of attack. (2) The amount of in-
formation to store grows exponentially with the size of the system and centralized
systems cannot sustain storing a growing amount of data at a user granularity. We
believe that the salvation can only come from a fully decentralized user centric
approach where every participant is entrusted to harvest the Web with informa-
tion relevant to her own activity. This poses a number of scientific challenges:
How to discover similar users, how to define the relevant metrics for such per-
sonalization, how to preserve privacy when needed, how to deal with free-riders
and misheavior and how to manage efficiently a growing amount of data.

1 Introduction

While the Internet has fully moved into homes, creating tremendous opportunities to ex-
ploit the huge amount of resources at the edge of the network, the Web has changed dra-
matically over the past years. There has been an exponential growth of user-generated
content (Flickr, Youtube, Delicious, ...) and a spectacular development of social net-
works (Twitter, FaceBook, etc). This represents a fantastic potential in leveraging such
kinds of information about the users: their circles of friends, their interests, their ac-
tivities, the content they generate. This also reveals striking evidence that navigating
the Internet goes beyond traditional search engines. New and powerful tools that could
empower individuals in ways that the Internet search will never be able do are required.

The objective of GOSSPLE is to provide an innovative and fully decentralized ap-
proach to navigating the digital information universe by placing users affinities and
preferences at the heart of the search process. Where traditional search engines fail to
provide information unless it is properly indexed, GOSSPLE will seek the information
where it ultimately is: at the user.

* This work is supported by the ERC Starting Grant GOSSPLE number 204742.

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 1 20009.
(© Springer-Verlag Berlin Heidelberg 2009

2 A.-M. Kermarrec

GOSSPLE aims at capturing the interactions and affinities on the fly and fully lever-
aging the huge resource potential available on edge nodes, to efficiently search, dynam-
ically index and asynchronously disseminate and recommend information to interested
users based on their preferences. Building on the peer to peer communication paradigm
and harnessing the power of gossip-based algorithms, GOSSPLE aims at personalizing
Web navigation, by means of a fully decentralized solution, for the sake of scalability
and privacy.

A number of technical challenges underlie GOSSPLE and its objective of combining
personalization and decentralization:

Personalization: GOSSPLE should address appropriate metrics to compute dis-

tances between users and identify and capture the affinities between users.

— Scalability: GOSSPLE should provide scalable mechanisms to deal with a huge and
growing amount of information.

— Privacy: while entrusting users to hold and maintain their personal data give them
full control on them, further mechanisms are required in GOSSPLE to leverage per-
sonal information and detect affinities between user without exposing personal in-
formation about the requests of a user or the content she generates.

— Support for misbehavior: while fully decentralized approaches buy scalability,

they remove any form of central authority, leaving holes for misbehavior: GOSSPLE

should tackle the whole range of misbehavior from attempts to free-ride the system,
to attempts to try to exploit it (through spamming for example) and even hurt it with

Byzantine behaviors.

The rest of the paper provides the context and motivation (Section P)), the technical
challenges (Section [3), the scientific background (Section [) before concluding and
providing the current status of the GOSSPLE project.

2 Time for a Navigation Shift in the Internet

The past decade has witnessed a dramatic scale shift in the area of distributed com-
puting. Meanwhile, the Internet has entered our homes together with various kinds
of digital assets. This has resulted into a radical change in the way people are com-
municating, companies are organized and data is managed all over the world. Social
networking in the forms of social networks (Facebook, Twitter) or folksonomies (De-
licious, Flickr) has taken off at an unexpected scale. The Internet we are now looking
at is composed of millions of computing devices and as many users, generating con-
tents at a high speed, Terabytes of dynamic data, scattered all over the world, shared,
disseminated and searched for.

2.1 Personalized Navigation within the Internet

Although computer science in general and more specifically distributed computing has
gradually taken into account this digital revolution, we now have reached the point
where incremental changes are no longer sustainable. Traditional search engines are per-
forming extremely well but do hardly encompass alternative and very dynamic sources

Challenges in Personalizing and Decentralizing the Web 3

of information such as user-generated contents, blogs, peer-to-peer file-sharing systems
instant messaging as well as content distribution frameworks. This is mainly due to their
lack of adaptivity to dynamics and their not taking into account correlations between
contents and users preferences. They are also limited by their reliance upon central-
ized indexing: they periodically scan the whole web, build an index in their data centre,
then distribute it back out to smaller centres that respond to queries. Typically, corpo-
rate pages are visited frequently while individual information may be visited rarely: the
individual is at a disadvantage. This reveals striking evidence that complementary and
novel fully decentralized alternatives to traditional search engines are now required to
capture the dynamic, collaborative and heterogeneous nature of the digital universe as
well as to to leverage individual preferences and social affinities.

2.2 TIllustration: Looking for a Baby-Sitter

To illustrate the inadequacy of state of the art solutions, let us consider the following
concrete example. Following a long stay in the UK, a French family is looking for
an English speaking student who would be willing to trade baby-sitting hours against
accommodation, say in the city of Rennes to allow kids to keep up with English. Given
the high number of students in Rennes, there is no doubt that such an offer would be of
interest for many English speaking students.

Yet, satisfying this simple, slightly unusual, request is challenging and in fact almost
impossible. The most natural way for the family to find a match is to launch a Google
request “Baby-sitter anglophone Rennes’{]. The first hits on Google lead to baby-sitting
services, student announces, including different geographical areas and has nothing to
do with English speaking. All subsequent reformulated requests, in French or English,
lead to equally unsatisfactory results. Yet, would this family be able to reach all English
speaking students in Rennes, there will definitely be some candidates.

The data is clearly out there but it is difficult to achieve the match between the of-
fer and the supply. If the offer effectively exists in some proper indexed form, even
though a search engine forces to continuously probe the system, it will probably achieve
the match eventually. Alternative sites such as Craigslist, a centralized network of on-
line communities featuring free classified advertisements, extremely popular in the US,
could also be used in this case, provided that the user follows the imposed structure.
However, if the offer does not exist in the proper indexed form, current technology sim-
ply does not fit. This is mostly due to the fact that baby-sitter is mainly associated with
daycare or local baby sitting companies. None of the family Facebook buddies can help
either as known of them has ever looked for an English-speaking baby-sitter. The best
solution would be for the family to post a request on some mailing list or appropriate
forum gathering the potential candidate baby-sitters and wait for the responses.

Now, consider Alice living in Strasbourg, who has looked for a similar deal for her
kids. Alice is lucky enough to discover through a (real-life) friend that primary school
teaching assistants are a very good match for they have the same working hours as kids
and tend to enjoy living with a family. If Alice associates baby-sitter with teaching as-
sistant in the system and if the French family above is able to leverage this information,

! “English speaking baby-sitter Rennes”.

4 A.-M. Kermarrec

Daycare International schools
[babysitter: 500] , - Ischool, kids] 5
" Jonathan Coe novels
TeachingAssistants -~ [British authors, novels]
[babysitter: 1 P ¥ L
- - \
-~ - \
¥ o “_,/ \
/ - /-/ } "‘
/ ,/// - \
A/ Alice is identified as ane of the family
Alice social i Family in

Rennes

Fig. 1. Babysitter example: while the association between babysitter and daycare dominates, Al-
ice associates babysitter to teaching assistant. The goal of GOSSPLE is to establish a connection
between Alice and the French family in Rennes so that it could benefit from Alice’s association.

the request can be successful. The goal of GOSSPLE is to establish such a connection,
called an implicit social link, between Alice and that French family in Rennes. Note
they do not need to know each other. Yet their past history of French people leaving in
an English speaking country, their interest in English novels and International school
for example, could be conveyed in their online behavior and automatically captured by
a system. This is illustrated on Figure [Tl

2.3 Where GOSSPLE Comes into Place

In fact, the collaborative and social nature of the Internet is leveraged in many so-
cial systems [28] such as delicious, Twitter, Facebook, Twine or Orkut to cite a few.
Such systems connect users sharing interests, professional or social, and enable them
to share data, blogs, etc. Their functioning is however hurt by the dynamic nature of
users behavior. Some users get connected, loose interest and remain connected without
participating. Also, the user feedback is hardly leveraged and while the blog feature is
widely used, search is mostly absent. Similarly, the semantic Web improves automa-
tion through machine understandable descriptions [[11]]. Yet, such tools mostly rely on
static structures. Above all, all those systems remain centralized. This an issue for two
main reasons: scalability and privacy. An efficient personalization mechanism requires
to store a large amount of data per user and maintain it, potentially limiting the scalabil-
ity of the system and hurting the desire of users to preserve their personal information.
In addition, centralized systems are more vulnerable to denial of service attacks such as
the one observed in August 2009 on Twitter, Facebook and LiveJournal.

To cope with dynamics and the huge amount of information that need to be managed
on a per user basis, entrusting each user with discovering and managing the data relevant
to her is the solution to both scalability and privacy preservation.

GOSSPLE stems from the observation that social connections can be leveraged by a
system to collaboratively help Web search and recommendation. Yet such social con-
nections need not to be explicitly established as in social networks ala Facebook. Instead
the system should capture such social connections and discover relevant users. As op-
posed to globally harvest and organize the Web, the basic idea behind GOSSPLE is that
each user is in charge of harvesting the network in her own personalized way.

Challenges in Personalizing and Decentralizing the Web 5

Coming back to our example, even if the answer to the request actually does not exist
as such (say no foreign student has figured out that some families would offer such a
deal), GOSSPLE would actually enable to dynamically attract it. There are several ways
this could be achieved by GOSSPLE, by expanding the query in a relevant manner or
by having the request navigate in the network to the right places. With GOSSPLE, the
family would gradually get connected to relevant matching users typically representing
adequate communities (say English speaking people in Rennes). Then the object would
dynamically turn into an ad, in a sense creating the need and subsequently the matches.
In turn, potential response objects would travel back to the family acquaintances in the
form of notifications or ads, and subsequently create the need for other related families
(those who wouldn’t have thought of the deal but actually like the idea). At the heart
of this procedure lies dynamic overlays based on users affinities and preferences. This
goes far beyond discovering indexed data. All along, the connection procedures, both
sides, will be continuously fed by the feedback from the users to refine the quality of the
connections, as well as by recommendations on possibly matching objects from other
users with similar preferences on similar requests. The interacting model is inherently
collaborative, asynchronous and iterative.

Obviously, this example is not meant to restrict the usage of GOSSPLE to this appli-
cation. However, we believe that the simple scenario illustrates the dynamic and col-
laborative navigation idea. These, implemented in a fully-decentralized manner, can
be applied to a large spectrum of applications (content sharing, dissemination, instant
messaging, RSS feeds, or virtual communities).

3 The GOSSPLE Challenges

The existing technology of distributed and personalized search is in its infancy. We
are reaching the limits of what we could call the "Google style” of problem solving:
periodically cull all the pages on the web into their data centre, index them, and then
answer queries for pages for some period of time. So far, the information space has
mostly been composed of Web pages, indexation ruled by search engines and navigation
ensured mostly manually by the users, largely favouring the “mass”. Effectively, the
page rank algorithms of Google-like systems favour popular pages. Although GOSSPLE
does not come as a replacement of such engines but rather as a complementary tool, it
provides a fresh look at the information space management and favour communities at
a disadvantage. More specifically it offers a new way to navigate the digital space.

The GOSSPLE’s challenge is to provide the following features in a fully decentralized
way.

1. Full-fledged personalization

2. Scalable management of the information space
3. Privacy-aware implementation

4. Resilience to misbehavior

3.1 A Network of Affinities

We are seeking search solutions leveraging the live nature of the data and the collabo-
rative nature of its users. GOSSPLE exploits the social dimension of the Internet to get

6 A.-M. Kermarrec

“related” users indirectly connected and refine each other’s filtering procedures through
implicit preferences. The network will be organized around such preferences and affini-
ties between users. This will provide a radically different approach to managing digital
assets, navigating within the Internet and bringing new dimensions for collaborative
applications. Such a network of affinities is at the heart of GOSSPLE and represents the
first challenge of Gossple. Providing each user with a personalized view of the network
requires solving several issues:

— Sampling the network: the second challenge is to be able to discover such users.
This is particularly challenging in a fully decentralized system where no entity has a
global knowledge of the system and is able to make a match between similar users.
A related issue is to connect all GOSSPLE users in a connected mesh: although a
user should be connected to similar users, she should be able to navigate the whole
network if needed.

— Affinity metrics: the first challenge is to be able to identify the fact that two users
share similar interests. This requires to compute a distance between users and can
depend on the content they generate, their past activity, the feedback they provide,
the application they are running, etc.

— Coping with dynamics: the third challenge is to be able to maintain a personalized
network up-to-date and to take into account the changes and the dynamics of the
system with respect to the users, the data, the changes in the interests or the activity
of the users.

GossSPLE will heavily rely on peer to peer overlay networks to achieve personalization
of the network. Basically, GOSSPLE will manage a large set of GOSSPLE peers (users,
items, etc). More specifically, we envision a basic layer where all potential nodes are, at
least temporarily, connected and maintained despite dynamics in content and connec-
tivity patterns, providing gateways and efficient routing to higher level overlays (See
Figure 2)). At the basic abstraction layer, a GOSSPLE peer represents a machine con-
nected to the Internet. The same physical computer may host several logical GOSSPLE
peers: the request of the family, a user in a virtual community, a file, etc. A major
GOSSPLE challenge is to build, on top of its basic layer, many overlay networks that
will dynamically evolve, based on users affinities and common preferences.

GoOSSPLE will leverage the sampling features of gossip-based protocols to provide
users with the ability to sample the network and identify similar users.

FigurePlconveys an example of a federation of overlays as we foresee it in GOSSPLE.
The bottom layer ensures connectivity, on top of which the federation of overlays is
maintained. Each GOSSPLE peer associated with a user may be part of one or several
sub-overlay networks, whose nature may vary depending on the functionalities required
by the application they are running. This amounts to having a physical peer running
many instances of different P2P overlay networks. Yet, a fair amount of information
may be shared between these instances. We will investigate the mutualization of the
state associated with each overlay in order to limit the overhead for a similar, or even
better, performance. More specifically, we will identify for each overlay the application-
dependent connections, which will have to be maintained independently of other sub-
networks such as the “closest” peers according to the “affinity”” metric.

Challenges in Personalizing and Decentralizing the Web 7

Overlay
federation

N
&“ ﬂ g\- ".“:]'; g\-

Fig. 2. Gossple Overlay Federation

Identifying the relevant users requires appropriate metrics to compute a distance be-
tween users. The refinement of connections between peers is crucial: each GOSSPLE
peer will keep in its personalized view of the system for a given overlay a set of ac-
quainted peers. In most cases, this choice is done on a peer basis, that is depending on
its own characteristics. The correlation between all the peers present in the view could
also be exploited to cover as much as possible all the range of interests of a user. All
these aspects should be investigated in the project.

3.2 Scalable Data Management

A scalable personalization of the network, operating a navigation shift on the Internet,
calls for a fully decentralized system and requires the following features:

— Efficient management of personal information: this refers to the amount and
the type of personal data that should be stored per user and exchanged between
users in order to evaluate the proximity of interests between users and achieve
personalization.

— Efficient search, recommendation and navigation algorithms: this refers to the
algorithms to search content, process queries, implement efficient notification
mechanisms, routing features, etc.

Identifying the relevant discovery space, the granularity of the search protocol and data
representation are crucial to the design of an efficient digital navigation. The navigation
criteria should be simple and flexible enough to preserve the efficiency and simplic-
ity of an underlying gossip-based discovery protocol. A related issue is the trade-off
between expressiveness and exhaustivity. Expressiveness refers to the accuracy of a re-
quest formulation (exact search, keyword-based search, range queries), or the quality
of a request. This is highly dependent on the number of dimensions of the search space,

8 A.-M. Kermarrec

the type of query, the correlation between various attributes of the request. The degree
of exhaustivity refers to the accuracy with respect to quantity.

A key aspect of GOSSPLE is to capture the commonalities and preferences of users
from their matching refinements and then leverage these for efficient navigation. This
is crucial to genuinely exploit the collaborative nature of the Internet. GOSSPLE will
integrate the feedback from the users in the navigation process through recommenda-
tion mechanisms. The acquaintances between related users may take the form of rec-
ommendations, as in real life, and the navigation protocol should take those as direct
inputs to refine the search either directly or indirectly through specific overlays. These
aspects have been so far mostly ignored in the distributed system community and spe-
cific mechanisms, simple enough for the user, and not disruptive for the system, need
to be investigated.

There are many connections with the information retrieval community. However,
most approaches are centralized, complex and require a large amount of knowledge
of the whole system. GOSSPLE borrows from this community to represent and track
similarities between data and/or users.

3.3 Preserving Privacy

Apart from the fact that centralized systems may be subject to DOS attacks, one of
the main motivations to provide a fully decentralized system is to fulfil the need for
privacy of users and fight their fear (or the real risk) of the Big Brother Syndrome. In
the realm of recent developments of social networks, the associated companies have
consistently shown their eagerness to exploit personal information: in 2009, Facebook
tried to change its terms of use so that any content ever published on Facebook was
doomed to a perpetual licence to Facebook. Likewise in 2007, Facebook proposed a
feature called beacon to expose Web navigation history of users B. Similarly, many
personal information are stored by Google'f

A fully decentralized system avoids such issues as no single entity keeps the control
of personal data. Instead, the users are in charge of managing such data themselves. In
order to get the most of users communities, personal information must be disclosed to
some extent. Yet, the association between a user and her personal information is not
always required. The challenge here, with respect to privacy, is to ensure that personal
information can be fully leveraged while masking the association between user profile
and identity whenever this is required.

GOSSPLE leverages this fact by masking the association between a user and her infor-
mation whenever this is possible. GOSSPLE will also include a lightweight mechanism
to track potential intruders, including colluding ones.

3.4 Fighting Misbehavior

Fully decentralized systems are particularly vulnerable to misbehavior, the very fact that
there is no central control authority allow users to misbehave with impunity, ranging

% Note that those proposals did not get through due to users reaction.

3 To further illustrate this, the launching of Google Latitude on the iPhone, a location-based
social network, in July 2009, raised many concerns with respect to privacy. Indeed, many
people are extremely reluctant to disclose people whereabouts.

Challenges in Personalizing and Decentralizing the Web 9

from free-riding behaviors, to malicious ones. Fighting such misbehavior is of the utmost
importance for a wide adoption of a system.
Several angles can be investigated:

e Measuring the degree of collaboration in order to characterize the benefit of a user
with respect to her contribution

e Detecting misbehavior

e Punishing misbehaving nodes thus creating an incentive to non-malicious behaviors

Load balancing, referring to the fact that the load is evenly shared between participat-
ing entities has been at the heart of the design of P2P systems to ensure scalability
regardless of the capacities of peers. Fairness has not. In this context fairness is related
to the ratio between the benefit a peer gets from the system from its contribution. We
mean by a fair system one in which peers contribute to the system proportionally to
the benefit they get. This is crucial for a collaborative system to provide incentives to
contribute. The fact that fairness has been ignored so far is mostly due to the low-level
nature of distributed systems, where the perception by a user is not prevalent. This is
no longer the case because users and machines are closely related, now more than ever.
A user does not want a software to store data for others or use her bandwidth without
being rewarded to a certain extent for this. Should users perceive that they contribute
to the system more than what they get out of it, they could decide to get disconnected.
Thus, an unfair distribution of the workload can lead to increasing artificially the sys-
tem dynamics and impact the reliability and scalability of a decentralized system. This
is particularly important in GOSSPLE where inputs from the users and their affinities
are prevalent.

Ensuring fairness implies characterizing the load, being able to measure it, and devis-
ing adaptive mechanisms to account for it. Fairness also intrinsically limits the impact
of selfish (free-riders) users. Yet, some users may exhibit some arbitrary behavior, vol-
untarily or not. Clearly, GOSSPLE might suffer from the same potential attacks as a
traditional P2P system [4]. In addition, the misbehavior might also target the data that
are exchanged in the system in order to personalize the system. Indeed, GOSSPLE in-
troduces some specificities in this area related to the targeted applications such as false
recommendations, wrong feedback or stale objects.

4 Background: Peer to Peer, Gossip and the Small World Nature
of the Internet

Decentralization is a core characteristic of GOSSPLE. In this section, we provide the
networking background on which GOSSPLE will heavily rely.

Traditional structured and unstructured overlays exhibit almost orthogonal properties
and are complementary with respect to locating data in a large-scale system. Structured
overlays associate keys with nodes and provide an exact match interface. This approach
is highly efficient when the exact identifier of an item is known but not as straightfor-
ward when it comes to performing a range query or a keyword-based search. In addi-
tion, the maintenance cost of a structured overlay may be high in dynamic environments
where the peers leave and join the system frequently. On the other hand, unstructured

10 A.-M. Kermarrec

networks handle range queries and keyword searches more easily and are highly adap-
tive to dynamic environments. In particular, the inherent randomness of gossip-based
protocols makes their corresponding unstructured networks ideal for scalable informa-
tion dissemination. However, they tend to generate a large number of messages for each
search request as they do not recall any history. Besides, they do not always guarantee
an exhaustive search.

We aim at taking the best of all worlds, by combining structured and unstructured
overlays within GOSSPLE. More specifically, we will make use of a gossip-based proto-
col for basic navigation, combined with structured networks derived from the affinities
of users.

Self-* emerging structures. Current search engines are mostly centralized A. Not only
do we aim at revolutionizing navigation, but we also believe that it is no longer con-
ceivable to rely on a few companies to index the digital world B. The total absence of
centralization is the key to both scalability and privacy preservation. A fully decen-
tralized system, as envisioned in GOSSPLE is sustainable if and only if it is able to be
self-organizing, self-healing, self-parametrizing and self-managing. To this end, GOSS-
PLE will harness the power of gossip-based algorithms, strongly rely on the scalable
peer to peer communication paradigm and overlay networks.

Connectivity: Peer to peer communication paradigm. In peer to peer (P2P) systems,
each node may be both a client and a server and takes individual decisions based on an
extremely restricted knowledge of the network. Yet expected global system properties
emerge. This makes P2P computing robust, self-organizing and scalable. Following
this model, nodes organize in a logical (overlay) network, structured or not, on top of
a physical network (typically the Internet). Many such overlays have been proposed in
the past five years [37, 32]]. Yet, real deployments remain limited and their potential
goes far beyond file sharing, voice over IP or content distribution. In GOSSPLE, we
step away from general-purpose overlay networks and consider dynamic application-
tailored collaborative overlays.

Navigability: Small-world networks. Small world networks have been introduced as
an analytical way of modelling the six degrees of separation [26] stating that two ran-
dom individuals are separated by short chains of acquaintances that can be discovered.
When applied to computing networks, the small world phenomenon is defined as
the combination of a high degree of clustering, small diameter in the connection graph
and navigability properties. Such a model matches pretty well the real interactions be-
tween humans and more specifically between users over the Internet. A small-world
network can be defined as a system where each node in a mesh knows its closesfl
neighbors and has additional shortcuts in the graph. The asymptotic routing perfor-
mance depends on the way shortcuts are chosen (random [44]] or following a specific
distribution (d-harmonic) [23]]). Kleinberg determined the magnitude order of this
routing complexity results in such networks. This work has been of the up-most impor-
tance in the community, leading to a full range of works.

* Obviously central servers in this context refer to huge data centres.
> One can imagine the impact of Google falling apart.
% The proximity metric may be application-dependent.

Challenges in Personalizing and Decentralizing the Web 11

Dynamicity: Gossip-based networking. Gossip-based protocols implement the P2P
communication paradigm in an unstructured manner. Inspired by the spreading of ru-
mours or epidemics, these protocols are very powerful for disseminating information
and quickly discovering acquaintances between users. Their implementation typically
relies on a periodic peer-wise exchange of information. It turns out that depending on
the peer chosen locally for the interaction and the information exchanged, gossip-based
protocols can be used to build and maintain arbitrary structures. As such, gossip-based
protocols are attractive for developing large-scale distributed systems and do have a
substantial power. They combine convergent behavior, ability to let emergent struc-
tures appear, simplicity of programming and deployment. They also impose a bounded
load on participants, are independent of the underlying topology and are robust to net-
work disruptions and continuous changes. Gossip-based protocols will constitute a ba-
sic building block for the design and implementation of GOSSPLE.

In short, a generic version of a gossip-based protocol, consists in having each peer
run periodically a protocol that can be fully characterized by the three following param-
eters [211]: (i) Peer selection refers to the peer selected for the gossip exchange. Each
peer has an extremely limited knowledge of the system (list of other peers) and selects a
peer from this view of the system; (ii) Data exchanged refers to the nature of the data ex-
changed during the gossip interaction. This is highly application-dependent; (iii) Data
processing refers to the computation operated on the data after the exchange. Again,
data processing is highly application dependent. This simple algorithm and its associ-
ated set of parameters are surprisingly powerful and can be applied in a wide variety of
settings. More specifically, when the data exchanged is related to peer themselves, this
provides a generic tool to build and maintain large-scale overlay networks, structured,
unstructured, random, or clustered [19]]. They also cope extremely well with net-
work dynamics. For example, more than 70% of the nodes are required to be down for
a network to become partitioned [21]]. When the data exchanged is related to informa-
tion to be disseminated, this provides a scalable and reliable dissemination system [13]].

Phase 1
Peer |DataExchanged | Peer

P Q

PeerSelection:
P selects Q

Phase 2
Peer | DataExchanged Peer
£ a
' Phase 3
Peer Peer

P Q
DataProcessing DataProcessing)

Fig. 3. Phases of a gossip initiated by Peer P: P picks Q among its neighbors (its view)

12 A.-M. Kermarrec

Distributed computations can also be implemented by simply tuning adequately the data
exchanged and data processing parameters [20) 23]]. Gossip-based protocols have also
been used to create clustered overlays optimized with respect to application-specific
metrics [42] [41]. To illustrate this further, epidemic protocols may be used to construct
P2P overlay networks achieving graph properties very close to those of random graphs
[21]]. The protocol is illustrated on Figure3l

These protocols scale extremely well and are closely matched to the style of social
networking problems GOSSPLE targets. In GOSSPLE, we will go one step further to ex-
plore their huge potential over the Internet and in particular consider them with respect
to arbitrary metrics.

