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Preface

The papers in this volume were presented at the 11th International Sympo-
sium on Stabilization, Safety, and Security of Distributed Systems (SSS), held
November 3–6, 2009 in Lyon, France.

SSS is an international forum for researchers and practitioners in the design
and development of fault-tolerant distributed systems with self-* attributes, such
as self-stabilization, self-configuration, self-organization, self-management, self-
healing, self-optimization, self-adaptiveness, self-protection, etc. SSS started as
the Workshop on Self-Stabilizing Systems (WSS), the first two of which were held
in Austin in 1989 and in Las Vegas in 1995. Starting in 1995, the workshop began
to be held biennially; it was held in Santa Barbara (1997), Austin (1999), and
Lisbon (2001). As interest grew and the community expanded, in 2003, the title
of the forum was changed to the Symposium on Self-Stabilizing Systems (SSS).
SSS was organized in San Francisco in 2003 and in Barcelona in 2005. As SSS
broadened its scope and attracted researchers from other communities, a couple
of changes were made in 2006. It became an annual event, and the name of the
conference was changed to the International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS). The last three SSS conferences were
held in Dallas (2006), Paris (2007), and Detroit (2008).

This year the Program Committee was organized into several tracks reflect-
ing most topics related to self-* systems. The tracks were: Alternative Systems
and Models, Autonomic Computational Science, Cloud Computing, Embedded
Systems, Fault-Tolerance in Distributed Systems / Dependability, Formal Meth-
ods in Distributed Systems, Grid Computing, Mobility and Dynamic Networks,
Multicore Computing, Peer-to-Peer Systems, Self-Organizing Systems, Sensor
Networks, Stabilization, and System Safety and Security. We received 126 sub-
missions from 34 countries. Each submission was reviewed by four to six Pro-
gram Committee members with the help of external reviewers. A rebuttal phase
was added for the authors to respond to the reviews before the final delibera-
tion. Out of the 126 submitted papers, 49 papers were selected for presentation.
The symposium also included 14 brief announcements. Selected papers from the
symposium will be published in a special issue of the ACM Transactions on
Autonomous and Adaptive Systems (TAAS).

This year, we were very fortunate to have three distinguished invited speak-
ers: Anne-Marie Kermarrec, David Peleg, and Roger Wattenhofer. They also
graciously provided a summary of their talks in advance to be included in this
volume.

Among the 49 selected papers, we considered three papers for special awards.
The best paper award was given to François Bonnet and Michel Raynal for their
paper entitled “Looking for the Weakest Failure Detector for k-Set Agreement in
Message-Passing Systems: Is Πk the End of the Road?”. The best student paper



VI Preface

was shared by Danny Dolev, Ezra N. Hoch, and Yoram Moses for “An Opti-
mal Self-Stabilizing Firing Squad” and Gérard Wagener, Radu State, Alexandre
Dulaunoy, and Thomas Engel for “Self-Adaptive High Interaction Honeypots
Driven by Game Theory.”

On behalf of the Program Committee, we would like to thank all the authors
who submitted their work to SSS. We thank all the Vice-Program Chairs, all the
members of the Program Committee, and the external reviewers for their tremen-
dous effort and valuable reviews. We also thank the members of the Steering
Committee for their invaluable advice. The process of paper submission, selec-
tion, and compilation in the proceedings was greatly simplified due to the strong
and friendly interface of the EasyChair system (http://www.easychair.org).
We owe a lot to the EasyChair creators and maintainers for their commitment
to the scientific community. We gratefully acknowledge the Organizing Commit-
tee members for their time and invaluable effort that greatly contributed to the
success of this symposium.

November 2009 Rachid Guerraoui
Franck Petit
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Stéphane Devismes
Cédric Tedeschi

Publicity Chairs

Doina Bein
Borzoo Bonakdarpour
Jiannong Cao
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Liliana Rosa, Lúıs Rodrigues, Antónia Lopes, Matti Hiltunen, and
Richard Schlichting

A Wireless Security Framework without Shared Secrets . . . . . . . . . . . . . . . 609
Lifeng Sang and Anish Arora

Read-Write-Codes: An Erasure Resilient Encoding System for Flexible
Reading and Writing in Storage Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

Mario Mense and Christian Schindelhauer

Distributed Sleep Scheduling in Wireless Sensor Networks via Fractional
Domatic Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
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Sylvie Delaët, Shlomi Dolev, and Olivier Peres

Unique Permutation Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777
Shlomi Dolev, Limor Lahiani, and Yinnon Haviv

Randomization Adaptive Self-stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . 779
Shlomi Dolev and Nir Tzachar

On the Time Complexity of Distributed Topological Self-stabilization . . . 781
Dominik Gall, Riko Jacob, Andrea Richa, Christian Scheideler,
Stefan Schmid, and Hanjo Täubig
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Challenges in Personalizing and Decentralizing the
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Abstract. Social networks and collaborative tagging systems have taken off at an
unexpected scale and speed (Facebook, YouTube, Flickr, Last.fm, Delicious, etc).
Web content is now generated by you, me, our friends and millions of others. This
represents a revolution in usage and a great opportunity to leverage collaborative
knowledge to enhance the user’s Internet experience. The GOSSPLE project aims
at precisely achieving this: automatically capturing affinities between users that
are potentially unknown yet share similar interests, or exhibiting similar behav-
iors on the Web. This fully personalizes the search process, increasing the ability
of a user to find relevant content. This personalization calls for decentralization.
(1) Centralized servers might dissuade users from generating new content for they
expose their privacy and represent a single point of attack. (2) The amount of in-
formation to store grows exponentially with the size of the system and centralized
systems cannot sustain storing a growing amount of data at a user granularity. We
believe that the salvation can only come from a fully decentralized user centric
approach where every participant is entrusted to harvest the Web with informa-
tion relevant to her own activity. This poses a number of scientific challenges:
How to discover similar users, how to define the relevant metrics for such per-
sonalization, how to preserve privacy when needed, how to deal with free-riders
and misheavior and how to manage efficiently a growing amount of data.

1 Introduction

While the Internet has fully moved into homes, creating tremendous opportunities to ex-
ploit the huge amount of resources at the edge of the network, the Web has changed dra-
matically over the past years. There has been an exponential growth of user-generated
content (Flickr, Youtube, Delicious, ...) and a spectacular development of social net-
works (Twitter, FaceBook, etc). This represents a fantastic potential in leveraging such
kinds of information about the users: their circles of friends, their interests, their ac-
tivities, the content they generate. This also reveals striking evidence that navigating
the Internet goes beyond traditional search engines. New and powerful tools that could
empower individuals in ways that the Internet search will never be able do are required.

The objective of GOSSPLE is to provide an innovative and fully decentralized ap-
proach to navigating the digital information universe by placing users affinities and
preferences at the heart of the search process. Where traditional search engines fail to
provide information unless it is properly indexed, GOSSPLE will seek the information
where it ultimately is: at the user.

� This work is supported by the ERC Starting Grant GOSSPLE number 204742.

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 1–16, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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GOSSPLE aims at capturing the interactions and affinities on the fly and fully lever-
aging the huge resource potential available on edge nodes, to efficiently search, dynam-
ically index and asynchronously disseminate and recommend information to interested
users based on their preferences. Building on the peer to peer communication paradigm
and harnessing the power of gossip-based algorithms, GOSSPLE aims at personalizing
Web navigation, by means of a fully decentralized solution, for the sake of scalability
and privacy.

A number of technical challenges underlie GOSSPLE and its objective of combining
personalization and decentralization:

– Personalization: GOSSPLE should address appropriate metrics to compute dis-
tances between users and identify and capture the affinities between users.

– Scalability: GOSSPLE should provide scalable mechanisms to deal with a huge and
growing amount of information.

– Privacy: while entrusting users to hold and maintain their personal data give them
full control on them, further mechanisms are required in GOSSPLE to leverage per-
sonal information and detect affinities between user without exposing personal in-
formation about the requests of a user or the content she generates.

– Support for misbehavior: while fully decentralized approaches buy scalability,
they remove any form of central authority, leaving holes for misbehavior: GOSSPLE

should tackle the whole range of misbehavior from attempts to free-ride the system,
to attempts to try to exploit it (through spamming for example) and even hurt it with
Byzantine behaviors.

The rest of the paper provides the context and motivation (Section 2), the technical
challenges (Section 3), the scientific background (Section 4) before concluding and
providing the current status of the GOSSPLE project.

2 Time for a Navigation Shift in the Internet

The past decade has witnessed a dramatic scale shift in the area of distributed com-
puting. Meanwhile, the Internet has entered our homes together with various kinds
of digital assets. This has resulted into a radical change in the way people are com-
municating, companies are organized and data is managed all over the world. Social
networking in the forms of social networks (Facebook, Twitter) or folksonomies (De-
licious, Flickr) has taken off at an unexpected scale. The Internet we are now looking
at is composed of millions of computing devices and as many users, generating con-
tents at a high speed, Terabytes of dynamic data, scattered all over the world, shared,
disseminated and searched for.

2.1 Personalized Navigation within the Internet

Although computer science in general and more specifically distributed computing has
gradually taken into account this digital revolution, we now have reached the point
where incremental changes are no longer sustainable. Traditional search engines are per-
forming extremely well but do hardly encompass alternative and very dynamic sources
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of information such as user-generated contents, blogs, peer-to-peer file-sharing systems
instant messaging as well as content distribution frameworks. This is mainly due to their
lack of adaptivity to dynamics and their not taking into account correlations between
contents and users preferences. They are also limited by their reliance upon central-
ized indexing: they periodically scan the whole web, build an index in their data centre,
then distribute it back out to smaller centres that respond to queries. Typically, corpo-
rate pages are visited frequently while individual information may be visited rarely: the
individual is at a disadvantage. This reveals striking evidence that complementary and
novel fully decentralized alternatives to traditional search engines are now required to
capture the dynamic, collaborative and heterogeneous nature of the digital universe as
well as to to leverage individual preferences and social affinities.

2.2 Illustration: Looking for a Baby-Sitter

To illustrate the inadequacy of state of the art solutions, let us consider the following
concrete example. Following a long stay in the UK, a French family is looking for
an English speaking student who would be willing to trade baby-sitting hours against
accommodation, say in the city of Rennes to allow kids to keep up with English. Given
the high number of students in Rennes, there is no doubt that such an offer would be of
interest for many English speaking students.

Yet, satisfying this simple, slightly unusual, request is challenging and in fact almost
impossible. The most natural way for the family to find a match is to launch a Google
request “Baby-sitter anglophone Rennes”1. The first hits on Google lead to baby-sitting
services, student announces, including different geographical areas and has nothing to
do with English speaking. All subsequent reformulated requests, in French or English,
lead to equally unsatisfactory results. Yet, would this family be able to reach all English
speaking students in Rennes, there will definitely be some candidates.

The data is clearly out there but it is difficult to achieve the match between the of-
fer and the supply. If the offer effectively exists in some proper indexed form, even
though a search engine forces to continuously probe the system, it will probably achieve
the match eventually. Alternative sites such as Craigslist, a centralized network of on-
line communities featuring free classified advertisements, extremely popular in the US,
could also be used in this case, provided that the user follows the imposed structure.
However, if the offer does not exist in the proper indexed form, current technology sim-
ply does not fit. This is mostly due to the fact that baby-sitter is mainly associated with
daycare or local baby sitting companies. None of the family Facebook buddies can help
either as known of them has ever looked for an English-speaking baby-sitter. The best
solution would be for the family to post a request on some mailing list or appropriate
forum gathering the potential candidate baby-sitters and wait for the responses.

Now, consider Alice living in Strasbourg, who has looked for a similar deal for her
kids. Alice is lucky enough to discover through a (real-life) friend that primary school
teaching assistants are a very good match for they have the same working hours as kids
and tend to enjoy living with a family. If Alice associates baby-sitter with teaching as-
sistant in the system and if the French family above is able to leverage this information,

1 “English speaking baby-sitter Rennes”.
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Fig. 1. Babysitter example: while the association between babysitter and daycare dominates, Al-
ice associates babysitter to teaching assistant. The goal of GOSSPLE is to establish a connection
between Alice and the French family in Rennes so that it could benefit from Alice’s association.

the request can be successful. The goal of GOSSPLE is to establish such a connection,
called an implicit social link, between Alice and that French family in Rennes. Note
they do not need to know each other. Yet their past history of French people leaving in
an English speaking country, their interest in English novels and International school
for example, could be conveyed in their online behavior and automatically captured by
a system. This is illustrated on Figure 1.

2.3 Where GOSSPLE Comes into Place

In fact, the collaborative and social nature of the Internet is leveraged in many so-
cial systems [28] such as delicious, Twitter, Facebook, Twine or Orkut to cite a few.
Such systems connect users sharing interests, professional or social, and enable them
to share data, blogs, etc. Their functioning is however hurt by the dynamic nature of
users behavior. Some users get connected, loose interest and remain connected without
participating. Also, the user feedback is hardly leveraged and while the blog feature is
widely used, search is mostly absent. Similarly, the semantic Web improves automa-
tion through machine understandable descriptions [11]. Yet, such tools mostly rely on
static structures. Above all, all those systems remain centralized. This an issue for two
main reasons: scalability and privacy. An efficient personalization mechanism requires
to store a large amount of data per user and maintain it, potentially limiting the scalabil-
ity of the system and hurting the desire of users to preserve their personal information.
In addition, centralized systems are more vulnerable to denial of service attacks such as
the one observed in August 2009 on Twitter, Facebook and LiveJournal.

To cope with dynamics and the huge amount of information that need to be managed
on a per user basis, entrusting each user with discovering and managing the data relevant
to her is the solution to both scalability and privacy preservation.

GOSSPLE stems from the observation that social connections can be leveraged by a
system to collaboratively help Web search and recommendation. Yet such social con-
nections need not to be explicitly established as in social networks ala Facebook. Instead
the system should capture such social connections and discover relevant users. As op-
posed to globally harvest and organize the Web, the basic idea behind GOSSPLE is that
each user is in charge of harvesting the network in her own personalized way.
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Coming back to our example, even if the answer to the request actually does not exist
as such (say no foreign student has figured out that some families would offer such a
deal), GOSSPLE would actually enable to dynamically attract it. There are several ways
this could be achieved by GOSSPLE, by expanding the query in a relevant manner or
by having the request navigate in the network to the right places. With GOSSPLE, the
family would gradually get connected to relevant matching users typically representing
adequate communities (say English speaking people in Rennes). Then the object would
dynamically turn into an ad, in a sense creating the need and subsequently the matches.
In turn, potential response objects would travel back to the family acquaintances in the
form of notifications or ads, and subsequently create the need for other related families
(those who wouldn’t have thought of the deal but actually like the idea). At the heart
of this procedure lies dynamic overlays based on users affinities and preferences. This
goes far beyond discovering indexed data. All along, the connection procedures, both
sides, will be continuously fed by the feedback from the users to refine the quality of the
connections, as well as by recommendations on possibly matching objects from other
users with similar preferences on similar requests. The interacting model is inherently
collaborative, asynchronous and iterative.

Obviously, this example is not meant to restrict the usage of GOSSPLE to this appli-
cation. However, we believe that the simple scenario illustrates the dynamic and col-
laborative navigation idea. These, implemented in a fully-decentralized manner, can
be applied to a large spectrum of applications (content sharing, dissemination, instant
messaging, RSS feeds, or virtual communities).

3 The GOSSPLE Challenges

The existing technology of distributed and personalized search is in its infancy. We
are reaching the limits of what we could call the ”Google style” of problem solving:
periodically cull all the pages on the web into their data centre, index them, and then
answer queries for pages for some period of time. So far, the information space has
mostly been composed of Web pages, indexation ruled by search engines and navigation
ensured mostly manually by the users, largely favouring the “mass”. Effectively, the
page rank algorithms of Google-like systems favour popular pages. Although GOSSPLE

does not come as a replacement of such engines but rather as a complementary tool, it
provides a fresh look at the information space management and favour communities at
a disadvantage. More specifically it offers a new way to navigate the digital space.

The GOSSPLE’s challenge is to provide the following features in a fully decentralized
way.

1. Full-fledged personalization
2. Scalable management of the information space
3. Privacy-aware implementation
4. Resilience to misbehavior

3.1 A Network of Affinities

We are seeking search solutions leveraging the live nature of the data and the collabo-
rative nature of its users. GOSSPLE exploits the social dimension of the Internet to get
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“related” users indirectly connected and refine each other’s filtering procedures through
implicit preferences. The network will be organized around such preferences and affini-
ties between users. This will provide a radically different approach to managing digital
assets, navigating within the Internet and bringing new dimensions for collaborative
applications. Such a network of affinities is at the heart of GOSSPLE and represents the
first challenge of Gossple. Providing each user with a personalized view of the network
requires solving several issues:

– Sampling the network: the second challenge is to be able to discover such users.
This is particularly challenging in a fully decentralized system where no entity has a
global knowledge of the system and is able to make a match between similar users.
A related issue is to connect all GOSSPLE users in a connected mesh: although a
user should be connected to similar users, she should be able to navigate the whole
network if needed.

– Affinity metrics: the first challenge is to be able to identify the fact that two users
share similar interests. This requires to compute a distance between users and can
depend on the content they generate, their past activity, the feedback they provide,
the application they are running, etc.

– Coping with dynamics: the third challenge is to be able to maintain a personalized
network up-to-date and to take into account the changes and the dynamics of the
system with respect to the users, the data, the changes in the interests or the activity
of the users.

GOSSPLE will heavily rely on peer to peer overlay networks to achieve personalization
of the network. Basically, GOSSPLE will manage a large set of GOSSPLE peers (users,
items, etc). More specifically, we envision a basic layer where all potential nodes are, at
least temporarily, connected and maintained despite dynamics in content and connec-
tivity patterns, providing gateways and efficient routing to higher level overlays (See
Figure 2). At the basic abstraction layer, a GOSSPLE peer represents a machine con-
nected to the Internet. The same physical computer may host several logical GOSSPLE

peers: the request of the family, a user in a virtual community, a file, etc. A major
GOSSPLE challenge is to build, on top of its basic layer, many overlay networks that
will dynamically evolve, based on users affinities and common preferences.

GOSSPLE will leverage the sampling features of gossip-based protocols to provide
users with the ability to sample the network and identify similar users.

Figure 2 conveys an example of a federation of overlays as we foresee it in GOSSPLE.
The bottom layer ensures connectivity, on top of which the federation of overlays is
maintained. Each GOSSPLE peer associated with a user may be part of one or several
sub-overlay networks, whose nature may vary depending on the functionalities required
by the application they are running. This amounts to having a physical peer running
many instances of different P2P overlay networks. Yet, a fair amount of information
may be shared between these instances. We will investigate the mutualization of the
state associated with each overlay in order to limit the overhead for a similar, or even
better, performance. More specifically, we will identify for each overlay the application-
dependent connections, which will have to be maintained independently of other sub-
networks such as the “closest” peers according to the ”affinity” metric.
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Fig. 2. Gossple Overlay Federation

Identifying the relevant users requires appropriate metrics to compute a distance be-
tween users. The refinement of connections between peers is crucial: each GOSSPLE

peer will keep in its personalized view of the system for a given overlay a set of ac-
quainted peers. In most cases, this choice is done on a peer basis, that is depending on
its own characteristics. The correlation between all the peers present in the view could
also be exploited to cover as much as possible all the range of interests of a user. All
these aspects should be investigated in the project.

3.2 Scalable Data Management

A scalable personalization of the network, operating a navigation shift on the Internet,
calls for a fully decentralized system and requires the following features:

– Efficient management of personal information: this refers to the amount and
the type of personal data that should be stored per user and exchanged between
users in order to evaluate the proximity of interests between users and achieve
personalization.

– Efficient search, recommendation and navigation algorithms: this refers to the
algorithms to search content, process queries, implement efficient notification
mechanisms, routing features, etc.

Identifying the relevant discovery space, the granularity of the search protocol and data
representation are crucial to the design of an efficient digital navigation. The navigation
criteria should be simple and flexible enough to preserve the efficiency and simplic-
ity of an underlying gossip-based discovery protocol. A related issue is the trade-off
between expressiveness and exhaustivity. Expressiveness refers to the accuracy of a re-
quest formulation (exact search, keyword-based search, range queries), or the quality
of a request. This is highly dependent on the number of dimensions of the search space,
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the type of query, the correlation between various attributes of the request. The degree
of exhaustivity refers to the accuracy with respect to quantity.

A key aspect of GOSSPLE is to capture the commonalities and preferences of users
from their matching refinements and then leverage these for efficient navigation. This
is crucial to genuinely exploit the collaborative nature of the Internet. GOSSPLE will
integrate the feedback from the users in the navigation process through recommenda-
tion mechanisms. The acquaintances between related users may take the form of rec-
ommendations, as in real life, and the navigation protocol should take those as direct
inputs to refine the search either directly or indirectly through specific overlays. These
aspects have been so far mostly ignored in the distributed system community and spe-
cific mechanisms, simple enough for the user, and not disruptive for the system, need
to be investigated.

There are many connections with the information retrieval community. However,
most approaches are centralized, complex and require a large amount of knowledge
of the whole system. GOSSPLE borrows from this community to represent and track
similarities between data and/or users.

3.3 Preserving Privacy

Apart from the fact that centralized systems may be subject to DOS attacks, one of
the main motivations to provide a fully decentralized system is to fulfil the need for
privacy of users and fight their fear (or the real risk) of the Big Brother Syndrome. In
the realm of recent developments of social networks, the associated companies have
consistently shown their eagerness to exploit personal information: in 2009, Facebook
tried to change its terms of use so that any content ever published on Facebook was
doomed to a perpetual licence to Facebook. Likewise in 2007, Facebook proposed a
feature called beacon to expose Web navigation history of users 2. Similarly, many
personal information are stored by Google 3.

A fully decentralized system avoids such issues as no single entity keeps the control
of personal data. Instead, the users are in charge of managing such data themselves. In
order to get the most of users communities, personal information must be disclosed to
some extent. Yet, the association between a user and her personal information is not
always required. The challenge here, with respect to privacy, is to ensure that personal
information can be fully leveraged while masking the association between user profile
and identity whenever this is required.

GOSSPLE leverages this fact by masking the association between a user and her infor-
mation whenever this is possible. GOSSPLE will also include a lightweight mechanism
to track potential intruders, including colluding ones.

3.4 Fighting Misbehavior

Fully decentralized systems are particularly vulnerable to misbehavior, the very fact that
there is no central control authority allow users to misbehave with impunity, ranging

2 Note that those proposals did not get through due to users reaction.
3 To further illustrate this, the launching of Google Latitude on the iPhone, a location-based

social network, in July 2009, raised many concerns with respect to privacy. Indeed, many
people are extremely reluctant to disclose people whereabouts.
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from free-riding behaviors, to malicious ones. Fighting such misbehavior is of the utmost
importance for a wide adoption of a system.

Several angles can be investigated:

• Measuring the degree of collaboration in order to characterize the benefit of a user
with respect to her contribution

• Detecting misbehavior
• Punishing misbehaving nodes thus creating an incentive to non-malicious behaviors

Load balancing, referring to the fact that the load is evenly shared between participat-
ing entities has been at the heart of the design of P2P systems to ensure scalability
regardless of the capacities of peers. Fairness has not. In this context fairness is related
to the ratio between the benefit a peer gets from the system from its contribution. We
mean by a fair system one in which peers contribute to the system proportionally to
the benefit they get. This is crucial for a collaborative system to provide incentives to
contribute. The fact that fairness has been ignored so far is mostly due to the low-level
nature of distributed systems, where the perception by a user is not prevalent. This is
no longer the case because users and machines are closely related, now more than ever.
A user does not want a software to store data for others or use her bandwidth without
being rewarded to a certain extent for this. Should users perceive that they contribute
to the system more than what they get out of it, they could decide to get disconnected.
Thus, an unfair distribution of the workload can lead to increasing artificially the sys-
tem dynamics and impact the reliability and scalability of a decentralized system. This
is particularly important in GOSSPLE where inputs from the users and their affinities
are prevalent.

Ensuring fairness implies characterizing the load, being able to measure it, and devis-
ing adaptive mechanisms to account for it. Fairness also intrinsically limits the impact
of selfish (free-riders) users. Yet, some users may exhibit some arbitrary behavior, vol-
untarily or not. Clearly, GOSSPLE might suffer from the same potential attacks as a
traditional P2P system [4]. In addition, the misbehavior might also target the data that
are exchanged in the system in order to personalize the system. Indeed, GOSSPLE in-
troduces some specificities in this area related to the targeted applications such as false
recommendations, wrong feedback or stale objects.

4 Background: Peer to Peer, Gossip and the Small World Nature
of the Internet

Decentralization is a core characteristic of GOSSPLE. In this section, we provide the
networking background on which GOSSPLE will heavily rely.

Traditional structured and unstructured overlays exhibit almost orthogonal properties
and are complementary with respect to locating data in a large-scale system. Structured
overlays associate keys with nodes and provide an exact match interface. This approach
is highly efficient when the exact identifier of an item is known but not as straightfor-
ward when it comes to performing a range query or a keyword-based search. In addi-
tion, the maintenance cost of a structured overlay may be high in dynamic environments
where the peers leave and join the system frequently. On the other hand, unstructured
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networks handle range queries and keyword searches more easily and are highly adap-
tive to dynamic environments. In particular, the inherent randomness of gossip-based
protocols makes their corresponding unstructured networks ideal for scalable informa-
tion dissemination. However, they tend to generate a large number of messages for each
search request as they do not recall any history. Besides, they do not always guarantee
an exhaustive search.

We aim at taking the best of all worlds, by combining structured and unstructured
overlays within GOSSPLE. More specifically, we will make use of a gossip-based proto-
col for basic navigation, combined with structured networks derived from the affinities
of users.

Self-* emerging structures. Current search engines are mostly centralized 4. Not only
do we aim at revolutionizing navigation, but we also believe that it is no longer con-
ceivable to rely on a few companies to index the digital world 5. The total absence of
centralization is the key to both scalability and privacy preservation. A fully decen-
tralized system, as envisioned in GOSSPLE is sustainable if and only if it is able to be
self-organizing, self-healing, self-parametrizing and self-managing. To this end, GOSS-
PLE will harness the power of gossip-based algorithms, strongly rely on the scalable
peer to peer communication paradigm and overlay networks.

Connectivity: Peer to peer communication paradigm. In peer to peer (P2P) systems,
each node may be both a client and a server and takes individual decisions based on an
extremely restricted knowledge of the network. Yet expected global system properties
emerge. This makes P2P computing robust, self-organizing and scalable. Following
this model, nodes organize in a logical (overlay) network, structured or not, on top of
a physical network (typically the Internet). Many such overlays have been proposed in
the past five years [37, 32]. Yet, real deployments remain limited and their potential
goes far beyond file sharing, voice over IP or content distribution. In GOSSPLE, we
step away from general-purpose overlay networks and consider dynamic application-
tailored collaborative overlays.

Navigability: Small-world networks. Small world networks have been introduced as
an analytical way of modelling the six degrees of separation [26] stating that two ran-
dom individuals are separated by short chains of acquaintances that can be discovered.
When applied to computing networks, the small world phenomenon [23] is defined as
the combination of a high degree of clustering, small diameter in the connection graph
and navigability properties. Such a model matches pretty well the real interactions be-
tween humans and more specifically between users over the Internet. A small-world
network can be defined as a system where each node in a mesh knows its closest6

neighbors and has additional shortcuts in the graph. The asymptotic routing perfor-
mance depends on the way shortcuts are chosen (random [44] or following a specific
distribution (d-harmonic) [23]). Kleinberg [23] determined the magnitude order of this
routing complexity results in such networks. This work has been of the up-most impor-
tance in the community, leading to a full range of works.

4 Obviously central servers in this context refer to huge data centres.
5 One can imagine the impact of Google falling apart.
6 The proximity metric may be application-dependent.
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Dynamicity: Gossip-based networking. Gossip-based protocols implement the P2P
communication paradigm in an unstructured manner. Inspired by the spreading of ru-
mours or epidemics, these protocols are very powerful for disseminating information
and quickly discovering acquaintances between users. Their implementation typically
relies on a periodic peer-wise exchange of information. It turns out that depending on
the peer chosen locally for the interaction and the information exchanged, gossip-based
protocols can be used to build and maintain arbitrary structures. As such, gossip-based
protocols are attractive for developing large-scale distributed systems and do have a
substantial power. They combine convergent behavior, ability to let emergent struc-
tures appear, simplicity of programming and deployment. They also impose a bounded
load on participants, are independent of the underlying topology and are robust to net-
work disruptions and continuous changes. Gossip-based protocols will constitute a ba-
sic building block for the design and implementation of GOSSPLE.

In short, a generic version of a gossip-based protocol, consists in having each peer
run periodically a protocol that can be fully characterized by the three following param-
eters [21]: (i) Peer selection refers to the peer selected for the gossip exchange. Each
peer has an extremely limited knowledge of the system (list of other peers) and selects a
peer from this view of the system; (ii) Data exchanged refers to the nature of the data ex-
changed during the gossip interaction. This is highly application-dependent; (iii) Data
processing refers to the computation operated on the data after the exchange. Again,
data processing is highly application dependent. This simple algorithm and its associ-
ated set of parameters are surprisingly powerful and can be applied in a wide variety of
settings. More specifically, when the data exchanged is related to peer themselves, this
provides a generic tool to build and maintain large-scale overlay networks, structured,
unstructured, random, or clustered [15, 19]. They also cope extremely well with net-
work dynamics. For example, more than 70% of the nodes are required to be down for
a network to become partitioned [21]. When the data exchanged is related to informa-
tion to be disseminated, this provides a scalable and reliable dissemination system [15].

Fig. 3. Phases of a gossip initiated by Peer P: P picks Q among its neighbors (its view)
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Distributed computations can also be implemented by simply tuning adequately the data
exchanged and data processing parameters [20, 25]. Gossip-based protocols have also
been used to create clustered overlays optimized with respect to application-specific
metrics [42, 41]. To illustrate this further, epidemic protocols may be used to construct
P2P overlay networks achieving graph properties very close to those of random graphs
[21]. The protocol is illustrated on Figure 3.

These protocols scale extremely well and are closely matched to the style of social
networking problems GOSSPLE targets. In GOSSPLE, we will go one step further to ex-
plore their huge potential over the Internet and in particular consider them with respect
to arbitrary metrics.

5 Personalizing the Web: Related Projects

The related work in networks has been presented above. In this section, we provide
a brief overview of the work that has been conducted to personalize the Web. Since
the Web has been acknowledged as a read-write platform with growing user-generated
content, a lot of research has tried to leverage this in many areas [34, 24, 40]. Yet, to
the best or our knowledge no existing work combines personalization, decentralization,
privacy and resilience to misbehavior.

Personalized search. The social semantics between users exhibits a huge potential to
leveraging social connections should they be explicit through social networks connec-
tions or implicit trough similar tagging behavior. One example of system leveraging ex-
plicit social connections is Peerspective [27] where the search results of a user’s skype
buddies are used for the user subsequent search operations. Yet, as pointed out in [9],
the utility of the information gathered from such networks turns out however to be very
limited. We believe that there is much more to leverage in unknown social acquain-
tances or user activities such as user’s query histories [36], browsing histories [38], and
tagging behaviors [31].

In the context of top-k processing, the notion of user affinity has been often dis-
cussed [33, 3], yet, most personalized approaches are centralized such as [33] or [2].
In the context of query expansion, collecting and exploiting information about the past
activity of a user has been considered in [12, 22]. The work presented in [8] is a first
step to personalization through social relation: the scoring model is personalized, the
associated query expansion mechanism is not.

Finally, there have been several user-centric approaches in the area of search, and rec-
ommendation [30, 47, 45, 17, 9, 29, 46, 39, 7, 18, 49], as well as query expansion [48].
None is decentralized though.

Decentralized approaches. The closest work with respect to distributed systems are
semantic overlays, relying on the peer-to-peer communication paradigm. These sys-
tems [14, 35, 6, 16] cluster peers hosting similar data or interested in similar topics [43]
in order to improve the efficiency of query resolution in peer-to-peer data sharing sys-
tems. Their focus is nevertheless mainly on exploiting similarities to locate objects in
a distributed data repository. None of these approaches attempt to discover social con-
nections between peers.
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Metrics. There has been a lot of work, mostly in the area of information retrieval on
personalization metrics to measure the distance between tags or items in collaborative
systems, and folksonomies in particular. These include co-occurrence count [30], co-
sine similarity to compute distance between users [47, 49] or tags [13, 46], edit-distance
[45] and relative centrality. Yet, there are still many application-dependent metrics that
should be considered.

Finally, recommendation systems ([1] for example) have been proposed and ana-
lyzed from a theoretical standpoint, there are yet to be put in practice in a decentralized
setting.

6 Conclusion and Work in Progress

The combination of the penetration of Internet into homes, huge computing power at the
edge of the network, an exponential growth of user-generated content, a striking need
for personalizing Web navigation with respect to search, notification, recommendation,
and a call for decentralization to remove the fear of the Big brother syndrome and the
potential vulnerabilities to attacks of centralized systems, paves the way for a new gen-
eration of systems. GOSSPLE should hopefully be one of them. The main originality
of GOSSPLE is to make every user responsible for harvesting the Web in a personal-
ized way through the use of efficient gossip-based protocol. Apart from the GOSSPLE

challenge that we mentioned above, the challenge of digging out the right tools and sci-
entific backgrounds from as many areas as distributed computing, information retrieval
and database is a challenge in itself.

Personalization has been in the air for a while. This has been even more striking
as users generate contents. Yet, we are not there yet and combining personalization,
security and scalability remains an open track that GOSSPLE tries to fill.

Many challenges need to be tackled in GOSSPLE There are currently three main
tracks currently under investigation.

Personalized networks. At the core of Gossple lies the notion of personalized network.
GOSSPLE achieves this through gossiping: based on a random peer sampling protocol
providing each user with a random subset of other users, GOSSPLE implements a biased
sampling protocol that speeds up convergence. Each user periodically contacts a close
user, they exchanged their knowledge on the other users and retain the best ones ac-
cording to a given metric to form the personalized network. Such a protocol enables the
quick discovery of related (with respect to a given metric) users in a very large system
in a fully distributed manner and with every user storing a small amount of information
about the system.

Query expansion in GOSSPLE. In this work, we provide a personalized query expan-
sion mechanism. In the context of a collaborative tagging system ala delicious, Gossple
builds, for each user, a personal network of acquaintances through a gossip protocol as
explained above. This network is composed of a set of other users that together cover
all the interests of the user. This is achieved without revealing the associations between
users and their profiles. The information gathered from the personal network is used to
create a personalized view of the correlations between tags. This data structure called
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the TagMap represents a user-centric personalized view of the relations between tags
and is used to expand queries in a meaningful manner. Experimental results conducted
on traces crawled from CiteULike, a collaborative tagging system for bibliographic ref-
erences, and Delicious, show that by storing and exchanging little information between
users, the user experience is improved through the query expansion mechanism both
with respect to the quality of the results and the number of results obtained. More de-
tails can be found in [10].

Top-k processing in GOSSPLE. We are considering decentralized and personalized
top-k processing, the protocol is called P3K [5]. It has been shown in [2] that person-
alizing top-k processing could significantly improve the quality of the results. This was
achieved firstly in a centralized way and secondly considering that a social network
was known explicitly in advance. We go beyond this approach in P3K. We discover a
personal network of acquaintances computing a distance between users based on the
similarities observed in their tagging behaviors. In this protocol, we show that using
only the information gathered from similar users in a decentralized way, we are able to
achieve similar results to those of a centralized approach. We are currently studying a
gossip-based alternative to process personalized top-k queries, improving the scalability
of the system.
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[17] Fogaras, D., Rácz, B., Csalogány, K., Sarlós, T.: Towards scaling fully personalized pager-
ank: Algorithms, lower bounds, and experiments. Journal of Internet Mathematics 2(3),
333–358 (2005)
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[25] Le Merrer, E., Kermarrec, A.-M., Massoulié, L.: Peer-to-peer size estimation in large and

dynamic networks: a comparative study. In: IEEE International Symposium on High Per-
formance Distributed Computing, HPDC 15 (2006)

[26] Milgram, S.: The small-world problem. Psychology Today, 60–67 (1967)
[27] Mislove, A., Gummadi, K., Druschel, P.: Exploiting social networks for internet search. In:

HotNets. ACM, New York (2006)
[28] Monroe, D.: Just for you. Communications of the ACM 52(8) (2009)
[29] Morrison, J.: Tagging and searching: Search retrieval effectiveness of folksonomies on the

world wide web. Journal of Information Processing and Management (2008) (Corrected
Proof) (in press)

[30] Niwa, S., Doi, T., Honiden, S.: Web page recommender system based on folksonomy min-
ing for itng 2006 submissions. In: International Conference on Information Technology:
New Generations, INTG (2006)



16 A.-M. Kermarrec

[31] Noll, M., Meinel, C.: Web search personalization via social bookmarking and tagging. In:
Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika,
P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and
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1 Introduction

Fault tolerance is one of the main concepts in distributed computing. It has
been tackled from different angles, e.g. by building replicated systems that can
survive crash failures of individual components, or even systems that can tolerate
a minority of arbitrarily malicious (“Byzantine”) participants.

Self-stabilization, a fault tolerance concept coined by the late Edsger W. Di-
jkstra in 1973 [1,2], is of a different stamp. A self-stabilizing system must survive
arbitrary failures, beyond Byzantine failures, including for instance a total wipe
out of volatile memory at all nodes. In other words, the system must self-heal
and converge to a correct state even if starting in an arbitrary state, provided
that no further faults happen.

Local algorithms, on the other hand, have no apparent relation to fault tol-
erance. Instead, the basic question studied is whether one can build efficient
network algorithms, where any node only knows about its immediate neighbor-
hood. What problems can be solved in such a framework, and how efficiently?
Local algorithms have first been studied about 10 years after Dijkstra proposed
the notion of self-stabilization [3,4,5,6]; recently they experience an Indian sum-
mer because of new application domains, such as overlay or sensor networks [7].

It seems that the world of self-stabilization (which is asynchronous, long-lived,
and full of malicious failures) has nothing in common with the world of local algo-
rithms (which is synchronous, one-shot, and free of failures). However, as shown
in the late 1980s, this perception is incorrect [8,9]; indeed one can prove quite
easily that the two areas are essentially equivalent. Intuitively, this is because
(i) asynchronous systems can be made synchronous by using synchronizers [10],
(ii) self-stabilization concentrates on the case after the last failure, when the
system tries to become correct again, and (iii) one-shot algorithms can just be
executed in an infinite loop.

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 17–34, 2009.
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One can show that upper and lower bounds in either area more or less transfer
directly to the other area.1 Unfortunately, it seems that this equivalence has been
somewhat forgotten in the last decades. For instance, hardly ever does a paper
from one area cite work from the other area. We take the opportunity of this
invited paper to summarize the basics, to discuss the latest developments, and
to point to possible open problems. We believe that the two areas can learn a
great deal from each other!

2 Deterministic Algorithms

The connection between local algorithms and self-stabilizing algorithms is partic-
ularly straightforward in the case of deterministic algorithms: any deterministic
local algorithm is also a deterministic self-stabilizing algorithm. Furthermore,
any deterministic, synchronous local algorithm whose running time is T syn-
chronous communication rounds provides a self-stabilizing algorithm that stabi-
lizes in time T . In this section, we review the conversion in detail, first through
an example and then in the general case.

2.1 An Example: Graph Coloring

Throughout this work we consider distributed systems that consist of computa-
tional devices and communication links between them. The distributed system
is represented as a graph G = (V,E) with n = |V | nodes: each node v ∈ V is a
device, and two nodes can communicate directly if they share an edge {u, v} ∈ E.

Although the connection between local algorithms and self-stabilizing algo-
rithms is more general, in this text we focus on distributed algorithms that solve
graph problems. We use the problem of finding a graph coloring as a running
example. In this case we want to assign a color c(v) to each node v ∈ V such that
no two adjacent nodes share the same color, i.e., the nodes of each color form an
independent set. In general it is NP-hard to determine the minimum number of
colors required to color a graph, so we settle for (∆ + 1)-colorings, where ∆ is
the maximum node degree. Each node v must produce a local output from the
set {0, 1, . . . , ∆} such that for any pair of adjacent nodes the local outputs are
different.

2.2 A Deterministic Local Algorithm for Graph Coloring

Perhaps the simplest model of distributed computing is a synchronous dis-
tributed algorithm. In a synchronous algorithm, all nodes in the network per-
form steps in parallel: during each synchronous communication round, all nodes

1 So was local algorithms just old wine in new skins? Not really, because the two areas
had quite a different focus. Whereas self-stabilization mostly dealt with correctness,
local algorithms were all about complexity and efficiency. Today, this difference is
disappearing, as also self-stabilization is more and more about efficiency.
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in parallel (i) perform local computation, (ii) send out messages to their neigh-
bors, (iii) wait for the messages to propagate along the edges, and (iv) read the
incoming messages. Finally the nodes determine their output and terminate. A
synchronous local algorithm is simply a distributed algorithm that completes
in T synchronous communication rounds. Typically T is a constant [6,11] or a
slowly-growing function of n [3,4,5].

In T communication rounds, information is propagated for only T hops in
the communication graph; hence the output of a node v can only depend on the
structure of the graph G in the radius-T neighborhood of v. This is the very idea
suggested by the term “local algorithm”: nodes make decisions based on local
information, yet the decisions must be globally consistent.

We start with a variant of a very fast and elegant algorithm, the well-known
Cole–Vishkin algorithm [4], which 3-colors an n-cycle in O(log∗ n) rounds. The
function log∗ n is defined as the number of times the logarithm has to be applied
to n until the result is a constant. This function grows exceptionally slowly and
is bounded by a small number for any reasonable size of n. In the Cole–Vishkin
algorithm, the local input of a node is a unique identifier with O(log n) bits, and
the local output of a node will be a color from the set {0, 1, 2}:

24

2 1 1

2 45 6 44 81 0

1 0 2 2 0

14

To keep things simple, we assume that the nodes know an upper bound on n,
and the cycle has a consistent orientation such that each node has one successor
and one predecessor:

The algorithm works as follows. Initially, the color of a node is equal to its unique
identifier; the idea is to repeatedly decrease the number of colors required. In
each round, each node v sends its current color to its successor w. The node
w compares bitwise its own color to the received one to determine the least
significant bit where they differ. It binary encodes the position and appends the
differing bit, resulting in its new color in the form of a bit string. The new color
of w cannot be identical to the new color of its predecessor v: either the indices
of the bits v and w determined are not the same, meaning that the colors have
a different prefix, or the computed indices referred to bits with different values,
i.e., the new colors differ in their terminal bits.

The following example shows two iterations of the algorithm on a part t →
u→ v → w of a cycle:

t: 1010110000→ . . . → . . .
u: 0010110000→ 10010→ . . .
v: 1010010000→ 01010→ 111
w: 0110010000→ 10001→ 001.
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The initial colors, i.e., the nodes’ unique identifiers, have O(log n) bits. After one
step, the colors consist of O(log logn) bits, namely a binary encoded position
in a string of length O(log n) plus one bit. Applying this observation also to
subsequent rounds, we see that after O(log∗ n) rounds, the number of bits—
and thus colors—has become constant. At this point, a simple constant-time
algorithm can be used to reduce the number of colors to ∆ + 1 = 3: in each
round, we remove the largest color.

In summary, we have an algorithm for 3-coloring an n-cycle in O(log∗ n)
rounds; furthermore, this running time is asymptotically optimal [5]. The ap-
proach can be generalized to bounded-degree graphs and rooted trees [12,13].
Recently, the technique was utilized to find colorings in bounded-independence
graphs in O(log∗ n) rounds [14]; we will discuss recent work in more detail in
Sect. 4.1.

2.3 A Self-stabilizing Algorithm for Graph Coloring

The local algorithm presented in the previous section is not fault-tolerant in
any way. We assumed that all nodes are activated simultaneously in a specific
initial state, and the network does not change during the execution of the al-
gorithm. The algorithm eventually stops, after which it does not react in any
way to changes in the network. Furthermore, we assumed that all nodes perform
computations in a synchronous manner, as if a global clock pulse was available.

Nevertheless, it is possible to convert this local algorithm into an efficient
asynchronous self-stabilizing algorithm. A self-stabilizing algorithm, by defini-
tion, provides an extreme form of fault tolerance [2,15,16]: an adversary can
choose an arbitrary initial configuration, and a self-stabilizing algorithm is still
guaranteed to converge into a correct output.

For the sake of concreteness, we use the shared-memory model here: we assume
that each communication link {u, v} ∈ E consists of a pair of communication
registers, one which is written by u and read by v, and one for passing informa-
tion in the opposite direction. Typically support of atomic reads and writes is
assumed.

In this model, a configuration of the system consists of the local outputs of
the nodes, the contents of the local variables of the nodes, and the contents of
the communication registers. In a legitimate configuration the system behaves
as intended—in our example, a legitimate configuration simply refers to any
configuration in which the local outputs of the nodes form a valid coloring. We
refer to Dolev’s book [16, §2] for more details on these definitions and on the
model of self-stabilizing algorithms in general.

We now convert the variant of the Cole–Vishkin algorithm presented in Sect. 2.2
into an asynchronous self-stabilizing algorithm. Asynchronicity means here that
there are no guarantees on how fast computations are done and information is ex-
changed. Rather, the algorithm must be resilient to a worst-case situation where
a non-deterministic distributed daemon may schedule any computational step at
any node next. The algorithm must reach a legitimate state regardless of the de-
cisions of the daemon. The time complexity of an asynchronous self-stabilizing
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algorithm is defined as the number of asynchronous cycles required to converge
from an arbitrary state to a legitimate configuration; an asynchronous cycle is an
execution during which each node at least once reads its input and incoming mes-
sages, and infers and writes its new output and outgoing messages.

The algorithm from Sect. 2.2 can be adapted to this model as follows. Let
T = O(log∗ n) be the running time of the Cole–Vishkin algorithm. For each edge
in the cycle, we divide the associated communication register (in the described
algorithm communication is unidirectional, hence a single register suffices) into
T parts, each of which represents one round of the local algorithm. Let v be a
node in the oriented cycle, with predecessor u and successor w. Now the state of
the communication register on the edge {u, v} corresponds to all messages that
u sends to v during the execution of the Cole–Vishkin algorithm; similarly, the
register on the edge {v, w} corresponds to the messages sent by v to w.

The node v continuously reads its input (its unique identifier) and the values
in the communication register on the edge {u, v}. The node v simulates its own
actions during a complete execution of the Cole–Vishkin algorithm, assuming
that these incoming messages are correct, and writes its own outgoing messages
to the communication register on the edge {v, w}. The node also continuously
re-writes its local output based on this simulation.

Naturally, in the beginning the output might be nonsense, as the initial mem-
ory state is arbitrary. After one asynchronous cycle, however, the nodes will
have (re)written their identifiers into the parts of the registers responsible for
the messages in round one of the Cole–Vishkin algorithm. In the next cycle,
their neighbors will read them, compute the new colors, and write them into
the parts for round two, and so on. After T + 1 asynchronous cycles, the initial
state of the system has been erased and replaced by the values the local algo-
rithm would compute in a single run, independently of the schedule the daemon
chooses. Hence the same arguments as in the previous section prove that the
output must be correct at all nodes. Moreover, no further state transitions oc-
cur, as the outcome of all steps of the computation depends only on the local
inputs (unique identifiers) of the nodes.

We conclude that the algorithm stabilizes within T + 1 asynchronous cycles,
where T is the running time of the local algorithm. Hence in the conversion
from local to self-stabilizing algorithms, we can guarantee much more than mere
eventual convergence into a legitimate configuration: we can show that the con-
vergence is fast.

Note that the algorithm is also efficient in terms of the number of bits sent
and the required memory. In total

T∑
i=1

O(log(i) n) = O(log n)

bits need to be exchanged along each edge, where log(i) n denotes the i times
iterated logarithm. Apart from the presented special case where edges are ori-
ented, this bit complexity is asymptotically optimal [17], a result also holding
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for randomized algorithms which are presented in Sect. 3. No additional memory
beyond the communication registers is needed.

2.4 General Case

The example of Sect. 2.3 was fairly simple: in the original local algorithm, each
node sends messages to only one neighbor. However, the general case is not much
more complicated: there are two communication registers on each edge, and all
registers are divided in T parts, one part for each communication round.

Figure 1 shows the basic idea behind the conversion: given any deterministic
distributed algorithm A with running time T , we can construct an equivalent
circuit that produces the same output as A. The figure shows the conversion in
the case where the communication graph G is a cycle, but the same idea can be
applied to arbitrary graphs.

Each node v in Fig. 1a is replaced by T + 1 virtual nodes v0, v1, . . . , vT in
Fig. 1b. The node v0 represents the initial state of the node v in the algorithm
A, and the node vi for i = 1, 2, . . . , T represents the state of the node v in
the algorithm A after the synchronous communication round i. A directed edge
from vi−1 to ui represents the message sent by v to u during the synchronous
communication round i. Clearly the output of the circuit is equal to the output
of the original algorithm A.

(b)

· · ·

t = 0

t = 1

t = 2

t = T − 1

t = T

outputs

(a)

v

outputs

inputs

inputs

Fig. 1. (a) A distributed system that executes a local deterministic algorithm A with
running time T . (b) A circuit that computes the same output.
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So far we seem to have gained little: we have just an alternative representation
of the original local algorithmA. However, the key observation is that it is easy to
simulate the computations of the circuit of Fig. 1b by a self-stabilizing algorithm.
Furthermore, the simulation can be realized in virtually any model of distributed
computing (assuming, of course, that the model allows us to implement any kind
of reliable computation at all).

In essence, we simply replace each diagonal edge from vi−1 to ui by a point-
to-point communication channel from the node v to u. The node v continuously

1. re-reads its local input and all incoming messages,
2. simulates the behavior of A for each time step, assuming that the incoming

messages are correct, and
3. re-writes its local output and all outgoing messages.

After i + 1 asynchronous cycles, the outgoing signals of the virtual nodes vi are
correct, and after T +1 asynchronous cycles, the output of each node is correct,
regardless of the initial configuration.

In the example of Sect. 2.3 we implemented point-to-point communication
from u to v by using a communication register that was written by u and read
by v. Equally well we could use the message-passing model and a self-stabilizing
implementation of unit capacity data links; see, e.g., Awerbuch et al. [18].

Naturally, if T is large, say, T = Θ(n), then the conversion of Fig. 1 is of little
use. However, in the case of local algorithms, typically T � n and in some cases
even T = O(1). Hence this simple and easy-to-implement conversion yields an
efficient self-stabilizing algorithm for most deterministic local algorithms. In par-
ticular, constant-time distributed algorithms are also self-stabilizing algorithms
that stabilize in constant time. Furthermore, the memory requirement and mes-
sage size is increased only by a factor of T : for example, if the original local
algorithm transmits m-bit messages on each edge, the self-stabilizing algorithm
sends (Tm)-bit messages.

2.5 The Simple Conversion in Literature

The observation that deterministic distributed algorithms can be easily con-
verted into self-stabilizing algorithms is by no means new. The conversion of
Fig. 1 is, in essence, equal to the “simulator” introduced by Awerbuch and
Sipser [8] more than 20 years ago. Awerbuch and Sipser explicitly referred to
the problem of simulating local algorithms, even though the field of local al-
gorithms barely existed back then. While Awerbuch and Sipser did not focus
on self-stabilizing algorithms, all key ingredients were already present. Their
algorithm was triggered by a topology change in the network; equally well we
can trigger the algorithm by periodically re-reading the inputs, and we obtain a
self-stabilizing algorithm.

Awerbuch and Varghese [9] make the connection between synchronous dis-
tributed algorithms and self-stabilizing algorithms explicit. They use the term
“rollback compiler” to refer to a simple conversion similar to that of Fig. 1. In
their terminology, the states of the virtual nodes v0, v1, . . . , vT together with
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the incoming messages constitute a log that contains the full execution history
of the node v; hence the node can verify that the execution of the algorithm
A is correct from its own perspective. If the execution is correct from the per-
spective of all nodes, then also the outputs are correct and the algorithm has
stabilized. By keeping track of the execution history, we have made the output
of the distributed algorithm locally checkable.

The simple conversion can also be interpreted as an application of local check-
ing and correction that is introduced in Awerbuch et al. [18]. We can locally check
the state of each directed edge in Fig. 1b. If a link (ui−1, vi) is in an inconsistent
state, we can locally correct the state of vi. By construction, each dependency
chain in this system has length at most T , and hence the system will stabilize
in time T + 1.

However, even though the simple conversion itself is well-known [16, §5.1], it
seems that fairly little attention has been paid to it in the literature. The main
focus has been on non-local problems such as spanning trees and leader election.
Even in Awerbuch and Varghese’s [9] work the main contribution is related to
the conversion of non-local distributed algorithms whose running time T is larger
than the diameter of the network.

A notable exception is Mayer et al. [19]. In this work—which is a follow-up
of the seminal paper by Naor and Stockmeyer [6] that initiated the study of
strictly local (constant-time) distributed algorithms—Mayer et al. specifically
draw attention to the connection between local algorithms and fault-tolerance
in dynamic systems. However, the field of local algorithms was still in its infancy
in 1995, and positive examples of local algorithms were scarce.

We believe it is time to revisit the issue now, as we have numerous recent
examples of local algorithms. In Sect. 4, we survey highlights from the field of
local algorithms—both positive and negative results—and explain what impli-
cations they have from the perspective of self-stabilizing algorithms. However,
we will first have a look at the much more complicated issue of randomized local
algorithms.

3 Randomized Algorithms

So far we have restricted our attention to deterministic local algorithms. There
is a considerable number of local algorithms that are randomized, i.e., each node
has access to (uniformly) random bits. These can be useful to break symmetry
or locally take decisions that probably perform well on a global scale, creating
algorithms which are likely to be faster than their deterministic counterparts,
to achieve better approximation guarantees, or to yield correct solutions despite
short running times.

3.1 Basic Symmetry Breaking

Sometimes deterministic algorithms are even incapable of solving a particular
task. Coloring an anonymous cycle, i.e., a cycle without a means to distinguish
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between nodes, is impossible without randomization. Due to total symmetry,
when executing a deterministic algorithm, all nodes must take the same actions
and eventually attain the same color.2 On the other hand, running the Cole–
Vishkin algorithm from Sect. 2 with O(log n) random bits as “identifier” at
each node will result in a correct output with high probability (w.h.p.), i.e.,
for any choice of a constant c > 0 we can bound the probability of failure
by 1/nc. Using random bit strings of length (c + 2) logn, any pair of nodes
will have distinct bit strings with probability 1/nc+2. Summing over all pairs
of nodes, the probability of two nodes having the same string can be bounded
by n(n − 1)/(2nc+2) < 1/nc. Thus, with probability at least 1 − 1/nc, we can
interpret the random bits as correct input of the deterministic Cole–Vishkin
algorithm relying on unique identifiers.

When this technique is to be employed in the self-stabilizing world, we cannot
guarantee globally unique identifiers any more unless accepting a stabilization
time of Ω(D), since there is no way to distinguish a corrupted memory state
from a correct one if not comparing the identifiers. However, for many algo-
rithms, in particular routines such as Cole–Vishkin dealing with breaking of
local symmetry, a locally unique labeling, i.e., any coloring, will do. Assuming
(an approximation of) n is known, we merely need to continuously compare the
“random identifiers” of neighbors, and generate a new random bit string if a
conflict is observed. This very simple algorithm self-stabilizes w.h.p. within one
or two cycles, depending on the precise model, and can be a building block for
more sophisticated algorithms.

3.2 Pseudo-Randomization

The general transformation from Sect. 2.4 fails for randomized algorithms. On
the one hand, if nodes make their random choices in advance and proceed de-
terministically, an adversary may tamper with the state of the memory holding
the random bits, and the algorithm will be slow, yield bad approximations, or
even completely fail. On the other hand, if nodes take random choices in each
step of the algorithm “on the fly”, the execution of the algorithm itself is not
deterministic. In this case, we cannot represent the state of a node in a given
(synchronous) round as function of the states of the nodes in the previous round,
and thus also not represent the respective computations by a Boolean circuit.
Rather, to guarantee uncorrupted random choices, nodes would have to contin-
uously renew their random bits, preventing convergence to a fixed output.

From a practical point of view, this problem can be tackled easily: Instead
of generating actual random numbers, we use fixed unique random seeds, i.e.,
node identifiers, as part of the input. These bits are read-only and can be seen
as part of the protocol itself, i.e., they are not subject to the arbitrariness of
initial states. Using a pseudo-random function with the node identifier in con-
junction with the round number as input, nodes can generate pseudo-random

2 Asynchrony might break symmetry, but in the worst case it will certainly not. Here
the worst case ironically is the system being perceived as synchronous.
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bits for use by a randomized algorithm. Since these bits are computed determin-
istically at running time, the conversion from Sect. 2.4 can be applied again to
infer asynchronous and self-stabilizing algorithms from synchronous randomized
counterparts.

Assuming that no correlation between the random seeds and the problem-
specific input exists, and provided that a well-behaving pseudo-random func-
tion is used, the performance of the algorithm will be indistinguishable from a
“true” randomized algorithm’s: We simply ensured a supply of random bits in
advance by storing a previous random choice in non-volatile memory to avoid
corruption. Hence, in practice also randomized local algorithms lead to efficient
self-stabilizing solutions in a straightforward manner.

3.3 Theoretical Questions

From a theoretical point of view, the use of pseudo-randomization is noneffective.
Regardless of the computations made, previously stored values do not replace
randomly generated numbers. At best, if the stored bits have been generated
uniformly at random and the other input is independent of these choices, each
stored bit can be used once as a random bit. At worst, a sufficiently powerful
adversary might learn about nodes’ pseudo-random choices by experimentation
or having access to the complete state of nodes, and afterwards modify the input
in a way such that the pseudo-random choices are badly suited to the created
problem instance. After all, pseudo-randomness does not change the determin-
istic behavior of the algorithm, and therefore any lower bound applicable to
deterministic algorithms must hold.

In fact, to the best of our knowledge, little is known about which random-
ized local algorithms can be made self-stabilizing efficiently. We presented a
trivial, yet important example at the beginning of the section which tolerates
asynchronicity. Synchronous randomized algorithms may require synchronous
systems to self-stabilize quickly, as the random choices of a given round need to
be correlated. This however might limit their usability in an asynchronous en-
vironment, since a self-stabilizing synchronizer requires time in the order of the
diameter of the network to stabilize [20], a bound that—at least when ignoring
other complexity measures—is trivial to local algorithms, since nodes may learn
about the whole topology and all local inputs in that time.

4 Results on Local Algorithms

In this section, we present selected results from the field of local algorithms, with
the main focus on recent discoveries. Most of the results are deterministic algo-
rithms or lower-bound results, each of which has a direct self-stabilizing coun-
terpart. We have also included examples of randomized local algorithms—some
of these can be made self-stabilizing by using the symmetry breaking technique
discussed in Sect. 3, while developing self-stabilizing versions of others provides
challenges for future research. We begin with the theme that we have used as a
running example in Sections 2 and 3, graph coloring.
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4.1 Colorings, Independent Sets, and Matchings

In the study of traditional centralized algorithms, graph coloring is often seen
from the perspective of optimization: the goal is to minimize the number of
colors. This perspective leads to many famous results in graph theory and com-
puter science; finding an optimal coloring is a classical NP-hard problem, and
numerous (in)approximability results, practical heuristics, and exponential-time
exact algorithms are known.

However, in distributed computing, graph coloring is usually regarded as a
fundamental symmetry-breaking primitive. From this point of view, minimizing
the number of colors is not necessary—a coloring with ∆ + 1 colors is sufficient
for symmetry-breaking purposes. While such a coloring is trivial to find in a
centralized setting by using a greedy algorithm, the problem of finding such
colorings efficiently in a distributed setting has been a central question from the
very first days of the field to the present day. These efforts have resulted in fast
algorithms and tight impossibility results, both of which transfer directly to a
self-stabilizing setting.

Before reviewing the key results, it is worth mentioning that there is another
symmetry-breaking problem that is essentially equal to graph coloring: the prob-
lem of finding a maximal independent set. Given a k-coloring, it is easy to find
a maximal independent set in time k. Conversely, if we have an algorithm for
finding a maximal independent set, we can use it to find a (∆ + 1)-coloring [5].
Another related symmetry-breaking problem is finding a maximal matching. In
particular, in the case of directed cycles a maximal matching is equivalent to
a maximal independent set: the outgoing edges of independent nodes form a
matching and vice versa.

From this background it comes as no surprise that all these problems have
essentially the same time complexity in bounded-degree graphs, already familiar
from Sect. 2: if ∆ = O(1), then it is possible to find a (∆+1)-coloring, a maximal
independent set, and a maximal matching in O(log∗ n) rounds, and not faster.

Deterministic Algorithms. Naturally, all deterministic algorithms that break the
symmetry require some kind of initial symmetry-breaking information [21]. The
algorithms that we discuss here assume that each node has a unique identifier.
The unique identifiers do not make the problems trivial, though. Linial’s re-
sults [5] show that even in the case of directed cycles with unique identifiers,
there is no constant-time algorithm for finding a graph coloring, maximal in-
dependent set, or maximal matching. Any such algorithm requires Ω(log∗ n)
communication rounds.

We already presented the Cole–Vishkin algorithm [4] for coloring a cycle in
Sect. 2; the running time of this algorithm matches Linial’s lower bound. Since
the publication of Cole and Vishkin’s seminal work in 1986, numerous algorithms
have been presented for the problem of coloring an arbitrary graph with ∆ + 1
colors; typically, such algorithms have time complexity of the form O(f(∆) +
log∗ n). Examples of these include an algorithm by Goldberg et al. [22] with a
running time of O(∆2 + log∗ n) rounds, and by Kuhn et al. [23] with running
time O(∆ log∆ + log∗ n). The recent algorithms by Barenboim and Elkin [24]
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and Kuhn [25] finally push the running time down to O(∆ + log∗ n). These
results also provide a deterministic algorithm for finding a maximal independent
set in O(∆ + log∗ n) rounds. Schneider et al. [14] study bounded-independence
graphs, i.e., graphs in which any constant-radius subgraph contains at most
O(1) independent nodes. In this family, a maximal independent set, a maximal
matching, or a (∆ + 1)-coloring can be found in O(log∗ n) rounds.

There are also efficient distributed algorithms that directly solve the problem
of finding a maximal matching. Some of the algorithms have running times of the
familiar form O(f(∆)+log∗ n): Panconesi and Rizzi [26] find a maximal matching
in O(∆ + log∗ n) rounds. However, there are also algorithms that perform well
even if ∆ = Θ(n). For example, Hańćkowiak et al. [27] find a maximal matching
in O(log4 n) rounds.

In summary, at least for bounded-degree graphs (or more general bounded-
independence graphs), these three symmetry-breaking problems admit very ef-
ficient and asymptotically optimal deterministic solutions.

Randomized Algorithms. In the case of deterministic algorithms, we assumed
that we have unique identifiers in the network. However, a much weaker as-
sumption is usually sufficient: it is enough to have a graph coloring (possibly
with an unnecessarily large number of colors). Many deterministic graph color-
ing algorithms, including the original Cole–Vishkin algorithm, simply perform
color reductions steps: in each iteration, a k-coloring is replaced with an O(log k)-
coloring.

Therefore we can apply a randomized graph coloring algorithm, such as the
one mentioned in Sect. 3.1, to obtain an initial k-coloring, and then use determin-
istic local algorithms to find a (∆+1)-coloring, a maximal independent set, or a
maximal matching. Such a composition results in a randomized self-stabilizing
algorithm that can be used in anonymous networks without unique identifiers.

There are also randomized local algorithms that find a maximal independent
set directly, without resorting to a randomized graph coloring algorithm. The
most famous example is Luby’s [3] randomized algorithm from 1986 that finds
a maximal independent set in O(log n) rounds w.h.p.; similar results were also
presented by Alon et al. [28] and Israeli et al. [29] around the same time. Recently,
Métivier et al. [30] presented a new variant featuring a simpler analysis. While
we are not aware of a self-stabilizing version of Luby’s algorithm, there has been
progress in this direction. Already in 1988, Awerbuch and Sipser [8] studied
Luby’s algorithm in dynamic, asynchronous networks, and more recently the
algorithm has been studied in a fault-tolerant setting by Kutten and Peleg [31].

4.2 Linear Programs

Now we change the perspective from symmetry-breaking problems to optimiza-
tion problems. Many resource-allocation questions in computer networking can
be naturally formulated as distributed linear programs (LPs): each (physical or
virtual) node in the network represents a variable or a constraint, with an edge
between a variable and each constraint that depends on it. Papadimitriou and
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Yannakakis [32] raised the question of solving such linear programs in a local
manner so that the value of each variable is chosen using only information that
is available in its local neighborhood in the network.

Clearly such algorithms cannot produce an optimal solution—in some cases
even finding a feasible solution requires essentially global information on the
problem instance. However, there are important families of linear programs that
admit local approximation algorithms, i.e., algorithms that find a solution that
is guaranteed to be feasible and near-optimal.

The most widely-studied families are packing and covering LPs. In a packing
LP, the objective is to maximize c�x subject to Ax ≤ 1 and x ≥ 0 for a
non-negative matrix A; a covering LP is the dual of a packing LP. Distributed
approximation algorithms for packing and covering LPs have been presented by
Bartal et al. [33] and by Kuhn et al. [34,35].

For example, in the case of {0, 1} coefficients, Kuhn et al. [35] find a (1 + ε)-
approximation in O(ε−4 log2 ∆) rounds; here the degree bound ∆ is the maxi-
mum number of non-zero elements in any row or column of the matrix A. If ∆
is a constant, the algorithm is strictly local in the sense that the approximation
ratio and the running time are independent of the number of nodes. Moreover, it
is a local approximation scheme: an arbitrarily good approximation ratio can be
achieved. The algorithm is deterministic, an therefore it can be easily converted
into a self-stabilizing algorithm.

It is also known that the dependency on ∆ in the running time is unavoid-
able. Kuhn et al. [35,36] present lower bound constructions that, in essence,
show that finding a constant-factor approximation of a packing or covering LP
requires Ω(log∆/ log log∆) rounds, even in various special cases such as the LP
relaxations of minimum vertex cover and maximum matching. The same con-
struction also gives a lower bound of Ω(

√
logn/ log logn) rounds as a function

of n. Such lower bounds have applications far beyond linear programming, as
they also give lower bounds for the original combinatorial problems. Incidentally,
the lower bounds by Kuhn et al. hold even in the case of randomized algorithms
with probabilistic approximation guarantees.

The family of max-min LPs combines packing and covering constraints. In a
max-min LP, the objective is to maximize ω subject to Ax ≤ 1, Cx ≥ ω1, and
x ≥ 0 for non-negative matrices A and C. While arbitrarily good approximation
factors can be achieved for packing and covering LPs in bounded-degree graphs
with a strictly local algorithm, this is no longer the case for max-min LPs—
indeed, a tight pair of positive [37] and negative [38] results is known for the
approximation factor achievable with a strictly local algorithm. Nevertheless,
for certain families of graphs better approximation algorithms are known [39].

4.3 Randomized LP Rounding

In addition to being the workhorse of operations research, linear programming
has found numerous applications in the field of combinatorial optimization [40].
Many of the best polynomial-time approximation algorithms build on the theory
of linear programming [41]. The case is the same in the field of local algorithms.
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Putting together the LP approximation schemes discussed in Sect. 4.2 and the
technique of randomized rounding [34,35,42], it is possible to find good approx-
imations for many classical combinatorial problems. For example, in the case of
the minimum dominating set problem, we can study the LP relaxation of the
problem. This is a covering LP, and using the LP approximation schemes, we can
find a near-optimal solution, i.e., a near-optimal fractional dominating set.3 Now
the challenge is to construct an integral dominating set whose size is not much
worse than the size of the fractional dominating set; this can be solved by using
a two-step randomized algorithm which provides an O(log∆)-approximation in
expectation. In addition to covering problems such as dominating set, this ap-
proach can be applied to solve packing problems: the expected approximation
factor is O(∆) for maximum independent sets and O(1) for maximum matchings.
The running time is essentially equal to the running time of the LP approxima-
tion scheme.

One of the main drawbacks of this approach is that the use of randomness
seems to be unavoidable, and it is not obvious how to design a self-stabilizing
algorithm with the same performance guarantees. However, there are various
other techniques that can be used to design local approximation algorithms; we
review these in the following section.

4.4 Other Combinatorial Approximation Algorithms

The classical problem of finding a minimum-size vertex cover serves as a good
example of alternatives to randomized LP rounding. There are at least three
other approaches. First, it turns out that vertex cover can be approximated well
by using a deterministic LP-based algorithm. The LP approximation schemes
by Kuhn et al. [35] together with a simple deterministic rounding technique [43]
yield a (2+ ε)-approximation in O(ε−4 log∆) rounds. This algorithm as a whole
can be made self-stabilizing directly by using the approach from Sect. 2.

Second, we can use maximal matchings. The endpoints of a maximal matching
form a 2-approximation of vertex cover. Hence from the results mentioned in
Sect. 4.1, we immediately have deterministic 2-approximation algorithms for
vertex cover with running times O(log4 n) [27] and O(∆ + log∗ n) [26].

Third, there is a recent deterministic algorithm that finds a 2-approximation
of a minimum vertex cover in O(∆2) rounds [44] without resorting to maxi-
mal matchings. The algorithm does not require unique identifiers, making it
particularly easy to convert into a self-stabilizing algorithm even in anonymous
networks.

Finally, there are also strong lower-bound results. For example, in the case of
a constant ∆, the above-mentioned algorithm finds a 2-approximation of a min-
imum vertex cover in constant time. This approximation factor is tight: lower
bound results [45,46] show that a (2 − ε)-approximation is not possible in con-
stant time for any constant ∆ ≥ 2. Furthermore, the lower bound result by

3 A fractional dominating set assigns to each node a weight from [0, 1] such that the
sum of a node’s own and neighbors’ weights is at least 1.
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Kuhn et al. [36] proves that a constant ∆ is necessary if we want constant run-
ning time and constant approximation factor.

In summary, the problem of approximating vertex covers by distributed al-
gorithms is nowadays well understood: there is a whole range of deterministic
algorithms from which to choose, and there are also strong lower-bound results.
All these results have straightforward corollaries in a self-stabilization setting.

Also the minimum dominating set problem that we used as an example in
Sect. 4.3 admits deterministic approximation algorithms—at least for special
cases and variants of the problem. Recent results include two constant-time
distributed algorithms that find a constant-factor approximation of a minimum
dominating set in a planar graph [45,47]. There is also a deterministic O(log∗ n)-
time algorithm that finds a constant-factor approximation of a minimum con-
nected dominating set in bounded-independence graphs [14].

The classical optimization problem of finding a maximum-size independent
set can be used to illustrate the trade-off between randomization and running
time. As the maximum independent set problem is hard to approximate even in
a centralized setting, we focus on the special case of planar graphs. Czygrinow et
al. [45] present both deterministic and randomized local approximation schemes:
the deterministic algorithm finds a good approximation in O(log∗ n) rounds,
while the randomized algorithm finds a good approximation in O(1) rounds
w.h.p. Together with the recent lower bound results [45,46], this work shows
that randomized local algorithms are asymptotically faster than deterministic
local algorithms in some optimization problems, giving additional motivation
for studying the conversion of local randomized algorithms into self-stabilizing
randomized algorithms.

We refer to Elkin’s [48] survey for more information on distributed approxi-
mation algorithms. There is also a recent survey [11] that focuses specifically on
constant-time distributed algorithms.

5 Conclusion

We misused this invited paper to remind the local algorithms and self-stabiliza-
tion communities that they share a long history. After recapitulating the ele-
mentary observation that any deterministic local algorithm has a self-stabilizing
analogon, we highlighted recent results on efficient local algorithms. We are con-
vinced the relation goes in both directions—we believe that a similar article
could be written from a vantage point of self-stabilization.

Several issues are still open. In our view randomization is not fully understood
in this context. We thus encourage experts from both fields to explore to what
extent randomization techniques can be transferred between the two areas. Also,
we merely touched the surface of bit complexity, the quality of an algorithm in
terms of the number of exchanged bits. In the last decades considerable progress
has been made both in minimizing the bit complexity of local algorithms as
well as in establishing lower bounds. We conjecture that both communities can
profit from ascertaining each others’ results. And finally, there are several areas



32 C. Lenzen, J. Suomela, and R. Wattenhofer

related to both local algorithms and self-stabilization, e.g. dynamic networks or
self-assembly [49].
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Abstract. Consider a logical structure S , constructed over a given net-
work G, which is intended to efficiently support various services on G.
This logical structure is supposed to possess certain desirable proper-
ties, measured with respect to G and represented by some requirement
predicate P(S ,G). Now consider a failure event F affecting some of the
network’s vertices and edges. Making S fault-tolerant means reinforcing
it so that subsequent to the failure event, its surviving part S ′ continues
to satisfy P . One may insist on imposing the requirements with respect
to the original network G, i.e., demanding that the surviving structure
S ′ satisfies the predicate P(S ′, G). The idea behind competitive fault tol-
erance is that it may sometimes be more realistic and more productive to
evaluate the performance of the surviving S ′ after the failure event not
with respect to G (which at the moment is no longer in existence any-
way), but rather with respect to the surviving network G′ = G\F , which
in a sense is the best one can hope for. Hence, we say that the structure
S enjoys competitive fault-tolerance if subsequent to a failure event F ,
its surviving part S ′ satisfies the requirement predicate P(S ′, G′). The
paper motivates the notion of competitive fault tolerance, compares it
with the more demanding alternative approach, and illustrates it on a
number of representative examples.

1 Introduction

Logical Network Structures

A central theme in the theory of networks concerns the construction of logical
information structures on top of the network, that possess some desirable prop-
erties and can be used for improving the performance of relevant applications.
Common examples include a variety of spanning trees such as shortest-path
trees, minimum-weight spanning trees, Steiner trees, optimum communication
trees [24,31], and shallow-light trees [4,26], distance-sensitive skeletal structures
such as spanners (cf. [30,35,36]), preservers [11], emulators [19,40] and tree covers
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[7,15,30], clustered representations such as partitions [8], covers [3], decomposi-
tions [6,5] and hierarchical organizations of different types (cf. [30]), informative
labeling schemes for a variety of graph functions [1,2,22,25,33,34], data struc-
tures supporting different types of topology-related queries such as distance or-
acles [9,37,39] and connectivity oracles [20], routing schemes (cf. [3,30,32,38]),
and more.

In all of these cases, given a network G, one is interested in constructing
a logical information structure S(G) enjoying some useful properties. The set
of desired properties can be represented abstractly as a requirement predicate
P(S, G). Typically, the optimization problem corresponding to such a struc-
ture involves also some cost measure cost(S) associated with constructing or
maintaining the structure S, and the goal is to select a cheap (preferably, the
cheapest) structure S satisfying P(S, G).

As a running example illustrating the notions and terminology under discus-
sion, let us consider the basic requirement of connectivity. Let our structure S
be simply a subgraph of G, and let the requirement predicate Pconn specify that
the structure S must ensure, for every two vertices u,w in G, that if u and w are
connected in G, then they are connected in S as well. A structure satisfying this
predicate is hereafter referred to as a connectivity structure. For concreteness,
let the cost measure cost(S) correspond to the number of edges included in the
subgraph S.

Clearly, if G is composed of � connected components G1, . . . , G�, then one can
obtain a connectivity structure S = S(G) by selecting a forest composed of any
collection of � trees T1, . . . , T� such that Ti spans the connected component Gi

for every 1 ≤ i ≤ �. Such a structure will achieve the task optimally, with a
minimum cost of n− � edges.

Fault Tolerance

This paper addresses the question of making logical information structures in
networks fault-tolerant. The underlying assumption is that the vertices and edges
of the network may occasionally fail or malfunction. Consider some failure event,
represented by a subset F of vertices or edges (or both) that have failed. As a
result of such a failure event, the network G is partially destroyed, and we are
left with the surviving part of the network, G′ = G \ F . It is clear, however,
that such a failure event affects not only the network G, but also any logical
structure S = S(G) constructed for it, as presumably this structure too makes
use of some of the vertices and edges of G, so the failure event F partially
destroys S as well, leaving us with the structure S′ = S \F . In our connectivity
example, for instance, if the set of failed edges F contains a edge of the forest
S = S(G), then after the failure, one of the trees T ′

i of the surviving partial
structure S′ = S \ F may be disconnected and can no longer be used as a
spanning tree for the corresponding connected component Gi of G. In our formal
terminology, the requirement predicate P(S′, G) might no longer hold.

The natural question that arises is, therefore, whether S(G) can somehow be
reinforced and made fault tolerant, i.e., ensure the property that the requirement
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predicate P still holds subsequent to a failure event. A relaxed, but equally
natural, variant of the question calls for a construction of a structure S(G) that
can guarantee the desired properties in some weakened form, namely, ensure
that some relaxed requirement predicate P ′ holds subsequent to a failure event.

Rigid vs. Competitive Fault Tolerance

The notion of “fault tolerance” in logical information structures, as formulated so
far, still contains a hidden ambiguity. One possible (and common) interpretation
to the above description calls for constructing the structure S(G) in such a way
that subsequent to a failure event F , the requirement predicate P(S′, G) contin-
ues to hold (on the original network G). Hereafter, we refer to this demanding
interpretation as the “rigid” (or “static”) approach to fault tolerance. Our focus
in this paper is on highlighting an alternative, more flexible approach, referred
to as competitive fault tolerance. Following this approach, we lower our expec-
tations, and settle for a structure S that ensures that subsequent to a failure
event F , the surviving structure S′ satisfies only P(S′, G′), namely, it satisfies
the requirement predicate P with respect to the surviving network G′, and not
with respect to the original network G (which at the moment is no longer in
existence anyway).

While competitive fault-tolerance appears to be a weaker notion than rigid
fault-tolerance, it is important to realize that rigid fault-tolerance is sometimes
impossible to attain, or is attainable only under some restrictive conditions on
the instance at hand, or only in some weakened form (namely, with a weaker
requirement predicate P ′). In contrast, competitive fault tolerance can often be
attained without having to resort to imposing constraints on the instance or
weakening the requirement predicates. In that sense, ensuring competitive fault
tolerance for a logical structure essentially means ensuring that the situation is
“as good as it gets” under the existing circumstances.

To illustrate the distinction between the two notions of fault-tolerance, let
us return to our connectivity example and consider the fault-tolerant variant of
the problem. Suppose that we are required to construct a connectivity structure
S capable of withstanding a single edge failure (|F | = 1). Note that the rigid
version of the problem does not always admit a solution. For example, suppose
the original network G itself is a single connected tree. Then necessarily S = G,
and the elimination of any edge e = (u, v) of G will cause the surviving subgraph
S′ = S \ F to violate the requirement predicate Pconn(S′, G) (as u and v, for
instance, are connected in G but not in S).

Hence the only way to achieve rigid fault-tolerance for connectivity structures
is to impose some conditions on the network G under consideration. For instance,
we may impose a biconnectivity requirement on the connected components of
the original G, namely, require each connected component Gi of G to be 2-
edge-connected. This will ensure the existence of a feasible rigid fault-tolerant
spanning subgraph S that satisfies the requirement predicate Pconn with respect
to G. In particular, taking S = G as our connectivity structure will satisfy the
problem requirements. In fact, a reasonably low cost can be guaranteed as well.
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In particular, for a network G with � connected components G1, . . . , G�, each of
which is 2-edge-connected, at most 2n− 2� edges will suffice for a rigid 1-fault-
tolerant connectivity structure S. To see this, consider the following construction
for a connectivity structure. Start with an arbitrary collection of � trees T1, . . . , T�

spanning G1, . . . , G� (respectively). For each edge e ∈ E(Ti), whose elimination
from Ti disconnects it into T e

i1 and T e
i2, let backup(e) = {e′} for some edge

e′ ∈ E(Gi) \E(Ti) connecting T e
i1 and T e

i2. (Such an edge must exist since Gi is
2-edge-connected.) It is easy to verify that taking S to be

S =
�⋃

i=1

⎛⎝E(Ti) ∪
⋃

e∈E(Ti)

backup(e)

⎞⎠
ensures that S′ = S \ {e} satisfies Pconn(S′, G), for any e ∈ E(G).

The rigid approach to fault-tolerance is of course highly significant from both
the theoretical and practical standpoints, and in fact it is the approach of choice
during the design stage of the underlying physical network G. At that stage, one
must ensure both the reliability and survivability of G itself and the resilience of
logical information structures to be embedded on top of it. The rigid approach
to fault tolerance allows us to analyze the basic a-priori conditions that the
network G must meet in order to support logical information structures satisfying
the desired requirements in the presence of failures, and thus enables us (given
sufficient time in advance) to reinforce the physical network G itself so as to
strengthen its accompanying logical structures as necessary. In the example of
connectivity, this can be achieved by adding edges to G so as to ensure 2-edge
connectivity on every component Gi that requires rigid fault-tolerant (1-edge)
connectivity.

It is equally clear, however, that the rigid approach to fault-tolerance might be
inappropriate in situations where the underlying physical network has already
been fixed, and can no longer be modified, yet it is necessary to assess the
fault-resilience of new logical information structures embedded on it. In such
situations, it may be more realistic and more productive to turn to competitive
fault-tolerance.

Returning to our connectivity example, one realizes that ensuring competitive
fault tolerance does not require imposing any conditions on the network, and a
suitable competitive fault tolerant connectivity structure can be constructed for
every G. To demonstrate this claim for the simple case of a single edge fail-
ure (|F | = 1), for instance, observe that taking S = G solves the problem,
as Pconn(S′, G′) always holds. This is because no matter which edge e = (u,w)
fails in F , it is guaranteed that S′ = G′, and therefore, if the failure of e discon-
nects u from w in S, then u and w must be disconnected in G′ as well.

In fact, a competitive fault tolerant connectivity structure of cost as low as
that of the rigid fault-tolerant solution outlined above is also feasible, as one can
apply the same construction method, with the following small change. For each
edge e ∈ E(Ti), whose elimination from Ti disconnects it into T e

i1 and T e
i2, if a

backup edge is unavailable for e, we take backup(e) = ∅. That is, we define the
backup edges as
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backup(e) =
{
{e′}, ∃e′ ∈ E(Gi) \ E(Ti) connecting T e

i1 and T e
i2,

∅, otherwise.

To verify that the resulting structure S guarantees Pconn(S′, G′), consider an
edge e = (u,w) that has failed, and suppose that in G′, the vertices u and w are
connected. Then necessarily u and w belong to the same connected component
of G, say, Gi. If e is not in Ti, then u and w are still connected in S via Ti.
If e is in Ti, then its elimination disconnects Ti into T e

i1 and T e
i2, with u in

one of the parts and w in the other. But in this case, S must contain also
an edge e′ ∈ backup(e) (since if no such edge existed in Gi, then T e

i1 and T e
i2

would be disconnected in G′
i as well, and so would u and w, contradicting our

assumption). Hence u and w are still connected in S.
The remainder of this paper presents several additional examples illustrating

the concept of competitive fault-tolerance in the context of different logical in-
formation structures in networks, contrasting it against the alternative notion
of rigid fault-tolerance, and reviewing some recent results in the area.

2 Examples of Competitive Fault Tolerance

We now present a number of additional examples for logical information struc-
tures in networks and discuss the possibility of turning them into rigid or com-
petitive fault-tolerant structures.

MST Structures

Consider a connected network G with edge weights ω : E 	→ IR+. For any
subgraph H of G, let ω(H) =

∑
e∈H ω(e). Suppose that our goal is to maintain

a logical structure, referred to as an MST structure, ensuring the availability of
a spanning tree of minimum weight. Letting MST (G) be an arbitrary minimum
weight spanning tree of G, our logical structure S is again a subgraph of G, and
the requirement predicate we wish it to satisfy, denoted Pmst(S, G), specifies
that S contains a spanning tree T of weight ω(T ) = ω(MST (G)). A natural
cost measure for MST structures may be cost(S) = ω(S).

In the non-fault-tolerant setting, simply taking S = MST (G) yields a feasible
MST structure satisfying Pmst. However, this structure clearly fails to solve the
problem in a failure-prone setting. (As discussed earlier, such a solution will fail
to guarantee even connectivity, let alone low weight).

Moreover, it is clear that a rigid fault tolerant MST structure (i.e., one sat-
isfying Pmst(S′, G)) does not always exist, even in the presence of a single edge
fault, and even by taking S = G, for arguments similar to those mentioned in
our discussion of the connectivity example. (As an exercise, the reader is invited
to contemplate a-priori conditions on G that may ensure the existence of a rigid
fault tolerant MST structure.)

Turning to competitive fault tolerance, the problem becomes more managable.
In particular, it is clear that there always exists an MST structure S for G sat-
isfying Pmst(S′, G′). However, the problem of computing a minimum cost MST
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structure is NP-hard [14], so it may be necessary to resort to approximate solu-
tions. In fact, one may consider several different types of approximation problems.
One type concerns the construction of a competitive fault tolerant MST structure
of near-minimum cost. A second, more relaxed, type of problem concerns the con-
struction of what one may call a competitive fault tolerant Approx-MST structure,
namely, a structure S with the property that for any set F of failed edges, the sur-
viving structure S\F contains a tree T ′ spanningG′ whose weight ω(T ′) is close to
ω(MST (G′)). The most relaxed version of the problem is the one involving both
notions of approximation, namely, seeking to construct a competitive fault toler-
ant Approx-MST structure of near-minimum cost. The latter type of structures
may be easier to construct than the former two.

Flow Structures

Consider a network G with edge capacities γ(e), and with a specified source
vertex ŝ and destination vertex d̂. Suppose that a certain client of the network
services desires to guarantee its long term ability to push as much flow as possible
from ŝ to d̂, and for that purpose it intends to lease a certain (nonnegative)
amount of capacity γ̃(e) on each edge e, where 0 ≤ γ̃(e) ≤ γ(e). Let flow(ŝ, d̂, G)
denote the maximum flow that can be pushed from ŝ to d̂ in G. The logical
structure S maintaining the leased capacities, referred to as a flow structure, is a
copy of G, with leased capacity values γ̃(e) for each edge e, that are sufficient to
support the desired flow from ŝ to d̂. This guarantee is formally captured by the
requirement predicate Pflow(S, G). Supposing further that the price of leasing a
unit of capacity on the edge e is price(e), the overall cost of a flow structure S
is cost(S) =

∑
e∈E(G) price(e) · γ̃(e). Our goal is thus to construct a minimun

cost flow structure S (ensuring the maximum level of flow possible).
Considering the problem in a failure-free setting, it is clear that in order to

determine the values of leased capacity γ̃(e) necessary for every edge e in a min-
imum cost flow structure S, all that needs to be done is solve the corresponding
min-cost max-flow problem.

Turning to the failure-prone setting, let us first consider rigid fault tolerance.
Here, once again, it is not possible to guarantee a solution for the problem
(namely, a flow of flow(ŝ, d̂, G) units) under all circumstances, as is realized,
say, by considering a network G consisting of a single edge (ŝ, d̂) of capacity 1.
A weaker type of rigid guarantee P ′

flow may be obtained as follows. Given the
flow structure S = {γ̃(e) | e ∈ E(G)}, let emax be the edge of maximum γ̃.
Then S can be thought of as an approximate flow structure, ensuring a flow of
at least flow(ŝ, d̂, G)− γ̃(emax) units. However, this guarantee is dissatisfactory,
as in some cases it may be sub-optimal. For instance, look at the network G
depicted in Figure 1. Suppose that in this network all edges have unit capacities
(γ(e) = 1), and the flow structure S consists of leasing in full the capacities of
the edges of the upper path (namely, e1, e2, e3, e4). In the presence of faults, this
flow structure is worthless if the edge e2 gets disconnected, in the sense that in
the surviving structure S′, no flow can be pushed at all, despite the existence of
a surviving ŝ− d̂ path of capacity 1.
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ŝ d̂
e1

e2 e3
e4

e6e5

Fig. 1. An example flow network

A (non-min-cost) competitive fault-tolerant flow structure for this simple ex-
ample (as for any other example) would be to take S = (G, γ), namely, to lease
all the available capacity on all the edges. In this case, for every disconnected
edge, if the surviving network G′ allows a maximum flow of flow(ŝ, d̂, G′) from
ŝ to d̂, then the surviving flow structure S′ will enable the same amount of flow,
i.e., the requirement predicate Pflow(S′, G′) will still hold.

An algorithm for the construction of minimum cost competitive fault tolerant
flow structures is presented in [14].

k-Spanners

As our next example, let us consider the structure of k-spanners (cf. [30,35,36]).
A graph spanner S can be thought of as a skeleton structure that generalizes the
concept of spanning trees and allows us to faithfully represent the underlying
network using few edges, in the sense that for any two vertices of the network,
the distance in the spanner is stretched by only a small factor. More formally,
consider a weighted graph G and let k ≥ 1 be an integer. Let dist(u, v,G) denote
the (weighted) distance between u and v in G. For a subgraph S, the requirement
predicate Pk−span(S, G) specifies that dist(u, v,S) ≤ k · dist(u, v,G) for every
u, v ∈ V . A subgraph S satisfying this predicate is a k-spanner of G.

Turning to fault tolerant k-spanners, the rigid approach leads to the following
definition: a subgraph S is an f -edge fault-tolerant k-spanner of G if dist(u, v,S\
F ) ≤ k · dist(u, v,G) for any set F ⊆ E of size at most f and any pair of vertices
u, v ∈ V . (A similar definition applies to f -vertex fault-tolerant k-spanners.)

By the same connectivity argument as before, we note that this requirement
may be unattainable for some graphs. For instance, if G is not f -edge-connected,
then so is S, in which case the elimination of the edges of F from S might
disconnect it, preventing it from satisfying the requirement. In fact, even if the
set of failures F leaves G connected by some fortunate turn of events, it may still
happen that no selection of S could possibly work. Consider for example an n-
vertex ring G and f = 1; clearly, even if all the edges are selected to the spanner,
setting S = G, the elimination of a single edge F = {e = (u,w)} from G will
leave S′ = G \ {e} connected but increase the distance between the endpoints u
and w from dist(u,w,G) = 1 to dist(u,w,S′) = n− 1.

Rigid fault-tolerance can thus be ensured only in some special cases. One
particular such case is when G is a complete Euclidean graph (with dist(u, v,G)
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defined as |uv|, the Euclidean distance between u and v). In this case, it is
possible to construct a rather sparse fault-tolerant spanner for G. Indeed, the
notion of (rigid) fault tolerant spanners was introduced in the geometric setting
in [27], which presented an efficient algorithm that given a set V of n points in
d-dimensional Euclidean space, constructs an f -vertex fault tolerant geometric
(1+ε)-spanner for V , namely, a sparse graph S satisfying that dist(u, v,S\F ) ≤
(1 + ε)|uv| for any set F ⊆ V of size f , and for any pair of points u, v ∈ V \ F .
A fault tolerant geometric spanner of improved size was later presented in [28],
and finally a fault tolerant geometric spanner with optimal maximum degree
and total weight was presented in [17].

In contrast, the competitive approach yields the following definition. We
say that a subgraph S is a competitive f -edge fault-tolerant k-spanner of G
if dist(u, v,S \ F ) ≤ k · dist(u, v,G \ F ) for any set F ⊆ E of size at most f ,
and any pair of vertices u, v ∈ V . (A similar definition applies to competitive
f -vertex fault-tolerant k-spanners.) As in the previous examples, we note that
under this definition, the task of constructing a competitive f -edge fault-tolerant
k-spanner for a given graph G is never infeasible, as in particular, taking S = G
yields a competitive f -edge fault-tolerant 1-spanner of G for any f .

The question of whether it is possible to construct a sparse fault tolerant
spanner for an arbitrary undirected weighted graph, raised in [17], was answered
in the affirmative in [13] employing competitive fault tolerance and presenting
algorithms for constructing a competitive f -vertex fault tolerant (2k−1)-spanner
of size O(f2kf+1·n1+1/k log1−1/k n) and a competitive f -edge fault tolerant 2k−1
spanner of size O(f ·n1+1/k) for a graph of size n. This should be contrasted with
the best stretch-size tradeoff currently known for non-fault-tolerant spanners
[38], namely, 2k − 1 stretch with Õ(n1+1/k) edges.

Fault-Tolerant Distance Oracles

A distance oracle [9,37,39] is a succinct data structure capable of supporting
efficient responses to distance queries on a weighted graph G. A distance query
(s, t) requires finding, for a given pair of vertices s and t in V , the distance
(namely, the length of the shortest path) between u and v in G. A distance oracle
S satisfies the requirement predicate PDO(S, G) if its query protocol correctly
answers distance queries on G.

In a competitive fault tolerant distance oracle, the query may include also a
set F of failed edges or vertices (or both). To satisfy the requirement predicate
PDO(S′, G′), the distance oracle S must return, in response to a query (s, t, F ),
the distance between s and t in G′ = G\F . Such a structure is sometimes called
an F -sensitivity distance oracle.

It has been shown in [18] that given a directed weighted graph G of size n, it
is possible to construct in time Õ(mn2) a 1-sensitivity fault tolerant distance or-
acle of size O(n2 logn) capable of answering distance queries in O(1) time in the
presence of a single failed edge or vertex. The preprocessing time was recently im-
proved to Õ(mn), with unchanged size and query time [10]. A 2-sensitivity fault
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tolerant distance oracle of size O(n2 log3 n), capable of answering 2-sensitivity
queries in O(log n) time, was presented in [20].

Label-based fault-tolerant distance oracles for graphs of bounded clique-width
are presented in [16]. The structure is composed of a label L(v) assigned to each
vertex v, and handles queries of the form (L(s), L(t), F ) for a set of failures F .
For an n-vertex graph of tree-width or clique-width k, the constructed labels are
of size O(k2 log2 n).

A relaxed variant of distance oracles, in which distance queries are answered
by approximate distance estimates instead of exact ones, was introduced in [39],
where it was shown how to construct, for a given weighted undirected n-vertex
graph G, an approximate distance oracle of size O(n1+1/k) capable of answering
distance queries in O(k) time, where the stretch (multiplicative approximation
factor) of the returned distances is at most 2k − 1.

In the competitive fault tolerant setting, an f -sensitivity approximate distance
oracle S is presented in [12]. For an integer parameter k ≥ 1, the size of S is

O(kn1+ 8(f+1)
k+2(f+1) log (nW )), where W is the weight of the heaviest edge in G, the

stretch of the returned distance is 2k − 1, and the query time is O(|F | · log2 n ·
log logn · log log d), where d is the distance between s and t in G \ F .

Fault Tolerant Routing Schemes

The concept of competitive fault tolerance is suitable also in the context of han-
dling message routing in communication networks. A competitive fault-tolerant
routing protocol is a distributed algorithm that, for any set of failed edges F ,
enables any source vertex ŝ to route a message to any destination vertex d̂ along
a shortest or near-shortest path in the surviving network G \ F in an efficient
manner (and without knowing F in advance).

In addition to route efficiency, it is often desirable to optimize also the amount
of memory stored in the routing tables of the vertices, possibly at the cost of
lower route efficiency, giving rise to the problem of designing compact routing
schemes (cf. [3,30,32,38]).

Label-based fault-tolerant routing schemes for graphs of bounded clique-width
are presented in [16]. To route from s to t, the source needs to specify the labels
L(s) and L(t) and the set of failures F , and the scheme efficiently calculates the
shortest path between s and t that avoids F . For an n-vertex graph of tree-width
or clique-width k, the constructed labels are of size O(k2 log2 n).

Competitive fault-tolerant compact routing schemes are considered in [12],
for up to two edge failures. Given a message M destined to t at a source vertex
s, in the presence of a failed edge set F of size |F | ≤ 2 (unknown to s), the
scheme presented therein routes M from s to t in a distributed manner, over a
path of length at most O(k) times the length of the optimal path (avoiding F ).
The total amount of information stored in vertices of G on average is bounded
by O(kn1+1/k). This should be compared with the best memory-stretch trade-
off currently known for non-fault-tolerant compact routing [38], namely, 2k − 1
stretch with Õ(n1+1/k) memory per vertex.



44 D. Peleg

3 Discussion

In this paper we addressed the question of making logical information struc-
tures in networks fault-tolerant. We formalized and motivated the notion of
competitive fault tolerance, compared it with the more demanding alternative
approach of rigid fault tolerance, and illustrated the distinction between the two
approaches on a number of representative examples.

Let us remark that the notion of competitive fault tolerant structures is
somewhat similar to, but distinct from, the notion of maintaining a dynamic
structure (namely, maintaining a structure in a dynamically changing environ-
ment). There, the structure in question can be modified repeatedly, in response
to changes in the topology, and the algorithmic / complexity questions revolve
around the (worst case or amortized) update costs, and the three-way tradeoffs
between those costs, the memory costs of the structure and the query times.
The problem of maintaining connectivity in a dynamic network, for instance,
has received considerable attention under various models of dynamic changes,
cf. [21,23,29].

Many interesting research directions related to competitive fault tolerance
are left for future study. In adition to the obvious technical questions related to
points left unsettled throughout the above discussion, several natural extensions
of the model present themselves.

One such extension concerns probabilistic failure models. In some settings, it
may be natural to assume that different failure events have different probabilities
of occurring, and moreover, the failure probability of edges and vertices can be
estimated based on their past history. This may facilitate constructions of lower
cost (rigid or competitive) fault-tolerant structures.

When the distribution of failures is not known in advance, it may be useful to
formulate and study an online version of the problem, in which decisions must
be made in each step without knowledge of the future, and the incurred cost
(which depends on the online decisions) should be compared against the cost of
the best (offline) solution.

Finally, it may be interesting to consider non-uniform fault-tolerance require-
ments, capable of modeling situations where some sub-components of the struc-
tures under consideration are more vital than others, and hence their protection
is more crucial. This could be reflected via the definition of suitable cost models
for fault-tolerance violations, and may model various quality-of-service aspects.

Acknowledgements. I am grateful to Shiri Chechik, Mike Langberg and Liam
Roditty for many stimulating and fruitful discussions.
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Abstract. Given the non-determinism and race conditions in distributed
programs, the ability to provide assurance about them is crucial. Our work
focuses on incremental synthesis where we modify a distributed programs
to add self-stabilization. We concentrate on reducing the time complex-
ity of such synthesis using parallelism. We apply these techniques in the
context of constraint satisfaction. In particular, incremental synthesis
of self-stabilizing programs requires adding recovery actions to satisfy
the constraint that are true in the legitimate states. We consider two ap-
proaches to speedup the synthesis algorithm: first, the use of the multiple
constraints that have to be satisfied during synthesis; second, the use of
the distributed nature of the programs being synthesized. We show that
our approaches provide significant reductions in the synthesis time.

Keywords: Stabilization, Program Synthesis, Multicore Algorithms,
Program Transformation, Distributed Programs.

1 Introduction

Self-stabilization, the ability to recover from an arbitrary state to a legitimate
state, is an important feature of distributed programs. It ensures that programs
can recover to their legitimate states even if they are perturbed by unexpected
and unknown transient faults. It is also well-known that designing self-stabilizing
programs is especially challenging. Hence, techniques that permit one to add self-
stabilization to existing programs is highly desirable.

Techniques for adding stabilization to distributed programs can be classified
in two categories. The first category includes approaches based on distributed
reset [6], where the program utilizes approaches such as distributed snapshot [9]
and reset the system to a legitimate state if the current state is found to be
illegitimate. Approaches from this category suffer from several drawbacks. In
particular, it requires the designer to know the set of all legitimate states. The
cost of detecting the global state can be high. Additionally this approach is
heavy-handed since it requires a reset of the entire system even if the fault may
be localized. And, in some cases, e.g., [16], the generated program may utilize
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variables with unbounded domain even though the original program used only
variables with bounded domain.

The second category includes approaches based on constraint satisfaction,
where we identify constraints that should be satisfied in the legitimate states.
Typically, the constraints are local (e.g., involving one node or a node and its
neighbors) therefore, detecting their violation is easy. Since the constraints are
local, the recovery actions to fix them are also local. Moreover, with this ap-
proach, if we begin with a program where the domain of variables is bounded,
then the same property is preserved in the generated program.

However, this approach suffers from one important drawback: local actions
taken to fix one constraint may violate other constraints. Consequently, these
constraints need to be ordered. Furthermore, we need to ensure that satisfying
one constraint does not violate constraints earlier in the order. Since verifying
that recovery actions for satisfying one constraint do not affect other constraints
is a demanding task; automated techniques that ensure correctness by construc-
tion are highly desirable. Such techniques ensure that the synthesized program
is correct by construction. However, algorithms for designing programs that are
correct by construction suffer from high complexity and, hence, techniques to
expedite them need to be developed.

With these motivations, this paper focuses on the use of multicore computing
for parallel synthesis of distributed self-stabilizing programs. We consider two
approaches for parallelization: (1) use of multiple constraints that have to be
satisfied during synthesis, and (2) use of the distributed nature of the programs
being synthesized. The contributions of the paper are as follows:

– We present a multicore algorithm to synthesize distributed self-stabilizing
programs by partitioning the satisfaction of the constraints among available
threads.

– We briefly describe an algorithm that utilizes the distributed nature of pro-
grams being synthesized by parallelizing them.

– We illustrate our algorithm in the context of two case studies.
– As a part of this work, we modify the MDD (Multi-valued Decision

Diagrams) library [20] to make it reentrant and to use it in the parallel
synthesis.

Organization of the paper. The rest of the paper is organized as follows.
In Section 2, we define distributed programs and specifications. We describe
the algorithms for the automated addition of self-stabilization in Section 3. We
present our multicore algorithms in Section 4 and experimental results in Section
5. Finally, we discuss related work in Section 6 and conclude in Section 7.

2 Programs and Specifications

In this section we define the notion of distributed programs, faults, and the
problem statement for adding self-stabilization. Those definitions are based on
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the ones given by Arora and Gouda [5]. We also identify how the notion of
fairness can be modeled for automated addition of self-stabilization.

For the following definitions of enabled and fairness let Ss be a set of states. A
transition over Ss is of the form (s0,s1), where s0,s1∈Ss. Let α, α1, α2, α3, ....αm

be sets of transitions over Ss. In other words, α, α1, α2, α3, ....αm are subsets of
Ss × Ss.

Enabled. Intuitively, α is enabled in s0 if α contains some transitions that
begins in s0. Formally, α is enabled in a state s0 iff there exists a state s1, such
that (s0,s1)∈ α.

Fairness. Intuitively, if a sequence is fair with respect to (α1, α2, α3, ....αm) and
αi is continuously enabled in that sequence then that sequence includes a tran-
sition in αi. Formally, an infinite sequence 〈s0, s1, s3, ...〉 is fair with respect to
(α1, α2, α3, ....αm) iff for each i, k the following condition is satisfied:

(αi is enabled in each state sk, sk+1, ....) ⇒ (∃l : l ≥ k : (sl, sl+1) ∈ αi ).

Note that this definition is equivalent to weak fairness from [3, 1, 10].

Program. A program p is specified in terms of its state space, Sp and the transi-
tions sets (α1, α2, α3, ....αm), where for each i, αi ∈ Sp×Sp. The transitions of p,
δp, are equal to α1∪α2∪α3∪...∪αm. We use the notation 〈Sp, (α1, α2, α3, ....αm)〉
to denote such programs. Whenever it is clear from the context, we use p and
its transitions δp interchangeably. A sequence of states, σ = 〈s0, s1, ...〉 is a com-
putation of p iff (1) (∀j : 0 < j < length(σ) : (sj−1, sj) ∈ δp), that is, in each
step of this sequence, a transition of p is executed, (2) if the sequence is finite
and terminates in sj then ∀s′ :: (sj , s

′) �∈ p, i.e., a computation is finite only if it
reaches a state from where the program does not have any outgoing transition,
and (3) if the sequence is infinite then it is fair with respect to (α1, α2, α3, ....αm).

A state predicate C of program p is a subset, say SC , of Sp. In our MDD [20]
based implementation, we represent it using an equivalent function fC with do-
main Sp and range {true, false} where fC(s) = true iff s ∈ SC . Let C1 and
C2 be two state predicates represented with sets SC1 and SC2, respectively.
Let fC1 and fC2 be corresponding functions. Observe that the function corre-
sponding to SC1 ∩ SC2 is fC1∧C2 where fC1∧C2(s) = fC1(s) ∧ fC2(s). In other
words, the intersection of two state predicates corresponds to the conjunction
of corresponding functions. Likewise, disjunction corresponds to union, and so
on. Hence, throughout the rest of the paper, we use these boolean operators
for constructing different state predicates, as this directly corresponds to our
MDD based implementation. Likewise, in our implementation, to represent a
set of transitions over state space Sp, we use a function with domain Sp × Sp

and range {true, false}. Thus, a conjunction of such formula is equivalent to the
intersection of corresponding sets of transitions and so on.

Invariant. Legitimate states of a program, say p, are characterized by a set of
constraints C1, C2...Cm, where each Ci is a subset of the state space Sp. Thus,
predicate I = C1∧C2...∧Cm, denoted as invariant of p, identifies all legitimate
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states of p. In other words, if a computation of p begins in a state that is in I then
(1) I is true at all states in that computation and (2) the computation is correct.
Note that the notion of this correctness has to deal with the fault-intolerant
program that is assumed to be correct. We assume that each transition of p
preserves each constraint in the invariant, i.e. for each i, if (s0, s1) is transition
of p and s0 ∈ Ci then s1 ∈ Ci.

Faults. Let f be the class of faults to which tolerance is to be added. Faults for
program p are specified as a subset of Sp × Sp. Note that this allows modeling
of different types of faults, such as transients, Byzantine, crash faults, etc.

The goal of an algorithm that adds self-stabilization is to begin with a fault-
intolerant program p, its invariant I, and faults f , and to derive the self-stabilizing
program, say p′, such that in the presence of faults, p′ eventually converges to I.
Furthermore, computations of p′ that begin in I must be the same as that of p.

Based on this discussion, we define the problem of adding self-stabilization
fault-tolerance as follows:

Problem statement 1. Given p, I, and f , identify p′ such that:

– Transitions within the invariant remain unchanged:
• s0 ∈ I ⇒ (∀s1 :: (s0, s1) ∈ p⇐⇒ (s0, s1) ∈ p′)

– All program transitions eventually converge to the invariant
• s0 ∈ Sp ∧ 〈s0, s1, ...〉 is a computation of p′ ⇒ (∃j : j ≥ 0 : sj ∈ I)

Note that since each constraint is preserved by the original program p, closure
property of the self-stabilizing program p′ is satisfied from the first constraint of
the problem statement. Hence, it is not explicitly specified above.

3 Synthesis Algorithm of the Self-stabilization

In this section, we describe the approach for adding self-stabilization to fault-
intolerant programs based on [6, 2]. The goal of self-stabilization is to ensure
that starting from any state in the program state space, the program eventually
reaches one of the legitimate states in I where, I = C1 ∧ C2... ∧ Cm. Faults
perturb the program to a state in (¬ I). Hence, in the presence of f , one or more
of the constraints from C1, C2...Cm are violated. The goal of this algorithm is to
automatically synthesize the recovery actions such that when faults stop occur-
ring, the constructed recovery actions in conjunction with the original program
actions will, eventually, converge the program to a state where I holds.

Since we focus on the design of distributed programs, for brevity, we specify
the state space of a program in terms of its variables. Thus, the state space of
the program is obtained by assigning each variable each possible value from its
domain. Furthermore, we specify the transitions of the program in terms of a
set of processes, where every process can read and write a subset of the program
variables. Transitions of a process are obtained by considering how that process
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updates the program variables. And, finally, the transitions of the program are
the union of the transitions of its processes.

Read restrictions of distributed programs. A process in a distributed pro-
gram has a partial view of the program variables. Therefore, when a new pro-
gram transition is added/removed, we need to add/remove a group of transitions
based on the variables that cannot be read by that process. For instance, let j
be a process, let Rj be the set of variables that j can read, and let va(s0) de-
note the value of variable va in the state s0. Then if t = (s0, s1) is a transition
that j can execute then the group of transitions associated with t must also
include transitions of the form (s2, s3) where s0 and s2 (respectively s1 and s3)
are undistinguishable for j, i.e., they differ only in terms of the variables that j
cannot read. The synthesis algorithm uses the function Group to include these
additional transitions. The group it self is given by the following formula:

groupj(t) =
∨

(s2,s3)
(
∧

v �∈Rj
(v(s0) = v(s1) ∧ v(s2) = v(s3)) ∧∧

v∈Rj
(v(s0) = v(s2) ∧ v(s1) = v(s3)))

3.1 Constraint Satisfier

The algorithm for adding stabilization is as shown in Algorithm 1. The input
for the algorithm is the constraint array C and program p.

In this algorithm, the constraints from the constraint array are satisfied one
after another. The algorithm starts by computing the invariant as the intersec-
tion of all constraints in the constraint array (Lines 3). To satisfy constraint C[i],
the algorithm constructs the transitions that start from (¬C[i]) and reach a state
where C[i] is true (Line 6)1. Since the algorithm is adding new transitions, it
needs to include their group. Moreover, no transition should start from a state
in the invariant and target a state outside the invariant. It also needs to remove
the group of transitions that violates I (Line 7).

The algorithm needs to ensure that none of the transitions used to satisfy
the constraint, say C[i], violates the pre-satisfied constraints C[0] to C[i − 1].
Hence, it lets V include the transitions that originate from a state where C[i−1]
is true and end in a state where C[i − 1] is false as well as similar transitions
for the constraints C[0] to C[i − 2] (Line 10). The transitions in V are used to
ensure that recovery transitions do not violate other pre-satisfied constraints.
The algorithm ensures that none of the transitions in temp interfere with earlier
constraints. Therefore, it removes the transitions in V from temp if any is found
(Line 8). At this point the algorithm collects all recovery transitions in rec (Line
9). Steps 4 − 11 are repeated until all the recovery actions that satisfy all the
constraints in the array C are found. Finally, it returns the recovery actions of
the program p.

1 ( X ∧ 〈Y 〉′) refers to the transitions that start in a state in X and reach Y .
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Algorithm 1. ConstraintSatisfier
Input: constraint array C , and program transitions p.
Output: recovery transitions rec.

1: temp, V := false, false;
2: m := SizeOf(C) − 1;

//Compute, I, the intersection of all constraints
3: I :=

∧m
i=0 C[i];

4: for i := 0 to m do
5: //temp are the transitions that start in a state in ¬C(i) and reach C(i)
6: temp := Group((¬ C[i]) ∧ 〈C[i]〉′);

//ensure that no recovery transitions violate I
7: temp := temp ∧ ¬ Group(temp ∗ (I ∧ 〈¬I〉′));
8: temp := temp ∧ ¬ V ;

// Combine current recovery transitions with the new recovery transition.
9: rec := rec ∨ temp;

//Compute, V , the set of the transitions that violating the constraints
10: V := V ∨ Group(C[i] ∧ 〈¬C[i]〉′)
11: end for

// return the recovery transition.
12: return rec;

Algorithm 1 has the following property (The proof is similar to Theorem 1
in [6]):
Given are :

– Fault-intolerant program p, constraints C1, C2...Cm, and faults f .
– Let I = C1 ∧ C2... ∧ Cm.
– Let rec = ConstraintSatisfier(C, p).

If ∀s0 : s0 ∈ Sp − I : (∃s1 : s1 ∈ Sp : (s0, s1) ∈ rec)
Then 〈Sp, (rec, δp)〉 solves the constraints in Problem statement 1.

4 Using Parallelism in Synthesis

In Section 3, we described the sequential approach for synthesizing self-stabilizing
distributed programs from fault-intolerant versions. In this section, we present
our approaches for expediting the synthesis with multicore computing.

There are two main factors that contribute to the execution time for the
algorithm ConstraintSatisfier (c.f. Algorithm 1). The first factor is the number
of constraints to be satisfied. One can notice that the main loop of the algorithm
ConstraintSatisfier (Lines 4-11) is controlled by the number of constraints to be
satisfied (i.e. SizeOf(C)). Therefore, one approach to speedup this algorithm is to
distribute the job of this loop among the available cores/processors. The second
factor are the operations performed by the statements within this loop, namely
the group computation in Lines 6, 7, and 10. The group computation is required
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based on the nature of the distributed programs and the read/write restrictions
imposed on the program variables. A sequential group algorithm goes through
several computations for each process that causes group computation to take a
substantial amount of time. One way to speedup the group computation is to
split it among available cores/processors. With this motivation, in Sections 4.1,
and 4.2, we present two multicore algorithms to target the bottlenecks described
above.

Parallelizing the MDD library. Since we are using MDD-based symbolic
synthesis, the constraints are characterized by Boolean formulae involving the
variables in the program being synthesized. The MDD package [20] is not de-
signed to be reentrant and assumes that at most one MDD package is active at
any given time. Hence, multiple threads cannot operate on the same MDD pack-
age simultaneously. Also, different threads cannot access different MDD packages
simultaneously. We considered two approaches to solve this problem: (1) utilize a
reentrant version of the MDD package, or (2) utilize multiple independent MDD
packages and handle consistency issues explicitly. We followed the second ap-
proach. We modified the MDD package so that multiple instances could be used
simultaneously. We also added a Transfer function to transfer an MDD object
from one MDD package to a different MDD package. Hence, during the parallel
algorithms, a master thread spawns several worker threads, each running on a
different processor core in parallel with an instance of its own MDD package.
The instance of the MDD package assigned to each worker thread is initialized
using MDDs (i.e. program transitions MDD) transferred from the MDD package
of the master thread.

4.1 Partitioning the Constraints Satisfaction

The amount of time required by the automated synthesis of self-stabilizing pro-
grams depends on the number of constraints to be satisfied by the synthesis
algorithm. Furthermore, in some cases, this number can be multiples of the
number of the processes in the fault-intolerant program. To remedy this restric-
tion, we present a multicore algorithm that partitions the satisfaction of such
constraints among available threads.

Algorithm sketch. Intuitively, our algorithm works as follows. During con-
straint satisfaction, a master thread spawns several worker threads each run-
ning on a different processor core in parallel with an instance of its own MDD
package. The instance of the MDD package assigned to each worker thread is ini-
tialized using MDDs for an array of constraints, program transitions, an array of
constraints violating transitions, and invariant predicate. The master thread par-
titions the constraints and provides each worker thread with one such partition.
Subsequently, worker threads start resolving their assigned set of constraints in
parallel by adding the required recovery actions. Upon completion, the master
thread merges the results returned by each worker thread.

Parallel Constraints Satisfaction. Our algorithm for satisfying the con-
straints in parallel is as shown in Algorithm 2. This algorithm begins with the
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Algorithm 2. ParallelConstraintsSatisfaction [Master Thread]
Input: constraint array C , program transitions p, and number of threads n.
Output: recovery transitions recAll.
1: gAll := false ;
2: I :=

∧m
i=0 C[i];

// C[i] ∧ 〈¬C[i]〉′ refers to transitions that start in ¬C[i] and ends in C[i]
3: for i := 1 to n− 1 do
4: SpawnThread � ComputeViolate(i);
5: end for
6: for i := 1 to SizeOf(C)− 1 do
7: V [i] := V [i− 1] ∨ V [i];
8: end for
9: for i := 0 to n− 1 do

10: Cp[i] = Split(i, C);
11: Vp[i] = Split(i, V );
12: end for
13: for i := 1 to n− 1 do
14: rec[i] := SpawnThread � PConstraintSatisfier(Cp[i], p, Vp[i], I);
15: end for
16: ThreadJoin(0..n− 1);
17: recAll :=

∨n−1
i=0 rec[i]; // Merging the results from all threads

18: return recAll;

array of constraints to be satisfied C, fault-intolerant program p, and the num-
ber of worker threads to be spawned n. The goal of the algorithm is to discover
the set of recovery transitions recAll such that all the constraints in C are satis-
fied in a way that enables the fault-tolerant program to recover to its legitimate
states. Initially, the algorithm starts by computing the invariant as the inter-
section of all constraints in the constraint array (Lines 2). Now, the algorithm
constructs the array V such that V [i] includes the transitions that start from
a state where C[i] is true and end in a state where C[i] is false as well as the
similar transitions for the constraints C[j], where 0 ≤ j ≤ i − 1 (Lines 3-8).
Observe that in the sequential algorithm (c.f. Algorithm 1), V is being updated
while the constraints being satisfied. However, in this algorithm, V is computed
before the constraints satisfaction starts. The reason for the early computation
of V is that if each thread wants to find V [i], where i < 0 ≤ sizeOf(C), it needs
to consider the constraints from 0 to i − 1, which unnecessarily repeats part
of the computation. A more efficient way to do this is when the master thread
uses the worker threads such that each thread computes its share of V elements.
Once all threads are done, the master thread updates the array V such that
V [i] = V [i− 1] ∨ V [i]. In other words, V [i] contains all transitions that violate
the constraint C[0] to C[i].

After constructing the array V , the algorithm proceeds to evenly distribute
C and V among the worker threads (Lines 9-12), such that Cp[i] includes the
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array of constraints assigned to thread i, and Vp[i] includes the array of corre-
sponding constraints violating transitions. Note that the availability of the array
Vp enables each worker thread to work independently without interfering with
the other threads. Now, the master thread spawns the worker threads such that
each thread has its own set of constraints with their corresponding constraint
violating transitions and a copy of I, and p. To compute the respective recovery
transitions, each worker thread (Lines 13-15) calls the algorithm PConstraintSat-
isfier, which is similar to the Algorithm 1 except that in addition to Cp and p
it also takes Vp and I as an input rather than computing them. Once all worker
threads complete their jobs (Line 16), the master thread collects all the recovery
transitions returned by worker threads in recAll (Lines 17-19) and returns the
overall recovery transitions.

4.2 Using the Distributed Nature of the Program Being Synthesized

Based on the nature of distributed programs and their need to account for the
read/write restrictions on the program variables, the synthesis algorithm is re-
quired to compute the group associated with any set of transitions added/removed
from the program transitions. In this section, we present a multicore algorithm to
perform the group computation using two or more cores/processes.

Algorithm sketch. Given transition set tr the goal of this algorithm is to
compute the Group of transitions associated with the set tr. The sequential al-
gorithm will go through many computations for each process, one after another.
However, in the parallel algorithm, we split the Group computation over the
available number of threads. In particular, rather than having one thread find
the Group for all the processes, we let each thread compute the Group for a sub-
set of the processes. Since the tasks assigned to each thread require a very small
amount of the processor time, there is considerable overhead associated with
the threads creation/destruction every time the Group is computed. Therefore,
we let the master thread create the worker threads at the initialization stage of
the synthesis algorithm. The worker threads stay idle until the master thread
needs to compute the Group for a set of transitions. The Master thread acti-
vates/deactivates the worker threads through a set of mutexes. When all worker
threads are done, the main thread collects the results of all worker threads in
one Group.

5 Case Studies

In Subsections 5.1-5.2, we describe and analyze two case studies, namely the
Self-Stabilizing Mutual Exclusion [19], and the stabilization of Data Dissemina-
tion Problem in Sensor Networks [17]. Of these, the first case study is of the
classic problems from distributed computing and illustrate the feasibility of al-
gorithms that add self-stabilization. In the second case study we demonstrate
the applicability of our approach on a real world problem in the field of sensor
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networks. In both case studies, we find that parallelism significantly reduces the
total synthesis time.

To concisely describe the transitions of the program we use guarded command
notation: 〈guard〉 → 〈statement〉, where guard is a Boolean expression over pro-
gram variables and the statement describes how program variables are updated
and it always terminates. A guarded command of the form g → st corresponds
to transitions of the form {(s0, s1)| g evaluates to true in s0 and s1 is obtained
by executing st from s0}.

Throughout this section, all experiments are run on a Sun Fire V40z with 4
dual-core Opteron processors and 16 GB RAM. The MDD representation of the
Boolean formulae has been done using a modified version of the MDD/BDD Glu
2.1 package [20] developed at the University of Colorado [20].

5.1 Case Study 1: Self-stabilizing Mutual Exclusion Program

Mutual exclusion is one of the fundamental problems in distributed/concurrent
programs. One of the classical solutions to this problem is the token-based solu-
tion due to Raymond [19]. In this solution, the processes form a directed rooted
tree, a holder tree, in which there is a unique token held at the tree root. If a
process wants to access the critical section, it must first acquire the token. Our
goal in this case study is to add stabilization to the fault-intolerant program
in [7]. When faults occur and perturb the holder tree, the new program will self-
stabilize and reconstruct a correct holder tree within a finite number of steps
under weak fairness assumption.

Fault-Intolerant Program. In Raymond’s algorithm, the processes are orga-
nized in a logical tree, denoted as a parent. The holder tree is superimposed on
top of the parent tree such that the root of the holder tree is the process that
has the token. The holder variable forms a directed path from any process in the
tree to the process currently holding the token. In this program, a process can
send the token to one of its neighbors. In particular, if j and k are adjacent (in
the parent tree), then the action by which k sends the token to j is as follows:

NM1 :: (h.k = k ∧ j ∈ Adj.k) ∧ (h.j = k ) −→ h.k, h.j := j, j;

Constraints. Recall from Section 2 that we define the invariant to be a set
of constraints on the program state space. In this case study, this set is the
conjunction of the constraints S1, S2, and S3, described next. Moreover, each
of these constraints is specified for each process separately. Therefore, if n is
the number of processes then we have 3n constraints to satisfy.Constraint S1
requires that j’s holder can either be j’s parent, j itself, or one of j’s children.
S2 requires that the holder tree conforms to the parent tree. Finally, S3 requires
that there are no cycles in the holder relation. Thus, predicates S1, S2, and S3
are as follows:

(S1) ∀j : (h.j = P.j) ∨ (h.j = j) ∨ (∃k : (P.k = j) ∧ (h.j = k))
(S2) ∀j : (P.j �= j) ⇒ (h.j = P.j) ∨ (h.(P.j) = j)
(S3) ∀j : (P.j �= j) ⇒ ¬((h.j = P.j) ∧ (h.(P.j) = j))
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Faults. Since we focus on self-stabilizing fault-tolerance, we consider faults that
perturb the holder relation of all processes to an arbitrary value. Thus the fault
action is as follows:

(F1) true −→ {h.j = any arbitrary value from its domain};

Fault-Tolerant Program. To add stabilizing fault-tolerance to the above pro-
gram, we used the synthesis algorithm as follows. The fault intolerant program
for each process is specified by actions NM1; the faults are specified by the
fault action F1; and the constraints are from S1, S2, and S3. We specified these
constraints in the following order: first, we specified constraints S1 for the root,
then its children, then its grandchildren and so on. Subsequently, we specified
constraint S2 likewise. Finally, we specified constraint S3 in the reverse order.
The recovery actions computed by the synthesis algorithm are as follows:

(R1) ¬((h.j = P.j) ∨ (h.j = j) ∨ (∃k : (P.k = j) ∧ (h.j = k)))
−→ h.j := j | h.j := P.j | h.j := {child of j};

(R2) ¬((P.j �= j)⇒ (h.j = P.j) ∨ (h.(P.j) = j))
−→ h.j := P.j | h.(P.j) := j;

(R3) ¬((P.j �= j)⇒ ¬((h.j = P.j) ∧ (h.(P.j) = j)))
−→ h.j := j | h.(P.j) := P.j | h.(P.j) := P.(P.j);

Analysis of experimental results. Figure 1 shows the results of using paral-
lelism during constraints satisfaction in synthesizing the self-stabilizing Mutual
Exclusion program.The table illustrate the results for various numbers of pro-
cesses organized in linear topology using different numbers of processors/cores.
It shows the time needed, in seconds, to satisfy the constraints, and the total
synthesis time. It also shows the amount of memory in megabytes. As we can
see from this figure, using parallelism has substantially reduced the time needed
for the synthesis. As a concrete example, observe that the time required to syn-
thesize a stable mutual exclusion program with 50 processes dropped from 623
seconds, using the sequential algorithm, to 378 seconds when two cores were
used, and to 274 seconds when four cores were used.

Sequential 2 threads 4 threads 8 threads
No. of reachable Cnst Syn Mem Cnst Syn Mem Cnst Syn Mem Cnst Syn Mem

Processes states t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB)

20 1026 8 8 6 6 6 23 3 3 33 4 4 42
30 1044 47 48 13 35 36 42 23 24 66 21 22 91
40 1064 188 191 14 154 157 41 88 90 71 79 80 120
50 1084 619 623 15 416 378 46 243 246 77 228 233 132
60 10106 1242 1252 16 945 954 51 579 588 82 492 502 136
70 10129 2683 2725 17 2033 2071 74 1398 1439 114 1174 1215 188

Fig. 1. Self-Stabilizing Mutual Exclusion using Constraints partitioning. Cnst t(s) :
Total time spent in constraints satisfaction in seconds. Syn t(s): Total synthesis time
in seconds. Mem (MB): Memory usage in MB.
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Sequential 2 threads 4 threads 8 threads
No. of reachable Grp Syn Mem Grp Syn Mem Grp Syn Mem Grp Syn Mem

Processes states t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB)

20 1026 8 8 6 5 5 16 3 4 25 3 4 42
30 1044 47 48 13 36 38 32 21 24 50 20 25 83
40 1064 185 191 14 124 133 40 84 93 68 74 89 121
50 1084 611 623 15 361 378 44 247 274 74 233 276 133
60 10106 1228 1252 16 773 808 45 586 640 71 570 658 124
70 10129 2628 2725 17 1830 1961 47 1358 1516 77 1039 1280 136

Fig. 2. Self-Stabilizing Mutual Exclusion using Group threading. Grp t(s) : Total
time spent in Group computation in seconds. Syn t(s): Total synthesis time in seconds.
Mem (MB): Memory usage in MB.

Figure 2 shows the results of exploiting the distributed nature of the program
being synthesized (i.e. Group parallelism) in synthesizing the self-stabilizing Mu-
tual Exclusion program. It shows the time needed, in seconds, to compute the
group, and the total synthesis time. It also shows the amount of memory in
megabytes needed by our algorithm.

5.2 Case Study 2: Data Dissemination in Sensor Networks

In this problem, a base station initiates a computation in which a block of data
is to be sent to all sensors in the network. The data message is split into fixed
size packets. Each packet is given a sequence number. The base station starts
transmitting the packets to its neighbor(s) in specified time slots, in the order of
the packet sequence number. Subsequently, when the neighbor(s) receive a mes-
sage, they, in turn, retransmit it to their neighbors and so on. The computation
ends when all sensors in the network receive all the messages.

Our goal in this case study is to synthesize a fault-tolerant version of the data
dissemination program that can tolerate a finite number of lost packets (This
program satisfies the constraints only from states reached in the presence of
faults, although not necessarily from all states). The synthesized program is the
same as Infuse [17] that is designed manually. With regard to the limited space,
we will only include the experimental results showing the benefit of parallelism
details of the fault-intolerant algorithm shown in [2].

Figure 3 shows the results of synthesizing the data dissemination protocol with
various numbers of processes by partitioning the constraints among available
threads. Note that, in the case of the data dissemination problem, there were only
5 constraints to satisfy. Hence, when the synthesis is launched with 8 threads,
we are only utilizing 5 of them. As can be seen from Figure 3 if the number
of constraints is not large enough then the speedup gained from portioning the
constraints is limited.

Figure 4 shows the results of synthesizing the data dissemination protocol
with various numbers of processes by exploiting the distributed nature of this
program.
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Sequential 2 threads 4 threads 8 threads
No. of reachable Cnst Syn Mem Cnst Syn Mem Cnst Syn Mem Cnst Syn Mem

Processes states t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB)

50 1047 8 9 11 6 6 28 5 6 44 7 8 62
100 1095 67 70 13 48 53 40 60 64 65 66 70 110
150 10143 321 330 15 187 197 41 188 197 68 248 259 114
200 10190 977 984 16 471 497 47 536 564 73 545 573 116

Fig. 3. Data Dissemination program using Constraints partitioning

Sequential 2 threads 4 threads 8 threads
No. of reachable Grp Syn Mem Grp Syn Mem Grp Syn Mem Grp Syn Mem

Processes states t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB) t(s) t(s) (MB)

50 1047 8 9 11 5 7 26 3 5 43 2 5 67
100 1095 63 70 13 38 51 39 23 42 66 17 47 119
150 10143 321 330 15 187 197 41 188 197 68 248 259 114
200 10190 948 984 16 369 457 46 203 324 73 174 358 127

Fig. 4. Data Dissemination program using Group threading

Memory Usage. Notice that the amount of memory needed during synthesis
is proportional to the number of threads being used. It is approximately the
amount of memory used by the sequential algorithm multiplied by the number
of cores being used. Clearly, this is expected since for every thread used, we
create a new MDD package.We argue that using extra memory to gain a speedup
is acceptable, since in the automated synthesis, time complexity is a far more
serious barrier than space complexity.

6 Related Work

Automated program synthesis is studied from different perspectives. One ap-
proach (e.g., [4]) focuses on synthesizing fault-tolerant programs from their spec-
ification in a temporal logic (e.g., CTL, LTL, etc.). Our approach for adding
self-stabilization is based on satisfying constraints that should be true in legiti-
mate states. An orthogonal approach is to utilize primitives such as distributed
reset [16] where one detects whether the system is in a consistent state and resets
it to a legitimate state, if needed. Examples of these approaches include [16,22].
Our approach can be utilized to design the distributed reset protocol itself.

Parallelization of symbolic reachability analysis has been studied in the model
checking community from different perspectives. In [11,12, 13], the authors pro-
pose solutions and analyze different approaches to parallelization of the satura-
tion-based generation of state space in model checking. In particular, in [12], the
authors show that in order to gain speedup in saturation-based parallel symbolic
verification, one has to pay a penalty for memory usage of up to 10 times that
of the sequential algorithm. Other efforts range from simple approaches that



60 F. Abujarad and S.S. Kulkarni

essentially implement BDDs as two-tiered hash tables [18, 21], to sophisticated
approaches relying on slicing BDDs [15] and techniques for workstealing [14].
However, the resulting implementations show only limited speedup.

7 Conclusion

In this paper, we focused on automated addition of fault-tolerance to hierarchical
programs. In particular, we considered programs where legitimate states are
specified in terms of constraints that are true in legitimate states. The goal of
adding self-stabilizing fault-tolerance was to ensure that if these constraints are
violated by faults then eventually the program would reach a state from where all
the constraints are satisfied and, hence, subsequent behavior would be correct.

We focused on improving the synthesis of fault-tolerant programs from their
fault-intolerant version. We showed that the use of multicore technology to paral-
lelize the synthesis algorithm reduces the synthesis time substantially. We paral-
lelized constraint satisfaction by: (1) partitioning the constraints and (2) utilizing
the nature of distributed programs. We showed that parallelism provides a sub-
stantial benefit in reducing the time needed in synthesis.

We illustrated our approach with two case studies: self-stabilizing mutual
exclusion, and a data dissemination problem for sensor networks. The complexity
analysis demonstrated that automated synthesis in these case studies was feasible
and achieved in a reasonable time speedup in all case studies.

Based on the results in this paper, there is potential for further reduction
in synthesis time if the level of parallelism is increased (e.g., if there are more
processors). Although the level of parallelism is fine-grained, we showed that the
overhead of parallel computation is small. Hence, another future work is to evalu-
ate the limits of parallel computation in improving performance of the synthesis
algorithm and include this in the tools (e.g., SYCRAFT [8]) for synthesizing
fault-tolerance.
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Abstract. Traceroute is a widely used program for computing the topol-
ogy of any network in the Internet. Using Traceroute, one starts from a
node and chooses any other node in the network. Traceroute obtains the
sequence of nodes that occur between these two nodes, as specified by
the routing tables in these nodes. Each use of Traceroute in a network
produces a trace of nodes that constitute a simple path in this network.
In every trace that is produced by Traceroute, each node occurs either
by its unique identifier, or by the anonymous identifier“∗”. In this paper,
we introduce the first theory aimed at answering the following important
question. Is there an algorithm to compute the topology of a network N
from a trace set T that is produced by using Traceroute in network N ,
assuming that each edge in N occurs in at least one trace in T , and that
each node in N occurs by its unique identifier in at least one trace in
T ? We prove that the answer to this question is “No” if N is an even
ring or a general network. However, it is ”Yes” if N is a tree or an odd
ring. The answer is also “No” if N is mostly-regular, but “Yes” if N is a
mostly-regular even ring.

1 Introduction

Traceroute is arguably the most popular mechanism for computing the topology
of a network in the Internet [1] and [2]. Executing Traceroute between any two
nodes, say nodes x and y, in a network produces a sequence of node identifiers
that corresponds to a simple path between x and y in the network. This sequence
of node identifiers is usually referred to as a trace between x and y.

Traceroute can be used to compute the topology of a network N in the Internet
as follows [1] :

1. Identify the “terminal” nodes in network N (preferably at the perimeter of
N for good coverage).

2. Execute Traceroute between every pair of terminal nodes of N , identified in
Step 1, to produce traces of nodes that occur between each pair (as per the
routing tables in the nodes of N).

3. Put the traces produced in Step 2 together in order to compute the topology
of network N .

It turns out that this procedure for using Traceroute to compute the topology of
network N has a problem. As observed in [3], [4], and [5], some of the nodes in the
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traces produced in Step 2 occur by anonymous identifiers, rather than by their
unique identifiers. This causes Step 3 to compute many candidate topologies,
rather than one unique topology, for network N .

To solve this problem, Yao et al. [3] have suggested that Step 3 compute only
the topology with the smallest number of anonymous nodes, subject to some
constraints (trace preservation and distance preservation). This suggestion has
two problems of its own. First, the choice, that the topology of network N be the
one with the smallest number of anonymous nodes, is an arbitrary one. Second, it
turns out that the problem of computing the network topology with the smallest
number of anonymous nodes, from a given set of traces, is NP-complete. In order
to solve this second problem, Jin et al. [4] and Gunes et al.[5] propose several
heuristics (with complexity polynomial in the number of unique identifiers) that
can be used to compute a network topology with a “small” number of anonymous
nodes. Clearly, these heuristics cannot always compute a network topology with
the smallest possible number of anonymous nodes.

In this paper, we take a different approach to the problem of computing one
unique topology for network N from a given trace set T that is generated by
executing Traceroute over N . Our approach is based on the assumption that the
given trace set T satisfies a number of “conditions”. The assumption, that the
given trace set T satisfies these conditions, is made with the hope that the com-
puted topology for network N is unique. These conditions can be summarized
as follows: (Formal statements of these conditions are given in section 2).

– Unique node identifiers: Each node in network N has exactly one unique
identifier, and if this node occurs in a trace in T , then it occurs in this trace
either by this unique identifier, or by an anonymous identifier.

– Complete coverage: Each edge in network N occurs in at least one trace in
the trace set T . Also, each node in N occurs by its unique identifier in at
least one trace in T .

– Stable and symmetric routing: The routing tables in the nodes of network N
indicate exactly one route between any two nodes in N .

These conditions may appear to be too strong to hold in practice. However, it
is straightforward to show that if the given trace set T does not satisfy any one
of these conditions, then more than one candidate topology for network N can
be computed from T .

For example, assume that the given trace set T does not satisfy the first
condition: a node occurs by identifier a in one trace in T , and occurs by a
second identifier b in another trace in T . In this case, one can infer at least two
candidate topologies for network N : in one topology, a and b indicate one node
in N , and in the other, they indicate two distinct nodes in N .

Our main result in this paper is negative. This means that, even when the
given trace set T satisfies the above (admittedly strong) conditions, it is not
always possible to compute a unique topology for network N from T . Thus,
adopting the above conditions has the effect of strengthening our primary (neg-
ative) results.
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2 Network Tracing

A network N is a connected, undirected graph where nodes have unique iden-
tifiers. Every node in a network is designated either terminal or non-terminal.
Also, every node is either regular or irregular.

A trace t is generable from a network N iff t is a sequence of node identifiers
that represents a simple path between two terminal nodes in N . A regular node
occurs in t by its unique identifier. An irregular node occurs in t either by its
unique identifier, or by the anonymous identifier ∗i, where i is a unique integer
in t. The first and last nodes of t occur by their unique identifiers in t.

We adopt the following notation in our graphical representations.

1. A terminal node is represented by a box.
2. A non-terminal node is represented by a circle.
3. A regular node x is labeled by its unique identifier “x”.
4. An irregular node x is labeled “x/*”.

Note that a trace t that is generable from a network N is a sequence of nodes
that corresponds to a simple path in N . Thus, there are two ways to write the
sequence of nodes in t. For example, t can be written as (e, ∗1, ∗2, ∗3, a), or it
can be written as (a, ∗3, ∗2, ∗1, e). We regard the differences between these two
ways of writing t as immaterial. Later on, when we mention that a trace is of
the form (x, . . . , y), we mean that this trace could also be of the form (y, . . . , x).

For trace t, we adopt the notation |t| to indicate the number of edges in t. For
example, |(e, ∗1, ∗2, ∗3, a)| = 4.

A trace set T is generable from a network N iff T satisfies the following five
conditions :

1. T is a set of traces, each of which is generable from N .
2. For every pair of terminal nodes x, y in N , T has at least one trace (x, . . . , y).
3. Every edge in N occurs in at least one trace in T .
4. The unique identifier of every node in N occurs in at least one trace in T .
5. T is consistent : for every two distinct nodes x and y, if x and y occur in two

or more traces in T , then the exact same set of nodes occur between x and
y in every trace in T where both x and y occur.

Two comments concerning Condition 5 in this definition are in order. First, if
a trace set T has two traces of the form (x, ∗2, z) and (u, x, y, z), then from
Condition 5, we can conclude that node ∗2 is in fact node y.

Second, if a trace set T has a trace of the form (x, ∗2, z), then from Condition
5, T cannot have a trace of the form (u, x, ∗5, y, z). This is because the number
of nodes between x and z in the first trace is 1, and their number in the second
trace is 2, in violation of Condition 5.

The network tracing problem is to design an algorithm that takes as input a
trace set T that is generable from a network, and produces a network N such
that T is generable from N and not from any other network.
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3 Impossibility of Network Tracing

Obviously, the network tracing problem is solvable for regular networks, those
where every node is regular. However, it turns out that the problem is not solv-
able for general networks. In fact, if a network is permitted to have just one
irregular node, then the network tracing problem is unsolvable, as shown by the
following theorem.

Theorem 1. There is no algorithm that takes as an input a trace set T that
is generable from a network with one irregular node, and produces as output a
network N with one irregular node such that:

– T is generable from N , and
– T is not generable from any other network with at least one irregular node.

Proof. (By contradiction) Assume that such an algorithm exists. The following
trace set T1 is generable from network N1 in Figure 1.

T1 = {(a, b), (a, ∗1, d), (a, f),
(b, c, d), (b, f),
(d, e, f)}

If T1 is given as an input to the assumed algorithm, the algorithm produces
network N1 as output. This implies that T1 is not generable from any other
network, which contradicts the fact that T1 is also generable from network N2
in Figure 1. ��

(a) Network N1 (b) Network N2

Fig. 1. Theorem 1
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Theorem 1 provides a strong negative result for the network tracing problem.
Nevertheless, we identify, in the next three sections, classes of networks for which
the network tracing problem is solvable:

1. Tree networks in Section 4.
2. Odd rings in Section 5.
3. Mostly regular even rings in Section 6.

4 Tracing of Tree Networks

A network N is called a tree iff N is acyclic. In this section, we show that the
network tracing problem is solvable for tree networks.

Theorem 2. There is an algorithm that takes as an input a trace set T that is
generable from a tree network, and produces as output a tree network N such
that:

– T is generable from N , and
– T is not generable from any other tree network.

Proof. (By construction) We prove Theorem 2 by providing the algorithm men-
tioned. The algorithm consists of the following eight steps:

1. Initially, tree N is empty.
2. Apply procedure Leaf, discussed below, to compute, from T , the unique

identifier of each leaf node in N .
3. Apply procedure Parent, discussed below, to compute from T , the unique

identifier of the parent of each leaf node in N .
4. For every node y that is the parent of a leaf node x, add to tree N an

(undirected) edge between nodes x and y.
5. For every node y that is the parent of a leaf node x, replace in T each trace

of the form (x, ∗i, . . .) by a trace of the form (x, y, . . .).
6. Shorten the traces in T by replacing in T each trace of the form (x, y, . . .),

where x is a leaf node, by the trace (y, . . .) and by discarding from T each
trace that has only one node or is empty.

7. Repeat the algorithm, starting from Step 2, on the trace set T , that results
from Step 6, provided that the resulting set T is non-empty.

8. The algorithm outputs N and terminates when the resulting T from Step 6
is empty.

Next, we specify the two procedures Leaf and Parent that are used in Steps 2
and 3, respectively, of the above algorithm. The correctness of procedure Leaf
follows from the observation that each leaf node in N occurs as a terminal node
in some trace in T , but the converse is not necessarily true. Procedure Leaf is
specified as follows:
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procedure Leaf
for each terminal node y in any trace in T

if T has three traces
t = (x, . . . , y), t′ = (y, . . . , z), t′′ = (x, . . . , z),
such that |t|+ |t′| = |t′′|
then y is a non-leaf node in N

else y is a leaf node in N

end

The correctness of procedure Parent follows from the observation that the par-
ent of each leaf node in N occurs by its unique identifier in some trace in T .
Procedure Parent is specified as follows:

procedure Parent
for each leaf node x in N,

if T has a trace of the form (x, y . . .),
or T has two traces of the form (x, ∗i, z) and (z, y, . . .)
where z is a leaf node in N

then the unique identifier of the parent of node x is y

end

��

5 Tracing of Ring Networks

In this section, we discuss the solvability of the network tracing problem for ring
networks. Surprisingly, we show that the problem is solvable for odd rings (i.e.
cycles with an odd number of nodes), but not solvable for even rings (i.e. cycles
with an even number of nodes).

Theorem 3. There is an algorithm that takes as an input a trace set T that is
generable from an odd ring network, and produces as output an odd ring network
N such that:

– T is generable from N , and
– T is not generable from any other odd ring network.

Proof. (By construction) We prove Theorem 3 by describing the algorithm that
is mentioned in the theorem. The algorithm consists of the following five steps:

1. Construct an unlabeled ring N with n nodes, where n is the number of
unique identifiers that occur in the traces in T . The algorithm terminates
when each node in N is labeled by a distinct unique identifier from those
that occur in the traces in T .
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(a) Network N3

(b) Network N4

Fig. 2. Theorem 5
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2. Choose any trace t = (a, . . . , b) in T . Label any node in N with the unique
identifier “a”, and label the node in N , that is reachable by traversing |t|
edges clockwise starting from node a, with the unique identifier “b”.

3. For every pair of traces t′ = (a, . . . , c) and t′′ = (b, . . . , c) in T ,
if |t| = |t′|+ |t′′| or |t′| = |t|+ |t′′|
then label the node in N , that is reachable by traversing |t′| edges clockwise
starting from node a, with the unique identifier “c”.
else label the node in N , that is reachable by traversing |t′| edges counter-
clockwise starting from node a, with the unique identifier “c”.

4. Note that by the end of Step 3, every unique identifier of a terminal node in
a trace in T is used to label one node in ring N .

5. Consider any trace t′ = (x, . . . , y) in T , and note that |t′| cannot be equal
to n/2 since |t′| is a positive integer, and n is odd. Consequently, one can
determine whether any trace t = (x, . . . , y) goes, either clockwise or counter-
clockwise, from node x to node y. Thus, if trace t has a unique identifier z
that has not yet been used to label any node in N , then one can identify the
node in N that should be labeled with z. ��

Theorem 4. There is no algorithm that takes as an input a trace set T that
is generable from an even ring network, and produces as output an even ring
network N such that:

– T is generable from N , and
– T is not generable from any other even ring network.

Proof. (By contradiction) The proof proceeds as for Theorem 1, using the obser-
vation that the following trace set T2 is generable from two even ring networks,
N3 and N4, in Figure 2.

T2 = {(a, 1, ∗1, 6, ∗2, ∗3, b), (a, ∗4, c), (a, ∗5, ∗6, ∗7, d), (a, ∗8, e), (a, ∗9, ∗10, ∗11, f),
(b, ∗12, ∗13, ∗14, c), (b, ∗15, d), (b, ∗16, ∗17, ∗18, e), (b, ∗19, f),
(c, ∗20, ∗21, 2, ∗22, 3, d), (c, ∗23, ∗24, ∗25, e), (c, ∗26, f),
(d, ∗27, e), (d, ∗28, ∗29, ∗30, f),
(e, ∗31, ∗32, 4, ∗33, 5, f)} ��

6 Tracing of Mostly-Regular Networks

A network, where each node has at most one irregular neighbor, is called mostly-
regular. The following theorem shows that the network tracing problem is solv-
able for mostly-regular even rings.

Theorem 5. There is an algorithm that takes as an input a trace set T that
is generable from a mostly-regular even ring network, and produces as output a
mostly-regular even ring network N such that:

– T is generable from N , and
– T is not generable from any other mostly-regular even ring network.
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Proof. (By construction). The algorithm is given in our technical report [6]. ��

Encouraged by Theorem 5, one may have hoped that the network tracing prob-
lem is solvable for the whole class of mostly-regular networks. Unfortunately, as
shown by the next theorem, this turns out not to be the case.

Theorem 6. There is no algorithm that takes as an input a trace set T that
is generable from any mostly-regular network, and produces as output a mostly-
regular network N such that:

– T is generable from N , and
– T is not generable from any other mostly-regular network.

Proof. (By contradiction) Suppose such an algorithm exists. As any network
with exactly one irregular node is clearly mostly-regular, this algorithm takes
any trace set generable from a network N with one irregular node, and returns
N (and only N). This contradicts Theorem 1. ��

7 The Weak Network Tracing Problem

The reason that the network tracing problem is not solvable in most cases, one
may argue, is that the given trace set T is required to be generable from one,
and only one, network N . One may hope, then, that if this strict requirement
is somewhat relaxed, then the resulting weak version of the network tracing
problem becomes solvable in many cases. The weak network tracing problem can
be stated as follows:

”Design an algorithm that takes as input a trace set T , that is generable
from a network, and produces a small set {N1, .., Nk} of networks such that T is
generable from each network in this set and not from any network outside this
set.”

The requirement that the produced set {N1, .., Nk} be small means, mathe-
matically, that the cardinality k of this set be a constant rather than a function
of the number of unique node identifiers in the given trace set T .

There are both practical and theoretical reasons for this requirement. From a
practical point of view, the smaller the produced set, the better. From a theoret-
ical point of view, allowing the cardinality of the produced set to be a function
of n, the number of unique identifiers, makes the weak network tracing prob-
lem trivially solvable (by exhaustive enumeration, setting each ∗i to each unique
identifier).

Unfortunately, the following theorem shows that the weak network tracing
problem is not solvable in general.

Theorem 7. There is no algorithm that takes as an input a trace set T that
is generable from a network, and computes a set of networks {N1 . . .Nk} such
that:
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– T is generable from every network in the set {N1 . . .Nk},
– T is not generable from any other network, and
– k is a constant whose value is not a function of the number of node identifiers

in T .

Proof. We prove this theorem by exhibiting an infinite sequence of trace sets TS6,
TS8, TS10 . . . such that each trace set TSn satisfies the following three conditions:
– TSn has 1 anonymous node identifier.
– TSn has n unique node identifiers.
– TSn is generable from any one of n−2

2 distinct networks.

Consider the first trace set in the sequence.

TS6 = {(a, x1, b), (a, ∗1,m1), (a, x2,m2),
(b, ∗2,m1), (b, x2,m2),
(m1,m2)}

This trace set is generable from the two networks N5 and N6 in Figure 3.
We now add two nodes, x3 and m3, to the trace set TS6 to form the trace

set TS8 and increase the number of possible networks (from which the trace set
TS8 is generable) by 1. Node x3 connects m3 to both a and b, so we add the
traces (a, x3,m3) and (b, x3,m3). Also, m3 is directly connected to every mi, so
we add (m1,m3) and (m2,m3). The resulting trace set TS8 is as follows:

TS8 = {(a, x1, b), (a, ∗1,m1), (a, x2,m2), (a, x3,m3),
(b, ∗2,m1), (b, x2,m2), (b, x3,m3),
(m1,m2), (m1,m3), (m2,m3)}

(a) Network N5 (b) Network N6

Fig. 3. Two networks
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(a) Network N7 (b) Network N8

(c) Network N9

Fig. 4. Three networks

The trace set TS8 is generable from any of the three networks N7, N8 and N9
in Figure 4.

By repeating this procedure k − 2 times, we produce a trace set that is gen-
erable from every member of a set of k distinct networks. As each step adds
two new nodes, each of these networks has 2k + 2 nodes. The number of unique
identifiers being n, we have k = n−2

2 . ��
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8 Discussion and Related Work

There have been three attacks on the anonymity problem. Casting it as an op-
timization problem, Yao et al. [3] try building the smallest possible topology
by combining anonymous nodes. They consider two constraints, trace preserva-
tion and distance preservation. Proving that optimum topology inference under
these conditions is NP-complete, they propose a O(n5) heuristic that merges
anonymous nodes, keeping the constraints invariant. Distance preservation re-
quires that merging nodes never reduces the length of the shortest path between
any two nodes in the computed network; this assumes not only consistency, but
also shortest-path routing. Their study also assumes that anonymous nodes are
strictly anonymous, and their unique identifiers are never revealed.

Jin et al. propose two heuristics to address the problem in [4]. The first
is O(n3), uses link delays or node connectivity as attributes, and performs
ISOMAP-based dimensionality reduction. It ignores the difficulty of estimat-
ing one-hop delays from RTTs in path traces [7]. The second, a simple O(n2)
neighbor matching heuristic, has high rates of both false positives and false neg-
atives. In [5], Gunes et al. apply five heuristics in succession and get performance
strictly better than O(n3).

This paper addresses the problem and provides a theoretical basis for stating
which instances of trace set can be used to compute exactly one network, and
which cannot. We give a metric for reduction - the irregularity number - and
bounds on algorithms such as in the above papers. We also give polynomial-time
exact algorithms for several network cases of interest.