5 Personalizing the Web: Related Projects

The related work in networks has been presented above. In this section, we provide
a brief overview of the work that has been conducted to personalize the Web. Since
the Web has been acknowledged as a read-write platform with growing user-generated
content, a lot of research has tried to leverage this in many areas 24 40]. Yet, to
the best or our knowledge no existing work combines personalization, decentralization,
privacy and resilience to misbehavior.

Personalized search. The social semantics between users exhibits a huge potential to
leveraging social connections should they be explicit through social networks connec-
tions or implicit trough similar tagging behavior. One example of system leveraging ex-
plicit social connections is Peerspective [27] where the search results of a user’s skype
buddies are used for the user subsequent search operations. Yet, as pointed out in [9],
the utility of the information gathered from such networks turns out however to be very
limited. We believe that there is much more to leverage in unknown social acquain-
tances or user activities such as user’s query histories [36]], browsing histories [38]], and
tagging behaviors [31].

In the context of top-k processing, the notion of user affinity has been often dis-
cussed [33 3], yet, most personalized approaches are centralized such as [33]] or [2].
In the context of query expansion, collecting and exploiting information about the past
activity of a user has been considered in [12} 22]. The work presented in [8] is a first
step to personalization through social relation: the scoring model is personalized, the
associated query expansion mechanism is not.

Finally, there have been several user-centric approaches in the area of search, and rec-
ommendation [[7, 18] 491, as well as query expansion [48].
None is decentralized though.

Decentralized approaches. The closest work with respect to distributed systems are
semantic overlays, relying on the peer-to-peer communication paradigm. These sys-
tems [14} 35} (6] [T6]] cluster peers hosting similar data or interested in similar topics
in order to improve the efficiency of query resolution in peer-to-peer data sharing sys-
tems. Their focus is nevertheless mainly on exploiting similarities to locate objects in
a distributed data repository. None of these approaches attempt to discover social con-
nections between peers.

Challenges in Personalizing and Decentralizing the Web 13

Metrics. There has been a lot of work, mostly in the area of information retrieval on
personalization metrics to measure the distance between tags or items in collaborative
systems, and folksonomies in particular. These include co-occurrence count [30], co-
sine similarity to compute distance between users or tags [[13, 146, edit-distance
and relative centrality. Yet, there are still many application-dependent metrics that
should be considered.

Finally, recommendation systems ([1]] for example) have been proposed and ana-
lyzed from a theoretical standpoint, there are yet to be put in practice in a decentralized
setting.

6 Conclusion and Work in Progress

The combination of the penetration of Internet into homes, huge computing power at the
edge of the network, an exponential growth of user-generated content, a striking need
for personalizing Web navigation with respect to search, notification, recommendation,
and a call for decentralization to remove the fear of the Big brother syndrome and the
potential vulnerabilities to attacks of centralized systems, paves the way for a new gen-
eration of systems. GOSSPLE should hopefully be one of them. The main originality
of GOSSPLE is to make every user responsible for harvesting the Web in a personal-
ized way through the use of efficient gossip-based protocol. Apart from the GOSSPLE
challenge that we mentioned above, the challenge of digging out the right tools and sci-
entific backgrounds from as many areas as distributed computing, information retrieval
and database is a challenge in itself.

Personalization has been in the air for a while. This has been even more striking
as users generate contents. Yet, we are not there yet and combining personalization,
security and scalability remains an open track that GOSSPLE tries to fill.

Many challenges need to be tackled in GOSSPLE There are currently three main
tracks currently under investigation.

Personalized networks. At the core of Gossple lies the notion of personalized network.
GOSSPLE achieves this through gossiping: based on a random peer sampling protocol
providing each user with a random subset of other users, GOSSPLE implements a biased
sampling protocol that speeds up convergence. Each user periodically contacts a close
user, they exchanged their knowledge on the other users and retain the best ones ac-
cording to a given metric to form the personalized network. Such a protocol enables the
quick discovery of related (with respect to a given metric) users in a very large system
in a fully distributed manner and with every user storing a small amount of information
about the system.

Query expansion in GOSSPLE. In this work, we provide a personalized query expan-
sion mechanism. In the context of a collaborative tagging system ala delicious, Gossple
builds, for each user, a personal network of acquaintances through a gossip protocol as
explained above. This network is composed of a set of other users that together cover
all the interests of the user. This is achieved without revealing the associations between
users and their profiles. The information gathered from the personal network is used to
create a personalized view of the correlations between tags. This data structure called

14 A.-M. Kermarrec

the TagMap represents a user-centric personalized view of the relations between tags
and is used to expand queries in a meaningful manner. Experimental results conducted
on traces crawled from CiteULike, a collaborative tagging system for bibliographic ref-
erences, and Delicious, show that by storing and exchanging little information between
users, the user experience is improved through the query expansion mechanism both
with respect to the quality of the results and the number of results obtained. More de-
tails can be found in [10].

Top-k processing in GOSSPLE. We are considering decentralized and personalized
top-k processing, the protocol is called P3K [3]]. It has been shown in [2] that person-
alizing top-k processing could significantly improve the quality of the results. This was
achieved firstly in a centralized way and secondly considering that a social network
was known explicitly in advance. We go beyond this approach in P3K. We discover a
personal network of acquaintances computing a distance between users based on the
similarities observed in their tagging behaviors. In this protocol, we show that using
only the information gathered from similar users in a decentralized way, we are able to
achieve similar results to those of a centralized approach. We are currently studying a
gossip-based alternative to process personalized top-k queries, improving the scalability
of the system.

Acknowledgments

I would like to warmly thank all the members of the GOSSPLE team: Xiao Bai, Marin
Bertier, Antoine Boutet, Davide Frey, Kevin Huguenin, Vincent Leroy, Afshin Moin,
Guang Tan, Christopher Thraves, as well as Rachid Guerraoui who is actively collabo-
rating with us on the project. I also would like to thank Jacques-Henri Jourdan, Fabrice
le Fessant and Vivien Quéma for their help.

References

[1] Alon, N., Awerbuch, B., Azar, Y., Patt-Shamir, B.: Tell me who i am: An interactive recom-
mendation system. In: ACM Symposium on Parallelism in Algorithms and Architectures
(2006)

[2] Amer-Yahia, S., Benedikt, M., Lakshmanan, L., Stoyanovich, J.: Efficient network aware
search in collaborative tagging sites. In: International conference on Very Large Data Bases
(VLDB), vol. 1, pp. 710-721. VLDB Endowment (2008)

[3] Amer-Yahia, S., Marlow, C., Yu, C., Stoyanovich, J.: Leveraging tagging to model user
interests in del.icio.us. In: AAAI SIP: Social Information (2008)

[4] Awerbuch, B., Scheideler, C.: Towards scalable and robust overlay networks. In: Interna-
tional Workshop on Peer-to-Peer Systems (2007)

[5] Bai, X., Bertier, M., Guerraoui, R., Kermarrec, A.-M.: Toward personalized peer-to-peer
top-k processing. In: International workshop on Social Network Systems (2009)

[6] Banaei-Kashani, F., Shahabi, C.: Swam: a family of access methods for similarity-search
in peer-to-peer data networks. In: ACM Conference on Information and Knowledge Man-
agement (2004)

[7] Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using social an-
notations. In: International conference on World Wide Web (WWW), pp. 501-510. ACM,
New York (2007)

(8]

(9]

[10]

(1]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

(19]

(20]
(21]

(22]
(23]

(24]
(25]
(26]
(27]
(28]
[29]

(30]

Challenges in Personalizing and Decentralizing the Web 15

Bender, M., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Xavier Parreira, J.,
Schenkel, R., Weikum, G.: Exploiting social relations for query expansion and result ranking.
In: International Conference on Data Engineering Conference (ICDE) Workshops (2008)
Bender, M., Crecelius, T., Kacimi, M., Michel, S., Xavier Parreira, J., Weikum, G.: Peer-
to-peer information search: Semantic, social, or spiritual? Bulletin of Computer Society
Technical Committee on Data Engineering (2007)

Bertier, M., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: Toward personalized query expan-
sion. In: International workshop on Social Network Systems, SNS (2009)

Sheth Cardoso, A.: J. Semantic Web Services: Theory, Tools and Applications. Springer,
Heidelberg (2007)

Carman, M., Baillie, M., Crestani, F.: Tag data and personalized information retrieval. In:
ACM Workshop on Search in Social Media, SSM (2008)

Cattuto, C., Benz, D., Hotho, A., Stumme, G.: Semantic analysis of tag similarity mea-
sures in collaborative tagging systems. In: Workshop on Ontology Learning and Population
(2008)

Crespo, A., Molina, H.H.G.: Semantic overlay networks for p2p systems (2002)

Eugster, P., Handurukande, S., Guerraoui, R., Kermarrec, A.-M., Kouznetsov, P.:
Lightweight probabilistic broadcast. ACM Transaction on Computer Systems 21(4)
(November 2003)

Eyal, A., Gal, A.: Self organizing semantic topologies in p2p data integration systems. In:
International Conference on Data Engineering Conference, ICDE (2009)

Fogaras, D., Ricz, B., Csalogany, K., Sarlds, T.: Towards scaling fully personalized pager-
ank: Algorithms, lower bounds, and experiments. Journal of Internet Mathematics 2(3),
333-358 (2005)

Hotho, A., Jischke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies:
Search and ranking. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp.
411-426. Springer, Heidelberg (2006)

Jelasity, M., Babaoglu, O.: T-Man: Gossip-based overlay toplogy management. In: Brueck-
ner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS
(LNAI), vol. 3910, pp. 1-15. Springer, Heidelberg (2006)

Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation in large overlay networks.
In: International Conference on Distributed Computing Systems, ICDCS 2004 (2004)
Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-based
peer sampling. ACM Transactions on Computer Systems (August 2007)

Jie, H., Zhang, Y.: Personalized faceted query expansion. In: SIGIR (2006)

Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: ACM Sym-
posium on Theory of Computing (2000)

Lawrence, S.: Context in web search. IEEE Data Engineering Bulletin 23, 25-32 (2000)
Le Merrer, E., Kermarrec, A.-M., Massoulié, L.: Peer-to-peer size estimation in large and
dynamic networks: a comparative study. In: IEEE International Symposium on High Per-
formance Distributed Computing, HPDC 15 (2006)

Milgram, S.: The small-world problem. Psychology Today, 60—-67 (1967)

Mislove, A., Gummadi, K., Druschel, P.: Exploiting social networks for internet search. In:
HotNets. ACM, New York (2006)

Monroe, D.: Just for you. Communications of the ACM 52(8) (2009)

Morrison, J.: Tagging and searching: Search retrieval effectiveness of folksonomies on the
world wide web. Journal of Information Processing and Management (2008) (Corrected
Proof) (in press)

Niwa, S., Doi, T., Honiden, S.: Web page recommender system based on folksonomy min-
ing for itng 2006 submissions. In: International Conference on Information Technology:
New Generations, INTG (2006)

16

(31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

[39]
[40]

[41]

[42]

[43]
(44]

[45]

[46]

[47]

(48]

[49]

A.-M. Kermarrec

Noll, M., Meinel, C.: Web search personalization via social bookmarking and tagging. In:
Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika,
P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and
ISWC 2007. LNCS, vol. 4825, pp. 367-380. Springer, Heidelberg (2007)

Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS,
vol. 2218, p. 329. Springer, Heidelberg (2001)

Schenkel, R., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Xavier Parreira, J.,
Weikum, G.: Efficient top-k querying over social tagging networks. In: SIGIR (2008)
Schenkel, R., Crecelius, T., Kacimi, M., Neumann, T., xavier Parreira, J., Spaniol, M.,
Weikum, G.: Social wisdom for search and recommandation. Bulletin of the IEEE Com-
puter Society Technical Committee on Data Engineering 31(12), 40—49 (2008)
Sedmidubsky, J., Barton, S., Dohnal, V., Zezula, P.: Adaptive approximate similarity
searching through metric social networks. In: International Conference on Data Engineer-
ing Conference, ICDE (2008)

Speretta, M., Gauch, S.: Personalized search based on user search histories. In:
IEEE/WIC/ACM International Conference on Web Intelligence (2005)

Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable peer-
to-peer lookup service for internet applications. In: ACM SIGCOMM Conference, San
Diego, California (2001)

Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive web search based on user profile con-
structed without any effort from users. In: International conference on World Wide Web
(2004)

Teevan, J., Dumais, S.T., Horvitz, E.: Personalizing search via automated analysis of inter-
ests and activities. In: SIGIR (2007)

Teevan, J., Dumais, S.T., Horvitz, E.: Characterizing the value of personalizing search. In:
SIGIR, pp. 757-758. ACM, New York (2007)

Voulgaris, S., Riviere, E., Kermarrec, A.-M., van Steen, M.: Sub-2-sub: Self-organizing
content-based publish and subscribe for dynamic and large scale collaborative networks.
In: International Workshop on Peer-to-Peer Systems (2006)

Voulgaris, S., van Steen, M.: Epidemic-style management of semantic overlays for content-
based searching. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648,
pp. 1143-1152. Springer, Heidelberg (2005)

Wang, Q., Li, R., Chen, L., Lian, J., Tamer Ozsu, M.: Speed up semantic search in p2p
networks. In: ACM Conference on Information and Knowledge Management (2008)
Watts, D.J., Stogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440—
442 (1998)

Wong, B., Slivkins, A., Sirer, E.G.: Approximate matching for peer-to-peer overlays with
cubit. Technical report, Cornell University, Computing and Information Science Technical
Report (2008)

Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search. In:
SIGIR, New York, NY, USA (2008)

Yildirim, H., Krishnamoorthy, M.S.: A random walk method for alleviating the sparsity
problem in collaborative filtering. In: ACM Conference on recommander systems, RecSys
(2008)

Zanardi, V., Capra, L.: Social ranking: uncovering relevant content using tag-based recom-
mender systems. In: ACM Conference on recommander systems, RecSys (2008)

Zhao, S., Du, N., Nauerz, A., Zhang, X., Yuan, Q., Fu, R.: Improved recommendation
based on collaborative tagging behaviors. In: International conference on intelligent user
interfaces (2008)

Local Algorithms: Self-stabilization on Speed

Christoph Lenzen', Jukka Suomela?, and Roger Wattenhofer!

! Computer Engineering and Networks Laboratory TIK
ETH Zurich, 8092 Zurich, Switzerland
lenzen@tik.ee.ethz.ch, wattenhofer@tik.ee.ethz.ch
http://www.dcg.ethz.ch
2 Helsinki Institute for Information Technology HIIT
P.O. Box 68, FI-00014 University of Helsinki, Finland
jukka.suomela@cs.helsinki.fi
http://www.hiit.fi

1 Introduction

Fault tolerance is one of the main concepts in distributed computing. It has
been tackled from different angles, e.g. by building replicated systems that can
survive crash failures of individual components, or even systems that can tolerate
a minority of arbitrarily malicious (“Byzantine”) participants.

Self-stabilization, a fault tolerance concept coined by the late Edsger W. Di-
jkstra in 1973 [1I2], is of a different stamp. A self-stabilizing system must survive
arbitrary failures, beyond Byzantine failures, including for instance a total wipe
out of volatile memory at all nodes. In other words, the system must self-heal
and converge to a correct state even if starting in an arbitrary state, provided
that no further faults happen.

Local algorithms, on the other hand, have no apparent relation to fault tol-
erance. Instead, the basic question studied is whether one can build efficient
network algorithms, where any node only knows about its immediate neighbor-
hood. What problems can be solved in such a framework, and how efficiently?
Local algorithms have first been studied about 10 years after Dijkstra proposed
the notion of self-stabilization [BI4U56]; recently they experience an Indian sum-
mer because of new application domains, such as overlay or sensor networks [7].

It seems that the world of self-stabilization (which is asynchronous, long-lived,
and full of malicious failures) has nothing in common with the world of local algo-
rithms (which is synchronous, one-shot, and free of failures). However, as shown
in the late 1980s, this perception is incorrect [8l9]; indeed one can prove quite
easily that the two areas are essentially equivalent. Intuitively, this is because
(i) asynchronous systems can be made synchronous by using synchronizers [10],
(ii) self-stabilization concentrates on the case after the last failure, when the
system tries to become correct again, and (iii) one-shot algorithms can just be
executed in an infinite loop.

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 17 20009.
© Springer-Verlag Berlin Heidelberg 2009

18 C. Lenzen, J. Suomela, and R. Wattenhofer

One can show that upper and lower bounds in either area more or less transfer
directly to the other areall Unfortunately, it seems that this equivalence has been
somewhat forgotten in the last decades. For instance, hardly ever does a paper
from one area cite work from the other area. We take the opportunity of this
invited paper to summarize the basics, to discuss the latest developments, and
to point to possible open problems. We believe that the two areas can learn a
great deal from each other!

2 Deterministic Algorithms

The connection between local algorithms and self-stabilizing algorithms is partic-
ularly straightforward in the case of deterministic algorithms: any deterministic
local algorithm is also a deterministic self-stabilizing algorithm. Furthermore,
any deterministic, synchronous local algorithm whose running time is T syn-
chronous communication rounds provides a self-stabilizing algorithm that stabi-
lizes in time T'. In this section, we review the conversion in detail, first through
an example and then in the general case.

2.1 An Example: Graph Coloring

Throughout this work we consider distributed systems that consist of computa-
tional devices and communication links between them. The distributed system
is represented as a graph G = (V, E) with n = |V| nodes: each node v € V is a
device, and two nodes can communicate directly if they share an edge {u,v} € E.

Although the connection between local algorithms and self-stabilizing algo-
rithms is more general, in this text we focus on distributed algorithms that solve
graph problems. We use the problem of finding a graph coloring as a running
example. In this case we want to assign a color ¢(v) to each node v € V such that
no two adjacent nodes share the same color, i.e., the nodes of each color form an
independent set. In general it is NP-hard to determine the minimum number of
colors required to color a graph, so we settle for (A + 1)-colorings, where A is
the maximum node degree. Each node v must produce a local output from the
set {0,1,..., A} such that for any pair of adjacent nodes the local outputs are
different.

2.2 A Deterministic Local Algorithm for Graph Coloring

Perhaps the simplest model of distributed computing is a synchronous dis-
tributed algorithm. In a synchronous algorithm, all nodes in the network per-
form steps in parallel: during each synchronous communication round, all nodes

130 was local algorithms just old wine in new skins? Not really, because the two areas
had quite a different focus. Whereas self-stabilization mostly dealt with correctness,
local algorithms were all about complexity and efficiency. Today, this difference is
disappearing, as also self-stabilization is more and more about efficiency.

Local Algorithms: Self-stabilization on Speed 19

in parallel (i) perform local computation, (ii) send out messages to their neigh-
bors, (iii) wait for the messages to propagate along the edges, and (iv) read the
incoming messages. Finally the nodes determine their output and terminate. A
synchronous local algorithm is simply a distributed algorithm that completes
in T synchronous communication rounds. Typically 7' is a constant [6/T1] or a
slowly-growing function of n [3J45].

In T" communication rounds, information is propagated for only T hops in
the communication graph; hence the output of a node v can only depend on the
structure of the graph G in the radius-T neighborhood of v. This is the very idea
suggested by the term “local algorithm”: nodes make decisions based on local
information, yet the decisions must be globally consistent.

We start with a variant of a very fast and elegant algorithm, the well-known
Cole-Vishkin algorithm [4], which 3-colors an n-cycle in O(log™ n) rounds. The
function log™ n is defined as the number of times the logarithm has to be applied
to n until the result is a constant. This function grows exceptionally slowly and
is bounded by a small number for any reasonable size of n. In the Cole—Vishkin
algorithm, the local input of a node is a unique identifier with O(logn) bits, and
the local output of a node will be a color from the set {0, 1, 2}:

1 2 0 2 1 2 0 1

14 2 45 6 44 24 81 0

To keep things simple, we assume that the nodes know an upper bound on n,
and the cycle has a consistent orientation such that each node has one successor
and one predecessor:

The algorithm works as follows. Initially, the color of a node is equal to its unique
identifier; the idea is to repeatedly decrease the number of colors required. In
each round, each node v sends its current color to its successor w. The node
w compares bitwise its own color to the received one to determine the least
significant bit where they differ. It binary encodes the position and appends the
differing bit, resulting in its new color in the form of a bit string. The new color
of w cannot be identical to the new color of its predecessor v: either the indices
of the bits v and w determined are not the same, meaning that the colors have
a different prefix, or the computed indices referred to bits with different values,
i.e., the new colors differ in their terminal bits.

The following example shows two iterations of the algorithm on a part ¢ —
u — v — w of a cycle:

1010110000 — ... — ...
0010110000 — 10010 — ...
1010010000 — 01010 — 111
0110010000 — 10001 — 001.

20 C. Lenzen, J. Suomela, and R. Wattenhofer

The initial colors, i.e., the nodes’ unique identifiers, have O(logn) bits. After one
step, the colors consist of O(loglogn) bits, namely a binary encoded position
in a string of length O(logn) plus one bit. Applying this observation also to
subsequent rounds, we see that after O(log” n) rounds, the number of bits—
and thus colors—has become constant. At this point, a simple constant-time
algorithm can be used to reduce the number of colors to A + 1 = 3: in each
round, we remove the largest color.

In summary, we have an algorithm for 3-coloring an n-cycle in O(log™ n)
rounds; furthermore, this running time is asymptotically optimal [5]. The ap-
proach can be generalized to bounded-degree graphs and rooted trees [T2JT3].
Recently, the technique was utilized to find colorings in bounded-independence
graphs in O(log™ n) rounds [14]; we will discuss recent work in more detail in

Sect. 11

2.3 A Self-stabilizing Algorithm for Graph Coloring

The local algorithm presented in the previous section is not fault-tolerant in
any way. We assumed that all nodes are activated simultaneously in a specific
initial state, and the network does not change during the execution of the al-
gorithm. The algorithm eventually stops, after which it does not react in any
way to changes in the network. Furthermore, we assumed that all nodes perform
computations in a synchronous manner, as if a global clock pulse was available.

Nevertheless, it is possible to convert this local algorithm into an efficient
asynchronous self-stabilizing algorithm. A self-stabilizing algorithm, by defini-
tion, provides an extreme form of fault tolerance [2[I5I6]: an adversary can
choose an arbitrary initial configuration, and a self-stabilizing algorithm is still
guaranteed to converge into a correct output.

For the sake of concreteness, we use the shared-memory model here: we assume
that each communication link {u,v} € E consists of a pair of communication
registers, one which is written by v and read by v, and one for passing informa-
tion in the opposite direction. Typically support of atomic reads and writes is
assumed.

In this model, a configuration of the system consists of the local outputs of
the nodes, the contents of the local variables of the nodes, and the contents of
the communication registers. In a legitimate configuration the system behaves
as intended—in our example, a legitimate configuration simply refers to any
configuration in which the local outputs of the nodes form a valid coloring. We
refer to Dolev’s book [16] §2] for more details on these definitions and on the
model of self-stabilizing algorithms in general.

We now convert the variant of the Cole—Vishkin algorithm presented in Sect.2.2]
into an asynchronous self-stabilizing algorithm. Asynchronicity means here that
there are no guarantees on how fast computations are done and information is ex-
changed. Rather, the algorithm must be resilient to a worst-case situation where
a non-deterministic distributed daemon may schedule any computational step at
any node next. The algorithm must reach a legitimate state regardless of the de-
cisions of the daemon. The time complexity of an asynchronous self-stabilizing

Local Algorithms: Self-stabilization on Speed 21

algorithm is defined as the number of asynchronous cycles required to converge
from an arbitrary state to a legitimate configuration; an asynchronous cycle is an
execution during which each node at least once reads its input and incoming mes-
sages, and infers and writes its new output and outgoing messages.

The algorithm from Sect. can be adapted to this model as follows. Let
T = O(log™ n) be the running time of the Cole—Vishkin algorithm. For each edge
in the cycle, we divide the associated communication register (in the described
algorithm communication is unidirectional, hence a single register suffices) into
T parts, each of which represents one round of the local algorithm. Let v be a
node in the oriented cycle, with predecessor u and successor w. Now the state of
the communication register on the edge {u,v} corresponds to all messages that
u sends to v during the execution of the Cole—Vishkin algorithm; similarly, the
register on the edge {v, w} corresponds to the messages sent by v to w.

The node v continuously reads its input (its unique identifier) and the values
in the communication register on the edge {u,v}. The node v simulates its own
actions during a complete execution of the Cole—Vishkin algorithm, assuming
that these incoming messages are correct, and writes its own outgoing messages
to the communication register on the edge {v,w}. The node also continuously
re-writes its local output based on this simulation.

Naturally, in the beginning the output might be nonsense, as the initial mem-
ory state is arbitrary. After one asynchronous cycle, however, the nodes will
have (re)written their identifiers into the parts of the registers responsible for
the messages in round one of the Cole—Vishkin algorithm. In the next cycle,
their neighbors will read them, compute the new colors, and write them into
the parts for round two, and so on. After 7'+ 1 asynchronous cycles, the initial
state of the system has been erased and replaced by the values the local algo-
rithm would compute in a single run, independently of the schedule the daemon
chooses. Hence the same arguments as in the previous section prove that the
output must be correct at all nodes. Moreover, no further state transitions oc-
cur, as the outcome of all steps of the computation depends only on the local
inputs (unique identifiers) of the nodes.

We conclude that the algorithm stabilizes within 7"+ 1 asynchronous cycles,
where T' is the running time of the local algorithm. Hence in the conversion
from local to self-stabilizing algorithms, we can guarantee much more than mere
eventual convergence into a legitimate configuration: we can show that the con-
vergence is fast.

Note that the algorithm is also efficient in terms of the number of bits sent
and the required memory. In total

T
Z O(log™ n) = O(log n)

i=1

bits need to be exchanged along each edge, where log(i) n denotes the ¢ times
iterated logarithm. Apart from the presented special case where edges are ori-
ented, this bit complexity is asymptotically optimal [I7], a result also holding

22 C. Lenzen, J. Suomela, and R. Wattenhofer

for randomized algorithms which are presented in Sect.[Bl No additional memory
beyond the communication registers is needed.