9 Concluding Remarks

We have made three contributions in this paper. First, we formally state the
network tracing problem. We then develop the theory by identifying some im-
portant network classes for which this problem is solvable, and some for which
it is not. This includes some very surprising results.

We then extend this research using a weaker version of the network tracing
problem, and show that it is not only not possible in general to take a trace set
T and compute a single network N , such that T is generable from N and only
N , it is also not possible to generate a small (with constant cardinality) set of
networks such that T is generable only from members of this set.

In future work, we intend to investigate whether it is possible to relax our
assumptions (consistent routing, unique identifiers, and complete coverage) while
maintaining the effectiveness and elegance of the theory.
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Abstract. This paper studies the development of autonomic and secure
Virtual Organisations (VOs) when following the chemical-programming
paradigm. We have selected the Higher-Order Chemical Language
(HOCL) as the representative of the chemical paradigm, due mainly to its
generality, its implicit autonomic property, and its potential application
to emerging computing paragidms such as Grid computing and service
computing. We have advocated the use of aspect-oriented techniques,
where autonomicity and security can be seen as cross-cutting concerns
impacting the whole system. We show how HOCL can be used to model
VOs, exemplified by a VO system for the generation of digital prod-
ucts. We develop patterns for HOCL, including patterns for traditional
security properties such as authorisation and secure logs, as well as au-
tonomic properties such as self-protection and self-healing. The patterns
are applied to HOCL programs following an aspect-oriented approach,
where aspects are modelled as transformation functions that add to a
program a cross-cutting concern.

1 Introduction

The concept of Virtual Organisation (VO) is given attention by researchers
within a wide range of fields, from social anthropology and organisational the-
ory to computer science. Its importance resides in providing an abstraction to
represent organisational collaborations, a topic of fresh interest given the cur-
rent exploitation of Internet to create virtual enterprises [5], or the sharing of
resources across different organisations as envisaged by Grid computing [7].

This paper studies the development of VOs when using a chemical program-
ming paradigm. Chemical programming is a computational paradigm inspired
by the chemical metaphor, where computation is seen as reactions between
molecules in a chemical solution. Examples of chemical-programming frame-
works include P-Systems [13], the Higher-Order Chemical Language (HOCL) [1]
and Fraglets [14], among others. Potentiality of the paradigm has been shown
by its application to solve problems as diverse as page ranking of biochemical
databases [12], coordination of services [3], or protocol resilience [15].

A VO can be seen as a temporary or permanent coalition of geographically
dispersed organisations that pool resources, capabilities and information in order
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to achieve common goals. Autonomicity is an important property in VOs, since
coalition members should act autonomously in order to achieve the VO goals.
The chemical programming paradigm is very relevant to the programming of
autonomic systems as it captures the intuition of a collection of cooperative
components which evolve freely according to some predefined constraints (reac-
tion rules). Security is also an important concern in VOs, since such a coalition
may include unknown organisations that are untrusted by other VO partners.

We introduce here a method for modelling autonomic and secure VOs in
HOCL using aspect-oriented techniques. We have selected HOCL as the language
representative of the chemical paradigm, due mainly to its generality, its implicit
autonomic property — HOCL is based on the Gamma calculus [1], which is also
the foundation of other chemical frameworks such as Fraglets — and its potential
application to emerging computing paradigms such as service computing [3].
We define first a set of patterns for HOCL programs, representing security and
autonomic properties. Each property is modelled then as an aspect, defined using
the patterns, which is weaved following a code pre-processing technique.

The structure of the paper is the following. Section 2 introduces HOCL.
Section 3 discusses the autonomic properties of HOCL and describes its ap-
plication to VOs, exemplified by a system for the generation of digital products.
Section 4 presents security patterns for chemical programs. Section 5 describes
the use of aspect-oriented techniques in HOCL. Next, section 6 shows how to
apply the security patterns by using aspect-oriented programming. Section 7 re-
lates our work with others. Finally, section 8 concludes the paper and highlights
future work.

2 The Higher-Order Chemical Language

In this section we introduce the main features of HOCL, referring the reader
to [2] for a more complete presentation. A chemical program can be seen as a
(symbolic) chemical solution where data is represented by floating molecules and
computation by chemical reactions between them. When some molecules match
and fulfill a reaction condition, they are replaced by the body of the reaction.
That process goes on until an inert solution is reached: the solution is said to be
inert when no reaction can occur anymore.

In HOCL, a chemical solution is represented by a multiset and reaction rules
specify multiset rewritings. Every entity is a molecule, including reaction rules.
A program is a molecule, that is to say, a multiset of atoms (A1, . . . , An) which
can be constants (integers, booleans, etc.), sub-solutions (〈M〉) or reaction rules.
Compound molecules (M1,M2) are built using the associative and commutative
operator “,”, which formalises the Brownian motion and can always be used to
reorganise molecules. The execution of a chemical program consists in triggering
reactions until the solution becomes inert. A reaction involves a reaction rule
replace-one P by M if C and a molecule N that satisfies the pattern P and
the reaction condition C. The reaction consumes the rule and the molecule N ,
and produces M . Formally:
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(replace-one P by M if C), N −→ φM
if P match N = φ and φC

where φ is the substitution obtained by matching N with P . It maps every
variable defined in P to a sub-molecule from N . For example, the rule in

〈0, 10, 8, replace-one x by 9 if x > 9〉

can react with 10. They are replaced by 9. The solution becomes the inert solu-
tion 〈0, 9, 8〉.

A molecule inside a solution cannot react with a molecule outside the solution
(i.e. the construct 〈.〉 can be seen as a membrane). A HOCL program is a solution
which can contain reaction rules that manipulate other molecules (reaction rules,
sub-solutions, etc.) of the solution.

In the remaining of the paper, we use some syntactic sugar such as declara-
tions let x = M1 in M2 which is equivalent to M2 where all the free occur-
rences of x are replaced by M1. The reaction rules replace-one P by M if C
are one-shot: they are consumed when they react. Their variant denoted by
replace P by M if C are n-shot, i.e. they do not disappear when they react.

There are usually many possible reactions making the execution of chemical
programs highly parallel and non-deterministic. Since reactions involve only a
few molecules and react independently of the context, many distinct reactions
can occur at the same time. For example, consider the program of Figure 1
that computes the prime numbers lower than 10 using a chemical version of the
Eratosthenes’ sieve.

let sieve = replace x, y by x if x div y in
〈sieve, 2, 3, 4, 5, 6, 7, 8, 9, 10〉

Fig. 1. Chemical prime numbers program

The rule sieve reacts with two integers x and y such that x divides y, and returns
x (i.e. removes y). Initially several reactions are possible, for example sieve, 2, 8
(replaced by sieve, 2) or sieve, 3, 9 (replaced by sieve, 3) or sieve, 2, 10, etc. The
solution becomes inert when the rule sieve cannot react with any couple of
integers in the solution, that is to say, when the solution contains only prime
numbers. The result of the computation in our example is 〈sieve, 2, 3, 5, 7〉.

An important feature of HOCL is the notion of multiplets. A multiplet is a
finite multiset of identical elements. In this paper, we limit ourselves to multiplets
of basic values (integers, booleans, strings). In HOCL multiplets are defined and
matched using an exponential notation: if v is a basic value then vk (k > 0)
denotes a multiplet of k elements v. Likewise, for variable x having a basic type,
notation xk denotes a multiplet of k elements. We could also have variables in the
exponentiation of constants or patterns, indicating that the size of a multiplet
becomes dynamic.



78 A.E. Arenas, J.-P. Banâtre, and T. Priol

3 Virtual Organisations in HOCL

3.1 Autonomicity in HOCL

Autonomic computing provides a vision in which systems manage themselves
according to some predefined goals. The essence of autonomic computing is self-
organisation. Like biological systems, autonomic systems maintain and adjust
their operation in the face of changing components, workloads, demands and
external conditions, such as hardware or software failures, either innocent or
malicious. The autonomic system might continually monitor its own use and
check for component upgrades. HOCL is very appropriate as a programming
model to express programs with autonomic behaviours. The reason is twofold.
First, HOCL is intrinsically dynamic: rules are executed until an inert state
is reached. When the multiset is modified, then reactions rules are executed
to achieve again the inertness. Secondly, the high-order promoted by HOCL
allows some policies to be replaced at runtime by new ones. Policies can be
expressed by a set of rules that are stored in the multiset and thus can be
replaced thanks to the execution of some other rules (high-order). An autonomic
system is implemented using control loops that monitor the system and executes
a set of operations to keep its parameters within a desired scope. A control
loop has four basic steps: monitor, analyse, plan and execute. All these steps
can be mapped onto chemical objects. Monitor and execute can be represented
by external input/output operations into the multiset by generating molecules
whereas analyse and plan are a set of chemical rules that express the autonomic
behavior. A simple autonomic mail system [2] has been developed as an example
of programming self-organisation with HOCL.

3.2 Programming Autonomic Virtual Organisations in HOCL

We model here a VO with the goal of generating products resulting from the
collaboration of several dispersed organisations, which possesses the following
characteristics:

1. The VO aims at producing some complex, sophisticated ’digital’ product
(e.g. a software system, or some multimedia product).

2. The VO consists of a defined number of members (organisations), each one
contributing to the generation of products.

3. The product generation is considered a knowledge-intensive and content-
intensive activity. VO members depend on and need access to several sources
of knowledge as well as digital content assets, which they assemble/use to
create the product.

4. The production process is structured along some workflow (e.g. a software
production process, or a Web/content publishing process), and foresees sev-
eral phases. Policies may be applied to control access to the assets, which
may vary according to the phase or state in the project workflow.

For our scenario, we are assuming a very simple workflow depicted in Figure 2.
The workflow consists of four phases. In the Edit phase, work is distributed
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Fig. 2. Workflow process for the VO supporting the generation of a product

among all VO members contributing to the generation of a product. In the
Merge phase, parts of the product created by each VO member are combined in
order to create a global product. Once the global product is created, it is passed
to the VO members in the Validate phase, so they can ”validate” the product.
Finally, the process finalises if the product is approved by a determined number
of members by sending the product to Publish.

For the case of our VO for product generation, the whole VO is modelled as
a solution, which contains sub-solutions Si:〈· · · 〉 that represent the VO mem-
bers. The product under construction is modelled as a molecule that could be
tagged by another molecule representing the product status (EDITING, EDITED,
GENERATE, VALIDATING, VALIDATED, ACCEPTING and PUBLISHED). Workflow op-
erations (edit, merge, publish, etc.) are represented as reactions. Table 1 sum-
marises the chemical modelling of the main elements of our VO.

Table 1. Chemical representation of the main elements of a virtual organisation for
the collaborative generation of products

VO Concept Chemical Representation

VO Solution
VO Member Sub-solution
Workflow Operation Reaction
Product Molecule
Product Status Molecule

Figure 3 shows the HOCL program for generating a product. It consists of
a solution containing all VO members —represented as subsolutions Si for i =
1, · · · , k, and molecule GlobalProduct, the product to be published.

The reaction rule edit distributes the global product to all VO members.
Here we are assuming the existence of k VO members, where k is a predefined
integer constant. Reaction merge generates a local product, and marks the con-
tribution of the corresponding member to the product generation by adding
constant GENERATE to the global solution. It also includes operation Merge,
which combines both the local and global products. The edition of a product
finalises when VO members have contributed, which is represented by having
NumMerges(k) copies of molecule GENERATE. Function NumMerges(k) is a
domain-specific function indicating the number of copies needed to generate a
product; if it is the identity function, i.e. equal to k, all participant solutions
must contribute to the product generation. Note that we are exploiting here
the existence of multiplets in HOCL: molecule GENERATENumMerges(k) acts as
a synchronisation barrier indicating when reaction valid can occur. Reaction
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let publish = replace GlobalProduct, ACCEPTINGx, GENERATEy

by PUBLISHED:GlobalProduct
if x ≥ MinApproval(k) ∧ y = NumMerges(k)

in
let accept = replace S: 〈VALIDATING:Product〉

by S: 〈VALIDATED〉 , ACCEPTING
if AgreeProduct(Product)

in
let valid = replace S: 〈EDITED〉 , GlobalProduct, GENERATEy

by S: 〈VALIDATING:GlobalProduct〉 , GlobalProduct, GENERATEy

if y = NumMerges(k)
in
let merge = replace S: 〈EDITING:Product〉 , GlobalProduct

by S: 〈EDITED〉 , Merge(Product, GlobalProduct), GENERATE
if FinishProduct(Product)

in
let edit = replace S: 〈〉 , GlobalProduct

by S: 〈EDITING:GlobalProduct〉 , GlobalProduct
in
〈S1: 〈〉 , · · · , Sk: 〈〉 , GlobalProduct, edit, merge, valid, accept, publish〉

Fig. 3. HOCL Program for collaborative generation of a digital product

valid distributes the final GlobalProduct among the members in order to get
their approval. Reaction accept allows a VO member to vote for the approval of
the product, which results in adding molecule ACCEPTING in the global solution.
The whole process finalises as soon as MinApproval(k) VO members approve
the final product by executing reaction publish, which sends the final product
to publishing. Function MinApproval(k) is an abstraction of the protocol used
to decide when to publish a product; for instance, if it is equal to ceil(k/2), we
would be using a majority vote protocol.

4 Patterns for Chemical Programming

A composition pattern is a design model that specifies the design of a cross-
cutting requirement independently of any design it may potentially cross-cut,
and how that design may be re-used wherever it may be required [6]. In this sec-
tion we define composition patterns for HOCL programs. These patterns serve
as templates that guide the definition of aspects by instantiating them with
domain-specific information. We define patterns for important security proper-
ties, namely Authorisation and Security Logs ; as well as patterns for autonomic
properties such as Self-Protection and Self-Healing.

Authorisation Pattern. Authorisation is concerned with the verification that
an entity can perform a particular action. In the context of chemical programs,
authorisation refers to the verification that a reaction could occur in a solution.
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authoZ(S, R) =̂ let R = replace P by M
if C ∧ Authorised(S,R)

in S:〈ω,R〉

Fig. 4. HOCL Pattern for Authorisation

The authorisation pattern, described in Figure 4, indicates that whenever a
solution S reacts using reaction R, the authorisation condition Authorised(S,R)
holds.

The authorisation condition is considered as a generic condition that should
be instantiated with domain-specific information. In this paper, we are inter-
ested in defining authorisation for three particular cases of attributed-based au-
thorisation: role-based access control, authorisation based on trust values, and
authorisation based on environmental conditions such as date, time, etc.

In the case of role-based access control, we associate solutions to roles and
indicate which reactions can be executed by roles. Let SolutionRole be a predi-
cate associating a solution with a role, and RoleReaction a predicate associating
a role with a reaction. In this case the Authorisation condition takes the form
SolutionRole(S,Rol)∧RoleReaction(Rol,R).

In the case of authorisation based on trust values, we assume there is a func-
tion TrustValue(S) returning the trust value associated to a solution S. The
Authorisation condition is simply a predicate comparing the trust value of a
solution with a particular value.

In the case of authorisation based on environmental conditions, we assume
there are predicates such as Date and T ime which could restrict when a reaction
occurs.

Security Log Pattern. In the case of security-critical operations, it might be
required to maintain a security log of such operations. In chemical programming,
this corresponds to storing in a log a reaction as well as the changes it has
produced. Let R = replace P by M if C be a reaction. The security log
pattern, described in Figure 5, indicates that whenever reaction R happens, it
is stored in solution Log a molecule with information about the solutions and
molecules participating in R. The Log solution can be seen as a trusted third
party in charge of storing and maintaining the security log.

logging(R) =̂ let R = replace P, Log:〈ω〉 by M, Log:〈ω,R:P :M〉 if C
in S:〈ω, R〉

Fig. 5. HOCL Pattern for Security Logging

Self-Protection Pattern. Self-protection refers to the ability of anticipating
problems, and taking steps to avoid or mitigate them. It can be decomposed
in two phases: a detection phase and a reaction phase [9]. The detection phase
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selfprot(S,R) =̂ let R = replace P, Q by Protect(Q) if Filter(P )
in S:〈ω, R〉

Fig. 6. HOCL Pattern for Self-Protection

consists mainly in filtering data (pattern matching). The reaction phase con-
sists in preventing offensive data from spreading and sometimes also in counter-
attacking. This mechanism can easily be expressed with the condition-reaction
scheme of the chemical programming. Figure 6 shows the self-protection pattern.
Function Filter rule out undesirable data; on the other hand, function Protect
represents the application of a protection mechanism to the rest of the data.

Self-Healing Pattern. Another important autonomic property is self-healing,
which refers to the automatic discovery and correction of faults in a system.
We define a pattern for the case in which a partner in a VO — represented
as a solution— fails by replacing it by a back-up partner. The back-up partner
offers his own resources while the original partner cannot contribute to the VO
objective. Functions Failure(S) and Recover(S) are associated to the system
functionality capable of detecting whether a system has failed or recovered from
a previous problem.

fail(S) =̂ replace S: 〈ω〉 by Sbackup: 〈ω〉 if Failure(S)

repair(S) =̂ replace Sbackup: 〈ω〉 by S: 〈ω〉 if Recover(S)

Fig. 7. HOCL Pattern for Self-Healing

5 Aspects for Chemical Programming

Aspect-oriented programming (AOP) is a paradigm that explicitly promotes
separation of concerns. In the context of security, aspects mean that the main
program should not need to encode security information; instead, it should be
moved into a separate, independent piece of code [16].

AOP is based on the idea that computer systems are better programmed
by separately specifying the various concerns of a system and some description
of their relationships, and then relying on mechanisms in the underlying AOP
environment to weave or compose them together into a coherent program. The
goal of AOP is to make designs and code more modular, meaning the concerns
are localised rather than scattered and have well-defined interfaces with the rest
of the system. This provides the usual benefits of modularity, including making
it possible to reason about different concerns in relative isolation, making them
(un)pluggable, amenable to separate development, and so forth.

This section introduces the main concepts of aspects and relates them with
chemical programming.
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5.1 Basic Concepts on AOP

Cross-cutting concerns are concerns whose implementation cuts across a number
of program components. This results in problems when changes to the concern
have to be made —the code to be changed is not localised but is in different places
across the system. Cross-cutting concerns can range from high level notions like
security and quality of service to low-level notions such as caching and buffering.
They can be functional, like features or business rules, or nonfunctional, such
as synchronization and transaction management. The following are the main
terminology used in AOP:

– Join point : Point of execution in the application at which cross-cutting con-
cern needs to be applied. In the case of chemical programming, join points
could be associated with reactions where the concerns need to be applied.

– Advice: This is the additional code that one wants to apply to an existing
model. In the case of chemical programming, advice are applied to joint
points (reactions) by adding/replacing some of the components of the reac-
tion.

– Aspect : An aspect is an abstraction which implements a concern; it is the
combination of a join point and an advice.

– Weaving: The incorporation of advice code at the specific joint points. There
are three approaches to aspect weaving: source code pre-processing, link-time
weaving, and execution-time weaving.

There is an additional concept called the Kind of an Aspect indicating if an
advice is applied before, after, or around a join point. Since there is not a notion
of sequentiality (execution order) in a chemical program, we do not exploit this
feature. All aspects for chemical programming can be seen as around aspects.

5.2 Defining Aspects for Chemical Programming

In this work we have followed a code pre-processing technique to weave aspects
in a chemical program. To do so, we represent aspects as a collection of transfor-
mation functions ΨCi, each one modelling a different cross-cutting concern Ci.
Each function ΨCi is applied to a reaction and returns a modified version of the
reaction that has been transformed according to the aspect.

Let Reaction denote the set of reaction rules and Σ denote the state of a
chemical program. State here refers to the solution and molecules participating
in a program. The signature of a transformation function ΨC is defined as follows:
ΨC :Reaction×Σ → Reaction

As a way of illustration, let us define transformation ΨRBAC that applies the
role-based authorisation concern to a reaction, indicating that a solution could
react using a particular reaction if it is playing a role in the system. Function
ΨRBAC takes as input a reaction, a solution name, and a role name, producing
a new version of the reaction where the condition has been strengthened with
the predicates SolutionRole and RoleReaction , as presented in the authorisation
pattern defined in sub-section 4. Upper part of Figure 8 shows the definition of
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ΨRBAC : Reaction × SolutionName × RoleName → Reaction

∀R: Reaction, S: SolutionName, Rol: RolName
R = replace P by M if C →

ΨRBAC(R, S, Rol) = R = replace P by M
if C ∧ SolutionRole(S, Rol) ∧ RoleReaction(Rol, R)

ΨRBAC(merge, S, Editor) =
merge = replace S: 〈EDITING:Product〉 , GlobalProduct

by S: 〈EDITED〉 , Merge(Product, GlobalProduct), GENERATE

if FinishProduct(Product) ∧
SolutionRole(S, Editor) ∧ RoleReaction(Editor, merge)

Fig. 8. Weaving an aspect: applying the RBAC aspect to reaction merge

the transformation function ΨRBAC . Let us assume that the merge reaction in
the VO system presented in Figure 3 can react when the solution containing it
is playing the Editor role. Lower part of Figure 8 shows the result of applying
the transformation function ΨRBAC to merge.

6 Applying Patterns and AOP to ‘Chemical’ VOs

In general, our approach for applying AOP techniques to chemical programs com-
prises the following steps. First, requirements for the system under construction
are defined. Second, the requirements are modelled as aspect functions, follow-
ing the patterns introduced in section 4. Third, we define the join points where
the aspects functions should be applied. Finally, aspects are weaved producing a
new chemical program. The rest of this section describes the application of such
approach to the VO for product generation introduced in section 3.2.

Requirements for Product Generation. The system for product generation
has the following security requirements:

1. Organisations participating in the VO could play the rolesEditor orValidator .
2. VO members playing the role Editor can execute only operations related to

the edit and merge phases of the workflow.
3. VO members playing the role Validator can execute only operations related

to the validate phases of the workflow.
4. Acceptance of a product is considered a security-critical operation requiring

to be registered in a security log.
5. Acceptance is allowed only for those VO members with a trust value higher

than 0.5.
6. The system must check automatically that any product to be merged is free

of virus.
7. The VO member assigned to location 1, i.e. the member identified as S1, is

considered critical one and must be replaced by a back up member in case
of failure.
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ΨRBAC : Reaction × SolutionName × RoleName → Reaction

∀R: Reaction, S:SolutionName, Rol:RolName
R = replace P by M if C →

ΨRBAC(R, S, Rol) = R = replace P by M
if C ∧ SolutionRole(S, Rol) ∧ RoleReaction(Rol, R)

ΨTRUST : Reaction × SolutionName ×� → Reaction

∀R: Reaction, S:SolutionName, t:�
R = replace P by M if C →

ΨTRUST (R, S, t) = R = replace P by M
if C ∧ TrustValue(S) > t

ΨLOG: Reaction → Reaction

∀R: Reaction
R = replace S:P by M if C →

ΨLOG(R) = R = replace S:P, Log:〈ω〉
by M, Log:〈ω, S:R〉
if C

Fig. 9. Aspect functions for securing the VO for product generation

Requirements 1 to 5 are classical security requirements; requirement 6 is a self-
protection one; and requirement 7 is a self-healing requirement.

Aspect Transformation Functions. Figure 9 shows the aspect functions
defined for our VO to deal with the security requirements presented above, and
Figure 10 illustrates the aspect functions defined for self-protection and self-
healing requirements.

In Figure 9, function ΨRBAC models role-based authorisation, following the
authorisation pattern introduced in sub-section 4. We are assuming the under-
lying execution system includes functions SolutionRole, associating a solution
with a role, and RoleReaction , associating a role with the reaction that can per-
form. Likewise, function ΨTRUST models authorisation based on trust values,
following also the pattern from sub-section 4. Here, it is assumed the existence
of function TrustValue, returning the trust value of a solution. Finally, function
ΨLOG models the secure log concern.

In Figure 10, function ΨNOV IRUS models self-protection according to the pat-
tern presented in subsection 4. Here, we are assuming there is a system function
called NoV irus in charge of checking there is not virus in a digital product. On
the other hand, functions ΨFAIL and ΨRECOV ER model self-healing according
to the pattern presented previously.

Defining Join Points. Table 2 illustrates the joint points for our VO according
to the requirements defined previously.
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ΨNOV IRUS : Reaction → Reaction

∀R: Reaction
R = replace S: 〈EDITING:P 〉 , ω by S: 〈EDITED〉 , M if C →

ΨNOV IRUS(R) = R = replace S: 〈EDITING:P 〉 , ω
by S: 〈EDITED〉 , M
if C ∧ NoV irus(P )

ΨFAIL: SolutionName × SolutionName → Reaction
ΨRECOV ER: SolutionName × SolutionName → Reaction

∀S, Sbackup: SolutionName
ΨFAIL(S, Sbackup) = fail = replace S: 〈ω〉 by Sbackup: 〈ω〉 if Failure(S)
ΨRECOV ER(S, Sbackup) = recover = replace Sbackup: 〈ω〉 by S: 〈ω〉 if Recover(S)

Fig. 10. Aspect functions for self-protection and self-healing in the VO for product
generation

Table 2. Join points to apply aspect functions to the product generation VO

Requirement Aspect Requirement Aspect
1, 2 ΨRBAC(edit, S, Editor) 5 ΨTRUST (accept, S, 0.5)
1, 2 ΨRBAC(merge, S, Editor) 6 ΨNOV IRUS(merge)
1, 3 ΨRBAC(valid, S, V alidator) 7 ΨF AIL(S1, S1backup )
1, 3 ΨRBAC(accept, S, V alidator) 7 ΨRECOV ER(S1, S1backup )
4 ΨLOG(accept)

At this stage, we can see the modularity obtained by applying AOP tech-
niques. Any change in the security requirements implies only changes in the
definition of aspect functions and join points, without altering the business logic
of the program. For instance, if the requirement that the accept reaction should
be performed only by solutions with their trust above a particular value is re-
moved, then the only changes required are to remove ΨTRUST function and to
eliminate the corresponding rule in Table 2.

Aspect Weaving. Finally, the aspects are weaved producing a new program.
The chemical program resulting after weaving the aspects defined in Table 2 is
presented in Figure 11. For instance, comparing reaction merge with the original
version presented in Figure 3, we can notice that the condition of the rule has
been strengthened restricting the execution only to solutions playing the role
Editor and when the product to be generated is free of any virus.

7 Related Work

The work presented here has been inspired by Viega, Bloch and Chandra’s work on
applying aspect-oriented programming to security [16]. They have developed an
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let publish = replace GlobalProduct, ACCEPTINGx, GENERATEy

by PUBLISHED:GlobalProduct
if x ≥ MinApproval(k) ∧ y = NumMerges(k)

in
let accept = replace S: 〈VALIDATING:Product〉 , Log: 〈ω〉

by S: 〈VALIDATED〉 , ACCEPTING, Log: 〈ω, S:accept〉
if AgreeProduct(Product) ∧

SolutionRole(S, V alidator) ∧ RoleReaction(Editor, accept) ∧
TrustValue(S) > 0.5

in
let valid = replace S: 〈EDITED〉 , GlobalProduct, GENERATEy

by S: 〈VALIDATING:GlobalProduct〉 , GlobalProduct, GENERATEy

if y = NumMerges(k) ∧
SolutionRole(S, V alidator) ∧ RoleReaction(V alidator, valid)

in
let merge = replace S: 〈EDITING:Product〉 , GlobalProduct

by S: 〈EDITED〉 , Merge(Product, GlobalProduct), GENERATE
if FinishProduct(Product) ∧

NoVirus(Product) ∧
SolutionRole(S, Editor) ∧ RoleReaction(Editor, merge)

in
let edit = replace S: 〈〉 , GlobalProduct

by S: 〈EDITING:GlobalProduct〉 , GlobalProduct
if SolutionRole(S, Editor) ∧ RoleReaction(Editor, edit)

in
let fail = replace S1: 〈ω〉

by S1backup : 〈ω〉
if Failure(S1)

in
let recover = replace S1backup : 〈ω〉

by S1: 〈ω〉
if Recover(S1)

in
〈S1: 〈〉 , · · · , Sk: 〈〉 , GlobalProduct, fail, recover, edit, merge, valid, accept, publish〉

Fig. 11. HOCL program for the VO system for product generation after weaving
aspects

aspect-oriented extension to the C programming language following also a trans-
formational approach, where aspects are defined independently of the main ap-
plication, and are then weaved into a single program at compilation time. Their
emphasis is on security, developing aspects to replace insecure function calls by
secure ones. Our approach follows a transformational approach as proposed by
Viega, with the difference that the aspect definition is guided by the existence of
security patterns. Previous work on the application of aspect-oriented techniques
to chemical programming include [10,11]. In [10], Mentré et al present the design
of shared-virtual-memory protocols using the Gamma formalism; then, aspect-
oriented techniques are used to translate this design into a concrete implemen-
tation, modelling cross-cutting concerns such as control and data representation.
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Comparing with our work, they also used a transformational approach, weaving at
compilation time a Gamma program to produce an automaton; however, they do
not represent cross-cutting concerns as patterns. The work by Mousavi et al [11]
centred on extending Gamma with aspect-oriented concepts, including aspects for
timing and distribution. For each aspect, they present new syntactic constructors
and give them a structured operational semantics. The weaving process map the
different aspects into a common formal semantics domain based on timed process
algebra with relative intervals and delayable actions. Our work has the advantage
that there is not need of changing the underlying semantic model (all our aspects
are in HOCL) and exploiting the existence of composition patterns.

8 Conclusion and Future Work

This paper has described an approach to program autonomic and secure Virtual
Organisations (VOs) when using the Higher-Order Chemical Language (HOCL).
Our approach is based on composition patterns and aspect-oriented techniques.
We represent aspects as a collection of transformation functions, each one mod-
elling a different cross-cutting concern. The functions are applied (weaved) to a
HOCL program in order to generate a new program that include the concerns.

Our working example has been a VO for the production of digital product, and
the cross-cutting concerns have been security properties such as attribute-based
authorisation and security logs, as well as autonomic properties such as self-
protection and self-healing. The approach comprises the following steps. First,
security requirements for the system under construction are defined. Second,
the requirements are modelled as transformational aspect functions following a
library of compositional patterns. Third, it is defined the join points where the
aspects functions should be applied. Finally, aspects are weaved producing a new
chemical program.

There are several avenues to follow as future work. Firstly, we are currently
studying the weaving of several aspects on the same reaction, analysing condi-
tions that guarantee properties such as commutativity and associativity of as-
pects. Secondly, we plan to investigate patterns for weaving aspects at run-time,
exploiting the high-order potentiality of HOCL. Thirdly, we are interested in
evaluating the effectiveness of our approach to improve modularisation of cross-
cutting concerns in HOCL; an initial step is to adapt quantitative methods to
evaluate AOP [8]. Finally, there are several similarities between chemical pro-
gramming and other evolutionary approaches such as genetic programming [4];
we plan to investigate how our approach to secure and autonomic cooperations
can be applied when using genetic programming.
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Abstract. Developing self-stabilizing solutions is considered to be more
challenging and complicated than developing classical solutions, where a
proper initialization of the variables can be assumed. This remark holds
for a large variety of models. Hence, to ease the task of the developers,
some automatic techniques have been proposed to design self-stabilizing
algorithms. In this paper, we propose an automatic transformer for algo-
rithms in population protocols model. This model introduced recently for
networks with a large number of resource-limited mobile agents. For our
purposes, we use a variant of this model. Mainly, we assume agents hav-
ing characteristics (e.g., moving speed, communication radius) affecting
their intercommunication “speed” and considered through the notion of
cover time. The automatic transformer takes as an input an algorithm
solving a static problem and outputs a self-stabilizing algorithm for the
same problem. We prove that our transformer is correct and we analyze
its stabilization complexity.

Keywords: population protocols, cover time, self-stabilization,
transformer.

1 Introduction

Mobile sensor networks have been developed recently in applications ranging
from environment monitoring to emergency search-and-rescue operations. For
instance, ZebraNet [17] is a habitat monitoring application where sensors are
attached to zebras and collect biometric information (e.g., heart rate and body
temperature) and information about their behavior and migration patterns (via
GPS). All zebras in the population meet each other and ZebraNet’s agents (ze-
bras’ attached sensors) send data to peer agents. Each agent stores its own sensor
data as well as data of other sensors that were in range in the past. They upload
data to a base station whenever it is near by. Another example, where mobile
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sensors move in a more predictable manner, is EMMA project [18] - a pollution
monitoring network of sensors attached to different kinds of public transport
vehicles. In EMMA, agents may share information whenever two vehicles meet
and later, forward it to a central server at a major bus or train stop.

As mobile sensors networks have their own specificity, attempts have been
made for developing specific models. Angluin et al. [2] have proposed the pop-
ulation protocols model to describe networks of tiny mobile agents, where the
size of the population is large and possibly unknown. Each agent is represented
as a finite state machine. Agents are anonymous and move in an asynchronous
way. More precisely, the assumptions about the motion of the agents are that
it is “passive (not under the control of the sensors), sufficiently rapid and un-
predictable for stable routing strategies to be infeasible, and that each pair of
sensors will repeatedly be close enough to communicate...”[2]. It has been em-
phasized that, due to the very nature of potential applications, the available
memory in each sensor has to be small. It has been less often stressed that such
sensors are exposed to failures. In this paper, we address the latter problem too.

It was shown in [4] that the set of applications that can be solved in the original
population protocols model of [2] is rather limited. Hence, various extensions
were suggested to the model of [2] (e.g., [15,9,12,3]). In [12], an oracle for eventual
leader detection is assumed, and even with the help of oracle, it is shown that
constructing uniform self-stabilizing leader election in (communication) rings
is impossible when a local fairness is used (somewhat weaker fairness than in
[2]). In the present paper, we consider a variant of population protocols that
enables us to construct a general automatic transformer that transforms a non-
self-stabilizing population protocol into its self-stabilizing version.

The model we use here has been introduced in [7]. In this model, a com-
plete communication graph is considered and each agent v is allocated with
a cover time, cvv. The cover time is an abstraction of agent’s intercommuni-
cation/mobility characteristics such as physical speed, movement pattern, fre-
quencies to visit different places, communication range or reliability of a sensor.
For instance, in ZebraNet, it can be expected that grown up (or healthy) zebras
move faster than calf (or ill animals) and thus, have a smaller cover time. See
Sec. 2.2 for details on the cover time. In addition to the cover times, we assume
a distinguishable agent, the base station (BS), which is resource-unlimited in
contrast with the other agents. Note that this is a natural assumption, because
an agent as BS is present in many sensor network applications, and even in the
original population protocols model [2], BS is assumed to start all the agents si-
multaneously by a transmission of a global signal. In addition, a distinguishable
agent is used in other extensions of population protocols (e.g., [9,3]).

Self-stabilization deals with transient failures and is related to the self-* tech-
niques. The transient failures can corrupt the states of the agents, but not the
code of the algorithm they execute. Note that dynamic events, in which the set
of agents changes, can be modeled as transient failures. After an arbitrary num-
ber of transient failures a self-stabilizing system recovers, by itself and without
any external intervention and in a bounded time, to a correct behavior. In the
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model, it is assumed that all the transient failures happen at the beginning of
the execution (the next ones could occur only in a sufficiently long time). That
is equivalent to consider that the system is started in any possible configura-
tion. In the sequel, we will use the term classical for an algorithm assuming
initialization, in contrast to a self-stabilizing algorithm.

Self-stabilizing population protocols were studied in [5] and [12]. There, vari-
ants of population protocols (such as assuming complete or ring communication
graphs, local fairness, or assuming an oracle for eventual leader detection [12])
are considered and some self-stabilizing protocols for problems like leader elec-
tion and token circulation are given. The main difference with these works is
that we are not concerned in specific self-stabilizing solutions, but in a general
transformer that converts any algorithm that works in a failure-free environment
into a self-stabilizing one.

Developing self-stabilizing solutions (and proving them) is considered to be
more challenging and complicated than developing classical ones. Thus, it is de-
sirable to lighten the task of designers by providing automatic transformers, that
receive an input algorithm (that is correct when initialized properly) and out-
put its self-stabilizing version. Numerous self-stabilizing transformers has been
designed and studied (cf., for instance, [1,6,10,13,14]) but, to the best of our
knowledge, up to now, no one concerns population protocols. Note that the
transformer presented in [11] deals with crash faults as well as transient faults,
but it assumes a bound on the number of these faults, contrary to the common
assumption made in self-stabilization.

An extended version of this paper appears on the web [8]. It mainly extends
the paper by giving examples of problems and their solutions subject to the
transformation.

2 The Model

2.1 Transition System

A system, S, is given as a set, A, of agents , where |A| = n and n is unknown
to agents. As in [9], among the agents, there is a distinguishable one, the base
station (BS), which is (usually) non-mobile1 and can be resource-unlimited in
contrast with the other agents. All the other agents are finite-state, anonymous
and referred in the paper as mobile.

Population protocols can be modeled as transition systems. An agent is mod-
eled as a set of states and a set of transitions between states. The state of an
agent is the sequence of the values of its variables. The transitions are of the
form (si, sj)→ (s′i, s

′
j), where si and s′i are two states of agent Pi, and sj and s′j

two states of another agent Pj . A transition can be interpreted as follows: when
Pi meets agent Pj , denoted by event (Pi, Pj), they communicate and exchange
values, and as a result, Pi and Pj set their states to s′i and s′j respectively. A
configuration is a vector of states of all the agents. We extend the transitions
1 If BS is mobile, it will not change the analysis in this paper.
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between states to configurations as follows. First, without loss of generality and
as in [2], we assume that no two events happen “simultaneously”. Then, there
is a transition between two configurations C and C′, iff there is a transition
(si, sj)→ (s′i, s

′
j) for two agents Pi and Pj . The states of all the other (�= Pi, Pj)

agents are identical, in C and C′.
An execution e of S is a sequence of couples (configuration, transition):

(C0, t0)(C1, t1)(C2, t2) . . . such that Ci+1 is obtained from Ci by the transition ti.
An execution is said to be finite, by convention, iff from some point any applica-
ble transition doesn’t change the configuration. This configuration is said to be
terminal. When a terminal configuration is reached, we say that the termination
has occurred. Each execution corresponds to a unique sequence of events. If an
execution e is finite, its length, denoted by |e| is the minimum number of events
until the termination.

Intuitively, it is convenient to view executions as if a scheduler (an adversary)
”chooses” which two agents participate in the next event. Formally, a scheduler
D is a predicate on the sequences of events. A schedule of D is a sequence of
events that satisfies predicate D. A scheduler D is said to be fair, iff for every
agent x, in any infinite schedule of D, x is chosen by D infinitely many times.
This fairness is somewhat weaker (and more common in the literature) than the
one used in the model of [2]. Refer to, e.g., [5,12] for discussion on fairness.

As in [19], a specification P of a problem is a predicate on the executions.
We say that an algorithm A solves the specification P , iff any execution of A
satisfies the predicate P . The specifications we consider here not only ask for
termination, but also for a property of the terminal configuration of an execution.
This property is given as a predicate on a subset of variables which are called
output variables. We call legal a terminal configuration satisfying the property
of terminal configuration. In a legal configuration, output variables are said to
be correct. We call this type of specification a static problem.

Self-Stabilization. We adopt the definitions related to self-stabilization of [19],
in particular for the notions of convergence and correctness. Classical algorithms
assume that every execution is started from an initial configuration. That is not
the case for self-stabilizing algorithms, whose executions can be started from
any possible configuration. It is well known that self-stabilizing algorithms can-
not be explicitly terminating. Given a static problem P , we say that algorithm
A stabilizes for P if there exists a subset L of the set of configurations, called
legitimate configurations, such that: i) (convergence:) every execution from any
possible initial configuration reaches a configuration in L. ii) (correctness:) every
execution from a configuration in L only reaches configurations satisfying the
property of terminal configuration of P . In other words, an algorithm A stabi-
lizes for P , iff it converges towards the subset of legitimate configurations and,
once converged, never reaches configurations in which the property of terminal
configuration of P is not satisfied. When it happens, we say that the stabilization
has occurred.

Definition 1 (Local and Global Counting)
Let l be any non-negative integer and x an agent in A.
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– Then, l locally counted events at x, denoted by [l]x, are l consecutive events
in which agent x participates.

– And, l globally counted events or just l (global) events represent a segment
of length l in an execution, in which different agents are involved.

Note that during [l]x, at least l globally counted events occur.

Definition 2 (Event Complexity). The worst case event complexity (or just
event complexity) of a system S (or of an algorithm A) is the maximum length
(counted by the number of global events) of an execution until termination, in
case of a system S with initialization, or until stabilization, in case of a self-
stabilizing system S. In the latter case, we also call it stabilization complexity.

2.2 Cover Time Property

The cover time, defined below, is an abstraction of agent’s mobility characteris-
tics detailed in the introduction. Informally, it indicates the “time” for a mobile
agent to communicate successfully with all the other agents. As the systems we
consider are asynchronous, implying no real time, the “time” reference here is
the total number of communications (events) during some interval.

Given n agents, a vector CV = (cv1, cv2, . . . , cvn) of positive integers (the
cover times) and a scheduler D, D (and any of its schedules) is said to satisfy
the cover time property, if in any cvi (i ∈ {1 . . .n}) consecutive events of each
schedule of D, an agent i meets every other agent at least once (participates in
at least one event with every other agent). Any execution of a system under such
a scheduler we consider is one that satisfies the cover time property.

For two agents x and y, if cvx < cvy, then x is called faster than y, and
y slower than x. The minimum cover time value is denoted by cvmin and the
maximum one by cvmax. A fastest/slowest agent z has cvz = cvmin/cvz =
cvmax.

Remark 1. A scheduler satisfying the cover time property is fair. The fairness
defined in Sec. 2.1 ensures that each agent communicates with other agents
infinitely many times. With cover times, we are able to express the frequency
of the meetings of an agent. This can be considered a natural extension of this
fairness. Still, notice that the cover time property provides a kind of a strong
fairness in the sense that every agent is able to communicate frequently with
every other.

Agents are Not Assumed to Know Cover Times. Instead, we do assume
that when two agents meet, they are able to detect which of them is faster (unless
none of them is). One way to quantify that, is to assume that each agent x is
given with a category number catx (a positive integer). For instance, different
kinds of public transport vehicles (moving according to different itineraries) in
the EMMA project [18] can correspond to different categories. In ZebraNet [17],
a measured temperature (or pulse) far from the normal can imply an ill animal
(that is less mobile) - a category. We assume that for each two agents x and y,
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catx < caty ⇐⇒ cvx < cvy.2 The number of different categories, m, is generally
much smaller than the size of the population n (m� n) and agents do not know
the value of m. Note that categories are not identifiers, because there can be an
arbitrary number of agents in the same category and because agents in the same
category are indistinguishable.

For BS, we need the following stronger requirement. We assume that BS, but
not a mobile agent, is able either to estimate a tight upper bound or to know an
exact cv of an agent it meets. Recall that BS is resource-unlimited, which helps
it in this task. E.g., BS may maintain a table telling it what is the maximal
cover time of each category. For the sake of simplicity, in the presentation of the
code in BS (and its analysis), for each agent j that meets BS, we will use cvj

assuming that this is the cover time that BS has estimated based on catj .

2.3 Start of Computation

For a non-self-stabilizing algorithm, there are two options to start the com-
putation : simultaneously (or synchronously) and non-simultaneously (or asyn-
chronously). In the non-simultaneous case, at least one agent has to start the
computation spontaneously. Then, each time an already started agent i meets
a not yet started agent j, agent j starts too. The simultaneous start, is a par-
ticular case of the non-simultaneous one, in which the agents have to respond
simultaneously to some global signal, e.g., from BS, to initiate the computation.

The simultaneous start can be difficult to realize in practice. It implies that
BS has a communication power strong enough to broadcast, instantaneously, an
information to each mobile agent, at whatever distance it could be. We assume
a general and a more natural non-simultaneous start.

3 The Transformer

In this part, we consider classical (assuming initialization) algorithms solving
static problems and satisfying the condition below. We present a transformer
(compiler) that takes as an input such algorithmA, which solves a static problem
P . The transformer outputs the self-stabilizing version of A solving the self-
stabilizing version of P .

Conditions on the input algorithm.
The required conditions are as follows. First, the classical input algorithm A
solves a static problem P such that A assumes a non-simultaneous start (see Sec.
2). Second, A legally terminates with the same vector of correct output values
(finds the same solution) starting from a predetermined initial configuration
and regardless of the schedule “chosen” by the scheduler. Note that, in fact, the
transformer requires somewhat weaker condition than the first one. It is sufficient
that A solves P assuming only a subset of all the possible non-simultaneous
starts, the subset where BS is the first agent that starts the computation.

2 In some cases, a weaker relation between cover times and categories may be enough.
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We assume that an upper bound on the worst case event complexity of the
input algorithm A is known and is correct assuming a non-simultaneous start.
In addition, the bound is given as a function of the cover times of the agents
{cv1, cv2, . . . , cvn}. Hence, we can express the bound as a function of cvmin

and cvmax, because any cover time value is at most cvmax. We denote this
upper bound expressed in that way by WCCA.

Main idea of the transformer. Basically, the transformer algorithm is a com-
position of three modules, TServerMin algorithm (Sec. 3.1), TClient algorithm
(Sec. 3.2) and TServerMax (described later in this section). The composition is
made in the following way. First, TServerMin and TClient are combined in a fair
composition [16,19] to get “a first step” transformer. This transformer is used
to construct the TServerMax module. Then, all three self-stabilizing modules
are combined together to get “the final” transformer. Independently from each
other, both TServerMax and TServerMin are combined with TClient, each one
using a fair composition. TServerMax and TServerMin perform independently
and provide inputs to TClient.

TClient uses a repetition of three non-overlapping rounds synchronized at BS.
In the first round, all the agents are initialized according to the input classical
algorithm A. In the second round, agents are informed that the previous round
is accomplished. This is to ensure (in the asynchronous model we use) that no
initialization transition is done during the next, third, round. In the third round,
assuming that a proper initialization of A is done, a “simulation” of an execution
of A is performed (with a non-simultaneous start, where the first agent that
starts is BS). Each round is initialized by BS and then is propagated (together
with executing the appropriate transitions) to the other agents. To know when
to switch to the next round, BS locally counts an appropriate number of events.
Below, we show that in order to fully perform the first two rounds, BS has to
count at least 2cvmin events for each of those rounds; and to fully perform the
third round - at least max(2 ·cvmin, WCCA) events. To be able to count, BS has to
evaluate (at least, to estimate the maximum values of) cvmin and cvmax (and
then, also WCCA). Algorithm TServerMin in Sec. 3.1 provides an estimated value
of cvmin as an input to TClient (via variable mincv). Algorithm TServerMax
below provides an estimated value of cvmax as an input to TClient (via variable
maxcv). An evaluated WCCA in TClient (see Fig. 2) is denoted by WCCA.

Self-stabilizing computation of cvmax - algorithm TServerMax. To de-
sign this algorithm we use the transformer presented here itself. First, we use
the proposed below classical algorithm NSSmaxcv that computes an estimated
cvmax in BS (from a non-simultaneous start at BS) in 3·cvmin events and hence,
WCCNSSmaxcv = 3 · cvmin. Then, by the correctness of the transformer (Sec. 3.2,
Lem. 4) when WCCA is a function of cvmin only, the transformation of NSSmaxcv
outputs a required self-stabilizing algorithm TServerMax.

In NSSmaxcv, every agent x (including BS) has a variable maxcatx which
is initialized to catx. When a started agent x meets agent y (first, y becomes
started, if not started already, and then), x assigns maxcatx := max(maxcatx,
maxcaty). In cvmin events, all fastest agents meet some started agent and start
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the computation. Then, in additional cvmin events, every fastest agent x meets
a slowest agent and x assigns its maxcatx to a maximum category number. And
finally, in additional cvmin events (after 3 · cvmin in overall), some fastest agent
meets BS, maxcatBS is assigned to a maximum category number and BS saves
the correct estimation of cvmax (according to the value of maxcatBS) in maxcv.

3.1 Algorithm TServerMin (Fig. 1)

The purpose of this algorithm running at BS is to compute cvmin in a self-
stabilizing manner. The output of TServerMin is saved in mincv and used as an
input to the TClient algorithm.

TServerMin executes in rounds, using an event counter (variable countersrv)
to start a new round when counter becomes 0 or smaller (line 1). The output
mincv is updated once in a round (line 2). A round is a segment of an execution of
TServerMin which ends at line 2; and a complete round is a round that had also
been started at line 3. Incomplete rounds arise from a bad (faulty) initialization.

By Lem. 1 below, each round lasts at most [cvmin + 1]BS events. The output
mincv is updated to the correct value after each complete round (in line 2).
Hence, the convergence and correctness are ensured after [2 · cvmin + 1]BS .

Memory in a mobile agent j �= BS:
catj : positive integer (* category number of j *)

Memory in BS:
countersrv : integer (* counter of the events of a round *)
mincv, mincv′ : positive integer (* mincv is an output variable *)
cvj : positive integer (* cover time value of j estimated by BS based on catj*)

When an agent j communicates with BS:
1 if countersrv ≤ 0 then
2 mincv := mincv′ (* end of a round - output update *)
3 mincv′ := cvj ; countersrv := cvj (* start of a round - initialization *)
4 else
5 countersrv := min(countersrv, mincv′) − max(1, mincv′ − cvj + 1)
6 mincv′ := min(cvj , mincv

′)

Fig. 1. TServerMin

Lemma 1. EachTServerMin round lasts atmost [cvmin+1]BS. In addition, at the
end of a complete round, the output of TServerMin is correct, i.e., mincv = cvmin.

Proof: If at the first local event of the round at BS, the condition in line 1 is
true, the round (an incomplete one) is ended and the lemma holds trivially. Oth-
erwise, there are two cases: (1) at the beginning of a round (just after the faults or
at the beginning of a complete round, in line 3), mincv′ ≥ cvmin and countersrv ≥
cvmin; or (2) the initial value of mincv′ < cvmin or/and the initial value of
countersrv < cvmin (cannot be the case of a complete round; see line 3).

First, note that in both cases ((1) and (2)), mincv′ is assigned to cvj (line
3) or min(cvj , mincv

′) (line 6), at least once in the round (at least at the first
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local event at BS in the round). After that, during the round, we have mincv′ ≤
cvmax.

We treat case (1) first. Let ex be an event (BS, j) and also the [x]BSth event
of a round such that this is the first time in the round when BS meets some
fastest agent (j, in this case). In this event, mincv′ ≥ cvj (= cvmin). In ex, in
line 5, a counter is updated such that countersrv ≤ (cvmax−(x−1)−(cvmax−
cvmin + 1)) = cvmin−x. In the next line, 6, mincv′ becomes cvmin. In at most
additional cvmin − x + 1 local events, the condition in line 1 becomes true and
mincv becomes mincv′ which is equal to cvmin (mincv′ has stayed unchanged
since ex). Thus, in total, in case (1), in at most cvmin + 1 local events, the
round ends (and the new one starts) and at line 2, mincv is assigned to cvmin
as required.

In case (2), it is easy to see by the code (line 5) that the round ends in less
than cvmin + 1 local events (see details in [8]).

3.2 Algorithm TClient (Fig. 2)

TClient executes at BS and at the mobile agents. It uses as an input a clas-
sical algorithm A, the output (mincv) of TServerMin and the output (maxcv)
of TServerMax. As TServerMin and TServerMax are self-stabilizing, they will
eventually furnish the correct output values in mincv and maxcv. Below, we prove
that TClient is itself self-stabilizing given that mincv and maxcv are correct.

The main operation of TClient is aimed to properly initialize and execute A
repeatedly. At the end of each such repetition, TClient acquires a correct output
of A, if no faults occur during the current repetition. Otherwise, a correct output
will be acquired at the end of the next repetition. To achieve such operation,
TClient executes three different rounds (0-round, 1-round and 2-round) in a
cyclic manner. Each new round is started by BS and then, propagated from
agent to agent via round indicators (round) of agents.

Definition 3 (Complete and Incomplete i-round). Each i-round is a seg-
ment of an execution of TClient during which the round indicator at BS equals
i. A complete 0-round is a 0-round which starts in line 16 (Fig. 2) and ends in
line 9. A complete 1-round is a 1-round which starts in line 9 and ends in line
12. A complete 2-round is a 2-round which starts in line 12 and ends in 16.

An incomplete i-round is an i-round which is not a complete one. Incomplete
rounds arise from a bad (faulty) initialization.

Each of the three rounds has a task to perform. BS counts local events to learn
when the task terminates and then, switches to the next round. 0-round is used
to “reset” (initialize) the states of all the agents to start the upcoming execution
of A with properly initialized variables. In this round, just before each agent
performs the initialization action, it saves the output values from the previous
execution of A (see details below). 1-round is used to inform that the previ-
ous “reset” round is fully accomplished and to ensure that no “reset” action is
performed during the next round, 2-round, in which an execution of A takes
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place. When 2-round ends, during the next 0-round, all the output variables of
A are saved in the corresponding variables of TClient, which are designed as
generic type variables outputi for every agent i (see Fig. 2). These variables are
the output variables of TClient and of the output (transformed) self-stabilizing
algorithm. Note lines 4, 17 and 21 in the code of TClient where these variables
are updated and saved. This is necessary, because the variables of A (and pos-
sibly its output variables) are re-initialized just after, during the 0-round, while
the output variables of TClient are not modified until the very end of the next
2-round. As A is assumed to terminate with the same vector of correct out-
put values from a predetermined initial configuration, these output values are
identically re-computed in each “complete” (repetition of the) execution of A,
while the population does not change. This provides a stabilization of the output
algorithm.

Lemma 2. Assume that the value of mincv is correct (equals cvmin). Then,
each complete 0-round lasts [2 · cvmin]BS events. In addition, at the end of
the round (line 9), the round indicators of all the agents are set to 0 and all
the agents are initialized according to the non-self-stabilizing algorithm A. The
fastest bit of every fastest agent is set to 1, and to 0 for others (these bits stay
unchanged thereafter).

Proof: The lemma considers a complete 0-round (see Def. 3), hence it has
started in line 16. In this line, countercnt is set to 2 · mincv. Hence and by line
2, the 0-round lasts [2 · cvmin]BS (during which at least 2 · cvmin global events
occur in the system). After the round has started at line 16, in cvmin events,
every fastest agent f meets BS and sets roundf := 0 (line 18) and fastestf := 1
(line 6). From this point, no line of the code can change fastestf of any f (see
lines 6, 7 and 19). Hence, line 24 cannot be executed for any fastest agent. Line
26 cannot be executed for f with roundf := 0. Hence, roundf value cannot
change during the remaining events of the corresponding 0-round. Hence, since
roundf = 0 and fastestf = 1 at this round, lines 14 and 26 (the transitions
of A) cannot be executed for any fastest f until the end of the round. Note
that f is initialized in line 5, at the same meeting with BS, when it assigns
roundf = 0 and fastestf = 1. Hence, after the first cvmin events of the round,
every fastest agent and BS initialize A internal variables in line 5 and these
variables stay unchanged at least until the end of the round.

Starting with the first event of the round, in cvmin events, every fastest agent
meets every other non-fastest agent s and its fastests bit is set to 0 (in line
19). After the first cvmin events of a complete 0-round, all the fastest bits stay
unchanged (lines 6-7 and 19). After additional cvmin events, in 2 · cvmin events
in total, every non-fastest agent meets a fastest one, sets its round indicator to
0 and initializes its A variables, in line 22. From this point and until the end of
the round, lines 14, 26 (the only lines that can change the variables of A) cannot
be executed. Line 24 cannot be executed either and thus, the round indicators
of all the agents stay unchanged until the end of the round.
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Memory in a mobile agent j �= BS:
roundj ∈ {0, 1, 2} (* the round indicator of j *)
fastestj ∈ {0, 1} (* a bit to mark a fastest agent *)
outputj (* set of output variables of the new self-stabilizing algorithm *)
catj : positive integer (* category number of j *)

Memory in BS:
countercnt : integer (* counter of the local events at BS *)
round ∈ {0, 1, 2} (* the round indicator of BS *)
mincv : positive integer (* output of TServerMin; used here as an input *)
maxcv : positive integer (* output of TServerMax; used here as an input *)
WCCA : positive integer (* evaluated WCCA (by mincv and maxcv) *)
outputBS (* set of output variables of the new self-stabilizing algorithm *)
cvj : positive integer (* cover time value of j estimated by BS based on catj*)

When agent j communicates with BS:

1 WCCA :=
˙
WCCA evaluated by mincv and maxcv

¸

2 countercnt := min(countercnt, max(2 · mincv, WCCA)) − 1
3 if round = 0 then
4 if roundj = 2

˙
update outputj by the corresponding output variables of A¸

5 〈initialize variables of A at j and BS〉
6 if (cvj = mincv) then fastestj := 1 (* j is one of the fastest agents *)
7 else fastestj := 0
8 if countercnt ≤ 0 then
9 countercnt := 2 · mincv; round := 1 (* start of 1-round *)
10 else if round = 1 then
11 if countercnt ≤ 0 then
12 countercnt := max(2 · mincv, WCCA); round := 2 (* start of 2-round *)
13 else (* round = 2 *)
14 〈perform a transition of A for event (BS, j)〉
15 if countercnt ≤ 0 then
16 countercnt := 2 · mincv; round := 0 (* start of 0-round *)
17

˙
update outputBS and outputj by the corresponding output variables of A¸

18 roundj := round

When agent j communicates with an agent i �= BS:
19 if catj > cati then fastestj := 0 (* j is a non-fastest agent *)
20 if (roundi = 0 ∧ fastesti ∧ ¬fastestj) then
21 if roundj = 2 then

˙
update outputj by the corresponding output of A¸

22 roundj := 0; 〈initialize variables of A at j〉
23 else if (roundi = 1 ∧ fastesti ∧ ¬fastestj) then
24 roundj := 1
25 else if (roundi = 2 ∧ roundj �= 0) then
26 roundj := 2; 〈perform a transition of A for event (i, j)〉

Fig. 2. TClient
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Lemma 3. Assume that the value of mincv is correct. Let e be a TClient execu-
tion sequence composed of 2 sequential complete i-rounds such that e ≡ [0-round
1-round]. Then, at the end of e (line 12), the round indicator of every agent
equals 1 and all the agents are initialized according to the non-self-stabilizing
algorithm A. In addition, a corresponding 1-round lasts [2 · cvmin]BS events.

Proof: By Lem. 2, at the end of a complete 0-round, all the round indicators
are equal to 0 and the fastest bits of all the fastest agents are equal to 1 and 0
for others. In addition, at BS, the counter countercnt is set to 2 · cvmin and the
round indicator to 1 (start of a 1-round). Then, during the next [2 · cvmin]BS

events, the round indicator at BS is 1 (line 2, 9, 10-12) and hence, line 14 cannot
be executed during the round. During the first cvmin events in 1-round, every
fastest agent f meets BS and sets its roundf indicator to 1 (line 18). Now, we
prove by induction on the events that line 26 cannot be executed (either), during
the corresponding 1-round. First of all, note that during 1-round round indicator
can be set to 2 in line 26 only and only if one of the agents in the event have
the round indicator set to 2. By Lem. 2, at the beginning of the corresponding
1-round, no round indicator in agents equals 2 and hence, the basis of induction
is correct. By the induction hypothesis, during the first k events (of the 1-round)
line 26 cannot be executed. Hence, by the end of the kth event no round indicator
in agents equals 2 too. Thus, the induction is also correct for event k + 1.

Thus, during all the 1-round, round indicators can be set to 1 or to 0 by
a fastest agent (lines 22, 24) and to 1 by BS (line 1). After the first cvmin

events in the 1-round, round indicators can be set to 1 only (by the fastest
agents, line 24). Hence, in 2 · cvmin events, all the round indicators are set to 1
and stay unchanged until the end of the corresponding 1-round. In addition, by
Lem. 2 and since we showed that lines 14 and 26 cannot be executed during the
corresponding 1-round, all the agents are initialized according to the non-self-
stabilizing algorithm A at the end of the round.

Lemma 4. Assume that the output variables of TServerMin (variable mincv)
and of TServerMax (variable maxcv) are correct. Let e be a TClient execution
sequence composed of 3 sequential complete i-rounds such that e ≡ [0-round
1-round 2-round]. Then, at the end of e (line 16), the round indicator of all
the agents equals 2 and the output variables of A are correct. In addition, the
corresponding 2-round lasts [max(2 · cvmin, WCCA)]BS events.

If WCCA is a function of cvmin only, the statements in the lemma hold even
if maxcv is incorrect.

Proof: By Lem. 3, at the end of 1-round in e, the round indicators of all the
agents are equal to 1 and each agent is in an initial state according to A. Hence,
during the next complete 2-round in e, lines 5 or 22 (A initialization) cannot be
executed (this ensures that no initialization actions are executed).

BS is the first agent that starts a complete 2-round by setting its round
indicator to 2 in line 12. Then, any agent communicating with BS during this
2-round, sets its round indicator to 2, and both agents perform a transition of
A (line 14). Then, each time an agent i with a round indicator equal to 2 meets
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another agent j with round 1, agent j sets its round indicator to 2, and both
agents perform a transition of A (line 26). When any two agents, both with
round indicators equal to 2, meet, they perform a transition of A too (line 26).

Such a behavior simulates an execution of A with a non-simultaneous start
at BS. In addition, due to the correctness of mincv and maxcv, WCCA is correctly
evaluated at line 1. Hence, the 2-round in e lasts at least [max(2·cvmin, WCCA)]BS

events (line 12), which are at least WCCA global events. Hence, at the end of the
2-round in e, the output variables of A are correct.

By the above, the corresponding 2-round lasts at least 2 · cvmin events and
thus (see the following explanation), the round indicators in all agents are set to
2 by the end of the round. During the first cvmin events in this 2-round, every
fastest agent meets BS and sets its round indicator to 2. After this setting and
till the end of the round, this indicator stays unchanged, because the conditions
in lines 20 and 23 are false (for any meeting (i, j)). Then, in additional cvmin, a
fastest agent meets all the others and they sets their indicators to 2 in line 26.
These indicators stay unchanged too, until the end of e, by the same reason.

Note that if WCCA is a function of cvmin only, the proof is correct even if
maxcv is incorrect.

Lemma 5. Assume that the output variables of TServerMin (variable mincv)
and of TServerMax (variable maxcv) are correct. Let e be a TClient execution
sequence composed of 4 sequential complete i-rounds such that e ≡ [0-round
1-round 2-round 0-round]. Then, at the end of e (line 9), the output variables
of TClient (output) are correct (satisfy the property of terminal configuration
of P that A solves) and stay correct thereafter.

If WCCA is a function of cvmin only, the statements in the lemma hold even
if maxcv is incorrect.

Proof: In the first event of the last 0-round in e, in line 17, BS and agent j
update the output variables of TClient to the correct ones of A (by Lem. 4).

By Lem. 4, at the end of the 2-round in e, all the round indicators are set to
2. Hence, in the next 0-round, any (other than j) fastest agent (by Lem. 2, the
fastest bits are correct in this round) meets BS in cvmin events and updates
the output variables of TClient (to the correct ones) in line 4 (j does it in line
17, at the first event of the round). Then, in additional cvmin events, all the
other agents update these variables in line 21 (if they did not make it already in
this round, in this line, or in line 4).

Note that line 26 cannot be executed during the last 0-round in e for an agent
that has already set its round indicator to 0. Thus, the round indicators stay
unchanged during this 0-round after they have been set to 0. Hence, during this
round, the update of the output variables of TClient by those of A (in lines 4,
17 and 21) is done exactly once for every agent. From this moment, it is easy
to see that the output variables of TClient stays untouched until the end of
the next 2-round that starts after e. Then, during the next additional 0-round,
these variables are updated again (and exactly once for each agent) to the correct
values by the same points as above. Hence, the lemma holds.
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The complexity of the transformation.

Lemma 6. Assume that the output variables of TServerMin (variable mincv)
and of TServerMax (variable maxcv) are correct. Then, each i-round lasts at
most [max(2 · cvmin, WCCA)]BS .

If WCCA is a function of cvmin only, the statement in the lemma holds even
if maxcv is incorrect.

The correctness of the lemma is directly implied by Def. 3 and line 2 (Fig. 2).

Theorem 1. Let the input of the presented transformer be a classical algo-
rithm A that solves a static problem P from a non-simultaneous start and ter-
minates with the same vector of correct output values from a predetermined
initial configuration. In addition, the upper bound on the worst case complex-
ity of A is given as a function of cvmin and cvmax and denoted by WCCA.
Then, the output of the transformer is an algorithm that stabilizes for P in
O(cvmax

n−1 ·max(2 · cvmin, WCCA)) global events.
An additional memory requirement for the transformation (on top of the mem-

ory requirement for A) is O(1) for every mobile agent.

Proof: First, assume that the output variables of TServerMin and TServerMax
are correct. Then, consider an execution sequence e composed of 4 sequential
complete i-rounds such that e ≡ [0-round 1-round 2-round 0-round]. Let us de-
fine the legitimate configurations for the output algorithm as the configurations
reached after a sequence e. Then, by Lem. 5, TClient stabilizes.

Now, we drop the assumption on the outputs of TServerMin and TServerMax.
The analysis of TServerMin and TServerMax in this section, shows that these
algorithms indeed stabilize to the correct outputs in O([cvmin]BS) events. In
addition, it is clear that TServerMin and TServerMax make no use of any of
the TClient variables, so that the variable condition for the fair composition is
satisfied.

By Lem. 6, any suffix of e is of length at most 4 · [max(2 · cvmin, WCCA)]BS .
Hence, after the stabilization of both TServerMin and TServerMax and in less
than additional 2|e| events (at most |e| events for the suffix of e and additional |e|
events for the complete e, with no faults), in overall O([max(2 ·cvmin, WCCA)]BS)
events, the convergence and correctness of the transformer are ensured.

Now, let us express the complexity by the number of global events instead of
the local ones at BS. By the cover time property (see Sec. 2.2), in any cvBS

consecutive global events, BS participates in at least one event with every other
agent out of n − 1 and hence, locally counts at least n − 1 events. Thus, in
O(cvmax

n−1 ·max(2 · cvmin, WCCA)) global events, the convergence and correctness
of the transformer (or the output algorithm) are ensured.
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Abstract. We describe an approach to the analysis of protocols for
wireless sensor networks in scenarios with mobile nodes and dynamic
link quality. The approach is based on the theorem proving system PVS
and can be used for formal specification, automated simulation and ver-
ification of the behaviour of the protocol. In order to demonstrate the
applicability of the approach, we analyse the reverse path forwarding
algorithm, which is the basic technique used for diffusion protocols for
wireless sensor networks.

1 Introduction and Motivation

Wireless devices have a limited transmission range and multi-hop communica-
tion protocols must be adopted when the network has a physical extension which
exceeds the transmission range of nodes. Wireless Sensor Networks (WSNs) rep-
resent an example of wireless networks that are gaining more and more atten-
tion from the research community. In particular, WSNs are distributed systems
consisting of a large number of spatially distributed, autonomous and cooperat-
ing nodes. The nodes of the network, referred to as sensor nodes, are battery-
operated devices which provide limited computation capabilities, low-rate and
low-range wireless communication, and are equipped with a number of sensors
and actuators to monitor physical or environmental conditions [1].

Protocols for wireless networks are difficult to test on real devices, and sim-
ulation is currently the main technique used to investigate protocol behaviour.
Software-based simulators are widely used to provide controlled environments
in which experiments are to yield reproducible results. Protocols are commonly
analysed with ad hoc simulators built on top of readily available network simula-
tors, such as Omnet++ [2], or distributed system simulators, such as ptolemy [3].
Currently, there is no established standard simulation framework.

Formal modelling is of outstanding importance for reasoning about the be-
haviour of systems, and formal analysis methods are widely accepted as a method
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to provide additional confidence in the correctness of a system. For wireless sen-
sor networks, there is increasing interest in using formal methods to verify key
properties of popular routing algorithms [4], to evaluate protocol performance [5],
and to validate simulation results [6].

In order to analyse protocols for wireless sensor networks, in this work we
build on a framework [7] based on the Prototype Verification System (PVS).
PVS is a formal tool that combines an expressive specification language with
an interactive theorem prover and it has been successfully employed for formal
reasoning in several application domains (see [8] for an overview). The frame-
work [7] allows an easy specification of the characteristics of wireless networks,
such as limited communication range and lossy transmissions. In this work we
introduce in the framework mechanisms to automate the analysis of dynamic
scenarios with mobile nodes and quality changes of communication links. With
our approach, a high-level clear description of the protocol can be developed. The
formal specification can be animated and conveniently used to debug the specifi-
cation and to obtain quantitative evaluations. Moreover, the approach opens the
possibility of formally proving the correctness of the specification with respect
to properties of interest.

In order to demonstrate the applicability of the approach, we show its ap-
plication to the reverse path forwarding (RPF) algorithm, which is the basic
technique used for diffusion protocols for WSNs. We employ a mechanism pro-
vided by the framework to automatically translate the formal specification into
executable code, and simulate the algorithm in dynamic scenarios with mobile
nodes and degraded / faulty wireless links. Moreover, by using the theorem
prover of PVS, we prove that our specification satisfies desired properties of in-
terest when the routing table is static, i.e., when the routing table is guaranteed
to remain unchanged during protocol execution.

2 Basic Concepts of the Formal Framework

The framework presented in [7] combines formal verification and simulation to
build an integrated approach that can be employed to improve the confidence in
the behaviour of a system. The framework relies on the Prototype Verification
System (PVS) [8].

2.1 PVS

The Prototype Verification System (PVS) is a specification and verification sys-
tem which combines an expressive specification language with a powerful auto-
mated theorem prover. The PVS specification language builds on classical typed
higher-order logic with the usual base types, bool, nat, integer, real, among
others, and the function type constructor [A -> B]. Predicates are simply func-
tions with range type bool. The type system of PVS also includes record types,
dependent types, and abstract data types. The most powerful concept are predi-
cate subtypes, which can be used to check for violations, such as division by zero,
or to express complex consistency requirements.
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PVS specifications are packaged as theories that can be parametric in types
and constants. Theorems and lemmas contained in PVS theories can be formally
proved using the theorem prover of PVS. A built-in prelude and loadable libraries
provide standard specifications and proved facts for a large number of theories.
A theory can use definitions and theorems of another theory by importing it.

PVS also provides a ground evaluator [9] that can be used to animate func-
tional specifications i.e., to translate the formal specifications into executable
code. Indeed, although the specification language of PVS is based on higher-
order logic and features a rich type system, a large subset of it is executable.
The ground evaluator translates the executable constructs of PVS into efficient
Lisp code. Furthermore, in order to still be able to simulate theories that also
involve declarative specifications, the ground evaluator can be augmented by
so-called semantic attachments, through which the user can supply pieces of
Lisp code and attach them to the declarative parts. Using this mechanism, the
PVSio package [10] extends the ground evaluator with a predefined library of
imperative programming language features such as side effects and input/output
operations, and also provides a high-level interface for writing user-defined se-
mantic attachments.

2.2 Modelling and Analysing Network Protocols

The formal specifications of a network protocol consists of a collection of PVS
theories. A PVS theory may represent a service installed on a node (e.g., packet
logger, clock), a structural property of the network (e.g., network graph), a
communication functionality (e.g., packet forwarding). For each PVS theory, a
number of different versions can be provided in order to specify and analyse
algorithms under several perspectives and at desired level of detail. The most
abstract theory provides the declaration of types for a minimum set of mandatory
attributes and the declaration of functions. More detailed theories can be derived
from the abstract definition by specifying the behaviour of functions and by
extending types.

In the following, we recall the basic aspects of the framework. For a more
complete description of the theories, we refer to [7].

Nodes and Network Structure. Nodes in the network are identified by a unique
identifier node id. The base station has a special identifier base station. The
network is represented with a directed graph, and the external library [11] is used
to benefit from various concepts and proved facts. To simplify graph specifica-
tion, an auxiliary topology function is defined, which identifies, for each node,
the set of neighbouring nodes.Once the topology is given, the network graph
can be instantiated with an utility function that transforms a topology into a
directed graph.

Communication Primitives. Nodes can exchange packets. Communication prim-
itives take into account the structure of the network and enable packet reception
only for nodes in the communication range of the sender: if node x sends out a
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broadcast packet, it is received only by the neighbours of x. Ideal and lossy com-
munication are modelled through special addresses. Basically, lossy addresses are
functions that return a subset of nodes with respect to their ideal counterpart. A
number of different single-hop primitives were modelled to ease the specification
of communication protocols: Inject, which can be used to send out packets gener-
ated by nodes; Forward, which is suitable to relay packets previously received by
nodes; Drop, which is used to discard received packets. Additionally, nodes are
also allowed to perform the Idle transition, i.e., a transition in which nodes do
not perform any operation on incoming or outgoing packets. The implemented
primitives are suitable for unicast, multicast and broadcast communication.

Protocols. A protocol is specified as a cyclic procedure executed on a generic
node. The specification of the protocol may use services installed on the node,
and the protocol itself can be used to define new services. Examples of ser-
vices are packet logger, which stores statistics about sent and received packets,
receive buffer, which models the buffer that holds received packets waiting to
be processed, and node scheduler, which abstracts the clock of nodes and the
medium-access control mechanism with the sequence of nodes that execute the
algorithm. The state of a node is defined by the services installed on the node.
The network state maintains the state of all nodes in the network.

3 Modelling Dynamic Scenarios

In this section we present extensions of the framework which support the specifi-
cation of dynamic scenarios. Specifically, we show mechanisms suitable to express
mobility patterns of nodes, possibility of link quality changes, and to automate
the generation of routing tables.

Node Mobility. Node mobility can be expressed with functions that change net-
work connectivity with the following three steps: i) select a target direction
among those allowed by topology, ii) determine the new set of neighbours of the
mobile node, iii) return a new topology according to the actual parameters. The
node mobility th theory shows the definition of such a function in PVS. Three
auxiliary functions are used to implement the corresponding steps.

node_mobility_th: THEORY
BEGIN
IMPORTING network_graph_th

%-- select a target direction
select_target(s: finite_set[node_id]): node_id

%-- generate the new set of neighbours for the mobile node
new_neighbours(tp: topology, mobile_node, target_node: node_id): finite_set[node_id] =

{n: node_id | (n /= mobile_node) AND (tp(target_node)(n) OR n = target_node)}

%-- change topology tp according to the new neighbourhood of the mobile node
change_topology(tp: topology)(mobile_node: node_id, nbs: finite_set[node_id]): topology =

LET tp = remove_node(mobile_node, tp)
IN add_node(mobile_node, nbs, tp)
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%-- node mobility function
node_mobility(m: node_id, tp: topology): topology =

LET target = select_target(tp(m)), new_nbs = new_neighbours(tp, m, target)
IN change_topology(tp)(m, new_nbs)

%-- ... more definitions omitted
END node_mobility_th

The target direction of the mobile node can be selected through a set of rules.
Rules depend on the mobility model, and they can be either deterministic or
random. For instance, suppose that a node moves according to a random walk,
i.e., the mobile node takes a decision about the direction option for the next step
according to a random distribution. Random walk is a well-known searching
technique for resource discovery in decentralised networks. In the framework,
such a mobility pattern can be specified by means of a function random walk,
which moves the mobile node n times:
random_walk_th: THEORY

BEGIN
IMPORTING node_mobility_th

random_walk(n: nat)(ng: network_graph): RECURSIVE network_graph =
IF n = 0 THEN ng
ELSE LET tp = node_mobility(mobile_node, new_topology(ng)), ng = new_network_graph(tp)

IN random_walk(n-1)(ng) ENDIF
MEASURE n

END random_walk_th

Theory random walk th can be used to study protocols in dynamic scenarios. In
the following we show an example where a mobile base station moves according
to a random walk pattern and periodically injects a new packet; sensor nodes
execute the flooding protocol to diffuse packets.
mobile_scenario_th: THEORY

BEGIN %--... imports and some declarations omitted

mobile_scenario(n: nat)(net: network_state, ng: network_graph)
(sched_grp: finite_set[node_id]): RECURSIVE network_state =

IF n = 0 THEN net
ELSE LET ng = random_walk(S)(mobile_node, ng), %-- move the base station of S steps

scheduled_id = flooding_app_scheduler(sched_grp),
net = IF scheduled_id = base_station

THEN inject(scheduled_id)(net, ng) %-- the base injects a new packet
ELSE flooding(scheduled_id)(net, ng) %-- nodes execute flooding
ENDIF

IN mobile_scenario(n-1)(net, ng)(remove(scheduled_id, sched_grp))
ENDIF

MEASURE n

END mobile_scenario_th

Note that the specification above is executable and can be animated to perform
simulation. Examples of random walks traced by the mobile node during simu-
lation on a grid with 64 places with 8 columns and rows are shown in Figure 1.
In our simulations, the mobile node is initially placed on the top-left corner of
the grid. Different initial positions can, of course, be chosen. Grids with larger
number of places and different structure can be used as well. For the sake of
simplicity, the figure reports only the trace drawn by the mobile node without
any direction indication.
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Fig. 1. Examples of random walks that can be generated during simulations. Circles
represent places where the mobile node stopped for at least one step.

Automated Generation of Routing Tables. Routing tables are, by definition, ta-
bles that store, for each node, a path suitable to reach other nodes. Hence, we
specified the routing table with a function which returns, for any node, a vector
of paths: given a network graph G and a routing table rt, the vector of paths
starting from i is rt(i), and the path from i to j is rt(i)(j). In this definition,
we benefit from the definition of paths provided in [11]: a path from i to j is
a prewalk of nodes (i.e., a sequence of nodes) that must be traversed on the
network graph to reach j starting from i.

routing_table_th: THEORY
BEGIN
IMPORTING network_graph_th, digraphs[node_id]

routing_table: TYPE = [i: node_id -> [j: node_id -> prewalk[node_id]]]
routing_table?(rt: routing_table, g: network_graph): bool =

FORALL (i, j: node_id): route?(g, rt(i)(j), i, j)

valid_route?(g: network_graph, p: prewalk[node_id], i, j: node_id): bool =
((i /= j) AND (l(p) > 1) AND path_from?(g, p, i, j))

valid_routing_table?(rt: routing_table, g: network_graph): bool =
routing_table?(rt,g) AND FORALL (i, j: node_id): valid_route?(g, rt(i)(j), i, j)

%-- ... more definitions omitted
END routing_table_th

In order to automate the generation of routing tables, we extended the frame-
work with a new theory rtgen th which defines a service that, given a network
graph, generates a routing table. Basically, rtgen th models a technique that
is frequently used in WSNs to generate routing tables. The technique is based
on a protocol which performs the following actions. A node forwards a received
packet only if the packet is received for the first time, otherwise the packet is
dropped; packets carry a hop-count field in their payload that is incremented
every time the packet is forwarded. To build a routing table with the above al-
gorithm, the base station sends out a beacon packet with hop-count equal to 0; as
the packet gets forwarded in the network, nodes learn about their own distance
from the base station, and nodes are also able to estimate the distance of their
neighbours by inspecting the sender address and hop-count fields of the received
packets.
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In the framework, the service can be specified as follows:

rtgen_th: THEORY
BEGIN

IMPORTING routing_table_th %-- ... more imports omitted

rtgen(x:node_id)(net:network_state, g:network_graph)
(bs:node_id, rt:routing_table): network_state =

IF empty?(net_receive_buffer(net)(x)) THEN idle(x)(net, g, rt)
ELSE LET received_pk = getpacket(net_receive_buffer(net)(x)),

hopcount = getpayload(received_pk)(COUNTER_FIELD)
IN IF forwarded_packets(x, net_log(net)) = 0

THEN forward(received_pk WITH [destination_addr := lossy_bcast_addr,
payload := new_payload(hopcount+1)])

(x)(net,g,rt)
ELSE drop(received_pk)(x)(net, g, rt)
ENDIF

ENDIF

rtgen_service(net: network_state, g: network_graph, rt: routing_table):
RECURSIVE network_state =

LET grp = next_rpf_group(net_receive_buffer(net), net_log(net))
IN IF zero?(grp) THEN net

ELSE LET scheduled_id = random(grp),
net_prime = rtgen_rec(scheduled_id)(net, g)(0, rt)

IN rtgen_service(net_prime, g, rt)
ENDIF

MEASURE size(next_rpf_group(net_receive_buffer(net), net_log(net)))

%-- ... more definitions omitted
END rtgen_th

Routing tables can be generated either with ideal or lossy transmissions. In the
case of ideal transmissions, routing tables always define a spanning tree with
minimum hop distance from the base station. With lossy transmissions, on the
other hand, the generated routing tables define a spanning tree with a random
structure. For lossy transmissions, we can instantiate the probability Prx for
which node x ∈ lossy bcast addr. When lossy transmissions are used, a check
predicate controls if the generated routing table is valid. In the case that the
routing table is not valid – this may happen with lossy transmissions when some
nodes are not reached by the beacon packet sent by the base station to build the
routing table – the procedure was instrumented to automatically try to generate
a new routing table.

4 Case Study: The Reverse Path Forwarding Algorithm

In this section we will apply the proposed approach to the reverse path forward-
ing (RPF) algorithm, which is the basic technique used for diffusion protocols for
WSNs. RPF is a broadcast routing method which exploits the information con-
tained in the routing table to deliver packets generated by a base station to all
other nodes in a multi-hop network. With RPF, packets are propagated with the
following policy: a node n accepts a packet received from node p only if n believes
that p is the best next hop on the path to the base station, as specified in the rout-
ing table. It is well known that, under the assumption of a static routing table,
the reverse path forwarding algorithm delivers exactly one copy of the broadcast



112 C. Bernardeschi, P. Masci, and H. Pfeifer

packet to all nodes. If, however, the routing table is dynamic, as is usually the case
in real-world deployments, then such guarantees cannot be made for RPF [12].

In our framework, the algorithm is specified as follows: a broadcast packet
received by node x is accepted for forwarding if the sender address of the packet
is the best next hop of x towards the base station. The best next hop can be
derived from the routing table. The specification of the algorithm is:

rpf_th: THEORY
BEGIN IMPORTING routing_table_th %-- ... more imports omitted

rpf(x: node_id)(g:network_graph, base_station:node_id, rt:routing_table)
(net: network_state): network_state =

IF empty?(net_receive_buffer(net)(x)) THEN idle(x)(net, g, rt)
ELSE LET received_pk = getpacket(net_receive_buffer(net)(x)),

source_addr = source_addr(received_pk),
sender_addr = sender_addr(received_pk),
next_hop = next_hop(x, base_station)(g, rt)

IN IF sender_addr = next_hop
THEN forward(received_pk)(x)(net,g,rt)
ELSE drop(received_pk)(x)(net, g, rt)
ENDIF

ENDIF

%-- ... more definitions omitted
END rpf_th

The main property of the RPF algorithm is the following:

Property P. If the routing table is correct and static, then exactly one copy of
the broadcast packet sent by the base station will be delivered to all nodes in the
network.

5 Simulation

To simulate RPF, we need to specify an application scenario that takes into
account how the system evolves. As RPF itself does not generate routing tables,
we use the PVS function rtgen shown in Section 3 for that purpose.

In our simulations, we generated routing tables by using lossy bcast addr
with Prx = 0.94, which can be a reasonable value for low power wireless de-
vices [13]. A semantic attachment of the PVSio library is used to generate
pseudo-random numbers. Moreover, a theory for generating random sets of nodes
has been implemented. In our simulations, a uniform distribution is used, but
other distributions can be adopted as well, either providing an executable spec-
ification or changing the semantic attachment. On a desktop computer with a
2GHz processor, a valid routing table can be generated in seconds for networks
of 100 nodes placed on a grid. For a network of 1000 node placed on a grid, the
average time is of few minutes.

In our setting, the base station periodically injects packets in the network, and
other nodes apply the RPF algorithm. Each packet injected by the base station
is uniquely identified: this way we can derive useful statistics by inspecting the
log of nodes. In our simulations, a random node is scheduled at each simulator
step. The scheduler is specified so that fairness of execution between nodes is
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guaranteed, i.e., all nodes are able to execute the algorithm and make progress
at the same speed. Nodes operate in burst mode, i.e., when a node is scheduled,
all packets in the receive buffer are processed according to the RPF algorithm.

We aim at evaluating the delivery ratio and the overhead due to duplicates in
some representative scenarios of dynamic environment. The delivery ratio of a
node x is the number of packets delivered to node x over the number of packets
sent to node x. If the delivery ratio is one, then all packets were delivered to
the intended destination. The overhead due to duplicates is the amount of traffic
due to packet replicas. Such overhead can be caused by the RPF algorithm when
the routing table is not static [12].

In the following paragraphs, we show simulation results obtained for networks
of 64 nodes placed on a grid with 8 columns. Networks with larger number of
nodes and different structures can be simulated as well.

Link Quality

Link quality is ameasure of the probability of successful communication over a link.
In wireless networks, nodes can estimate the quality of the links with their neigh-
bours, e.g., through the received signal strength intensity (RSSI), which is auto-
matically computed by the wireless radio chip whenever a packet gets received [14].
In wireless environments, link quality may dramatically change because of many
factors, ranging from hardware/software nodes failure to environmental factors
(e.g., humidity, obstacles). In multi-hop wireless networks, link failures may lead
to network partitioning because of the limited communication range of the radio
equipment. Hence, whenever a link between two neighbouring nodes fails, such
nodes must choose a new next hop in order to recover the routing table.

We evaluate the RPF algorithm in a scenario where the routing table always
contains paths with the best local link quality. The base station periodically
injects a new packet in the network, and all nodes apply the RPF algorithm to
diffuse the packet. We assume that the quality of different links is not correlated,
and that link quality may change with a uniform probability Pc. The specification
of the application scenario used to simulate the network for n steps is shown in
the following.
rpf_sim_th: THEORY

BEGIN
%-- ...imports omitted

link_quality_app(Pc:real)(n:nat)(net:network_state, ng:network_graph, rt:routing_table)
(base_station:node_id, sched_grp:finite_set[node_id]):

RECURSIVE network_state =
IF n = 0 THEN net
ELSE LET (rt, nf) = change_routing_table(Pc)(n)(base_station, ng, rt),

sched_id = random_scheduler(sched_grp),
net_prime = IF sched_id = base_station

THEN inject_service(sched_id,n)(net,ng)(rt)
ELSE rpf_service(sched_id)(net,ng)(base_station,rt)
ENDIF

IN link_quality_app(Pc)(n - 1)(net_prime, ng, rt)
(base_station, update_sched(sched_id, sched_grp))

ENDIF MEASURE n
%-- ... more definitions omitted
END rpf_sim_th
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(a)

(b)

Fig. 2. Examples of simulation results with different link quality change probability Pc.
(a) Delivery ratio at the end of different simulation runs. (b) Distribution of duplicates.

Function change routing table reflects the possible changes in the routing ta-
ble due to changes in the quality of the links, and uses rt gen to generate new
routing tables.

The results of four simulations runs in which RPF has been evaluated with
different probabilities Pc are shown in Figure 2. For each simulation run, routing
tables were chosen randomly, and link quality changed if the value of a random
variable was higher than a given threshold. Figure 2(a) shows a snapshot of
the grid network at the end of simulation runs. The images relate the physical
position of nodes with colours that highlight the number of packets successfully
delivered (darker colours for higher delivery ratios). The base station is placed
in the top-left corner of the grid. As expected, the delivery ratio is 1, i.e., all
packets are delivered, when the link quality does not change (Pc=0). In the case
of dynamic scenarios (Pc �=0), on the other hand, some nodes are not able to
receive the packet sent out by the base station. Moreover, we can notice that
the delivery ratio is relatively high for nodes that are closer to the source node
(i.e., the base station), while it decreases rapidly for distant nodes. Figure 2(b)
reports the distribution of duplicates among nodes. The x-axis of the histogram
reports the number d of duplicates, the y-axis reports the number of nodes that
received d duplicates. It can be noticed how the number of duplicates rapidly
grows with the dynamics of the network.

These kinds of analyses can be applied to communication protocols to derive
useful information about possibly unexpected behaviours. For instance, if energy
consumption is a main concern for the application, results may point out that
developers should combine their algorithm with a mechanism that efficiently
suppresses duplicates.
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Node Mobility

We also evaluated the RPF algorithm with changing routing table due to a
mobile base station. In our scenario, the base station moves according to a
random walk pattern, i.e., the base station takes a decision about the direction
option for the next step according to a random distribution. Random walks are
well-known searching techniques for resource discovery in decentralised networks.
Every time the base station moves, a new routing table is generated and a new
packet is sent out. The application used to simulate n steps of the network is
similar to that of link quality changes. The main difference, with respect to the
specification used for link quality changes, is the function used to generate the
new routing table. In this case, first, the topology of the network is updated to
reflect the mobility of the base station; second, a new routing table is generated:

rpf_sim_th: THEORY
BEGIN %-- ...imports omitted

node_mobility_app(n:nat)(net:network_state, ng:network_graph, rt:routing_table)
(base_station: node_id, sched_grp: finite_set[node_id]):

RECURSIVE network_state =
IF n = 0 THEN net
ELSE LET (ng, rt) = move_base_station(n)(base_station, ng, rt),

sched_id = random_scheduler(sched_grp),
net_prime = IF sched_id = base_station

THEN inject_service(sched_id,n)(net,ng)(rt)
ELSE rpf_service(sched_id)(net,ng)(base_station,rt)
ENDIF

IN node_mobility_app(n - 1)(net_prime, ng, rt)
(base_station, update_sched(sched_id, sched_grp))

ENDIF
MEASURE n

%-- ... more definitions omitted
END rpf_sim_th

Figure 3 shows some results of simulations where the base station was initially
placed on the top-left corner of the grid. The random walks traced by the mobile
base station during three simulation runs are shown in Figure 3(a). For the sake
of simplicity, the figure reports only the trace drawn by the mobile node without
any direction indication. Figure 3(b) shows the delivery ratio obtained for a
simulation run (the walk performed by the mobile node is shown in overlay).
It can be noticed that the delivery ratio is higher for nodes closer to the path

(a) (b)

Fig. 3. Example of simulations results with a mobile base station. (a) Random walks;
circles represent places where the mobile node stopped. (b) Delivery Ratio; the random
walk is shown in overlay.
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traversed by the base station. The average delivery ratio is between 0.23 and
0.59, with an average value of 0.34; with more details, the average delivery ratio
of nodes that were immediate neighbours of the mobile node is 0.4, while for
other nodes it is only 0.29 in average. Such results are coherent with respect to
the results presented in [15], where RPF was evaluated for a mobile base station
following a random waypoint mobility pattern.

6 Formal Verification

In this section, we outline the proof that the specification of RPF satisfies prop-
erty P when the routing table is static. The execution of the RPF algorithm is
specified as a sequence of network states which starts from an initial state and
repeatedly applies a state transition function. For RPF, the initial state models
the injection of a packet in the network by the base station. The state transi-
tion function models the execution of the algorithm of a generic node x, which
is applied recursively to all received packets using an auxiliary rpf service
function:

rpf_proof_th: THEORY
BEGIN %-- ... imports omitted

rpf_service(t: nat)(x: node_id)
(ns:network_state, g:network_graph, rt:routing_table) : network_state =

LET scheduled_node = scheduler(t),
n = size(net_receive_buffer(ns)(scheduled_node))

IN execute(rpf(scheduled_node)(g,base_station, rt))(n)(ns)

rpf_transition(ns0, ns1: network_state, t: nat)
(g: network_graph, rt: routing_table): bool =

ns1 = rpf_service(scheduled_node)(ns0, g)(base_station, rt)

rpf_trace(seq: sequence[network_state])(g: network_graph, rt: routing_table): bool =
seq(0) = initial_rpf_state(base_station) AND
FORALL(t:nat): rpf_transition(seq(t),seq(t+1),t)(base_station,g,rt)

%-- ... more definitions omitted
END rpf_proof_th

The formal proof of property P is by an induction on the execution traces of
RPF, i.e., on sequences that start with the initial state and apply the RPF
transition function to generate subsequent states states. Furthermore, the proof
makes use of the following properties and constraints, which can be expressed
as additional lemmas, or sub-type conditions:

– the routing table is correct and does not change
– the network is not partitioned
– a correct routing table rt exists, which defines a spanning tree rooted at the

base station
– all nodes are guaranteed to be scheduled at least once every N steps of the

execution trace, where N is the number of nodes in the network
– all nodes operate in burst mode: when a node is allowed to transmit, it sends

out all packets waiting to be transmitted
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To accomplish the overall proof, the following lemmas proved useful:

Lemma 1. For all execution traces and network states, for every node x, the
number of packets with sender address equal to the next hop of x in the receive
log of node x, is equal to the number of packets in the forward log of the next hop
of x (by definition, the next hop of the base station is the base station itself). �

Lemma 2. For all execution traces and network states, for every node x, the
number of packets with sender address equal to the next hop of x in the forward
log of node x is less than or equal to the number of packets in the receive log of
node x. �

Lemma 3. For all execution traces and all network states, for every node x,
if the number of packets with sender address equal to the next hop of x in the
receive log of x is ≥ 1 at time t, then the number of packets in the forward log of
node x is ≥ 1 at time (t+N), where N is the number of nodes in the network. �

The delivery of the broadcast packet is assessed through the receive log of nodes.
To this end, the proof of property P is split into two parts: first we prove that the
number of received packets is at most one; second, we prove that the number of
received packets is at least one. The proofs have been developed and mechanically
checked with the theorem prover of PVS.

Theorem 1. For every node x, the number of received packets with sender equal
to next hop of x is at most one.

Proof outline. The proof is given by induction on the number k of hops between
the node and the base station on the spanning tree defined by the routing table.

Base: k = 1. The proof follows from the assumption that the base station injects
only one packet.

Induction: k = n + 1. The path p between the base station and node x is split
into a path p′ between the base station and next hop of x and an edge between
next hop of x and x. The length of p′ is n. Hence, the inductive hypothesis holds
for the next hop of x, which receives at most one packet. By using Lemma 2, we
obtain that x receives at most one packet from the next hop �

Theorem 2. For every node x, the number of packets with sender equal to next
hop of x is at least one.

Proof Outline. The proof is given by induction on the number k of hops between
the node and the base station on the spanning tree defined by the routing table
and by using the assumption on fairness for transmissions.

Base: k = 1. By construction of the initial state, the base station has injected
a packet at time t = 0. Hence the receive log of neighbours of the base station
contains the packet sent by the base station at time t = 0.

Induction: k = n + 1. The path p between the base station and node x is split
into a path p′ between the base station and next hop of x and an edge between
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next hop of x and x. The length of p′ is n. Hence, the inductive hypothesis holds
for the next hop of x, which receives at least one packet at a time t. By using
Lemma 3, we obtain that next hop of x forwarded at least one packet at time
t + N . By Lemma 1, there is at least one packet with sender address equal to
next hop of x in the receive log of x. �

7 Related Work and Conclusions

The need for formal modelling and analysis of algorithms for wireless networks
has been pointed out in many papers. In [4], basic properties of the Reverse
Path Forwarding algorithm have been analysed with FDR and Alloy Analyser.
Scalability is the main problem of such an approach: only very simple and small
network configurations were analysed, and specific hypotheses were assumed in a
hand-proof of the correctness the algorithm . In [5], Lamport’s Temporal Logic of
Actions is used to model and simulate diffusion protocols for discovering routing
trees for gathering and disseminating data. The analysis focuses on performance
variation of push and pull phases of the diffusion protocol for routing trees with
different shapes, however without the objective of algorithm design evaluation.
In [16], Real-Time Maude has been applied to the OGDC density control al-
gorithm and networks of several hundred nodes were analysed. The approach
allows modelling the algorithm at high levels of detail, using broadcast and uni-
cast communication primitives; results are claimed to be often more accurate
compared to other network simulators.

In this paper we show an approach based on the PVS system to analyse
protocols for WSNs in dynamic scenarios with mobile nodes and link quality
changes. As case study, we developed a formal specification for RPF. Through
simulation, we evaluated the algorithm and we have obtained results that are
coherent with those reported in other papers. Furthermore, we used the theorem
prover of PVS to verify core correctness properties of RPF when the routing table
is guaranteed to remain unchanged.

The approach allows an easy specification of the characteristics of wireless net-
works, such as limited communication range, lossy transmissions, node mobility.
The advantages of our approach are that it allows to develop a formal specifi-
cation of the protocol at different levels of abstraction, opening the possibility
to make complex systems tractable, and that the same formal specification can
be automatically translated into executable code suitable for simulations and as
basis for formal reasoning in a theorem proving system.
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Abstract. Among all classes of faults, Byzantine faults form the most
general modeling of value faults. Traditionally, in the Byzantine fault
model, faults are statically attributed to a set of up to t processes. This,
however, implies that in this model a process at which a value fault
occurs is forever “stigmatized” as being Byzantine, an assumption that
might not be acceptable for long-lived systems, where processes need to
be reintegrated after a fault.

We thus consider a model where Byzantine processes can recover in
a predefined recovery state, and show that consensus can be solved in
such a model.

1 Introduction

Consensus is the fundamental problem of achieving agreement among distributed
processes in the presence of faults. When considering process faults, the most
general assumption is that processes may behave arbitrarily. This class of faults
was termed Byzantine [1]. It is a quite old and well-known result that in order
to tolerate up to t faulty processes, at least n = 3t + 1 processes are necessary.
The usual assumption on failures puts a severe restriction on the distribution of
faults in a system. Consider the case of n = 4 and t = 1: Once a single fault
occurs at one process, say p, from this time on, further faults are allowed to
occur only at p, without violating the fault assumptions.

The reason for this is that traditionally, faults are considered to be permanent:
a process that is faulty once, is considered to be faulty forever. In [2] it was
shown that in the case of benign faults this is an unnecessary restriction, and
that consensus can be solved even if all processes are unstable as long as they
are up long enough. In the case of arbitrary value faults, however, a transient
fault can leave a process with a corrupted state, and thus the assumption of
permanent faults seems to be justified for these kind of faults. However, its
very unlikely that Byzantine faults live forever: often processes with a corrupted
� Martin Biely is partially supported by the Austrian BM:vit FIT-IT project TRAFT
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state crash [3], can be detected to be erroneous [4,5], or are subject to proactive
recovery [6].

This leads us to investigate systems where processes recover from being Byzan-
tine. Such a fault assumption is especially favorable for long-lived systems and
systems with high costs for hardware. There, the reintegration of components
that were subject to a soft error (that is a transient fault caused by a single
event upset) is essential. Such radiation induced soft errors were usually only
considered a problem in aerospace applications (where they are more or less
ubiquitous due to cosmic radiation, e.g., [7,8]). More recent research shows that
soft error rates are bound to increase also on ground level due to the decreasing
feature sizes and operating voltages (e.g., [9,10,11]).

When considering recovery in the case of benign faults, one distinguishes
between systems with or without stable storage [2]. In case of value faults, stable
storage is of no help, as a process can corrupt it arbitrarily when it is faulty.
We are thus limited to systems without stable storage. As failures can not only
corrupt the stable storage but also the state of the process, losing a process’s
state and putting the process in a well-defined recovery state is not a restriction
but a wanted feature in this case. This, however, adds a difficulty to the problem
of solving consensus: if too many processes lose their state, the information about
previous decision values or initial values might get lost, and may thus lead to
violation of agreement and/or validity. Are we thus back to an assumption where
only some processes might ever be faulty?

The key to answer this question in the negative is that not all processes are
faulty at the same time. When looking at long-lived systems, it is also not very
likely that the system is constructed such that error probabilities are high enough
for that. As we show in this paper, if we generalize t to be a threshold on the
number of faults during some period of time, we actually can solve consensus
even in the case where all processes are temporarily faulty in an execution.
After recovery, the previously faulty processes must be reintegrated, that is they
need to learn about the current state of the computation, among other things
about the initial values or even previous decisions. For this, we can only rely on
the information distributed in the system (as it is the case for benign recovery
without stable storage) to let a recovering process learn about these values.
This is only possible if we assume a recovering process receives sufficiently many
messages before another process can fail instead of it. In perpetually synchronous
systems with perpetually good communication this is easily achieved by making
the fault turnover interval large enough.

Our model, however, is a relaxation of the famous model of [12] where the
system is allowed to alternate between good and bad periods [2], where in good
periods the synchrony assumptions hold for correct processes and messages be-
tween them, whereas in bad periods there is no such assumption. We consider
only good periods that are larger than some minimum length, which will suffice
to allow a recovering process to learn a new state. The threshold t is defined such
that it is the maximum number of faulty processes in any bad period together
with its adjacent good periods. This “overlapping” definition guarantees that no
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new processes can fail before recovered processes have learned about the past.
Finally, in order to decide we require a good period in which all processes have
recovered. In Section 4 we discuss how to relax this condition.

1.1 Related Work

With respect to consensus protocols in partial synchronous systems with Byzan-
tine faults, beside the seminal work of Dwork et al. [12], the protocols BFT [6]
and Fast Byzantine Paxos [13] have received a lot of attention. There have been
several approaches to make BFT more practical, e.g., [14,15,16,17]. Fast Byzan-
tine Paxos shares some algorithmic similarities with AT,E [18] and thus also with
our algorithm. Even weaker synchrony assumptions (but higher link reliability
assumptions) are considered in [19]. None of these papers considers a consensus
algorithm with recovery in the Byzantine case.

The replication protocol of BFT [6] has a variant that supports proactive
recovery. However, in their case, recovery may occur only between several con-
sensus instances. For a single instance of consensus, BFT has a fixed set of faulty
processes. Their approach heavily relies on cryptography, so that a process after
recovery enters the system with a new identity, makes use of stable storage and
tries to verify whether this stored state is still valid. It also uses extra recovery
messages to integrate a new replica into the system.

This is in contrast to our work, where we do not need any of these means. Our
solution allows recoveries during a consensus instance and does not specify the
reason for recoveries. As it is the case for recovery in the benign case, whether
recovery during a consensus instance is a relevant case in practice depends highly
on the application. For our work, it is mainly important to show that it is possible.

Recovery from arbitrary faults was previously considered in the context of
clock synchronization [20,21,22]. A stronger model, where the system is syn-
chronous and Byzantine processes eventually crash (but do not recover) is con-
sidered in [3] to solve consensus.

Although our work may seem to be related to self-stabilization [23], this is
not the case, as we do not allow all processes to be in an arbitrary state. Indeed
the consensus problem is trivially impossible to solve in such systems. Examples
of agreement problems solvable in the context of self-stabilization include clock
synchronization [24] and iterated consensus [25].

1.2 Algorithm Idea

Our algorithm maintains a round structure where, for each process that is cor-
rect, a round model is simulated, i.e., at the beginning of each round a process
sends messages to all other processes and at the end of the round, every process
has received (some of) these messages. Moreover, this round model is communi-
cation closed, which means that messages are only delivered in the round they
are sent.

In general rounds are not synchronized during a bad period, and thus there
is no guarantee to receive all messages, but the algorithm ensures that a group
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of correct processes keep their rounds synchronized and no correct process is
in a higher round than any member of this group. As soon as a good period
starts (and this period is sufficiently long), our algorithm ensures that all cor-
rect processes resynchronize with this group of processes and that all processes
that recovered update their state so that they are properly integrated in the
protocol. This ensures that after some bounded time in a good period, every
correct process receives a message from every correct process in every round.
Furthermore, by filtering the stored messages our algorithm ensures an “isola-
tion” property, so that no message from a faulty process will be used in a higher
round where this process is not “counted as faulty” anymore. That is, there was
a good period between the times these rounds were entered (cf. the definition of
t above). We will discuss the message filtering and other concepts central to our
solution in more detail in Section 3.

The consensus part of our solution is based on the AT,E algorithm of [18],
shown here as Algorithm 1. This algorithm was developed in a high-level round
model where no process faults occur but transmission value faults are allowed
to be transient and dynamic. More specifically, every process may receive up to
α faulty messages per round, where the faulty links may be different in different
rounds. It solves consensus with appropriate choices of the parameters T and E,
that is, if n ≥ E and n ≥ T > 2(n+2α−E).1 In our context with process faults
we have α = t, and this bound is ensured by the isolation property mentioned
above. In order to allow recovering processes to learn new values, we need to
fix T = n − t, otherwise the faulty processes could prevent a process that just
recovered from learning a suitable estimate value denoted xp, by just not sending
any message. From this it follows that n > 5t and, in the minimum case n =
5t + 1, that E = n.

The core intuition of the consensus protocol is the following: once a correct
process decides a value v, it has received E = n messages proposing this value.
Thus, at least T = n − t correct processes had v as their estimate xp in the
current round. Therefore, in this and all subsequent rounds, a correct process
can only update its xp to v (line 8).

Similar to the approach of [2] our solution can be interpreted as an imple-
mentation of this abstraction in a lower level system model. However, since the
system assumptions are quite different (there are no state corruptions and thus
no need for reintegration in the round model of [18]), from a formal point of view
a sharp separation between the algorithm and the implementation by using only
a predicate as interface is not possible (which contrasts [2]). Consequently, our
resulting algorithm is given as a monolithic one.

We like to emphasize that the requirement n > 5t stems from the fact that
our algorithm is a fast one [13], i.e., in good runs it permits a decision in one
round. The recovery part of the algorithm has no extra demand in resilience.
We have chosen this algorithm instead of an algorithm with n > 3t because of
its simplicity.

1 Contrary to [18], we exchanged the use of > and ≥ in Algorithm 1 and these formulas,
which leads to the same results, but simplifies presentation.
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Algorithm 1. The AT,E algorithm of [18], parametrized by the thresholds T
and E (see text)
1: Variable Initialization:
2: xp ∈ V , initially vp /* vp is the initial value of p */

3: Round r :
4: Sending function Sr

p :
5: send 〈xp〉 to all processes;

6: Transition function T r
p :

7: if received at least T messages then
8: xp := the smallest most often received value in this round
9: if at least E values received are equal to v then
10: decide(v)

This paper is organized as follows. In Section 2 we formally specify our model
of Byzantine faults with recovery and state the definition of the consensus vari-
ant we solve. In Section 3 we present our algorithm. Proofs of correctness are
omitted here due to space constraints but can be found in the associated techni-
cal report [26]. In Section 4 we discuss possible extensions of our approach. We
conclude the paper in Section 5.

2 Model and Problem Definition

We consider a network of n distributed processes Π which communicate by
message-passing. For analysis we assume the existence of global real time which
takes values τ ∈ R. Processes only have access to an estimate of this global time,
given by their unsynchronized local clocks clockp(τ). For simplicity, we assume
that clocks are always correct. However, it can be seen easily that this is only
necessary in good periods, in bad periods only monotonicity is necessary.2

Processes make progress by performing steps. In a send step, a single message
to another process is sent. (That is, sending a message to oneself does not require
a send step.) In a receive step a set S of messages can be received (cf. [12]).

Processes can fail by exhibiting a behavior that is not in compliance with
their protocol. For any point in time τ we denote with the right-continuous
function F(τ) ⊆ Π the set of processes faulty at τ . For convenience we denote
by C(τ) = Π \ F(τ) the set of correct processes at time τ .

We generalize the notion of faulty and correct in a natural way for an interval
I = [τ1, τ2) ⊂ R, i.e., F(I) =

⋃
τ∈I F(τ) and C(I) = Π \ F(I) =

⋂
τ∈I C(τ). For

an arbitrary contiguous time interval I, we say a process p is I-correct if it is
not faulty at any time within that interval, i.e., p ∈ C(I); else it is I-faulty, i.e.,
p ∈ F(I).
2 Further, also for simplicity, we ignore clock drift. While the algorithm (and proofs)

can be adapted to include clock drift, it clutters up the presentation and makes their
understanding cumbersome.



Consensus When All Processes May Be Byzantine for Some Time 125

Gi Bi Gi+1

τ i
g τ i

b τ i+1
g τ i+1

b

E(Bi)

E(Bi+1)E(Bi−1)

Fig. 1. Good, bad, and enclosing periods: definitions

In general, F(τ) can be arbitrary, but we assume that processes can recover
from being faulty only by entering a special recovery state. Thus — when we
denote by state(p, τ) the state of process p at time τ — we get:

∀p ∈ Π, ∀[τ ′, τ) ⊂ R : p ∈ F([τ ′, τ)) ∧ p ∈ C(τ)
=⇒ state(p, τ) = recoverystatep.

For every contiguous interval I ⊂ R we say that the processes speed bound Φ
holds in I, if and only if every process p that is I-correct makes finitely many
but at least one step in any contiguous subinterval of length Φ.3

For every contiguous interval I = [τ1, τ2) ⊂ R we say that the communication
bound ∆ holds in I, if and only if for any message sent from I-correct process p
to I-correct process q at time τs, the following holds:

(i) If τs ∈ I, q makes a receive step at time τr ≥ τs + ∆, and τr ∈ I, then this
message is received in this receive step or any receive step q made since τs.

(ii) If τs < τ1, q makes a receive step at time τr ≥ τ1 + ∆, and τr ∈ I, then this
message is received in this receive step or any receive step q made since τs

or it is never received.

Note that these definitions allow the actual reception by the algorithm to occur
later than τs +∆, which is necessary under certain conditions, for instance when
the receiving process performed only send steps since τs.

We call an interval I a good period, if the process speed bound Φ and the
communication bound ∆ hold in I. Our system alternates between good and bad
periods, and we consider only maximal good periods of length |I| ≥ W , where
the parameter W is to be determined later. We denote τ i

g the beginning of the
ith good period with |I| ≥W , and τ i

b its end; Gi = [τ i
g, τ

i
b). Thus, Bi = [τ i

b , τ
i+1
g )

denotes a bad period (cf. to Figure 1). From the above definitions, it follows
that the system is in a bad period from −∞ to at least τ0, where we assume
the computation to start by the first process making a step. This bad period is
denoted B0. For simplicity, we assume w.l.o.g. τ0 = 0. Note that 0 may not be
3 There is a subtle difference to the model of [12]. We use continuous time and not

discrete time so that our definition of Φ does not put an upper bound on the speed
of Byzantine processes (as it is the case in [12]). We think that this weaker modeling
fits better the intuition of an arbitrary fault.
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Table 1. Summary of Parameters

Parameter Lower Bound Typical value Upper bound
Retransmission delay (η) nΦ ϑ
Round message timeout (ϑ) (3n − 1)Φ + 2∆ 2∆ + 3nΦ
Max. message age (ζ) ϑ + nΦ + ∆ 3∆ + 4nΦ W − ∆ − 2nΦ
Min. length of good period (W ) 3ϑ + (7n − 4)Φ + 3∆ 9∆ + 16nΦ
Min. length of deciding period (D) W + ϑ + (3n − 1)Φ + ∆ 13∆ + 18nΦ

the start of a good period. Moreover, our definitions imply that a message from
a bad period is received at most ∆ after the start of a good period, or is lost.

We define f(I) = |F(I)|. If Bi (with i > 0) is a bad period, let E(Bi) denote
the enclosing period, i.e., the bad period with its two adjacent good periods;
and E(B0) is defined as the union of B0 and G1. In the remainder of the paper
we assume that the resilience bound t holds, that is for any bad period Bi,
f(E(Bi)) ≤ t. Moreover, recall that for decision we assume a good period of
length D ≥W where all processes are correct.

In contrast to systems with perpetual faults, our definition of consensus allows
processes to decide several times, but we guarantee that all decisions of correct
processes are the same. Each process p has an initial value vp taken from the set
of all possible initial values V , and decides according to the following rules:

Agreement: When two processes p and q decide vp and vq at times τp and τq

and p ∈ C(τp) ∧ q ∈ C(τq), then vp = vq.
Validity: If all initial values are v and if p decides vp at time τp and p ∈ C(τp)

then vp = v.
Termination: Every process eventually decides.

3 Algorithm

Our protocol (Algorithm 2) requires n > 5t, and uses the timeout parameters
ϑ, η, and ζ. Determining the range of values for these parameters is done in the
technical report version of this paper [26]; the results can be found in Table 1.

The algorithm operates in rounds, where in each round r basically the follow-
ing takes place: (i) the Round message for round r is sent, and (ii) a timeout
is started; (iii) during the timeout, messages are received and processed; (iv) at
the end of a round a Fin message is used to synchronize with other processes,
before (v) the round ends and the consensus code for this round is executed.
The concepts of the algorithm are described in more detail below.

Variables and Initialization. For a process p, the estimate of the consensus
decision is stored in xp, the decision value in decisionp. When the process nor-
mally starts its execution in line 1 of our algorithm it sets xp to its initial value.
The algorithm starts in round 1, with rp denoting p’s current round number.

The information from a received message is stored in three variables: For each
round r′, estimates from other processes are stored in Rcvp[r′], where only the
value for the current round and the following one are kept. This variable is used
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Algorithm 2. Consensus in the Byzantine/recovery model, code for p

1: xp ← vp /* initial value */
2: rp ← 1
3: decisionp ← ⊥
4: ∀r′, q : Rcvp[r′][q] ← ⊥
5: ∀r′ : Rp[r′] ← ∅,Fp[r′] ← ∅
6: while true do
7: send 〈Round, rp, xp〉 to all
8: timeout ← clockp + ϑ
9: rnext ← rp

10: while clockp ≤ timeout and rp = rnext do
11: receive-and-process()
12: rnext ←max

{
r′ :

∣∣∣⋃r′′≥r′ Proc(Rp[r′′] ∪ Fp[r′′])
∣∣∣ ≥ t + 1

}
13: timeout ← −∞
14: while rp = rnext do
15: if clockp ≥ timeout then
16: send 〈Fin, rp, xp〉 to all
17: timeout ← clockp + η
18: receive-and-process()
19: if |Proc(Fp[r])| ≥ n − t then
20: rnext ← rp + 1
21: rnext ← max ({rnext}∪

{
r′ :

∣∣∣⋃r′′≥r′ Proc(Rp[r′′] ∪ Fp[r′′])
∣∣∣ ≥ t + 1

})
22: while rp < rnext do
23: if |{q ∈ Π : Rcvp[rp][q] �= ⊥}| ≥ n − t then
24: xp ← min {v′ : #(v′) = maxv′′ {#(v′′)}}
25: if ∃v ∈ V : ∀q ∈ Π,Rcvp[rp][q] = v then
26: decisionp ← v
27: rp ← rp + 1

28: function receive-and-process() :
29: S ← receive step
30: for each 〈q, 〈Round, r′, –〉〉 ∈ S do
31: Rp[r′] ← Rp[r′] ∪ {〈q, clockp〉}
32: for each 〈q, 〈Fin, r′, –〉〉 ∈ S do
33: Fp[r′] ← Fp[r′] ∪ {〈q, clockp〉}
34: for each r′ do
35: for each 〈q, c〉 ∈ Rp[r′] where c < clockp − ζ do
36: remove 〈q, c〉 from Rp[r′]
37: for each 〈q, c〉 ∈ Fp[r′] where c < clockp − ζ do
38: remove 〈q, c〉 from F[r′]
39: for each 〈q, 〈Round, r′, x′〉〉 ∈ S and each 〈q, 〈Fin, r′, x′〉〉 ∈ S do
40: if r′ ∈ {rp, rp + 1} then
41: Rcvp[r′][q] ← x′

42: on recovery do
43: xp ← ⊥
44: rp ← 0
45: goto 3
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in the consensus core of the algorithm, while the variables Rp and Fp are used
in the round synchronization part. These contain the information if and when
a Round resp. Fin message has been received by p. In this context we use the
following abbreviations in the algorithm:

Proc(S) := {p ∈ Π : ∃c : 〈p, c〉 ∈ S}
#(v) := |{q ∈ Π : Rcvp[rp][q] = v}|

where 〈p, c〉 denotes a pair of a process id and a time. Thus Proc(S) denotes the
set of processes which have an entry (with some time) in S. The abbreviation
#(v) just counts the number of times v was received in the current round.

Consensus core. The consensus core, based on Algorithm 1, corresponds to
the shaded lines in Algorithm 2. The sending part Sr

p of a round (line 5 of
Algorithm 1) corresponds to sending Round messages to all other processes at
the beginning of a round (line 7). At the end of each round the lines 23–26 are
executed, which correspond to the transition function of AT,E (cf. lines 7 to 10
in Algorithm 1). Here, we use the values stored in Rcvp[rp] to determine the
messages received in the current round.

Progress in good periods. The aforementioned Round message is also used
for round synchronization; as such it indicates that the sending process has
started a new round (line 7). Subsequently the process sets a timeout of length
ϑ and starts collecting messages. Once the timeout expires, it is ready to proceed
to the next round, since it can be sure that in a good period all correct processes
received a message from all correct processes by that time. The process indicates
this fact to the other processes by sending a Fin message. In good periods this
message serves only one purpose: it keeps a group of correct processes in a
bad period “together”, i.e., their round numbers differ by at most 1. Once a
process received n − t Fin messages, it ends the round and advances to the
next round (line 20). However, since good periods do not always start at the
beginning of a round, Fin messages are retransmitted every η time (lines 15–17).
Therefore, they also serve as retransmissions of the Round messages. This allows
the progression through the rounds to continue (shortly) after the beginning of
a good period even if all messages are lost in a bad period.

Resynchronization. Not all correct processes will follow the group with the
highest round numbers in a bad period. In order to resynchronize, the algo-
rithm has a “catch-up” rule that allows such processes to resynchronize with
this group. Once a process receives at least t+ 1 messages with a round number
r′′ that is higher or equal to some higher round number r′ > r, the algorithm
immediately advances to round r′ (lines 12 and 21). Because there are at most
t faulty processes in an enclosing period E(B), faulty processes can not cause a
premature end of a round for a correct process.

Note that recovering processes (which, due to line 44, start at round 0) also
catch up through this resynchronization mechanism.
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Message filtering. In order to deal with the additional challenges of the recov-
ery model, we need to do the following two adaptions (cf. function receive-and-
process() in Algorithm 2): Firstly, we record quorums for each round together
with a time-stamp and remove entries that are older than ζ time. With the right
choice of ζ, due to the “overlapping” definition of t it can be ensured that no
message from a faulty process sent in a bad period survives a good period. Thus
a changing set of faulty processes cannot harm the round structure.

Secondly, we record messages only for the current and the next round. Since
(as we show in the next section) for two different bad periods, correct processes
have distinct round numbers, this prevents bad processes to place erroneous
estimates into Rcv for rounds where they might be correct.

Both adaptations are thus designed to limit the impact of a Byzantine process
of a bad period on later periods, when it is no longer faulty.

Recovery. In case of recovery, a process starts in line 42, where it starts ex-
ecuting in round 0 (which is not used elsewhere in the protocol) and with no
estimate (⊥ will be ignored in lines 23–24). From that time on, it participates in
the protocol like a process that never left round 0, until it is able to resynchro-
nize with the rest of the system. This is guaranteed to happen in the next good
period, where the recovering process is guaranteed to receive more than n − t
messages for a round, and thus also sets its estimate to a value consistent with
Agreement and Validity.

Choice of timeouts. The key point of proving the correctness of this algorithm
is now to find suitable choices of the algorithm parameters ϑ, η, and ζ, as well
for the system parameter W , and the length of a fault-free good period for
termination D, so that indeed the algorithm solves consensus. For space reasons,
the derivation of the bounds on these figures as well as the proof of correctness
are done in the technical report version of this paper [26]. Table 1 summarizes
our results, where the “Typical values” listed in the table match the lower bound
but are rounded to the next higher multiple of nΦ.

Lemma 1 (Agreement). If n > 5t, if two processes p and q decide vp and vq

at times τp and τq and p ∈ C(τp) ∧ q ∈ C(τq), then vp = vq.

Lemma 2 (Validity). If n > 5t and all initial values are v and if p decides vp

at time τp and p ∈ C(τp) then vp = v.

Lemma 3 (Termination). If there is a good period Gi which has a subinterval
I of length W +ϑ+ (3n− 1)Φ+∆ in which all processes are correct then, every
process decides.

When all processes are correct, have the same value, and consensus is started
synchronously at all processes and in a good period (an initial good period),
termination is much faster.

Corollary 1 (Fast decision). If there is an initial good period of duration ϑ+
3nΦ+∆ in which all processes boot simultaneously there are no faulty processes,
and all processes initially agree on some value v, then processes decide within
one round.
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4 Extensions

In this section we briefly discuss some extensions that can be applied to our
algorithm to increase its efficiency.

Multiple instances. First we illustrate how our algorithm can be modified
to work for several instances of consensus. The straightforward approach would
be of course to use an extra instance of Algorithm 2 for each instance. This is,
however, not necessary. In fact, the same round structure can be shared by all
instances. This stems from the fact that an execution does not have to start
in round 1: since the algorithm allows any number of rounds where “nothing”
happens, any new instance of consensus just starts in the current round of the
algorithm. The only variables that need thus to be duplicated for each instance
are the decision value and the array Rcv. For the latter, another optimization is
possible. Obviously only the value of the current round and the following round
are needed by the algorithm. Thus the size of this variable reduces to 2n entries
per instance.

Additional permanent crashes. Another fairly straightforward improvement
of the current algorithm is to allow permanent crash faulty processes as well,
which also allows decisions when some processes are still down. This can be
achieved by setting E (recall Algorithm 1) to a value smaller than n. It is easy
to see that if we want to tolerate tc crashes in addition to t Byzantine/recovery
faults, we need to set the first threshold T = n − t − tc and the second one to
E = n − tc. The resulting resilience bound n > 5t + 3tc can then be deduced
from the formulas in Section 1.2.

Fast decision. Our algorithm is already fast in the classical sense, i.e., if all
processes are correct, have the same value and consensus is started at the same
time at all processes, it terminates within one round. However, as Algorithm 2 is
written, this round might still last ϑ+3Φ+∆. A simple modification makes the
algorithm really fast without invalidating any of our results: in the first round, if
a process receives n Round messages containing the same v, it can immediately
decide on that value. This can be achieved by executing the transition function
part (lines 23 to 26) for the first round as soon as one has received a message from
every other process. So a decision within the duration of an actual transmission
delay, which might be much smaller than ∆, is possible. This behaviour is called
weakly one-step in [27], where it is also shown that n = 5t+1 is the lower bound
for such algorithms, thus our solution is optimal in this respect. For strongly
one-step algorithms, i.e., those that can decide within one δ even when up to
t processes behave Byzantine from the start but all correct processes share the
same initial value, a lower bound of n = 7t + 1 is shown. We conjecture that
our algorithm could also be made strongly one-step quite easily. In order to do
so we would have to change the algorithm such that it decides when it receives
n−2t messages with the same value ([27] shows that this is a necessary condition
for every strongly fast algorithm). When setting E = n − 2t the conditions on
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n, T , and E (cf. Section 1.2) lead to the requirement that n > 9t, causing our
algorithm to be suboptimal in this respect.

5 Conclusion

Our paper shows that it is possible to solve consensus in a system where processes
may recover from arbitrary faults. The algorithm is fast, i.e., in good runs it de-
cides in the first round. The requirementn > 5t is thus also optimal [13,27]. Never-
theless, when looking at the duration of our rounds in the non-fast case there might
be room for improvement. Addressing this could be a promising future work, since
we believe that our weak fault model is of high practical interest.
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Abstract. This paper proposes a fully dynamic self-stabilizing algo-
rithm for the Steiner tree problem. The Steiner tree problem aims at
constructing a Minimum Spanning Tree (MST) over a subset of nodes
called Steiner members, or Steiner group usually denoted S. Steiner
trees are good candidates to efficiently implement communication prim-
itives such as publish/subscribe or multicast, essential building blocks in
the design of middleware architectures for the new emergent networks
(e.g. P2P, sensor or adhoc networks). Our algorithm returns a log |S|-
approximation of the optimal Steiner tree. It improves over existing
solutions in several ways. First, it is fully dynamic, in other words it with-
stands the dynamism when both the group members and ordinary nodes
can join or leave the network. Next, our algorithm is self-stabilizing,
that is, it copes with nodes memory corruption. Last but not least, our
algorithm is superstabilizing. That is, while converging to a correct con-
figuration (i.e., a Steiner tree) after a modification of the network, it
keeps offering the Steiner tree service during the stabilization time to all
members that have not been affected by this modification.

1 Introduction

The design of efficient distributed applications in the newly distributed emergent
networks such as MANETs, P2P or sensor networks raises various challenges
ranging from models to fundamental services. These networks face frequent churn
(nodes and links creation or destruction) and various privacy and security attacks
that cannot be easily encapsulated in the existing distributed models. Therefore,
new models and new algorithms have to be designed.

Communication services are the building blocks for any distributed system
and they have received a particular attention in the lately years. Their efficiency
greatly depends on the performance of the underlying routing overlay. These
overlays should be optimized to reduce the network overload. Moreover, in order
to avoid security and privacy attacks the number of network nodes that are
used only for the overlay connectivity have to be minimized. Additionally, the
overlays have to offer some quality of services while nodes or links fail.
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The work in designing optimized communication overlays for the new emer-
gent networks has been conducted in both structured (DHT-based) and un-
structured networks. Communication primitives using DHT-based schemes such
as Pastry, CAN or Chord [1] build upon a global naming scheme based on hashing
nodes identifiers. These schemes are optimized to efficiently route in the virtual
name space. However, they have weak energy performances in MANETs or sen-
sor networks where the maintenance of long links reduces the network perennial.
Therefore, alternative strategies [2], mostly based on gossip techniques, have
been recently considered. These schemes, highly efficient when nodes have no in-
formation on the content and the topology of the system, offer only probabilistic
guarantees on the message delivery.

In this paper we are interested in the study of overlays targeted to efficiently
connect a group of nodes that are not necessarily located in the same geograph-
ical area (e.g. sensors that should communicate their sensed data to servers
located outside the deployment area, P2P nodes that share the same interest
and are located in different countries, robots that should participate to the same
task but need to remotely coordinate). Steiner trees are good candidates to
implement the above mentioned requirements since the problem have been de-
signed for efficiently connect a subset of the network nodes, referred as Steiner
members.

The Steiner tree problem. The Steiner tree problem can be informally ex-
pressed as follows: given a weighted graph in which a subset S of nodes is identi-
fied, find a minimum-weight tree spanning S. The Steiner tree problem is one of
the most important combinatorial optimization problems and finding a Steiner
tree is NP-hard.

A survey on different heuristics for constructing Steiner trees with different
approximation ratios can be found in [3]. In our work we are interested in dy-
namic variants of Steiner trees first addressed in [4] in a centralized online set-
ting. They propose a log |S|-approximation algorithm for this problem that copes
only with Steiner member arrivals. At first step, a member becomes the root of
the tree then at each step a new member is connected to the existing Steiner
tree by a shortest path. This algorithm can be implemented in a decentralized
environment (see [5]).

Our work considers the fully dynamic version of the problem where both
Steiner members and ordinary nodes or communication links can join or leave
the system. Additionally, our work aims at providing a superstabilizing approx-
imation of a Steiner tree. The property of self-stabilization [6,7] enables a dis-
tributed algorithm to recover from a transient fault regardless of its initial state.
The superstabilization [8] is an extension of the self-stabilization property for
dynamic settings. The idea is to provide some minimal guarantees while the
system repairs after a topology change.

To our knowledge there are only two self-stabilizing approximations of Steiner
trees [9,10]. Both works assume the shared memory model and an unfair central-
ized scheduler. In [9] the authors propose a self-stabilizing algorithm based on a
pruned minimum spanning tree. The computed solution has an approximation
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ratio of |V | − |S| + 1, where V is the set of nodes in the network. In [10], the
authors proposed a four-layered algorithm which is built upon the techniques
proposed in [11] to obtain a 2 approximation.

The above cited algorithms work only for static networks. In [10] the members
can become ordinary nodes and ordinary nodes can become members, but the
network does not change.

Our results. We describe the first distributed super-stabilizing algorithm for
the Steiner tree problem. This algorithm has the following novel properties with
respect to the previous constructions:
– it is specially designed to cope with the system dynamism. In other words,

our solution tolerates nodes (or links) join and leave the system, while us-
ing O(δ logn) memory bits with δ the maximal degree of the network (or
O(log n) in the classical message passing model)1.

– it’s design includes self-stabilizing policies. Starting from an arbitrary state
(nodes local memory corruption, counter program corruption, or erroneous
messages in the network buffers), our algorithm is guaranteed to converge to
a tree spanning the Steiner members. Additionally, it is superstabilizing. That
is, while a topology change occurs, i.e., during the restabilization period, the
algorithm offers the guarantee that only the subtree connected through the
crashed node/edge is reconstructed.

Table 1. Distributed (deterministic) algorithms for the Steiner tree problem

Dynamicity Superstabilizing Self-Stabilizing Approximation ratio
[12] No No No 2
[9] No No Yes |V | + |S| − 1
[10] No No Yes 2
This paper Yes Yes Yes log |S|

Table 1 summarizes our contribution compared to previous works. The ap-
proximation ratio of our algorithm is logarithmic, which is not as good as the
2-approximation of the algorithm proposed by Kamei and Kakugawa in [10].
However, this latter algorithm is not superstabilizing. Designing a superstabiliz-
ing 2-approximation algorithm for the Steiner tree problem is a challenge. Indeed,
all known 2-approximation distributed algorithms (self-stabilizing or not) for the
Steiner tree problem use a minimum spanning tree (MST) computation, and the
design of a superstabilizing algorithm for MST is a challenge in itself.

2 Model and Notations

We consider an undirected weighted connected network G = (V,E,w) where V
is the set of nodes, E is the set of edges and w : E → R+ is a positive cost
1 To solve the problem, one can use a self-stabilizing reset algorithm with a centralized

algorithm computing a Steiner tree on each node but this requires at least O(n log n)
memory bits because the map of the network have to be stored on each node.
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function. Nodes represent processors and edges represent bidirectional commu-
nication links. Each node in the network has an unique identifier. S ⊆ V defines
the set of members we have to connect. For any pair of nodes u, v ∈ V , we
note d(u, v) the distance of the shortest path P (u, v) between u and v in G (i.e.
d(u, v) =

∑
e∈P (u,v) w(e)). For a node v ∈ V , we denote the set of its neighbors

N (v) = {u, (u, v) ∈ E}. A Steiner tree, T in G is a connected acyclic sub-graph
of G such that T = (VT , ET ), S ⊆ VT ⊆ V and ET ⊂ E. We denote by W (T )
the cost of a tree T , i.e. W (T ) =

∑
e∈T w(e). We consider an asynchronous com-

munication message passing model with FIFO channels (on each link messages
are delivered in the same order as they have been sent).

A local state of a node is the value of the local variables of the node and the
state of its program counter. We consider a fined-grained communication atom-
icity model [13,7]. That is, each node maintains a local copy of the variables of
its neighbors. These variables are refreshed via special messages (denoted in the
sequel InfoMsg) exchanged periodically by neighboring nodes. A configuration of
the system is the cross product of the local states of all nodes in the system plus
the content of the communication links. The transition from a configuration to the
next one is produced by the execution of an atomic step at a node. An atomic step
at node p is an internal computation based on the current value of p’s local vari-
ables and a single communication operation (send/receive) at p. An computation
of the system is an infinite sequence of configurations, e = (c0, c1, . . . ci, . . .), where
each configuration ci+1 follows from ci by the execution of a single atomic step.

Given LA a non-empty legitimacy predicate2 an algorithm A is self-stabilizing
iff the following two conditions hold: (i) Every computation of A starting from a
configuration satisfying LA preserves LA (closure). (ii) Every computation of A
starting from an arbitrary configuration contains a configuration that satisfies
LA (convergence). A legitimate configuration for the Steiner Tree is a configura-
tion that provides an instance of a tree T spanning S. Additionally, we expect a
competitiveness of log(z), i.e., W (T )

W (T∗) ≤ log(z), with |S| = z and T ∗ an optimal
Steiner tree.

In the following we propose a self-stabilizing Steiner tree algorithm. We expect
our algorithm to be also superstabilizing [8]. That is, given a class of topology
changes Λ and a passage predicate, an algorithm is superstabilizing with respect
to Λ iff it is self-stabilizing, and for every computation3 e beginning at a legiti-
mate state and containing a single topology change event of type Λ, the passage
predicate holds for every configuration in e.

In the following we propose a self-stabilizing Steiner tree algorithm and ex-
tend it to a superstabilizing Steiner tree algorithm that copes with the Steiner
members and tree edges removal. During the tree restabilization the algorithm
verifies a passage predicate detailed below. Then, we discuss the extension of the
algorithm to fully dynamic settings (the add/removal of members, nodes or links

2 A legitimacy predicate is defined over the configurations of a system and is an
indicator of its correct behavior.

3 [8] use the notion of trajectory which is the computation of a system enriched with
dynamic actions.
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join/leave). This second extension offers no guarantees during the restabilization
period.

3 Stabilizing Steiner Tree Algorithm s3t

This section describes a stabilizing algorithm for the Steiner tree problem, called
s3t. It implements the technique proposed by Imase and Waxman [4]4, in a
stabilizing manner. In our implementation we assume a rooted network where
the root is a special node chosen in the Steiner group. This node will be also
the root of the constructed Steiner tree. The choice of the root is beyond the
scope of the current paper. In the following we assume the system augmented
with a leader oracle that returns to every node in the system its status: leader
or follower. The single node that receives “leader” while invoking the leader
oracle is the root and is allowed to execute the root code detailed below. Several
implementations for leader oracles fault-tolerant, stabilizing or dynamic can be
found for example in [14,15,16].

The idea of our Steiner Tree algorithm is as follows. All nodes in the network
(Steiner or not) compute their distances to the existing Steiner tree. Steiner
members send asynchronously their connexion requests to the existing Steiner
tree via a shortest path and join the tree. Each connection may disturb the
coherency of the data maintained by the nodes in the system. Therefore, all
nodes in the system have to recompute their distances to the new Steiner tree.

Note that in a stabilizing setting the initial configuration may be arbitrary
hence nodes have to perpetually verify the coherency of their variables with those
maintained by their neighbors.

3.1 Variables and Predicates

For any node v ∈ V (G), N(v) is the neighbors set of v in the network G (our
algorithm is built upon an underlying self-stabilizing protocol that regularly
updates the neighbor set of every node). We denote by IDv ∈ N the unique
network identifier of v. Every node v maintains seven variables for constructing
and maintaining a Steiner tree. Three of them are integers, and the others are
booleans.
– pv: ID of the parent of node v in the current tree;
– ��v: (Level) number of nodes on the path between the root and v in spanning

tree;
– dv: the shortest distance to a node already connected to the current tree;
– memberv: true if v ∈ S ⊆ V , false otherwise (this is not a variable written by

the algorithm but only read);
– needv: true if v ∈ S ⊆ V or v has a descendant which is a member, false

otherwise;
– connectv: true if v is in the current tree, false otherwise;
– connect ptv: true if v is a member or v has more than one children in the

current tree, false otherwise.

4 Each Steiner member is connected to the existing Steiner tree via a shortest path.
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CRoot(v) ≡ dv = 0 ∧ pv = IDv ∧ needv ∧ connectv ∧ connect ptv ∧ ��v = 0
CParent(v) ≡ (∃u ∈ N(v), pv = IDu) ∧ (��v=��p

v
+ 1) ∧ ( � ∃u ∈ N(v), pu = IDv∧

��u �= ��v + 1)
Asked Connect(v) ≡ (∃u ∈ N(v), pu = IDv ∧ needu)
Better Path(v) ≡ (¬connectv ∧ dv �= d NotConnect(v)) ∨ (connectv∧

dv �= d Connect(v))
Connect Pt Stab(v) ≡ (memberv ∧ connect ptv) ∨ (¬memberv∧

connect ptv = (|{u : u ∈ N(v) ∧ pu = IDv ∧ connectu}| > 1))
Connect Stab(v) ≡ [memberv ∨(¬memberv∧ Asked Connect(v))]∧needv∧connectp

v

d NotConnect(v) ≡ min(min{w(u, v) : u ∈ N(v) ∧ connectu}, du + w(u, v) :
u ∈ N(v) ∧ ¬connectu})

d Connect(v) ≡ min(min{w(u, v) : u ∈ N(v) ∧ connectu ∧ connect ptu},
min{du+w(u, v) : u ∈ N(v)∧[¬connectu∨(connectu∧¬connect ptu))}

p Connect(v) ≡ arg(d Connect(v))
p NotConnect(v) ≡ arg(d NotConnect(v))

Fig. 1. Predicates used by the algorithm

3.2 Description of the Algorithm

Every node v ∈ V sends periodically its local variables to each of its neighbors
using InfoMsg messages. Upon the reception of this message a neighbor updates
the local copy of its neighbor variables. The description of a InfoMsg message
is as follows: InfoMsgv[u] = 〈InfoMsg, pv, ��v, dv, needv, connectv, connect ptv〉.

Our algorithm is a four phase computation: (1) first nodes update their dis-
tance to the existing Steiner tree, then (2) nodes request connection (if they are
members or they received a connection demand), then (3) they establish the con-
nection, and finally (4) they update the state of the current Steiner tree. These
phases have to be performed in the given order. That is, a node cannot initiate
a request for connection for example if it has not yet updated its distance.

Note that if a node detects a distance modification in its neighborhood, it
can change its connection to the current tree. Therefore, a node must update its
distance to the current tree before executing any other action.

Every node in the network, maintains a parent link. The parent of a node is
one of its neighbors having the shortest distance to the current tree. Note that
erroneous initial configurations may create cycles in the parent link. To break
these cycles, we use the notion of tree level, defined by the variable ��: the root
has the level zero and each node has the level equal to its parent level plus one.

When a member tries to connect to the tree, it sets its variable need to true.
When a node in the current tree receives a demand for connection, an acknowl-
edgment is sent back along the requesting path enabling every node along this
path to set a variable connect to true. Nodes with connect set true are called
“connected nodes”. Whenever a node detects an incoherency in its neighborhood
it disconnects from the current tree (see rules DR1 and CR2 ).
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Algorithm: Upon the reception of a InfoMsg nodes correct their local state via
the rules explained below then broadcast their new local state in their local
neighborhood.

Root: In a coherent state the root has a distance and a level equal to zero,
variables need and connect are true since the root is always connected (it always
belongs to the Steiner tree). Variable connect pt is true because the root is a
member so a connection point. Whenever the state of the root is incoherent the
Rule RR below is enabled.

RR: (Root reinitialization)
If Is Root(v) ∧ ¬CRoot(v) then

dv := 0; pv := IDv; needv := true; connectv := true;
connect ptv := true; ��v := 0;

Distance update: Rule DR1 enables to a unconnected node to compute its short-
est path distance to the Steiner tree as follows: Take the minimum between
the edge weights with connected neighbors and the distances with unconnected
neighbors. If a unconnected node detects it has a better shortest path (see Pred-
icate Better Path) then it updates its distance (using Predicates d NotConnect

and d Connect) and changes its other variables accordingly.
The same rule is used to reinitiate the state of a node if it observes that its

parent is no more in its neighborhood.
Similarly, Rule DR2 enables a connected node to compute its shortest path

distance. In order to execute this rule a connected node must have a stabilized
connection. The distance is computed as for a unconnected node but a connected
node compares this distance with its local distance towards its connection point
and takes the minimum.
DR1: (Distance stabilization for unconnected nodes)

If ¬ Is Root(v)∧[(¬connectv∧Better Path(v))∨(¬CParent(v)∧dp
v
�=∞)] then

dv := d NotConnect(v); pv := p NotConnect(v);
connectv := false; connect ptv := false; ��v := ��p

v
+ 1;

DR2: (Distance stabilization for connected nodes)
If ¬ Is Root(v)∧connectv ∧Connect Stab(v)∧Better Path(v)∧CParent(v)∧
Connect Pt Stab(v) then

dv := d Connect(v); pv := p Connect(v);
��v := ��p

v
+ 1;

Request to join the tree: Variable need is used by a unconnected node to ask to
its parent a connection to the current Steiner tree. Since a member must be
connected to the Steiner tree, each member sets this variable to true using Rule
NR1. A not member and unconnected node which detects that a child wants to
be connected (see Predicate Asked Connect) changes its variable need to true. This
connection request is forwarded in the spanning tree until a unconnected node
neighbor of a connected node is reached. A unconnected node sets its variable
need to false using Rule NR2 if it is not a member and it has no child requesting
a connection.



140 L. Blin, M. Gradinariu Potop-Butucaru, and S. Rovedakis

NR1: (Nodes which need to be connected)
If¬Is Root(v)∧¬needv∧¬connectv∧¬Better Path(v)∧CParent(v)∧[memberv∨
(¬memberv ∧Asked Connect(v))]
then needv := true;

NR2: (Nodes which need not to be connected)
If ¬ Is Root(v) ∧ ¬connectv ∧ needv ∧ ¬memberv ∧ ¬Asked Connect(v)∧
¬Better Path(v) ∧ CParent(v) then needv := false;

Member connection: When a unconnected node neighbor of a connected node
(i.e. which belongs to the Steiner tree) detects a connection request from a child
(i.e. Predicate Asked Connect is true), an acknowledgment is sent backward using
variable connect along the request path. Therefore every unconnected node on
this path uses Rule CR1 and sets connect to true until the member that asked the
connection is connected. Only a node that has (1) no better path, (2) its variable
need = true and (3) a connected parent can use Rule CR1. A connected node
becomes unconnected if its connection path is no more stabilized (i.e. Predicate
Connect Stab is false). Therefore, it sets connect to false using Rule CR2. The
parent distance is used for the disconnection of a subtree whenever a fault occurs
in the network. If a fault occurs (parent distance is infinity), a connected node in
the subtree below a faulty node or edge in the spanning tree must be disconnected
using Rule CR3. So the node sets connect to false and d to infinity and waits
until all its subtree is disconnected (i.e. it has no connected child).

CR1: (Nodes which must be connected)
If ¬ Is Root(v)∧¬connectv∧Connect Stab(v)∧¬Better Path(v)∧CParent(v)
then connectv := true;

CR2: (Nodes which must not be connected)
If ¬ Is Root(v)∧ connectv ∧¬Connect Stab(v)∧ CParent(v)∧ dp

v
�=∞ then

connectv := false;
CR3: (Consequence of a deletion)

If ¬ Is Root(v) ∧ connectv ∧ ¬Connect Stab(v) ∧ dp
v

= ∞
then connectv := false; dv :=∞; connect ptv := false;

send InfoMsgv to all u ∈ N(v) and wait until (� ∃u ∈ N(v), pu = IDv

∧connectu)

Update the Steiner tree: Since we use shortest paths to connect members to the
existing Steiner tree, we must maintain distances from members to connection
points. A connection point is a connected member or a connected node with more
than one connected children, i.e. the root of the branch connecting a member.
Every connected node updates its distance if it has a better path. So thanks
to connection points and distance computation, we maintain a shortest path
between a member and the Steiner tree in order to respect the construction in
[4]. Rule T R is used by a connected node to change its variable connect pt and
to become or not a connection point. This rule is executed only if the connected
node has a stabilized connection path (i.e. Predicate Connect Stab is true).
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T R: (Connected path stabilization)
If¬Is Root(v)∧connectv∧Connect Stab(v)∧CParent(v)∧¬Connect Pt Stab(v)
then If memberv then connect ptv := true;

Else connect ptv := |{u : u ∈ N(v) ∧ pu = IDv ∧ connectu}| > 1;

4 Correctness Proof in Static Settings

Definition 1 (Legitimate state of DST). A configuration of algorithm is
legitimate iff each process v ∈ V satisfies the following conditions:
1. a Steiner tree T spanning the set of members S is constructed;
2. a shortest path connects each member v ∈ S to the existing tree.

Lemma 1. Eventually a unique rooted spanning tree is constructed in the net-
work.

Proof. Function Is Root(v) is a perfect oracle which returns true if v is the root
of the tree and false otherwise. So we assume that there is a time after which
only one root exists in the network. Moreover, Rule RR is only used by the root
to correct its corrupted variables.

Since there is only one root in the network, to have a spanning tree we must
show that each node has one parent and there is no cycle. First note that each
node v could have at each time a single parent in its neighborhood (see Predicate
CParent(v)) stored in variable pv (only the root has its parent equal to itself).
Each node maintains its level stored in variable ��v which is updated by Rules
RR (maintains a zero distance for the root), DR1 and DR2 (selects as parent a
neighbor of minimum distance to the Steiner tree for unconnected or connected
nodes respectively). The level of each node must be equal to the level of its parent
plus one, except for the root which has a zero level (see Rule RR). Suppose there
is a cycle in the constructed structure. This implies there is at least one node x
with a smaller level than its parent y in the cycle, i.e., for x we have ��x �= ��y + 1
and for y we have px = IDy ∧ ��x �= ��y + 1. So Predicate CParent is false for x
and y, thus x and y can execute Rule DR1 to reset their variables to break the
cycle by choosing as parent the neighbor with minimum distance according to
Function d NotConnect. Therefore, there is a time after which no cycle exists in
the constructed structure. Since there is only one root in the network (i.e., ��v = 0
and pv = IDv), the constructed structure describes a single spanning tree. �

Lemma 2. Eventually each unconnected node knows its distance to the current
Steiner tree.

Proof. A node v is connected iff needv = true and connectv = true. There is at
least one connected node because the root is always connected (see Rule RR),
otherwise there is a time when the root corrects its variables using Rule RR.
According to Lemma 1, a tree spanning the network is constructed. Let x be a
unconnected node, dx the distance of the shortest path from x to the nearest
connected node and y its neighbor on this shortest path. Suppose dx > dx, thus
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it exists a time after which a neighbor offers a better path (i.e., a neighbor with
a distance lower than dx, see Predicate Better Path(x)) and x can execute Rule
DR1 because Predicate Better Path(x) is true. So x corrects dx as the minimum
distance in its neighborhood (see Function d NotConnect(x)). Thus, there is a
time after which dx = dx. Moreover, when x executes Rule DR1 the variable
px is modified respectively to variable dx (see Function p NotConnect(x)). So
px stores the neighbor of x which offers to x the shortest path to the nearest
connected node. Therefore, there is a time after which dx = dx and px = y. �
Lemma 3. Eventually each Steiner member is linked to root by a path of con-
nected nodes.

Proof. A node v is connected iff needv = true and connectv = true. There is
at least one connected node because the root must always be connected (see
Rule RR), otherwise there is a time when the root corrects its variables using
Rule RR. According to Lemma 1, there is only one rooted spanning tree. Thus,
there exists a path between each member and the root and Predicate CParent(v)
returns true for every node v in the tree.

To prove the lemma, we first show that for each node v on the path connecting
a member to the root we have needv = true. Each node v (except the root)
can change the value of its variable needv to true or false with Rule NR1 or
NR2 respectively, only when v has no neighbor with a lower distance than
its parent (i.e., v has no better path so DR1 and DR2 are not executable).
Otherwise Better Path(v) returns true and Rules DR1 or DR2 are uppermost
used to correct dv and pv. So we suppose that Better Path(v) returns false. Note
that for any node v (except the root), if we have needv = false then we can
suppose that connectv = false (otherwise v can execute Rule CR2 because
Predicate Connect Stab(v) is false).

There are two cases: member or not member nodes. Consider the member
node v. If needv �= true then v can execute Rule NR1 to set needv to true
(because connectv = false, Better Path(v) = false and CParent(v) = true).
Otherwise, consider a (not member) node v on the path connecting a member
to the root of the tree (this path exists according to Lemma 1). If needv �= true
then we have Predicate Asked Connect(v) = true because there is a time when
v has at least a child u s.t. needu = true. Moreover, we have connectv = false,
Better Path(v) = false and CParent(v) = true. Thus v can change the value of
its variable needv to true by executing Rule NR1. Therefore one can show by
induction using the same scheme that for each node v on the path between a
member and the root we have needv = true.

It remains to show that for each node v on the path connecting a mem-
ber to the root we have connectv = true. Each node v (except the root) with
connectv = false can correct its variable connectv using Rule CR1 or CR2 only
when Rule NR1 is not executable (i.e., we have needv = true). Otherwise,
Predicate Connect Stab(v) = false and Rule CR1 or CR2 can not be executed.
Since the root is always connected (i.e., connectroot = true), each child v of
the root with needv = true and connectv = false can execute Rule CR1 to
change connectv to true because we have Predicate Connect Stab(v) = true,
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Better Path(v) = false and CParent(v) = true. Thus, using the same argument
one can show by induction that for any node v on the path between a member
and the root we have connectv = true. �

Lemma 4. Eventually Connect Pt Stab(v) is true for every connected node v on
the path between each member and the root in the network.

Proof. Predicate Connect Pt Stab(v) notices if the variable connect ptv is locally
stabilized. According to Lemma 3, there is a time after which we have paths of
connected nodes between members and the root. Note that in this case Predicates
Connect Stab(v) and CParent(v) are true for every node v on a path connecting
a member to the root (including the members).

Suppose that Connect Pt Stab(v) for a connected node v is false. If v is a member
then this implies that connect ptv = false (see predicate Connect Pt Stab(v)), so
v can execute Rule T R to change the value of connect ptv to true and we have
Connect Stab(v) = true. Otherwise, let v be the parent of a member u on the path
of connected nodes connecting u to the root. This implies that connect ptv �= |{u :
u ∈ N(v) ∧ pu = IDv ∧ connectu}| > 1 (see predicate Connect Pt Stab(v)), so v
can execute Rule T R to update connect ptv and we have Connect Stab(v) = true.
Thus one can show by induction on the height of the tree that it exists a time where
Connect Pt Stab(v) is true for every connected node v on the path between each
member and the root. �
Lemma 5. Eventually each member is connected by a shortest path to the cur-
rent Steiner tree.