2.4 General Case

The example of Sect. was fairly simple: in the original local algorithm, each
node sends messages to only one neighbor. However, the general case is not much
more complicated: there are two communication registers on each edge, and all
registers are divided in T parts, one part for each communication round.

Figure [Tl shows the basic idea behind the conversion: given any deterministic
distributed algorithm 4 with running time 7', we can construct an equivalent
circuit that produces the same output as A. The figure shows the conversion in
the case where the communication graph G is a cycle, but the same idea can be
applied to arbitrary graphs.

Each node v in Fig. [Th is replaced by T + 1 virtual nodes vg,v1,...,vr in
Fig. b. The node vy represents the initial state of the node v in the algorithm
A, and the node v; for ¢ = 1,2,...,T represents the state of the node v in
the algorithm A after the synchronous communication round 4. A directed edge
from v;—1 to u; represents the message sent by v to u during the synchronous
communication round i. Clearly the output of the circuit is equal to the output
of the original algorithm A.

(a) outputs
,U

inputs

(b) outputs

inputs

Fig. 1. (a) A distributed system that executes a local deterministic algorithm A with
running time 7'. (b) A circuit that computes the same output.

Local Algorithms: Self-stabilization on Speed 23

So far we seem to have gained little: we have just an alternative representation
of the original local algorithm .A. However, the key observation is that it is easy to
simulate the computations of the circuit of Fig.[Ib by a self-stabilizing algorithm.
Furthermore, the simulation can be realized in virtually any model of distributed
computing (assuming, of course, that the model allows us to implement any kind
of reliable computation at all).

In essence, we simply replace each diagonal edge from v;_1 to u; by a point-
to-point communication channel from the node v to u. The node v continuously

1. re-reads its local input and all incoming messages,

2. simulates the behavior of A for each time step, assuming that the incoming
messages are correct, and

3. re-writes its local output and all outgoing messages.

After i + 1 asynchronous cycles, the outgoing signals of the virtual nodes v; are
correct, and after T'+ 1 asynchronous cycles, the output of each node is correct,
regardless of the initial configuration.

In the example of Sect. we implemented point-to-point communication
from u to v by using a communication register that was written by v and read
by v. Equally well we could use the message-passing model and a self-stabilizing
implementation of unit capacity data links; see, e.g., Awerbuch et al. [I§].

Naturally, if T is large, say, T = @(n), then the conversion of Fig.[is of little
use. However, in the case of local algorithms, typically 7' < n and in some cases
even T = O(1). Hence this simple and easy-to-implement conversion yields an
efficient self-stabilizing algorithm for most deterministic local algorithms. In par-
ticular, constant-time distributed algorithms are also self-stabilizing algorithms
that stabilize in constant time. Furthermore, the memory requirement and mes-
sage size is increased only by a factor of T: for example, if the original local
algorithm transmits m-bit messages on each edge, the self-stabilizing algorithm
sends (T'm)-bit messages.

2.5 The Simple Conversion in Literature

The observation that deterministic distributed algorithms can be easily con-
verted into self-stabilizing algorithms is by no means new. The conversion of
Fig. [is, in essence, equal to the “simulator” introduced by Awerbuch and
Sipser [8] more than 20 years ago. Awerbuch and Sipser explicitly referred to
the problem of simulating local algorithms, even though the field of local al-
gorithms barely existed back then. While Awerbuch and Sipser did not focus
on self-stabilizing algorithms, all key ingredients were already present. Their
algorithm was triggered by a topology change in the network; equally well we
can trigger the algorithm by periodically re-reading the inputs, and we obtain a
self-stabilizing algorithm.

Awerbuch and Varghese [9] make the connection between synchronous dis-
tributed algorithms and self-stabilizing algorithms explicit. They use the term
“rollback compiler” to refer to a simple conversion similar to that of Fig. [l In
their terminology, the states of the virtual nodes vg,v1,...,vr together with

24 C. Lenzen, J. Suomela, and R. Wattenhofer

the incoming messages constitute a log that contains the full execution history
of the node v; hence the node can wverify that the execution of the algorithm
A is correct from its own perspective. If the execution is correct from the per-
spective of all nodes, then also the outputs are correct and the algorithm has
stabilized. By keeping track of the execution history, we have made the output
of the distributed algorithm locally checkable.

The simple conversion can also be interpreted as an application of local check-
ing and correction that is introduced in Awerbuch et al. [I8]. We can locally check
the state of each directed edge in Fig. [Ib. If a link (u;—1, v;) is in an inconsistent
state, we can locally correct the state of v;. By construction, each dependency
chain in this system has length at most T', and hence the system will stabilize
in time T + 1.

However, even though the simple conversion itself is well-known [16], §5.1], it
seems that fairly little attention has been paid to it in the literature. The main
focus has been on non-local problems such as spanning trees and leader election.
Even in Awerbuch and Varghese’s [9] work the main contribution is related to
the conversion of non-local distributed algorithms whose running time 7' is larger
than the diameter of the network.

A notable exception is Mayer et al. [19]. In this work—which is a follow-up
of the seminal paper by Naor and Stockmeyer [6] that initiated the study of
strictly local (constant-time) distributed algorithms—Mayer et al. specifically
draw attention to the connection between local algorithms and fault-tolerance
in dynamic systems. However, the field of local algorithms was still in its infancy
in 1995, and positive examples of local algorithms were scarce.

We believe it is time to revisit the issue now, as we have numerous recent
examples of local algorithms. In Sect. @l we survey highlights from the field of
local algorithms—both positive and negative results—and explain what impli-
cations they have from the perspective of self-stabilizing algorithms. However,
we will first have a look at the much more complicated issue of randomized local
algorithms.

3 Randomized Algorithms

So far we have restricted our attention to deterministic local algorithms. There
is a considerable number of local algorithms that are randomized, i.e., each node
has access to (uniformly) random bits. These can be useful to break symmetry
or locally take decisions that probably perform well on a global scale, creating
algorithms which are likely to be faster than their deterministic counterparts,
to achieve better approximation guarantees, or to yield correct solutions despite
short running times.

3.1 Basic Symmetry Breaking

Sometimes deterministic algorithms are even incapable of solving a particular
task. Coloring an anonymous cycle, i.e., a cycle without a means to distinguish

Local Algorithms: Self-stabilization on Speed 25

between nodes, is impossible without randomization. Due to total symmetry,
when executing a deterministic algorithm, all nodes must take the same actions
and eventually attain the same color On the other hand, running the Cole-
Vishkin algorithm from Sect. [with O(logn) random bits as “identifier” at
each node will result in a correct output with high probability (w.h.p.), i.e.,
for any choice of a constant ¢ > 0 we can bound the probability of failure
by 1/n¢. Using random bit strings of length (¢ 4+ 2)logn, any pair of nodes
will have distinct bit strings with probability 1/n°"2. Summing over all pairs
of nodes, the probability of two nodes having the same string can be bounded
by n(n —1)/(2n°*t?) < 1/n°. Thus, with probability at least 1 — 1/n¢, we can
interpret the random bits as correct input of the deterministic Cole—Vishkin
algorithm relying on unique identifiers.

When this technique is to be employed in the self-stabilizing world, we cannot
guarantee globally unique identifiers any more unless accepting a stabilization
time of £2(D), since there is no way to distinguish a corrupted memory state
from a correct one if not comparing the identifiers. However, for many algo-
rithms, in particular routines such as Cole—Vishkin dealing with breaking of
local symmetry, a locally unique labeling, i.e., any coloring, will do. Assuming
(an approximation of) n is known, we merely need to continuously compare the
“random identifiers” of neighbors, and generate a new random bit string if a
conflict is observed. This very simple algorithm self-stabilizes w.h.p. within one
or two cycles, depending on the precise model, and can be a building block for
more sophisticated algorithms.

3.2 Pseudo-Randomization

The general transformation from Sect. [2Z4] fails for randomized algorithms. On
the one hand, if nodes make their random choices in advance and proceed de-
terministically, an adversary may tamper with the state of the memory holding
the random bits, and the algorithm will be slow, yield bad approximations, or
even completely fail. On the other hand, if nodes take random choices in each
step of the algorithm “on the fly”, the execution of the algorithm itself is not
deterministic. In this case, we cannot represent the state of a node in a given
(synchronous) round as function of the states of the nodes in the previous round,
and thus also not represent the respective computations by a Boolean circuit.
Rather, to guarantee uncorrupted random choices, nodes would have to contin-
uously renew their random bits, preventing convergence to a fixed output.
From a practical point of view, this problem can be tackled easily: Instead
of generating actual random numbers, we use fixed unique random seeds, i.e.,
node identifiers, as part of the input. These bits are read-only and can be seen
as part of the protocol itself, i.e., they are not subject to the arbitrariness of
initial states. Using a pseudo-random function with the node identifier in con-
junction with the round number as input, nodes can generate pseudo-random

2 Asynchrony might break symmetry, but in the worst case it will certainly not. Here
the worst case ironically is the system being perceived as synchronous.

26 C. Lenzen, J. Suomela, and R. Wattenhofer

bits for use by a randomized algorithm. Since these bits are computed determin-
istically at running time, the conversion from Sect. 24 can be applied again to
infer asynchronous and self-stabilizing algorithms from synchronous randomized
counterparts.

Assuming that no correlation between the random seeds and the problem-
specific input exists, and provided that a well-behaving pseudo-random func-
tion is used, the performance of the algorithm will be indistinguishable from a
“true” randomized algorithm’s: We simply ensured a supply of random bits in
advance by storing a previous random choice in non-volatile memory to avoid
corruption. Hence, in practice also randomized local algorithms lead to efficient
self-stabilizing solutions in a straightforward manner.

3.3 Theoretical Questions

From a theoretical point of view, the use of pseudo-randomization is noneffective.
Regardless of the computations made, previously stored values do not replace
randomly generated numbers. At best, if the stored bits have been generated
uniformly at random and the other input is independent of these choices, each
stored bit can be used once as a random bit. At worst, a sufficiently powerful
adversary might learn about nodes’ pseudo-random choices by experimentation
or having access to the complete state of nodes, and afterwards modify the input
in a way such that the pseudo-random choices are badly suited to the created
problem instance. After all, pseudo-randomness does not change the determin-
istic behavior of the algorithm, and therefore any lower bound applicable to
deterministic algorithms must hold.

In fact, to the best of our knowledge, little is known about which random-
ized local algorithms can be made self-stabilizing efficiently. We presented a
trivial, yet important example at the beginning of the section which tolerates
asynchronicity. Synchronous randomized algorithms may require synchronous
systems to self-stabilize quickly, as the random choices of a given round need to
be correlated. This however might limit their usability in an asynchronous en-
vironment, since a self-stabilizing synchronizer requires time in the order of the
diameter of the network to stabilize [20], a bound that—at least when ignoring
other complexity measures—is trivial to local algorithms, since nodes may learn
about the whole topology and all local inputs in that time.

4 Results on Local Algorithms

In this section, we present selected results from the field of local algorithms, with
the main focus on recent discoveries. Most of the results are deterministic algo-
rithms or lower-bound results, each of which has a direct self-stabilizing coun-
terpart. We have also included examples of randomized local algorithms—some
of these can be made self-stabilizing by using the symmetry breaking technique
discussed in Sect. Bl while developing self-stabilizing versions of others provides
challenges for future research. We begin with the theme that we have used as a
running example in Sections 2 and [3 graph coloring.

Local Algorithms: Self-stabilization on Speed 27

4.1 Colorings, Independent Sets, and Matchings

In the study of traditional centralized algorithms, graph coloring is often seen
from the perspective of optimization: the goal is to minimize the number of
colors. This perspective leads to many famous results in graph theory and com-
puter science; finding an optimal coloring is a classical NP-hard problem, and
numerous (in)approximability results, practical heuristics, and exponential-time
exact algorithms are known.

However, in distributed computing, graph coloring is usually regarded as a
fundamental symmetry-breaking primitive. From this point of view, minimizing
the number of colors is not necessary—a coloring with A 4 1 colors is sufficient
for symmetry-breaking purposes. While such a coloring is trivial to find in a
centralized setting by using a greedy algorithm, the problem of finding such
colorings efficiently in a distributed setting has been a central question from the
very first days of the field to the present day. These efforts have resulted in fast
algorithms and tight impossibility results, both of which transfer directly to a
self-stabilizing setting.

Before reviewing the key results, it is worth mentioning that there is another
symmetry-breaking problem that is essentially equal to graph coloring: the prob-
lem of finding a mazimal independent set. Given a k-coloring, it is easy to find
a maximal independent set in time k. Conversely, if we have an algorithm for
finding a maximal independent set, we can use it to find a (A + 1)-coloring [5].
Another related symmetry-breaking problem is finding a maximal matching. In
particular, in the case of directed cycles a maximal matching is equivalent to
a maximal independent set: the outgoing edges of independent nodes form a
matching and vice versa.

From this background it comes as no surprise that all these problems have
essentially the same time complexity in bounded-degree graphs, already familiar
from Sect. 2} if A = O(1), then it is possible to find a (A+1)-coloring, a maximal
independent set, and a maximal matching in O(log™ n) rounds, and not faster.

Deterministic Algorithms. Naturally, all deterministic algorithms that break the
symmetry require some kind of initial symmetry-breaking information [21]. The
algorithms that we discuss here assume that each node has a unique identifier.
The unique identifiers do not make the problems trivial, though. Linial’s re-
sults [B] show that even in the case of directed cycles with unique identifiers,
there is no constant-time algorithm for finding a graph coloring, maximal in-
dependent set, or maximal matching. Any such algorithm requires 2(log™ n)
communication rounds.

We already presented the Cole—Vishkin algorithm [4] for coloring a cycle in
Sect. B} the running time of this algorithm matches Linial’s lower bound. Since
the publication of Cole and Vishkin’s seminal work in 1986, numerous algorithms
have been presented for the problem of coloring an arbitrary graph with A + 1
colors; typically, such algorithms have time complexity of the form O(f(A4) +
log* n). Examples of these include an algorithm by Goldberg et al. [22] with a
running time of O(A? + log* n) rounds, and by Kuhn et al. [23] with running
time O(Alog A + log* n). The recent algorithms by Barenboim and Elkin [24]

28 C. Lenzen, J. Suomela, and R. Wattenhofer

and Kuhn [25] finally push the running time down to O(A + log*n). These
results also provide a deterministic algorithm for finding a maximal independent
set in O(A + log™ n) rounds. Schneider et al. [14] study bounded-independence
graphs, i.e., graphs in which any constant-radius subgraph contains at most
O(1) independent nodes. In this family, a maximal independent set, a maximal
matching, or a (A + 1)-coloring can be found in O(log™ n) rounds.

There are also efficient distributed algorithms that directly solve the problem
of finding a maximal matching. Some of the algorithms have running times of the
familiar form O(f(A)+log™ n): Panconesi and Rizzi [26] find a maximal matching
in O(A + log* n) rounds. However, there are also algorithms that perform well
even if A = O(n). For example, Hari¢kowiak et al. [27] find a maximal matching
in O(log* n) rounds.

In summary, at least for bounded-degree graphs (or more general bounded-
independence graphs), these three symmetry-breaking problems admit very ef-
ficient and asymptotically optimal deterministic solutions.

Randomized Algorithms. In the case of deterministic algorithms, we assumed
that we have unique identifiers in the network. However, a much weaker as-
sumption is usually sufficient: it is enough to have a graph coloring (possibly
with an unnecessarily large number of colors). Many deterministic graph color-
ing algorithms, including the original Cole—Vishkin algorithm, simply perform
color reductions steps: in each iteration, a k-coloring is replaced with an O(log k)-
coloring.

Therefore we can apply a randomized graph coloring algorithm, such as the
one mentioned in Sect. Bl to obtain an initial k-coloring, and then use determin-
istic local algorithms to find a (A + 1)-coloring, a maximal independent set, or a
maximal matching. Such a composition results in a randomized self-stabilizing
algorithm that can be used in anonymous networks without unique identifiers.

There are also randomized local algorithms that find a maximal independent
set directly, without resorting to a randomized graph coloring algorithm. The
most famous example is Luby’s [3] randomized algorithm from 1986 that finds
a maximal independent set in O(logn) rounds w.h.p.; similar results were also
presented by Alon et al. [28] and Israeli et al. [29] around the same time. Recently,
Métivier et al. [30] presented a new variant featuring a simpler analysis. While
we are not aware of a self-stabilizing version of Luby’s algorithm, there has been
progress in this direction. Already in 1988, Awerbuch and Sipser [§] studied
Luby’s algorithm in dynamic, asynchronous networks, and more recently the
algorithm has been studied in a fault-tolerant setting by Kutten and Peleg [31].

4.2 Linear Programs

Now we change the perspective from symmetry-breaking problems to optimiza-
tion problems. Many resource-allocation questions in computer networking can
be naturally formulated as distributed linear programs (LPs): each (physical or
virtual) node in the network represents a variable or a constraint, with an edge
between a variable and each constraint that depends on it. Papadimitriou and

Local Algorithms: Self-stabilization on Speed 29

Yannakakis [32] raised the question of solving such linear programs in a local
manner so that the value of each variable is chosen using only information that
is available in its local neighborhood in the network.

Clearly such algorithms cannot produce an optimal solution—in some cases
even finding a feasible solution requires essentially global information on the
problem instance. However, there are important families of linear programs that
admit local approximation algorithms, i.e., algorithms that find a solution that
is guaranteed to be feasible and near-optimal.

The most widely-studied families are packing and covering LPs. In a packing
LP, the objective is to maximize c'x subject to Az < 1 and * > 0 for a
non-negative matrix A; a covering LP is the dual of a packing LP. Distributed
approximation algorithms for packing and covering LPs have been presented by
Bartal et al. [33] and by Kuhn et al. [34135].

For example, in the case of {0, 1} coefficients, Kuhn et al. [35] find a (1 + €)-
approximation in O(e~* log? A) rounds; here the degree bound A is the maxi-
mum number of non-zero elements in any row or column of the matrix A. If A
is a constant, the algorithm is strictly local in the sense that the approximation
ratio and the running time are independent of the number of nodes. Moreover, it
is a local approzimation scheme: an arbitrarily good approximation ratio can be
achieved. The algorithm is deterministic, an therefore it can be easily converted
into a self-stabilizing algorithm.

It is also known that the dependency on A in the running time is unavoid-
able. Kuhn et al. [35I36] present lower bound constructions that, in essence,
show that finding a constant-factor approximation of a packing or covering LP
requires §2(log A/ loglog A) rounds, even in various special cases such as the LP
relaxations of minimum vertex cover and maximum matching. The same con-
struction also gives a lower bound of Q(\/ logn/loglogn) rounds as a function
of n. Such lower bounds have applications far beyond linear programming, as
they also give lower bounds for the original combinatorial problems. Incidentally,
the lower bounds by Kuhn et al. hold even in the case of randomized algorithms
with probabilistic approximation guarantees.

The family of maz-min LPs combines packing and covering constraints. In a
max-min LP, the objective is to maximize w subject to Ax <1, Cx > wl, and
x > 0 for non-negative matrices A and C'. While arbitrarily good approximation
factors can be achieved for packing and covering LPs in bounded-degree graphs
with a strictly local algorithm, this is no longer the case for max-min LPs—
indeed, a tight pair of positive [37] and negative [38] results is known for the
approximation factor achievable with a strictly local algorithm. Nevertheless,
for certain families of graphs better approximation algorithms are known [39).

4.3 Randomized LP Rounding

In addition to being the workhorse of operations research, linear programming
has found numerous applications in the field of combinatorial optimization [40].
Many of the best polynomial-time approximation algorithms build on the theory
of linear programming [41]. The case is the same in the field of local algorithms.

30 C. Lenzen, J. Suomela, and R. Wattenhofer

Putting together the LP approximation schemes discussed in Sect. and the
technique of randomized rounding [3AI35142], it is possible to find good approx-
imations for many classical combinatorial problems. For example, in the case of
the minimum dominating set problem, we can study the LP relazation of the
problem. This is a covering LP, and using the LP approximation schemes, we can
find a near-optimal solution, i.e., a near-optimal fractional dominating set | Now
the challenge is to construct an integral dominating set whose size is not much
worse than the size of the fractional dominating set; this can be solved by using
a two-step randomized algorithm which provides an O(log A)-approximation in
expectation. In addition to covering problems such as dominating set, this ap-
proach can be applied to solve packing problems: the expected approximation
factor is O(A) for maximum independent sets and O(1) for maximum matchings.
The running time is essentially equal to the running time of the LP approxima-
tion scheme.

One of the main drawbacks of this approach is that the use of randomness
seems to be unavoidable, and it is not obvious how to design a self-stabilizing
algorithm with the same performance guarantees. However, there are various
other techniques that can be used to design local approximation algorithms; we
review these in the following section.

4.4 Other Combinatorial Approximation Algorithms

The classical problem of finding a minimum-size vertex cover serves as a good
example of alternatives to randomized LP rounding. There are at least three
other approaches. First, it turns out that vertex cover can be approximated well
by using a deterministic LP-based algorithm. The LP approximation schemes
by Kuhn et al. [35] together with a simple deterministic rounding technique [43]
yield a (2 + ¢)-approximation in O(e~*log A) rounds. This algorithm as a whole
can be made self-stabilizing directly by using the approach from Sect.

Second, we can use maximal matchings. The endpoints of a maximal matching
form a 2-approximation of vertex cover. Hence from the results mentioned in
Sect. 11l we immediately have deterministic 2-approximation algorithms for
vertex cover with running times O(log* n) [27] and O(A + log* n) [26).

Third, there is a recent deterministic algorithm that finds a 2-approximation
of a minimum vertex cover in O(A?) rounds [44] without resorting to maxi-
mal matchings. The algorithm does not require unique identifiers, making it
particularly easy to convert into a self-stabilizing algorithm even in anonymous
networks.

Finally, there are also strong lower-bound results. For example, in the case of
a constant A, the above-mentioned algorithm finds a 2-approximation of a min-
imum vertex cover in constant time. This approximation factor is tight: lower
bound results [4546] show that a (2 — €)-approximation is not possible in con-
stant time for any constant A > 2. Furthermore, the lower bound result by

3 A fractional dominating set assigns to each node a weight from [0, 1] such that the
sum of a node’s own and neighbors’ weights is at least 1.

Local Algorithms: Self-stabilization on Speed 31

Kuhn et al. [36] proves that a constant A is necessary if we want constant run-
ning time and constant approximation factor.

In summary, the problem of approximating vertex covers by distributed al-
gorithms is nowadays well understood: there is a whole range of deterministic
algorithms from which to choose, and there are also strong lower-bound results.
All these results have straightforward corollaries in a self-stabilization setting.

Also the minimum dominating set problem that we used as an example in
Sect. admits deterministic approximation algorithms—at least for special
cases and variants of the problem. Recent results include two constant-time
distributed algorithms that find a constant-factor approximation of a minimum
dominating set in a planar graph [45l[47]. There is also a deterministic O(log" n)-
time algorithm that finds a constant-factor approximation of a minimum con-
nected dominating set in bounded-independence graphs [14].

The classical optimization problem of finding a maximum-size independent
set can be used to illustrate the trade-off between randomization and running
time. As the maximum independent set problem is hard to approximate even in
a centralized setting, we focus on the special case of planar graphs. Czygrinow et
al. [45] present both deterministic and randomized local approximation schemes:
the deterministic algorithm finds a good approximation in O(log* n) rounds,
while the randomized algorithm finds a good approximation in O(1) rounds
w.h.p. Together with the recent lower bound results [45/46], this work shows
that randomized local algorithms are asymptotically faster than deterministic
local algorithms in some optimization problems, giving additional motivation
for studying the conversion of local randomized algorithms into self-stabilizing
randomized algorithms.

We refer to Elkin’s [48] survey for more information on distributed approxi-
mation algorithms. There is also a recent survey [I1] that focuses specifically on
constant-time distributed algorithms.

5 Conclusion

We misused this invited paper to remind the local algorithms and self-stabiliza-
tion communities that they share a long history. After recapitulating the ele-
mentary observation that any deterministic local algorithm has a self-stabilizing
analogon, we highlighted recent results on efficient local algorithms. We are con-
vinced the relation goes in both directions—we believe that a similar article
could be written from a vantage point of self-stabilization.

Several issues are still open. In our view randomization is not fully understood
in this context. We thus encourage experts from both fields to explore to what
extent randomization techniques can be transferred between the two areas. Also,
we merely touched the surface of bit complexity, the quality of an algorithm in
terms of the number of exchanged bits. In the last decades considerable progress
has been made both in minimizing the bit complexity of local algorithms as
well as in establishing lower bounds. We conjecture that both communities can
profit from ascertaining each others’ results. And finally, there are several areas

32

C. Lenzen, J. Suomela, and R. Wattenhofer

related to both local algorithms and self-stabilization, e.g. dynamic networks or
self-assembly [49].

Acknowledgements. This work was supported in part by the Academy of
Finland, Grant 116547, by Helsinki Graduate School in Computer Science and
Engineering (Hecse), and by the Foundation of Nokia Corporation.

References

10.

11.
12.

13.

14.

15.

16.
17.

18.

Dijkstra, E.W.: Self-stabilization in spite of distributed control. Manuscript
EWD391 (October 1973)

. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communi-

cations of the ACM 17(11), 643-644 (1974)

Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing 15(4), 1036-1053 (1986)

Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal par-
allel list ranking. Information and Control 70(1), 32-53 (1986)

Linial, N.: Locality in distributed graph algorithms. STAM Journal on Comput-
ing 21(1), 193-201 (1992)

Naor, M., Stockmeyer, L.: What can be computed locally? STAM Journal on Com-
puting 24(6), 1259-1277 (1995)

Suomela, J.: Optimisation Problems in Wireless Sensor Networks: Local Algorithms
and Local Graphs. PhD thesis, University of Helsinki, Department of Computer
Science, Helsinki, Finland (May 2009)

Awerbuch, B., Sipser, M.: Dynamic networks are as fast as static networks. In:
Proc. 29th Symposium on Foundations of Computer Science (FOCS), pp. 206—
219. IEEE, Los Alamitos (1988)

Awerbuch, B., Varghese, G.: Distributed program checking: a paradigm for building
self-stabilizing distributed protocols. In: Proc. 32nd Symposium on Foundations of
Computer Science (FOCS), pp. 258-267. IEEE, Los Alamitos (1991)

Awerbuch, B.: Complexity of network synchronization. Journal of the ACM 32(4),
804-823 (1985)

Suomela, J.: Survey of local algorithms (manuscript, 2009)

Goldberg, A.V., Plotkin, S.A.: Parallel (A + 1)-coloring of constant-degree graphs.
Information Processing Letters 25(4), 241-245 (1987)

Peleg, D.: Distributed Computing — A Locality-Sensitive Approach. STAM,
Philadelphia (2000)

Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set
algorithm for growth-bounded graphs. In: Proc. 27th Symposium on Principles of
Distributed Computing (PODC), pp. 35-44. ACM Press, New York (2008)
Schneider, M.: Self-stabilization. ACM Computing Surveys 25(1), 45-67 (1993)
Dolev, S.: Self-Stabilization. The MIT Press, Cambridge (2000)

Kothapalli, K., Scheideler, C., Onus, M., Schindelhauer, C.: Distributed coloring
in O(y/logn) bit rounds. In: Proc. 20th International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, Los Alamitos (2006)

Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: Proc. 32nd Symposium on Foundations of Computer Science
(FOCS), pp. 268-277. IEEE, Los Alamitos (1991)

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Local Algorithms: Self-stabilization on Speed 33

Mayer, A., Naor, M., Stockmeryer, L.: Local computations on static and dynamic

graphs. In: Proc. 3rd Israel Symposium on the Theory of Computing and Systems
(ISTCS), pp. 268-278. IEEE, Los Alamitos (1995)

Awerbuch, B., Kutten, S., Mansour, Y., Patt-Shamir, B., Varghese, G.: Time opti-
mal self-stabilizing synchronization. In: Proc. 25th Symposium on Theory of Com-

puting (STOC), pp. 652-661. ACM Press, New York (1993)

Angluin, D.: Local and global properties in networks of processors. In: Proc. 12th
Symposium on Theory of Computing (STOC), pp. 82-93. ACM Press, New York
1980

E}oldkzerg, A.V., Plotkin, S.A.,; Shannon, G.E.: Parallel symmetry-breaking in
sparse graphs. STAM Journal on Discrete Mathematics 1(4), 434-446 (1988)
Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In:
Proc. 25th Symposium on Principles of Distributed Computing (PODC), pp. 7-15.

ACM Press, New York (2006)

Barenboim, L., Elkin, M.: Distributed (A + 1)-coloring in linear (in A) time. In:

Proc. 41st Symposium on Theory of Computing (STOC), pp. 111-120. ACM Press,

New York (2009)

Kuhn, F.: Weak graph colorings: Distributed algorithms and applications. In: Proc.

21st Symposium on Parallelism in Algorithms and Architectures (SPAA). ACM

Press, New York (to appear, 2009)

Panconesi, A., Rizzi, R.: Some simple distributed algorithms for sparse networks.

Distributed Computing 14(2), 97-100 (2001)

Hanckowiak, M., Karoniski, M., Panconesi, A.: On the distributed complexity of

computing maximal matchings. SIAM Journal on Discrete Mathematics 15(1), 41—

57 (2001)

Alon, N., Babai, L., Ttai, A.: A fast and simple randomized parallel algorithm for

the maximal independent set problem. Journal of Algorithms 7(4), 567-583 (1986)

Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal

matching. Information Processing Letters 22(2), 77-80 (1986)

Métivier, Y., Robson, J.M., Nasser, S.D., Zemmari, A.: An optimal bit complex-

ity randomised distributed MIS algorithm. In: STIROCCO 2009. LNCS, vol. 5869.

Springer, Heidelberg (to appear, 2009)

Kutten, S., Peleg, D.: Tight fault locality. STAM Journal on Computing 30(1),

247-268 (2000)

Papadimitriou, C.H., Yannakakis, M.: Linear programming without the matrix.

In: Proc. 25th Symposium on Theory of Computing (STOC), pp. 121-129. ACM

Press, New York (1993)

Bartal, Y., Byers, J.W., Raz, D.: Global optimization using local information with

applications to flow control. In: Proc. 38th Symposium on Foundations of Computer

Science (FOCS), pp. 303-312. IEEE Computer Society Press, Los Alamitos (1997)

Kuhn, F., Wattenhofer, R.: Constant-time distributed dominating set approxima-

tion. Distributed Computing 17(4), 303-310 (2005)

Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In:

Proc. 17th Symposium on Discrete Algorithms (SODA), pp. 980-989. ACM Press,

New York (2006)

Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally!

In: Proc. 23rd Symposium on Principles of Distributed Computing (PODC), pp.

300-309. ACM Press, New York (2004)

Floréen, P., Kaasinen, J., Kaski, P., Suomela, J.: An optimal local approximation

algorithm for max-min linear programs. In: Proc. 21st Symposium on Parallelism

in Algorithms and Architectures (SPAA). ACM Press, New York (to appear, 2009)

34

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

C. Lenzen, J. Suomela, and R. Wattenhofer

Floréen, P., Hassinen, M., Kaski, P., Suomela, J.: Tight local approximation results
for max-min linear programs. In: Fekete, S.P. (ed.) ALGOSENSORS 2008. LNCS,
vol. 5389, pp. 2-17. Springer, Heidelberg (2008)

Floréen, P., Kaski, P., Musto, T., Suomela, J.: Approximating max-min linear pro-
grams with local algorithms. In: Proc. 22nd International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, Los Alamitos (2008)

Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, Inc., Mineola (1998)

Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

Kuhn, F., Moscibroda, T., Wattenhofer, R.: Fault-tolerant clustering in ad hoc and
sensor networks. In: Proc. 26th International Conference on Distributed Computing
Systems (ICDCS). IEEE Computer Society Press, Los Alamitos (2006)
Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover
problems. STAM Journal on Computing 11(3), 555-556 (1982)

Astrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: A local
2-approximation algorithm for the vertex cover problem. In: Proc. 23rd Symposium
on Distributed Computing (DISC). Springer, Heidelberg (to appear, 2009)
Czygrinow, A., Haniékowiak, M., Wawrzyniak, W.: Fast distributed approximations
in planar graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 78-92.
Springer, Heidelberg (2008)

Lenzen, C., Wattenhofer, R.: Leveraging Linial’s locality limit. In: Taubenfeld, G.
(ed.) DISC 2008. LNCS, vol. 5218, pp. 394-407. Springer, Heidelberg (2008)
Lenzen, C., Oswald, Y.A., Wattenhofer, R.: What can be approximated locally? In:
Proc. 20th Symposium on Parallelism in Algorithms and Architectures (SPAA),
pp. 46-54. ACM Press, New York (2008)

Elkin, M.: Distributed approximation: a survey. ACM SIGACT News 35(4), 40-57
(2004)

Sterling, A.: Self-assembling systems are distributed systems. Manuscript,
arXiv:0907.1072 [cs.DC] (July 2009)

As Good as It Gets:
Competitive Fault Tolerance
in Network Structures

David Peleg*

Department of Computer Science and Applied Mathematics,
The Weizmann Institute of Science, Rehovot, 76100 Israel
david.peleg@weizmann.ac.il

Abstract. Consider a logical structure S, constructed over a given net-
work (G, which is intended to efficiently support various services on G.
This logical structure is supposed to possess certain desirable proper-
ties, measured with respect to G and represented by some requirement
predicate P(S,G). Now consider a failure event F' affecting some of the
network’s vertices and edges. Making S fault-tolerant means reinforcing
it so that subsequent to the failure event, its surviving part S continues
to satisfy P. One may insist on imposing the requirements with respect
to the original network G, i.e., demanding that the surviving structure
S satisfies the predicate P(S , G). The idea behind competitive fault tol-
erance is that it may sometimes be more realistic and more productive to
evaluate the performance of the surviving & after the failure event not
with respect to G (which at the moment is no longer in existence any-
way), but rather with respect to the surviving network G = G\ F, which
in a sense is the best one can hope for. Hence, we say that the structure
S enjoys competitive fault-tolerance if subsequent to a failure event F,
its surviving part S satisfies the requirement predicate P(S ,G). The
paper motivates the notion of competitive fault tolerance, compares it
with the more demanding alternative approach, and illustrates it on a
number of representative examples.

1 Introduction

Logical Network Structures

A central theme in the theory of networks concerns the construction of logical
information structures on top of the network, that possess some desirable prop-
erties and can be used for improving the performance of relevant applications.
Common examples include a variety of spanning trees such as shortest-path
trees, minimum-weight spanning trees, Steiner trees, optimum communication
trees [24U31], and shallow-light trees [4I26], distance-sensitive skeletal structures
such as spanners (cf. [30/35130]), preservers [I1], emulators [T940] and tree covers

* Supported by a grant from the Israel Ministry of Science.

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 357@ 2009.
© Springer-Verlag Berlin Heidelberg 2009

36 D. Peleg

[TIT5130], clustered representations such as partitions [8], covers [3], decomposi-
tions [6J5] and hierarchical organizations of different types (cf. [30]), informative
labeling schemes for a variety of graph functions [TI2I2212513334], data struc-
tures supporting different types of topology-related queries such as distance or-
acles [9I37I39] and connectivity oracles [20], routing schemes (cf. [BI30/32I38]),
and more.

In all of these cases, given a network G, one is interested in constructing
a logical information structure S(G) enjoying some useful properties. The set
of desired properties can be represented abstractly as a requirement predicate
P(S,G). Typically, the optimization problem corresponding to such a struc-
ture involves also some cost measure cost(S) associated with constructing or
maintaining the structure S, and the goal is to select a cheap (preferably, the
cheapest) structure S satisfying P(S, G).

As a running example illustrating the notions and terminology under discus-
sion, let us consider the basic requirement of connectivity. Let our structure S
be simply a subgraph of G, and let the requirement predicate Py, specify that
the structure S must ensure, for every two vertices u, w in G, that if u and w are
connected in G, then they are connected in S as well. A structure satisfying this
predicate is hereafter referred to as a connectivity structure. For concreteness,
let the cost measure cost(S) correspond to the number of edges included in the
subgraph S.

Clearly, if G'is composed of ¢ connected components G, .. ., Gy, then one can
obtain a connectivity structure S = S(G) by selecting a forest composed of any
collection of ¢ trees Ty,...,Ty such that T; spans the connected component G;
for every 1 < i < {. Such a structure will achieve the task optimally, with a
minimum cost of n — £ edges.

Fault Tolerance

This paper addresses the question of making logical information structures in
networks fault-tolerant. The underlying assumption is that the vertices and edges
of the network may occasionally fail or malfunction. Consider some failure event,
represented by a subset F' of vertices or edges (or both) that have failed. As a
result of such a failure event, the network G is partially destroyed, and we are
left with the surviving part of the network, G’ = G \ F. It is clear, however,
that such a failure event affects not only the network G, but also any logical
structure S = S(G) constructed for it, as presumably this structure too makes
use of some of the vertices and edges of G, so the failure event F' partially
destroys S as well, leaving us with the structure &’ = S\ F. In our connectivity
example, for instance, if the set of failed edges F' contains a edge of the forest
S = S(G), then after the failure, one of the trees T/ of the surviving partial
structure &’ = S\ F may be disconnected and can no longer be used as a
spanning tree for the corresponding connected component G; of G. In our formal
terminology, the requirement predicate P(S’, G) might no longer hold.

The natural question that arises is, therefore, whether S(G) can somehow be
reinforced and made fault tolerant, i.e., ensure the property that the requirement

As Good as It Gets: Competitive Fault Tolerance 37

predicate P still holds subsequent to a failure event. A relaxed, but equally
natural, variant of the question calls for a construction of a structure S(G) that
can guarantee the desired properties in some weakened form, namely, ensure
that some relaxed requirement predicate P’ holds subsequent to a failure event.

Rigid vs. Competitive Fault Tolerance

The notion of “fault tolerance” in logical information structures, as formulated so
far, still contains a hidden ambiguity. One possible (and common) interpretation
to the above description calls for constructing the structure S(G) in such a way
that subsequent to a failure event F, the requirement predicate P(S’, G) contin-
ues to hold (on the original network G). Hereafter, we refer to this demanding
interpretation as the “rigid” (or “static”) approach to fault tolerance. Our focus
in this paper is on highlighting an alternative, more flexible approach, referred
to as competitive fault tolerance. Following this approach, we lower our expec-
tations, and settle for a structure S that ensures that subsequent to a failure
event F', the surviving structure &’ satisfies only P(S’, G’), namely, it satisfies
the requirement predicate P with respect to the surviving network G’, and not
with respect to the original network G (which at the moment is no longer in
existence anyway).

While competitive fault-tolerance appears to be a weaker notion than rigid
fault-tolerance, it is important to realize that rigid fault-tolerance is sometimes
impossible to attain, or is attainable only under some restrictive conditions on
the instance at hand, or only in some weakened form (namely, with a weaker
requirement predicate P’). In contrast, competitive fault tolerance can often be
attained without having to resort to imposing constraints on the instance or
weakening the requirement predicates. In that sense, ensuring competitive fault
tolerance for a logical structure essentially means ensuring that the situation is
“as good as it gets” under the existing circumstances.

To illustrate the distinction between the two notions of fault-tolerance, let
us return to our connectivity example and consider the fault-tolerant variant of
the problem. Suppose that we are required to construct a connectivity structure
S capable of withstanding a single edge failure (|F| = 1). Note that the rigid
version of the problem does not always admit a solution. For example, suppose
the original network G itself is a single connected tree. Then necessarily S = G,
and the elimination of any edge e = (u,v) of G will cause the surviving subgraph
S’ = S\ F to violate the requirement predicate Peonn(S’, G) (as u and v, for
instance, are connected in G but not in S).

Hence the only way to achieve rigid fault-tolerance for connectivity structures
is to impose some conditions on the network G under consideration. For instance,
we may impose a biconnectivity requirement on the connected components of
the original G, namely, require each connected component G; of G to be 2-
edge-connected. This will ensure the existence of a feasible rigid fault-tolerant
spanning subgraph S that satisfies the requirement predicate Py, with respect
to G. In particular, taking S = G as our connectivity structure will satisfy the
problem requirements. In fact, a reasonably low cost can be guaranteed as well.

38 D. Peleg

In particular, for a network GG with ¢ connected components Gy, ..., Gy, each of
which is 2-edge-connected, at most 2n — 2¢ edges will suffice for a rigid 1-fault-
tolerant connectivity structure S. To see this, consider the following construction
for a connectivity structure. Start with an arbitrary collection of £ trees T, ..., T}
spanning G, ..., Gy (respectively). For each edge e € F(T;), whose elimination
from T; disconnects it into T and T%, let backup(e) = {e’'} for some edge
e’ € E(G;)\ E(T;) connecting T and T%. (Such an edge must exist since G; is
2-edge-connected.) It is easy to verify that taking S to be

¢
S = U E(T;) U U backup(e)
i=1

ecE(T;)

ensures that 8’ = S\ {e} satisfies Peonn(S’, G), for any e € E(G).

The rigid approach to fault-tolerance is of course highly significant from both
the theoretical and practical standpoints, and in fact it is the approach of choice
during the design stage of the underlying physical network G. At that stage, one
must ensure both the reliability and survivability of G itself and the resilience of
logical information structures to be embedded on top of it. The rigid approach
to fault tolerance allows us to analyze the basic a-priori conditions that the
network G must meet in order to support logical information structures satisfying
the desired requirements in the presence of failures, and thus enables us (given
sufficient time in advance) to reinforce the physical network G itself so as to
strengthen its accompanying logical structures as necessary. In the example of
connectivity, this can be achieved by adding edges to G so as to ensure 2-edge
connectivity on every component G; that requires rigid fault-tolerant (1-edge)
connectivity.

It is equally clear, however, that the rigid approach to fault-tolerance might be
inappropriate in situations where the underlying physical network has already
been fixed, and can no longer be modified, yet it is necessary to assess the
fault-resilience of new logical information structures embedded on it. In such
situations, it may be more realistic and more productive to turn to competitive
fault-tolerance.

Returning to our connectivity example, one realizes that ensuring competitive
fault tolerance does not require imposing any conditions on the network, and a
suitable competitive fault tolerant connectivity structure can be constructed for
every GG. To demonstrate this claim for the simple case of a single edge fail-
ure (|F| = 1), for instance, observe that taking & = G solves the problem,
as Peonn(S’, G') always holds. This is because no matter which edge e = (u, w)
fails in F, it is guaranteed that 8’ = G’, and therefore, if the failure of e discon-
nects u from w in S, then v and w must be disconnected in G’ as well.

In fact, a competitive fault tolerant connectivity structure of cost as low as
that of the rigid fault-tolerant solution outlined above is also feasible, as one can
apply the same construction method, with the following small change. For each
edge e € E(T;), whose elimination from T; disconnects it into T and 75, if a
backup edge is unavailable for e, we take backup(e) = (). That is, we define the
backup edges as

As Good as It Gets: Competitive Fault Tolerance 39

B {e’}, e/ e E(Gi) \E(TZ) connecting 75 and T,
backup(e) = {(Z)7 otherwise.

To verify that the resulting structure S guarantees Peon, (S, G'), consider an
edge e = (u, w) that has failed, and suppose that in G’, the vertices u and w are
connected. Then necessarily u and w belong to the same connected component
of G, say, G;. If e is not in T}, then u and w are still connected in S via Tj;.
If e is in Tj, then its elimination disconnects T; into T} and T}, with « in
one of the parts and w in the other. But in this case, & must contain also
an edge e’ € backup(e) (since if no such edge existed in G;, then T and T
would be disconnected in G} as well, and so would u and w, contradicting our
assumption). Hence u and w are still connected in S.

The remainder of this paper presents several additional examples illustrating
the concept of competitive fault-tolerance in the context of different logical in-
formation structures in networks, contrasting it against the alternative notion
of rigid fault-tolerance, and reviewing some recent results in the area.

2 Examples of Competitive Fault Tolerance

We now present a number of additional examples for logical information struc-
tures in networks and discuss the possibility of turning them into rigid or com-
petitive fault-tolerant structures.

MST Structures

Consider a connected network G with edge weights w : E +— IR™". For any
subgraph H of G, let w(H) = ., w(e). Suppose that our goal is to maintain
a logical structure, referred to as an MST structure, ensuring the availability of
a spanning tree of minimum weight. Letting M ST (G) be an arbitrary minimum
weight spanning tree of G, our logical structure S is again a subgraph of G, and
the requirement predicate we wish it to satisfy, denoted P,,s(S,G), specifies
that S contains a spanning tree T of weight w(T) = w(MST(G)). A natural
cost measure for MST structures may be cost(S) = w(S).

In the non-fault-tolerant setting, simply taking S = M ST (G) yields a feasible
MST structure satisfying P,,s:. However, this structure clearly fails to solve the
problem in a failure-prone setting. (As discussed earlier, such a solution will fail
to guarantee even connectivity, let alone low weight).

Moreover, it is clear that a rigid fault tolerant MST structure (i.e., one sat-
isfying Pp,st(S’, G)) does not always exist, even in the presence of a single edge
fault, and even by taking S = G, for arguments similar to those mentioned in
our discussion of the connectivity example. (As an exercise, the reader is invited
to contemplate a-priori conditions on G that may ensure the existence of a rigid
fault tolerant MST structure.)

Turning to competitive fault tolerance, the problem becomes more managable.
In particular, it is clear that there always exists an MST structure S for G sat-
isfying Pp,st(S’, G'). However, the problem of computing a minimum cost MST

40 D. Peleg

structure is NP-hard [I4], so it may be necessary to resort to approximate solu-
tions. In fact, one may consider several different types of approximation problems.
One type concerns the construction of a competitive fault tolerant MST structure
of near-minimum cost. A second, more relaxed, type of problem concerns the con-
struction of what one may call a competitive fault tolerant Approz-MST structure,
namely, a structure S with the property that for any set F' of failed edges, the sur-
viving structure S\ F' contains a tree T” spanning G’ whose weight w(7") is close to
w(MST(G")). The most relaxed version of the problem is the one involving both
notions of approximation, namely, seeking to construct a competitive fault toler-
ant Approx-MST structure of near-minimum cost. The latter type of structures
may be easier to construct than the former two.

Flow Structures

Consider a network G with edge capacities y(e), and with a specified source
vertex § and destination vertex d. Suppose that a certain client of the network
services desires to guarantee its long term ability to push as much flow as possible
from § to cf, and for that purpose it intends to lease a certain (nonnegative)
amount of capacity ¥(e) on each edge e, where 0 < F(e) < ~(e). Let £1low(s, d, Q)
denote the maximum flow that can be pushed from § to d in G. The logical
structure S maintaining the leased capacities, referred to as a flow structure, is a
copy of G, with leased capacity values ¥(e) for each edge e, that are sufficient to
support the desired flow from § to d. This guarantee is formally captured by the
requirement predicate Pyiow (S, G). Supposing further that the price of leasing a
unit of capacity on the edge e is price(e), the overall cost of a flow structure &
is cost(S) = X cp(q) Price(e) - ¥(e). Our goal is thus to construct a minimun
cost flow structure S (ensuring the maximum level of flow possible).

Considering the problem in a failure-free setting, it is clear that in order to
determine the values of leased capacity ¥(e) necessary for every edge e in a min-
imum cost flow structure S, all that needs to be done is solve the corresponding
min-cost max-flow problem.

Turning to the failure-prone setting, let us first consider rigid fault tolerance.
Here, once again, it is not possible to guarantee a solution for the problem
(namely, a flow of flow(3,d, G) units) under all circumstances, as is realized,
say, by considering a network G consisting of a single edge (s, d) of capacity 1.
A weaker type of rigid guarantee P}, may be obtained as follows. Given the
flow structure S = {7(e) | e € E(G)}, let epmqr be the edge of maximum 7.
Then S can be thought of as an approximate flow structure, ensuring a flow of
at least £1ow(3, d, G) — 7 (€maz) units. However, this guarantee is dissatisfactory,
as in some cases it may be sub-optimal. For instance, look at the network G
depicted in Figure[[l Suppose that in this network all edges have unit capacities
(v(e) = 1), and the flow structure S consists of leasing in full the capacities of
the edges of the upper path (namely, €1, ea, 3, €4). In the presence of faults, this
flow structure is worthless if the edge es gets disconnected, in the sense that in
the surviving structure &’, no flow can be pushed at all, despite the existence of
a surviving § — d path of capacity 1.

As Good as It Gets: Competitive Fault Tolerance 41

Fig.1. An example flow network

A (non-min-cost) competitive fault-tolerant flow structure for this simple ex-
ample (as for any other example) would be to take S = (G,), namely, to lease
all the available capacity on all the edges. In this case, for every disconnected
edge, if the surviving network G’ allows a maximum flow of flow(s, d, &) from
5 to d, then the surviving flow structure S’ will enable the same amount of flow,
i.e., the requirement predicate Pyiow(S’, G') will still hold.

An algorithm for the construction of minimum cost competitive fault tolerant
flow structures is presented in [14].

k-Spanners

As our next example, let us consider the structure of k-spanners (cf. [30/3536]).
A graph spanner S can be thought of as a skeleton structure that generalizes the
concept of spanning trees and allows us to faithfully represent the underlying
network using few edges, in the sense that for any two vertices of the network,
the distance in the spanner is stretched by only a small factor. More formally,
consider a weighted graph G and let & > 1 be an integer. Let dist(u, v, G) denote
the (weighted) distance between u and v in G. For a subgraph S, the requirement
predicate Pr_span (S, G) specifies that dist(u,v,S) < k-dist(u,v,G) for every
u,v € V. A subgraph S satisfying this predicate is a k-spanner of G.

Turning to fault tolerant k-spanners, the rigid approach leads to the following
definition: a subgraph S is an f-edge fault-tolerant k-spanner of G if dist(u, v, S\
F) < k-dist(u,v,G) for any set F' C FE of size at most f and any pair of vertices
u,v € V. (A similar definition applies to f-vertex fault-tolerant k-spanners.)

By the same connectivity argument as before, we note that this requirement
may be unattainable for some graphs. For instance, if G is not f-edge-connected,
then so is S, in which case the elimination of the edges of F' from S might
disconnect it, preventing it from satisfying the requirement. In fact, even if the
set of failures F' leaves G connected by some fortunate turn of events, it may still
happen that no selection of S could possibly work. Consider for example an n-
vertex ring G and f = 1; clearly, even if all the edges are selected to the spanner,
setting & = G, the elimination of a single edge F' = {e = (u,w)} from G will
leave 8" = G\ {e} connected but increase the distance between the endpoints u
and w from dist(u,w,G) =1 to dist(u,w,S’) =n — 1.

Rigid fault-tolerance can thus be ensured only in some special cases. One
particular such case is when G is a complete Euclidean graph (with dist(u, v, G)

42 D. Peleg

defined as |uv|, the Euclidean distance between u and v). In this case, it is
possible to construct a rather sparse fault-tolerant spanner for G. Indeed, the
notion of (rigid) fault tolerant spanners was introduced in the geometric setting
in [27], which presented an efficient algorithm that given a set V' of n points in
d-dimensional Euclidean space, constructs an f-vertex fault tolerant geometric
(1+4¢€)-spanner for V', namely, a sparse graph S satisfying that dist(u,v, S\ F) <
(1 + €)|uv| for any set F' C V of size f, and for any pair of points u,v € V' \ F.
A fault tolerant geometric spanner of improved size was later presented in [2§],
and finally a fault tolerant geometric spanner with optimal maximum degree
and total weight was presented in [I7].

In contrast, the competitive approach yields the following definition. We
say that a subgraph S is a competitive f-edge fault-tolerant k-spanner of G
if dist(u,v,S\ F) <k -dist(u,v,G\ F) for any set ' C E of size at most f,
and any pair of vertices u,v € V. (A similar definition applies to competitive
f-vertex fault-tolerant k-spanners.) As in the previous examples, we note that
under this definition, the task of constructing a competitive f-edge fault-tolerant
k-spanner for a given graph G is never infeasible, as in particular, taking S = G
yields a competitive f-edge fault-tolerant 1-spanner of G for any f.