Proof. Let Ti−1 be the Steiner tree constructed by the algorithm before the con-
nection of the member vi. To prove the lemma, we must show that for any mem-
ber vi we have a shortest path Pi from vi to Ti−1 when Connect Pt Stab(vi) =
true and Better Path(vi) = false (i.e., Rule DR2 can not be executed by a mem-
ber because there is no better path to connect the member). Initially, according
to Rule RR the root v0 is always connected and we have Connect Pt Stab(v0) =
true and Better Path(v0) = false (because dv0 = 0). We show by induction
on the number of members that the property is satisfied for each member. At
iteration 1, let v1 be a unconnected member. According to Lemma 2, the path
P1 from v1 to v0 in the spanning tree is a shortest path (otherwise Predicate
Better Path(v1) = true and v1 can execute Rule DR2 to compute its short-
est path to v0) so there is a time s.t. P1 is a path of connected nodes (see
Lemma 3) and Connect Pt Stab(v1) = true (see Lemma 4). Since P1 is a shortest
path between v1 and v0, we have Better Path(v1) = false, thus the property
is satisfied for v1. We suppose that the tree Ti satisfies the desired property
for every member vj , j ≤ i. At iteration i + 1, when member vi+1 is uncon-
nected, according to Lemma 2 the path Pi+1 from vi+1 to Ti is a shortest path,
so there is a time s.t. Pi+1 is a path of connected nodes (see Lemma 3) and
Connect Pt Stab(vi+1) = true (see Lemma 4). Since Pi+1 is a shortest path
between vi+1 and Ti, we have Better Path(vi+1) = false and the property is
satisfied for vi+1.
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Note that a member vi+1 can create a new connection point u (i.e., connect ptu =
true) on the path Pj connecting a member vj , j ≤ i. In this case, the property
is still satisfied for vj because the path between u and vj is part of Pj so it is
a shortest path since a subpath of a shortest path is a shortest path. Moreover,
when we have connect ptu = true for u then all nodes on the path between u
and vj update their distance with Rule DR2 (see Predicate Better Path). �

Lemma 6. Eventually a Steiner tree is constructed.

Proof. Let T be the spanning tree constructed by the algorithm (see Lemma
1). Since T is a spanning tree, the Steiner group S is also spanned by T . Let
ST ⊆ T be the subtree of T such that every node v of ST is connected (i.e., we
have needv = true and connectv = true) and there is a path of connected nodes
between each member s ∈ S and the root (these paths eventually exist according
to Lemma 3). Moreover, for every node v in ST we have Better Path(v) = false
and CParent(v) = true because we consider that all member nodes are connected
to the Steiner tree with a shortest path. To prove the lemma we must show that
every leaf of ST is a member.

We consider every leaf node v in ST . Note that since v is a leaf, this implies
that v has no connected child in ST and thus Predicate Asked Connect(v) is false.
Suppose that v is not a member. Predicate Connect Stab(v) is false because v is
not a member and Predicate Asked Connect(v) is false. Thus, v can execute Rule
CR2 to set connectv to false. Then, the guard of Rule NR2 is satisfied and v can
change the value of needv to false. Therefore v is unconnected and is no more a
leaf of ST . By using the same scheme we can show by induction on the height
of ST that every node on a path of connected nodes which contains no member
nodes can not belong to ST after a finite bounded of time.

Now suppose that v is a member. The guard of Rule CR2 is not satisfied
because Predicate Connect Stab(v) = true and thus connectv remains true. Since
connectv = true, the guard of Rule NR2 is not satisfied and needv remains true
too. Therefore, v is maintained by the algorithm as a leaf of ST . �

Lemma 7 (Convergence). Starting from an illegitimate configuration even-
tually the algorithm reaches in a finite time a legitimate configuration.

Proof. Let C be an illegitimate configuration, i.e. C �∈ L. According to Lemmas
1, 5 and 6, in a finite time a legitimate state is reached for any process v ∈ V .
Thus in a finite time a legitimate configuration is reached in the network. �

Lemma 8 (Closure). The set of legitimate configurations is closed.

Proof. According to the model, InfoMsg messages are exchanged periodically
with the neighborhood by all nodes in the network, so InfoMsg messages main-
tain up to date copies of neighbor states. Thus, starting in a legitimate configu-
ration the algorithm maintains a legitimate configuration. �
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5 Correctness Proof in Dynamic Settings

In this section, we consider dynamic networks and we prove that topology
changes can be correctly handled by using the extended algorithm given in
Figure 2 with the rules previously presented. Moreover, we show that a pas-
sage predicate is satisfied during the restabilizing execution of our algorithm
with extensions.

In the following, we define the topology change events, noted ε, we consider:

– an add (resp. a removal) of a member v to (resp. from) S (v remains in the
network) noted addv (resp. delv);

– an add (resp. a removal) of an edge (u, v) in the network noted recovuv

(resp. crashuv);
– an add (resp. a removal) of a neighbor node u of v in the network noted

recovu (resp. crashu).

The algorithm given in Figure 2 completes the self-stabilizing algorithm de-
scribed in precedent sections and allows to a node v to take into account topol-
ogy change events. In the sequel, we suppose that after every topology change

Do forever: send InfoMsgv to all u ∈ N(v)
Upon receipt of InfoMsgu from u:

use all the rules to correct the local state of v
send InfoMsgv to all u ∈ N(v)

Interrupt Section:
If ε is a delv event or ((ε is a crashuv or crashu event) and pv = IDu)
then connectv := false; dv := ∞; connect ptv := false;

send InfoMsgv to all u ∈ N(v)
wait until ( � ∃u ∈ N(v), pu = IDv ∧ connectu);

Fig. 2. Algorithm for message exchanges and treatment of topology change events

event the network remains connected. We prove in the next that the algorithm of
Figure 2 has a superstabilizing property for a particular class of topology change
events. We provide below definitions of the topology change events class Λ and
passage predicate for the protocol given in Figure 2.

Definition 2 (Class Λ of topology change events). delv, crashuv and
crashv compose the class Λ of topology change events.

Definition 3 (Passage predicate). The parent of a node v can be modified
if v is in the subtree connected by the removed member, edge or node, and the
parent is not changed for any other node in the tree.

Lemma 9. Starting from a legitimate configuration, if a member x leaves the
set of members S or node x or edge (y, x) is removed from the network then
each connected node v in the subtree of x is disconnected from the tree and a
legitimate configuration is reached by the system.
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Proof. According to the description of the complete algorithm, when a member
x leaves the set of members S then x changes first its variables as following:
connectx = false and dx = ∞, then x sends its state to its neighborhood and
finally x waits until it has no connected child. In the same way, if a node x (resp.
edge (y, x) (assume px = IDy)) is removed from the network then each child
v of x (resp. x) changes first its variables as following: connectv = false and
dv = ∞ (resp. connectx = false and dx = ∞), then v (resp. x) sends its state
to its neighborhood and finally v (resp. x) waits until it has no connected child.
When a connected child u of v (resp. of x) receives message InfoMsgv from
v (resp. InfoMsgx from x), since Predicate Connect Stab(u) is false (because
connectparentu = false) and dparentu = ∞ the node u can execute Rule CR3.
As a consequence, the variables of u are changed like v’s or x’s variables, u
sends its state to its neighborhood and waits until it has no connected child.
According to Lemma 11, no node in the subtree of x can execute Rule CR3 and
can perpetually wait it has no connected child. As a consequence, after a finite
time every connected node v in the subtree of x is no more connected.Since each
node in the subtree of x is unconnected, there is at least one of those nodes v
such that Predicate Better Path(v) is true (because we assume the network is
always connected). Thus, v can execute Rule DR1. According to Lemmas 1 and
2, there is a time after which each node in the subtree of x knows its correct
shortest path distance to a connected node. Moreover, by Lemmas 3 and 5 each
unconnected member will be connected by a shortest path to a connected node
in the existing Steiner tree. Therefore, in a finite number of steps the system
reaches a legitimate configuration C′ ∈ L. �

Lemma 10. The proposed protocol is superstabilizing for the class Λ of topology
change events, and the passage predicate (Definition 3) continues to be satisfied
while a legitimate configuration is reached.

Proof. Consider a configuration ∆ � L. Suppose ε is a removal of edge (u, v)
from the network. If (u, v) is not a tree edge then the distances of u and v are
not modified neither u nor v changes its parent and thus no parent variable is
modified. Otherwise, let pv = u, u’s distance and u’s parent are not modified, it
is true for any other node not contained in the subtree of v since the distances
are not modified (i.e., Predicate Better Path is not satisfied). However, u is no
more a neighbor of v so according to the handling of an edge removal by the
algorithm v’s variables are reseted. So v sends its state to its neighborhood and
waits until it has no connected child. According to Lemma 9, all its children
will become unconnected and eventually will change their parent by executing
Rule DR1 because there is a better path (i.e., Predicate Better Path is satisfied).
Therefore, only a node in the subtree connected by the edge (u, v) may change
its parent.

Suppose ε is a removal of node (resp. member) u from the network (resp.
from the Steiner group S). Any node not contained in the subtree of u do not
change its parent relation because the distances are not modified (i.e., Predicate
Better Path is not satisfied). Consider each edge (u, v) between u and its child v,
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we can apply the same argument described above for an edge removal. So only
any node contained in the subtree connected by u may change its parent. �

A fault which occurs in the network is detected using a infinity distance value.
To handle a fault, we introduce Rule CR3 to bootstrap connected nodes in the
subtree below a faulty node/edge. We show in Lemma 11 that even Rule CR3
is executed when no fault occurs in the network then no node perpetually waits
(no deadlock) because of Rule CR3.
Lemma 11. Starting from an arbitrary configuration, Rule CR3 introduces no
deadlock in the network.

Proof. Consider a configuration which simulates the presence of a fault in the
network (but there is not really a fault) and allows the execution of Rule CR3
by a node v (i.e., v is a connected node and has a unconnected parent u with
dp

v
= ∞). According to Rule CR3, v becomes a unconnected node and sets its

distance to infinity (i.e., connectv = false and dv = ∞), then it sends its state
to its neighbors and waits until it has no connected child. There are two cases:
(1) v has no connected child or (2) v has at least one connected child. In case
(1), v is a leaf of the connected subtree and does not wait. Otherwise, in case
(2) since there is no deadlock for the leaves of the connected subtree (see case
(1)) the subtree of connected nodes rooted in v has a finite height. Thus, we can
show by induction that in a finite time every node in the subtree of v executes
Rule CR3. So, in a finite time v has no more connected child and wakes up. �

6 Conclusion

We propose a self-stabilizing algorithm for the Dynamic Steiner tree problem,
based on the heuristic proposed in [4], and achieves starting from any config-
uration a competitiveness of log(z) in O(zD) rounds5, with z the number of
members and D the diameter of the network. Additionally, we show that our
algorithm works for dynamic networks in which a fault may occur on a node or
edge. Moreover, we prove that if a subclass of faults (i.e., a member, a node or
an edge removal) occurs in a legitimate configuration our algorithm is supersta-
bilizing and is able to satisfy a ”passage predicate” defined on the tree structure.
For future works, it will be interesting to design a self-stabilizing algorithm in
dynamic networks, which achieves a constant competitiveness of 2 (e.g., by using
the algorithm in [10] extended for dynamic networks or another heuristic).
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Abstract. In the k-set agreement problem, each process (in a set of n processes)
proposes a value and has to decide a proposed value in such a way that at most
k different values are decided. While this problem can easily be solved in asyn-
chronous systems prone to t process crashes when k > t, it cannot be solved
when k ≤ t. Since several years, the failure detector-based approach has been
investigated to circumvent this impossibility. While the weakest failure detector
class to solve the k-set agreement problem in read/write shared-memory systems
has recently been discovered (PODC 2009), the situation is different in message-
passing systems where the weakest failure detector classes are known only for the
extreme cases k = 1 (consensus) and k = n−1 (set agreement). This paper intro-
duces a candidate for the general case. It presents a new failure detector class, de-
noted Πk, and shows Π1 = Σ×Ω (the weakest class for k = 1), and Πn−1 = L
(the weakest class for k = n−1). Then, the paper investigates the structure of Πk

and shows it is the combination of two failures detector classes denoted Σk and
Ωk (that generalize the previous “quorums” and “eventual leaders” failure detec-
tors classes). Finally, the paper proves that Σk is a necessary requirement (as far
as information on failure is concerned) to solve the k-set agreement problem in
message-passing systems. The paper presents also a Πn−1-based algorithm that
solves the (n−1)-set agreement problem. This algorithm provides us with a new
algorithmic insight on the way the (n−1)-set agreeement problem can be solved
in asynchronous message-passing systems (insight from the point of view of the
non-partitioning constraint defined by Σn−1).

1 Introduction

The k-set agreement problem. This problem is a coordination problem (also called
decision task). It involves n processes and is defined as follows [6]. Each process pro-
poses a value and every non-faulty process has to decide a value (termination), in such
a way that any decided value is a proposed value (validity) and no more than k differ-
ent values are decided (agreement). The problem parameter k defines the coordination
degree; k = 1 corresponds to its most constrained instance (consensus problem) while
k = n− 1 corresponds to its weakest non-trivial instance (set agreement problem).

Considering the process crash failure model, let t be the maximal number of pro-
cesses that may crash in a run (0 ≤ t < n). When t < k, the k-set agreement can
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always be solved, be the system synchronous or asynchronous. When t ≥ k, the situa-
tion is different. While the problem can always be solved in synchronous systems, [7]
(see [26] for a survey), it has no solution in asynchronous systems [3,18,28].

The failure detector-based approach. A failure detector is a distributed oracle that pro-
vides each alive process with hints on process failures [4]. Failure detectors have been
investigated to solve k-set agreement problem since 2000 [22]1. Lower bounds to solve
the k-set agreement in asynchronous message-passing systems enriched with limited
accuracy failure detectors have been conjectured in [22] and proved in [17]. The ques-
tion of the weakest failure detector class for the k-set agreement problem (k > 1) has
been stated first in [25].

The case k = 1 and the case k = n − 1. When k = 1, as already indicated k-
set agreement boils down to consensus, and it is known that the failure detector class
Ω is the weakest to solve consensus in asynchronous message-passing systems where
t < n/2 [5]. Ω ensures that there is an unknown but finite time after which all the
processes have the same non-faulty leader (before that time, there is an anarchy period
during which each process can have an arbitrarily changing leader). This lower bound
result is generalized in [11] where it is shown that Σ×Ω is the weakest failure detector
class to solve consensus when t < n. This means that Σ is the minimal additional
power (as far as information on failures is concerned) required to overcome the barrier
t < n/2 and attain t ≤ n − 1. Actually the power provided by Σ is the minimal
one required to implement a shared register in a message-passing system [10,11]. Σ
provides each process with a quorum (set of process identities) such that the values
of any two quorums (each taken at any time) intersect, and there is a finite time after
which any quorum includes only correct processes [10]. Fundamentally, Σ prevents
partitioning. A failure detector of the class Σ × Ω outputs a pair of values, one for Σ
and one for Ω.

The weakest failure detector classes for the (n − 1)-set agreement have been estab-
lished in 2008, but they are not the same in the shared memory model and the message-
passing model. More precisely, the weakest class for solving the (n− 1)-set agreement
problem in the asynchronous read/write shared memory model is Anti-Ω (denoted here
Ωn−1) [29]. Such a failure detector provides each process with a set of (n−1) “leaders”
that can change with time but these sets are such that, after some unknown but finite
time, they all contain the same non-faulty process2.

Differently, the weakest class for solving (n− 1)-set agreement in the asynchronous
message-passing model, is the Loneliness failure detector class (denoted L) [12]. Such
a failure detector provides each process p with a boolean (that p can only read) such
that the boolean of at least one process remains always false and, if all but one process
crash, the boolean of that process becomes and remains true forever.

The general case for read/write shared memory. The failure detector class Ωk has first
been presented at the PODC’07 rump session [27] where it has been conjectured to be
the weakest failure detector class for solving the k-set agreement problem in read/write

1 Similarly to consensus, the randomized approach also has been investigated to solve the k-set
agreement problem [23].

2 Anti-Ω is defined in a different but equivalent way in [29].
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shared memory systems. This conjecture has been very recently (PODC 2009) proved
by three independent groups [13,14,15] (a slightly weaker result is proved in [14] using
k-resilient environment). A failure detector of the class Ωk provides each process with
a (possibly always changing) set of k processes such that after some unknown but finite
time all the sets that are output have in common the same non-faulty process.

The optimality of Ωk to solve k-set agreement in shared memory systems seems to
be related to the fact that this problem is equivalent to the k-simultaneous consensus
problem [1], in which each process executes k independent consensus instances (to
which it proposes the same input value), and is required to terminate in one of them. As
shown in [29], this problem has been instrumental in determining the weakest failure
detector for wait-free solving the (n−1)-set agreement problem in asynchronous shared
memory systems.

Content of the paper. This paper proposes and investigates a new failure detector class
for solving the k-set agreement problem in asynchronous message-passing systems. Its
main contributions are the following.

– A new family of failure detector classes, denoted {Πk}1≤k<n, is introduced. Its
first interest lies in the fact that (1) Π1 � Σ × Ω (i.e., it allows expressing the
weakest failure detector class for consensus with a one-dimensional output, namely
a set of process identities), and (2) Πn−1 = L, from which it results that Πk is
optimal for the extreme values of k when one wants to solve the k-set agreement
problem in message-passing systems. Expressing the power of both Σ × Ω and L
with a single formalism was not a priori evident.

– It is shown that the class Πk is actually equivalent to the class Σk ×Ωk where Σk

is an appropriate generalization of Σ.3 We have Σ1 ≡ Σ, and very interestingly
Πn−1 � Σn−1 � L which sheds a new light on the weakest failure detector class
for the (n− 1)-set agreement problem.

– It is proved that for any k, Σk is a necessary requirement (as far as information
on failures is concerned) to solve the k-set agreement problem in message-passing
systems. It is worth noticing that the proof of this necessity requirement does rely
neither on an heavy machinery, nor on a reduction to a previous impossibility result.
It is purely constructive and particularly simple.

The paper additionally presents a message-passing (n − 1)-set agreement algorithm
directly based on Πn−1 (i.e., Σn−1). As already indicated, this provides us with a new
algorithmic insight on the way the (n− 1)-set agreement can be optimally solved.

Last but not least, an output of this paper is the following intriguing question. As al-
ready indicated, the k-set agreement problem and the k-simultaneous consensus prob-
lem are equivalent in read/write shared memory systems [1], which means that k-set
agreement can be solved by executing k independent consensus instances. From a “min-
imal information on failures” point of view, each such instance relies on the shared
memory (i.e., on Σ) to ensure agreement, and on an instance of Ω to ensure termina-
tion. For the k-set agreement we only need that one instance does terminate. This is

3 Interestingly, a failure detector class weaker than Σ × Ωk is proposed in [8] to solve k-set
agreement in message-passing systems. It is easy to show that Σ × Ωn−1 is stronger than L.
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what is captured by Ωk (that eventually provides the processes with sets of k leaders
that can arbitrarily change but contain forever the same correct process).

So, the question is: Which is the relation between the k-set agreement problem and
the k-simultaneous consensus problem in message-passing systems? Understanding
this link and its nature would give us a better understanding of the fundamental dif-
ference between shared memory communication and message-passing communication.
The intertwining between sharing and agreeing seems to be subtle [9].

Roadmap. This paper is made up of 7 sections. Section 2 describes the computation
model and Section 3 defines the failure detector class Πk. Then, Section 4 shows that
the classes {Πk} and Σk×Ωk are equivalent, and Section 5 shows that Πn−1 andL are
equivalent. Section 6 presents a Πn−1-based (n− 1)-set agreement algorithm. Section
7 proves that Σk is a necessary requirement for failure detector-based k-set agreement
in message-passing systems. Due to page limitation, the missing proofs can be found
in [2].

2 System Model and k-Set Agreement

2.1 System Model

Process model. The system consists of a set of n > 2 asynchronous processes denoted
P = {p1, . . . , pn}. Each process executes a sequence of atomic steps (internal action,
sending of a message, or reception of a message). A process executes its code until it
possibly crashes. After it has crashed a process executes no more step. A process that
crashes during a run is faulty in that run, otherwise it is correct. Given a run, C denotes
the set of processes that are correct in that run. Up to (n − 1) processes can crash in a
run. This is called the wait-free environment.

Communication model. The processes communicate by sending and receiving mes-
sages through channels. Every pair of processes is connected by a bidirectional chan-
nel. The channels are failure-free (there is no creation, alteration, duplication or loss
of messages) and asynchronous (albeit the time taken by a message to travel from
its sender to its destination process is finite, there is no bound on transfer delays).
The notation “broadcast MSG TYPE(m)” is used to send a message m (the type of
which is MSG TYPE) to all the processes. It is a (non-atomic) shortcut for “for each
j ∈ {1, . . . , n}do send MSG TYPE(m) to pj end for”.

Notation. The previous asynchronous message-passing model is denotedASn[∅]. When
enriched with any failure detector of a given class X , it will be denoted ASn[X ].

2.2 The k-Set Agreement Problem

As already indicated, the k-set agreement problem has been introduced by S. Chaudhuri
[6]. It generalizes the consensus problem (that corresponds to k = 1). It is defined as
follows. Each process proposes a value and has to decide a value in such a way that the
following properties are satisfied:

– Termination. Every correct process decides a value.
– Validity. A decided value is a proposed value.
– Agreement. At most k different values are decided.
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3 Failure Detector Classes Definition

If xxi is the local variable that contains the output of the failure detector at process pi,
xxτ

i denotes its value at time τ .

3.1 The Eventual Leaders Families (The Omega Families)

Each process pi is endowed with a local variable leadersi that satisfies the following
properties.

The eventual leaders family Ωk (1 ≤ k ≤ n− 1). This family has been introduced by
Neiger [24]. The local variables leadersi satisfy the following properties.

– Validity. ∀i : ∀τ : leadersτ
i is a set of k process identities.

– Eventual leadership. ∃τ : ∃LD = {�1, . . . , �k} : (LD ∩ C �= ∅) ∧ (∀τ ′ ≥ τ : ∀i :
leadersτ ′

i = LD).

Let us notice that τ is finite but unknown. Before τ , there is an anarchy period during
which the local sets leadersi can contain unrelated values. After τ , these sets are equal
to the same set LD that contains at least one correct process.

Ω = Ω1 is the weakest failure detector class to solve consensus [5] in message-
passing systems with a majority of correct processes, and in shared memory systems
[16,19]. An Ωk-based algorithm that solves the k-set agreement in message-passing
systems where t < n/2 is described in [21]. This algorithm can easily be modified to
replace the t < n/2 assumption by a failure detector of the class Σ1 (see below).

The eventual leaders family Ωk (1 ≤ k ≤ n− 1). The class Ωn−1 (called anti-Omega)
has been introduced in [29] where it has been shown to be weakest failure detector class
to solve (n − 1)-set agreement in shared memory systems. It has been generalized in
[27] (as cited in [29]). The local variables leadersi satisfy the following properties.

– Validity. ∀i : ∀τ : leadersτ
i is a set of k process identities.

– Weak Eventual leadership. ∃τ : ∃� ∈ C : ∀τ ′ ≥ τ : ∀i : � ∈ leadersτ ′
i .

Ω1 is the same as Ω1. For k > 1, Ωk is weaker than Ωk: it requires only that after
some (finite but unknown) time the sets leadersi contain the same correct process. Very
recently, it has been shown that Ωk is the weakest failure detector class to solve k-set
agreement in shared memory systems [13,14,15]. As noticed in the Introduction, this
family of failure detectors is related to the k simultaneous consensus problem [1].

3.2 The Quorum Family Σk (1 ≤ k ≤ n − 1)

Each process pi is endowed with a local variable qri that satisfies the following
properties.

– Intersection. Let id1, . . . , idk+1 denote a multiset of k + 1 process identities, and
τ1, . . . , τk+1 be any multiset of k + 1 arbitrary time instants. ∀id1, . . . , idk+1 :
∀τ1, . . . , τk+1 : ∃i, j : 1 ≤ i �= j ≤ k + 1 : (qrτi

idi
∩ qr

τj

idj
�= ∅).

– Liveness. ∃τ : ∀τ ′ ≥ τ : ∀i ∈ C : qrτ ′
i ⊆ C.
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After a process pi has crashed (if it ever does), we have (by definition) qri = {1, . . . , n}
forever.

Σk is a generalization of the quorum failure detector class Σ introduced in [11]
(that does correspond to Σ1), where it is shown to be the weakest failure detector class
to implement an atomic register in a message-passing system whatever the number of
process failures (“wait-free” environment). It is interesting to notice that the intersection
property of Σk is the same as the one used to define k-coteries [20].

3.3 The Agreement Quorum Family Πk (1 ≤ k ≤ n − 1)

Each process pi is endowed with a local variable qri that satisfies the Intersection and
Liveness properties of the quorum family Σk plus the following property:

– Eventual leadership. ∃τ : ∃LD = {�1, . . . , �k} : ∀τ ′ ≥ τ : ∀i : qrτ ′
i ∩ LD �= ∅.

After a process pi has crashed (if it ever does), we have (by definition) qri = {1, . . . , n}
forever. Moreover, let us observe that the Eventual leadership property of Πk is weaker
than the Eventual leadership property of Ωk or Ωk: it is not required that, after τ , qri

must always contain the same correct process.
It follows from the Intersection property that a quorum can never be empty. More-

over, it follows from the Liveness property that the set LD = {�1, . . . , �k} defined in
the Eventual leadership property is such that LD ∩ C �= ∅ (which means that this set
contains at least one correct process). Let us also observe that the intersection require-
ment in the Eventual leadership property is similar to but weaker than the intersection
property used in the definition of a k-arbiter [20].

3.4 Relations between Failure Detector Classes

Definition 1. The failure detector class A is stronger than the failure detector class B
(denoted A � B or B � A) if it is possible to build a failure detector of the class B in
ASn[A].

It follows from their definitions that (1) for any k: Ωk � Ωk, and (2) FD standing for
any of Σ, Ω, Ω, and Π : FD1 � · · ·FDk � FDk+1 · · · � FDn−1.

Definition 2. Class A is strictly stronger than B (A  B) if A � B and ¬(B � A).

Definition 3. The classes A and B are equivalent (A � B) if A � B and B � A.

4 Πk vs Σk × Ωk (1 ≤ k ≤ n − 1)

4.1 From Σk × Ωk to Πk

An algorithm that builds a failure detector of the class Πk from a failure detector of the
class Σk ×Ωk is described in Figure 1.

Theorem 1. The algorithm described in Figure 1 is a wait-free construction of a failure
detector of the class Πk in ASn[Σk ×Ωk]. (Proof in [2].)
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Init: queuei ←< 1, . . . , n >.
Task T1: repeat periodically broadcast ALIVE(i) end repeat.
Task T2: when ALIVE (j) received: suppress j from queuei; enqueue j at head of queuei.

when pi reads qri: let � be the first id of queuei that belongs to the output of Ωk;
return (output of Σk ∪ {�}).

Fig. 1. From Σk × Ωk to Πk (code for pi)

4.2 From Πk to Σk and Ωk

It is trivial to build Σk in ASn[Πk]: the output of Σk is the output of Πk. The rest of
this section focuses on the construction of Ωk in ASn[Πk].

Description of the Algorithm. Each process pi manages a local variable quorum seti
that contains a set of quorums. (Its initial value is the current value of qri, the local
output supplied by Πk). The principle of the algorithm is to maintain invariant the
following property where �1, . . . , �k are different process identities:

(∃{�1, . . . , �k} : ∀qr ∈ quorum seti : qr ∩ {�1, . . . , �k} �= ∅)
and “extract” Ωk from it. As we are about to see, this property guarantees that, if the
process pi was alone, it could consider {�1, . . . , �k} as its local output of Ωk. So, in
addition of maintaining the previous property invariant, the processes additionally use
a reset mechanism and a gossip mechanism in order to ensure that all the local outputs
({�1, . . . , �k}) eventually satisfy the leadership property of Ωk.

The algorithm is described in Figure 2 in which each when statement is assumed to
be executed atomically. Each process pi executes a sequence of phases, locally identi-
fied by ph nbi. The behavior of pi is as follows.

– Initially, pi broadcasts NEW(quorum seti, ph nbi) to inform the other processes of
its value qri locally supplied by Πk. It does the same broadcast each time the value
of quorum seti changes (line 15 whose execution is entailed by the invocation of
pres inv&gossip() at lines 02 or 07).

– When pi receives a NEW(qset, ph nb) message, its behavior depends on ph nb.
• If ph nb > ph nbi, pi jumps to the phase ph nb, adopts the quorum set qset it

receives (line 03), and broadcasts its new state (line 04).
• If ph nb < ph nbi, pi discards the message.
• If ph nb = ph nbi, pi and the message are at same phase. In that case, pi adds

qset to its quorum set quorum seti. Moreover, if this addition has changed its
value, pi gossips it (line 07).

– The procedure pres inv&gossip() is invoked in a when statement when
quorum seti has been modified (line 02 or line 07). It has a reset role and a gossip
role.
• Reset. The first is to preserve the invariant property stated before. To that end,

pi resets quorum seti if the property was about to be violated (lines 13-14).
In that case, pi starts a new phase.

• Gossip. Then, in all cases, pi broadcasts the new value of quorum seti.
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– Finally, the algorithm defines as follows the value returned as the current local out-
put of Ωk (lines 09-12). The process pi first considers all the increasing sequences
of k process identities the intersection of which with each quorum currently in
quorum seti are not empty (lines 09-10). Let us notice that each of these sequences
satisfies the invariant property. Then, pi deterministically selects and returns one of
them (e.g., the first in lexicographical order, lines 11-12).

Init: ph nbi ← 0; quorum seti ← {qri}; broadcast NEW(quorum seti, ph nbi).

when the value of qri changes:
(01) quorum seti ← quorum seti ∪ {qri};
(02) if (quorum seti has changed) then pres inv&gossip() end if.

when NEW(qset, ph nb) is received:
(03) case ph nb > ph nbi then ph nbi ← ph nb; quorum seti ← qset;
(04) broadcast NEW(quorum seti, ph nbi)
(05) ph nb < ph nbi then discard the message
(06) ph nb = ph nbi then quorum seti ← quorum seti ∪ qset;
(07) if (quorum seti modified) then pres inv&gossip() end if
(08) end case.

when pi reads leadersi :
(09) let k seqs the set of length k increasing sequences of process ids
(10) �1 < · · · < �k such that ∀qr ∈ quorum seti: qr ∩ {�1, . . . , �k} �= ∅;
(11) let �1, . . . , �k be the first sequence of k seqs (according to lexicographical order);
(12) return({�1, . . . , �k}). % local output of Ωk %

procedure pres inv&gossip():
(13) if (� ∃{�1, . . . , �k} : ∀qr ∈ quorum seti : qr ∩ {�1, . . . , �k} �= ∅)
(14) then ph nbi ← ph nbi + 1; quorum seti ← {qri} end if;
(15) broadcast NEW(quorum seti, ph nbi).

Fig. 2. From Πk to Ωk (code for pi)

Proof of the Algorithm. As Ωk is defined by an eventual property, let us consider the
time instant definition with respect to a run of the algorithm described in Figure 2.

Lemma 1. Let X be the value of the the greatest local variable ph nbi at time τ . X is
finite and no ph nbi variable becomes greater than X + 1. (Proof in [2]).

Lemma 2. There is a finite time after which no message is exchanged. (Proof in [2].)

Lemma 3. The set k seqs defined at line 09 is never empty, and each of its elements is
a non-empty set. (Proof in [2].)

Lemma 4. ∃LD = {�1, . . . , �k} : LD ∩ C �= ∅ : ∃τ ′ ≥ τ : ∀τ ′′ ≥ τ ′: ∀i ∈ C:
leadersτ ′′

i = LD.

Proof. Let M be the greatest phase number ever attained by a correct process. Due to
Lemma 1 this phase number does exist. Moreover, due to the lines 15 and 03, all the
correct processes enter the phase M .
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During the phase M , each correct process pi exchanges its quorum set quorum seti
each time this set is modified (lines 02 and 07). It follows from the network reliability
and the fact that, during a phase, quorum seti can take a bounded number of distinct
values, that there is a finite time after which all the correct processes have the same
set of quorums in their local variables quorum seti (line 03). Let QS be this set of
quorums.

Let τ ′ be a time after which all the processes pi are such that quorum seti = QS.
The first part of the lemma follows from the fact that, after τ ′, the processes compute
deterministically the same set LD of k leaders from the (never changing) same input
QS (lines 09-12).

The fact that LD contains a correct process follows from the the liveness property
of Πk (there is a finite time after which each qri contains only correct processes), from
which we conclude that the quorum set QS contains only quorums made up of correct
processes. Due to its very definition, it follows that LD contains at least one correct
process. �Lemma 4

Theorem 2. The algorithm described in Figure 2 is a wait-free quiescent construction
of a failure detector of the class Ωk in ASn[Πk].

Proof. The fact that the algorithm constructs a failure detector of the class Ωk follows
from Lemma 3 (validity), and Lemma 4 (eventual leadership). The fact that the algo-
rithm is quiescent follows from Lemma 2. Finally, it is trivially wait-free as there is no
wait statement. �Theorem 2

Theorem 3. Πk � Σk ×Ωk.

Proof. Theorem 1 has proved that Σk×Ωk ≥ Πk. Theorem 2 has proved that Πk ≥ Ωk.
Finally, (as already noticed), taking the output of Πk as the output of Σk proves that
Πk ≥ Σk. �Theorem 3

5 Πn−1 vs. L
5.1 The Failure Detector Class L
The failure detector class L (for loneliness) has been introduced in [12] where it is
shown to be the weakest failure detector class that solves the (n − 1)-set agreement
problem in message-passing systems. ([12] also shows that Ωn−1  L  Σ.) The class
L is defined as follows. Each process pi is provided with a boolean variable alonei that
it can only read. These variables are such that:

– Stability. There is at least one process whose boolean remains always false .
– Loneliness. If only one process is correct, eventually its boolean outputs true

forever.

By definition, after a process pi has crashed (if it ever crashes) its boolean alonei is set
to false and keeps that value forever.

Let us notice that nothing prevents the value of a boolean alonei to change infinitely
often (as long as the corresponding process pi is neither the one whose boolean remains
always false, nor the only correct process in the the case where all the other process crash).
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5.2 From Πn−1 to L
The algorithm that constructs a failure detector of the class L from any failure detector
of the class Πn−1 is described in Figure 3. It is pretty simple: the boolean of a process
pi becomes true (and remains true forever) only if the quorum of that process contains
only its own identity. (A similar construction is described in [12] to show that Σ is
stronger than L.)

Init: alonei ← false .
when qri = {i}: alonei ← true .

Fig. 3. From Σn−1 to L (code for pi)

Theorem 4. The algorithm described in Figure 3 builds a failure detector of the class
L in ASn[Σn−1]. (Proof in [2].)

As Πn−1 = Σn−1×Ωn−1, the previous algorithm builds a failure detector of the class
L in ASn[Πn−1].

5.3 From L to Πn−1

The algorithm that constructs a failure detector of the class Πn−1 from any failure
detector of the class L is described in Figure 4. Each process pi periodically sends
ALIVE(i) messages, processes the messages it receives, and set qri to {i} when alonei

becomes true (then, qri is no longer modified).

Init: qri ← {i, j} where j �= i.
Task T1: repeat periodically broadcast ALIVE(i) end repeat.
Task T2: when alonei becomes true : qri ← {i}.

when ALIVE(j) is received: if
(
(i �= j) ∧ (|qri| �= 1)

)
then qri ← {i, j} end if.

Fig. 4. From L to Πn−1 (code for pi)

Theorem 5. The algorithm described in Figure 4 is a wait-free construction of a failure
detector of the class Πn−1 in ASn[L].

Proof. The proof considers each property of Πn−1 separately.
Proof of the Intersection property. As k = n − 1, we have to prove that

∀{τ1, . . . , τn} : ∃i, j : 1 ≤ i �= j ≤ n : (qrτi

i ∩ qr
τj

j �= ∅). Due to the Stability
property of L, there is at least one process (say pi) such that alonei never becomes
true. So, until pi crashes (if it ever crashes), we have |qri| = 2. Consequently, there is
always a process pj such that qri = {i, j}, from which it follows that there is always a
process pj (not necessarily always the same) such that at any time qri ∩ qrj �= ∅, which
proves the property until pi crashes. After pi has crashed (if it does), the Intersection
property is trivially satisfied.
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Proof of the Liveness property. Let pi be a correct process. We consider two cases.

– The boolean alonei takes (at least once) the value true. In that case, we will have
qri = {i}. Then, qri remains forever equal to {i}, and the Liveness property is
satisfied.

– The boolean alonei never takes the value true, and consequently we will never
have qri = {i}. In that case, there are other correct processes (at least one). As, after
some finite time, there are only correct processes, pi will receive infinitely often
messages ALIVE(j) from each of these correct processes pj (and it will receive
messages only from them). It follows that, after some time, qri contains only ids of
correct processes.

Proof of the Eventual leadership property. We have to prove that ∃τ : ∃LD =
{�1, . . . , �n−1} : ∀τ ′ ≥ τ : ∀i : qrτ ′

i ∩LD �= ∅. Let us recall that any boolean (but one)
can flip infinitely often between false and true. Let τ be the time after which no more
boolean moves from false to true for the first time. Let Z = {i|∃τ : aloneτ

i = true}.
It follows from the definition of L that 0 ≤ |Z| ≤ n− 1. We consider two cases.

– |Z| = n − 1. Let Z = {�1, . . . , �n−1} and take LD = Z . We show that, in that
case, after τ , we always have ∀i : LD∩ qri �= ∅. This is trivial for any process p�x ,
1 ≤ x ≤ n− 1, as we always have �x ∈ qr�x . Let us now consider the process p�n

such that alone�n remains always equal to false (due to definition of L, p�n does
exist). Due to the algorithm of Figure 4, the process p�n is such that we always have
|qr�n | = 2. Consequently, the predicate qr�n ∩ LD �= ∅ is always satisfied, which
completes the proof of the case.

– |Z| < n − 1. Let |Z| = z. Let us recall that each process pi in Z is such that
after some finite time we always have qri = {i}. In that case, let us add (n −
1)− z processes to Z in order to obtain a set LD of (n− 1) processes. Due to the
definition of Z and the algorithm of Figure 4, it follows that the process (say p�n)
that is not in LD is such that |qr�n | = 2. Consequently (as in the previous item)
the predicate qr�n ∩ LD �= ∅ is always satisfied. Hence, the set LD satisfies the
Eventual leadership property, which completes the proof of the theorem.

�Theorem 5

5.4 Σn−1, L and Ωn−1

Theorem 6. Σn−1 � L � Πn−1 � Σn−1 ×Ωn−1. (Proof in [2].)

This theorem generalizes a result of [10] where it is shown that Σ1 � Σ1 × Ω1 in
systems made up of n = 2 processes. The following corollaries are an immediate con-
sequence of the previous theorem and the definition of Σk. The second one generalizes
a result of [12] that (expressed with our notations) states Σ1  L  Ωn−1.

Corollary 1. Σn−1 is stronger than Ωn−1.

Corollary 2. Σ1  Σ2  . . .  Σn−2  Σn−1 � L.



160 F. Bonnet and M. Raynal

6 A Σn−1-Based (n − 1)-Set Agreement Algorithm

An L-based (n − 1)-set agreement algorithm is presented in [12]. Hence, the stacking
of this algorithm on top of the algorithm described in Figure 4 (that builds Πn−1, i.e.,
Σn−1, in ASn[L]), supplies a Σn−1-based (n− 1)-set agreement algorithm. This Sec-
tion describes a (n−1)-set agreement algorithm that is directly built on top of Σn−1 and
consequently saves the construction of L when one is provided with a failure detector
of the class Πn−1.

The algorithm. The code of the algorithm for a process pi is described in Figure 5. The
local variable esti contains pi’s current estimate of the decision value, while qsizei

contains a quorum size, namely, the size of smallest quorum that allowed computing
the current value of esti.

The processes proceed in n asynchronous rounds. At the end of the last round, pi

returns (decides) the current value of esti (line 09). During a round r, a process pi

first broadcasts it current state (the pair (qsizei, esti)) and waits for the current states
of the processes in its current quorum qri (lines 03-04). Then, considering these states
(qsize, est) plus its local state, pi selects the smallest one according to their lexico-
graphical ordering4 (line 06). Finally, pi updates qsizei and esti (line 07). The local
estimate esti is updated to the estimate value estx of the processes px of q = qri ∪ {i}
such that qsizex is the smallest; qsizei is set to min(qsizex, |q|) to take into account
the size of the quorum that allowed computing esti (line 07). The proof of correctness
(with respect to the set-agreement problem) of this algorithm appears in [2].

Function set agreementn−1 (vi):
(01) esti ← vi; qsizei ← n;
(02) for ri from 1 to n do
(03) broadcast PROPOSE(ri, qsizei, esti);
(04) wait until

(
PROPOSE(ri,−,−) received from all the processes in qri

)
;

(05) let q be {i}∪ the quorum qri that allowed the wait statement to terminate;
(06) let (qsize, est) be the smallest pair (lex. order) rec. from the processes ∈ q;
(07) qsizei ← min(qsize, |q|); esti ← est
(08) end for;
(09) return(esti).

Fig. 5. Σn−1-based (n − 1)-set algorithm (code for pi)

7 Necessity of Σk to Solve k-Set Agreement

This section shows that Σk is necessary to solve the k-set agreement problem as soon
as we are looking for a failure detector-based solution. To that end, given any algorithm
A that solves the k-set agreement problem with the help of a failure detector D, we
provide an algorithm that emulates the output of Σk. This means that it is possible to
build a failure detector of the class Σk from any failure detector D that can solve the

4 Recall that (q1, est1) < (q2, est2) def=
(
(q1 < q2) ∨ (q1 = q2 ∧ est1 < est2)

)
.
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k-set agreement problem (according to the usual terminology,Σk can be extracted from
the D-based algorithm A). The output of Σk at pi is kept in qri.

Interestingly enough, and in addition of being more general, the proposed construc-
tion (Figure 6) provides us with a proof of the necessity of Σ1 to solve the consensus
problem that is simpler than the one described in [10].

Underlying principle. As in [12], the proposed extraction algorithm does not rely on
the asynchronous impossibility of a problem. Its design principle is the following. Each
process pi participates in several runs of A. Let R{i} denote a run of A in which only
the process pi participates, R{i,j} (i �= j) a run of A in which only the processes pi

and pj participate, etc., and R{1,2,...,n} a run of A in which all the processes participate.
This means that in a run denoted RQ only the processes of Q take steps, and each
process of Q either decides, blocks forever or crashes5. So, the extraction algorithm
uses 2n − 1 runs of A. Let us observe that, due to asynchrony and the fact that any
number of processes can crash (“wait-free” environment), any prefix of any of these
runs can occur in a given execution.

The algorithm. The algorithm executed by each process pi is described in Figure 6. It is
made up of four tasks. Each process manages two local variables: a set of sets denoted
Si and a queue denoted queuei. The aim of Si is to contain all the sets Q such that
pi decides in the run RQ (Task T 1), while queuei is managed as the queue with the
same name in Figure 1 (tasks T 2 and T 3). The important point here is that the correct
processes eventually appear before the faulty processes in queuei.

The idea is to select a set of Si as the current output of Σk. As we will see in
the proof, any (k + 1) sets of Si are such that two of them do intersect which will
supply the intersection property. The main issue is to ensure the liveness property of
Σk (namely, eventually the set qri associated with pi contains only correct processes),
while preserving the intersection property. This is done as follows with the help of
queuei. The current output of Σk is the set (quorum) of Si that appears as being the
“first” in queuei. The formal definition of “first set of Si wrt queuei” is stated in the
task T 3. To make it easy to understand let us consider the following example. Let
Si = {{3, 4, 9}, {2, 3, 8}, {4, 7}}, and queuei =< 4, 8, 3, 2, 7, 5, 9, · · · >. The set
F = {2, 3, 8} is the first set of Si with respect to queuei because each of the other sets
{3, 4, 9} and {4, 7} includes an element (9 and 7, respectively) that appears in queuei

after the elements of F . (In case several sets are “first”, any of them can be selected).

Remark. Initially Si contains the set {1, . . . , n}. As only sets of processes can be added
to Si (task T 1), Si is never empty. Moreover, it is not necessary to launch a run in which
all the processes participate. This is because, as the D-based k-set agreement algorithm
A is correct, it follows that all the correct processes decide in that run R{1,...,n}. This
case is directly taken into account in the initialization of Si (thereby saving the run
R{1,...,n}).

5 As the processes that are not in Q do not participate, the messages sent by the processes of Q
to these processes are never received. Alternatively, as in [12], we could say that the processes
of Q “omit” sending messages to the processes that are not in Q.



162 F. Bonnet and M. Raynal

Init: Si ← {{1 . . . , n}}; queuei ←< 1, . . . , n >;
for each Q ∈ (

2Π \ {∅, {1, . . . , n}}) such that (i ∈ Q) do
let AQ denote the D-based instance of A in which participate only the processes of Q;
pi proposes i to the instance AQ end for.

Task T1: when pi decides in the instance of A in which participate only the processes of Q:
Si ← Si ∪ {Q}.

Task T2: repeat periodically broadcast ALIVE(i) end repeat.

Task T3: when ALIVE (j) received: suppress j from queuei; enqueue j at head of queuei.

Task T4: when pi reads qri:
let m = minQ∈Si(maxx∈Q(rank[x])) where rank[x] denotes the rank of x in queuei;
return (a set Q such that maxx∈Q(rank[x]) = m).

Fig. 6. Extracting Σk from a k-set agreement failure detector-based algorithm A

Theorem 7. Given any algorithm A that solves the k-set agreement problem with the
help of a failure detectorD, the algorithm described in Figure 6 is a wait-free construc-
tion of a failure detector of the class Σk.

Proof. The Intersection property of Σk is proved by contradiction. Let us first notice
that a set qri returned to a process pi is a set Q of Si. Let us assume that there are k+ 1
subsets of processesQ1, . . . , Qk+1 such that (1) ∀x : 1 ≤ x ≤ k+1 : Qx ∈

⋃
1≤i≤n Si,

and (2) ∀x, y : 1 ≤ x �= y ≤ k + 1 : Qx ∩Qy = ∅ (pairwise independence). The item
(1) means that Qx can be returned as the value of qri by a process pi.

Let Q = Q1 ∪ . . . ∪Qk+1. Let R be the run of A in which (1) only the processes of
Q participate, and (2) for each x, 1 ≤ x ≤ k + 1, the processes of Qx behave exactly
as in RQx (as defined in the Init part of Figure 6). Due to the second item, in R, the
processes in Qx, 1 ≤ x ≤ k + 1, that decide do decide as in RQx . It follows that, even
if the processes in each Qx would decide the same value, up to k + 1 different values
could be decided. This contradicts the fact that A solves the k-set agreement in the run
R, from which we conclude that ∃x, y : 1 ≤ x �= y ≤ k + 1 : Qx ∩ Qy �= ∅ which
proves the Intersection property of Σk.

As far as the Liveness property, let us consider the run of A in which the set of
participating processes is exactly C (the set of correct processes). Due to the termination
property of A, every correct process does terminate in that instance. Consequently, in
the extraction algorithm, the variable Si of each correct process pi eventually contains
the set C.

Moreover, after some finite time, each correct process pi receives ALIVE(j) mes-
sages only from correct processes. This means that, for each correct process pi, all the
correct processes eventually precede the faulty processes in queuei. Due to the defini-
tion of “first set of Si wrt queuei” stated in the task T 4, and the fact that C ∈ Si, it
follows that the quorum Q selected by the task T 4 is such that Q ⊆ C, which proves
the liveness property of Σk. �Theorem 7
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Remark. The previous theorem provides us with a register-free proof of the necessity
of Σ to solve consensus in the asynchronous message-passing model.
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Abstract. This paper addresses the byzantine resilience lower bound for
the convergence in semi-synchronous robot networks. We prove that 3f +
1 robots are needed for convergence to tolerate up to f Byzantine robots.
Our work generalizes the previously established lower bound proved for
the class of cautious algorithms only. Additionally we propose the first
deterministic algorithm that matches this lower bound and performs in
the asynchronous CORDA model. Our algorithm works under bounded
scheduling assumptions for oblivious robots moving in a uni-dimensional
space.

1 Introduction

Convergence is a fundamental agreement primitive in robot networks and is
used in the implementation of a broad class of services (e.g. the construction
of common coordinate systems or specific geometrical patterns). Given a set of
oblivious robots with arbitrary initial locations and no agreement on a global
coordinate system, convergence requires that all robots asymptotically approach
the same, but unknown beforehand, location. Convergence is hard to achieve in
asynchronous systems, when robots obtain information only via visual sensors,
since they are unable to distinguish between a moving or a stationary robot.
The problem becomes even harder when some robots are Byzantine (i.e. those
robots can exhibit arbitrary behavior). In that case correct robots are required
to converge independently of the behavior of the faulty ones.

Robots operate in cycles that comprise Look, Compute, and Move phases.
The Look phase consists in taking a snapshot of the other robots positions
using its visibility sensors. In the Compute phase a robot computes a target
destination based on the previous observation. The Move phase simply consists
in moving toward the computed destination using motion actuators. The robots
that we consider have weak capacities: they are anonymous (they execute the
same protocol and have no mean to distinguish themselves from the others),
oblivious (they have no memory that is persistent between two cycles), and have
no compass whatsoever (they are unable to agree on a common direction or
orientation).

In order to capture the essence of distributed coordination in robot networks,
two main computational models are proposed in the literature: the ATOM [1]
and CORDA [2] models. The main difference between the two models comes
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from the granularity of the execution of the Look-Compute-Move cycle. In the
ATOM model, the whole cycle is atomic while in the CORDA model, the cycle is
executed in a continuous manner. That is, in the ATOM model, robots executing
concurrently always remain in the same phase while in CORDA it is possible
that e.g. a robot executes its Look phase while another robot performs its Move
phase, or that a robot executes its Compute phase while its view (obtained
during the Look phase) is already outdated.

Related works. Since the pioneering work of Suzuki and Yamashita [1], gather-
ing1 and convergence have been addressed in fault-free systems for a broad class
of settings. Prencipe [2] studied the problem of gathering in both ATOM and
CORDA models, and showed that the problem is intractable without additional
assumptions such as being able to detect the multiplicity of a location (i.e.,
knowing if there is more than one robot in a given location). Flocchini et al. [3]
proposed a gathering solution for oblivious robots with limited visibility in the
CORDA model, where robots share the knowledge of a common direction given
by a compass. The subsequent work by Souissi et al. [4] consider a system in
which compasses are not necessarily consistent initially. In [5] the authors address
convergence with limited visibility in fault-free environments. Convergence with
inaccurate sensors and movements is addressed in [6]. Recently, in [7] the authors
study the same problem under a uniform sensing error model. Ando et al. [5]
propose a gathering algorithm for the ATOM model with limited visibility.

The case of fault-prone robot networks was recently tackled by several academic
studies. The faults that have been investigated fall in two categories: crash faults
(i.e. a faulty robots stops executing its cycle forever) and Byzantine faults (i.e. a
faulty robotmay exhibit arbitrarybehavior and movement). Of course, the Byzan-
tine fault model encompasses the crash fault model, and is thus harder to address.
Deterministic fault-tolerant gathering is addressed in[8] where the authors study a
gathering protocol that tolerates one crash, and an algorithm for the ATOM model
with fully synchronous scheduling that tolerates up to f byzantine faults, when the
number of robots is (strictly) greater than 3f . In [9] the authors study the feasi-
bility of probabilistic gathering in crash-prone and Byzantine-prone environments.
Deterministic fault-tolerant convergence was first addressed in [10,11], where al-
gorithms based on convergence to the center of gravity of the system are presented.
Those algorithms work in CORDA model and tolerate up to f (n > f) crash
faults, where n is the number of robots in the system. Most related to this paper
is [12], where the authors studied convergence in byzantine-prone environments
when robots move in a uni-dimensional space. In more details, [12] showed that
convergence is impossible if robots are not endowed with strong multiplicity detec-
tors which are able to detect the exact number of robots that may simultaneously
share the same location. The same paper defines the class of cautious algorithms
which guarantee that correct robots always move inside the range of positions held
by correct robots, and proved that any cautious convergence algorithm that can

1 Gathering requires robots to actually reach a single point within finite time regardless
of their initial positions.
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tolerate f Byzantine robots requires the presence of at least 2f +1 robots in fully-
synchronous ATOM networks and 3f +1 robots in semi-synchronous ATOM net-
works. The lower bound for the ATOM model naturally extends to the CORDA
model, yet the protocol proposed in [12] for the asynchronous CORDA model re-
quires at least 4f + 1 robots.

Table 1. Crash and byzantine resilience bounds for deterministic gathering and
convergence

Reference Model Faults Bounds

[6] ATOM inaccurante sensors -
movements and calc.

[8] ATOM crash f = 1
Fully-Sync ATOM Byzantine n > 3f

[10] ATOM crash n > f

[11] CORDA crash n > f

[12] Fully-Sync ATOM Byzantine n > 2f
ATOM Byzantine n > 3f
CORDA Byzantine n > 4f

This paper CORDA Byzantine n > 3f

Table 1 summarizes the results related to crash and byzantine resilience of gath-
ering and convergence deterministic protocols that are known in robot netwoks.
The bold values denote the least specialized (and more difficult) hypothesises.

Our contributions. In this paper we generalize the byzantine resilience lower
bound result for convergence in semi-synchronous robot networks. The previ-
ously established lower bound proven in [12] restricted to the class of cautious
algorithms2. Additionally, we propose an optimal (with respect to the number
of Byzantine robots) Byzantine resilient solution for convergence when robots
execute their actions in the CORDA model. That is, our solution tolerates f
byzantine robots in 3f + 1-sized networks, which matches our lower bound.

Outline. The remaining of the paper is organized as follows: Section 2 presents
our model and robot network assumptions. Section 3 presents the formal spec-
ification of the convergence problem and recalls the necessary and sufficient
conditions to achieve convergence in Byzantine prone systems. In Section 4 we
derive the lower bound on the number of faulty robots. Section 5 describes our
protocol and its complexity, while concluding remarks are presented in Section 6.

2 Model

Most of the notions presented in this section are borrowed from[1,13,8]. We
consider a network that consists of a finite set of n robots arbitrarily deployed
2 In this class correct robots always move inside the range of positions held by correct

robots.
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in a uni-dimensional space. The robots are devices with sensing, computing and
moving capabilities. They can observe (sense) the positions of other robots in the
space and based on these observations, they perform some local computations
that can drive them to other locations.

In the context of this paper, the robots are anonymous, in the sense that
they can not be distinguished using their appearance, and they do not have
any kind of identifiers that can be used during the computation. In addition,
there is no direct mean of communication between them. Hence, the only way
for robots to acquire information is by observing their positions. Robots have
unlimited visibility, i.e. they are able to sense the entire set of robots. Robots are
also equipped with a strong multiplicity sensor referred to as multiples detector
and denoted hereafter by M. This sensor provides robots with the ability to
detect the exact number of robots that may simultaneously occupy the same
location3. We assume that the robots cannot remember any previous observation
nor computation performed in any previous step. Such robots are said to be
oblivious (or memoryless).

Each robot runs a program that consists in executing Look-Compute-Move
cycles infinitely many times. That is, the robot first observes its environment
(Look phase). An observation returns a snapshot of the positions of all robots
within the visibility range. In our case, this observation returns a snapshot (also
called local configuration hereafter) of the positions of all robots denoted with
P i(t) = {P i

1(t), ..., P i
n(t)}. The positions of correct robots are referred as U i(t) =

{U i
1(t), ..., U

i
m(t)} where m denotes the number of correct robots. Note that

U i(t) ⊆ P i(t). The observed positions are relative to the observing robot, that is,
they use the coordinate system of the observing robot. Based on its observation, a
robot then decides — according to its program — to move or stay idle (Compute
phase). When a robot decides a move, it moves to its destination during the Move
phase.

The network of n robots executes a protocol which is a collection of n pro-
grams, one operating on each robot. Given a global coordinate system and
a global unit of distance a global configuration of the network, denoted with
P (t) = {P1(t), ..., Pn(t)}, is a snapshot at time t of the positions of the n robots
relative to the global coordinate system. In order to ease the presentation, in
the following we will not explicitly indicate when the configurations are local or
global. This will be deduced from the context. An execution e = (c0, . . . , ct, . . .)
of the protocol is an infinite sequence of configurations, where c0 is the initial
configuration4 of the system, and every transition ci → ci+1 is associated to the
execution of a subset of the previously defined actions.

A scheduler is a predicate on computations, that is, a scheduler defines a set
of admissible computations, such that every computation in this set satisfies the
scheduler predicate. A scheduler can be seen as an entity that is external to the

3 In [12], it is proved that M is necessary to deterministically solve the convergence
problem in a uni-dimensional space even in the presence of a single Byzantine robot.

4 Unless stated otherwise, we make no specific assumption regarding the respective
positions of robots in initial configurations.
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system and selects robots for execution. As more power is given to the scheduler
for robot scheduling, more different executions are possible and more difficult it
becomes to design robot algorithms. In the remaining of the paper, we consider
that the scheduler is k-bounded if, between any two activations of a particular
robot, any other robot can be activated at most k times5.

We now review the main differences between the ATOM [1] and CORDA [13]
models. In the ATOM model, whenever a robot is activated by the scheduler,
it performs a full computation cycle. Thus, the execution of the system can be
viewed as an infinite sequence of rounds. In a round one or more robots are acti-
vated by the scheduler and perform a computation cycle. The fully-synchronous
ATOM model refers to the fact that the scheduler activates all robots in each
round, while the semi-synchronous ATOM model enables the scheduler to ac-
tivate only a subset of the robots. In the CORDA model, robots may be in-
terrupted by the scheduler after performing only a portion of a computation
cycle. In particular, actions (look, compute, move) of different robots may be
interleaved. For example, a robot a may perform a look phase, then a robot
b performs a look-compute-move complete action, then a computes and moves
based on its previous observation (that does not correspond to the current con-
figuration anymore). As a result, the set of executions that are possible in the
CORDA model are a strict superset of those that are possible in the ATOM
model. So, an impossibility result that holds in the ATOM model also holds in
the CORDA model, while an algorithm that performs in the CORDA model
is also correct in the ATOM model. Note that the converse is not necessarily
true.

The faults we address in this paper are Byzantine faults. A byzantine (or
malicious) robot may behave in arbitrary and unforeseeable way. In each cycle,
the scheduler determines the course of action of faulty robots and the distance
to which each non-faulty robot will move in this cycle. However, a correct robot
i is guaranteed to move a distance of at least δi towards its destination before
it can be stopped by the scheduler. In this model, a Byzantine robot can not
be ubiquitous, which is realistic for mobile robots. However, the adversary (i.e.
scheduler) can, by scheduling activations and controlling the actions of Byzantine
robots, deceive correct robots and ”display” several different locations for a single
Byzantine robot.

Our convergence algorithm performs operations on multisets. A multiset or
a bag S is a generalization of a set where an element can have more than one
occurence. The number of occurences of an element a is referred as its multi-
plicity and is denoted by mul(a). The total number of elements of a multiset,
including their repeated occurences, is referred as the cardinality and is denoted
by |S|. min(S)(resp. max(S)) is the smallest (resp. largest) element of S. If S is
nonempty, range(S) denotes the set [min(S),max(S)] and diam(S) (diameter
of S) denotes max(S)−min(S).

5 Note that we prove the impossibility result with n = 3f robots using a 2-bounded
scheduler.
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3 The Byzantine Convergence Problem

Given an initial configuration of n autonomous mobile robots (m of which are
correct such that m ≥ n−f), the point convergence problem requires that all cor-
rect robots asymptotically approach the exact same, but unknown beforehand,
location. In other words, for every initial configuration there exists a point c
such that for every ε > 0, there exists a time tε from which all correct robots
are within distance of at most ε of c (and thus within distance of at most 2ε of
each other).

Definition 1 (Byzantine Convergence). A system of oblivious robots satis-
fies the Byzantine convergence specification if and only if for every initial con-
figuration, ∃c, a position in the space, such that ∀ε > 0, ∃tε such that ∀t > tε,
∀i ≤ m, distance(Ui(t), c) < ε, where Ui(t) is the position of some correct robot
i at time t, and where distance(a, b) denotes the Euclidian distance between two
positions.

Definition 1 requires the convergence property only from the correct robots. Note
that it is impossible to obtain the convergence for all robots since Byzantine
robots may exhibit arbitrary behavior and never join the position of correct
robots.

In the following we recall the necessary conditions to achieve convergence in
systems prone to Byzantine failures. We first focus on the definition of shrinking
algorithms (algorithms that eventually decrease the range between any two cor-
rect robots). In [12] is proved that this condition is necessary but not sufficient
for convergence even in fault-free environments. We then recall the definition of
cautious algorithms (algorithms that ensure that the position of correct robots
always remains inside the range of the correct robots). This condition combined
with the previous one is sufficient to reach convergence in fault-free systems [12].

By definition, convergence aims at asymptotically decreasing the range of
possible positions for the correct robots. The shrinking property captures this
property. An algorithm is shrinking if there exists a constant factor α ∈ (0, 1)
such that starting in any configuration the range of correct robots eventually
decreases by a multiplicative α factor. Note that to deal with the asynchrony of
the model, the diameter calculation takes into account both the positions and
destinations of correct robots.

Definition 2 (Shrinking Algorithm). An algorithm is shrinking if and only
if ∃α ∈ (0, 1) such that ∀t, ∃t′ > t, such that diam(U(t′) ∪ D(t′)) < α ∗
diam(U(t) ∪ D(t)), where U(t) and D(t) are respectively the the multisets of
positions and destinations of correct robots.

A natural way to solve convergence is to never let the algorithm increase the
diameter of correct robot positions. In this case the algorithm is called cautious.
This notion was first introduced in [14]. A cautious algorithm is particularly
appealing in the context of Byzantine failures since it always instructs a correct
robot to move inside the range of the positions held by the correct robots re-
gardless of the locations of Byzantine ones. The following definition introduced
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first in [12] customizes the definition of cautious algorithm proposed in [14] to
robot networks.

Definition 3 (Cautious Algorithm). Let Di(t) be the last destination calcu-
lated by the robot i before time t and let U i(t) the positions of the correct robots as
seen by robot i before time t. 6 An algorithm is cautious if it meets the following
conditions:

– cautiousness: ∀t, Di(t) ∈ range(U i(t)) for each robot i.
– non-triviality: ∀t, if diameter(U(t)) �= 0 then ∃t′ > t and a robot i such

that Di(t′) �= Ui(t′) (at least one correct robot changes its position whenever
convergence is not achieved).

The following theorem will be further used in order to prove the correctness of
our convergence algorithm.

Theorem 1. [12] Any algorithm that is both cautious and shrinking solves the
convergence problem in fault-free robot networks.

4 Lower Bound on the Number of Faulty Robots

In this section we study the lower bound on the number of robots for Byzan-
tine convergence when the activation of robots is handled by a semi-synchronous
ATOM scheduler. In [12] we already proved for the class of cautious algorithms
that the presence of at least 3f +1 robots is required to tolerate up to f Byzan-
tine robots. In this section, we generalize this lower bound for any convergence
algorithm (whether it is cautious or not). The result is proved for the weaker
ATOM model, and thus extends to CORDA model.

The intuition behind the lower bound is that if there are less than 3f + 1
robots in the network, the adversary (i.e. scheduler) is able for some initial con-
figurations to make the robots indefinitely alternate between two non terminal
configurations while ensuring fairness. Very important to the proof is the notion
of equivalence between configurations. Informally speaking, two configurations
of robots are equivalent if: (1) the number of robots is the same in both configu-
rations and (2) each configuration can be obtained from the other by translation,
symmetry or rotation. That is, the number of locations points, their multiplicity
and their relative distances are maintained. To capture this notion formally, we
introduce the following definition:

Definition 4. Two configurations P and P ′ of n mobile robots are equivalent if
there exists some real factor α such that either (1) ∀ 0 < i ≤ n, (Pi − Pi−1) =
α ∗ (P ′

i − P ′
i−1) or (2) ∀ 0 < i ≤ n, (Pi − Pi−1) = α ∗ (P ′

n+1−i − P ′
n−i).

The following lemma is fundamental to our proof. Its states that if a majority of
at least n − f robots are colocated in the same position, then any convergence
algorithm will instruct them to stay in this position. Formally, we have:
6 If the last calculation was executed at time t′ ≤ t then Di(t) = Di(t′).
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Lemma 1. Let S be a set of at least n− f robots that are colocated in the same
position p at time t; then all destinations of robots in S that are computed by
any convergence algorithm at time t′ ≥ t are equal to p.

Proof. We consider any initial configuration C1 such that at least n− f robots
are located in the same position p. Let SetP denote the set of these robots.

The proof of our lemma proceeds by contradiction. We assume there exists
a convergence algorithm A that instructs the robots of SetP to move to some
position q �= p when they are activated by the scheduler. Assume without loss
of generality that q < p, that is p is to the right of q. This order is only given
for ease of presentation and is unknown to robots that can not use it in their
algorithms.

We now inductively create an execution in which the correct robots that run
algorithm A form a moving multiplicity point, that is they stay always together
but they move indefinitely to the right by a distance equal to distance(p, q) at
each movement. Hence, convergence is prevented.

Let C2 be an equivalent configuration to C1 (take α = 1 and keep the same
positive direction), but where all the correct robots are at p. This is possible
since in C1, |SetP | ≥ n− f . We again denote by SetP the set of robots located
at p. Note that SetP may contain also some Byzantine robots. Since C1 and
C2 are equivalent, they are completely indistinguishable to individual robots
which must behave similarly in both cases (as they run the same deterministic
algorithm A). This results from the absence of a common coordinate system
between robots. Thus the origin, the positive direction of the axis and the unit
of distance may be different from one robot to another and their algorithms can
not exploit global coordinates or exact metric distances between robots.

Hence, when the correct robots of SetP are activated in C2, their computed
destination by A is equal to q. Assume that the scheduler activates all the robots
of SetP simultaneously and does not stop them before they reach their desti-
nation q. At the same time, each Byzantine robot i is moved by the scheduler
to the right by a distance equal to distance(p, q). Denote by C3 the resulting
configuration. Clearly, C3 is equivalent to C2. Therefore, by repeating the same
actions indefinitely, the adversary is able to make the correct robots move at
each cycle by a distance equal to distance(p, q). Thus, convergence is prevented
which contradicts the assumption of A being a correct convergence algorithm.
This proves our lemma. �

Now we are ready to present the main result of this section. The following the-
orem provides the lower bound for Byzantine convergence in semi-synchronous
ATOM model.

Theorem 2. Byzantine-resilient convergence is impossible for n ≤ 3f in the
semi-synchronous ATOM model and a 2-bounded scheduler.

Proof. Our proof is based on a particular initial setting in which we prove that no
convergence algorithm is possible if a third or more of the robots are Byzantine.
So consider a network of n robots, f of which are Byzantine with n ≤ 3f . We
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Fig. 1. Impossibility of convergence in ATOM with n ≤ 3f , black robots are Byzantine.
(a) Configuration C1. (b) Configuration C2.

only consider networks with at least two correct robots since the convergence of
a single correct robot is trivial. Thus f + 2 < n ≤ 3f .

Now assume that the correct robots are spread over two distinct points A and
B in a uni-dimensional space. Let C1 be an initial configuration in which !n−f

2 "
correct robots are located at A and the remaining #n−f

2 $ correct robots are at
B. Note that both A and B contain at least one correct robot each. All the
Byzantine robots robots in C1 are located at A (refer to Figure 1(a)).Therefore,
the total number of robots at A (whether correct or not) is !n−f

2 "+ f which is
at least equal to n− f since n ≤ 3f .

Thus, according to lemma 1, when the correct robots at A are activated
they remain in their location (A) and do not move. Next, the adversary moves
the Byzantine robots to B which leads to the configuration C2 (see figure 1(b)).
Again, the total number of robots at B in C2 is at least equal to n−f . Therefore,
the correct robots at B do not move upon their activation.

So by repeatedly alternating between the two configurations C1 and C2, the
adversary ensures that every robot is activated infinitely often in the execution
yet prevents convergence at the same time since robots at A and B remain always
at their initial positions and never converge. �

5 Deterministic Asynchronous Convergence

In this section we propose a deterministic convergence algorithm and prove its
correctness in the CORDA model under a k-bounded scheduler. This algorithm
matches the lower bound on the number of robots proved in the last section and
works correctly for n > 3f . The idea of Algorithm 1 is as follows: each robot
computes the center of the positions of the robots seen in its last Look phase
ignoring the f largest positions if they are larger than his own position and the
f smallest positions if they are smaller than his own position.

Algorithm 1 uses two functions, trimi
f () and center(). The choice of the func-

tion trimi
f () makes the difference between this algorithm and that of [12]. Indeed,

in [12] the trimming function removes the f largest and the f smallest values
from the multiset given in parameter. That is, the returned multiset does not
depend on the position of the calling robot. In Algorithm 1, trimi

f () removes
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Fig. 2. Illustration of functions trimi
f and center for robots A and B in a system of

n = 11 robots (f = 3)

among the f largest positions only those that are greater than the position of
the calling robot i. Similarly, it removes among the f smallest positions only
those that are smaller than the position of the calling robot.

Formally, let minindexi be the index of the minimum position between Pi(t)
and Pf+1(t) (if Pi(t) < Pf+1(t) then minindexi is equal to i, otherwise it is
equal to f + 1). Similarily, let maxindexi be the index of the maximum posi-
tion between Pi(t) and Pn−f (t) (if Pi(t) > Pn−f (t) then maxindexi is equal
to i, otherwise it is equal to n − f). trimi

f (P (t)) is the multiset consisting of
positions {Pminindexi(t), Pminindexi+1(t), ..., Pmaxindexi(t)}. center() returns the
center point of the input range. The two functions are illustrated in Figure 2) .

Algorithm 1. Byzantine Tolerant Convergence
Functions:
- trimi

f (P (t)): removes up to f largest positions that are larger than Pi(t) and up
to f smallest positions that are smaller than Pi(t) from the multiset P (t) given in
parameter.
- center: returns the center point of the input range.

Actions:
move towards center(trimi

f(P (t)))

In the following we prove the correctness of Algorithm 1 in the CORDA model
under a k-bounded scheduler. In order to show that Algorithm 1 converges, we
prove first that it is cautious then we prove that it satisfies the specification of
a shrinking algorithm. Convergence then follows from Theorem 1.

5.1 Algorithm 1 Is Cautious

In this section we prove that Algorithm 1 is a cautious algorithm (see Definition
3) for n > 3f . The following lemma states that the range of the trimmed multiset
trimi

f (P (t)) is contained in the range of correct positions.
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Lemma 2. Let i be a correct robot executing Algorithm 1, it holds that

range(trimi
f (P (t))) ⊆ range(U(t))

A direct consequence of the above property is that correct robots always compute
a destination within the range of positions held by correct robots, whatever
the behavior of Byzantine ones. Thus, the diameter of positions held by correct
robots never increases. Consequently, the algorithm is cautious. The formal proof
is proposed in the following lemma.

Lemma 3. Algorithm 1 is cautious for n > 3f .

Proof. According to Lemma 2, range(trimi
f (P (t))) ⊆ range(U(t)) for each cor-

rect robot i, thus center(trimi
f (P (t))) ∈ range(U(t)). It follows that all desti-

nations computed by correct robots are located inside range(U(t)) which proves
the lemma.

5.2 Algorithm 1 Is Shrinking

In this section we prove that Algorithm 1 is a shrinking algorithm (see Defini-
tion 2). The following lemma states that a robot can not compute a destination
that is far from its current position by more than half the diameter of correct
positions. More specifically, a robot located on one end of the network can not
move to the other end in a single movement.

Interestingly, the property of lemma 4 is guaranteed even though robots are
not able to figure out the range of correct positions nor to compute the corre-
sponding diameter. The bound on the movements of robots is achieved by taking
into account the position of the calling robot when computing the trimming func-
tion. It is important to note that if all robots compute their destinations using
the same trimming function irrespective of the position of the calling robot, con-
vergence requires the presence of more than 4f robots to tolerate the presence
of up to f Byzantine robots [12].

Lemma 4. ∀t, ∀i, correct robot, if i computes its destination point at time t,
then at t, distance(U i

i (t), Di(t)) ≤ diameter(U i(t))/2

The following lemmas describe some important properties on the destination
points computed by correct robots which will be used in proving the shrink-
ingness of Algorithm 1. These properties are verified whatever the positions of
Byzantine robots are, and thus they capture the limits of the influence of Byzan-
tine robots on the actions undertaken by correct robots.

The next lemma shows that the correct positions {Uf+1(t), ..., Um−f (t)} are
always included in the trimmed range (the output range of the function trimi

f )
regardless of the positions of Byzantine robots.

Lemma 5. It holds that range(trimf (U(t))) ⊆ range(trimf (P (t))).
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Let D(t) be the set of destinations computed with Algorithm 1 in systems with
n > 3f , and let UD(t) be the union of U(t) and D(t). If a robot i executed
its last Look phase at time t′ ≤ t, then UDi(t) = UD(t′). The following lemma
proves that the destination computed by each correct robot i is always within the
range [(min(UDi(t)) +U i

m−f (t))/2, (U i
f+1(t) +max(UDi(t)))/2] independently

of the positions of Byzantine robots.

Lemma 6. The following properties hold:
∀i, each destination point calculated by a correct robot i at time t is (1) smaller than
(U i

f+1(t) + max(UDi(t)))/2 and (2) greater than (min(UDi(t)) + U i
m−f(t))/2.

Lemma 7. Let S(t) be a multiset of f + 1 arbitrary elements of U(t). The
following properties hold: (1) ∀t, Uf+1(t) ≤ max(S(t)) and (2) ∀t, Um−f (t) ≥
min(S(t))

The next lemma generalizes and extends the properties of Lemmas 5 and 6
(proven for a fixed time instant) to a time interval. It describes bounds on the
destination points computed by correct robots during a time interval [t1, t2]. It
states that if there is a subset of f +1 robots whose positions are less than Smax

during [t1, t2], then all destinations computed during [t1, t2] by all correct robots
in the network are necessarily smaller than (Smax + Max(UD(t1)))/2.

Lemma 8. Let a time t2 > t1 and let S(t) be a multiset of f + 1 arbitrary ele-
ments in U(t). If ∀p ∈ S(t) and ∀t ∈ [t1, t2] p ≤ Smax then all calculated desti-
nation points at time interval [t1, t2] are smaller than (Smax +Max(UD(t1)))/2.

The next Lemma states that if some calculated destination point is in the neigh-
borhood of one end of the network, then a majority of m− f correct robots are
necessarily located in the neighborhood of this end.

Lemma 9. If some correct robot i executes its Look phase at time t and then com-
pute (in the Compute phase which immediatly follows) a destination Di such that
Di < min(UD(t))+b (with b any distance smaller than diameter(UD(t))/2), then
at t, there are at least m − f correct robots whose positions are (strictly) smaller
than min(UD(t)) + 2b.

We are now ready to give the proof of shrinkingness of our algorithm in the
CORDA model. The general idea of the proof is to show that the destination
points computed by correct robots are located either around the middle of the
range of correct positions or/and in the neighborhood of only one end of this
range.

If all computed destinations are located around the middle of the range of
correct robots then the diameter of this range decreases and the algorithm is
shrinking. Otherwise, if some computed destinations are located in the neigh-
borhood of one end of the range, it is shown that there is a time at which no
correct robot will be in the neighborhood of the other end of the range, which
leads again to a decrease in the range of correct positions and shows that the
algorithm is shrinking.
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Lemma 10. Algorithm 1 is shrinking in the CORDA model with n > 3f under
a k-bounded scheduler.

Proof. Let U(t0) = {U1(t0), ..., Um(t0)} be the configuration of correct robots at
initial time t0 and D(t0) = {D1(t0), ..., Dm(t0)} the multiset of their calculated
destination points at the same time t0 and UD(t0) is the union of U(t0) and
D(t0). Let t1 be the first time at which all correct robots have been activated
and executed their Look and Compute phase at least once since t0 (U(t1) and
D(t1) are the corresponding multisets of positions and destinations). Assume
that robots are ordered from left to right and define d0 and d1 as their diam-
eters at t0 and t1 respectively. Since the model is asynchronous, the diameter
calculation takes into account both the positions and the destinations of robots.
So d0 = diameter(UD(t0)) and d1 = diameter(UD(t1)). Let b be any distance
that is smaller than d0/4, for example take b = d0/10.

We consider the actions of correct robots after t1 and we separate the analysis
into two cases:

– Case A: All calculated destinations by all correct robots after t1 are inside
[min(UD(t0))+b,max(UD(t0))−b]. So when all correct robots are activated
at least once, their diameter decreases by at least min{2δ, 2b = d0/5}. Thus
by setting α1 = max{1− 2δ/d0, 4/5}, the algorithm is shrinking.

– Case B : Let t2 > t1 be the first time when a robot, say i, execute a Look
phase such that the Compute phase that follows compute a destination point,
say Di, that is outside [min(UD(t0))+b,max(UD(t0))−b]. This implies that
either (Di < min(UD(t0)) + b) or (Di > max(UD(t0)) − b). Since the two
cases are symmetric, we consider only the former which implies according to
Lemma 9 that the range [min(UD(t0)),min(UD(t0)) + 2b] must contain at
least m− f correct positions.

If some robots among these m − f robots are executing a Move phase,
their destination points have necessarily been calculated after t0 (since at t1
each robot has been activated at least once). And we have by lemma 4 that
the distance between each robot and its destination can not exceed half the
diameter, so we conclude that at t2 the destination points of these m − f
robots are all inside [min(UD(t0)),min(UD(t0)) + b + d0/2].

Let S(t2) be a submultiset of UD(t2) containing the positions and destina-
tions of f + 1 arbitrary robots among these m− f whose positions and desti-
nations are inside [min(UD(t0)),min(UD(t0)) + b + d0/2]. So max(S(t2)) ≤
min(UD(t0))+b+d0/2. And since we choosed b < d0/4, we have max(S(t2)) <
max(UD(t0)) − 3d0/4. Let t3 ≥ t2 be the first time each correct robot in the
system has been activated at least once since t2. We prove in the following that
at t3, max(S(t3)) < max(UD(t0))− 3d0/2k(f+1)+2.

To this end we show that the activation of a single robot of S(t) can not
reduce the distance between the upper bound of max(S) and max(UD(t0))
by more than half its precedent value, and since the scheduler is k-bounded,
we can guarantee that this distance at t3 is at least equal to 3d0/2k(f+1)+2.

According to Lemma 6, if some robot i calculates its destination Di at
time t ∈ [t2, t3], Di ≤ (Uf+1(t)+max(UD(t)))/2. But Uf+1(t) ≤ max(S(t))
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by Lemma 7 and max(UD(t)) ≤ max(UD(t0)) due to cautiousness. This
gives us Di ≤ (max(S(t) + max(UD(t0)))/2. Therefore, an activation of a
single robot in S(t) to execute its Compute phase can reduce the distance
between Max(UD(t0)) and max(S(t)) by at most half its precedant value.

So at t3, after a maximum of k activations of each robot in S(t), we
have max(S(t3)) ≤ Max(UD(t0)) − 3d0/2k(f+1)+2, and by Lemma 8, all
calculated destinations by all correct robots between t2 and t3 are less than
or equal to Max(UD(t0))− 3d0/2k(f+1)+3.

Since robots are guaranteed to move toward their destinations by at least
a distance δ before they can be stopped by the scheduler, after t3, no robot
will be located beyond Max(UD(t0)) − min{δ, 3d0/2k(f+1)+3}. Hence by
setting α = max{α1, 1− δ/d0, 1− 3/2k(f+1)+3} the lemma follows. �

The convergence proof of Algorithm 1 directly follows from Lemma 10 and
Lemma 3. Algorithm 1 solves the Byzantine convergence problem in the CORDA
model for n > 3f under a k-bounded scheduler.

6 Conclusions and Discussions

In this paper we consider networks of oblivious robots with arbitrary initial lo-
cations and no agreement on a global coordinate system. Robots obtain system
related information only via visual sensors and some of them are Byzantine
(i.e. they can exhibit arbitrary behavior). In this weak scenario, we studied the
convergence problem that requires that all robots asymptotically approach the
exact same, but unknown beforehand, location. We proved that the Byzantine
resilience lower bound for convergence in semi-synchronous networks is 3f + 1
where f is the number of Byzantine robots. Additionally, we proposed a Byzan-
tine resilient solution that matches this lower bound when robots execute their
actions asynchronously as defined in the CORDA model.

Two immediate open problems are raised by our work. Our algorithm is proved
correct under bounded scheduling assumption. We conjecture that this hypoth-
esis is necessary for achieving convergence in the class of cautious algorithms.
The second open problem is the study of asynchronous byzantine-resilient con-
vergence in a multi-dimensional space is still open.
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4. Souissi, S., Défago, X., Yamashita, M.: Eventually consistent compasses for robust
gathering of asynchronous mobile robots with limited visibility. Research Report
IS-RR-2005-010, JAIST, Ishikawa, Japan (July 2005)

5. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point con-
vergence algorithm for mobile robots with limited visibility. IEEE Transactions on
Robotics and Automation 15(5), 818–828 (1999)

6. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate
sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 549–560. Springer, Heidelberg (2006)

7. Yamamoto, K., Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Convergence of
mobile robots with uniformly-inaccurate sensors. In: Sirocco (2009)

8. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. In: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete
algorithms, vol. 11(14), pp. 1070–1078 (2004)

9. Defago, X., Gradinariu, M., Messika, S., Parvedy, P.: Fault-tolerant and self-
stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167,
pp. 46–60. Springer, Heidelberg (2006)

10. Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In:
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Abstract. Gossip protocols are well known to provide reliable and ro-
bust dissemination protocols in highly dynamic systems. Yet, they suffer
from high redundancy in the last phase of the dissemination. In this
paper, we combine fountain codes (rateless erasure-correcting codes) to-
gether with gossip protocols for a robust and fast content dissemination
in large-scale dynamic systems. The use of fountain enables to elimi-
nate the unnecessary redundancy of gossip protocols. We propose the
design of FoG, which fully exploits the first exponential growth phase
(where the data is disseminated exponentially fast) of gossip protocols
while avoiding the need for the shrinking phase by using fountain codes.
FoG voluntarily increases the number of disseminations but limits those
disseminations to the exponential growth phase. In addition, FoG cre-
ates a split-graph overlay that splits the peers between encoders and
forwarders. Forwarder peers become encoders as soon as they have re-
ceived the whole content. In order to benefit even further and quicker
from encoders, FoG biases the dissemination towards the most advanced
peers to make them complete earlier.

We assess FoG through simulation. We show that FoG outperforms
by 50% a simple push protocol with respect to overhead and improves
by 30% the termination time.

1 Introduction

Gossip protocols are now recognized as a solid and robust approach for dis-
seminating content in large scale-systems. They provide an efficient alternative
to tree-based approaches, typically fragile in highly dynamic environments. In
gossip protocols, peers periodically push contents to f (called the fanout in the
sequel) peers picked uniformly and randomly among all peers. A message is first
disseminated from a source. When receiving the message for the first time, a peer
forwards it to f other random peers until the message reaches only peers that
have already received it. In gossip, two phases can be distinguished in the dis-
semination: (i) an exponential growth phase during which the message spreads
exponentially fast since initially the probability to reach a peer that has not
yet been reached is very high; and (ii) a shrinking phase where the rate of dis-
semination diminishes, as eventually the probability to reach already informed
peers increases drastically [1]. This phase typically generates a large number of
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duplicates. Yet it is necessary to achieve a reliable dissemination. This shrinking
phase is generally recognized as the Achilles’ heel of gossip protocols: this is a
fatal pitfall but also the price to pay for achieving reliability in highly dynamic
systems. Moreover, the cost associated with the shrinking phase becomes an in-
creasingly serious issue, overhead wise, as the size of the content to disseminate
increases. This typically explains the recent success of video streaming proto-
cols which relies on a push gossip protocol for locating the content with small
messages while the content is subsequently pulled ([2,3]).

In this paper, we propose to combine the use of gossip protocols with fountain
codes to benefit fully from the exponential growth phase of gossip protocols while
avoiding suffering from the shrinking phase. Fountain codes typically encode the
full content so that encoded chunks embed redundancy [4,5]. However, the use
of fountain codes precisely removes the notion of useless redundancy. Typically,
a fountain code generates infinity of encoded chunks from an original content of
k chunks. Any k(1 + ε) chunks, with ε ≈ 0.04 for long enough codes (k > 1000),
are enough to decode the full content. Even though network codes [6] are usually
considered as more powerful than fountain codes, we choose to rely on fountain
codes which have a lower complexity1. Their lower complexity makes them more
practical to deploy in environments where the amount of data to be encoded is
important and the computation resources are scarce.

We propose the design and evaluation of FoG a dissemination gossip protocol
relying on fountain codes. FoG fully leverages the potential of gossip protocols
through the following principles.

– First, FoG removes the need for the shrinking phase by simply increasing the
number of exponential phases. This is due to a clever use of content encoded
through fountain codes. Typically k gossips are turned into z > k shorter
gossips2 where only the exponential growth is considered. The basic intuition
behind this is that peers that have been missed during the exponential phase
for one dissemination recover by being reached over the subsequent ones.
Eventually, all peers receive the z chunks required to decode the full content.
This increases the marginal utility of any chunk’s dissemination.

– Second, FoG implements a biased dissemination to favor the most advanced
peers so that completed peers (peers that have received the full content) be-
come sources since they have the ability to produce new innovative chunks
by re-encoding the content as soon as possible. This exploits the fact that
peers can receive the z distinct chunks from any source. All encoded chunks
are equally useful, and two encoders produce distinct and independent en-
coded chunks thanks to the infinite size of the set of encoded chunks. To
this end, FoG gradually builds a split-graph overlay by sampling the system
over all non-completed peers. This means that the f gossip targets on each

1 Network codes involves a Gaussian elimination O(k3) for decoding while practical
fountain codes such as LT Codes [7] exploit belief propagation decoding O(k ln k).

2 z is automatically determined by the protocol which disseminates as long as some
peers have not completed.
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peer are chosen randomly among the peers that have not yet received the
full content.

We evaluate FoG through extensive simulations by comparing it against standard
push gossip protocols. We are mainly interested in the termination of peers when
they can decode and use the content. We compare the progression of the decoding
for all peers. We conclude that peers using FoG complete 30% earlier than peers
using a standard gossip do.

We describe the design rationale in Section 2. The details of FoG are provided
in Section 3. Experimental results are reported in Section 4. We review related
works in Section 5 before concluding in Section 6.

2 FoG in a Nutshell

In this section, we first present the system model and then explain the design of
FoG.

2.1 System Model

We consider a system of n peers in which peers cooperate to disseminate a file.
Each peer is supposed to cooperate as specified: byzantine and selfish behaviors
are outside of the scope of this paper. A peer that has a full copy of the file is
called complete, incomplete otherwise. In the figures of this paper, the complete
peers are black and the incomplete ones are white.

The n peers are connected by an unstructured overlay network. The overlay
network is maintained by a gossip-based peer sampling protocol [8]. Such proto-
cols tend to build overlay network the topology of which is close to a d-regular
random graph where d is the out-degree of peers. To this end, each peer main-
tains a view of size d, constantly updated by the gossip peer sampling protocol.
In FoG, the complete peers have no incoming edges and never appear in samples
provided by the peer sampling service. This means although complete peers re-
mains connected by maintaining a view, they are absent of any views and they
are never picked during the dissemination.

The dissemination protocol runs over the network of n peers following a push
protocol. Initially, the source is assumed to be the only complete peer. A dis-
semination is considered finished, when all the n peers have a copy of the file.
The file is divided in k small chunks. Those chunks are disseminated indepen-
dently. The source sends chunks periodically to one of its neighbors. When a
peer receives a new chunk, it forwards it to f (fanout) neighbors. This scheme
ensures a complete dissemination with high probability as long as f = O(log n).
To limit flooding, we introduce a TTL (time to live) that significantly reduces
the number of peers that receive the chunk thus reducing multiple receptions and
removing the shrinking phase. However, removing the shrinking phase results in
significantly more peers not receiving the chunk.



FoG: Fighting the Achilles’ Heel of Gossip Protocols with Fountain Codes 183

a) Before b) After

Fig. 1. Shrinking phase
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Fig. 2. FoG keeps only growth phases

2.2 Design Rationale

As mentioned earlier, gossip dissemination is implicitly characterized by a first
phase, called exponential growth, where the data is spread exponentially fast,
followed by a second phase, called the shrinking phase, where a lot of redun-
dancy is introduced (i.e. peers which have already received the message receive
it again) but is required to reach the remaining peers. This is due to the random
selection of the peers to gossip to. As illustrated on Figure 1, without adding
mechanism to ensure full dissemination, some peers are not able to receive the
data. The idea behind FoG is to exploit fully the strength of gossip dissemina-
tion, namely the exponential growth phase, without suffering from its weakness,
the shrinking phase. FoG achieves this by increasing the number of dissemina-
tions, but limiting them to the exponential growth phase. Obviously, a gossip
dissemination stopping after the exponential growth phase misses many peers.
We therefore use fountain codes so that the number of sources is infinite and the
number of disseminations can be infinite. The termination of the dissemination
is naturally detected overall as the complete peers are gradually removed from
the views.

FoG replaces the shrinking phases by additional exponential growth phases. To
illustrate, consider a content of k chunks to disseminate to a set of peers. Chunks
are disseminated in parallel by independent exponential-growth phases. At the
end of each exponential-growth phase, n

2 peers have received the disseminated
chunk. Note that this is achieved by associating an empirically determined finite
TTL to each chunk, enough to reach n

2 peers. At each dissemination, n
2 peers miss

the data disseminated. To ensure that all peers complete regardless, additional
disseminations of encoded data are performed. We “factor out” the shrinking
phases of all disseminations in a few disseminations of redundant content, as
shown on Figure 2.

To keep the shrinking phase, TTL = ∞ so that we would reach all n peers
at the end of each dissemination and no peer would miss the data with high
probability.

The dissemination protocol disseminates data to peers that are provided by a
peer sampling protocol ([8]) that builds an overlay network. FoG structures the
overlay network as a split-graph (Figure 3) that is a composition of a random
graph connecting incomplete peers and a bipartite-graph connecting complete



184 M.-L. Champel, A.-M. Kermarrec, and N. Le Scouarnec

Fig. 3. A split-graph overlay

peers to incomplete peers. This structure matches the dissemination progress.
This enables complete peers to act as additional sources and speed up the dis-
semination: they encode the content and inject new encoded chunks in the clique
(the random graph connecting incomplete peers). Incomplete peers cooperate to
disseminate the encoded chunks to each other so that no bandwidth is lost.

In order to ensure termination, FoG keeps disseminating as long as some peers
miss some chunks they require in order to be able to decode and recover the origi-
nal data. Complete peers remove all their incoming links. This is achieved simply
by filtering out complete peers during merges and not propagating their infor-
mation between incomplete peers. They leave the clique of the split-graph and
do not receive redundant data once they have finished. The overlay maintenance
protocol also automatically detects termination. A complete peer, acting as a
source, stops sending data when its view becomes empty: it means that it does
not know any incomplete peer. Therefore, the protocol eventually terminates.

The proposed protocol needs all chunk disseminations to be independent and
equally useful so that any combination of k(1 + ε) chunks received during ex-
ponential growth phases can be decoded to recover the original data. This is
achieved in FoG through the use of fountain codes.

Fountain codes are erasure-correcting codes that allow building an infinite set
of encoded chunks from k source chunks. As soon as k(1+ ε) encoded chunks are
received, it is possible to recover the original k chunks. Erasure-correcting codes
are usually characterized by a rate r which actually defines the number l = k/r
of distinct encoded block that are generated. Generally, any k distinct chunks
out of l are enough to decode and recover the original data. Virtually, fountain
codes are erasure-correcting codes with a rate r = 0.

Fountain codes [9,4,5], as any erasure-correcting codes [10], require the com-
plete original data so as to generate new encoded chunks. Therefore, only peers
that hold the complete data can encode and produce new encoded chunks. Foun-
tain codes differ from network codes [6]. Network codes allow a peer that only
hold some encoded (and possible some decoded) data to recombine all this data
to produce new encoded chunks. For this reason, network codes are usually
considered as more powerful than fountain codes. Yet, the lack of structure of
network codes makes them decodable only using Gaussian elimination, which
is complex and requires heavy computation. On the contrary, some fountain
codes [7,11] are decodable using more efficient algorithms like Belief-Propagation
decoding which are less complex. Therefore, even if network codes are more pow-
erful, using fountain codes may be more interesting and more practical when
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Fig. 4. Difficulties in cooperation

decoding complexity matters as this is for instance the case when such codes are
used for video distribution among embedded devices with limited computational
resources since the amount of distributed content is important.

In FoG, fountain codes allow many distinct sources to start distinct dissemi-
nations without coordination. All the disseminations distribute different encoded
chunks and never conflict. Without fountains codes, we would suffer redundancy
between disseminations as shown on Figure 4.

Fountain codes allow sources to start new disseminations as long as some
peers have not completed. All this disseminations are independent and useful
regardless of the chunks the remaining peers miss.

Eventually, as only peers that hold the whole data can produce new encoded
blocks using fountain codes, the peers that hold the whole data are much more
useful than the other peers are. Therefore, we bias the dissemination to deliber-
ately favor some peers that will be useful to other peers as soon as possible. As
incomplete peers are not able to encode and generate new innovative chunks, the
dissemination favors complete peers. This point differs from many p2p protocols
where peers tend to progress at the same speed and finish all together.

3 FoG in Details

The FoG dissemination protocol relies on random (uniform) samples of incom-
plete peers provided by a gossip-based peer sampling service. The peer sampling
service is based on a gossip-based peer sampling service [8] that builds a d-regular
random graph. We modified the protocol to systematically exclude complete
peers from samples. Both the dissemination protocol and the peer sampling ser-
vice are biased for a more efficient dissemination and are presented below.

3.1 FoG Peer Sampling: Split-Graph Overlay

FoG relies on a peer sampling service that creates a split-graph overlay network
upon which the dissemination is implemented (Figure 3). Each peer maintains
a view, which is a sample of the system provided by a peer sampling protocol. A
view is a compound of information about at most s peers. Each peer entry in the
view contains its IP, its completion level and its age. The peer sampling service
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in FoG ensures that each peer p has a view vp that corresponds to a uniform
random sample of the incomplete peers in the system. The peer sampling service
provides this sample of peers to the dissemination protocol as shown in Figure 5.

In the split-graph overlay, the incomplete peers are connected through a ran-
dom graph while the complete peers are connected to some incomplete peers
but not reciprocally. This is achieved by ensuring that the view of each peer,
be it complete or incomplete, contains only references to incomplete peers. The
structure of the overlay emerges naturally as complete peers have only outgoing
edges and as only incomplete peers have incoming edges. Therefore, complete
peers are forcibly kept outside of the clique.

More specifically, the peer sampling protocol runs two threads on each peer
pmyself as in [8]. An active thread periodically chooses a random peer prandom and
pmyself sends its view to prandom . A passive thread receives views and handles
them. When prandom receives the view v, it replies by sending its own view to
pmyself . Finally, both peers merge the view they have received with the view
they had before and get a new view of size s. prandom merges vrandom with v.
First, any duplicates are removed. Any references to complete peers are removed
to ensure a split-graph structure. The view is then truncated to match the view
size following the protocol of [8] 3

Incomplete peers and complete peers differ in the view they send during the
exchange. As complete peers have no incoming edges, they receive less up-to-date
information. An incomplete peer applies the protocol as defined in [8]. However,
complete peers apply a slightly different protocol when exchanging view. Instead
of sending their own view, they send only information about themselves. The
goal is to avoid overwriting an incomplete peer’s up-to-date information with
out-dated information coming from a complete peer.

Interestingly enough, the FoG split-graph could be also implemented using
T-Man [12]4, which builds any structure by gossiping, using an infinite distance

3 The H oldest entries are removed to ensure self-healing. S entries that were just sent
to the other peer are removed to ensure low information losses. Finally, if needed,
some random entries are removed to get back to a view of size s.

4 The T-Man gossip protocol converges to any structure defined by an ordering relation
between peers. Upon gossip, peers merge the two sets of neighbors and keep the
closest neighbors.
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between any peer to a complete peer and distance 1 between any peer to an
incomplete peer. We would simply need to add a few features to T-Man to
ensure that a peer is able to decide not to keep information about some peer as
it is too “far”. Moreover, we also need the information about completion to be
available in views.

3.2 FoG Dissemination Protocol

We first present the basic dissemination protocol followed by the biased dissem-
ination protocol towards the most advanced peers.

Dissemination and Foutain codes. FoG aims at disseminating a whole file to
all peers in the system. The dissemination is complete when all peers have com-
pleted. FoG relies on fountain codes (rateless erasure-correcting codes) to get rid
of the unnecessary redundancy of gossip dissemination protocols as explained in
the design rationale. To this end, a TTL is attached to every chunk. As in a stan-
dard dissemination protocol, each peer contributes to the dissemination process.
The peers that hold the full content can encode and send these encoded chunks
of data to some random peers. The other peers buffer at most the B most recent
received chunks and try to forward those chunks to f (fanout) other randomly
chosen peers from their views. Each peer forwards a given chunk once; if a chunk
is received twice, it is simply dropped. In order to avoid the shrinking phase of
gossip, the chunks are forwarded over at most TTL (time to live) hops, enough
to implement the exponential growth phase.

Due to the random nature of the algorithm, a peer may miss some chunks.
However, as the view of peers permanently evolves, the probability that a peer
misses m consecutive chunks decreases exponentially. We leverage this property
in FoG by assuming the peers that were not reached by a given chunk, have a
high probability to be reached by the following disseminations.

In FoG, the roles of peers differ depending on their being complete or not.
As soon as a peer is complete, it can become a new source. Complete peers run
a permanent task that produces new encoded chunks using fountain codes and
start disseminating. Note that incomplete peers also collaborate to the dissem-
ination by forwarding chunks but they cannot encode the content as they miss
some chunks, as the whole file is needed to encode using fountain codes.

Biasing the dissemination. The more complete peers, the more new independent
chunks are injected in the system. To benefit even further of complete peers as
additional sources, FoG favors the most advanced peers with respect to the
completion so that they can help the system as soon as possible.

This is achieved simply by adding a bias in the dissemination. Basically we aim
at allowing the progression of peers to be different amongst peers. Typically, some
peers should progress much faster and help the rest of the system once they have
completed. The bias is implemented as follows: when a complete peer chooses
to serve some incomplete peer, it serves the one that has the highest completion
first. Incomplete peers also have a bias in the dissemination to ensure that there
are always incomplete peers with a high completion.
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The dissemination is biased by biasing the probability to choose a given peer
to gossip depending on its level of completion. All peers keep a reference to the
last peer last to which they have sent data and keep a view v of other peers. To
send data, a peer self chooses another peer dest . self builds a set of candidates
C = {c‖c ∈ v ∪ {last} ∧ c.completion < self .completion}. Then, it chooses dest
to be a peer c ∈ C with a probability proportional to the completion level of c.

More formally, the choice is performed as explained bellow. Let j be the peer
running the algorithm, lj be the completion of peer j, vj be the view of j and
lastj be the last peer to which j sent data. Let ci,j be the completion of peer i
from the point of view of j. mj is the highest completion ci,j with i ∈ vj∪{lastj}
such that mj < lj . For each peer, we compute di,j = mj − ci,j if mj − ci,j > 0
or di,j = 1 else.

Complete peer j chooses to send data to peer i of its view with a probability
pi = (1−(di))e∑

k∈vj∪{lastj} (1−(dk))e
that depends on the completeness of the peer so

that the higher the completeness, the higher the probability. The parameter e
expresses the level of aggressivity of the bias.

Incomplete peers sort the peers in increasing order of the value di,j and choose
the first peer to which chosen chunk of data has not been sent. Therefore, they
send chunks to peers that are the most complete but that are not more complete
than they are. This avoids the creation of cycles in the dissemination process.

The peers and the active links of the overlay look like a multi-layered graph
where peers move from bottom to top slowly. There is a little subset at the top
that progresses quickly and a large pool of peers at the bottom. It should exhibit
a long tail distribution for the completion of peers: the majority of peers have a
low completion while a few peers have a high completion.

4 Evaluation

We performed extensive simulations of FoG and some reference protocols. The
protocol has been simulated in an event-based simulation using PeerSim [13].
The time information displayed on the graph is arbitrary as it matches the
event management.

We simulated a 25,000 peer network, peers maintain a view of size 21. During
the selection process, the healing parameter H was set to 8 while the swapping
parameter S was set to 12. These values are chosen to quickly remove peers that
have completed or have left the network as explained in [8]. We disseminate a file
of 1000 chunks. The upload bandwidth was constrained as follows: each peer can
send a chunk every unit of time. It also exchanges a gossip message to update
the overlay every 10 units of time.

The source and encoder peers continuously encode, using a fountain encoder,
and send chunks of data. The incomplete peers buffer at most 48 chunks of data.
The fanout (f), the number of peers a received chunk is forwarded to, is set to
6 while the number of hops a chunk is forwarded (TTL) over is set 6. Forwarder
peers forward data until their buffers become empty. The selectiveness parameter
e is set to 20 for the biased dissemination protocol.



FoG: Fighting the Achilles’ Heel of Gossip Protocols with Fountain Codes 189

We are mainly interested in the termination of the dissemination. A file can
only be used once all the chunks are available. Therefore, we plot the average
value of completion (chunks received over chunks needed) for all peers. When
the completion is 1.0, all peers have a full copy of the file and the dissemination
is complete.

We compare our protocol with and without the biased dissemination against
the two first of these following variants of traditional push-based dissemination
protocols along termination time and overhead in term of useless messages. The
two protocols are traditional protocols over which we have simply added fountain
codes.

– Peers stay in the overlay after completion. Those peers receive more
chunks of data even if they do not need to receive them. Keeping the peers
in the overlay helps to maintain connectivity. However, they can be on the
paths between the source and peers that still need data. In this case, the
dissemination slows down when almost all peers have completed, as complete
peers do not forward data.

– Peers leave the overlay gracefully. The peers leave the overlay by ex-
cluding themselves when exchanging views. As they continue to maintain the
overlay, the overlay should not be split. Thanks to the self-healing property,
the peers are removed progressively. However, they do not contribute to the
system once they have completed. In this case, the download does not slow
down as the diameter of the network decreases and peers that do not have
completed are close to the source.

By comparing our protocol to these, we can assess that adding foutain codes
is not enough to get good performances: one need to modify the protocol to
leverage the coding ability.

The graph on Figure 6(a) presents the completion results. FoG with or without
overhead is faster than the reference protocols. As shown on Figure 6(a), biased
FoG achieves 95% completion at time 2667 while unbiased FoG achieves same
completion at time 3333. The two traditional protocols are slower as they achieve
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the same completion at time 4000 if peers leave when they complete and at time
4400 if peers stay in the overlay once they have completed. Finally, biased FoG
achieves full completion at time 2800, unbiased FoG achieves full completion at
3733 and the traditional protocol where peers leave the overlay once complete
achieves full completion at time 4667. We observe a slight slowdown if peers
depart gracefully while the progress becomes slow if peers do not leave as it
can be seen at time 4000. Biased FoG completes almost twice earlier than a
traditional dissemination protocol (the one where peers leave once they have
complete) and it even offers a slightly lower overhead as shown on Figure 6(b).

Based on these results, we can conclude that FoG completes faster than the
two variants of traditional push protocols. We observe that an unbiased FoG
is not faster than competitors are as the number of complete peers acting as
encoders increases only in the end, at time, when some peers complete. This
confirms the relevance of introducing a bias to the dissemination.

4.1 Impact of the Biased Dissemination

We observe on Figure 6(a) that the dissemination in unbiased FoG speeds up at
time 3333 when the download process is almost over. This is mostly due to peers
completing and acting as additional sources late in the process. Introducing a
bias towards the most advanced peers enables to exploit earlier complete peers.
At time 2000, biased FoG becomes faster than unbiased FoG. Consequently, the
delay for all peers to get the whole content is reduced from 3733 to 2800.

We have studied the density of completion at different times for the two,
unbiased and biased, protocols. The probability density function at time t, dt(x),
is defined such that the probability that, at time t, a peer has a completion rate
c ∈ [a, b] is pt =

∫ b

a dt(x)dx. The density functions at different times are plotted
for each protocol on Figure 7. As an example, at time t = 960, in the unbiased
version, all peers have a completion of approximately 60%. On the other side, at
the same time, the biased version shows that some of the peers have a completion
of 40% while half of them have already completed and a few of them are between
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40% and 100%. The unbiased version of the protocol exhibits a density that is
Gaussian while the biased version has a density function that resembles a power
law. When the dissemination is unbiased, all peers complete at the same speed.
Therefore, no peer is able to encode data and help other peers. When a bias is
introduced in the dissemination, a few peers behave differently from the majority
and complete early resulting in the biased version outperforming the unbiased
one.

4.2 Impact of Coding

In the previous experiments, we disseminate data encoded with fountain codes.
During the definition of our protocol, we asserted that using fountain codes
(rateless erasure-correcting codes) was needed. We check this assertion by com-
paring our protocol with a rateless encoder (fountain encoder), with a fixed-rate
(1
4 ) encoder or without encoder. We also study the impact of using codes with

a traditional dissemination protocol where peers simply leave the overlay when
they complete.

When disseminating with rate 1
4 encoding, sources send encoded data cycli-

cally in order. When disseminating non-coded data, original data is sent cycli-
cally by sources. If a new source is created, the starting point in the stream is
chosen randomly.

The results are shown on Figure 8. The graph shows that encoding improves
the dissemination in all settings. Clearly, the protocols that use some form of
coding (either rateless codes or fixed-rate codes) outperform the protocols that
do not use codes. Completion becomes slow at time 933 when we use non-coded
data: this time matches the time at which the source will loop over and start
disseminating again chunks that have already been disseminated.

The better performance of the protocols using codes can easily be explained.
Peers complete faster as cooperation is easier and as redundancy in the chunks
they receive is lower. Therefore, our assumption that we need coding holds.
Moreover, fountain and fixed rate codes both result in curves having similar
shapes. This shows that even though we provide an infinite amount of redun-
dancy through the use of fountain codes, a finite amount (4k) is enough for our
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protocol to work: the additional redundancy only brings very little enhancement.
However, low complexity fixed-rate codes use the same decoder as fountain codes
and have the same decoding complexity. Therefore, there is no reason to drop
the more elegant design of using fountain codes for using fixed-rate erasure-
correcting codes.

5 Related Works

Dissemination protocols can either be streaming protocols where peers exchange
data within a window of interesting data or be file swarming protocols where
all peers cooperate to get a full copy of a file. The streaming case is widely
used in live streaming of video or audio streams. In such protocols, losses of
some chunks of data, even if not desirable, are possible. File swarming protocols
are more useful to get a full copy of a file where no losses are allowed. FoG is
used to download a full copy of a file as file swarming protocols through push
protocols. Encoding content adds the constraint that the content need to be
entirely downloaded and decoded before it can be used. However, the content
we disseminate need to be entirely downloaded before being used. Therefore,
encoding data does not constrain more the use that can be done of our protocol.

There has been many works in peer-to-peer based dissemination, we focus on
systems using coding to enhance the performance. Various coding techniques
have been used for enhancing dissemination process. Avalanche [14,15] uses net-
work coding [6] in order to reduce redundancy in exchanged chunks. Simulations
of Avalanche result in the conclusion that it can make throughput 2 or 3 times
better than transmitting unencoded chunks over Bittorrent -like networks [16].
However, as random linear network codes decoding involves complex computa-
tion (O(k3) Gaussian elimination) , some people [2] compared network coding
in Avalanche to systems that do not use coding and had less optimistic con-
clusion. They claim that network coding is too complex and does not enhance
the performance enough to justify its use [17,18]. Locher and al. [19] propose
to add source coding to Bittorrent instead of relying on costly network coding.
As source coding increases diversity, it enhances the performance of Bittorrent
and helps the tit for tat mechanism. Their work is based on random linear codes
that have high decoding complexity, but their work can directly be extended to
any other code with lower complexity (O(k · ln k) Belief-propagation decoding)
such as LT codes [7]. In our paper, we decided to avoid network coding and use
lower complexity (O(k · ln k)) source codes such as LT.

A protocol[20,21,22] is said to push data if it sends data to a peer without
being requested to do so. A protocol pulls data if it sends data to a peer after
being requested. Push protocols have lower control overhead as they do not
involve a query prior to pushing data. Moreover, push protocols have lower delay,
because, as soon as a peer has some data, it can immediately push it to other
peers. Pull protocols have higher delay as peer regularly poll for their neighbors
to get new data and new data is only sent once the other peer asked it. Pull
protocols have lower overhead as they allow the receiver to choose the data it
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gets, it avoids getting the same chunk twice. Our choice was to implement a
push dissemination protocol in order to reduce the amount of control messages
needed. The article by Karp and al. [1] studies push protocol and their behavior.
They study the performance of push-only and pull-only scheme before proposing
a push&pull scheme that tries to take the best of two.

6 Conclusion

In this paper, we presented FoG, a protocol that aims at keeping the strength of
gossip protocols, exponential-growth phases, while removing the need for their
weakness, shrinking phases. To this end, we ensure completion through more
dissemination of content encoded using fountain codes instead of relying on
the shrinking phase of gossip based dissemination that produces a high level of
redundancy.

In this context, we build an overlay (a split-graph) that matches dissemination
progress. The overlay is structured so that only incomplete peers have incoming
edges. Therefore, peers do not receive more data once they have completed.
Moreover, peers that complete can act as new sources.

In order to leverage further completed peers as additional sources, we bias the
dissemination towards the most advanced peers. This enables peers to complete
earlier and exploit further fountain codes.

Experiments show that FoG outperforms by 50% for the overhead and by 30%
for the termination time traditional push protocols.

The bias introduced in FoG is needed for its performance. The fact that
peers that are favored get the file earlier may be seen as a natural incentive
to contribute. However, FoG leverages such peers that must then serve other
peers. Selfish peers could in turn leverage this to stop collaborating, making
FoG sensitive to their presence. Preserving FoG’s performance in the context of
selfish peers is an interesting line of research for future work.
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Abstract. A snap-stabilizing protocol, starting from any configuration,
always behaves according to its specification. In this paper, we are in-
terested in message forwarding problem in a message-switched network.
In this problem, we must manage resources of the system to deliver
messages to any processor of the network. In this purpose, we use in-
formation given by a routing algorithm. By the context of stabilization
(in particular, the system starts in any configuration), this information
can be corrupted. In [1], authors show that there exists snap-stabilizing
algorithms for this problem (in the state model). That implies that we
can ask the system to begin forwarding messages without losses even if
routing informations are initially corrupted.

In this paper, we propose another snap-stabilizing algorithm for this
problem which improves the space complexity of the one of [1].

1 Introduction

The quality of a distributed system depends on its fault-tolerance. Many fault-
tolerant schemes have been proposed. For instance, self-stabilization [2] allows
to design a system tolerating arbitrary transient faults. A self-stabilizing system,
regardless of the initial state of the system, is guaranteed to converge into the
intended behavior in a finite time. Another paradigm is snap-stabilization ([3]).
A snap-stabilizing protocol guarantees that, starting from any configuration, it
always behaves according to its specification. Hence, a snap-stabilizing protocol
is a self-stabilizing protocol which stabilizes in 0 time unit.

In a distributed system, it is commonly assumed that each processor can ex-
change messages only with its neighbors (i.e. processors with which it shares a
communication link) but processors may need to exchange messages with any
processor of the network. To perform this goal, processors have to solve two
problems: the determination of the path which messages have to follow in the
network to reach their destinations (it is the routing problem) and the man-
agement of network resources in order to forward messages (it is the message
forwarding problem). These two problems received a great attention in litera-
ture. The routing problem is studied for example in [4,5,6] and self-stabilizing
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approaches can be found in [7,8,9]. The forwarding problem has also been well
studied, see [10,11,12,13,14,15]. As far we know, only [1] deals with this problem
using a stabilizing approach.

Informally, the goal of forwarding is to design a protocol which allows all
processors of the network to send messages to any destination of the network
(knowing that a routing algorithm computes the path that messages have to
follow to reach their destinations). Problems come of the following fact: messages
traveling through a message-switched network ([16]) must be stored in each
processor of their path before being forwarded to the next processor on this
path. This temporary storage of messages is performed with reserved memory
spaces called buffers. Obviously, each processor of the network reserves only a
finite number of buffers to the message forwarding. So, it is a problem of bounded
resources management which exposes the network to deadlocks and livelocks if
no control is performed. In this paper, we focus about a message forwarding
protocol which deals withthe problem using a stabilizing approach. The goal is
to allow the system to forward messages regardless of the state of the routing
tables. Obviously, we need that these routing tables repair themselves within a
finite time. So, we assume the existence of a self-stabilizing protocol to compute
routing tables.

In the following, a valid message is a message which has been sent out by
a processor. As a consequence, an invalid message is present in the initial con-
figuration. We can now specify the problem. We propose a specification of the
problem where duplications (i.e. the same message reaches many time its desti-
nation while it has been sent out only once) are forbidden:

Specification 1 (SP). Specification of the message forwarding problem.
- Any message can be sent out in a finite time.
- Any valid message is delivered to its destination once and only once in a finite
time.

In [1], authors show that it is possible to transform a forwarding algorithm of
[11] into a snap-stabilizing one without any significant over cost (with respect
to time of forwarding and amount of memory per processor). But this algorithm
needs Θ(n) buffers per processor (where n is the number of processors of the
networks). The scope of this paper is the improvement of this space complexity.
We achieve this goal by providing a snap-stabilizing forwarding algorithm which
requires Θ(D) buffers per processor (where D is the diameter of the network).
Even if this improvement can be seen as quite useful from a theoretical point of
view (since n and D are close values in the worst case), we believe that it could
be very interesting from a practical point of view. Indeed, practical networks
have in general a diameter which is very smaller than the number of nodes (for
example, [17] shows that the diameter of Internet is near to 6 in 2000 although
it had near to 14,000 nodes).

The remaining of this paper is organized as follows: we present first our model
(section 2), then we give and prove our solution in the state model (section 3).
Finally, we conclude in section 4.
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2 Preliminaries

We consider a network as an undirected connected graph G = (V,E) where V is
a set of processors and E is the set of bidirectional asynchronous communication
links. In the network, a communication link (p, q) exists if and only if p and q are
neighbors. We assume that the labels of neighbors of p are stored in the set Np.
We also use the following notations: respectively, n is the number of processors,
∆ the maximal degree, and D the diameter of the network. If p and q are two
processors of the network, we denote by dist(p, q) the length of the shortest path
between p and q. In the following, we assume that the network is identified, i.e.
each processor has an identity which is unique on the network. Moreover, we
assume that all processors know the set I of all identities of the network.

State model. We consider the classical local shared memory model of computa-
tion (see [16]) in which communications between neighbors are modeled by direct
reading of variables instead of exchange of messages. In this model, the program
of every processor consists in a set of shared variables (henceforth, referred to as
variables) and a finite set of actions. A processor can write to its own variables
only, and read its own variables and those of its neighbors. Each action is consti-
tuted as follows: < label >::< guard >−→< statement >. The guard of an action
in the program of p is a boolean expression involving variables of p and its neigh-
bors. The statement of an action of p updates one or more variables of p. An action
can be executed only if its guard is satisfied. The state of a processor is defined by
the value of its variables. The state of a system is the product of the states of all
processors. We refer to the state of a processor and the system as a (local) state
and (global) configuration, respectively. We note C the set of all configurations of
the system. Let γ ∈ C and A an action of p (p ∈ V ). A is said enabled at p in γ if
and only if the guard of A is satisfied by p in γ. Processor p is said to be enabled in
γ if and only if at least one action is enabled at p in γ. Let a distributed protocolP
be a collection of binary transition relations denoted by→, on C. An execution of
a protocol P is a maximal sequence of configurations Γ = (γ0, γ1, ..., γi, γi+1, ...)
such that, ∀i ≥ 0, γi → γi+1 (called a step) if γi+1 exists, else γi is a terminal con-
figuration. Maximality means that the sequence is either finite (and no action of P
is enabled in the terminal configuration) or infinite. All executions considered here
are assumed to be maximal. E is the set of all executions of P . As we already said,
each execution is decomposed into steps. Each step is shared into three sequential
phases atomically executed: (i) every processor evaluates its guards, (ii) a daemon
chooses some enabled processors, (iii) each chosen processor executes its enabled
action. When the three phases are done, the next step begins. A daemon can be
defined in terms of fairness and distribution. There exists several kinds of fair-
ness assumption. Here, we use only the weakly fairness assumption, meaning that
we assume that every continuously enabled processor is eventually chosen by the
daemon. Concerning the distribution, we assume that the daemon is distributed
meaning that, at each step, if one or more processors are enabled, then the dae-
mon chooses at least one of these processors to execute an action. We consider
that any processor p is neutralized in the step γi → γi+1 if p was enabled in γi and
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not enabled in γi+1, but did not execute any action in γi → γi+1. To compute the
time complexity, we use the definition of round [18]. This definition captures the
execution rate of the slowest processor in any execution. The first round of Γ ∈ E ,
noted Γ ′, is the minimal prefix of Γ containing the execution of one action or the
neutralization of every enabled processor from the initial configuration. Let Γ ′′ be
the suffix of Γ such that Γ = Γ ′Γ ′′. The second round of Γ is the first round of
Γ ′′, and so on.

Message-switched network. Today, most of computer networks use a variant
of the message-switching method (also called store-and-forward method). It’s
why we have chosen to work with this switching model. In this section, we quickly
present this method (see [16] for a detailed presentation). The model assumes
that each buffer can store a whole message and that each message needs only one
buffer to be stored. The switching method is modeled by four types of moves:

1- Generation:when a processor sends a new message, it “creates” a new mes-
sage in one of its empty buffers. We assume that the network may allow this
move as soon as at least one buffer of the processor is empty.
2- Forwarding:a message m is forwarded (copied) from a processor p to an
empty buffer in the next processor q on its route (determined by the routing
algorithm). We assume that the network may allow this move as soon as at least
one buffer buffer of the processor is empty.
3- Consumption:A message m occupying a buffer in its destination is erased
and delivered to this processor. We assume that the network may always allow
this move.
4- Erasing:a message m is erased from a buffer. We assume that the network
may allow this move as soon as the message has been forwarded at least one
time or delivered to its destination.

Stabilization. We recall here some formal definitions.

Definition 1 (Self-Stabilization [2]).
Let T be a task, and ST a specification of T . A protocol P is self-stabilizing for
ST if and only if ∀Γ ∈ E, there exists a finite prefix Γ ′ = (γ0, γ1, ..., γl) of Γ
such that all executions starting from γl satisfies ST .

Definition 2 (Snap-Stabilization [3]).
Let T be a task, and ST a specification of T . A protocol P is snap-stabilizing for
ST if and only if ∀Γ ∈ E, Γ satisfies ST .

This definition has the two following consequences. We can see that a snap-
stabilizing protocol for ST is a self-stabilizing protocol for ST with a stabilization
time of 0 time unit. A common method used to prove that a protocol is snap-
stabilizing is to distinguish an action as a “starting action” (i.e. an action which
initiates a computation) and to prove the following property for every execution
of the protocol: if a processor requests it, the computation is initiated by a
starting action in a finite time and every computation initiated by a starting
action satisfies the specification of the task. We use these two remarks to prove
snap-stabilization of our protocol in the following.
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3 Proposed Protocol

3.1 Description

To simplify the presentation, we assume that the routing algorithm induces only
minimal paths in number of edges. We have seen that, by default, the network
always allows message moves between buffers. But, if we do no control on these
moves, the network can reach unacceptable situations such as deadlocks, livelocks
or message losses. If such situations appear, specifications of message forwarding
are not respected. Now, we quickly present solutions brought by the literature in
the case where routing tables are correct in the initial configuration. In order to
avoid deadlocks, we must define an algorithm which permits or forbids various
moves in the network (functions of the current occupation of buffers) in order to
prevent the network to reach a deadlock. Such algorithms are called deadlock-free
controllers (see [16] for a much detailed description). Livelocks can be avoided by
fairness assumptions on the controller for the generation and the forwarding of
messages. Message losses are avoided by the using of identifier on messages (for
example, the concatenation of the identity of source and a two-value flag). [11]
introduced a generic method to design deadlock-free controllers. The key idea
is to restrict moves of messages along edges of an oriented graph BG (called
buffer graph) defined on the network buffers. Authors show that cycles on BG
can lead to deadlocks and that, if BG is acyclic, they can define a deadlock-free
controller on this buffer graph. The main idea in [1] is to adapt a graph buffer
of [11] in order to obtain a snap-stabilizing forwarding protocol.

In this paper, we are interested in another buffer graph introduced in [11].
Each processor have D + 1 buffers ranked from 1 to D + 1. New messages are
always generated in the buffer of rank 1 of the sender processor. When a message
occupying a buffer of rank i is forwarded to a neighbor q, it is always copied in the
buffer of rank i+1 of q. It is easy to see that this graph is acyclic since messages
always "come upstairs" the buffer rank (the reader can find an example of such a
graph in Figure 1). We need D+1 buffers per processor since, in the worst case,
there are D forwarding of a message between its generation and its consumption.

Our idea is to adapt this scheme in order to tolerate transient faults. To per-
form this goal, we assume the existence of a self-stabilizing silent algorithm A
to compute routing tables (see e.g. [7,8,9]) which runs simultaneously to our
message forwarding protocol provided in Algorithm 1 (SSMFP means Snap-
Stabilizing Message Forwarding Protocol). Moreover, we assume that A has
priority over SSMFP (i.e. a processor which has enabled actions for both algo-
rithms always chooses the action of A). This guarantees us that routing tables
are correct and stable within a finite time. We assume that SSMFP can have
access to the routing table via a function, called nextHopp(d). This function
returns the identity of the neighbor of p to which p must forward messages of
destination d. Our idea is as follows: we allow the erasing of a message only if we
are ensured that the message has been delivered to its destination. In this goal,
we use a scheme with acknowledgment which guarantees the reception of the
message. More precisely, we associate to each copy of the message a type which
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have 3 values: E (Emission), A (Acknowledgment) and F (Fail). Forwarding of
a valid message m (of destination d) follows the above scheme:

1- Generation of m with type E in a buffer of rank 1 by (R1).
2- Forwarding1 of m with type E without any erasing by (R8) or (R12)).
3- If m reaches d:
3.1- It is delivered and the copy of m takes type A by (R4) or (R10).
3.2- Type A is spread to the sink following the incoming path by (R7).
3.3- Buffers are allowed to free themselves once the type A is propagated to the
previous buffer on the path by (R9), (R11), or (R14).
3.4- The sink erases its copy by (R3) or (R5), thus m is erased.
4- If m reaches a buffer of rank D + 1 without crossing d:
4.1- The copy of m takes type F by (R13).
4.2- Type F is spread to the sink following the incoming path by (R7).
4.3- Buffers are allowed to free themselves once the type F is propagated to the
previous buffer on the path by (R9), (R11), or (R14)).
4.4- Then, the sink of m gives the type E to its copy, that begin a new cycle: m
is sending once again by (R2) or (R6).

Obviously, it is necessary to take in account invalid messages: we have chosen to
let them follow the forwarding scheme and to erase them if they reach step 4.4
(by rules from (R15) to (R18)). The key idea of the snap-stabilization of our
algorithm is the following: since a valid message is never erased, it is sent again
after the stabilization of routing tables (if it never reaches its destination before)
and then it is normally forwarded. To avoid livelocks, we use a fair scheme of
selection of processors allowed to forward a message for each buffer. We can
manage this fairness by a queue of requesting processors. Finally, we use a spe-
cific flag to prevent message losses. It is composed of the identity of the next
processor on the path of the message, the identity of the last processor crossed
over by the message, the identity of the destination of the message and the type
of the message (E, A or F ).

We must manage a communication between our algorithm and processors in
order to know when a processor has a message to send. We have chosen to create
a boolean shared variable requestp (for any processor p). Processor p can set it
at true when it is at false and when p has a message to send. Otherwise, p must
wait that our algorithm sets the shared variable to false (when a message is
sent out).

3.2 Proof of the Snap-Stabilization

In this section, we give ideas2 to prove that SSMFP is a snap-stabilizing mes-
sage forwarding protocol for specification SP . We introduce a second specifi-
cation SP ′ of the problem. This specification is identical to SP but it allows
message duplications. Our proof has the following map. First, we prove that
1 With copy in buffers of increasing rank.
2 Due to the lack of place, formal proofs are omitted. A full version of this work is

available in [19].
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Algorithm 1. SSMFP : protocol for processor p

Data:
- n, D : natural integers equal resp. to the number of processors and to the diameter
of the network.
- I = {0, ..., n − 1} : set of processor identities of the network.
- Np : set of neighbors of p.
Message:
- (m, r, q, d, c) with m useful information of the message, r ∈ Np identity of the next
processor to cross for the message (when it reaches the node), q ∈ Np identity of the
last processor cross over by the message, d ∈ I identity of the destination of the mes-
sage, c ∈ {E, A, F} color of the message.
Variables:
- ∀i ∈ {1, ..., D+1}, bufp(i) : buffer which can contain a message or be empty (denoted
by ε)
Input/Output:
- requestp : boolean. The higher layer can set it to "true" when its value is "false" and
when there is a waiting message. We consider that this waiting is blocking.
- nextMesp: gives the message waiting in the higher layer.
- nextDestp: gives the destination of nextMesp if it exists, null otherwise.
Procedures:
- nextHopp(d): neighbor of p computed by the routing for destination d (if d = p, we
choose arbitrarily r ∈ Np).
- ∀i ∈ {2, ..., D + 1}, choicep(i): fairly chooses one of the processors which can
send a message in bufp(i), i.e. choicep(d) satisfies predicate ((choicep(i) ∈ Np) ∧
(bufchoicep(i)(i − 1) = (m,p, q, d, E)) ∧ (choicep(i) �= d)). We can manage this fair-
ness with a queue of length ∆ + 1 of processors which satisfies the predicate.
- deliverp(m): delivers the message m to the higher layer of p.
Rules:

/* Rules for the buffer of rank 1 */
/* Generation of messages */
(R1) :: requestp ∧ (bufp(1) = ε) ∧ (nextDestp = d) ∧ (nextMesp = m) ∧
(bufnextHopp(d)(2) �= (m,r′, p, d, c)) −→ bufp(1) := (m, nextHopp(d), r, d, E) with
r ∈ Np; requestp := false
/* Processing of acknowledgment */
(R2) :: (bufp(1) = (m, r, q, d, F )) ∧ (d �= p) ∧ (bufr(2) �= (m, r′, p, d, F )) −→
bufp(1) := (m, nextHopp(d), q, d, E)
(R3) :: (bufp(1) = (m,r, q, d, A)) ∧ (d �= p) ∧ (bufr(2) �= (m,r′, p, d, A)) −→
bufp(1) := ε
/* Management of messages which reach their destinations */
(R4) :: bufp(1) = (m, r, q, p,E) −→ deliverp(m); bufp(1) := (m, r, q, p, A)
(R5) :: bufp(1) = (m, r, q, p,A) −→ bufp(1) := ε
(R6) :: bufp(1) = (m, r, q, p, F ) −→ bufp(1) := (m,r, q, p, E)

/* Rule for buffers of rank 1 to D : propagation of acknowledgment */
(R7) :: ∃i ∈ {1, ..., D}, ((bufp(i) = (m, r, q, d,E)) ∧ (p �= d) ∧ (bufr(i + 1) =
(m, r′, p, d, c))∧ (c ∈ {F, A})) −→ bufp(i) := (m, r, q, d, c)
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End of Algorithm 1:

/* Rules for buffers of rank 2 to D */
/* Forwarding of messages */
(R8) :: ∃i ∈ {2, ..., D}, ((bufp(i) = ε) ∧ (choicep(i) = s) ∧ (bufs(i −
1) = (m, p, q, d,E))∧ (bufnextHopp(d)(i + 1) �= (m,r, p, d, c))) −→ bufp(i) :=
(m, nextHopp(d), s, d, E) /* Erasing of messages which acknowledgment has been
forwarded */
(R9) :: ∃i ∈ {2, ..., D}, ((bufp(i) = (m, r, q, d, c))∧(c ∈ {F, A})∧(d �= p)∧(bufq(i−
1) = (m,p, q′, d, c)) ∧ (bufr(i + 1) �= (m, r′, p, d, c)) −→ bufp(i) := ε

/* Rules for buffers of rank 2 to D + 1 */
/* Consumption of a message and generation of the acknowledgment A */
(R10) :: ∃i ∈ {2, ..., D + 1}, bufp(i) = (m, r, q, p, E) −→ deliverp(m); bufp(i) :=
(m, r, q, p, A)
/* Erasing of messages for p which acknowledgment has been forwarded */
(R11) :: ∃i ∈ {2, ..., D+1}, ((bufp(i) = (m,r, q, p, c))∧(c ∈ {F, A})∧(bufq(i−1) =
(m, p, q′, p, c))) −→ bufp(i) := ε

/* Rules for the buffer of rank D + 1 */
/* Forwarding of messages */
(R12) :: (bufp(D+1) = ε)∧ (choicep(D+1) = s)∧ (bufs(D) = (m,p, q, d, E)) −→
bufp(D + 1) := (m,nextHopp(d), s, d,E)
/* Generation of the acknowledgment F */
(R13) :: (bufp(D + 1) = (m, r, q, d, E))∧ (d �= p) −→ bufp(D + 1) := (m,r, q, d, F )
/* Erasing of messages of which the acknowledgment has been forwarded */
(R14) :: (bufp(D + 1) = (m, r, q, d, c)) ∧ (c ∈ {F, A}) ∧ (d �= p) ∧ (bufq(D) =
(m, p, q′, d, c)) −→ bufp(D + 1) := ε

/* Correction rules: erasing of tail of abnormal caterpillars of type F, A */
(R15) :: ∃i ∈ {2, ..., D}, ((bufp(i) = (m,r, q, d, c)) ∧ (c ∈ {F, A}) ∧ (bufr(i + 1) �=
(m, r′, p, d, c)) ∧ (bufq(i − 1) �= (m, p, q′, d, c′))) −→ bufp(i) := ε
(R16) :: ∃i ∈ {2, ..., D}, ((bufp(i) = (m,r, q, d, c)) ∧ (c ∈ {F, A}) ∧ (bufr(i + 1) �=
(m, r′, p, d, c)) ∧ (bufq(i − 1) = (m, p, q′, d, c′)) ∧ (c′ ∈ {F, A}\{c} ∨ q = d)) −→
bufp(i) := ε
(R17) :: (bufp(D + 1) = (m, r, q, d, c)) ∧ (c ∈ {F, A}) ∧ (bufq(D) �=
(m, p, q′, d, c′)) −→ bufp(D + 1) := ε
(R18) :: (bufp(D+1) = (m, r, q, d, c))∧(c ∈ {F, A})∧(bufq(D) = (m, p, q′, d, c′))∧
(c′ ∈ {F, A}\{c} ∨ q = d) −→ bufp(D + 1) := ε

a

b

c

d

a b c d

1

2

3

Location of buffers

Rank of buffers

Fig. 1. Example of our buffer graph (on the right) for the network on the left
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SSMFP is a snap-stabilizing message forwarding protocol for specification SP ′

if routing tables are correct in the initial configuration (Proposition 1). Then,
we can show that SSMFP is a self-stabilizing message forwarding protocol for
specification SP ′ even if routing tables are corrupted in the initial configuration
(Proposition 2). Finally, we obtain that SSMFP is a snap-stabilizing message
forwarding protocol for specification SP even if routing tables are corrupted in
the initial configuration (Proposition 3). In this proof, we consider that the no-
tion of message is different from the notion of useful information. This implies
that two messages with the same useful information sent by the same processor
are considered as two different messages. We must prove that the algorithm does
not lose one of them thanks to the use of the flag. Let γ be a configuration of
the network. A message m is existing in γ if at least one buffer contains m in γ.

Definition 3 (Caterpillar of a message m). Let m be a message of desti-
nation d existing in a configuration γ. We define a caterpillar associated to m
(noted Cm) as the longest sequence of buffers Cm = bufp1(i)...bufpt(i + t − 1)
(with t ≥ 1) which satisfies:

- ∀j ∈ {1, ..., t− 1}, pj �= d and pj+1 �= pj.
- ∀j ∈ {1, ..., t}, bufpj (i + j − 1) = (m, rj , qj , d, cj).
- ∀j ∈ {1, ..., t− 1}, rj = pj+1.
- ∀j ∈ {2, ..., t}, qj = pj−1.

- ∃k ∈ {1, ..., t + 1},
{
∀j ∈ {1, ..., k − 1}, cj = E and

(∀j ∈ {k, ..., t}, cj = A) ∨ (∀j ∈ {k, ..., t}, cj = F )

We call respectively bufp1(i), bufpt(i+ t− 1) and lgCm = t the tail, the head and
the length of Cm.

Definition 4 (Characterization of caterpillar of a message m). Let m be
a message of destination d in a configuration γ and Cm = bufp1(i)...bufpt(i +
t− 1) (t ≥ 1) a caterpillar associated to m. Then,

- Cm is a normal caterpillar if i = 1. It is abnormal if i ≥ 2.
- Cm is a caterpillar of type E if ∀j ∈ {1, ..., t}, cj = E ( i.e. k = t + 1).
- Cm is a caterpillar of type A if ∃j ∈ {1, ..., t}, cj = A ( i.e. k < t + 1).
- Cm is a caterpillar of type F if ∃j ∈ {1, ..., t}, cj = F ( i.e. k < t + 1).

The reader can find in Figure 2 an example for some type of caterpillar. It is
obvious that, for each caterpillar Cm, either Cm is normal or abnormal. In the
same way, Cm is only of type E, A or F .

When we study the behavior of these caterpillars from some configurations,
we obtain the following properties:

Lemma 1. Let γ be a configuration and m be a message existing in γ. Under
a weakly fair daemon, every abnormal caterpillar of type F (resp. A) associ-
ated to m disappears in a finite time or becomes a normal caterpillar of type F
(resp. A).



204 A. Cournier, S. Dubois, and V. Villain

E

E

A

E

E

E

E

E

Fig. 2. Examples of caterpillar: abnormal of type A (left) and normal of type E (right)

Lemma 2. Let γ be a configuration and m be a message existing in γ. Under a
weakly fair daemon, every normal caterpillar of type A associated to m disappears
in a finite time.

Lemma 3. Let γ be a configuration and m be a message existing in γ. Under a
weakly fair daemon, every normal caterpillar of type F associated to m becomes
a normal caterpillar of type E of length 1 in a finite time.

Lemma 4. Let γ be a configuration and m be a message existing in γ. Under
a weakly fair daemon, every caterpillar of type E associated to m becomes a
caterpillar of type A or F in a finite time.

Assume that there exists a normal caterpillar of type E in a configuration γ in
which routing tables are correct, then we can observe that, under a weakly fair
daemon:
- by lemma 4, Cm becomes a caterpillar of type A or F in a finite time.
- in the latter case, lemma 3 allows us to say that Cm becomes a caterpillar of
type E in a finite time. Then, Cm becomes of type A in a finite time by lemma
4 and the fact that routing tables are correct. So, we have the lemma:

Lemma 5. Let γ be a configuration in which routing tables are correct and m be
a message existing in γ. Under a weakly fair daemon, every normal caterpillar
of type E associated to m becomes a caterpillar of type A in a finite time.

Assume that a processor p has a message m to forward in a configuration in
which routing tables are correct. Lemmas 3, 5 and 2 allow us to say that the
buffer of rank 1 of p is empty in a finite time. Then, it is easy to see that the rule
(R1) is enabled in a finite time and remains forever. So, the weakly fair daemon
allows us to state:

Lemma 6. If routing tables are correct, every processor can generate a message
( i.e. execute (R1)) in a finite time under a weakly fair daemon.

Assume that a processor generate a message in a configuration in which routing
tables are correct. This implies the creation of a normal caterpillar of type E.
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By the lemma 5, this caterpillar become of type A in a finite time. That means
that the message has been delivered to its destination by rule (R1) or (R4).
Then, we have:

Lemma 7. If a message m is generated by SSMFP in a configuration in which
routing tables are correct, SSMFP delivers m to its destination in a finite time
under a weakly fair daemon.

Assume that routing tables are correct in the initial configuration. To prove that
our algorithm is a snap-stabilizing message forwarding protocol for specification
SP ′, we must prove that (R1) (the starting action) is executed within a finite
time if a computation is requested. Lemma 6 proves this. After a starting action,
the protocol is executed in accordance to SP ′. If we consider that (R1) have
been executed at least one time, we can prove that: the first property of SP ′

is always verified (by Lemma 6 and the fact that the waiting for the sending
of new messages is blocking) and the second property of SP ′ is always verified
(by Lemma 7). By the remark which follows the definition 2, this implies the
following result:

Proposition 1. SSMFP is a snap-stabilizing message forwarding protocol for
SP ′ if routing tables are correct in the initial configuration.

We recall that a self-stabilizing silent algorithm A for computing routing tables
is running simultaneously to SSMFP . Moreover, we assume that A has priority
over SSMFP (i.e. a processor which have enabled actions for both algorithms
always chooses the action of A). This guarantees us that routing tables are
correct and stable within a finite time regardless of their initial states. As we are
guaranteed that SSMFP is a snap-stabilizing message forwarding protocol for
specification SP ′ from a such configuration by Proposition 1, we can conclude:

Proposition 2. SSMFP is a self-stabilizing message forwarding protocol for
SP ′ even if routing tables are corrupted in the initial configuration when A runs
simultaneously.

Assume that a processor p generate a message m. This implies the creation of a
normal caterpillar of type E. While m is not deliver to its destination, we know
by lemma 4 and 3 that Cm is continuously transforming in type F (not A since
m is not deliver) then in type E. This implies that there exists a copy of m in
the buffer of rank 1 of p until m is deliver to its destination, that proves:

Lemma 8. Under a weakly fair daemon, SSMFP does not delete a valid mes-
sage without deliver it to its destination even if A runs simultaneously.

It is obvious that the emission of a message by rule (R1) only creates one cater-
pillar of type E. Then, we can observe that all rules are designed to obtain the
following property: if a caterpillar has one head in a configuration, it has also one
head in the following configuration whatever rules have been applied. Indeed, it is
important to remark that the next processor on the path of a message is computed
when the message is copied into a buffer not when it is forwarded to a neighbor
(this why routing table moves have no effects on caterpillars). Then, we have:
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Lemma 9. Under a weakly fair daemon, SSMFP never duplicates a valid mes-
sage even if A runs simultaneously.

Proposition 2 and Lemma 8 allows us to conclude that SSMFP is a snap-
stabilizing message forwarding protocol for specification SP ′ even if routing
tables are corrupted in the initial configuration on condition that A run si-
multaneously. Using this remark and Lemma 9, we have:

Proposition 3. SSMFP is a snap-stabilizing message forwarding protocol for
SP even if routing tables are corrupted in the initial configuration when A run
simultaneously.

3.3 Time Complexities

In this section, we give time complexities results3. Since SSMFP needs a weakly
fair daemon, there is no points to study complexities in terms of steps. It’s why
all results of this section are given in terms of rounds. Let RA be the stabilization
time of A in terms of rounds.

Proposition 4. In the worst case, Θ(nD) invalid messages are delivered to a
processor.

Proposition 5. In the worst case, an accepted message needs O(max{RA,
nD∆D}) rounds to be delivered to its destination.

Proposition 6. The delay (waiting time before the first emission) and the waiting
time (between two consecutive emissions) of SSMFP is O(max {RA, nD∆D})
rounds in the worst case.

The complexity obtained in Proposition 5 is due to the fact that the system
delivers a huge quantity of messages during the forwarding of the considered
message. It’s why we are now interested in the amortized complexity (in rounds)
of our algorithm. For an execution Γ , this measure is equal to the number of
rounds of Γ divided by the number of delivered messages during Γ (see [20] for
a formal definition).

Proposition 7. The amortized complexity (to forward a message) of SSMFP
is O(max{RA, D}) rounds if there is no invalid messages.

4 Conclusion

In this paper, we provide an algorithm to solve the message forwarding problem
in a snap-stabilizing way (when a self-stabilizing algorithm for computing routing
tables runs simultaneously) for a specification which forbids message losses and
duplication. This property implies the following fact: our protocol can forward
3 Due to the lack of space, proofs are omitted but available in [19].
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any emitted message to its destination regardless of the state of routing tables in
the initial configuration. Such an algorithm allows the processors of the network
to send messages to other without waiting for the routing table computation.
As in [1], we show that it is possible to adapt a fault-free protocol into a snap-
stabilizing one without memory over cost. This new algorithm improve the one
proposed in [1] since it needs Θ(D) buffers per processor versus Θ(n) for the
former. But the following problem is still open: what is the minimal number of
buffers to allow snap-stabilization on the message forwarding problem ?
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Abstract. This paper presents an exercise in fault-containment on a
weakly-stabilizing system. The exercise uses the weakly stabilizing leader
election algorithm in [3], and shows how the effect of single faults can
be contained both in space and in time. Our algorithm confines the
effect of any single fault to the constant-distance neighborhood of the
faulty process, and the contamination number is restricted to 4 with
high probability for an array of processes. We also show that the expected
recovery time from a single fault is independent of the array size, i.e.,
the solution is fault-containing in time too.

1 Introduction

A distributed system is weakly stabilizing [11][3], if from any starting configura-
tion, there exists at least one computation that leads the system to a legitimate
configuration, and the legitimate configuration is closed under the given system
actions. Arbitrary configurations may be caused by transient failures that can
corrupt the system state. Due to the weakening of the stabilization property, it
is not possible to bound the stabilization time under a deterministic scheduler,
and randomized scheduling becomes necessary to guarantee eventual recovery.
Furthermore, in well-designed systems, the possibility of a massive failure is
quite low, and single failures are much more likely to occur. The problem of
containing the effect of minor failures is becoming increasingly important due
to the dramatic growth of network sizes. In many stabilizing systems, a single
transient failure can potentially contaminate a large portion of the system. To
increase the efficiency of fault-tolerance, it is important to guarantee a much
faster recovery from all single failures, while also guaranteeing eventual recovery
from more major failures. This motivates the current work.

The tight containment of the effect of single failures depends on the context:
containment in time implies that all observable variables of the system recover
to their legitimate values in O(1) time, whereas containment in space means that
the processes at O(1) distance from the faulty process make observable changes.
For optimal performance, both of these properties should hold.

From the point of system design, the mean time between failures (commonly
termed as MTBF), is an important issue. While a fault-containing system recov-
ers from a single failure, a minimum time is required before the system becomes
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c© Springer-Verlag Berlin Heidelberg 2009



210 A. Dasgupta, S. Ghosh, and X. Xiao

ready to recover from the next single failure with the same efficiency. This is
an important metric, and is called the fault-gap [14]. If the next failure hits
the system sooner than this time duration, then the guarantee of constant time
recovery falls apart. Thus fault-gap determines the availability of the fault-free
system, and a low fault-gap is desirable as it reflects better availability. The
growth of the network size increases the probability of the occurrence of failures.
So scale-free fault-gap is an important design goal.

1.1 Our Contributions

In this paper, we present a probabilistic solution to the fault-containment problem
for leader election on an array. The solution can be extended for a tree network.
Our solution uses a randomized scheduler, and is both weakly self-stabilizing and
fault-containing. We consider single-fault scenarios and our algorithm confines the
effect of any single fault to the constant-distance neighborhood of the faulty pro-
cess with high probability (w.h.p.1) We show that the contamination number is
at most 4 w.h.p., thus the algorithm is spatially fault-containing. The expected
recovery time from a single fault is independent of the array size, i.e., the solution
is fault-containing in time too. Furthermore, the system is fault-containing from
multiple failures provided that the failures occur at more than distance-8 apart
from each other on the array. When the distance between two faulty processes
is 8 or less, fault-containment property is no longer guaranteed, but stabilization
property of the system still holds.

Most current solutions to fault-containment are designed for the traditional
(strongly) stabilizing systems, and the important class of weakly stabilizing sys-
tems have been largely ignored, with the exception of [2][3]. Our work fills this
gap. Many solutions to fault-containment that we know of, achieve a fault-gap
of O(n) or worse. This seriously undermines the availability of the fault-free sys-
tem. Our solution guarantees that the fault-gap is independent of the size of the
array, which significantly increases the availability of the fault-free system.

1.2 Related Work

In [2], the authors provided a probabilistic fault-containment algorithm for the
persistent-bit protocol. The solution is both weakly fault-containing and self-
stabilizing and uses a randomized scheduler. Weak fault-containment means that
from all single failures, the expected recovery time (as well as the fault-gap) is
dependent only on the degree of the nodes, and independent of the network
size. Furthermore, observable changes are confined to only the immediate neigh-
bors of the faulty processes w.h.p. In [3], the authors investigated the relative
power of weak, self, and probabilistic stabilization and provided a deterministic
weak-stabilizing leader election algorithm on a tree network using a strongly fair
scheduler. Our fault-containing algorithm for an array is an extension of this
1 An event e happens with high probability (w.h.p) if limm→∞ Pr (e) = 1, where m is

a user defined parameter. This is slightly different from the traditional definition of
w.h.p. [17] in randomized algorithms, but used in the same spirit.
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– by introducing additional rules, we incorporate the fault-containment feature
without compromising the weak stabilization property.

For specific problems, self-stabilizing protocols that exhibit certain fault-
containment properties have been studied in the past [13] [15] [10]. Kutten and
Peleg [4] introduced a protocol for fault-mending that corrects the systems from
minor failures, but provides no guarantee for stabilization. Ghosh et al [14][5]
demonstrated how containment can be combined with stabilization, and ana-
lyzed the cost of it. Dolev and Herman introduced superstabilizing protocols [9],
which, in addition to being stabilizing, guarantee that during convergence from
configurations that arise from legitimate states by small-scale topology changes,
certain passage predicates are satisfied.

Herman’s self-stabilizing protocol [12] for mutual exclusion on a ring contains
the effect of any spurious token that may have been generated by a single-
process fault. Kutten and Patt-Shamir [1] proposed an asynchronous stabilizing
algorithm for the persistent-bit problem – their solution leads to recovery in
O(k) time from any k-faulty configuration. A similar protocol for mutual exclu-
sion appears in [6]. Beauquier et al investigated the 1-strong property [7] that
guarantees strong spatial confinement, and time-adaptive recovery.

1.3 Organization of the Paper

This paper has six sections. Section 2 describes the model of computation.
Section 3 presents the main algorithm for fault-containment. Section 4 describes
the recovery steps from different single-fault configurations. Section 5 presents
the results of containment in time and space and their proofs. Section 6 contains
some concluding remarks.

2 The Model of Computation

Let G = (V,E) denote an array of a distributed system, where V = {0, 1, · · · , n−
1} represents the set of processes, and each edge (i, j) ∈ E represents a link
between processes i and j. We use the notation N(i) to represent the neighbors
of process i:thus (i, j) ∈ E ⇔ j ∈ N(i) and i ∈ N(j). Each process i contains
two variables: the parent variable (primary variable or the observable variable)
denoted by P (i), and a secondary variable x(i). By definition, P (i) ∈ {N(i)∪⊥},
where ⊥ denotes null. Process j is called the parent of process i if P (i) = j.
The purpose of the secondary variable is to contain the effect of single faults.
x(i)’s domain is the set of non-negative integers. If a process i is the parent of
all the processes in its neighborhood N(i), then i is called the leader, denoted
by L. In a legal configuration, there can only be a single leader in the system.
Processes communicate with their immediate neighbors (also called the distance-
1 neighbors) using the shared memory model. Each process i executes a program
that consists of one or more guarded actions g → A, where g is a predicate
involving the variables of i and those of its immediate neighbors, and A is an
action that updates one or more variables of i. A central daemon serializes all
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guarded actions. The global state consists of the local states of all the processes.
A computationis a finite or infinite sequence of global states that satisfies two
properties: (a) if s and s′ are two consecutive states in the sequence, then there
exists a process i such that i has an enabled guard in s and execution of the
corresponding action results in the state s′, and (b) if the sequence is finite, then
in the last state of the sequence, no process has an enabled guard. We assume
a randomized scheduler, where the central daemon randomly chooses an action
with an enabled guard with uniform probability. We focus on a class of systems
for which the actions are reversible, i.e. if there exists an action that changes
the local state of a process from s to s′, then there exists another action that
changes the state from s′ to s.

A stabilizing system converges to a legal configuration LC that is traditionally
defined in terms of the observable or primary variables. However, in most cases,
fault-containment requires the use of auxiliary or secondary variables too. We
define the local state of each process i as an ordered pair 〈pi, si〉, where pi denotes
the primary variables, and si denotes the secondary variables. Correspondingly,
we write the global state as an ordered pair 〈p, s〉, where p is the collection of
all primary variables and s is the collection of all secondary variables. For any
global state 〈p, s〉, 〈p, s〉 ∈ LC ⇒ p ∈ LCp and s ∈ LCs.

Definition 1 (Fault-Containment in Time). The containment time is the
time needed to establish LCp from any single-fault configuration. Ideally it should
be O(1).

Definition 2 (Stabilization Time). The stabilization time is the maximum
time needed to establish LC from an arbitrary initial configuration.

Definition 3 (Fault-Containment in Space). Containment in space means
that the primary variables of the processes at O(1) distance from the faulty pro-
cess make observable changes.

Definition 4 (Contamination Number). The contamination number is the
maximum number of processes that change the primary part of their local states
during recovery from any single-fault configuration.

Definition 5 (Fault Gap). The fault gap is the worst case time, starting from
any single-fault state, to reach a state in LC.

3 Probabilistic Algorithm for Fault-Containment

Our starting point is the weakly-stabilizing leader election algorithm on a tree
network presented in [3]. For implementing it on an array, we make minor modi-
fications for the stabilization rules. An array is a special case of a tree where each
node except the end nodes has a degree of 2. Therefore we replace the notations
of ∆ from [3], and just consider the two neighbors (or the only neighbor if it is
an end node) of a particular process. For the fault-containment part though, we
need to add new rules. The basic idea is the same as presented in [2]. To make
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the protocol fault-containing, we add to each process i a secondary variable x(i)
whose domain is the set of non-negative integers. In a way, x(i) will reflect the
priority of process i in executing an action to update P (i). Process i will update
P (i) and increase its x(i) value with respect to its neighbors when the following
conditions hold:

1. The randomized scheduler chooses i,
2. {(∃j ∈ N(i) : P (i) = j)},
3. {(∃k ∈ N(i) : P (k) = l �= i)},
4. {x(i) ≥ x(k)}.

After updating P (i), process i will increase its x(i) value accordingly: {x(i) ←
maxq∈N(i) x(q) + m}, m ∈ Z+.