The question of whether it is possible to construct a sparse fault tolerant
spanner for an arbitrary undirected weighted graph, raised in [17], was answered
in the affirmative in [I3] employing competitive fault tolerance and presenting
algorithms for constructing a competitive f-vertex fault tolerant (2k—1)-spanner
of size O(f2k/T1-n*+1/*1og!=1/* 1) and a competitive f-edge fault tolerant 2k—1
spanner of size O(f-n'*1/¥) for a graph of size n. This should be contrasted with
the best stretch-size tradeoff currently known for non-fault-tolerant spanners
I38], namely, 2k — 1 stretch with O(n'*1/*) edges.

Fault-Tolerant Distance Oracles

A distance oracle [B739] is a succinct data structure capable of supporting
efficient responses to distance queries on a weighted graph G. A distance query
(s,t) requires finding, for a given pair of vertices s and ¢ in V, the distance
(namely, the length of the shortest path) between u and v in G. A distance oracle
S satisfies the requirement predicate Ppo(S, G) if its query protocol correctly
answers distance queries on G.

In a competitive fault tolerant distance oracle, the query may include also a
set F of failed edges or vertices (or both). To satisfy the requirement predicate
Ppo(S8’,G"), the distance oracle S must return, in response to a query (s,t, F),
the distance between s and ¢t in G’ = G\ F'. Such a structure is sometimes called
an F'-sensitivity distance oracle.

It has been shown in [I8] that given a directed weighted graph G of size n, it
is possible to construct in time O(mn?) a 1-sensitivity fault tolerant distance or-
acle of size O(n? logn) capable of answering distance queries in O(1) time in the
presence of a single failed edge or vertex. The preprocessing time was recently im-
proved to O(mn)7 with unchanged size and query time [10]. A 2-sensitivity fault

As Good as It Gets: Competitive Fault Tolerance 43

tolerant distance oracle of size O(n? log? n), capable of answering 2-sensitivity
queries in O(log n) time, was presented in [20].

Label-based fault-tolerant distance oracles for graphs of bounded clique-width
are presented in [I6]. The structure is composed of a label L(v) assigned to each
vertex v, and handles queries of the form (L(s), L(t), F') for a set of failures F.
For an n-vertex graph of tree-width or clique-width &, the constructed labels are
of size O(k?log®n).

A relaxed variant of distance oracles, in which distance queries are answered
by approzimate distance estimates instead of ezact ones, was introduced in [39],
where it was shown how to construct, for a given weighted undirected n-vertex
graph G, an approximate distance oracle of size O(n'*1/¥) capable of answering
distance queries in O(k) time, where the stretch (multiplicative approximation
factor) of the returned distances is at most 2k — 1.

In the competitive fault tolerant setting, an f-sensitivity approximate distance
oracle S is presented in [I2]. For an integer parameter k > 1, the size of S is

U+
O(ImHki?(ﬁl) log (nW)), where W is the weight of the heaviest edge in G, the
stretch of the returned distance is 2k — 1, and the query time is O(|F| - log?n -
loglogn - loglogd), where d is the distance between s and ¢ in G\ F.

Fault Tolerant Routing Schemes

The concept of competitive fault tolerance is suitable also in the context of han-
dling message routing in communication networks. A competitive fault-tolerant
routing protocol is a distributed algorithm that, for any set of failed edges F,
enables any source vertex § to route a message to any destination vertex d along
a shortest or near-shortest path in the surviving network G \ F' in an efficient
manner (and without knowing F' in advance).

In addition to route efficiency, it is often desirable to optimize also the amount
of memory stored in the routing tables of the vertices, possibly at the cost of
lower route efficiency, giving rise to the problem of designing compact routing
schemes (cf. [BIB0/32/38]).

Label-based fault-tolerant routing schemes for graphs of bounded clique-width
are presented in [I6]. To route from s to t, the source needs to specify the labels
L(s) and L(t) and the set of failures F', and the scheme efficiently calculates the
shortest path between s and t that avoids F'. For an n-vertex graph of tree-width
or clique-width k, the constructed labels are of size O(k?log? n).

Competitive fault-tolerant compact routing schemes are considered in [12],
for up to two edge failures. Given a message M destined to t at a source vertex
s, in the presence of a failed edge set F of size |F| < 2 (unknown to s), the
scheme presented therein routes M from s to t in a distributed manner, over a
path of length at most O(k) times the length of the optimal path (avoiding F).
The total amount of information stored in vertices of G on average is bounded
by O(kn'*1/*). This should be compared with the best memory-stretch trade-
off currently known for non-fault-tolerant compact routing [38], namely, 2k — 1
stretch with O(n'*1/%) memory per vertex.

44 D. Peleg

3 Discussion

In this paper we addressed the question of making logical information struc-
tures in networks fault-tolerant. We formalized and motivated the notion of
competitive fault tolerance, compared it with the more demanding alternative
approach of rigid fault tolerance, and illustrated the distinction between the two
approaches on a number of representative examples.

Let us remark that the notion of competitive fault tolerant structures is
somewhat similar to, but distinct from, the notion of maintaining a dynamic
structure (namely, maintaining a structure in a dynamically changing environ-
ment). There, the structure in question can be modified repeatedly, in response
to changes in the topology, and the algorithmic / complexity questions revolve
around the (worst case or amortized) update costs, and the three-way tradeoffs
between those costs, the memory costs of the structure and the query times.
The problem of maintaining connectivity in a dynamic network, for instance,
has received considerable attention under various models of dynamic changes,
of. P23,

Many interesting research directions related to competitive fault tolerance
are left for future study. In adition to the obvious technical questions related to
points left unsettled throughout the above discussion, several natural extensions
of the model present themselves.

One such extension concerns probabilistic failure models. In some settings, it
may be natural to assume that different failure events have different probabilities
of occurring, and moreover, the failure probability of edges and vertices can be
estimated based on their past history. This may facilitate constructions of lower
cost (rigid or competitive) fault-tolerant structures.

When the distribution of failures is not known in advance, it may be useful to
formulate and study an online version of the problem, in which decisions must
be made in each step without knowledge of the future, and the incurred cost
(which depends on the online decisions) should be compared against the cost of
the best (offline) solution.

Finally, it may be interesting to consider non-uniform fault-tolerance require-
ments, capable of modeling situations where some sub-components of the struc-
tures under consideration are more vital than others, and hence their protection
is more crucial. This could be reflected via the definition of suitable cost models
for fault-tolerance violations, and may model various quality-of-service aspects.

Acknowledgements. I am grateful to Shiri Chechik, Mike Langberg and Liam
Roditty for many stimulating and fruitful discussions.

References

1. Abiteboul, S., Kaplan, H., Milo, T.: Compact labeling schemes for ancestor queries.
In: Proc. 12th ACM-SIAM Symp. on Discrete Algorithms, pp. 547-556 (2001)

2. Alstrup, S., Bille, P., Rauhe, T.: Labeling schemes for small distances in trees. In:
Proc. 14th ACM-SIAM Symp. on Discrete Algorithms (2003)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

As Good as It Gets: Competitive Fault Tolerance 45

. Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Compact distributed data struc-

tures for adaptive network routing. In: Proc. 21st ACM Symp. on Theory of Com-
puting, pp. 230-240 (1989)

. Awerbuch, B., Baratz, A., Peleg, D.: Efficient broadcast and light-weight spanners.

Unpublished manuscript (1991)

. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Fast network decomposition. In:

Proc. 11th ACM Symp. on Principles of Distributed Computing, pp. 169-177
(1992)

. Awerbuch, B., Goldberg, A., Luby, M., Plotkin, S.: Network decomposition and

locality in distributed computation. In: Proc. 30th IEEE Symp. on Foundations of
Computer Science, pp. 364-369 (1989)

. Awerbuch, B., Kutten, S., Peleg, D.: On buffer-economical store-and-forward dead-

lock prevention. In: Proc. INFOCOM, pp. 410414 (1991)

. Awerbuch, B., Peleg, D.: Sparse partitions. In: 31st IEEE Symp. on Foundations

of Computer Science, pp. 503-513 (1990)

. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in ex-

pected O(n?) time. ACM Trans. Algorithms 2(4), 557-577 (2006)

Bernstein, A., Karger, D.: A nearly optimal oracle for avoiding failed vertices and
edges. In: Proc. 41st ACM Symp. on Theory of Computing, pp. 101-110 (2009)
Bollobés, B., Coppersmith, D., Elkin, M.: Sparse distance preservers and additive
spanners. STAM J. on Discr. Math. 19(4), 1029-1055 (2006)

Chechik, S., Langberg, M., Peleg, D., Roditty, L.: f-sensitivity distance oracles and
routing schemes (June 2009) (manuscript)

Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for gen-
eral graphs. In: Proc. 41st ACM Symp. on Theory of computing, pp. 435-444
(2009)

Chechik, S., Peleg, D.: Fault resilient network structures (2009) (in preparation)
Cohen, E.: Fast algorithms for constructing ¢t-spanners and paths with stretch ¢. In:
Proc. 34th IEEE Symp. on Foundations of Computer Science, pp. 648-658 (1993)
Courcelle, B., Twigg, A.: Compact forbidden-set routing. In: Proc. 24th Symp. on
Theoretical Aspects of Computer Science, pp. 37-48 (2007)

Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discrete & Computa-
tional Geometry 32 (2003)

Demetrescu, C., Thorup, M., Chowdhury, R., Ramachandran, V.: Oracles for dis-
tances avoiding a failed node or link. STAM J. Computing 37, 1299-1318 (2008)
Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. STAM J. Com-
puting 29(5), 1740-1759 (2000)

Duan, R., Pettie, S.: Dual-failure distance and connectivity oracles. In: Proc. 20th
ACM-SIAM Symp. on Discrete Algorithms (2009)

Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, N.: Sparsification — A technique
for speeding up dynamic graph algorithms. J. ACM 44 (1997)

Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Dis-
tributed Computing 16, 111-120 (2003); PODC Jubilee Special Issue

Holm, J., Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and bicon-
nectivity. J. ACM 48(4), 723-760 (2001)

Hu, T.C.: Optimum communication spanning trees. STAM J. Computing 3, 188-
195 (1974)

Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. In: Proc. 20th
ACM Symp. on Theory of Computing, May 1988, pp. 334-343 (1988)

46

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.
40.

D. Peleg

Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning and short-
est paths trees. In: Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, Austin,
Texas (1993)

Levcopoulos, C., Narasimhan, G., Smid, M.: Efficient algorithms for construct-
ing fault-tolerant geometric spanners. In: Proc. 30th ACM Symp. on Theory of
computing, pp. 186-195 (1998)

Lukovszki, T.: New results on fault tolerant geometric spanners. In: Dehne, F.,
Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp.
193-204. Springer, Heidelberg (1999)

Patrascu, M., Thorup, M.: Planning for fast connectivity updates. In: Proc. 48th
IEEE Symp. on Foundations of Computer Science, pp. 263-271 (2007)

Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. STAM, Philadel-
phia (2000)

Peleg, D., Reshef, E.: Deterministic polylog approximation for minimum commu-
nication spanning trees. In: Proc. 25th Int. Colloq. on Automata, Languages &
Prog., pp. 670-681 (1998)

Peleg, D., Upfal, E.: A tradeoff between size and efficiency for routing tables. J.
ACM 36, 510-530 (1989)

Peleg, D.: Proximity-preserving labeling schemes and their applications. In: Wid-
mayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 30-41.
Springer, Heidelberg (1999)

Peleg, D.: Informative labeling schemes for graphs. In: Nielsen, M., Rovan, B. (eds.)
MFCS 2000. LNCS, vol. 1893, pp. 579-588. Springer, Heidelberg (2000)

Peleg, D., Schiffer, A.A.: Graph spanners. J. of Graph Theory 13, 99-116 (1989)
Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. STAM J.
Computing 18(2), 740-747 (1989)

Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate
distance oracles and spanners. In: Proc. 32nd Int. Collog. on Automata, Languages
& Prog., pp. 261-272 (2005)

Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 14th ACM Symp. on
Parallel Algorithms and Architecture, Hersonissos, Crete, pp. 1-10 (2001)
Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52, 1-24 (2005)
Thorup, M., Zwick, U.: Spanners and emulators with sublinear distance errors. In:
17th Symp. on Discrete Algorithms (SODA), pp. 802-809. ACM-SIAM, New York
(2006)

Multicore Constraint-Based Automated
Stabilization

Fuad Abujarad and Sandeep S. Kulkarni

Department of Computer Science and Engineering
Michigan State University
East Lansing, MI 48824, USA
{abujarad,sandeep}@cse.msu.edu
http://www.cse.msu.edu/~{abujarad, sandeep}

Abstract. Given the non-determinism and race conditions in distributed
programs, the ability to provide assurance about them is crucial. Our work
focuses on incremental synthesis where we modify a distributed programs
to add self-stabilization. We concentrate on reducing the time complex-
ity of such synthesis using parallelism. We apply these techniques in the
context of constraint satisfaction. In particular, incremental synthesis
of self-stabilizing programs requires adding recovery actions to satisfy
the constraint that are true in the legitimate states. We consider two ap-
proaches to speedup the synthesis algorithm: first, the use of the multiple
constraints that have to be satisfied during synthesis; second, the use of
the distributed nature of the programs being synthesized. We show that
our approaches provide significant reductions in the synthesis time.

Keywords: Stabilization, Program Synthesis, Multicore Algorithms,
Program Transformation, Distributed Programs.

1 Introduction

Self-stabilization, the ability to recover from an arbitrary state to a legitimate
state, is an important feature of distributed programs. It ensures that programs
can recover to their legitimate states even if they are perturbed by unexpected
and unknown transient faults. It is also well-known that designing self-stabilizing
programs is especially challenging. Hence, techniques that permit one to add self-
stabilization to existing programs is highly desirable.

Techniques for adding stabilization to distributed programs can be classified
in two categories. The first category includes approaches based on distributed
reset [6], where the program utilizes approaches such as distributed snapshot |9
and reset the system to a legitimate state if the current state is found to be
illegitimate. Approaches from this category suffer from several drawbacks. In
particular, it requires the designer to know the set of all legitimate states. The
cost of detecting the global state can be high. Additionally this approach is
heavy-handed since it requires a reset of the entire system even if the fault may
be localized. And, in some cases, e.g., [16], the generated program may utilize

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 47 20009.
© Springer-Verlag Berlin Heidelberg 2009

48 F. Abujarad and S.S. Kulkarni

variables with unbounded domain even though the original program used only
variables with bounded domain.

The second category includes approaches based on constraint satisfaction,
where we identify constraints that should be satisfied in the legitimate states.
Typically, the constraints are local (e.g., involving one node or a node and its
neighbors) therefore, detecting their violation is easy. Since the constraints are
local, the recovery actions to fix them are also local. Moreover, with this ap-
proach, if we begin with a program where the domain of variables is bounded,
then the same property is preserved in the generated program.

However, this approach suffers from one important drawback: local actions
taken to fix one constraint may violate other constraints. Consequently, these
constraints need to be ordered. Furthermore, we need to ensure that satisfying
one constraint does not violate constraints earlier in the order. Since verifying
that recovery actions for satisfying one constraint do not affect other constraints
is a demanding task; automated techniques that ensure correctness by construc-
tion are highly desirable. Such techniques ensure that the synthesized program
is correct by construction. However, algorithms for designing programs that are
correct by construction suffer from high complexity and, hence, techniques to
expedite them need to be developed.

With these motivations, this paper focuses on the use of multicore computing
for parallel synthesis of distributed self-stabilizing programs. We consider two
approaches for parallelization: (1) use of multiple constraints that have to be
satisfied during synthesis, and (2) use of the distributed nature of the programs
being synthesized. The contributions of the paper are as follows:

— We present a multicore algorithm to synthesize distributed self-stabilizing
programs by partitioning the satisfaction of the constraints among available
threads.

— We briefly describe an algorithm that utilizes the distributed nature of pro-
grams being synthesized by parallelizing them.

— We illustrate our algorithm in the context of two case studies.

— As a part of this work, we modify the MDD (Multi-valued Decision
Diagrams) library [20] to make it reentrant and to use it in the parallel
synthesis.

Organization of the paper. The rest of the paper is organized as follows.
In Section 2 we define distributed programs and specifications. We describe
the algorithms for the automated addition of self-stabilization in Section Bl We
present our multicore algorithms in Section @land experimental results in Section
Finally, we discuss related work in Section [f] and conclude in Section [7}

2 Programs and Specifications

In this section we define the notion of distributed programs, faults, and the
problem statement for adding self-stabilization. Those definitions are based on

Multicore Constraint-Based Automated Stabilization 49

the ones given by Arora and Gouda [5]. We also identify how the notion of
fairness can be modeled for automated addition of self-stabilization.

For the following definitions of enabled and fairness let Ss be a set of states. A
transition over Sy is of the form (sg,s1), where sg,51€S5. Let o, a1, g, ag,au,
be sets of transitions over Ss. In other words, a, ay, as, as,a,, are subsets of

Sy x S.

Enabled. Intuitively, « is enabled in sy if « contains some transitions that
begins in sg. Formally, « is enabled in a state sg iff there exists a state s1, such
that (so,s1)€ a.

Fairness. Intuitively, if a sequence is fair with respect to (a1, as, as,qu,) and
«; is continuously enabled in that sequence then that sequence includes a tran-
sition in «;. Formally, an infinite sequence (s, s1, s3, ...) is fair with respect to
(a1, 9, az, ...y) iff for each 4, k the following condition is satisfied:

(cv; is enabled in each state sg, sky1,....) = (I :1>Fk: (s1,541) € ;).

Note that this definition is equivalent to weak fairness from [3[ILI0].

Program. A program p is specified in terms of its state space, S, and the transi-
tions sets (a1, a2, g,Quy), where for each i, oi; € Sp x S),. The transitions of p,
dp, are equal to a; UagUagU...Ua,. We use the notation (Sp, (a1, a2, as,amn,))
to denote such programs. Whenever it is clear from the context, we use p and
its transitions ¢, interchangeably. A sequence of states, o = (sq, s1, ...) is a com-
putation of p iff (1) (V5 : 0 < j < length(o) : (sj-1,s;) € Jp), that is, in each
step of this sequence, a transition of p is executed, (2) if the sequence is finite
and terminates in s; then Vs’ :: (s;,s") € p, i.e., a computation is finite only if it
reaches a state from where the program does not have any outgoing transition,
and (3) if the sequence is infinite then it is fair with respect to (a1, g, ag, ...y).

A state predicate C' of program p is a subset, say Sc, of Sp,. In our MDD [20]
based implementation, we represent it using an equivalent function fo with do-
main S, and range {true, false} where fc(s) = true iff s € Sc. Let C1 and
C2 be two state predicates represented with sets Sc1 and Sga, respectively.
Let fo1 and feoo be corresponding functions. Observe that the function corre-
sponding to Sc1 N Sea is foiace where foinca(s) = fo1(s) A foa(s). In other
words, the intersection of two state predicates corresponds to the conjunction
of corresponding functions. Likewise, disjunction corresponds to union, and so
on. Hence, throughout the rest of the paper, we use these boolean operators
for constructing different state predicates, as this directly corresponds to our
MDD based implementation. Likewise, in our implementation, to represent a
set of transitions over state space S, we use a function with domain S, x 5,
and range {true, false}. Thus, a conjunction of such formula is equivalent to the
intersection of corresponding sets of transitions and so on.

Invariant. Legitimate states of a program, say p, are characterized by a set of
constraints C1, Cy...Cy,, where each C; is a subset of the state space S,. Thus,
predicate I = C; A Cs... ACYy,, denoted as invariant of p, identifies all legitimate

50 F. Abujarad and S.S. Kulkarni

states of p. In other words, if a computation of p begins in a state that is in I then
(1) Iis true at all states in that computation and (2) the computation is correct.
Note that the notion of this correctness has to deal with the fault-intolerant
program that is assumed to be correct. We assume that each transition of p
preserves each constraint in the invariant, i.e. for each 4, if (sg, s1) is transition
of p and sg € C; then s; € C;.

Faults. Let f be the class of faults to which tolerance is to be added. Faults for
program p are specified as a subset of S, x S;,. Note that this allows modeling
of different types of faults, such as transients, Byzantine, crash faults, etc.

The goal of an algorithm that adds self-stabilization is to begin with a fault-
intolerant program p, its invariant I, and faults f, and to derive the self-stabilizing
program, say p’, such that in the presence of faults, p’ eventually converges to 1.
Furthermore, computations of p’ that begin in I must be the same as that of p.

Based on this discussion, we define the problem of adding self-stabilization
fault-tolerance as follows:

Problem statement 1. Given p, I, and f, identify p’ such that:

— Transitions within the invariant remain unchanged:
e 50 € 1= (Vs1::(s0,51) € p<= (S0,51) €P')
— All program transitions eventually converge to the invariant
o 5o €S, A(so,581,...) is a computation of p’ = (Fj:j >0:s; €I)

Note that since each constraint is preserved by the original program p, closure
property of the self-stabilizing program p’ is satisfied from the first constraint of
the problem statement. Hence, it is not explicitly specified above.

3 Synthesis Algorithm of the Self-stabilization

In this section, we describe the approach for adding self-stabilization to fault-
intolerant programs based on [61[2]. The goal of self-stabilization is to ensure
that starting from any state in the program state space, the program eventually
reaches one of the legitimate states in I where, I = Cy A Cs... A Cy,. Faults
perturb the program to a state in (= I). Hence, in the presence of f, one or more
of the constraints from C4, Cs...C), are violated. The goal of this algorithm is to
automatically synthesize the recovery actions such that when faults stop occur-
ring, the constructed recovery actions in conjunction with the original program
actions will, eventually, converge the program to a state where I holds.

Since we focus on the design of distributed programs, for brevity, we specify
the state space of a program in terms of its variables. Thus, the state space of
the program is obtained by assigning each variable each possible value from its
domain. Furthermore, we specify the transitions of the program in terms of a
set of processes, where every process can read and write a subset of the program
variables. Transitions of a process are obtained by considering how that process

Multicore Constraint-Based Automated Stabilization 51

updates the program variables. And, finally, the transitions of the program are
the union of the transitions of its processes.

Read restrictions of distributed programs. A process in a distributed pro-
gram has a partial view of the program variables. Therefore, when a new pro-
gram transition is added/removed, we need to add/remove a group of transitions
based on the variables that cannot be read by that process. For instance, let j
be a process, let R; be the set of variables that j can read, and let vq(so) de-
note the value of variable v, in the state sg. Then if ¢ = (sg, $1) is a transition
that j can execute then the group of transitions associated with ¢ must also
include transitions of the form (s2, s3) where so and so (respectively s; and s3)
are undistinguishable for j, i.e., they differ only in terms of the variables that j
cannot read. The synthesis algorithm uses the function Group to include these
additional transitions. The group it self is given by the following formula:

group;(t) = \/(s;»,ss)
ver, (V(50)
/\’L)ER]‘ ('U(SO)

=ov(s1) A v(s2) =

3.1 Constraint Satisfier

The algorithm for adding stabilization is as shown in Algorithm [II The input
for the algorithm is the constraint array C' and program p.

In this algorithm, the constraints from the constraint array are satisfied one
after another. The algorithm starts by computing the invariant as the intersec-
tion of all constraints in the constraint array (Lines 3). To satisfy constraint C/[i],
the algorithm constructs the transitions that start from (—Ci]) and reach a state
where C[i] is true (Line Gﬂ. Since the algorithm is adding new transitions, it
needs to include their group. Moreover, no transition should start from a state
in the invariant and target a state outside the invariant. It also needs to remove
the group of transitions that violates I (Line 7).

The algorithm needs to ensure that none of the transitions used to satisfy
the constraint, say C[i], violates the pre-satisfied constraints C[0] to C[i — 1].
Hence, it lets V include the transitions that originate from a state where C[i — 1]
is true and end in a state where C[i — 1] is false as well as similar transitions
for the constraints C[0] to C[i — 2] (Line 10). The transitions in V' are used to
ensure that recovery transitions do not violate other pre-satisfied constraints.
The algorithm ensures that none of the transitions in temp interfere with earlier
constraints. Therefore, it removes the transitions in V' from temp if any is found
(Line 8). At this point the algorithm collects all recovery transitions in rec (Line
9). Steps 4 — 11 are repeated until all the recovery actions that satisfy all the
constraints in the array C are found. Finally, it returns the recovery actions of
the program p.

L (X A(Y)) refers to the transitions that start in a state in X and reach Y.

52 F. Abujarad and S.S. Kulkarni

Algorithm 1. ConstraintSatisfier
Input: constraint array C, and program transitions p.
Output: recovery transitions rec.

1: temp, V := false, false;
2: m = SizeOf(C) —1;
//Compute, I, the intersection of all constraints

3: 1 :=A",Clil;
4: for i:=0tom do
5: //temp are the transitions that start in a state in —=C'(i) and reach C'(7)
6: temp = Group((— C[i]) A (C[i]));
//ensure that no recovery transitions violate I
7 temp = temp A = Group(tempx (I A (=I)));
8: temp :=temp N =V

// Combine current recovery transitions with the new recovery transition.
9: rec := rec V temp;

//Compute, V, the set of the transitions that violating the constraints
10: V =V V Group(C[i] A (=CTi]))
11: end for

// return the recovery transition.
12: return rec;

Algorithm [has the following property (The proof is similar to Theorem 1

in [6]):

Given are :

— Fault-intolerant program p, constraints C1, Cs...C),, and faults f.
— Let I =C1 ANCs... N C,.
— Let rec = ConstraintSatisfier(C, p).
If Vsog:s0€S,—1:(3s1:51€85p: (s0,51) € rec)
Then (S, (rec,d,)) solves the constraints in Problem statement 1.

4 Using Parallelism in Synthesis

In Section 3] we described the sequential approach for synthesizing self-stabilizing
distributed programs from fault-intolerant versions. In this section, we present
our approaches for expediting the synthesis with multicore computing.