If the first three conditions hold, but not the fourth one, process i increases its
x(i) value by 1, but leaves P (i) unchanged. The same thing happens when the
first two conditions hold, but not the fourth, and the third condition is modified
to ∃k ∈ N(i) : P (k) = ⊥.

Observe that once a process i updates x(i), it becomes difficult for its neigh-
bors to change their P -values, since their x-values will lag behind that of i. The
larger is the value of m, the greater is the difficulty. A neighbor j of i will be
able to update P (j) if it is chosen by the random scheduler m times, without
choosing i even once (except case R5 of Algorithm 1, where the update happens
immediately when recovery is in sight within a single future move). On the other
hand, after making a move, it becomes easier for i to update P (i) again in the
near future. With a large value of m, the probability of j being able to change
its parent pointer compared to i is very low. This explains the mechanism of
containment. The complete algorithm is described below for a process i:

Algorithm 1. containment: Program for process i
– Variable: P (i) ∈ N(i) ∪ {⊥}.
– Macro: C(i) = {q ∈ N(i)|P (q) = i}
– Predicates: Leader(i) ≡ (P (i) = ⊥) ∧ (∀j ∈ N(i) : P (j) = i)
– Actions:

R1 (P (i) �= ⊥) ∧ (|C(i)| = |N(i)|) −→ P (i) ← ⊥
R2 (P (i) = ⊥) ∧ (|C(i)| < |N(i)|) −→ P (i) ← (N(i) \ C(i))
R3 a) (∃j ∈ N(i) : P (i) = j) ∧ (∃k ∈ N(i) : P (k) = l �= i) ∧ (x(i) ≥ x(k)) −→

(P (i) ← k) ∧ (
x(i) ← maxq∈N(i) x(q) + m

)
, m ∈ N

b) (∃j ∈ N(i) : P (i) = j) ∧ (P (j) �= ⊥) ∧ (∃k ∈ N(i) : P (k) = l �= i) ∧
(x(i) < x(k)) −→ x(i) ← x(i) + 1

R4 a) (∃j ∈ N(i) : P (i) = j) ∧ (∃k ∈ N(i) : P (k) = ⊥) ∧ (x(i) ≥ x(k)) −→
P (i) ← k

b) (∃j ∈ N(i) : P (i) = j) ∧ (∃k ∈ N(i) : P (k) = ⊥) ∧ (x(i) < x(k)) −→
x(i) ← x(i) + 1

R5 (∃j ∈ N(i) : P (i) = j)∧(P (j) = ⊥) ∧(∃k ∈ N(i) : P (k) = l �= i) −→ P (i) ← k
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1. R1 describes the situation when a process i has a parent, but all its neighbors
consider i as their parent. So i sets its parent pointer to null and start
considering itself as the leader.

2. R2 describes the situation when a process i has no parent and one of its
neighbors q does not satisfy the condition P (q) = i. Note that for a single-
fault scenario it cannot happen that both of i’s neighbors do not satisfy the
same condition. This means i is not unanimously selected as the leader by its
neighbors. As a consequence, i stops considering itself as a leader by setting
its parent pointer to q, i.e., P (i) = q.

3. R3 a) describes the situation when parent of i is j, and i has a neighbor k
whose parent is a node l. Node l is at distance-2 from i. Now if x(i) ≥ x(k),
then i sets k as its new parent and increases its x(i) value with respect to
its neighbors.

4. R3 b) describes the the situation when parent of i is j, j has a parent, and
i has a neighbor k whose parent is a node l. Node l is at distance-2 from
i. Now if x(i) < x(k), then i does not alter its parent pointer but it just
increments its x value by 1.

5. R4 a) describes the situation when parent of i is j, and i has a neighbor k
whose parent pointer is set to null. Now if x(i) ≥ x(k), then i sets k as its
new parent.

6. R4 b) describes the situation when parent of i is j, and i has a neighbor
k whose parent is set to null. Now if x(i) < x(k), then i does not alter its
parent pointer but it just increments its x value by 1.

7. R5 is necessary for recovery. The intuition is if a node finds out that its
change of parent will help the system to recover in a single future move,
then it makes the move. When parent of i is j, and j has no parent, and
there is a neighbor k of i such that k whose parent is a node l. Node l is
at distance-2 from i. Now regardless of the value of x(i) i sets k as its new
parent.

4 Recovery

In this section, we describe the different cases of single-fault configuration and
the recovery steps. It is to be noted that we have to consider cases up to distance-
4 from the leader, as beyond distance-4, all cases of recovery are similar to each
other for single-fault configuration. For convenience, we consider an array of
length n and denote process i on the array as vi where i = 0, · · · , n− 1. In each
figure; the grey node denotes the original leader in the system, the node with a
square is the node hit by the single fault, and the nodes with a � above are the
nodes whose guards are true after the single fault hits the system. If there is an
arrow from i to j, that indicates P (i) = j.

4.1 Fault at the Leader

In Fig. 1, v4 is the leader where the fault hits, and v3 becomes the parent of
v4. In this case, the system recovers trivially in a single step. If the scheduler
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v0 v1 v2 v3

�

v4

�

v5 v6

Fig. 1. Fault at leader v4. Due to the fault v3 becomes v4’s parent.

chooses either of v3 or v4, R1 can be applied at v3 or v4. Note that, if v4 makes
the move, the system goes back to the initial legal configuration, whereas if v3
makes the move, v3 becomes the new leader of the system after recovery.

4.2 Fault at Distance-1 Neighbor from the Leader

a) The parent pointer of distance-1 neighbor from the leader becomes null. The
fault hits v3 (Fig 2). If v3’s parent pointer becomes null, again the recovery
happens trivially in a single step. If the scheduler chooses either of v3 or v4, R2
can be applied at v3 or v4 and a legal configuration can be reached in a single
step. Note that, if v3 makes the move, the system goes back to the initial legal
configuration, whereas if v4 makes the move, v3 becomes the new leader.
b) A new node becomes the parent of the distance-1 faulty node. In Fig 3, if
P (v3) = v2, then v2, v3, and v4’s guards are true. If v3 is selected first, and
if x(v3) ≥ x(v4), the system trivially recovers in a single step (by R4a at v3).
Otherwise, v3 would not make a parent change. If the scheduler chooses v4, then
the recovery happens in two steps. First, v4 applies R2 and after that either v2
or v3 makes a move (R1). Note that if v3 makes the move, the leader shifts one
place compared to the original legal configuration, whereas if v2 makes the move,
the leader shifts two places.

If v2 makes the first move, R1 can be applied at v2. After that if the scheduler
chooses v4, recovery is immediate as R2 can be applied at v4. But if the scheduler
chooses v3 repeatedly and x(v3) ≥ x(v4) and x(v3) ≥ x(v2), oscillations can occur
in the system for some period of time due to the fact that R4a is applicable at
v3. v2 and v4 alternately becomes v3’s parent. But whenever v2 or v4 is chosen

v0 v1 v2 v3

�

v4

�

v5 v6

Fig. 2. Fault at distance-1 neighbor from the leader. v3’s parent pointer becomes null
due to the fault.

v0 v1 v2

�

v3

�

v4

�

v5 v6

Fig. 3. Fault at distance-1 neighbor from the leader. Due to the fault v2 becomes v3’s
new parent.
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by the scheduler next, the system recovers (R2). In the case, x(v3) < x(v2) or
x(v3) < x(v4), recovery is complete when the scheduler next chooses v2 or v4
respectively.

4.3 Fault at Distance-2 from the Leader

a) The parent pointer of distance-2 neighbor from the leader becomes null. Con-
sider Fig 4. The fault hits the system at v2. If the scheduler chooses v2, the
system trivially recovers in a single step (R2). If v3 is chosen by the scheduler,
the system has a potential for oscillations, i.e., v4 or v2 alternately may become
v3’s parent, depending on the x values of v2, v3, v4. The system recovers by
applying R2 at v2 or v4 respectively when either of them is chosen next by the
scheduler.
b) A new node becomes the parent of the distance-2 faulty node. Consider Fig 5.
If v1 becomes the new parent of v2, then either v1, v2 or v3 can make a move.
If v2 is selected first, the situation is like the one described in 4.2b), except that
R3 a) can be applied now at v2 as v3 has a parent if x(v2) ≥ x(v3). If v3 is
selected first, v3 can select v2 as its new parent if x(v3) ≥ x(v2). The recovery is
complete following v2, v1’s (or v1, v2’s) moves (R1) followed by v4’s move (R2)
or vice versa. If both v3 and v2 are unable to change their parents due to smaller
x values, then recovery is complete by v1’s move first (R1), followed by v3’s move
(now R5 can be applied at v3) and v4’s move (R2).

v0 v1 v2

�

v3

�

v4 v5 v6

Fig. 4. Fault at distance-2 from the leader. v2’s parent pointer becomes null due to the
fault.

v0 v1

�

v2

�

v3

�

v4 v5 v6

Fig. 5. Fault at distance-2 from the leader. v1 becomes the new parent of the v2 due
to the fault.

4.4 Fault at Distance-3 Neighbor from the Leader

a) The parent pointer of distance-3 neighbor from the leader becomes null. Con-
sider Fig 6. If the scheduler chooses v1, recovery trivially happens in a single
step (R2). If v2 is chosen first, then it can alternately choose v1 or v3 as its
parent for a while, if its x value is greater than that of both v1 and v3. Recovery
completes when v1 is selected (R2). Note that, because of higher x value of v2,
v3 is unlikely to change its parent. If it does, then recovery happens by applying
R5 at v3 followed by R2 at v4.
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v0 v1

�

v2

�

v3 v4 v5 v6

Fig. 6. Fault at distance-3 from the leader. v1’s parent pointer becomes null due to the
fault.

v0

�

v1

�

v2

�

v3 v4 v5 v6

Fig. 7. Fault at distance-3 from the leader. v0 becomes the new parent of v1.

b) A new node becomes the parent of the distance-3 faulty node. Consider Fig 7.
If v0 becomes the new parent of v1, then v0, v1, and v2’s guards are true. If v1 is
selected first, then the situation is the same as described above in 4.3b). If v0 is
chosen by the scheduler first, R1 can be applied at v0. The system recovers when
v1 chooses v2 as its parent afterwards (using R3a if applicable) and v0 makes
a move next (R2 can be applied at v0 possibly after some oscillations of v1). If
v2 is selected to make a move and if x(v2) ≥ x(v1), then v2 chooses v1 as its
parent and increases its x value (R3a). Now v3 is still able to change its parent
to v2 regardless of the value of x at v2 (R5) provided v0 had made a prior move.
Recovery is completed by v4’s move (R2). Otherwise, if v0 had not made a move
prior to v3, the higher x value of v2 will prevent v3 to change its parent. Then
the recovery is completed by v1’s move (R5) followed by v0’s move (R2). Note
that even if v0 is not an end node, this still applies.

4.5 Fault at Distance-4 Neighbor or beyond from the Leader

a) The parent pointer of distance-4 neighbor from the leader becomes null. Con-
sider Fig 8. If v1 is selected by the scheduler, recovery occurs immediately by R2
or after some oscillations at v2. Otherwise, if x(v2) ≥ x(v1), then v1 becomes v2’s
new parent (R4a). Similarly v2 may become v3’s new parent, but this time v3
sets its x value higher (R3a). Recovery is completed by v4’s move (R5) followed
by v5’s move (R2). Note that for fault occurring at distance-4 and beyond from
the leader, R5 will no more applicable at the distance-1 neighbor from the leader
(v4 in this case). Therefore, we do not consider hereafter the cases beyond fault
at distance-4 beyond the leader.

v0 v1

�

v2

�

v3 v4 v5 v6

Fig. 8. Fault at distance-4 from the leader. v1’s parent pointer becomes null.
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v0

�

v1

�

v2

�

v3 v4 v5 v6

Fig. 9. Fault at distance-4 from the leader. v0 becomes the new parent of v1.

b) A new node becomes the parent of the distance-4 faulty node. Consider Fig 9.
If v0 becomes the new parent of v1, then v0, v1, and v2’s guards are true. If v1 is
selected to make a move first, then the situation is the same as described above
in 4.4b). If v0 is chosen by the scheduler first, R1 can be applied at v0. The sys-
tem recovers when v1 chooses v2 as its parent afterwards (R3a if applicable) and
v0 makes a move next (R2 can be applied at v0 possibly after some oscillations
of v1). If v2 is selected to make a move and if x(v2) ≥ x(v1) , then v2 chooses v1
as its parent and increases its x value (R3a). Now v3 cannot apply R5 anymore
and it is unlikely that the fault will propagate beyond v2. The recovery proceeds
through the following steps - v0 makes a move (R1), after some oscillations at
v2, v1 chooses v2 as its parent (R5), and finally v0 selects v1 as its parent (R2).
Note that even if v0 is not an end node, this still applies.

Note that all cases of single-fault configuration beyond distance-4 from the
leader will not involve any different recovery steps that are already not covered
in the previous scenarios. This is because even if we shift the original place of the
fault further away from the leader, its neighborhood that is going to be affected
by subsequent recovery steps will remain unchanged. In the recovery mechanism,
R3b) and R4b) are not shown as we only highlighted the moves where the change
of parent pointers occurs leading to the recovery of the system.

5 Results

5.1 Fault-Containment in Space

Theorem 1. With high probability, the effect of a single failure is restricted
within distance-4 of the faulty process on an array, and the contamination num-
ber is at most 4, i.e., algorithm containment is spatially fault-containing.

To prove the result of spatial containment, we need to find out how far the
observable variables change from the faulty node w.h.p. We consider all the
subcases of the recovery mechanism.

1. Fault at leader: The fault propagates to at most distance-1.
2. Fault at distance-1 neighbor from the leader:

(a) Parent pointer of the distance-1 neighbor becomes null: The fault prop-
agates to at most distance-1.

(b) A new node becomes the parent of the distance-1 faulty node: In the
recovery steps, we showed that in Fig 3, at most v2 or v4’s parent might
change. Thus, the fault propagates to at most distance-1.
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3. Fault at distance-2 neighbor from the leader:
(a) The parent pointer of the distance-2 neighbor becomes null: Consider

Fig 4. If v2 is selected the system recovers immediately. Another possible
recovery is through the sequence of moves of v3 followed by v4. In the
latter case the contamination happens up to distance-2 of the original
faulty node.

(b) A new node becomes the parent of the distance-2 faulty node: Consider
Fig 5. The worst case scenario happens when v3 makes a move and after
that v4 completes the recovery. Contamination happens up to distance-2
of the original faulty node in this case.

4. Fault at distance-3 neighbor from the leader:
(a) The parent pointer of the distance-3 neighbor becomes null: Consider

Fig 6. The worst case scenario happens when v4 has to change its parent.
The fault propagates to at most distance-3.

(b) A new node becomes the parent of the distance-3 faulty node: Consider
Fig 7. The worst case scenario happens when v4 has to change its parent.
The fault propagates to at most distance-3.

5. Fault at distance-4 from the leader:
(a) The parent pointer of the distance-4 neighbor becomes null: This is the

scenario where the highest spatial contamination occurs. Consider Fig 8.
In the worst case, a distance-4 node from the faulty node might have to
change its parent pointer. In Fig 8, v5 is this node.

(b) A new node becomes the parent of the distance-4 faulty node: Consider
Fig 9. The fault propagates up to distance-1 w.h.p. The probability of
the fault contaminating beyond distance-1 is (1 − 1/2m) × 1/2m and
limm→∞(1− 1/2m)× 1/2m = 0.

Note that for fault occurring at distance-4 and beyond from the leader, R5 will no
more be applicable to the distance-1 neighbor from the leader. Hence algorithm
containment is spatially fault-containing and the highest contamination number
is 4 w.h.p. ��

Corollary 1. The algorithm containment is fault-containing from multiple fail-
ures provided that the failures occur at more than distance-8 apart from each
other.

5.2 Fault-Containment in Time

Theorem 2. The expected number of steps needed to contain a single fault is
independent of n, i.e., the number of nodes in the array. Hence algorithm con-
tainment is fault-containing in time.

Proof. To prove that algorithm containment is fault-containing in time, we again
consider each individual subcase of fault. We show that each subcase can be
bounded and each of them is independent of n, i.e., the size of the array. For
each individual case, we calculate the expected number of moves required for re-
covery. Essentially that means we are considering the probabilities of the system
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recovering in a single move, in two moves, in three moves etc. We denote the
number of moves (which is a random variable) as X , and Pr (X = x) denotes
the probability that the system recovers using x moves.

1. Fault at leader: Consider Fig. 1. This is a trivial case. In this scenario, both
v4 and v3 have their guards true. Each of them has an equal probability to
execute, given a chance. The system recovers in a single move if either of
them executes. So the expected number of moves required for recovery is
1× 1/2 + 1× 1/2 = 1.

2. Fault at distance-1 from the leader:
(a) The parent pointer of the faulty node becomes null: Consider Fig. 2. This

is again a trivial case. The system recovers in a single move if either v4
or v3 executes. The expected number of moves for recovery is the same
as before, i.e., 1× 1/2 + 1× 1/2 = 1.

(b) A new node becomes parent of the faulty node: The system can recover
following different sequences:
– v4, v2 or v4, v3.
– v3, · · · , v3 (x(4) − x(3) times)
– v3, · · · , v3 (x(4) − x(3)− 1 times) followed by v4, v2 or v4, v3
– v2, v4
– v2, v3, · · · , v3 followed by v2 or v4.

The length of recovery sequences of the first four situations is finite and
independent of n, and only the last sequence may be arbitrarily long. We
show that its expectation is finite. After v2 makes a move applying R2,
both of v3’s neighbor consider themselves as the leader. Hence depending
on the parent of v3, each time there are at most two enabled nodes:
v2 and v3 or v3 and v4. Therefore, the probability that the scheduler
chooses v3 is 1/2 before recovery completes. Hence, the probability of v3
being selected consecutively n times is 1/2n. Therefore, if v2 is selected
by the scheduler first, the expected length of the recovery sequence is
2 +

∑∞
n=1 n/2

n = 4.
3. Fault at distance-2 from the leader

(a) The parent pointer of the faulty node becomes null: Regardless of
the values of x(2), x(3) and x(4), no matter which node the scheduler
chooses, there is always 1/2 probability that the system recovers after
the selected node makes a move. Hence, the expected recovery time is∑∞

n=1 n/2
n = 2.

(b) A new node becomes parent of the faulty node: In our proof so far, we
assumed the value of x to be different. Proceeding in the same manner,
the rest of the expectation calculation can be done. However, for subse-
quent cases, the computation will be more complex. The constant factors
in the result will still hold, since the time complexity calculation for each
subcase will involve products of several terms like (1− 1/2m) and 1/2m.
For the sake of simplicity, we assume the value of x to be identical for
the rest of the proof.
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Following the above assumption, the expected number of moves for re-
covery will be:

E(X) = 1× 1
3

+ 3
(

1
3
× 1

2
× 1

2
+

1
3
× 1

2
× 1

2
+

1
3
× 1

4
× 1

2
+

1
3
× 1

4
× 1

2

)
+

2
3

∞∑
n=2

2n + 1
22n

=
151
108

In the same manner, the expected number of moves for recovery will be 131
54

and 115
36 for fault at distance-3 from the leader, and the expected number of

moves for recovery will be 10
9 and 29

27 for fault at distance-4 from the leader.
��

5.3 Computing the Availability

An interesting aspect of the proposed algorithm is that there is no overhead for
stabilizing the secondary variables. LCs = true as long as x(i) ∈ Z+. So, LC
holds as soon as LCp holds. This leads to the following theorem:

Theorem 3. For single failures, the fault gap equals the containment time.

5.4 Convergence

We use martingale convergence theorem to prove the convergence of algorithm
containment. We first give the definition of martingales, and then we provide
the statement of martingale convergence theorem with a corollary derived by
the martingale convergence theorem [16]. Finally we show that the corollary can
be applied in our problem.

Definition 6. Let Fn be an increasing sequence of σ-fields, and let Xn ∈ Fn for
all n. X is said to be a martingale with respect to Fn if the following conditions
hold:

1. E(|Xn|) <∞,
2. Xn is adapted to Fn,
3. E(Xn+1|Fn) = Xn for all n

If = in the last condition is replaced by ≤ or ≥, then Xn is said to be a super-
martingale or submartingale, respectively.

Theorem 4 (The martingale convergence theorem). If Xn is a submartin-
gale with sup E(X+

n ) < ∞ then as n → ∞, Xn converges almost surely (i.e. the
probability that Xn converges is 1) to a limit X with E(|X |) <∞.

Corollary 2. If Xn ≥ 0 is a supermartingale then as n→∞, Xn → X almost
surely and E(X) ≤ E(X0).
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Theorem 5. Algorithm containment is weakly-stabilizing.

Proof. We denote the number of nodes whose guards are true at step i by Xi.
Let Fi = σ < X0, X1, · · · , Xi >, we first prove that the sequence of Xi is a
supmartingale with respect to Fi: (a) E(Xi) < ∞ is trivially true as there are
n nodes in the system, so E(Xi) ≤ n. (b) Xi ∈ Fi by the definition of Fi; (c)
We show that E(Xi+1|Xi) ≤ Xi by enumerating all possible values of Xi. Xi

can only be 0, 2 or 3. Note that Xi’s value cannot be 1. There is no single-fault
configuration for which only one node’s guard can be true in the system.

1. When Xi = 0, Xi+1 = 0 as the system has reached the non-faulty configu-
ration.

2. When Xi = 2, E(Xi+1|Xi) = 1/2× 0 + 1/2× 2 = 1 ≤ 2.
3. When Xi = 3, E(Xi+1|Xi) = 1/3× 0 + 1/3× 2 + 1/3× 4 = 2 ≤ 3.

As the number of nodes whose guards are true are nonnegative, we apply corol-
lary 2 and thus Xn → X , i.e., the number of nodes whose guards are true
converge. ��

6 Conclusion

The unbounded variable x(i) can be bounded using the method described in [2].
Our proposed algorithm for array can easily be extended to tree networks. An
array is a special case of a tree network. In case of a general tree topology, one will
have to consider all the neighbors of a process i when executing the rules of the
algorithm, instead of considering at most two neighbors for an array. The analysis
will involve ∆, the maximum degree of a node,, and instead of expected recovery
in constant number of moves, the results will yield an expression in terms of ∆.
Note that this result will satisfy the definition of weak fault-containment [2].

References

1. Kutten, S., Patt-Shamir, B.: Stabilizing time-adaptive protocols. Theor. Comput.
Sci. 220, 93–111 (1999)

2. Dasgupta, A., Ghosh, S., Xiao, X.: Probabilistic fault-containment. In: Masuzawa,
T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 189–203. Springer, Heidelberg
(2007)

3. Devismes, S., Tixeuil, S., Yamashita, M.: Weak vs. Self vs. Probabilistic Stabiliza-
tion. In: 28th IEEE International Conference on Distributed Computing Systems
(ICDCS 2008), Beijing, China, June 17-20 (2008)

4. Kutten, S., Peleg, D.: Fault-local distributed mending. In: Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing, pp. 20–27
(1995)

5. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault- containing self-
stabilizing distributed algorithms. In: Proceedings of the 15th Annual ACM Sym-
posium on Principles of Distributed Computing, pp. 45–54 (1996)



Fault-Containment in Weakly-Stabilizing Systems 223

6. Beauquier, J., Genolini, C., Kutten, S.: Optimal reactive k-stabilization the case
of mutual exclusion. In: Proceedings of the 18th Annual ACM Symposium on
Principles of Distributed Computing, pp. 209–218 (1999)

7. Beauquier, J., Delaet, S., Haddad, S.: A 1-Strong Self-Stabilizing Transformer. In:
Proceedings of the Eighth Symposium on Self-Stabilizing Systems (2006)

8. Coolidge, J.L.: The Gambler’s Ruin. The Annals of Mathematics 10(4), 181–192
(1909)

9. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
In: Proceedings of the Second Workshop on Self-Stabilizing Systems, pp. 3.1-3.15
(1995)

10. Ghosh, S., Gupta, A., Pemmaraju, S.V.: Fault-containing network protocols. In:
Proceedings of 12th Annual ACM Symposium on Applied Computing (1997)

11. Gouda, M.G.: The Theory of Weak Stabilization. In: Datta, A.K., Herman, T.
(eds.) WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001)

12. Herman, T.: Superstabilizing mutual exclusion. In: Proceedings of 1st International
Conference on Parallel and Distributed Processing: Techniques and Applications
(1995)

13. Ghosh, S., Gupta, A.: An exercise in fault-containment: Self- stabilizing leader
election. Informat. Process. Lett. 5(59), 281–288 (1996)

14. Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-containing self-
stabilizing distributed protocols. Distributed Computing (2007)

15. Ghosh, S., Gupta, A., Pemmaraju, S.V.: A fault-containing self-stabilizing algo-
rithm for spanning trees. J. Comput. Informat. 2, 322–338 (1996)

16. Durrett, R.: Probability: theory and examples. Duxbury Press, Belmont (1996)
17. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms

and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)



Stability of Distributed Algorithms in the Face
of Incessant Faults

Robert E. Lee DeVille and Sayan Mitra

University of Illinois at Urbana Champaign
{rdeville,mitras}@illinois.edu

Abstract. For large distributed systems built from inexpensive com-
ponents, one expects to see incessant failures. This paper proposes two
models for such faults and analyzes two well-known self-stabilizing al-
gorithms under these fault models. For a small number of processes,
the properties of interest are verified automatically using probabilistic
model-checking tools. For a large number of processes, these properties
are characterized using asymptotic bounds from a direct Markov chain
analysis and approximated by numerical simulations.

1 Introduction

Self-stabilization guarantees automatic fault-tolerance: after a fault, the system
may deviate from its desirable behavior for a finite amount of time, but it even-
tually reaches a desirable (or legal) state automatically. This property is partic-
ularly attractive in large distributed systems where manual failure management
is impractical. Self-stabilizing algorithms for mutual exclusion, leader election,
spanning tree construction and other distributed computation tasks have been
extensively studied (see for example [1,2,3]). These algorithms guarantee that
once failures cease a legal state is reached in a finite number of steps. Often the
number of steps (and therefore the amount of time) required for recovery from
even a single failure grows at least linearly with the size of the system, and it is
assumed that no further failures occur during this period. For these algorithms
to be valid, the failure probability times the number of components must be
significantly less than one.

Distributed systems built from off-the shelf components and deployed in harsh
environments [4,5,6] will experience frequent component failures. As a result,
these systems may not experience failure-free periods which are long enough
to recover completely to a legal state. In this paper, we initiate a systematic
investigation of distributed algorithms in the face of such incessant failures.
Random transmission and link failures have been studied recently in [7,8]. Also,
fault-tolerance with respect to a locally bounded number of faults (as opposed to
globally bounded) has been studied in [9]. To the best of our knowledge, however,
our work is the first attempt at investigating distributed systems under random
failures with bounded failure rate.

In the face of incessant faults, the system will not stabilize, i.e. enter a legal
state and remain there. However, not all illegal states are equivalent; some are
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worse than others. For a given distributed system with state space X , define
Q : X → R, which determines “how far” each state is from legal: legal states are
those for which Q = 0, and high Q states are ones which are particularly bad.
We show below how to use a Markov chain to model a distributed system under
incessant faults. The Markov chain (under weak assumptions) will have a unique
invariant measure π which leads to natural global measures of performance (e.g.
the mean of Q, Prob(Q > k) for some k, etc.). If one knows π, then one can
compute all of these, but in general, it is difficult to compute π explicitly.

Two observations emerge from the results in this paper. First, the measure
π depends significantly on the types of allowed faults, i.e. changing the fault
model leads to a significantly different “typical state” during the evolution of a
system. Secondly, since a post-fault state depends on the pre-fault state, which
itself depends on the output of the algorithm after a random number of steps,
etc., one can no longer assume that the stabilization process and the faults are
decoupled. That is, when the faults occur on a timescale comparable to (or shorter
than) the stabilization time, the system and the faults interact in complicated
ways. This leads to some surprising and non-intuitive phenomena and requires
a novel approach to the analysis of such systems.

In this paper, we take a first step towards development of this general theory.
Specifically, we do the following:

We define two incessant fault models, the update (U) fault and the sleep-
update (S/U) fault. Roughly, an update fault only occurs when a process at-
tempts to update its state; a sleep-update fault can occur at any time. Each
type of fault transforms a given stochastic automaton model of a fault-free dis-
tributed algorithm into a new stochastic automaton with additional probabilistic
transitions. In particular, for synchronous distributed algorithms, the resulting
fault-transformed system is a Markov chain. Next, we analyze Dijkstra’s self-
stabilizing token ring algorithm (TR) [10] and a randomized graph coloring al-
gorithm (GC) from [11] under incessant faults. First, for a small number (N ≈ 7)
of participating processes, we verify quantitative properties of these algorithms
using probabilistic model checkers [12,13]. This analysis is automatic and pro-
vides exact values for quantitative properties, however, owing to the state space
explosion it does not scale well with N . Second, we use techniques from prob-
ability theory to analyze the underlying Markov processes of TR. The insight
gained from the Markov chain analysis allows us to understand how TR tends
to fail under the U and S/U fault models, and this naturally leads to a modified
version, namely TR2, which, as we show, performs significantly better under in-
cessant faults. Finally, we perform simulations of both algorithms for large N to
give an idea how several performance metrics depend on parameters.

The results of this paper suggest performing an analogous analysis of many
well-known self-stabilizing algorithms for routing, maximal independent set,
leader election [3], etc. We expect that the specific phenomena observed here
will be representative of a wide range of models, and analysis along these lines
will be very useful in developing new algorithms which are robust to inces-
sant faults. Moreover, the scaling problems we encounter with standard model
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checkers suggests the exploration of parallelizable statistical tools such as [14,15],
and further emphasizes the need for new tools and techniques.

2 Background and Fault Models

There are several formalisms for compositionally specifying randomized dis-
tributed algorithms (see, for example [16,17,18,19] and the references therein).
We describe fault-prone algorithms as stochastic automata, which are simplified
versions of the Probabilistic I/O Automata of [20].

We denote the set of probability distributions over a set S by P(S). In de-
scribing the states of processors in a distributed system, we find it convenient
to use a variable structure. Let X be a set of variables. Each variable x ∈ X ,
is associated with a type, denoted by type(x), which is the set of values that x
may take. A valuation of the variables in X is a function that associates each
x ∈ X with a value in type(x). A particular valuation for a set of variables X is
written as x, and the value of an individual variable x is denoted by x.x. The
set of all valuations of X is denoted by V al(X). For a valuation x ∈ V al(X),
the restriction of x to Y ⊆ X is denoted by x ! Y . For a probability distribution
µ ∈ P(V al(X)) the marginal distribution of µ on Y ⊆ X is denoted by µ ! Y .

2.1 Stochastic Automata

Definition 1. A Stochastic Automaton (SA) A is a 4-tuple (X,U, µ̄,→), where
(1) X is a set of state variables, V al(X) is called the set of states, (2) U is a
set of input variables, (3) µ̄ ⊆ P(V al(X)) is an initial distribution on states,
and (4) →⊆ V al(U)×V al(X)×P(V al(X)) is a set of probabilistic transitions,
satisfying: (D) for each u ∈ V al(U),x ∈ V al(X), there exists µ ∈ P(V al(X))
such that (u,x, µ) ∈→.

The input variables provide a mechanism for modeling inter-automata commu-
nication. For example, the state variable of one automaton may act as inputs
to others. In a synchronous distributed system, this variable-based communica-
tion can be implemented by message passing. In this paper, we assume existence
of unique initial distribution of SA for the sake of convenience; the metrics we
analyze in Sections 3 and 4 are in fact independent of the initial distributions.

Notation. If (u,x, µ) ∈→, we write (u,x) → µ. For a SA A we denote its com-
ponents by UA, XA, µ̄A and →A, respectively, and for a SA A1 its components
are denoted by U1, X1, µ̄1 and →1.

Informally, each execution or run ofA is a (possibly infinite) sequence (u0,x0),
(u1,x1), . . .. Each pair in the sequence corresponds to a probabilistic transition
or a step. Throughout this paper, we use the “time” and “number of steps”
synonymously. As in [20], we can define the probability measures over sets of
executions of A by resolving the nondeterminism with a scheduler, however, for
this paper we work with a restricted class of SAs which simplifies the formal
framework.
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A is said to be finite if V al(XA) is finite, closed if UA = ∅, pure if for
every u ∈ V al(U),x ∈ V al(X) there exists a unique µ satisfying condition
(D), and deterministic if for every (u,x) →A µ, µ is a Dirac delta distribution.
A particular probabilistic transition u,x → µ is said to be active if µ �= δx,
otherwise it is passive. (Throughout this paper δx is the Dirac measure at x.)
A state x ∈ V al(X) is said to be stable if for all u ∈ V al(U) there are no
active transitions from (u,x). Clearly, a closed, pure SA A is equivalent to a
discrete time Markov chain (DTMC) with state space V al(XA). Suppose PA is
the transition matrix of this equivalent Markov chain.

Example 1. The pseudocode in Figure 1 specify ordinary (Left) and special
(Right) processes participating in Dijkstra’s token ring [10]. The natural num-
bers N and K are parameters. TRi, 0 < i < N , is a deterministic, finite-state SA
with the following components: (1) set of state variables Xi = {xi}, where xi is
a variable of type {0, . . . ,K − 1}, (2) set of input variables Ui = {xi−1}, where
xi−1 is a variable of type {0, . . . ,K − 1}, (3) µ̄ is the uniform distribution over
V al(Xi), (4) for each u ∈ V al(Ui),x ∈ V al(Xi), (u,x) → µ iff (i) u.xi−1 = x.xi

and µ = δx, or (ii) u.xi−1 �= x.xi and µ = δx′ , where x′ is the valuation that
assigns u.xi−1 to xi.

automaton TR(N,K:N,const i �= 0)
variables

state xi: {0, . . . , K − 1} := uni[{0, . . . , K − 1} ]
input xi−1: {0, . . . , K − 1}

transitions
pre xi �= xi−1
eff xi := xi−1

automaton TR(N,K:N,const i = 0)
variables

state x0: {0, . . . , K − 1}
:= uni[{0, . . . , K − 1} ]

input xN−1: {0, . . . , K − 1}

transitions
pre x0 = xN−1
eff x0 := x0 + 1 mod K

Fig. 1. SA models for token ring. Left: processes i = 1 . . . N − 1, Right process i = 0.

The parallel composition operation on SA is used for building models of dis-
tributed systems where several processes execute concurrently and communi-
cate through shared input variables. Roughly, the composed SA is obtained by
taking the union of the variables of the component automata and merging the
transitions.

Definition 2. Two SA are compatible if they have disjoint set of state variables.
Given a pair of compatible SA A1 and A2 their composition, denoted by A1‖A2,
is defined as the structure (U,X, µ̄,→), where (1) X = X1 ∪ X2, (2) U =
(U1 ∪ U2) \ X, (3) µ̄ = µ̄1 × µ̄2, and (4) → is defined as follows: for each
u ∈ V al(U),x ∈ V al(X), µ ∈ P(V al(X)), (u,x) → µ iff for each i ∈ {1, 2}
((u,x) ! Ui, (u,x) ! Xi)→i µi ! Xi.

It is easy to check that (finite, pure, deterministic) SA are closed under com-
position. The composition operation is inductively extended to multiple SA in
the obvious way. A particular probabilistic transition u,x→ µ of the composed
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stochastic automaton A = A1‖A2 is said to be active with respect to A1 if
µ ! X1 �= δx�X1 .

Example 2. The overall token-ring system TR(N,K) is specified as composition
of TR(N,K, 0)‖ TR(N,K, 1)‖ . . . TR(N,K,N−1). We define the following func-
tions which will be useful later:

token(x, i) = (i = 0 ∧ x.x0 = x.xN−1) ∨ (i �= 0 ∧ x.xi �= x.xi−1)
hastoken(x) = {i | token(x, i)}, legal(x) = (|hastokens(x)| = 1).

Here x is a valuation of all the variables of TR and i ∈ {0, . . . , N − 1}.

2.2 Incessant Fault Models

We introduce two models for random incessant faults. These faults introduce ad-
ditional probabilistic transitions in a SA A which capture the effect of the faults
on state variables of A. Update faults capture (possibly transient) faults in the
memory, disk drives, network interface cards, while sleep-update faults capture
the effects of stochastic disturbances such as transient hardware faults, power
surges, cosmic rays, and corruption of messages. First, we define how incessant
faults transform the SA models for individual processes. In the update(U) fault
model, whenever a SA A performs a computation and sets new values to its
state variables, with some probability a fault occurs and the variable is set to
an arbitrary value.

Definition 3. Given a SA A, the U-faulty version of A with rate ε ∈ (0, 1] is
a SA B = (XB, UB, µ̄B,→ B), where UB = UA, XB = XA, µ̄B = µ̄A, and →B is
defined as follows: for every (u,x) →A µ where µ �= δx, (u,x) →B µ′, where for
every x′ ∈ V al(X), µ′(x′) is defined as (1 − ε)µ(x′) + ε

|V al(X)| .

It is clear from the above that if A is pure (also closed) then so is B. Also, once B
reaches a stable state, update faults do not occur. The above is the definition of
U -faults for a single process; the faulty model for a complete distributed system
is obtained by composing the transformed SA for the individual processes.

Sleep-update faults may affect the state of the system even after a stable state
is reached: at every step, each state variable may be reset to an arbitrary value
with some small probability.

Definition 4. Given a SA A, the S/U-faulty version of A with rate ε ∈ (0, 1]
is a SA B = (XB, UB, µ̄B,→ B), where UB = UA, XB = XA, µ̄B = µ̄A, and
→B is defined as follows: for every (u,x) →A µ, (u,x) →B µ′ where for every
x′ ∈ V al(X), µ′(x′) = (1 − ε)µ(x′) + ε

|V al(X)| .

Example 3. The pseudocode in Figure 2 specifies the version of TRi under S/U-
faults. The parameter ε serves as the rate for incessant faults. STRi, i �= 0, is a
SA with set of state variables, input variables, and initial distribution identical to
that of TRi of Figure 1. The specification of the version with U-faults, denoted by
UTRi, is identical to STRi, except that the second set of probabilistic transitions
is absent. The code for the transitions specify the probabilistic transitions.
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automaton STR(N,K:N,const i �= 0, ε : (0, 1))
variables

state xi: {0, . . . , K − 1}
:= uni[{0, . . . , K − 1} ]

input xi−1: {0, . . . , K − 1}

transitions
pre xi = xi−1
eff xi := xi−1 with prob (1 − ε) +

k : {0, . . . , K − 1} with prob ε/K;

pre xi = xi−1
eff xi := xi with prob (1 − ε) +

k : {0, . . . , K − 1} with prob ε/K;

Fig. 2. TR with incessant sleep-update (S/U) faults

3 Token Ring

In this section, we analyze S/U-faulty and U-faulty version of Dijkstra’s to-
ken ring algorithm TR(N,K) (see Figure 2). First, we use probabilistic model-
checking to exactly verify quantitative properties of the faulty systems. These
techniques are automatic and they provide exact answers to a rich class of quan-
titative questions; however, they do not scale to systems with large number of
processes. Our second approach analyzes the Markov chain corresponding to
these systems directly; this allows us to determine bounds on the probabilities
of various events. This analysis enables us to prove properties of the faulty sys-
tem with arbitrarily large number of processes assuming that the fault rates are
not too large; specifically, we assume that faults are rare enough so that it is
unlikely to see more than one fault during any single transition, but common
enough that many faults may occur during a self-stabilization process.

Analysis for smallN . Probabilistic model checking tools (including PRISM [12]
and MRMC [13]) can be used for verifying quantitative properties of Stochastic
Automata, Markov Chains, and Markov Decision Processes. Given (a) a descrip-
tion of the model and (b) a property, a model checker returns true or false de-
pending on whether the property is satisfied in all states of the system or not. For
probabilistic model checking, properties may include boolean predicates as well
as quantitative statements about the probability of certain states and executions
(paths). These properties are described using probabilistic extensions of temporal
logics such as Probabilistic Computational Tree Logic (PCTL) [12], Continuous
Stochastic Logic (CSL) [21], and QuaTEx [14].

For the token ring system under U-faults and S/U-faults we are interested in
the following quantitative properties:

Steady State(SS). For each k ∈ {1, . . . , N}, define SS(k) as the probability of the
system being in any state x with |hastokens(x)| = k, where this probability
is taken with respect to the invariant measure of the Markov chain.

Expected Stabilization Time (EST). For a state y, define L(y) to be the ex-
pected number of steps required to reach a state x satisfying legal(x).
The EST of an algorithm under a certain error model is then defined as
maxyL(y). (N.B.: Under S/U-faults the legal states are no longer absorb-
ing, so this quantity is more pertinent for U-faults.)
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Fig. 3. Top: Steady state probabilities (SS) for TR under U-faults (Left) and S/U-faults
(Right). Bottom: EST for TR under U-faults (Left) and S/U-faults (Right).

Expected Retention Time (ERT). Define R(i) as the expected time to reach a
state y with ¬token(y, i), given that we start at a state x with token(x, i),
and define the ERT as maxi R(i).

The EST metric is useful in applications where just reaching a stable state allows
a higher level application to make progress. For example, in a wireless system
where graph coloring (see Section 4) is used for channel frequency assignments,
reaching a stable coloring means that a node can send a packet successfully
(at least for one round). We computed SS, EST, and ERT for N = 4 . . . 71

with different fault rates ε = 0.2, 0.4, 0.6 and 0.8. Typical results are shown in
Figure 3. In the case of U-faults (UTR), as ε → 0 the probability of observing
k > 1 tokens drops off and the probability of observing a single token approaches
1. In the case of S/U-faults (STR), the probability of observing k > 1 tokens
also drops to 0 but at a slower rate. These observations comport with general
results on limits of regularly-perturbed Markov chains [22].

1 Modelchecking larger systems proved to be impractical with PRISM.
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Fig. 4. Simulation of UTR for N = 200, K = 201, ε = 0.15. Left: a raster plot of the
locations of the tokens versus time. Right: Total number of tokens versus time; the
number of tokens in each cycle grow to about εN = 30; this process is roughly periodic
with period N .

For computing the expected stabilization times (EST) we assign a reward of
1 unit to every transition of the system and then we check for the following
property in PRISM: R=?[F legal {|hastokens| = k}]. Here F is the eventual
operator and R is the expected reward operator in temporal logic. Both the EST
and ERT increase with fault rates, and this increment is much more pronounced
in STR.

Analysis for large N. For large N , we consider the Markov chain correspond-
ing to UTR(N,K, ε) and analyze it directly; our observable Q will be the number
of tokens.

We denote t ∈ N as the round number, Tt as the (random) number of tokens
at round t, and Lt as the (random) subset of {0, . . . , N − 1} giving the locations
of the tokens at round t. Whenever a process changes value, it goes to the
correct value with probability 1 − ε(K − 1)/K (there is a ε/K probability of a
fault accidentally giving the right answer) and to any given incorrect state with
probability δ := ε/K).

First consider the case of a single token in the system: Tt = 1, Lt = {n}, n �= 0.
Then xi = a for i = 0, . . . , n− 1 and xi = b for i = n, . . . , N − 1 for some a �= b.
The only process which will change is the nth, and without a fault the new
value would be a; however, with faults we have P (xn 	→ a) = 1− ε + δ, P (xn 	→
b) = δ, P (xn 	→ c) = (K − 2)δ, where c �= a, c �= b. Changing to b is an error,
but does not change the number of tokens, so the probability of having two
tokens after the update is (K − 2)δ. Thus, if Tt = 1 ∧ Lt = {n}, n �= 0, then
P (Tt+1 = 1) = 1 − (K − 2)δ, P (Tt+1 = 2) = (K − 2)δ. On the other hand, if
Lt = {0}, then the state of the system is xi = a for all i. The correct transition
would be for x0 	→ a+1, but even if there is an incorrect transition x0 	→ b �= a+1,
the process still has one correct token.

Now consider the case of multiple tokens. We first assume that there are
multiple tokens in a row, but away from the 0 process: Tt = q, Lt = {n, n +
1, . . . , n + q − 1}, 0 �∈ Lt. We show the result of one update, where we assume
correct execution, and we denote by stars those states for which an error is
possible:
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process: n− 1 n n + 1 n + 2 . . . n + q − 2 n + q − 1 n + q

before: xn−1 xn xn+1 xn+2 . . . xn+q−2 xn+q−1 xn+q−1

after: xn−1 x∗
n−1 x∗

n x∗
n+1 . . . x∗

n+q−3 x∗
n+q−2 xn+q−1

Consider the (n+1)st process; it should have a token under correct execution.
But even if there is an update fault, unless the new value is one of the two values
xn−1, xn+1, then it will still have a token. If the fault occurs at the (n + 1)st
process, then the probability of decreasing the number of tokens is either 2δ
or δ (it is the latter if xn−1 = xn+1). This holds true for all of the processes
n + 1, . . . , n + q − 1. The process cannot decrease the number of tokens if the
update fault occurs at process n. Thus the probability of decreasing the number
of tokens by one is, to leading order, bounded above by (2q−1)δ. If the new value
of process n is anything other than xn−1 or xn, then this increases the number of
tokens, so the probability of an increase in tokens is (K−2)δ. Therefore, whenever
Tt = q, Lt = {n, n+1, . . . , n+q−1}, we have P (Tt+1 = q+1) = δ(K−2)+O(δ2),
and P (Tt+1 = q − 1) ≤ δ(2q − 1) + O(δ2).

Finally, consider the case where there are multiple tokens, but the set of tokens
is not contiguous. Each contiguous block of tokens will act as if there are no other
tokens in the system, since the entire algorithm is local. Thus, if we have l blocks
of lengths ql, with

∑
ql = q, then the probability of decreasing the number of

tokens is then bounded above by δ
∑

l(2ql−1)+O(δ2) ≤ ε(2q−1)/(K−1)+O(ε2),
while the probability of increasing the number of tokens is δ

∑
l(K−2)+O(δ2) =

εl(K−2)/(K−1)+O(ε2). In short, more blocks means more likelihood of gaining
a token, since tokens are created on the boundaries of blocks of tokens.

Consider a run of tokens next to the 0 process, i.e. Lt = {N − q, . . . , N − 1}.
If none of the values xN−q, . . . , xN−1 are equal to x0, then each of these values
updates to its predecessor, but the 0 process would stay fixed (notice the 0
process is sleeping throughout). This ends with exactly one token at 0 after q
updates. If, however, one of these tokens is equal to x0, this creates an erroneous
token; as these q updates progress, we create an erroneous token each time there
is a coincidence between states N−1 and 0. Since the incorrect states are chosen
randomly, we expect about q/K of these coincidences.

We are now prepared to describe the typical “life cycle” of UTR. Start with
a single token at process 0. The earliest a token can cycle around and reach
0 again is after N computational steps, so we want to compute the number of
tokens we would expect to have after N steps, or TN . Using the bounds on tokens
increasing or decreasing, define T̃t as the stochastic process with T̃0 = 1 and

P (T̃t+1 = T̃t + 1) = ε(K − 2)/(K − 1),

P (T̃t+1 = T̃t − 1) = ε(2q − 1)/(K − 1),
(1)

and T̃t+1 = T̃t otherwise. By Chernoff’s Theorem [23, Theorem 9.3], we have
that P(T̃t < Tt) ∼ eρt for some ρ < 0. Rescaling and passing to the limit [24,
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Theorem 5.3] that, with probability exponentially close (in N) to one,

T̃N =
N

2
(1− e−2ε) + o(N) ≈ εN.

Thus if the system starts with a single token at the 0 process, the process will
eventually generate a run of tokens of length q ≈ εN , but this run will be
effectively cleared up when it reaches process 0 — in fact, the mean number
of tokens which survive after this run of tokens is absorbed by zero is about
q/K ≈ εN/K < ε.

The simulations shown in Figure 4 corroborate the above analysis. These
results are obtained by encoding a virtual token ring in Matlab. In every time-
step, we first compute the correct transition. We then determine which processes
could have a fault in this step (for the U model, the processes which updated;
for the S/U model, all processes). For each processes which could have a fault,
we chose an random number in [0,1]; if it was less than ε, then that process has
an error, i.e. it is set to a randomly chosen value in {0, ...,K − 1}.

Modified Token Ring algorithm TR2. The TR algorithm does not perform
well in the presence of incessant faults, even if they are only U-faults. One
insight gained in the probabilistic arguments above is that, in the U-fault model,
multiple tokens tend to come in runs. A simple way to correct this is to change

Fig. 5. Left: Steady state distribution of TR2 under update faults. Right: EST of TR2
under sleep-update faults for N = 5.
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automaton TR2(N,K:N,const i > 1)
variables

state xi: {0, . . . , K − 1} := uni[{0, . . . , K − 1} ]
input xi−1, xi−2: {0, . . . , K}

transitions
pre xi �= xi−1 ∧xi−1 = xi−2
eff xi := xi−1

Fig. 7. Modified token ring algorithm

the algorithm so that no process attempts to enter a state in which both it, and
its predecessor, have a token. One such method is a “two lookbacks” version of
TR, where each process looks at the inputs from two predecessors; we call this
algorithm TR2. Basically, the algorithm looks to the two previous processors,
and updates to its predecessor only if the previous two agree, otherwise it sleeps
(see Figure 7). In Figure 5 we display the performance of TR2 with 5 processes
using PRISM, and in Figure 6 for 100 processes using simulations. TR2 works
significantly better than TR for both error models and in all parameter regimes.

4 Graph Coloring

We analyze S/U-faulty and U-faulty versions of the randomized graph coloring
algorithm from [11]. The pseudocode in Figure 8 describes the self-stabilizing
graph coloring algorithm. Fix an undirected graph G with N vertices. For each
vertex i ∈ {0, . . . , N − 1} in the graph, the set of neighbors (adjacent vertices)
of i is denoted by NBi, K = maxi |NBi| is the maximum degree of G, and
define the palette P of colors as the set {0, . . . ,K}. GCi, 0 ≤ i ≤ N − 1, is a SA
with the following components: (1) A set of state variables Xi = {xi}, where
xi is of type P , and the value of xi is the color of vertex i. (2) A set of input
variables Ui = {xj |j ∈ NBi}, where each xj is a variable of type P . NCi is a
derived variable; its value is the set of colors (values) of the neighbors of i. (3) An
initial distribution µ̄ that is uniform over V al(Xi), and (4) a set of probabilistic
transitions we now define. We say that there is a collision at vertex i if the color
of i is in NCi. If there is a collision at i, process i picks a color in P \ NCi

uniformly at random. Define

conflict(x, i) = ∃ j ∈ NBi,x.xj = x.xi

hasconflict(x) = {i|conflict(x, i)}, legal(x) = (|hasconflict(x)| = 0).

For the graph coloring algorithm under U-faults and S/U-faults we are interested
in the following quantitative properties:

Steady State(SS) : SS(k) is the probability of the system being in a state x
satisfying |hasconflicts(x)| = k, for some k ∈ {0, . . . , N}.

Expected Stabilization Time (EST) : Starting from an arbitrary state with k
conflicts, the maximum expected time to reach a legal state.
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automaton GC(N:N, P:set[N ], const i �= 0)
variables

state xi: P := uni[P ]
input xj : P where j ∈ NBi

derived
NCi: Set[P ] := {xj|j ∈ NBi}

transitions
pre xi ∈ NCi

eff xi := uni[P \ NCi]

Fig. 8. Self-stabilizing graph coloring algorithm autoGC

Analysis for Small N. Just as was done for the token ring system, our analysis
for UGC and SGC for a small number of processes employs the PRISM and
MRMC model checkers. We compute SS and EST for randomly generated graphs
with N = 4 . . . 7 with different error rates ε = 0.2, 0.4, 0.6 and 0.8. Typical results
are shown in Figures 9. For U-faults (UGC), the states with no conflicts have
a steady-state probability of 1. This is because under U-faults, once a legal
configuration is reached, the system undergoes no further transitions, i.e. the
legal states are absorbing states of UGC. In the case of S/U-faults (SGC), the
steady-state probability of observing k > 0 conflicts is positive but it drops
to 0 as the error rate goes to 0. For example, we observe that with an error
rate of ε = 0.2, there is a 5% probability of observing 4 conflicts in the long
run. This type of quantitative results will be useful for analyzing performance
of higher-level applications that use graph coloring as a service, e.g., assignment
of channels in a multi-channel wireless network. Both for UGC and SGC, the
expected time to stabilize (EST) to a legal state decreases as the error rate
decreases. As expected the value of the EST for SGC is higher than that of UGC.

Fig. 9. GC(5, 4) under sleep-update (Top) faults SGC and update faults (Bottom) UGC.
Left: Steady state distribution. Right: Expected Stabilization Times (EST).
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Fig. 10. Numerical simulation for UGC (Top) showing the time to reach a legal state
and and SGC (Bottom) showing the mean number of collisions. In each case, we plot
the same data versus both ε and ρ.

Analysis for Large N. We present numerical simulations for UGC and SGC
in Figure 10. The obtain the undirected random graphs we choose N vertices
uniformly at random in the unit disk, fix a communication radius ρ ∈ [0, 2], and
add edges between vertices that are within distance ρ of one another. Each data
point corresponds to choosing an ensemble of ens graphs with a given ρ, each of
which is simulated with fault rate ε; the point plotted is the ensemble mean and
the error bars are the ensemble standard deviation. For UGC we plot the EST;
for SGC, we instead plot the average number of collisions over a long run. In
either case, a higher number is a signature of the poor performance. Of course,
both of these metrics worsen when ε is increased, but there is a plateau (perhaps
even a nonmonotonicity) for ρ ∈ (1/2, 1). Surprisingly, in this range increasing
the communication radius does not adversely affect performance.
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Abstract. Self-stabilization is an elegant way of realizing non-masking
fault-tolerant systems. Sustained research over last decades has produced
multiple self-stabilizing algorithms for many problems in distributed com-
puting. In this paper, we present a framework to evaluate multiple self-
stabilizing solutions under a fault model that allows intermittent transient
faults. To that end, metrics to quantify the dependability of self-stabilizing
systems are defined. It is also shown how to derive models that are suitable
for probabilistic model checking in order to determine those dependability
metrics. A heuristics-based method is presented to analyze counterexam-
ples returned by a probabilistic model checker in case the system under
investigation does not exhibit the desired degree of dependability. Based
on the analysis, the self-stabilizing algorithm is subsequently refined.

1 Introduction

Self-stabilization has proven to be a valuable design concept for dependable sys-
tems. It allows the effective realization of non-masking fault-tolerant solutions
to a problem in a particularly hostile environment: an environment subject to
arbitrarily many transient faults potentially corrupting the self-stabilizing sys-
tem’s run-time state of registers and variables. Consequently, designing a self-
stabilizing system is not an easy task, since many scenarios due to faults must
correctly be handled beyond the fact that the system has to solve a given prob-
lem when being undisturbed by faults. The formal verification of a self-stabilizing
solution to a given problem is therefore often quite complicated. It consists of a
1) convergence proof showing that the system eventually returns to a set of sys-
tem states (called safe or legal states) where it solves the given problem and 2)
a closure proof showing that once within the set of legal states, it does not leave
this set voluntarily in the absence of faults occurring. Whereas the closure proof
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is often not too complicated, the convergence proof may become extremely chal-
lenging. It requires some finiteness argument showing the return of the system
to the legal state set in a finite number of computational steps in the absence of
newly manifested faults.

As discussed,finding a self-stabilizing solution to a givenproblemaswellas prov-
ing its self-stabilization property are generally not easy and present areas of agile
research. But what, if multiple self-stabilizing solutions to a problem are already
known? Which solution should be preferred and therefore be chosen?Clearly,many
criteria do exists and their relevance depends on the concrete application scenario.

In this paper, we focus on dependability properties of those systems. For
example: “Does the given self-stabilizing system exhibit a system availability of
at least p?” with system availability being only an example of a dependability
metrics. Other metrics are, e.g., reliability, mean time to failure, and mean time
to repair. Based on the evaluation of relevant dependability metrics, a decision
should be taken of which solution out of the set of present solutions should
be chosen and put to work for ones purposes. By building on [1], we present
useful dependability metrics for differentiating among self-stabilizing solutions
and show how to evaluate them. For this purpose, we propose the modeling of
a self-stabilizing algorithm together with the assumed fault model in terms of a
discrete-time Markov decision process or a discrete-time Markov chain. Whereas
the former modeling allows – with the help of a probabilistic model checker
– to reason about the behavior of the system under any fair scheduler, the
latter modeling is suitable if concrete information about the scheduler used in
the system setting is available. The self-stabilizing solution exhibiting the best
dependability metrics value can then easily be identified and used.

Furthermore, we show a possible way out of the situation where all available
self-stabilizing solutions to a given problem have turned out to fail in the sense
described above: if the dependability property under investigation cannot be
verified for a particular system, then an automatically generated counterexample
(being a set of traces for which, as a whole, the property does not hold) is
prompted. By analyzing the counterexample, the self-stabilizing algorithm is
then refined and again model-checked. This refinement loop is repeated until the
dependability property is finally established or a maximal number of refinement
loops has been executed.

In the scope of the paper, wrt. abstraction scheme and system refinement, we
restrict ourselves to silent self-stabilizing algorithms and a dependability metrics
being a notion of limiting (system) availability called unconditional limiting avail-
ability in a system environment where faults “continuously keep on occurring.”
Silent self-stabilizing algorithms do not switch among legal states in the absence
of faults. Unconditional limiting availability is a generalization of limiting avail-
ability in the sense that any initial state of the system is allowed. Finally, with the
more general fault model, we believe that we can analyze self-stabilizing systems
in a more realistic setting: contrarily to other approaches, we do not analyze the
system only after the last fault has already occurred but always allow faults to
hamper with the system state.
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The paper is structured as follows: in Section 2, we give an overview of
related work. Then, in Section 3, we introduce useful dependability metrics
for self-stabilizing systems. Additionally, we state the model used for depend-
ability metrics evaluation based on discrete-time Markov decision processes or
discrete-time Markov chains. Section 4 describes the refinement loop and thus,
dependability engineering based on probabilistic model-checking, counterexam-
ple generation, counterexample analysis, and silent self-stabilizing system refine-
ment along with an abstraction scheme to overcome scalability problems. Section
5, finally, concludes the paper and sketches our future research.

2 Related Work

The body of literature is replete with efforts towards the engineering of fault-
tolerant systems to increase dependability. In [2], a formal method to design a
– in a certain sense – multitolerant system is presented. The method employs
detectors and correctors to add fault tolerance with respect to a set of fault
classes. A detector checks whether a state predicate is satisfied during execution.
A corrector ensures that – in the event of a state predicate violation – the
program will again satisfy the predicate. It is further shown in [3] that the
detector-corrector approach can be used to obtain masking fault-tolerant from
non-masking fault-tolerant systems. But, despite its elegance, the fault model
used in their applications admits only transient faults.

Ghosh et al. described in [4] an approach to engineer a self-stabilizing system
in order to limit the effect of a fault. A transformer is provided to modify a
non-reactive self-stabilizing system such that the system stabilizes in constant
time if a single process is faulty. However, there is a trade-off involved in us-
ing the transformer as discussed in [5]. The addition of such a transformer to
limit the recovery time from a single faulty process might lead to an increase in
stabilization time.

A compositional method, called “cross-over composition,” is described in [6]
to ensure that an algorithm self-stabilizing under a specific scheduler converges
under an arbitrary scheduler. This is achieved by composing the target “weaker”
algorithm with a so-called “strong algorithm” such that actions of the target
algorithm are synchronized with the strong algorithm. The resultant algorithm
is self-stabilizing under any scheduler under which the strong algorithm is proven
to be self-stabilizing. However, the properties of the strong algorithm determine
the class of schedulers admissible by the composed algorithm.

Recent advances in counterexample generation for stochastic model checking
has generated considerable interest in using the information given by the coun-
terexamples for debugging or optimizing systems. An interactive visualization
tool to support the debugging process is presented in [7]. The tool renders vio-
lating traces graphically along with state information and probability mass. It
also allows the user to selectively focus on a particular segment of the violating
traces. However, it does not provide any heuristics or support to modify the
system in order to achieve the desired dependability property. Thus, the user
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must modify systems by hand without any tool support. In addition to these
shortcomings, only models based on Markov chains are handled by the tool. In
particular, models containing non-determinism cannot be visualized.

We will next describe the method to evaluate dependability metrics of self-
stabilizing systems with an emphasis on silent self-stabilizing systems.

3 Dependability Evaluation of Self-stabilizing Systems

We now present a procedure with tool support for evaluating dependability met-
rics of self-stabilizing systems. A self-stabilizing BFS spanning tree algorithm
given in [8] is used as a working example throughout the sections to illustrate
each phase of our proposed procedure. Note that the method nevertheless is
applicable to any other self-stabilizing algorithm as well.

3.1 Dependability Metrics

The definition and enumeration of metrics to quantify the dependability of a self-
stabilizing system is the linchpin of any approach for dependability evaluation.
This becomes particularly critical in the case of self-stabilizing systems as the
assumptions made about the frequency of faults may not hold true in a given
implementation scenario. That is, faults may be intermittent and the temporal
separation between them, at times, may not be large enough to allow the system
to converge. In this context reliability, instantaneous availability, and limiting
availability have been defined for self-stabilizing systems in [1]. An important
part of these definitions is the notion of a system doing “something useful.” A
self-stabilizing system is said to do something useful if it satisfies the safety
predicate (which in turn specifies the set of legal states) with respect to which
it has been shown to be self-stabilizing.

We now define the mean time to repair (MTTR) and the mean time to failure
(MTTF) along with new metrics called unconditional instantaneous availability
and generic instantaneous availability for self-stabilizing systems. These metrics
are measures (in a measure theoretic sense) provided the system under study
can be considered as a stochastic process. It is natural to consider discrete-state
stochastic processes, where the set of states is divided into a set of operational
states (“up states”) and of disfunctional states (“down states”).

The basic definition of instantaneous availability at time t quantifies the prob-
ability of being in an “up state” at time t [9]. Some variations are possible with
respect to the assumption of the system being initially available, an assumption
that is not natural in the context of self-stabilizing systems, since these are de-
signed to stabilize from any initial state. Towards that end, we define generic
instantaneous availability and unconditional instantaneous availability and apply
them in the context of self-stabilizing systems. Our natural focus is on systems
evolving in discrete time, thus where the system moves from states to states in
steps. Time is thus counted in steps, and si refers to the state occupied at time i.

Generic instantaneous availability at step k AG(k) is defined as probability
Pr(sk |= Pup | s0 |= Pinit), where Pup is a predicate that specifies the states
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where the system is operational, doing something useful, Pinit specifies the initial
states.

Unconditional instantaneous availability at step k AU (k) is defined as the
probability Pr(sk |= Pup | s0 |= true).

Unconditional instantaneous availability is the probability that the system is
in “up state” irrespective of the initial state. Generic instantaneous availability
is the probability that the system is in “up state” provided it was started in
some specific set of states. As k approaches ∞ – provided the limit exists –
instantaneous, unconditional, and generic instantaneous availability are all equal
to limiting availability.

The above definitions can be readily used in the context of silent self-stabili-
zing systems by assigning Pup = PS , where PS is the safety predicate of the
system. Hence, unconditional instantaneous availability of a silent self-stabilizing
system is the probability that the system satisfies its safety predicate at an
instant k irrespective of its starting state. Generic instantaneous availability of a
silent self-stabilizing system is the probability of satisfying the safety predicate
provided it started in any initial state characterized by predicate Pinit.

Mean time to repair (MTTR) of a self-stabilizing system is the average time
(measured in the number of computation steps) taken by a self-stabilizing system
to reach a state which satisfies the safety predicate PS . The average is taken over
all the executions which start in states not satisfying the safety predicate PS .
As mentioned earlier, a system has “recovered” from a burst of transient faults
when it reaches a safe state. It is also interesting to note that the MTTR mirrors
the average case behavior under a given implementation scenario unlike bounds
on convergence time that are furnished as part of convergence proofs of self-
stabilizing algorithms.

Mean time to failure (MTTF) of a self-stabilizing system is the average time
(again measured in the number of computation steps) before a system reaches
an unsafe state provided it started in a safe state. This definition may appear
trivial for a self-stabilizing system as the notion of MTTF is void given the closure
property of self-stabilizing systems. However, under relaxed fault assumptions,
the closure is not guaranteed because transient faults may “throw” the system
out of the safe states once it has stabilized. Thus, MTTF may well be finite.

There is an interplay between MTTF and MTTR of a self-stabilizing system
since its limiting availability also agrees with MTTF/(MTTR + MTTF) [9].
That is, a particular value of MTTF is an environment property over which a
system designer has often no control, but the value of MTTR, in the absence
of on-going faults, is an intrinsic property of a given implementation of a self-
stabilizing algorithm alongwith the scheduler used (synonymously referred to as
self-stabilizing system). One can modify the self-stabilizing system leading to
a possible decrease in average convergence time. The above expression gives a
compositional way to fine tune the limiting availability by modifying the MTTR
value of a self-stabilizing system despite a possible inability to influence the value
of MTTF.
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3.2 Model for Dependability Evaluation

The modeling of a self-stabilizing system for performance evaluation is the first
step of the toolchain. We assume that the self-stabilizing system consists of
a number of concurrent components which run in parallel. These components
cooperate to bring the system to a stable condition from any starting state.
Furthermore, we assume that at any time a fault may occur which brings the
system to an arbitrary state.

Guarded command language. We can describe a self-stabilizing system using a
guarded command language (GCL) which is essentially the language used by the
probabilistic model checker PRISM [10].

The model of a component consists of a finite set of variables describing the
state of the component, initial valuations for the variables and a finite set of
guarded commands describing the behavior (state change) of the component.
Each guarded command has the form

[label] guard -> prob1 : update1 + ... + probn : updaten

Intuitively, if the guard (a Boolean expression over the set of variables) is sat-
isfied, then the command can be executed. One branch of the command is se-
lected probabilistically and the variables are updated accordingly. Deterministic
behaviour may be modeled by specifying only a single branch. The commands
in the model may be labeled. Figure 1 gives a sketch of a self-stabilizing BFS
algorithm of [8] with three components representing a process each. Fault induc-
ing actions are embedded in every component. There are a number of important
properties inherent in the model in Figure 1. First, at every step, it is open
whether a fault step or a computational step occurs. If a computational step
occurs, it is also unclear which component executes a command. Finally, in the
case of a fault step, it is unclear which fault occurs, i.e. what the resulting state
of the system will be. The model in Figure 1 is thus non-deterministic since it
does not specify how these choices must be resolved.

Schedulers. To resolve the non-determinism in the model, and thus to arrive at a
uniquely defined stochastic process, one usually employs schedulers. In essence, a
scheduler is an abstract entity resolving the non-determinism among the possible
choice options at each time step. A set of schedulers is called a scheduler class.
For a given scheduler class, one them aims at deriving worst-case and best-
case results for the metric considered, obtained by ranging over all stochastic
processes induced by the individual schedules in the class. This computation is
performed by the probabilistic model checking machinery.

Schedulers can be characterized in many ways, based on the power they have:
A scheduler may make decisions based on only the present state (memoryless
scheduler) or instead based on the entire past history of states visited (history-
dependent scheduler). A scheduler may be randomized or simply be determin-
istic. A randomized scheduler may use probabilities to decide between choice
options, while deterministic ones may not. For instance, we can consider the
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class of randomized schedulers that, when a fault step occurs, chooses the partic-
ular fault randomly with a uniform distribution. When adding this assumption
to the GCL specification of the fault model, the resulting system model be-
comes partially probabilistic as shown in Figure 2 for the root module. It is
still non-deterministic with respect to the question whether a fault step occurs,
or which component performs a step. Here, we encoded the probabilistic effect
of the schedulers considered inside the GCL specification, while the remaining
non-determinism is left to the background machinery. It would also be possible
to specify a choice according to a probability distribution that is obtained us-
ing information collected from the history of states visited (history-dependent
scheduler), or according to a distribution gathered from statistics about faults
occuring in real systems.

module root
variable x02,x01 : int ...;
[stepRoot] true -> 1: x01’ = 0 & x02’=0
[faultRoot1] true -> 1: x01’ = 0 & x02’=1

...
[faultRootn] true -> 1: x01’ = 2 & x02’=2 ;
endmodule

module proc1
variable x10,x12,dis1 : int ...;
[stepProc1] true -> 1: (dis1’=

min( min(dis1,x01,x21)+1,N))
& (x10’ = ...) & (x12’=...) ;

[faultProc11] true -> 1: (dis1’=0)
&(x10’=0)&(x12’=1)

...
[faultProc1n] true -> 1:(dis1’=2)

&(x10’=2)&(x12’=2);
endmodule

module proc2
...

endmodule

Fig. 1. Non-deterministic self-stabilizing BFS
algorithm with faults

Markov decision processes. The
formal semantics of a GCL model
is a Markov decision process
(MDP). A MDP is a tuple D =
{S, A, P} where S is the set of
states, A is the set of possible ac-
tions, and P ⊆ S × A × Dist(S)
is the transition relation that
gives for a state and an action the
resulting probability distribution
that determines the next state.
In the literature, MDPs are of-
ten considered equipped with a
reward structure, which is not
needed in the scope of this paper.

Intuitively, we can derive a
MDP from a GCL model in the
following way. The set of states of
the MDP is the set of all possible
valuations of the variables in the
GCL model. The set of actions is

the set of labels encountered in the GCL model. For each state we find a set of
commands for which the guard is satisfied. Each such command then gives us an
entry in the transition relation where the action is given by the label associated
with the command and the resulting distribution for the next state is determined
by the distribution over the updates in the GCL description. In Figure 3 (left),
we see an example of a MDP state with its outgoing transitions for our example
model from Figure 1 (where the choice of fault is determined probabilistically as
in Figure 2). We see that in every state either a fault may occur, after which the
resulting state is chosen probabilistically or a computational step may occur. The
choice between faults or different computational steps is still non-deterministic.
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module root
variable x02,x01 : int ...;
[stepRoot] true -> 1: x01’ = 0 & x02’=0
[faultRoot] true -> 1/n: x01’ = 0 & x02’=1 +

...
1/n: x01’ = 2 & x02’=2;

endmodule

Fig. 2. Root module with a randomized sched-
uler for n distinct faults

Markov chain. When we consider
a specific scheduler that resolves
all non-deterministic choices ei-
ther deterministically or proba-
bilistically, we find a model whose
semantics is a particular kind
of MDP, namely that has for
each state s exactly one transition
(s, a, µ) in the transition relation
P . If we further disregard the ac-
tions of the transitions, we arrive

at a model which can be interpreted as a Markov chain. We define a Markov
chain as a tuple D = {S, P} where S is the set of states and P ⊆ S→ Dist(S) is
the transition relation that gives for a state the probability distribution that de-
termines the next state. A Markov chain is a stochastic process which is amenable
to analysis.

s1 :
stateA = . . .
stateB = . . .

...

s2

.

.

.

sn−2

sn−1

sn

fault

stepA

stepB

1/n

1/n

1/n

1/n

1/n

s1 :
stateA = . . .
stateB = . . .

...

s2

.

.

.

sn−2

sn−1

sn

Pfault
n

Pfault
n

Pfault
n

PA +
Pfault

n

PB +
Pfault

n

Fig. 3. Segment of a self-stabilizing system modeled as an MDP (left) or a Markov
Chain (right)

For our example, we can find a Markov chain model ifwe assume a scheduler that
chooses probabilistically whether a fault occurs, which component takes a step in
case of normal computation and which fault occurs in case of a fault step. Figure 4
shows the probabilistic model for the root module and Figure 3 (right) shows part
of the resulting model, where PA, PB and Pfault denote the probabilities that, re-
spectively, component A takes a step, component B takes a step, or a fault occurs.

module root
variable x02,x01 : int ...;
[stepRoot] true -> STEP_PROB: x01’ = 0 & x02’=0+

(1-STEP_PROB)/n: x01’ = 0 & x02’=1+
...
(1-STEP_PROB)/n: x01’ = 2 & x02’=2;

endmodule

Fig. 4. Root module modeled to have a fully ran-
domized scheduler

Choosing a scheduler class.
Scheduler classes form a hier-
archy, inducedby set inclusion.
For MDPs, the most general
class is the class of history-
dependent randomized sched-
ulers.Deterministicschedulers
can be considered as specific
randomized schedulers that
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schedule with probability 1 only, and memoryless schedulers can be considered as
history-dependent schedulers that ignore the history apart from the present state.

In the example discussed above (Figure 2 and Figure 4), we have sketched
how a scheduler class can be shrinked by adding assumptions about a particu-
lar probabilistic behaviour. We distinguish two different strategies of doing so:
Restricted resolution refers to scheduler classes where some non-determinstic op-
tions are pruned away. In partially probabilistic resolution some of the choices are
left non-deterministic, while others are randomized (as in Figure 3, left). A fully
randomized scheduler class contains a single scheduler only, resolves all non-
determinism probabilistically. Recall that deterministic schedulers are specific
randomized schedulers. Figure 5 provides an overview of the different resolution
strategies.

Choosing a class of schedulers to perform analysis on is not trivial. If we
choose too large a class, probability estimations can become so broad as to be
unusable (e.g. the model checker may conclude that a particular probability
measure lies somewhere between 0 and 1). Choosing a smaller class of sched-
ulers results in tighter bounds for our probability measures. However, choosing
a small scheduler class requires very precise information about the occurrence of
faults and the scheduling of processes. Furthermore, such analysis would only
inform us about one very particular case. A more general result is usually
desired, that takes into account different fault models or scheduling schemes.

Arbitrary
Resolution

Partially
Probabilistic
Resolution

Partially
Restricted
Resolution

Part. Prob. Res.
Part. Rest. Res.

Fully prob. res.

Fully det. res.

Fig. 5. Overview of different resolution
strategies

More advanced scheduler classes are
also possible. For the scheduling of n
processes, we allow only those sched-
ules where each process performs a
computational step at least every k
steps. This is akin to assuming that
the fastest process is at most twice
as fast as the slowest one. While such
assumptions are interesting to inves-
tigate, they also make analysis more

difficult. To implement such a k-bounded scheduler, it is required to track the
last computational step of every process. Though, the size of the state space does
not scale well for large n and k.

Model checking. A model checker, such as PRISM [10] may be employed to
answer reachability questions for a given MDP model. The general form of such
a property is P<p

[
A ∪≤k B

]
which checks whether the probability that a state

with property B is reached within k steps via a path consisting of states in
which A holds only, is smaller than p. In this way instantaneous availability
properties can be checked. If the property does not hold, a counterexample is
generated.

We next explain the methods to re-engineer a self-stabilizing system based on
a counterexample provided by a probabilistic model checker.
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4 Dependability Engineering for Self-stabilizing Systems

In order to meet the quality of service requirements, the counterexample returned
by the model checker can be used to optimize the system. An important distinction
between counterexample generation of qualitative model checking versus quanti-
tative model checking is the fact that quantitative model checking returns a set of
paths as counterexample. This distinction needs to be taken into account while
devising a method for exploiting the counterexample. We explain a heuristics-
based method to modify a system given such a set of paths. The self-stabilizing
BFS spanning tree algorithm implemented on a three-process graph under a fully
randomized scheduler is used as an illustrative example. We used the stochastic
bounded model checker sbmc [11] alongwith PRISM to generate counterexam-
ples. Please note that this particular method applies beneficently only to scenarios
where faults follow a uniform probability distribution over the system states.

4.1 Counterexample Structure

An understanding of the structure of the elements of the set of paths returned
as counterexample is important to devise a method to modify the system. In
the scope of this section, we are interested in achieving a specific unconditional
instantaneous availability AU (k) which is basically the step-bounded reachabil-
ity probability of a legal state. However, the tool used to generate the coun-
terexample can only generate counterexamples for queries that contain an upper
bound on the probability of reaching a set of certain states. Therefore, a refor-
mulated query is presented to the model checker. Instead of asking queries of
the form “Is the probability of reaching a legal state within k steps greater than
p?,” i.e. P>p

[
true ∪≤k legal

]
the following query is given to the model checker:

P≤(1−p)
[
¬legalW≤k false

]
. The reformulated query ascertains whether the prob-

ability of reaching non-legal states with in k steps is less than 1− p. The prob-
ability p used in the queries is equal to the desired value of AU (k), namely
unconditional instantaneous availability at step k.

In case the probability of reaching non-legal states is larger than the desired
threshold value, the probabilistic model checker returns a set of paths of length
k. This set consists of k-length paths such that all the states in the path are non-
legal states. The probability of these paths is larger than the threshold specified
in the query. This set of paths constitutes a counterexample because the paths
as a whole violate the property being model-checked.

si sj sk

si1

sim

sj1

sjm

sl1

slm

pc1 pc2

pf

pf

pf

pf

pf

pf

In order to devise a system optimization method we “dissect” a generic path –
annotated with transition probabilities – of length 2 (shown below) for a system
with a uniform fault probability distribution.
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pc1 and pc2 are probabilities of state transitions due to a computation step
whereas pf is the probability of a fault step. Note that due to the uniform fault
probability distribution there is a pair of fault transitions between each pair of
system states. If the above path is seen in contrast with a fault-free computation
of length 2, one can identify the reason for the loss of probability mass. Consider
a path that reaches state sk from state si in two steps.

si sj sk
1 1

Such a path can be extracted from a MDP-based model by choosing a specific
scheduler. It results in a fully deterministic model because of the absence of
fault steps, thereby leaving the model devoid of any stochastic behavior. The
probability associated with each of the two transitions is 1 and therefore the
probability of the path is 1 as well [12]. However, the addition of fault steps
to the model reduces probabilities associated with computation steps and thus,
reduces the probability of the path. In the light of this discussion, we next outline
a method to modify the system in order to achieve a desired value of AU(k).

4.2 Counterexample-Guided System Re-engineering

We consider the set of paths of length k returned by the probabilistic model
checker. In Step 1, we remove the extraneous paths from the counterexample. In
Step 2, we add and remove certain transitions to increase AU (k).

Step 1. As explained above, a counterexample consists of all those paths of
length k whose probability in total is greater than the threshold value. This set
also consists of those k-length paths where some of the transitions are fault steps.
The number of possible paths grows combinatorially as k increases because the
uniform fault model adds transitions between every pair of states. For example,
as there are (fault) transitions between each pair of states, the probabilistic model
checker can potentially return all the transitions of the Markov chain for k = 1.
Hence, the problem becomes intractable even for small values of k. Therefore,
such paths are removed from the set of paths. The resultant set of paths consists
of only those k-length paths where all the transitions are due to computation
steps. The self-stabilizing BFS spanning tree algorithm was model checked to
verify whether the probability of reaching the legal state within three steps is
higher than 0.65. The example system did not satisfy the property and thus, the
conjunction of PRISM and sbmc returned a set of paths as counterexample. This
set contains 190928 paths in total out of which a large number of paths consist
of fault steps only. An instance of such a path is shown below.
〈2, 2, 1, 2, 2, 1, 1, 2〉 → 〈2, 2, 1, 2, 2, 0, 0, 0〉 → 〈2, 2, 0, 0, 0, 0, 0, 0〉 → 〈2, 2, 0, 0, 0, 0, 0, 1〉

A state in the path is represented as a vector si = 〈x01, x02, x12, x10, dis1, x20,
x21, dis2〉 where xij is the communication register owned by process proci and
disi is the local variable of proci. The removal of such extraneous paths lead to
a set of 27 paths.

Step 2. The probability of a path without a loop is the product of the indi-
vidual transition probabilities. Due to the presence of fault steps and associated
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transition probabilities, one cannot increase the probability measure of the path
without decreasing the path length. Consider a path

si sj sk sl
pi pj pk

and the modified path obtained by 1) adding a direct transition between states
si and sl and 2) disabling the transition between states si and sj.

si sj sk sl

pi

pj pk

The addition of a direct transition to state sl and thereby the reduction of the
path length leads to an increase in probability of reaching state sl from state si.
The method thus strives to increase the value of AU (k) by reducing the length
of the paths. As we have no control over the occurrence of fault steps, such
transitions can neither be removed nor the probabilities associated with these
transitions be altered. Thus, in essence, we increase the number of paths with
length less than k and decrease k-length paths to the legal state.

The paths in the counterexample are arranged in decreasing order of proba-
bility. The following procedure is applied to all the paths starting with the most
probable path. We begin with the first state s0 of a path. In order to ensure that
a transition is feasible between si and sj , we determine the variables whose valu-
ations need to be changed to reach state sj from state si. A transition is deemed
feasible for addition to a system if the variable valuations can be changed in a
single computation step under a specific sequential randomized scheduler. If a
transition from state s0 to the legal state sl is deemed feasible, then a guarded
command to effect that state transition is added to the system. In case such a
direct transition is not feasible, then transitions are added to modify the local
states of the processes to decrease the convergence time. This method can be
iterated over the initial states of the paths returned till the desired threshold is
achieved or all the returned paths are used up.

Addition of such transitions, however, requires some knowledge of the algo-
rithm under consideration. For instance, a state transition to sl that leads to a
maximal decrease in convergence time might require change of variables belong-
ing to more than one process. Such a transition is not feasible if an algorithm is
implemented with a sequential scheduler. Infeasibility of a direct state transition
to sl may also result from the lack of “global knowledge.” Let si −→ sl be the
transition that leads to a maximal decrease in convergence time and let procx be
the process whose local state must be changed to effect the aforementioned state
transition. Process procx, therefore, needs a guarded command that changes its
local state if system is in a specific global state. However, process procx can-
not determine local states of all processes in a system unless the communication
topology of system is a completely connected graph. Transition si −→ sl, in this,
is infeasible for communication topologies which are not completely connected.
This is, however, an extremal case because usually processes – instead of global
knowledge – require knowledge of their extended “neighborhood.”
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We applied the above procedure on the example system by analyzing the
resultant set of paths after removing paths with fault steps. The state sb =
〈2, 2, 1, 2, 2, 1, 1, 2〉 was the most probable illegal state. The paths having this
state as the initial state were inspected more closely; a direct transition to the
legal state 〈0, 0, 1, 1, 1, 1, 1, 1〉 was not feasible because it required changes in
variable valuations in all three processes in a single step. However, a transition
could be added to correct the local state of the non-root processes so that if the
system is in state sb, then the (activated) process corrects its local state. The
communication topology of the example system allows each process to access the
local states of all the process. Thus, guarded commands of the form

[stepstateB] state=stateB -> state’= correctstate

were added to the processes proc1 and proc2. The modification of the system
led to an increase in probability (of reaching the legal state from state sb) from
0.072 to 0.216.

The method described above can be used to modify the system for a given
scheduler under a fault model with ongoing faults. However, the very fact that the
scheduler is fixed limits the alternatives to modify the system. For instance, many
transitions which could have potentially increased AU (k) were rendered infeasible
for the example system. This, in turn, can lead to an insufficient increase in AU (k)
or a rather large number of iterations to achieve the threshold value of AU (k).
The problem can be circumvented if one has leeway to fine-tune the randomized
scheduler or modify the communication topology.

4.3 Randomized Scheduler Optimization

The probabilities with which individual processes are activated in each step by a
scheduler affects the convergence time and thus the unconditional instantaneous
availability of the system. However, a counterexample can be exploited to identify
the processes whose activation probabilities need to be modified. For instance,
consider a path returned by the conjunction of PRISM and sbmc:
〈2, 2, 1, 2, 2, 1, 1, 2〉 → 〈0, 0, 1, 2, 2, 1, 1, 2〉 → 〈0, 0, 1, 1, 1, 1, 1, 2〉 → 〈0, 0, 1, 1, 1, 1, 1, 2〉

In the second last state of the path, activation of the root process does not
bring any state change and thus leads only to an increase in convergence time.
Hence, if the probability of activating a non-root process in the scope of the
example algorithm is increased, then the probability associated with such sub-
optimal paths can be decreased. We varied the probability of activating the root
process in the example system to see the effect on AU (k). As Figure 6 shows,
unconditional instantaneous availability increases as the probability of activat-
ing the root is decreased. This is because one write operation of the root process
alone corrects its local state; further activations are time-consuming only. But
once the root process has performed a computation step, any activation of a
non-root process corrects its local state. The paths in the counterexample can
be analyzed in order to identify those processes whose activations lead to void
transitions. The respective process activation probabilities of the scheduler can
then be fine-tuned to increase AU (k).
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4.4 Abstraction Schemes for Silent Self-stabilization
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Probabilistic model checking
of self-stabilizing systems suf-
fers from the state space ex-
plosion problem even for a
small number of processes.
This is due to the fact that
the set of initial states of a
self-stabilizing system is equal
to the entire state space.
As we intend to quantify
the dependability of a self-
stabilizing algorithm in an
implementation scenario, we
may be confronted with sys-
tems having a large number of

processes. This necessitates a method to reduce the size of the model before giv-
ing it to the model checker. Often, data abstraction is used to reduce the size
of large systems while preserving the property under investigation [13]. We next
evaluate existing abstraction schemes and identify a suitable abstraction scheme
for silent self-stabilizing systems.

Data abstraction constructs an abstract system by defining a finite set of
abstract variables and a set of expressions which maps variables of the concrete
system to the domain of the abstract variables. A form of data abstraction is
predicate abstraction where a set of Boolean predicates is used to partition the
concrete system state space [14]. Doing so results in an abstract system whose
states are tuples of boolean variables. However, predicate abstraction can only
be used to verify safety properties as it does not preserve liveness properties [15].
Since convergence is a liveness property, predicate abstraction cannot be used to
derive smaller models of self-stabilizing systems.1

Ranking abstractionovercomes thedeficiencyof predicate abstractionbyadding
a non-constraining progress monitor to a system [15]. A progress monitor keeps
track of the execution of the system with the help of a ranking function. The result-
ing augmented system can then be abstracted using predicate abstraction.

An important step in abstracting a system using a ranking abstraction is the
identification of a so called ranking function core. This need not be a single rank-
ing function – parts of it suffice to begin the verification of a liveness property.
The fact that we are trying to evaluate a silent self-stabilizing system makes
the search of a ranking function core easier. The proof of the convergence prop-
erty of a self-stabilizing system is drawn using either a ranking function [17],

1 However, for the properties considered here, which are step-bounded properties, this
reasoning does not apply. In fact, we experimented with the predicate-abstraction-
based probabilistic model checker PASS [16] that also supports automatic refinement.
This was not successful because PASS seemingly was unable to handle the many
distinct guards appearing in the initial state abstraction.
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for instance a Lyapunov function [18], or some other form of well-foundedness
argument [19]. Thus, one already has an explicit ranking function (core) and,
if that is not the case, then the ranking function core can be “culled” from the
proof of a silent self-stabilizing system. Further, we can derive an abstracted
self-stabilizing system with the help of usual predicate abstraction techniques
once the system has been augmented with a ranking function.

5 Conclusion and Future Work

We defined a set of metrics, namely unconditional instantaneous availability,
generic instantaneous availability, MTTF, and MTTR, to quantify the depend-
ability of self-stabilizing algorithms. These metrics can also be used to compare
different self-stabilizing solutions to a problem. We also showed how to model a
self-stabilizing system as a MDP or as a MC to derive these metrics. Further,
heuristic-based methods were presented to exploit counterexamples of proba-
bilistic model checking and to re-engineer silent self-stabilizing systems.

There are still open challenges with respect to dependability engineering
of self-stabilizing systems. An abstraction scheme suitable for non-silent self-
stabilizing algorithms is required to make their dependability analysis scalable.
As discussed, there are multiple ways to refine a system which in turn leads to
the challenge of finding the most viable alternative. We would also like to in-
crease the tool support for dependability engineering of self-stabilizing systems.
We believe that the identification of optimal schedulers and the determination of
feasible transitions are the most promising candidates for solving the problem.
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Abstract. This paper analyses the robustness of self-organizing (engi-
neered) systems to perturbations (faults or environmental changes). It
considers that a self-organizing system is embedded into an environment,
the main active building blocks are agents, one or more self-organizing
mechanisms regulate the interaction among agents, and agents manipu-
late artifacts, i.e. passive entities maintained by the environment. Per-
turbations then need to be identified at the level of these four design
elements. This paper discusses the boundaries of normal and abnormal
behaviour in self-organizing systems and provides guidelines for design-
ers to determine which perturbation in which part of the system leads
to a failure.

1 Introduction

Self-organizing artificial (engineered) systems are appealing because they pro-
vide a ”natural” robustness to changes and failures, while being composed of
relatively simple entities. This claim, although backed by observation through
simulations or experiments, has not been thoroughfully investigaged. For in-
stance, questions such as: To what changes in their environment/faults are these
systems naturally robust to, and what changes/faults are they not able to over-
come (naturally)? What does ”naturally” mean in this context? The boundary
between the normal behaviour and the abnormal one is usually blurred since the
self-* part of these systems contains (built-in or intrinsic) recovery capabilities.
So, what is the normal operational mode of such systems, what is their abnormal
one? This is also pointed out by Alderson et al. [1], in the context of complex
systems: ”Robustness is the invariance of [a property] of [a system] to [a set of
perturbations]”. The main point here is that a given system preserves a spe-
cific property for a specific set of perturbations, but may be fragile for another
property or other perturbations.

The aim of this paper is twofold. First, it intends to clarify the notions of ”nor-
mal”, ”dependable” and ”resilient” behaviour in self-organizing systems. Second,
it guides the designer of self-organizing systems in identifying the limits of the
”natural” robustness, i.e. in identifying the properties and set of perturbations
that render the system fragile. This is similar to the Failure Mode and Effects
Analysis (FMEA)1 technique followed by safety engineers when they analyse the
1 http://en.wikipedia.org/wiki/Failure mode and effects analysis
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design of a system to find what faults can occur. Starting from a block diagram
of the system, the safety engineer considers what happens when each block fails
and subsequently proposes changes to the system to make it safer. In the con-
text of self-organizing systems, the designer determines which changes/faults in
which part of the system lead to a failure. To this end, the paper lists the design
elements of a self-organizing system, properties of self-organizing systems, types
of faults for self-organizing systems and considers means to reach dependability
in self-organizing systems. To illustrate our discussion, we consider a simple self-
organizing systems and discuss its dependability to different changes and faults.
This paper does not intend to be complete, additional investigations, experi-
ments and measurements are necessary. The main goal of this paper is to lay the
foundations for additional thorough investigation into these systems’ behaviour.

2 Dependability and Resilience

This section provides a short summary of Avizienis et al. [2] and Laprie [3]
papers. We extract (almost verbatim) here the essential elements of these papers
that suit the purpose of our discussion and render our paper self-contained as
we will refer to these notions in the next sections.

Robustness and Dependability. A computing system is robust if it retains its
ability to deliver a service in conditions which are beyond its normal domain of
operation [4]. Dependability is the ability to deliver a service that can justifiably
be trusted.

Dependability Attributes. Dependability is measured against the following
criteria: Availability - readiness for correct service; Reliability - continuity of cor-
rect service; Safety - absence of catastrophic consequences on the user(s) and the
environment; Integrity - absence of improper system alterations; Maintainability
- ability to undergo modifications and repairs.

Threats to dependability. A failure is an event that occurs when the delivered
service deviates from correct service (service does not comply with functional
specification). It is a transition from correct service to incorrect service. A service
failure means that one or more of external service states deviates from the correct
service state. The deviation is called an error. An error is a part of the total
state of the service that may lead the system to its subsequent service failure. A
fault is the cause of an error.

Means to attain dependability. Fault Prevention encompasses the improve-
ment of development processes in order to reduce the number of faults intro-
duced in the produced systems. Fault Tolerance aims at failure avoidance and is
carried out through error detection and system recovery. Fault Removal occurs
during system development or during system use. Fault Forecasting consists in
evaluating the system’s behaviour with respect to fault occurrence.

Resilience. In a recent paper, Laprie [3] provides an insight into the notion of
resilience and its relationship with dependability. The considered systems are
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ubiquitous systems and the main point is to maintain dependability in spite of
continuous changes. Resilience is then defined as the persistence of dependability
when facing changes.

Self-organizing systems permanently face changes; this definition of resilience
thus applies directly to self-organizing systems.

3 Self-Organizing Systems

Self-organizing applications are applications generally made of multiple auto-
nomous entities with a knowledge limited to their local environment and that
locally interact (directly or indirectly) to produce a result. Autonomous entities
usually work in a decentralised manner, the global behaviour (function) gener-
ally “emerges” from the local interactions of the different entities. The entire
“global” function is encoded in none of the individual entities. The result is gen-
erally obtained when the system reaches, converges to, a stable state. Typical
examples of natural self-organizing system include swarms (ant, flocks of birds,
wasps, etc.), immune system, human social behaviour (markets, trust, gossip).
Artificial (engineered) systems include unmanned vehicles, swarms of robots,
P2P systems, immune computer or trust-based access control.

3.1 Design Elements

Our discussion starts with the following consideration driven by design con-
cerns [5,6]. The elements of a self-organizing (SO) system are: the environment
in which it evolves (operating system, physical world, or network), the autono-
mous individual active entities - the agents - that constitute the system itself
(software agent, robots, peer nodes), the self-organizing mechanism defining the
rules (all) the agents apply (continuously) when evolving in the environment
and letting them (re-)organise in case of changes or failures, and the artifacts,
which are the passive entities maintained by the environment, created, modified
and/or sensed by the agents (e.g. digital pheromone spread in the environment
or information exchanged among agents).

SO System = Environment + Agents + SO Mechanism (rules) + Artifacts

Agents evolve into an environment, which they use to interact and carry on
their behaviour. The boundary between an agent and its environment must be
identified, but may vary from system to system. Depending on the system, it may
be more convenient to consider an agent as a piece of software and everything
else as its environment (in particular the underlying operating system or the
node the agent is residing in). In other cases, it is more convenient to consider
the agent as the combination of the piece of software and the node it is executing
in. This is the case, when the agent is an autonomous (maybe mobile) robot,
or when the agent is a node itself. Artificial systems usually take inspiration
from nature - the SO mechanism being an ad hoc translation of the natural SO
mechanism.
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Sections 5 provides an example of SO Systems (stigmergy) identifying the
environment, the agents, the SO mechanism, the artifacts together with examples
of respective failures. Babaoglu et al. [7] describe this mechanism as well as others
under the form of patterns and analyse in details these mechanisms and their
corresponding implemented algorithms. Additional patterns for self-organisatin
can be found in [8].

3.2 Types of Faults in SO Systems

In order to identify faults arising in a SO system, it is then convenient to consider
faults (individually or as a combination) arising from each of these elements, i.e.
faults from the environment, from the agents, from the SO mechanism itself, or
from the artifacts, as shown in Figure 1.

Environmental Faults include all network related faults and communication
faults arising among the agents; operational faults of the computing entities
(nodes) present in the environment; any storage related fault (database, mem-
ory problem) affecting agent programs or artifacts; as well as any faults from
the physical world in which the agents evolve (hole in the ground, unexpected
obstacle). Environmental faults are a type of Interaction faults, more precisely
they are System Boundaries faults (External faults), those that ”originate out-
side the system boundary and propagate errors into the system by interaction
or interference”.

Agents Faults cover development faults affecting agent code and behaviour;
when the node, in which the agent program resides, is considered part of the
agent, then node faults are also Agents faults. We distinguish those faults from
the ones directly affecting sensing and acting capabilities of the agents (vision
camera fault or robot arm fault). Finally, an agent can be maliciously faulty.
Agents faults may be Physical faults (hardware or software fault) and/or Devel-
opment faults introduce during the system development. Agents interact with

Fig. 1. Characterisation of Types of Faults in SO Systems
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each other directly or indirectly through the environment. Agents faults may
then also contribute to Interaction faults. Both Environmental and Agents faults
may be the result of some malicious intent.

SO Mechanism Faults are Development faults, essentially due to errors in the
design and implementation of the SO mechanism rules.

Artifacts Faults are all those faults affecting the integrity of the artifacts.
Artifacts faults are likely to be caused by the Environment, the Agents or the
SO Mechanism, since Artifacts themselves are essentially passive. We consider a
fault to be an Artifact fault when it affects an artifact - through uncorrect modi-
fication, destruction, production or management of the artifact. For instance, an
artificial pheromone whose evaporation rate is different than the expected one
or that suddenly dissapears is an Artifact fault, in this case mostly caused by
the Environment.

Environment and Agent faults may be either permanent or transient, while
SO Mechanisms faults are permanent.

3.3 SO Systems Properties

We identify here the properties of self-organizing systems (Figure 2) that have
to be questioned for the types of faults identified above.

Invariants. An invariant is any property that must be satisfied by the system
at all time, i.e. it must be true at any state of the system.

SO Systems Robustness Attributes. Convergence. An important property
of SO systems is whether the system actually converges towards the intended goal
(correct value). Speed of convergence. How quickly does the system reaches its
goal? Stability. Once the goal is reached, does the system maintain it? Scalability.
How is the system affected by the number of agents and artifacts?

Dependability Attributes. These are the dependability attributes listed in
Section 2: Availability, Reliability, Safety, Integrity, Maintainability.

Fig. 2. SO Systems Properties



Robustness and Dependability of Self-Organizing Systems 259

4 Normal vs. Self-Organizing vs. Resilient

4.1 Dependability at Run-Time - Traditional Systems

Figure 3 (a) sketches the normal vs abnormal states in ”traditional” systems
(where no SO mechanism is involved). As discussed in Section 2, the means
to reach dependability at run-time are: fault tolerance, fault removal and fault
forecasting. In each case, this consists in identifying the error state and under-
taking appropriate steps so that the system goes back to a normal state. The
Normal operational mode of these systems occurs when the system is not in an
error state. An identified error state triggers appropriate techniques (exception
handlers, patches, etc.) to bring the system back to normal. Dependability thus
extends to include all those error states. When the system cannot be brought
back to normal, then the error state leads to a Failure, where the fault causing
the error cannot be recovered.

4.2 Resilience at Run-Time - Self-Organizing Systems

The main difference between ”traditional” systems and SO systems resides in the
fact that an SO system recovers from an error without error detection, i.e. without
specifically identifying an erroneous state and applying a specific recovery action.

Figure 3 (b) shows the different states of a SO system. Normal represents
the ideal mode of operation of the system. The one when none of the faults
discussed in Section 3.2 occur. Self-* includes all the changes that the system
overcomes without changing its mode of operations. These changes occur from
the faults identified above. The SO system does not identify these changes as
errors, it just carries on with its normal behaviour (that is why we do not call
them errors). This is the area where the SO mechanism is enough to overcome
the perturbation. In fact the Normal states could extend to the Self-* ones. A SO
mechanism has its limits, i.e. there are cases where carrying on as usual doesn’t
solve the problem (e.g. system does not converge or is unstable). Resilience thus
refers to all the states where the SO system actually identifies an error and

(a) Traditional Systems (b) SO Systems

Fig. 3. Systems’ States
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specifically and punctually applies a recovery action. The system goes back to
the Self-* area again, where the usual SO mechanism rules apply. Finally, Failure
refers to all the cases where the error cannot be recovered.

4.3 Analysis of Robustness and Dependability

In order to analyse robustness and dependability of SO systems, we need to
determine which perturbations (change or fault) lead to which property being
violated.
Properties. We consider the following properties:

Properties = Invariants - Robustness Attributes - Dependability Attributes

Invariants are all the invariant properties that the SO system has to preserve
during its execution. Robustness attributes are convergence, speed of conver-
gence, stability, and scalability (discussed in Section 3.3). Dependability at-
tributes are availability, reliability, safety, integrity, maintainability (discussed
in Section 2).

Perturbations. As we have seen above, the design elements of a SO system are
the Environment, Agents, SO mechanism and Artifacts. The perturbations are
any faults / changes / threats the system is likely to undergo originating from
these elements (discussed in Section 3.2).

Perturbation = Changes or Faults in:
Environment - Agents - SO Mechanism - Artifacts

Analysis. Similarly to the FMEA technique, the designer needs to question
each element of the design (environment, agents, SO mechanism and artifact),
establish for each of them any potential fault or change that can actually occur,
and determine its impact on the properties listed above.

Analysis = for all Design Elements
for all Changes and Types of Faults

if change / fault can happen
is any Invariant modified?
is any Robustness Attribute affected?
is any Dependability Attribute affected?

An example of such a questioning could be:

”Is it possible that in the considered system the environment behaves mali-
ciously, if yes then:

– how is this affecting any invariant property (e.g. the value of a sum that
has to be computed),

– how is this affecting any robustness property (e.g. will the system still
converge and at which speed), and
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– what is the impact on any dependability attribute (e.g. is the service
provided by the system always available or will there be disruptions)?”

Different faults, originating from different elements of the design, may have simi-
lar effects. For instance, a fault compromising the integrity of an artifact may be
due to a fault in the environment (responsible to maintain the artifact), or to a
malicious agent or to the artifact itself. In order to correct the fault, it becomes
important to determine the origin of the fault by identifiyng the appropriate
design element responsible for the fault.

Once a change or fault and its effect is identifed, a mean to attain dependabil-
ity has to be identified through design change or additional resilience mechanism
(see below).

4.4 Means to Attain Dependability in SO Systems

Let us discuss here the four means to attain dependability, as identified by
Avizienis et al. and reported in Section 2, for the specific case of self-organizing
systems (Figure 4).

Fault prevention. The design of self-* algorithms can be verified, to some
extent, with mathematical analysis, but simulations are the most preferred tool
at the moment.

Fault tolerance. For ”traditional” software, fault tolerance consists in detecting
an error and subsequently recovering from that error (with a bunch of diverse
techniques). As said above, this is where SO systems differ from ”traditional”
software. We distinguish two levels.

First, the intrinsic fault-tolerance: the SO mechanism is robust enough to
recover from errors without explicitly detecting an error and subsequently recov-
ering from it. The SO system then ”naturally” recovers from states which are
not part of the ideal mode of operation. If a source of food suddenly disappears
in an ant-based system, the SO system just carries on exploring the environment
for food until the system finds another source. The disappearance of the food

Fig. 4. Means To Attain Dependability in SO Systems
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does not trigger any specific error, the system continues to run as in the normal
case and just recovers (Self-* in Figure 3).

Seond, similarly to fault tolerance in traditional software, the Resilience case
expresses the limits of the SO mechanism to recover from errors. This is similar to
”traditional” software: errors are detected (locally or globally) and appropriate
measures apply in order to tackle the error. Policies or punctual rules then apply
in order to recover from the error. These rules are different from the rules of the
SO mechanism that are applied permanently by the entities of the system.

Fault removal. This encompasses: enhanced SO mechanisms with policies be-
coming part of the rules, or modified rules (so that what was before an error
is now part of the normal operational behaviour); on-the-fly changes, such as
switching among different SO mechanisms (rules) or adapting the rules, depend-
ing on the environmental conditions, or replacing outdated SO mechanism or
policies with new ones on the fly during system execution.

As an example of enhanced SO mechanisms, we can mention the case of opti-
misation problems. The original Particle Swarm Optimisation algorithm detects
one static optimum only, but is not able to cope with multiple or dynamic op-
timums. QSO is an algorithm that overcomes this problem, but still there is
the problem of the swarm getting stuck in one optimum [9]. Multi-swarm is a
solution to this that allows to find all optimums [10].

Fault Forecasting. This is similar to the Resilience case, through monitoring,
exceeded thresholds are identified and policies punctually recover before the
system reaches an error state.

5 Stigmergy - Ant-Based System

This example is a simulation of an ant colony foraging (see Figure 5 (a)).

SO System Elements. The environment is the physical world where ants
evolve, where their nest is positioned, and where food is available. Ants deposit
pheromone in the environment for marking paths food. The nest diffuses also a
scent which helps the ants go back home with pieces of food. The agents are the
ants. The SO mechanism works as follows:

– Ants are either looking for food, or going back to the nest once they have
found food.

– When looking for food, ants leave the nest and walk randomly until they
sense a pheromone scent in their locality. They then move in the direction
where the pheromone scent is stronger.

– When they have found food, ants go back to the nest following the nest’s
scent. They follow the nest’s scent in the direction where it is stronger.

– When they go back to the nest with food, they drop a pheromone scent
at each step. This pheromone scent adds up to any other pheromone scent
already present at the same place.
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Finally, the artifacts are: the nest (in the center), the three food sources (upper-
left corner, bottom-left corner and middle-right), pheromone scent (marking the
path from food to nest) and nest’s scent. The pheromone has an evaporation
rate (how long it lasts) and a diffusion rate (how far it can be sensed). The
pheromone is updated regularly by the environment (diffused and evaporated).

As we see from this description, the environment plays an important role when
the SO system employs a SO mechanism using indirect communication such as
stigmergy. Agents rely strongly on the environment and an Environmental faults
can lead to a failure. In this example, the environment must host the pheromone
and update it properly.

This system has no particular invariant, we list here the robustness attributes.

SO Systems Robustness Attributes. They are as follows:

– Convergence takes two dimensions here.
Exploration: ants explore their environment properly - entirely and regularly
- so as to spot any source of food.
Exploitation: ants eventually bring back all the food to the nest.

– Speed of convergence:
Exploration: how quickly ants can spot a new source of food once the current
one is exhausted; Exploitation: how efficiently they can get the whole source
back to the nest.

– Stability: ants focus on exploiting a source of food.
– Scalability: convergence and speed of convergence are not affected by the

number of ants

We started from the original simulation of [11], which is part of the NetLogo
package. We altered it so as to insert different types of faults. We report here
on some experiments we made in order to illustrate our discussion. A thorough
investigation of the algorithm would require more experiments and precise mea-
surements.

Real world applications taking advantage of stigmergy include static and dy-
namic optimisation problems as well as coordination of unmanned vehicles [12].

5.1 Environmental Faults

Ants disappear (or die). The system continues finding food, it converges but at
a slower pace. If the number of agents is very low, then the pheromone path is
not maintained and exploitation is less efficient, stability is compromised, but
all food is eventually retrieved (Figure 5 (b)). This is similar to an agent crash
and can also be seen as an Agent Fault.

Obstacle (Physical World). An obstacle (hole or rock) is now part of the envi-
ronment mid-way between the upper-left source of food and the nest. The nest’s
scent on the obstacle is very low. Agents lay down the pheromone around the
obstacle, thus adapting the path to find the food (Figure 5 (c)). None of the
properties seems to be affected by this fault.
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(a) Normal (b) Ants Die (c) Obstacle

Fig. 5. Normal Behaviour and Environmental Faults

5.2 Agents Faults

Malicious agents. A subset of agents (25%) are not looking for food, but deposit
pheromone at the wrong place (25% or 100% of the time) Depending on the
quantity of wrongly added pheromone, paths to the food are more or less com-
promised (speed of convergence is slower and lack of focus on a source of food
compromises stability). The system eventually converges and exploits all food.
(Figure 6 (a) and (b)).

No Pheromone. Agents look for food, bring it to the nest, but do not deposit
pheromone at all. Agents just look for food at random. All food is eventually
retrieved but slowly. This is similar to the evaporation rate of the pheromone
that is too quick.

5.3 SO Mechanism Faults

Pheromone Scent. Agents take a wrong direction when detecting the pheromone
scent. As a result, agents avoid the paths leading to the food. Paths tend to

(a) Malicious
Agents

(b) Malicious
Agents

(c) Wrong
direction -
Pheromone

(d) Wrong di-
rection - Nest

Fig. 6. Agents and SO Mechanism Faults
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disappear. There is no systematic exploitation. Food is eventually brought back
to nest, but the system converges slowly (Figure 6 (c)).

Nest’s Scent. Agents take a wrong direction when detecting the nest’s scent.
Agents avoid the nest, do not find it, cannot deposit food and remain stuck at
the opposite of the nest. The system does not converge at all (Figure 6 (d)).

5.4 Artifacts Faults

Evaporation rate of pheromone. Rate of 0% (or too slow): the pheromone scent
does not evaporate (or not quickly enough), it stays where it has been laid
down. The environment gets filled with pheromone, the ants continue following
the paths even when food is exhausted. The system converges (it eventually
retrieves all the food), but exploitation is not efficient (Figure 7 (a)). A small
evaporation rate (above 6%) is enough for maintaining the paths without filling
the environment with unnecessary scent. Rate of 100% (or too quick). Pheromone
evaporates before ants can build a path and maintain it. Similarly to above, the
system converges but is not efficient (speed is slow and stability is compromised).

Diffusion rate of pheromone. Rate of 0% (or too thin): the paths are thin and
do not build up fully. A small rate (10%) is enough to construct solid paths
(Figure 7 (b)). Rate of 100% (or too large): paths are large, ants do not go
straight to food.

Nest’s scent. The environment disperses the nest scent. In the simulation we
first put random values instead of increasing values leading to the nest. Ants
do not find the nest quickly anymore. Pheromone scent starts filling the whole
environment. Efficient exploitation is compromised, but ants eventually exhaust
all the food. Second, the nest’s scent is randomised in a restricted portion of the
environment, between the upper-left corner source of food and the nest, that
portion of the environment is filled with pheromone (Figure 7 (c)). Efficient
exploitation is compromised, but ants eventually exhaust all the food.

(a) Evapora-
tion Rate -
Slow

(b) Diffusion
Rate - Thin

(c) Nest Scent

Fig. 7. Artifacts Faults
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Food disappearance. This is a case of a change in the environment instead of a
fault. After a short while the pheromone leading to the disappeared source of
food vanishes, the ants just continue looking for food as usual, find and exploit
other sources of food.

5.5 Analysis of Resilience

This example has no invariants, we discuss here robustness attributes; depend-
ability attributes are discusssed in the next section. There are basically 3 cate-
gories of perturbations that affect robustness attributes: those that affect speed
of convergence and stability (ants are moving randomly or not focusing on a
source of food, thus taking longer to exhaust it); those that do not particularly
affect the system (paths are maintained); and those that compromise conver-
gence. Globally, we can say that when the system converges with a convenient
speed of convergence and stability behaviour, it behaves normally (Normal box
of Figure 3(b)). When the system eventually converges (despite slow speed of
convergence and/or instability), the SO mechanism succeeded in overcoming the
perturbation (Self-* box of Figure 3(b)). If the system does not converge, an
invariant is not preserved, the speed of convergence is too slow to be acceptable
or if the instability becomes an issue, then we reach the limits of the ”natu-
ral” robustness. Extra resilience is needed to support the SO mechanism. For
instance, in the case of the ants, they may detect that they do not follow a path
but go at random, and may decide to lay down another type of pheromone. This
could overcome malicious ants trying to confuse them with pheromone deposited
at the wrong place. Regarding scalability, a low number of ants affects speed of
convergence and stability, while a large number helps building paths to find food.
A large number of sources of food scattered all over the environment may also
affect speed of convergence and stability.

6 Discussion

From the examples we have investigated so far, we can draw the following pre-
liminary conclusions regarding the robustness and dependability attributes.

Invariants and Robustness. Convergence and invariants are key elements to
determine the dependability limits of an SO system. A system that converges
and maintains its invariants despite perturbations ”naturally” overcomes those
perturbations. An SO system needs additional resilience techniques when con-
vergence cannot be reached, invariants are not satisfied, or speed of convergence
and stability are not acceptable.

Availability. SO systems are always ready to work, but the service they pro-
vide may not be correct at first. It may take a certain time before the system
converges.

Reliability. SO systems usually imply latency. Therefore, reliability is not nec-
essarily ensured: a service is (necessarily) discontinued while the SO system
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re-organises/adapts to the new conditions. It may not stop, but will not be
correct.

Safety. SO systems usually overcome a large range of changes/faults. However,
the adaptation may imply latency. During this period, safety may not be guar-
anteed. In addition, in some cases the SO system is at a loss of overcoming the
problem and may get stuck in a bad situation.

Integrity. Artifacts are at a high risk of integrity concerns/issues. They are not
necessarily equipped with specific protection and are vulnerable because agents
need the environment to exchange them, to modify or maintain them. Agents
themselves are also at risk of integrity: they depend on the environment for their
execution, their data or their physical movements.

Maintainability. We have seen that SO systems naturally adapt to changing
software / hardware on-the-fly. In the case of SO system, we can contemplate
changes at each level: changes in the environment, the agents, the SO mechanism
and the artifacts in order to determine the maintainability level of the system.

7 Conclusion

This paper discusses the notions of robustness and dependability in the context
of self-organizing systems. It proposes to analyse robustness and dependability
by identifying perturbations (changes or faults) arising from each design element
and studying their impact on invariants, robustness and dependability proper-
ties. Many research issues related to dependability of SO systems need to be
investigated. Among others testing and formal verification of SO systems, or
fault removal on the fly, which has not received much attention yet (e.g. switch-
ing SO mechanism, adapting the rules, applying specific policies to SO systems).
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Abstract. We present algorithms that reduce the time complexity and improve
the scalability of robust storage for unauthenticated data. Robust storage ensures
progress under every condition (wait-freedom) and never returns an outdated
value (regularity) nor a forged value (Byzantine fault tolerance). The algorithms
use secret tokens, which are values randomly selected by the clients and attached
to the data written into the storage. Tokens are secret because they cannot be
predicted by the attacker before they are used, and thus revealed, by the clients.
Our algorithms do not rely on unproven cryptographic assumptions as algorithms
based on self-verifying data. They are optimally-resilient, and ensure that reads
complete in two communication rounds if readers do not write into the storage,
or in one communication round otherwise.

1 Introduction

We study the problem of efficiently implementing a robust storage for unauthenti-
cated data from Byzantine storage components. Robust storage is an abstraction which
supports read and write operations that are always live (wait-freedom) and read op-
erations that never return an outdated or a spurious value (regularity). A robust algo-
rithm uses passive storage components called base objects (or objects) that may suffer
Nonresponsive-arbitrary faults [1]. Robust storage implementations for unauthenticated
data are attractive because they do not incur the overhead of cryptography and they are
invulnerable to cryptographic attacks. Existing unauthenticated algorithms with optimal
resilience and optimal time-complexity [2, 3, 4, 5, 6] have a much higher (worst-case)
read latency compared to algorithms storing self-verifying data, using digital signa-
tures [7, 8, 9]. This is critical because many practical workloads are dominated by read
operations. Therefore, the natural question arises if it is also possible to achieve min-
imal read latency without fundamentally strengthening the assumptions of the system
model.

In this paper we propose two robust storage implementations for unauthenticated
data with optimal resilience and optimal time complexity. The first algorithm supports
unbounded readers and features constant read complexity. The second algorithm fea-
tures fast reads, i.e., every read operation terminates after one round of communication
with the base objects. Our algorithms circumvent the lower bounds established in [2,4]
by using secret tokens. A secret token (briefly token) is a value randomly selected by
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the client and attached to the messages sent to the base objects. The secrecy property
of a token selected by a correct client is that the adversary can not generate its value
before the client actually uses the token.

Secret tokens are useful because they prevent faulty base objects from simulating
client operations (read or write) that have not yet been invoked but will actually occur
at some later point. However, tokens are weaker than signatures, because they cannot
prevent a faulty base object from successfully forging a value that is never written.
Consider for instance the lower bound of reading from a safe storage with optimal
resilience [4]. It states that with t faulty objects, a read that does not modify the base
objects takes at least t+1 communication rounds before it can read a value. In each read
round, a different malicious object simulates a concurrency with the same write, thereby
triggering a new read round. With secret tokens, the second read round definitely reveals
which value can be returned and the read terminates.

The assumption that tokens are secret can be violated with some probability. How-
ever, this probability can be arbitrarily reduced, for example, by uniformly and inde-
pendently generating random tokens of k bits and by increasing the value of k. Note
that in practice, assumptions in general hold only with a certain probability, e.g., the
assumption that no more than t base objects fail.

Our first algorithm does not require readers to modify the base objects. As a con-
sequence, it supports an unbounded number of possibly malicious readers. Every read
completes after two communication rounds, which we show to be a tight bound. Thus,
the algorithm improves on the read complexity of t + 1 rounds established for unau-
thenticated storage with optimal resilience when readers do not write [4]. Our second
algorithm guarantees that every read is fast, i.e. it terminates after a one communication
round by allowing readers to modify the base objects. The general lower bound of two
rounds for reading from a robust storage with optimal resilience [2] is circumvented
using tokens which are written by readers into the storage.

An alternative approach to the use of secret tokens to reduce the time-complexity
is the use of cryptography, namely digital signatures [7, 8, 9]. Digital signatures gen-
erally require the generation of a secret (e.g. private) key, which entails the generation
of a random bit string. Secret tokens have the following advantages over signatures:
(1) no certification and key pre-distribution/sharing is needed, eliminating the need for
a PKI and/or a trusted dealer; (2) no unproven assumptions such as the hardness of
factorization or of discrete logarithm computation are needed; (3) the assumption of a
computationally bounded adversary is not needed; (4) sampling of secret tokens can be
done offline or asynchronously, without imposing an overhead in the critical execution
path of the algorithm as done if signatures are used. Our algorithms are also designed
to gracefully degrade their properties if the secrecy of the tokens is violated, whereas
existing authenticated protocols do not discuss the system behaviors if signatures can
be forged by the adversary.

1.1 Previous and Related Work

The different types of read/write storage safe, regular and atomic (in increasing strength)
have been introduced by Lamport [10]. The study of reliable distributed storage using
faulty storage components was initiated in [11] for the crash model and was extended to
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the Byzantine model in [7]. Since then, several Byzantine resilient distributed storage
algorithms have been developed. However, only a few of them exhibit the features of
robustness and optimal resilience. For instance, some implementations do not ensure
wait-freedom [12] but weaker termination guarantees, such as obstruction-freedom [13]
introduced in [14], or finite-writes [4]. Other works implement only weaker safe storage
semantics [1, 7, 4, 2]. Safe storage may return arbitrary values under concurrency.

Distributed storage has also been studied in a model where active base objects are
able to push messages to subscribed clients and that are able to communicate with
each other [15, 16, 17]. In our work we consider passive base objects which are only
able to respond to client requests and do not communicate. Different works assume
a stronger model where data is authenticated (called self-verifying data) [7, 8, 9], typ-
ically using digital signatures. As discussed, such solutions entail a certification and
a key pre-distribution phase, they are often based on unproven assumptions, they are
not secure against computationally unbounded adversaries and they entail a noticeable
computation overhead.

Lower bounds have shown that protocols using the optimal number of 3t+1 base ob-
jects [15] require at least two rounds to implement both read and write operations [2,4].
If readers are not allowed to modify the state of the base objects, the read latency is
linear in the number of the base objects [4]. Our algorithms have a write complexity
of two rounds, which is optimal. The read lower bounds mentioned above are circum-
vented using secret tokens.

The authors of [3, 5] study the best case complexity of robust atomic storage. How-
ever, reads are not bounded wait-free, requiring an unbounded number of rounds in the
worst case. Recent works have studied amnesic distributed storage [5, 18, 19, 6]. Am-
nesic storage algorithms do not store the entire history of written values in the base
objects [19].

1.2 Summary of Contributions

We now briefly summarize our contributions.
(1) We show that secret tokens can be used to reduce the read complexity of unau-

thenticated storage with optimal resilience from O(n) rounds [4], where n is the num-
ber of base objects, to just two communication rounds. The resulting algorithm supports
a possibly unbounded number of malicious readers. Our implementation is gracefully
degrading. Even if the secrecy of tokens is violated, the algorithm preserves the safety
properties of regular storage.

(2) We show that if readers do not write, then the cost of two communication rounds
of the read operation is a lower bound for every unauthenticated storage algorithm with
optimal resilience. The lower bound of [4] does not hold in a model that allows the use
of secret tokens. Therefore, the time complexity of our first algorithm is optimal.

(3) Under the assumption that readers can modify the base objects, we exhibit an
implementation in which every read completes after one communication round. The
read lower bound of two communication rounds [2] is circumvented also in this case
by using secret tokens. This algorithm is also gracefully degrading. It preserves wait-
freedom and never returns a forged value. It may however return an outdated value if
the secrecy of tokens is violated.
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2 System Model and Definitions

We consider an asynchronous distributed system consisting of a collection of clients,
interacting with a finite collection of n storage elements (called base objects). Clients
are divided into a singleton writer process and a (possibly infinite) set of reader pro-
cesses. When needed, the number of readers is denoted by r. Up to t ≤ #n/3$ base
objects can be nonresponsive-arbitrary [1]. Any number of reader processes can suffer
Byzantine failures and the writer may fail by crashing. Clients communicate with the
base objects by message-passing using point-to-point reliable communication channels.
Base objects do not communicate with each other and do not push messages to clients.

We assume the existence of a function GetToken used by clients that takes no argu-
ments and outputs a value in {0, 1}∗ and has the following property:
Secrecy: The adversary cannot generate the ith output of function GetToken before the
ith invocation of GetToken.

This assumption can be implemented by sampling a value (called token) randomly,
uniformly and independently from {0, 1}k. With 2k different tokens and large k (in
practice a few bytes suffice), the probability of creating a token before learning it is
negligibly small.

A storage abstraction is a data structure with an initial value v0 and two operations:
WRITE(v), which stores v �= v0 in the storage and READ, which returns the value from
the storage. We say that an operation op is complete in a run if the run contains a
response step for op. For any two operations op and op′, when the response step of
op precedes the invocation step of op′, we say op precedes op′. If neither op nor op′

precedes the other then they are concurrent.
A regular storage returns the value of the last complete WRITE preceding READ, or

of some concurrent WRITE. A safe storage behaves like a regular one only if no WRITE

overlaps the READ. Else, it may return arbitrary values.
The time-complexity (or latency) of a distributed storage algorithm is defined as the

number of communication round-trips from the clients to the base objects and back.

3 An Implementation Supporting Unbounded Readers

Our first algorithm uses n ≥ 3t + 1 base objects to implement a multi-reader single-
writer (MRSW) regular storage and features optimal time complexity for both opera-
tions (see Section 3.4). In the following we give a detailed description of the algorithm.

3.1 Overview

Both READ and WRITE operations take at most two rounds. In each round, the client
sends a message to all objects. Each round terminates at the latest after receiving match-
ing replies from n − t correct objects. A value is written in two consecutive phases,
called pre-write and write phase. In the first READ round, the reader samples a set of
candidates such that the value returned after the second round is among them. In the
second round, the reader collects from the objects copies of the values in the candidate
set, until it finds a value to return.
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The base objects maintain the array history[0 . . . ] used by the base objects to keep
track of the values written. The entry history[ts].pw stores a timestamp-value pair
tsval of the form 〈ts, v〉 and history[ts].w the pair 〈tsval, token〉. The initial token
value is the empty token denoted ε. Variable ts stores the timestamp of the last written
value. The variables of an object are collectively called fields.

In the pre-write phase, of WRITE(v), the writer: (1) increases its timestamp ts, (2)
assigns the timestamp-value pair 〈ts, v〉 to its variable pw and (3) writes pw to n − t
objects’ history[ts].pw field (short pw field). In the write phase, the writer (1) saves
the previously written value w in the variable wp, (2) invokes GetToken and assigns its
output to variable w.token, (3) assigns pw to w.tsval and (4) writes both w and wp to
n− t objects’ history[ts].w and history[ts− 1].w fields respectively (short w fields).
The algorithms of the writer and the base objects appear in Figures 1 and 2 respectively.

In the following we detail the READ implementation since it is more involved and
constitutes the main focus of this paper.

Initialization:
ts ← 0; w ← 〈〈0, v0〉, ε〉1

WRITE(v)
/* Pre-write Phase */
inc(ts)2

pw ← 〈ts, v〉3

send pw〈ts, pw〉 to all objects4

wait for reception of pw ack〈ts〉 from n − t objects5

/* Write Phase */
wp ← w6

w.token ← GetToken()7

w.tsval ← pw8

send wr〈ts,w, wp〉 to all objects9

wait for reception of wr ack〈ts〉 from n − t objects10

return ack11

Fig. 1. Algorithm of the writer

3.2 READ Implementation

The full algorithm of the readers can be found in Figure 3. As mentioned earlier, READ

performs in two rounds. In the first round, the reader collects from n−t base objects the
latest and the second latest values written w and wp and adds them to the set of return
candidates C. For this purpose the reader sends a message rd1 to all objects (line 18)
and awaits n− t matching responses of type rd1 ack (line 20).

In the second round, the reader gathers copies of the candidate values in C from
the history of pw and the w fields of the base objects until it finds a candidate it can
safely return. For this purpose, in the second round (1) the reader adds the timestamps
of the candidates in C to a set TS (line 21) and (2) sends a message rd2 to all objects
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(line 22). Upon reception of a rd2 message, each correct object constructs two sets PW
and W , and for each timestamp ts ∈ TS it adds to PW and W the corresponding
value from the history[ts].pw and history[ts].w fields, if present. Finally, it sends a
rd2 ack message containing PW and W back to the reader. When the reader receives
a matching rd2 ack message from base object i for the first time, it records PW and
W in its variables PW [i] and W [i], and removes all candidates from C which are
incomplete (lines 23–25). If a value c is incomplete then it is missing from n − t
objects’ history of w fields. In this case, the WRITE of c does not precede READ and
thus c can be disregarded without violating regularity. The reader keeps waiting for
additional rd2 ack messages until there is a candidate c ∈ C such that no candidate in
C has a higher timestamp (i.e., predicate highCand(c) holds) and c is stored at t + 1
base objects in the pw or w field (i.e., predicate safe(c) holds).

Our implementation guarantees that the condition in line 26 is eventually satisfied in
every READ. In the following we give a rough intuition of why this is true (the detailed
proof can be found in Section 3.3).

Observe that C �= ∅ because the second-last written value reported by a correct
object is never incomplete. Assume by contradiction that READ never completes, i.e.
there is a candidate c ∈ C such that c is never eliminated from C and c is never safe.
Consider the following two cases. Case (1): c is reported in the first READ round after
the pre-write phase of c.tsval has completed. In this case, c.tsval is pre-written to t+1
correct objects before any of them is accessed by the second READ round. Hence t + 1
correct objects eventually report c.tsval from their pw history and c becomes safe.
Case (2): c is reported during the first READ round before the pre-write phase of c.tsval
has completed. Clearly, c is reported by a malicious object. By the Secrecy assumption,
the token used by the adversary is different from the token which is indeed written
together with c.tsval. Hence, no correct object reports c and c is eliminated from C.
Therefore, each value either becomes safe or is removed from the set of candidates.

It is important to note that the algorithm implements a regular storage even if the
Secrecy assumption does not hold. Specifically, the proof of regularity below does not
rely on the inability of the adversary to guess the token.

3.3 Correctness

Lemma 1 (Regularity). The READ operation either returns the latest value written
before READ is invoked or one that is written concurrently with READ.

Proof. Note that if READ returns a value c.tsval.val, then safe(c) holds. This implies
that t + 1 objects respond with c.tsval and some of these is correct. Hence, either
c.tsval has been written or is 〈0, v0〉. We now show that READ does not return values
older that the latest WRITE preceding READ.

If no WRITE completes before READ then we are done. Else, let R be a READ invo-
cation and W = WRITE(v) be the last WRITE that completes before R is invoked. Let
ts be the timestamp associated with v. We need to show that if c.tsval.val is returned,
then c.tsval.ts ≥ ts.

We assume by contradiction that c.tsval.ts < ts. Since W precedes R, the write
phase of 〈ts, v〉 completes at t + 1 correct objects before any of them is accessed by R.
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Initialization:
ts ← 0; history[0].pw ← 〈0, v0〉; history[0].w ← 〈pw, ε〉1

upon reception of pw〈ts′, pw〉 from writer2

history[ts′].pw ← pw3

send pw ack〈ts′〉 to writer4

upon reception of wr〈ts′, w, wp〉 from writer5

if ts′ > ts then ts ← ts′6

history[ts′].w ← w; history[ts′ − 1].w ← wp7

send wr ack〈ts′〉 to writer8

upon reception of rd1〈tsr〉 from reader j9

send rd1 ack〈tsr, history[ts].w, history[ts − 1].w〉 to reader j10

upon reception of rd2〈tsr, TS〉 from reader j11

PW ← {history[ts′].pw : ts′ ∈ TS}12

W ← {history[ts′].w : ts′ ∈ TS}13

send rd2 ack〈tsr, PW,W 〉 to reader j14

Fig. 2. Algorithm of the base objects
Predicates:

safe(c) � |{i ∈ Q : c.tsval ∈ PW [i] ∨ c ∈ W [i]}| ≥ t + 1
incomplete(c)� |{i ∈ Q : c �∈ W [i]}| ≥ n − t
highCand(c)� c ∈ C : (∀c′ ∈ C : c.tsval.ts ≥ c′.tsval.ts)

READ()
C ← TS ← Q ← ∅15

PW [i] ← W [i] ← ∅, 1 ≤ i ≤ n16

/* Round 1 */
inc(tsr)17

send rd1〈tsr〉 to all objects18

repeat
if received rd1 ack〈tsr,w, wp〉 then C ← C ∪ {w, wp}19

until received rd1 ack〈tsr, ∗〉 from n − t objects20

TS ← {c.tsval.ts : c ∈ C}21

/* Round 2 */
send rd2〈tsr, TS〉 to all objects22

repeat
if received rd2 ack〈tsr, PW,W 〉 from object i then23

Q ← Q ∪ {i}; PW [i] ← PW ; W [i] ← W24

C ← C \ {c ∈ C : incomplete(c)}25

until (received rd2 ack〈tsr, ∗〉 from n − t objects) ∧26

(∃c ∈ C : safe(c) ∧ highCand(c))
return c.tsval.val27

Fig. 3. Algorithm of the readers
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Therefore, these t + 1 objects report to the first round of R values with timestamp ts or
higher. Since READ waits for n− t responses, it receives a response from one of these
t + 1 correct objects. Let i denote this object and let c′ be the value with the lowest
timestamp of the two values reported by i such that c′.tsval.ts ≥ ts. We show that c′

is not incomplete. Assume the contrary.
By definition of incomplete, c′ is missing from the history of n− t objects. There are

two cases to consider. If c′ is reported inw, then by the choice of c′, it holds that c′.tsval =
〈ts, v〉. Otherwise, c′ is reported inwp, which implies that WRITE(c′.tsval.val) precedes
the second round of R. In both cases c′ has been stored in the history of w fields of t+ 1
correct objects before the second read round starts. Hence, c′ is missing from the history
ofwfields of at mostn−t−1 objects, a contradiction. Consequently, c′ is not incomplete
and is never removed from the set C of candidates. As c′.tsval.ts ≥ ts > c.tsval.ts, c
is not highCand, contradicting the assumption that R returns c.tsval.val. �

Lemma 2 (Wait-freedom). READ and WRITE operations are wait-free.

Proof. As the WRITE operation waits for at most n − t objects to respond and by as-
sumption there are n − t correct objects, it never blocks. We now show that the READ

operation does not block.
We assume by contradiction that READ blocks in line 23. We consider the time after

which all correct objects (at least n−t) have responded. We first show that C �= ∅. Let c
be the second-last value written to a correct object and reported in wp (line 19). Observe
that WRITE(c.tsval.val) is complete before the second round of R starts. Therefore c is
missing from the history of at most n − t − 1 objects and thus, c is never eliminated
from C.

We now show that for all c ∈ C, safe(c) holds. Assume by contradiction that there
exists c ∈ C and c is not safe. We distinguish the following two cases:

Case (1): c is reported in the first round by some correct object. This implies that c.tsval
is pre-written to t + 1 correct objects before any of them is read in the second round.
Therefore, these t + 1 correct objects respond with c.tsval in PW and c is safe. Case
(2): only malicious objects respond with c in the first read round. If no correct object
reports c in the second read round, then c is incomplete and hence c �∈ C. Else, if some
correct object reports c′ = c, then c′.token = c.token. By the Secrecy property, the
malicious base objects report c only after the WRITE of c′ has invoked GetToken. As
the pre-write phase precedes the invocation of GetToken, c.tsval is pre-written to t+1
correct objects before the second READ round starts and therefore c is safe. �

Theorem 1. The Algorithm appearing in figures 1, 2 and 3 wait-free implements a
MRSW regular storage.

Proof. Follows directly from Lemma 1 and Lemma 2. �

Efficiency After having proved the correctness, we now discuss the efficiency of the
algorithm. As the algorithm stores the history of written values in the base objects, the
storage requirements depend on the number of write operations. Note that, if readers do
not write, storing less values is an open problem [19]. The messages used are of con-
stant size except the second read round messages which are O(n). Observe that neither
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the storage requirements of the base objects nor the communication complexity (i.e.
message size) depends on the number of readers in the system. Thus, the algorithm is
scalable, supporting a possibly unbounded number of malicious clients. As announced,
the time-complexity of both READs and WRITEs is of two rounds in the worst case.

In the following we show that the round-complexity of the algorithm is tight.

3.4 Optimality: Fast Reads Must Write

In this section we give a rough intuition of why the presented algorithm has optimal
time-complexity. Due to space limitations, we make only a statement of the result. A
detailed proof can be found in our technical report [20].

Theorem 2. There is no fast READ implementation of a single-reader single-writer
(SRSW) safe storage from 4t base objects if the reader does not modify the base ob-
jects’ state.

This result, together with the lower bound of two rounds for the WRITE [4], imply that
our first algorithm exhibits optimal time-complexity.

Our proof derives from three indistinguishable runs. In the first run, READ is con-
current with WRITE, all correct base objects have responded and the faulty objects have
crashed. In the second run, WRITE precedes READ but the faulty objects are malicious
and hide the written value from the reader, simulating the concurrency of the first run.
In the third run, no value is written and the malicious base objects forge the value of the
writer. The reader finds itself in a situation in which it cannot distinguish between the
second and the third run. If the reader returns a value, then it returns the same value in
both runs, which violates safety either in the second or the third run. Else if the reader
waits for more base objects, then it would block in the first run, which violates liveness.

4 An Implementation of Fast READs

The second algorithm we present in this paper also uses n ≥ 3t + 1 base objects and
implements a MRSW regular storage. The main difference to the previous algorithm is
that every READ operation completes after one communication round.

4.1 Overview

In each round the client (reader or writer) sends a message to all objects and waits until
it has received matching replies from at most n− t correct objects. Like in the previous
algorithm, a value is written in two phases, a pre-write and a subsequent write phase.
Unlike in the previous algorithm, in the pre-write phase, in addition to writing data, the
writer also reads control data from the base objects. Readers write control data and read
data written by the writer.

The base objects maintain in addition to the history of written values an array
tsrtoken[1...r] which is updated by the readers. The entry tsrtoken[j] stores a
timestamp-token pair of the form 〈tsr, token〉, where tsr is the most recent timestamp
of reader j and token the corresponding token value.
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In the pre-write phase, of WRITE(v), the writer: (1) increases its timestamp ts, (2)
stores the last pre-written value in pwp (3) assigns the timestamp-value pair 〈ts, v〉 to its
variable pw, (4) writes pw and w to n−t objects’ history[ts].pw and history[ts−1].w
fields respectively, (5) reads the objects’ tsrtoken[∗] fields written by the readers and
(6) for each reader j adds tsrtoken[j] to the set Tsrtokens[j]. In the write phase, the
writer (1) assigns 〈pw, T srtokens〉 to variable w and (2) writes both w and pwp to n−t
objects’ history[ts].w and history[ts− 1].pw fields respectively. The algorithm of the
writer appears in Figure 4.

In the following we detail the READ implementation and the interaction with the base
objects, which is slightly more involved.

Initialization:
Inittsrtokens[j] ← ∅, 1 ≤ j ≤ r1

ts ← 0; pw ← 〈0, v0〉; w ← 〈pw, Inittsrtokens〉2

WRITE(v)
/* Pre-Write Phase */
Tsrtokens ← Inittsrtokens3

inc(ts)4

pwp ← pw5

pw ← 〈ts, v〉6

send pw〈ts, pw, w〉 to all objects7

repeat
if received pw ack〈ts, tsrtoken〉 from object i then8

Tsrtokens[j] ← Tsrtokens[j] ∪ {tsrtoken[j]}, 1 ≤ j ≤ r9

until received pw ack〈ts, ∗〉 from n − t objects10

/* Write Phase */
w ← 〈pw, Tsrtokens〉11

send wr〈ts, pwp, w〉 to all objects12

wait for reception of wr ack〈ts〉 from n − t objects13

return ack14

Fig. 4. Algorithm of the writer

4.2 READ Implementation

The full algorithm of the base objects is given in Figure 5 and that of the readers in
Figure 6. As mentioned earlier, READ completes in one communication round. The
reader (1) increments its timestamp tsr, (2) selects a secret token token and (3) sends
a message rd containing tsr and token to all objects. Upon reception of rd from reader
j, each correct object (1) stores 〈tsr, token〉 in tsrtoken[j], (2) computes a timestamp
tsmax such that any higher timestamped value stored has been written concurrently
with READ and (3) sends a message rd ack containing three values with timestamps
tsmax − 1, tsmax and tsmax + 1 (if available) back to the reader. When the reader
receives a rd ack message from object i for the first time, it stores the value with times-
tamp tsmax in w[i] and adds w[i] to the set of candidates C. The other two values are
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added to PW [i]. In addition it removes all incomplete candidates from C. A candidate
is incomplete when n− t objects have reported candidates with lower timestamps. Ob-
serve that the choice of tsmax as candidate is crucial: (a) values with higher timestamps
can be safely disregarded without violating regularity and (b) the value corresponding
to tsmax is stored in t+1 correct objects’ pw field before any of them is read. The latter
property is critical because otherwise, a candidate might never become safe. The termi-
nation condition is the existence of a candidate which is both highCand and safe. Our
implementation guarantees that this condition is eventually satisfied in every READ. We
now give an intuition of why this is true.

Recall that, for every candidate c it holds that c is pre-written to t+ 1 correct objects
before any of them is read. We now explain why. The negation thereof implies that
at least t + 1 correct objects store the timestamp-token pair of READ before c is pre-
written to them. At least one of them reports the token in the pre-write phase, such
that c and all higher timestamped values are stored together with the token in the write
phase. Consequently, all correct objects (at least n− t) report to READ only values with
lower timestamps and c is eliminated from C. It is not difficult to see that if the correct
base objects report the entire pw history, then every candidate would eventually become
safe. Our approach simulates this behaviour, but the correct objects send at most three
values, with consecutive timestamps centered around tsmax. The reasoning behind it is
the following: if some candidate is lower than the first, then it is not highCand. Else, if
it is higher than the third, then it is removed from C.

4.3 Correctness

Lemma 3 (Regularity). The READ operation either returns the latest value written
before READ is invoked or one that is written concurrently with READ.

Proof. Observe that if READ returns a value c.val, then safe(c) holds. This implies
that t + 1 objects respond with c and some of these is correct. Hence, either c has been
written or is 〈0, v0〉. We now show that READ does not return values older than the latest
WRITE preceding READ.

If no WRITE completes before READ then we are done. Else, let R be a READ in-
vocation of reader j and W = WRITE(v) be the last WRITE that completes before R is
invoked. Let ts be the timestamp associated with v. We need to show that if c.val is
returned, then c.ts ≥ ts.

We assume by contradiction that c.ts < ts. Let 〈tsr, token〉 be the timestamp-token
pair of R. Since W precedes R, GetToken is invoked by R after W is complete. If some
malicious object reports 〈tsr, token′〉 to W, then the Secrecy assumption implies that
token �= token′. Therefore, W does not include 〈tsr, token〉 in the set Tsrtokens[j]
corresponding to 〈ts, v〉. Furthermore, the write phase of 〈ts, v〉 completes at t+ 1 cor-
rect base objects before any of them is accessed by R. As 〈tsr, token〉 �∈ Tsrtokens[j],
these t+ 1 correct objects report values with timestamp ts or higher from their w field.

Let c′ be the value with the lowest timestamp received from the w field of any of
the t + 1 objects. As R waits for at least n − t objects to respond, such a value exists.
We show that c′ is not incomplete. Assume the contrary. By definition of incomplete,
n− t objects must report values with timestamps lower than c′.ts from their w field. At
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Initialization:
Inittsrtokens[j] ← ∅; tsrtoken[j] ← 〈0, ε〉, 1 ≤ j ≤ r1

history[0].pw ← 〈0, v0〉; history[0].w ← 〈〈0, v0〉, Inittsrtokens〉2

upon reception of pw〈ts, pw, w〉 from writer3

history[ts].pw ← pw; history[ts − 1].w ← w4

send pw ack〈ts, tsrtoken〉 to writer5

upon reception of wr〈ts, pwp, w〉 from writer6

history[ts − 1].pw ← pwp; history[ts].w ← w7

send wr ack〈ts′〉 to writer8

upon reception of rd〈tsr, token〉 from reader j9

if tsr > tsrtoken[j].tsr then tsrtoken[j] ← 〈tsr, token〉10

tsmax ← max{ts : tsrtoken[j] �∈ history[ts].w.T srtokens[j]}11

w ← history[tsmax].w.tsval12

PW ← {history[tsmax − 1].pw, history[tsmax + 1].pw}13

send rd ack〈tsr, PW, w〉 to reader j14

Fig. 5. Algorithm of the base objects
Predicates:

safe(c) � |{i ∈ Q : c ∈ PW [i] ∪ {w[i]}}| ≥ t + 1
incomplete(c)� |{i ∈ Q : w[i].ts < c.ts}| ≥ n − t
highCand(c)� ∀c′ ∈ C : c.ts ≥ c′.ts

READ()
C ← Q ← ∅15

PW [i] ← ∅; w[i] ← ⊥, 1 ≤ i ≤ n16

inc(tsr)17

token ← GetToken()18

send rd〈tsr, token〉 to all objects19

repeat
if received rd ack〈tsr, PW, w〉 from object i then20

Q ← Q ∪ {i}; PW [i] ← PW ; w[i] ← w; C ← C ∪ {w}21

C ← C \ {c ∈ C : incomplete(c)}22

until (received rd ack〈tsr, ∗〉 from n − t objects) ∧23

(∃c ∈ C : safe(c) ∧ highCand(c))
return c.val24

Fig. 6. Algorithm of the readers
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least one of these is a correct object i among the t + 1 updated by W. By the choice of
c′, w[i].ts ≥ c′.ts. Therefore, c′ is not incomplete and is never removed from the set
C of candidates. As c′.ts ≥ ts > c.ts, c is not highCand, contradicting the assumption
that c is returned by R. �

Lemma 4 (Wait-freedom). READ and WRITE operations are wait-free.

Proof. As the WRITE operation waits for at most n − t objects to respond and by as-
sumption there are n − t correct objects, it never blocks. We now show that the READ

operation does not block.
We assume by contradiction that READ blocks in line 23. We consider the time after

which all correct objects (at least n− t) have responded. We first show that C �= ∅. Let
c be the t+ 1st highest value reported in the w field of a correct object. Clearly, c is not
incomplete and thus it is not removed from C.

Let c ∈ C be the highest value reported in the w field of a correct object. We show
that (1) highCand(c) holds and (2) safe(c) holds.

Step (1): If c is not highCand, then there exists c′ ∈ C and c′.ts > c.ts. By
the choice of c, there are n − t correct objects i that report values w[i] such that
w[i].ts < c′.ts. This implies that c′ �∈ C, a contradiction.

Step (2): Observe that t+1 correct objects have stored c in their pw field before any of
them replies to READ. Else, no correct object would reply with c in the w field (line 11).
Let i be any of these correct objects. We assume by contradiction that c �∈ PW [i] ∪
{w[i]}. Let tsmax be the timestamp computed by object i in line 11. If c.ts − 1 ≤
tsmax ≤ c.ts+1, then c is reported either from PW [i] or w[i] and we are done. Observe
that, since c is pre-written to i together with the last written value (with timestamp
c.ts−1), it holds that tsmax ≥ c.ts−1. Therefore, the only remaining case is tsmax >
c.ts + 1. This implies that c′ exists such that tsmax > c′.ts > c.ts. Since the value
with timestamp tsmax is pre-written to t + 1 correct objects before they are read, c′ is
written to t+1 correct objects before they are read. Hence, c′ or a higher timestamped
value is not incomplete, contradicting the assumption that c is highCand. �

Theorem 3. The Algorithm appearing in figures 4, 5 and 6 wait-free implements a
MRSW regular storage.

Proof. Follows directly from Lemma 3 and Lemma 4. �

Efficiency. We now discuss the efficiency of the algorithm. Like in the previous algo-
rithm, the storage requirements depend on the number of write operations. In addition,
the base objects store up to n · r timestamp-token pairs together with each value writ-
ten to them. Messages exchanged between the reader and the base objects are of con-
stant size. The WRITE messages pw ack (respectively wr) contain r (respectively n · r)
timestamp-token pairs. The time-complexity of the READ is one communication round
in the worst case, which is clearly optimal. Every WRITE completes after two rounds
which is also optimal [4].
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5 Conclusion

The algorithms presented effectively circumvent lower bounds established for unau-
thenticated storage by using secret tokens. The first algorithm supports unbounded read-
ers and features constant read complexity. The second algorithm features fast reads, i.e.,
every read terminates after one round of communication with the base objects. Even if
the secrecy assumption of the token is violated both algorithms are gracefully degrad-
ing. The first algorithm fully preserves regularity and the second algorithm never blocks
and never returns a forged value. However, the probability of property violation is neg-
ligibly small if the token space is large enough. The algorithms are secure against a
computationally unbounded adversary because tokens are purely random and therefore
they cannot be computed.

Both algorithms require base objects to store all the values they receive from the
writers. If readers do not write, storing less values is an open problem [19]. Concerning
the second algorithm, a sophisticated arbitration mechanism as shown in [6] is needed
to overcome this problem, which goes beyond the scope of the paper. Although some
very practical storage systems [21] rely on the same assumption this might raise issues
of storage exhaustion and needs careful garbage collection.

References

1. Jayanti, P., Chandra, T.D., Toueg, S.: Fault-tolerant wait-free shared objects. J. ACM 45(3),
451–500 (1998)
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Abstract. Consider a fully connected network where up to t processes
may crash, and all processes start in an arbitrary memory state. The
self-stabilizing firing squad problem consists of eventually guaranteeing
simultaneous response to an external input. This is modeled by requir-
ing that the non-crashed processes “fire” simultaneously if some correct
process received an external “go” input, and that they only fire as a
response to some process receiving such an input. This paper presents
Fire-Squad, the first self-stabilizing firing squad algorithm.

The Fire-Squad algorithm is optimal in two respects: (a) Once the
algorithm is in a safe state, it fires in response to a go input as fast as
any other algorithm does, and (b) Starting from an arbitrary state, it
converges to a safe state as fast as any other algorithm does.

1 Introduction

The firing squad problem was first introduced in [2,3]. Informally, it is assumed
that at any given round a process may receive an external “go” input, which is
considered a request for the correct processes to simultaneously “fire.” Roughly,
a good solution is a protocol satisfying three properties: (a) if some process fires
in round r then all the non-crashed processes fire simultaneously in round r; (b)
if a correct process receives a go input in round r′ then it will fire at some later
round r > r′; and (c) a process fires in round r only if some process received a
go input in some round r′ < r. (The formal definition disallows a solution in
which a single input induces a constant firing.)

Requiring the processes to fire simultaneously captures an important aspect
of distributed systems: There are cases in which it is important that activities
begin in the same round, e.g., when one distributed algorithm ends and another
one begins, and the two may interfere with each other if executed concurrently.
Similarly, many synchronous algorithms are designed assuming that all sites
start participating in the same round of communication. Finally, simultaneity
may be motivated by the fact that a distributed system interacts with the out-
side world, and these interactions should often be simultaneously consistent. A
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non-simultaneous announcement to financial (stock) markets may enable unfair
arbitrage trading, for example.

Coordinating simultaneous actions is not subsumed by the consensus task.
Indeed, even when no transient failures are considered possible (so there is a
global clock and no self-stabilization is required), solving the firing squad prob-
lem or simultaneously deciding in a consensus task can be considerably harder
than plain consensus [4,8]. This implies, in particular, that clock synchroniza-
tion [7,11,6,12,18] does not suffice for solving the firing squad problem in a
self-stabilizing manner; as it can be seen as providing round-numbers to a self-
stabilizing environment, which still leaves the firing squad problem as a non-
trivial problem.

The firing squad problem is a primary example of a problem requiring simul-
taneously coordinated actions by the non-faulty processes. Simultaneous coordi-
nation has been shown to be closely related to the notion of common knowledge
[10,9], and this connection has been used to characterize the earliest time re-
quired to reach simultaneous consensus, firing squad, and related problems in a
variety of failure models [8,15,1,17,13,16]. One of the consequences of this liter-
ature is the fact that the time at which a simultaneous action that is based on
initial values or external inputs can be performed depends in a crucial way on
the pattern in which failures occur.

A general form of simultaneous agreement called continuous consensus was
defined in [13]. In this problem, each of the processes maintains a list of events
of interest that have taken place in the run, and it is guaranteed that the lists
at all non-faulty processes are identical at all times. They present an optimal
(non-stabilizing) implementation of such a service, which is a protocol called
ConCon. If we define as the events to be monitored by ConCon to be of the
form (go, p, k), corresponding to a go message arriving at process p at the end of
round k, then a firing squad protocol can be obtained from ConCon simply by
having the non-faulty processes fire exactly when a (go, p, k) event first appears
in their identical copies of the “common” list. We shall refer to this solution to
the firing squad problem based on ConCon by CCfs.

Traditionally, the firing squad problem assumes that processes do not recover,
i.e., failed processes stay failed forever. Moreover, even though it is easy to ex-
tend the firing squad problem so that it can be repeatedly executed (i.e., allow
for multiple firings over time, given that multiple go inputs are received), it
assumes that nothing in the system goes amiss—except possibly for the crash
failures being accounted for. Adding support for handling transient faults in-
creases the robustness of a firing squad algorithm in this aspect. Indeed, a self
stabilizing solution will, in particular, be able to cope with process recovery:
Following process recoveries, the system will eventually converge to a valid state
and continue operating correctly.

Transient faults alter a process’s memory state in an arbitrary way. A self-
stabilizing algorithm [5] is assumed to start in an arbitrary state and be guaran-
teed to eventually reach a state from which it operates according to its intended
specification. Starting the operation at an arbitrary state enables the adversary
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to “plant” false information, such as the receipt of go messages in the past, which
can cause the algorithm to unjustifiably fire, either immediately, or within a few
rounds. One of the challenges in designing an efficient self-stabilizing firing squad
algorithm is in bounding the damage that can be caused by such false information
in the initial state.

Perhaps the first candidate solution would be to initiate an instance of CCfs
in every round, with t + 1 instances executing concurrently at any given time,
where t is an upper bound on the number of possible crashed processes. Firing
would then take place if it is dictated by any of the instances. Since the compo-
nent instances of such a solution are not themselves stabilizing, all we can show
is that such a solution is guaranteed to stabilize after t + 1 rounds, regardless
of the failure pattern. We shall present a solution that does not consist of such
a concurrent composition. Moreover, it performs subtle consistency checks to
restrict the impact of false information that appears in the initial state. As a
result, in some cases we obtain stabilization in as little as two rounds.

The above discussion points out the stabilization time as an important aspect
of a self-stabilizing firing squad algorithm. Another central performance param-
eter is its swiftness: Once the algorithm has stabilized, how fast does it fire given
that some process receives a go input? In addition to solving the self-stabilizing
firing squad problem, the algorithm presented in this paper is also optimal in
terms of both its stabilization time, and its swiftness.
The main contributions of this paper are:

– A self-stabilizing variant of the firing squad problem is defined, and an algo-
rithm solving it in the case of crash failures is given.

– The proposed algorithm, called Fire-Squad, is shown to be optimal both
in terms of the time it requires to stabilize and in terms of the time it takes,
after stabilization, to fire in response to a go input.

– Finally, the optimality is demonstrated in a fairly strong sense: For every
possible failure pattern, both stabilization time and swiftness are the fastest
possible, in any correct algorithm. In extreme cases this enables stabilization
in two rounds and firing in one round.

The rest of the paper is organized as follows. Section 2 describes the model and
defines the problem at hand. Section 3 provides lower bounds for the optimality
properties. Section 4 describes the proposed solution, Fire-Squad, and proves
its correctness and optimality. Finally, Section 5 concludes with a discussion.

2 Model and Problem Definition

The system consists of a set P = {1, . . . , n} of processes. Communication is done
via message passing, and the network is synchronous and fully connected. The
system starts out at time1 k = 0, and a communication round r starts at time
k = r − 1 and ends at time k = r. At time k each process computes its state
according to its state at time k − 1, the internal messages it received by time
1 All references to “time” in this paper refer to non-negative integer times.
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k (sent by other processes at time k − 1) and external inputs (if any) that it
received at time k. In addition, at any time k ≥ 0 a process can produce an
external output (such as “firing”).

Let Ik
p ∈ {0, 1} represent the external input of process p at time k. We say

that p received an external go input at time k if Ik
p = 1; Otherwise, (if Ik

p = 0),
we say that p did not receive a go input. Let Ip = {Ik

p }∞k=0, let Ik = {Ik
p }n

p=1

and let I = {Ip}n
p=1. I is “the input pattern”, and Ik is the (joint) input at time

k. In a similar manner define Ok
p ∈ {0, 1},Op,Ok and O as the output pattern.

If Ok
p = 1 we say that p fires at time k, and if Ok

p = 0 we say p does not fire at
time k. It will be convenient to say that a fire action occurs at time k if Ok

p = 1
for some process p, and similarly that a go input is received at time k if Ik

p = 1
for some p.

Denote by t an a priori bound on the number of faulty processes in the
system. For ease of exposition, we assume that t < n − 1, so that there are at
least two processes that need to coordinate their actions. We assume the crash
failure model, in which a faulty process p does not send any messages after its
failing round; it behaves correctly before its failing round, and sends an arbitrary
subset of its intended messages during its failing round.

A failure pattern describes for each time k which processes have failed by
time k, and for each process that fails in round k (i.e., did not fail by time k−1),
which of its outgoing communication channels are blocked (and hence do not
deliver its messages) in round k. Notice that a process may fail in round k even
if all of its messages are delivered. We denote a failure pattern by F , and by Fk

the set of processes that fail in F by time k. Observe that Fk ⊆ Fk+1; in the
crash failure model failed processes do not recover. Similarly, we use Gk = P\Fk

to denote the set of processes that are non-faulty at time k. Finally, G will denote
the set of processes that remain non-faulty throughout F , i.e., G =

⋂∞
k=0 Gk.

Notice that the set G is always defined in terms of a failure pattern F , which is
typically clear from the context.

In addition to crashes, there are also transient faults. Formally, we denote by
Sk

p the state of a process p at time k. We denote by Sk = (Sk
1 , . . . ,Sk

p , . . . ,Sk
n)

the state of the entire system at time k. Transient faults are captured by the
assumption that the system may start from any (arbitrary) state, and there is
some round r such that for all rounds r′ ≥ r the intended algorithm operates
as written. In other words, for any possible state S, if S0 = S then eventually
(starting from some round r) the algorithm operates correctly.

For the following analysis, each algorithmA is assumed to have an initial state
SA

init. For self-stabilizing algorithms, we fix an arbitrary state as SA
init (as the

algorithm should converge starting from any initial state). The a priori bound
of t on the number of failures is assumed to be hard-wired into the algorithm, and
is not affected by transient faults. Such an algorithm is assumed to be executed
only in the context of failure patterns in which at most t processes crash. For
such failure patterns F , the algorithm A produces an output pattern O starting
from state S given an input I; we denote this output pattern by O = A(S, I,F).



288 D. Dolev, E.N. Hoch, and Y. Moses

Informally, the Firing Squad problem requires that: (1) all processes fire to-
gether (“simultaneity”); (2) if a go input is received then a fire action occurs
(“liveness”); and (3) the number of fire actions is not larger than the number of
received go inputs (“safety”). Formally,

Definition 1. Let O = A(S, I,F) and let G denote the set of processes that
remain non-faulty throughout F . We say that O satisfies the FS(k) properties
(capturing correct firing-squad behavior from time k on) w.r.t. I, F , and O, if
the following conditions hold for all k′ ≥ k:

1. (simultaneity) If Ok′
p = 1 for some p ∈ P then Ok′

q = 1 for all q ∈ G;
2. (liveness) If Ik′

p = 1 for some p ∈ G, then there is k′′ > k′ s.t. Ok′′
p = 1;

3. (safety) The number of times k′′ satisfying k ≤ k′′ ≤ k′ at which a fire action
occurs at k′′ is not larger than the number of times h in the range 0 ≤ h < k′

at which go inputs are received.

We can use the FS(k) properties to define when an algorithm solves the firing
squad problem in a self stabilizing manner. We first use it to define the stabi-
lization time of an algorithm as follows:

Definition 2 (Stabilization time). The stabilization time of A on S, I and
F , denoted by stab(A,S, I,F), is the minimal k ≥ 0 such that FS(k) holds
with respect to I, F , and O = A(S, I,F). (If FS(k) holds for no finite k, then
stab(A,S, I,F) =∞.)

Notice that the “safety” property in FS(k) relates outputs starting from time k
to inputs starting from time 0. Here’s why: Since we consider time 0 to be the
point at which transient errors end, if the system starts in a state in which “it
appears as if” go inputs were received before time 0, the good processes may
fire after time 0 without a go message actually having been received. Once all
firings induced by such “phantom” go inputs have occurred, we can legitimately
require firing events to happen only in response to genuine go message receipts.
We thus think of the stabilization time, at which in particular the safety property
of FS(k) holds, as one after which no firing will occur in response to phantom
go messages. Rather, every firing will be justifiable as a response to some go
message received at or after time 0.

Definition 3 (SSFS Algorithm). An algorithm A solves the Self stabilizing
Firing Squad problem (A is an SSFS algorithm, for short) if there exists a k <∞
such that stab(A,S, I,F) ≤ k for every system state S, input pattern I and
failure pattern F .

Observe that in a setting with no transient faults, an algorithm A solves the
(non-self-stabilizing) Firing Squad problem if it satisfies FS(0) with respect to
I, F , and O, for every I, F and O = A(SA

init, I,F).
Notice that Definition 3 implies that any SSFS algorithm A has at least one

memory state from which the firing squad properties are guaranteed to hold.
Denote one of these memory states by SA

stab, or simply Sstab when A is clear
from the context.
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2.1 Optimality Measures

In this work we are interested in finding an optimal SSFS algorithm. We start
by defining stabilization time optimality, which measures how quickly algorithm
A stabilizes.

Definition 4. An SSFS algorithm A is said to optimally stabilize if the follow-
ing holds for every SSFS algorithm B and every failure pattern F :

max
S,I

{stab(A,S, I,F)} ≤ max
S,I

{stab(B,S, I,F)} .

Definition 4 defines optimality of an algorithm A with respect to its stabilization
time, i.e., how quicklyA starts to operate according to all of the FS requirements.
The intuition behind defining optimality in terms of worst-case S and I is to
avoid algorithms that are “specific” to an initial memory state or input pattern.
Thus, by requiring optimality in the worst-case we ensure that the algorithm
cannot be hand-tailored to a specific setting, but rather needs to solve the SSFS
problem in a “generic” manner.

We now turn to the issue of comparing the responsiveness of distinct firing
squad algorithms. Specifically, we are concerned with how quickly an algorithm
fires after a go message is received (once the algorithm has stabilized). For sim-
plicity, we consider receipts of go by non-faulty processes, since the problem
specification forces a firing following such a receipt. Another subtle issue is that
if go messages are received in different rounds between which there is no fir-
ing, then it may be difficult to figure out which go message the next firing is
responding to. Again for simplicity, we will be interested in what will be called
sequential input patterns, in which a go is not received before all previous go’s
have been followed by firings. More formally, we define:

Definition 5 (Sequential inputs). Let A be an SSFS algorithm. We say that
the input I is sequential with respect to (A, S, F) if (i) no go inputs are received
according to I at times k < stab(A,S, I,F), (ii) go inputs are received in I
only by processes from G, and (iii) if k1 < k2 and go inputs are received at
both k1 and k2, then there is an intermediate time k1 < k′ ≤ k2 at which a fire
action occurs.

The following definition formally captures the number of firing events that occur
between the stabilization time and a given time k.

Definition 6. Let A be an SSFS algorithm and let O=A(S, I,F). We define
#[(A,S, I,F), k] to be the number of rounds k′ in the range stab(A,S, I,F) ≤
k′ ≤ k such that Ok′

p = 1 holds for some process p ( i.e., a firing occurs at
time k′).

By definition, if k < stab(A,S, I,F) then #[(A,S, I,F), k] = 0. With the
last two definitions, we are now able to formally compare the responsiveness of
different SSFS algorithms:
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Definition 7 (Swiftness). Let A and B be SSFS algorithms. We say that A is
at least as swift as B if A fires at least as quickly as B on all sequential inputs.
Formally, we require that for every failure pattern F , input I, and states SA of A
and SB of B, the following holds. If I is sequential both with respect to (A, SA,
F) and with respect to (B, SB, F), then #[(A,SA, I,F), k] ≥ #[(B,SB, I,F), k]
holds for every time k. An SSFS algorithm A is optimally swift if it is at least
as swift as B for every SSFS algorithm B.

We are now in a position to state the main result of the paper: The Fire-
Squad algorithm of Figure 1 is an SSFS algorithm, is optimally stabilizing and
is optimally swift (Theorem 3).

3 Lower Bounds

In this section we provide lower bounds for the stabilization time and for the
swiftness of any SSFS algorithmA. The lower bounds build upon previous results
in the field of simultaneous agreement.

Recall that if A is a non-self-stabilizing Firing Squad algorithm, then
stab(A,SA

init, I,F) = 0 for all I and F . Therefore, in the non-self-stabilizing
case, it only makes sense to compare algorithms in terms of their “swiftness.” In
a non-self-stabilizing setting, the firing squad protocol CCfs (based on ConCon
[13]) is optimally swift. We will use it as a benchmark and yardstick for express-
ing and analyzing the performance of self-stabilizing firing squad protocols. To
compare the performance of different algorithms, we make use of the following
definitions.

Definition 8. We denote by δ(F , k) the number of processes known at time k
to be faulty by the processes in Gk in a run of CCfs with failure pattern F .

Intuitively, δ(F, k) stands for the number of failures that are discovered by time k
in a run with pattern F . We remark that δ(F , k) is well-defined, because the
same number of faulty processes are discovered (at the same times) in all runs
of CCfs that have failure pattern F . Moreover, since CCfs detects failures as a
full-information protocol does, no algorithmA can discover more failed processes
than CCfs does (see [8]). Thus, δ(F , k) is an upper bound on the number of
failed process discovered by time k by any algorithm A.

CCfs makes essential use of a notion of horizon, which is roughly the time by
which past events are guaranteed to become common knowledge. This motivates
the following definitions.

Definition 9 (Horizons). Given a failure pattern F , the horizon distance at
time k, denoted by disH(F , k), is t + 1− δ(F , k). The absolute horizon at time
k, denoted absH(F , k), is k + disH(F , k).

While the absolute horizon is an upper bound on when events become common
knowledge, the publication time is a lower bound on this time. It is defined as
follows:
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Definition 10 (Publication Time). Given a failure pattern F , the publica-
tion time for (time) k, denoted by π(F , k), is mink′≥k{absH(F , k′)}.

When F is clear from the context, it will be omitted from δ(k), disH(k), absH(k)
and π(h).

As shown in [13], for a given failure pattern F , a go input received at time k
is “common knowledge” not before time π(F , k). Thus, for a specific algorithm
A, the publication time for 0 bounds (from below) the time k at which the first
firing action can occur in O = A(Sstab, I,F).

The publication time π(F , k) is a generalization of notions developed in [8] for
Simultaneous (single-shot, non-stabilizing) Consensus. In that paper, a notion
of the waste of F is defined, and information about initial values—which can be
viewed in our setting as being about external inputs at time 0—becomes common
knowledge at time t+ 1−waste. In our terminology, this occurs precisely at the
publication time π(F , 0) for events of time 0.

The intuition behind the first lower bound is that if CCfs receives a go input
at time 0, then it fires at time π(0) (Lemma 1). Since CCfs is optimal, an SSFS
algorithm A cannot fire faster. Therefore, if we consider A starting in a memory
state where A “thinks” it received a go input 1 round ago, A will fire not before
time π(0)− 1.

Lemma 1. Let F be any failure pattern and let I be an input pattern for which
Ik

q = 0 for every process q and time k ≥ 0, except for one process p ∈ G for

which I0
p = 1. The first fire action of O = CCfs(SCCfs

init , I,F) occurs at time
π(F , 0).

Following is the first lower bound result, stating that the worst case stabilization
time of every SSFS algorithm A is at least π(0).

Theorem 1. maxS,I{stab(A,S, I,F)} ≥ π(F , 0) holds for every SSFS algo-
rithm A and every failure pattern F .

Our second lower bound result, informally stating that any SSFS algorithm
cannot fire faster than CCfs, is captured by the following theorem. (Notice that
the claim is made with respect to sequential input patterns.)

Theorem 2. Let A be an SSFS algorithm, I a sequential input, F a failure
pattern and O = A(Sstab, I,F). For every k ≥ 0 for which a go input is received
in Ik there is no fire action in O during times k′ satisfying k < k′ < π(F , k).

4 Solving SSFS

The algorithm Fire-Squad in Figure 1 is an SSFS algorithm that is both op-
timally stabilizing and is optimally swift. For swiftness, the algorithm is based
on the approach used in the CCfs algorithm, in which the horizon is computed
by monitoring the number of failures that occur, and a firing action takes place
when the receipt of a go becomes common knowledge. The horizon computation
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at a process p makes use of reports that p receives from other processes regard-
ing failures that they have observed. Following a transient fault, the state of a
process may contain arbitrary (including false) information about failures. In
the crash failure model, a process q will learn about (truly) crashed processes in
the first round. Consequently, p will compute a correct horizon one round later,
once it receives reports from all such processes. Roughly speaking, this can be
used as a basis for a (nontrivial) solution that stabilizes within two rounds of
the optimal time.

In order to improve on the above and obtain an optimal algorithm, Fire-
Squad employs a couple of subtle consistency checks. The first one involves
checking the information obtained from other processes regarding failures they
observed before the current round started. In the crash failure model, every fail-
ure observed by q by time k − 1 must be directly observable by p no later than
time k. So if the set of failures reported to p contains failures that p has not di-
rectly observed, then it must be time k ≤ 1, and p will use the set of failures that
it has directly observed in computing the horizon, instead of the set of reported
failures. A subtle proof shows that, in this case, the computed horizon works
correctly if k = 1, which is crucial for the algorithm’s stabilization optimality.
The second consistency check is based on the fact that in normal operation the
horizon distance is (weakly) monotone decreasing. The local state contains infor-
mation about previous horizon computations, and our second consistency check
forces it to satisfy weak monotonicity.

We now turn to describe the details of Fire-Squad. The following discussion
and lemmas are stated w.r.t. the algorithm and its components. For a variable
var, we denote by vark

p the value of var at process p after the computation step
at time k.

Each process p has a vector Requestsp[i], which represents p’s information
about a go input received by some process i time units ago; and this request was
not fulfilled yet. More precisely, if Requestsk

p[i] = 1, then some process received
a go input at time k − i, and no firing action occurred between time k − i + 1
and time k. The vector Requests contains values for the previous t+1 time units
and the current time; a total of t + 2 entries.

In addition, each process has a set Failed, which consists of the processes it
has seen to be failed in the current round. That is, at time k, process p’s Failedk

p

set contains all processes that process p did not received messages from during
round k (i.e., messages sent at time k − 1). Failed ′ is the union of all Failed
sets (as received from other processes) of the previous round. That is, at time k,
Failed ′k

p is the union of Failedk−1
q as computed at time k − 1 by every process q

that p received messages from during round k.
Finally, each process keeps track of a vector Views. If Viewsk

p[i] = z it means
that at time k+ i, data from time k−z is common knowledge. The vector Views
contains t + 1 entries, for the current round and the coming t rounds.

For ease of exposition every process p is assumed to send messages to itself.
Moreover, a process executing the algorithm is unaware of the current round
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Algorithm Fire-Squad (t)

0: do forever: /* executed on process p at time k */
/* process p is unaware of the value of k */

1: receive all available (Requestsq ,Failedq,Viewsq) messages from process q ∈ P ;

/* update variables according to messages of round k and external input */

2: set Requests[0] := Ik
p ;

3: for 1 ≤ i ≤ t + 1: set Requests[i] := maxq{Requestsq[i − 1]};
4: set Failed ′ :=

⋃
q Failedq;

5: set Failed := all processes that p did not hear from this round;
6: for 1 ≤ i ≤ t: set Views[i − 1] := minq{Viewsq [i]} + 1;

/* calculate horizon at time k − 1 */
7: set Horizon := t + 1 − min{|Failed ′|, |Failed|}; /* consistency check I */
8: set Views[Horizon-1] := 1;
9: for 0 ≤ i ≤ t: set Views[i] := max{Views[i], Horizon − i}; /* check II */

/* should we fire? */
10: if for some i′ ≥ Views[0] it holds that Requests[i′] = 1 then
11: for i′ ≤ i′′ ≤ t + 1: set Requests[i′′] := 0;
12: do “Fire”;
13: fi;

/* send round k + 1 messages to all processes */
14: send (Requests, Failed, Views) to all;
15: od.

Clean up:

Requests contains only {0, 1} values. Views contains only values ∈ {0, . . . , t + 1}.

Fig. 1. Fire-Squad: A self-stabilizing firing squad algorithm

number. We refer to such rounds using numbers k etc. for ease of exposition in
describing and analyzing the algorithm.

4.1 Correctness Proof

A central notion in the analysis of simultaneous actions under crash failures
is that of a clean round [8]. In the non-stabilizing setting, a round r is clean
according to failure pattern F if no process considered non-faulty by all processes
at time r − 1 is known to be faulty by one or more (non-crashed) processes
at time r. In a setting that allows transient faults, we use a slightly different
definition for the exact same notion. Consider a process p that fails in round k.
We say that p fails silently in round k if it is not blocked according to F from
sending messages in round k to any of the processes q ∈ Gk. Thus, no process
surviving round k can detect p’s failure in this round.
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Definition 11 (Clean Round). Round r in failure pattern F is a clean round
if (i) no process fails silently in round r − 1, and (ii) all processes (if any) that
fail in round r fail silently.

This definition of a round r being clean in F coincides with the standard defini-
tion of clean rounds previously used in non-stabilizing systems [8]. In protocols
such as Fire-Squad, with the property that every process sends the same mes-
sage to all other processes in every round, all (non-crashed) processes receive the
same set of messages in a clean round.

Due to lack of space we present an overview of the proof. The full proof will
appear in the full version of the paper. Following is the main result of the paper:

Theorem 3. Fire-Squad solves the SSFS problem, it optimally stabilizes and
is optimally swift.

Proof Overview. First, notice that once a clean round has occurred, all pro-
cesses receive the same set of messages, and different processes agree on the value
of Requests (except for Requests[0]). Moreover, in the following round all pro-
cesses agree on the value of Requests perhaps except for the value of Requests[0]
and Requests[1]. In a similar manner, k rounds after a clean round the values of
Requests[k + 1],Requests[k + 2], . . . are the same at all processes.

Second, consider the value of Viewsk[0]. By Line 6, Viewsk[0] equals the value
of Viewsk−1[1] + 1. In a similar manner, if Viewsk[i] is updated by Line 8 then
Viewsk+i[0] = Viewsk[i] + i. If k was the last clean round prior to round k + i,
then Views[0] = i + 1 holds at time k + i. Together with the claim from the
previous paragraph, we have that once there was a clean round, if different
processes agree on the value of Views[0], then they all agree on the values of
Requests[Views[0]],Requests[Views[0] + 1], · · · . Thus, if processes agree on the
value of Views[0] then they are guaranteed to act simultaneously, either firing
together or, together, refraining from firing. Therefore, we turn our attention to
analyzing the behavior of Views[0] at the different processes.

Intuitively, the reason the above discussion does not show that all processes
agree on the value of Views[0], is the following: Even though all processes update
the value of Views in a similar manner (Line 6) each process p updates its own
Viewsp according to the failures that p has seen in the current round. To show
that all processes have the same value of Views[0] (for all rounds following a
clean round) we show two things: (1) if Viewsk[0] is updated in round k, then
Horizon = 1, i.e., |Failed ′| = t. This will be observed by all processes, and so
they will all set Viewsk[0] = 1; (2) if Viewsk[0] was not updated in round k, then
let k− i be the latest round in which the value of Viewsk−i[Horizonk−i − 1] was
updated. The proof shows that there must be a clean round between round k− i
and round k, thus ensuring that all processes will agree on the value in Views[0]
by round k.

Up till now, we have given an overview of the proof that Fire-Squad solves
the SSFS problem. To show that it optimally stabilizes and is optimally swift
a precise analysis of the convergence of SSFS is required, along with a proof
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that SSFS will fire no later than any other algorithm (on sequential inputs). To
illustrate the tools used in those proofs, we define the following:

Definition 12. Let
– minHG(F , k) = minp∈G Horizonk

p, and
– bestH(F , k) = mink′≥k{k′ + minHG(F , k′ + 1)}.

We write bestH(k) when F is clear from the context.

The main point behind this definition is that bestH is the equivalent of π with
respect to Fire-Squad (recall that π is computed according to CCfs). In the
non-self-stabilizing model π is shown to be a lower bound on when a go input
becomes “common knowledge”. Thus, the following two lemmas conclude that
Fire-Squad is optimally swift.

Lemma 2. bestH(k) ≤ π(k), for every k ≥ 0.

Lemma 3. Let input I be sequential with respect to (Fire-Squad,S,F). If
Ik

p = 1 for process p at time k then Ok′
p = 1 for k < k′ ≤ bestH(k).

Finally, we wish to point out a main difference between the proofs of the lower
and upper bounds in the self-stabilizing model as opposed to the classical model
(with respect to the firing squad problem): in the first round of Fire-Squad
the value of Failed ′ (the set of processes that have failed in the previous round)
might be contaminated. That is, a process may start in a state where it thinks
that some other processes are failed, even though they are correct. Thus, a major
property that is used in the classical proofs cannot be used freely in the self-
stabilizing model’s proofs: the monotonicity of crash failures. In the classical
model, the perceived set of crashed processes can only increase, while in the
self-stabilizing model it may decrease following the first round.

This explains the purpose of Line 7, which is to perform a consistency check,
comparing the reported Failedq values (from the previous round) to failures that
are directly observed by p in the current round (stored in Failedp). This compar-
ison together with a delicate treatment in the proofs, ensures the optimality of
Fire-Squad. That is, to prove that Fire-Squad is optimal up to an additive
constant of 1 round is much easier than to prove that Fire-Squad is optimal.
We prove the latter, stronger, property.

5 Conclusions and Open Problems

This paper presents Fire-Squad, the first self-stabilizing firing squad algorithm.
Fire-Squad is optimal in two important respects: It optimally stabilizes, and is
optimally swift. There are many directions in which this work can be extended.
These include:

– Fire-Squad assumes the crash fault model. What can be said about the
omission fault model? And what about the Byzantine fault model? Each
such extension seems to be a nontrivial step.
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– Fire-Squad works when we assume that failures are permanent. Being an
ongoing and everlasting service, firing squad is expected to operate for long
periods, in which processes may recover. A more reasonable assumption in
this case is that there is a bound (of t) on the number of failures over every
interval of m rounds, for some m. (Non-stabilizing) Continuous consensus
has recently been studied in this model [14], and it would be interesting to
see if the same can be done for self-stabilizing firing squad.
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Abstract. We present schemes for providing anonymous transactions
while privacy and anonymity are preserved, providing user anonymous
authentication in distributed networks such as the Internet. We first
present a practical scheme for anonymous transactions while the transac-
tion resolution is assisted by a Trusted Authority. This practical scheme
is extended to a theoretical scheme where a Trusted Authority is not
involved in the transaction resolution. Given an authority that generates
for each player hard to produce evidence EVID (e. g., problem instance
with or without a solution) to each player, the identity of a user U is
defined by the ability to prove possession of said evidence. We use Zero-
Knowledge proof techniques to repeatedly identify U by providing a proof
that U has evidence EVID, without revealing EVID, therefore avoiding
identity theft.

In both schemes the authority provides each user with a unique ran-
dom string. A player U may produce unique user name and password
for each other player S using a one way function over the random string
and the IP address of S. The player does not have to maintain any in-
formation in order to reproduce the user name and password used for
accessing a player S. Moreover, the player U may execute transactions
with a group of players SU in two phases; in the first phase the player
interacts with each server without revealing information concerning its
identity and without possibly identifying linkability among the servers in
SU . In the second phase the player allows linkability and therefore trans-
action commitment with all servers in SU , while preserving anonymity
(for future transactions).

1 Introduction

Due to the rapid development of the Service Oriented Architecture (SOA) and
web services in supporting different multiphase business processes, the issue of
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providing services which preserve user anonymity, is very important nowadays.
SOA is defined as a group of services that communicate with each other. The
process of communication involves a number of services coordinating a common
activity. The purpose of this paper is to design the new protocols for providing
the multiphase transactions between users and a set of servers while maintaining
the user anonymity.

We provide anonymous authentication in distributed networks. We define and
present protocols for executing anonymous transactions between a user and a
set of servers. Both the user privacy and anonymity are preserved during the
transaction. Protocols for providing anonymous communications via insecure
communication channels were proposed in, e. g. [7], [8], [12] and [3]. Our scope
is beyond the actual anonymous communications assuming one of the above
protocols is used to provide such a service.

Several protocols devoted to the performance of anonymous transactions have
been recently proposed. For example protocols for providing anonymous creden-
tials were proposed and analyzed in [17], [4] and [2]. The authors proposed
pseudonym systems which allow users to interact with multiple organizations
anonymously, using unlinkable pseudonyms. In [4] an accumulator scheme is
proposed. Dynamic accumulators enable efficient revocation of credentials in the
anonymous credential systems. A special P-signature scheme which enables a
practical design of a non-interactive anonymous credential system is proposed
in [2]. The scope of the above works is user centric, where the servers do not
communicate directly. In such a user centric design the communication and com-
putation over the user is high.

A system for anonymous personalized web browsing was proposed in [11]. A
new cryptographic function, namely the Janus function that satisfies a number
of properties, including anonymity, consistency, secrecy, uniqueness of an alias,
and protection from creation of dossiers provides user anonymity in a compu-
tationally secure aspect. This function translates the user name (for example,
e-mail address) to a unique user alias. The computation of the Janus function
and the translation of the real user name to the corresponding alias is performed
by the centralized Janus proxy server which is usually placed in the firewall
which connects a particular Intranet to the Internet.

Our contribution. The contribution of our paper is in the design of new schemes
for providing user with anonymous transactions. A transaction is defined as a two
stage operation. During the first stage a player (user) U anonymously authenti-
cates himself/herself by means of a unique pseudonym to several other players
(servers) SU . In the second stage U can prove to each sever S from SU that the
same entity interacted with all the servers and therefore has done all the prepa-
rations to execute a (composite) transaction. Each user has a one way function
F . The user U may produce a unique user name and password for each other
player (user or server) S using both a random seed and the IP address of S. The
user U does not have to maintain any information in order to reproduce the user
name and password used for accessing a server S. Moreover, the user U may exe-
cute transactions with a group of players (servers or users) SU and prove without
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revealing information concerning the identity of U that U is the one that accessed
each player in SU . The pseudonym generated by a user for accessing any server in
a group of servers, is unique for each user-server pair. The pseudonym uniqueness
is provided by the server’s IP address which is one of the parameters of the seed
that generates pseudo random sequence by a given one way function.

We present two protocols for anonymous transactions. The first Anonymous
Transactions Protocol ATP1 is based on the approval of the Trusted Authority
(TA) for the transaction resolution. The TA may limit the number of possible
transactions carried out by the same user. The transactions are performed in
two modes: unlinkable and linkable transactions. The different user’s transac-
tions can be unlinkable in the sense that different players from a set of network
users do not know that the same anonymous identity requested a service from
them. The transactions linkability may also be satisfied as the users get tools
to verify whether they have received service from the same anonymous identity.
The transactions mode is chosen by the player who accesses the TA in order to
carry out the transactions.

The advanced theoretical protocol ATP2 uses the TA in the initialization
stage only, while the anonymous transactions are carried out by a player (user)
without involving the TA. In the advanced scheme the TA generates a hard to
produce evidence EVID for each user U e.g., a problem instance with or with-
out a solution. The user’s pseudonym in this scheme is based on the server’s IP
address, a hard to produce evidence EVID, and a one way function granted to
the user by the TA during the system initialization. The pseudonym includes
the anonymous user name (login), and the password. The pseudonym is created
as a pseudo random sequence. This pseudo random sequence is generated by the
one way function and a seed calculated by XOR − ing the server’s IP address
and an evidence EVID. In order to perform the transaction resolution and prove
to the group of players SU that a user U processed all accesses needed to com-
plete the transaction, the user performs an interactive Zero Knowledge Proof to
prove that he/she knows EVID which is computationally hard to produce by a
polynomial time adversary. The advanced ATP2 protocol uses Zero-Knowledge
proof techniques to repeatedly identify the user U without exposing the EVID
and its solution, therefore avoiding an identity theft. Hence, the TA in ATP2 is
involved only once during the system initialization.

Compared with the Janus system, our protocol has several advantages.

Anonymity between users, Trusted Authority, and servers in the
network. Anonymity is provided between all players: a user which performs
a transaction; a group of servers participating in the transaction; and a Trusted
Authority.

Performing the transactions without involving a Trusted Authority.
The ATP2 protocol involves the TA only once during the system initialization.
The future ATP2 protocol’s functionality is implemented by the user which
locally computes the pseudonym and resolves the transaction by himself/herself.
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Low computational cost combined with a very high security level.
Our first protocol continuously uses the pseudo random sequences generation
by the cryptographic one way functions and XOR calculation as a source for
preserving the security level of the anonymous user’s pseudonym. Therefore, low
computational power is required in comparison with the standard cryptographic
techniques. The Zero-Knowledge proof performed by the user in the transac-
tion resolution stage computationally prevents an adversary from impersonating
himself/herself on behalf of the legal user. In contrast to the Janus system our
protocol does not rely on a Secure Socket Layer (SSL) [19] or any other security
protocol that assumes the involvement of the Trusted Authority.

Permanent validity of the secret granted to the users by the TA. The
secret number granted by the TA to the user in the ATP1 protocol and the
corresponding hardly producible EVID in ATP2 are valid forever, and only user
encryptions of the secret value are updated during different transactions.

Linkability and unlinkability of the transactions. The encryption scheme
for the pseudonym generation may be chosen adaptively on user demand. The user
may choose the unlinkable mode while neither network players (users and servers)
can identify that they communicated with the same anonymous identity during
different transactions. The user may also perform transactions in a linkable mode
while the other players acquire tools to ascertain that the same player executed
with them different transactions, whereas the user’s identity remains anonymous.

Compared with the recent papers on anonymous credentials, such as [17],
[4] and [2] our anonymous transactions protocols ATP1 and ATP2 have the
following benefits.

Complete anonymity to Trusted Authority. A user in our scheme gets the
permission for providing the transactions in the completely anonymous manner,
without using Public Key Infrastructure.

Proof of linkability. A user in ATP1 protocol must not prove the linkability,
whereas the servers verify the linkability on their own, unlike the anonymous
credential schemes.

Pseudonym storage. User in our scheme does not have to remember and store
his/her pseudonym to each server in the system. The pseudonym is efficiently
generated by a user each time when he/she intends to access a server.

Scale to number of servers. A user in ATP1 and ATP2 protocols proves the
transaction correctness simultaneously to a group of servers, while in the anony-
mous credential systems a user cannot prove the possession of the credentials
simultaneously to a group of organizations.

Simplicity. ATP1 is not based on the ZKPs as credential schemes in [17], [4]
and [2].

Performing transaction by a single operation. In our model a user per-
forms a transaction by a single operation. Hence, the transaction resolution in our
model is atomic. In the anonymous credential system a user is highly involved
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with each organization separately for validation of his/her credential transfer
(performing the transaction).

Involving of Trusted Authority. In the ATP2 protocol the Trusted Authority
is involved in the initialization stage only, while in the anonymous credential
systems the TA carries out the transaction resolution.

Paper organization. The formal system description appears in Section 2. The
basic protocol for anonymous transactions ATP1 is introduced in Section 3.
The advanced protocol, impractical in current technology, ATP2 protocol which
provides transaction resolution anonymously without involving the Trusted Au-
thority, is presented in Section 4. Conclusions appear in Section 5. Proofs are
omitted from this extended abstract and can be found in [9].

2 Security Model for Anonymous Transactions

We consider the set of network players (users and servers), and a Trusted Au-
thority TA which comprise the anonymous network. The set of network players
includes two sub-sets that may intersect: the set of users U = {U1, . . . , Un} and
the set of servers S = {S1, . . . , Sl}. A user Ui ∈ U initiates and carries out an
anonymous transaction with the servers from the corresponding server set SUi .
The transaction is defined as a two stage operation:

(a) The first stage is the authentication stage. During this stage a user Ui anony-
mously authenticates himself/herself and interacts with each server Sj from the
server set SUi .
(b) The second stage is the transaction resolution. In this stage Ui proves to each
server from the SUi set that he/she is the identity that provided authentication
and visited all the servers from SUi during the previous stage. Note that this
stage is optional and depends on Ui’s choice.

According to [7], we use two cryptographic primitives: encryption and authen-
tication. Encryption guarantees the secrecy of messages, while authentication
ensures that if a sender sends a message to a receiver and an adversary alters
this message, then with overwhelming probability the receiver can detect this
fact (see [7] for details and [14] for formal definitions). Denote the kth transac-
tion carried out by the user Ui with the servers from the corresponding server
set SUi as T k

i . Each T k
i starts with the authentication message tij sent by Ui to

each Sj ∈ SUi , and ends when each Sj ∈ SUi confirms the transaction resolu-
tion by sending the message ri=Confirmk

i , or rejects it by sending the message
ri=Rejectk

i . The message tij consists of the anonymous user name and password
pair (uij , pij) which is, in essence unique for a given user Ui and a server Sj . The
transaction resolution is initiated by the user Ui and is performed by sending
the message Resolvek

i to each Sj ∈ SUi .
The security parameter in our model is ε which is equal to the length of the

seed cij that generates the pseudo random sequence for the anonymous user
name and password. The larger ε is compared to the pseudo random sequence
length, the higher the computational security level of the proposed scheme is.
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Given the features of the proposed model, we describe the basic anonymous
transactions protocol ATP1, and the advanced ATP2 protocol. The transac-
tion resolution in ATP1 is executed by the TA when each server Sj passes the
Resolvek

i message received from Ui to the TA, while the TA confirms the transac-
tion correctness by sending the message ri=Confirmk

i , or rejects the transaction
by sending the ri = Rejectki to all servers from the SUi set.

The transaction resolution provided by ATP2 is performed by the user Ui

while Ui proves that he/she knows the hardly producible evidence EVID to each
server from the corresponding server set SUi in the interactive ZKP. We assume
a polynomial time restricted semi-honest adversary A [20]. A can impersonate
as the legal user and, therefore can get access to the server resources. A can also
try to prove to the group of servers that he/she is a legal user that initiated the
transaction. Nevertheless, A must follow the protocol fairly.

We define the requirements for the ATP1 and ATP2 protocols.
(R1)-anonymity: If a user Ui performs a transaction, neither the network

players, including the TA nor the servers get information about U ′
is real identity.

(R2)-Anonymous authentication to TA: The user Ui authenticates himself/
herself to the TA and gets the credit for the execution of a certain number of
transactions via an anonymous secure channel.

(R3)-Pseudonym uniqueness: the pseudonym which is composed of the user’s
user name and password is unique for any user-server pair that participated in
the transaction.

(R4)-Pseudonym consistency: The user pseudonym is consistent for each server
in the sense that the server can recognize the pseudonym in the course of the re-
peated user visits in the same transaction.

(R5)-Atomicity: The transaction resolution is executed simultaneously for all
servers in the corresponding servers’ set.

(R6)-Optionality of the transaction mode (linkability and unlinkability of a
transaction): A user can choose for himself/herself one of two transaction modes:
linkable and unlinkable. In the linkable mode the servers from the corresponding
servers set can verify that the same user executed with them a certain number
of transactions, whereas in the unlinkable mode the servers have no tools to
identify the same anonymous identity.

The model presented and the corresponding requirements are defined as a
function of the security parameter ε that assures the computationally secure
level of the anonymous transactions.

The anonymous transactions protocol ATP1 and the advanced ATP2 protocol
are introduced in the next sections.

3 The Anonymous Transactions Protocol ATP1

3.1 ATP1 Description

The ATP1 protocol is described in Figures 1 and 2. In order to carry out a certain
transaction with a group of servers SUi a user Ui ∈ U performs the following
operations:
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Fig. 1. ATP1: Stages in Executing a Transaction

(a) Initialization stage: The Trusted Authority TA grants the user Ui a se-
cret random number Qi. It is assumed that there is common knowledge of a
one-way function F . t possible transactions are permitted by the TA to Ui

(Figure 1, (a), Figure 2, lines 1-4). Note that anonymous communication is pro-
vided between the TA and the user because the TA gets no information about
the user’s identity.

(b) In order to start the kth transaction T k
i Ui locally computes Pseudonymij

that consists of the anonymous user name uij and password pij .

Pseudonymij = (uij‖pij) = F ((Qk
i ) ⊕ IP (Sj)) (Figure 1, (a), Figure 2, lines

5-13). Here IP (Sj) is the corresponding IP address of the server Sj , and Qk
i ,

k = 1, .., t is the kth sub-string of the Qi string. It should be noted that if the
Qi string is short, Qi may be used as a seed for generating a pseudo random
sequence cF (Qi) by the F function for any kth transaction instead of the Qk

i

sub-string. In this case cF (Qi) should be divided on t sequential sub-strings
c1F (Qi), . . . , ct

F (Qi). Each ck
F (Qi) will generate the user name and password pair

for any kth user’s transaction.

Assuming that F is a proper collision-resistant one way function [20], the gener-
ated Pseudonymij is unique for all interactions between Ui and any Sj ∈ SUi .
Note, that the user’s Ui Pseudonymij is different for any server Sj from SUi ,
and therefore the servers do not know whether Ui is the same identity that vis-
ited any server from the corresponding server set. The question marks in Figure
1 (b) relate to this case.



304 S. Dolev and M. Kopeetsky

ATP1. Protocol for User Ui

1: Initialization:
2: Get (Qi, t)
3: from TA

4: int k = 1
5: Start kth transaction T k

i

6: User’s Ui authentication
7: to any Sj ∈ SUi

8: for j = 1..m

9: Fij = F (Qk
i ⊕ IP (Sj))

10: Fij = (uij‖pij)
11: Pseudonymij = (uij‖pij)
12: Send tij = Pseudonymij to Sj

13: End user’s Ui authentication

14: kth Transaction Resolution
15: Resolvek

i = Qk
i ⊕ IP (Sj)

16: Send Resolvek
i to all Sj from SUi

17: If ri=Confirmk
i

18: return
19: Transaction Resolution

20: else
21: return
22: Transaction Failure

23: if k ≺ t k := k + 1
24: else Last Transaction

ATP1. Protocol for Server Sj

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12: Upon reception of tij

13: Confirm U th
i authentication

14: kth Transaction Resolution
15: Upon reception of Resolvek

i

16:
17: If TA(Resolvek

i )=Confirmk
i

18: Send ri = Confirmk
i to Ui

19:
20: If TA(Resolvek

i ) = Rejectk
i

21: Send ri = Rejectk
i to Ui

22:
23: if k ≺ t k := k + 1
24: else Last Transaction

Fig. 2. Anonymous Transactions Protocol ATP1

(c) In order to convince each server from the SUi set that Ui is the same
identity that visited any server from the server set, Ui opens the part Qk

i of
the secret Qi, or the sub-string ck

F (Qi) of the pseudo random sequence cF (Qi),
respectively used in kth transaction by sending the message Resolvek

i = (Qk
i )⊕

IP (Sj) (or Resolvek
i = ck

F (Qi)⊕ IP (Sj), respectively) to all servers. This stage
is provided by the user for himself/herself (Figure 1 (b), Figure 2, lines 14-16).
The question marks in Figure 1 (b), denote that the servers do not know yet
that they interacted with the same anonymous user.

(d) Transaction resolution is performed simultaneously when each Sj sends
the Qk

i (or ck
F (Qi)) to TA revealed from the Resolvek

i message which was pre-
viously received from Ui. TA verifies whether Qk

i (or ck
F (Qi)) is the correct Qth

i

sub-string, or correct sub-string generated by F from the secret number Qi. If so,
then the TA sends Confirmk

i message to each Sj from SUi and resolves the kth

transaction T k
i . Otherwise, the TA sends Rejectki message to each Sj, and rejects

T k
i (Figure 1 (c), (d), Figure 2, lines 17-22). The question marks that appear

together with the exclamation marks, in Figure 1 (c), denote that the servers
may verify that they interacted with the same anonymous user. The exclamation
marks in Figure 1 (d) denote that the transaction resolution has been carried out
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simultaneously and each server has been convinced that the same anonymous
user carried out the transaction.

3.2 Linkable and Unlinkable Transactions

Linkable mode. Let us assume that a certain user Ui wishes that his/her
different transactions T k

i and T l
i , k ≺ l with the same group of servers SUi will

be linkable in the sense that after executing the T k
i transaction any Sj from

SUi can be convinced that the T k
i and T l

i transactions have been performed
by the same anonymous user. We propose to use the authentication scheme
suggested by Lamport [15]. In this case kth encryption of the secret Qi used
in T k

i transaction equals to F t−k(Qi),and the corresponding user name and
password pair is (uij , pij) = F (F t−k(Qi) ⊕ IP (Sj)). It should be noted that
the one way function F generates the pseudo random sequence F (Qi) from the
seed Qi. t denotes the maximum number of the transactions permitted to the
user Ui by the TA. F t−k(Qi) denotes t − k sequential applications of the one
way function F on the secret seed Qi. The value revealed by the user Ui in the
Resolvek

i message is, consequently the internal seed F t−k(Qi) ⊕ IP (Sj) used
to compute (uij , pij). Assume that the user Ui has provided T k

i , T k+1
i , . . . , T l

i

sequential transactions with the servers from the SUi set. Ui remains linkable
after any transaction that follows the T k

i transaction because each Sj ∈ SUi can
verify by repeatedly applying l − k times the one way function F on Qi that
Qth

i encryptions F t−k(Qi) and F t−l(Qi) used in the kth and lth transactions,
respectively satisfy the following equality F t−k(Qi) = F l−k(F t−l(Qi)).

Unlinkable mode. We propose the following encryption scheme in order to
ensure the user’s Ui unlinkability during his/her transactions with the group
of servers from the SUi set. In this case the TA grants Ui the pair (Qi,Wi) of
secret seeds. The U th

i user’s user name and password in the T k
i transaction are

calculated in the following manner (uij , pij) = F (F t−k(Qi)⊕F k(Wi)). In doing
so, the pseudo random sequence F k(Wi), generated by the secret seed Wi by
the k sequential compositions of the one way function F , provides the one way
“lock” F t−k(Qi) of the encrypted secret Qi.

Note that the use of the different seeds Q1
i , Q2

i , . . . , Qt
i in the different trans-

actions divided from the secret string Qi, also provide the transactions unlink-
ability. The reason is that the different independent seeds, e. g. Qk

i and Ql
i

result in the different independent pseudo random sequences F (Qk
i ) and F (Ql

i),
respectively.

The security parameter ε equals the length of the seed Qi or Wi which are
used as the arguments of the F function for generating the pseudo random
sequence. Note that the larger ε is, the higher the encryption level provided in
the transactions is.

The following Theorem proves that ATP1 satisfies the model requirements and
provides the anonymous transactions in the computationally secure manner.
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Theorem 1. ATP1 satisfies the following requirements:
(R1)-anonymity;
(R2)-Anonymous authentication to TA;
(R3)-Pseudonym uniqueness;
(R4)-Pseudonym consistency;
(R5)-Atomicity;
(R6)-Optionality of the transaction mode (linkability and unlinkability of a trans-
action).
ATP1 is computationally secure regarding the security parameter ε that deter-
mines the computational security level.

The proof of Theorem 1 is presented in [9].

4 The Anonymous Transactions Protocol ATP2

4.1 ATP2 Description

The advanced anonymous transactions protocol ATP2 enables the user to carry
out and resolve the anonymous transactions by himself/herself. Hence, the TA
is involved in the system only once during the initialization stage. The idea is to
provide a user with an evidence which is hard to produce, say a very long prime
number [6]. Only a powerful entity may have enough resources to obtain such
evidences. ATP2 is described in Figures 3 and 4. The user’s Ui transaction with
the servers from the corresponding set SUi is executed in the following way.

(a) Initialization Stage: As in the the ATP1 case, a particular commonly
known proper one way function F generates the pseudo random sequence for
the anonymous user’s pseudonym. An evidence EVID which is hard to produce,
is also granted to Ui. After the initialization stage the TA leaves the system
forever (Figure 3 (a) and Figure 4, lines 1-3).

(b) In order to initiate the T k
i transaction, Ui visits the servers from the

SUi set and authenticates himself/herself to each Sj ∈ SUi by means of the
anonymous Pseudonymij = (uij , pij). Here uij and pij are the anonymous user
name and password, as in the ATP1 case. Now the anonymous U th

i identity
is computed as Pseudonymij = (uij , pij) = F (Comk

i (EV ID) ⊕ IP (Sj)). The
question marks in Figure 3 (b) mean that the servers do not know whether they
are interacting with the same anonymous user. As in the ATP1 case, IP (Sj)
is the Sth

j IP address, and F is the one way function provided to the user by
the TA during the initialization stage. The parameter Comk

i (EV ID) is the kth

commitment to the instance EVID [13]. Compared to the ATP1 protocol, the
computationally hard evidence EVID is granted to Ui by the TA instead of a
secret random number. As in the ATP1 case the message sent by Ui to each Sj

is tij = (uij , pij) (Figure 3 (a) and Figure 4, lines 4-13).
(c) In order to resolve the T k

i transaction, Ui opens and sends each Sj ∈ SUi

in the Resolvek
i message the Comk

i (EV ID) string (Figure 3 (b) and Figure 4,
lines 15-17). The question marks in Figure 3 (b) denote that the servers do not
know yet that they interacted with the same anonymous user.
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Fig. 3. ATP2: Stages in Executing a Transaction

The T k
i transaction is resolved by the user when Ui provides the computa-

tionally secure Interactive ZKP [13] that Ui is the same anonymous identity that
knows EVID (Figure 3 (c) and Figure 4, lines 15-24). The exclamation marks in
Figure 3 (c) relate to the transaction resolution.

The following Theorem proves that ATP2 protocol satisfies the following re-
quirements and provides the anonymous transactions in the computationally
secure manner without involving the TA.

Theorem 2. ATP2 satisfies the following requirements:
(R1)-anonymity;
(R2)-Anonymous authentication to TA;
(R3)-Pseudonym uniqueness;
(R4)-Pseudonym consistency;
(R5)-Atomicity.
The ATP2 protocol’s computational security level is determined by the security
parameters of the ZKP performed by the user to the servers from the corre-
sponding servers’ set.

The proof of Theorem 2 is presented in [9].

4.2 Possible ZKPs of Primality

In order to provide a user’s permanent identity, the TA must generate a hard to
produce evidence EVID and its solution, so it is computationally unfeasible to
produce EVID and, hence to guess EVID in an adversarial manner. We suggest



308 S. Dolev and M. Kopeetsky

ATP2. Protocol for User Ui

1: Initialization:
2: Get EV ID

3: from TA

4: int k = 1
5: Start kth transaction T k

i

6: User’s Ui authentication
7: to any Sj ∈ SUi

8: for j = 1..m

9: Fij = F (Comk
i (EV ID)

⊕ IP (Sj))
10: Fij = (uij‖pij)
11: Pseudonymij = (uij‖pij)
12: Send tij = Pseudonymij to Sj

13: End user’s Ui authentication
14:
15: kth Transaction Resolution
16: Resolvek

i = Comk
i (EV ID)

17: Send Resolvek
i to all Sj from SUi

18: Provide ZKP that Ui knows EV ID

19: If ri = Confirmk
i

20: return
21: Transaction Resolution

22: else
23: return
24: Transaction Failure

25: k := k + 1
26: if k ≺ t k := k + 1
27: else Last Transaction

ATP2. Protocol for Server Sj

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13: Upon reception of tij

14: Confirm U th
i authentication

15: kth Transaction Resolution
16: Upon reception of Resolvek

i

17: Provide ZKP Ui knows EV ID

18: If ZKP correct
19: Send ri = Confirmk

i to Ui

20: else
21: Send ri = Rejectk

i to Ui

22:
23:
24:
25 : k := k + 1
26: if k ≺ t k := k + 1
27: else Last Transaction

Fig. 4. Anonymous Transactions Protocol ATP2

making use of the difficulty of the prime numbers generation and the primality
proof. As a matter of fact, the generation of large prime numbers is an extremely
hard problem ([6]), and therefore only an extremely powerful authority such as a
government is able to produce large primes. The proposed hard evidence EVID
is a very large prime number P .

Assume that the purpose of the user Ui is to convince the servers from the SUi

set that Ui anonymously interacted with each Sj ∈ SUi and provided a kth trans-
action T k

i in a legitimate manner. The user Ui acts as follows: he/she computes
a commitment to P for T k

i transaction and proves in the T k th
i second phase

that P is a very large prime. We suggest the use of the ZKP proofs of primality
proposed in [5] or [16]. The ZKP protocols presented in these papers are based
on the randomized primality tests which provide a very high confidence level
of the committed number being prime. The main advantage of these schemes is
that the target number is not revealed, and only its commitment participates
in the ZKP. Based on these results, the prime evidence P granted to the user
by the TA is valid forever for any number of possible transactions. Hence, only
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commitment to P is updated for a new transaction. In ([5]) the first efficient
statistical ZKP protocol for proof that a committed number is pseudo prime is
presented. A prover (in our context a user) performs the correct computation
of a modular addition, modular multiplication, or a modular exponentiation,
where all values including the modulus are committed but not publicly available
([5]). The authors implement the randomized Lehmann primality test in Zero
Knowledge (see [1]). The computational security power is based on the hardness
of the discrete logarithm problem in finite groups ([20]).

The authors of [16] propose a more efficient ZKP of primality. The primality
certificate is investigated based on the proof that a given number has only one
prime factor and that it is square free. The algebraic settings are: Let G = 〈g〉
be a finite group of large known order Q and let h be a second group gener-
ator while the discrete logarithm loggh is unknown to the prover-user and the
verifier-server. A commitment scheme in [5] and [16] is as follows: in order to
commit to any element x participated in the ZKP the prover-user chooses a
random number rx and sends the commitment to x cx = gxhrx to the verifier-
sender. Given cx = gxhrx it is computationally infeasible for the verifier or any
other adversary to obtain any information about x, while it is infeasible to find
different pairs (x, rx and x′, rx′ such that cx = gxhrx = gx′

hrx′ unless the prover
can compute loghg (see [5], [16]). The ZKP of primality in [16] is provided in
two phases: firstly, the prover proves that a committed in cP = gPhrP num-
ber P has only one prime factor; and next that P is square free. The ZKP is
based on the quadratic residues and the LaGrange theorem [1]. For example,
in order to perform the secret modular computation ∀ a ∈ Q aP = a(mod P ),
the basic secret modular multiplication, exponentiation, and quadratic residue
computations are provided. The Lehmann primality test in [5] is also based on
these building blocks. The ZKP proves that P is in a given range, and its upper
bound may be as large as desired as presented in [16], which suits our model.

The application of ATP2 requires the users and the servers to deal with com-
putations that are very long and, therefore requires them to be powerful machines
as well.

5 Conclusions and Extensions

We define a framework for providing anonymous transactions in computer net-
works. Two schemes are proposed and analyzed. The first scheme is based on
an approval of each transaction by a third party, namely Trusted Authority for
the transaction resolution. This scheme is flexible in the sense that the TA may
limit the maximal number of the transactions permitted to a user by the TA;
the transactions can be performed in both the linkable and unlinkable mode.
The transactions mode is chosen by the user for himself/herself. The advanced
scheme uses the TA in the initialization stage only, while the anonymous trans-
actions are provided by the user without involving the TA. Nevertheless, this
scheme is mainly of theoretical interest. The reason is that it is based on com-
putationally expensive Zero Knowledge Proof techniques. Hence, this scheme is
implementable only by very powerful computers.
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Abstract. The objective of this paper is three-fold. First, we specify
what it means for a fixed point of a stabilizing distributed system to
be a Nash equilibrium. Second, we present methods that can be used to
verify whether or not a given fixed point of a given stabilizing distributed
system is a Nash equilibrium. Third, we argue that in a stabilizing dis-
tributed system, whose fixed points are all Nash equilibria, no process
has an incentive to perturb its local state, after the system reaches one
fixed point, in order to force the system to reach another fixed point
where the perturbing process achieves a better gain. If the fixed points
of a stabilizing distributed system are all Nash equilibria, then we refer
to the system as perturbation-proof. Otherwise, we refer to the system
as perturbation-prone. We identify four natural classes of perturbation-
(proof/prone) systems. We present system examples for three of these
classes of systems, and show that the fourth class is empty.

1 Introduction

The main objective of this paper is to argue that Nash equilibria, which were
introduced as termination criteria of games [1], can be used to discourage mali-
cious perturbations in stabilizing distributed systems. But let us start, from the
beginning, by describing how a Nash equilibrium can be used as a termination
criterion for a well-known game called the two-prisoner dilemma [2].

Consider a “game” that involves two prisoners: prisoner 0 and prisoner 1. This
game ends when each prisoner settles on one strategy, out of the two possible
strategies of “stay silent” or “betray other prisoner”, that maximizes the value
of its gain function.

Each prisoner i has a variable x.i whose value, 0 or 1, is assigned as follows:

x.i =0 if prisoner i selects the “stay silent” strategy
1 if prisoner i selects the “betray other prisoner” strategy

The gain function g.i of prisoner i is defined, based on the values of the two
variables x.0 and x.1, as follows:

g.i = 1 if x.i = 0 ∧ x.(i + 1 mod 2) = 0
−1 if x.i = 1 ∧ x.(i + 1 mod 2) = 1

2 if x.i = 1 ∧ x.(i + 1 mod 2) = 0
−2 if x.i = 0 ∧ x.(i + 1 mod 2) = 1

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 311–324, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Thus, the value of the gain function of prisoner i is increased (either from 1 to 2,
or from −2 to −1) when the value of variable x.i is changed from 0 to 1 while the
value of the other variable x.(i + 1 mod 2) remains unchanged. In other words,
the action of prisoner i to select a strategy, out of the two possible strategies, is
as follows:

x.i = 0 → x.i := 1

Note that this action of prisoner i can be executed only when its execution is
guaranteed to increase the value of the gain function of prisoner i.

This game of selecting strategies by the two prisoners can start at any global
state, for example one where x.0 = 0 ∧ x.1 = 0, and then the enabled actions of
the two prisoners can be executed, one at a time, until the game reaches the fixed
point where x.0 = 1 ∧ x.1 = 1 and the game terminates (since neither action
can be executed at this fixed point). The fixed point of this game, of selecting
strategies, is a Nash equilibrium.

Thus, a Nash equilibrium of a game is a global state of the game where no
player can execute an action to change its local state and increase the value of
its own gain function.

The subject matter of this paper is to discuss the role of Nash equilibria in
stabilizing distributed systems, rather than in games. On the surface, games
and stabilizing distributed systems seem similar. On one hand, a game involves
several players, and each player is specified by some local variables, some actions,
and a gain function. On the other hand, a stabilizing distributed system involves
several processes, and each process is specified by some local variables, some
actions, and a gain function.

But as one looks deeper, significant differences between games and stabilizing
distributed systems become clear:

1. The actions of each player in a game are intended only to increase the value
of the gain function of that player, whereas the actions of each process in a
system are intended to perform other functions (e.g. construct a spanning
tree, elect a leader, or reach consensus) and may not always increase the
value of the gain function of that process.

2. Each fixed point of a game is a Nash equilibrium, whereas some fixed points
of a system may not be Nash equilibria. Assume for example that a system
has a fixed point s such that if a process i perturbs its local state at s, then
the system reaches another fixed point s′ where the value of the gain function
of i at s′ is higher than its value at s. In this case, the fixed point s can not
be considered a Nash equilibrium for this system.

3. The role of Nash equilibria in a game is to signal game termination. By
contrast, the role of Nash equilibria in a stabilizing distributed system is
to discourage the system processes from maliciously perturbing their local
states to force the system into fixed points with higher values of their gain
functions.

The notion that each process in a stabilizing distributed system may have a
distinct gain function (that the process seeks to maximize during the system
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execution) has appeared in the pioneering work of [3] and [4]. There are, however,
substantial differences between the problems addressed in the current paper and
those addressed in [3] and [4].

1. In [3] and [4], the gain function of each process in a stabilizing distributed
system is defined at each state (whether stable or not) of the system. By
contrast, in the current paper, the gain function of each process in the system
is defined only at the (stable) fixed points of the system.

2. In [3] and [4], the actions of each process in the system are intended to
increase the value of the gain function of that process. In the current paper,
the actions of each process are only intended to force the system into a fixed
point.

3. In [3] and [4], once the system reaches a fixed point, no process can perturb
its local state. In the current paper, once the system reaches a fixed point,
any process can perturb its local state in order to push the system towards
another fixed point, provided that the gain function of the process has a
higher value at this new fixed point.

2 Stabilizing Systems and Nash Equilibria

A distributed system consists of n processes that communicate through their
shared memory, as described below. Each process i in a distributed system, where
i is in the range 0 . . . (n − 1), has a number of local variables and a number of
actions. Each action of process i is of the following form:

< guard >→< statement >

where < guard > is a boolean expression over the local variables of process i and
the local variables of the neighboring processes of process i, and < statement >
is an assignment statement that reads the local variables of process i and the
local variables of the neighboring processes of process i and writes the local
variables of process i.

A local state of process i in a distributed system is defined by a value for each
local variable in process i. A global state of a distributed system is defined by a
local state of every process in the distributed system.

A transition of a distributed system is a pair (s, s′) where the following two
conditions hold:

1. Both s and s′ are global states of the distributed system.
2. There is an action c in some process in the distributed system such that the

guard of c is true when the system is in state s and executing the statement
of the action c when the system is in state s yields the system in state s′.

A global state s of a distributed system is called a fixed point of the system iff
the guard of each action in each process in the system is false when the system
is in state s.

A computation of a distributed system is a sequence (s.0, s.1, . . .) where the
following three conditions hold:
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1. Each of the sequence elements s.0, s.1, . . . is a global state of the distributed
system.

2. Each pair of consecutive states (s.j, s.(j + 1)) in the sequence is a transition
of the distributed system.

3. Either the sequence is infinite, or it is finite and its last global state is a fixed
point of the system.

A global state s′ is said to be reachable from a global state s iff the distributed
system has a computation, where s is the initial state and s′ is a state in the
computation.

A distributed system is called stabilizing iff every computation of the system is
finite.(Thus, each computation of a stabilizing distributed system is guaranteed
to end at a fixed point of the system.)

Consider a stabilizing distributed system that has n processes. A gain function
g.i for process i in this system is a function that assigns, to the local state of
process i and to the local states of the neighboring processes (of process i) when
the system is in a fixed point s, an integer value called the value of the gain
function g.i at the fixed point s.

Note that the value of a gain function is defined only when the system is at a
fixed point.

Henceforth we adopt the notation {g.i} to indicate a set of gain functions that
contains exactly one gain function g.i for each process i in the system.

Consider a stabilizing distributed system. Let s be a fixed point of this system,
and {g.i} be a set of gain functions for this system. The fixed point s is called a
Nash equilibrium w.r.t. {g.i} iff for every process i in the system and for every
global state s′, that results from perturbing (i.e. changing in any way) the local
state of process i starting from state s, the following condition holds:

The value of the gain function g.i at some fixed point s′′, reachable from s′,
is no more than the value of g.i at the fixed point s.
Equivalently, the fixed point s is not a Nash equilibrium w.r.t. {g.i} iff there

exists a process i in the system, and there exists a global state s′, that results
from perturbing the local state of process i starting from state s, such that the
following condition holds:

The value of the gain function g.i at every fixed point s′′, reachable from s′,
is more than the value of g.i at the fixed point s.
The significance of a fixed point of a stabilizing distributed system being

a Nash equilibrium w.r.t. {g.i} can be explained as follows. Recall that each
computation of the system is guaranteed to end at a fixed point since the system
is stabilizing. Now assume that the system computation ends at a fixed point s.
If s is a Nash equilibrium w.r.t. {g.i}, then no process i in the system has an
incentive to perturb its local state - any such perturbation may lead the system
to a fixed point where the value of g.i is no more than its value at s. On the
other hand, if s is not a Nash equilibrium w.r.t. {g.i}, then at least one process
i in the system has an incentive to perturb its local state in some way, because
this perturbation is guaranteed to lead the system to a fixed point where the
value of g.i is more than its value at s.
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In summary, whereas a Nash equilibrium in a game is an indication that no
move by a game player is gainful to this player, a Nash equilibrium in a stabilizing
distributed system is an indication that no perturbation of the local state of a
system process is gainful to this process.

3 Verification of Nash Equilibria

In this section, we present some theorems that state sufficient conditions under
which a fixed point of a stabilizing distributed system is, or is not, a Nash
equilibrium. These sufficient conditions are convenient to use in verifying that a
fixed point is, or is not, a Nash equilibrium, as illustrated by the system examples
in the following sections.

The first theorem states a sufficient condition for a given fixed point, of a
given stabilizing distributed system, to be a Nash equilibrium w.r.t. a given set
of gain functions.

Theorem 1. Consider a stabilizing distributed system that has n processes. Let
s be a fixed point of this system, and {g.i} be a set of gain functions for this
system. The fixed point s is a Nash equilibrium w.r.t. {g.i} if, for each i in the
range 0 . . . (n− 1), at least one of the following two conditions holds:

(a) The gain function g.i has its maximum value at s.
(b) For each global state s′ that results from perturbing the local state of process

i at s,
– either s′ is a fixed point where the value of g.i at s′ is no more than its

value at s,
– or process i has an action whose execution starting at s′ returns the

system to state s.

Proof. We show that, if either (a) or (b) holds, then no perturbation of the local
state of process i can guarantee that the value of the gain function g.i (of process
i) will increase. Thus, there is no incentive for any process to perturb its local
state at s, and s is a Nash equilibrium w.r.t. {g.i}.

If (a) holds, then the value of the gain function g.i at any fixed point s′, other
than s, cannot be greater than its value at the fixed point s. Thus, when s is the
state of the system, no perturbation of the local state of process i will increase
the value of g.i.

If (b) holds,then any perturbation of the local state of process i at s will either
lead back to s, or lead to another fixed point s′, where the value of g.i is no more
than its value at s. In either case, the perturbation of the local state of process
i will not increase the value of g.i. ��

The next theorem states a sufficient condition for a given fixed point, of a given
stabilizing distributed system, to not be a Nash equilibrium w.r.t. a given set of
gain functions.
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Theorem 2. Consider a stabilizing distributed system that has n processes. Let
s be a fixed point of this system, and {g.i} be a set of gain functions for this
system. The fixed point s is not a Nash equilibrium w.r.t. {g.i} if there exists an
i in the range 0 . . . (n− 1) such that the following condition holds:

The system has a second fixed point s′ where s and s′ differ only in the local
state of process i and the value of g.i at s is less than its value at s′.

Proof. Let s and s′ be two fixed points of a stabilizing distributed system whose
set of gain functions is {g.i}. Assume that s and s′ differ only in the local state
of process i. Also assume that the value of the gain function g.i (of process i) at
state s is less than its value at state s′. Therefore, if process i perturbs its local
state, starting from state s and forcing the system into state s′, then the value
of its gain function g.i is guaranteed to increase. Thus, the fixed point s is not
a Nash equilibrium. ��

The next theorem states a sufficient condition for a given fixed point, of a given
stabilizing distributed system, to be a Nash equilibrium w.r.t. every set of gain
functions.

Theorem 3. Consider a stabilizing distributed system that has n processes. Let
s be a fixed point of this system. The fixed point s is a Nash equilibrium w.r.t.
every set of gain functions of this system if the following condition holds for
every i in the range 0 . . . (n− 1):

For each global state s′ that results from perturbing the local state of process i
at s, process i has an action whose execution starting at s′ returns the system
to the fixed point s.

Proof. Let s be a fixed point of a stabilizing distributed system. Assume that
for each process i in the system, and for each global state s′ that results from
perturbing the local state of process i at s, process i has an action whose ex-
ecution, starting at s′, returns the system to s. Therefore, no process i can be
guaranteed to increase the value of its gain function by perturbing its local state
at s. As no process has an incentive to perturb its local state at s, s is a Nash
equilibrium w.r.t. any set of gain functions. ��

The next theorem states sufficient conditions under which one can construct a set
of gain functions to make every fixed point, of a stabilizing distributed system, a
Nash equilibrium, or to make one fixed point, of a stabilizing distributed system,
not a Nash equilibrium.

Theorem 4. Consider any stabilizing distributed system that has n processes.

(a) There is a set of gain functions {g.i} for this system such that every fixed
point of the system is a Nash equilibrium w.r.t. {g.i}.

(b) If the system has two fixed points that differ only in the local state of one
process, then there is a set of gain functions {g.i} for this system such that
one of the two fixed points is not a Nash equilibrium w.r.t. {g.i}.
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Proof. For Part(a), define each gain function g.i to have the (same) value 0 at
every fixed point of the stabilizing distributed system. From Theorem 1 Part(a),
every fixed point of the system is a Nash equilibrium w.r.t. this set of defined
gain functions {g.i}.

For Part(b), let s and s′ be two fixed points of the system that differ only
in the local state of one process, say process i. Now define the gain function g.i
of process i to have the value 0 at state s and 1 at state s′. Thus, if process
i perturbs its local state at s, forcing the system to state s′, then the value of
g.i will increase from 0 to 1 . Therefore, state s is not a Nash equilibrium w.r.t.
{g.i}. ��

Based on the above definition of a fixed point being or not being a Nash equilib-
rium, we identify, in the next four sections, four classes of perturbation proof/prone
systems. We give nontrivial examples of systems in the first three classes and then
show that the fourth class of systems is empty.

4 Relatively Perturbation-Proof Systems

A stabilizing distributed system is called relatively perturbation-proof iff there
is a set of gain functions {g.i} for this system such that every fixed point of the
system is a Nash equilibrium w.r.t. {g.i}.

In this section, we present an example of a relatively perturbation-proof sys-
tem. Our objective of this exercise is two-fold. First, we want to show how to use
Theorem 1 (above) in verifying that a stabilizing distributed system is relatively
perturbation-proof. Second, we want to demonstrate that the class of relatively
perturbation-proof systems admits interesting systems.

Consider a maximal matching bidirectional ring that consists of n processes.
Each process i in this ring has two neighbors: process i− 1 and process i+ 1.

Note that, henceforth, we use i−1 and i+1 to denote (i−1 mod n) and (i+1
mod n), respectively. Each process i in this ring has only one local variable

named m.i whose value is taken from the set {i − 1, i, i + 1}. When the value
of m.i is i − 1 or i + 1, we say that process i is matched to process i − 1 or
process i + 1, respectively. When the value of m.i is i, we say that process i is
not matched. Process i in this ring is specified as follows:

process i : 0 . . . (n− 1)
variable m.i : {i− 1, i, i + 1}

begin

m.i = i− 1 ∧m.(i− 1) = i− 2 → m.i := i

� m.i = i + 1 ∧m.(i + 1) = i + 2 → m.i := i

� m.i = i ∧m.(i− 1) �= i− 2 → m.i := i− 1
� m.i = i ∧m.(i + 1) �= i + 2 → m.i := i + 1

end
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To show that this ring is stabilizing, we first specify a ranking function R that
assigns to each global state s of the ring a nonnegative integer. We then establish
that for each action execution, that causes the global state of the ring to change
from s to s′, R(s) > R(s′). A ranking function R for this ring can be specified
as follows:

R = R.0 + R.1 + . . . + R.(n− 1)

where each R.i is specified as follows:

R.i = 3 if (m.i = i− 1 ∧m.(i− 1) = i− 2)∨
(m.i = i + 1 ∧m.(i + 1) = i + 2)

2 if (m.i = i)
1 if (m.i = i− 1 ∧m.(i− 1) = i− 1)∨

(m.i = i + 1 ∧m.(i + 1) = i + 1)
0 if (m.i = i− 1 ∧m.(i− 1) = i)∨

(m.i = i + 1 ∧m.(i + 1) = i)

To show that the following predicate P holds at each fixed point of this ring:

P =(∀i, where i is in the range 0 . . .n− 1,
(m.i = i− 1 → m.(i− 1) = i)∧
(m.i = i + 1 → m.(i + 1) = i)∧
(m.i = i→ m.(i− 1) = i− 2 ∧m.(i + 1) = i + 2))

it is sufficient to argue that the guard of each action in the ring is false when
predicate P holds.

Specify the gain function g.i for each process i in this ring as follows:

g.i =0 if m.i = i

1 otherwise

We use Theorem 1 to show that each fixed point of this ring is a Nash equilibrium
w.r.t. this set of gain functions {g.i}. Consider a fixed point s of this ring where
predicate P holds. At s, each m.i has one of the three values i− 1, i+ 1, or i. If
m.i has the value i− 1 or i+ 1 at s, then g.i has its maximum value 1 at s, and
process i has no incentive to perturb the value of m.i when the ring is at s. It
remains now to consider the case where m.i has the value i at s which implies,
from predicate P , that (m.(i − 1) = i − 2 ∧m.(i + 1) = i + 2) at s. If process
i perturbs the value of its m.i from i to i− 1, then the first action in process i
can be executed causing the ring to return to s and the value of g.i to remain
unchanged. Thus, process i has no incentive to perturb the value of m.i from i
to i− 1.

Similarly, we can argue that process i has no incentive to perturb the value
of m.i from i to i + 1. Therefore, s is a Nash equilibrium w.r.t. {g.i}.

Because each fixed point of this ring is a Nash equilibrium w.r.t. the set of
gain functions {g.i} specified above, this ring is relatively perturbation-proof.
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5 Relatively Perturbation-Prone Systems

A stabilizing distributed system is called relatively perturbation-prone iff there
is a set of gain functions {g.i} for this system such that some fixed point of the
system is not a Nash equilibrium w.r.t. {g.i}.

In this section, we present an example of a relatively perturbation-prone sys-
tem and use Theorem 2 (above) to verify that the system is indeed relatively
perturbation-prone.

Consider a ring that has n processes. Each process i has one local variable
named c.i that can be regarded as the color of process i. The value of c.i is taken
from the set {0, 1, 2}. At each fixed point of this ring, every two neighboring
processes have distinct colors. Process i in this ring is specified as follows:

process i : 0 . . . (n− 1)
variable c.i : 0, 1, 2

begin

i > 0 ∧ c.(i− 1) = c.i→ c.i := (c.i + 1 mod 3)
� i = n− 1 ∧ c.(i + 1) = c.i→ c.i := (c.i + 1 mod 3)

end

It is straightforward to show that this ring is stabilizing and that the following
predicate P holds at each fixed point of the ring:

P = ( For every i, where i is in the range 0 . . .n− 1, c.i �= c.(i + 1))

Specify the gain function g.i for each process i in this ring as follows:

g.i =0 if c.i = 0
1 if c.i �= 0 and c.(i− 1) �= 0 or c.(i + 1) �= 0
2 if c.i �= 0 and c.(i− 1) = 0 and c.(i + 1) = 0

We use Theorem 2 to show that some fixed point of this ring is not a Nash
equilibrium w.r.t. this set of gain functions. Consider the following fixed point s
of the ring (assuming that n is even):

c.0 = 1 ∧ c.1 = 0 ∧ c.2 = 1 ∧ c.3 = 0 ∧ . . . ∧ c.(n− 1) = 0

To show that s is not a Nash equilibrium w.r.t. {g.i}, it is sufficient, by Theorem
2, to exhibit another fixed point s′ where s and s′ differ only in the value of
exactly one c.i, say c.1, and show that the value of g.1 at s is less than its value
at s′. Now consider the following fixed point s′ of the ring:

c.0 = 1 ∧ c.1 = 2 ∧ c.2 = 1 ∧ c.3 = 0 ∧ . . . ∧ c.(n− 1) = 0

The two fixed points s and s′ differ only in the value of c.1 and the value of g.1 at
s is 0, less than its value 1 at s′. This proves that s is not a Nash equilibrium w.r.t.
{g.i}. (Note that, as the value of the gain function g.1 increases from 0 to 1, the
values of each of the two gain functions g.0 and g.2 is decreased from 2 to 1.)

Because some fixed point of this ring is not a Nash equilibrium w.r.t. the set
of gain functions {g.i} specified above, the ring is relatively perturbation-prone.
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6 Absolutely Perturbation-Proof Systems

A stabilizing distributed system is called absolutely perturbation-proof iff for
every set of gain functions {g.i} for this system, every fixed point of the system
is a Nash equilibrium w.r.t. {g.i}.(Note that a system is absolutely perturbation-
proof iff it is not relatively perturbation-prone).

Consider the case where the designers of a stabilizing distributed system wish
to make this system perturbation-proof. In this case, if the designers can deter-
mine the natural set of gain functions for this system, then they should design
the system to be relatively perturbation-proof w.r.t. this set of gain functions.
On the other hand, if the designers cannot determine the one natural set of gain
functions for this system, then they should design the system to be absolutely
perturbation-proof.

In this section, we give an example of an absolutely perturbation-proof sys-
tem and use Theorem 3 (above) to show that this system is indeed absolutely
perturbation-proof.

Consider a ring that has n processes. Each process i has one local variable
named c.i that can be regarded as the color of process i. In specifying the actions
of each process in this ring we adopt the notation A ≡ B to indicate that the
two sets A and B are equal, and adopt the notation A ⊆ B to indicate that set
A is a subset of set B. Process i in this ring is specified as follows:

process i : 0 . . . (n− 1)
variable c.i : {0, 1, 2}

begin
c.i �= 0 ∧ {c.(i− 1), c.(i + 1)} ≡ {1, 2} → c.i := 0

� c.i �= 1 ∧ {c.(i− 1), c.(i + 1)} ≡ {0, 2} → c.i := 1
� c.i �= 1 ∧ {c.(i− 1), c.(i + 1)} ≡ {2} → c.i := 1
� c.i �= 2 ∧ {c.(i− 1), c.(i + 1)} ⊆ {0, 1} → c.i := 2

end

A ranking function R for this ring can be specified as follows:

R = 3×#({i|c.i = c.(i− 1) ∨ c.i = c.(i + 1)})
+#({i|c.i = 0})
+#({i|c.i = 1 ∧ c.(i− 1) = 0 ∧ c.(i + 1) = 0})

It is straightforward to show that each action execution in this ring causes the
value of this ranking function R to decrease by at least 1. (For example, if the
first action in process 0 is executed starting at a global state where c.(n−1) = 1
and c.0 = 1 and c.1 = 2, then this execution changes the value of c.0 to 0
and causes the value of R to be reduced by at least 4.) The existence of such
a ranking function for this system guarantees that the system will eventually
reach a global state where no action can be executed, i.e. a fixed point.
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The following predicate P holds at each fixed point of this ring:

P = (∀i,i is in the range 0 . . . (n− 1),
(c.i = 0 ∧ {c.(i− 1), c.(i + 1)} ≡ {1, 2})∨
(c.i = 1 ∧ {c.(i− 1), c.(i + 1)} ≡ {0, 2})∨
(c.i = 1 ∧ {c.(i− 1), c.(i + 1)} ≡ {2})∨
(c.i = 2 ∧ {c.(i− 1), c.(i + 1)} ⊆ {0, 1}))

Note that when predicate P holds, the value of each c.i is different from the
values of c.(i− 1) and c.(i + 1).

We use Theorem 3 to show that each fixed point of this ring is a Nash equilib-
rium w.r.t. any set of gain functions. Consider a fixed point s of this ring where
P holds. At s, each c.i has any one of the values 0, 1, or 2. If the value of c.i is
0 at s, and if this value is perturbed to 1 or 2 yielding the ring in a global state
s′, then the first action of process i can be executed at s′ to return the ring to
the fixed point s. Also if the value of c.i is 1 at s, and if this value is perturbed
to 0 or 2 yielding the ring in a global state s′, then either the second or third
action of process i can be executed at s′ to return the ring to s. Similarly, if the
value of c.i is 2 at s, and if this value is perturbed to 0 or 1 yielding the ring
in a global state s′, then the fourth action of process i can be executed at s′ to
return the ring to s. Thus, by Theorem 3, the fixed point s is a Nash equilibrium
w.r.t. any set of gain functions.

Because each fixed point of this ring is a Nash equilibrium w.r.t. any set of
gain functions, we conclude that this ring is absolutely perturbation-proof.

This system example illustrates a method, implied by Theorem 3, for de-
signing absolutely perturbation-proof systems. This method can be summa-
rized as follows. To ensure that a stabilizing distributed system is absolutely
perturbation-proof, consider each global state s of this system, where s differs
from a fixed point s′ of the system only in the local state of process i, then en-
sure that process i has an action whose execution starting at s yields the system
in s′.

The next theorem identifies an interesting subclass of absolutely perturbation-
proof system.

Theorem 5. Any stabilizing distributed system, that has exactly one fixed point,
is absolutely perturbation-proof.

Proof. Consider a stabilizing distributed system that has only one fixed point
s. If any process i perturbs its local state at s, the system (being stabilizing) is
guaranteed to stabilize and thus return to state s. Therefore, the value of the
gain function of process i remains unchanged. Thus, no process has an incentive
to perturb its local state at s, so s is a Nash equilibrium w.r.t. any set of gain
functions. The system is absolutely perturbation-proof. ��
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7 Absolutely Perturbation-Prone Systems

A stabilizing distributed system is called absolutely perturbation-prone iff for
every set of gain functions {g.i} for this system, there is a fixed point of the
system that is not a Nash equilibrium w.r.t. {g.i}.

The next theorem, which follows directly from Theorem 4(a), states, in effect,
that the class of absolutely perturbation-prone systems is empty.

Theorem 6. No stabilizing distributed system is absolutely perturbation-prone.
(In other words, every stabilizing distributed system is relatively perturbation-
proof.)

Proof. By Theorem 4(a), for every stabilizing distributed system there exists at
least one set of gain functions {g.i} such that every fixed point of the system is
a Nash equilibrium w.r.t. {g.i}. This implies that every stabilizing distributed
system is relatively perturbation-proof, and the theorem holds. ��

Based on Theorem 6, we have the taxonomy of stabilizing distributed systems
shown in Figure 1.

Fig. 1. A taxonomy

8 Concluding Remarks

A stabilizing distributed system is a system that is guaranteed to return to a
fixed point every time a ”fault” yields the system in an arbitrary state that is
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not a fixed point. Thus, the property of stabilization makes systems recover from
the effects of a large class of faults [5].

Unfortunately, stabilization does not protect a system from state perturba-
tions caused by system processes that prefer one fixed point over another in
accordance with some gain functions for these processes. To ensure that no pro-
cess in a system has an incentive to intentionally perturb the system state, the
system should be designed such that any perturbation caused by any process i in
the system is not guaranteed to increase the value of the gain function of process
i. This can be accomplished by ensuring that each fixed point of the system is
a Nash equilibrium with respect to the given set of gain functions, one for each
process in the system. We refer to a system, where each fixed point is a Nash
equilibrium, as a perturbation-proof system.

In this paper, we identify two classes of perturbation-proof systems: relatively
perturbation-proof systems and absolutely perturbation-proof systems. In a rel-
atively perturbation-proof system, each fixed point is a Nash equilibrium w.r.t. a
given set of gain functions (one for each process in the system). In an absolutely
perturbation-proof system, each fixed point is a Nash equilibrium w.r.t. each
possible set of gain functions (one for each process in the system).

Clearly, the concept of a relatively perturbation-proof system is useful when
the set of gain functions for the system processes can be uniquely and completely
identified. On the other hand, the concept of an absolutely perturbation-proof
system is useful when there are multiple candidates for the set of gain functions.

The fact that one can design an absolutely perturbation-proof system, as
indicated by Theorem 3, is the main contribution of this paper. Theorem 3
suggests that an absolutely perturbation-proof system can be designed as follows:

1. Consider each global state gs that is not a fixed point of the system and
where changing the local state of one process i from ls to ls′ changes the
global state of the system from gs to a fixed point gs′.

2. Ensure that process i has an action that can be executed when the global
state of the system is gs and when the local state of process i is ls, and
ensure that the execution of this action causes the local state of process i to
become ls′.

It has been suggested recently that the definition of a Nash equilibrium can be
extended to make it more relevant to Computer Science. (See for instance [6],
[7], and [8].) It is interesting to explore how these extensions of Nash equilibrium
can impact our theory of Perturbation-Freedom outlined in this paper.
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Abstract. Software systems are increasingly expected to dynamically self-adapt 
to the changing environments. One of the principle adaptation mechanisms is 
dynamic recomposition of application components. This paper addresses the 
key issues that arise when external context knowledge is used to steer the run-
time (re)composition process. In order to integrate such knowledge into this 
process, A Continuous Context-Aware Deployment and Adaptation 
(ACCADA) framework is proposed. To support run-time component 
composition, the essential runtime abstractions of the underlying component 
model are studied. By using a layered modeling approach, our framework 
gradually incorporates design-time as well as run-time knowledge into the 
component composition process. Service orientation is employed to facilitate 
the changes of adaptation policy. Results show that our framework has 
significant advantages over traditional approaches in light of flexibility, 
resource usage and lines of code. Although our experience was done based on 
the OSGi middleware, we believe our findings to be general to other 
architecture-based management systems. 

Keywords:  Adaptive middleware, context-specific knowledge, run-time 
composition, service oriented architecture. 

1   Introduction 

Software systems today increasingly operate in changing environments and with 
diverse user needs, resulting in the continued increasing complexity for managing and 
adapting these systems. As a consequence, software systems are increasingly 
expected to dynamically self-adapt to accommodate resource variability, changing 
user needs, and system faults. However, mechanisms that support self-adaptation 
currently are hardwired within each application. These approaches are often highly 
application-specific, static in nature, and tightly bound to the code. Being static, such 
mechanisms can hardly cope with dynamic context changes. Furthermore, the 
localized treatments of application adaptation could not effectively deal with those 
complex environments in which many multi-influencing applications coexist. 

In order to deal with the adaptation problem outside single application scope, 
architecture-based adaptation frameworks are proposed in [1] [2] to handle the cross 
system adaptation. Rather than scatter the adaptation logics in different applications and 
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represent them as low-level binary code, architecture-based adaptation uses external 
models and mechanisms in a closed-loop control fashion to achieve various goals by 
monitoring and adapting system behavior across application domains. A well-accepted 
design principle in architecture-based management consists in using a component-based 
technology to develop management system and application structure [3-6] .  

However, in traditional approaches, design-time knowledge for application structure is 
largely lost during the off-line application construction process. Without this knowledge, 
it is nearly impossible for external engines to effectively change a application’ structure 
with the assurance that the new configuration would perform as intended. On the other 
hand, Integration of external context knowledge1 to application becomes very difficult as 
that knowledge can only be available well after an application was built.  

During our research on run-time adaptation, we observed that in order to achieve 
effective architecture-based adaptation framework, three important prerequisites must 
be fulfilled. First, when building application, those practices of rigid location and 
binding between component instances should be replaced with run-time, context-
specific composition. Second, selected design-time information must be exposed and 
those constraints must be made explicitly verifiable during run-time. Third, since 
different contexts have radically different properties of interest and require dynamic 
modification strategies, it is critical that the architectural control model and 
modification strategies could be easily tailored to various system contexts.  

Our framework tackles these problems from different perspectives. A run-time 
application construction methodology is proposed to provide a continuum between 
the design and run-time process. An architecture-based management framework 
structure is designed to facilitate the integration of context-specific adaptation 
knowledge. In order to support run-time component composition, a declarative 
component model with uniform management interface and meta-data based reflection 
is proposed. By adopting a service oriented architecture-based implementation, our 
framework provides efficient mechanisms for adapting to specific context 
requirements. The effectiveness of our architecture is demonstrated both from 
qualitative and a quantitative point of view. Simulation results show the soundness of 
our implementation in term of line of code, memory and adaptation capabilities. 

The rest of the paper is organized as follows. Section 2 exposes our design 
methodology and a context-specific management framework and those challenges in 
realizing this framework. Section 3 presents the structure of our management 
framework as well as the component model and construction process. The ideas 
exposed in this paper have been validated by a set of comparison from different aspects 
in Section 4. Related work is discussed in Section 5, and we conclude in Section 6. 

2   Architecture-Based Adaptation 

Architecture-based adaptation is proposed to deal with cross system adaptation. In 
principle, such external control mechanisms provide a more effective engineering 
solution with respect to internal mechanisms for self-adaptation because they abstract 

                                                           
1 By context, we refer to [7] and define it as “any information that characterizes a situation 

related to the interaction between humans, applications and the surrounding environment.”  
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the concerns of problem detection and resolution into separable system modules[2]. 
However, systematic support for multi-context knowledge integration is largely 
missing. An important contribution of this paper is the designing and developing 
architectural principles and design patterns to integrate different context-specific 
knowledge into architecture-based adaption framework. We design the context-
specific application methodology to better support run-time component composition, 

2.1   Context-Specific Application Construction Methodology 

In order to more effectively deal with run-time component composition, we propose a 
new methodology to explicitly incorporate context-specific knowledge into the software 
composition & adaptation process. The new architecture design & composition flow, 
depicted in Fig. 1., represents a procedure which tries to incorporate the functional 
design information with context concerns in compositing run-time software architecture. 
Depending on the employed design languages and corresponding tools, the compliance 
with the functional interface is enforced during the design process. However, unlike 
traditional approach, in which a component’s functional knowledge is lost during this 
compiling process, in this case the design time information is explicitly exposed and 
maintained.  

 

Fig. 1. Context-specific Application Construction Flow 

As an application is constructed during run-time, in order to achieve correct and 
pointed adaptation, a set of constraints must be maintained. In this process, three main 
aspects constraints should be evaluated. 1) The functional dependence constraints 
must be satisfied 2) a component’s non-functional constraints must be guaranteed: 
this information includes, for instance, requirements for CPU speed, screen size or 
that some property value be within a certain range. 3) context-specific knowledge, 
which specifies the domain related information and adaptation strategy should also 
hold valid after adaptation process.   

As the dashed arrow points out, a managed application is continuously restructured 
and evolved according to context switches. The combined knowledge enables 
automatically run-time verification for constraints from various aspects which allows 
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the system to change the software structure according to its hosting environment and 
without violating constraints from these three aspects. 

2.2   Motivation Example 

To better illustrate all the complexities in introducing the context knowledge into the 
application composition process, we make use of an example scenario that will be 
revisited several times throughout the course of this paper.  

Today we are surrounded by an ever increasing number of networked equipment 
which can be harnessed to do something for you for temporal or long-term base. The 
open-system approach implies that a set of new applications will be installed into the 
host devices without thoroughly system analysis.  

 

Fig. 2. QoE adaptation Demonstration 

As an example, let us consider a Set-top device with Open platform support. The 
basic application of such device is TV processing. In brief, this application will 
received streaming video data from remote server, decode this data and output it to 
the TV port. As an open system, Set-top can also install certain applications to 
enhance its usability. For example, a user can install a new application which 
transcode recorded High Definition TV stream to IPhone format for later display on 
his/her mobile devices. Figure 2 shows the simplified component graph for those two 
applications, which will be further studied in later sections. As a typical multi-task 
system, if a user starts those two applications, a Set-top will try to execute the two 
applications simultaneously no matter whether the Set-top device has enough 
resources. If that is not the case, this may eventually lead to possibly transient timing 
problems of TV decoding task including missing frame, data overflows etc. These 
kinds of time breaches can result in poor video quality and bad user experience.  

Context-specific knowledge, however, can help the architecture automatically 
determine which actions should be taken according to the current context. One possible 
strategy can choose to disable the computationally intensive transcoding component and 
reserve enough system resources for TV application. This is because a user normally 
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prefers to give highest priority to those applications that matter their experience most. 
Figure 2 shows the snapshot of component states after such adaptation.  

3   Architectural Framework 

We adopt a standard view of software architecture that is typically used today at 
design time to characterize an application to be built. Specifically, an application is 
represented as a graph of interacting computational elements. Nodes in the graph, 
called components, represent the system’s principal computational elements (software 
or hardware) and data stores. The connections represent the pathways for interaction 
between the components. Additionally, the component may be annotated with various 
properties, such as expected throughputs, latencies, and protocols of interaction.  

In our framework, applications are run-time composed from a set of managed 
component instances. Context-specific adaptation is achieved by dynamic 
(re)composing application components according to context knowledge. 

3.1   Architecture-Based Management Framework 

Figure 3 shows our ACCADA architecture for adaptation. As can be clearly seen 
from that picture, our approach makes use of an extended control loop, consisting of 
five basic modules – Event Monitor, Adaptation Actuator, Structural Modeler, 
Context-Specific Modeler and Context Selector. ACCADA uses an abstract 
architectural model to monitor a running system’s run-time properties, evaluate the 
model for (functional as well as context-specific) violation, and – if a problem occurs 
– performs global and component-level adaptations on the running system.  

The Event Monitor module observes and measures various system states.  It sends 
notifications to trigger a new round of the adaptation process. The possible source of 
adaptation may include, for example, a new component being installed or the CPU or 
memory utilization reaching a status that may have significant effect on the existing 
system configuration. It could also be a simple Timer that triggers periodically at 
certain time intervals. The Adaptation Actuator carries out the actual system 
modification. The actual action set is tightly related to the component implementation. 
From our developing experience, in order to achieve effective architecture-based 
adaptation, the basic set of actions should include component lifecycle control, 
attribute configuration, and component reference manipulation.  

The above two modules provide an interface to manage the installed component 
instances and form the ACCADA Management Layer (discussed in Section 3.4). The 
other three modules constitute what we call the Modeling Layer which builds the 
system architectural model according to the changing contexts(Section 3.3).  

Building a software system architecture model is not a trivial endeavor – it 
includes handling design-time knowledge such as interfaces or constraints as well as 
run-time aspects on environment changes. By using the Divide and Conquer principle, 
we assign the management of these two aspects to two different modules to more 
effectively deal with two different requirements – software architecture management 
and context-specific knowledge integration.  
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Fig. 3. ACCADA framework 

One module, the Structural Modeler, manages functional dependences between 
installed components – checking whether the required and provided interfaces are 
compatible – and maintains application’s software architecture. This module is 
comparably stable as it is only determined by the component implementation model 
and will not change with context. So, it is designed as the core module in our system. 
In addition to those functional dependence managements, the traces of all the 
adaptation steps performed is also monitored and exposed for later analysis. The other 
set of modules are the Context-specific Modeler. In order to cope with dynamically 
changing environments, rather than going for the traditional approach of “one adaptor 
for all possible contexts”, our framework supports more than one Context-specific 
Modelers specifically designed for different contexts in the system. By reasoning 
upon various system metrics, Context Selector is designed to determine the most 
appropriate Modeler to date.  

Service-oriented Approach. In order to achieve more reusability and flexibility, our 
framework is designed according to the Service Oriented model. Each module is 
designed and implemented as a service provider. Modules implement and register 
their interfaces into the system service registry. Thanks to such loosely coupled 
structure, a candidate service provider can be easily interchanged during system run-
time. In doing so, many existing and/or future more sophisticated context adaptation 
policies can be plugged into our framework.  

3.2   Requirements for Component Model 

In ACCADA, a component represents a single unit of functionality and deployment. 
In order to achieve architecture-based run-time composition, a component model with 
following attributes is needed: 

Uniform management interface. As components are individually installed and 
configured by the system service, it is very important that a component could be 
managed through a uniform management interface. With this interface, components 
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are reified in a uniform way for configuration, state monitoring and management. 
This approach enables system management services such as Event Monitor and the 
Adaptation Actuator to be designed in a generic way and used across multiple 
application domains. The management interface supports lifecycle control and get/set 
component properties. It can be accessed via two different approaches – either 
accessing directly or mediated through an architectural layer which, apart from 
performing the requested actions, also coherently updates the status of the global 
software architecture. In order to maintain a coherent and accurate global 
configuration, it is vital that this uniform management interface can only be accessed 
through architecture- exposed methods. Our previous work provides the detailed 
design of such interface. 

Component description and introspection. In order to support different types of 
components, a component model should be able to describe the component’s 
distinguished stable characteristics. These Features include a component’s provided 
and required interfaces, component’s properties as well as other constraints, for 
example, the type of CPU that is required. Interface-based introspective and reflective 
component models are proposed in Fractal [8] and OpenCom [9, 10], in which a 
general interface is designed for such knowledge discovery.  

Instead of following these approaches, a concise management interface is used to 
control and capture the components’ run-time state, while meta-data is applied to 
expose component-specific knowledge. Compared to the interface-based 
introspection, it provides designers with a more light-weighted and explicit solution. 
Compared to Interface-based approach, meta-data approach enables components to be 
identified prior to their initialization; furthermore, this reduces the burden of 
component developers to implement those introspection interfaces, as meta-data 
already provides much design-time structural information. Those meta-data can be 
naturally abstracted from application design, validated in the verification process, and 
then reused during the run-time composition process. In this approach, a component 
design knowledge actually winds through its whole lifecycle. The ACCADA 
framework can dynamically discover and retrieve a component’s structural 
characteristics as soon as they are installed into the system.  

In our previous work in the Declarative Real-time component model (DRCom), a 
simple declarative language is designed. Please refer [11]for details. 

3.3   Modeling Layer  

As already mentioned, modeling the whole system architecture and making pointed 
adaptation decisions is a very complex process. That is especially true in our 
framework, as not only functional dependences but also the context knowledge are 
considered in the composition process. These two aspects have been kept separated 
and assigned to what we call Structural Modeler and Context-specific Modeler, 
described in what follows. 

3.3.1   Structural Modeler  
As the application is constructed, configured and reconstructed during system run-
time, how to derive the functional and structural dependency among components 
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becomes one of the key problems in run-time component composition.The Structural 
Modeler consists of several processes, the most important of which are: 

Dependence Compatibility Check. This component first checks all the installed 
components dependence relationship. A component can only be initialized when all 
its required interfaces (Receptacles) have corresponding provided interfaces.. This 
also guarantees component initialization orders. According to different component 
model, different policies may be employed, such as the interface based matching – 
used in the model of Declarative Service and Fractal model – or data communication 
matching as it is the case in DRCom model.   

Such function is quite important for run-time composition as it provides a general 
matching service which is indispensable in maintaining application architecture 
during system configuration changes.    

Maintenance of Application architecture (Reference update). As component will 
be installed and uninstalled during run-time, the issue of reference update during 
component exchange must be addressed. When one component is exchanged for 
another it is necessary to update the references that point to the old component such 
that they refer to the new one. Doing so is necessary to ensure that the program 
continues to execute correctly. For example, when a component is disabled, the 
modeler will firstly check whether another component with the same functional 
attributes exists. If such a candidate is successfully found, the modeler will repair the 
references between components to change the old references with the new one, and 
then destroy the invalid connections. Otherwise, all components which depend on this 
disabled component will also be disabled. All these adaptations are performed during 
run-time without disabling the whole application. By having the system managing the 
run-time reference update, an application’s architecture integrity can be preserved 
even in the face of configuration changes. 

Many run-time composition approaches, such as Servicebinder [12] and Perimorph 
[13], provide similar layer to manage the references between components. However, 
without context information integration, this functional layer itself could not solve 
conflicts when several functional configurations are available. Such kind of ambiguity 
can only be handled with context knowledge.  

3.3.2   Context-specific Modeler  
As the Structural Modeler deals with the functional related constraints in building and 
maintaining the software architecture, the Context-specific Modeler deals with 
constraints related to the knowledge of context. All components that satisfy functional 
requirements will be further evaluated by context knowledge. As a result, the modeler 
will build a context-specific architecture model using its knowledge and adaptation 
strategy. This model will be checked periodically and/or on request. If a constraints 
violation occurs, it determines the course of action and delegates such actions to the 
adaptations execution module. 

In ACCADA, several context modelers with different context adaptation 
knowledge can be installed simultaneously. They implement the same context 
modeler service interface with different attributes describing their target concerns. 
Such concerns could be e.g. prolonging mission life in case of low batteries, or 
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maximizing user experience when watching movies on a given mobile device. Service 
orientation enables the architecture to support different or future unpremeditated 
adaptation strategies. Another benefit from this approach is that one modeler instance 
just needs to deal with a fraction of all possible adaptation concerns. Compared to 
“one size fits all” approach, our solution makes the modeler very concise, easy to 
implement and consuming fewer resources. By switching Context-specific Modeler, 
the system architecture model as well as the adaptation behavior can be easily altered, 
which could be beneficial in matching different environmental conditions. Here, 
which Context-specific Modeler is to be used is determined by the Context Selector .  

3.3.3   Context Selector 
As several Context-specific Reasoners may co-exist in a specific time, only one of 
them will be selected according to current system context. It will return an active 
context modeler “best matching” the current environment. According to different 
system requirements, the reasoning logic may be as simple as using CPU status as 
decision logics, or as complex as using a semantic reasoning engine or some other 
artificial intelligence approach. By separating three kinds of responsibilities -knowing 
when a modeler is useful, selecting among different modelers, and using a modeler, 
new modelers can be integrated into software system in a way that is transparent to 
users. One simple interface is designed to return the best matched reference:  

public interface ContextSelector  

 { public ContextAdaptor findCurrentFitAdaptor();  } 

3.4   Management Layer 

This layer provides an abstract interface to manage the interactions between modeling 
layer and component instances. It consists of two main elements: Event Monitor and 
Adaptation Actuator. Event Monitor tracks installed components’ state changes as 
well as probes the measured attributes across different system components. The value 
of a managed component’s attribute can be retrieved via the getProperty(…) methods. 
Adaptation Actuator implements the atomic adaptation actions that the system can 
take. This can include actions that manage a component’s lifecycle state – start, stop, 
pause, stop – as well as properties manipulations via setProperty(…), for example, 
changing the computation task’s priority, period… The uniform management 
interface simplifies the design of the actuator as the actions can be taken in a general 
way and can be easily reused to different component models 

3.5   General Adaptation Process 

The above five key modules residing in the modeling and management layers are 
orchestrated so as to form an external control loop across different application 
domain. When a significant change has been detected, the modeling layer is notified 
to check whether existing constraints are being violated.  Algorithm 1 describes the 
general adaptation process.  
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Algorithm 1. General adaptation process 
Requires: An architecture-based management system with context-specific adaptation logic 
Ensure: Keep constraints satisfied in the face of changes, both functional as non-functional, 
through Context-specific knowledge 
1. A system change triggers adaptation process 
2. Structural Modeler gets the set of satisfied components in terms of functional 

dependence  
3. Context Selector returns Context-specific modeler’s reference  
4. The selected Context-specific Modeler builds an adaptation plan 
5. Structure modeler merges two adaptation plan 
6. The Adaptation Actuator executes the adaptation plan  

4   Implementation and Simulation  

In this section, we will discuss our implementation to achieve a context-specific 
architecture-based adaptation. This framework has been validated both from a 
qualitative and a quantitative point of view including such concerns as implementation 
complexity, adaptation flexibility, memory usage, etc. 

4.1   System Implementation  

Equinox, a popular, free, open source OSGi Platform developed by the Eclipse 
organization, is used as our basic development platform. In current state, our 
implementation focused on providing a light-weight implementation for local 
applications managements. However, it can be generally extended to distributed 
environment via using R-OSGi (Remote OSGi) support. We use slightly revised 
DRCom model[11, 14]. It was originally designed for the construction of dynamically 
configurable & reflective real-time systems. 

Table 1. Lines of code for Architecture-based adaptation 

 Functions 
Line of 

code 
Binary size (byte) 

Reflections of code  142 2353  
Monitoring 

Monitoring  354 7407  
Model class  1329  2353  

Parsing 
Parser class 1450  36000  
Functional constraints 200 15230  

Structural Modeler 
Reference management 249 5382  

Dispose management 459 11782  

Instance management 369 8795  Adaptation executor 

Meta-function Invoking 280  6714  

Context-specific adaptation Plug-in constraint adaptor 108 3798  

Context  Reasoner  Simple context match 90 2620 

Auxiliary code  500+  
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As discussed in Section 3.1, this system is implemented via five key modules. The 
lines of code of each implemented modules is shown at Table 1. Our framework also 
provides such mechanisms as deployment support and version control by simply 
reusing OSGi system service, which leads to a lean and quite concise implementation.  

One of the basic services in our system is the Meta-data Parsing. This module 
parses the meta-data and stores it in the form of meta-data objects. A simple 
component meta-data language is defined to describe component characteristics. This 
component model designs an extensible XML format that supports future more 
complex description languages: Due to page limits, here we will not go into details. 
Clearly the complexity of Context Selector and Context-specific Modeler is highly 
implementation specific, thus the lines of code listed here are just the simple 
adaptation algorithm for our TV scenario described in section 4.  

4.2   Adaptation to different context 

In the traditional approach towards application-based adaptation, in order to achieve 
adaptation matching different context requirements, developers normally need to 
reprogram the whole adaptation architecture. There are, to name but a few, modules 
for detection, modules for component management, adaptation logic as well as the 
execution modules.  

Table 2. Application-based vs. Architecture-based Adaptation 

 Application adaptation ACCADA  Framework 
Adaptation logic Prefixed Change in runtime 
Context knowledge Integration Static/Internal Flexible/Architecture 
Implementation Complexity High Low 
Multi-context support NA or static Yes and flexible 
Context-specific Adaptor implementation Complex Concise 
Separation of design concerns Mixed Yes 
Level of Adaptation Inside specific  

Application 
Across several 
applications 

However, during context changes, only the adaptation strategy should be altered to 
express the context-specific knowledge. Without the burden to support software 
maintenance, a context-specific adaptor can be implemented very concisely. For 
instance, the adaptation module to guarantee the QoE of the TV application can be 
implemented in less than 120 lines of codes. On the other hand, an ad-hoc approach 
need re-implement new version of a basic component management run-time (in our 
case, about 2000 lines). Thus, programmers can focus on adaptation logic rather than 
having to take care of those low level details. Table 2 shows the comparison between 
application specific adaptation approaches and our framework.  

Certain component frameworks provide tools to help programmers to automatically 
generate auxiliary codes. Examples include Juliac 2- a Fractal [8] toolchain backend, 
which generates Java source code corresponding to the application architecture 

                                                           
2 Available at http://fractal.ow2.org/ 
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specified by the designer. In the following section, we compare our approach with 
Juliac-based approach in adaptation complexity.   

4.3   Adaptation Complexity  

In the Juliac approach, ADL language is used to generate the glue code and the codes 
for introspection. The simplest “hello world” example uses two components – Client 
and Server. The Client will try to invoke the service exposed interface to print the 
“hello world” string. Table 3 shows that, for such simple application with only two 
functional components, the business code is about 100 lines, including import and 
interface definitions. With Juliac, about 3500 lines of Java codes will be generated. In 
comparison, in ACCADA, no process for off-line auxiliary code generation is needed. 
An application mainly contains its business code, simple and easy to manage. 

Table 3. Line of codes 

 Application size Lines of code(business) Lines of code (generated) 

Juliac 95.7 KB 100 3500 
ACCADA 4.7 KB 140 0 

Resource consumption. we executed this application with different number of 
instances. With the Juliac approach, the memory consumption will increase 
considerably (about 470 KB for each application) when the number of applications 
grows, while in our framework it will increase of about 42Kbyte for each installed 
application. For each installed component, about 13Kbyte memory are needed to store 
the parsed meta-data information and reference relations. This overhead is 
comparably small with respect to the more than 430Kbyte memory required by the 
Fractal model. This discrepancy comes from the different models employed. Each 
Juliac application has to carry a full set of system run-time, with the increasing 
number of application; the overhead from the basic system service can be intolerably 
high. In contrast, ACCADA framework is designed to support a set of managed 
components and is decoupled from application business logics. No matter how many 
applications are deployed, only one set of basic services is needed.  

In this test, we used equinox, a general purpose OSGi platform. Other 
implementation, such as Concierge OSGi [15], achieves memory consumption less 
than 200Kbytes memories. In other words, by simply changing OSGi implementation, 
the resource consumption can be further reduced.  

4.4   Architecture Performance 

To evaluate the performance of the Automatic Configuration Service, we instrumented 
a test to measure the time for fetching, parsing, reference management, and 
configuring. We focused on the time for installing a single component as we vary the 
number of managed components by the framework. Here, each component has one in 
port, one out port, and one attribute. The size of each component is the same – 20.6 
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KB. We use a Dell D630 laptop with 2.2 GHz dual core T7500 CPU, 2GB RAM and 
80 GB 7200RPM HDD. The JVM we adopted is JAVA 1.6.0.2 SDK on Linux.   

Here, we use a different Context Modeler with the one described in section 4. It 
checks following constraints (1). The arrival component will only be enabled when 
(1) holds true. In order to best test framework’s performance, all these component 
execution tasks remains disabled during the experiment. Here,  in the newly installed 
component, the component initialization time is not counted as it may varied 
according to different implementations. Execution timePeriod < 1 for all enabled components                             (1) 

Installing a new component normally consists of five main steps: component loading, 
meta-data processing, structural modeling, context modeling, and actuation.  Figure 4 
shows the absolute times spent in each steps. Each value is the arithmetic mean of 250 
runs of the experiment. In order to better illustrate the trend of different steps, we use 
two Y direction axes in expressing data. Values in stacked column use the main Y 
axis (left) and those values in marked lines use the secondary Y axis (right) . The time 
scale used in both axes is micro-seconds (µs).  

 

Fig. 4. Framework Performance on adding one component 

With the number of managed components grows, component installation time 
grows very slowly. It mainly due to the fact that two key elements –component 
loading time, meta-data processing time which count more than 80% total time, keep 
comparably stable when component number n grows. In contrast, the other three key 
elements, the structural modeling, context modeling and actuation will increase 
lineally with n as it has computing complexity O (n). Context modeling process which 
checks whether the new component can satisfy the resource requirements also have 
complexity of O (n) (stateless implementation, no optimization). Here, the actuation 
process also includes time for post-processing the modeling results from two 
modeling processes so it changes with the system scales. As most of the installation 
time results from the large meta-data processing task, we optimized the installation 
process by parsing a component’s meta-data prior to its usage (without initiating the 
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component).  We call this a “warm-start”. This approach can effectively reduce a 
component response time – from 1000 µs to about 200µs.  

Simulation results show that our framework scales well when the number of 
managed components grows. However, the Context modeling time confines to the 
simple algorithm described here. Other more complex reasoning policies may not 
perform well when the number of managed components grows. This is highly policy 
dependent and is out of the scope of this paper. The Context Selector also has similar 
characteristics.  

5   Related Work 

There is a substantial body of literature on reconfigurable middleware systems. 
Compared to on our earlier work on the DRCom component mode, our framework 
exhibits a richer and more coherent set of features to support context-specific 
knowledge and provides a systematic approach to integrate such knowledge. 

SmartFrog [4] is a framework for the management of configuration-driven 
systems. The framework provides mechanisms for describing these component 
collections and for deploying and managing their life cycle. However, there also lack 
of support of how to support the context-specific adaptation and the description of 
component is static and could not support non-functional properties and constraints.  

Sylvain etc. identifies novel requirements on reflective component models for 
architecture-based management systems [5].The construct layer is designed for the 
meta-data checkpoint and replication. A faulty component can be repaired by restore 
its state and all the meta-data information outside of the component instance. 
However, their approach does not have clear definition and separation between 
system services. The hard-wired architecture makes it very hard to reuse their 
framework across different contexts.  

Garlan etc. propose a general architecture-based self-adaptation framework [2]. 
The Rainbow framework uses software architectures and a reusable infrastructure to 
support self-adaptation of software systems. The use of external adaptation 
mechanisms allows the explicit specification of adaptation strategies for multiple 
system concerns and domains. However, their approach lacks of component 
composition support which is also important in building applications.   

In order to deal with component dynamicity, Cervantes and Hall [12]  propose a 
service-oriented component based framework for constructing adaptive component-
based applications. The key part of the framework is the Service Binder which 
automatically controls the relationship between components. Our approach mimics 
theirs in dealing with component’s dynamicity. However, our approach can provide 
more flexible adaptation compared to its static resolving policy.  

Kasten etc. propose the Perimorph framework to achieve run-time composition and 
state management for adaptive system [13] It enables an application designer to 
quantify and codify collateral changes in terms of factor sets. However, due to lack of 
a clear defined component model, it hard to extern their approach to cross 
applications adaptation. Their approach also doesn’t consider how to integrate the 
context adaptation knowledge.  
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In order to handle the complex dependence between components, Kon etc. propose 
an integrated architecture for managing dependencies in distributed component based 
systems [3]. The architecture supports automatic configuration and dynamic resource 
management in distributed heterogeneous environments. However, how to support the 
context changes is not specified in their approach. 

6   Conclusion and Future Work 

In this paper we have described our approach to continuous context-aware deployment 
and adaptation. We have shown in particular how to integrate context-specific 
knowledge in run-time component composition. By designing the uniform management 
interface, the architecture provides a unified programming model over a wide range of 
components. The design time knowledge is maintained as meta-data and reused during 
run-time component composition. Service-oriented model is used in implementing 
architecture basic modules thus achieving more flexible system architecture. This 
framework is easy to be configured to fit with different contexts. Although our 
experience was done based on the OSGi middleware, we believe our findings to be 
general to architecture-based management systems using reflective component models.  
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Abstract. This paper presents a deterministic self-stabilizing algorithm that com-
putes a 3-approximation vertex cover in anonymous networks. It reaches a legal
state after O(n+m) moves or 2n+1 rounds respectively and recovers from a sin-
gle fault within a constant containment time. The contamination number is 2∆ +1.
An enhanced version of this algorithm achieves a 2-approximation on trees.

Keywords: self-stabilizing algorithms, vertex cover, distributed algorithms,
anonymous networks.

1 Introduction

Distributed algorithms substantially depend on the properties of the underlying net-
work. The most common model assumes all nodes to have unique identifiers. These can
be used to prevent neighbored nodes to perform a particular operation concurrently, that
is, to ensure local mutual exclusion. For instance, only the node with locally highest id
is allowed to execute. Non-uniform networks can use another mechanism to break the
symmetry, they have a node that takes on a special role. These two network models
are equivalent [3]. In uniform networks without unique identifiers it is possible to use
randomness to break symmetry. Availing oneself of randomization results in a proba-
bilistic algorithm, though. A network is called anonymous if it is uniform and there are
no further symmetry breaking mechanisms such as unique identifiers or randomization.
In some anonymous networks nodes are allowed to order adjacent edges. This is a very
weak assumption called port numbering [1].

A lot of research has been done in the field of algorithms in anonymous networks.
Angluin made the most remarkable publication in that area [1]. She proved several
impossibility results subject to the different anonymity properties of the network. In
particular she showed that it is impossible to break symmetry via a port numbering in
general graphs.

Particular problems in graph theory cannot be solved at all with a distributed algo-
rithm on an anonymous network, for instance, it is impossible to find a valid vertex
coloring, a minimal vertex cover, a minimal dominating set, or a maximal matching
on such a network with a distributed algorithm [1,10]. Recently Suomela presented a
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valuable survey of local algorithms [10], that includes results for distributed algorithms
on anonymous networks, e.g. limitations for approximation ratios.

The concept of self-stabilization is a general approach to make a system tolerate arbi-
trary transient faults by design. A distributed system is called self-stabilizing if it reaches
a consistent state in a finite number of steps by itself without external intervention and
remains in a consistent state, starting from any possible global configuration. Detailed
information and a more formal definition of self-stabilization can be found e.g. in [3].

In this paper we present the first self-stabilizing algorithm that calculates a
3-approximation vertex cover on anonymous networks using the shared-variable model.
An enhanced version of this algorithm achieves a 2-approximation on trees. The ba-
sic idea is as follows: Any maximal matching on the graph implies a 2-approximation
vertex cover by selecting all nodes adjacent to a matching edge. Unfortunately it is
impossible to establish a maximal matching via a distributed algorithm in an anony-
mous network [10]. Hańćkowiak et al. developed an algorithm that calculates a max-
imal matching on a bicolored graph [6] without unique identifiers, but Rosenkrantz,
Shukla and Ravi proved that a self-stabilizing algorithm that provides a 2-coloring of
an anonymous network cannot exist [9]. For this reason, our algorithm makes use of the
Kronecker double cover of the underlying graph, which is a bicolored graph. A maximal
matching in the Kronecker double cover leads to a vertex cover in the original graph.

The vertex cover problem has been studied by several authors recently. Kiniwa
presented a self-stabilizing algorithm that calculates a (2 − 1/∆)-approximation
vertex cover [7]. This algorithm needs unique identifiers, though. A number of not-
self-stabilizing algorithms compute a vertex cover with a good approximation ratio:
Polishchuk and Suomela developed a local algorithm that finds a 3-approximation ver-
tex cover in anonymous networks [8]. Vishwanathan showed that finding a vertex cover
of size 2−ε for graphs with vector chromatic number at most 2−δ (for small δ ) with a
non-distributed algorithm is as hard as for general graphs [11]. Grandoni et al. published
a distributed algorithm that approximates a minimum weight vertex cover via maximal
matchings [5].

2 Algorithm

A self-stabilizing algorithm consists of a set of rules, with each rule having a precon-
dition and a statement. The execution of a statement is referred to as a move. A rule is
enabled if its corresponding precondition is true. A node is called enabled if at least
one of its rules is enabled.

Self-stabilizing algorithms operate in steps. At the beginning of every step, all nodes
check the preconditions of their rules. Then a scheduler selects a subset of the enabled
nodes to make a move. Since a central scheduler (only a single node makes its move in
every step) trivially breaks the symmetry of the network, only the distributed scheduler
(any nonempty subset of the enabled nodes can make their moves simultaneously),
and the synchronous scheduler (all enabled nodes make their moves simultaneously)
are considered in this paper. Note that the distributed scheduler subsumes the other
types of schedulers and is the most general concept. With the distributed scheduler
the complexity of an algorithm can also be measured in rounds. A round is a minimal
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sequence of steps during which any node that was enabled at the beginning of the round
has either made a move or become disabled.

Let G = (V,E) be an undirected graph, |V |= n and |E|= m. A vertex cover of G is a
subset C of G such that each e∈ E is incident to at least one node of C. Trivially, V itself
forms a vertex cover of G. A vertex cover is called optimal if there is no other vertex
cover that contains less nodes. The algorithm uses a matching to determine a vertex
cover. A matching is a subset M of independent edges of G. M is a maximal matching
if there is no matching M′ with M ⊂M′.

To calculate a vertex cover on a graph G the algorithm simulates the Kronecker
double cover K(G) = G×K2. Figure 1 illustrates how this double cover is established:
Every node is equipped with a black and a white pointer (Figure 1b) which can point to
its neighbors’ pointers each. A black pointer can only point towards a neighbor’s white
pointer and vice versa (Figure 1c). This creates a 2-colored graph (Figure 1d).

In this way we can use the concept developed by Hańćkowiak et al. [6]: It is possible
to calculate a maximal matching on K(G). Then, the established matching is trans-
formed to a set of paths and rings in G. This results in a 3-approximation vertex cover.
The matching on K(G) is established by making the vertices try to match their black
pointers with the white pointer of one of their neighbors. The white pointers will choose
one of the “offering” black pointers. All nodes that are matched with at least one of their
pointers establish the vertex cover of G. The same approach is used by Polishchuk and
Suomela to develop a local algorithm that finds a 3-approximation vertex cover in ano-
nymous networks [8]. Their algorithm is not self-stabilizing, though.

To formally define the rules the following notation is defined for each nodev: The black
(resp. white) pointer is denoted by v.black (resp. v.white). There are two predicates that
evaluate to true, if and only if the node that v is pointing to on its part points back to v:
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Fig. 1. Simulating the Kronecker Double Cover
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– blackMatched(v)≡ (v.black �= null)∧ ((v.black).white = v)
– whiteMatched(v)≡ (v.white �= null)∧ ((v.white).black = v)

Furthermore, two functions are defined for each node v. They return a neighbor a node
can point to with its particular pointer. A black pointer can only head for a white pointer
that is set to null itself, whereas a white pointer can only be directed to black pointers
that are currently pointing back to it. The select operator select(S) refers to an arbitrary
function that selects one element of the specified set S in a deterministic manner. If
nodes have a port numbering it can be implemented as the minimum function. For
the algorithm it is irrelevant, which node is chosen. Note that the select operation is
extended, such that select( /0) = null.

– selectW hite(v) = select{x ∈ N(v) | x.white = null}
– selectBlack(v) = select{x ∈ N(v) | x.black = v}

The term white node (resp. black node) refers to the white (resp. black) pointer of a
given node. Algorithm 1 shows the set of rules for every node v. These rules establish a
maximal matching on K(G) which implies a vertex cover.

Algorithm 1. Vertex Cover
R1: (¬whiteMatched)∧ ((white �= null)∨ (white �= selectBlack))

−→ if (white �= null)
then white := null

else if (white �= selectBlack)
then white := selectBlack

R2: (¬blackMatched)∧ ((black = null)∨ (black.white �= null))∧ (black �= selectW hite)
−→ black := selectW hite

An execution of rule R1 (resp. rule R2) will also be referred to as white move (resp.
black move). Note that rule R1 has a higher priority than R2, i.e. if a node is enabled to
make a white move, it will not make a black move. Let VC be the set of nodes that are
matched via their black or white pointer by Algorithm 1.

Lemma 1. If all nodes are disabled with respect to Algorithm 1 then the following
conditions hold:
a) All pointers are either matched or they point to null.
b) The set VC forms a vertex cover.

Proof. Obviously, if a node’s white (resp. black) pointer is neither matched nor it points
to null, rule R1 (resp. R2) is enabled for this node. This verifies statement a). Since all
nodes are disabled with respect to Algorithm 1, for every edge (u,v) at least one of
its nodes is matched via at least one of its pointers. Otherwise, because rule R1 is not
enabled, u and v both had their white pointers set to null and hence, rule R2 would be
enabled for both nodes. This proves statement b). ��
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3 Approximation Ratio

Lemma 2. In an anonymous network a non-probabilistic self-stabilizing algorithm that
calculates a k-approximation vertex cover with k < 2 for arbitrary graphs cannot exist
under a synchronous scheduler (and therefore under a distributed scheduler).

Proof. Consider a ring consisting of n nodes, where n is an even number. If all nodes start
in the same state, this property will hold all the time. Thus, all of them will be selected
for the vertex cover. An optimal vertex cover only contains every second node. ��

Theorem 1. Algorithm 1 calculates a 3-approximation vertex cover.

Proof. Let G = (V,E) be a graph. The graph G′ is derived from G|VC by removing all
edges whose adjacent nodes do not have set at least one pointer to the other one. Every
node only has two pointers and therefore its degree is at most 2, hence G′ consists of
components that form a path or a ring.

In both, a path and a ring, at least every second node has to be part of a vertex
cover. Hence, even selecting all nodes of a ring or of a path with an even number of
nodes leads to a 2-approximation. On a path p with an odd number of nodes at least
(|p| − 1)/2 nodes have to be part of a vertex cover, thus any vertex cover of p will
exceed the number of nodes of an optimal vertex cover by a factor of 3 at most. The
worst case is a path consisting of three nodes, where Algorithm 1 might select all nodes
instead of only the one in the middle. ��

The approximation ratio depends on the underlying graph. In any regular graph with n
nodes, the smallest vertex cover contains at least !n/2" nodes, hence even selecting all
nodes results in a 2-approximation.

Algorithm 1 can be improved to achieve an approximation ratio of 2 on certain
topologies. Section 5 shows that combining this algorithm with some vertex exclusion
rules leads to a 2-approximation for a vertex cover in trees. This modification also im-
proves the results on arbitrary graphs in practice. However, the worst case on arbitrary
graphs is still a 3-approximation.

3.1 Move Complexity

Lemma 3. While executing Algorithm 1 a node directs its black pointer towards a
given neighbor at most once.

Proof. According to Algorithm 1, for u being enabled to point to v, v must have its
white pointer set to null. After that the black pointer of u (and of all other nodes that
point towards v) is disabled until v moves its white pointer. After that v’s white pointer
is matched with one of the nodes that where pointing at it and will not make a move
again. Besides, from that time on, a node cannot point towards v with its black pointer
since v does not point to null. ��

Some notation is introduced for the upcoming proof. We assume that Algorithm 1 has
stabilized and are going to analyze the sequence of steps that led to that state.
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– Steps in which at least one node matches with one of its neighbors by directing its
white pointer towards it are called Matching-steps.

– The total number of Matching-steps is denoted by s.
– Vi contains the nodes that match via their white pointer in the i-th Matching-step.
– Xi contains the nodes that are matched in the i-th Matching-step by the white move

of a node contained in Vi.

Lemma 4. Algorithm 1 stabilizes after at most O(n + m) moves under the distributed
scheduler.

Proof. There are at most 2 white moves per node. It can first point to null if it does not
already and then it accepts an offer from a black node. This black pointer cannot move
its pointer, unless the white pointer is directed to another node, thus, there will be no
further white moves. Hence, there are at most 2n white moves in total.

After the nodes in Vi made their white matching move, the nodes in Xi cannot make
any further black move. Now we show that before the nodes of Vi made this move, the
maximum number of black moves made by xi ∈ Xi is limited to min(2i,2d(xi)).

If node xi sets its black pointer towards a node v, this node has its white pointer set to
null. To make xi move its black pointer again, v has to direct its white pointer to another
node, that also points at it via its black pointer. Obviously, if that happens i times, there
are i steps in which nodes were matched via their white pointer before a node of Vi can
match with xi, in contradiction to the assumption. Assuming that xi points to null every
time before directing its pointer to a new node this results in at most 2i black moves.
On the other hand, node xi can point to any node only once via its black pointer. Thus,
its black moves are also limited to 2d(xi). Hence, the total number of black moves is

2
s

∑
i=1

∑
xi∈Xi

min(i,d(xi)).

Note that in the worst case Vi = {vi} for all i ∈ {1, . . . ,s} and thus, s = n, which results
in a total of

2
n

∑
i=1

min(i,d(vi)) ∈ O(n + m)

black moves. In particular, this situation is given if Algorithm 1 runs under a central
scheduler. ��

3.2 Round Complexity

Lemma 5. Algorithm 1 stabilizes after at most 2n + 1 rounds under the distributed
scheduler.

Proof. The basic idea is to show that at least every second round a white pointer is
matched with a neighbor’s black pointer after the first round. If a node has its white
pointer set to null and at least one of its neighbors point to it via a black pointer (oth-
erwise it does not get enabled to make a white move), then before the end of the next
round it will match with one of these neighbors. Note that due to the priority of R1
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over R2 after the first round all white pointers are either matched or they point to null.
Therefore any node will make at most one further white move and this move will match
the white pointer (cf. proof of Lemma 4).

Consider a round without white moves. Rule R1 is not enabled, hence, all white
pointers are either matched or they point to null without having a neighbor that points
towards them. If Algorithm 1 has not stabilized yet, there is at least one enabled black
node. If there is no node having its white pointer set to null, all enabled black nodes
will set their pointer to null and the system is in a legal state after this round. So, let x
be a black node having at least one neighbor that has its white pointer set to null. Node
x will move its black pointer to one of these nodes, which therefore becomes enabled
to perform a white move. Hence, in every round that does not contain a white move, at
least one white node gets enabled.

There might be one final round in which some unmatched black pointers have to be
set to null. However, this cannot happen, if all white pointers are matched. Thus, after
at most 2n + 1 rounds Algorithm 1 has stabilized. ��

The following example proves that the bound of Lemma 4 is sharp. Let G =
{v1,v2, . . . ,vn} be the complete Graph Kn. Initially, all nodes have set their white pointer
to vn−1 and their black ones to vn. We assume a distributed scheduler and divide the ex-
ecution of Algorithm 1 in phases. The first phase consists of five steps:

a) All nodes except vn set their white pointer to null.
b) Node v1 sets its black pointer to v2 and all other nodes except vn set their black

pointer to v1.
c) Node vn sets its white pointer to null.
d) Node vn sets its black pointer to v1.
e) Node v2 matches its white pointer with v1’s black pointer.

These steps are followed by n−1 phases that consist of the following moves each:

a) All nodes that are not yet matched via their black pointer direct it towards the
smallest node that is not yet matched via its white pointer.

b) This node chooses the smallest of them and matches its white pointer with it.

This results in 2n white moves and ∑n/2
i=1 ((n−1)−2(i−1)) black moves and hence,

O(n + m) moves in total.

4 Fault Containment

We assume the system to be in a stable state with respect to Algorithm 1. This section
analyzes the impact of the transient error of a single node, e.g. due to a memory fault.
The containment time is defined as the worst case number of rounds (resp. moves) until
the system has returned to a legitimate state. The contamination number denotes the
worst case number of nodes that execute a rule within that time [4].

Lemma 6. If the system is in a stable state with respect to Algorithm 1 and a single
node changes its state erroneously, the system re-stabilizes with a containment time of
9 rounds (resp. 4∆ + 4 moves) under the distributed scheduler and the contamination
number is 2∆ + 1.
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Proof. Let v be the node that changed its state erroneously. All pointers that are matched
to any node but v do not get activated by the changing of v. The effect of an erroneously
changed black or white pointer is analyzed separately. They do not influence each other
since a black pointer only interacts with its neighbors’ white pointers and vice versa.

Case a) v changed its black pointer.
If v was not matched before all its neighbors’ white pointers are matched already. Thus,
no other node becomes enabled, v will reset its pointer to null and thus, the system
is in the same stable state as before. So assume v to have switched its black pointer
erroneously from node x to node u. Node x can set its white pointer to null which could
cause all its neighbors that are not already matched via their black pointer to point to it.
The node will choose one of them and point back to it, the others will reset their black
pointer to null. Two cases have to be considered for node u:

– u = null
Node v can point to any of its neighbors that is not already matched via its white
pointer. If this node is not x it will point back at v. If v pointed to x once more,
this node might choose another node to match with which would make v reset its
pointer to null. This leads to at most 2|N(x)\{v}|− 1 + 2 + 1 + 1 = 2|N(x)|+ 1
moves until stabilization in the worst case and only |N(x)|+ 2 nodes are affected,
namely v, x and all its other neighbors and one other neighbor of v.

– u �= null If u is matched via its white pointer already it will not become enabled.
In that case v can point back to x or to null. Assume u not to be matched via its
white pointer. Since u points to null node v cannot take its pointer away. Node u
will point back at v so these two nodes will be matched. This scenario leads to at
most 2|N(x)\{v}|− 1 + 2 + 1 = 2|N(x)| moves (resp. 4 rounds) until stabilization
in the worst case and only |N(x)|+ 2 nodes are affected, namely v, x and all its
other neighbors and one other neighbor of v.

Case b) v changed its white pointer.
If v was not matched before all its neighbors’ black pointers are matched already.

Thus, no other node becomes enabled, v will reset its pointer to null and thus, the
system is in the same stable state as before. So assume v to have switched its white
pointer erroneously from node x to node u. If u �= null, v is enabled to point to null after
x has made a move. A node can only direct its black pointer towards one of its neighbors
if this neighbor points to null with its white pointer. Hence, if v does not point to null,
only v itself and x are enabled.

Node x can point to all neighbors that have their white pointer set to null. Let x point
to a node y �= v. If y �= null it will point back at x so they will be matched. Otherwise
x will be treated as any other neighbor of v. When v points to null, all its neighbors
that are not matched via their black pointer already, could point towards v. Node v will
choose one of them to point back, the other nodes will reset their pointers to null. This
leads to at most 2|N(v)|+ 3 moves (resp. 5 rounds) until stabilization in the worst case
and only |N(v)|+ 2 nodes are affected at worst, namely v, all its neighbors, and one
further neighbor of x.

Note that in combining cases a) and b) the node v does not necessarily point to the
same node with each pointer. Hence the nodes that might become enabled due to the
erroneous move of v are in the worst case v, the two nodes it was pointing to before and
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all their neighbors as well as two further neighbors of v. This results in a contamination
number of 2∆ + 1. Adding the number of moves in the cases a) and b) yields a total
number of at most 4|N(x)|+ 4 ≤ 4∆ + 4 moves until the system has re-stabilized. In
the worst case a node executes only one rule per round, hence the containment time in
rounds is 4 + 5 = 9. ��

5 Improving the Approximation Ratio

As shown in Lemma 2, a self-stabilizing algorithm that calculates a vertex cover with an
approximation ratio better than 2 is impossible for anonymous networks. It is possible
to improve Algorithm 1 in a way that it achieves a 2-approximation vertex cover on
trees. On general graphs, however, the approximation ratio remains 3.

In the original algorithm all nodes that have at least one pointer matched are in VC,
the others are not. The idea of the improved algorithm is to check, whether a node that
is matched with exactly one pointer has only neighbors that have both their pointers
matched. If this is the case, it can leave the vertex cover since all its neighbors are in
VC and cannot leave it theirselves. If two neighboring nodes both have the same pointer
matched, or they are both matched with both pointers it is impossible to let exactly one of
them leave the vertex cover due to the impossibility of symmetry breaking. To formally
define the additional rules the following predicates are specified for each node v:

– isLooseBlack(v)≡
blackMatched(v)∧ v.white = null∧∀x ∈ N(v) : x.white �= null

– isLooseWhite(v)≡
whiteMatched(v)∧ v.black = null∧∀x ∈ N(v) : x.black �= null

Algorithm 2 consists of the rules of Algorithm 1 and additional three rules that change
the value of a boolean variable vc indicating whether a node is part of the vertex cover
or not.

Algorithm 2. Vertex Cover, improved
R1 and R2 as in Algorithm 1

R3: ((isLooseBlack∨ isLooseW hite)∧ vc = true)
−→ vc := f alse

R4: (white = null∧black = null∧ vc = true)
−→ vc := f alse

R5: ((white �= null∧¬isLooseW hite)∨ (black �= null∧¬isLooseBlack))∧ (vc = f alse)
−→ vc := true

Note that rules R1 and R2 have a higher priority than the other rules. The moves
(rules, respectively) of type R3, R4 and R5 will also be referred to as vc-moves (vc-
rules, respectively). The first two rules are extended so that they also set the vc-variable
according to the vc-rules. Thus, a node is not enabled to perform a vc-move after an
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execution of R1 or R2 before a neighbor also executes one of the first two rules. Ob-
viously, every node can execute rule R4 at most once, namely as its first move. The
priority setting as well as the update of the vc-variable in the first two rules helps to
reduce the number of moves in practice. It does not improve the worst case, though.

Lemma 7. While executing Algorithm 2 on a distributed scheduler there are at most
O(∆(n + m)) vc-moves.

Proof. Let S = S1,S2,S3... be an execution of Algorithm 2. A vc-move of a node v in
step Si with i > 1 is called belated, if neither v nor any of its neighbors performed a
move of type R1 or R2 in step Si−1. Since a node does not read a neighbor’s vc variable
in Algorithm 2, all belated moves can be executed in the corresponding preceding step
and this results in a valid execution with the same total number of moves. Let execution
S̃ = S̃1, S̃2, S̃3... be derived from S by shifting all belated moves into the corresponding
preceding step (several times, if necessary) until there is no belated move left. Apart
from the very first step all vc-moves of S̃ are now preceded by a neighbor’s move of

type R1 or R2. Let xi =
∣∣∣{w ∈ S̃i−1 | w executes rule R1 or R2}

∣∣∣, for i > 1. Hence, in

step S̃i there are at most ∆xi−1 vc-moves. In the worst case there are n vc-moves in the
first step. From Lemma 4 we know that ∑xi ∈ O(n + m). This results in a total number
of at most O(∆(n + m)) vc-moves. ��

The following lemma shows that Algorithm 2 still computes a vertex cover. Let G =
(V,E) be a graph and VA = {v ∈V | v.vc = true}.

Lemma 8. If no node of G is enabled with respect to Algorithm 2 then VA is a vertex
cover of G.

Proof. It suffices to prove that all neighbors of a node v with v.vc = f alse have their vc
variable set to true. Assume, there was a node x ∈ N(v) with x.vc = f alse. According
to the assumption, the rules R1 and R2 are not enabled for both nodes. If one of the two
nodes is matched via both its pointers then it is enabled to execute rule R5, hence both
nodes have at least one pointer set to null. If one of the two nodes has both pointers
set to null then one of them is enabled to execute rule R2, so assume both nodes to
have exactly one pointer set to null. If these pointers have the same color then rule R5

is enabled for both nodes, otherwise the node that has its black pointer set to null is
enabled to point to the other one via rule R2. ��

Lemma 9. Let T = (V,E) be a tree with |V | > 2 and I the set of inner nodes, i.e.
I = {v ∈ V | d(v) > 1}. Let M be a maximum cardinality matching of T . Then I is a
vertex cover of T and |I| ≤ 2 |M|.

Proof. Obviously I is a vertex cover of T , any leaf has a neighbor in I. The rest is shown
by induction on the number of nodes. Obviously, the statement holds for |V | = 3. Let
|V | > 3, and x be a leaf of T . The neighbor of x is denoted by y. We distinguish two
cases:

a) d(y) > 2
Let T ′ = T\{x}. The set of inner nodes does not change by removing x from the
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graph, i.e. I′ := I. By induction |I′| ≤ 2 |M′|, where M′ is a maximum cardinality
matching of T ′. Furthermore, |M| ≥ |M′|, since the matching cannot become larger
by removing a node. Putting all this together results in |I|= |I′| ≤ 2 |M′| ≤ 2 |M|.

b) d(y) = 2
Let T ′ = T\{x,y}. Node y /∈ I′ and maybe its other neighbor is a leaf in T ′,
hence |I′| ≤ |I|+ 2. By induction |I′| ≤ 2 |M′|, where M′ is a maximum cardinal-
ity matching of T ′. M′ ∪ {(x,y)} is a maximum cardinality matching of T , thus,
|M′|+1 = |M|. Putting all this together results in |I|= |I′|+2≤ 2 |M′|+2≤ 2 |M|.

��

Theorem 2. Algorithm 2 calculates a 2-approximation vertex cover in case the graph
is a tree.

Proof. Let T = (V,E) be a tree. Lemma 8 yields that VA is a vertex cover. Let M1 be
the set of nodes that are matched to one neighbor via both pointers each, i.e. M1 = {v∈
V | v.black = v.white �= null}.

We define the forest T ′ = T\M1 and show that all leaves of T ′ have their vc variable
set to f alse. Let x be a leaf of T ′ and assume x.vc = true. Then, obviously, x must
matched with a node y via at least one of its pointers. If its other pointer does not point
to null, then it must have a second neighbor in T ′ and therefore it is not a leaf. Note that
a vertex of T ′ cannot be matched with the same neighbor via both its pointers. If y has
its second pointer set to null one of the two nodes is enabled to execute rule R2, hence y
is also matched with another node. All other neighbors of x in T belong to M1 anyway,
thus rule R3 must be enabled for x. Thus, all leaves of T ′ must have their vc variable set
to f alse.

Let I′ be the set of nodes of T ′ without the leaves and let M2 be a maximum cardi-
nality matching of T ′. From Lemma 9 we derive that I′ ≤ 2 |M2|. The set M1∪M2 is a
maximum cardinality matching of T . Hence, from König’s theorem [2] we deduce:
|VA| ≤ 2 |M1|+ |I′| ≤ 2 |M1|+ 2 |M2|= 2 |M1∪M2| ≤ 2

∣∣VCopt
∣∣ ��

The behavior in case of a transient error of a single node is similar to the behavior of
Algorithm 1. Only the nodes mentioned in Lemma 6 can change their pointers. How-
ever, the neighbors of a node that changed a pointer might execute two vc-moves each.
A node does not read a neighbor’s vc-variable, hence the contamination radius is in-
creased by only one hop.

It is an open question whether Theorem 2 can be extended to other classes of graphs.
The following example shows that the approximation ratio of Algorithm 2 in general is
3, even on a bipartite graph.

Example 1. Let Gk with k = 5 be the graph depicted in Figure 2a. There is a node l on
the left, a node r on the right and a node t on the top. Furthermore there are k simple
line graphs consisting of three nodes ri, mi and ri each, with connections from ri to r
and li to l respectively.

The optimal vertex cover consists of l, r and the nodes m1, . . . ,mk, and accordingly
k + 2 nodes in total. However, in the worst case Algorithm 2 selects all nodes of G:
Figure 2b shows all nodes mi (and t respectively) to have both their pointers matched.
Let each mi have its white pointer matched with li (l, respectively) and their black
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Fig. 2. Comparison of optimal solution and worst case solution

pointer matched with ri (r, respectively). Now any node that has an unmatched pointer
has a neighbor with an unmatched pointer of the same color. Thus, it is not enabled to
set its vc variable to f alse. Hence, all nodes are selected. G consists of 3k+3 nodes and
thus the approximation ratio is (3k + 3)/(k + 2) = 3−3/(k + 2).

6 Conclusion

This paper presented the first self-stabilizing algorithm for a 3-approximation vertex
cover in anonymous networks. It stabilizes after O(n+m) moves and the contamination
number is 2∆ + 1. An improved version of the algorithm yields a 2-approximation in
case the graph is a tree. We conclude this paper with a conjecture.

Conjecture. Algorithm 2 requires O(n + m) vc-moves using a distributed scheduler.
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Abstract. Self-stabilizing distributed control is often modeled by token
abstractions. For a cyber-physical system, tokens may represent physical
objects whose movement is controlled. The problem studied in this paper
is to ensure that a synchronous system with m circulating tokens has at
least d distance between tokens. This problem is first considered in a ring
where d is given whilst m and the ring size n are unknown. The protocol
solving this problem can be uniform, with all processes running the same
program, or it can be non-uniform, with some processes acting only as
token relays. The protocol for this first problem is simple, and can be
expressed with Petri net formalism. A second problem is to maximize d
when m is given, and n is unknown. For the second problem, the paper
presents a non-uniform protocol with a single corrective process.

1 Introduction

Distributed computing deals with the interaction of concurrent entities. Asyn-
chronous models permit irregular rates of computation whereas pure synchronous
models can impose uniform steps across the system. For either mode of concur-
rency the application goals may benefit from controlled reduction of some activ-
ity. Mutual exclusion aims to reduce the activity to one process at any time; some
scheduling tasks require that certain related processes not be active at the same
time. System activation of a controlled functionality is typically abstracted as a
process having a token, which constitutes permission to engage in some controlled
action. Many mechanisms for regulating token creation, destruction, and transfer
have been published. This paper explores a mechanism based on timing informa-
tion in a synchronous model. In a nutshell, each process has one or more timers
used to control how long a token rests or moves to another process. An emergent
property of a protocol using this mechanism should be that tokens move at each
step, tokens visit all processes, and no two tokens come closer than some given
distance (or, alternatively, that tokens remain as far apart as possible). The chal-
lenge, as with all self-stabilizing algorithms, is that tokens can initially be located
arbitrarily and the variables encoding timers or other variables may have unpre-
dictable initial values.

One motivating application is physical process control, as formalized by Petri
nets. The tokens of a Petri net can represent physical objects. As an example,
one can imagine a closed network where some objects are conveyed from place to
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place, with some physical processing (loading, unloading, modifications to parts)
done at each place. For the health of the machinery it may be useful to keep the
objects at some distance apart, so that facilities at the different places have time
to recharge resources between object visits. Figure 1 partially illustrates such
a situation, with an unhealthy initial state (three objects are together at one
place). The circuit of the moving objects is a ring for this example. The formalism
of Petri nets allows us to add additional places, tokens and transitions so that
a self-stabilizing network can be constructed: eventually, the objects of interest
will be kept apart by some desired distance. Section 4 presents a self-stabilizing
algorithm for this network.

Fig. 1. Petri Net Embodiment

The figure shows a large ring
and two smaller rings, where
each smaller ring is connected
by a joint transition (which can
only fire when a token is present
on each of its inputs) to the
larger ring. On the right side
a portion of the larger (clock-
wise) token ring is represented,
with three tokens shown rest-
ing together at the same place.
Two other smaller, counterclock-
wise rings are partially shown
on the left side, each with one
token. The joint transition will
prevent the three resting tokens
from firing until the token on the
smaller ring completes its traver-
sal. Thus the smaller rings, each
having exactly one token in any
state, behave as delay mecha-
nisms. The algorithm given in
Section 4 uses conventional pro-
cess notation instead of a Petri
net, and the smaller rings are re-
placed by counters in a program.

Another motivating application comes from wireless sensor networks, where
power management is important. A strategy for limiting power consumption is to
limit the number of sensors that are on at any time, presumably selecting enough
sensors to be on for adequate coverage of a field of interest, yet rotating which
nodes deploy sensors over time, to extend lifetime and to improve robustness with
regard to variation in sensor calibration. One solution to this problem would be
to use clock synchronization, with a periodic schedule for sensing activity based
on a global time. Alternatively, token circulation could be considered to activate
sensors. Unlike a schedule purely based on synchronized clocks, a token-based
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solution provides some assurance and feedback in cases where nodes are faulty
(e.g., when a token cannot be passed from one node to another due to a failure,
such failure may be recognized and an alarm could be triggered). The abstraction
of tokens put into messages may also allow aggregated sensor data or commands
to be carried with a token, further enabling application behavior. Keeping tokens
apart may relate to coverage goals for the sensor network: if tokens circulate in
parallel and satisfy some distance constraint between them, then the sensors
that are on at any time may provide adequate spatial diversity over the field
of interest. An optimal solution to satisfy a coverage constraint is beyond the
scope of this paper. Our investigation is confined to the problem of self-stabilizing
circulation of tokens with some desired separation between them.

Related Work. Perhaps the earliest source on self-stabilization is [1], which briefly
presents an algorithm to distribute N points equally on a circle. The algorithm
given in Section 5 distributes m tokens equally around a ring, however the ob-
jective is a behavior (circulating tokens) rather than a final state. Papers on
coordinated robot behavior, for example [2,8,3], are similar to [1] in that a ge-
ometric, physical domain is modeled. Most such papers consider a final robot
configuration as the objective of distributed control and give the robots power-
ful vision and mobility primitives. Like the example of robot coordination, our
work can have a physical control motivation, but we have a behavior as the
objective. For results in this paper, the computation model is discrete and fully
synchronous, where processes communicate only with neighbors in a ring. As
for the sensor network motivation sketched above, duty-cycle scheduling while
satisfying coverage has been implemented [4] (numerous network protocol and
system issues are involved in this task [5]). These sensor network duty-cycle
scheduling efforts are not self-stabilizing to our knowledge.

Within the literature of self-stabilization, a related problem is model trans-
formation. If an algorithm P is correct for serial execution, but not for a parallel
execution, then one can implement a type of scheduler that only allows a process
p of P to take a step provided that no neighbor q is activated concurrently [6];
this type of scheduling is known to correctly emulate a serial order of execution.
The problem we consider, separating tokens by some desired distance d, can be
specialized to d = 2 and be comparable to such a model transformation. For
larger values of d, the nearest related work is the general stabilizing philosopher
problem [7], which considers conflict graphs between non-neighboring philoso-
phers. By equating philosopher activity (dining) to holding a token, [7] yields a
solution to the problem of ensuring tokens are at some desired distance, and also
allowing tokens to move as needed. The synchronous token behavior in this paper
differs from the philosopher problem because token circulation is not demand-
based, and therefore solutions to the problem are obtained through timing.

Literature on self-stabilizing mutual exclusion includes token abstractions [10],
generalizations of mutual exclusion to k-exclusion or k-out-of-� exclusion [11],
multitoken protocols for a ring [13], and group mutual exclusion [12]. Most of the
literature does not constrain tokens to be separated by some desired distance
d (unlike the philosopher problem cited above), which differentiates our work
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from previous multitoken protocols. However, in applying the methods of this
paper to some applications, it can be useful to employ self-stabilizing token or
multitoken protocols at a lower layer: Section 4.2 expands on this idea of using
self-stabilizing token protocols as a basis for our work.

2 Desired Behavior

Desired properties of a token circulation protocol are labeled as d1–d5, as fol-
lows. d1: at any time, m tokens are present in the system; d2: the minimum
distance between any two tokens is at least d; d3: a token moves in each step
from one process to a neighboring process; d4: every process has a token equally
often; i.e., in an execution of k steps, for any process pi, there is a token at pi for
k ·m/n steps; d5: following a transient failure that corrupts state variables of any
number of processes, the system automatically recovers to behavior satisfying
d1–d4.

In many topologies, not all of d1–d5 are achievable. As an instance, for d3
to hold, the center node of a star topology or a simple linear chain is necessarily
visited by tokens more often than other nodes, conflicting with d4. The con-
structions of this paper are able to satisfy d1–d5 for a ring topology. Though
it is straightforward to map a virtual ring on a complete walk over an arbitrary
network, property d2 may not hold: nodes at distance d in a virtual ring could
be at much smaller distance in the base network.

3 Notation and Model

Consider a ring of n processes executing synchronously, in lock-step. Each process
perpetually executes steps of a program, which are called local steps. In one global
step, every process executes a local step. Programs are structured as infinite
loops, where the body of a loop contains statements that correspond to local
steps. We assume that all processes execute the loop steps in a coordinated
manner: for processes running the same program, all of them execute the first
statement step in unison. Similarly, if two processes run distinct programs, we
suppose they begin the body of the loop together, which may entail padding the
loop of one program to be the same number of steps as the other program. This
assumption about coordination of steps is for convenience of presentation, since
it is possible to engineer all programs to have a loop body with a single, more
powerful statement. The execution of all statements in the loop, from first to
last, is called a round.

The notion of distance between locations in the ring can be measured in
either clockwise or counterclockwise direction. In program descriptions and proof
arguments, it is convenient to refer to the clockwise (counterclockwise) neighbor
of a process using subscript notation: process pi’s clockwise neighbor is pi+1
and its counterclockwise neighbor is pi−1. The distance from pi to itself is zero,
the clockwise distance from pi to pi+1 is one, and the counterclockwise distance
from pi to pi+1 is n − 1; the counterclockwise distance from pi to pi−1 is one,
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and general definitions of distance between pi and pj for arbitrary ring locations
can be defined inductively. The counterclockwise neighbor of pi is called the
predecessor of pi, and the clockwise neighbor is called the successor.

The local state of a process pi is specified by giving values for its variables.
The global state of the system is an assignment of local states for all processes. A
protocol, specified by giving programs for each pi, should satisfy the desiderata
of Section 2. A protocol is self-stabilizing if, eventually, d1–d5 hold throughout
the suffix of any execution. For simplicity, in the presentation of our protocols,
we make some unusual model choices: in one case, pi assigns to a variable of pi−1;
and we assume that m tokens are present in any initial state of any execution.
After presenting programs in Section 4, we discuss in Subsection 4.2 these choices
in reference to the two illustrative applications, Petri nets and sensor networks.

4 Protocol with Known Separation

This section presents a protocol to achieve and maintain a separation of at least
C + 1 links between tokens in the unidirectional ring. An implementation of the
protocol uses four instantiation parameters, n, m, C, and the choice of which of
two programs are used for nodes in the ring. Only the separation parameter C
is used in the protocol, as the domain of a counter, whereas the ring size n and
the number of tokens m are unknown for the programs. The separation by C +1
links cannot be realized for arbitrary n > 1 and m > 1; we require that

m(C + 1) ≤ n (1)

The protocol consists of two programs delay and relay. At least one process in
the system executes the delay and any processes not running delay run the relay
program. Processes running either program have two variables, q and r; a process
running delay has an additional variable c. To specify the variable of a particular
process, we subscript variables, for instance, qi is the q variable of process pi.
The domains of q and r are nonnegative integers; the domain of c is the range
of integers in [0, C].

The q and r variables model the abstraction of tokens in a ring. At any global
state σ, process pi said to have t tokens if ri + qi = t. We say that k tokens are
resting at pi if ri = k, and � tokens are queued (for moving forward) if qi = �.
The objective of the protocol is to circulate m tokens around the ring so that
the distance from one token to the next (clockwise) token exceeds parameter C,
and in each round every token moves from its current location to the successor.
In some cases, it is handy to refer to the value of a variable at a particular state
in an execution. The term rσ

i denotes the value of ri at a state σ. In most cases,
the state is implicitly the present (current) state with respect to a description
or a predicate definition.