There are two main factors that contribute to the execution time for the
algorithm ConstraintSatisfier (c.f. Algorithm [I). The first factor is the number
of constraints to be satisfied. One can notice that the main loop of the algorithm
ConstraintSatisfier (Lines 4-11) is controlled by the number of constraints to be
satisfied (i.e. SizeOf(C)). Therefore, one approach to speedup this algorithm is to
distribute the job of this loop among the available cores/processors. The second
factor are the operations performed by the statements within this loop, namely
the group computation in Lines 6, 7, and 10. The group computation is required

Multicore Constraint-Based Automated Stabilization 53

based on the nature of the distributed programs and the read/write restrictions
imposed on the program variables. A sequential group algorithm goes through
several computations for each process that causes group computation to take a
substantial amount of time. One way to speedup the group computation is to
split it among available cores/processors. With this motivation, in Sections £1]
and 2] we present two multicore algorithms to target the bottlenecks described
above.

Parallelizing the MDD library. Since we are using MDD-based symbolic
synthesis, the constraints are characterized by Boolean formulae involving the
variables in the program being synthesized. The MDD package [20] is not de-
signed to be reentrant and assumes that at most one MDD package is active at
any given time. Hence, multiple threads cannot operate on the same MDD pack-
age simultaneously. Also, different threads cannot access different MDD packages
simultaneously. We considered two approaches to solve this problem: (1) utilize a
reentrant version of the MDD package, or (2) utilize multiple independent MDD
packages and handle consistency issues explicitly. We followed the second ap-
proach. We modified the MDD package so that multiple instances could be used
simultaneously. We also added a Transfer function to transfer an MDD object
from one MDD package to a different MDD package. Hence, during the parallel
algorithms, a master thread spawns several worker threads, each running on a
different processor core in parallel with an instance of its own MDD package.
The instance of the MDD package assigned to each worker thread is initialized
using MDDs (i.e. program transitions MDD) transferred from the MDD package
of the master thread.

4.1 Partitioning the Constraints Satisfaction

The amount of time required by the automated synthesis of self-stabilizing pro-
grams depends on the number of constraints to be satisfied by the synthesis
algorithm. Furthermore, in some cases, this number can be multiples of the
number of the processes in the fault-intolerant program. To remedy this restric-
tion, we present a multicore algorithm that partitions the satisfaction of such
constraints among available threads.

Algorithm sketch. Intuitively, our algorithm works as follows. During con-
straint satisfaction, a master thread spawns several worker threads each run-
ning on a different processor core in parallel with an instance of its own MDD
package. The instance of the MDD package assigned to each worker thread is ini-
tialized using MDDs for an array of constraints, program transitions, an array of
constraints violating transitions, and invariant predicate. The master thread par-
titions the constraints and provides each worker thread with one such partition.
Subsequently, worker threads start resolving their assigned set of constraints in
parallel by adding the required recovery actions. Upon completion, the master
thread merges the results returned by each worker thread.

Parallel Constraints Satisfaction. Our algorithm for satisfying the con-
straints in parallel is as shown in Algorithm [2l This algorithm begins with the

54 F. Abujarad and S.S. Kulkarni

Algorithm 2. ParallelConstraintsSatisfaction [Master Thread]
Input: constraint array C', program transitions p, and number of threads n.
Output: recovery transitions recAll.
1: gAll = false;
2: I := /\:r;o Cil;
// Cli) A (=Ci]) refers to transitions that start in ~C[i] and ends in C|i]

3: fori:=1ton—1do

4: SpawnThread ~» ComputeViolate(s);
5: end for

6: for i := 1 to SizeOf(C) —

T Vi := V[i—1] v VH

8: end for

9: fori:=0ton—1do

10: Cyli] = Split(i, C);

11: Vpli] = Split(i,V);

12: end for

13: fori:=1ton—1do

14: recli] := SpawnThread ~» PConstraintSatisfier(Cy[é], p, V,i], I);
15: end for

16: ThreadJoin(0..n — 1);
17: recAll := \/?;01 recli]; // Merging the results from all threads
18: return recAll;

array of constraints to be satisfied C, fault-intolerant program p, and the num-
ber of worker threads to be spawned n. The goal of the algorithm is to discover
the set of recovery transitions recAll such that all the constraints in C' are satis-
fied in a way that enables the fault-tolerant program to recover to its legitimate
states. Initially, the algorithm starts by computing the invariant as the inter-
section of all constraints in the constraint array (Lines 2). Now, the algorithm
constructs the array V such that V[i] includes the transitions that start from
a state where Ci] is true and end in a state where C[i] is false as well as the
similar transitions for the constraints C[j], where 0 < j < i — 1 (Lines 3-8).
Observe that in the sequential algorithm (c.f. Algorithm[), V' is being updated
while the constraints being satisfied. However, in this algorithm, V' is computed
before the constraints satisfaction starts. The reason for the early computation
of V is that if each thread wants to find V[i], where i < 0 < sizeO f(C), it needs
to consider the constraints from 0 to ¢ — 1, which unnecessarily repeats part
of the computation. A more efficient way to do this is when the master thread
uses the worker threads such that each thread computes its share of V' elements.
Once all threads are done, the master thread updates the array V' such that
V[i] = V[i — 1] V V[i]. In other words, V[i] contains all transitions that violate
the constraint C[0] to C[i].

After constructing the array V', the algorithm proceeds to evenly distribute
C and V among the worker threads (Lines 9-12), such that Cp[¢] includes the

Multicore Constraint-Based Automated Stabilization 55

array of constraints assigned to thread ¢, and V,[i] includes the array of corre-
sponding constraints violating transitions. Note that the availability of the array
V) enables each worker thread to work independently without interfering with
the other threads. Now, the master thread spawns the worker threads such that
each thread has its own set of constraints with their corresponding constraint
violating transitions and a copy of I, and p. To compute the respective recovery
transitions, each worker thread (Lines 13-15) calls the algorithm PConstraintSat-
isfier, which is similar to the Algorithm [I] except that in addition to C), and p
it also takes V,, and I as an input rather than computing them. Once all worker
threads complete their jobs (Line 16), the master thread collects all the recovery
transitions returned by worker threads in recAll (Lines 17-19) and returns the
overall recovery transitions.

4.2 Using the Distributed Nature of the Program Being Synthesized

Based on the nature of distributed programs and their need to account for the
read/write restrictions on the program variables, the synthesis algorithm is re-
quired to compute the group associated with any set of transitions added /removed
from the program transitions. In this section, we present a multicore algorithm to
perform the group computation using two or more cores/processes.

Algorithm sketch. Given transition set tr the goal of this algorithm is to
compute the Group of transitions associated with the set tr. The sequential al-
gorithm will go through many computations for each process, one after another.
However, in the parallel algorithm, we split the Group computation over the
available number of threads. In particular, rather than having one thread find
the Group for all the processes, we let each thread compute the Group for a sub-
set of the processes. Since the tasks assigned to each thread require a very small
amount of the processor time, there is considerable overhead associated with
the threads creation/destruction every time the Group is computed. Therefore,
we let the master thread create the worker threads at the initialization stage of
the synthesis algorithm. The worker threads stay idle until the master thread
needs to compute the Group for a set of transitions. The Master thread acti-
vates/deactivates the worker threads through a set of mutexes. When all worker
threads are done, the main thread collects the results of all worker threads in
one Group.

5 Case Studies

In Subsections B 152l we describe and analyze two case studies, namely the
Self-Stabilizing Mutual Exclusion [19], and the stabilization of Data Dissemina-
tion Problem in Sensor Networks [I7]. Of these, the first case study is of the
classic problems from distributed computing and illustrate the feasibility of al-
gorithms that add self-stabilization. In the second case study we demonstrate
the applicability of our approach on a real world problem in the field of sensor

56 F. Abujarad and S.S. Kulkarni

networks. In both case studies, we find that parallelism significantly reduces the
total synthesis time.

To concisely describe the transitions of the program we use guarded command
notation: (guard) — (statement), where guard is a Boolean expression over pro-
gram variables and the statement describes how program variables are updated
and it always terminates. A guarded command of the form g — st corresponds
to transitions of the form {(sg, s1)| g evaluates to true in so and s; is obtained
by executing st from sg}.

Throughout this section, all experiments are run on a Sun Fire V40z with 4
dual-core Opteron processors and 16 GB RAM. The MDD representation of the
Boolean formulae has been done using a modified version of the MDD /BDD Glu
2.1 package [20] developed at the University of Colorado [20].

5.1 Case Study 1: Self-stabilizing Mutual Exclusion Program

Mutual exclusion is one of the fundamental problems in distributed/concurrent
programs. One of the classical solutions to this problem is the token-based solu-
tion due to Raymond [I9]. In this solution, the processes form a directed rooted
tree, a holder tree, in which there is a unique token held at the tree root. If a
process wants to access the critical section, it must first acquire the token. Our
goal in this case study is to add stabilization to the fault-intolerant program
in [7]. When faults occur and perturb the holder tree, the new program will self-
stabilize and reconstruct a correct holder tree within a finite number of steps
under weak fairness assumption.

Fault-Intolerant Program. In Raymond’s algorithm, the processes are orga-
nized in a logical tree, denoted as a parent. The holder tree is superimposed on
top of the parent tree such that the root of the holder tree is the process that
has the token. The holder variable forms a directed path from any process in the
tree to the process currently holding the token. In this program, a process can
send the token to one of its neighbors. In particular, if j and k are adjacent (in
the parent tree), then the action by which & sends the token to j is as follows:

NM1: (hk=k N je Adjk) N (hj=k) — h.k,hj:=77;

Constraints. Recall from Section [Z] that we define the invariant to be a set
of constraints on the program state space. In this case study, this set is the
conjunction of the constraints S1, S2, and S3, described next. Moreover, each
of these constraints is specified for each process separately. Therefore, if n is
the number of processes then we have 3n constraints to satisfy.Constraint S1
requires that j’s holder can either be j’s parent, j itself, or one of j’s children.
S2 requires that the holder tree conforms to the parent tree. Finally, S3 requires
that there are no cycles in the holder relation. Thus, predicates S1, S2, and S3
are as follows:

(51) Vj:(hj=Pj)V(hj= ((Pk=J)A(hj=k))

J) Vv (3k
(82) Vj:(Pj#j)= (hj=Pj)V(h(Pj)=13)
(83) Vj:(Pj#3j)= ~((hg=Pj)N(h(Pj)=7))

Multicore Constraint-Based Automated Stabilization 57

Faults. Since we focus on self-stabilizing fault-tolerance, we consider faults that
perturb the holder relation of all processes to an arbitrary value. Thus the fault
action is as follows:

(F1) true — {h.j = any arbitrary value from its domain};

Fault-Tolerant Program. To add stabilizing fault-tolerance to the above pro-
gram, we used the synthesis algorithm as follows. The fault intolerant program
for each process is specified by actions NM1; the faults are specified by the
fault action F'1; and the constraints are from S1, 52, and S3. We specified these
constraints in the following order: first, we specified constraints S1 for the root,
then its children, then its grandchildren and so on. Subsequently, we specified
constraint S2 likewise. Finally, we specified constraint S3 in the reverse order.
The recovery actions computed by the synthesis algorithm are as follows:

(R1) =((h.j = Pj)V (h.g = j)V 3k : (P.k =j) A (hj=k)))
— h.j:=j|hj:=Pj|hj:={child of j};
(R2) =((P.j #j) = (h.j = P.j) vV (h.(P.j) = j))
— h.j = Pj | h(P.j) = j;
(R3) ~((P.j # j) = ~((h.j = P.j) A (h.(P.j) = 7))
— h.j:=j | h(Pj) = Pj| h(Pj):= P(Pj);

Analysis of experimental results. Figure [I] shows the results of using paral-
lelism during constraints satisfaction in synthesizing the self-stabilizing Mutual
Exclusion program.The table illustrate the results for various numbers of pro-
cesses organized in linear topology using different numbers of processors/cores.
It shows the time needed, in seconds, to satisfy the constraints, and the total
synthesis time. It also shows the amount of memory in megabytes. As we can
see from this figure, using parallelism has substantially reduced the time needed
for the synthesis. As a concrete example, observe that the time required to syn-
thesize a stable mutual exclusion program with 50 processes dropped from 623
seconds, using the sequential algorithm, to 378 seconds when two cores were
used, and to 274 seconds when four cores were used.

Sequential 2 threads /4 threads 8 threads
No. of reachable Cnst Syn Mem Cnst Syn Mem Cnst Syn Mem Cnst Syn Mem
Processes states t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB)

20 10%6 8 8 6 6 6 23 3 3 33 4 4 42
30 1044 47 48 13 35 36 42 23 24 66 21 22 91
40 1004 188 191 14 154 157 41 88 90 71 79 80 120
50 10%* 619 623 15 416 378 46 243 246 7 228 233 132
60 10106 1242 1252 16 045 954 51 579 588 82 492 502 136
70 10129 2683 2725 17 2033 2071 74 1398 1439 114 1174 1215 188

Fig. 1. Self-Stabilizing Mutual Exclusion using Constraints partitioning. Cnst t(s) :
Total time spent in constraints satisfaction in seconds. Syn t(s): Total synthesis time
in seconds. Mem (MB): Memory usage in MB.

58 F. Abujarad and S.S. Kulkarni

Sequential 2 threads 4 threads 8 threads
No. of reachable Grp Syn Mem Grp Syn Mem Grp Syn Mem Grp Syn Mem
Processes states t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB)

20 1026 8 8 6 5 5 16 3 4 25 3 4 42
30 10% 47 48 13 36 38 32 21 24 50 20 25 83
40 10%4 185 191 14 124 133 40 84 93 68 74 89 121
50 10%4 611 623 15 361 378 44 247 274 74 233 276 133
60 10106 1228 1252 16 773 808 45 586 640 71 570 658 124
70 10122 2628 2725 17 1830 1961 47 1358 1516 77 1039 1280 136

Fig. 2. Self-Stabilizing Mutual Exclusion using Group threading. Grp t(s) : Total
time spent in Group computation in seconds. Syn t(s): Total synthesis time in seconds.
Mem (MB): Memory usage in MB.

Figure 2l shows the results of exploiting the distributed nature of the program
being synthesized (i.e. Group parallelism) in synthesizing the self-stabilizing Mu-
tual Exclusion program. It shows the time needed, in seconds, to compute the
group, and the total synthesis time. It also shows the amount of memory in
megabytes needed by our algorithm.

5.2 Case Study 2: Data Dissemination in Sensor Networks

In this problem, a base station initiates a computation in which a block of data
is to be sent to all sensors in the network. The data message is split into fixed
size packets. Fach packet is given a sequence number. The base station starts
transmitting the packets to its neighbor(s) in specified time slots, in the order of
the packet sequence number. Subsequently, when the neighbor(s) receive a mes-
sage, they, in turn, retransmit it to their neighbors and so on. The computation
ends when all sensors in the network receive all the messages.

Our goal in this case study is to synthesize a fault-tolerant version of the data
dissemination program that can tolerate a finite number of lost packets (This
program satisfies the constraints only from states reached in the presence of
faults, although not necessarily from all states). The synthesized program is the
same as Infuse [I7] that is designed manually. With regard to the limited space,
we will only include the experimental results showing the benefit of parallelism
details of the fault-intolerant algorithm shown in [2].

FigureBlshows the results of synthesizing the data dissemination protocol with
various numbers of processes by partitioning the constraints among available
threads. Note that, in the case of the data dissemination problem, there were only
5 constraints to satisfy. Hence, when the synthesis is launched with 8 threads,
we are only utilizing 5 of them. As can be seen from Figure [if the number
of constraints is not large enough then the speedup gained from portioning the
constraints is limited.

Figure Ml shows the results of synthesizing the data dissemination protocol
with various numbers of processes by exploiting the distributed nature of this
program.

Multicore Constraint-Based Automated Stabilization 59

Sequential 2 threads 4 threads 8 threads
No. of reachable Cnst Syn Mem Cnst Syn Mem Cnst Syn Mem Cnst Syn Mem
Processes states t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB)

50 1047 8 9 11 6 6 28 5 6 44 7 8 62
100 109 67 70 13 48 53 40 60 64 65 66 70 110
150 1013 321 330 15 187 197 41 188 197 68 248 259 114
200 10190 977 984 16 471 497 47 536 564 73 545 573 116

Fig. 3. Data Dissemination program using C'onstraints partitioning

Sequential 2 threads 4 threads 8 threads
No. of reachable Grp Syn Mem Grp Syn Mem Grp Syn Mem Grp Syn Mem
Processes states t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB)

50 10%7 8 9 11 5 7 26 3 5 43 2 5 67
100 109 63 70 13 38 51 39 23 42 66 17 47 119
150 10443 321 330 15 187 197 41 188 197 68 248 259 114
200 10190 048 984 16 369 457 46 203 324 73 174 358 127

Fig. 4. Data Dissemination program using Group threading

Memory Usage. Notice that the amount of memory needed during synthesis
is proportional to the number of threads being used. It is approximately the
amount of memory used by the sequential algorithm multiplied by the number
of cores being used. Clearly, this is expected since for every thread used, we
create a new MDD package.We argue that using extra memory to gain a speedup
is acceptable, since in the automated synthesis, time complexity is a far more
serious barrier than space complexity.

6 Related Work

Automated program synthesis is studied from different perspectives. One ap-
proach (e.g., [4]) focuses on synthesizing fault-tolerant programs from their spec-
ification in a temporal logic (e.g., CTL, LTL, etc.). Our approach for adding
self-stabilization is based on satisfying constraints that should be true in legiti-
mate states. An orthogonal approach is to utilize primitives such as distributed
reset [I6] where one detects whether the system is in a consistent state and resets
it to a legitimate state, if needed. Examples of these approaches include [16L22].
Our approach can be utilized to design the distributed reset protocol itself.
Parallelization of symbolic reachability analysis has been studied in the model
checking community from different perspectives. In [II[12[13], the authors pro-
pose solutions and analyze different approaches to parallelization of the satura-
tion-based generation of state space in model checking. In particular, in [I2], the
authors show that in order to gain speedup in saturation-based parallel symbolic
verification, one has to pay a penalty for memory usage of up to 10 times that
of the sequential algorithm. Other efforts range from simple approaches that

60 F. Abujarad and S.S. Kulkarni

essentially implement BDDs as two-tiered hash tables [I821], to sophisticated
approaches relying on slicing BDDs [I5] and techniques for workstealing [14].
However, the resulting implementations show only limited speedup.

7 Conclusion

In this paper, we focused on automated addition of fault-tolerance to hierarchical
programs. In particular, we considered programs where legitimate states are
specified in terms of constraints that are true in legitimate states. The goal of
adding self-stabilizing fault-tolerance was to ensure that if these constraints are
violated by faults then eventually the program would reach a state from where all
the constraints are satisfied and, hence, subsequent behavior would be correct.

We focused on improving the synthesis of fault-tolerant programs from their
fault-intolerant version. We showed that the use of multicore technology to paral-
lelize the synthesis algorithm reduces the synthesis time substantially. We paral-
lelized constraint satisfaction by: (1) partitioning the constraints and (2) utilizing
the nature of distributed programs. We showed that parallelism provides a sub-
stantial benefit in reducing the time needed in synthesis.

We illustrated our approach with two case studies: self-stabilizing mutual
exclusion, and a data dissemination problem for sensor networks. The complexity
analysis demonstrated that automated synthesis in these case studies was feasible
and achieved in a reasonable time speedup in all case studies.

Based on the results in this paper, there is potential for further reduction
in synthesis time if the level of parallelism is increased (e.g., if there are more
processors). Although the level of parallelism is fine-grained, we showed that the
overhead of parallel computation is small. Hence, another future work is to evalu-
ate the limits of parallel computation in improving performance of the synthesis
algorithm and include this in the tools (e.g., SYCRAFT [§]) for synthesizing
fault-tolerance.

References

1. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 17(3), 507-535 (1995)

2. Abujarad, F., Kulkarni, S.S.: Multicore constraint-based automated stabilization.
In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 47-61. Springer,
Heidelberg (2009)

3. Aminof, B., Ball, T., Kupferman, O.: Reasoning about systems with transition
fairness. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452,
pp. 194-208. Springer, Heidelberg (2005)

4. Arora, A., Attie, P.C., Emerson, E.A.: Synthesis of fault-tolerant concurrent pro-
grams. In: Principles of Distributed Computing (PODC), pp. 173-182 (1998)

5. Arora, A., Gouda, M.G.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19(11), 1015-1027 (1993)

6. Arora, A., Gouda, M.G., Varghese, G.: Constraint satisfaction as a basis for de-
signing nonmasking fault-tolerant systems. Journal of High Speed Networks 5(3),
293-306 (1996)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Multicore Constraint-Based Automated Stabilization 61

. Arora, A., Kulkarni, S.S.: Designing masking fault-tolerance via nonmasking fault-

tolerance. In: Proceedings of the Fourteenth Symposium on Reliable Distributed
Systems, Bad Neuenahr, vol. 14, pp. 174-185 (1995)

. Bonakdarpour, B., Kulkarni, S.S.: Sycraft: A tool for automated synthesis of fault-

tolerant distributed programs. In: International Conference on Concurrency Theory
(2008)

. Chandy, K.M., Misra, J.: Parallel program design: a foundation. Addison-Wesley

Longman Publishing Co., Inc., Boston (1988)

Emerson, E.A., Lei, C.L.: Temporal model checking under generalized fairness
constraints. In: Proc. 18th Hawaii International Conference on System Sciences,
pp. 277-288 (1985)

Ezekiel, J., Liittgen, G.: Measuring and evaluating parallel state-space exploration
algorithms. In: International Workshop on Parallel and Distributed Methods in
Verification, PDMC (2007)

Ezekiel, J., Liittgen, G., Ciardo, G.: Parallelising symbolic state-space generators.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 268-280.
Springer, Heidelberg (2007)

Ezekiel, J., Liittgen, G., Siminiceanu, R.I.: Can Saturation be parallelised? on the
parallelisation of a symbolic state-space generator. In: Brim, L., Haverkort, B.R.,
Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346,
pp. 331-346. Springer, Heidelberg (2007)

Grumberg, O., Heyman, T., Ifergan, N., Schuster, A.: Achieving speedups in dis-
tributed symbolic reachability analysis through asynchronous computation. In:
Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 129-145.
Springer, Heidelberg (2005)

Grumberg, O., Heyman, T., Schuster, A.: A work-efficient distributed algorithm for
reachability analysis. Formal Methods in System Design (FMSD) 29(2), 157-175
(2006)

Katz, S., Perry, K.: Self-stabilizing extensions for message passing systems. Dis-
tributed Computing 7, 17-26 (1993)

Kulkarni, S.S., Arumugam, M.: Infuse: A TDMA based data dissemination protocol
for sensor networks. International Journal of Distributed Sensor Networks 2(1),
55-78 (2006)

Milvang-Jensen, K., Hu, A.J.: BDDNOW: A parallel BDD package. In: Gopalakr-
ishnan, G.C., Windley, P. (eds.) FMCAD 1998. LNCS, vol. 1522, pp. 501-507.
Springer, Heidelberg (1998)

Raymond, K.: A tree based algorithm for mutual exclusion. ACM Transactions on
Computer Systems 7, 61-77 (1989)

Somenzi, F.. CUDD: Colorado University Decision Diagram Package,
http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

Stornetta, T., Brewer, F.: Implementation of an efficient parallel BDD package. In:
Design automation (DAC), pp. 641-644 (1996)

Theel, O., Gartner, F.C.: An exercise in proving convergence through transfer
functions. In: Proc. 4th Workshop on Self-stabilizing Systems, Austin, Texas,
pp. 41-47 (1999)

http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

1

Traceroute is arguably the most popular mechanism for computing the topology
of a network in the Internet [I] and [2]. Executing Traceroute between any two
nodes, say nodes z and y, in a network produces a sequence of node identifiers
that corresponds to a simple path between = and y in the network. This sequence

A Theory of Network Tracing

Hrishikesh B. Acharya' and Mohamed G. Gouda'-?

1 The University of Texas at Austin, USA
2 The National Science Foundation, USA
{acharya,gouda}@cs.utexas.edu

Abstract. Traceroute is a widely used program for computing the topol-
ogy of any network in the Internet. Using Traceroute, one starts from a
node and chooses any other node in the network. Traceroute obtains the
sequence of nodes that occur between these two nodes, as specified by
the routing tables in these nodes. Each use of Traceroute in a network
produces a trace of nodes that constitute a simple path in this network.
In every trace that is produced by Traceroute, each node occurs either
by its unique identifier, or by the anonymous identifier “x”. In this paper,
we introduce the first theory aimed at answering the following important
question. Is there an algorithm to compute the topology of a network N
from a trace set T that is produced by using Traceroute in network NV,
assuming that each edge in IV occurs in at least one trace in 7', and that
each node in N occurs by its unique identifier in at least one trace in
T? We prove that the answer to this question is “No” if N is an even
ring or a general network. However, it is ”Yes” if IV is a tree or an odd
ring. The answer is also “No” if N is mostly-regular, but “Yes” if N is a
mostly-regular even ring.

Introduction

of node identifiers is usually referred to as a trace between x and y.

Traceroute can be used to compute the topology of a network IV in the Internet

as follows [1] :

1.

It turns out that this procedure for using Traceroute to compute the topology of
network N has a problem. As observed in [3], [4], and [5], some of the nodes in the

Identify the “terminal” nodes in network N (preferably at the perimeter of
N for good coverage).
Execute Traceroute between every pair of terminal nodes of N, identified in
Step 1, to produce traces of nodes that occur between each pair (as per the
routing tables in the nodes of N).
Put the traces produced in Step 2 together in order to compute the topology
of network N.

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 62-{74,]2009.
© Springer-Verlag Berlin Heidelberg 2009

A Theory of Network Tracing 63

traces produced in Step 2 occur by anonymous identifiers, rather than by their
unique identifiers. This causes Step 3 to compute many candidate topologies,
rather than one unique topology, for network N.