Define the minimum clockwise distance between pi and a token to be the
smallest clockwise distance from pi to pj such that pj has t > 0 tokens. Observe
that if pi has a token, then the minimum clockwise distance to a token is zero.
Similarly, let the minimum counterclockwise distance from pi to a token be
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defined. Let Rdisti denote the minimum clockwise distance to a token for pi and
let Ldisti denote the minimum counterclockwise distance to a token for pi.

4.1 Programs

The delay and relay programs are shown in Figure 2. Both programs begin with
steps to move any queued tokens from the predecessor’s queue to rest at pi. The
relay program enqueues one token, if there are any resting tokens, in line 3 of
the program. The delay program may or may not enqueue a token, depending on
values of the counter ci and the number of resting tokens ri. In terms of a Petri
net, the relay program corresponds to simple, deterministic, unit delay with at
most one token firing in any step on the output transition. The delay program
expresses a joint transition, with two inputs and two outputs: the variable ci

becomes a ring of C +1 places and line 4 of delay represents the joint transition.
In application, it is possible that all n processes run the delay program, and

no process runs relay. This would be a uniform protocol to achieve d1–d5. An
advantage of including relay processes can be to limit the cost of construction
for physical embodiments of the logic. Using multiple relay processes can model
more general cases of token delay: a consecutive sequence of k relay processes is
equivalent to a process that always delays an arriving token by k rounds.

4.2 Application to Models

The relay/delay programs given can be translated to other models. For lack of
space in these proceedings, discussion of translation to standard models, includ-
ing the possibility of asynchronous execution, has been moved to [16].

Petri Net. It is usual for self-stabilization that transient faults, which inject
variable corruption, are responsible for creating new initial states, and the event
of a transient fault is not explicitly modeled. However for an application where
tokens represent physical objects, which is plausible for Petri nets, a transient

delay ::
do forever

1 ri ← ri + qi−1 ;

2 qi−1 ← 0 ;

3 if ci > 0 then

ci ← ci − 1
4 else if ci = 0 ∧ ri > 0 then

ci ← C ;

ri ← ri − 1 ;

qi ← qi + 1

relay ::
do forever

1 ri ← ri + qi−1 ;

2 qi−1 ← 0 ;

3 if ri > 0 then

ri ← ri − 1 ;

qi ← qi + 1

Fig. 2. delay and relay programs
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fault neither destroys nor creates objects. Thus we think it reasonable to suppose
that m > 1 tokens satisfying (1) are present in any initial state.

Observe that line 2 of either delay or relay has pi assign to qi−1 (whereas the
usual convention in the literature of self-stabilization is that a process may only
assign to its own variables). The assignment qi−1 ← 0 models the transfer of
a token from a transition to its target place in a Petri net. For the firing of a
Petri net transition, pi increments qi in line 4 of delay or line 3 or relay. Figure
1 illustrates both relay and delay programs. The portions of the two rings on the
left side of the figure are modeled by the c variables in relay nodes; these are
“minor” rings with C + 1 nodes, whereas the “major” ring has n nodes. The
situation of a token on a minor ring being ready for a transition shared by the
major ring is modeled by ci = 0. Observe that when a token on the major ring is
present at the same transition where a minor ring token exists, then transition
firing is enabled at line 4, because ri > 0 and ci = 0. We assume that tokens of
major and minor rings are of different nature; a transient fault cannot move a
token from minor to major or from major to minor ring. A transient fault can
move tokens arbitrarily on their respective rings.

Wireless Sensor Network. Wireless networks use messages rather than shared
variables for communication, and self-stabilizing clock synchronization [17] can
be used to implement a synchronous step of all delay/relay cycles. Two important
technical details from the programs to consider are the reading and assignment
to qi−1 by pi and the possibility that any token representation is corrupt in the
initial state, so we cannot assume m tokens are present in the initial state. The
assignment to qi−1 can be eliminated in favor of having each pi obtain token
information in a message from pi−1 at the start of each round. As for initially
corrupt token representation, the simplest solution is to leverage a standard
self-stabilizing, unidirectional token or multitoken protocol. For instance, if m
independent copies of a self-stabilizing, token-based mutual exclusion are emu-
lated in the adaptation of delay/relay, then each of these copies will converge to
having one token in each emulated ring. In such an emulation, it is important
that each process emulate the m copies fairly, to ensure that they each converge
to having a single token [16].

4.3 Verification

A legitimate state for the protocol is a global state predicate, defining constraints
on values for variables. To define this predicate, let tokdist denote the minimum,
taken over all i such that ri + qi > 0, of Rdisti. The predicate delayi is true for
process pi running delay and false for the relay processes.

Definition 1. A global state σ is legitimate iff∑
i

qi = m ∧
∑

i

ri = 0 ∧ (∀i :: qi ≤ 1) (2)

∧ tokdist > C (3)
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∧ (∀i : delayi ∧ ci > 0 ∧ qi = 0 : Rdisti = C − ci) (4)
∧ (∀i : delayi ∧ qi = 0 : Ldisti > ci) (5)
∧ (∀i : delayi ∧ qi = 1 : ci = C) (6)

In an initial state, variables may have arbitrary values in their domains, subject
to constraint (1).

Lemma 1 (Closure). Starting from a legitimate state σ, the execution of a
round results in a legitimate state σ′.

Proof. The conservation of tokens expressed by (2) is simple to verify from the
statements of delay and relay programs, so we concentrate on showing that (3)–
(6) are invariant properties. Assume that σ is a legitimate state. We consider
two cases for a process pi running delay, either there is no token at pi and qi = 0,
or qi = 1 at σ.
� qi = 1 : observe that ci = C by (6). For σ′ we have ri = 0 because from

(3) there is no token at pi−1 and we have qi = 0 ∧ ci = C − 1 by lines 1-2 of
either delay or relay at pi+1, and line 3 of delay at pi. This validates (2) with
respect to the token passed, and (3) holds because every token moves to the
successor starting from a legitimate state. Property (4) holds at σ′ with respect
to pi because Rdisti = 1 = C − ci. Finally, (5) is validated for pi because, if (5)
holds for σ when ci = C, then a token moving one process closer to pi validates
(5) by ci = C − 1 at σ′.
� qi = 0 : there are two subcases, either ci = 0 or ci > 0. In the former case,

if no token arrives to pi in the transition from σ to σ′, properties (2)-(6) directly
hold with respect to pi in σ′. If a token arrives to pi, then qi = 1 ∧ ci = C result
by line 4 of delay, and we use properties (3)-(6) of pi−1 at σ to infer that the same
properties hold of pi at σ′. If ci > 0 at σ, then by (3)-(5) and legitimacy of all
processes within distance C + 1 in either direction from pi, tokens move to the
successor process while ci decrements, which establishes (3)-(5) for pi at σ′. ❒

To prove convergence, we start with some elementary claims and define some
useful terms. Suppose rounds are numbered in an execution, round t starts from
state σ, and that qσ

i−1 = v. For such a situation, we say that v tokens arrive at
pi in round t.

Lemma 2. In any execution,
∑

i ri + qi = m holds invariantly.

Proof. As explained in Section 3, m > 1 tokens are present in the initial state,
represented by ri and qi variables. Statements of delay or of relay conserve the
number of tokens in the system, because we assume that all processes execute
lines 1 and 2 synchronously in any round. Line 4 of delay or line 3 of relay
similarly conserve the number of tokens in a process. ❒

Lemma 3. Within one round of any execution,

( ∀ i :: qi ≤ 1 ) (7)

holds and continues to hold invariantly for all subsequent rounds.
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Proof. In every round, line 2 of delay or relay assigns qi−1 ← 0, and may assign
qi ← 1. ❒

For the remainder of this section, we consider only executions that start with a
state satisfying (7). For such executions, a corollary of Lemma 3 is: at most one
token arrives to any process in any round.

Lemma 4. If m > 0, then for every execution of the protocol and 0 ≤ k <
C ∧ 0 ≤ i < n, the variable ci = k at infinitely many states.

Proof. The proof is by contradiction. First, we show that at least some token
moves infinitely often. Since m > 0, there is a token at some process pi because
ri > 0 or qi > 0; the case qi > 0 implies immediate token movement in the next
round, so we look at the other case, ri > 0 ∧ qi = 0. In one round, pi either
assigns qi ← 1 program, and thus a token moves in the next round, or pi assigns
ci ← ci − 1 because ci > 0. Therefore, after at most C rounds, a state where
ci = 0 ∧ ri > 0 is reached, and the next round enqueues a token for movement.
The preceding argument shows that some token movement occurs infinitely often
in any execution. There are m tokens throughout the execution by (2), hence at
least one token can be considered to move infinitely many times. Note that the
token abstraction is represented by r and q variables only: we cannot be sure that
one token does not overtake another token. However, it will be our convention
to model token queuing as first-in, first-out order. Thereby we find that if one
token moves infinitely many times clockwise around the ring, all tokens do so as
well. Returning to the claim, suppose that some ci variable eventually never has
some value k ∈ [0, C−1]. But pi experiences infinitely many tokens arriving and
assigns qi ← 1 infinitely often, so lines 3 and 4 of delay execute infinitely often
at pi, which is a contradiction. ❒

Lemma 5. For any process pi running the delay program, eventually pi assigns
qi ← 1 at most once in any C + 1 consecutive rounds.

Proof. Lemma 4 shows that pi eventually assigns ci ← C. In delay, only line 4
assigns qi ← 1, and the same step assigns ci ← C. Thus, if we number rounds
t, t + 1, and so on, the values of ci and qi variables at the end of each round is
shown by:

round t t + 1 t + 2 · · · t + (C − 1) t + C t + (C + 1)
ci C C − 1 C − 2 · · · 1 0 C
qi 1 0 0 · · · 0 0 1

The table makes the worst-case assumption that ri > 0 at round t+ (C + 1),
to illustrate that through at least C consecutive rounds, qi remains zero. ❒

Lemma 6. Let σ be a state that occurs after sufficiently many rounds so that
every token has arrived at least once at some process running the delay program.
In the (suffix) execution following σ, if a token arrives at pi in round t, then no
token arrives at pi during rounds t + 1 through t + C.
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Proof. After σ, a token departs from any given delay process pi only at line 4
of delay, which has precondition ci = 0 and postcondition ci = C. Thus, each
delay process releases a token once every C + 1 rounds (or less often, if ri = 0
holds). A relay process pj could potentially release tokens once per round, if rj

remains positive, however we have supposed that each token has entered some
delay process before σ. A simple inductive argument shows that rj = 0 holds
throughout the execution following σ. Therefore, each process experiences token
arrival at most once every C + 1 rounds. ❒

Below we consider only executions that start with a state σ satisfying (6). For
such executions, a corollary of Lemma 6 is: the token arrival rate to any process
is at most 1/(C + 1).

Lemma 7. Let σ be a state in any execution identified by Lemma 6. Then,
throughout the remainder of the execution,

( ∀ i :: ri ≤ 1 + rσ
i ) (8)

Proof. If some ri increases in a round, then because of Lemma 6, no additional
token arrives to pi for C + 1 rounds; this is an adequate number of rounds to
ensure that pi will release a token, thus putting ri back to its original value. ❒

Lemma 7 allows us to introduce the notion of a resting bound for any process pi.
With respect an execution E with an initial state σ as defined in Lemma 6, for
each pi executing the delay program there is a bound 1 + rσ

i on the number of
tokens that may rest together at pi during the remainder of E. After any round
in E producing a state β, let us consider three possibilities for any particular
delay process pi’s number of resting tokens:

rβ
i = (1 + rσ

i ) ∨ rβ
i = rσ

i ∨ rβ
i < rσ

i

Notice that for the first two disjuncts, the resting bound of ri is unchanged.
However, for the third disjunct, where pi released a token in the round and has
fewer than rσ

i resting tokens, the argument of Lemma 7 can be applied to state
β, lowering the resting bound for pi to 1 + rβ

i . More generally, there might be
other processes that lower their resting bounds during the round obtaining β.
Thus, the resting bound developed by Lemma 7 for each process may improve
during an execution. At any particular point in E, the best bound for ri is 1+rδ

i ,
where δ is determined by the most recent round that lowered ri’s resting bound;
if there is no such preceding round, then let δ = σ. Below, we find special cases
with more accurate bounds.

Resting bounds are the basis for a variant function on protocol execution. Let
F be a tuple formed by listing the resting bounds for all delay processes. Since
no process increases its resting bound in any round, it follows that valuations
of F can only decrease during execution. If all components of tuple F are zero,
then it is possible to show that the protocol has reached a legitimate state. We
say that F is positive if any of its components is nonzero. In order to prove
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convergence, two more claims are needed. First, a special case is required for a
resting bound of zero (since Lemma 7’s form is inappropriate); second, it must
be shown that F eventually does decrease if it is positive.

Lemma 8. Let E be an execution originating from a state σ identified by Lemma
6, and suppose α is a state in E where pi running delay satisfies rα

i = 0 ∧ cα
i = 0.

Then, for the execution following α, the resting bound of ri is zero.

Proof. The proof is by induction over the execution following α, based on the
sequence of rounds associated with token arrival at pi. When a token arrives
at pi after state α, the predicate ri = 0 ∧ ci = 0 holds. The delay program
establishes qi = 1 ∧ ri = 0 ∧ ci = C when processing the arriving token.
Lemma 6 ensures that no additional token will arrive to pi during the following
C rounds, so that ci = 0 holds when the next token arrival occurs for pi. ❒

Lemma 9. Let E be an execution originating from a state σ identified by Lemma
6. F cannot be positive and constant throughout E.

Proof. Proof by contradiction. Suppose, for each delay pi, that the resting bound
never decreases. We analyze scenarios for this supposition and derive necessary
conditions, which are used to show a contradiction. Lemma 4 implies that pi re-
ceives a token infinitely often in E and releases a token infinitely many times. If
each token reception coincides with releasing a token, which entails ci = 0, then
ri > 0 would remain constant throughout E. For such a continuing scenario, pi

must receive at token once every C + 1 rounds. The other possible scenario is
that of ri incrementing to the resting bound, then decrementing, and repeating
this pattern. For this scenario, ci decrements to zero, then resets to C, con-
tinuously during E. Because we have supposed that ri never decrements twice
before incrementing again (otherwise F would decrease), tokens need to arrive
sufficiently often to pi. Suppose ci = k > 0 when a token arrives. Then another
token must arrive after exactly C+1 rounds so that ci = k upon token arrival. If
instead, a token arrives after C + 1 + d rounds, then ci = k− d would hold upon
token arrival, d ≤ k. More generally, the spacing in token arrivals over E could
be C + 1 + t1, then C + 1+ t2, and so on up to a delay gap of C + 1+ t� rounds,
so long as

∑�
j=1 tj ≤ k. Each time there is a delay gap of C +1+ tj rounds with

tj > 0, the counter ci decreases in this scenario. A decrease resulting in ci = 0
would then force all future delays to be C + 1, so that tokens arrive exactly as
they are released, preventing a reduction of ri.

Having exposed the scenarios for F remaining constant over execution E,
thus at least one ri > 0 throughout E, we observe that from m(C + 1) ≤ n
there exists a segment of the ring, with more than C + 1 processes, containing
no token, at every state in E. The existence of such a segment implies that
some delay pi will receive a token after a delay of more than C + 1 rounds (a
more detailed argument could take into account processes identified by Lemma
8, which merely pass along tokens when they arrive). Thus, infinitely often, a
delay between token arrivals is at least C + 2 rounds. It follows that eventually,
ci decreases to zero for some pi before a token arrives, at which point it will
decrease ri, contradicting the assumption that F remains constant. ❒
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Lemma 10 (Convergence). Every execution of the protocol eventually con-
tains a legitimate state.

Proof. The proof is by induction on Lemma 9, so long as F is positive. Therefore,
the resting bound for every delay process is zero eventually. To establish that the
resulting state is legitimate, it is enough to verify the behavior of a delay process
pi during the C + 1 rounds preceding token arrival to see that (3)-(5) hold with
respect to pi. ❒

We sketch an argument bounding the worst-case convergence time using elements
from the proof of convergence. The variant function F is applied to an execution
suffix satisfying (7), and Lemma 6; such a suffix occurs within O(n) rounds
of any execution: the worst case occurs when one delay process pi holds all m
tokens, which it releases after at most m ·C rounds, and the last of these tokens
takes O(n) rounds to again arrive at a delay process; since m · C ≤ n by (1),
we have O(n) rounds overall to obtain the suffix for Lemma 6. To bound the
worst case for F reducing in an execution, we observe that there are at most
n components to F , each with an initial maximum value of m. Suppose each
component decreases sequentially, therefore requiring n ·m · f time, where f is
the worst-case number of rounds to reduce one component of F . We bound f
by the proof argument of Lemma 9. A ring segment of length at least C + 2
and devoid of tokens implies some decrease of a resting bound in the proof
argument. This decrease may take O(C) time to occur, as a c variable reduces
while a process awaits a token; however a token may take O(n) rounds to reach
the waiting process. A conservative bound is therefore O(m·n2) = O(n3) rounds.

As an aside, we note that the algorithms are deterministic, execution is fully
synchronous (there is no nondeterministic adversary), and the program model
fits the Petri net formalism; therefore a formulation using the max-plus algebra
[9] can express system execution, and there exist tools to compute eigenvalues
for a matrix representing the system. We did not investigate such an approach,
since the choice of which processes run delay would be an extra complication.

In [16] we report on simulations of the protocol for various values of n, m, C,
and different choices for the number of delay processes. The simulations suggest
that a bound O(n3) may be loose for the average case; simulation result sug-
gest that expected convergence time could be linear in n. Another point of the
simulation is to investigate the influence of having multiple delay processes on
convergence time; simulations suggest that having at least a few delay processes
is beneficial.

Theorem 1. The delay/relay protocol, with at least one delay process, and with
n > 1, m > 1, d = C + 1, and m · d ≤ n, self-stabilizes to desiderata d1-d5.

Proof. Lemma 2 attends to d1. The definition of legitimate state validates d2. A
property of a legitimate state is that ci = 0 whenever a token arrives to pi, hence
the behavior of delay is like relay: a token moves in each round, as required by d3.
The ring topology and the unidirectional movement of tokens satisfies d4. Finally,
lemmas 10 and 1 provide the technical basis for the theorem, showing d5. ❒
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5 Protocol with Unknown Ring Size

A parameterC, upon which the target separation between tokens is based, is given
to the protocol of Section 4. Here we consider another design alternative, where the
separation between tokens should be maximized, but the ring size is unknown. The
technique is straightforward: building upon the delay program, additional vari-
ables are added to count the number of rounds needed to circulate a token, that
is, the new program calculates n. Two extra assumptions are used for the new
protocol: the value of m is known and the number of processes running the delay
program is exactly one. We discuss this limitation in Section 6.

Figure 3 presents the revised delay program, which introduces timingi, ti,
ignorei, and ClockBasei. The program uses ClockBasei in place of parameter
C, which is periodically recalculated.

Lemma 11. With the delay program of Figure 3 at one process and relay at all
other processes, the system is self-stabilizing for C = #n/m$ − 1, if m ≤ #n/2$.

Proof. Due to space restrictions in these proceedings, the proof has been moved
to [16]. We sketch some key points of the proof here. Let pk be the sole de-
lay process. For convergence it is enough to show that ClockBasek obtains
the maximum feasible value for m tokens, that is, ClockBasek = #n/m$ − 1
holds throughout a suffix execution. Lemmas 1 and 10 then apply to verify self-
stabilization. The proof hinges on two cases, (1 ) either (∀i : i �= k : ri = 0)

delay ::
do forever

1 ti ← ti + 1 ;

2 if qi−1 > 0 ∧ timingi then

3 ignorei ← ignorei − 1 ;

4 if ignorei < 1 then

5 timingi ← false ;

6 ClockBasei ← �ti/m� − 1

7 ri ← ri + qi−1 ;

8 qi−1 ← 0 ;

9 if ci > 0 then

10 ci ← ci − 1
11 else if ci = 0 ∧ ri > 0 then

12 ci ← ClockBasei ;

13 ri ← ri − 1 ;

14 qi ← qi + 1 ;

15 if ¬timingi then

16 timingi ← true ;

17 ti ← 0 ;

18 ignorei ← m − ri − 1

Fig. 3. delay program revised to calculate ring size
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or (2 ) some tokens rest at relay processes. In case (1 ), because pk releases at
most one token per round, and because all relay processes pass along any tokens
they receive in each round, it follows that (1 ) holds invariantly. Provided m > 0,
process pk infinitely often receives and releases a token in any execution, so lines
5-6 and lines 16-18 of Figure 3 are executed repeatedly. Line 18 calculates one
fewer than the number of tokens that do not rest at pk at the instant a token
is released from pk to pk+1. Provided (1 ) holds, it will be n subsequent rounds
before this token circulates the ring and returns to pk. Lines 1-6 compute the
elapsed time between this release of the token and its return, so that tk = n
when line 6 calculates the value of ClockBasek, and this drives convergence in
the remainder of the execution. Case (2 ) can be shown to eventually disappear,
because ClockBasek > 1 is calculated in each execution of line 6; resting tokens
for relay processes therefore do not persist. ❒

6 Conclusion

This paper provides fault tolerant constructions for a timing behavior in which
m loci of control are separated. The program mechanisms are simple: tokens
carry no data and processes use few variables. The first construction can be uni-
form, distinguished (with one unique corrective process), or hybrid. The second
construction requires one distinguished process.

An interesting question is whether there can be a hybrid or uniform protocol
when the ring size and separation constant are unknown. For the style of algo-
rithm in Section 5 we conjecture the answer is negative. If one delay process pi

has an accurate estimate for maximum separation d = ci + 1 and does not delay
any arriving token, another process pj may have either a larger, inaccurate esti-
mate, or may perceive that tokens are unaligned with its counter and therefore
delay some arriving tokens. Such delay would lead to pi detecting an apparently
larger ring size, since the measured traversal time around the ring would include
pj ’s delays. Hence pi would raise its estimate for the separation value. Note that
the problem may admit other types of algorithms: for example, if tokens are
allowed to carry data, this would enable processes to communicate. Whether
such increased communication power is useful is an open question. Another di-
rection would be to use randomized timing, so that different delay processes do
not interfere.

The program of Section 4 conforms to the standard Petri net model of behavior
control if we replace counters by auxiliary token rings, as shown in Figure 1. This
restriction enables tokens to model a physical system. However, programs that
use tokens to carry data and thus communicate with explicit data rather than
mere timing of tokens would need more functionality from a physical embodiment
than Section 4’s programs use in their timing-only mechanism. We have preferred
for the present to investigate algorithms that use only the timing of tokens to
overcome an unpredictable initial state.
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Abstract. The Borowsky-Gafni (BG) simulation algorithm is a powerful tool
that allows a set of t+ 1 asynchronous sequential processes to wait-free simulate
(i.e., despite the crash of up to t of them) a large number n of processes under the
assumption that at most t of these processes fail (i.e., the simulated algorithm is
assumed to be t-resilient). The BG simulation has been used to prove solvability
and unsolvability results for crash-prone asynchronous shared memory systems.

In its initial form, the BG simulation applies only to colorless decision tasks,
i.e., tasks in which nothing prevents processes to decide the same value (e.g., con-
sensus or k-set agreement tasks). Said in another way, it does not apply to deci-
sion problems such as renaming where no two processes are allowed to decide the
same new name. Very recently (STOC 2009), Eli Gafni has presented an extended
BG simulation algorithm (GeBG) that generalizes the basic BG algorithm by ex-
tending it to “colored” decision tasks such as renaming. His algorithm is based
on a sequence of sub-protocols where a sub-protocol is either the base agreement
protocol that is at the core of BG simulation, or a commit-adopt protocol.

This paper presents the core of an extended BG simulation algorithm that is
particularly simple. This algorithm is based on two underlying objects: the base
agreement object used in the BG simulation (as does GeBG), and (differently
from GeBG) a new simple object that we call arbiter. More precisely, (1) while
each of the n simulated processes is simulated by each simulator, (2) each of the
first t + 1 simulated processes is associated with a predetermined simulator that
we called its “owner”. The arbiter object is used to ensure that the permanent
blocking (crash) of any of these t + 1 simulated processes can only be due to the
crash of its owner simulator. After being presented in a modular way, the pro-
posed extended BG simulation algorithm is proved correct.

Keywords: Arbiter, Asynchronous processes, Distributed computability, Fault-
Tolerance, Process crash failure, Reduction, t-Resilience, Shared memory system,
Wait-free environment.

1 Introduction

What is the Borowsky-Gafni (BG) simulation. Considering an asynchronous system
where processes can crash, the (n, k)-set agreement problem is a basic decision task
defined as follows [9]. Each of the n processes proposes a value, and every process
that does not crash has to decide a value (termination), such that a decided value is a
proposed value (validity) and at most k different values are decided (agreement). The
consensus problem corresponds to the particular case k = 1.
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A fundamental question related to asynchronous distributed computability is the fol-
lowing. Suppose we have an algorithm that solves the (15, 4)-set agreement problem.
Can we use this algorithm as a subroutine to solve the (12, 5)-set agreement problem,
assuming that at most t < 12 processes can crash? Intuitively, the answer might be
“yes” (as we have less processes and more decided values are allowed). Let us now
suppose that we want to use the same (15, 4)-set agreement subroutine to solve the
(100, 4)-set agreement problem. As we have much more proposed values, and the same
constraint on the number of decided values, an intuitive answer does not spring in an
obvious way. And what is the answer if we want to solve the (80, 7)-set agreement
problem (much more proposed values but only two more values can be decided), or
(assuming t = 4) solve the (5, 4)-set agreement problem?

Stated in more general terms, the question is: “Can we use a solution to the (n, k)-
set agreement problem as a subroutine to solve the (n′, k′)-set agreement problem,
when at most t < min(n, n′) processes may crash?” (We say that “the (n′, k′)-set
agreement is reducible to (n, k)-set agreement”.) The BG simulation (introduced in
[6] and formalized and deeply investigated in [7] where is given a formal definition of
“reducibility”) answers this fundamental question. It states that the answer is “yes” if
k′ ≥ k and “no” if k′ ≤ t < k. As we can see, the answer “yes” does not depend on the
number of processes.

To that end, a BG simulation algorithm is described that allows n′ = t+ 1 processes
to simulate a large number n of processes that collectively solve a decision task in
presence of at most t crashes. Each of the n′ simulator processes simulates all the n
processes. These n′ simulator processes cooperate through underlying objects (the type
of which is called here safe agreement) that allow them to agree on a single output for
each of the non-deterministic statements issued by every simulated process.

The important lesson learned from the BG simulation is that, in a failure-prone con-
text, what is important is not the number of processes but the maximal number of pos-
sible failures and the actual number of values that are proposed to a decision task. An
interesting application of the BG simulation (among several of its applications [7]) is
the proof that there is no t-resilient (n, k)-set agreement algorithm for t ≥ k. This is
obtained as follows. As (1) the BG simulation allows reducing the (k + 1, k)-set agree-
ment problem to the (n, k)-set agreement problem in a system with up to k failures, and
(2) the (k + 1, k)-set agreement problem is known to be impossible in presence of k
failures [6,13,17], it follows that there is no k-resilient (n, k)-set agreement algorithm.

The limit of the BG-simulation and the extended BG-simulation. The BG simulation
characterizes t-resilient solvability by reducing it to the question of wait-free solvability
(i.e., t-resilience in a system of n = t+1 processes). Unfortunately, the BG simulation
is limited to colorless decision tasks, i.e., tasks in which if a process decides a value
v, then all the processes can decide that value (the class of colorless tasks is formally
defined in [7]). The (n, k)-set decision problem is typically such a task. From an oper-
ational point of view, this is due to the fact that, in the BG simulation, each simulator
simulates fairly all the processes, and consequently, the crash of a simulator process can
manifest itself as the crash of any simulated process (the one it is currently simulating
a critical part of code).
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The extended BG simulation has been proposed by Eli Gafni to overcome this lim-
itation and consequently fully capture t-resilience [12]. As stated in [12] “With the
extended BG simulation we can reduce questions about t-resilience solvability to ques-
tions about wait-free solvability. The latter is characterized by the Herlihy-Shavit con-
ditions [13]”.

As a result, it applies to both colorless tasks and colored decision tasks such as the
renaming problem [3]. In that problem, each of the n processes has to decide a new
name (from a given new name space) such that no two processes have the same new
name. This problem has wait-free solutions when the new name space [1..M ] is such
that M ≥ 2n− 1 (see [8] for a deeper insight into the problem).

In his paper [12], Gafni presents several (un)decidability results that can be obtained
in a simpler way from the BG simulation. He also uses the extended BG simulation to
show that the t-resilient weak symmetry breaking problem is equivalent to t-resilient
weak renaming problem.

The core of the BG simulation relies on the following principles: (1) each of the
(t + 1) simulators fairly simulates all the processes, and this simulation is such that
(2) the crash of a simulator entails the crash of at most one simulated process. The BG
simulation is “symmetric” in the sense that each of the n processes is simulated by
every simulator, and the (t + 1) simulators are “equal” with respect to each simulated
process. One way to be able to simulate colored tasks (without preventing the simulation
of colorless tasks), consists in introducing some form of asymmetry.

The extended BG simulation [12] realizes the appropriate asymmetry as follows. In
addition of simulating an appropriate subset of the n simulated processes, each simula-
tor q is statically associated with exactly one given simulated process p (in our terminol-
ogy, q is the owner of p). This ownership notion is used to ensure that the corresponding
simulated process p will not be blocked forever (perceived as crashed) if its owner sim-
ulator q does not crash. Hence, if a simulator does not crash, it can always decide the
value decided by the simulated process p it “owns”. As noticed and demonstrated in [12]
“extending the BG simulation by this simple property results in a full characterization
of t-resilience in terms of wait-freedom”.

Content of the paper. In addition to the introduction of the notion of extended BG
simulation, and a full characterization of t-resilience, Gafni presents in [12] an extended
BG simulation algorithm (denoted here GeBG). This algorithm is based on a sequence
of sub-protocols where each sub-protocol is either the base agreement protocol used in
the BG simulation (safe agreement type objects) or a commit-adopt protocol [11]. This
algorithm is presented informally in English.

The present paper presents the core of an extended BG simulation algorithm that is
particularly simple. This algorithm is based on two underlying object types: the type
safe agreement (the one used in the BG simulation algorithm and in GeBG), and (dif-
ferently from GeBG) an object type that we call arbiter. An arbiter object allows ex-
ploiting the ownership notion in a simple way to ensure that (1) an object value is always
decided when its owner does not crash, and (2) the value of that object is determined
either by its owner simulator or by the other simulators.

As far as the whole simulation is concerned, while (as in the BG simulation) each of
the n simulated processes is simulated by each simulator, (as in GeBG) each of the first
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t + 1 simulated processes is “associated” with exactly one simulator (its “owner”). As
already said, it follows from the appropriate use of the arbiter objects that the permanent
blocking (crash) of any of these t + 1 simulated processes can only be due to the crash
of its owner simulator.

The paper is made up of 7 sections. Section 2 presents the model and the definition of
decision tasks. Section 3 explains the structure of the simulation. Section 4 defines the
base object types used by the simulators to cooperate and realize a correct simulation.
Then, the extended BG simulation algorithm is presented in an incremental and modular
way. First Section 5 briefly presents the BG simulation algorithm, and then Section 6
enriches it to solve the extended BG simulation. This algorithm is proved in Section 7.

2 Solving Decision Tasks

2.1 Decision Tasks

The problems we are interested in are called decision tasks1. In every run, each process
proposes a value and the proposed values define an input vector I where I[j] is the
value proposed by pj . Let I denote the set of allowed input vectors. Each process has
to decide a value. The decided values define an output vector O, such that O[j] is the
value decided by pj . Let O be the set of the output vectors.

A decision task is a binary relation ∆ from I into O. A task is colorless if, when
a value v is decided by a process pj (i.e., O[j] = v), then v can be decided by all
the processes). Consensus, and more generally k-set agreement, are colorless tasks.
Otherwise the task is colored. Renaming is a colored task.

2.2 The Computation Model

Asynchronous processes and fault model. We are interested in distributed algorithms
the aim of which is to solve a task in a system made up of n asynchronous sequential
processes denoted p1, ..., pn. A process executes a sequence of atomic steps (as defined
by its algorithm). Each process pj is endowed with a write-once local variable outputj
where it deposits the value it decides.

A process can crash in a run. A process executes correctly the steps defined by its
algorithm until it crashes (if it ever does). After it has crashed, a process executes no
more steps. If it does not crash, a process executes an infinite number of steps.

It is assumed that an arbitrary subset (not known in advance) of up to t < n pro-
cesses can crash (the crash of one process being independent from the crash of other
processes). A process that does not crash in a run is said to be correct in that run,
otherwise it is faulty. This failure model is called the t-resilient environment, and an
algorithm designed for such an environment is said to be t-resilient. The extreme case
t = n− 1 is called wait-free environment, and the corresponding algorithms are called
wait-free algorithms.

1 The reader interested in a more formal presentation of decision tasks can consult the literature
(e.g., [2,7,12,13]).
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Communication model. The n processes cooperate through a shared memory made up
of a snapshot object [1] denoted mem. This means that a process pj can write only the
entry mem[j] but can read all the entries by invoking the operation mem.snapshot().
The write and snapshot operations appear as being executed atomically [1]. (These
operations can be built on top of a single-writer/multiple-readers atomic registers [1,4]).
Initially, mem[j] = ⊥.

Definition. The previous computation model (asynchronous crash-prone processes that
communicate through snapshot objects) is called snapshot model.

2.3 Algorithm Solving a Task

An algorithm solves a task in a t-resilient environment if, given any I ∈ I, each correct
process pj decides (i.e., writes a value v in outputj) and there is an output vector O
such that (I,O) ∈ ∆ where O is defined as follows. If pj decides v, then O[j] = v. If
pj does not decide, O[j] is set to any value v′ that preserves the relation (I,O) ∈ ∆.

A task is solvable in a t-resilient environment if there is an algorithm that solves it in
that environment. As an example, consensus is not solvable in the 1-resilient environ-
ment [10,15,16]. Differently, renaming with 2n − 1 names is solvable in the wait-free
environment [3,5,13].

3 Simulated Processes vs. Simulator Processes

Aim. Let A be an n-process t-resilient algorithm that solves a decision task in the base
snapshot model described previously. The aim is to design a (t + 1)-process wait-free
algorithm A′ that simulates A in the same snapshot model. (The reader is referred to
[7] for a formal definition of a simulation.)

Notation. A simulated process is denoted pj with 1 ≤ j ≤ n. Similarly, a simulator
process (in short “simulator”) is denoted qi with 1 ≤ i ≤ t + 1.

As far as the objects accessed by the simulators are concerned, the following con-
vention is adopted. The objects denoted with upper case letters are the objects shared
by the simulators. Differently, an object denoted with lower case letters is local to a
simulator (in that case, the associated subscript denotes the corresponding simulator).

What a simulator does. Each simulator qi is given the code of all the simulated pro-
cesses p1, . . . , pn. It manages n threads, each one associated with a simulated process,
and locally executes these threads in a fair way. It also manages a local copy memi of
the snapshot memory mem shared by the simulated processes.

The code of a simulated process pj contains writes of mem[j] and invocations
of mem.snapshot(). These are the only operations used by the processes p1, . . . , pn

to cooperate. So, the core of the simulation is the definition of two algorithms. The
first (denoted sim writei,j()) has to describe what a simulator qi has to do in order
to correctly simulate a write of mem[j] issued by a process pj . The second (denoted
sim snapshoti,j()) has to describe what a simulator qi has to do in order to correctly
simulate an invocation of mem.snapshot() issued by a process pj .
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4 Base Object Types Used in the Simulation

In addition to snapshot objects, the simulator processes also cooperate through atomic
read/write register objects, and specific objects the types of which (safe agreement
and arbiter) are defined in this section. These types can be implemented from multi-
reader/multi-writer atomic registers, which in turn can be implemented from snapshot
objects. Hence, all the base objects used in the simulation can be implemented in the
snapshot computation model described in the previous section.

4.1 The safe agreement Object Type

The safe agreement type. This object type (defined in [6,7]) is at the core of the BG
simulation. It provides each simulator qi with two operations, denoted proposei(v) and
decidei(), that qi can invoke at most once, and in that order. The operation proposei(v)
allows qi to propose a value v while decidei() allows it to decide a value. The properties
satisfied by an object of the type safe agreement are the following.

– Termination. If no simulator qx crashes while executing proposex(), then any cor-
rect simulator qi that invokes decidei(), returns from that invocation.

– Agreement. At most one value is decided.
– Validity. A decided value is a proposed value.

An implementation. The implementation of the safe agreement type described in Fig-
ure 1 is from [7]. This construction is based on a snapshot object SM (with one entry
per simulator qi). Each entry SM [i] of the snapshot object has two fields: SM [i].value
that contains a value and SM [i].level that stores its level. The level 0 means the corre-
sponding value is meaningless, 1 means it is unstable, while 2 means it is stable.

When a simulator qi invokes proposei(v), it first writes the pair (v, 1) in SM [i] (line
01), and then reads the snapshot object SM (line 02). If there is a stable value in SM ,
pi “cancels” the value it proposes, otherwise it makes it stable (line 03).

A simulator qi invokes decidei() after it has invoked proposei(). Its aim is to return
the same stable value to all the simulators that invoke this operation (line 06). To that
end, qi repeatedly computes a snapshot of SM until it sees no unstable value in SM
(line 04). Let us observe that, as a simulator qi invokes decidei() after it has invoked
proposei(v), there is at least one stable value in SM when it executes line 05. Finally,
in order that the same stable value be returned to all, qi returns the stable value proposed
by the simulator with the smallest id (line 05).

A formal proof that this algorithm implements the safe agreement type is given [7].
Another proof is also given [14].

4.2 The arbiter Object Type

Definition. Each object of the type arbiter has a statically predefined owner simulator
qj . Such an object provides the simulators with a single operation denoted arbitratei,j()
(where i is the id of the invoking simulator and j the id of the owner). A simulator qi

invokes arbitratei,j() at most once, and, when it terminates, this invocation returns a
value to qi. The properties of an object of the type arbiter owned by qj are the following.
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init: for each x : 1 ≤ x ≤ t + 1 do SM [x] ← (⊥, 0) end for.

operation proposei(v): % 1 ≤ i ≤ t + 1 %
(01) SM [i] ← (v, 1);
(02) smi ← SM.snapshot();
(03) if (∃x : smi[x].level = 2) then SM [i] ← (v, 0) else SM [i] ← (v, 2) end if.

operation decidei(): % 1 ≤ i ≤ t + 1 %
(04) repeat smi ← SM.snapshot() until (∀x : smi[x].level 	= 1) end repeat;
(05) let x = min({k | smi[k].level = 2); res ← smi[x].value;
(06) return(res).

Fig. 1. An implementation of the safe agreement type [7] (code for qi)

– Termination. If the owner qj invokes arbitratej,j() and is correct, or does not in-
voke arbitratej,j(), or if a simulator qi returns from its invocation arbitratei,j(),
then all the correct simulators return from their arbitratei,j() invocation.

– Agreement. No two processes return different values.
– Validity. The returned value is 1 (owner) or 0 (not owner). Moreover, if the owner

does not invoke arbitratej,j(), 1 cannot be returned, and if only the owner invokes
arbitratei,j(), 0 cannot be returned.

An implementation. An implementation of an object of the type arbiter is described in
Figure 2. It is based on a snapshot object PART (initialized to [false, . . . , false]), and
a multi-writer/multi-reader atomic register WINNER (initialized to ⊥).

When it invokes arbitratei,j(), the simulator qi announces that it participates (line
01), and issues a snapshot to know the simulators that are currently participating (line
02). If qi is the owner of the object (i = j, line 03), it checks if it is the first participant
(predicate parti = {i}). If it is, it sets WINNER to 1, otherwise it sets it to 0 (line
04). If qi is not the owner of the object (i �= j), it checks if the owner is a participating
simulator (predicate j ∈ parti). If it is, qi waits to know which value has been assigned
to WINNER. If it is not, it sets WINNER to 0. Finally, qi terminates by returning the
value of WINNER.

A proof that this construction implements the arbiter object type is given in [14].

operation arbitratei,j(): % 1 ≤ i, j ≤ t + 1 %
(01) PART [i] ← true ;
(02) auxi ← PART .snapshot(); parti ← {x | auxi[x]};
(03) if (i = j) % pi is the owner of the associated arbiter type object %
(04) then if (part i = {i}) then WINNER ← 1 else WINNER ← 0 end if
(05) else if (j ∈ part i) then wait (WINNER 	= ⊥) else WINNER ← 0 end if
(06) end if;
(07) return(WINNER).

Fig. 2. The arbitratei,j() operation of the arbiter object type (code for qi)
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5 The BG Simulation

This section presents the BG simulation [6,7]: its main principles and the algorithms
implementing its base operations sim writei,j() and sim snapshoti,j().

5.1 The Shared Memory MEM [1..(t + 1)]

The snapshot memory mem shared by the processes p1, . . . , pn is emulated by a snap-
shot object MEM shared by the simulators (so, MEM has (t + 1) entries).

More specifically, MEM [i] is an (unbounded) atomic register that contains an array
with one entry per simulated process pj . Each MEM [i][j] is made up of two fields: a
field MEM [i][j].value that contains the last value of mem[j] written by pj , and a field
MEM [i][j].sn that contains the associated sequence number. (This sequence number,
introduced by the simulation, is a control data that will be used to produce a consistent
simulation of the mem.snapshot() operations issued by the simulated processes).

5.2 The sim writei,j() Operation

The algorithm, denoted sim writei,j(v), executed by qi to simulate the write by pj of the
value v into mem[j] is described in Figure 3 [7]. Its code is pretty simple. The simulator
qi first increases a local sequence numberw sni[j] that will be associated with the value
v written by pj into mem[j]. Then, qi writes the pair (v, w sni[j]) into memi[j] (where
memi is its local copy of the memory shared by the simulated processes) and finally
writes atomically its local copy memi into MEM [i].

operation sim writei,j(v):
(01) w sni[j] ← w sni[j] + 1;
(02) memi[j] ← (v, w sni[j]);
(03) MEM [i] ← memi.

Fig. 3. sim writei,j(v) executed by qi to simulate write(v) issued by pj (from [7])

5.3 The sim snapshoti,j() Operation

This operation is implemented by the algorithm described in Figure 4 [7].

Additional local and shared objects. For each process pj , a simulator qi manages a local
sequence number generator snap sni[j] used to associate a sequence number with each
mem.snapshot() it simulates on behalf of pj (line 04).

In addition to the snapshot object MEM [1..(t + 1)], the simulators q1, . . . , qt+1 co-
operate through an array SAFE AG[1..n, 0...] of safe agreement type objects.

Underlying principle of the BG simulation [6,7]: obtaining a consistent value. In order
to agree on the very same output of the snapsn-th invocation of mem.snapshot() that
is issued by pj , the simulators q1, . . . , qt+1 use the object SAFE AG[j, snapsn].

Each simulator qi proposes a value (denoted inputi) to that object (line 05) and,
due to its agreement property, that object will deliver them the same output at line 06.
In order to ensure the consistent progress of the simulation, the input value inputi
proposed by the simulator qi to SAFE AG[j, snapsn] is defined as follows.
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operation sim snapshoti,j():
(01) smi ← MEM .snapshot():
(02) for each y : 1 ≤ y ≤ n: do inputi[y] = smi[s][y].value
(03) where ∀x : 1 ≤ x ≤ t + 1 : smi[s][y].sn ≥ smi[x][y].sn end for;
(04) snap sni[j] ← snap sni[j] + 1; let snapsn = snap sni[j];
(05) enter mutex; SAFE AG[j, snapsn].proposei(inputi); exit mutex;
(06) res ← SAFE AG [j, snapsn].decidei()
(07) return(res).

Fig. 4. sim snapshoti,j() executed by qi to simulate mem.snapshot() issued by pj (from [7])

– First, qi issues a snapshot of MEM in order to obtain a consistent view of the
simulation state. The value of this snapshot is kept in smi (line 01).
Let us observe that smi[x][y] is such that (1) smi[x][y].sn is the number of writes
issued by py into mem[y] that have been simulated up to now by qx, and (2)
smi[x][y].value is the value of the last write into mem[y] as simulated by qx on
behalf of py .

– Then, for each py , qi computes inputi[y]. To that end, it extracts from smi[1..t +
1][y] the value written by the more advanced simulator qs as far as the simulation
of py is concerned. This is expressed in lines 02-03.

Once inputi has been computed, qi proposes it to SAFE AG[j, snapsn] (line 05), and
then returns the value decided by that object (lines 06-07).

The previous description shows an important feature of the BG simulation. A value
inputi[y] = smi[s][y].value proposed by simulator qi can be such that smi[s][y].sn >
smi[i][y].sn, i.e., the simulator qs is more advanced than qi as far as the simulation
of py is concerned. This causes no problem, as when qi will simulate mem.snapshot()
operations for py (if any) that are between the (smi[i][y].sn)-th and the (smi[s][y].sn)-
th write operations of py , it will obtain a value that has already been computed and is
currently kept in the corresponding SAFE AG[y,−] object.

Underlying principle of the BG simulation [6,7]: from wait-freedom to t-resilience.
Each simulator qi simulates the n processes p1, . . . , pn “in parallel” and in a fair way.
But any simulator qi can crash. The crash of qi while it is engaged in the simulation
of mem.snapshot() on behalf of several processes pj , pj′ , etc., can entail their defini-
tive blocking, i.e., their crash. This is because each SAFE AG[j,−] object guarantees
that its SAFE AG[j,−].decide() invocations do terminate only if no simulator crashes
while executing SAFE AG[j,−].propose() (line 05 of Figure 4).

The simple (and bright) idea of the BG simulation to solve this problem consists in
allowing a simulator to be engaged in only one SAFE AG[−,−].propose() invocation
at a time. Hence, if qi crashes while executing SAFE AG[j,−].propose(), it can entail
the crash of pj only. This is obtained by using an additional mutual exclusion object
offering the operations enter mutex and exit mutex. (Let us notice that such a mutex
object is purely local to each simulator: it solves conflicts among the simulating threads
inside each simulator, and has nothing to do with the memory shared by the simulators).
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From t-resilience to wait-freedom. As an example let us consider we have a t-resilient
algorithm that solves the (n, t) agreement problem. We obtain a wait-free algorithm that
solves the (t + 1, t) agreement problem as follows. Each simulator qi (1 ≤ i ≤ t + 1)
is initially given a proposed value vi, and the base objects SAFE AG[1..n, 0] are used
by the (t + 1) simulators as follows to determine the value proposed by pj . For each
j, 1 ≤ j ≤ n, the simulator qi invokes first SAFE AG[j, 0].proposei(vi) and then
SAFE AG[j, 0].decidei() that returns it a value that it considers as the value proposed
by pj . It is easy to see that, for any j, all the simulators obtain the same value for pj .
Moreover, this value is one of the t + 1 values proposed by the simulators. Finally,
simulator process qi can decide any of the values decided by the processes pj it is
simulating. (It is easy to see that the BG simulation is for colorless decision tasks.) A
formal proof of this reduction (based on input/output automata) can be found in [7].

From wait-freedom to t-resilience. For colorless decision tasks, t-resilience can easily
be reduced to wait-freedom as follows. First, each application process deposits its input
value in a shared register. Then, every process of the t + 1 processes of the wait-free
algorithm takes one of those values as its input value and executes its code. Finally, each
application process decides any value decided by a process of the wait-free algorithm.

6 The Extended BG Simulation

This section extends the previous algorithms in order to solve the extended BG sim-
ulation. Our aim is to obtain an implementation that is “as simple as possible”. To
that end, we proceed incrementally by “only” enriching the previous base BG simula-
tion. The proposed implementation uses the same snapshot object MEM and the same
sim writei,j() operation (Figure 3) as the base BG simulation. It also uses the same
SAFE AG[1..n, 0...] array made up of safe agreement type objects.

This section presents the additional shared objects that are used, the underlying prin-
ciples on which relies the implementation of mem.snaspshot() issued by a simulator
qi on behalf of a simulated process pj , and the algorithm (denoted e sim snapshoti,j())
that implements it.

6.1 The Additional Shared Objects

In addition to MEM and SAFE AG[1..n, 0...], the memory shared by the simulators
q1, . . . , qt+1 contains the following objects.

– ARBITER[1..t + 1, 0...] is an array of arbiter objects. The objects contained in
ARBITER[j,−] are owned by the simulator qj (1 ≤ j ≤ t + 1).
The object ARBITER[j, snapsn] is used by a simulator qi when it simulates
its snapsn-th invocation mem.snapshot() on behalf of the simulated process pj

for 1 ≤ j ≤ t + 1. (As we will see, when t + 1 < j ≤ n, the simulation of
mem.snapshot() on behalf of pj does not require the help of an arbiter object.)

– ARB VAL[1..t + 1, 0...][0..1] is an array of pairs of atomic registers. The pair of
atomic registers ARB VAL[j, snapsn][0..1] is used in conjunction with the arbiter
object ARBITER[j, snapsn].
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The aim of ARB VAL[j, snapsn][1] is to contain the value that has to be re-
turned to the snapsn-th invocation mem.snapshot(), on behalf of the simulated
process pj , if the owner qj is designated as the winner by the associated object
ARBITER[j, snapsn]. If the owner qj is not the winner, the value that has to be
returned is the one kept in ARB VAL[j, snapsn][0].

6.2 The e sim snapshoti,j() Operation

The enriched algorithm. The algorithm implementing the operation e sim snapshoti,j()
executed by qi to simulate a mem.snapshot() operation issued by pj is described in
Figure 5. Its first four lines and its last line are exactly the same as in Figure 4. The lines
05-06 are replaced by the new lines N01-N14 that constitutes the “addition” that allows
going from the BG to the extended BG simulation.

Underlying principle. Albeit each simulated process pj (1 ≤ j ≤ n) is simulated
by each simulator qi (1 ≤ i ≤ t + 1) as in the BG simulation, each simulated pro-
cess pj such that 1 ≤ j ≤ t + 1 is associated with exactly one simulator that is its
“owner”: qi is the owner of pj if j = i (and also the owner of the corresponding objects
ARBITER[j,−]). The aim is, for any snapsn ≥ 0, to associate a single returned
value with the snapsn-th invocations of e sim snapshoti,j() issued by the simulators.
The idea is to use the ownership notion to “shortcut” the use of SAFE AG[j, snapsn]
object in appropriate circumstances.

The operation e sim snapshoti,j() for the simulated processes pj such that t + 2 ≤
j ≤ n, is exactly the same as sim snapshoti,j(). This appears in the lines N02-N03 that
are the same as the lines 06-07 of Figure 4 (in that case, there is no ownership notion).

operation e sim snapshoti,j():
(01) smi ← MEM .snapshot():
(02) for each y : 1 ≤ y ≤ n: do inputi[y] = smi[s, y].value
(03) where ∀x : 1 ≤ x ≤ t + 1 : smi[s, y].sn ≥ smi[x, y].sn end for;
(04) snap sni[j] ← snap sni[j] + 1; let snapsn = snap sni[j];
(N01) if (j > t + 1)
(N02) then enter mutex; SAFE AG [j, snapsn].proposei(inputi); exit mutex;
(N03) res ← SAFE AG [j, snapsn].decidei()
(N04) else if (i = j)
(N05) then ARB VAL[j, snapsn][1] ← inputi;
(N06) enter mutex; win ← ARBITER[j, snapsn].arbitratei,j(); exit mutex;
(N07) if (win = 1) then res ← inputi

(N08) else res ← ARB VAL[j, snapsn][0] end if;
(N09) else enter mutex; SAFE AG [j, snapsn].propose(inputi); exit mutex;
(N10) ARB VAL[j, snapsn][0] ← SAFE AG [j, snapsn].decidei();
(N11) r ← ARBITER[j, snapsn].arbitratei,j();
(N12) res ← ARB VAL[j, snapsn][r]
(N13) end if
(N14) end if;
(07) return(res).

Fig. 5. e sim snapshoti,j() executed by qi to simulate mem.snapshot() issued by pj



380 D. Imbs and M. Raynal

The new lines N04-N14 address the case of the simulated processes owned by a sim-
ulator, i.e., the processes p1, . . . , pt+1. The idea is the following: if qi does not crash,
pi must not crash. In that way, if qi is correct, pi will always terminate whatever the be-
havior of the other simulators. To that end, qi on one side, and all the other simulators
on the other side, compete to define the snapshot value returned by the snapsn-th invo-
cations e sim snapshoti,j() issued by each of them. To attain this goal, the additional
objects ARBITER[j, snapsn] and ARB VAL[j, snapsn] are used as follows.

All the simulators invoke ARBITER[j, snapsn].arbitratei,j() (at line N06 if qi is
the owner, and line N11 if it is not). According to the specification of the arbiter type,
these invocations do not return different values, and do return at least when the owner
qj is correct and invokes that operation (as indicated in the specification, there are other
cases where the invocations do terminate). Finally, the value returned indicates if the
winner is the owner (1) or not (0).

If the winner is the owner qj , the value returned by the snapsn-th invocations of
e sim snapshoti,j() (one invocation by simulator) is the value inputj computed by the
owner. That value is kept in the atomic register ARB VAL[j, snapsn][1] (line N05).

If the owner is not the winner, the value returned is the one determined by the
other simulators that invoked SAFE AG[j, snapsn].proposei(inputi) (line N09) and
SAFE AG[j, snapsn].decidei() (line N10). The value they have computed has been
deposited in ARB VAL[j, snapsn][0] (line N10), and this value is used as the result of
the SAFE AG[j, snapsn] object.

It is important to notice that the owner qj does not invoke the proposej() and decidej()
operations on the objects it owns. Moreover, the simulator qj is the only simulator that
can write ARB VAL[j, snapsn][1], while the other simulators can only write
ARB VAL[j, snapsn][0].

To summarize, if a simulator qi crashes, it entails the crash of at most one simulated
process. This is ensured thanks to the mutex algorithm. If the simulator qi crashes,
1 ≤ i ≤ t + 1, as far the simulated processes are concerned, it can entail either no
crash at all (if qi crashes outside a critical section), or the crash of pi (if it crashes while
executing arbitratei,j() inside the critical section at line N06), or the crash of a process
pj such that 1 ≤ j �= i ≤ t + 1 (this can occur only if qj has crashed and was not
winner, and qi crashes inside the critical section at line N09), or the crash of one of the
processes pt+2, ..., pn (if it crashes at line N02 inside the critical section).

t-Resilience vs wait-freedom. Given a BG simulation algorithm where a simulated pro-
cess pj (1 ≤ j ≤ t + 1 ≤ n) can be blocked forever only if simulator qj crashes, Gafni
shows in [12] that wait-freedom and t-resilience are equivalent for decision tasks (he
also shows strong results on equivalence between weak renaming and weak symmetry
breaking).

7 Proof of the Extended BG Simulation

Lemma 1. A simulator can block the progression of only one simulated process at a
time.

Proof. A simulator can block the simulation of a process only during the execution of an
e sim snapshot() operation, when the simulator uses a safe agreement (lines N02-N03
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or N09-N10) or an arbiter object because it is its owner (line N06). All these invocations
are placed in mutual exclusion. Thus a simulator can block the simulation of only a
single process at a time. �Lemma 1

Lemma 2. The simulated process pi is never blocked at the simulator qi.

Proof. The e sim snapshot() operation, when invoked by simulator qi for the simulated
process pi (line N04, i = j) does not include any wait statement and does not use a
safe agreement object. Due to the properties of the arbiter object type, it cannot be
blocked during its invocation of arbitrate(). Thus, the simulated process pi can never
be blocked at simulator qi. �Lemma 2

Lemma 3. Each simulator receives the decision value of at least n − t simulated
processes.

Proof. Because at most t simulators may crash, and a simulator can block at most a
single simulated process at a time (Lemma 1), each simulator can execute the code of
at least n− t simulated processes without being blocked forever. Because the simulated
algorithm is t-resilient, these n− t processes will then decide a value. �Lemma 3

Lemma 4. All the simulators that return from the simulation of the k-th snapshot issued
by the the simulated process pj do return the same value for that snapshot.

Proof. If pj isn’t owned by any simulator (j > t + 1), because of the properties of the
safe agreement objects, the same value is always returned (lines N02-N03 of Figure 5).

If the owner of pj chooses the value it has computed for pj’s k-th snapshot, it has
written this value in ARB V AL[j, snapsn][1] (line N05), and is the winner of the
arbiter object (line N06). All other simulators will then read its value (line N12).

If the simulated process pj has an owner but another process chooses the value it
has computed for pj’s k-th snapshot, this process has already agreed on a value with all
other non owner processes (safe agreement object, lines N09-N10) and is the winner
of the arbiter object (lines N11-N12). All non-owner processes will then write the same
value in ARB V AL[j, snapsn][0] (line N10) and the owner will read it (line N08).

Thus, all the simulators that return a value for the k-th snapshot of the simulated
process pj return the same value. �Lemma 4

Lemma 5. At most one decision value can be decided by a simulated process on any
simulator.

Proof. Because every simulator computes the same value for any given snapshot and
because the snapshot operations are the only non-deterministic parts of codes of the
simulated processes, all simulators that decide a value for a given simulated process
decide the same value. �Lemma 5

Lemma 6. The sequences of all writes and snapshots for each simulated process cor-
respond to a correct execution of the simulated algorithm.
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Proof. Every simulator that is not blocked while simulating a process simulates it in
the same way (same values written and same snapshots read, Lemma 4).

When simulator qi executes e sim snapshot() for pj (i.e. the simulation of a snap-
shot for pj), it stores in its input i variable the values written by the simulators that have
advanced the most for each simulated process (Figure 3 and lines 01-03 of Figure 5). It
can choose its own input i snapshot value only if no other simulator has already ended
the execution of this e sim snapshot() (Lemma 4 implies that safe agreement objects
have a “memory” effect). Thus, for each e sim snapshot(), qi returns an input value
computed by itself or another simulator. Let us notice that, when this input value has
been determined, no simulator had terminated its associated e sim snapshot(). (If this
was not the case, that simulator would have provided the other simulators with its own
input value.) Because processes are simulated deterministically, the input value re-
turned contains the last value written by pj as seen by qi. This shows that the simulated
process order is respected.

To ensure that the simulation is correct, we then have to show that the writes and
snapshots of all processes can be linearized. The linearization point of the writes is
placed at line 03 of Figure 3 of the first simulator that executes it. The linearization
point of the snapshots is placed at line 01 of Figure 5 of the simulator qi that imposes
its input i value.

Because the simulator qi that imposes its input i value in a e sim snapshot() oper-
ation reads the most advanced values at the time of its snapshot (lines 02-03 of Figure
5), and because once a simulator finishes the execution of e sim snapshot(), the value
for this e sim snapshot() cannot change (Lemma 4), the linearization correspond to a
linearization of a correct execution of the simulated algorithm. �Lemma 6

Theorem 1. The extended BG simulation algorithms described in Figures 3 and 5 are
correct.

Proof. Lemmas 2, 3, 5 and 6 show that the extended BG simulation algorithms pre-
sented here are correct. �Theorem 1
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Abstract. Let us consider the gathering problem of n anonymous and
oblivious mobile robots, which requires that all robots meet in finite
time at a non-predefined point. While the gathering problem cannot
be solved deterministically without any additional capability to robots,
randomized approach easily allows it to be solvable. However, only the
randomized solution taking expected round complexity exponential of n
is currently known. Motivated by this fact, we investigate the feasibility
of polynomial-expected-round randomized gathering in this paper. Our
first contribution is to give a negative result about the round complex-
ity of randomized gathering. It is proved that any algorithm without
no additional assumption has Ω(exp(n)) expected-round lower bound.
This lower bound yields a question: What additional assumptions are
necessary to achieve gathering in polynomial expected rounds? We ad-
dress this question from the aspect of multiplicity detection. This paper
newly introduces two weaker variants of multiplicity detection capability,
called local-strong and local-weak multiplicity, and investigates whether
those capabilities permit polynomial-expected-round gathering or not.
Our second contribution is to reveal the power of local (strong/weak)
multiplicity by showing that local-strong multiplicity detection allows
O(n)-expected round gathering but local-weak multiplicity detection
takes an exponential-time lower bound. These results imply that those
two kinds of multiplicity-detection capabilities have inherently large dif-
ference about their computational powers.

1 Introduction

1.1 Background and Motivation

Algorithmic studies about cooperations among a large number of autonomous
mobile robots are recently emerging in the distributed computing community. In
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most of those studies, a robot is modeled as a point in a plane, and its capability
is quite weak: It is usually assumed that robots are oblivious (no memory to
record past situations), anonymous (no ID to distinguish two robots), and uni-
form (all robots run an identical algorithm). In addition, it is also assumed that
each robot has no direct means of communication. The communication between
two robots is done in the implicit way that each robot observes the environ-
ment, which includes the positions of other robots. From the theoretical aspect,
it is an interesting problem to clarify the weakest capability of robot systems to
accomplish a given task. The gathering problem is one of fundamental coordina-
tion tasks in theoretical mobile robotics, which requires that all robots meet in
finite time at a point that is not predefined. Because of its simplicity, the gath-
ering problem is actively studied before now. However, it has been proved that
the gathering problem is unsolvable in oblivious and anonymous robot systems
without no additional assumption. This impossibility result raises the interest
to the necessary assumptions for the gathering problem to be solvable. There
are a number of studies showing possibility/impossibility results under different
assumptions [1,2,4, 5,8, 9, 10, 11, 12, 13,7, 6, 3, 14].

In this paper, we focus on randomized solutions of the gathering problem in
the semi-synchronous model. Since the essential difficulty of the gathering prob-
lem derives from the hardness of symmetry breaking among robots, it seems
quite easy and trivial to design gathering algorithms by employing random-
ization. Despite such an intuition, the gathering problem remains hard even if
randomization approach is available: It has been already proved that any ran-
domized algorithm cannot solve the gathering problem with no restriction to
schedulers [12, 9]. This impossibility can be broken by assuming the bounded
regularity to the scheduler (that can be regarded as a certain kind of synchrony
assumptions). Actually, there exists a simple randomized gathering algorithm
under the bounded regularity [4]. However, the performance of the algorithm is
quite poor. Its expected round complexity is exponential of the number of mobile
robots. To the best of our knowledge, there has been no randomized gathering
algorithm with polynomial expected running time.

1.2 Our Contribution

This paper investigates the feasibility of randomized gathering with polynomial
expected rounds. The first question is whether it is possible to reduce such ex-
ponential round complexity to the polynomial or not. One of our contribution is
to provide the negative answer for this question. We show that without no ad-
ditional assumption, any algorithm must have Ω(exp(n)) round complexity un-
der the bounded-regular scheduler. This lower bound yields our second question:
What additional assumptions are necessary to achieve polynomial-round gather-
ing? A trivial answer for this question is the assumption that makes the gathering
problem deterministically solvable: The agreement of local views among robots
[11, 10, 13,8,7, 6], a restriction to the initial location [14], and so on. However, in
the context of our study, those assumptions should be regarded as too strong ones.
Our focus is more weaker assumptions, which are not so powerful as to solve the
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gathering problem deterministically, but sufficient to permit polynomial-round
randomized gathering. In this sense, the objective of our study is the discovery
of such “intermediate” assumptions.

We address the second question by introducing two novel types of multiplic-
ity detection capabilities. The multiplicity detection specifies how each robot
observes the single location where two or more robots stay. In all of previous
works, three types of multiplicity detection are proposed: No multiplicity (each
robot cannot distinguish the location with a single robot from that with multiple
robots), weak multiplicity (each robot can detect whether the number of robots
on a point is only one or more than one), and strong multiplicity (each robot can
know the number of robots on a point). In addition to these classification, we
further introduce the notion of locality for multiplicity detection capability. The
local multiplicity detection implies that each robot can detect the multiplicity
only for its current location. On the other hand, the global multiplicity allows
each robot to detect the multiplicity of any location. Notice that locality is an
orthogonal classification to the existing strong/weak classification. Thus, we can
obtain five types of multiplicity detection totally: No multiplicity, local-weak
multiplicity, local-strong multiplicity, global weak multiplicity, and global strong
multiplicity.

Importantly, any kind of multiplicity detection is insufficient to achieve deter-
ministic gathering for arbitrary initial configurations. It can be easily understood
by a simple observation. Assume the system consisting of n = 2n′ robots. We
divide all robots into two groups of n′ robots, and consider the initial configura-
tion where all robots in one group are placed on a point P , and the other group
are placed on another point P ′. Then, if the scheduler always activates all robots
in each group simultaneously, each group will behave as a single robot without
multiplicity detection (i.e., any multiplicity detection provides no information
because two locations are occupied by the same number of robots, and thus they
are identically observed). Thus, we can obtain the impossibility of gathering
from that in the system without multiplicity detection. Actually, all of previous
studies about the gathering problem based on multiplicity detection implicitly
assumes that all robots are located on different points initially [2]. In that sense,
any kind of multiplicity detection can become a candidate of the assumptions
we explore.

This paper clarifies the feasibility of polynomial-round randomized gathering
under the assumption of local (strong/weak) multiplicity detection for any initial
configuration. The followings are precise descriptions of our results:

– Even if we assume local-weak multiplicity, any randomized gathering algo-
rithm takes Ω(exp(n)) expected-round lower bound.

– With local-strong multiplicity, we can construct a randomized gathering al-
gorithm which can start from any initial configuration and achieves gathering
in O(n) expected rounds.

These two results imply that local-strong multiplicity is sufficient to achieve
polynomial-expected-round randomized gathering, and a large gap of computa-
tional power lies between local-strong and local-weak multiplicity detection.



Randomized Gathering of Mobile Robots with Local-Multiplicity Detection 387

Only the known result that considers randomized gathering with multiplic-
ity detection is one by Clement et.al. [3]. It proposes an O(n)-expected-round
randomized gathering algorithm using global-strong multiplicity detection. Our
study can be regarded as an improvement of this result by introducing the notion
of local multiplicity detection.

1.3 Organization

In Section 2, we present the model of autonomous mobile robots considered
in this paper, and introduce other necessary notations and definitions. Sec-
tion 3 provides Ω(exp(n)) expected-round lower bound under the assumption
of local-weak multiplicity. We show in Section 4 the possibility result that O(n)-
expected-round randomized gathering is possible with the support of local-strong
multiplicity detection. Finally we conclude this paper in Section 5.

2 Preliminaries

The robot model considered in this paper is the semi-synchronous model, which
is one of standard models in the context of the algorithmic studies of mobile
robots.

2.1 The System Model

The systemconsists of a set of autonomousmobile robotsR= {R0, R1, · · · , Rn−1}.
Robots are anonymous and oblivious. That is, each robot has no identifier distin-
guishing itself and others, and cannot explicitly remember the history of its execu-
tion. In addition, no device for direct communication is equipped. The cooperation
of robots is done in an implicit manner: Each robot has a sensor device to observe
the environment (i.e., the positions of other robots). One robot is modeled as a
point located on a two-dimensional space. To specify the location of each robot
consistently, we introduce the global Cartesian coordinate system. Notice that the
global coordinate system is introduced only for ease of explanations, and thus each
robot cannot be aware of them. Also, any knowledge about the number of robots n
is not available to each robot. Each robot executes the deployed algorithm in com-
putational cycles (or briefly cycles). At the beginning of a cycle, the robot observes
the current environment (i.e., the positions of other robots) and determines the
destination point based on the deployed algorithm. Then, the robot moves toward
the computed destination. It is guaranteed that each robot necessarily reaches the
computed destination at the end of the cycle.

The observation of an environment is represented as the set of points on the
local coordinate system that the observer has. The local coordinate system of
a robot is the Cartesian coordinate system whose origin is the current position
of the robot. There is no agreement to the direction and unit length of local
coordinate systems among robots.

The point where at least one robot stays is called robot location (or briefly
location). The number of robots staying on a location is called the multiplicity
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number of the location. If a location p has a multiplicity number more than
one, we say p is multiple. Otherwise, p is said to be single. The capability of
multiplicity detection specifies how each robot observes multiple locations. In
this paper, we consider the following two types of multiplicity detection:

– Local-weak multiplicity: Each robot can detect whether its current loca-
tion is multiple or single.

– Local-strong multiplicity: Each robot can detect the multiplicity number
of its current location.

We assume the semi-synchronism as the timing model. In the semi-synchronous
model, an execution is divided into consecutive rounds, where at most one cycle
can be performed. The set of performing robots for each round is determined by
the scheduler. At any round t = 0, 1, 2, · · ·, the scheduler determines whether each
robot is active or inactive. Active robots perform one cycle in the synchronized
manner, and inactive ones wait during the round. In this paper, we assume the
bounded-regular scheduler, which guarantees that if a robot is activated at round
t1 and t2 (t1 < t2), any robot is activated at least once during [t1, t2].

Throughout this paper, we use the notations defined as follows: For any two
points A and B, |AB| denotes the length of the segment whose endpoints are
A and B. A configuration is the multiset consisting of all robot locations. We
define C(t) as the configuration at t. We also define the point set P (C) of a
configuration C to be the set of all locations without multiplicity. For short, we
call P (C(t)) the point set at t, and it is denoted by P (t).

2.2 Gathering Problem

The gathering problem must ensure that all robots eventually meet at a point
that is not predefined, starting from any configuration. Formally, we say that
an algorithm A solves the gathering problem if any execution of A eventually
reaches and keeps a configuration with exactly one robot location.

3 Ω(exp(n))-Round Lower Bound

First, we consider the impossibility of gathering with polynomial expected rounds.
More precisely, the primary result shown in this section is the following theorem:

Theorem 1. In the system of n mobile robots with local-weak multiplicity de-
tection, any gathering algorithm has Ω(exp(n)) running time in expectation.

Proof. LetA be a randomized gathering algorithmthat works correctlywith local-
weak multiplicity detection. We show the adversarial bounded-regular schedule of
A such that the expected length of the corresponding execution is Ω(exp(n)). The
schedule is constructed by repeating the following strategy:

Let P0, P1, · · · , Pk be a sequence of robot locations at t (k ≥ 1), and Si

be the set of robots staying on Pi at t. We assume at least one point has
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multiplicity more than three and that point is Pk, i.e., |Sk| ≥ 3 holds.
During each round in t+ r ∈ [t, t+ k− 1], all robots in Sr are simultane-
ously activated. At round t+k, we consider the following four strategies:
(1) Activating only all robots on Sk simultaneously, (2) activating all
robots in the system simultaneously, (3-A) activating all robots in the
system except for two robots in Sk at t+k and the remaining two robots
at t + k + 1, or (3-B) activating all robots in the system except for two
robots in Sk at t + k, and then all robots in the system at t + k + 1.
The choice of the scheduler depends on the current configuration and
the algorithm (which is explained below).

It is clear that the constructed schedule is bounded-regular. Then, if we prove
that the probability p of achieving gathering during [t, t+ k] (or [t, t+ k + 1]) is
bounded by O(1/ exp(n)), it can be concluded that the expected running time of
A under our scheduler strategy becomes Ω(exp(n)). Thus, the remaining part of
the proof is to show the upper bound. It is obtained by considering the following
cases:

– Case 1 |P (t + k)| ≥ 3: The scheduler chooses the strategy (1). Since the
number of robot locations decreases at most one at each round, the gathering
is never achieved at t + k + 1 in this case, that is, p = 0.

– Case 2 |P (t+ k)| = 2: Let P (t+ k) = {Pl, Pk}, and ml and mk be the mul-
tiplicity numbers of Pl and Pk respectively. Let x ∈ {l, k} be one satisfying
mx = max{ml,mk}. Notice that mx = Ω(n). Among Pl and Pk, we denote
the point that is not Px by Py. We also define the probability q as one that
a robot on Px at t+ k moves to some point other than Px for its activation.
This case is further divided into the following four subcases:
• Case2A 0 < q < 1: Then, for the strategy (2), the probability that all

robots on Px stay on the same point is bounded by qmx + (1 − q)mx =
O(1/ exp(n)). This bounds also can become the upper bound for p.

• Case2B q = 1 and mx ≤ n− 2: Let P ′ be the midpoint of Px and Py .
Importantly, in this case, the views observed by robots on Px and Py is
the same. Thus, for the strategy (2), the movement by the robots on Py

is symmetric about P ′ to that by the robots on Px. Then, if all robots
are not gathered at t + k + 1, we clearly obtain q = 0 by the strategy
(2). Otherwise, the possible scenario achieving gathering by applying the
strategy (2) is that all robots gather on P ′. If such a scenario occurs, the
activations of only the robots on Pk can prevent all robots from gathering
at t + k + 1. That is, we can obtain q = 0 by adopting the strategy (1).

• Case2C q = 1 and mx = n − 1: In this case, we adopt the strategy
(3-A) or (3-B). Since all activated robots in Sk leave Pk with probability
one, in the strategy (3-A/B), |P (t + k + 1)| > 1 necessarily holds. If
|P (t + k + 1)| ≥ 3 holds, we can reduce this case to Case 1, where the
two remaining robots can be regarded as ones on Pk in Case 1, and the
choice of the strategy (1) in Case 1 corresponds to adopting the strategy
(3-A). Similarly, if |P (t + k + 1)| = 2 holds, the case can be reduced to
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Case2B or 2A, where the choice of the strategy (1) or (2) in those cases
corresponds to adopting the strategy (3-A) or (3-B).

• Case 2D q = 0: We show this case never occurs by leading a contra-
diction. Consider another system of 2mx robots and its configuration C′

such that both Pl and Pk has mx robots in C′ respectively. In this con-
figuration, the view observed by any robot in C′ is the same as that by
a robots on Px in C(t + k). Thus, no robot can move for any activation
in C′, and thus the gathering is impossible. This is a contradiction.

Consequently, the theorem is proved. ��

4 O(n)-Expected Round Randomized Gathering with
Local-Strong Multiplicity

This section shows that gathering is possible with O(n) expected rounds if we
assume local-strong multiplicity.

4.1 O(n)-Round Line Algorithm

In this subsection, we first show the algorithm ML (Making Line), which is
used as a building block of our gathering algorithm. Starting from an arbitrary
configuration, algorithm ML guarantees that the system eventually reaches a
configuration where all robots are located on a single line within O(n) rounds
unless gathering is achieved.

Before presenting the detail of the algorithm, we first introduce several nec-
essary definitions.

Definition 1. A configuration C is circular if there exists a circle such that one
location in P (C) is on its center and all other locations are on its boundary.

Definition 2. A configuration C is uniquely-circular if there exists exactly one
circle such that one point in P (C) is on its center and all other locations are on
its boundary.

For any uniquely-circular configuration, we define the corresponding circle as one
whose boundary and center contain any robot location in P (C). For a round t
such that C(t) is uniquely-circular, we denote the corresponding circle of C(t)
by D(t). The following propositions are fundamental facts about circular config-
urations.

Proposition 1. Almost all circular configurations are uniquely-circular. The
only exceptions are that the point set P (C) of circular configuration C consists
of (1) a segment, (2) a regular triangle (Figure 1), or (3) a regular diamond
(Figure 2).

Proposition 2. Let C(t) be a uniquely-circular configuration, and assume that
one or more robots on D(t) moves to the center of D(t) at round t. Then, C(t+1)
is circular. In addition, if C(t + 1) is uniquely-circular, D(t) and D(t + 1) have
the same center.
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P1 P2

P3

C

SEC

Fig. 1. Regular Triangle: A configuration circular but not uniquely-circular. Three
locations P1, P2, and P3 form a regular triangle. This point set has three candidates
of corresponding circles (drawn in full line). The dotted circle means the SEC of this
configuration.

P3P1

P2

P4

C

SEC

Fig. 2. Regular Diamond: Another configuration circular but not uniquely-circular.
Locations P1, P2 and P3 form a regular triangle, and P1, P3, and P4 form its line-
symmetric regular triangle. This point set has two candidates of corresponding circles.

The algorithm ML is quite simple. To make the line containing all robots,
it tries to make all robots gather on two points: When a robot Ri is activated, it
first checks whether the observed configuration is uniquely-circular or not. If it
is uniquely-circular and Ri is on the corresponding circle, it moves to the center
of the corresponding circle. Otherwise, Ri computes the smallest enclosing circle
(SEC), which is the minimum-diameter circle containing all locations of robots.
In this case, Ri moves to the center of SEC only if it is not on the boundary of
SEC.

We concisely explain the correctness of this algorithm. First, we show that
two exceptional configurations, regular triangle and regular diamond, are appro-
priately handled by our algorithm. Let us consider a configuration C(t) where
P (t) forms a regular triangle. In this case, by the movement of robots to the
center of SEC, the configuration becomes uniquely-circular (SEC becomes the
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corresponding circle) at t+1. After becoming uniquely-circular, any movement by
the algorithm preserves the uniquely-circular property unless a line or gathering
is achieved, and thus the system eventually reaches a two-location configuration
(when only one robot location remains on the boundary of the corresponding cir-
cle). The case of regular diamond is also same. Let us consider a regular-diamond
configuration C(t). Then, the length of the segment formed by the farthest pair
of robot locations in P (t) (P2 and P4 in Figure 2) is equivalent to the diameter
of the SEC. Thus, the robots on other two locations are not on the boundary of
SEC. They move to the center of SEC, and when all of them reach the center,
the configuration becomes a line.

The above explanation implies that the point set eventually forms a line if the
current configuration is not uniquely-circular but circular. In addition, as long
as the uniquely-circular property is kept, the number of robots on the boundary
monotonically decreases and thus the configuration eventually becomes a line.
These two facts imply that it is sufficient to show the correctness that the config-
uration eventually becomes circular: If the current configuration is not circular,
the robots not on the boundary of SEC move to its center. Then, since robots on
the boundary of SEC do not change their positions, SEC is preserved for those
movements, and thus the system eventually reaches a circular configuration (If
all robots are on the boundary of SEC, the configuration becomes circular when
a robot on the boundary moves to the center of SEC).

More strictly, the correctness of the algorithm ML derives from the following
lemmas, which can be easily proved from the above arguments.

Lemma 1. Let t be the round when C(t) is not uniquely-circular but circular.
Then, there exists a round t′ ∈ [t + n] such that any location in P (t′) is on a
common line.

Lemma 2. Let t be the round when C(t) is not circular. Then, there exists a
round t′ ∈ [t + n] such that C(t′) is circular.

Lemma 3. Let t be the round when C(t) is uniquely-circular, and k be the
number of robots on the boundary of the corresponding circle at t. If C(t + 1) is
uniquely-circular, at most k − 1 robots stay on the boundary at t + 1.

These lemmas and Proposition 2 imply the following theorem.

Theorem 2. The algorithm ML guarantees that the system reaches a configu-
ration where all robots stay on a common line within O(n) rounds.

4.2 Gathering from Line Using Local-Strong Multiplicity Detection

In this section, we show a randomized algorithm GfL (Gathering from Line) which
guarantees that all robots staying on a line gather into a single point. This algo-
rithm assumes the local-strong multiplicity detection, and takes O(n) expected
rounds. Thus, the composition of GfL and ML becomes the randomized gath-
ering algorithm that uses local-strong multiplicity and achieves O(n)-expected
rounds.



Randomized Gathering of Mobile Robots with Local-Multiplicity Detection 393

We explain the detailed behavior of algorithm GfL. In algorithm GfL, any
movement is performed only on the line where all robots are initially located.
Thus, for ease of presentation, we introduce the one-dimensional coordinate sys-
tem on that line. The behavior of each robot is divided into two cases according
to the number of robot locations. We show below the behavior of the algorithm
when robot R is activated:

– The number of robot locations is two: Let P1 and P2 be the two robot
locations, and we assume that R stays on P2 without loss of generality. In this
case, the destination of R is probabilistically determined. With probability
1/(4m) (m is the multiplicity number of P2), R moves toward the opposite
direction of P1 by distance 2|P1P2|. In addition, it also moves to P1 with
probability 1/(4m). Otherwise (i.e., with probability 1−1/(2m)), it stays at
its current location. See Figure 3(a).

– The number of robot locations is three or more: In this case, any activated
robot moves to its nearest endpoint. More precisely, let P1, P2, · · · , Pk be all
robot locations ordered by their coordinates in terms of R’s local coordinate
system, and assume R stays on Pj . In this case, R can move only when j �= 1
and j �= k. Then, R chooses the nearest of P1 and Pk as its destination. That
is, if |P1Pj | > |PjPk| holds, it moves to Pk. Otherwise (including the case of
|P1Pj | = |PjPk|), it moves to P1. See Figure 3(b).

For a configuration C with three locations P1, P2, and P3 (ordered by their
coordinates), we say C is isolated if |P1P2| �= |P2P3| holds and the farthest
location from P2 is single. Intuitively, the correctness of algorithm GfL is under-
stood as follows: Clearly, the case of three or more locations can be reduced to
a two-location case. For two-location cases, we further consider two subsitua-
tions. The first subsituation is one where both of robot locations are multiple.

stay with prob.(          )1- 1
2m

n-m robots m robots

P1 P2
move to P3

with prob. 1/4m

(a)

2|P1P2|

PkP2

move to Pk

(b)
P1

move to P1

P3 Pk-1
・・・・

P3

move to P1

with prob. 1/4m

move to P1

Fig. 3. The behavior of Algorithm GfL
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Then, in following executions, exactly one robot Ri leaves those two locations
with constant probability. Let P1 and P2 be the two robot locations before the
movement, and assume Ri moves from P2 to another point P3. Then, because
of |P2P3| = 2|P1P2| (by the definition of the algorithm), the configuration after
the movement is isolated, and thus any robot on P2 eventually joins into P1.
Furthermore, since only Ri stays at P3, the number of robots on P1 after joining
is n− 1. Consequently, the first situation can be reduced into the second subsi-
tuation, where either of two locations is single. In this situation, the robot Rj

on the single point joins to the other point with probability 1/4 at its next ac-
tivation and gathering is achieved. The only scenario obstructing the gathering
is that a robot on the multiple point moves earlier than Rj ’s activation. How-
ever, the probability of occurring such scenario is bounded by a constant, and
even if it occurs, the system can recover the second subsituation again within
O(n) expected rounds. Therefore, by repeating the second subsituation constant
times, gathering is achieved in O(n) expected rounds. In what follows, we give
the strict proof of the correctness.

Lemma 4. If a location P has multiplicity number n − 1 at t, gathering is
achieved by t + n with probability at least 1/8.

Proof. Let Ri be the robot that does not stay on P , and t′ be the first round
after t when Ri is activated. Since we assume the bounded-regular scheduler,
each robot is activated at most once during [t, t′] (notice that Ri is activated
only once during the period). Thus, the probability that no robot on P moves
at t′ or earlier is lower bounded by(

1− 1
2(n− 1)

)n−1

≥
(

1− 1 · (n− 1)
2(n− 1)

)
≥ 1

2
.

Since Ri moves to P with probability 1/4 for its activation, gathering is achieved
at t′ + 1 with a probability more than or equal to 1/8. In addition, because of
bounded regularity of the scheduler, t′ + 1 < t + n clearly holds. Therefore, the
lemma holds. ��

Lemma 5. Assume that two locations P1 and P2 have multiplicity number n−k
and k (n/2 ≥ k > 1) at t1 respectively. With probability at least 1/32, there exists
a round t′ ∈ [t1, t1 + n] such that C(t′ + 1) is isolated.

Proof. Let t1 + t2 be the earliest round after t1 such that the times of activations
during [t1, t1+t2] becomes more than or equal to n. In what follows, we prove the
lemma by showing that the system reaches an isolated configuration at t1 + t2
or earlier with probability more than or equal to 1/32. Let Xh (0 ≤ h ≤ t2)
be the indicator random variable such that Xh = 1 if no robot moves during
[t1, t1 + h] and Xh = 0 otherwise. We also define Y to be the random variable
representing the first round after t when exactly one robot moves (and thus the
system becomes isolated). If such round does not exist during [t1, t1 + t2], we
define Y = ∞. We first show the bound for the probability P [Y = h|Xh−1 = 1]
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that exactly one robot moves at a round t1+h under the condition that no robot
moves by t + h− 1. Let j1(h) and j2(h) be the number of robots on P1 and P2
activated at t+h respectively. Notice that it clearly holds that 0 ≤ j1(h) ≤ n−k,
0 ≤ j2(h) ≤ k, and either j1(h) or j2(h) is non-zero. The probability is bounded
as follows:

P [Y = h|Xh−1 = 1] ≥
(
j1(h)

1

)
1

4(n− k)

(
1− 1

2(n− k)

)j1(h)−1 (
1− 1

2k

)j2(h)

+
(
j2(h)

1

)
1
4k

(
1− 1

2(n− k)

)j1(h) (
1− 1

2k

)j2(h)−1

≥
(

j1(h)
4(n− k)

+
j2(h)
4k

)(
1− 1

2(n− k)

)j1(h) (
1− 1

2k

)j2(h)

≥
(

j1(h)
4(n− k)

+
j2(h)
4k

)(
1− j1(h)

2(n− k)

)(
1− j2(h)

2k

)
≥ 1

16

(
j1(h)

(n− k)
+

j2(h)
k

)

where we use the inequality (1 − (1/x))y ≥ 1 − (y/x). Notice that the first line
of this inequalities does not hold if j1(h) = 0 or j2(h) = 0, but even in the case,
the second inequality holds and thus we can obtain lower bound 1/16. We also
bound the probability P [Xh−1 = 1]:

P [Xh−1 = 1] =
h−1∏
l=0

(
1− 1

2(n− k)

)j1(l) (
1− 1

2k

)j2(l)

=
(

1− 1
2(n− k)

)∑h−1
l=0 j1(l) (

1− 1
2k

)∑h−1
l=0 j2(l)

≥
(

1−
∑h−1

l=0 j1(l)
2(n− k)

)(
1−

∑h−1
l=0 j2(l)

2k

)

From the definition of t2, activations occur at most n − 1 times during the
period [t1, h − 1] (⊂ [t1, t2]). Furthermore, since we assume the bounded reg-
ularity, each robot is activated at most once in that period. This fact implies
that

∑h−1
l=0 j1(l) ≤ (n− k) and

∑h−1
l=0 j2(l) ≤ k hold. Thus, we obtain the bound

below.

P [Xh−1 = 1] ≥
(

1−
∑h−1

l=0 j1(l)
2(n− k)

)(
1−

∑h−1
l=0 j2(l)

2k

)

≥
(

1− (n− k)
2(n− k)

)(
1− k

2k

)
≥ 1

4
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For simplicity of the proof, we also define P [X−1 = 1] = 1. Using the above
inequalities, we give a bound for probability P [Y = h]:

P [Y = h] ≥ P [Y = h|Xh−1 = 1] · P [Xh−1 = 1]

≥ 1
64

(
j1(h)

(n− k)
+

j2(h)
k

)
.

The probability p that an isolated configuration appears at t2 or earlier is lower
bounded by

∑t2
h=0 P [Y = h]. From the definition of t2, we have

∑t2
l=0 j1(l) ≥

(n− k) and
∑t2

l=0 j2(l) ≥ k. Consequently, we obtain

p ≥
t2∑

h=0

P [Y = h]

≥
t2∑

h=0

1
64

(
j1(h)

(n− k)
+

j2(h)
k

)

≥ 1
64

(∑t2
h=0 j1(h)
(n− k)

+
∑t2

h=0 j2(h)
k

)

≥ 1
64

(
(n− k)
(n− k)

+
k

k

)
≥ 1

32
.

The lemma is proved. ��

Lemma 6. If |P (t)| ≥ 3 holds, there exists a round t′ ∈ [t, t + n] such that
|P (t′)| ≤ 2 holds. In addition, if C(t) is isolated, one location in P (t′) has
multiplicity number n− 1.

Proof. Let P1, P2, · · · , Pk be all robot locations at t ordered by their coordinates.
Because of the bounded regularity, all robots are activated at least once during
the period [t, t+ n]. Thus, each robot located on P2, P3, · · · , or Pk−1 at t neces-
sarily moves either of P1 or Pk by t+ n. Letting t′ − 1 be the first round after t
when all robots on P2, P3, · · · , or Pk−1 are activated, |P (t′)| ≤ 2 holds. If C(t)
is isolated (then, k = 3), all robots on P2 move to the nearest endpoint (assume
it is P1 without loss of generality). By the definition of isolated configurations,
the number of robots staying on P1 or P2 is n− 1. Therefore, at t′, P1 has mul-
tiplicity n − 1 (i.e., the summation of the multiplicity number of P1 and P2 at
t). The lemma is proved. ��

By combining the above three lemmas, we can obtain the following theorem,
which directly implies that algorithm GfL achieves gathering in O(n) expected
rounds.

Theorem 3. Starting from any configuration in one-dimensional space, GfL
achieves gathering within 4n + 1 rounds with probability at least 1/256.
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5 Concluding Remarks

This paper has investigated the feasibility of polynomial-round randomized gath-
ering with polynomial expected rounds from the aspect of multiplicity detection
capability. We first presented the impossibility result that any algorithm must
have Ω(exp(n)) round complexity even under the bounded-regular scheduler and
local-weak multiplicity detection capability. Then, we also constructed a ran-
domized gathering algorithm which has the advantages of O(n) expected round
complexity, gathering from any initial configuration, and using only local-strong
multiplicity detection. These two results imply that a large gap of computational
power lies between those two capabilities.
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Abstract. In recent years peer-to-peer (P2P) technology has been
adopted by Internet-based malware as a fault tolerant and scalable com-
munication medium for self-organization and survival. It has been shown
that malicious P2P networks would be nearly impossible to uncover if
they operated in a stealth mode, that is, using only a small constant
number of fixed overlay connections per node for communication. While
overlay networks of a small constant maximal degree are generally con-
sidered to be unscalable, we argue in this paper that it is possible to
design them to be scalable, efficient and robust. This is an important
finding from a security point of view: we show that stealth mode P2P
malware that is very difficult to discover with state-of-the-art methods
is a plausible threat. In this paper we discuss algorithms and theoreti-
cal results that support the scalability of stealth mode overlays, and we
present realistic simulations using an event based implementation of a
proof-of-concept system. Besides P2P botnets, our results are also appli-
cable in scenarios where relying on a large number of overlay connections
per node is not feasible because of cost or the limited number of com-
munication channels available.

1 Introduction

In recent years peer-to-peer (P2P) technology has been adopted by botnets as
a fault tolerant and scalable communication medium for self-organization and
survival [1, 2]. Examples include the Storm botnet [1] and the C variant of the
Conficker worm [3].

The detection and filtering of P2P networks presents a considerable chal-
lenge [4]. In addition, it has been pointed out by Stern [5] that the potential
threat posed by Internet-based malware would be even more challenging if worms
and bots operated in a “stealth mode”, avoiding excessive traffic and other vis-
ible behavior. It has also been shown that state of the art techniques for the
detection of P2P networks fail if peers communicate with only a small constant
number of neighbors during their lifetime [6].
� M. Jelasity was supported by the Bolyai Scholarship of the Hungarian Academy of

Sciences.

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 399–412, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



400 M. Jelasity and V. Bilicki

Fortunately, current infections generate considerable traffic. For example, the
Storm worm contacts a huge number of peers, in the range of thousands [2],
when joining the network, generating a recognizable communication pattern as
well as revealing a large list of botnet members. In general, P2P clients typically
contact a large number of neighbors due to maintenance traffic, and regular
application traffic such as search. There are only a few notable exceptions, such
as Symphony and Viceroy [7,8], which are overlay networks of a constant degree.

It is still an open question whether it is possible to create overlay networks of
a very small constant maximal degree that are efficient and scalable. Research
activity concerning Symphony or Viceroy has not yet been targeted to the lower
end of maximal node degree, potentially as small as 3 or 4. In fact, even negative
results are known that indicate the inherent lack of scalability of constant degree
networks [9,10]. In this paper we answer this question in the affirmative and show
that it is possible to build a Symphony-inspired overlay network of a very small
constant degree, and with the application of a number of simple techniques, this
overlay network can be made scalable and robust as well. This result calls for
more research into the detection of malicious P2P networks that are potentially
of a small maximal degree.

Our contribution is threefold. First, we empirically analyze known as well as
new techniques from the point of view of improving the search performance in a
Symphony-like overlay network. Second, we present theoretical results indicating
that if we add O(logN) (or, in a certain parameter range, O(log logN)) backup
links for all links (where N is the network size), then a constant degree network
becomes fault tolerant even in the limit of infinite network size, while its effective
degree remains constant (that is, the network can remain in stealth mode) since
the backup links are not used for communication unless they become regular
links replacing a failed link. This result is counter intuitive because routing in
Symphony requires O(log2 N) hops on average. Third, we provide event-based
simulation results over dynamic and realistic scenarios with a proof-of-principle
implementation of a constant degree network, complete with gossip-based pro-
tocols for joining and maintenance.

2 Performance of Small Constant Degree Topologies

Our motivation is to understand whether a reasonable routing performance can
be achieved in a network that operates in stealth mode; that is, where the maxi-
mal node degree is as small as 3 or 4. We will base our discussion on Symphony,
a simple constant degree network [7]. We explore several (existing and novel)
simple techniques for improving the routing performance of Symphony at the
lower extremes of maximal degree. To the best of our knowledge, this problem
has not been tackled so far in detail by the research community.

Symphony was proposed by Manku et al. [7] as an application of the work of
Kleinberg [11]. Like many other topologies, the Symphony topology is based on
an undirected ring that is ordered according to node IDs. Node IDs are drawn
uniformly at random from the interval [0, 1] when joining the network. Apart



Scalable P2P Overlays of Very Small Constant Degree 401

from the two links that belong to the ring, each node draws a constant number
of IDs with a probability proportional to 1/d, where d is the distance from
the node’s own ID. Subsequently, each node creates undirected long-range links
to those peers that have the closest IDs to the IDs drawn. (We note that an
implementation needs an approximation of the network size N for normalizing
the distribution. A rough, but practically acceptable, approximation exploits the
fact that the expected distance of the closest neighbor in the ring is 1/N .)

Symphony applies a greedy routing algorithm: at each hop the link is chosen
that has the numerically closest ID to the target. Due to the undirected ring,
the procedure is guaranteed to converge. It can also be proven that routing takes
O(log2 N) hops on average; the idea of the proof is to show that it takes O(logN)
hops to halve the distance to the target.

In the following we describe techniques for reducing the number of routing
hops in small constant degree networks. Subsequently, we systematically analyze
these techniques via simulations.

Lookahead. Greedy routing can be augmented by a lookahead procedure where
nodes store the addresses of the neighbors of their neighbors locally as well, up
to a certain distance. This way, route selection is based on the best 2, 3, etc.,
hop route planned locally as opposed to a 1 hop route. Routing with a single
hop lookahead has been studied in detail [12, 13]. Since small constant degree
networks have small local neighborhoods that can easily be stored and updated,
we study 2 hop lookahead as well.

Degree balancing. To enforce a strict small upper bound on node degree, nodes
that are already of the maximal degree have to reject new incoming long-range
links. To make sure that most joining nodes can create long-range links, we
need to introduce balancing techniques. In addition to the usual technique of
repeated join attempts, we propose degree balancing: when a node of maximal
degree receives a join request, it first checks its closest neighbors in the direction
of increasing node ID to see whether they have free slots for a link. This need
not require extensive communication as neighbor information is available locally
(and, for example, the lookahead mechanism described above also requires local
neighborhood information).

Stratification. Since each node has only a small constant number of long-range
links (1 or 2 in our case), many hops will follow the ring. It is therefore important
that neighboring nodes in the ring have different long-range links. We propose
a stratified sampling technique that involves dividing the long range links into
a logarithmic number of intervals [ei/N, ei+1/N ] (i = 0, . . . , [lnN ]− 1). All the
nodes first choose an interval at random that is not occupied by a long-range
link at a neighbor, and then they draw a random ID from that interval with a
probability proportional to 1/d, where d is the distance from the node’s own ID.

Short link avoidance. Interestingly, if the average route is long, then it might be
beneficial to exclude long-range links that are too short. This way we introduce
some extra hops at the end of the route, when routing follows the ring only.
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Table 1. The parameter space of the experiments

network size 2i, i = 10, 11, . . . , 20
maximal degree (k) 3 or 4 (1 or 2 long-range links)
lookahead 0, 1, or 2 hops
stratification yes or no
join attempts 1, 2, or 4 attempts
degree balancing 1, 5, 10, or 20 neighbors checked
short link avoidance (m) 0, 1, 2, 3, or 4

However, we save hops during the first phases due to the longer long-range
links. As we will see later, this technique works well only in very small degree
networks where routes are long, but in such cases we can obtain a significant
improvement. We implement short link avoidance based on the same intervals
defined for stratification above. We introduce a parameter m: the number of
shortest intervals that should be excluded when selecting long-range links. For
example, for m = 2, the first possible interval will be [e2/N, e3/N ].

We performed experiments using the parameter space in Table 1. For all
parameter combinations, we first constructed the network and subsequently we
selected 10,000 random node pairs and recorded the hop count of the routing.

A main methodological tool we apply to evaluate the large parameter space
is drawing scatter plots to illustrate the improvement in the hop count as a
function of a varying parameter. In these plots the points correspond to different
combinations of the possible values of a subset of parameters. The remaining
free parameters are the ones we are interested in; they are used to calculate
the coordinates of the points as follows. The hop count for a specified setting
for the free parameters is the horizontal coordinate of a point, whereas the
vertical coordinate is the ratio of the horizontal coordinate and the hop count
that belongs to another (typically baseline) setting of the same parameters.

The improvement brought about by stratification is illustrated in Figure 1
(left). Clearly, for almost all parameter settings, stratification is a better choice
(most values fall below 1). The experiments with values higher than 1 were per-
formed on the smallest networks, with no apparent additional common features.
The lack of improvement in these cases is most likely due to the larger noise of
random sampling in smaller networks. From now on, we restrict our discussion
to experiments with stratification.

The improvement brought about by lookahead is shown in Figure 1 (right).
We can see that lookahead helps more if the degree of the network is larger. This
is plausible since the local neighborhood is exponentially larger in a network of
a larger degree. We also notice that lookahead is more useful in larger networks
where the routes are longer.

Let us now have a look at the average degree of the networks (Figure 2).
The main observation here is that it is important to approximate the maximal
degree because in some cases we can observe a performance improvement of
almost 30% relative to the baseline approach (that is, when no balancing efforts
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Fig. 2. Average degree for N = 220 (left) and the performance improvement achieved
by a good balancing strategy (right). The average degree is practically identical with
all the other network sizes too (not shown).

have been made), especially if lookahead has been applied as well. The setting
of 2 join attempts with degree balancing over 10 neighbors appears to be a good
compromise between cost and performance.

Figure 3 illustrates the effects of short link avoidance. When m = 2 (left),
performance is improved with each parameter setting, except for k = 4 and
lookahead = 2, where routing is so efficient that even for the largest networks
there are too few hops, so short link avoidance does not result in a net gain in
hop count. For m = 3 (right) the same effect is amplified: for parameter settings
with a large hop count the relative improvement is larger, but for short routes
the relative cost is larger as well. All in all, the effect of this technique depends
on the other parameters, but m = 2 appears to be rather robust and results in
a slight improvement in most settings. We note that m = 4 was not the best
setting in any of the experiments, so the maximal reasonable value was m = 3
in our parameter space.

Lastly, Figure 4 shows hop count as a function of network size. Theory predicts
an O(log2 N) hop count complexity; to a good approximation we can observe



404 M. Jelasity and V. Bilicki

 0.9

 0.95

 1

 1.05

 0  20  40  60  80  100  120  140  160

ho
p 

co
un

t r
el

at
iv

e 
to

 m
=

0

hop count with m=2

k=3, lookahead=0
k=3, lookahead=2
k=4, lookahead=0
k=4, lookahead=2

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 0  20  40  60  80  100  120  140  160

ho
p 

co
un

t r
el

at
iv

e 
to

 m
=

0

hop count with m=3

k=3, lookahead=0
k=3, lookahead=2
k=4, lookahead=0
k=4, lookahead=2

Fig. 3. The improvement in hop count as a result of setting m 	= 0

 20

 40

 60

 80

 100

 120

 140

 1000  10000  100000  1e+06

ho
p 

co
un

t

network size

k=3, lookahead=0
k=3, lookahead=1
k=3, lookahead=2
k=4, lookahead=0
k=4, lookahead=1
k=4, lookahead=2

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000  10000  100000  1e+06

ho
p 

co
un

t /
 lo

g2 (n
et

w
or

k 
si

ze
)

network size

k=3, lookahead=0
k=3, lookahead=1
k=3, lookahead=2
k=4, lookahead=0
k=4, lookahead=1
k=4, lookahead=2
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Stratified sampling was applied, along with 2 join attempts with a degree balancing
over 10 neighbors, and we set m = 2.

this scaling behavior, especially for k = 4. The very large difference between the
best and the worst setting is also worth noting. Moving from k = 3 to k = 4
results in a very significant improvement: 2 long-range links instead of 1 causes
the speed of routing to double, as predicted by theory [7].

We may conclude that routing in networks of a very small constant degree is
feasible if certain techniques are applied. We found that the most effective tech-
nique is lookahead based on locally available information about the neighborhood
of the nodes. In addition, degree balancing is very important as well. Further
techniques such as short link avoidance and stratification also result in an addi-
tional 5-10% improvement, depending on the parameters. With these techniques
we can route in around 30 hops in a network of size N = 220 ≈ 1, 000, 000 with
a maximal node degree of only 4.

3 Scalability of Fault Tolerance

In the above sections we discussed several aspects of scalability. Our focus in
this section will be whether the fault tolerance of the network diminishes as
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the network grows. This is crucial from the point of view of P2P networks (in
particular, botnets), which have to tolerate a considerable node churn, as well
as other types of failures.

We first touch on some important issues regarding the scalability of constant
degree topologies, and then we propose the simple technique of using backup
links to increase their fault tolerance. We present theoretical results to show
that the proposed technique indeed turns constant degree networks scalable in
a well defined sense in the presence of node failures.

We consider properties of networks of size N as N → ∞. This means that
the results presented here are mainly of theoretical interest, since in practice an
upper bound on network size can easily be given, and the algorithm designer can
set protocol parameters according to the upper bound even if the algorithm is not
scalable in the present sense. Still, our results are somewhat counter intuitive,
and as such increase our insight into the behavior of constant degree networks.

The Achilles’ heel of constant degree networks is fault tolerance and not per-
formance. Performance is not a problem if the network is reliable. It is well-known
that a constant number of neighbors is sufficient to build a connected structure.
Not only the trivial constant degree topologies such as the ring or a tree are
connected, but also there exist random topologies of constant degree such as the
random k-out graphs. In such graphs each node is connected to k random other
nodes. It has been shown that for k ≥ 4 a k-out graph is connected with high
probability [14]. It is also well-known that a constant degree is sufficient for an
efficient routing algorithm. In the Symphony network routing takes O(log2 N)
hops while in Viceroy, the optimal O(logN) hop-count is achieved [8, 7].

Unfortunately, constant degree networks do not tolerate node failure very
well. We will examine the case when each node is removed with a fixed constant
probability q (that is, the expected number of nodes remaining in the network
is (1− q)N). For example, the 4-out random graph is no longer connected with
high probability in this model. In fact, in order to get a connected random
topology in spite of node failures, one needs to maintain O(logN) neighbors at
all nodes [10]. Similarly, it has been shown by Kong et al. [9] that—in this failure
model—DHT routing is not scalable in Symphony, while it is scalable on other
topologies that are able to find more alternative routes via maintaining O(logN)
links at all the nodes. In the following, we summarize the results of Kong et al.
for completeness and extend them to show how to achieve an effectively constant
degree, yet scalable, topology.

Kong et al. examined the success probability of routing p(h, q), the probability
that in a DHT a node h hops away from a starting node will be reached by the
routing algorithm under a uniform node failure probability q [9]. Their criterion
for scalability is

lim
N→∞

p(h, q) = lim
h→∞

p(h, q) > 0, 0 < q < 1− ε, (1)

where ε > 0, and h is the average routing distance in the topology under study
(h = O(log2 N) for Symphony). This expresses the requirement that increasing
network size should not increase sensitivity to failure without limit. Given this
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criterion, the proposed methodology consists of finding the exact formula or a
lower bound for p(h, q) for a topology of interest, and then calculating the limit
to see whether it is positive. To calculate p(h, q), one can create a Markov chain
model of the routing process under failure, and determine the probability of
reaching the failure state.

Kong et al. proved that Symphony is not scalable. They showed that for each
step the probability of failure is a constant (C), so

lim
h→∞

p(h, q) = lim
h→∞

(1− C)h = 0. (2)

However, if we assume that there are backup links for each link in Symphony,
then the situation changes dramatically. We do not go into detail here about how
to collect the backup links; Section 4 discusses an actual algorithm. From our
point of view here the important fact is that the backup links are such that if a
link is not accessible, then the first backup is the best candidate to replace it. If
the first backup is down as well, then the second backup is the best replacement,
and so on.

Recall that the Symphony topology consists of a ring and a constant number
of shortcuts. For the ring, the notion of backup should be clear. A shortcut link is
defined by a randomly generated ID: we need to find the numerically closest node
in the network to that ID. The first backup in that case is the second closest node
in the network, and so on. This notion can be extended to all routing geometries
as well.

The backup links do not increase the effective degree of an overlay node: a
DHT can use the original links if they are available, even if some of the backups
were closer to the target. In fact, backup links are never used for communication,
not even during maintenance or any other function, except when they become
regular links after replacing a failed regular link. In addition, as we explain
in Section 4, backup links can be collected and updated during regular DHT
maintenance without any extra messages.

It seems clear that backup links can turn Symphony scalable. However,
the question is how many of them do we need? In the following we show
that O(logN) backup links are sufficient, and under some circumstance even
O(log logN) links will do.

Lemma 1. If in a DHT routing network all the links have f(N) backup links
then p(h, q) ≥ (1− qf(N))h.

Proof. The probability of being able to use the best link in the original overlay is
1−q. Considering the backups this probability becomes 1−qf(N)+1 > 1−qf(N).
Now, if we follow only the optimal link in each step then the probability of
success is not smaller than (1− qf(N))h. Clearly, p(h, q) is no less than this value
since it accounts for methods for routing around failed links as well.

Lemma 2. limN→∞(1− qlog N )log
k N > 0 if 0 ≤ q < 1− ε and k ∈ IR.

Proof. For k <= 0 the lemma is trivial. For k > 0, according to Theorem 1 in [9]
we need to prove that

lim
N→∞

qlog N logk N <∞
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and the lemma follows. The convergence of the above expression can be proven
by applying the l’Hospital rule on (logk N)/q− log N a suitable number of times.

Lemma 3. limN→∞(1− qlog log N )log
k N > 0 if 0 ≤ q < min(e−k, 1− ε).

Proof. We again need to prove that

lim
N→∞

qlog log N logk N <∞.

Substituting x = logN we get

qlog xxk = x
1

logq e xk = x
1

logq e +k

This means that we need 1
logq e +k ≤ 0 for convergence. Elementary transforma-

tions complete the proof.

Theorem 1. The Symphony topology is scalable, that is, limh→∞ p(h, q) > 0,
if (i) all the links have O(logN) backup links, or if (ii) all the links have
O(log logN) backup links and q ≤ e−2 ≈ 0.135.

Proof. Straightforward application of the previous lemmas for Symphony where
k = 2, that is, h = O(log2 N).

To sum up, we have shown that Symphony-like topologies can be made scalable
by adding only O(logN) backup links for all the links, and under moderate fail-
ure rates even O(log logN) suffices. This is rather counter-intuitive given that
routing still takes O(log2 N) steps. It is also promising, because these results
suggest that collecting good quality backup links can dramatically improve scal-
ability at a low cost.

4 Experimental Results

In this section we present proof-of-principle experiments with a simple imple-
mentation of a small constant degree network in realistic churn scenarios. Our
goal is not to present a complete optimized implementation but rather to show
that it is indeed possible to achieve acceptable fault tolerance and performance
in realistic environments.

We performed the experiments using the PeerSim event-based simulator [15].
In our system model nodes can send messages to each other based on a node
address. Nodes have access to a local clock, but these clocks are not synchronized.
Messages can be delayed and nodes can leave or join the system at any time.
The statistical model of node churn is based on measurement data [16], as we
describe later.

Our goal was to design a protocol to construct and maintain a Symphony
topology in a fault tolerant way, with backup links (see Section 3). To this end,
we applied T-Man, a generic protocol for constructing a wide range of overlay
topologies [17]. Here we briefly outline the protocol and the specific details of
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the present implementation. The reader is kindly requested to consult [17] for
more information.

In our experiments each node has a single long-range link; that is, the maximal
effective degree is 3. Each node has three local caches: long-range backups, ring
backups and random samples. We set a maximal size of 80 for both the long-
range and ring backup caches, and 100 for random samples. These values were
chosen in an ad hoc way and were not optimized.

The caches contain node descriptors that include the ID and the address of
a node. Each node periodically sends the contents of all its caches to all its
neighbors. The period of this communication is called the gossip cycle, and was
set to 1 minute in our experiments.

As described in Section 3, the two backup caches should ideally contain those
nodes from the entire network whose IDs are closest to the node’s own ID (for the
ring neighbors), and the ID of the long-range link, respectively. When receiving
a message containing node descriptors, a node updates its own local caches. It
also updates the random sample cache, using a stratified sampling approach:
the ID space is divided into 100 equal intervals, and each cache entry is selected
from one of these intervals. If the random sample cache can be improved using
any of the incoming node descriptors, the cache is updated.

In addition, if a node receives a message from a node it should not receive
messages from (for example, because the sender has inaccurate knowledge about
the topology) the node sends its caches to the sender of the misdirected message
as well, so that it can improve its backup caches.

The join procedure starts by generating the node’s own ID at random, as well
as the ID for the long-range link. The caches need to be initialized as well, using
a set of known peers; we applied 50 fixed descriptors for the initialization. Once
the caches contain at least one link, the gossip protocol sketched above can start,
and all the caches will fill and improve gradually.

When handling a routing request, a node applies greedy routing using the
three links: the two ring links and the long-range link. However, before using
the currently active ring links or long-range link, the node always checks the
best candidate in the backup caches for availability (sending a ping message).
Note that we do not check the best candidate for the message to be routed; we
check the best candidate for the given link slot (ring or long-range). This way,
it is guaranteed that the right links are used based on the current state of the
network at any given time.

The scenario we experimented with involves node churn. Applying appropriate
models of churn is of crucial importance from a methodological point of view.
Researchers have often applied an exponential distribution to model uptime
distribution, which corresponds to a failure probability independent of uptime.
Measurements of a wide range of P2P networks in [16] suggest that a Weibull
distribution of uptime is more realistic, with a shape parameter around k = 0.5.
In this case the failure rate decreases, that is, the more time a node spends
online, the less likely it is to fail. This favors longer sessions, but the Weibull
distribution is nevertheless not heavy-tailed.



Scalable P2P Overlays of Very Small Constant Degree 409

We applied the Weibull distribution with k = 0.5 to model uptime, and scaled
the distribution, so that around 30% of the nodes live longer than 30 minutes [16].
The downtime distribution was modeled by a uniform random distribution, with
an average downtime of 2 minutes. This average is very short; however, longer
downtimes result in a relative increase in the proportion of nodes in the net-
work that have long session lengths. Paradoxically, if the downtime is long, then
the network is almost completely stable in the time range we are interested in
(around 30 minutes).

As noted in [16], the lengths of the online sessions of a node correlate: there
are nodes that tend to be available and nodes that are not. We assigned each
node a fixed session length from the distribution above, that remained fixed
during the experiment.

We applied a 1 minute gossip cycle. Each experiment lasted for 40 cycles. The
network gradually grew to its final size during the first 10 cycles, when we added
each node at a random time. During the remaining 30 cycles churn was applied.
The network sizes we tested were N = 2i, i = 10, . . . , 14. Parameter m (which
controls short link avoidance) was set to m = 0 or m = 3. Other features such
as lookahead, stratification, and degree balancing were not implemented at the
time of writing.

Figure 5 illustrates the speed at which the ring topology is being formed despite
of the continuous churn. The improvement of the backup links (80 links per node)
for the ring links is also illustrated. It can be seen that most nodes collect good
quality backups, but some of them seem to have no usable backups at all; these
nodes have a very short session time and spend very little time in the network.

One of our main goals was to show that the effective degree—the number of
nodes an average node actually communicates with—can be kept low. Figure 6
shows that indeed this can be accomplished. Despite heavy churn, which results
in a constant fluctuation of the ring neighbors, the effective degree is small and
seems to scale well. Recall that, for example, the Storm worm has been observed
to communicate with thousands of neighbors [2].
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Finally, let us examine the reliability and the efficiency of routing (see Fig-
ure 7). Recall that we work with a baseline implementation with no lookahead,
stratification, or any other techniques. Only short link avoidance is implemented.
When testing routing we pick IDs and not nodes as targets, and consider routing
successful if the closest node receives the message at the time of reception. That
is, it is possible that the optimal target is different at the start of the routing
and at the end of the same routing.

We can see that short link avoidance improves the hop count by a large mar-
gin. Overall, we observe almost twice the hop count as in the ideal case shown in
Figure 4. However, in our hostile scenario with heavy churn this can be consid-
ered acceptable for this baseline approach. We also note that the actual routing
performance observed in real botnets can be significantly worse; for example,
the success rate of queries has been found to be extremely low in the Storm
botnet [2].
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5 Conclusions

In this paper we argued for the feasibility of P2P systems that operate in a
stealth mode, where nodes communicate only with a very limited number of
peers during their lifetime.

Our results have at least two implications. First, they are a strong indication
that P2P botnets need to be taken seriously by the P2P community. In our pre-
vious work we showed that stealth mode P2P networks are practically invisible
for state-of-the art methods for P2P network detection [6]. Current botnets do
not exploit P2P technology to its full potential, and by the time they learn how
to do that, they will be very difficult to detect and remove.

The second implication is not related to malware. There can be other appli-
cations where it is important to utilize very few connections because of a large
associated cost. Detailed arguments for a constant degree design can be found
in related works as well [8]. For this reason, the research issue that we raised,
that is, the investigation of networks of a very small constant degree, is relevant
to non-malicious applications as well.
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Abstract. Real-time performance is critical for many time-sensitive applications
of wireless sensor networks. We present a constrained flooding protocol, called
CFlood, which enhances the deadline satisfaction ratio per unit energy consump-
tion of time-sensitive packets in sensor networks. CFlood improves real-time
performance by flooding, but effectively constrains energy consumption by con-
trolling the scale of flooding, i.e., flooding only when necessary. If unicasting
meets the distributed sub-deadline of a hop, CFlood aborts further flooding even
after flooding has occurred in the current hop. Our simulation-based experimen-
tal studies show that CFlood achieves higher deadline satisfaction ratio per unit
energy consumption than previous multipath forwarding protocols, especially in
sparsely deployed or unreliable sensor network environments.

1 Introduction

Real-time performance is one of the most important quality of service (QoS) metrics
for time-sensitive applications of wireless sensor networks (WSN). For example, a tar-
get tracking system [1] may require sensors to collect and report target information to
sink nodes before the target leaves the surveillance field. For improving real-time per-
formance, we need to ensure that as many time-sensitive packets as possible, arrive at
sink nodes within their deadlines. The delay that a packet may experience during trans-
mission may be caused by many reasons, including those due to network congestion
and node/link failures.

Multipath forwarding is a commonly used approach for enhancing various QoS met-
rics of WSN traffic [2]. With multiple paths, network congestion and node/link failures
can be bypassed, and real-time performance can be improved. However, it is possible
that network congestion or the connection status is not significant enough through-
out the entire path from source to sink to warrant multipath forwarding for each hop.
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Therefore sometimes, the redundant copies of data packets generated by multipath for-
warding protocols, which often consume additional energy and bandwidth, are not nec-
essary. Since sensor nodes are battery-powered and therefore energy must be efficiently
consumed, energy-efficient forwarding protocols are critical toward enhancing the ca-
pability of delivering real-time packets within given end-to-end time constraints, while
reducing the energy consumption.

Many previous research efforts [3,4,5,6,7,8] have studied the efficiency of multipath
forwarding protocols toward enhancing real-time performance while consuming opti-
mized resources (we discuss related work in Section 5). Majority of these efforts have
focused on reducing the number of flooding recipients at each hop so that the additional
resource consumption can be minimized and QoS constraints such as real-time can also
be satisfied. But even though the number of recipients is reduced, this approach intro-
duces redundancy due to its probability-based recipient selection mechanism. In fact,
for those hops in which the connection status is good enough so that unicasting does
work, redundant multipath flooding is not necessary. The efficiency of flooding there-
fore can be further improved by controlling the redundancy.

In this paper, we present a constrained flooding protocol called CFlood that improves
the flooding efficiency in sensor networks. The primary objective of CFlood is to en-
hance the deadline satisfaction ratio per unit energy consumption. We adopt the dead-
line satisfaction ratio (DSR) [9] to characterize the real-time performance of a WSN,
which is defined as the ratio of the number of real-time packets that arrive at sink nodes
meeting their deadlines, to the total number of those transmitted.

CFlood uses flooding to enhance DSR, and controls the flooding scale to effectively
reduce energy consumption. We design CFlood mainly in four components, including
neighborhood table management, real-time guarantee verification, recipient selection
and flooding control. CFlood maintains a neighborhood table on each node to save
routing information and neighboring relations, and uses periodic HELLO message ex-
changes to estimate the per-hop delays and update the table entries. We also introduce
a deadline partition scheme to distribute the end-to-end deadline to multiple hops. By
comparing the estimated per-hop delays and the distributed sub-deadlines, the real-time
guarantee verification component justifies whether a neighbor node can meet the dead-
line for a specific packet. Among the neighbors that can meet the deadline, CFlood
selects a primary recipient and several secondary recipients according to the criteria on
flooding-controllability, congestion avoidance, and computation simplicity. In addition,
CFlood aborts further flooding from secondary recipients if unicasting to the primary
recipient can meet the distributed sub-deadline. CFlood is designed as a hop-by-hop
routing protocol with no global network information needed. Thus, it is scalable for
large-scale sensor networks.

We conducted extensive simulation-based experimental studies to evaluate CFlood’s
performance. Our results reveal that CFlood achieves a higher deadline satisfaction ratio
per unit energy consumption than previous multipath data delivery protocols, such as
a multipath routing protocol MCMP [2] and a directional flooding protocol DFP [10],
especially in sparse or unreliable network environments.



CFlood: A Constrained Flooding Protocol for Real-time Data Delivery in WSNs 415

The paper makes the following contributions:

– We design a constrained flooding protocol that improves the flooding efficiency by
enhancing the deadline satisfaction ratio per unit energy consumption. A flooding
control mechanism is developed based on the cross-layer design, by adding a plug-
in block to the MAC protocol.

– We compare the performance of CFlood against previous efforts through the
simulation-based experimental studies. To the best of our knowledge, we are not
aware of any other protocols that achieves a higher deadline satisfaction ratio per
unit energy consumption than what CFlood yields.

The rest of the paper is organized as follows. In Section 2, we outline our system model.
The design details of CFlood are presented in Section 3. Section 4 describes our simula-
tion results. We compare and contrast past and related work against CFlood in Section 5,
and conclude the paper in Section 6.

2 System Model

We make the following assumptions:
Network. We assume that homogeneous sensor nodes are randomly and uniformly

deployed in a flat architecture. We only consider many-to-one data transmission, i.e.,
each sensor node sends packets only to a single sink node. Such a many-to-one data
transmission is usually called “convergecast” [11].

Nodes. We assume that sensor nodes are static, and their transmission radius (within
which nodes can communicate, denoted as R) is fixed.

Communication. We adopt the protocol model in [12], where both transmission and
interference depend only on the Euclidean distance between nodes.

MAC protocol. We assume that the underlying MAC protocol supports collision
avoidance with the RTS/CTS (Request To Send and Clear To Send) exchange mech-
anism [13].

For convenience in discussion, we summarize all the notations in Table 1.

Table 1. Notations

R Transmission radius NB(Ni) Neighbors of node Ni

r Sensing radius Parent(Ni) The parent of node Ni

Lh Estimated per-hop delay Source(Ni) The source node from which Ni receives a packet
Dh Distributed per-hop dead-

line
Forward(Ni) Flooding recipients of node Ni

PR Primary recipient Hop(Ni) The number of hops that Ni is away from the sink
SR Secondary recipient ρ Node density
Th The average throughput of a

node at hop h
Ch The number of nodes that are h hops away from

the sink node
SLi Slack time ratio DSR Deadline satisfaction ratio
δ Real-time capacity per unit

energy consumption
e The average energy for transmitting a single

time-sensitive packet
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3 CFlood: A Constrained Flooding Protocol

We first describe CFlood’s design intuition, and then discuss its functional components
in detail.

3.1 Overview

CFlood is a decentralized flooding-based routing protocol. Routes are determined, i.e.,
recipients are chosen at each hop dynamically during data transmission. CFlood uses
flooding to increase the deadline satisfaction ratio. But flooding may not be necessary
at each hop. It is desirable to constrain the scale of flooding as much as possible to
enhance energy efficiency.

We describe energy efficiency by measuring the average energy e consumed for
transmitting a single time-sensitive packet, i.e., the ratio of the total energy consumption
to the total number of time-sensitive packets generated. With a flooding protocol, a sin-
gle packet may be copied multiple times. Thus, the total energy consumption consists
of the energy for transmitting and receiving all the copies. We do not emphasize the unit
of energy, since it depends on the specific hardware platform. We also define the metric
real-time capacity per unit energy consumption as δ = DSR

e , which measures what per-
centage of time-sensitive packets is delivered meeting their deadlines for unit energy
consumption. Thus, higher δ is, the more efficient the flooding protocol is. The primary
objective of CFlood therefore can be described as improving the real-time capacity per
unit energy consumption δ as much as possible.

Our approaches for controlling the flooding scale thereby increasing δ include: 1) re-
ducing the flooding actions as much as possible, and using unicasting instead; and 2) re-
ducing the number of recipients when flooding is necessary.

Our intuition in controlling the flooding scale of CFlood with the first approach is as
follows. After a recipient at a given hop finds that the transmission of its next hop can
meet the sub-deadline, it is unnecessary for other recipients to continue flooding for the
next hop. Thus, this recipient can abort the subsequent flooding of other ones. For this
hop, it seems as unicasting is used instead of flooding. This way, the end-to-end time
constraint can be satisfied and the energy efficiency can be enhanced.

Even if flooding is necessary, we should reduce the number of recipients. We use
several criteria for recipient selection, in which the end-to-end time constraint is the
primary one. First, we introduce a deadline partition scheme to distribute the end-to-
end deadline to multiple hops. Then, CFlood estimates the per-hop delays between
nodes. If the estimated per-hop delay is longer than the distributed sub-deadline, it is
highly unlikely that the route through the node can meet the end-to-end time constraint.
Otherwise, the node can be chosen as a recipient of the flooding. With this approach, the
number of recipients can potentially be reduced with respect to meeting the end-to-end
time constraint.

We design CFlood with four functional components, which are shown in a network
protocol stack in Figure 1. The components are described as follows:

– Neighborhood table management. CFlood maintains a neighborhood table on each
node to save the routing information, the neighboring relations, and the estimated
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Fig. 1. Functional components of CFlood

per-hop delays. These information fields are shared between neighbors through pe-
riodic HELLO message exchanges, and are used for making flooding decisions.

– Real-time guarantee verification. Among all the one-hop neighbors, we want to
flood only to those nodes that can satisfy the time constraint. This component ver-
ifies whether a neighbor can meet the end-to-end time constraint, and therefore
could be considered as a flooding recipient. This decision is made by comparing the
estimated per-hop delay, denoted as Lh, and the distributed per-hop sub-deadline,
denoted as Dh. If Lh < Dh, i.e., the transmission at this hop can be completed within
the sub-deadline distributed to this hop, then this neighbor could be selected as a
prospective recipient.

– Recipient selection. First, each node periodically computes a next-hop neighbor (or
parent as in [14]), which has the highest probability of meeting the time constraint.
This parent node is used as the primary recipient (PR) of flooding. Then, each node
also selects several secondary recipients (SRs) based on the time constraint as well
as the criteria on flooding-controllability, congestion avoidance and computation
simplicity. When unicasting is determined to be sufficient for meeting a packet’s
time constraint, the PR aborts the SRs’ next-hop flooding (this is done through the
flooding control mechanism discussed next). Otherwise, the PR and all the SRs
continue to flood the packet further.

– Flooding control. The working sequence of a MAC protocol, which supports col-
lision avoidance with the RTS/CTS exchange mechanism, can be summarized as
RTS-CTS-DATA or RTS-BACKOFF, depending on whether the RTS/CTS exchange
succeeds. For controlling the flooding scale, CFlood inserts an ABORT phase af-
ter CTS for the PR’s flooding, and a WAIT phase before RTS for SRs’ flooding.
Thus, the working sequence of a PR will be modified as RTS-CTS-ABORT-DATA
or RTS-BACKOFF, and that of SRs will be modified as WAIT-ABORT, WAIT-RTS-
CTS-DATA or WAIT-RTS-BACKOFF. If a PR finds that the channel is clear after
receiving a CTS, it broadcasts an ABORT message so that SRs can abort their sub-
sequent flooding actions.

3.2 Neighborhood Table Management

This component manages the neighborhood table, each entry of which corresponds to a
neighbor node. An entry includes the following fields:

(NeighborID, ParentID, HopCount, SendDelay, TTL)



418 B. Jiang, B. Ravindran, and H. Cho

ParentID is the ID of this neighbor node’s parent. HopCount is the number of hops by
which the neighbor node is away from the sink node. SendDelay is the estimated delay
for sending a packet to this neighbor node. TTL is short for Time To Live. The table
management operations include adding, updating, expiring, and removing.

The entries in the neighborhood table are updated via HELLO message exchanges,
which is a commonly used approach for sharing local knowledge among neighbors [3].
The mechanism has the advantage that it can adapt the network to possible topology
changes (e.g., those caused by link failure, node failure). Each HELLO message in-
cludes the fields (SenderID, ParentID, HopCount, SendDelay), so that all the receivers
may update the entry in their neighborhood tables for the node that sends this HELLO
message. For example, at the beginning, when a network is deployed, each node in the
network holds an empty neighborhood table. From a HELLO message received from a
sink node, all the neighbors of this sink node will know that their HopCount is 1. By
iteration, the HopCount will be increased by 1 at each hop from the sink node to all
other nodes in the network. (We will discuss the selection of a node’s parent and the
estimation of SendDelay later in this section.)

3.3 Real-Time Guarantee Verification

As previously discussed, CFlood compares the estimated per-hop delay Lh with the dis-
tributed per-hop sub-deadline Dh to determine whether or not a potential recipient can
satisfy the time constraint. This component is responsible for estimating Lh, computing
Dh, and conducting the comparison.

Per-hop Delay Estimation. The delay experienced at a hop usually consists of the
transmission delay, the propagation delay, and the receiving delay. The transmission
delay is the time that a packet experiences at the sender’s MAC and PHY layers. The
propagation delay is the duration when a data signal together with its carrier travels in
the air. The receiving delay is the time that a packet experiences at the receiver’s PHY
and MAC layers. Since the delay includes parts at both the sender and the receiver, the
precise measurement will require time synchronization, which is generally energy in-
efficient [15]. We introduce a feasible mechanism without assuming time synchroniza-
tion, although our estimation result may not be perfectly precise due to the asymmetry
of wireless channels.

The problem of estimating the round-trip delay has been well studied in the past [16].
We simply apply the existing method into the HELLO message exchange mechanism.
Suppose the neighbors of a node N are {Ni|Ni ∈NB(N)}. Node N may append a round-
trip delay estimation request for a specific neighbor node Ni in a randomly chosen
HELLO message (e.g., one out of every twenty continuous HELLO messages). Neigh-
bors other than Ni deal with this HELLO message as usual, while Ni is supposed to reply
with a HELLO message immediately. Then a round-trip delay is obtained by node N,
the half of which can be used as the estimated per-hop delay and is saved in the Send-
Delay field of Ni’s entry. This does not require time synchronization since the starting
and ending time points of the round trip are sampled at the same node.

Per-hop Deadline Computation. Most of the past works on the end-to-end dead-
line partition [17, 18] have adopted either uniform or exponential models. Uniform
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distribution allocates the total end-to-end deadline evenly to all the hops from the source
to the sink, implicitly assuming that a packet suffers the same delay at each hop. The ex-
ponential model computes the per-hop sub-deadline as Dh = D

2h , where h is the number
of hops from the sink node and D represents the end-to-end deadline. These schemes are
based on analytical models and do not consider the actual throughputs of the network.
We now introduce a throughput-based model by establishing a relationship between the
per-hop sub-deadline and the number of nodes at each hop in an intuitive manner.

Let ρ denote the node density of the network. Now, the average number of nodes that
are h hops away from the sink node, denoted as Ch, can be computed as ρ(π(hR)2−
π [(h−1)R]2) = ρπR2(2h−1). Intuitively, at a specific hop in a convergecast network,
lesser the number of nodes, greater will be the traffic that each node has to transport
toward the sink node. Thus, longer will be the delay that a packet will suffer at the
hop. Consequently, a longer sub-deadline will be needed for the hop. This relationship
can be approximately modeled as Dh ∼ Th ∼ 1

Ch
, where Th is the average throughput

of a node at hop h. When the node density ρ is fixed for a given implementation, we
have Dh ∼ 1

2h−1 . Thus, the end-to-end deadline D over an h-hop transmission can be

distributed according to its weight at each hop k as Dk =
1

2k−1

∑h
k=1

1
2k−1

·D. Especially the

sub-deadline of the first hop from the source is:

Dh =
1

2h−1

∑h
k=1

1
2k−1

·D (1)

Figure 2 shows the comparison among the uniform model, the exponential model, and
the throughput-based model, for an example with a 200 ms end-to-end deadline over
20 hops. We can observe that compared with the uniform model, the throughput-based
model is more adaptive for the many-to-one convergecast architecture of WSNs. In
addition, unlike the exponential model for which the distributed per-hop deadline de-
creases quickly to zero, the throughput-based model supports larger-scale networks.

For a single node N, its hop count from the sink node may be different when consid-
ering different routes via different neighbor nodes. Therefore the result of (1) needs to
be computed for each potential recipient. Suppose HopCount of a neighbor node Ni is
hi. When Ni is used for relaying, the distributed per-hop sub-deadline at this hop is:
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Dhi+1 =
1

2(hi+1)−1

∑hi+1
k=1

1
2k−1

·D (2)

Real-time Guarantee Verification. For a specific neighbor Ni, we establish a function
CanMeetDeadline(Ni), in which the per-hop deadline Dhi+1 is computed and compared
with the per-hop delay Lhi+1 (i.e., SendDelay in the neighborhood table). The function
CanMeetDeadline(Ni) returns true when Lhi+1 < Dhi+1 and false otherwise. Only those
neighbors that has a true return value will be considered as potential recipients.

3.4 Recipient Selection

The recipient selection component is responsible for selecting the flooding recipients
(both a PR and multiple SRs) from the one-hop neighbors. With CFlood, each node
computes a parent node as the PR periodically even when no data packets are pass-
ing through. The criteria used for SR selection include real-time guarantee, flooding-
controllability, congestion avoidance, and simplicity of computation.

Primary Recipient. As one of CFlood’s techniques to constrain the flooding scale is
to substitute unicasting for flooding as much as possible, a parent needs to be prepared
for each node as the next-hop neighbor of unicasting.

For a neighbor Ni, (2) shows the distributed per-hop deadline Dhi+1. We can also
estimate the per-hop delay Lhi+1 with the round-trip HELLO message exchange. Thus,

we define a ratio SLi = 1− Lhi+1

Dhi+1
to describe the proportion of the slack time, and call

it, the slack time ratio. The slack time ratio describes how likely Ni can meet a packet’s
sub-deadline for this hop. Based on our throughput-based deadline partition model, the
slack time ratio also describes how likely a route via Ni can meet the end-to-end time
constraint. Therefore, we select a neighbor Ni with the maximum SLi as the parent node,
i.e., a neighbor with

max
i

(SLi)∼min
i

{ Lhi+1

Dhi+1

}
=

1
D
·min

i

{
Lhi+1 ·

∑hi+1
k=1

1
2k−1

1
2(hi+1)−1

}
Secondary Recipients. For selecting SRs, we progressively remove those neighbor
nodes that cannot satisfy the following criteria:

1. Real-time guarantee. An SR should meet the time constraint (i.e.,
CanMeetDeadline(Ni) returns true).

2. Flooding-controllability. The subsequent flooding of an SR should be able to be
aborted by the PR.

3. Congestion avoidance. An SR should not introduce new congestion, since
CFlood’s major objective is to quickly bypass network congestion or connection fail-
ure. Thus we remove redundant SRs that share the parent with other SRs and have lower
probabilities for meeting the time constraint. By strictly prohibiting two recipients from
sharing a common parent, the network congestion could be avoided at least for the next
hop.
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4. Simplicity of computation. CFlood is designed to be as simple as possible due to
the constrained computing capability of sensor nodes. We use a set of “common sense-
based” operations to quickly reduce the problem size before applying the first three
ones. These quick reduction operations include: 1) remove all the neighbors whose
parent is also a neighbor of the flooding node, and thus also has a chance to receive
the packet at this hop, i.e., Parent(Ni) ∈ NB(N); 2) remove all the neighbors that send
packets to the flooding node at the last hop, i.e., Ni = Source(N); and 3) remove all the
neighbors that have received packets at the last hop, i.e., Ni ∈ Forward(Source(N)).

Next, we describe the SR selection algorithm at a high-level of abstraction in Algo-
rithm 1. The algorithm complexity is O(n2) for searching Ni in Forward(Source(N)),
where n is the average number of one-hop neighbors of a node. The magnitude of
n is small. For example, our simulation shows that in a network with node density
0.005 node/m2 (i.e., each node covers an area of 200 m2), n is only up to 5.

Algorithm 1. Secondary recipient selection

1: Initialize the SR candidate set as SR = {Ni|Ni ∈ NB(N),Hop(Ni) < Hop(N)};
2: for all (Ni ∈ SR) do
3: Examine Ni with the conditions of three quick reduction operations, i.e., remove Ni if

(Parent(Ni) ∈ NB(N)) or (Ni = Source(N)) or (Ni ∈ Forward(Source(N)));
4: Remove Ni if it violates the time constraint, i.e., if (CanMeetDeadline(Ni)=false);
5: Remove Ni if it violates the flooding-controllability criterion, i.e., if it cannot hear from

the PR (Ni �∈ NB(PR));
6: Remove Ni if it violates the congestion avoidance criterion by sharing a parent with the

PR, i.e., if (Parent(Ni) = Parent(PR));
7: end for
8: if (SR == φ ) then
9: return φ

10: end if
11: Sort the remaining SRs in a descending order of SLi;
12: for all (Ni ∈ SR) do
13: Remove Ni if it violates the congestion avoidance criterion by sharing a parent with

another SR with a higher SLi, i.e., if (∃ j < i,Parent(Ni) = Parent(Nj));
14: end for
15: return SR

3.5 Flooding Control

One of the most important contributions of this paper is the flooding control mechanism,
i.e., to abort the subsequent flooding after the current flooding occurs. In detail, the PR
and the SRs forward packets in different ways. As the flooding node of the next hop, the
PR initiates an RTS/CTS exchange with its PR immediately after receiving a packet. If a
CTS is received successfully, the PR broadcasts an ABORT message and then unicasts
the data packet. Otherwise, the PR backs off for some period of time and again initiates
the RTS/CTS exchange later. Unlike the PR, the SRs set an ABORT timer for each
received data packet. If an ABORT message from a PR is received for a buffered data
packet, the SRs drop that packet. Otherwise, if the timer runs out first, the SRs know that
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Fig. 3. An example of CFlood’s flooding control mechanism

the PR’s flooding for the next hop is delayed (i.e., backed off), and therefore they start to
flood the packet to the next hop. In this way, when the network condition is good (e.g.,
the RTS/CTS exchange initiated by the PR succeeds without backoff), the flooding is
reduced to unicast (because the SRs drop the packet on receiving the ABORT message).

Overhearing is also an approach for controlling flooding [19], e.g., the SRs abort
the subsequent flooding upon overhearing the transmission of the PR. However, over-
hearing is not a good choice under the time constraint. Not until the SRs overhear the
complete packet payload and send it up to the network layer, can they drop the cor-
responding packet saved in the buffer. Such a transmission through the network stack
may introduce extra delays, especially when the data packet is long.

Figure 3 shows an example of CFlood’s flooding control mechanism. In the figure, the
circle with the number i represents node Ni. In Figure 3a, the dash-dot arrows show the
parent relation (e.g., Parent(N2) = N5), the solid lines show the actual data transmission
(e.g., Forward(N1) = {N2,N3}), and the dotted line represents the ABORT messages.
Figure 3b shows the time sequence of the nodes. The dotted curves show the working
mechanism of flooding control. When N2 (as the PR of N1) finds that the channel is
clear on receiving the CTS reply, it broadcasts an ABORT message and then sends out
the data packet. Node N3 (as an SR of N1) receives the ABORT message from N2 before
the timer runs out. Thus, it aborts the subsequent flooding and drops the packet. On
the contrary, N5 does not receive the CTS reply from its parent node. Thus, it has to
backoff for sometime without broadcasting an ABORT message. As N4 and N6 do not
receive the expected ABORT message before the timer runs out, they have to continue the
flooding by initiating the RTS/CTS exchange. The expiration time for the ABORT timers
on SRs can be either determined by specific application configurations, or computed as
the minimum allowed slack time mini{Dhi+1−Lhi+1} of that SR node at the next hop.

4 Experimental Evaluation

We evaluated CFlood using the simulation tools Qualnet 4.0 [20] and sQualnet [21],
which is an extension to Qualnet for sensor networks. The simulation is based on the
CSMA/CA MAC protocol implemented in sQualnet.



CFlood: A Constrained Flooding Protocol for Real-time Data Delivery in WSNs 423

4.1 Simulation Environment

We deploy 20 to 150 sensor nodes uniformly in a square area of 200m× 200m, and
assume Mica motes [22] as the hardware platform. We set R = 60m, r = 30m, and the
data rate as 38.4 kbps. We leverage the statistics provided by sQualnet to estimate the
energy consumption.

Each sensor node samples and reports an event (e.g., detection of a target) once per
second. We configure the lengths of a data packet, a HELLO message, and an ABORT
message as 150 bytes, 50 bytes, and 10 bytes, respectively. Usually 10 bytes (e.g. in-
cluding the ID of the source node and the ID of this packet) are long enough for an
ABORT message to identify a specific data packet.

We compared CFlood against three past competitor algorithms. Mint routing (MR)
is a single path delivery protocol [14], which serves as a lower bound on both real-
time performance and energy consumption. MCMP [2], a multipath routing protocol, is
one of the latest efforts on optimizing data delivery under both real-time and reliability
constraints. DFP [10] (short for Directional Flooding Protocol) is a forwarding protocol
that optimizes the delivery probability. We measure the performance metrics of interest
of CFlood and these protocols under varying degrees of node density, link reliability,
and end-to-end time constraint, the default values of which are 0.0015 node/m2, 75%,
and 100ms, respectively.

4.2 Simulation Results

Figure 4 shows the deadline satisfaction ratio of the four protocols under different node
densities. Due to the competition of the two factors, the number of recipients and the
congestion level, the curves present crests. We observe that CFlood yields the best DSR.

Figure 5 shows the average energy consumption per real-time packet under different
node densities. We observe that MR, as the lower bound, consumes the least energy,
and CFlood consumes the most. But the energy consumption of CFlood is very close to
that of DFP.

Figure 6 shows the real-time capacity per unit energy consumption δ under different
node densities. We observe that CFlood performs the best, especially when the node
density is low. Detailed simulation results show that on average, CFlood is 197%, 346%,
and 20% better than MR, MCMP and DFP, respectively.

Figure 7 shows the deadline satisfaction ratio under various per-hop wireless link
reliability. Among the four protocols, CFlood yields the best DSR, especially when the
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ratio DSR vs. node density
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Fig. 7. Deadline satisfaction
ratio DSR vs. link reliability
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vs. link reliability
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link reliability is low. As the link reliability increases, the DSRs of CFlood, MCMP,
and DFP tend to be comparable, and MR remains as the lower bound. We observe that
MCMP performs well especially when the network condition is good, while CFlood is
more adaptive to unreliable network environments.

Figure 8 shows that CFlood consumes the most energy. However, when we consider
the real-time capacity per unit energy consumption δ , CFlood outperforms the other
three protocols when the link reliability is lower than 80%, as shown in Figure 9.

Figure 10 shows that the real-time capacity per unit energy consumption δ of CFlood
is higher than that of the other three protocols, as long as the end-to-end time constraint
is not very tight.

CFlood’s flooding control mechanism based on ABORT messages does introduce
some overheads. However, the extra energy consumption is negligible. Figure 11 shows
the contrast between the energy consumption for data transmission and that for the
ABORT message exchange. We observe that the energy consumption for ABORT mes-
sages is only about 1% of the energy consumption for data transmission. This implies
that CFlood’s flooding control mechanism introduces little overhead.

Thus, our simulation results reveal that CFlood achieves better real-time capacity per
unit energy consumption than past protocols, especially for sparse node deployment,
unreliable wireless links, and loose end-to-end time constraints.
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5 Related Work

Existing works on supporting real-time traffic in WSNs have focused on latency and
timely delivery from various perspectives. For example, Abdelzaher et. al. discussed
a WSN’s real-time capacity from a macro perspective without making any detailed as-
sumptions [17]. He et. al. present detailed delay bounds for each chain of target tracking
applications in [1]. Other efforts considered real-time performance as a constraint that
must be satisfied [23]. In contrast, we focus on improving the deadline satisfaction ratio
per unit energy consumption.

In unreliable network environments, past data delivery protocols use different ap-
proaches to guarantee timeliness. Single path forwarding protocols transmit one copy
of data along a predetermined single path, and depend on retransmissions to guaran-
tee reliability [24]. In contrast, multipath data delivery protocols transmit a number of
copies through multiple routes simultaneously. This will increase the reliability and the
probability of delivering real-time data in a timely manner, but often at the expense of
additional energy consumption.

Multipath routing protocols can be broadly classified into two categories, static rout-
ing and dynamic routing. Static multipath routing protocols setup multiple routes, which
are either disjoint [3] or braided [4], before sending out a data packet. The source nodes
then either choose one of the routes or combine the resources of all the routes for a
single flow. In contrast, dynamic multipath forwarding protocols decide the flooding
recipients at each hop so that the data flow is split distributively.

Dynamic routing protocols can be further classified into multicast, broadcast (or
flooding), and gossip. Multicast has been extensively studied for WSNs [5], most of
which aim at multihop one-to-many communications. Broadcasting and flooding are
usually used interchangeably, but there are also works that distinguish them with minor
differences [25]. The HHB scheme introduced in [6] is a hop-by-hop broadcast protocol
that leverages the broadcasting capability of wireless medium to guarantee the reliable
delivery. The HHB protocol broadcasts at each hop with a specific probability to avoid
degenerating into a flooding storm. Zhang et. al. present a constrained flooding protocol
in [7], which exhibits good energy efficiency by constraining retransmissions. Gossip
can be considered as a form of probabilistic flooding. In [8], Lu et. al. present a gos-
sip algorithm called NBgossip, which forwards the linear combinations of the received
messages.

Almost all of the multipath data delivery protocols introduce extra overheads even
when unicasting is enough for satisfying QoS constraints such as timeliness. In contrast,
CFlood uses flooding but constrains the energy consumption effectively by controlling
the scale of flooding.

6 Conclusions

This paper presents a constrained flooding protocol, called CFlood, that enhances the
real-time capability per unit energy consumption in WSNs. Besides the fundamental
functions of a routing protocol such as neighborhood table management, we present
a flooding control mechanism based on ABORT message exchanges, and a recipient
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selection method to reduce energy consumption. Our experimental evaluation based
on Qualnet shows that CFlood outperforms past multipath routing/forwarding proto-
cols, especially for sparsely deployed networks or unreliable wireless links. This result
reveals that the cross-layer design of CFlood’s flooding control, e.g. substituting uni-
casting for flooding as much as possible, effectively improves the flooding efficiency.

Directions for future work include: 1) verifying CFlood’s performance with real ex-
periments; 2) achieving reliability guarantees; and 3) extending CFlood to sensor net-
works with multiple sink nodes. With real experiments and corresponding dynamic
network conditions, e.g., probabilistic sensing and communication ranges, we would be
able to verify CFlood’s performance, and make improvements on the design if neces-
sary. For example, we may develop a dynamic configuration method for the frequency
of HELLO message exchange, so that the precision of per-hop delay estimation could
be optimized under dynamic network conditions.
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Abstract. A wireless sensor network is a set of nodes, each is equipped
with sensors and a wireless communication device. Cached Sensornet
Transform (CST for short) is a methodology for design and implemen-
tation of self-stabilizing algorithms for sensor networks. It transforms a
self-stabilizing algorithm in the abstract computational model to a pro-
gram for sensor networks. In the literature, only CST transformation of
silent self-stabilizing algorithms have been investigated, while non-silent
ones have not been investigated. Our contribution in this paper is three-
fold. We present a counterexample of a non-silent algorithm transformed
by CST that does not behave correctly despite the original algorithm is
correct. We show a sufficient condition for original algorithms and net-
works such that a transformed algorithm by CST behaves correctly. We
present a token circulation algorithm that behaves correctly by CST, and
derive upper bound of its expected convergence time.

1 Introduction

1.1 Background

A wireless sensor network is a set of nodes, each is equipped with wireless commu-
nication device and sensors to monitor environment. Software design for wireless
sensor networks is a challenging problem because the resource on each node is
limited and the wireless communication is unreliable. In addition, a set of sensor
nodes in operation dynamically changes because new sensor nodes are deployed
in ad-hoc manner and a sensor node stops working when its battery is exhausted.
Therefore, self-∗ is a key concept for system design. Self-stabilization is a the-
oretical framework for non-masking fault-tolerant distributed systems which is
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introduced by Dijkstra in 1974 [1]. Specifically, starting from an arbitrary initial
configuration (system state), a self-stabilizing system converges to correct sys-
tem behavior without any human intervention and globally synchronized system
reset. This implies that (1) it recovers from any finite number of any kind of
transient faults, which are also known as soft errors, e.g., memory and message
corruption, and (2) it can adapt to network topology and node set changes.

1.2 Related Works

Although self-stabilization is extremely important in distributed systems, design
and verification of a self-stabilizing distributed algorithm is a hard task because
such a system must recover from arbitrary transient faults. By this reason, many
self-stabilizing distributed algorithms are designed under a computational model
what we call the abstract model (e.g., coarse-grained atomic action with the state-
reading model, which is similar to distributed shared memory) for simplicity
of design and verification. However, a big semantic gap lies between such an
abstract model and real sensor networks (e.g., fine-grained atomic action with
message passing). In this paper, our computational model for sensor networks
is called the sensor network model. Several model transformation methods that
fill in the gap have been proposed so far to execute self-stabilizing distributed
algorithms designed in the abstract model on more realistic model such as the
sensor network model.

Transformation with exact model equivalence. Transformation in this
category guarantees that any execution of a transformed algorithm is exactly the
same as an execution under an abstract model. A transformation proposed in
[2] is based on optimistic concurrency control from database theory, and update
of a local state of a node is considered as a transaction. In [3], a transformation
scheme from an abstract (called read/write) model to a sensor network (called
write all with collision, WAC) model is presented. Their solution is essentially an
execution scheduling protocol for nodes so that no two neighbor nodes execute
at the same time like TDMA (time-division multiple access). Because a packet is
lost only when neighbor nodes transmit a packet in the WAC model, execution
is equivalent to the one in an abstract model.

Transformation with inexact model equivalence. Transformation in this
category does not guarantee model equivalence, and a transformed algorithm
may produce an execution that never occurs in an abstract model. However,
runtime overhead of this transformation category is smaller than that of trans-
formation by exact model equivalence in general. Transformations proposed in
[4,5] are based on caching the neighbors’ states without any cache maintenance
protocols to simulate state-reading model. In each transformation scheme in
[4,5], each node maintains a cache of the state of each neighbor node, and each
node vi sends its local state to each neighbor node vj to update the cache of
local state of vi at vj . In [4], Huang, Wuu and Tsai propose a transformation for
general networks with reliable FIFO communication links. In [5], Herman gives a
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transformation for wireless sensor networks, named Cached Sensornet Transform
(CST for short). He assumes that each node has correct cache of each neighbor
node in an initial configuration1 and he also assumes communication is reliable.
By these assumptions, correctness of each cache is maintained by sending a new
local state when a node updates its local state. In [6], Turau and Weyer show
that CST yields a probabilistically self-stabilizing algorithm that converges to
a safe configuration2 with probability 1 from an arbitrary initial configuration.
They assume that each node receives a packet from each neighbor with probabil-
ity 0 < p < 1, i.e., each communication link is probabilistically unreliable. In [7],
Kakugawa and Masuzawa presented upper bounds on the expected convergence
time of several self-stabilizing algorithms transformed by CST under the same
setting as [6]. Experimental results for CST with real sensor network are found
in [6,8] for example.

There are other works on model transformation. The authors of [9] propose
a transformation method called conflict manager. It transforms an algorithm
in the abstract model in which only one node is executed at each step to an
algorithm in the abstract model in which only more than one nodes are executed
simultaneously at each step. They propose two types of conflict managers: a
deterministic one which guarantees model equivalence and a probabilistic one
which guarantees model inequivalence.

1.3 Contribution of This Paper

In this paper, we investigate CST transformation of non-silent self-stabilizing al-
gorithms, e.g., a token circulation algorithm. In [5,6,7], only silent self-stabilizing
algorithms, e.g., a maximal independent set algorithm, are investigated, and un-
fortunately non-silent self-stabilizing algorithms have not been investigated in
the literature. Analysis methods in [6,7] for silent self-stabilizing algorithms do
not apply to non-silent ones as we will discuss in Section 5. In addition, not all
transformed algorithms work correctly in case of non-silent self-stabilizing algo-
rithms, while the transformation works correctly for any silent self-stabilizing
algorithm as shown in [6]. Our work is the first one for the transformation of
non-silent self-stabilizing algorithms. The contribution of this paper is threefold.

1. Impossibility result. We show a counterexample of a non-silent algorithm
transformed by CST that does not behave correctly despite the fact that the
original algorithm is correct in the abstract model.

2. Possibility result. One may think that any transformed algorithm does not
work in the sensor network model because of packet loss. However, this is not
true. We present a sufficient condition for original algorithms and networks
such that the transformed algorithm behaves correctly.

1 A configuration is a global state of a distributed system. A formal definition will be
presented shortly.

2 A safe configuration is a configuration in which the specification of an algorithm is
satisfied.
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3. Convergence time analysis. We present an example algorithm (specifically,
token circulation on unidirectional rings) that behaves correctly by the trans-
formation, and derive upper bound of its expected convergence time.

Organization of this paper is as follows. In Section 2, we describe computa-
tional models and self-stabilization. In Section 3, CST is reviewed. In Section 4,
we present a counterexample algorithm that does not behave correctly by CST.
In Section 5, we show a sufficient condition such that a transformed algorithm
behaves correctly. In Section 6, we present upper bound of expected convergence
time of a token circulation algorithm on unidirectional rings. In Section 7, we
give concluding remarks.

2 Preliminary

2.1 The Abstract Model

Let n be the number of nodes, V = (v1, v2, ..., vn) be a set of nodes, and E ⊆
V × V be a set of directed communication links in a distributed system. Then,
the topology of the distributed system is represented as a directed simple graph
GA = (V,E). We assume that G is a connected graph. For each communication
link (vi, vj) ∈ E, we say that vj is an out-neighbor of vi, and vi is an in-neighbor
of vj . By Ni, we denote a set of in-neighbors of vi. By vi.x, we denote a local
variable x at node vi. A set of local variables defines the local state of a node,
and let vi.q be the local state (tuple of all local variables) of node vi ∈ V . A
tuple of local states of nodes (v1.q, v2.q, ..., vn.q) forms a configuration (global
state) of a distributed system, and let Γ be a set of all configurations.

An algorithm of each node vi is given as a finite set of guarded commands:

∗[ Grd1 → Act1 � Grd2 → Act2 � · · · � GrdL → ActL]

Each Grd� (� = 1, 2, ..., L) is called a guard and it is a predicate on vi’s local state
and local states of its in-neighbors. For communication model, we assume that
each node can read local states of in-neighbors, which is called the state-reading
model. Although a node can read local states of in-neighbors, it can update its
local state only. We say that vi is enabled in configuration γ if and only if at
least one guard of vi is true in γ. If vi is not enabled, we say that vi is disabled.
Each Act� is called an action or move which updates the local state of vi, and
the next local state is computed from the current local state of vi and those of its
in-neighbors. We assume that an enabled node becomes disabled by executing
an action.

An atomic step of each node vi consists of the following three internal sub-
steps, which is known as the composite atomicity model: read local states of
in-neighbors and evaluate guards, execute an action that is associated to a true
guard, if any, and update its local state.

For execution model, following two types of schedulers are often assumed in
the literature of self-stabilizing distributed algorithms. (1) The central daemon:
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At each step, only one enabled node is selected arbitrarily, and a selected node
executes an action. (2) The distributed daemon: At each step, an arbitrary non-
empty subset of enabled nodes are selected, and selected nodes execute their
actions in parallel. We assume that a self-stabilizing algorithm in the abstract
model adopts the central or the distributed daemon in this paper.

2.2 The Sensor Network Model

Communication. Let V = (v1, v2, ..., vn) be a set of nodes. Each node com-
municates via wireless communication device, and we assume that no two nodes
transmit their packets simultaneously. We assume that message delay is zero be-
cause two nodes directly communicate via wireless communication. The topology
of the distributed system is represented as a directed graph GS = (V,E). Each
communication link (vi, vj) ∈ E is a unidirectional link from vi to vj . By Ni we
denote a set of in-neighbors of vi.

Each packet from node vi is transmitted by a local broadcast to out-neighbors.
Each packet from vi is received by each out-neighbor independently with proba-
bility p. Conversely, each out-neighbor drops a packet from vi independently with
probability 1− p. Note that, when vi transmits a packet, vi’s some out-neighbor
vj may receive and another out-neighbor vk may not receive probabilistically.

Scheduler and atomicity. Each node is equipped with a local clock, and all
the local clocks proceed with exactly the same rate, however, we do not assume
that clock values are synchronized. Each node takes an action on each receive
event or timer event.

– Receive event: When a node receives a packet, a message handler of the
node is invoked atomically.

– Timer event: When an interval timer by local clock of a node ticks, a timer
handler of the node is invoked atomically. We assume that the time intervals
are the same at all the nodes.

We imaginary assume a global time of the system, and the global time is divided
into a series of rounds. Here, a round is the common time interval of interval
timers of nodes. Although local clocks of nodes are not synchronized, a timer
event occurs at each node exactly once in each round because timer intervals are
the same at all the nodes.

As we defined configuration of a system in the abstract model in section 2.1,
we can define configuration of a system in the sensor network model. So, a formal
definition is omitted.

2.3 Self-stabilization

Self-stabilization property is defined as an ability to converge to a correct system
operation in finite time from an arbitrary initial configuration. Let S be a 3-tuple
S = (Γ, F,→), where Γ is a finite set of all configurations, F is a predicate on
sequence of configurations, and→ is a relation on Γ×Γ . A 3-tuple S = (Γ, F,→)
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can be viewed as a transition system defined by given network topology and
algorithm. For any configuration γ, let γ ′ be any configuration that follows γ by
a single step of execution. Then, we denote this transition relation by γ → γ ′.

Definition 1. For any configuration γ0, a computation e(γ0) starting from γ0
is a maximal (possibly infinite) sequence of configurations e(γ0) = γ0, γ1, γ2, ...
such that γt → γt+1 for each t ≥ 0. Here, a computation is maximal if (1) it is
infinite, or (2) it is finite and no node is enabled in the last configuration. ��

In case an initial configuration γ0 is clear from context, we denote the compu-
tation by e instead of e(γ0).

Definition 2. A computation e = γ0, γ1, γ2, ... is legal with respect to legitimacy
predicate F if and only if e satisfies the predicate F . ��

Definition 3. A configuration γ is safe with respect to legitimacy predicate F
if and only if any computation that starts from γ is legal with respect to F . ��

Definition 4. A system S = (Γ, F,→) is (deterministically) self-stabilizing if
and only if, starting from an arbitrary configuration γ ∈ Γ , the system reaches
a safe configuration with respect to F . ��

Definition 5. A system S = (Γ, F,→) is probabilistically self-stabilizing if and
only if, starting from arbitrary configuration γ ∈ Γ , the system reaches a safe
configuration with probability 1. ��

Definition 6. The convergence time of a self-stabilizing algorithm is the num-
ber of rounds required so that the system reaches a safe configuration from an
initial configuration. ��

Definition 7. A self-stabilizing system S = (Γ, F,→) is silent if and only if
once the system reaches a safe configuration, nodes do not change their states.
Otherwise, it is non-silent. ��

For example, a token circulation algorithm is non-silent in a legal computation.
In this paper, we consider non-silent algorithms.

3 Review of Cached Sensornet Transformation (CST)

3.1 Outline of CST

By CST, a self-stabilizing algorithm assuming the abstract model (Figure 1) is
transformed into a program that runs in the sensor network model. Figure 2
shows a structure of a transformed program3. Let us describe the outline of
3 In [5], to deal with message loss, each node maintains a flag for each neighbor in such

a way that the flag becomes on when it receives a state-packet from the corresponding
neighbor, and all the flags becomes off when a node does not receive a state-packet
at expected time from some neighbor; a node takes a step only when all the flags
are on. Because the probability that all the flags are on is small if the probability of
packet loss is not high enough, we do not use such flags and we discuss a simple CST
as shown in Figure 2 in this paper.
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Local variables of node vi

vi.q — the (set of) local variable(s) of original algorithm;
Guarded commands of node vi

∗[ Grd1 → Act1
� Grd2 → Act2

...
� GrdL → ActL

]

Fig. 1. An original algorithm in the abstract model

Local variables of node vi

vi.q — the (set of) local variable(s) of the original algorithm;
vi.C[vk, q] — the cache of vk.q for each neighbor vk ∈ Ni;

Code of node vi

on timer :
Update;
transmit 〈vi.q〉; — broadcast of a state packet

on message 〈q′〉 from vk ∈ Ni : — receipt of a state packet
vi.C[vk, q] := q′;

procedure Update
// For each vk ∈ Ni, reference to vk.q is replaced by vi.C[vk, q].
if (Grd1) then Act1
else if (Grd2) then Act2

...
else if (GrdL) then ActL

Fig. 2. A transformed program by Cached Sensornet Transformation (CST)

the transformed algorithm by CST shown in Figure 2. Let vi.q be a (set of)
local variable(s) of node vi in the original algorithm. Then, in the transformed
algorithm, each vi maintains a cache vi.C[vk, q] of vk.q for each in-neighbor vk ∈
Ni. In the transformed algorithm, each read of vk.q is replaced by a read of the
corresponding cache vi.C[vk, q]. Periodically, by interval timer event, each node
vi locally broadcasts a packet that contains the value(s) of its local variable(s)
vi.q. We call such a message packet state-packet. Each out-neighbor receives a
state-packet independently with probability p. When node vi receives a state-
packet that contains vj .q from its in-neighbor vj , it updates vi.C[vj , q] to cache
the latest value of vj .q. Every computation in the sensor network model is infinite
because timer events infinitely occur at each node.

3.2 Configurations in the Sensor Network Model

We define some terminology for configurations in the sensor network model. Let
SA = (ΓA, FA,→A) be a self-stabilizing system in the abstract model, and let
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SS = (Γ S, F S,→S) be the transformed system in the sensor network model. A
set of configurations Γ S is obtained by augmenting each configuration γA ∈ ΓA

in such a way that a state of a node vi in γS ∈ Γ S is a tuple of (1) the values
of local variables of node vi in γA and (2) the value of local cache vi.C[vk, q] for
each in-neighbor vk ∈ Ni and each local variable q.

Definition 8. Configuration γS ∈ Γ S is an augmentation of configuration γA ∈
ΓA if and only if local state except the caches of node vi in γS is the same as
the one in γA for each vi ∈ V . ��

Definition 9. For any given infinite computation eA = γA
0 , γA

1 , ..., γA
i , ... in the

abstract model, a computation

eS = γS
0,1, γ

S
0,2, ..., γ

S
0,k0

, γS
1,1, γ

S
1,2, ..., γ

S
1,k1

, ..., γS
i,1, γ

S
i,2, ..., γ

S
i,ki

, ...

in the sensor network model is an augmentation of eA if and only if (1) γS
i,j is

an augmentation of γA
i for each i ≥ 0 and 1 ≤ j ≤ ki, (2) γS

i,j →S γS
i,j+1 for

each i ≥ 0 and 1 ≤ j < ki, and (3) γS
i,ki

→S γS
i+1,1 for each i ≥ 0. ��

Definition 10. A computation eS in the sensor network model is legal if and
only if eS is an augmentation of some legal computation eA in the abstract model.

Definition 11. For any configuration γS ∈ Γ S, a configuration γS is cache
coherent for node vi if and only if vj .C[vi, q] = vi.q for each out-neighbor vj of
vi and for each local variable q. A configuration γS is cache coherent if and only
if γS is cache coherent for each node vi ∈ V . ��

Definition 12. A configuration γS ∈ Γ S is cache-coherent augmentation of a
configuration γA ∈ ΓA if and only if γS is an augmentation of γA and γS is
cache coherent. ��

4 Impossibility Result

In this section, we show a counterexample algorithm whose transformed algo-
rithm by CST does not maintain legal computation. The counterexample algo-
rithm in the abstract model (especially, distributed daemon) is shown in Figure 3,
which is a mutual exclusion algorithm for complete networks. This algorithm is
based on the idea of [9].

We explain the outline of this algorithm briefly. A node wishing to enter a
critical section can make a request only when no node is making a request by
raising its request flag (GC2). A node which is making a request can enter critical
section if and only if its node identifier is the smallest among requesting nodes
(GC3). When a node exits critical section, it downs its request flag (GC4). A
safety property of this algorithm is mutual exclusion, i.e., no two nodes enter
critical section simultaneously. Formally, a safety predicate is ∀vi, vj(vi �= vj) :
¬(vi.c ∧ vj .c).
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Constant
Ni: a set of in-neighbor nodes of vi. (Ni = V − {vi})

Local variables of node vi

vi.r : boolean — true iff vi is requesting;
vi.c : boolean — true iff vi is in critical section (CS);

Guarded commands of node vi

∗[ // GC1 : Fix variable inconsistency
¬vi.r ∧ vi.c → vi.c := false;
// GC2 : Make a request if no node is reqesting

� ¬vi.r ∧ ¬vi.c ∧ (∀vj ∈ Ni : ¬vj .r) → vi.r = true;
// GC3 : Enter CS if its priority is the highest

� vi.r ∧ ¬vi.c ∧ (∀vj ∈ Ni : ¬vj .r ∨ vi < vj) → vi.c = true;
// GC4 : Exit CS

� vi.r ∧ vi.c → vi.c = false; vi.r = false;
]

Fig. 3. SSMutex : A mutual exclusion algorithm in the abstract model for complete
networks

Theorem 1. The transformed algorithm of SSMutex by CST is not probabilis-
tically self-stabilizing in the sensor network model.

Proof. We consider the following scenario for two nodes vi and vj . Let us assume
an initial configuration γ0 such that (1) γ0 is a cache-coherent augmentation of
a safe configuration of the original algorithm in the abstract model, and (2) no
node is requesting (r = false) in γ0. Then, these two nodes make requests for
critical section by raising their request flags (r = true). Suppose that each state-
packet that contains the latest value of r is lost. Then, the two nodes enter
critical section at the same time by GC3, because each node has no way to know
that another node is making a request. This computation is illegal. ��

Note that the impossibility does not hold if communication is reliable.

5 Possibility Result

In this section, we show a sufficient condition such that a transformed algorithm
is self-stabilizing. Regardless of whether an original self-stabilizing algorithm
is silent or non-silent, it is probabilistically guaranteed that a computation of a
transformed algorithm by CST reaches a configuration which is a cache-coherent
augmentation of a safe configuration of the original algorithm by simple proba-
bilistic argument (See [6] and the proof of Theorem 2). Then, in case that the
original algorithm is silent, a configuration simply stays safe forever, as studied
in [5,6,7]. In case that the original algorithm is non-silent, however, a config-
uration may deviate from cache-coherent augmentation of a safe configuration
of the original algorithm because of packet loss, and then, behavior of nodes
may not obey specification of the original algorithm, as shown in the previous
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section. Thus, in case of non-silent algorithms, crucial point is the correctness of
behavior of nodes after stabilization. The sufficient condition we present in this
section guarantees equivalence of executions after stabilization in the abstract
model and the sensor network model.

First, we claim that any transformed algorithm does not have any deadlock
configuration in the sensor network model.

Lemma 1. For any algorithm transformed by CST from a non-silent algorithm
the probability such that no node is enabled for infinitely long duration is zero.

��

Next, we claim the sufficient condition we mentioned. To make the discussion in
the proof simple, we assume that at least one node is enabled in any configuration
by Lemma 1.

Theorem 2. The transformed algorithm by CST is probabilistically self-stabiliz-
ing in the sensor network model if an original non-silent self-stabilizing algorithm
in the abstract model satisfies the following two conditions. (1) For any two
nodes vi, vj ∈ V , there is at most one simple path from vi to vj. (2) In any safe
configuration, the number of enabled nodes is one.

Proof. We show the following two properties.

1. Probabilistic convergence property: A system in the sensor network model
eventually reacheswith probability 1 a configuration which is a cache-coherent
augmentation of a safe configuration of the abstract model, and

2. Equivalent computation property: For any computation in the sensor net-
work model starting from a configuration which is a cache-coherent augmen-
tation of a safe configuration, there exists an equivalent computation in the
abstract model.

First, we show property 1, the probabilistic convergence property. As shown in
[6], the probability such that no packet loss does not occur for enough long
time is positive, configuration reaches a cache-coherent augmentation of a safe
configuration of the original algorithm.

Next, we show property 2, the equivalent computation property. Below, with-
out loss of generality, we suppose that initial configuration γ0 is a cache-coherent
augmentation of a safe configuration. Specifically, we show that the following two
properties hold.

– Property 2a. As long as the number of enabled nodes is one, the enabled
node has the correct cache values for each in-neighbor.

– Property 2b. The number of enabled nodes is at most one in any configura-
tion that is reachable from γ0.

These two properties implies that any computation in the sensor network model
is equivalent to some computation in the abstract model. Hence correctness of
an original algorithm in the abstract model is preserved by CST in the sensor
network model.
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Fig. 4. Situations for Property 2a and 2b

We show property 2a. Let γ be any configuration which is reachable from γ0,
and assume that the number of enabled nodes is one from γ0 to γ. Let v be the
enabled node in γ, and let u be the node such that v was enabled by receiving a
state-packet of u. Suppose contrary that v does not have the correct cache value
for some in-neighbor w of v. Note that w �= u because v received a state-packet
of u and the cache at v for u is correct. (See Figure 4(a).)

Since γ0 is cache coherent, w makes a move at least once from γ0 to γ. All
the state-packets of w are not received by v from the last move of w because
otherwise v has the correct cache value for w.

Because a node is enabled as a result of a move of its in-neighbor, there is a
chain of links from w to u, as depicted in Figure 4(a), i.e., (1) after the move
of w(= u0), its out-neighbor, say u1, is enabled, (2) after the move of u1, its
out-neighbor, say u2, is enabled, ..., and (3) after the move of u� (� ≥ 0), its
out-neighbor u is enabled.

Because there are two distinct paths (w, v) and (w, u1, ..., u�, u, v) from w to
v, this is a contradiction. Therefore, as long as the number of enabled nodes is
one, enabled node has correct cache value for each in-neighbor.

We show property 2b. Suppose contrary that two nodes are enabled in config-
uration γt which follows configuration γt−1 in which only one node is enabled.
See Figure 4(b). Let u be the only enabled node in γt−1 and let v be the enabled
node in γt, i.e., u and v are enabled in γt. Let w be a node such that v receives
a state-packet of w and v becomes enabled in γt. This situation occurs in the
following scenario. First, w makes a move, and then, its out-neighbor, say w′,
becomes enabled as a result. By series of moves by nodes with out-neighbor re-
lation4, u is enabled in configuration γt−1. Then, in configuration γt, v receives
a state-packet of w for the first time after the move of w, and then v is enabled.
There are two cases to consider.

– Case 2b-i: None of in-neighbor of v except w makes a move after γ0.
By assumption, w′ is enabled after the move of w, and v is also enabled if v
receives the state-packet of w because it observes the same local states of its

4 First, node w is enabled and makes a move. Next, an out-neighbor w′ of w is enabled
and makes a move. Then, an out-neighbor, say w′′, of w′ is enabled and makes a
move, and so on. Finally, u is enabled.
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in-neighbors as in γ0 except w. This implies that, in the abstract model, both
v and w′ are enabled after the move of w. Since only one node is enabled in
the abstract model, this case does not occur.

– Case 2b-ii: Otherwise, i.e., some in-neighbor v′ of v except w makes a move
after γ0.
• Case 2b-ii-1: w makes a move before the move of v′. In this case, there

is a chain of moves by out-neighbor relation (w, ..., v′). Thus, there is
a path (w, ..., v′, v) from w to v. On the other hand, there is a direct
path (w, v). So, there are two paths from w to v and hence this case
contradicts the assumption.

• Case 2b-ii-2: v′ makes a move before the move of w. In this case, there
is a chain of moves by out-neighbor relation (v′, ..., w). Thus, there is
a path (v′, ..., w, v) from v′ to v. On the other hand, there is a direct
path (v′, v). So, there are two paths from v′ to v and hence this case also
contradicts the assumption.

Therefore, the number of enabled nodes is at most one in any configuration that
is reachable from γ0. ��

6 Convergence Time Analysis : A Case Study

In this section, we consider the token circulation problem on unidirectional
ring network of size n. We present an algorithm, named SSTokenRing, that is
probabilistically self-stabilizing in the sensor network model, and we present a
convergence time analysis of the algorithm. Problem specification of the token
circulation is that only one token is circulated along the ring, and each node
eventually receives the token.

Figure 5 shows the algorithm description of SSTokenRing in the abstract
model, which is based on the idea of token circulation algorithms proposed in
[10,11]. A set of nodes v0, v1, ..., vn−1 is arranged in such a way that an out-
neighbor of vi is vi+1 mod n for each i = 0, 1, ..., n− 1. We say that a node has a
token if it is enabled. By selection of the constant K, there is no configuration
in which no node has a token.

Algorithm SSTokenRing in the abstract model is not self-stabilizing under
adversarial scheduler (cf. [10]). However, it is interesting that the transformed al-
gorithm is probabilistically self-stabilizing in the sensor network model by prob-
abilistic loss of state-packet as we will show shortly. In the abstract model, if
the scheduler is a random one, i.e., a node to be executed is selected uniformly
at random from enabled nodes, it is not difficult to see that the algorithm is
probabilistically self-stabilizing. In this sense, algorithm SSTokenRing falls into
the possible case discussed in Section 5.

6.1 Configuration and Token

First, we explain the behavior of SSTokenRing in the abstract model. One of the
safe configurations of the algorithm in the abstract model is as follows.

(v0.x, v1.x, ..., vn−1.x) = (0, 1, 2, ..., n− 2, 0)
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Constants
vi−1: the predecessor node of vi in the ring.
K = n − 1.

Local variables of node vi

vi.x : integer, 0.., n − 2;
Guarded commands of node vi

∗[ // GC1 : Pass the token
vi.x 	= vi−1.x + 1 (mod K) → vi.x := vi−1.x + 1 (mod K);

]

Fig. 5. SSTokenRing : A token circulation algorithm on unidirectional ring of size n

In this configuration, only v0 is enabled and it has a token. By λA
0 , we denote

this configuration. We define a set of safe configurations in such a way that a
configuration γA is safe if and only if γA is reachable from λA

0 . After v0 makes
a move, we have a configuration (1, 1, 2, ..., n− 2, 0) in which v1 is enabled.

An example of an unsafe configuration of a network with seven nodes is
(1, 3, 1, 2, 3, 3, 4). In this configuration, enabled nodes are v0, v1, v2 and v5 be-
cause each of them does not have a “+1” value of in-neighbor’s value, and hence
there are four tokens at these nodes. When v0 makes a move, the two tokens at
v0 and v1 collide and we obtain a configuration (5, 3, 1, 2, 3, 3, 4) in which enabled
nodes are v1, v2 and v5, i.e., the token at v0 is absorbed by the collision. Note
that, in the abstract model, it is not difficult to see that the number of tokens
never increase.

Next, let us explain safe configurations in the sensor network model. We de-
note a configuration in the sensor network by

((v0.C[vn−1, x], v0.x), (v1.C[v0, x], v1.x), ..., (vn−1.C[vn−2, x], vn−1.x)).

One of safe configurations is ((0, 0), (0, 1), (1, 2), ..., (n− 3, n− 2), (n− 2, 0)), in
which only v0 holds a token because it is enabled. By λS

0 , we denote this config-
uration. We define a set of safe configurations in such a way that a configuration
γS is safe if and only if γS is reachable from λS

0 . For example, a configuration
which is reached by a move by v0 in the configuration shown above and a state-
packet of v0 is lost, i.e., ((0, 1), (0, 1), (1, 2), ..., (n− 3, n − 2), (n − 2, 0)), is also
safe. In this case, we regard that v0 still has a token despite it is disabled. In
general, we say that vi has a token when (1) vi is enabled, or (2) vi+1 does not
have correct cache value of vi, i.e., vi.x �= vi+1.C[vi, x].

The followings are fundamental properties of the transformed SSTokenRing in
the sensor network model.

Lemma 2. In any configuration, at least one node has a token. ��

Lemma 3. The total number of tokens is non-increasing. ��

Lemma 4. In any safe configuration, the total number of tokens is one. ��
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6.2 Convergence Time Analysis

We show an upper bound of the expected convergence time of transformed SSTo-
kenRing by CST. Our analysis is based on observation on random walk of tokens
and their collisions. Initially, there are several tokens. Then, by random walk of
tokens, the number of tokens eventually becomes one by collisions of tokens.

Theorem 3. The expected convergence time of the transformed SSTokenRing by
CST is bounded by O( n2 log n

8p(1−p) ) rounds, where n is the number of nodes and p is
the probability that each state-packet is received.

Proof. First, let us observe random walk of two tokens, say τ1 and τ2 on unidi-
rectional ring. We define the distance of the two tokens as j − i (mod n), where
vi (resp. vj) is the node where τ1 (resp. τ2) locates. With probability 2p(1− p),
increase or decrease of the distance occur at each round, and such an event
occurs every 1/(2p(1− p)) expected rounds.

A random walk of these two tokens continues until they collide, i.e., the dis-
tance of the two tokens becomes 0 or n. This stochastic process is known as
the gambler’s ruin problem. By the analysis of the gambler’s ruin problem, it is
known that the expected number of steps that a gambler wins (distance n) or
lose (distance 0) is at most n2/4. Hence, n2/(8p(1 − p)) is an upper bound of
the expected number of rounds for the two tokens collide.

Next, we derive an upper bound of the expected number of rounds until
the number of tokens becomes one from arbitrary initial configuration. Suppose
that there are � (> 2) tokens τ1, τ2, ..., τ� on a ring in this order in an initial
configuration. Let us observe collision of two tokens τ1 and τ��/2. If they collide
with distance 0, tokens τ2, ..., τ��/2−1 disappear, and if they collide with distance
n, tokens τ��/2+1, ..., τ�−1 disappear. Thus, by collision of τ1 and τ��/2, at least
!�/2"−1 (if n is odd) or �/2 (if n is even) tokens disappear. Thus, at most �/2+1
tokens survive by collision of τ1 and τ��/2.

The number of tokens becomes one by repeating such token collisions dis-
cussed above at most O(log n) times because the number of tokens is at most n in
any initial configuration. Thus, we have an upper bound O(n2 logn/(8p(1− p))).

��

7 Conclusion

In this paper, we discussed CST transformation of non-silent self-stabilizing al-
gorithms for sensor networks. Our sufficient condition seems to be too strong,
and finding a weaker sufficient condition is a future task. Improvement of the
bound of convergence time of the token circulation algorithm is also a future
task.
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Abstract. We consider a malicious unfair adversary which generates an
undetectable fault by local checks, called an intentional fault. Though the
possibility of such a fault has ever been suggested, details of its influence
and handling are unknown. We assume the intentional fault in a self-
stabilizing mutual exclusion protocol, a hybrid of previously proposed
ones that complement each other. In the hybrid protocol, we can cope
with the fault by using optional strategies, whether or not sending a
minor token, which plays a role of preventing the contamination from
spreading. We construct a payoff matrix between a group of privileged
processes and an adversary, and consider a multistage two-person zero
sum game. We interpret the game in two ways: whether it continues
or replays the game after an ME(mutual exclusion)-violating repair, in
which more than one unexpected privileges are given. For each case, we
evaluate the ability of malicious unfair adversary by using a mixed strat-
egy. Our idea is also considered as a general framework for strengthening
an algorithm against an intentional fault.

Keywords: self-stabilization, mutual exclusion, safety under conver-
gence, intentional fault model, game theory, multistage two-person zero
sum game, unfair scheduler.

1 Introduction

Motivation. Studies on self-stabilization have been extended to vast areas in
recent years. One of the areas, which we focus on here, is how to keep a system
safe under convergence in self-stabilizing mutual exclusion. The requirement of
mutual exclusion is to allow at most one privileged process at any time, called
legitimate configurations. Starting from an arbitrary configuration, it is difficult
to keep it fully legitimate under convergence. For example, it is known that
Dijkstra’s 3-state protocol [2] guarantees recovery from arbitrary initial config-
urations in an n-process ring as illustrated in Fig. 1.
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Fig. 1. Dijkstra’s 3-State Protocol

Dijkstra’s 3-state protocol (addition and subtraction : modulo 3)
process p0: v0 + 1 = v1 → v0 := v0 − 1
process pn−1: (vn−2 = v0) ∧ (vn−1 �= vn−2 + 1) → vn−1 := vn−2 + 1
process pi (i �= 0, n− 1): (vi + 1 = vi−1) ∨ (vi + 1 = vi+1) → vi := vi + 1

In the left hand of the figure, the four processes p0, p1, p2 and p3 forming a ring,
have states (v0, v1, v2, v3) = (2, 1, 0, 2) and move one by one according to the
protocol. An example of state transition is depicted from (a) through (c), where
each state is represented by the location of nodes; and privileged processes by
black nodes. We call the transition as in Fig. 1 “ME(mutual exclusion)-violating
repair”, where more than one privileges are unexpectedly given to processes
under repairing. Hence, the requirement of mutual exclusion is violated tem-
porarily. Such violation occurs because each process acquires a privilege by only
the difference of neighboring states in a small domain {0, 1, 2}.

Kiniwa et al. [14, 15, 17] solved this problem by enlarging the domain from
{0, 1, 2} to R = {0, . . . , 3L − 1} for a large integer L - n. Every non-faulty
state must take a special value in I = {0, L, 2L}, called bases. Furthermore,
a non-faulty process i (�= 0, n − 1) acquires a privilege when it has a state
less than a neighboring state by L (mod 3L). Any state other than I, which
is easily detected by local checks, is a faulty state. If we consider again the
states (v0, v1, v2, v3) = (2, 1, 0, 2) in the large domain R, only v2 ∈ I has a
base state and other processes have non-base states, i.e., faulty states. Since
the three bases are defined in a large domain, the mutual exclusion is almost
safe if we assume that faulty states are uniformly distributed over the range.
Such an assumption is called a random fault model. As far as we know, every
conventional argument concerning safety under convergence has used this model
[8, 14, 22]. However, there is clearly weakness in the enlarged domain system.
Suppose (v0, v1, v2, v3) = (2L,L, 0, 2L) in R. Then, both p1 and p2 have privileges
even though every process has a base state. If we assume that an adversary takes
aim at the weakness of states, e.g., perturbation limited to I as above, it is called
an intentional fault model. Yen [22] has ever suggested that

“In the random failure model, a transient failure can bring the system
into any illegitimate state with equal probability”,

and that
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“In the malicious failure model, some faulty processors may maliciously
try to violate the system legitimacy without being detected by local
checks and subsequently cause critical damages”.

The term “malicious failure” has been used extensively in the sense of Byzantine
failure [21]. So we rename Yen’s malicious failure model an intentional fault
model. The program of a process can be changed in the Byzantine failure model,
whereas the program of a process cannot be changed in the intentional fault
model, and only the transient faults are limited to the weakness of the program
as if it had malicious intent.

To cope with the intentional fault, we believe that a game theoretic analysis,
two-person zero sum game, is useful. Since many processes obtain a privilege as
a mutual exclusion system, they are grouped together, called player A. On the
other hand, the malicious adversary is called player B. The advantage of player
A, corresponding to the disadvantage of player B, is shared by the processes.
In our system, the player A has two strategies, whether or not sending a minor
token, while the player B has five strategies, not causing a fault, causing a base
fault, a non-base fault, a minor fault and their mixed faults. The minor token
[7, 13], introduced as a coupled use with a major token, plays a role of checking
every process and repairing the base fault which is undetectable by local checks.
In contrast, the non-base fault is detectable by local checks. With the help of
game theory, we derive optimal mixed strategies of player A and player B.

Related Work. As Dasgupta et al. [1] pointed out, only little work mixing
game theory with self-stabilization has been done. We just know a technique,
called a scheduler-luck game, for analyzing the performance of randomized self-
stabilization [3]. In the context of distributed non-stabilizing algorithms, how-
ever, the behavior of selfish agents has been extensively studied [19], triggered
by Koutsoupias and Papadimitriou [18]. They used a term “price of anarchy”
to represent a ratio of the largest social welfare achievable to the least social
welfare achieved at any Nash equilibrium. A similar framework was preserved in
the study of selfish stabilization [1]. Our work, however, owes its technical base
to the conventional game theory [9, 20].

The mutual exclusion problem has been one of main topics in self-stabilization
since Dijkstra’s work [2]. Several new ideas originated from the problem. One of
them is an unfair scheduler [10, 11, 12]. Another is the safety under convergence,
e.g., superstabilization [7, 13], cryptography [22], fault containment [4, 5, 6] and
enlargement of state space [14, 15, 17, 22]. However, as stated above, the safety
of each protocol was considered by only the random fault model.

Contributions. Our goal is to develop a game theoretic analysis of the inten-
tional fault model. Our contribution includes

1. the construction of an intentional fault model: We do not assume that the
faulty state takes any value over the domain with equal probability. The
intentional fault may make the value undetectable by local checks. The study
on such an intentional fault model is new.
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2. a game theoretic analysis: Grouping a set of privileged processes enables us
to consider a multistage two-person zero sum game. The formulation of this
game in the self-stabilization is new, and

3. the suggestion of a framework: We propose a framework for strengthening an
algorithm against an intentional fault which is undetectable by local checks.
The method of strengthening an algorithm is new.

The rest of this paper is organized as follows. Section 2 states our model, intro-
duces underlying protocols, and then presents our protocol. Section 3 provides
an analysis of the intentional fault model. First, Section 3.1 considers that a
game is continued after every ME-violating repair. Then, Section 3.2 considers
that the game is replayed after every ME-violating repair. Finally, Section 4
concludes the paper.

2 Our Method

2.1 Self-stabilizing Model

In this section we describe our method for the mutual exclusion problem on
unidirectional rings. A ring consists of n processes P = {0, 1, . . . , n − 1} of fi-
nite state machines, where process i is connected with its neighboring process
i− 1 mod n, called a predecessor, and i+ 1 mod n, called a successor. We also
call “the predecessor of the predecessor of i” predecessors, and so forth. Let Σi be
a finite state space of process i. Each process i has a state σi ∈ Σi consisting of a
shared set of states σi = (major i,minor i,wait i), where major i = (vmaj i, rmaj i)
and minor i = (vmin i, rmini) represent tokens for giving a privilege to one pro-
cess in P . For an integer H > n, let RH = [0, H) = {x | 0 ≤ x < H} be a
set of real values, over which a primary variable vmaj i ranges. Let a function ψ
map vmaj i ∈ RH into h digits. That is, ψ(vmaj i) is represented by h integers
which are stored in an array1. In the domain RH , we define H specified integer
values IH = {0, 1, . . . , H − 1}, called bases, such that every correct vmaj i must
take these values (as a necessary condition). A secondary integer variable vmini

ranges over IH (not RH). The random bit variables rmaj i, rmini ∈ {0, . . . , L},
where L- n, are used for recognizing a true token with the minimum value.

In addition, σi contains an auxiliary boolean variable wait i for waiting the
process with a major token until getting also a minor token. A configuration
c is an n-dimensional vector of states c = (σ0, σ1, . . . , σn−1). The set of all
configurations, a global state space, is denoted by Ω = Σ0 × Σ1 × · · · × Σn−1.
Notice that the computation for process i± 1 uses “mod n”. For simplicity, we
drop the notation of “mod n” in the sequel. We assume a state-reading model
as in [2], that is, process i can directly read (but not write) the states from its
predecessor. We assume an unfair C-daemon (central daemon) scheduler. Every
process has a program of internal computation, if Gi then Ai or denoted by
Gi → Ai, where Gi is called a guard and Ai an action. If Gi is true, then the

1 To avoid a computational error in real numbers, we map the value into h digits.
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process i is said to be enabled. The unfair scheduler does not select every enabled
process infinitely often.

We consider a critical section in which only a process stays for access to a
single resource. We say that a process has a privilege if it gains admittance to
the critical section. Unlike other papers [2, 13], we distinguish the terms between
enabled and privileged because not all enabled processes can get into the critical
section in our protocol. Let Λ ⊂ Ω be a set of legitimate configurations as given
in the following definition.

Definition 1. A configuration c is legitimate (c ∈ Λ) if

(1) every process i has a base vmaj i ∈ IH ,
(2) there exists at most one major i in c such that vmaj i �= vmaj i−1 + 1, and
(3) there exists at most one minor i in c such that vmin i �= vmini−1 + 1. ��

In Definition 1, we call the fault which does not satisfy (1) a non-base fault,
and the fault which does not satisfy (2) but satisfies (1) a base fault. We say
that process i has a major (resp. minor) token if vmaj i �= vmaj i−1 + 1 (resp.
vmini �= vmin i−1 + 1), and that process i sends a major (resp. minor) token to
i + 1 if vmaj i := vmaj i−1 + 1 (resp. vmin i := vmini−1 + 1) is executed in any
configuration. In our protocol, process i has a privilege in two cases. First, if
both a major token and a minor token are sent from process i − 1, it obtains
a privilege with some probability. Second, if process i has kept a major token
and only a minor token is sent from process i − 1, it obtains a privilege with
probability 1.

2.2 Underlying Protocols

Our protocol is constructed based on three protocols. The first underlying pro-
tocol was proposed by Herman [7]. The method guarantees that the system
stabilizes from any 1-faulty configuration, in which the states of at most one
process differs from a legitimate configuration, except that the faulty process
has a temporary spurious privilege. The feature of his method is that a major
token process circulates an additional token, called a minor token, before acquir-
ing a privilege as illustrated in Fig. 2. When the minor token meets a spurious
privilege, it corrects the fault. When the minor token meets the process with a
major token after a circulation, the process obtains a privilege.

Superstabilizing Protocol [7, 13]

Predicates
Minor i ≡ (vmin i = vmini−1 ∧ i = 0) ∨ (vmin i �= vmini−1 ∧ i �= 0)
Major i ≡ (vmaj i = vmaj i−1 ∧ i = 0) ∨ (vmaj i �= vmaj i−1 ∧ i �= 0)

Macros
SendMinor i ≡ vmin i := vmin i−1+1 if(i = 0), vmini := vmini−1 otherwise
SendMajor i ≡ vmaj i := vmaj i−1+1 if(i = 0), vmaj i := vmaj i−1 otherwise
Privilege i ≡ perform critical section; SendMinor i; SendMajor i;
wait i := false
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Fig. 2. Superstabilizing Protocol

Decision i ≡ Privilege iif(wait i = true), wait i := true; SendMinor i other-
wise

Rules

Minor i ∧ ¬Major i → SendMinor i

Minor i ∧Major i → Decision i

The second underlying protocol, called an enlarged domain protocol2, was pro-
posed by Kiniwa et al. [15, 17]. Their method guarantees that faulty processes
can be detected and rapidly corrected with high probability. The feature is that
the enlargement of a state space of Dijkstra’s 3-state protocol as stated in Sec-
tion 1 (see Fig. 3). Since a base fault violates the requirement of mutual exclusion
and it is undetectable by local checks, we consider the base fault as an intentional
fault.

Fig. 3. Enlarged Domain Protocol

Enlarged Domain Protocol [17]

(vi �∈ I) ∧ (vi+1 ∈ I)→ vi := vi+1 ; (vi �∈ I) ∧ (vi−1 ∈ I)→ vi := vi−1
process 0: (v0 + L = v1) ∧ (v0 ∈ I)→ v0 := v0 − L
process n− 1: (vn−2 = v0) ∧ (vn−1 �= vn−2 + L) ∧ (vn−1 ∈ I) → vn−1 :=

vn−2 + L
process i (�= 0, n− 1): (vi+L = vi−1)∨(vi+L = vi+1)∧(vi ∈ I)→ vi := vi+L

2 For simplicity, deadlock resolution is omitted.
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Table 1. Characteristics of Two Underlying Protocols

advantage disadvantage

Superstabilizing Protocol tolerant to a base fault
costly (minor token

circulation)

Enlarged Domain Protocol
tolerant to non-base faults,
cheap (no minor token)

weak against base faults
(ME-violating repair)

The third underlying protocol was proposed by Johnen[10]. The method guar-
antees that each processor, once stabilized, obtains a token every n computation
steps. The feature is that the protocol locks a spurious token forever and it is
eventually caught up. Thus, the unfair scheduler has no other choice to move a
true token. The method is not effective for the intentional fault, but we use it for
tolerating unfair schedulers. Due to the lack of space, we omit the description of
the Johnen’s protocol.

We briefly summarize the characteristics of the first two underlying protocols
in Table 1.

2.3 Description of Our Protocol

Here we present our protocol that combines the previous three protocols3. Our
method guarantees both advantages in the first two protocols. The feature of
our method is that the major token process has the option of whether or not
sending a minor token. If the minor token is sent, called a strategy ST, the
spreading of base fault contamination can be prevented in any 1-faulty con-
figuration. However, ST is costly because it requires the major token process
to wait the circulation of a minor token. If the minor token is not sent, called
a strategy NS, the base fault contamination may spread through the system.
A non-base fault can be corrected without any aid of minor tokens. Our aim
is to know optimal mixed strategies, the probabilities of ST and NS. Notice
that rand{0 . . .L} picks an integer in {0 . . .L} at random, while rand[0, 1)
picks a real number in [0, 1) = {x | 0 ≤ x < 1} at random. For simplicity,
we omit ActMajor i, WrongMajor i and SetRminor i because they are similar to
ActMinor i, WrongMinor i and SetRmajor i, respectively. Though the computa-
tion for vmaj i and vmin i uses “mod H”, we drop the notation of “mod H” for
simplicity.

Our protocol

Predicates
ActMinor i ≡ (vmini �= vmini−1 + 1) ∧ (vmin i �= 0 ∨ (rmin i−1 ≤ rmin i))
WrongMinor i ≡ (vmin i = vmin i−1 + 1) ∧ (rmin i �= rmin i−1) ∧ (vmin i �= 0)
Resettablei ≡ (vmaj i �∈ IH ∧ vmaj i−1 ∈ IH) ∨ (¬ActMinor i ∧ActMajor i ∧

wait i = false)
Deadlock i ≡ (ActMinor i ∧ (wait i = true)) ∧ (vmaj i, vmaj i−1 �∈ IH)

3 More precisely, we enlarge the state space of Dijkstra’s K-state protocol[2].
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Macros
NewMinor i ≡ vmini := vmini−1+1; rmini := rand{0 . . .L}; wait i := true
SetRmajor i ≡ rmaj i := rand{0 . . .L} if (vmaj i−1 = H − 1),

rmaj i := rmaj i−1 otherwise
PassTokens i ≡ perform critical section;

(vmin i, vmaj i) := (vmini−1 + 1, vmaj i−1 + 1); wait i := false
Decision i ≡ PassTokens i if (wait i = true) ∨ (rand[0, 1) > p),

NewMinor i else if (rand[0, 1) ≤ p)
CorrectBit i ≡ rmini := rmini−1 if WrongMinor i,

rmaj i := rmaj i−1 if WrongMajor i

Rules

ActMinor i ∧ ¬ActMajor i → vmini := vmini−1 + 1; SetRminor i (1)
ActMinor i ∧ ActMajor i → Decision i; SetRmajor i (2)

WrongMinor i ∨WrongMajor i → CorrectBit i (3)
Resettablei → vmaj i := vmaj i−1 + 1 (4)
Deadlock i → vmaj i := rand{0 . . .H − 1} (5)

The predicates ActMinor i and ActMajor i describe the unlocked true tokens
for the minor token and the major token, respectively. So the rule (1) moves
the process with only a minor token, and the rule (2) moves the process with
both a minor token and a major token. Both SetRminor i and SetRmajor i set
the random bit variables in order to send the tokens to the next process. The
rule (3) is the correcting rule of the random bits. The rule (4) resets a non-base
state. In addition, the rule (5) prevents a deadlock. For lack of space, we omit
the correctness proof of our protocol.

3 Game Theoretic Analysis

Our Setting. In this section, we analyze the intentional fault which is unde-
tectable by local checks in our protocol. We summarize our setting as follows.

– We consider a multistage two-person zero sum game played by a set of priv-
ileged processes, called player A, and an adversary, called player B. Since a
privilege is passed from one process to another, the process playing the role
of player A also changes from one to another. We consider a protocol as a
multistage game so that we can evaluate the mean costs of players A and B.

– We call the time interval during which a process holds a true privilege a stage.
The unit stage begins when a process obtains a true privilege and terminates
when any fault is removed and the new process obtains a true privilege. The
player B can generate faults at most once in each stage. Both the player A
and the player B cannot know other player’s strategy in advance. A game is
represented by the number of remaining stages out of m stages in total.
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– A privileged process makes a choice whether or not sending a minor token.
The minor token plays a role of preventing contamination from spreading.
The reward of detecting a base fault is α and the damage of a base fault is
β relative to the cost 1 of not sending a minor token when no fault occurs.
On the other hand, the cost of sending a minor token (ST) takes about n
times larger than not sending a minor token (NS).

– The goal of player A is to maximize the reward of player A, shared by a set
of privileged processes, through the m stages. The mixed strategy of player
A consists of sending a minor token (ST) with probability p and not sending
a minor token (NS) with probability 1 − p. On the other hand, the mixed
strategy of player B consists of causing no faults, base faults, non-base faults,
minor faults and their mixed faults with some probabilities.

Since the importance of mutual exclusion can be interpreted in various ways, we
consider it from two points of view (Sections 3.1 and 3.2). First, in Section 3.1,
we assume that the importance of mutual exclusion is not so crucial, and thus
the game is continued after the ME-violating repair. Next, in Section 3.2, we
assume that the importance of mutual exclusion is crucial, and thus the game is
replayed after the ME-violating repair.

Estimation of Costs. To derive each cost, we have to make some assumptions.
First, we assume the following fact according to [11, 12].

Assumption 1. The scheduler cannot control the random bit in the protocol.
��

Any fault may actually occur at any time. Then, there could be a case where
the fault cannot be detected even if a minor token is sent — the fault occurs
after the minor token is passed over. For simplicity, we neglect such a case and
every fault is always detected when the minor token is sent.

Assumption 2. Every fault (if any) occurs in the beginning of each stage. ��

The interval time of each step may actually different. Then, it would be very
difficult to estimate the cost of each strategy. We consider that the following
assumption can be used because we iterate many stages.

Assumption 3. The interval time of each step is almost equal. ��

We call only a fault with respect to a minor (resp. major) token a minor fault
(resp. major fault). Fig. 4 shows the worst cost of the minor fault. In Fig. 4(a),
the unfair adversary sets every different rmin value in the ascending order from
process i+1 to its successors. Then, the adversary moves processes from process
i and its predecessors. After all the rmin values have been repaired (Fig. 4(b)),
that is, the minimum value is propagated, vmin values circulate the ring twice
(Fig. 4(c)) in order to confirm the true (minimum valued) token. It takes n(n−
1)/2 steps to repair the rmin values and 2n−1 steps to repair the fault on vmin.
Let k = n(n− 1)/2 + (2n− 1) = (n2 + 3n− 2)/2.
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Fig. 4. Cost of Minor Fault (rmin values are illustrated in nodes)

Suppose that the player A sends a minor token (ST). There are five cases.

– If there is no fault, the circulation steps n take a cost −n of player A.
– If there are base faults, the reward for detecting the faults is α and the

circulation cost is −n.
– If there are non-base faults, it takes a reset cost and a circulation cost −2n.
– If there are both major faults and minor faults, it gains the reward α for

detecting the faults and takes −k = −(n2 + 3n− 2)/2.
– If there are only minor faults, it takes −k = −(n2 + 3n− 2)/2.

Next, suppose that the player A does not send a minor token (NS).

– If there is no fault, we define the reward as 1.
– If there are base faults, we define the cost as −β.
– If there are non-base faults, it takes a reset cost −n.
– If there are minor faults, the cost is fewer than the one for sending a minor

token by 2n− 1.

3.1 Continuing Game after ME-violating Repair

One Stage Game. To begin with, we consider only one stage, i.e., m = 1. The
payoff matrix is summarized as follows. Each row means player A’s strategy and
each column means player B’s strategy.

non-fault base fault non-base fault major+minor fault minor fault
ST −n α− n −2n α− k −k
NS 1 −β −n (2n− 1) + α− k (2n− 1)− k

We can exclude the columns of non-fault, non-base fault and major+minor fault
because they are dominated by the column of minor fault. Thus, we obtain a
simplified payoff matrix as follows.

base fault minor fault
ST α− n −k
NS −β (2n− 1)− k
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Let a = (p, 1− p) be the mixed strategy of player A, that is, player A takes the
strategy ST with probability p and the strategy NS with probability 1−p. Then
the expected payoffs E(a, base fault) and E(a,minor fault) of player A against
the pure strategies {base fault, minor fault} of player B are

E(a, base fault) = p(α− n) + (1− p)(−β) = p(α + β − n)− β, (6)
E(a,minor fault) = p(−k) + (1− p)(2n− 1− k) = −(2n− 1)p + 2n− 1− k (7)

Fig. 5. Maximin Strategy (player B’s optimal counterstrategy : dotted line)

Suppose in Fig. 5 that 2n− 1 − k = (n− n2)/2 > −β, where two lines intersect
in 0 ≤ p ≤ 1. Since player A is a maximizer, the optimal strategy of player A,
derived from the intersection of (6) and (7), is

a∗ =
(
β + 2n− 1− k

α + β + n− 1
,

α− n + k

α + β + n− 1

)
.

The game value is u−(β+u)(k+u)/(α+β+n−1) for u = 2n−1−k. Since player
B does not take the non-fault strategy, let b = (q, 1− q) be the mixed strategy of
player B, that is, player B takes the base fault strategy with probability q and
the minor fault strategy with probability 1 − q. Then, the expected payoffs of
player B against the pure strategies of player A are

E(b, ST) = q(α− n) + (1− q)(−k) and (8)
E(b,NS) = q(−β) + (1− q)(2n− 1− k). (9)

By considering the intersection of (8) and (9), the optimal strategy of player B
can be derived as

b∗ =
(

2n− 1
α + β + n− 1

,
α + β − n

α + β + n− 1

)
.

The minimax value is (2n− 1)(α + k − n)/(α + β + n− 1)− k.
Next, suppose in Fig. 5 that 2n−1−k = (n−n2)/2 ≤ −β, where two lines do

not intersect in 0 ≤ p ≤ 1. Then, the maximin strategy of player A is a∗ = (0, 1)
and the minimax strategy of player B is b∗ = (1, 0). For simplicity, we assume
(n− n2)/2 > −β in the sequel.



454 J. Kiniwa and K. Kikuta

Multistage Game. Next, we consider multiple stages of our game. Based on
the one stage game, the multistage game Γ (m) for m > 1 can be expressed as
follows.

Γ (m) =
[
α− n + Γ (m− 1) −k + Γ (m− 1)
−β + Γ (m− 1) 2n− 1− k + Γ (m− 1)

]
Then, the game value vm for Γ (m) can be easily solved as follows. Notice that
v0 = 0 holds because there is no reward/cost in playing no game.

vm = val
[
α− n + vm−1 − k + vm−1
−β + vm−1 2n− 1− k + vm−1

]
= vm−1 + u− (β + u)(k + u)

α + β + n− 1

= m

(
−n(n− 1)

2
− (β − n(n− 1)/2) (2n− 1)

α + β + n− 1

)
.

Similar to the argument for m = 1, the optimal strategies of players A and B
are

a∗ =
(
β − n(n− 1)/2
α + β + n− 1

,
α + (n + 2)(n− 1)/2

α + β + n− 1

)
and

b∗ =
(

2n− 1
α + β + n− 1

,
α + β − n

α + β + n− 1

)
,

respectively.

3.2 Replaying Game after ME-violating Repair

If ME-violating repair begins, we consider here that the damage of ME-violation
can be undone when our game is replayed. Based on the payoff matrix for m = 1
in Section 3.1, we start with a multistage game. Since the cases of non-fault,
non-base fault and major+minor fault can be excluded, the game Γ (m) is

Γ (m) =
[
α− n + Γ (m− 1) − k + Γ (m− 1)
−β + Γ (m) (2n− 1)− k + Γ (m− 1)

]
.

Hence, the game value vm is represented by

vm = val
[

α− n + vm−1 − k + vm−1
−β + vm (2n− 1)− k + vm−1

]
,

where the game value v0 = 0 because there is no reward/cost in playing no game.
The expected payoffs of player A’s mixed strategy a = (p, 1−p) against player

B’s pure strategies are

E(a, base fault) = p(α− n + vm−1) + (1− p)(−β + vm) and
E(a,minor fault) = p(−k + vm−1) + (1− p){(2n− 1)− k + vm−1}.
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Then, the intersection of them is p = (β+2n−1−k−(vm−vm−1))/(α+β+n−
1− (vm − vm−1)). Since vm − vm−1 = (α + β − n)− β/p from E(a, base fault),

um = (α + β − n)− β · (α + β + n− 1)− um

(β + 2n− 1− k)− um

by using um = vm−vm−1. Hence (α−n−um)(β+2n−1−k−um) = β(α−n+k).
By using x = α−n−um and c = β−α+3n−1−k, we have x2+cx−β(α−n+k) =
0. Thus, x = {−c±

√
c2 + 4β(α− n + k)}/2. Let x = γ, δ (γ < 0 < δ). Suppose

x = γ < 0. Since vm − vm−1 > α − n, a contradiction β(1 − 1/p) > 0 for p < 1
occurs. Thus, x = δ > 0 and um = α− n− δ, i.e.,

p =
β − α + 3n− 1− k + δ

β + 2n− 1 + δ
.

Thus we obtain vm = v0 + m(α− n− δ) = m(α − n− δ). The optimal strategy
of player A is

a∗ =
(
β − α− n(n− 3)/2 + δ

β + 2n− 1 + δ
,
α + (n + 2)(n− 1)/2

β + 2n− 1 + δ

)
,

where

δ =
1
2
{−c+

√
c2 + 4β(α + (n + 2)(n− 1)/2)} and c = β−α−n(n−3)/2. (10)

On the other hand, the expected payoffs of player B against the pure strategies
of player A are

E(b, ST) = q(α − n + vm−1) + (1− q)(−k + vm−1) and (11)
E(b,NS) = q(−β + vm) + (1− q)(2n− 1− k + vm−1). (12)

By considering the intersection of (11) and (12), the optimal strategy of player
B can be derived as

b∗ =
(

2n− 1
β + 2n− 1 + δ

,
β + δ

β + 2n− 1 + δ

)
,

where δ satisfies (10).

4 Conclusion

In this paper, we developed not only a game theoretic analysis for an intentional
fault, but also a general framework for strengthening an algorithm against the
fault. The method is

1. develop two algorithms that complement each other,
2. combine them and specify their strategies to be executed with some

probabilities,



456 J. Kiniwa and K. Kikuta

3. construct a payoff matrix against an adversary, and
4. determine the maximin value and an optimal strategy.

In our analysis, we assumed a general setting that includes a reward α and a
cost β. If we simplify them, e.g., α = β, we obtain an intuitive result. That is,
in the case the game is continued after ME-violating repair, player A’s optimal
strategy is

a∗ =
(
α− n(n− 1)/2

2α + n− 1
,
α + (n + 2)(n− 1)/2

2α + n− 1

)
.

Thus, if α is sufficiently larger than n2, the optimal strategy in our protocol
is approximately a∗ � (1/2, 1/2). Or if α is almost equal to n2, the optimal
strategy is a∗ � (1/4, 3/4).
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Abstract. We study robustness issues of basic exploration tasks of sim-
ple robots inside a polygon P when sensors provide possibly faulty in-
formation about the unlabelled environment P . Ideally, the simple robot
we consider is able to sense the number and the order of visible ver-
tices, and can move to any such visible vertex. Additionally, the robot
senses whether two visible vertices form an edge of P . We call this sens-
ing a combinatorial vision. The robot can use pebbles to mark vertices.
If there is a visible vertex with a pebble, the robot knows (senses) the
index of this vertex in the list of visible vertices in counterclockwise or-
der. It has been shown [1] that such a simple robot, using one pebble,
can virtually label the visible vertices with their global indices, and nav-
igate consistently in P . This allows, for example, to compute the map
or a triangulation of P . In this paper we revisit some of these computa-
tional tasks in a faulty environment, in that we model situations where
the sensors “see” two visible vertices as one vertex. In such a situation,
we show that a simple robot with one pebble cannot even compute the
number of vertices of P . We conjecture (and discuss) that this is neither
possible with two pebbles. We then present an algorithm that uses three
pebbles of two types, and allows the simple robot to count the vertices
of P . Using this algorithm as a subroutine, we present algorithms that
reconstruct the map of P , as well as the correct visibility at every vertex
of P .

1 Introduction

Nowadays one of the main research areas in microrobotics is the study of sim-
ple mobile autonomous robots. The recent technological development made it
possible to build small mobile robots with simple sensing and computational
capabilities at a very low cost, which has launched an interest in the study of
distributed robotic systems – computation with swarms of robots, not unlike
the computational paradigm of wireless sensor networks (where a lot of sim-
ple, small and inexpensive devices are spread in the environment, the devices
� The work was done while the author was an internship student at ETH Zurich.

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 458–471, 2009.
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self-deploy in a working wireless network, gather data from the environment
and provide simple computational tasks). Simple robots promise to bring mo-
bile computational capabilities into areas where previous approaches (usually of
bulky construction) are not feasible or cost-effective. The main advantages are
quick and easy deployment, scalability, and cost-effectiveness. This new concept
raises new research problems, as the classical schemes designed for centrally op-
erated, or overwhelmingly equipped robots are inapplicable to the lightweight
and/or distributed computational models of simple robots.

In this paper we consider one particular model of simple robots, the so called
simple combinatorial robot. In this model the robot is modeled as a moving
point inside a simple polygon P , and the sensing provides only “combinatorial”
information about the surroundings. In particular, the robot does not sense any
metric information (such as angles, distances, coordinates, or direction). Also,
the robot can only move to visible vertices. Study of simple robots with possibly
minimum requirements on the sensed information is an attractive topic both in
theory and practice, as minimalistic assumptions provide robots that are less
susceptible to failures, they are robust against sensing uncertainty and can be
very inexpensive to build. In theory, a minimalistic model allows a worst-case
computational analysis and provides insights about complexity of various tasks.

The simple combinatorial robot was first defined and studied by Suri et al. [1].
The robot operates inside a polygon P . We denote the set of vertices of the
polygon P by V = {v0, v1, . . . , vn−1}, where two vertices vi and vi+1, i ≥ 0,
form an edge ei = vi, vi+1 of P .1 A visible vertex of a vertex v is every vertex u
of the polygon for which the line uv lies in the polygon P . Similarly, for a robot
at vertex v, we say that vertex u is visible to the robot. The robot, initially
placed at vertex v0, can only move to a visible vertex, and while moving, the
robot does not sense anything about the environment. When the robot lands at
a vertex of P , it senses all visible vertices, but only the presence of vertices –
the vertices are unlabelled. The robot senses the vertices in a cyclic order, which
is the only way the robot can distinguish the vertices from each other. Thus, a
movement operation of the robot is simply of the form “move to the i-th visible
vertex”. The order of visible vertices is assumed to be counterclockwise (ccw).
Additionally, the robot senses whether two visible vertices form a boundary edge
of P . Positioned at vertex v, this is modelled by a combinatorial visibility vector
cvv(v) = (c0, . . . , ck), which is a binary vector that encodes, given there are k+1
visible vertices, whether the i-th and (i+ 1)-th visible vertex, i = 0, . . . , k, form
an edge of P (ci = 1) or not (ci = 0). The convention is that the vertex v is
visible to itself, and v is the 0-th visible vertex of v. Figure 1 illustrates the
concept of cvv’s. The robot can use pebbles to mark vertices. If there is a visible
vertex with a pebble, the robot also senses the index of this vertex in the list
of visible vertices in ccw order. In case the robot uses pebbles of different types,
the robot also senses the type of the pebble. Naturally, the goal of computation
with pebbles is to use few pebbles and few different types of pebbles.

1 To avoid notational overhead, we assume all operations on the indices to be modulo
the corresponding number (n in this case).
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P

v0

v1 v2

v3

v4

v5

v6

P

R

1

2

3

0

Fig. 1. The left figure depicts a polygon P on vertices v0, . . . , v6. On the right figure, a
robot R is placed on vertex v0 of the same polygon. The visible region of the polygon
is shaded. The visible vertices (ordered ccw from the robot’s position) have only local
identifiers 0, 1, 2, and 3 (no global information) stating their position in the ccw order,
and the combinatorial visibility vector of v0 is cvv(v0) = (1, 0, 0, 1), as the visible
vertices 0, 1 form an edge, vertices 1, 2 form a diagonal, vertices 2, 3 form a diagonal,
and vertices 3, 0 form an edge of P .

To understand capabilities of minimalistic robots, one studies what problems
are solvable and which not, i.e., one is interested in the possibility only, and
does not primarily aim for the best running time of algorithms. Learning and
exploring the environment is a prime problem for any robotic system. The results
of Suri et al. [1] show that a simple combinatorial robot without a pebble can
decide whether the polygon P is convex. On the other hand, without a pebble the
robot cannot count the number of vertices, as shows the result of [2]. Allowing
the robot to use one pebble, the robot can virtually label the vertices of P and
construct a map of P , i.e., the visibility graph G = (Vvis, Evis) of P , a graph
with Vvis = V and with an edge between every two vertices that are visible
to each other in P . This then allows the robot to consistently navigate inside
the polygon, and, for example, compute a triangulation of P . Computing the
visibility graph of P is essentially everything the simple combinatorial robot can
do with one pebble, as was shown in [2].

In this paper we study the robustness issues of the simple combinatorial robot
in scenarios where the sensing does not provide accurate information. In prac-
tice, two vertices visible from vertex v can be “seen” as being very close to each
other (e.g., they span a very tiny angle with v). If a very “simple” sensory device
is used, these two vertices may wrongly be recognized as a single vertex. This
creates a faulty sensing for the robot. In this section we model such situations
formally and study conditions in which the simple combinatorial robot can re-
construct the visibility graph of a simply-connected polygon P (the visibility
graph of P is often called the map of the environment). We show in Section 2
that even counting the number of vertices of P is not possible with one pebble.
We conjecture that this is still not possible with two pebbles. We then show
that using three pebbles of two different types allows the simple combinatorial
robot to count the number of vertices of P . In Section 3 we present an algorithm
that allows a simple robot with three pebbles of two different types to compute
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the visibility graph of P , using the algorithm for counting as the main part. We
conclude the paper and outline some future work in Section 4.

Modeling Vertex Faults

For a given simply-connected polygon P on vertices V , a vertex fault is a set
F � V , |F | = 2. We will sometimes refer to a vertex fault simply as a fault.
A vertex that belongs to a vertex fault is called a faulty vertex. We denote by
F a collection of vertex faults, i.e., a set F = {F1, F2, . . . , Fm}, where every
Fi, i = 1, 2, . . . ,m, is a vertex fault. We assume that the vertex faults in F are
mutually disjoint, i.e., no vertex belongs to more than one vertex fault.

We define and study the simple combinatorial robot with vertex faults (faulty
robot for short) – a model derived from the simple combinatorial robot that
reflects our discussion on unreliable sensing. For a given polygon P and a given
set of vertex faults F , a faulty robot sitting at some vertex v ∈ V senses its
surrounding in P via the faulty combinatorial visibility vector fcvv(v) which is
defined from the cvv in the following way (consult Fig. 2 for illustration). Let
cvv(v) be the combinatorial visibility vector of vertex v in polygon P . For any
two visible vertices x and y, x, y �= v, that belong to the same vertex fault
F and that appear consecutively in the “vision” of vertex v (recall that the
visible vertices of v are considered in ccw order), we remove from the cvv the
information about the existence of an edge between x and y (i.e., we remove the
bit that encodes whether they form an edge or a diagonal in P ). Doing so for
any such pair of vertices defines the faulty combinatorial visibility vector fcvv of
vertex v.

Thus, if vertex v does not see any vertex from a vertex fault, or if vertex v
sees at most one vertex from every vertex fault, the cvv and the fcvv are the
same. Notice also that according to the definition, the robot at vertex v cannot
distinguish between vertices x and y from F only if they lie consecutively next to
each other (as observed from vertex v). The reason for this is that from different
positions the vertices x and y may cause sensing problems, and from others not.

P

v

y

x

v′

w

F = {x, y}

cvv(v) = (1, 0, 1, 0, 1, 1)
fcvv(v) = (1, 0, 1, 1, 1)

v

v′

vF

Fig. 2. Illustration of a faulty combinatorial visibility vector. The left figure depicts a
polygon P with one vertex fault F = {x, y}. The vertices x and y appear consecutively
in the ccw order as seen from v (the dotted lines are the “vision” lines) and therefore
fcvv(v) differs from cvv(v) – the 0 encoding that x and y form a diagonal in P is
removed. The right figure depicts an alternative view on fcvv’s. The vertex fault {x, y}
is seen by a robot at v as one virtual vertex vF , and fcvv(v) is then the cvv of this new
(faulty) vision with vF in it.
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Especially, if from some position the vertices x and y do not appear consecutively,
i.e., there is at least one vertex w between them, then the robot’s sensing can
distinguish between x and y. Notice also that if x and y are (mutually) visible in
P than a robot at vertex x (or vertex y) always sees y correctly(x). The concept
of the fcvv can also be seen as treating the two vertices of a vertex fault as one
“virtual” vertex (as observed by a robot), and then defining the fcvv as the cvv
with the virtual vertices. In this understanding, the robot thus senses less vertices
(than there really are). We will assume that every vertex fault F = {uF , vF } is
visible from a vertex of P , i.e., there is a vertex v in P which sees both uF and
uF with the correct vision (as otherwise such a vertex fault does not give any
faulty vision).

It remains to specify what happens if a robot decides to move to a virtual
vertex vF . In our model we assume that the robot can land non-deterministically
at either vertex of F . We study the worst-case behavior of algorithms, and thus
assume an adversary that decides where the robot lands.

Finally, if a pebble is left at a faulty vertex of a vertex fault F , a robot that
sees the virtual vertex vF also sees the pebble as being placed at the virtual
vertex vF .

To the end of this section we would like to comment on the introduced mathe-
matical model of faulty sensing. Our model is an abstraction, and simplification,
and our approach lies rather in theoretical computer science (we are not build-
ing real robots), aiming at understanding the basic limitations and strengths of
simple robots. We take the worst-case approach. Thus, defining a vertex fault
as a set of two vertices, and requiring that this two vertices are always seen as
one virtual vertex, is a simplification, and in a sense a worst-case approach –
the robot always sees wrongly, and can always land wrongly (if it moves towards
the virtual vertex). A more realistic model, in which a vertex fault {x, y} can
be sometimes seen correctly, does not change the results presented in this paper
– seeing sometimes (but deterministically) correctly makes it only easier for the
robot, while in the worst-case (which is our main goal), we may assume the
vertex fault is seen wrongly from every vertex.

Related Work

The concept of simple, deterministic robots that sense no metric information
(distances, angles, coordinates, etc.) is a relatively new research area. The sim-
ple combinatorial robot, the model we consider in this paper, was defined and
studied in [1]. The robot was shown be able to compute the visibility graph of
P using one pebble. A similar approach to minimalism was studied for example
by Yershova et al [3]. They study pursuit-evasion problems with a robot that
can only sense the type of the current vertex (reflex or convex angle) and can
only move along the boundary edges, but can continue in the same direction
after reaching a vertex with reflex angle. In these and similar models (see e.g. [4]
or [5] for other examples of similar models) the considered sensing is very sim-
ple, yet the reliability of such sensing is crucial for the solutions of the studied
problems.
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A recent, not directly related, but well studied area of fault-tolerance with
mobile robots addresses the computation issues with imprecise compasses. In
this model, a set of asynchronous autonomous robots are placed in a plane
(i.e., not in a polygon) equipped with a sense of direction (and distance) and
capability to move an arbitrary distance in an arbitrary direction. An imprecise
compass delivers a direction that can deviate from the actual value, but the
error is bounded. In this model, mainly the gathering problem was studied [6,7].
Also for the gathering problem, the issue of not obtaining perfectly accurate
sensory input, and not having a perfectly accurate movement was studied in [8]
for asynchronous robots.

2 Counting the Number of Vertices

In this section we consider the elementary problem of inferring the number of
vertices of a polygon P by a faulty robot. We shall see that this problem, being
trivial in the fault-free case using one pebble, becomes non-trivial in the presence
of faults even with two pebbles. We will show, however, that a robot with three
pebbles of two types can compute the number of vertices of P .

2.1 Counting with 1 Pebble

It is illustrative to consider first the case when there are no vertex faults. In such a
case the robot simply leaves a pebble on the current vertex and moves around the
boundary, always moving to its first visible vertex (which is its “right” neighbor),
counting the number of visited vertices, until the robot comes back to a vertex
with the pebble. In case of vertex faults this simple strategy does obviously not
work. Consider for example a convex polygon on four vertices v0, v1, v2, v3 and
one vertex fault F = {v1, v2}. Assume that the robot initially sits at vertex v0.
The robot drops the pebble to mark v0 and moves to its right neighbor, which is
a virtual vertex vF . The adversary makes the robot land on v2. The robot then
continues to v3 and v0, visiting only three vertices in total. One could probably
easily derive a correct algorithm for this simple case, nonetheless we show that in
general, using only one pebble, there is no algorithm for the problem of counting
the number of vertices in the presence of vertex faults.

Theorem 1. Any simple robot with one pebble cannot count the number of ver-
tices of a polygon P with vertex faults.

Proof. Let A be an arbitrary (deterministic) algorithm for the simple robot with
one pebble. We will show that A cannot count the number of vertices in every
polygon P .

Consider polygons P1 and P2 in Fig. 3 with a different number of vertices.
The left polygon P1 is a square and the right polygon P2 is a convex polygon on
six vertices. P1 has no vertex fault, and P2 has three vertex faults F1 = {v0, v1},
F2 = {v2, v3} and F3 = {v4, v5}. Thus, if we consider a robot placed at a vertex
of the vertex fault {v0, v1} for example, it can visually distinguish between the
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Fig. 3. Polygons used for the proof of Theorem 1

vertices v0 and v1, but from either of these vertices the robot sees v2, v3 as a
single virtual vertex, and v4, v5 as another virtual vertex. Let us denote by vF1 ,
vF2 , and vF3 the virtual vertices that correspond to the vertex faults F1, F2, and
F3, respectively.

Observe first that a robot has the same view in both polygons, i.e., fcvv(v) =
(1, 1, 1, 1) for any vertex v in both polygons. Thus, if the robot does not use
the pebble, it cannot count the number of vertices because if after � moves
and observations in P1 it determines that polygon has four vertices, then the
same movements and observations can be made in the second polygon, and thus
the deterministic robot has to claim P2 has four vertices, which is obviously
wrong.

Let us consider the situation when a robot executing A (in both polygons)
drops a pebble. As P1 and P2 are symmetric we can, without loss of generality,
assume the robot drops the pebble at vertex v0 when run on any of the two
polygons. We now show that any movement of a robot executing A in P1 can
be mimicked in P2 as well, by appropriate choices (by the adversary) of a vertex
the robot lands at, when moving to a virtual vertex vFi , i = 1, 2, 3, such that
the observed fcvv’s remain the same, together with the position of the pebble
therein. If a robot in P1 moves to its first visible vertex (i.e., to vertex v1 in our
case), then robot in P2 attempts to move to v1 as well, and thus the robot in P2
lands at v1 as well. Hence, the position of the pebble in both cases is the same
– the pebble is on the vertex which is the robot’s left neighbor. Similarly, if the
robot in P1 moves to its last visible vertex (i.e., to vertex v3), then robot in P2
attempts to move to vertex vF3 and lands at vertex v5. If the robot in P1 moves
to the second visible vertex (vertex v2), then the robot in P2 lands at vertex v3.
It is easy to check that the position of the pebble is the same in both cases. Now
(assuming the pebble is still at vertex v0) for any position of the robot in P1 and
any movement of the robot to a visible vertex, the adversary can make the robot
in P2 mimic the movement by an appropriate choice of landings in P2. We do
not list all possible movements here, but give one more example only. Assume
the robot in P1 at vertex v2 moves to vertex v1 and then to vertex v3. If the
robot in P2 is at vertex v3, the algorithm A moves the robot first to vertex v2,
and then attempts to move the robot to vertex vF3 , and lands at vertex v5 (by
the choice of the adversary).
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If the robot picks up the pebble in P1 so can the robot in P2, as we have
maintained the same vision and the position of the pebble is the same for the
robots in both polygons.

Thus, as the adversary can force the algorithm A to produce the same vision
sequence in both polygons, the algorithm cannot compute the number of vertices
in both polygons. ��

2.2 Counting with 2 Pebbles

A natural question is to study the problem using two pebbles. While we do
not know whether two pebbles suffice to compute the number of vertices of any
polygon P , we outline the difficulties in designing such an algorithm.

Consider a (big) polygon which consists of “triangular cells” as depicted in
Fig. 4. The triangular cell can be seen as a triangle whose tips were cut off. For
the construction we cut off just a tiny bit so that the resulting two vertices of a
loose end have distance ε (ε as small as needed). Also, the two vertices of every
end (corner) of the cell form a vertex fault. We can glue the triangular cells
together as depicted in the figure. Starting from a central triangular cell, we can
grow the polygon to an arbitrary size by making the newly glued cells smaller
and smaller. To make the construction finite, we just sometimes use triangular
cells with only one cut off corner (the other two ends are not open and thus
nothing can be glued to them). We make the construction such that the two
vertices of every vertex fault F appear consecutively in ccw order as seen from
any visible vertex, and thus the two vertices will be seen by the robot as a single
virtual vertex vF . For this to achieve, one has to set an appropriate ε and an
appropriate angle at which the new cells are glued. For brevity we omit the
precise description of the construction. We note that the depiction in Fig. 4 is
only schematic. We call the resulting polygon triangular. For the moment we
assume the polygon is big enough for “anything which follows”, while the exact
size will naturally become clear at the end of the section.

We first prove a useful lemma that highlights the main technique for the proof
of the main result of this subsection.

vertex
fault

Fig. 4. Left: A “triangular cell” is a triangle with endpoints split into open ends. The
two vertices of each open end form a vertex fault. Right: The whole polygon is build
from these “triangular cells” by an appropriate rotation and scaling.
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Lemma 1. A simple robot with no pebbles can be made to stay within two neigh-
boring cells in any triangular polygon P . Furthermore, if the initial vertex can
be chosen by the adversary, the robot can be made to stay within one cell.

Proof. The main trick is to choose the proper vertex v ∈ F where the robot
lands when it attempts to move to a virtual vertex vF . We (the adversary)
can choose this vertex arbitrarily (i.e., the robot does not notice the difference)
as long as the vision from these two vertices is the same. Observe that if the
robot is not at the ending triangular cell, the vision is everywhere the same,
fcvv = (1, 1, 1, 1, 1, 1). Our choice of the landing vertex will depend on what
the robot wants to do after landing in vF . For the following discussion, consult
Fig. 5. Let s denote the vertex where the robot starts. Let e be the vertex for
which {s, e} is a vertex fault in P . Vertex s is a “gateway” to two neighboring
triangular cells A and B, with vertices as depicted in the figure. We show how to
make the robot stay in the cells A and B. Assume for example the robot wants to
move to its right neighbor (which is the virtual vertex of the vertex fault {a, b}).
The robot may land at a or b. We have the freedom to choose. Depending on
the robot’s next move we choose a or b such that after the next move the robot
stays in A or B. The important observation is that a robot at a or b has the
same sensing (the same fcvv) and thus, as the robot is deterministic, has to do
the same movement, regardless of whether it lands at a or b. If the next move is
“go to the i-th visible vertex in ccw order”, where i is 1 or 2, then we make the
robot land at b (as if it landed at a, the next movement would bring the robot
out of A and B). Similarly, if the next move is “go to the i-th visible vertex
in ccw order”, where i is 4 or 5, then we make the robot land at a. Clearly, if
the next move is “go to the 3rd visible vertex”, the robot stays within the cells
A and B regardless of us choosing a or b as the landing vertex. Thus, we only
choose a or b according to the robot’s first movement that is different from “go
to the 3rd visible vertex”. After we have chosen the proper vertex a or b for the
robot to land, we can similarly argue for all subsequent movements.

From the aforementioned arguments it is now an easy observation that if the
adversary can choose the initial vertex (i.e., either s or e) then the robot can be
made to stay within one cell (say, cell A in our case). ��

Using the ideas of the previous lemma we show the following theorem
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Fig. 5. A robot that does not use a pebble never leaves cells A and B
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Fig. 6. Pebbles B1 and B2 are separated by at least 3 moves

Theorem 2. If a faulty robot with two pebbles can count the number of vertices
of a triangular polygon P , then at any time of the computation the two pebbles
are at most two moves (of the robot) apart.

Proof. Let us consider the situation where the two pebbles B1 and B2 are more
than two moves apart. Thus, the pebbles are in two cells A and B which do
not share a single vertex. Let us consider the moment when the robot places
the second pebble B2 in cell B. We will show that the robot cannot count the
number of vertices of P . We will argue that the adversary can choose landings
in such a way that the robot will never come back to cell A (where the first
pebble B1 is placed). Thus, effectively, this will lead into a situation of a robot
with one pebble only. In this situation, however, the robot cannot lose sight of
the second pebble B2, as otherwise the robot would end up in a situation of
Lemma 1, according to which the adversary can make the robot stay in one cell
(forever). Clearly, if the robot cannot lose the sight of the second pebble B2,
it cannot visit all vertices of P (as picking up the pebble B2 results into the
situation of Lemma 1, and thus we can make the robot to stay in one cell, never
coming back to cell A), and thus it cannot count the number of vertices of P .

Consider the situation in Fig. 6, where B1 denotes the first pebble, and B2
denotes the second pebble. B1 lies in cell A, B2 lies in cell B, and there is at
least one more cell X between the two cells (and B1 and B2 do not lie in X).
We want to avoid the robot coming to a vertex of vertex fault F1, the “gateway”
to cell A. For this, we first argue about the position of pebble B2 in cell B. It
is placed at a vertex of a vertex fault F4 = {g, h}. From the geometry of the
setting and from our assumptions it follows that the robot had to come to F4
from a vertex of P that did not see the pebble B1. Hence, we (the adversary)
can choose whether the robot lands at g or h – the visibility will be the same,
so the robot decides to place a pebble in either case.

This effectively means that we (the adversary) can decide the location of the
pebble B2 to be g or h. Our decision depends on the next step(s) of the robot.
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We may assume that the next step of the robot is a movement (as collecting the
right-now dropped pebble is useless and does not help the robot to navigate or
compute anything). Let us first consider the case in which we let the robot land
at vertex g to place the pebble B2 there. If the robot never leaves the sight of
B2 then the robot can clearly never come to cell A, and it also cannot count
the number of vertices of P . Thus, assume the robot eventually leaves the sight
of B2. Clearly, for one of the choices of landing at g or h, the “leaving” of the
robot does not happen at a vertex of F2 (i.e., if for a particular choice of landing
the “leaving” happens at a vertex of F2, then for the other choice of landing the
“leaving” happens at a vertex of Fx – the symmetrically placed vertex fault to
F2; this follows because the robot will do the same sequence of movements in
either case). Thus, choosing the proper landing, the robot moves from a vertex
of Fx to a cell with no sight of a pebble, and thus it ends up at the situation
of Lemma 1, which guarantees the adversary to make the robot stay in one cell
(forever). ��

Thus, according to the theorem, the two pebbles have to be dropped in adjacent
cells, or in the same cell. This hints us that the robot should keep track of the
two pebbles such that they are not very far apart. Thus, as the robot moves, it
should move the pebbles too. While this may help in visiting vertices, it is not
obvious it helps in counting them exactly. This provokes us to make the following
conjecture.

Conjecture 1. A simple robot with two pebbles cannot count the number of
vertices of a polygon with vertex faults.

2.3 Counting with 3 Pebbles

Now, we present an algorithm for counting the vertices of a polygon with any
number of vertex faults using three pebbles of two different types.

Theorem 3. A simple robot with three pebbles of two different types can count
the number of vertices of a polygon P with vertex faults.

Proof. Our algorithm uses the distinct pebble (pebble of type 2) to mark the
start vertex v0, and two other identical pebbles (pebbles of type 1) to traverse
consistently along the boundary of P in ccw order. Starting at vertex v0, the
algorithm’s goal is to be able to go to the i-th vertex on the boundary, i =
1, 2, 3, 4, . . . , until the pebble of type 2 is found again, and thus the number of
vertices of P is inferred. The pebble of type 2 will not have any other usage in
the algorithm.

As we have seen in the previous sections, going to the first vertex is already
impossible if no pebble is used (recall, just set {v1, v2} to be a vertex fault and
let the robot land at vertex v2 instead of landing at v1). Using two pebbles,
traversing the boundary consistently is possible. We will show how to make one
step of the traversing, i.e., how to move to the next vertex on the boundary. The
whole traversing is then just the repetition of these steps.
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Assume the robot is at vertex v0 and it wants to walk to vertex v1. The robot
leaves a pebble (which is always of type 1 from now on) at v0 and it attempts
to move to its first visible vertex (which may be a virtual vertex). Let us denote
by v the vertex where the robot landed. Observe now that the robot landed at
vertex v1 if and only if the robot sees the pebble at the left neighbor of v – the
last visible vertex (possibly virtual) when considered in ccw order. To see this,
observe first that if the robot indeed landed at v1, it sees a pebble at its left
neighbor, even if v0 belongs to a vertex fault F and the left neighbor is seen as
a virtual vertex vF . On the other side, consider the case when the robot did not
land at v1, but at some other vertex v. Thus, {v1, v} has to be a vertex fault of
the polygon, and v0, v1, and v are mutually visible. We want to show that v does
not see a pebble at its left neighbor (even if it is seen as a virtual vertex). This
could only be possible if v0 and the true left neighbor w of v formed a virtual
vertex for v. However, as v sees vertices v0, v1, and w in this order, v0 and w
cannot form a virtual vertex, as v0 and w do not appear consecutively in the
combinatorial vision of v.

The robot can thus easily check whether it landed at the desired vertex. It
just looks to its left neighbor and checks whether there is the pebble. If the robot
does not land at vertex v1, but at some vertex v instead, then clearly {v1, v} is
a vertex fault in P . Observe that vertex v sees v0 and v1. The robot wants to
move to v1. From the view of vertex v, vertex v1 is the neighboring vertex of
v0 (which is the vertex with the pebble) in ccw order. Thus, the robot attempts
to move to this vertex, and, as v and v1 form a vertex fault, the robot lands
correctly at v1. Let us call this strategy the remedy procedure.

Thus, a robot can move to the neighboring vertex on the boundary using one
pebble. If the robot had more pebbles, it could just place a new one, move to
the neighboring vertex (using the same algorithm), etc. In case of two pebbles
only, the robot does the following. It leaves the second pebble at the vertex v1
(it knows the current vertex is v1) and moves to the left neighboring vertex, i.e.,
to v0. This can be done in a similar way as when the robot walked from v0 to
v1, just in the reverse, symmetrical order. The robot again checks whether it
landed at v0 (now it is easy, it just checks whether it landed at a vertex with a
pebble on it), and performs the (slightly altered) remedy procedure, if needed.
This time, if the robot does not land at v0, the robot sees two pebbles, and thus
it has to attempt to walk to the first visible vertex with a pebble (in the order of
vertices as seen from the robot’s position). A robot at vertex v0 then collects the
pebble and attempts to move to the vertex with the second pebble, the vertex
v1. If the robot lands at v1, the robot can start the same algorithm again, thus
getting from v1 to v2, etc. If the robot does not land at v1, however, then it lands
at vertex v which forms with v1 a vertex fault. From v the robot sees v1, and it
can identify v1 as the vertex with the pebble. Thus, the robot can attempt to
move to v1 where it also has to land.

We have presented a procedure which allows the robot to move from a vertex
to its neighboring vertex on the boundary, and keeps both pebbles with the
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robot. Thus, repeating this procedure until the robot reaches the pebble of type
2 allows the robot to count the number of vertices of P . ��

3 Fault Detection and Map Construction

We have shown that a simple robot with three pebbles of two types can count
the number of vertices of a polygon P . Using the traversing procedure we will
show that the robot can also reconstruct the correct cvv at every vertex of the
polygon, and thus it can reconstruct the visibility graph of P . This is actually
a simple task to do while the robot traverses the boundary of P , as the robot
at position vi (before attempting to move to vertex vi+1) can check whether it
sees a vertex with the pebble of type 1 (the vertex v0), and thus it can find out
whether v0 and vi are visible in P . This proves the following theorem.

Theorem 4. Simple robot with three pebbles of two different types can recon-
struct visibility graph (and all cvv’s) of a polygon with vertex faults.

A related reconstruction-question arises, namely, can a simple robot identify all
vertex faults? We present a procedure that allows the robot to identify all vertex
faults visible from the vertex v0. Repeating this procedure for all other vertices
vi, i = 1, 2, . . . , n, then allows to identify all vertex faults. Again, the robot can
identify all vertex faults visible from v0 using three pebbles of two different kinds.
First, the robot computes the number of vertices of P using the algorithm of the
previous section. After that, the robot at vertex v0 takes the pebble of type 1
from v0, and traverses the polygon (using the traversing procedure with the two
identical pebbles). The robot checks for every visited vertex vi, i = 1, 2, . . . , n,
whether it is visible from v0 by leaving the pebble of type 1 at vi, traversing
back to v0, and checking whether pebble of type 1 is visible from v0. If vertex
vi is visible from v0 at the same position (in the ordered list of visible vertices)
as the previously visible vertex v′, then (and only then) {v′, vi} forms a vertex
fault visible from v0.

Theorem 5. Simple robot with three pebbles of two different types can identify
the vertices F of every virtual vertex vF .

4 Conclusions and Further Work

We have studied a particular model of faulty sensing of simple combinatorial
robots in a polygon P . We have shown that even the otherwise trivial task of
computing the number of vertices of P is not possible for a robot with one
pebble. We have demonstrated difficulties a robot with two pebbles has to count
the number of vertices and conjectured that the robot cannot count. Finally, we
have presented algorithms that allows a robot with three pebbles of two different
types to count the number of vertices of P , to reconstruct the visibility graph of
P , and to identify all vertex faults.
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An obvious open problem left is Conjecture 1. Similarly, one might want to get
rid of using two types of pebbles. Another interesting question is what happens
if we allow the vertex faults to intersect, or we consider more than two vertices
in a vertex fault. The presented algorithms do not work for this case (while,
obviously, the impossibility results still hold for this case), and this paper leaves
this issue unanswered. As a (more distant) future work we would like to study
other models of faults for simple combinatorial robots (e.g., movement faults
where the robot does not stop at reflex vertices), and possibly a combination of
these faults.

References

1. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From lo-
cal visibility to global geometry. International Journal of Robotics Research 27(9),
1055–1067 (2008)

2. Brunner, J., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Simple robots in polyg-
onal environments: A hierarchy. In: Fekete, S.P. (ed.) ALGOSENSORS 2008. LNCS,
vol. 5389, pp. 111–124. Springer, Heidelberg (2008)

3. Yershova, A., Tovar, B., Ghrist, R., LaValle, S.: Bitbots: Simple robots solving
complex tasks. In: Proceedings of the Twentieth National Conference on Artificial
Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence
Conference, pp. 1336–1341 (2005)

4. Tovar, B., Freda, L., LaValle, S.: Using a robot to learn geometric information from
permutations of landmarks. Contemporary Mathematics 438, 33–45 (2007)

5. Ganguli, A., Cortés, J., Bullo, F.: Distributed deployment of asynchronous guards
in art galleries. In: Proceedings of the American Control Conference, June 2006,
pp. 1416–1421 (2006)

6. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots
with inaccurate compasses. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 333–349. Springer, Heidelberg (2006)

7. Katayama, Y., Tomida, Y., Imazu, H., Inuzuka, N., Wada, K.: Dynamic compass
models and gathering algorithms for autonomous mobile robots. In: Prencipe, G.,
Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 274–288. Springer, Heidelberg
(2007)

8. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate
sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS,
vol. 3884, pp. 549–560. Springer, Heidelberg (2006)



Finding Good Partners in
Availability-Aware P2P Networks

Stevens Le Blond1, Fabrice Le Fessant2, and Erwan Le Merrer3,�

1 INRIA Sophia Antipolis
stevens.le_blond@inria.fr

2 INRIA Saclay
fabrice.le_fessant@inria.fr

3 INRIA Rennes
elemerre@irisa.fr

Abstract. We study the problem of finding peers matching a given
availability pattern in a peer-to-peer (P2P) system. Motivated by prac-
tical examples, we specify two formal problems of availability match-
ing that arise in real applications: disconnection matching, where peers
look for partners expected to disconnect at the same time, and presence
matching, where peers look for partners expected to be online simultane-
ously in the future. As a scalable and inexpensive solution, we propose to
use epidemic protocols for topology management; we provide correspond-
ing metrics for both matching problems. We evaluated this solution by
simulating two P2P applications, task scheduling and file storage, over
a new trace of the eDonkey network, the largest available with avail-
ability information. We first proved the existence of regularity patterns
in the sessions of 14M peers over 27 days. We also showed that, using
only 7 days of history, a simple predictor could select predictable peers
and successfully predicted their online periods for the next week. Finally,
simulations showed that our simple solution provided good partners fast
enough to match the needs of both applications, and that consequently,
these applications performed as efficiently at a much lower cost. We be-
lieve that this work will be useful for many P2P applications for which it
has been shown that choosing good partners, based on their availability,
drastically improves their performance and stability.

1 Introduction

Churn is one of the most critical characteristics of peer-to-peer (P2P) networks,
as the permanent flow of peer connections and disconnections can seriously ham-
per the efficiency of applications [9]. Fortunately, it has been shown that, for
many peers, these events globally obey some availability patterns ([21,22,2]),
and so, can be predicted from the uptime history of those peers [18].

To take advantage of these predictions, applications need to be able to dynam-
ically find good partners for peers, according to these availability patterns, even
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in large-scale unstructured networks. The intrinsic constitution of those networks
makes pure random matching techniques to be time-inefficient facing churn. Ba-
sic usage of prediction based on node availability exists in the literature, as e.g.
for file replication [16].

In this paper, we study a generic technique to discover such partners, and
apply it for two particular matching problems: disconnection matching, where
peers look for partners expected to disconnect at the same time, and presence
matching, where peers look for partners expected to be online simultaneously in
the future. These problems are specified in Section 2.

We then propose to use standard epidemic protocols for topology manage-
ment to solve these problems (see e.g. [12,24]); such protocols have proven to be
efficient for a large panel of applications, from overlay slicing [13] to IP-TV over-
lay maintenance [14] for example. However, in order to converge to the desired
state or topology (here matched peers), those protocols require good metrics to
compute the distance between peers. Such metrics and a well known epidemic
protocol, T-Man [12], are described in Section 3.

To evaluate the efficiency of our proposal, we simulated an application for
each matching problem: an application of task scheduling, where tasks of multiple
remote jobs are started by all the peers in the network (disconnection matching),
and an application of P2P file-system, where peers replicate files on other peers to
have them highly available (presence matching). These applications are specified
in Section 5.

To run our simulations on a realistic workload, we collected a new trace of peer
availability on the eDonkey file-sharing network. With the connections and dis-
connection of 14M peers over 27 days, this trace is the largest available workload,
concerning peers’ availability. In Section 4, we show that peers in this trace exhibit
availability patterns, and, using a simple 7-day predictor, that it is possible to se-
lect predictable peers and successfully predict their behavior over the following
week. The new eDonkey trace and this simple predictor are studied in Section 4.

Our simulation results showed that our T-Man based solution is able to pro-
vide good partners to all peers, for both applications. Using availability patterns,
both applications are able to keep the same performance, while consuming 30%
less resources, compared to a random selection of partners. Moreover, T-Man
is scalable and inexpensive, making the solution usable for any application and
network size. These results are detailed in Section 6.

We believe that many P2P systems and applications can benefit from this
work, as a lot of availability-aware applications have been proposed in the litera-
ture [3,8,20,5,25]. Close to our work, Godfrey et al. [9] show that strategies based
on the longest current uptime are more efficient than uptime-agnostic strategies
for replica placement; Mickens et al. [18] introduce sophisticated availability pre-
dictors and shows that they can be very successful. However, to the best of our
knowledge, this paper is the first to deal with the problem of finding the best
partners according to availability patterns in a large-scale network. Moreover,
previous results are often computed on synthetic traces or small traces of P2P
networks.
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2 Problem Specification

This section presents two availability matching problems, disconnection match-
ing and presence matching. Each problem is abstracted from the needs of a
practical P2P application that we describe afterward. But first, we start by in-
troducing our system model.

2.1 System and Network Model

We assume a fully-connected asynchronous P2P network of N nodes, with N
usually ranging from thousands to millions of nodes. We assume that there is a
constant bound nc on the number of simultaneous connections that a peer can
engage in, typically much smaller than N . When peers leave the system, they
disconnect silently. However, we assume that disconnections are detected after
a time ∆disc, for example 30 seconds with TCP keep-alive.

For each peer x, we assume the existence of an availability prediction Prx(t),
starting at the current time t and for a period T in the future, such that Prx(t)
is a set of non-overlapping intervals during which x is expected to be online.
Since these predictions are based on previous measures of availability for peer
x, we assume that such measures are reliable, even in the presence of malicious
peers [19,17].

We note
⋃

Prx(t) the set defined by the union of the intervals of Prx(t), and
||S|| the size of a set S.

2.2 The Problem of Disconnection Matching

Intuitively, the problem of Disconnection Matching is, for a peer online at a
given time, to find a set of other online peers who are expected to disconnect at
the same time.

Formally, for a peer x online at time t, an online peer y is a better match
for Disconnection Matching than an online peer z if |tx − ty| < |tx − tz|, where
[t, tx[∈ Prx(t), [t, ty[∈ Pry(t) and [t, tz[∈ Prz(t). The problem of Disconnection
Matching DM(n) is to discover the n best matches of online peers at anytime.

The problem of disconnection matching typically arises in applications where
a peer tries to find partners with whom it wants to collaborate until the end of
its session, in particular when starting such a collaboration might be expensive
in terms of resources.

Fig. 1. Disconnection Matching: peer y is a better match than peer z for peer x
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Fig. 2. Presence Matching: peer y is a better match than peer z for peer x

An example of such an application is task scheduling in P2P networks. In
Zorilla [7] for example, a peer can submit a computation task of n jobs to the
system. In such a case, the peer tries to locate n online peers (with expanding
ring search) to become partners for the task, and executes the n jobs on these
partners. When the computation is over, the peer collects the n results from the
n partners. With disconnection matching, such a system becomes much more
efficient: by choosing partners who are likely to disconnect at the same time as
the peer, the system increases the probability that:

– If the peer does not disconnect too early, its partners will have time to finish
executing their jobs before disconnecting and he will be able to collect the
results;

– If the peer disconnects before the end of the computation, partners will not
waste unnecessary resources as they are also likely to disconnect at the same
time.

2.3 The Problem of Presence Matching

Intuitively, the problem of Presence Matching is, for a peer online at a given
time, to find a set of other online peers who are expected to be connected at the
same time in the future.

Formally, for a peer x online at time t, an online peer y is a better match for
Unfair Presence Matching than an online peer z if:

||
⋃

Prz(t) ∩
⋃

Prx(t)|| < ||
⋃

Pry(t) ∩
⋃

Prx(t)||

This problem is called unfair, since peers who are always online appear to be
best matches for all other peers in the system, whereas only other always-on
peers are best matches for them. Since some fairness is wanted in most P2P
systems, offline periods should also be considered. Consequently, y is a better
match than z for Presence Matching if:

||
⋃

Prz(t) ∩
⋃

Prx(t)||
||
⋃

Prz(t) ∪
⋃

Prx(t)| <
||
⋃

Pry(t) ∩
⋃

Prx(t)||
||
⋃

Pry(t) ∪
⋃

Prx(t)||

The problem of Presence Matching PM(n) is to discover the n best matches of
online peers at anytime.

The problem of presence matching arises in applications where a peer wants
to find partners that will be available at the same time in other sessions. This
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is typically the case when huge amount of data have to be transferred, and that
partners will have to communicate a lot to use that data.

An example of such an application is storage of files in P2P networks [4]. For
example, in Pastiche [6], each peer in the system has to find other peers to store
its files. Since files can only be used when the peer is online, the best partners
for a peer (at equivalent stability) are the peers who are expected to be online
when the peer itself is online.

Moreover, in a P2P backup system[8], peers usually replace the replica that
cannot be connected for a given period, to maintain a given level of data redun-
dancy. Using presence matching, such applications can increase the probability
of being able to connect to all their partners, thus reducing their maintenance
cost.

3 Uptime Matching with Epidemic Protocols

We think that epidemic protocols [12,23,15,24] are good approximate solutions
for these matching problems. Here, we present one of these protocols, T-Man[12]
and, since such protocols rely heavily on appropriate metrics, we propose a metric
for each matching problem.

3.1 Distributed Matching with T-Man

T-Man is a well-known epidemic protocol, usually used to associate each peer
in the network with a set of good partners, given a metric (distance function)
between peers. Even in large-scale networks, T-Man converges fast, and provides
a good approximation of the optimal solution in a few rounds, where each round
costs only four messages in average per peer.

In T-Man, each peer maintains two small sets, its random view and its metric
view, which are, respectively, some random neighbors, and the current best can-
didates for partnership, according to the metric in use. During each round, every
peer updates its views: with one random peer in its random view, it merges the
two random views, and keeps the most recently seen peers in its random view;
with the best peer in its metric view, it merges all the views, and keeps only the
best peers, according to the metric, in its metric view.

This double scheme guarantees a permanent shuffle of the random views,
while ensuring fast convergence of the metric views towards the optimal solution.
Consequently, the choice of a good metric is very important. We propose such
metrics for the two availability matching problems in the next part.

3.2 Metrics for Availability Matching

To compute efficiently the distance between peers, the prediction Prx(t) is ap-
proximated by a bitmap of size m, predx, where entry predx[i] is 1 if [i×T/m, (i+
1) × T/m[ is included in an interval of Prx(t) for 0 ≤ i < m. Note that these
metrics can be used with any epidemic protocol, not only with T-Man.
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Fig. 3. Diurnal patterns are clearly visible when we plot the number of online peers
at any time in our 27-day eDonkey trace. Depending on the time of the day, between
300,000 and 600,000 users are connected to a single eDonkey server.

Disconnection Matching. The metric computes the time between the dis-
connections of two peers. In case of equality, the PM-distance of 3.2 is used to
prefer peers with the same availability periods:

DM-distance(x, y) = |Ix − Iy|+ PM-distance(x, y) where
Ix = min{0 ≤ i < m|predx[i] = 1 ∧ predx[i + 1] = 0}

Presence Matching. The metric first computes the ratio of co-availability
(time where both peers were simultaneously online) on total availability (time
where at least one peer was online). Since the distance should be close to 0 when
peers are close, we then reverse the value on [0,1]:

PM-distance(x, y) = 1−
∑

0≤i<m min(predx[i],predy [i])∑
0≤i<m max(predx[i],predy [i])

Note that, while the PM-distance value is in [0,1], the DM-distance value is in
[0,m].

4 Simulation Settings

We evaluated our a solution based on T-Man on two applications, one for each
matching problem. In this section, we describe our simulation settings. In par-
ticular, we describe the characteristics of the trace we collected for the needs
of this study, with more than 300,000 online peers on 27 days. With a few
thousand peers online at the same time, most other traces collected on P2P sys-
tems [21,10,2] lack massive connection and disconnection trends, for the study
of availability patterns on a large scale.
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Fig. 4. Peers achieve their best auto-correlation (ressemblance between sessions after a
given period) between sessions for a one-day period or a one-week period. Consequently,
peers are highly likely to connect at almost the same time the next day or the next
week.

4.1 A New eDonkey Trace

In 2007, we collected the connection and disconnection events from the logs of
one of the main eDonkey servers in Europe. Edonkey is currently the most used
P2P file-sharing network in the world. Our trace, available on our website [1],
contains more than 200 millions of connections by more than 14 millions of peers,
over a period of 27 days. To analyse this trace, we first filtered useless connections
(shorter than 10 minutes) and suspicious ones (too repetitive, simultaneous or
with changing identifiers), leading to a filtered trace of 12 million peers.

The number of peers online at the same time in the filtered trace is usually
more than 300,000, as shown by Fig. 3. Global diurnal patterns of around 100,000
users are also clearly visible: as shown by previous studies [11], most eDonkey
users are located in Europe, and so, their daily offline periods are only partially
compensated by connections from other continents.

For every peer in the filtered trace, the auto-correlation on its availability
periods was computed on 14 days, with a step of one minute. For a given peer,
the period for which the auto-correlation is maximum gives its best pattern
size. The number of peers with a given best pattern size is plotted on Fig. 4,
and shows, as could be expected, that the best pattern size is a day, and much
further, a week.

4.2 Filtering and Prediction

Our goal in these simulations was to evaluate the efficiency of our matching
protocol, and not the efficiency of availability predictors, as already done in [18].
As a consequence, we implemented a very straightforward predictor, that uses a
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7-day window of availability history to compute the daily pattern of a peer: for
each interval of 10 minutes in a day, its value is the number of days in the week
where the peer was available during that full interval:

patternp[i] = Σd∈[0:6]history
p[d ∗ 24 ∗ 60/10 + i]

This predictor has two purposes:

– It should help the application to decide which peers are predictable, and
thus, which peers can benefit from an improved quality of service. This gives
an incentive for peers to participate regularly to the system;

– it should help the application to predict future connections and disconnec-
tions of the selected peers.

To select predictable peers, the predictor computes, for each peer, the maxi-
mum and the mean covariance of the peer daily pattern. For these simulations,
we computed a set, called predictable set, containing peers matching with the
following properties:

– The maximum value in pattern is at least 5: each peer was available at least
five days during the last week exactly at the same time;

– The average covariance in pattern is greater than 28: each peer has a sharply-
shaped behavior;

– Peer availability is greater than 0.1: peers have to contribute enough to the
system;

– Peer availability is smaller than 0.9: peers which are always online would
bias positively our simulations.

In our eDonkey trace, this predictable set contains 19,600 such peers. Note that
this relatively small amount of peers, w.r.t. the total number of peers in our
trace, does not mean that eDonkey peers are not predictable: our trace concerns
only a part of eDonkey users at measure time (around 10%, those connected to
eDonkey Server N.2). Users that leave may join another server (e.g. Server N.1,
a larger one), which makes them invisible in our trace, even though they are still
using eDonkey. For every peer in the set, the predictor predicts that the peer
will be online in a given interval if the peer’s daily pattern value for that interval
is at least 5, and otherwise predicts nothing (we never predict that a peer will
be offline). The ratio of successful predictions after a week for the full following
week is plotted on Fig. 5. It shows that predictions cannot be only explained
by accidental availability, and prove the presence of availability patterns in the
trace.

We purposely chose a very simple predictor, as we are interested in showing
that patterns of presence are visible and can benefit applications, even with a
worst-case approach. Therefore, we expect that better results would be achieved
using more sophisticated predictors, such as described in [18], and for an optimal
pattern size of one day instead of a week.
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4.3 General Simulation Setup

A simulator was developed from scratch to run the simulations on a Linux 3.2
GHz Xeon computer, for the 19,600 peers of the predictable set from Section 4.2.
Their behaviors on 14-days were extracted from the eDonkey trace: the first 7
days were used to compute a prediction, and that prediction, without updates,
was used to execute the protocol on the following seven days. During one round
of the simulator, all online peers in random order evaluate one T-Man round,
corresponding to one minute of the trace. As explained later, both applications
were delayed by a period of 10 minutes after a peer would come online to allow
T-Man to provide a useful metric view. The computation of a complete run did
not exceed two hours and 6 GB of memory footprint.

5 Simulated Applications

In this section, we describe the two applications that we used to illustrate the
need for an efficient protocol for distributed availability matching. Our goal is
not to improve the performance of these applications, as this can be done by an
aggressive greedy algorithm, but to save resources using availability information.

5.1 Disconnection Matching: Task Scheduling

To evaluate the efficiency of T-Man and the DM-distance metric, we simulated
a distributed task scheduling application. In this application, every peer starts
a task after 10 minutes online: a task is composed of 3 jobs of 4 hours on remote
partners, and is completed if the peer and its partners are still online after 4
hours to collect the results.
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The 2 first hours of each job are devoted to the download of the data needed
for the computation from a central server. As a consequence, a peer can decide
not to start a task to save the bandwidth of the central server. In our simulation,
such a decision is taken when the prediction of the peer availability shows that
the peer is going to go offline before completion of the task.

5.2 Presence Matching: P2P File-Storage

To evaluate the efficiency of T-Man and the PM-distance metric, we simulated
a P2P file storage application. In this application, every peer replicates its data
to its partners, ten minutes after coming online for the first time, in the hope
that he will be able to use this remote data the next time it will be online.

The size of the data of each peer is supposed to be large, hundred of megabytes
of example. As a consequence, it is important for the system to use as little
redundancy as possible to achieve high co-availability of data (i.e. availability
of the peer and at least one of its data replica). Finding good partners in the
network is expected to provide replica which are more likely to be available at
the same time as the peer, thus decreasing the need for more replicas.

6 Simulation Results

In this section, we present the results of our simulations of the two applications.
We are not interested in the raw performance of these applications, but in the
savings that could be achieved by using availability information and partner
matching.

6.1 Results for Disconnection Matching

We compared Disconnection Matching with a Random choice of partners (actu-
ally, using partners within T-Man random view) for the distributed task schedul-
ing application. The number of completed tasks and the number of aborted tasks
are plotted on Fig. 6, for the first day, the 7th day and the whole week.

Prediction of availability decreased by 68% the number of aborted tasks on
average over a week, corresponding to 50% of bandwidth savings on the data
server, while decreasing the number of completed tasks by only 17%.

These results were largely improved using one-day prediction, since one-week
prediction is expected to be less accurate (see auto-correlation in Section 4.1).
Indeed, bandwidth savings were about 43% for Disconnection Matching, while
completing 20% more tasks. Thus, it is much more interesting from a perfor-
mance point of view to use one-day prediction every day instead of one-week
prediction, although savings are still possible with one-week predictions.

6.2 Results for Presence Matching

We compared Presence Matching with a Random choice of replica locations for
the P2P file-system application. The co-availability of the peer and at least one
replica is plotted on Fig. 7, for different number of replicas.
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Using presence matching, fewer replicas were needed to achieve better results
than using a random choice of partners. For example, 1 replica with Presence
Matching gives a better co-availability than 2 replicaswithRandomChoice; 5 repli-
cas with Presence Matching give a co-availability of 95% which is only achieved
using 9 replicas with Random Choice. As for the other application, week-old pre-
dictions performed still better than random choice in the same orders.

7 Discussion and Conclusion

In this paper, we showed that epidemic protocols for topology management can
be efficient to find good partners in availability-aware networks. Simulations
proved that, using one of these protocols and appropriate metrics, such applica-
tions can be less expensive and still perform with an equivalent or better quality
of service. We used a worst-case scenario: a simple predictor, and a trace collected
from a highly volatile file-sharing network, where only a small subset of peers
provide predictable behaviors. Consequently, we expect that a real application
would take even more benefit from availability matching protocols.

In particular, until this work, availability-aware applications were limited to
using predictions or availability information to better choose among a limited set
of neighbors. This work opens the door to new availability-aware applications,
where best partners are chosen among all available peers in the network. It is a
useful complement to the work done on measuring availability[19,17] and using
these measures to predict future availability[18].
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Abstract. DHT-based P2P systems provide a fault-tolerant and scal-
able mean to store data blocks in a fully distributed way. Unfortunately,
recent studies have shown that if connection/disconnection frequency is
too high, data blocks may be lost. This is true for most current DHT-
based system’s implementations. To avoid this problem, it is necessary to
build really efficient replication and maintenance mechanisms. In this pa-
per, we study the effect of churn on an existing DHT-based P2P system
such as DHash or PAST. We then propose solutions to enhance churn
tolerance and evaluate them through discrete event simulations.

1 Introduction

Distributed Hash Tables (DHTs), are distributed storage services that use a
structured overlay relying on key-based routing (KBR) protocols [1,2]. DHTs
provide the system designer with a powerful abstraction for wide-area persis-
tent storage, hiding the complexity of network routing, replication, and fault-
tolerance. Therefore, DHTs are increasingly used for dependable and secure
applications like backup systems [3], distributed file systems [4,5] and content
distribution systems [6].

A practical limit in the performance and the availability of a DHT relies
in the variations of the network structure due to the unanticipated arrival and
departure of peers. Such variations, called churn, induce at worse the loss of some
data and at least performance degradation, due to the reorganization of the set
of replicas of the affected data, that consumes bandwith and CPU cycles. In
fact, Rodrigues and Blake have shown that using classical DHTs to store large
amounts of data is only viable if the peer life-time is in the order of several
days [7]. Until now, the problem of churn resilience has been mostly addressed
at the P2P routing level to ensure the reachability of peers by maintaining the
consistency of the logical neighborhood, e.g., the leafset, of a peer [8,9]. At the
storage level, avoiding data migration is still an issue when a reconfiguration of
the peers has to be done.

In a DHT, each data block is associated a root peer whose identifier is the
(numerically) closest to its key. The traditional replication scheme relies on using
the subset of the root leafset containing the closest logical peers to store the
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copies of a data block [1]. Therefore, if a peer joins or leaves the leafset, the
DHT enforces the placement constraint on the closest peers and may migrate
many data blocks. In fact, it has been shown that the cost of these migrations
can be high in term of bandwidth consumption [3]. A solution to this problem,
relies on creating multiple keys for a single data block [10,11]; therefore, only
a peer maintaining a key can be affected by a reconfiguration. However, each
peer maintaining a data block has to periodically check the state of all the peers
possessing a replica. Since copies are randomly spread on the overlay the number
of peers to check can be huge.

This paper proposes a variant of the leafset replication strategy that tolerates
a high churn rate. Our goal is to avoid data block migrations when the desired
number of replicas is still available in the DHT. We relax the “logically closest”
placement constraint on block copies and allow a peer to be inserted in the leafset
without forcing migration. Then, to reliably locate the block copies, the root peer
of a block maintains replicated localization metadata. Metadata management
is integrated to the existing leafset management protocol and does not incur
additional overhead in practice.

We have implemented both PAST and our replication strategy on top of
PeerSim [12]. The main results of our evaluations are:

– We show that our approach achieves higher data availability in presence
of churn, than the original PAST replication strategy. For a connection or
disconnection occuring every minute our strategy loses two times less blocks
than PAST’s one.

– We show that our replication strategy induces an average of twice less block
transfers than PAST’s one.

The rest of this paper is organized as follows. Section 2 first presents an overview
of the basic replication schemes and maintenance algorithms commonly used in
DHT-based P2P systems, then their limitations are highlighted. Section 3 intro-
duces an enhanced replication scheme for which the DHT’s placement constraints
are relaxed so as to obtain a better churn resilience. Simulations of this algorithm
are presented in Section 4. Section 5 concludes with an overwiew of our results.

2 Background and Motivation

DHT based P2P systems are usually structured in three layers: 1) a routing layer,
2) the DHT itself, 3) the application that uses the DHT. The routing layer is
based on keys for identifying peers and is therefore commonly qualified as Key-
Based Routing (KBR). Such KBR layer hides the complexity of scalable routing,
fault tolerance, and self-organizing overlays to the upper layers. In recent years,
many research efforts have been made to improve the resilience of the KBR
layer to a high churn rate [8]. The main examples of KBR layers are Pastry [13],
Chord [2], Tapestry [14] and Kademlia [15]. The DHT layer is responsible for
storing data blocks. It implements a distributed storage service that provides
persistence and fault tolerance, and can scale up to a large number of peers.
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DHTs provide simple get and put abstractions that greatly simplifies the task of
building large-scale distributed applications. PAST [1] and DHash [16] are DHTs
respectively built on top of Pastry [13] and Chord [2]. Finally, the application
layer is a composition of any distributed application that may take advantage
of a DHT. Representative examples are the CFS distributed file system [5] and
the PeerStore backup system [3].

In the rest of this section we present replication techniques that are used for
implementing the DHT layer. Then, we describe related work that consider the
impact of churn on the replicated data stored in the DHT.

2.1 Replication in DHTs

In a DHT, each peer and each data block is assigned an identifier (i.e., a key).
A data block’s key is usually the result of a hash function performed on the
block. The peer whose identifier is the closest to the block’s key is called the
block’s root. All the identifiers are arranged in a logical structure, such as a ring
as used in Chord [2] and Pastry [13] or a d-dimensional torus as implemented in
CAN [10] and Tapestry [11].

A peer possesses a restricted local knowledge of the P2P network, i.e., the
leafset, which amounts to a list of L close neighbors in the ring. For instance,
in Pastry the leafset contains the addresses of the L/2 closest neighbors in the
clockwise direction of the ring, and the L/2 closest neighbors counter-clockwise.
Each peer monitors its leafset, removing peers which have disconnected from the
overlay and adding new neighbor peers as they join the ring.

In order to tolerate failures, each data block is replicated on k peers which
compose the replica-set of a data block. Two protocols are in charge of the replica
management, the initial placement protocol and the maintenance protocol. We
now describe existing solutions for implementing these two protocols.

Replica placement protocols. There are two main basic replica placement strate-
gies, leafset-based and multiple key based:

Leafset-based replication. The data block’s root is responsible for storing one
copy of the block. The block is also replicated on the root’s closest neighbors
in a subset of the leafset. The neighbors storing a copy of the data block may
be either successors of the root in the ring, predecessors or both. Therefore,
the different copies of a block are stored contiguously in the ring as shown by
Figure 1. This strategy has been implemented in PAST [1] and DHash [16].
Successor replication is a variant of leafset-based replication where replica
peers are only the immediate successors of the root peer instead of being the
closest peers [17].

Multiple key replication. This approach relies on computing k different stor-
age keys corresponding to different root peers for each data block. Data
blocks are then replicated on the k root peers. This solution has been im-
plemented by CAN [10] and Tapestry [11]. GFS [18] uses a variant based on
random placement to improve data repair performance. Path and symmetric
replication are variants of multiple key based replication [19,17].
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Fig. 1. Leafset-based and multiple key based replication (k = 5)

Lian et al. propose an hybrid stripe replication scheme where small objects are
grouped in blocks and then randomly placed [20]. They show using an analytical
framework that their scheme achieves on near-optimal reliability. Finally, several
works have focused on the placement strategies based on availability of nodes.
Van Renesse [21] proposes a replica placement algorithm on DHT by considering
the reliability of nodes and placing copies on nodes until the desired availability
was achieved. To this end, he proposes to track the reliability of each node such
that each node knows the reliability information about each peer. In FARSITE
[22], dynamic placement strategies improve the availability of files. Files are
swapped between servers according to the current availability of these latter.
With theses approaches, the number of copies can be reduced. However, the cost
to track reliability of nodes can be high. Furthermore, such approaches may lead
to an high unbalanced distribution whereby highly available nodes contain most
of the replicas and can become overloaded.

Maintenance protocols. The maintenance protocols have to maintain k copies of
each data block without violating the initial placement strategy. This means that
the k copies of each data block have to be stored on the root peer contiguous
neighbors in the case of the leafset-based replication scheme and on the root
peers in the multiple key based replication scheme.

The leafset-based maintenance mechanism is based on periodic information
exchanges within the leafsets. For instance, in the fully decentralized PAST
maintenance protocol [1], each peer sends a bloom filter1 of the blocks it stores
to its leafset. When a leafset peer receives such a request, it uses the bloom filter
to determine whether it stores one or more blocks that the requester should also
store. It then answers with the list of the keys of such blocks. The requesting
peer can then fetch the missing blocks listed in all the answers it receives.

In the case of the multiple key replication strategies, the maintenance has to
be done on a “per data block” basis. For each data block stored in the system,
it is necessary to periodically check if the different root peers are still alive and
are still storing a copy of the data block.
1 For short, the sent bloom filter is a compact and approximative view of the list of

blocks stored by a peer.
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2.2 Impact of the Churn on the DHT Performance

A high churn rate induces a lot of changes in the P2P network, and the main-
tenance protocol must frequently adapt to the new structure by migrating data
blocks. While some migrations are mandatory to restore k copies, some others
are necessary only for enforcing placement invariants.

A first example arises at the root peer level which may change if a new peer
with a closer identifier joins the system. In this situation, the data block will be
migrated on the new peer. A second example occurs in leafset-based replication,
if a peer possesses an identifier that places it within a replica-set. Therefore,
data blocks have to be migrated by the DHT to enforce replicas to maintain the
“closest peers from the root” property. It should be noticed that larger the replica-
set, higher the probability for a new peer to induce migrations. Kim and Park
try to limit this problem by allowing data blocks to interleave in leafsets [23].
However, they have to maintain a global knowledge of the complete leafset: each
peer has to know the content of all the peers in its leafset. Unfortunately, the
maintenance algorithm is not described in detail and its real cost is unknown.

In the case of the multiple key replication strategy, a new peer may be inserted
between two replicas without requiring migrating data blocks, as long as the
new peer identifier does not make it one of the data block roots. However, this
replication method has the drawback that maintenance has to be done on a
per-data block basis; therefore it does not scale up with the number of blocks
managed by a peer. For backup and file systems that may store up to thousands
of data blocks per peer, this is a severe limitation.

3 Relaxing the DHT’s Placement Constraints to Tolerate
Churn

The goal of this work to is to design a DHT that tolerates a high rate of churn
without degradating of performance. For this, we avoid to copy data blocks when
this is not mandatory for restoring a missing replica. We introduce a leafset based
replication that relaxes the placement constraints in the leafset. Our solution,
named RelaxDHT, is presented thereafter.

3.1 Overview of RelaxDHT

RelaxDHT is built on top of a KBR layer such as Pastry or Chord. Our design
decisions are to use replica localization meta-data and separate them from data
block storage. We keep the notion of a root peer for each data block. However,
the root peer does no longer store a copy of the blocks for which it is the root.
It only maintains metadata describing the replica-set and periodically sends
messages to the replica-set peers to ensure that they keep storing their copy.
Using localization metadata allows a data block replica to be anywhere in the
leafset; a new peer may join a leafset without necessarily inducing data blocks
migrations.
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We choose to restrain the localization of replicas within the root’s leafset for
two reasons. First, to remain scalable, the number of messages of our protocol
does not depend on the number of data blocks managed by a peer, but only on the
leafset size. Second, because the routing layer already induces many exchanges
within leafsets, the local view of the leafset at the DHT-layer can be used as a
failure detector. We now detail the salient aspects of the RelaxDHT algorithm.

Insertion of a new data block. To be stored in the system, a data block is
inserted using the put(k,b) operation. This operation produces an “insert mes-
sage” which is sent to the root peer. Then, the root randomly chooses a replica-set
of k peers around the center of the leafset. This reduces the probability that a
chosen peer quickly becomes out of the leafset due to the arrival of new peers.
Finally, the root sends to the replica-set peers a “store message” containing:

1. the data block itself,
2. the identity of the peers in the replica-set (i.e., the metadata),
3. the identity of the root.

As a peer may be root for several data blocks and part of the replica-set of other
data blocks2, it stores:

1. a list rootOfList of data block identifiers with their associated replica-set
peer-list for blocks for which it is the root;

2. a list replicaOfList of data blocks for which it is part of the replica-set.
Along with data blocks, this list also contains: the identifier of the data
block, the associated replica-set peer-list and the identity of the root peer.

A lease counter is associated to each stored data block. This counter is set to
the value “Lease” which is a constant. It is then decremented at each KBR-
layer maintenance. The maintenance protocol described below is responsible to
periodically reset this counter to “Lease”.

Maintenance protocol. The goal of this periodic protocol is to ensure that: 1)
a root peer exists for each data block. The root is the peer that the closest
identifier from the data block’s one; 2) each data block is replicated on k peers
located in the data block root’s leafset.

At each period T , a peer p executes Algorithm 1, so as to send maintenance
messages to the other peers of the leafset. It is important to notice that Algo-
rithm 1 uses the leafset knowledge maintained by the KBR layer which is rel-
atively accurate because the inter-maintenance time of the KBR layer is much
smaller than the DHT-layer’s one.

The messages constructed by Algorithm 1 contain a set of following two
elements:

STORE element for asking a replica node to keep storing a specific data block.
2 It is possible, but not mandatory, for a peer to be both root and part of the replica-set

of a same data block.
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Algorithm 1. RelaxDHT maintenance message construction
Result: msgs, the built messages.
for data ∈ rootOfList do1

for replica ∈ data.replicaSet do2
if NOT isInCenter ( replica,leafset) then3

newPeer =choosePeer (replica,leafset);4
replace (data.replicaSet, replica,newPeer);5

for replica ∈ data.replicaSet do6
add(msgs [ replica ],<STORE, data.blockID, data.replicaSet >);7

for data in replicaOfList do8
if NOT checkRoot (data.rootPeer,leafset) then9

newRoot =getRoot (data.blockID,leafset);10
add (msgs [newRoot ],<NEW ROOT, data.blockID, data.replicaSet >):11

for p ∈ leafset do12
if NOT empty (msgs [ p ]) then13

send(msgs [ p ],p);14

NEW ROOT element for notifying a node that it has become the new root of
a data block.

These message elements contain both a data block identifier and the associated
replica-set peer-list. In order to remain scalable in term of the number of data
blocks algorithm 1 sends at most one single message to each leafset member.

Algorithm 1 is composed of three phases: the first one computes STORE
elements using the rootOfList structure -lines 1 to 7-, the second one computes
NEW ROOT elements using the replicaOfList structure -from line 8 to 11-,
the last one sends messages to the destination peers in the leafset -line 12 to the
end-. Message elements computed in the two first phases are added in msgs[].
msgs[q] is a message containing all the elements to send to node q at the last
phase.

Therefore, each peer periodically sends a maximum of leafset-size main-
tenance messages to its neighbors.

In the first phase, for each block for which the peer is the root, it checks
if every replica is still in the center of its leafset (line 3) using its local view
provided by the KBR layer. If a replica node is outside, the peer replaces it by
randomly choosing a new peer in the center of the leafset and it then updates
the replica-set of the block (lines 4 and 5). Finally, the peer adds a STORE
element in each replica set peers messages (lines 6 and 7). In the second phase,
for each block stored by the peer (i.e., the peer is part of the block’s replica-set),
it checks if the root node did not change. This verification is done by comparing
the replicaOfList metadata and the current leafset state (line 9). If the root
has changed, the peer adds a NEW ROOT message element to announce to the
future root peer that it is the root of the data block3. Finally, from line 12 to
line 14, a loop sends the computed messages to each leafset member.

3 Note that it is possible (but rare) to temporarily have two different peers acting as
a root peer for a same data block but it will not lead to data loss.



492 S. Legtchenko et al.

Algorithm 2. RelaxDHT maintenance message reception
Data: message, the received message.
for elt ∈ message do1

switch elt.type do2
case STORE3

if elt.data ∈ replicaOfList then4
newLease(replicaOfList,elt.data);5
updateRepSet(replicaOfList,elt.data);6

else7
requestBlock(elt.data);8

case NEW ROOT9
rootOfList = rootOfList ∪ elt.data;10

Maintenance message treatment

For a STORE element (line 3), if the peer already stores a copy of the corre-
sponding data block, it resets the associated lease counter and updates the
corresponding replica-set if necessary (lines 4, 5 and 6). If the peer does not
store the associated data block (i.e., it is the first STORE message element
for this data block received by this peer), it fetches it from one of the peers
mentioned in the received replica-set (line 8).

For a NEW ROOT element a peer adds the data block-id and replica-set in
the rootOfList structure (line 10).

End of a lease treatment. If a data block lease counter reaches 0, it means that
no STORE element has been received for a long time. This can be the result of
numerous insertions that have pushed the peer outside the center of the leafset
of the data block’s root. The peer sends a message to the root peer of the data
block to ask for the authorization to delete the block. Later, the peer will receive
an answer from the root peer. This answer either allows it to remove the data
block or asks it to put the data block again in the DHT (in the case the data
block has been lost).

3.2 Side Effects and Limitations

Our replication strategy for peer-to-peer DHTs, by relaxing placement con-
straints of data block copies in leafsets, significantly reduces the number of data
blocks to be transferred when peers join or leave the system. Thanks to this, we
show in the next section that our maintenance mechanism allows us to better
tolerate churn, but it implies other effects. The two main ones concern the data
block distribution on the peers and the lookup performance. While the changes
in data blocks distribution can provide positive effects, the lookup performance
can be damaged.

Data blocks distribution. While with usual replication strategies in peer-to-peer
DHT’s, the data blocks are distributed among peers according to some hash
function. Therefore, if the number of data blocks is big enough, data blocks
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should be uniformly distributed among all the peers. When using RelaxDHT,
this remains true if there are no peer connections/disconnections. However, in
presence of churn, as our maintenance mechanism does not transfer data blocks if
it is not necessary, new peers will store much less data blocks than peers involved
for a longer time in the DHT. It is important to notice that this side effect is
rather positive: more stable a peer is, more data blocks it will store. Furthermore,
it is possible to counter this effect easily by taking into account the quantity of
stored data blocks while randomly choosing peers to add in replica-sets.

Lookup performance. We have focused our research efforts on data loss. We
show in the next section that for equivalent churn patterns, the quantity of data
lost using RelaxDHT is considerably lower than the quantity of data lost using
a standard strategy like PAST’s one. However, with RelaxDHT, it is possible
that temporarily some data block roots are not consistent, inducing a network
overhead to find the data. For example, when a peer which is root for at least one
data block fails, the data block copies are still in the system but the standard
lookup mechanism may not find them: the new peer whose identifier is the closest
may not know the data block. This remains true until the failure is detected by
one of the peer in the replica-set and repaired using a “new root” message (see
algorithms above). It would be possible to flood the leafset or to perform a
“limited range walk” when a lookup fails, allowing lookups to find data blocks
even in the absence of root. However, note that: 1) some lookups do not need
to reach the root peer because the previous hop, arriving in the leafset, reaches
one of the replica; 2) a caching mechanism for metadata may limit this problem;
and 3) this case is rare.

4 Evaluation

This section provides a comparative evaluation of RelaxDHT and PAST [1]. This
evaluation, based on discrete event simulations, shows that RelaxDHT provides
a considerably better tolerance to churn: for the same churn levels, the number
of data losses is divided by up to two when comparing both systems.

4.1 Experimental Setup

To evaluate RelaxDHT, we have build a discrete event simulator using the Peer-
Sim [12] simulation kernel. We have based our simulator on an already existing
PeerSim module simulating the Pastry KBR layer. We have implemented both
the PAST strategy and the RelaxDHT strategy on top of this module. It is impor-
tant to note that all the different layers and all message exchanges are simulated.
Our simulator also takes into account network congestion: in our case, network
links may often be congested.

For all the simulation results presented in the section, we used a 100-peer
network with the following parameters (for both PAST and RelaxDHT):

– a leafset size of 24, which is the Pastry default value;
– an inter-maintenance duration of 10 minutes at the DHT level;
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– an inter-maintenance duration of 1 minute at the KBR level;
– 10 000 data blocks of 10 000 KB replicated 3 times;
– network links of 1 Mbits/s for upload and 10 Mbits/s for download with a

delay uniformly chosen between 80 and 120 ms.

A 100-peer network may seem a relatively small scale. However, for both repli-
cation strategies, PAST and RelaxDHT, the studied behavior is local, contained
within a leafset (which size is bounded). It is however necessary to simulate a
whole ring in order to take into account side effects induced by the neighbor
leafsets. Furthermore, a tradeoff has to be made between system accuracy and
system size. In our case, it is important to simulate very precisely all peer com-
munications. We have run several simulations with a larger scale (1000 peers
and 100,000 data blocks) and have observed similar phenomenons.

We have injected churn following two different scenarii:

One hour churn. One perturbation phase with churn during one hour. This
phase is followed by another phase without connections/disconnections. In
this case study, during the churn phase each perturbation period we chose
randomly either a new peer connection or a peer disconnection. This per-
turbation can occur anywhere in the ring (uniformly chosen). We have run
numerous simulations varying the inter-perturbation delay.

Continuous churn. For this set of simulations, we focus on phase one of the
previous case. We study the system while varying the inter-perturbation
delay. In this case, “perturbation” can be either a new peer connection or a
disconnection.

We also experiment a scenario for which only one peer gets disconnected. We
then study the reaction of the system. The first set of experiments allows us to
study 1) how many data blocks are lost after a period of perturbation and 2)
how long it takes to the system to return to a state where all remaining/non-
lost data blocks are replicated k times. In real-life systems there will be some
period without churn, the system has to take advantage of them to converge to
a safer state. The second set of experiments zooms on the perturbation period.
It provides the ability to study how the system can resist when it has to repair
lost copies in presence of churn. Finally, the last set of simulations is done to
measure the reparation of one single failure.

4.2 Losses and Stabilization Time after One Hour Churn

We first study the number of lost data blocks (data block for which the 3 copies
are lost) in PAST and in RelaxDHT under the same churn conditions. Figure 2
shows the number of lost data blocks after a period of one hour of churn. The
inter-perturbation delay is increasing along the X axis. With RelaxDHT and
our maintenance protocol, the number of lost data blocks is much lower than
with the PAST’s one: it reaches 50% for perturbations interval from lower than
50 seconds.

The main reason of the result presented above is that, using PAST replication
strategy, the peers have more data blocks to download. This implies that the
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mean download time of one data block is longer using PAST replication strategy.
Indeed, the maintenance of the replication scheme location constraints generate
a continuous network traffic that slows down critical traffic whose goal is to
restore lost data block copies.

Figure 3 shows the total number of blocks exchanged for both cases. There
again, the X axis represents the inter-perturbation delay. The figure shows that
with RelaxDHT the number of exchanged blocks is always near 2 times smaller
than in PAST. This is mainly due to the fact that in PAST case, many transfers
(near half of them) are only done to preserve the replication scheme constraints.
For instance, each time a new peer joins the DHT, it becomes root of some data
blocks (because its identifier is closer than the current root-peer’s one), or if it
is inserted within replica-sets that should remain contiguous.

Using PAST replication strategy, a newly inserted peer may need to download
data blocks during many hours, even if no failure/disconnection occurs. During
all this time, its neighbors need to send it the required data blocks, using a large
part of their upload bandwidth.

In our case, no or very few data blocks transfers are required when new peers
join the system. It becomes mandatory, only if some copies becomes too far
from their root-peer in the logical ring4. In this case, they have to be transferred
closer to the root before their hosting peer leaves the root-peer’s leafset. With
a replication degree of 3 and a leafset size of 24, many peers can join a leafset
before any data block transfer is required.

Finally, we have measured the time the system takes to return in a normal
state in which every remaining5 data block is replicated k times. Figure 4 shows
the results obtained while varying the delay between perturbations. We can
observe that the recovery time is twice longer in the case where PAST is used
compared to RelaxDHT. This result is mainly explained by the number of blocks

4 The acceptable distance, in number of peers in the logical ring, between a copie and
its root-peer is set to 8 in our simulations.

5 Blocks for which all copies are lost will never retreive a normal state and thus are
not taken into account.
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to transfer which is much more lower in our case: our maintenance protocol
transfers only very few blocks for location constraints compared to PAST’s one.

This last result shows that the DHT using RelaxDHT repairs damaged data
blocks (data blocks for which some copies are lost) faster than PAST. It implies
that it will recover very fast, which means it will be able to cope with a new
churn phase. The next section describes our simulations with continuous churn.

4.3 Continuous Churn

Before presenting simulation results under continuous churn, it is important to
measure the impact of a single peer failure/disconnection.

When a single peer fails, data blocks it stored have to be replicated on a
new one. Those blocks are transferred to such a new peer in order to rebuild
the initial replication degree k. In our simulations, with the parameters given
above, it takes 4609 seconds to PAST to recover the failure: i.e., to create a
new replica for each block stored on the faulty peer. While, with RelaxDHT,
it takes only 1889 seconds. The number of peers involved in the recovery is
much more important indeed. This gain is due to the parallelization of the data
blocks-transfers:

– in PAST, the content of contiguous peers is really correlated. With a repli-
cation degree of 3, only peers located at one or two hops of the faulty peer
in the ring may be used as sources or destinations for data transfers. In fact,
only k+1 peers are involved in the recovery of one faulty peer, where k is the
replication factor.

– in RelaxDHT, most of the peers contained in the faulty peer leafset (the
leafset contains 24 peers in our simulations) may be involved in the transfers.

The above simulation results show that RelaxDHT: 1) induce less data transfers,
and 2) remaining data transfers are more parallelized. Thanks to this two points,
even if the system remains under continuous churn, RelaxDHT will provide a
better churn tolerance.

Such results are illustrated in Figure 5. We can observe that, using the pa-
rameters described at the beginning of this section, PAST starts to lose data
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blocks when the inter-perturbation delay is around 7 minutes. This delay has
to reach less than 4 minutes for data blocks to be lost using RelaxDHT. If the
inter-perturbation delay continues to decrease, the number of lost data blocks
using RelaxDHT strategy remains near half the number of data blocks lost using
PAST strategy.

Finally, Figure 6 confirms that even with a continuous churn pattern, during
a 5 hour run, the number of data transfers required by the proposed solution
is much smaller (around half) than the number of data transfers induced by
PAST’s replication strategy.

5 Conclusion

Peer to peer distributed hash tables provide an efficient, scalable and easy-to-
use storage system. However, existing solutions do not tolerate a high churn rate
or are not really scalable in terms of number of stored data blocks. We have
identified the reasons why they do not tolerate high churn rate: they impose
strict placement constraints that induces unnecessary data transfers.

In this paper, we propose a new replication strategy, RelaxDHT that relaxes
the placement constraints: it relies on metadata (replica-peers/data identifiers)
to allow a more flexible location of data block copies within leafsets. Thanks to
this design, RelaxDHT entails fewer data transfers than classical leafset-based
replication mechanisms. Furthermore, as data block copies are shuffled among a
larger peer set, peer contents are less correlated. It results that in case of failure
more data sources are available for the recovery, which makes the recovery more
efficient and thus the system more churn-resilient. Our simulations, comparing
the PAST system to ours, confirm that RelaxDHT 1) induces less data block
transfers, 2) recovers lost data block copies faster and 3) loses less data blocks.
Furthermore, we have shown that the churn-resilience is obtained without adding
a great maintenance overhead.



498 S. Legtchenko et al.

References

1. Rowstron, A.I.T., Druschel, P.: Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. In: SOSP 2001: Proceedings of the 8th
ACM symposium on Operating Systems Principles, December 2001, pp. 188–201
(2001)

2. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, F.F., Dabek,
F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)

3. Landers, M., Zhang, H., Tan, K.L.: Peerstore: Better performance by relaxing in
peer-to-peer backup. In: P2P 2004: Proceedings of the 4th International Conference
on Peer-to-Peer Computing, Washington, DC, USA, pp. 72–79. IEEE Computer
Society, Los Alamitos (2004)

4. Busca, J.M., Picconi, F., Sens, P.: Pastis: A highly-scalable multi-user peer-to-peer
file system. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648,
pp. 1173–1182. Springer, Heidelberg (2005)

5. Dabek, F., Kaashoek, F.M., Karger, D., Morris, R., Stoica, I.: Wide-area coopera-
tive storage with CFS. In: SOSP 2001: Proceedings of the 8th ACM symposium on
Operating Systems Principles, vol. 35, pp. 202–215. ACM Press, New York (2001)

6. Jernberg, J., Vlassov, V., Ghodsi, A., Haridi, S.: Doh: A content delivery peer-to-
peer network. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006.
LNCS, vol. 4128, pp. 1026–1039. Springer, Heidelberg (2006)

7. Rodrigues, R., Blake, C.: When multi-hop peer-to-peer lookup matters. In: Voelker,
G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279, pp. 112–122. Springer,
Heidelberg (2005)

8. Rhea, S., Geels, D., Roscoe, T., Kubiatowicz, J.: Handling churn in a DHT. In:
Proceedings of the 2004 USENIX Technical Conference, Boston, MA, USA (June
2004)

9. Castro, M., Costa, M., Rowstron, A.: Performance and dependability of structured
peer-to-peer overlays. In: DSN 2004: Proceedings of the 2004 International Con-
ference on Dependable Systems and Networks, Washington, DC, USA, p. 9. IEEE
Computer Society, Los Alamitos (2004)

10. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable content-
addressable network. In: SIGCOMM, vol. 31, pp. 161–172. ACM Press, New York
(2001)

11. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: A global-scale overlay for rapid service deployment. IEEE Journal on
Selected Areas in Communications (2003)

12. Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator,
http://peersim.sf.net

13. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

14. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications 22, 41–53 (2004)

15. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002)

http://peersim.sf.net


Churn-Resilient Replication Strategy 499

16. Dabek, F., Li, J., Sit, E., Robertson, J., Kaashoek, F.F., Morris, R.: Designing
a DHT for low latency and high throughput. In: NSDI 2004: Proceedings of the
1st Symposium on Networked Systems Design and Implementation, San Francisco,
CA, USA (March 2004)

17. Ktari, S., Zoubert, M., Hecker, A., Labiod, H.: Performance evaluation of repli-
cation strategies in DHTs under churn. In: MUM 2007: Proceedings of the 6th
international conference on Mobile and ubiquitous multimedia, pp. 90–97. ACM
Press, New York (2007)

18. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: SOSP
2003: Proceedings of the 9th ACM symposium on Operating systems principles,
pp. 29–43. ACM Press, New York (2003)

19. Ghodsi, A., Alima, L.O., Haridi, S.: Symmetric replication for structured peer-to-
peer systems. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M.
(eds.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 74–85. Springer,
Heidelberg (2007)

20. Lian, Q., Chen, W., Zhang, Z.: On the impact of replica placement to the reliability
of distributed brick storage systems. In: ICDCS 2005: Proceedings of the 25th
IEEE International Conference on Distributed Computing Systems, Washington,
DC, USA, pp. 187–196. IEEE Computer Society, Los Alamitos (2005)

21. van Renesse, R.: Efficient reliable internet storage. In: WDDDM 2004: Proceedings
of the 2nd Workshop on Dependable Distributed Data Management, Glasgow,
Scotland (October 2004)

22. Adya, A., Bolosky, W., Castro, M., Chaiken, R., Cermak, G., Douceur, J., Howell,
J., Lorch, J., Theimer, M., Wattenhofer, R.: Farsite: Federated, available, and reli-
able storage for an incompletely trusted environment. In: OSDI 2002: Proceedings
of the 5th Symposium on Operating Systems Design and Implementation, Boston,
MA, USA (December 2002)

23. Kim, K., Park, D.: Reducing data replication overhead in DHT based peer-to-peer
system. In: Gerndt, M., Kranzlmüller, D. (eds.) HPCC 2006. LNCS, vol. 4208,
pp. 915–924. Springer, Heidelberg (2006)



Distributed Power Control with Multiple Agents
in a Distributed Base Station Scheme Using

Macrodiversity

Philippe Leroux and Sébastien Roy
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Abstract. Power management in wireless networks has been thoroughly
studied and applied in many different contexts. However, the problem
has not been tackled from a multiple-agent perspective (MA). This pa-
per intends to do so in the context of a wireless network comprised of
distributed base stations using macrodiversity. The proposed design is
shown to provide efficient use of macrodiversity resources and high energy
efficiency when compared with more traditional algorithms. Moreover,
the power control mechanism is completely decentralized, while avoiding
direct information exchange or excessive signaling, which makes it highly
scalable. Its auto-configuration property, stemming from its MA basis,
offers high adaptivity when experiencing high or low interference levels.
This leads to a naturally balanced resource usage, while also maintaining
nearly full efficiency with only a reduced set of discrete power levels, thus
making low-cost electronic implementation practical.

1 Introduction

1.1 Power Control

The literature on power control (PC) comprises important contributions, such
as the centralized algorithm by Grandhi et al. [1] for cellular networks. This
algorithm was then modified to offer decentralized properties in [2] and [3]. Yet,
these algorithms presented limitations, such as needing a global scaling param-
eter or converging to infinitesimal power values. Wang [4] offers a compromise
solution to obtain a stable fully distributed algorithm. All these algorithms aim
to maximize the minimum signal-to-interference ratio (SIR).

Considering macrodiversity, where one mobile is relayed by a set of base sta-
tions, power control is furthermore extended to macro PC in a CDMA context
by Yanikomeroglu [5]. In such a case, the algorithm does not balance the to-
tal received power, as is usually looked for in the CDMA context. Instead, it
balances the total SIR, which after proper combination of the diferent signals
received at each base station relaying the mobile, is the sum of the individual
SIRs. While CDMA is not considered in the present study, the algorithm from
[5] remains straightforward to adapt to our context.
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Yet, balancing signal to interference ratios has shortcomings in the context of
Rice fading where the relative importance of the line of sight can vary greatly for
each connection from mobile to the relaying base stations. Hence, the relative
signal-to-interference plus noise ratio necessary to achieve a given bit error rate
(BER) also varies for all mobiles. In addition, balancing SIR instead of signal
to noise plus interference ratio (SINR) can, in certain situations, render some
algorithms unstable as will be shown.

1.2 Distributed Base Sations

We focus herein on the distributed base station paradigm, which aims to develop
a completely distributed architecture for all aspects of the network. Macrodiver-
sity in [6] is considered in a connection-oriented self-organized system, such that
one mobile can be relayed by a set of neighboring distributed base stations
(DBS). Yet, these DBS are capacity limited and may not relay all neighboring
mobiles. Hence, a combinatorial problem must be solved to allocate connection
resources [7]. Moreover, interference cannot be managed with the well-known
segregation algorithm since neighboring DBS share channels [8]. Finally, power
control is strongly coupled with other aspects of the network since it can greatly
influence the potential of macrodiversity and interference management. It also
adds another dimension to the resource allocation problem, rendering the so-
lution space analytically intractable without simplifications on either geometry
or propagation hypothesis (i.e. considering only Rayleigh fading and not taking
into account different K factors for different signal of what would otherwise be
Rice fading).

Figure 1 illustrates a simple scenario with two channels. The higher a mo-
bile’s power level is (compared to neighboring mobiles), the larger its spatial
footprint is, and the more DBS it is able to reach. On the other hand, it also
interferes more, preventing other mobiles from linking with a plurality of DBS.
Hence, there is a point of equilibrium that each mobile must find, which de-
pends on the surrounding traffic and their own link quality. Moreover, these
values change continuously given mobility and changes in shadowing, changes in
channel allocation and mobiles joining or leaving the network. Hence, the system
is continuously looking for an homeostasis point which balances resources.

In such a context, a Multi-Agent System (MAS) is developed to control mo-
biles’ power level. Such an approach is appropriate given that it relies on the
inevitable interdependence of the mobiles’ BER related to the propagation fac-
tors but, most importantly, to the interference generated by variations of power
level and changes in the relay connections. The purpose is therefore to balance
BER in an environment with many constraints.

The next section develops in more detail the architectural challenges and
explains the key concept in designing MAS, and finally describes the proposed
design for power management. Section III proposes a set of simulations to bench-
mark the proposed design against the mentioned existing algorithms adapted to
the DBS context. Finally, Section IV discusses the results.
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Fig. 1. Illustration of a DBS architecture with 2 channels

2 Multiple Agent Design for DBS Network

2.1 The Distributed Base Station Challenges

In mobile telecommunication networks, the challenges are to provide connectiv-
ity to mobiles in spite of the fact that the received signal strength decreases
proportionally to a power of up to 4 (in urban environments) of the distance
between mobile and base station (BS). Therefore, many BS must be deployed
in space. However, mobiles close to one another cannot use the same channels
as they will interfere. And, unfortunately, the number of available channels is
limited. Cellular mobile networks are an ingenious way of allowing reuse of the re-
sources in space to accommodate a high density of mobiles. Still, these networks
require an extensive amount of planning for deployment and exploit expensive
base stations, whose siting can be frought with legal and social complications
given their radiated power.

The distributed base station architecture aims to answer such network de-
ployment issues, and also offers higher availability of resources to accommodate
today’s and tomorrow’s highly demanding applications in terms of bandwidth.
For this, access to a wired network is offered by a plurality of small inexpensive
base stations, emitting lower power, and easily installed or hidden inconspicu-
ously in the urban environment. The system is also designed to be completely
self-organized to facilitate its installation and configuration. To sustain high
throughputs from and to mobiles, macrodiversity is used, such that a set of DBS
can relay receive and process different copies of the signal from one mobile to
offer a higher aggregate link quality.

Given that a DBS is resource-constrained and may only relay a few mobiles,
one problem with such an architecture is to decide which DBS relays which
mobiles in a continuously changing environment, with new mobiles connecting
and mobiles moving out of the reach of some DBS and into the reach of others.
Links must be adjusted dynamically. This has already been answered by a multi
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agent process in [7] which proved to offer efficient optimization qualities. Also,
this system must deal with interference. It can do so by using adequate channel
assignment to mobiles, for which a multi agent process has also been proposed
in [8]. But resource availability can also be enhanced by using efficient power
control, such that some mobiles emit using less power in order to produce less
interference for others.

The power control problem is challenging in the DBS network as it is interde-
pendent with the macrodiversity potential. Indeed, a mobile can emit with high
power to be reached by many DBS. But because of interference, if all mobiles
did this as well, none would gain any benefit. The problem is then to decide
which mobile should emit less power to allow others to enjoy better link quality.
Many algorithms, either centralized or decentralized, exist in the literature. Yet,
all of these are based on maximizing a global criterion. We will see in the fol-
lowing that a multi agent process can offer appropriate and desirable solutions
which have not been thought of beforehand. Indeed, instead of striving to maxi-
mize a predefined goal based on simplifying assumptions, MAS explore a variety
of solutions through empirical experimentation. This brings out novel solutions
that would not have been obtained in a classical manner involving reductive
hypotheses.

2.2 Multi-agent Design

Swarming agents [9] are interacting entities whose interactions lead to the func-
tion we want to generate. Parunak [10] gives heuristics to engineer such a swarm-
ing system based on the following three concepts:

1. Coupling — processes must continually exchange information;
2. Auto-catalysis — whereby interaction is self maintained; and
3. Function — the induced organization provides a useful function.

Coupling. To satisfy the coupling requirement, a distributed environment is
needed where sources of information are not centralized and intelligent behavior
can only emerge through constant exchanges. DBS and mobiles do form a dis-
tributed environment, with mobiles’ requests for connections and QoS being the
source of information.

An active environment with the use of volatile markers (also referred to as
pheromones1) aims to generate coupling via at least indirect exchange of informa-
tion between agents. These markers represent non-intrusive bits of information
that an agent imprints on the environment which can be sensed by other agents
to obtain information on the present state of the system. Mobiles’ requests for
connections and QoS, as well as interference and power levels, represent volatile
markers since they are sensed by local DBS and mobiles which in turn interact
among themselves via multiple relaying.

1 Where the term denotes the direct inspiration from the information transport
medium used by insects as Parunak describes [10].
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Agents should be small in size and scope, compared to the overall system.
Indeed, DBS are small relay stations with a small sphere of influence compared
to the classic cellular base stations.

As a final criterion related to coupling, agents should be mapped as enti-
ties, not functions since an agent does not implement a complete function (e.g.,
sorting, segmentation).

In the proposed power control system, the agents are mapped to the mobiles
and satisfy all of the above criteria. Their actions will continuously adjust mo-
biles’ power levels in an interacting process whose purpose is to obtain a balanced
power control functionality.

Auto-catalysis. For agents to maintain their interactions, they must be de-
signed to let the process evolve continuously. Therefore, agents should not be
designed based on discrete state transitions, leading to pauses in the process
because of unverified conditions. That is why we must favor flows vs transi-
tions. One way is for agents to use the volatile markers to inform other agents
of their particular state which has to be dealt with, so they can continue their
process rather than stop and wait. This is how the mobiles operate in our case,
with the mobiles’ status being used as markers which can be sensed through the
propagation environment itself.

Amplification and limitation is needed. Amplification here implies a positive
feedback mechanism such that convergence (to a solution) is favored. In other
words, an agent’s actions which lead the system in a desirable global direction
should influence the surrounding agents to act in the same direction, via the
indirect exchange of information by the markers or pheromones (understood
here as the mobiles’ status).

But limitation implies preventing the whole system from either focusing on
one point (exacerbating the convergence of actions to a local minimum) and thus
miss a better solution or go past the solution and then diverge from it. Likewise,
limitation mechanisms should prevent the system from oscillating.

For a mobile, this means its power level should be amplified or limited de-
pending on the effect its actions have on its QoS, which is necessarily linked to
the surrounding mobiles’ QoS, e.g. if a mobile increases its power level in order to
increase its QoS, but the system cannot support it, all other mobiles will react.
In turn, it should force the first mobile to revise its actions. Also, mobiles have
a limited power level range and adjustments should therefore also be limited to
prevent saturation. Indeed, in such a case, mobiles could saturate to a maximum
power level and block the effectiveness of power control.

This striving for amplified/limited adjustments of power level aims to con-
verge to a point of equilibrium: an homeostasis point where the system actually
exhibits its expected power control behavior. These actions, to adjust power
level, must be sustained (triggered) by an ongoing flow to ensure the system
continuously explores the solution space and does not get stuck in a dead-end.
This flow is analogous to the variations of a stock market title which is influ-
enced by the traders’ actions of selling and buying, which in turn influences the
traders decisions and actions. The corresponding aspect of our system is created
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by having mobiles continuously adjust their power level, thus establishing a flow
of resulting modifications in interference. This flow modifies the mobiles’ status
(overall QoS) which in turn is sensed by the mobiles so that they take informed
decisions at the agent activation.

In the process, the mobiles are transforming the original requests by inte-
grating increasingly global information. Indeed, the agents’ actions modify local
mobiles’ interference. This is sensed by nearby mobiles which, in turn, react to
the changes, such that one local action gradually impacts on an increasingly
larger neighborhood, thereby coupling local actions to global behavior.