To solve this problem, Yao et al. [3] have suggested that Step 3 compute only
the topology with the smallest number of anonymous nodes, subject to some
constraints (trace preservation and distance preservation). This suggestion has
two problems of its own. First, the choice, that the topology of network IV be the
one with the smallest number of anonymous nodes, is an arbitrary one. Second, it
turns out that the problem of computing the network topology with the smallest
number of anonymous nodes, from a given set of traces, is NP-complete. In order
to solve this second problem, Jin et al. [4] and Gunes et al.[5] propose several
heuristics (with complexity polynomial in the number of unique identifiers) that
can be used to compute a network topology with a “small” number of anonymous
nodes. Clearly, these heuristics cannot always compute a network topology with
the smallest possible number of anonymous nodes.

In this paper, we take a different approach to the problem of computing one
unique topology for network N from a given trace set T' that is generated by
executing Traceroute over N. Our approach is based on the assumption that the
given trace set T satisfies a number of “conditions”. The assumption, that the
given trace set T satisfies these conditions, is made with the hope that the com-
puted topology for network N is unique. These conditions can be summarized
as follows: (Formal statements of these conditions are given in section [2)).

— Unique node identifiers: Each node in network N has exactly one unique
identifier, and if this node occurs in a trace in 7', then it occurs in this trace
either by this unique identifier, or by an anonymous identifier.

— Complete coverage: Fach edge in network N occurs in at least one trace in
the trace set T'. Also, each node in N occurs by its unique identifier in at
least one trace in 7.

— Stable and symmetric routing: The routing tables in the nodes of network N
indicate exactly one route between any two nodes in V.

These conditions may appear to be too strong to hold in practice. However, it
is straightforward to show that if the given trace set T' does not satisfy any one
of these conditions, then more than one candidate topology for network N can
be computed from T

For example, assume that the given trace set T does not satisfy the first
condition: a node occurs by identifier a in one trace in 7', and occurs by a
second identifier b in another trace in T'. In this case, one can infer at least two
candidate topologies for network NV : in one topology, a and b indicate one node
in N, and in the other, they indicate two distinct nodes in N.

Our main result in this paper is negative. This means that, even when the
given trace set T satisfies the above (admittedly strong) conditions, it is not
always possible to compute a unique topology for network N from 7. Thus,
adopting the above conditions has the effect of strengthening our primary (neg-
ative) results.

64 H.B. Acharya and M.G. Gouda

2 Network Tracing

A network N is a connected, undirected graph where nodes have unique iden-
tifiers. Every node in a network is designated either terminal or non-terminal.
Also, every node is either regular or irregular.

A trace t is generable from a network N iff ¢ is a sequence of node identifiers
that represents a simple path between two terminal nodes in N. A regular node
occurs in t by its unique identifier. An irregular node occurs in ¢ either by its
unique identifier, or by the anonymous identifier *;, where 7 is a unique integer
in ¢. The first and last nodes of ¢ occur by their unique identifiers in t.

We adopt the following notation in our graphical representations.

1. A terminal node is represented by a box.
2. A non-terminal node is represented by a circle.

3. A regular node z is labeled by its unique identifier “x”.
4. An irregular node z is labeled “z/*”.

Note that a trace t that is generable from a network N is a sequence of nodes
that corresponds to a simple path in N. Thus, there are two ways to write the
sequence of nodes in ¢. For example, ¢ can be written as (e, *1, %o, *3,a), or it
can be written as (a, *3, x2, *1, ¢). We regard the differences between these two
ways of writing ¢ as immaterial. Later on, when we mention that a trace is of
the form (z,...,y), we mean that this trace could also be of the form (y,...,z).

For trace ¢, we adopt the notation [t| to indicate the number of edges in ¢. For
example, |(e, *1, *a,*3,a)| = 4.

A trace set T is generable from a network N iff T satisfies the following five
conditions :

T is a set of traces, each of which is generable from N.

For every pair of terminal nodes z,y in N, T has at least one trace (x,...,y).
Every edge in NV occurs in at least one trace in T

The unique identifier of every node in N occurs in at least one trace in T.
T is consistent: for every two distinct nodes x and y, if and y occur in two
or more traces in 7', then the exact same set of nodes occur between x and
y in every trace in 7" where both = and y occur.

U W

Two comments concerning Condition 5 in this definition are in order. First, if
a trace set T has two traces of the form (x,*9,2) and (u,x,y,z), then from
Condition 5, we can conclude that node 2 is in fact node y.

Second, if a trace set T" has a trace of the form (x, *9, z), then from Condition
5, T cannot have a trace of the form (u,x, x5, y, z). This is because the number
of nodes between x and z in the first trace is 1, and their number in the second
trace is 2, in violation of Condition 5.

The network tracing problem is to design an algorithm that takes as input a
trace set T' that is generable from a network, and produces a network N such
that T is generable from N and not from any other network.

A Theory of Network Tracing 65
3 Impossibility of Network Tracing

Obviously, the network tracing problem is solvable for reqular networks, those
where every node is regular. However, it turns out that the problem is not solv-
able for general networks. In fact, if a network is permitted to have just one
irregular node, then the network tracing problem is unsolvable, as shown by the
following theorem.

Theorem 1. There is no algorithm that takes as an input a trace set T that
1s generable from a network with one irregular node, and produces as output a
network N with one irreqular node such that:

— T is generable from N, and
— T is not generable from any other network with at least one irreqular node.

Proof. (By contradiction) Assume that such an algorithm exists. The following
trace set 17 is generable from network N; in Figure [l

T = {<a7b)7 (a7 *lad)a (avf)a
(bv) d)7 (bv f)7
(d.e,)}

If Ty is given as an input to the assumed algorithm, the algorithm produces
network Nj as output. This implies that 77 is not generable from any other
network, which contradicts the fact that T3 is also generable from network N,
in Figure [l O

f

(a) Network Ny (b) Network Na

Fig. 1. Theorem 1

66 H.B. Acharya and M.G. Gouda

Theorem [provides a strong negative result for the network tracing problem.
Nevertheless, we identify, in the next three sections, classes of networks for which
the network tracing problem is solvable:

1. Tree networks in Section
2. Odd rings in Section [
3. Mostly regular even rings in Section

4 Tracing of Tree Networks

A network N is called a tree iff N is acyclic. In this section, we show that the
network tracing problem is solvable for tree networks.

Theorem 2. There is an algorithm that takes as an input a trace set T that is
generable from a tree metwork, and produces as output a tree network N such
that:

— T is generable from N, and
— T is not generable from any other tree network.

Proof. (By construction) We prove Theorem 2] by providing the algorithm men-
tioned. The algorithm consists of the following eight steps:

1. Initially, tree IV is empty.

2. Apply procedure Leaf, discussed below, to compute, from 7', the unique
identifier of each leaf node in V.

3. Apply procedure Parent, discussed below, to compute from 7', the unique
identifier of the parent of each leaf node in .

4. For every node y that is the parent of a leaf node z, add to tree N an
(undirected) edge between nodes = and y.

5. For every node y that is the parent of a leaf node x, replace in T" each trace
of the form (z,x*;,...) by a trace of the form (z,y,...).

6. Shorten the traces in T' by replacing in T each trace of the form (z,y,...),
where x is a leaf node, by the trace (y,...) and by discarding from T each
trace that has only one node or is empty.

7. Repeat the algorithm, starting from Step 2, on the trace set T', that results
from Step 6, provided that the resulting set T is non-empty.

8. The algorithm outputs N and terminates when the resulting 7' from Step 6
is empty.

Next, we specify the two procedures Leaf and Parent that are used in Steps 2
and 3, respectively, of the above algorithm. The correctness of procedure Leaf
follows from the observation that each leaf node in NV occurs as a terminal node
in some trace in T, but the converse is not necessarily true. Procedure Leaf is
specified as follows:

A Theory of Network Tracing 67

procedure Leaf
for each terminal node y in any trace in T'
if T has three traces
t=(z,...,9),t' =(y,...,2),t" = (x,...,2),
such that [t + |¢'] = [t
then y is a non-leaf node in V
else y is a leaf node in N

end

The correctness of procedure Parent follows from the observation that the par-
ent of each leaf node in N occurs by its unique identifier in some trace in 7.
Procedure Parent is specified as follows:

procedure Parent
for each leaf node z in N,
if T has a trace of the form (z,y...),
or T has two traces of the form (z,x*;,2) and (z,y,...)
where z is a leaf node in N
then the unique identifier of the parent of node x is y

end

5 Tracing of Ring Networks

In this section, we discuss the solvability of the network tracing problem for ring
networks. Surprisingly, we show that the problem is solvable for odd rings (i.e.
cycles with an odd number of nodes), but not solvable for even rings (i.e. cycles
with an even number of nodes).

Theorem 3. There is an algorithm that takes as an input a trace set T that is
generable from an odd ring network, and produces as output an odd ring network
N such that:

— T is generable from N, and
— T is not generable from any other odd ring network.

Proof. (By construction) We prove Theorem B by describing the algorithm that
is mentioned in the theorem. The algorithm consists of the following five steps:

1. Construct an unlabeled ring N with n nodes, where n is the number of
unique identifiers that occur in the traces in T'. The algorithm terminates
when each node in NN is labeled by a distinct unique identifier from those
that occur in the traces in 7.

68 H.B. Acharya and M.G. Gouda

cf*

6/

5/*

fr*

cf*

fr*

e,

7

(a) Network N3

=

el

(b) Network Ny

Fig. 2. Theorem 5

A Theory of Network Tracing 69

2. Choose any trace t = (a,...,b) in T. Label any node in N with the unique
identifier “a”, and label the node in N, that is reachable by traversing |¢|
edges clockwise starting from node a, with the unique identifier “b”.

3. For every pair of traces t' = (a,...,c) and " = (b,...,c) in T,
if [t] = [t'] 4 [t"] or [t'| = [t| + [t"]
then label the node in N, that is reachable by traversing |¢'| edges clockwise
starting from node a, with the unique identifier “c”.
else label the node in N, that is reachable by traversing |t'| edges counter-
clockwise starting from node a, with the unique identifier “c”.

4. Note that by the end of Step 3, every unique identifier of a terminal node in

a trace in T is used to label one node in ring V.

5. Consider any trace t' = (z,...,y) in T, and note that [t'| cannot be equal
to m/2 since |t’| is a positive integer, and n is odd. Consequently, one can
determine whether any trace t = (z,...,y) goes, either clockwise or counter-

clockwise, from node x to node y. Thus, if trace ¢ has a unique identifier z
that has not yet been used to label any node in N, then one can identify the
node in N that should be labeled with z. O

Theorem 4. There is no algorithm that takes as an input a trace set T that
18 generable from an even ring network, and produces as output an even ring
network N such that:

— T is generable from N, and
— T is not generable from any other even ring network.

Proof. (By contradiction) The proof proceeds as for Theorem/[I] using the obser-
vation that the following trace set T5 is generable from two even ring networks,
N3 and Ny, in Figure 2

Ty = {(a,1,%1,6, %2, %3,b), (a, x4, ¢), (a, x5, *¢, *7,d), (a, *s, €), (a, *9, *10, *11, [),
(b, *12, *13, *14, ¢), (b, *15, d), (b, *16, *17, *18, €), (b, *10, f),
(¢, %20, *21, 2, %22, 3, d), (¢, *23, *24, *25, €), (¢, *26, [),
(d,*27,€), (d, %28, %29, *30, [f),
(e, %31, *32,4, *33,5, f)} O

6 Tracing of Mostly-Regular Networks

A network, where each node has at most one irregular neighbor, is called mostly-
reqular. The following theorem shows that the network tracing problem is solv-
able for mostly-regular even rings.

Theorem 5. There is an algorithm that takes as an input a trace set T that
1s generable from a mostly-reqular even ring network, and produces as output a
mostly-regular even ring network N such that:

— T is generable from N, and
— T is not generable from any other mostly-regular even ring network.

70 H.B. Acharya and M.G. Gouda

Proof. (By construction). The algorithm is given in our technical report [6]. O

Encouraged by Theorem [, one may have hoped that the network tracing prob-
lem is solvable for the whole class of mostly-regular networks. Unfortunately, as
shown by the next theorem, this turns out not to be the case.

Theorem 6. There is no algorithm that takes as an input a trace set T that
s generable from any mostly-reqular network, and produces as output a mostly-
reqular network N such that:

— T is generable from N, and
— T is not generable from any other mostly-reqular network.

Proof. (By contradiction) Suppose such an algorithm exists. As any network
with exactly one irregular node is clearly mostly-regular, this algorithm takes
any trace set generable from a network N with one irregular node, and returns
N (and only N). This contradicts Theorem [O

7 The Weak Network Tracing Problem

The reason that the network tracing problem is not solvable in most cases, one
may argue, is that the given trace set T is required to be generable from one,
and only one, network N. One may hope, then, that if this strict requirement
is somewhat relaxed, then the resulting weak version of the network tracing
problem becomes solvable in many cases. The weak network tracing problem can
be stated as follows:

"Design an algorithm that takes as input a trace set T, that is generable
from a network, and produces a small set { Ny, .., Ni} of networks such that T is
generable from each network in this set and not from any network outside this
set.”

The requirement that the produced set {Ny,.., Ni} be small means, mathe-
matically, that the cardinality k of this set be a constant rather than a function
of the number of unique node identifiers in the given trace set 7.

There are both practical and theoretical reasons for this requirement. From a
practical point of view, the smaller the produced set, the better. From a theoret-
ical point of view, allowing the cardinality of the produced set to be a function
of n, the number of unique identifiers, makes the weak network tracing prob-
lem trivially solvable (by exhaustive enumeration, setting each *; to each unique
identifier).

Unfortunately, the following theorem shows that the weak network tracing
problem is not solvable in general.

Theorem 7. There is no algorithm that takes as an input a trace set T that
is generable from a network, and computes a set of networks {Ny ... Ny} such
that:

A Theory of Network Tracing 71

— T is generable from every network in the set {Ny ... Ny},
— T is not generable from any other network, and
— k is a constant whose value is not a function of the number of node identifiers
i T.
Proof. We prove this theorem by exhibiting an infinite sequence of trace sets T'Sg,

TSs,TS1p - ..such that each trace set T'S,, satisfies the following three conditions:

— TS, has 1 anonymous node identifier.
— T'S,, has n unique node identifiers.
— TS, is generable from any one of "52 distinct networks.

Consider the first trace set in the sequence.

TS = {(a,x1,b), (a,*1,m1), (a, 2, m2),

(b7 *9, ml)v (ba x2, m2)7

(ma,m2)}
This trace set is generable from the two networks N5 and Ng in Figure Bl

We now add two nodes, x3 and mg, to the trace set T'Sg to form the trace
set T'Sg and increase the number of possible networks (from which the trace set
TSs is generable) by 1. Node x3 connects mg to both a and b, so we add the
traces (a,x3,m3) and (b, x3,m3). Also, ms is directly connected to every m;, so
we add (mq,m3) and (msg, m3). The resulting trace set T'Sg is as follows:
TSS = {(Cl, Ty, b)a (Cl, *1, ml)a (Cl, T2, mQ)a (Cl, X3, m3)7
(b7 *2, ml)a (b7 €2, mQ)a (b7 €3, m3)7

(m1,ma), (m1,m3), (m2,m3)}

ml ml

m2 m2

(a) Network N5 (b) Network Ng

Fig. 3. Two networks

72 H.B. Acharya and M.G. Gouda

ml

x1

X2/*
m2 m2
(a) Network N7 (b) Network Ng

m2

(c) Network Ny

Fig. 4. Three networks

The trace set T'Sg is generable from any of the three networks N7, Ng and Ny

in Figure[d

By repeating this procedure k — 2 times, we produce a trace set that is gen-
erable from every member of a set of k distinct networks. As each step adds
two new nodes, each of these networks has 2k 4+ 2 nodes. The number of unique
identifiers being n, we have k = " 2. a

2

A Theory of Network Tracing 73

8 Discussion and Related Work

There have been three attacks on the anonymity problem. Casting it as an op-
timization problem, Yao et al. [3] try building the smallest possible topology
by combining anonymous nodes. They consider two constraints, trace preserva-
tion and distance preservation. Proving that optimum topology inference under
these conditions is NP-complete, they propose a O(n®) heuristic that merges
anonymous nodes, keeping the constraints invariant. Distance preservation re-
quires that merging nodes never reduces the length of the shortest path between
any two nodes in the computed network; this assumes not only consistency, but
also shortest-path routing. Their study also assumes that anonymous nodes are
strictly anonymous, and their unique identifiers are never revealed.

Jin et al. propose two heuristics to address the problem in [4]. The first
is O(n?), uses link delays or node connectivity as attributes, and performs
ISOMAP-based dimensionality reduction. It ignores the difficulty of estimat-
ing one-hop delays from RTTs in path traces [7]. The second, a simple O(n?)
neighbor matching heuristic, has high rates of both false positives and false neg-
atives. In [B], Gunes et al. apply five heuristics in succession and get performance
strictly better than O(n?).

This paper addresses the problem and provides a theoretical basis for stating
which instances of trace set can be used to compute exactly one network, and
which cannot. We give a metric for reduction - the irregularity number - and
bounds on algorithms such as in the above papers. We also give polynomial-time
exact algorithms for several network cases of interest.

9 Concluding Remarks

We have made three contributions in this paper. First, we formally state the
network tracing problem. We then develop the theory by identifying some im-
portant network classes for which this problem is solvable, and some for which
it is not. This includes some very surprising results.

We then extend this research using a weaker version of the network tracing
problem, and show that it is not only not possible in general to take a trace set
T and compute a single network NNV, such that T is generable from N and only
N, it is also not possible to generate a small (with constant cardinality) set of
networks such that T is generable only from members of this set.

In future work, we intend to investigate whether it is possible to relax our
assumptions (consistent routing, unique identifiers, and complete coverage) while
maintaining the effectiveness and elegance of the theory.

References

1. Cheswick, B., Burch, H., Branigan, S.: Mapping and visualizing the internet. In:
ATEC 2000: Proceedings of the annual conference on USENIX Annual Technical
Conference, Berkeley, CA, USA, pp. 1-12. USENIX Association (2000)

74

H.B. Acharya and M.G. Gouda

. Viger, F., Augustin, B., Cuvellier, X., Magnien, C., Latapy, M., Friedman, T., Teix-

eira, R.: Detection, understanding, and prevention of traceroute measurement arti-
facts. Computer Networks 52, 998-1018 (2008)

. Yao, B., Viswanathan, R., Chang, F., Waddington, D.: Topology inference in the

presence of anonymous routers. In: Twenty-Second Annual Joint Conference of the
IEEE Computer and Communications Societies, INFOCOM 2003, vol. 1, pp. 353-363.
IEEE, Los Alamitos (2003)

. Jin, X., Yiu, W.P.K., Chan, S.H.G., Wang, Y.: Network topology inference based on

end-to-end measurements. IEEE Journal on Selected Areas in Communications 24,
2182-2195 (2006)

. Gunes, M., Sarac, K.: Resolving anonymous routers in internet topology measure-

ment studies. In: INFOCOM 2008. The 27th Conference on Computer Communi-
cations, pp. 1076-1084. IEEE, Los Alamitos (2008)

. Acharya, H.B., Gouda, M.G.: Tr-09-02: The theory of network tracing. Technical

report, University of Texas, Austin (2009),
http://www.cs.utexas.edu/research/publications/ncstrl/ncstrl2html.cgi

. Feldman, D., Shavitt, Y.: Automatic large scale generation of internet pop level

maps. In: IEEE Global Telecommunications Conference (GLOBECOM), pp. 1-6
(2008)

http://www.cs.utexas.edu/research/publications/ncstrl/ncstrl2html.cgi

Developing Autonomic and Secure Virtual
Organisations with Chemical Programming

Alvaro E. Arenas!, Jean-Pierre Banatre?, and Thierry Priol?

1 STFC Rutherford Appleton Laboratory, UK
2 INRIA Rennes - Bretagne Atlantique, France
alvaro.arenas@stfc.ac.uk, Jean-Pierre.Banatre@inria.fr,
Thierry.Priol@inria.fr

Abstract. This paper studies the development of autonomic and secure
Virtual Organisations (VOs) when following the chemical-programming
paradigm. We have selected the Higher-Order Chemical Language
(HOCL) as the representative of the chemical paradigm, due mainly to its
generality, its implicit autonomic property, and its potential application
to emerging computing paragidms such as Grid computing and service
computing. We have advocated the use of aspect-oriented techniques,
where autonomicity and security can be seen as cross-cutting concerns
impacting the whole system. We show how HOCL can be used to model
VOs, exemplified by a VO system for the generation of digital prod-
ucts. We develop patterns for HOCL, including patterns for traditional
security properties such as authorisation and secure logs, as well as au-
tonomic properties such as self-protection and self-healing. The patterns
are applied to HOCL programs following an aspect-oriented approach,
where aspects are modelled as transformation functions that add to a
program a cross-cutting concern.

1 Introduction

The concept of Virtual Organisation (VO) is given attention by researchers
within a wide range of fields, from social anthropology and organisational the-
ory to computer science. Its importance resides in providing an abstraction to
represent organisational collaborations, a topic of fresh interest given the cur-
rent exploitation of Internet to create virtual enterprises [5], or the sharing of
resources across different organisations as envisaged by Grid computing [7].

This paper studies the development of VOs when using a chemical program-
ming paradigm. Chemical programming is a computational paradigm inspired
by the chemical metaphor, where computation is seen as reactions between
molecules in a chemical solution. Examples of chemical-programming frame-
works include P-Systems [I3], the Higher-Order Chemical Language (HOCL) [I]
and Fraglets [I4], among others. Potentiality of the paradigm has been shown
by its application to solve problems as diverse as page ranking of biochemical
databases [12], coordination of services [3], or protocol resilience [15].

A VO can be seen as a temporary or permanent coalition of geographically
dispersed organisations that pool resources, capabilities and information in order

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 75 2009.
© Springer-Verlag Berlin Heidelberg 2009

76 A.E. Arenas, J.-P. Banatre, and T. Priol

to achieve common goals. Autonomicity is an important property in VOs, since
coalition members should act autonomously in order to achieve the VO goals.
The chemical programming paradigm is very relevant to the programming of
autonomic systems as it captures the intuition of a collection of cooperative
components which evolve freely according to some predefined constraints (reac-
tion rules). Security is also an important concern in VOs, since such a coalition
may include unknown organisations that are untrusted by other VO partners.

We introduce here a method for modelling autonomic and secure VOs in
HOCL using aspect-oriented techniques. We have selected HOCL as the language
representative of the chemical paradigm, due mainly to its generality, its implicit
autonomic property — HOCL is based on the Gamma calculus [T], which is also
the foundation of other chemical frameworks such as Fraglets — and its potential
application to emerging computing paradigms such as service computing [3].
We define first a set of patterns for HOCL programs, representing security and
autonomic properties. Each property is modelled then as an aspect, defined using
the patterns, which is weaved following a code pre-processing technique.

The structure of the paper is the following. Section Bl introduces HOCL.
Section [3] discusses the autonomic properties of HOCL and describes its ap-
plication to VOs, exemplified by a system for the generation of digital products.
Section [presents security patterns for chemical programs. Section [l describes
the use of aspect-oriented techniques in HOCL. Next, section [shows how to
apply the security patterns by using aspect-oriented programming. Section [7 re-
lates our work with others. Finally, section [§ concludes the paper and highlights
future work.

2 The Higher-Order Chemical Language

In this section we introduce the main features of HOCL, referring the reader
to [2] for a more complete presentation. A chemical program can be seen as a
(symbolic) chemical solution where data is represented by floating molecules and
computation by chemical reactions between them. When some molecules match
and fulfill a reaction condition, they are replaced by the body of the reaction.
That process goes on until an inert solution is reached: the solution is said to be
inert when no reaction can occur anymore.

In HOCL, a chemical solution is represented by a multiset and reaction rules
specify multiset rewritings. Every entity is a molecule, including reaction rules.
A program is a molecule, that is to say, a multiset of atoms (Ay, ..., A,) which
can be constants (integers, booleans, etc.), sub-solutions ((M)) or reaction rules.
Compound molecules (M7, Ms) are built using the associative and commutative
operator “”, which formalises the Brownian motion and can always be used to
reorganise molecules. The execution of a chemical program consists in triggering
reactions until the solution becomes inert. A reaction involves a reaction rule
replace-one P by M if C' and a molecule N that satisfies the pattern P and
the reaction condition C. The reaction consumes the rule and the molecule N,
and produces M. Formally:

Developing Autonomic and Secure Virtual Organisations 7

(replace-one P by M if C), N — ¢M
if P match N = ¢ and ¢C

where ¢ is the substitution obtained by matching N with P. It maps every
variable defined in P to a sub-molecule from N. For example, the rule in

(0, 10, 8, replace-one x by 9 if > 9)

can react with 10. They are replaced by 9. The solution becomes the inert solu-
tion (0, 9, 8).

A molecule inside a solution cannot react with a molecule outside the solution
(i.e. the construct (.) can be seen as a membrane). A HOCL program is a solution
which can contain reaction rules that manipulate other molecules (reaction rules,
sub-solutions, etc.) of the solution.

In the remaining of the paper, we use some syntactic sugar such as declara-
tions let x = My in Ms which is equivalent to Ms where all the free occur-
rences of x are replaced by M;. The reaction rules replace-one P by M if C'
are one-shot: they are consumed when they react. Their variant denoted by
replace P by M if C are n-shot, i.e. they do not disappear when they react.

There are usually many possible reactions making the execution of chemical
programs highly parallel and non-deterministic. Since reactions involve only a
few molecules and react independently of the context, many distinct reactions
can occur at the same time. For example, consider the program of Figure 1
that computes the prime numbers lower than 10 using a chemical version of the
Eratosthenes’ sieve.

let sieve = replace z,y by z if x divy in
(steve, 2,3,4,5,6,7,8,9,10)

Fig. 1. Chemical prime numbers program

The rule sieve reacts with two integers x and y such that x divides y, and returns
x (i.e. removes y). Initially several reactions are possible, for example sieve, 2,8
(replaced by sieve, 2) or sieve, 3,9 (replaced by sieve, 3) or sieve, 2,10, etc. The
solution becomes inert when the rule sieve cannot react with any couple of
integers in the solution, that is to say, when the solution contains only prime
numbers. The result of the computation in our example is (sieve, 2,3,5,7).

An important feature of HOCL is the notion of multiplets. A multiplet is a
finite multiset of identical elements. In this paper, we limit ourselves to multiplets
of basic values (integers, booleans, strings). In HOCL multiplets are defined and
matched using an exponential notation: if v is a basic value then v* (k > 0)
denotes a multiplet of k elements v. Likewise, for variable x having a basic type,
notation z* denotes a multiplet of & elements. We could also have variables in the
exponentiation of constants or patterns, indicating that the size of a multiplet
becomes dynamic.

78 A.E. Arenas, J.-P. Banatre, and T. Priol

3 Virtual Organisations in HOCL

3.1 Autonomicity in HOCL

Autonomic computing provides a vision in which systems manage themselves
according to some predefined goals. The essence of autonomic computing is self-
organisation. Like biological systems, autonomic systems maintain and adjust
their operation in the face of changing components, workloads, demands and
external conditions, such as hardware or software failures, either innocent or
malicious. The autonomic system might continually monitor its own use and
check for component upgrades. HOCL is very appropriate as a programming
model to express programs with autonomic behaviours. The reason is twofold.
First, HOCL is intrinsically dynamic: rules are executed until an inert state
is reached. When the multiset is modified, then reactions rules are executed
to achieve again the inertness. Secondly, the high-order promoted by HOCL
allows some policies to be replaced at runtime by new ones. Policies can be
expressed by a set of rules that are stored in the multiset and thus can be
replaced thanks to the execution of some other rules (high-order). An autonomic
system is implemented using control loops that monitor the system and executes
a set of operations to keep its parameters within a desired scope. A control
loop has four basic steps: monitor, analyse, plan and execute. All these steps
can be mapped onto chemical objects. Monitor and execute can be represented
by external input/output operations into the multiset by generating molecules
whereas analyse and plan are a set of chemical rules that express the autonomic
behavior. A simple autonomic mail system [2] has been developed as an example
of programming self-organisation with HOCL.

3.2 Programming Autonomic Virtual Organisations in HOCL

We model here a VO with the goal of generating products resulting from the
collaboration of several dispersed organisations, which possesses the following
characteristics:

1. The VO aims at producing some complex, sophisticated ’digital’ product
(e.g. a software system, or some multimedia product).

2. The VO consists of a defined number of members (organisations), each one
contributing to the generation of products.

3. The product generation is considered a knowledge-intensive and content-
intensive activity. VO members depend on and need access to several sources
of knowledge as well as digital content assets, which they assemble/use to
create the product.

4. The production process is structured along some workflow (e.g. a software
production process, or a Web/content publishing process), and foresees sev-
eral phases. Policies may be applied to control access to the assets, which
may vary according to the phase or state in the project workflow.

For our scenario, we are assuming a very simple workflow depicted in Figure
The workflow consists of four phases. In the Edit phase, work is distributed

Developing Autonomic and Secure Virtual Organisations 79

(" Merge > ' Validate }——_ Publish —Q

Fig. 2. Workflow process for the VO supporting the generation of a product

among all VO members contributing to the generation of a product. In the
Merge phase, parts of the product created by each VO member are combined in
order to create a global product. Once the global product is created, it is passed
to the VO members in the Validate phase, so they can ”validate” the product.
Finally, the process finalises if the product is approved by a determined number
of members by sending the product to Publish.

For the case of our VO for product generation, the whole VO is modelled as
a solution, which contains sub-solutions S;:(---) that represent the VO mem-
bers. The product under construction is modelled as a molecule that could be
tagged by another molecule representing the product status (EDITING, EDITED,
GENERATE, VALIDATING, VALIDATED, ACCEPTING and PUBLISHED). Workflow op-
erations (edit, merge, publish, etc.) are represented as reactions. Table 1 sum-
marises the chemical modelling of the main elements of our VO.

Table 1. Chemical representation of the main elements of a virtual organisation for
the collaborative generation of products

VO Concept Chemical Representation
VO Solution

VO Member Sub-solution

Workflow Operation Reaction

Product Molecule

Product Status Molecule

Figure [shows the HOCL program for generating a product. It consists of
a solution containing all VO members —represented as subsolutions S; for i =
1,---,k, and molecule Global Product, the product to be published.

The reaction rule edit distributes the global product to all VO members.
Here we are assuming the existence of & VO members, where k is a predefined
integer constant. Reaction merge generates a local product, and marks the con-
tribution of the corresponding member to the product generation by adding
constant GENERATE to the global solution. It also includes operation Merge,
which combines both the local and global products. The edition of a product
finalises when VO members have contributed, which is represented by having
NumMerges(k) copies of molecule GENERATE. Function NumMerges(k) is a
domain-specific function indicating the number of copies needed to generate a
product; if it is the identity function, i.e. equal to k, all participant solutions
must contribute to the product generation. Note that we are exploiting here
the existence of multiplets in HOCL: molecule GENERATEN#mMerges(k) acts as
a synchronisation barrier indicating when reaction wvalid can occur. Reaction

80 A.E. Arenas, J.-P. Banatre, and T. Priol

let publish = replace Global Product, ACCEPTING”, GENERATEY
by PUBLISHED:Global Product
if x > MinApproval(k) AN y= NumMerges(k)
in
let accept = replace S: (VALIDATING: Product)
by S: <VALIDATED> , ACCEPTING
if AgreeProduct(Product)
in
let valid = replace S: (EDITED) , Global Product, GENERATEY
by S: (VALIDATING:Global Product) , Global Product, GENERATEY
if y = NumMerges(k)
in
let merge = replace S: (EDITING: Product) , Global Product
by S: (EDITED) , Merge(Product, Global Product), GENERATE
if FinishProduct(Product)
in
let edit = replace S: (), Global Product
by S: (EDITING:Global Product) , Global Product
in
(S1: (), -, S: (), Global Product, edit, merge, valid, accept, publish)

Fig. 3. HOCL Program for collaborative generation of a digital product

valid distributes the final Global Product among the members in order to get
their approval. Reaction accept allows a VO member to vote for the approval of
the product, which results in adding molecule ACCEPTING in the global solution.
The whole process finalises as soon as MinApproval(k) VO members approve
the final product by executing reaction publish, which sends the final product
to publishing. Function MinApproval(k) is an abstraction of the protocol used
to decide when to publish a product; for instance, if it is equal to ceil(k/2), we
would be using a majority vote protocol.

4 Patterns for Chemical Programming

A composition pattern is a design model that specifies the design of a cross-
cutting requirement independently of any design it may potentially cross-cut,
and how that design may be re-used wherever it may be required [6]. In this sec-
tion we define composition patterns for HOCL programs. These patterns serve
as templates that guide the definition of aspects by instantiating them with
domain-specific information. We define patterns for important security proper-
ties, namely Authorisation and Security Logs; as well as patterns for autonomic
properties such as Self-Protection and Self-Healing.

Authorisation Pattern. Authorisation is concerned with the verification that
an entity can perform a particular action. In the context of chemical programs,
authorisation refers to the verification that a reaction could occur in a solution.

Developing Autonomic and Secure Virtual Organisations 81

authoZ(S, R) = let R = replace P by M
if C' A Authorised(S, R)
in S:(w, R)

Fig. 4. HOCL Pattern for Authorisation

The authorisation pattern, described in Figure Ml indicates that whenever a
solution S reacts using reaction R, the authorisation condition Authorised(S, R)
holds.

The authorisation condition is considered as a generic condition that should
be instantiated with domain-specific information. In this paper, we are inter-
ested in defining authorisation for three particular cases of attributed-based au-
thorisation: role-based access control, authorisation based on trust values, and
authorisation based on environmental conditions such as date, time, etc.

In the case of role-based access control, we associate solutions to roles and
indicate which reactions can be executed by roles. Let SolutionRole be a predi-
cate associating a solution with a role, and RoleReaction a predicate associating
a role with a reaction. In this case the Authorisation condition takes the form
SolutionRole(S, Rol) A\ RoleReaction(Rol, R).

In the case of authorisation based on trust values, we assume there is a func-
tion TrustValue(S) returning the trust value associated to a solution S. The
Authorisation condition is simply a predicate comparing the trust value of a
solution with a particular value.

In the case of authorisation based on environmental conditions, we assume
there are predicates such as Date and Time which could restrict when a reaction
occurs.

Security Log Pattern. In the case of security-critical operations, it might be
required to maintain a security log of such operations. In chemical programming,
this corresponds to storing in a log a reaction as well as the changes it has
produced. Let R = replace P by M if C be a reaction. The security log
pattern, described in Figure Bl indicates that whenever reaction R happens, it
is stored in solution Log a molecule with information about the solutions and
molecules participating in R. The Log solution can be seen as a trusted third
party in charge of storing and maintaining the security log.

logging(R) = let R = replace P, Log:(w) by M, Log:(w, R:P:M) if C
in S:(w,R)
Fig. 5. HOCL Pattern for Security Logging

Self-Protection Pattern. Self-protection refers to the ability of anticipating
problems, and taking steps to avoid or mitigate them. It can be decomposed
in two phases: a detection phase and a reaction phase [0]. The detection phase

82 A.E. Arenas, J.-P. Banatre, and T. Priol

selfprot(S, R) = let R = replace P, Q by Protect(Q) if Filter(P)
in S:(w, R)

Fig. 6. HOCL Pattern for Self-Protection

consists mainly in filtering data (pattern matching). The reaction phase con-
sists in preventing offensive data from spreading and sometimes also in counter-
attacking. This mechanism can easily be expressed with the condition-reaction
scheme of the chemical programming. Figure[@ shows the self-protection pattern.
Function F'ilter rule out undesirable data; on the other hand, function Protect
represents the application of a protection mechanism to the rest of the data.

Self-Healing Pattern. Another important autonomic property is self-healing,
which refers to the automatic discovery and correction of faults in a system.
We define a pattern for the case in which a partner in a VO — represented
as a solution— fails by replacing it by a back-up partner. The back-up partner
offers his own resources while the original partner cannot contribute to the VO
objective. Functions Failure(S) and Recover(S) are associated to the system
functionality capable of detecting whether a system has failed or recovered from
a previous problem.

fail(S) = replace S:{(w) by Spackup: (w) if Failure(S)
repair(S) = replace Spackup: (w) by S:{w) if Recover(S)

Fig. 7. HOCL Pattern for Self-Healing

5 Aspects for Chemical Programming

Aspect-oriented programming (AOP) is a paradigm that explicitly promotes
separation of concerns. In the context of security, aspects mean that the main
program should not need to encode security information; instead, it should be
moved into a separate, independent piece of code [16].

AOP is based on the idea that computer systems are better programmed
by separately specifying the various concerns of a system and some description
of their relationships, and then relying on mechanisms in the underlying AOP
environment to weave or compose them together into a coherent program. The
goal of AOP is to make designs and code more modular, meaning the concerns
are localised rather than scattered and have well-defined interfaces with the rest
of the system. This provides the usual benefits of modularity, including making
it possible to reason about different concerns in relative isolation, making them
(un)pluggable, amenable to separate development, and so forth.

This section introduces the main concepts of aspects and relates them with
chemical programming.

Developing Autonomic and Secure Virtual Organisations 83

5.1 Basic Concepts on AOP

Cross-cutting concerns are concerns whose implementation cuts across a number
of program components. This results in problems when changes to the concern
have to be made —the code to be changed is not localised but is in different places
across the system. Cross-cutting concerns can range from high level notions like
security and quality of service to low-level notions such as caching and buffering.
They can be functional, like features or business rules, or nonfunctional, such
as synchronization and transaction management. The following are the main
terminology used in AOP:

— Join point: Point of execution in the application at which cross-cutting con-
cern needs to be applied. In the case of chemical programming, join points
could be associated with reactions where the concerns need to be applied.

— Advice: This is the additional code that one wants to apply to an existing
model. In the case of chemical programming, advice are applied to joint
points (reactions) by adding/replacing some of the components of the reac-
tion.

— Aspect: An aspect is an abstraction which implements a concern; it is the
combination of a join point and an advice.

— Weaving: The incorporation of advice code at the specific joint points. There
are three approaches to aspect weaving: source code pre-processing, link-time
weaving, and execution-time weaving.

There is an additional concept called the Kind of an Aspect indicating if an
advice is applied before, after, or around a join point. Since there is not a notion
of sequentiality (execution order) in a chemical program, we do not exploit this
feature. All aspects for chemical programming can be seen as around aspects.

5.2 Defining Aspects for Chemical Programming

In this work we have followed a code pre-processing technique to weave aspects
in a chemical program. To do so, we represent aspects as a collection of transfor-
mation functions Wg,, each one modelling a different cross-cutting concern C;.
Each function ¥, is applied to a reaction and returns a modified version of the
reaction that has been transformed according to the aspect.

Let Reaction denote the set of reaction rules and X denote the state of a
chemical program. State here refers to the solution and molecules participating
in a program. The signature of a transformation function ¥« is defined as follows:
Yo Reaction x Y — Reaction

As a way of illustration, let us define transformation Yz ac that applies the
role-based authorisation concern to a reaction, indicating that a solution could
react using a particular reaction if it is playing a role in the system. Function
Urpac takes as input a reaction, a solution name, and a role name, producing
a new version of the reaction where the condition has been strengthened with
the predicates SolutionRole and RoleReaction, as presented in the authorisation
pattern defined in sub-section[dl Upper part of Figure [§ shows the definition of

84 A.E. Arenas, J.-P. Banatre, and T. Priol

Urpac: Reaction x SolutionName X RoleName — Reaction

VR: Reaction, S: Solution N ame, Rol: Rol N ame
R = replace Pby M if C —
Urpac(R, S, Rol) = R = replace P by M
if C' A SolutionRole(S, Rol) A\ RoleReaction(Rol, R)

Urpac(merge, S, Editor) =
merge = replace S: (EDITING: Product), Global Product
by S: (EDITED), Merge(Product, Global Product), GENERATE
if FinishProduct(Product) N\
SolutionRole(S, Editor) N RoleReaction(Editor, merge)

Fig. 8. Weaving an aspect: applying the RBAC aspect to reaction merge

the transformation function ¥Yrpac. Let us assume that the merge reaction in
the VO system presented in Figure Bl can react when the solution containing it
is playing the Editor role. Lower part of Figure 8 shows the result of applying
the transformation function Yrpac to merge.

6 Applying Patterns and AOP to ‘Chemical’ VOs

In general, our approach for applying AOP techniques to chemical programs com-
prises the following steps. First, requirements for the system under construction
are defined. Second, the requirements are modelled as aspect functions, follow-
ing the patterns introduced in section [l Third, we define the join points where
the aspects functions should be applied. Finally, aspects are weaved producing a
new chemical program. The rest of this section describes the application of such
approach to the VO for product generation introduced in section

Requirements for Product Generation. The system for product generation
has the following security requirements:

1. Organisations participating in the VO could play the roles Editor or Validator.

2. VO members playing the role Editor can execute only operations related to
the edit and merge phases of the workflow.

3. VO members playing the role Validator can execute only operations related
to the validate phases of the workflow.

4. Acceptance of a product is considered a security-critical operation requiring
to be registered in a security log.

5. Acceptance is allowed only for those VO members with a trust value higher
than 0.5.

6. The system must check automatically that any product to be merged is free
of virus.

7. The VO member assigned to location 1, i.e. the member identified as Sy, is
considered critical one and must be replaced by a back up member in case
of failure.

Developing Autonomic and Secure Virtual Organisations 85

YUrpac: Reaction x SolutionName X RoleName — Reaction

VR: Reaction, S: SolutionName, Rol: RolName
R = replace Pby M if C —
Urpac(R, S, Rol) = R = replace P by M
if C' A SolutionRole(S, Rol) A RoleReaction(Rol, R)

YUrrust: Reaction x SolutionName x ® — Reaction

VR: Reaction, S: SolutionName, t: R
R = replace Pby M if C —
Urrust(R,S,t) = R = replace P by M
if C' A TrustValue(S) >t

Yroa: Reaction — Reaction

VR: Reaction
R = replace S:P by M if C —
Uroc(R) = R =replace S:P, Log:(w)
by M, Log:(w, S:R)
if C

Fig. 9. Aspect functions for securing the VO for product generation

Requirements 1 to 5 are classical security requirements; requirement 6 is a self-
protection one; and requirement 7 is a self-healing requirement.

Aspect Transformation Functions. Figure [0 shows the aspect functions
defined for our VO to deal with the security requirements presented above, and
Figure illustrates the aspect functions defined for self-protection and self-
healing requirements.

In Figure [@ function Ygrpac models role-based authorisation, following the
authorisation pattern introduced in sub-section @l We are assuming the under-
lying execution system includes functions SolutionRole, associating a solution
with a role, and RoleReaction, associating a role with the reaction that can per-
form. Likewise, function Yrrysr models authorisation based on trust values,
following also the pattern from sub-section @l Here, it is assumed the existence
of function TrustValue, returning the trust value of a solution. Finally, function
U1 oa models the secure log concern.

In Figure[IQ function Yoy rys models self-protection according to the pat-
tern presented in subsection[dl Here, we are assuming there is a system function
called NoVirus in charge of checking there is not virus in a digital product. On
the other hand, functions Yrar;, and Yrrcover model self-healing according
to the pattern presented previously.

Defining Join Points. TablePlillustrates the joint points for our VO according
to the requirements defined previously.

86 A.E. Arenas, J.-P. Banatre, and T. Priol

YUnovirus: Reaction — Reaction

VR: Reaction
R = replace S: (EDITING:P) ,w by S: (EDITED) , M if C' —
Unovrirus(R) = R = replace S: (EDITING:P) ,w
by S: (EDITED) , M
if C A NoVirus(P)

Yparr: SolutionName x SolutionName — Reaction
Yrecovier: SolutionName x SolutionName — Reaction

VS, Sbackup: Solution N ame
Uparr(S, Svackup) = fail = replace S: (w) by Svackup: (w) if Failure(S)
UrecovER(S, Skackup) = recover = replace Spackup: (w) by S:{(w) if Recover(S)

Fig. 10. Aspect functions for self-protection and self-healing in the VO for product
generation

Table 2. Join points to apply aspect functions to the product generation VO

Requirement Aspect Requirement Aspect
1, 2 Urpac(edit, S, Editor) 5 Urrust(accept, S, 0.5)
1,2 Urpac(merge, S, Editor) 6 Unovirus(merge)
1, 3 !PRBAc(valid, S, Validator) 7 WFAIL(Sl7slbackup)
1,3 !PRBAc(accept, S, Validator) 7 wRECOVER(S:l?Slbackup)

4 Yroa(accept)

At this stage, we can see the modularity obtained by applying AOP tech-
niques. Any change in the security requirements implies only changes in the
definition of aspect functions and join points, without altering the business logic
of the program. For instance, if the requirement that the accept reaction should
be performed only by solutions with their trust above a particular value is re-
moved, then the only changes required are to remove ¥rrysr function and to
eliminate the corresponding rule in Table

Aspect Weaving. Finally, the aspects are weaved producing a new program.
The chemical program resulting after weaving the aspects defined in Table [2] is
presented in Figure[[Tl For instance, comparing reaction merge with the original
version presented in Figure Bl we can notice that the condition of the rule has
been strengthened restricting the execution only to solutions playing the role
Editor and when the product to be generated is free of any virus.

7 Related Work

The work presented here has been inspired by Viega, Bloch and Chandra’s work on
applying aspect-oriented programming to security [I6]. They have developed an

Developing Autonomic and Secure Virtual Organisations 87

let publish = replace Global Product, ACCEPTING”, GENERATEY
by PUBLISHED:Global Product
if # > MinApproval(k) N y = NumMerges(k)
in
let accept = replace S: (VALIDATING: Product), Log: (w)
by S: (VALIDATED) , ACCEPTING, Log: (w, S:accept)
if AgreeProduct(Product) A
SolutionRole(S, Validator) A RoleReaction(Editor, accept) A
TrustValue(S) > 0.5
in
let valid = replace S: (EDITED) , Global Product, GENERATEY
by S: (VALIDATING:Global Product) , Global Product, GENERATEY
if y = NumMerges(k) N
SolutionRole(S, Validator) A RoleReaction(V alidator, valid)
in
let merge = replace S: (EDITING: Product) , Global Product
by S: (EDITED) , Merge(Product, Global Product), GENERATE
if FinishProduct(Product) N
NoVirus(Product) N\
SolutionRole(S, Editor) A RoleReaction(Editor, merge)
in
let edit = replace S: (), Global Product
by S: (EDITING:Global Product) , Global Product
if SolutionRole(S, Editor) A RoleReaction(Editor, edit)

in
let fail = replace Si: (w)
by S1p0ckup (w)
if Failure(St)
in
let recover = replace S, (w)
by S1: (w)
if Recover(S1)
in
(S1:(),- -+, Sk: (), GlobalProduct, fail, recover, edit, merge, valid, accept, publish)

Fig.11. HOCL program for the VO system for product generation after weaving
aspects

aspect-oriented extension to the C programming language following also a trans-
formational approach, where aspects are defined independently of the main ap-
plication, and are then weaved into a single program at compilation time. Their
emphasis is on security, developing aspects to replace insecure function calls by
secure ones. Our approach follows a transformational approach as proposed by
Viega, with the difference that the aspect definition is guided by the existence of
security patterns. Previous work on the application of aspect-oriented techniques
to chemical programming include [I0/TI]. In [I0], Mentré et al present the design
of shared-virtual-memory protocols using the Gamma formalism; then, aspect-
oriented techniques are used to translate this design into a concrete implemen-
tation, modelling cross-cutting concerns such as control and data representation.

88 A.E. Arenas, J.-P. Banatre, and T. Priol

Comparing with our work, they also used a transformational approach, weaving at
compilation time a Gamma program to produce an automaton; however, they do
not represent cross-cutting concerns as patterns. The work by Mousavi et al [11]
centred on extending Gamma with aspect-oriented concepts, including aspects for
timing and distribution. For each aspect, they present new syntactic constructors
and give them a structured operational semantics. The weaving process map the
different aspects into a common formal semantics domain based on timed process
algebra with relative intervals and delayable actions. Our work has the advantage
that there is not need of changing the underlying semantic model (all our aspects
are in HOCL) and exploiting the existence of composition patterns.

8 Conclusion and Future Work

This paper has described an approach to program autonomic and secure Virtual
Organisations (VOs) when using the Higher-Order Chemical Language (HOCL).
Our approach is based on composition patterns and aspect-oriented techniques.
We represent aspects as a collection of transformation functions, each one mod-
elling a different cross-cutting concern. The functions are applied (weaved) to a
HOCL program in order to generate a new program that include the concerns.

Our working example has been a VO for the production of digital product, and
the cross-cutting concerns have been security properties such as attribute-based
authorisation and security logs, as well as autonomic properties such as self-
protection and self-healing. The approach comprises the following steps. First,
security requirements for the system under construction are defined. Second,
the requirements are modelled as transformational aspect functions following a
library of compositional patterns. Third, it is defined the join points where the
aspects functions should be applied. Finally, aspects are weaved producing a new
chemical program.

There are several avenues to follow as future work. Firstly, we are currently
studying the weaving of several aspects on the same reaction, analysing condi-
tions that guarantee properties such as commutativity and associativity of as-
pects. Secondly, we plan to investigate patterns for weaving aspects at run-time,
exploiting the high-order potentiality of HOCL. Thirdly, we are interested in
evaluating the effectiveness of our approach to improve modularisation of cross-
cutting concerns in HOCL; an initial step is to adapt quantitative methods to
evaluate AOP [g]. Finally, there are several similarities between chemical pro-
gramming and other evolutionary approaches such as genetic programming [4];
we plan to investigate how our approach to secure and autonomic cooperations
can be applied when using genetic programming.

Acknowledgments

This work has been partially funded by the EU CoreGRID (IST FP6 No 004265)
and GridTrust (IST FP6 No 033817) projects. We would like to thank Yann
Radenac and Benjamin Aziz for comments to early drafts of this paper.

Developing Autonomic and Secure Virtual Organisations 89

References

10.

11.

12.

13.

14.

15.

16.

. Banatre, J.-P., Fradet, P., Le Métayer, D.: Gamma and the Chemical Reaction

Model: Fifteen Years After. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa,
A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 17-44. Springer, Heidelberg
(2001)

. Banatre, J.-P., Fradet, P., Radenac, Y.: Chemical Specification of Autonomic Sys-

tems. In: Proceedings of the 13th International Conference on Intelligent and Adap-
tive Systems and Software Engineering (IASSE 2004) (July 2004)

. Banatre, J.-P., Priol, T., Radenac, Y.: Service Orchestration Using the Chemical

Metaphor. In: Brinkschulte, U., Givargis, T., Russo, S. (eds.) SEUS 2008. LNCS,
vol. 5287, pp. 79-89. Springer, Heidelberg (2008)

. Banzhaf, W., Koza, J.R., Ryan, C., Spector, L., Jacob, C.: Genetic Programming.

IEEE Intelligent Systems and their Applications 15(3), 74-84 (2000)

. Camarihna-Matos, L.M., Afsarmanesh, H. (eds.): Collaborative Networked Organ-

isations — A Research Agenda for Emerging Business Models. Kluwer, Dordrecht
(2004)

. Clarke, S., Walker, R.J.: Composition Patterns: An Approach to Designing

Reusable Aspects. In: International Conference on Software Engineering (2001)

. Foster, 1., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable

Virtual Organizations. Int. Journal of Supercomputer Applications 15(3) (2001)

. Garcia, A., Sant Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., von Staa, A.:

Modularizing Design Patterns with Aspects: A Quantitative Study. In: Rashid, A.,
Aksit, M. (eds.) Transactions on Aspect-Oriented Software Development I. LNCS,
vol. 3880, pp. 36-74. Springer, Heidelberg (2006)

. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. Computer 36(1),

41-50 (2003)

Mentré, D., Le Métayer, D., Priol, T.: Formalization and Verification of Coherence
Protocols with the Gamma Framework. In: Symposium on Software Engineering
for Parallel and Distributed Systems (PDSE 2000), pp. 105-113 (2000)

Mousavi, M.R., Reniers, M.A., Basten, T., Chaudron, M.R.V.: Separation of Con-
cerns in the Formal Design of Real-Time Shared Data-Space Systems. In: ACSD,
pp.