Function. Coupling may be trivial to obtain and auto-catalysis somewhat more
involved, but if the process as a whole does not realize a useful function, then it
is irrelevant. Hence, we want the flow of adjustments in power levels to actually
optimize the QoS of mobiles. Behavior diversity and alternative behavior help
in realizing the function by forcing agents to break any deterministic pattern
through the incorporation of randomness or non linearities. For PC, this means
each mobile should adjust its power level differently, in a way that the system
never falls in a local minimum where no further improvement is possible. Such
non-linearities will make each mobile converge differently to their homeostasis
power level point. Hence, the future power level adjustment of a mobile will
be dependent on the effect of all mobiles’ power level adjustments, which allow
power levels to converge to an homeostasis point.

Finally, we need to design a utility function which translates the flow sensed
(of variations thereof ) into rational decisions. That is, it converts a multi-dimen-
sional problem into a one-dimensional quantity upon which decisions for actions
are based.

In spite of the fact that many frameworks attempt to provide mathematical
support to derive such utility functions (such as Game-Theory [11] or COIN
theory [12]), these frameworks mostly consider sophisticated intelligent agents
having the ability to learn (eventually using reinforcement learning techniques)
which is not the nature of the proposed design. Ultimately, defining simple agent
behavior to obtain an intended global behavior still relies on intuition and trial
and error such as in Conway’s “game of life” [13] or with Wolfram’s cellular
automata [14]. In fact, no systematic procedure is known which yields the locally-
applicable utility function from the desired global behavior.

2.3 Multi-Agent Power Control (MAPC)

Contrary to the algorithms described in the Introduction, the purpose of the
agent is not to find a solution that evolves to a common global balance. Rather,
it tries to balance resources locally, while generating some interdependence in
the power level of neighboring mobiles. That way, and given all mobiles’ QoS
are interconnected indirectly with macrodiversity relaying and interference, one
mobile’s power level should evolve to maximize its achievable QoS while not
impeding others.

Building upon the DBS architecture developed in [7] (agents for macrodiver-
sity connection management) and [8] (agents for channel allocation in the DBS



506 P. Leroux and S. Roy

network), the PC agents sense the mobiles’ QoS and modify the mobile’s power
level. Inevitably, these actions will influence the other two types of agents. How-
ever, these interactions are meant to be constructive; an action by one type of
agent(power level adjustment) should not impede or exacerbate another agent’s
action (connection or channel allocation). Hence, limitation of the agents’ reac-
tions constitutes an important aspect to maintain stability in the system and to
prevent e.g. the PC agents from overreacting while trying to compensate events
caused by sudden change of interference due to changes in either channel or
connection allocation.

Consider that mobile i has a power level ratio of pi and an overall link quality
defined by

Qi =
Pti

Pdi
=

log10 BERi

log10 BERR
i

=
∑Mi

k=1 log10(BER(i, k))
log10(BERR

i )
, (1)

where Pti represents the actual total BER after macrodiversity combining of
the signals (i.e a measure of QoS ). It is evaluated using the analytical form in
[6] (to take into account a Rice fading model). The sum on k iterates through
the Mi DBS relaying mobile i. BERR

i is the requested BER for mobile i. With
this normalization, classes of QoS are naturally taken into account in the PC
algorithm.

If Qi is above 1, the mobile is overserved (it enjoys a BER better than re-
quested) and should reduce its power level; otherwise it should increase it. Yet,
forcing “overserved mobiles” to lower their power level would be restrictive, as
local conditions might allow mobiles to enjoy better QoS (due to lower local traf-
fic compared to local resources) without impeding other mobiles overwhelmingly.
It would also force mobiles to systematically reduce their power level until they
hit the point where SINR is limited by thermal noise, where they become more
vulnerable to either sudden deep fading or to the Hidden Terminal Effect (HTE)
[15] since very low power levels would prevent nearby DBS from detecting chan-
nel use. As well, if mobiles cannot obtain their QoS, they would systematically
saturate their transmit power. Therefore, more subtle actions are called for.

The Need variable is introduced to describe what could be the power level
of the mobile given its Qi factor: it is the value to which the mobile’s power
level should converge to if nothing else changes (which is not the case as other
mobiles will adjust their power level). When, for all mobiles, the current Needi

value equals the current power level pi then the homeostasis point is reached.
This variable is evaluated given a shaping function :

Needi(Qi) = 2e(−SQi) × (SQi + 1)− 1, (2)

where the value S is a scaling parameter for Qi in order to allow mobiles to
obtain QoS higher than their requested Pdi. Therefore, the Need function will
not necessarily be smaller than the current power level if Qi > 1. And mobiles
can obtain more quality than a global mean value. In the current simulations,
QoS is maximized with S = 0.8, and it has been observed that this value is
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adequate across many different conditions of traffic, mobile speeds and available
resources.

The exponential in the shaping function (2) generates non-linearities and nat-
urally affects the dynamics of the system. In effect, it affects the mobiles’ con-
vergence speed differently given their needs, and this translates into behavior
diversity as no mobile will react in a precisely proportional manner. The pro-
posed function is of course not the only possible choice, but it has proved stable
and effective. For MAS, effectiveness does not lie in the mathematical exactness
of the function, but in the interactions it will generate.

Finally, this Need factor must be converted to a delta (step) value to adjust
the power level. Two important functionalities remain to be implemented (1)
homeostasis and (2) limitation.

(1) Homeostasis is obtained by comparing the Need value to the current power
level the mobile has. Hence, the delta value is in the form of Needi − pi. The
mobile will then try to converge to a Needi value which depends on local inter-
actions given itself and neighboring mobiles’ Q values (given these are indirectly
linked via interference). Eventually, a non-linear function helps convergence so
that with Needi and pi close, the generated delta is kept small to slow down
variations and help stabilize the convergence.

∆i = β sign(Needi − pi) (|Needi − pi|)1.5, (3)

where the β factor is used to modify the dynamics of the system to help it
converge faster, at the expense of stability.

(2) Limitation: experience shows that this function is too unstable with high
values of β. Still, it can be stabilized with additional scaling parameters, while
maintaining fast adaptation in time with large values of β > 5, which is impor-
tant for mobility (β = 5 is used in the presented simulations). Therefore, ∆ is
scaled with the current power level and also the desired power level (the Need
value). That way, if these values are small, ∆ is also kept small to prevent strong
changes in the system that would otherwise suddenly generate exaggerated in-
terference. Indeed, such changes would lead to complications such as breaking
existing links or simply propagating exaggerated reactions throughout the sys-
tem. Building upon (3), the following function is used:

∆i = pi × |Need| × βsign(Needi − pi)(|Needi − pi|)1.5. (4)

Finally, the delta value is constrained to not exceed the power level range:

∆i < 0 ⇒ ∆′
i = max{∆i,

−pi

2
} (5)

∆i > 0 ⇒ ∆′
i = min{∆i,

1
2
(1− pi)}. (6)

As the mobile’s PC agent activates, its power level is adjusted as follows:

p
(ν+1)
i = p

(ν)
i + ∆′

i. (7)
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3 Simulation Platform

This section begins with a description of two known PC algorithms used for
benchmarking purpose. Then, the simulation physical parameters are detailed,
as well as a brief description of the emulation platform. Finally, the results are
given and detailed.

3.1 Centralized Power Control, CPC

Grandhi’s centralized power control (CPC) algorithm [1] is applied in the DBS
architecture by considering the M master DBS for the M mobiles on a given
channel. gij denotes the gain of the link (due to the path loss) from mobile i to
DBS j, with DBS i being mobile i’s master connection. Matrix A is defined as

Aij = gij/gii if i �= j, (8)
Aii = 0. (9)

And the SIR at the master DBS is defined as

γi =
pi∑M

j=1 Aijpij
. (10)

The power level for each mobile is then given by the eigenvector associated with
the largest positive eigenvalue of A.

Note that this algorithm is not trying to maximize each mobile’s SIR. Rather,
it finds a set of power levels which maximizes the lowest SIR, thus leading to each
mobile’s SIR being equal to the minimum (maximized) SIR. Also, the obtained
power levels are proportional to the eigenvector and thus need to be scaled to
fit inside the mobiles’ power level range. This is where the instability of this
algorithm lies, since under certain interference conditions, if a mobile is very
close to its master DBS, its power level will be very low. Yet, since its SIR is
forced to be equal to the other mobiles’ SIR, proportionally, the noise at the
receiver will have a much stronger impact leading to very poor SINR. Supposing
a mobile faces 1W interference power and 0.1W noise power, and emits 10W
to obtain a SIR of 10dB, it has a 9.6dB SINR. Now, consider a mobile faced
with .1W of interference, it emits 1W to obtain the same 10dB SIR, but has an
SINR of 7dB, resulting in an effective penalty of half. In order to minimize this
effect, the minimum power level should be high enough so that noise remains as
much as possible negligible. Hence, the power levels will be scaled such that the
maximum power level evaluated is set to the maximum mobile’s range.

On the other hand, a more complex evaluation of such effects would make it
possible to lower the maximum power level, keeping it as low as possible, and
hence, maximizing the efficiency of the link quality versus the power used per
mobile.

3.2 SBMPC

Yanikomeroglu’s SIR-balanced macro power control (SBMPC) [5] proposes an
interesting algorithm for CDMA distributed antennas using macrodiversity. The
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algorithm aims to balance, over all mobiles, the sum of the SIR one mobile has
(over all antennas). This is a valid approach in the context of Rayleigh fading.
However, as mentioned in the introduction, in Rice fading, two similar SIR values
can lead to two different BERs given each may not have the same ratio of line of
sight component versus reflexions (i.e. different K factor). Therefore, balancing
SIR does not balance BER with line of sight components varying depending on
mobiles’ locations.

As his article suggests, it is straightforward to adapt the algorithm to a general
cellular system. For all mobiles on one channel, we consider the matrix B to
describe the connections of mobile i (out of M mobiles) to DBS j (out of L
DBS) such that

Bij = 1 if mobile i is relayed by DBS j, (11)
Bii = 0 otherwise. (12)

The global SIR for mobile i is then

γi,SBMPC =
L∑

j=1

Bij
gijpi(∑M

k=1 gkjpik
)
− gijpi

. (13)

This equation is rearranged to obtain the power level of the i = {2, . . . ,M}
mobiles given the first in an iterative manner:

P(0) = {p(0)
i } =

⎧⎪⎨⎪⎩
⎛⎝ L∑

j=1

Bijgij

⎞⎠−1
⎫⎪⎬⎪⎭ , ∀i, (14)

γ
(ν)
1 =

L∑
j=1

B1j
g1jpi1(ν)(∑M

k=1 gkjpik(ν)
)
− g1jp

(ν)
1

. (15)

p
(ν+1)
1 = p1(ν), (16)

p
(ν+1)
i =

γ
(ν)
1∑L

j=1
Bijgij(∑M

k=1 gkjp
(ν)
k

)
−gijp

(ν)
i

, i ∈ {2, . . . ,M}. (17)

Similarly to the previous algorithm, the obtained power level vector is scaled to
minimize the noise effect.

Given that this is an iterative solution and the purpose is not to evaluate
its convergence, the algorithm is run for 20 iterations at each time step of a
simulation, which is enough for convergence.

3.3 Simulation Platform

Physical parameters. A square field of 25 square kilometers is considered, in which
1000 mobiles evolve and 100 DBS are scattered randomly. Hence, the traffic and
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network resource geometries are not uniform, which a priori implies uneven cov-
erage quality. A mobile moves in a random direction at a random speed taken (at
the start of a scenario) out of a uniform distribution over [0, Vmax]. DBS can relay
25 mobiles each, such that the mean number of macrodiversity links per mobile is
2.5. A mobile’s maximum transmit power is 1W at 1 meter of its antenna, and the
propagation exponent is 4 (gij ∼ 1/d−4). Rayleigh fading is considered, except
near a DBS (closer than 100m) where a line of sight component is added with
Rice factor K = 5 dB. Thermal noise at the receiver is considered for a band-
width of 30kHz at a temperature of 20◦C, yielding N0 = −129 dBW. The number
of available channels is denoted Ch.

Agents’ emulation. Simulations are run for 1000 seconds and repeated 10 times
with different initializations of the geometry (DBS positions and mobile initial
positions, directions and speeds). Time is discretized with a time step of 1 sec-
ond. At each time step, physical parameters are evaluated (mobile’s position,
propagation, interference, BER, connection outage). Agents activate randomly
according to a Poisson distribution with parameter λ = 3 time steps. At each
time step, agents which activate evaluate their local state and take actions ac-
cordingly (adjust the power level of the concerned mobile).

Results. At each time step, the set of QoS (total BER level given on a logarithmic
scale) for each mobile are sorted, thus providing a snapshot in time of the distri-
bution of the network resources across all mobiles. These sorted distributions are
then averaged for all the time steps of the simulation. Given this information, it
is then possible to compare how each algorithm distributes resources. The same
is done for the power level allocation. Also, to verify the stability over time (con-
sidering the dynamic properties) of the algorithm, two factors are interesting to
observe to understand how the system handles outage : (1) the mean number
N̄d of mobiles that loose all connections to the network per second, and (2) the
mean time t̄r it takes for the network to reconnect a mobile after it has been
disconnected. The latter also provides insight on how well the system is able to
provide resources to mobiles with high availability.

4 Results

Figure 2(a) shows the base results, that is, with a static simulation where fading
is considered as if mobiles where moving, but mobility is not considered (to
observe a nominal capacity without taking into account dynamic adaptation of
the algorithms). Noise is also not considered in this case.

The graphic reveals different aspects. First, with no PC, the QoS is clearly
not balanced, but more importantly, not all mobiles can be connected as is seen
from the right hand side of the graph. With the centralized algorithms, we can
clearly see that QoS is balanced, and all mobiles are connected. MAPC on the
other hand is able to provide much more QoS to almost all mobiles, while only
impeding (compared to SBMPC) very few mobiles.
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(a) Sorted BER profile averaged in time
(meant(sortm(PT (m))))

(b) Sorted power level ratio profile aver-
aged in time (meant(sorti(pii)) )

Fig. 2. Ch = 40, N = 0, Vmax = 0

In Table 1, it is interesting to note how the CPC handles outage extremely
well. It takes only 1 second (1 iteration of the simulation) to reconnect a lost
mobile, and the probability that a mobile is disconnected is extremely low. Even
SBMPC is not as good, but remains excellent compared to no power control.
MAPC is only doing slightly worse, but with a much enhanced QoS provided to
all mobiles.

Table 1. Outage behavior without mobility and noise Ch = 40

No PC CPC SBMPC MAPC
N̄d (×10−6) 570 8.9 130 190
t̄r (seconds) 24.2 1 2.0 2.65

Figure 2(b) reveals how both CPC and SBMPC offer similar distributions of
the power levels. On the contrary, the MAPC power level allocation is radically
different.

Faced with higher interference levels (Ch = 25), it can be seen that the cen-
tralized algorithms breakdown (Fig. 3(a)). Indeed, in high interference levels,
maximizing the minimum SIR leads to very poor SIRs for all mobiles. In turn,
this generates many disconnections. Figure 3(a) clearly shows the traditional
algorithms are here inefficient and even worse than without PC. However, the
MAPC algorithm manages to provide acceptable levels of QoS, while still con-
necting more mobiles.

The situation deteriorates even more when noise is introduced. Figure 3(b)
reveals how noise, as explained previously, renders the traditional algorithms
unstable generating lots of disconnections.

Also, facing important mobility (figure not shown due to lack of space),
the CPC algorithm loses its strength (of minimizing the outage probability)
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(a) Low channel resources, Ch = 25, N =
0, Vmax = 0

(b) Effect of thermal noise, Ch = 40, N =
−129dBW, Vmax = 0

Fig. 3. Sorted BER profile averaged in time (meant(sortm(PT (m))) )

as Table 2 reveals. Indeed, with mobility, more interference is present because
mobiles do not obtain an optimal reallocation of channels at each iteration. This
implies far too many very low power levels with the CPC. This conflicts with the
channel agents trying to reorganize the channel allocation as it generates impor-
tant hidden terminal effects. This also shows that the CPC algorithm loses much
of its capacity with even small changes of the efficiency of the channel allocation.
In addition, we are not even considering the burden of calculating power levels
at each iteration while first centralizing the data bits, which necessarily takes
time and would prevent the algorithm from rapidly adapting to the changes in
the system. SBMPC is doing much better, yet not as well as MAPC.

Table 2. Outage behavior with mobility (Vmax = 5 m/s) Ch = 50

No PC CPC SBMPC MAPC
N̄d (×10−4) 9.8 19.1 3.8 1.8
t̄r (seconds) 5.13 2.4 2.2 1.38

Figure 4(a) shows the behavior of the algorithms with only discrete levels of
power. The power level range is uniformly divided into 10 discrete levels. While
the MAPC is not as efficient as with a continuous power range, it still remains
more efficient at balancing the QoS. The CPC and SBMPC algorithms loose
their ability to balance QoS, since in order for them to work properly they need
an important dynamic range of power levels especially in the very low powers.
However, this necessity is in contradiction with the assumption (on which they
rely) that thermal noise is not an important factor. Indeed, mobiles with very
low power levels (which in these cases is most of them) will be much affected
by the thermal noise parameter, thus resulting in poor SINR. We should note,
however, that the CPC and SBMPC algorithms should be much more efficient
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(a) Sorted BER profile averaged in time
(meant(sortm(PT (m))))

(b) Sorted power level ratio profile aver-
aged in time(meant(sorti(pii)))

Fig. 4. Ch = 40, N = 0, Vmax = 0, discrete power level

than presented herein, if considering a uniform geometry with regularly-spaced
DBS and uniform traffic, though this would then be a very academic scenario.

Figure 4(b) shows the allocated power level over all mobiles in the discrete
case.

5 Conclusion

This article presents a novel design and approach to power control using multiple
agents. Its efficiency is compared with traditional algorithms and proved to be
superior in many aspects : robustness, ability to maximize the macrodiversity
the DBS architecture offers, as well as adaptability to many situations of high /
low traffic/interference or important mobility. The design was developed using
Parunak’s concepts and adjusted with thorough experiments to understand the
interactions involved so that these interactions could be limited or amplified in
order to lead to the desired behavior. It is an experimental approach, yet mostly
intuitive. Moreover, the design is a proof that striving for a desired solution,
such as in the SBMPC or CPC algorithms, which maximizes the minimum SIR,
is not necessarily the best way to make the best out of a system. Rather, the
MAS concept of first trying to generate coupling and auto-catalysis, and only
then trying to push the design in a desired direction (to obtain functionality
out of it) leads to un-thought-of solutions which ultimately prove appropriate.
Indeed, given the power allocation the MAPC obtains, it might be possible to
formulate a mathematical framework to gain further understanding and insight.
This is certainly different from the conventional approach in communications
which starts from an analytical formulation often made overly simplistic for the
sake of tractability.

As it stands, the results obtained with the distributed base station scheme
are encouraging and prompt further developments. Indeed, some gains might be



514 P. Leroux and S. Roy

obtained if the three agents systems (connections, channel allocation and PC)
were more directly coupled to obtain more synergy out of their interactions.
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Abstract. Maintaining redundancy in P2P storage systems is essential
for reliability guarantees. Numerous P2P storage system maintenance al-
gorithms have been proposed in the last years, each supposedly improv-
ing upon the previous approaches. We perform a systematic comparative
study of the various strategies taking also into account the influence of
different garbage collection mechanisms, an issue not studied so far. Our
experiments show that while some strategies generally perform better
than some others, there is no universally best strategy, and their rela-
tive superiority depends on various other design choices as well as the
specific evaluation criterion. Our results can be used by P2P storage sys-
tems designers to make prudent design decisions, and our exploration
of the various evaluation metrics also provides a more comprehensive
framework to compare algorithms for P2P storage systems. While there
are numerous network simulators specifically developed even to simu-
late peer-to-peer networks, there existed no P2P storage simulators - a
byproduct of this work is a generic modular P2P storage system simula-
tor which we provide as open-source. Different redundancy, maintenance,
placement, garbage-collection policies, churn scenarios can be easily in-
tegrated to the simulator to try out new schemes in future, and provides
a common framework to compare (future) p2p storage systems designs -
something which has not been possible so far.

Keywords: peer-to-peer storage-systems, redundancy maintenance,
garbage collection, trace-driven simulations.

1 Introduction

For diverse reasons including fault-tolerance, load-balance or response time or
geographic distribution of end users, distributed data stores are of interest. These
include traditional systems like distributed databases as well as more recent peer-
to-peer systems like OceanStore [1] aimed at archival storage, Freenet [2] for
anonymous file sharing and distributed hash table based cooperative file system
[3] among other academic as well as commercial initiatives [4,5,6,7].

There are several somewhat orthogonal design aspects which need to be con-
sidered while developing a P2P storage system. Figure 1 summarizes some of
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Fig. 1. Important design decisions that need to be considered when designing and
deploying a P2P storage system

the most important issues spanning the design space of P2P storage systems.
In this paper, we systematically study specifically the influence of one aspect
of the design space, namely that of the redundancy maintenance strategies. In
the related works section we will elaborate more on existing studies, including
studies of the other design choices. The related works also expose the void in
current literature in systematic study of the maintenance algorithms - a void we
endeavor to partly fill.

Peer-to-peer storage systems need to ensure that once an user (application)
stores an object, this object should be available and persist in the network,
notwithstanding the unreliability of individual peers and membership dynamics
(churn) in the system. This throws open a host of interesting design issues.
For resilience, redundancy is essential. Redundancy can be achieved either by
replication or using coding techniques. While coding is in principle storage-space
efficient for achieving a certain level of resilience, it leads to various kinds of
overheads, including computational overhead, and in the context of peer-to-peer
systems, communication overhead and even storage overhead to keep track of
encoded object fragments, thus making coding mechanisms worthwhile only for
relatively larger or rarely accessed objects as in applications like archival storage.

Over time, redundancy is lost unless replenished because of departure of peers.
This necessitates some mechanisms to restore redundancy. Trade-off considera-
tions of redundancy maintenance and achieving resilience have led to the design
of several maintenance strategies [5,8,9].

The subtle interplay between the dynamics in the system – which tends to
deteriorate the system’s performance, and the maintenance and garbage collec-
tion mechanisms which try to stabilize the system while capping the bandwidth
and storage overheads – has been of interest in recent years. Several theoretical
work [10,8,11] exist, which however have their own limitations in capturing the
whole gamut of design issues, and a complimentary, empirical approach based
on simulations and experiments is also called for.
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Existing literature on empirical studies however do not systematically com-
pare all these strategies either, and only partial and selective comparison studies
exist. The primary objective of this paper is to do a thorough study of all the
existing redundancy maintenance mechanisms, also taking into account the in-
fluence of garbage collection mechanisms to deal with excessive redundancy,
which has significant impact but has not been studied so far. Performance of
the different maintenance strategies is evaluated using several metrics and under
various circumstances based on system design decisions, workload and environ-
ment. Such a comprehensive enumeration is expected to provide P2P storage
systems designers guidance in making judicious design choices.

High level summary of our findings are as follows. There is no single strategy
which comes across as the best. The randomized lazy maintenance strategy [8]
provides a good overall trade-off. It is normal for a complex system influenced
by numerous factors that no design choice is good under all circumstances, and
it is thus imperative to identify a mechanism which provides good trade-offs
and graceful degradation from a multi-objective perspective. This finding, while
intuitive, is in contrast to mutually contradicting claims of several previous works
because of the selective and limited character of their comparisons.

We demonstrate that different strategies outperform the others depending on
the circumstances and also the metrics used to judge them. Also, while encoding
based schemes require a minimal number of distinct fragments to recreate the
original object, and duplicates of the same fragment do not help in that respect,
allowing such duplicates increase the availability of the distinct fragments, and
thus indirectly help. In particular, such a strategy turns out to be bandwidth ef-
ficient in comparison to other garbage collection decisions allowing no duplicates
or using a larger diversity.

2 P2P Storage: Design Space and Related Work

The last years have witnessed numerous prototype P2P storage systems including
Pond [12], CFS [3], TotalRecall [5], Glacier [6], Tempo [9] as well as commercial
ones like Wuala [4].

Weatherspoon et al [13] carried out an elaborate empirical comparison of
several storage systems. Their work focuses on evaluating the system based on
specific parameters used to configure the deployed systems but does not discern
the effect of specific design choices. Same implementations with other configu-
rations will yield possibly different performance.

Exploring and understanding the effect of the various design choices are cru-
cial. Williams et al [14] studied more diligently the effect of the choice of re-
dundancy, and advocated the use of a hybrid strategy which can leverage on
erasure codes to achieve storage space efficiency to guarantee persistence, while
using replication to provide performance during regular access. In this paper, we
investigate another relatively unexplored axis of the design space to compare the
various redundancy maintenance mechanisms, and additionally take into account
the effect of different garbage collection strategies. In terms of data placement,
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often a DHT is used to store the objects [3]. Other placement strategies can
also be used, e.g., randomized [5] or other criterions like load or proximity. Us-
ing such non-DHT placement strategies increase the complexity of the system’s
design since it becomes essential to keep track of object fragments.

Several theoretical works complement the experimental studies. Weather-
spoon et al [15] conducted an early study to demonstrate that erasure codes
are storage efficient compared to replication. Bhagwan et al [5] studied static re-
silience to determine adequate level of redundancy. Datta et al [8] used Markov
models and Di et al [11] used stochastic differential equations to study the com-
bined effect of churn and maintenance operations in a P2P storage system. Our
results match well to analytical predictions [8] for the very simple special cases
which such analytical studies can model.

2.1 Maintenance (Redundancy Replenishment) Strategies

Individual peers may be unavailable occasionally and (often) unpredictably be-
cause users go offline, machines fail, or network gets disconnected. Temporary
churn does not directly affect long term persistence, since the peers join back,
bringing back in the network whatever is stored in them. Adequate redundancy
can mitigate temporary churn. However, over a period of time, some partici-
pating peers may leave the system permanently, in turn leading to permanent
loss of redundancy. Permanent churn thus makes the system more vulnerable.
Redundancy maintenance schemes need to make the P2P storage system re-
silient against both regular and relatively predictable temporary and permanent
churn as well as unpredictable future correlated failures, while using network
and system resources judiciously.

Several redundancy replenishment strategies have been proposed [5,8,9].
Whether the repairs are in response to failures of peers or not they are clas-
sified as: (1) reactive maintenance and (2) proactive maintenance.

For the rest of the paper we will assume that encoding based redundancy is
being used in a storage system, such that originally N encoded distinct fragments
for an object is stored, of which, retrieving any M (but no less) fragments ensures
that the original object can be reconstructed.

Reactive maintenance. The simplest maintenance mechanism is to probe
periodically all the peers which are supposed to store encoded fragments of an
object, and whenever a probe for some fragments fail, reactively replenish the re-
dundancy by reintegrating new suitable redundant fragments at some live peers.
This strategy is referred to as an eager maintenance strategy. Such an eager
reactive maintenance mechanism has been argued and observed [5] that it wastes
bandwidth unnecessarily by failing to exploit the fact that often peers come back
online along with the stored content. In the design of the TotalRecall storage
system, Bhagwan et al [5] advocated a lazy maintenance strategy which we call
here a deterministic lazy repair strategy, distinguishing it from a randomized
strategy proposed subsequently by Datta et al [8] to achieve a more continuous
and smoother bandwidth utilization.
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In deterministic lazy repair all peers are probed periodically. When an
object has less than parameterized threshold Tdl (M < Tdl < N) encoded frag-
ments available, a repair operation is initiated for that object. Lazy maintenance
saves some overheads caused by transient failures. However, this approach may
suffer from some undesirable effects: (1) Once the threshold is breached, it tries
to replenish all the missing fragments at once, thus causing spikes in bandwidth
usage. (2) By waiting for the redundancy to fall below Tdl, the system is allowed
to degenerate and become more vulnerable to future (correlated) failures. (3)
Before maintenance, the available fragments are accessed more frequently, thus
causing access overload and imbalance.

The randomized lazy repair mechanism was proposed to alleviate the
shortcomings of the deterministic lazy repair, while trying to preserve its ben-
efits. In this approach, fragments of an object are probed in a random order,
until Trl live fragments are detected. A random number Trl + X of peers are
probed to locate such Trl live fragments. The X (a random variable) fragments
which are detected to be unavailable are replaced by the system. Adaptivity is
inherent in this randomized strategy, because if most of the fragments are online,
then X will be low, and thus there will be fewer replacements, otherwise, more
replenishing operations will be carried out.

Proactive maintenance. In a radically different approach, Sit et al [9] argued
that if the network is not used at any time point, such bandwidth underuti-
lization is a wastage, and the critical issue is not how much, but how smoothly
bandwidth is used. They proposed to continuously generate and integrate new
fragments for each object, subject to local bandwidth budget B at peers, irre-
spective of the number of fragments of an object in the system.

2.2 Garbage Collection Strategies

The above discussed maintenance operations regenerate lost redundancy. If an
offline peer returns, it brings back the fragments stored locally. This may lead
to two kinds of excessive redundancy. If the repair operation generates a frag-
ment which is distinct from the fragments that (eventually) come back, then the
system may eventually have more than N distinct fragments for an object. Oth-
erwise, the same fragment will have duplicate copies. Both these scenarios lead
to excessive redundancy. While extra redundancy can be desirable to an extent,
allowing more diversity (a larger number, say up to Nmax of distinct fragments)
can make the system more robust against churn, and reduce the need of future
maintenance operations. Likewise, even if duplicate copies of encoded fragments
do not directly help in increasing availability of an object, they increase the avail-
ability of individual fragments, which in turn may help maintaining diversity at a
lower future maintenance cost. In all cases the system requires garbage collection
to get rid of undesired excessive redundancy. We identify two garbage collection
strategies - one to limit the diversity of online fragments (to Nmax) and
other to allow or restrict duplicates of the same fragment . In our ex-
periments we study the influence of each redundancy replenishment scheme in
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Table 1. Simulation parameters

Parameters Description Default
value

N The initial number of encoded fragments for each object. 32
M The required number of fragments to reconstruct the original

object.
8

Tdl The threshold number of fragments for deterministic lazy repair
to trigger the repair operation.

16

Trl The threshold number of fragments for randomized lazy repair
to trigger the repair operation.

Table 2

B The bandwidth budget of each peer (only for proactive repair). Table 2
Nmax The maximum redundancy allowed for each object. 32/64
N The number of nodes in the simulation. 2000
O The number of objects in the simulation. 4000

conjunction with the garbage collection strategies, which has not been explored
in existing literature. Our study demonstrates that it has significant impact on
the system’s performance.

3 Methodology

We conduct experiments with both real (Skype) and synthetic availability traces1,
and employing the various garbage collection techniques, giving us eight scenarios
(see Table 2) to study.

Table 2. Parameters in different scenarios as determined by iteration (explained in
Section 3.2) and are measured in terms of object fragments

Scenarios Tdl Trl B
Using Skype’s peer availability trace [16]
Nmax is 32, fragments may have duplicates 16 11 5
Nmax is 32, fragments don’t have duplicates 16 12 8
Nmax is 64, fragments may have duplicates 16 11 28
Nmax is 64, fragments don’t have duplicates 16 11 12
Using synthetic data (without correlated failures)
Nmax is 32, fragments may have duplicates 16 11 3
Nmax is 32, fragments don’t have duplicates 16 12 7
Nmax is 64, fragments may have duplicates 16 11 7
Nmax is 64, fragments don’t have duplicates 16 11 7

1 Real (Skype) trace provides a realistic system dynamics scenario, where the rate of
churn is always changing; synthetic trace provides insight on the maintenance strate-
gies’ resilience against a specific level of churn and the system’s dynamic equilibrium,
so both real and synthetic traces are necessary in the experiments.
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Fig. 2. Node availability

3.1 Trace Driven Simulation

In our experiments we have used Skype superpeer availability data [16] as well as
synthetic data. There is one justification and one excuse for the specific choice of
the Skype data set. Availability traces for deployed P2P storage systems are not
available. However typical Skype users are very often online on Skype whenever
they are online, perhaps because Skype is used as an integral communication
tool by many users. Likewise, if a P2P storage system is used as a distributed
file system or backup system, the online characteristic can be expected to be
similar. Secondly, the main purpose of this paper is to highlight the fact that
different maintenance strategies outperform the others in different scenarios, and
the current experiments are enough to demonstrate the same. We did experi-
ments with several other availability traces available at the online repository [17]
and had similar qualitative results. Apart the diurnal temporal churn, the trace
files indicate gradual permanent node departures from the system, besides oc-
casional correlated outages. Figure 2(a) shows Skype node availability [16] after
normalization (each time unit stands for 25 minutes).

We also generated synthetic trace for node availability which is shown in
Figure 2(b). At each time point, we let online nodes go offline with a probability
pd(t) and offline nodes rejoin the system with a probability pr(t). To set the
values of pd(t) and pr(t), we recorded the node availability for a window of 10
time units in the original Skype trace and calculated the average node availabil-
ity. Based on that, we adapted the departure rate pd(t) and rejoin rate pr(t) to
make the number of available nodes similar to that in Skype trace in the same
period. The synthetic trace helps us study the different maintenance strategies
under only transient failures. Since the transient failures dominate in any real
system, they also are the principal cause for most of the maintenance overheads,
even in the lazier variations. In the experiments with synthetic trace, we try to
quantify these overheads.

3.2 Choice of Comparable Parameters

In order to conduct experiments which can be used to compare the different
strategies, it is essential to choose parameters for each of the strategies. Main-
taining storage redundancy is bandwidth intensive, and thus we consider it to be
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the cost against which to evaluate the benefits of the various strategies. Ideally
we should consider comparable aggregate bandwidth usage while the system is
in a steady state as the basis for choosing the parameters to compare the algo-
rithms. In reality, the peer population is never in a steady state but it typically
exhibits a diurnal behavior. So we chose the parameter for the deterministic
lazy strategy Tdl in an ad-hoc manner, and measured the aggregate bandwidth
usage over the time window of one such diurnal cycle. We iterated with various
values of Trl and B (We assume B is unchangeable during the simulation) for the
randomized lazy and proactive strategies respectively to determine comparable
parameter values where aggregate bandwidth usage over the same time window
is similar. Note that over the period of the experiments, the total bandwidth
usage of the strategies will vary, because the level of churn changes.

3.3 Evaluation Metrics

We measure several aspects of the system’s performance, including the more
traditionally studied metrics of total bandwidth usage, and availability of objects,
as well as others like the probability distribution of the number of fragments
of an object which determines the health of the storage system and thus its
vulnerability to further failures (identified in [8]) and smoothness of bandwidth
usage (identified in [9]).

4 Experiment Environment

We report on eight sets of experiments based on scenarios described above in
Section 3 and summarized in Table 2 to compare the four maintenance strategies
using a Java based simulator.

4.1 Simulator

Despite numerous simulation based studies of P2P storage systems, and unlike
P2P networks (e.g., DHT overlays) for which there exists several simulators,
there are no general simulators to study P2P storage systems. So we imple-
mented a modular proprietary simulator for P2P storage systems. The current
simulator includes all the maintenance and garbage collection mechanisms men-
tioned above. We implemented the random placement of fragments as well as
others like load-based placement. New strategies for each of the design aspects
of P2P storage systems can be integrated as additional modules. A GUI allows
the choice of experiment parameters and trace files, facilitating easy usage. The
P2P Storage System Simulator implementation is available as an open source
software at http://code.google.com/p/p2p3s/.

4.2 Experiment Settings

While experiments were conducted for various settings, we restrict our report
to a smaller set of parameters2 (default values are summarized in Table 1).
2 The qualitative trends remained the same across other parameter choices.
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Table 3. Summary: Performance of the maintenance strategies considering all metrics

Comparative scenarios Ranking
Nmax is 32/fragments may have dupli-
cates/Skype trace

1. Randomized lazy, 2. Proactive, 3.
Deterministic lazy, 4. Eager

Nmax is 32/fragments don’t have dupli-
cates/Skype trace

1. Randomized lazy, 2. Proactive, 3.
Eager, 4. Deterministic lazy

Nmax is 64/fragments may have dupli-
cates/Skype trace

1. Randomized lazy, 2. Proactive, 3.
Deterministic lazy, 4. Eager

Nmax is 64/fragments don’t have dupli-
cates/Skype trace

1. Randomized lazy, 2. Proactive, 3.
Eager, 4. Deterministic lazy

Nmax is 32/fragments may have dupli-
cates/synthetic trace

1. Randomized lazy, 2. Proactive, 3.
Deterministic lazy, 4. Eager

Nmax is 32/fragments don’t have dupli-
cates/synthetic trace

1. Proactive, 2. Randomized lazy, 3.
Deterministic lazy, 4. Eager

Nmax is 64/fragments may have dupli-
cates/synthetic trace

1. Deterministic lazy, 2. Randomized
lazy, 3. Eager, 4. Proactive

Nmax is 64/fragments don’t have dupli-
cates/synthetic trace

1. Deterministic lazy, 2. Proactive, 3.
Randomized lazy, 4. Eager

We assumed that data objects are stored as erasure encoded fragments, such
that any M = 8 distinct fragments ensure object reconstruction, and originally
N = 32 distinct fragments are stored in the network. The encoding scheme
used however allowed Nmax = 32/64 unique fragments for each object. The
results we discuss below are for Tdl = 16 and corresponding parameters for other
strategies (summarized in Table 2) which were in turn determined by conducting
numerous experiments to explore the parameter space. The experiments were
run for 500 scaled time units repeated ten times to ascertain that the observed
results are consistent. However the results presented are from one instance of such
experiments, both because the variance across multiple runs of the experiments
was marginal, and also to avoid clutter in the plots. The total peer population
used in the experiments comprised of 2000 homogeneous peers and 4000 objects
were encoded and placed on online peers using the random placement strategy
at the start of the experiments.

5 Results

A different maintenance strategy may be suitable depending on the peer’s mem-
bership dynamics or other factors like the choice of garbage collection mecha-
nism, as well as depending on which metrics are more important than others for
the users. In the discussion below, bandwidth is measured in terms of the num-
ber of fragments. The overall performance of the different strategies in different
scenarios considering all the evaluation metrics is summarized in Table 3 and
explained next.
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Fig. 3. Probability distribution of live fragments. Nmax is 32 and fragments has dupli-
cates. (for Skype trace data).

5.1 Using Skype Trace

To comprehensively understand the behavior of each maintenance and garbage
collection strategy, we report on three representative time points from the Skype
trace to study - trough at time 173 and peak at time 200 which represent tempo-
rary steady states in the peer population with least and most number of online
peers (Figure 2(a)) and at time 243 corresponding to correlated departure of
many peers. We also studied the system at other time points where the total
peer population is transient and the system behavior is somewhere between the
system’s behavior during the troughs and peaks. These are not reported here
due to space constraint and lack of any extra insights.

Nmax is 32 and fragments may have duplicates. The fact that one frag-
ment may have multiple duplicates makes the system more robust and all objects
remain available during the whole period of the experiment. Nevertheless we first
consider object availability. Figure 3 shows the probability distribution of dis-
tinct live fragments using different strategies at time 173 and time 243. In the
long run, the proactive strategy generates a lot of extra redundancy to make it
more robust against failures. The general trend from figure 3 is that the eager
repair and proactive repair maintain more redundancy than the randomized lazy
repair, while the deterministic lazy repair has the least redundancy, making the
system vulnerable. However notice that at time 173, ironically for the proactive
approach, a small fraction of objects have much smaller number of fragments (a
hump around ten fragments), making the system vulnerable. The hump occurs
because at each time point each peer can only generate B = 5 fragments at most,
so proactive approach can not repair all the objects at once. Thus, unlike in re-
active strategies where there are no artificial bandwidth limits, the proactive
strategy, by capping bandwidth at each user to smoothen system-wide band-
width usage which in itself is a desirable property, limits the system’s ability to
respond and recover fast.

Lower the percentage of fragments with more than one duplicate is, i.e. no
wastage for duplicates, the better the performance of the corresponding strategy
is in terms of storage space and bandwidth consumption. Referring to figure 4(a)
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(b) Cumulative number of fragments

Fig. 4. Nmax is 32 and fragments may have duplicates (for Skype trace data)

we see that the lazy repair strategies are the most efficient. Figure 4(b) shows
the cumulative number of fragments generated over time. Observe that for eager
repair and deterministic lazy repair, there are several spikes in bandwidth usage
(manifested as steps since we show the cumulative number of fragments), which
may overwhelm the network traffic. In contrast, bandwidth usage of proactive
repair is the smoothest. Randomized lazy repair provides a good compromise
because its overall bandwidth usage is modest (less than that of proactive or
eager approaches) and its bandwidth usage is much smoother than that of other
reactive strategies. Note that if the system considers only smoothness of the
bandwidth usage then proactive repair wins, while in terms of total bandwidth
usage, deterministic lazy repair outperformed all others in this scenario, but by
making the system vulnerable.

Nmax is 32 and fragments don’t have duplicates. From figure 5(a) we can
see that when correlated failures occur, for deterministic lazy repair, 8 objects
were lost (the objects that have less than 8 fragments), while the other three
strategies all perform better and similar to each other. In terms of aggregate
bandwidth usage and the smoothness (figure 5(b)), similar trends can be seen
as in the previous scenario, where the randomized lazy repair strategy provides
a good trade-off.

Nmax is 64 and fragments may have duplicates. In this scenario, all the
maintenance strategies maintain 100% object availability (Figure 6(a)) at all
times. So we conclude that when Nmax is 64 and multiple duplicates for each
live fragment are allowed in the system, all the strategies are robust enough from
the viewpoint of object availability, even though, again deterministic lazy repair
is the most vulnerable, followed by the eager approach, while proactive strategy
is the most robust followed by the randomized lazy approach.

Figure 6(b) shows the cumulative number of fragments generated during the
experiment. Eager and deterministic lazy approaches are the most efficient in
terms of total bandwidth usage, however the usage itself is spiky (and also recall
that they make the system vulnerable), while the proactive strategy consumes
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Fig. 5. Nmax is 32 and fragments don’t have duplicates (for Skype trace data)
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(b) Cumulative number of fragments

Fig. 6. Nmax is 64 and fragments may have duplicates (for Skype trace data)

the most bandwidth, but smoothly. In terms of storage utilization, randomized
lazy repair has least duplicates thus is the most efficient.

Nmax is 64 and fragments don’t have duplicates. This scenario is repre-
sentative of the situation where rateless codes are used, such that no duplicate
fragments are created to start with. The proactive strategy in this scenario is
also likely to resemble best the way it has been implemented in Tempo [9].

Figure 7(a) shows the comparison of probability distribution of live fragments
using different strategies after correlated failures at time 243. In this scenario,
deterministic lazy repair can not ensure 100% object availability (1 object was
lost). Likewise, the overall conclusions from figure 7 are similar to those observed
in the previous scenarios that the randomized lazy strategy provides a good
trade-off.

Figures 4(b), 5(b), 6(b) and 7(b) indicate that when Nmax is 32 and dupli-
cates of fragments are allowed, the bandwidth usage is less in comparison to the
scenarios when larger diversity (Nmax is 64) of distinct fragments are allowed,
or when duplicates are not allowed.

5.2 Using Synthetic Data

We also generate synthetic trace (Figure 2(b)) to evaluate the system in presence
of only temporary churn, that is when there are no permanent departures and
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Fig. 7. Nmax is 64 and fragments don’t have duplicates (for Skype trace data)
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Fig. 8. Nmax is 32 and fragments may have duplicates (using synthetic data)

all the objects should stay durable in the long run. We choose a trough (at time
118) and a peak (at time 140) of the curve shown in Figure 2(b).

Nmax is 32 and fragments may have duplicates. Figures 8(a) and 8(b)
show that eager repair wastes much more storage space and bandwidth. All the
other mechanisms have similar storage space utilization, however among them
the proactive strategy has the smoothest but most bandwidth consumption,
while the deterministic lazy repair has the least bandwidth consumption, but its
usage is not smooth.

Nmax is 32 and fragments don’t have duplicates. Similar to the previous
scenario, eager repair wastes more fragments than the other strategies, which all
perform well. The proactive strategy has smoothest and least bandwidth usage
and is thus a clear winner for this scenario.

Nmax is 64 and and fragments may have duplicates. Even though object
availability is retained, as opposed to the last scenario, all strategies perform very
differently in terms of bandwidth usage (figure 9(b)). Notice that in the previ-
ous scenario, even if bandwidth was available, proactive strategy would not have
used it simply because Nmax was low. With a higher Nmax too much bandwidth
is wasted by the proactive strategy. Observe in figures 9(a) that in contrast, the
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Fig. 9. Nmax is 64 and and fragments may have duplicates (using synthetic data)

randomized strategy provides comparable (even better) redundancy at a much
lower and relatively smooth bandwidth usage. Even the eager strategy main-
tains a modest redundancy, and uses even lower amount of bandwidth, but in a
spiky manner. The deterministic lazy approach has significantly less bandwidth
consumption, though the usage is somewhat spiky and the system is relatively
more vulnerable to any further failures, still it has adequate redundancy, making
it the best choice in this case.

Nmax is 64 and and fragments don’t have duplicates. In this scenario,
deterministic lazy repair strategy requires significantly less bandwidth in com-
parison to the other strategies, and still maintains modest level of redundancy.
Randomized lazy repair and proactive strategies provide better redundancy but
at a much higher bandwidth cost, while the eager strategy consumes further
more bandwidth for arguable improvement in redundancy.

The synthetic data modeled only temporary churn, and had dramatic effect
on the relative standings of the different maintenance strategies. Deterministic
lazy repair being the biggest gainer, outperforming other strategies in several
scenarios. Also, similar to the experiments using Skype trace, even with artificial
data we observe that a moderate diversity of encoded fragments (lower Nmax)
and allowing duplicates of these fragments is the best garbage collection strategy
in terms of bandwidth usage.

6 Conclusion

We charted out the various performance metrics typically used in evaluating
P2P storage system’s performance, and conducted a comprehensive study of ex-
isting redundancy maintenance mechanisms, taking into account various aspects
including churn and garbage collection mechanism – an issue overlooked in prior
works. Our exploration of the various evaluation metrics is novel and also pro-
vides a more objective and comprehensive framework to compare P2P storage
systems. The only subjective result of the paper is the “overall” ranking, where
we consider all the metrics to be of comparable importance. System designers can
use our current results as a guide to choose their system design and parameters



Redundancy Maintenance and Garbage Collection Strategies 529

accordingly. In conclusion, the randomized lazy strategy provides a good overall
trade-off under many diverse scenarios based on various performance metrics. In
terms of bandwidth usage, allowing fragment duplicates, and using a relatively
smaller diversity of distinct fragments (lower Nmax) turns out to be the most
efficient garbage collection strategy. That was so far unexplored and is a good
news for P2P storage systems designers because the simplest garbage collection
strategy turns out to be the best.

A tangible output of this work is our modular P2P storage system simulator.
An interesting extension of the work will be to automatically decide the rank-
ing of the strategies for any arbitrary weightage one may give to the different
evaluation metrics. “How do strategies that adapt the design space parameters
during the system’s lifetime in order to better adapt to changing environment
or changing user requirements behave?” is another open ended issue that needs
further investigation.
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Abstract. We present two OBDD based model checking algorithms for
the verification of Nash equilibria in finite state mechanisms modeling
Multiple Administrative Domains (MAD) distributed systems with pos-
sibly colluding agents (coalitions) and with possibly faulty or malicious
nodes (Byzantine agents). Given a finite state mechanism, a proposed
protocol for each agent and the maximum sizes f for Byzantine agents
and q for agents collusions, our model checkers return Pass if the pro-
posed protocol is an ε-f -q-Nash equilibrium, i.e. no coalition of size up
to q may have an interest greater than ε in deviating from the proposed
protocol when up to f Byzantine agents are present, Fail otherwise. We
implemented our model checking algorithms within the NuSMV model
checker: the first one explicitly checks equilibria for each coalition, while
the second represents symbolically all coalitions. We present experimen-
tal results showing their effectiveness for moderate size mechanisms. For
example, we can verify coalition Nash equilibria for mechanisms which
corresponding normal form games would have more than 5×1021 entries.
Moreover, we compare the two approaches, and the explicit algorithm
turns out to outperform the symbolic one. To the best of our knowl-
edge, no model checking algorithm for verification of Nash equilibria of
mechanisms with coalitions has been previously published.

1 Introduction

Cooperative services are increasingly popular distributed systems in which nodes
(agents) belong to Multiple Administrative Domains (MAD). Thus in a MAD
distributed system each node owns its resources and there is no central authority
owning all system nodes. Examples of MAD distributed systems include Internet
routing [13,23], wireless mesh routing [18], file distribution [8], archival storage
[19], cooperative backup [2,9,17].
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In traditional distributed systems, nodes may deviate from their specifications
(Byzantine nodes) because of bugs, hardware failures, faulty configurations, or
even malicious attacks. In MAD systems, nodes may also deviate because their
administrators are rational, i.e. selfishly intent on maximizing their own bene-
fits from participating in the system (selfish nodes). For example, selfish nodes
may change arbitrarily their protocol if that is at their advantage. Byzantine-
Altruistic-Rational (BAR) protocols provide a realistic model for MAD systems.

Showing that a protocol P for a MAD distributed system satisfies a given
specification ϕ entails two tasks. First, we need to show that P satisfies the
given property when all rational nodes follow the protocol exactly. Second, we
need to show that all rational nodes do, in fact, follow the protocol exactly.

As for the first task, well known model checking techniques (e.g. see [6] for a
survey) are available to verify that a system satisfies a given property despite
the presence of a limited number of Byzantine nodes. It suffices, as usual, to
model Byzantine nodes with nondeterministic automata.

As for the second task, this is usually accomplished by proving that no rational
agent has an incentive in deviating from the proposed protocol. This is done by
proving that the proposed protocol is a Nash equilibrium (e.g. see [13,4]).

A symbolic model checking algorithm to automatically verify that a given
protocol is a Nash eaquilibrium for a given MAD distributed system has been
presented in [20]. However the model checker presented in [20] only addresses
the case in which agents do not collude. On the other hand, it is well known
from game theory that coalitions of agents may have an advantage in deviating
even when no single agent may get any advantage by deviating alone (e.g. see
[15]). For example, this is the case for the gossip protocol presented in [16] which
is a Nash equilibrium when agents do not collude (no coalitions) and instead is
no longer a Nash equilibrium when large enough coalitions are allowed.

The above state of affairs motivates the goal of this paper: designing a model
checking algorithm to verify if a given protocol is a Nash equilibrium for a MAD
distributed system when coalitions up to a given size are allowed.

Our contribution. In Sect. 2 we show how a MAD distributed system with
coalitions of players can be modeled as a Coalition Schema, that is a suitable
synchronous product of Finite State Machines. This framework extends Finite
State Mechanisms presented in [20] which do not account for coalitions.

In Sect. 3 we define the game induced by a Coalition Schema, and in Sect. 4 we
give a formal definition of the property we want to verify: ε-f -q-Nash. Intuitively,
a mechanism is ε-f -q-Nash if no coalition of size up to q of rational agents has an
interest greater than ε > 0 (along the lines of, e.g. [12,14]) in deviating from the
proposed protocol when there are at most f Byzantine agents (along the lines of
[11]). Sufficient conditions to verify ε-f -q-Nash property are given in Theor. 1.

In Sect. 5 we present a verification algorithm that given a coalition schema
Q, our desired precision δ > 0 and (ε, f , q) as above, returns: Pass if the given
mechanism is indeed a (ε + δ)-f -q-Nash equilibrium for Q, Fail otherwise.

From a mathematical point of view, given a coalition schemaQ and a coalition
Q, we can build a mechanism MQ in which the coalition is just one of the
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agents. As a consequence, a first approach (that we call explicit) to verify that a
mechanism is ε-f -q-Nash consists of adapting the symbolic algorithm in [20] to
check that MQ is a Nash equilibrium for all Q, such that 0 < |Q| ≤ q. If Q has
n players, following this approach entails calling O(nq) times a variation of the
algorithm in [20] (more specifically,

∑q
k=1

(
n
k

)
).

To overcome this exponential growth, we propose an alternative approach
(that we call symbolic) by extending the algorithm in [20] so as to represent
symbolically (i.e. using OBDDs [3]) all mechanisms MQ, where Q is a coalition
of size at most q. We implemented our algorithm on top of NuSMV [22] using
ADDs (Arithmetic Decision Diagrams) [10] to manipulate real valued rewards.

Finally, in Sect. 6 we present experimental results showing effectiveness of
our verification algorithm on moderate size mechanisms. For example (Tab. 1
in Sect. 6), within 30 hours using 5GB of RAM we can verify Nash equilibria
for mechanisms with 16 agents and coalitions of size up to 2 (i.e. 136 possible
coalitions). This corresponds to find Nash equilibria for 136 games each with a
normal form of more than 5× 1021 entries.

Moreover, we compare explicit and symbolic approach performances. To this
aim, we note two facts. First, our symbolic approach involves the introduction
of auxiliary variables to properly perform the maximin computations required
by our algorithm. Second, real valued nodes in ADDs make usual OBDD sub-
tree sharing less effective. As a result, even if the symbolic approach should be
asymptotically better, the explicit implementation outperforms the symbolic one
in mechanisms we deal with, both in running time and memory usage (Tabs. 1
and 2 in Sect. 6).

Related works. Design of mechanisms for rational agents has been widely
studied (e.g. [23,21,5]) as well as the impact of collusions (e.g. [15]). Design
methods for BAR protocols have been investigated in [1,16,7,11] .

We differ from such works since our focus here is on automatic verification of
Nash equilibria for finite state BAR systems rather than on designing principles
for them. The paper closer to ours is [20] where a symbolic algorithm for checking
Nash equilibria in mechanisms has been presented. We note however that [20]
does not address coalitions.

Summing up, to the best of our knowledge, no model checking algorithm for
the automatic verification of Nash equilibria of finite state mechanisms with
coalitions has been previously proposed.

2 Coalitions Model

In this section, we present our framework to model protocols. Finite state proto-
cols are modeled via Finite State Mechanisms, which suitably extend the usual
definition of the synchronous parallel composition of finite state transition sys-
tems. The notion of Coalition Schema (Sect. 2.2) extends the definition of Mech-
anism in [20] by specifying the reward function and the discount factor for each
possible coalition (i.e. for each subset of players). Indeed, a Coalition Schema
represents a class of Mechanisms (Sect. 2.3).
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2.1 Basic Notions

We denote with B the set {0, 1} of boolean values (0 for false and 1 for true).
We denote with [n] the set {1, . . . , n}. The set of subsets of X (with cardinality
at most k) will be denoted by P(X) (Pk(X)).

We denote an n-tuple of objects (of any kind) in boldface, e.g. x. Unless
otherwise stated we denote with xi the i-th element of the n-tuple x, x−i

the (n − 1)-tuple 〈x1, . . . , xi−1, xi+1, . . . , xn〉, and with 〈x−i, b〉 the n-tuple
〈x1, . . . , xi−1, b, xi+1, . . . , xn〉. Given a set Q ⊆ [n], we denote the tuple 〈xj〉j∈Q

with xQ and the tuple 〈xj〉j �∈Q with x−Q.

2.2 Coalition Schema

Definition 1 (Coalition Schema). An n players (agents) coalition schema Q
is a tuple 〈S, I,A,B,T , h, β〉 which elements are defined as follows.

S = 〈S1, . . . , Sn〉 is an n-tuple of nonempty finite sets (of local states). The
state space of M is the set (of global states) S =

∏n
i=1 Si.

I = 〈I1, . . . , In〉 is an n-tuple of nonempty sets (of local initial states) s.t.
Ii ⊆ Si. The set of global initial states is I =

∏n
i=1 Ii.

A = 〈A1, . . . , An〉 is an n-tuple of nonempty finite sets (of local actions). The
set of global actions (i.e. n-tuples of local actions) is A =

∏n
i=1 Ai. The set of

i-opponents actions is A−i =
∏n

j=1,j �=i Aj .
B = 〈B1, . . . , Bn〉 is an n-tuple of functions s.t., for each i ∈ [n], Bi : S×Ai×

Si → B. Function Bi models the transition relation of agent i, i.e. Bi(s, a, s′) is
true iff agent i can move from (global) state s to (local) state s′ via action a. We
require Bi to be serial (i.e. ∀s ∈ S ∃a ∈ Ai ∃s′ ∈ Si s.t. Bi(s, a, s′) holds) and
deterministic (i.e. Bi(s, a, s′) ∧ Bi(s, a, s′′) implies s′ = s′′). We write Bi(s, a)
for ∃s′ Bi(s, a, s′). That is, Bi(s, a) holds iff action a is allowed in state s for
agent i.

T = 〈T1, . . . , Tn〉 is an n-tuple of functions s.t., for each i ∈ [n], Ti : S×Ai →
B. We require Ti to satisfy the following properties: 1) Ti(s, a) implies Bi(s, a);
2) (nonblocking) for each state s ∈ S there exists an action a ∈ Ai s.t. Ti(s, a)
holds.

h : P([n])×S×A→ R is a function that for each set Q ⊆ [n], for each state
s and action a, gives the reward h(Q, s,a) for the coalition Q.

β : P([n]) → R is a function returning for coalition Q ⊆ [n] a value β(Q) ∈
(0, 1). We call β(Q) the discount factor of coalition Q.

The transition relation Bi models the underlying behavior for agent i, that is all
possible behaviors of a Byzantine agent or possible choices of a rational one. On
the other hand, function Ti models the prescribed behavior (proposed protocol)
for agent i, i.e. the behavior of obedient (or altruistic, following [1,16]) agents.
For any set Y of Byzantine and rational players such that all players not in Y
are altruistic, the dynamic of the system is modeled by the transition relation
BTQ given in the following definition.
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Definition 2. Let Q = 〈S, I,A,T ,B, h, β〉 be an n players coalition schema.
We define BTQ : P([n]) × S × A × S → B as follows: BTQ(Y, s,a, s′) =∧n

i=1 BTi(Y, s, ai, s
′
i), where

BTi(Y, s, ai, s
′
i) =

{
Bi(s, ai, s

′
i) if i ∈ Y

Bi(s, ai, s
′
i) ∧ Ti(s, ai) otherwise.

We write BT for BTQ when Q is understood from the context.

2.3 Mechanism

Coalitions are subsets of players that together act as a single rational player. This
means that all players in a coalition aim at maximizing the coalition reward. This
leads to the definition of mechanism (with coalitions).

Definition 3 (Mechanism). A mechanism M is a pair 〈Q, P 〉, where Q is an
n players coalition schema, and P = {Q1, . . . , Qm} is a partition of [n] (thus
each Qi is a coalition).

Remark 1. We can recover the definition of mechanism in [20] as a particular
case of Def. 3, when all coalitions are singletons, i.e. P = {{1}, . . . , {n}}, hi(s,a)
= h({i}, s,a) is the reward of player i and βi = β({i}) is the discount factor of
player i.

Remark 2. Given an n players mechanism M = 〈Q, P 〉, where P is
{Q1, . . . , Qm}, there exists an equivalent m players mechanism M̂ with only sin-
gleton coalitions. The mechanism M̂ is defined as follows: M̂ = 〈Q̂, P̂ 〉, where P̂

= {{1}, . . . , {m}} and the coalition schema Q̂ = 〈Ŝ, Î, Â, T̂ , B̂, ĥ, β̂〉 is defined
as follows. The set of players of Q̂ is [m]. The set of states is Ŝ = 〈Ŝ1, . . . , Ŝm〉,
where Ŝi =

∏
j∈Qi

Sj . The set of initial states is Î = 〈Î1, . . . , Îm〉, where
Îi =

∏
j∈Qi

Ij . The set of actions is Â = 〈Â1, . . . , Âm〉, where Âi =
∏

j∈Qi
Aj . If

s = 〈s1, . . . , sn〉 ∈ S then ŝ = 〈sQ1 , . . . , sQm〉 ∈ Ŝ. If a = 〈a1, . . . , an〉 ∈ A then
â = 〈aQ1 , . . . ,aQm〉 ∈ Â. The underlying behavior of player i is B̂i(ŝ,aQi , s

′
Qi

)
=

∧
j∈Qi

Bj(s, aj , sj). The proposed protocol for player i of Q̂ is T̂i(ŝ,aQi)
=

∧
j∈Qi

Tj(s, aj). The discount and reward functions for player i of Q̂ are:
β̂({i}) = β(Qi) and ĥ({i}, ŝ, â) = h(Qi, s,a).

Since our goal is checking that a given protocol is a Nash equilibrium with
respect to any coalition of size at most q, we will be working, most of the time,
using coalition schemas (Def. 1) rather than mechanisms (Def. 3). Finding a
way (Sect. 5) to effectively represent coalition schemas is indeed one of our main
contributions.

Without loss of generality, in what follows, we focus on mechanisms M =
〈Q, P 〉, with at most one coalition of size greater than 1. That is, partitions
P have the form {Q, {j1}, . . . , {jm−1}}, with |Q| ≥ 1. By abuse of notation,
we denote such kind of partitions with the set of players Q ⊆ [n] forming the
non-singleton coalition.
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Example 1 (Case Study 1). This case study presents a very simple scenario in-
spired by peer-to-peer streaming services. Ideally, n ∈ N agents have to col-
laborate to broadcast information in order to maintain a high-quality service.
When an agent broadcasts information, it incurs a cost c ∈ R. All agents have a
profit g ∈ R if they collaborate and the number of collaborative agents exceeds
a threshold pn, where p ∈ (0, 1) is a real parameter. Otherwise the reward is 0.
The set Si of agent i local states is {0, 1}. The underlying behavior Bi of each
agent i ∈ [n] is depicted in Fig. 1: each agent in state 0 may choose whether
to broadcast information (action broadcast which corresponds to the proposed
protocol Ti) or do nothing (action sleep).

��������0
broadcast

��

sleep

��
��������1

reset
��

Fig. 1. Underlying behavior Bi for agent i

Following the intuition that members of a coalition may broadcast information
only to each other, the reward for a coalition Q is g|Q| if at least pn agents (out
of n) and at least r|Q| (r ∈ (0, 1)) agents in the coalition have performed action
broadcast. This last condition models the fact that a large enough number of
agents must collaborate inside the coalition to maintain a high-quality service.

Codifying action broadcast with 1 and sleep with 0, we give the following
formal definition of the reward function h (in state 1, 0 and 1 both codify action
reset). Defining f(Q, s,a) as:

f(Q, s,a) =

{
g|Q| if (

∑
i∈[n] si ≥ pn) ∧ (

∑
i∈Q si ≥ r|Q|)

0 otherwise

the reward function h is h(Q, s,a) = f(Q, s,a)− c
∑

i∈Q s̄iai.

3 Coalition Schemas as Games

A coalition schema Q induces a game that has all feasible paths as possible
outcomes. The set of feasible paths depends on the BTQ transition relation
given in Def. 2. As a consequence, it depends on a set of players Y that may
behave accordingly to the underlying behavior, whereas agents not in Y follow
the proposed protocol. The set Y models both Byzantine and rational agents.

In the rest of this section, we assume an n players coalition schema Q =
〈S, I,A,T ,B, h, β〉 and a set of agents Y ⊆ [n] to be given.

Paths. A path in (Q, Y ) (or simply a path when (Q, Y ) is understood from
the context) is a (finite or infinite) sequence π = s(0)a(0)s(1) . . . s(t)a(t)s(t +
1) . . . where, for each t, s(t) is a global state, a(t) is a global action and
BT (Y, s(t),a(t), s(t + 1)) holds. The length |π| of a path π is the number of
global actions in π. If π is infinite we write |π| = ∞.

In order to extract the t-th global state and the t-th global action from a
given path π, we define π(s)(t) = s(t) and π(a)(t) = a(t). To extract actions of
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a set of players Q of size q, we denote with π
(a)
Q (t) the q-tuple of actions aQ(t)

at stage t of the set of agents Q and with π
(a)
−Q(t) the actions a−Q(t) at stage t

of all agents not in Q.
For each set of agents Q ⊆ [n], the value of a path π is v(Q, π) =∑|π|−1
t=0 β(Q)th

(
Q, π(s)(t), π(a)(t)

)
. Note that for any path π and set of agents

Q ⊆ [n] the path value v(Q, π) is well defined also when |π| =∞ since the series∑∞
t=0 β(Q)th

(
Q, π(s)(t), π(a)(t)

)
converges for all β(Q) ∈ (0, 1).

Given a path π and a non-negative integer k ≤ |π| we denote with π |k the
prefix of π of length k, i.e. the finite path π|k = s(0)a(0)s(1) . . . a(k−1)s(k) and
with π|k the tail of π, i.e. the path π|k = s(k)a(k)s(k+1) . . .s(t)a(t)s(t+1) . . ..

We denote with Pathk(s, Y ) the set of all feasible paths of length k starting
at s, when Y is the set of rational/Byzantine agents. Formally, Pathk(s, Y ) =
{π | π is a path in (Q, Y ) and |π| = k and π(s)(0) = s}. Since we aim to verify
that a given protocol is robust with respect to all coalitions of size at most q
and all sets of Byzantine agents of size at most f , we introduce the notation
Pathk(s, f, q) to denote the set of all paths of length k feasible with respect to
all sets of Byzantine agents of cardinality at most f and all coalitions of size at
most q. Formally, Pathk(s, f, q) =

⋃
|Z|≤f,0<|Q|≤q,Z∩Q=∅

Pathk(s, Z∪Q). Unless
otherwise stated, in the following we omit the subscript or superscript horizon
when it is ∞. For example we write Path(s, Y ) for Path∞(s, Y ).

Let W ⊆ [n] be a set of agents. A path π in (Q, Y ) is said to be W -altruistic if
for all t < |π|, and for all i ∈W , Ti(π(s)(t), π(a)

i (t)) holds. Note that if W∩Y = ∅,
all paths in Pathk(s, Y ) are W -altruistic, that is, agents in W behave accordingly
to the proposed protocol.

Strategies. As usual in a game theoretical setting, we need to distinguish a
player actions (i.e. local actions) from those of its opponents. More in general,
we need to distinguish actions of players in a coalition Q from those of players
not in Q. This leads to the notion of strategy.

A strategy σ for a coalition Q is a (finite or infinite) sequence of actions tuples
for the set of players Q. The length |σ| of σ is the number of actions tuples in
σ (thus if |σ| = 0, the strategy is empty). Let σ = a0 . . . at . . . be a strategy for
coalition Q. We denote with σ(t) the t-th action in σ, that is at. Strategy σ agrees
with a path π (notation π �Q σ) if |σ| = |π| and for all t < |σ|, σ(t) = π

(a)
Q (t).

Given a path π, the strategy (of length |π|) for a coalition Q associated to π will
be denoted by σ(π,Q) = π

(a)
Q (0)π(a)

Q (1) . . .π
(a)
Q (t) . . ..

For any set of agents Y ⊆ [n] the set of Y -feasible strategies of length k for
a coalition Q in state s is: Stratk(s, Q, Y ) = {σ(π,Q) | π ∈ Pathk(s, Y )}. Our
definition of feasible strategy essentially corresponds to the usual one in multi-
stage games: global states implicitly represent the sequence of actions in previous
periods, i.e. histories. In contrast with the game theoretical model, histories are
partitioned into a finite number of equivalence classes, represented as mechanism
states.

As for paths, a strategy σ ∈ Stratk(s, Q, Y ) is said to be Q-altruistic if Q∩Y =
∅. If σ = a0a1 . . . ak−1akak+1 . . ., we use the notations σ|k= a0a1 . . .ak−1 and
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σ|k= akak+1 . . . to denote, respectively, the k-prefix and the tail of σ. The set
of paths that agree with a set of strategies Σ for a coalition Q is defined as
Path(s, Q, Y,Σ) = {π ∈ Pathk(s, Y ) | ∃σ ∈ Σ. k = |σ| ∧ π �Q σ }. When Σ is
the singleton {σ}, we simply write Path(s, Q, Y, σ).

Given a set of Byzantine agents Z ⊆ [n] \Q, the guaranteed outcome (or the
value) of a strategy σ in state s for coalition Q is the minimum value of paths that
agree with σ. Formally: v(s, Q, Z, σ) = min{v(Q, π) | π ∈ Path(s, Q, Z ∪Q, σ)}.
The value of a state s at horizon k for coalition Q is the guaranteed outcome
of the best strategy of length k starting at state s. Formally: vk(s, Q, Z) =
max{v(s, Q, Z, σ) | σ ∈ Stratk(s, Q, Z ∪ Q)}. The guaranteed outcome of the
proposed protocol in a state s at horizon k for coalition Q is the outcome of the
worst Q-altruistic strategy of length k starting at state s. Formally, uk(s, Q, Z)
= min{v(s, Q, Z, σ) | σ ∈ Stratk(s, Q, Z)}.

The finite horizon value of a state can be effectively computed by using a
dynamic programming approach (Prop. 1). This is one of the main ingredients
of our verification algorithm (Sect. 5). We omit proofs because of lack of space.

Proposition 1. Let Q = 〈S, I,A,T ,B, h, β〉 be an n players coalition schema,
s ∈ S, and Q,Z ⊆ [n] such that Z ∩ Q = ∅. The state values at horizon k for
coalition Q can be computed as follows:

v0(s, Q, Z) = u0(s, Q, Z) = 0;
vk+1(s, Q, Z) = max

aQ∈AQ

min
a−Q∈A−Q

{ h(Q, s, 〈aQ,a−Q〉) + β(Q) vk(s′, Q, Z) |

BT (Z ∪Q, s, 〈aQ,a−Q〉, s′)};
uk+1(s, Q, Z) = min

aQ∈AQ

min
a−Q∈A−Q

{ h(Q, s, 〈aQ,a−Q〉) + β(Q) uk(s′, Q, Z) |

BT (Z, s, 〈aQ,a−Q〉, s′)}

.

Example 2. In the Coalition Schema described in Ex. 1, a rational player may
deviate from the proposed protocol if it thinks that the service is compromised
because the number of Byzantine agents is larger than (1− p)n. In such a case a
rational player choose the action sleep, which ensures a reward 0, rather than the
action broadcast, which leads to the negative reward c

∑
k∈N

β2k. A coalition Q
may deviate by using the following strategy: some agents broadcast information
to other coalition members only, and some agents do not broadcast anything.
In such a case, threshold r|Q| of collaborative agents is required to guarantee
the service for coalition members. As a consequence, the coalition Q deviates
whenever !r|Q|" < |Q|. As expected, if all agents are in the coalition, the protocol
is not Nash, but the reward of each agent increases (the well known price of
anarchy phenomenon[15]).

4 Verifying Coalition Nash Equilibria

In this section, we introduce the notion of ε-f -q-Nash coalition schema, in or-
der to verify protocol robustness with respect to coalitions of colluding players.
Theor. 1 gives sufficient conditions to check that a coalition schema is ε-f -q-Nash
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and, together with Prop. 1, it proves the correctness of our verification (Alg. 1
in Sect. 5).

In [20] it is introduced a notion of ε-f -Nash equilibrium for a mechanism.
Intuitively, a mechanism M is ε-f -Nash, if, as long as the number of Byzantine
agents is no more than f (e.g. see [11]), no rational agent has an interest greater
than ε (e.g. see [12,14]) in deviating from the proposed protocol in M. ε-f -q-
Nash extends this notion by requiring that no coalition of rational agents of size
at most q has an interest greater than ε in deviating from the proposed protocol.

Definition 4 (ε-f-q-Nash). Let Q = 〈S, I,A,T ,B, h, β〉 be an n players coali-
tion schema. Let 0 �= q ∈ [n], f ≤ n − q, ε > 0 and Q ⊆ [n] be a coalition with
0 < |Q| ≤ q.

The coalition schema Q is ε-f -Nash for coalition Q iff ∀Z ∈ Pf([n] \ Q),
∀s ∈ I, we have:

u(s, Q, Z) + ε ≥ v(s, Q, Z).

Q is ε-f -q-Nash if it is ε-f -Nash for all coalitions Q such that 0 < |Q| ≤ q.

In general, Nash equilibria for infinite-horizon games cannot be verified by only
looking at finite strategies, since they are not necessarily limits of equilibria of the
corresponding finite horizon games (e.g. see [14], or Ex. 1 in [20] for an example
in mechanism scenario). However, if we assume that agents cannot distinguish
between small variations (ε) in their payoffs, then we can verify Nash equilibria
for infinite-horizon games by only looking at long enough finite strategies. This
has motivated the introduction of ε-Nash equilibria for infinite-horizon games
and also motivates Def. 4. Indeed, our definition of ε-0-1-Nash yields the usual
definition of ε-Nash equilibria (e.g., see Sect. 4.8 of [14]). We observe that the
notion of ε-f -1-Nash is equivalent to the notion of ε-f -Nash in [20]. Thus if a
mechanism is ε-f -q-Nash for q ≥ 1, it is also ε-f -Nash.

ε-f -q-Nash property cannot be verified using finite approximations if for some
Q,Z, s, | vk(s, Q, Z) − uk(s, Q, Z) | converges to ε (see Ex. 2 in [20]). However
we may get arbitrarily close to this result as stated by the following theorem.

Theorem 1. Let Q = 〈S, I,A,T ,B, h, β〉 be an n players coalition schema.
Let 0 �= q ∈ [n], f ≤ n− q, ε > 0 and δ > 0. Furthermore, for each coalition Q,
such that 0 < |Q| ≤ q let:

1. MQ = max{|h(Q, s,a)| | s ∈ S′ and a ∈ A′}.
2. E(Q, k) = 5 β(Q)k MQ

1−β(Q) .
3. ∆(Q, k) = max{vk(s, Q, Z) − uk(s, Q, Z) | s ∈ I, Z ∈ Pf ([n] \Q)}.
4. ε1(Q, k) = ∆(Q, k)− 2E(Q, k) .
5. ε2(Q, k) = ∆(Q, k) + 2E(Q, k).

Let k be such that for all coalitions Q such that 0 < |Q| ≤ q, 4E(Q, k) < δ holds.
Then we have:

1. If for all Q ∈ Pq([n]) ε ≥ ε2(Q, k) > 0 then Q is ε-f -q-Nash.
2. If there is Q ∈ Pq([n]) such that 0 < ε ≤ ε1(Q, k) then Q is not ε-f -q-Nash.

Of course in such a case a fortiori Q is not 0-f -q-Nash.
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3. If for all Q ∈ Pq([n]), ε1(Q, k) < ε and there exists Q′ ∈ Pq([n]) s.t. ε <
ε2(Q′, k) then Q is (ε + δ)-f -q-Nash.

Proof. The proof skeleton is essentially the following: first, we show that values
of path prefixes converge to the path values, i.e. v(Q, π |k) → v(Q, π). Then,
we show that values of strategy prefixes converge to the strategy values, i.e.
v(s, Q, Z, σ|k)→ v(s, Q, Z, σ), and finally we show that state values are limits of
their finite approximations, i.e. vk(s, Q, Z)→ v(s, Q, Z). Bounds in convergence
proofs give us the effective test to check if a mechanism is ε-f -q-Nash.

5 Verification Algorithms

Resting on Theor. 1 in this section we present our algorithm (Alg. 1) to verify
that a given protocol is ε-f -q-Nash.

Alg. 1 is implemented on top of the NuSMV [22] model checker. Since states
(s), actions (a) and sets of agents (Q,Z) are finite, we can represent them with
boolean arrays. We represent boolean functions (such as the transition relations
T , B and BTQ) using OBDDs [3] and real valued functions (such as coalition
rewards λs Q Z. ut(s, Q, Z) and λs Q Z. vt(s, Q, Z)) using ADDs (Arithmetic
Decision Diagrams) as implemented in the CUDD [10] package.

As usual in OBDD based computations, we represent functions with the ex-
pressions defining them. For the sake of clarity, we will present Alg. 1 using a set
theoretic notation for sets, predicates and functions over sets, but for example
statements in lines 2, 5, 7, and 11 have to be interpreted as ADD manipulations.

The algorithm first computes the number of iterations k needed to reach
the precision threshold desired by the user (line 1). Then, for each iteration t
from 0 to k, it computes the state value vt(s, Q, Z) and the proposed protocol
guaranteed outcome ut(s, Q, Z) using Prop. 1 (lines 2–10). After computing state
values, Alg. 1 finds the ADD representing the maximum difference between state
values and the guaranteed outcome of the proposed protocol as a function of Q.
This is the ∆(Q) in line 11, representing the best gain that a coalition Q may
have in deviating from the proposed protocol. This corresponds to point 3 of
Theor. 1. Then in line 12, ε1(Q) and ε2(Q) are computed as in points 4 and 5
of Theor. 1 respectively. Finally, lines 13–15 determine which statement among
1–3 of Theor. 1 holds.

Verifying that a coalition schema Q is ε-f -q-Nash requires checking that the
hypotheses in statements 1-3 of Theor. 1 hold for all coalitions of size at most q.
The number of such coalitions is

∑q
j=1

(
n
j

)
. We implement two versions of Alg. 1

– in the explicit version, the loop in lines 3-10 is performed
∑q

j=1

(
n
j

)
times

in order to compute state values ut(s, Q, Z) and vt(s, Q, Z) for any possible
coalition Q of size at most q. This is almost equivalent to build the single
player mechanism MQ for each coalition Q and to run (a variation of) the
single player verification algorithm presented in [20] with MQ as input;

– in the symbolic version, all computations are parametric with respect to all
mechanisms MQ: in such a case, line 3 has to be read as a logical predicate
rather that an iterative for loop.
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Algorithm 1. CheckNash. Checking if a mechanism is ε-f -q-Nash.
Input: mechanism Q, int f , int q, double ε, δ
Output: (Fail) or (Pass with a threshold)
1: Let k be such that ∀Q 0 < |Q| ≤ q ⇒ [4 E(Q, k) < δ]
2: v0(s, Q, Z) ← 0, u0(s, Q, Z) ← 0, where s ∈ S, Q ∈ Pq([n]) and Z ∈ Pf ([n] \ Q)
3: for all Q ∈ Pq([n]) \ {∅} do
4: for t = 1 to k do
5: vt(s, Q, Z) ← max

aQ∈AQ

min
a−Q∈A−Q

[hi(Q, s, 〈aQ, a−Q〉) + β(Q)vt−1(s′ , Q,Z)],

6: where BT (Q∪Z,s, 〈aQ, a−Q〉, s′), s ∈ S, Q ∈ Pq([n]) and Z ∈ Pf ([n] \Q)

7: ut(s, Q, Z) ← min
aQ∈AQ

min
a−Q∈A−Q

[hi(Q,s, 〈aQ, a−Q〉) + β(Q)ut−1(s′, Q, Z)],

8: where BT (Z,s, 〈ai, a−i〉, s′), s ∈ S, Q ∈ Pq([n]), and Z ∈ Pf ([n] \ Q)
9: end for

10: end for
11: ∆(Q) ← max{vk(s, Q, Z) − uk(s, Q,Z) | s ∈ I,Z ∈ Pf ([n] \ Q)}, Q ∈ Pq([n])
12: ε1(Q) ← ∆(Q) − 2E(Q), ε2(Q) ← ∆(Q) + 2E(Q), with Q ∈ Pq([n])
13: if (∃Q ∈ Pq[n] [ε < ε1(Q)]) return (Fail)
14: if (∀Q ∈ Pq[n] [ε2(Q) < ε]) return (Pass with ε)
15: else return (Pass with (ε + δ))

Symbolic approach should be asymptotically better. However it requires the
introduction of auxiliary state and action variables for maximin computations
required by Alg. 1 in lines 5 and 7, which turns out to be much more involved
and slower. Moreover, ADDs make usual OBDD memory compression via sharing
much less effective. As experimental results show in Sect. 6, in our moderate size
mechanisms the explicit implementation outperforms the symbolic one, both in
running time and in memory usage.

6 Experimental Results

In order to assess effectiveness of our Nash verifier we present experimental
results on its usage on two meaningful and scalable case studies inspired by
cooperative services. Case study 1 shown in Ex. 1 is designed to be as simplest
as possible, in order to test our verification tool on mechanism with a number of
agents as greater as possible. In Sect. 6.1 case study 2 is presented, describing a
slightly more complex scenario. Finally, Sect. 6.2 describes experimental settings
and assesses tool performances.

6.1 Case Study 2

In this case study we present a slightly more complex and subtle scenario. We
are given a set J = {0, . . . ,m − 1} of m jobs and a set T = {0, . . . , t− 1} of t
tasks. Function η : J → P(T ) defines for each job j the set of tasks η(j) needed
to complete j, and function ι : T → P(J ) defines for each task t the set of jobs
ι(t), for which t is needed.
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Each agent i ∈ [n] is supposed to work (proposed protocol) on a given sequence
of (not necessarily distinct) tasks Ti = 〈τ(i, 0), . . . , τ(i, α(i) − 1)〉 starting from
τ(i, 0) and returning to τ(i, 0) after task τ(i, α(i) − 1) has been completed. An
agent may deviate from the proposed protocol by not executing the task. This
behavior models many typical scenarios in cooperative services.

An agent incurs a cost w by working towards the completion of its currently
assigned task. A job is completed if for each task it needs there exists at least one
agent that has completed that task. In such a case, each of such agents receives
a reward. At the end of each round a fixed capital C is equally divided among
completed jobs. The reward for a job is in turn equally divided among all agents
that executed a task needed to complete the job. Note that even if two (or more)
agents have completed the same task all of them get a reward. Finally, we set
the reward for a coalition Q to be the sum of its component rewards.

Note that, in this scenario, a coalition may deviate from the proposed protocol
in the following way: if two or more players in the coalition are assigned to the
same task, it is sufficient that only one of them works. Moreover, if there is a
large enough number of Byzantine players, jobs completion is not guaranteed.
This may induce a rational player not to work, in order to avoid the cost w.

6.2 Results

In this section we summarize the experimental results we obtain by running the
Nash verification algorithm Alg. 1 in both its implementations (i.e. explicit and
symbolic) on our case studies.

Results on Case Study 1. We instantiate the class of mechanisms related to
our first case study by fixing p = 3

4 , g = 4 and r = 1
2 . We then perform our

experiments both with the explicit and the symbolic implementation of Alg. 1,
by increasing the number of agents n, the coalition maximum size q and the
Byzantine agents maximum number b. We set for all coalitions Q, β(Q) = 0.5.

Results are in Tab. 1. Column meanings in Tab. 1 are as follows. Columns
n, q, b show the number of agents, the maximum coalition size, and the maximum
number of Byzantine agents. Column Nash shows the final verification outcome.
In particular, note that the Pass result, in our experiments, always means Pass
with ε (case 1 of Theor. 1). Column CPU expl (resp., symb) shows the compu-
tation time in seconds for the explicit (resp. symbolic) implementation. Column
Mem expl (resp., symb) shows the RAM used by the explicit (resp. symbolic)
implementation in MBs. Column BDD expl (resp., symb) shows the number
of OBDD/ADD nodes used by the explicit (resp. symbolic) implementation. Fi-
nally, column |Pq([n])| shows the number iterations needed by line 3 of Alg. 1,
i.e. |Pq([n]) \ {∅}|.

Note that “N/A” entries denotes that the corresponding experiment exceeded
the available resources, either w.r.t. RAM (needed more than 8 GB) or time
(needed more than 3 days). In all experiments we take ε = 0.1 and accuracy
δ = 0.05. With such settings the value k in line 1 of Alg. 1 turns out to be at
most 15 in all our experiments.
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Table 1. Experiments run for the case study of Sect. 1 on a 64-bit Dual Quad Core 3
GHz Intel Xeon Linux PC with 8 GB of RAM

n q b Nash
CPU
expl

CPU
symb

Mem
expl

Mem
symb

BDD
expl

BDD
symb |Pq([n])|

9 1 3 Pass 2.88e+01 2.82e+03 7.43e+01 1.63e+02 2.59e+05 8.25e+05 9
9 1 4 Fail 3.03e+01 5.87e+03 7.41e+01 1.63e+02 5.36e+05 7.77e+05 9
9 2 3 Pass 9.26e+01 1.79e+04 7.65e+01 1.64e+02 5.66e+05 1.16e+06 45
9 2 4 Fail 1.33e+02 3.01e+04 7.54e+01 1.66e+02 2.92e+05 1.67e+06 45
9 3 0 Fail 1.31e+01 7.73e+02 6.97e+01 1.62e+02 3.91e+05 5.31e+05 129
9 4 0 Fail 2.25e+01 2.22e+03 7.27e+01 1.63e+02 4.54e+05 3.87e+05 255
9 5 0 Fail 4.14e+01 6.20e+03 7.61e+01 1.63e+02 5.21e+05 9.30e+05 381
9 6 0 Fail 7.90e+01 1.03e+04 7.68e+01 1.64e+02 5.95e+05 1.18e+06 465
9 7 0 Fail 9.01e+01 1.52e+04 7.69e+01 1.63e+02 7.97e+05 1.25e+06 501
9 8 0 Fail 8.24e+01 1.52e+04 7.69e+01 1.64e+02 7.39e+05 1.45e+06 510
9 9 0 Fail 8.42e+01 1.58e+04 7.69e+01 1.64e+02 4.55e+05 1.45e+06 511
10 2 3 Pass 2.16e+02 9.21e+04 7.82e+01 5.41e+02 5.79e+05 2.63e+06 55
10 2 4 Fail 2.70e+02 1.61e+05 8.05e+01 5.45e+02 5.54e+05 3.66e+06 55
11 2 3 Pass 5.97e+02 N/A 8.47e+01 N/A 9.90e+05 2.32e+06 66
16 2 5 Fail 1.07e+05 N/A 4.48e+03 N/A 7.97e+07 N/A 136
18 2 4 N/A N/A N/A N/A N/A N/A N/A 171

Results on Case Study 2. We instantiate the class of mechanisms related to
our second case study as follows. First of all, we take the number n of agents to
be greater than or equal to the number t of tasks. Second, we take the number
m of jobs to be equal to t. Third, we define η(j) (i.e. the set of tasks needed to
complete job j) as follows: η(j) = {j, (j+1) mod t}. That is, each job requires two
tasks and each task participates in two jobs. We take as task sequence for agent
i the sequence Ti = 〈(i−1) mod t, . . . , t−1, 0, 1, . . . , ((i−1) mod t)−1〉. In other
words, all agents consider tasks with the same order (namely 〈0, . . . , t−1〉). The
only difference is that agent i will start its task sequence from task (i−1) mod t.
We set for all coalitions Q, β(Q) = 0.5. Finally, in order to ease computations
we set the cost of working on a task w = 1440 and the capital to be divided
among completed jobs C = 4320n. With the above settings we have the following
parameters to be instantiated: n (number of agents), m (number of jobs), q
(number of agents in a coalition).

Tab. 2 shows our experimental results on verification of the ε-f -q-Nash prop-
erty for our case study. Column meanings in Tab. 2 are the same of Tab. 1, with
the only addition of column m showing the number of jobs.

In all experiments we take ε = 0.1 and accuracy δ = 0.01. With such settings
the value k in line 1 of Alg. 1 turns out to be at most 27 in all our experiments.

Experimental Results Summary. From Tab. 1 and 2 we see that we can ef-
fectively handle moderate size mechanisms. Such mechanisms correspond indeed
to quite large games. In fact, given a finite horizon k, an n players mechanism
can be seen as a game which outcomes are n-tuples 〈σ1, . . . , σn〉 of strategies of
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Table 2. Experiments run for the case study of Sect. 6.1 on a 64-bit Dual Quad Core
3 GHz Intel Xeon Linux PC with 8 GB of RAM

n m q b Nash
CPU
expl

CPU
symb

Mem
expl

Mem
symb

BDD
expl

BDD
symb |Pq([n])|

4 2 2 0 Pass 1.40e+00 2.74e+00 8.82e+01 8.70e+01 3.99e+05 9.05e+04 10
4 2 4 0 Pass 2.45e+00 4.78e+00 8.82e+01 8.68e+01 8.53e+04 1.14e+05 15
5 2 3 2 Fail 3.92e+01 2.12e+02 1.14e+02 1.14e+02 2.49e+05 9.27e+05 25
5 2 5 0 Pass 1.36e+01 5.12e+01 1.07e+02 1.14e+02 5.74e+05 6.22e+05 31
6 2 3 3 Fail 3.33e+02 5.71e+03 1.27e+02 1.87e+02 7.57e+05 1.95e+06 41
6 2 6 0 Pass 8.67e+01 7.61e+02 1.25e+02 1.29e+02 5.68e+05 8.99e+05 63
6 3 1 3 Pass 2.55e+03 4.15e+04 2.57e+02 6.50e+02 2.44e+06 8.19e+06 6
6 3 1 4 Fail 3.43e+03 5.87e+04 2.71e+02 8.70e+02 2.69e+06 9.77e+06 6
6 3 2 3 Pass 8.96e+03 1.70e+05 2.62e+02 1.70e+03 2.88e+06 1.90e+07 21
6 3 2 4 Fail 1.04e+04 2.01e+05 2.95e+02 1.75e+03 3.59e+06 4.56e+06 21
6 3 3 0 Fail 1.23e+03 5.80e+03 1.79e+02 3.64e+02 1.85e+06 4.60e+06 41
6 3 4 0 Fail 1.88e+03 1.11e+04 1.79e+02 5.11e+02 2.03e+06 6.66e+06 56
6 3 5 0 Fail 2.20e+03 1.56e+04 1.81e+02 5.27e+02 2.12e+06 6.76e+06 62
6 3 6 0 Fail 2.28e+03 1.70e+04 1.81e+02 5.34e+02 1.93e+06 9.50e+06 63

length k, where σi is the strategy played by agent i. If the underlying behavior
of agent i allows two actions for each state, then there are 2k strategies available
for agent i. This would yield a game which normal form has 2kn entries. In the
coalition schemas used in Tab. 1, each agent can choose at least among fib(k)
(the k-th Fibonacci number) strategies. With n players this yields a normal form
game with fib(k)n entries. If we look at coalitions of size j we have to consider(
n
j

)
games of size fib(k)n. Since we are considering coalitions of size up to q we

are indeed looking at
∑q

j=1

(
n
j

)
games of size fib(k)n. For example, with horizon

k = 20 and n = 6 the rows in Tab. 2 with q = 2 entail checking Nash equilibria
for 21 games each of size fib(19)6 = 41816 ≈ 5× 1021.

For both our case studies, the explicit implementation (in the sense of Sect. 5)
outperforms the symbolic one both in RAM and computation time. In particular
note that in Tab. 1, for n = 9, b = 0, q ∈ [3, 9] the number of coalition grows but
the symbolic algorithm does not take any advantage of this.

7 Conclusions

We presented two algorithms based on symbolic model checking for verification of
Nash equilibria in finite state mechanisms modeling MAD distributed systems
with coalitions. The first algorithm, explicitly checks Nash equilibria for any
possible coalition within a given size, while the second symbolically represents
all coalitions. An experimental comparison shows that the explicit one performs
better. Moreover, our experiments show effectiveness of the presented algorithms
for moderate size mechanisms. For example, we can handle mechanisms which
corresponding normal form games would have more than 5× 1021 entries.
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Future research work include: investigation of more efficient algorithms in
order to handle larger size mechanisms, exploiting symmetries in the definition
of the mechanism.
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Abstract. Aging effect in next-generation technologies will play a major
role in determining system reliability. In particular, wear-out impact due
to Negative Bias Temperature Instability (NBTI) will cause an increase
in circuit delays of up to 10% in three years [8]. In these systems, NBTI-
induced aging can be slowed-down by inserting periods of recovery where
the core is functionally idle and gate input is forced to a specific state.
This effect can be exploited to impose a given common target lifetime
for all the cores. In this paper we present a technique that allows core-
wear-out dependent insertion of recovery periods during loop execution
in MPSoCs. Performance loss is compensated based on the knowledge
of recovery periods. Loop iterations are re-distributed so that cores with
longer recovery are allocated less iterations.

1 Introduction

Embedded multiprocessor systems-on-chips (MPSoCs) fabricated in upcoming
nanometer technologies will be increasingly affected by aging mechanisms lead-
ing to threshold voltage increase [9] which implies circuit slowdown. As a con-
sequence, guardbands (GB) are inserted to compensate for circuit delay. These
guardbands will shrink during core activity until their complete consumption
will lead to timing violations. In absence of correction mechanisms, these vi-
olations will determine system failure. With respect to single core systems, in
multicore platforms an additional reliability issue is that both the initial GB
margin and its consumption rate are not uniform across the cores. As a conse-
quence, to prevent the less reliable core to dictate the overall system lifetime, the
GB consumption must be equalized as much as possible. At system level, this
can be obtained by monitoring the guardband consumption [2,4] and slowing
down the aging process of less reliable cores [16].

The strategy to slowdown aging of cores depends on the considered aging
effect. The main aging phenomena affecting nanometer devices are Negative
Bias Temperature Instability (NBTI) and Hot Carrier Injection (HCI), for which
wear-out takes place only during activity periods. In particular, NBTI has gained
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much attention from recent research because it is considered a dominant ef-
fect [10]. NBTI is due to the dissociation of Si-H bonds along the silicon-oxide
interface in presence of a negative bias (Vgs = −Vdd) on PMOS transistors, which
causes the generation of traps. These traps lead to the increase in the threshold
voltage. Recent studies demonstrate that NBTI will be relevant in forthcoming
technologies, leading to up to 10% voltage increase in three year lifetime [8].

The NBTI degradation model is characterized by a recovery effect, caused by
the reduction of interface traps when the negative bias is removed. As a result,
the threshold voltage decreases. Thus, NBTI-induced aging can be partially com-
pensated by imposing a virtual ground (i.e. a logical “1”) to PMOS transistors
gates for a certain period of time (the recovery period) where the core is idle
from a functional viewpoint. As a result, it is possible to slow-down GB degra-
dation by interleaving core activity with idle periods where the core is placed in
a recovery state. The impact of NBTI does not depend on the granularity and
distribution of stress/recovery periods but only on their total duration [11]. This
allows to efficiently distribute the required idleness with convenient granularity.
This can be flexibly tuned to match the characteristics of the workload/pro-
gramming model chosen to parallelize the target application. The programming
model ultimately reflects the features of the underlying hardware platform.

In this paper we consider data-intensive MPSoCs. Aging issues in this kind
of platforms can be very critical since they are intensively used during their
lifetime, so techniques to hide the effects of aging are desirable. Applications
running on these systems focus on a very common data parallel scenario where
each core works on a portion of a data structure (e.g. array or matrix) and
must synchronize with the others on a barrier. Similar parallelization schemes
are typically focused on parallel loops, whose iterations are spread among sev-
eral concurrent threads. OpenMP is the de-facto standard for such a parallel
execution model, and it features a number of MPSoC-suitable implementations
[7][12][13][1]. Due to the heterogeneous nature of MPSoCs (i.e. the presence of
several non-homogeneous processing units) these implementations are typically
OS-less, and the OpenMP runtime environment (RTE) is in full control of all
hardware resources. In the OpenMP model, idleness insertion can be managed at
the granularity of a single iteration (or chunks of iterations). This choice allows
very fine control on the actual duration of idle and active periods, and thus on
the entity of stress and recovery phenomena applied to cores.

Idleness insertion impacts workload balancing because of non-uniform GB
consumption rates. Starting from a balanced workload distribution, the addition
of idleness increases the overall execution time. In barrier-based parallelization
schemes, the overall lengthening of the parallel region – hereafter indicated as
performance loss – is dictated by the more degraded core (i.e. the one with the
longest idle period). This situation is depicted in Figure 1. Residual guard bands
are indicated as percentages. Longer idle periods are allocated to processors with
smaller GB.

The impact of idleness on loop execution time can be evaluated so that it-
eration redistribution among the cores can be exploited to minimize it. More
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Fig. 1. Performance loss to support aging-tolerant loop parallelization

precisely, performance loss can be compensated by proper re-allocation of work-
load to cores depending on the idleness distribution. The compiler can allocate
less iterations to cores with smaller guard bands (and longer idle periods).

We embedded the workload re-allocation strategy within the GCC (GOMP)
compiler. The OpenMP interface has been extended with custom clauses to be
coupled with the worksharing directives. These clauses augment the existing
static and dynamic parallelization schemes with aging-tolerant scheduling facil-
ities. In a nutshell, the contributions of this paper are the following:

1. The design of a novel compiler level technique for aging tolerance in MPSoCs
2. A work-reallocation policy to minimize the performance impact through

compensation of unbalancing introduced by the insertion of idle periods
3. The implementation of the proposed techniques within OpenMP and its

validation on a realistic distributed memory MPSoC platform, relying either
on static and dynamic scheduling

The paper is organized as follows. In Section 2 we present some background
work about aging tolerance techniques, while Section 3 describes the aging model
considered in this work. In Section 4 we describe our framework while in Section 5
we show experimental results. Section 6 concludes the paper.

2 Background Work

Aging problems can be tackled at various abstraction levels, ranging from tran-
sistor level, architectural and system software level. Software approaches are
very attractive because they can exploit workload knowledge to reduce the per-
formance impact of these techniques. A common purpose of various approaches
recently proposed is to provide wanted performance and match real-time con-
straints through statistical scheduling [17] or learning algorithms [18]. In [15]
Roberts et al. present a scheduling approach which is aimed at recovering the per-
formance impact due to non-uniform chip degradation. They propose an integer
linear programming method to determine an optimal scheduling for streaming
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applications. Moreover, task migration is also considered as solution to handle
the time dependent effect of wear-out. A complete framework, called Facelift, per-
forming scheduling and voltage scaling to slow down aging is presented in [16].
It exploits a non linear optimization strategy to find the optimal scheduling.

Comparing to this work, our paper proposes a compiler level strategy, and for
this reason we implement aging tolerance at the parallel application level and not
at the operating system level. This choice is strongly influenced by the fact that
most MPSoCs feature heterogeneous runtime support on different processing
tiles. Consequently, typical MPSoC-suitable OpenMP implementations are OS-
less. Moreover, our approach reduces the performance hit by playing with loop
iteration re-scheduling, which is not possible at the OS-level, where tasks are
given. A similar approach is taken by authors of [5]. They propose a variability-
aware algorithm that maps computations onto available processors so that each
processor runs at its peak frequency rather than simply using chip-wide lowest
frequency amongst all cores and highest cache latency. Unlike ours, this technique
aims at maximizing performance, but does not cope with wear-out phenomena
in any manner. In presence of aging, exercising processors with different degrees
of GB consumption at the same rate (i.e. at their peak performance) leads to a
situation in which the most degraded core dictates overall system lifetime.

OpenMP implementations for MPSoCs have been presented in [7][12][13]. In
[7] the authors deal with implementing parallel tasks in the absence of OS.
Authors of [14] face similar problems in using the heterogeneous cores and syn-
chronization support in the Cell BE processor to support OpenMP threads.

Custom extension to the OpenMP API are described in [12][13], but are aimed
at enabling parallel execution on DSPs, or to optimize memory allocation ex-
ploiting scratchpads [1]. Unlike all those approaches, ours aims at extending the
programming model to expose architectural reliability awareness to the compiler.
This allows to implement our aging-tolerant policy in the compiler in a manner
that is completely invisible to the programmer. This preserves the ease of use of
OpenMP, while augmenting it to support aging-related features.

3 Aging Model and Idleness Constraints

Multicore designs in current technologies suffer significant within-die process vari-
ation, thus leading to nominally identical processors supporting non-homogeneous
maximumfrequencies. Furthermore, during processor service life stresses induced
on transistors by normal switching activity results in gradually slower critical
paths. In order to meet system lifetime constraints, designers add timing guard-
bands to their designs to absorb any increase in critical path delay. One conserva-
tive approach to deal with this source of heterogeneity, which is often employed
to simplify the design, is to use a single frequency domain where the slowest
core determines the frequency of the whole chip. Moreover, if processors are ex-
ercised at a similar rate, the slowest core will consume its own guardband earlier
than the others. These effects can strongly impact system lifetime and for this
reason an increasing effort is put at the various layers of MPSoC design to de-
tect and compensate them. Designers implemented delay monitors [4,2] spread



OpenMP Support for NBTI-Induced Aging Tolerance in MPSoCs 551

across the chip that provide degradation information in terms of circuit delay,
from which the guardband consumption can be derived. As such, the guardband
size provides a upper bound on the allowed ∆Vth for each core.

Based on this information, our objective is to equalize GB consumption time
among the cores. In principle, we can set a predefined target lifetime, which
would be equal for all the cores. In order to achieve a wanted target lifetime, we
need to slow down aging rate for less reliable cores (the ones with smaller GB).
For NBTI-induced aging, it is possible to slow-down core degradation by impos-
ing idle periods. In this periods, if the core is set into a particular state (recovery
state) where the gates of PMOS transistors are tied to a virtual ground (i.e. a
logical “1” is applied) the threshold voltage degradation is partially recovered.
The increase in Vth during the stress phase can be modeled as follows [16]:

∆Vth,stress = ANBTI · tox ·
√

Cox (Vdd − Vth ) · exp( Vdd−Vth
tox E0

−Ea
kT ) ·t0.25

stress (1)

where tstress is the time under stress, tox is the oxide thickness and Cox is the
gate capacitance per unit area. E0 , Ea and k are constant equal to 0.2V/nm,
0.13eV and 8.6174 ·10−5eV/K while ANBTI is a constant dependent on the aging
rate. The recovery phase is governed by the following equation:

∆Vth = ∆Vth,stress · (1−
√

η · trec
tstress + trec

) (2)

where trec is the time under recovery and η is a constant equal to 0.35. Depending
on the guardband value we can compute the maximum ∆V i

th each core i can
accommodate before failing. The relationship between ∆V i

th and the guardband
value GBi is given by the following standard switching delay expression:

T i
s =

VddLeff

µ(Vdd − V i
th )α

(3)

Now, since T i
s = DCP i + GBi where DCP i is the initial delay critical path of

core i , we can compute the guardband size as a function of the threshold voltage:

∆V i
th = V init,i

th − V stress,i
th (4)

where V init,i
th is the voltage threshold corresponding to the initial critical path

delay DCP i , while V stress,i
th is the maximum voltage threshold corresponding to

the largest allowed delay (i.e. guardband fully consumed). Thus we can substitute
delay expressions into this equation to obtain the maximum allowed voltage
increase for each core as a function of its current GB:

∆V max ,i
th = f(GBi) (5)

On the other side, Eq. (1) allows to express the voltage increase as a function of
the stress and recovery time:

∆V i
th = f(tistress , t

i
rec) (6)
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Combining (1) and (4) and considering a given target lifetime:

tlife = tistress + tirec (7)

we can compute the amount of recovery time tirec needed to consume ∆V i
th in a

time tlife , the same for all the cores. The recovery time obtained in this way can
be used to compute the percentage of idleness I i to be allocated to maintain the
wanted target lifetime:

I i = tirec/tlife . (8)

Cores having larger GBs, whose values can be read from circuit monitors, will
be allocated less idleness. Monitors can be implemented either using hardware
circuits to measure circuit delays [2] or by monitoring activity (stress) periods
and using an analytical model to compute the related circuit delay increase.

The OpenMP extensions we developed leverage this information to perform
idleness distribution and iteration allocation at each loop execution to the cores
depending on their GB values. We refer to the percentages of idleness needed on
different cores to compensate for aging effects as “aging indexes”. Aging indexes
are computed based on the formulas described above, and can be inspected by
the runtime environment to take decisions on workload and idleness distribu-
tion. More precisely, we read aging indexes at each loop execution. Based on
this feedback, we tune the amount of work on each core by means of a custom
partitioning algorithm (see Section 4), and allocate a corresponding recovery
period, so that the wanted lifetime is respected.

4 Aging-Aware OpenMP Support Implementation

OpenMP consists of a set of compiler directives, library routines and environment
variables that provide a simple means to specify parallel execution within a
sequential code. The basic directive, provided for specifying parallel execution
within the code is #pragma omp parallel. Enclosing a portion of code within
the scope of this directive allows the programmer to identify a parallel task, and
instructs the compiler to generate code to fork worker threads onto which the
parallel task is mapped. The use of this directive is typically coupled with one of
the two work-sharing directives, #pragma omp for and #pragma omp sections.
The former enables data parallelism by partitioning the iteration space of a
for loop between worker threads, whereas the latter leverages task parallelism.
The OpenMP work-sharing model provides means to achieve balanced execution
among processors by outlining parallel tasks containing similar amounts of work.

The basic idea of our aging-tolerant policies is that of lengthening the lifetime
of degraded cores to match that of the most reliable core, thus meeting expected
system service life. This is achieved through explicit insertion of idleness periods,
which are interleaved with normal activity. The granularity at which we perform
duty cycling (i.e. the duration of active periods) is specified by the use of a
particular work-sharing directive. For task parallelism the granularity is that of
the task itself, whereas for data parallelism the granularity may be that of a
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single iteration, or of a chunk of iterations. The compiler inserts time sampling
instructions at the beginning and at the end of the work block (with the discussed
granularity), then instantiates a call to the custom omp sleep library function
passing it the profiled execution time of the work block. The sleep time is a
function of the execution time and the aging of the target processor. Information
on the aging of each processor is embedded within specific metadata in the
custom OpenMP runtime environment (RTE). This “aging index” is as a number
between 0 and 1, which expresses the percentage of idleness needed on a core to
compensate for its degradation. It can be inspected whenever needed through a
call to the custom omp get aging index function, which implements the aging
model described in Section 3.

The described mechanism efficiently augments OpenMP with an infrastruc-
ture for duty cycling. Processors with different aging indexes require different
sleep times, thus leading to parallel tasks with non-homogeneous duration and
finally implying unbalanced execution. While the balancing issue can be easily
addressed by integrating our duty cycling mechanism with the runtime support
for dynamic scheduling (see Sec. 4.2), things get more complicated when dealing
with static scheduling (see Sec. 4.1). The schedule(static) clause is useful
when parallelizing loops whose iterations have roughly the same duration, since
it affords good balancing with very small scheduling overhead w.r.t. dynamic
approaches. Furthermore, smart combination of static scheduling and chunking
is the only means provided by the OpenMP API to achieve good data locality.
For this reason it is very important to consider static scheduling in our aging-
tolerant framework. As described in Section 1 and shown in Figure 1, simply
inserting idle periods in presence of static scheduling would lead to very unbal-
anced overall loop execution time. The barrier implied at the end of the parallel
region forces all cores to wait for the less reliable, thus leading to the highest
performance degradation.

In the following sections we present custom extensions to the OpenMP API
that allow to efficiently address this issue and reduce performance loss.

4.1 Static Scheduling

The simplest algorithm to parallelize a doall loop is that of evenly dividing its
iteration space among available worker threads. OpenMP allows to do it with
the use of the schedule(static) clause combined with the for directive: The
compiler transforms the loop so that lower and upper bounds are computed lo-
cally by each thread, based on the number of concurrent workers and on their
IDs. As discussed in the previous section, duty cycling helps in achieving ho-
mogeneous guard-band consumption, but introduces imbalance. To achieve load
balancing while hiding the effects of aging on system lifetime, we replace the
original partitioning algorithm in the compiler with a simple yet effective aging-
aware scheduling technique. In what follows the number of iterations (Wi) needed
to equalize execution time (Ti) of all the cores is computed.
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Let us consider the following parameters:

N Total loop iterations
M Number of processors
Ai Aging index for the i-th core
∆T Iteration duration
Wi Work iterations for i-th core

Overall work time for the i-th core can be expressed like

TW,i = ∆T ·Wi (9)

Total loop time for processor i is expressed by the formula
TT,i = TW,i + TS,i (10)

where the sleep time is a function of the active time and the aging index

TS,i = (1−Ai) · TW,i ⇒ TT,i = (2−Ai) · TW,i

Loop execution time must be balanced between cores, namely

TT,i = TT,j ∀i, j

Sleep times are normalized to that of the less degraded core M, so we consider
TT,M = TW,M

and express the number of iterations of each slave core as a fraction of the
iterations of the master (M) core

TW,M = TT,i = (2− Ai) · TW,i ∀i ∈ [1,M)

WM ·∆T = (2−Ai) ·Wi ·∆T

Wi =
WM

(2−Ai)
(11)

The iterations of the master core can be computed by balancing the iterations

∑
i

Wi = N ⇒ WM +
M−1∑
i=1

WM

(2−Ai)
= N

which finally leads to

WM =
N

1 +
∑M−1

i=1
1

(2−Ai)

(12)

Having WM we can compute Wi using eq.11.
The aging-aware partitioning algorithm is triggered by the use of the custom

schedule(static rel) clause

#pragma omp p a r a l l e l for schedu le ( s t a t i c r e l )
for ( i =0; i<N; i++)

{ /∗ body ∗/ }
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The compiler has been customized to emit the following parallel code
int t i d = omp get thread num ( ) ;
omp par t i t e r a t i on spac e (N, t i d ) ;
int LB = omp get lower bound ( t i d ) ;
int UB = omp get upper bound ( t i d ) ;
long s t a r t , stop ;

for ( i=LB; i<UB; i++)
{

s t a r t = omp get wtick ( ) ;
/∗ body ∗/
stop = omp get wtick ( ) ;
omp sleep ( stop−s t a r t ) ;

}

Lower and upper bounds for each thread are no longer computed locally, but
rather retrieved through calls to the runtime library. Timestamp sampling in-
structions are inserted to compute the duration of the loop body, which is then
passed to the runtime to force the needed amount of idleness.

The omp part iteration space() function implements our aging-aware par-
titioning algorithm. Every thread inspects its aging index, then the master core
executes the partitioning algorithm. Slave cores wait on a barrier for lower and
upper bounds to be computed for every thread. After this synchronization step,
every thread retrieves its chunk of the original iteration space through a call to
the custom omp get lower bound() and omp get upper bound() functions.

The extensions to the OpenMP library (libgomp) are summarized in Tab.1.

4.2 Dynamic Scheduling

Non-uniform duration of different loop iterations can lead to load imbalance is-
sues when using static scheduling schemes. To deal with this problem OpenMP
provides a schedule(dynamic, chunk) clause. The programmer decides the
granularity at which the scheduler is invoked by specifying a chunk size. This
parameter represents the number of loop iterations that are folded within a
single task. Each thread participating in a dynamically scheduled parallel loop
continuously invokes the runtime to obtain the next available work chunk.

When enhancing dynamic scheduling scheme to support duty cycling we no
longer need to cope with load balancing issues, since lengthening the execution
time of a thread by inserting idle periods has a side effect of having it invoke the
scheduler less frequently. More reliable cores will instead increase the number of
requests for chunk assignment, thus “stealing” part of the iterations originally
assigned to degraded processor. To adapt the framework to support duty cycling
one possible solution is that of profiling execution time at chunk granularity. The
use of the custom schedule(dynamic rel[, chunk]) clause
#pragma omp p a r a l l e l for schedu le ( dynamic re l , 2 0 )

for ( i =0; i<N; i++)
{ /∗ body ∗/ }

instructs the compiler to generate code that calls custom versions of the library
functions for dynamic loop scheduling, namely GOMP loop dynamic start rel()
and GOMP loop dynamic next rel(). The scheduling algorithms in these cus-
tom functions do not introduce any changes with respect to the original, but
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Table 1. API extensions to support aging-tolerant scheduling

void omp part iteration space (int
iterations, int pid)

Computes lower and upper bound for each
thread participating in a parallel loop. Bound-
aries are computed exploiting our partitioning
algorithm and stored in library metadata.

int omp get lower bound (int pid) Returns lower bound for thread pid’s iteration
space.

int omp get upper bound (int pid) Returns upper bound for thread pid’s iteration
space.

GOMP loop dynamic start rel(...) Initializes metadata for aging-aware dynamic
scheduling.

GOMP loop dynamic next rel(...) Dynamically schedules next work chunk in an
aging-driven manner.

int omp get wtick (void) Returns current timestamp.
int omp get aging index (int pid) Returns current aging index for processor pid.
int omp sleep (long cycles) Forces wanted idleness on the caller core based

on its aging index and on the profiled execution
time.

they are enhanced with execution time profiling instructions. The collection of
timestamps for execution time profiling at the granularity of a single chunk is
performed within these functions. Idleness insertion is forced at every scheduling
event, namely every time that a thread queries the runtime for another chunk
of iterations to process.

5 Experimental Setup and Results

The MPSoC architectural template that we target in this work is composed by
16 RISC-like processing elements, each featuring private L1 instruction and data
caches as well as a scratchpad memory. On-chip shared and private memories
are accessed through a shared bus (amba AHB), and synchronization facilities
are provided by a hardware semaphore device. We assume all cores to operate
at the same frequency. Aging indexes are implemented as special registers that
are periodically updated by the aging model, and that can be inspected by the
software library.

The proposed aging-tolerant mechanism has been implemented in the GCC
4.3.2 compiler and its support for OpenMP programming (GOMP). The frame-
work relies on a custom implementation for heterogeneous MPSoC platforms
[1]. Since accelerators do not run any operating system, the GOMP runtime
environment (libgomp) has been re-implemented without pthreads support.

Table 2 lists the benchmarks used to conduct the experiments. We provide
four classes of results and plots to highlight:

– Overhead: A breakdown of the sources of overhead in our algorithms
– Idleness: The precision of our technique in distributing the wanted amount

of idleness
– Balancing: The load balancing achieved by our partitioning schemes w.r.t.

the original application
– Performance: The effectiveness of our scheduling policies in minimizing the

performance loss due to duty cycling
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Table 2. Benchmarks

Benchmark Source
LU Decomposition (c lu) OmpSCR[3]
Loops with dependences (c loop dep) OmpSCR
Jacobi (c jacobi) OmpSCR
Computing Π (c pi) OmpSCR
Mandelbrot set area (c mandel) OmpSCR
Embarassing parallel (ep) NAS Parallel Benchmarks[6]

For each benchmark we provide results for the following program configurations:

– static: The program is parallelized with the original OpenMP static clause.
There is no awareness of platform aging at the software level.

– static + sleep: The program is parallelized with the original OpenMP
static clause, but the framework is aware of system aging, and is augmented
with duty cycling. No aging-aware workload distribution policy is enabled,
thus leading to worst-case performance loss.

– static rel : The program is parallelized with the custom static rel clause.
Aging-aware loop partitioning takes place.

– dynamic: The program is parallelized with the custom dynamic rel clause
to deal with non-uniform duration of loop iterations. Dynamic scheduling of
iterations is augmented with duty cycling.

We consider ten different degradation scenarios, namely ten aging index distri-
butions, with worst-case degradation requiring up to 63% idleness. Results are
then shown as an average of several program runs. In the following subsections
we provide detailed information for each class of results.

5.1 Overhead

Figure 2 shows a breakdown of the considered sources of overhead, namely:

1. Loop partitioning: Time taken by the aging-aware partitioning algorithm to
compute iteration spaces for every thread

2. Time sampling: Overhead due to loop body instrumentation for measuring
the duration of iterations

3. omp sleep: Overhead due to computation of idle time (based on profiled
active time and aging index) in omp sleep function

For benchmarks c Jacobi , c Pi , c mandel and EP the overhead is always
very small (under 3%). Parallelizing the main loop in benchmark c LU with the
static rel clause brings a 9% overhead, which is mainly due to the execution
time taken by the partitioning algorithm. This happens because this benchmark
features a two-level loop nest, with the innermost nest being parallelized. Since
this nest scans the rows of an upper-triangular matrix, decreasing amounts of
work are scheduled with repeated invocations to the partitioning algorithm. This
overhead notwithstanding, we will show in Section 5.4 that our aging-aware
static rel clause achieves the best results in minimizing the performance loss.
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Fig. 2. Sources of overhead

Benchmark c loop dep is a synthetic benchmark in which a backward loop
carried dependency is resolved through array replication. Each iteration in this
program only contains a single write/read instruction in the array. Thus, in this
benchmark all sources of overhead – which are usually negligible in real applica-
tions – are visible. When applying static aging-aware partitioning (static rel)
the biggest source of overhead (≈ 10%) is the computation of the required sleep
time for each core. Second for importance, is the overhead for profiling iteration
execution time (≈ 4%). Finally, loop partitioning accounts for an additional
1% overhead. Overall, the overhead introduced by our aging-tolerant facilities
amounts to around 15% for static scheduling and 11% for dynamic scheduling.
It is important to stress that the overhead is big because of the synthetic nature
of the program and the poor computation performed in each iteration. When
specifying a chunk size of 10 (i.e. folding ten iterations in a single task) we are
able to reduce our techniques’ overhead to less than 3% (chunked bar).

5.2 Idleness

Table 3 shows the results of rest time accuracy. Numbers in the table represent the
percent error in distributing on each core the target amount of idle time. This er-
ror is caused by overhead code which is not managed by our aging-aware balancing
policies. Since each parallel region may feature multiple loop nests, as well as code
not contained within work-sharing constructs, we compute the actual core idleness
as a percentage of the overall parallel region execution time to estimate the error.
The results show that the error is always under 4%, thus confirming the effective-
ness of the technique in offering idleness distribution precision. Benchmark c LU

Table 3. Percent error in target idleness distribution

c Jacobi c LU c Pi c loop dep c mandel EP

static + sleep -0,08 0,02 0,81 -2,84 0,01 -0,30
static rel -0,17 -3,98 0,74 -3,26 -0,09 -0,58
dynamic -0,08 0,24 0,62 -2,32 0,00 -0,29
chunked - - - -0,65 - -
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has a very small error for static+sleep anddynamic configurations.The error is
bigger when using static aging-aware scheduling (static rel). This was expected,
since as discussed in Section 5.1 the use of this clause carries an overhead that is not
considered in duty cycling, thus leading to the error in idleness distribution. Sim-
ilarly, for benchmark c loop dep sources of overhead present both in static and
dynamic parallelization schemes lead to an error in idleness distribution accuracy
that is greatly reduced when employing chunked scheduling.

5.3 Load Balancing

As described in Section 4.1, we devised a partitioning algorithm that aims at
keeping different threads workload as balanced as possible. In this section we
provide results that confirm the effectiveness of the proposed approach.

Standard deviation of parallel execution time over cores has been normalized
to the mean to provide a qualitative measure of the load imbalance. Results
are shown in Figure 3.a) for different parallelization schemes. The black bars
represent the original program parallelized with aging-agnostic OpenMP facil-
ities, and thus is considered as a baseline. Looking at the black bars only, our
set of benchmarks can be divided in two categories: c Jacobi, EP, c Pi and
c loop dep are regular and balanced. Each of them shows a deviation from
average execution time which is contained within 13%.

On the other hand, c LU and c mandel have a degree of imbalance greater
than 30%. c mandel is known to have very unbalanced iterations, since decision
on whether complex points belong to the Mandelbrot set area are taken within
an inner loop which may take very different number of (inner) iterations to
reach convergence. Similarly, LU decomposition has decreasing duration of inner
loop iterations due to the diminishing number of elements in scanning an upper
triangular matrix.

For all benchmarks, the naive static + sleep approach – which simply in-
troduce idle times without re-allocating workload – un-surprisingly increase im-
balance. Our partitioning algorithm (static rel) is expected to never increase
imbalance. This is confirmed by the plot. In cases like c LU our algorithm re-
duces imbalance, since it schedules iterations in a smarter way. For example,
when there are less iterations than cores, work is allocated to most reliable pro-
cessors – which require smaller idle times – thus reducing the impact of duty
cycling on load imbalance. Dynamic scheduling was originally meant to deal with
balancing issues, so – as expected – even when augmented with aging-related fea-
tures it preserves excellent balancing.

5.4 Performance Loss

As previously discussed, distributing idleness to degraded cores has a cost in
terms of performance. Our partitioning algorithm aims at reducing this perfor-
mance loss. According to the description given in section 4.1, part of the iter-
ations originally assigned to degraded cores are re-distributed to more reliable
cores. To estimate the effectiveness of this approach, we compare the parallel ex-
ecution time of our aging-aware scheduling techniques against the naive static
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+ sleep approach. The results are plot as a series of bars (for different program
configurations) in Figure 3.a).

We see that for all benchmarks except c mandel , our static rel clause af-
fords a significant reduction in performance loss w.r.t. static + sleep (around
50%). As explained in the previous section, for unbalanced applications such as
c mandel static scheduling schemes should be avoided. If iterations are known
to have different duration, evenly dividing the iteration space among cores results
in unbalanced execution time. The same clearly applies to our aging-aware parti-
tioning algorithm, so we did not expect static rel to provide good results. It is
important here to stress that this is NOT a problem of our partitioning scheme,
but rather an inherent limitation of static parallelization. The knowledgeable
programmer would rather employ dynamic scheduling to deal with similar sce-
narios. For this benchmark in particular, employing a dynamic scheduling policy
achieves better performance results than the original static scheduling notwith-
standing the idle periods.

6 Summary and Conclusions

In this paper we presented a compiler-supported technique for NBTI-induced
aging tolerance in data-intensive MPSoCs. The technique is able to finely insert
periods of recovery to various cores within loop executions to compensate non-
homogeneous core degradation and minimize the performance impact through
loop iteration reallocation among cores. Experimental results performed on a
working implementation integrated as an extension of OpenMP parallel compiler
on a distributed memory multiprocessor platform demonstrate its accuracy in
idleness allocation and performance impact minimization.



OpenMP Support for NBTI-Induced Aging Tolerance in MPSoCs 561

References

1. Marongiu, A., Benini, L.: Efficient OpenMP support and extensions for MPSoCs
with Explicitly managed memory hierarchy. In: DATE 2009: Proceedings of the
12th International Conference on Design, Automation and Test in Europe, pp.
809–814 (2009)

2. Agarwal, M., Paul, B., Zhang, M., Mitra, S.: Circuit failure prediction and its appli-
cation to transistor aging. In: Proceedings of the 25th IEEE VLSI Test Symposium
table of contents, pp. 277–286 (2007)

3. Dorta, A.J., Rodriguez, C., de Sande, F.: The OpenMP source code repository. In:
13th Euromicro Conference on Parallel, Distributed and Network-Based Process-
ing, PDP 2005, pp. 244–250 (2005)

4. Eireiner, M., Henzler, S., Georgakos, G., Berthold, J., Schmitt-Landsiedel, D.: In-
situ delay characterization and local supply voltage adjustment for compensation of
local parametric variations. IEEE Journal of Solid-State Circuits 42(7), 1583–1592
(2007)

5. Hong, S., Narayanan, S., Kandemir, M., Ozturk, O.: Process variation aware thread
mapping for chip multiprocessors. In: DATE 2009: Proceedings of the 12th Interna-
tional Conference on Design, Automation and Test in Europe, pp. 821–826 (2009)

6. Nas parallel benchmarks,
http://www.nas.nasa.gov/Resources/Software/npb.html

7. Jeun, W.-C., Ha, S.: Effective OpenMP implementation and translation for mul-
tiprocessor system-on-chip without using OS. In: Asia and South Pacific Design
Automation Conference, ASP-DAC 2007, pp. 44–49 (2007)

8. Kang, K., Park, S.P., Roy, K., Alam, M.A.: Estimation of statistical variation in
temporal NBTI degradation and its impact on lifetime circuit performance. In:
ICCAD 2007: Proceedings of the 2007 IEEE/ACM international conference on
Computer-aided design, pp. 730–734 (2007)

9. Karl, E., Blaauw, D., Sylvester, D., Mudge, T.: Multi-mechanism reliability model-
ing and management in dynamic systems. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 16(4), 476–487 (2008)

10. Krishnan, A., Reddy, V., Chakravarthi, S., Rodriguez, J., John, S., Krishnan, S.:
NBTI impact on transistor and circuit: models, mechanisms and scaling effects. In:
Technical Digest. IEEE International Electron Devices Meeting, IEDM 2003, pp.
14.5.1–14.5.4 (2003)

11. Kumar, S.V., Kim, C.H., Sapatnekar, S.S.: An analytical model for negative bias
temperature instability. In: ICCAD 2006: Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design, pp. 493–496 (2006)

12. Liu, F., Chaudhary, V.: Extending OpenMP for heterogeneous chip multiproces-
sors. In: 2003 International Conference on Parallel Processing, 2003. Proceedings,
pp. 161–168 (2003)

13. Liu, F., Chaudhary, V.: A practical OpenMP compiler for system on chips. In:
Voss, M.J. (ed.) WOMPAT 2003. LNCS, vol. 2716, pp. 54–68. Springer, Heidelberg
(2003)

14. O’Brien, K., O’Brien, K., Sura, Z., Chen, T., Zhang, T.: Supporting OpenMP on
cell. In: Chapman, B., Zheng, W., Gao, G.R., Sato, M., Ayguadé, E., Wang, D.
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Abstract. Graph searching games have been extensively studied in the
past years. The graph searching problem involves a team of searchers
who are attempting to capture a fugitive moving along the edges of
the graph. In this paper we consider the graph searching problem in
a network environment, namely a tree network. Searchers are software
programs and the fugitive is a virus that spreads rapidly. Every node of
the network which the virus may have reached, becomes contaminated.
The purpose of the game is to clean the network. In real world distributed
systems faults can occur and thus it is desirable for an algorithm to be
able to facilitate the cleaning of a network in an optimal way, and also
to reconfigure on the fly.

In this paper we give the first self-stabilizing algorithm for solving the
graph searching problem in trees. Our algorithm stabilizes after O(n3)
time steps under the distributed adversarial daemon. Our algorithm
solves the node searching variant of the graph searching problem, but
can with small modifications also solve edge and mixed searching.

1 Introduction

We consider a computer network environment, where the nodes are computers
or processors and the edges are the connections between them. The computers
or processors typically have tasks to perform, and in many instances they col-
laborate on these tasks. We consider a malicious virus that is moving through
the network. Every computer or processor that at some point hosts the virus
becomes immediately contaminated, meaning that it may be unable to correctly
perform its tasks. Thus clean the network become necessary in order for it to
continue its intended function. We assume we have at our disposal a team of
software agents that can be used to clean the network and destroy the virus.
We make the following assumptions about the virus and the software agents.
The virus spreads fast but it cannot contaminate a computer where a software
agent is present. The virus is aware of the software agents in the network and
it behaves such as to avoid its own detection and removal, while at the same
time trying to contaminate as many nodes as possible. A node is cleaned when
a software agent is installed on it. A connection between two nodes is cleaned
when both end points of the connection have software agents on them.

Our goal is to clean the entire network and neutralize the virus using as few
software agents as possible. The constraint on the number of the software agents
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is motivated by the cost of installing the software agent on a specific node, as well
as the fact that the presence of the software agents may have an adverse effect
on the performance of the network. For example, in a wireless network, a large
number of software agents may consume too much communication bandwidth.
Furthermore, a computer has a limited capacity and a software agent may slow
down processes that need to be executed by that specific computer. Thus, the
trivial algorithm that at regular intervals install a software agent on each node is
not a good choice since it uses as many software agents as nodes in the network.

In the following we denote the malicious virus as a fugitive, and the soft-
ware agents as searchers, keeping with the terminology from the graph searching
games literature. A node can be in one of the following states: clean, meaning
it functions normally, unclean which represents a possible contamination by the
virus, or searcher when it contains a searcher/software agent.

Graph searching games were first introduced as a problem from speology [6].
An explorer is lost in a system of caves and the problem is to gather a team of
rescuers to find the lost explorer. The challenge is to find the smallest number
of rescuers needed to ensure the explorer is found. The explorer might not want
to be found and thus will attempt to avoid this. The study of graph searching
problem started in 1976 when it was independently introduced by Parsons [21]
and Petrov [24], and since then has been studied extensively [2,3,16,18,19,23].
The system of tunnels is represented by a graph. The objective is to search the
graph using a sequence of moves of the searchers. The goal is to minimize the
number of searchers used at every step of the strategy. In this version of graph
searching, called edge searching [17], a search step consists of either placing a
searcher on a node, removing a searcher from a node, or sliding a searcher along
an edge. An edge is cleaned by sliding a searcher from one of its endpoints to the
other endpoint. Kirousis and Papadimitriou [17] introduced a variant of graph
searching called node searching. In this version an edge is cleaned if both its
endpoints contain searchers.

A third version of the graph searching problem is mixed searching, which
combines edge and node searching. In this setting a search step consists, sim-
ilarly to edge searching, of the following allowed moves: placing a searcher on
a node, removing a searcher from a node, or sliding a searcher along an edge.
An edge is cleaned if either both its endpoints are occupied by searchers or if a
searcher is slid from one of its endpoints towards the other. A searching strategy
is winning if the number of searchers used is enough to ensure the capture of the
fugitive/explorer in the context of the node and mixed searching, and cleaning
the graph in the context of edge searching. A cleaned edge e is (re)contaminated
at some point if there exists a path P containing e, a contaminated edge and
no internal node of P containing a searcher. For example, let u be a node that
is incident on a contaminated edge e and is occupied by only one searcher. If
this searcher slides from u to v along the edge uv �= e, then the edge uv, which
was cleaned by sliding, is immediately recontaminated. A searching strategy is
called monotone if at any step of this strategy no recontamination occurs. For all
three versions of graph searching, recontamination does not allow the graph to
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be cleaned with fewer searchers [3,18]. That is, on any graph with {edge, mixed,
node} search number k there exists a winning monotone {edge, mixed, node}
searching program using k searchers.

During the past several years much research has been conducted in the area
of graph searching games and decontamination/cleaning of a network. For a
bibliography we refer the reader to [13]. Many applications of graph searching
games and its variations are in the area of computer networks. In a computer
network setting, the graph searching problem serves as a mathematical model for
protecting networks against viruses and other unwanted agents, like spyware or
eavesdroppers [2,14]. An example is the problem of finding a successful strategy
for a group of collaborating software programs that are designed to clean the
network from a virus [10]. Distributed versions of the graph searching problem
have received considerable attention during the recent years, among the new
results are [5,10,11,15,20].

For trees both node and edge searching number can be computed in linear
time [22,25]. There are also distributed algorithms to compute the edge searching
number of a tree [7]. In the connected graph searching setting at each step the
nodes which are cleaned induce a connected subgraph. The connected version of
graph searching for trees was proved to be monotone in [1]. An interesting version
of a searching game, namely tree decontamination with temporary immunity was
introduced in [12]. The algorithm from [12] performs the decontamination of a
tree using 2h/(t+2) searchers where h is the height of the tree and t the immunity
time of a node. Particularly, if t = 0, meaning that a node has no immunity then
the decontamination of a tree is realized using h searchers.

The main focus in the classical variant of the graph searching games is to find
the smallest number of searchers needed to guarantee a winning strategy.

In this paper we focus not only on the node searching strategy that facilitates
the cleaning of the network but also on keeping the network clean. Thus we are con-
sidering the possibility that errors can occur in the network after it was cleaned.

In general, a network is considered to be dynamic, that is, topology changes
may occur regularly. Thus the need for an algorithm that can clean the network
in an optimal way but that can also handle possible errors that can appear and
cause recontamination.

Self-stabilization is an elegant and powerful approach to manage the pos-
sible faults that can appear in the network. We will extend the topic of self-
stabilization in Section 2.1.

Our contribution is the first self-stabilizing algorithm for solving the node
searching problem in trees. Given a tree T with n nodes and height h, our
algorithm stabilizes after O(n3) time steps under the distributed adversarial
daemon and the number of searchers used to clean the tree T is h. Our algorithm
can be easily adapted so that it also performs edge and mixed searching of
a given tree. We will discuss this in Section 5. Usually, the graph searching
strategies studied so far are monotone strategies, meaning that recontamination
does not happen. In this paper we consider a searching program which is locally
monotone but recontamination can occur. If an error occurs in the network and
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a previously clean node becomes unclean it can start a recontamination process.
The algorithm we introduce is able to handle these kinds of situations

2 Definitions and Motivation

2.1 Self-stabilization

Self-stabilizing algorithms [8,9] are distributed algorithms that permit recovery
from transient failures by means of an attractive property: starting from any
arbitrary initial state, the system autonomously resumes correct behavior within
finite time. Self-stabilization allows failure detection to be bypassed, yet it does
not make any assumptions about the nature or the span of those failures, save
that they are transient.

In the current paper we use a shared memory model for communication be-
tween neighboring nodes. That is, in one atomic step, a node is able to read the
state of every neighbor, as well as its own, and then change its own state.

Central to the theory of self-stabilization is the notion of a daemon, an ab-
straction for the scheduling of nodes in the system to execute their local code.
A daemon is often viewed as an adversary to the algorithm that tries to prevent
stabilization by scheduling the worst possible nodes for execution. The weakest
possible requirement is that the daemon is proper, i.e. only nodes whose schedul-
ing would change the system state are actually scheduled (these nodes are privi-
leged). There are several daemons used to analyse the behavior of self-stabilizing
algorithms, and in the current paper we assume a distributed adversarial dae-
mon. This daemon may schedule privileged nodes such that the execution of the
corresponding moves are simultaneous, however any privileged node may have
to wait indefinitely before it is scheduled.

For the adversarial distributed daemon time complexity is measured in time
steps, where a time step is one step in the execution during which at least one
privileged node executes one move. When no nodes in the graph are privileged,
we say that the algorithm is stable, or has reached a stable configuration. It
then follows that in order to prove correctness, an algorithm must be shown to
converge toward a stable state regardless of the initial configuration, and that
this state is a solution to the problem in question.

2.2 Node Searching Game

We consider the node searching game, formally defined as follows. Let G = (V,E)
be a graph to be searched. A searching program consists of a sequence of discrete
steps that involves searchers. Every step is one of the following two types

– Some searchers are placed on some nodes of G (there can be several searchers
located in one node);

– Some searchers are removed from G;

At every step of the searching program the edge set of G is partitioned into two
sets: cleaned edges and contaminated edges. Intuitively, the agile and omniscient
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fugitive with unbounded speed who is invisible for the searchers, is located some-
where on a contaminated territory, and cannot be on cleaned edges. Initially all
edges of G are contaminated, i.e., the fugitive can be anywhere. A contaminated
edge uv becomes cleaned at some step of the searching program if at this step
both its endpoints are occupied by searchers.

2.3 What It Means to Be a Searcher

In this section we will attempt to put the graph searching game problem into
a distributed context. As previously mentioned, the aim of self-stabilizing al-
gorithms is to allow a distributed system to recover from transient faults and
occurrences without the need for outside intervention. However, many algorithms
assume that each individual node is capable of correcting the fault, which may
not always be true. Consider for example a computer virus spreading through
a wireless network. Then a node that contracts the virus may not be capable
of removing it. Indeed, the node may not even detect the virus’ presence. Thus
it may not be a simple matter of writing a rule that says if detect virus then
remove virus. It may be necessary for unaffected nodes to assist in the removal.

We recall that in our setting, as mentioned in Section 1, a node in the network
can be in one of the following states: clean, unclean or searcher.

The unclean state defined briefly in the introduction and used throughout
the paper may obviously refer to the presence of a virus on the node in question.
However, it may also be used by nodes to indicate that a neighbor (or a neighbors
neighbor etc.) has become compromised, thereby attracting the attention of the
searchers. Indeed, in any practical implementation of our graph searching game
algorithm, the choice of becoming unclean may not even reside with the node
itself. As was noted above, a node may not be aware that it has been affected by
a virus. However, its neighbors can detect this (for example based on messages
received from the affected node), in which case they for all intents and purposes
label it as unclean.

The searcher may refer to for example software agents that “patrol” the net-
work, perhaps akin a benign virus. Or searchers may be software that resides on
all nodes, but is generally turned off in order to preserve battery and/or com-
putational power. The process of actually cleaning the node may for example
involve the removal of a virus, or even the complete wipe of the nodes dynamic
memory, and then reloading the program from a static memory that can not
have been compromised. These are all implementation specific details that we
will not address further in this paper. We present them here simply in order to
put the problem and algorithm into context.

2.4 Absent Searchers

As we will further elaborate in Section 3, we assume that there is always at least
one searcher present in the network. However, this would seem to contradict the
claim that our algorithm is self-stabilizing. Consider an initial state where no
searcher are present in the graph, and at least one node is contaminated by a
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virus. In this case, the virus may spread unchecked throughout the entire graph.
In this section we will address this issue, and present some possible ways of
avoiding it.

One obvious way of solving the above problem is to add a rule that simply
sets the root of the tree to be a searcher if this is not the case. This rule then
ensures that a searcher will eventually appear in the tree. The disadvantage of
this approach is that the root may become a searcher even if other searchers are
already present in the tree.

Another possible approach is for every node, at regular intervals, to have a
small chance of becoming a searcher (determined by a random dice throw). Thus,
even if every searcher disappears due to faults or errors, one can expect new ones
to spawn at regular intervals.

Wireless sensor networks are usually expected to report their observations to
some base station for example. The same base station may also be employed to
inject searchers into the network, should the need arise.

Thus we see that there are several possible ways of resolving a situation where
there are no searchers present in the tree. Which of these (or other methods) are
employed is an implementation specific detail which we will not further address
in this paper.

3 Algorithm

In this section we will describe our algorithm for performing a self-stabilizing
graph searching.

Let T = (V,E) be a tree such that V is the set of nodes, E is the set of edges,
and |V | = n and |E| = m. We define h as the maximum height of the tree and
δ as the maximum degree of the nodes in the tree. For every node v ∈ V the
set N(v) is the open neighborhood of v, and N [v] = N(v) ∪ {v} is the closed
neighborhood.

We assume that the tree is rooted at node r. For every node v ∈ V , p(v) is the
neighbor that is closest to r (ie. v’s parent), and C(v) is the set of v’s children.
Thus {p(v)} ∪ C(v) = N(v).

There exists self-stabilizing algorithms that can provide this type of informa-
tion, such as one given by Blair and Manne in [4]. In this algorithm a node with
the lowest maximum distance to every leaf is computed, which is akin to rooting
the tree such that the height is minimized.

We assume that exactly one searcher is present in the network before the
cleaning process starts. We will call a strategy connected if it is a strategy in
which the set of nodes occupied by searchers induce a connected subgraph. We
will prove that the cleaning strategy considered here is a connected strategy.

We will refer to the case with more than one initial searcher in the network
in Section 4.3.

The classic variant of node searching has the monotonicity property mean-
ing that recontamination does not reduce the number of searchers used. Thus
the algorithms that provide a node searching strategy for trees give a strategy
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Algorithm 1. A self-stabilizing graph searching algorithm for trees

Rules:
Contamination:

if sv = clean ∧ ∃u ∈ N(v) : su = unclean
then sv ← unclean

mv ← null

Descent1:
if sv = searcher ∧ ∃c ∈ C(v) : sc = unclean ∧ (smv = clean ∨ mv /∈ C(v))
then mv ← c

Descent2:
if sv 	= searcher ∧ mp(v) = v ∧ sp(v) = searcher∧

(∃c ∈ C(v) : sc = unclean ∨ sv = unclean)
then sv ← searcher

mv ← null

Ascent1:
if sv = searcher ∧ �c ∈ C(v) : sc ∈ {searcher, unclean} ∧ sp(v) 	= searcher∧

mv 	= p(v)
then mv ← p(v)

Ascent2:
if sv = searcher ∧ �c ∈ C(v) : sc ∈ {searcher, unclean} ∧ sp(v) = searcher
then sv ← clean

mv ← null

Ascent3:
if sv 	= searcher ∧ ∃c ∈ C(v) : (sc = searcher ∧ mc = v)
then sv ← searcher

mv ← null

without recontamination [22,25]. In the graph searching variant that we consider
recontamination can happen. If, because of an error in the network, a node in the
tree becomes suddenly unclean, recontamination of the network can occur. We
will refer to these nodes as contaminators. Our algorithm is designed to handle
these kind of situations.

The algorithm uses two local variables for each node. For a node v sv ∈
{searcher, clean, unclean} is v’s current mode and mv is a pointer used by
a searcher v to indicate which neighbor should become a searcher, either in
addition to or instead of v.

We give the algorithm as Algorithm 1.

3.1 Informal Description

We now give an informal description of Algorithm 1.
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The purpose of the Contamination rule is for clean nodes to detect the pres-
ence of an unclean neighbor, and thus becoming unclean themselves. While this
may seem counterproductive, it allows searchers to avoid areas of the tree that
are already clean.

The remaining rules deal with searching the tree. They can be divided up into
two groups: The descent rules and the ascent rules.

The purpose of the descent rules is for a searcher, starting at a node v, to
move further down the tree, searching and cleaning each of v’s children’s subtree,
one at a time. Recall that the purpose of the m-variable is to allow a searcher
to replicate itself onto a neighboring node. Thus, the Descent1 rule functions
by a searcher v determining if it has an unclean child, in which case it points
mv to such a child if this is not already the case. Following this move, the child
will now detect that its parent is a searcher and pointing to it, and become a
searcher itself (Descent2 ).

The purpose of the ascent rules is to allow a searcher to climb the tree once
a subtree has been cleaned. The Ascent1 rule becomes privileged for a node v if
every child of v is clean, and v’s parent is not a searcher. In this case it sets mv

to point to its parent (if this is not the case), indicating that it should become
a searcher. If v’s parent is a searcher v becomes clean (Ascent2 ), since it no
longer needs to function as a searcher. In the first case, when v’s parent is not
a searcher, then following v’s execution of the Ascent1 rule, its parent become
privileged to execute the Ascent3 rule, after which it becomes a searcher.

4 Proof of Correctness

In this section we show that when Algorithm 1 has reached a stable configuration
there are no unclean nodes in the graph, and at most one searcher. We will then
bound the complexity of the algorithm for the distributed adversarial daemon,
and show that the number of searchers present in the graph at any given time
is at most h.

4.1 Correct Stabilization

We now show that if Algorithm 1 reaches a stable configuration there are no
unclean nodes, and exactly one searcher, which is at the root of the tree.

Lemma 1. In a stable configuration there does not exist any pair of neighboring
nodes v, w ∈ V such that sv = unclean and sw = clean.

Proof. This follows directly from the Contamination rule. ��

Lemma 2. In a stable configuration there does not exist any pair of neighboring
nodes v, w ∈ V such that sv = unclean and sw = searcher.

Proof. Assuming that there exists a pair of two neighboring nodes such that
one is unclean and the other one is searcher, we prove that this leads to a
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contradiction. We show this by induction over the height of the tree. In the
following we refer to the set C′(w) as the set of unclean children of w, where w
is a node in T . Let i be the distance from the root of the tree to the furthest
leaf.

The base case is i = 1, ie. for a node w where every child is a leaf. We consider
the following two cases. Case 1 : given a node v ∈ C(w), then sw = unclean and
sv = searcher. Case 2 : sw = searcher and |C′(w)| > 0 (ie. there exists at least
one child of w that is unclean).

In Case 1 it follows that since v has no children either v is privileged for
an Ascent1 move (which will cause it to point to w) or w is privileged for an
Ascent2 move (which will cause it to become a searcher).

For Case 2 either w must be privileged to execute a Descent1 move and point
to v′ ∈ C′(w), or v′ must privileged to execute a Descent2 move, becoming a
searcher.

We see that in either of the two cases the configuration is not stable.
Assuming that the induction hypothesis is true for any subtree where the

maximum distance from the root to any leaf is less than i, we now show that
this implies it is also true for i. We again consider the two cases presented above.

For Case 1 we know from the induction hypothesis and Lemma 1 that the
subtree rooted at v contains no unclean nodes. Thus v must be privileged for an
Ascent1 move or w must be privileged for an Ascent3 move.

In Case 2 w must be privileged for a Descent1 move and point to v′ ∈ C′(w)
or v′ must be privileged for a Descent2 move.

In either of the above cases we see that at least one node must be privileged
for a move, which contradicts our initial assumption that the configuration is
stable. ��

From Lemmas 1 and 2 we get the following result.

Lemma 3. In a stable configuration there does not exists any node v ∈ V such
that sv = unclean.

Lemma 4. In a stable configuration there exists exactly one searcher, which is
at the root.

Proof. Recall that in a stable configuration there does not exist any unclean
nodes. We note that if there exists a node v such that sv = searcher and
sp(v) �= searcher then p(v) is privileged for an Ascent3 move if v is pointing to
p(v). If v is not pointing to p(v), it is non-privileged for an Ascent1 move only if
it has at least one child that is a searcher. If sv = searcher and sp(v) = searcher
then v is privileged for an Ascent2 move if it has no children that are searchers.

Repeating this argument it follows that since a leaf has no child that is a
searcher at least one node must be privileged. Furthermore, since the root r of
the tree has no parent, r can never become privileged for an Ascent2 move, and
thus it must remain a searcher. ��

Based on Lemmas 3 and 4 we get the following.
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Theorem 1. In a stable configuration where r ∈ V is the root then sr =
searcher and sv = clean for every node v ∈ V \{r}.

4.2 Convergence for the Distributed Adversarial Daemon

In this section we will show that Algorithm 1 stabilizes in O(n3) time steps
under a distributed adversarial daemon. In the following we refer to Descent1,
Descent2, Ascent1, Ascent2 and Ascent3 moves as Cleaning moves. We here
assume that the rooting algorithm by Blair and Manne is stable. That is, there
exists exactly one root in the tree, and for every node, the parent is the neighbor
that is closest to the root. We will consider the behavior of Algorithm 1 when
this is not true in Section 4.4.

From the predicate for each of the Cleaning moves, we get the following
lemma.

Lemma 5. A node v can execute a Cleaning move only if there exists at least
one node w ∈ N [v] such that sw = searcher.

Next, we show that the set of nodes that are searchers induce a connected tree.
We remind the reader that initially there is only one searcher in the network.

Lemma 6. Let A be the set of nodes a such that sa = searcher. The nodes in
A induce a connected tree.

Proof. We first note that the only rule that can cause a searcher v to become a
non-searcher is the Ascent2 rule which requires that no children of v are searchers
and that p(v) is a searcher. Thus executing this rule will not violate the lemma.

Next we observe that only the Descent2 and Ascent3 rules can cause a node to
become a searcher, and these require that either v’s parent or one of v’s children
is a searcher, respectively. ��

We define T ′ as the subset of maximum size of T induced by the set of searchers
and all unclean nodes for which there exists path of unclean nodes to any searcher.
From Lemma 6 we know that T ′ is a connected tree. Obviously, the nodes in T ′

can only execute Cleaning moves, and we will now show that if no other nodes in
the graph can execute a move, T ′ will stabilize in O(δh) time steps.

Lemma 7. A connected subset B ⊆ T where the root of B, rB is a searcher, can
execute cleaning moves during at most O(δhB ) consecutive time steps , where hB

is the height of B.

Proof. We will show this by induction over the height of B.
For the base case we consider B with height 1, ie. that every child of rB is

a leaf. We assume that rB is a searcher, and since |Cr| �= 0, rB may execute a
Descent1 move and point to one of its children. This child can then execute a
Descent2 move and become a searcher. This is followed by an Ascent2 move,
and the child becomes clean. The root rB may now point to different child, and
this process is repeated until all children are clean.
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Since rB has no searcher or unclean children left, it may now execute an
Ascent2 move if p(rB) is a searcher, and an Ascent1 move if not. Thus at most
2 · δ + 2 moves are executed.

Assuming that the induction hypothesis is true for any subtree with height
i− 1, we now show that it is true for i. Again we assume that rB is a searcher.
If any children of rB are searchers, we know by the induction hypothesis that
each of their respective subtrees can execute moves during at most O(δi−1) time
steps. If any children are unclean, rB may execute a Descent1 move and point
to an unclean child. This child will now execute a Descent2 move and become a
searcher. In this case we know that the subtree rooted at this child can execute
moves during at most O(δi−1) time steps. Since rB has at most δ children, every
childs subtree is stable within O(δi) time steps. Since rB is a searcher, it may now
execute an Ascent2 move if p(rB) is a searcher, and an Ascent1 move if not. ��

Assuming that r′ is the searcher with greatest distance h′ from it to any leaf,
then it follows that the subtree of T ′ rooted at r′ will stabilize after at most
O(δh′

). Following this, since p(r′) is not a searcher, r′ may execute an Ascent1
move and point to its parent, which may now execute an Ascent2 move and
become a searcher. Using an induction similar to the proof of Lemma 7 we get
the following result.

Lemma 8. At most O(δh) consecutive cleaning moves can be executed.

We note that there initially existed a set of unclean nodes, and we refer to these
nodes as contaminators. We define a contamination path x0, x1, ..., xk such that
x0 is a contaminator and every xj has executed a Contamination move due to
sxj−1 = unclean. A contamination process is a process started by a contaminator
that leads to nodes becoming contaminated by executing the Contamination
move.

Lemma 9. Every contaminator w can start a contamination process at most
once before it becomes clean.

Proof. Once a contamination process is started it will spread in a connected
way, in the worst case the whole tree is recontaminated. At some point a clean-
ing process will start at some node u that is a searcher. Consider the unclean
subtree rooted at u that contains the contaminator w. We recall that the clean-
ing strategy is a connected strategy by Lemma 6. The only privileged rules at
this point are the Descent1 and Descent2 rules. After a finite number of steps
w becomes cleaned. Thus w cannot start a contamination process again. ��

If a node executing a Contamination move has two or more unclean neighbors,
we say that it joins only one of its incident contamination paths. This ensures
that every node that is a member of a contamination path has exactly one
contaminator as its origin (it does however not restrict a single node from being
a member of more than one contamination path). Obviously, every node that
executes a Contamination move is part of a contamination path. We say that a
Contamination move by a node v is caused by a contaminator w if v is a member
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of a path originating in w. Since such a path can have a length of at most O(n)
and by Lemma 9 it follows directly the next lemma.

Lemma 10. Every contaminator w can cause at most O(n) Contamination
moves.

Note that O(δh) is bounded by O(n). Since there initially existed at most n
contaminators in the graph, we get the following theorem.

Theorem 2. Algorithm 1 will stabilize after at most O(n3) time steps.

4.3 Bounding the Number of Searchers

In this section we bound the number of searchers used by Algorithm 1 to clean
the graph. We assumed that at the beginning there is only one searcher in the
network.

Lemma 11. The number of searchers used by Algorithm 1 to clean a given tree
T is O(h), where h is the height of T .

Proof. We assume first that the initial searcher present in the tree is situated
at the root of the tree. The cleaning process generated by the searcher situated
at the root uses at least h searchers. At each node u only one of the subtrees
rooted at u is cleaned at any one time. No two subtrees are cleaned at the same
time. Thus Algorithm 1 will use at most h searchers.

Let now assume that the initial searcher present in the tree is not situated at
the root. Let v be the node of the tree occupied by this searcher. The Algorithm
1 will first perform the cleaning of the subtree rooted at v, since only the Descent
moves are privileged at this point. The number of searchers used is hv, where hv

is the height of the subtree rooted at v. After that the cleaning process is similar
to the one described previously for the case when the initial searcher is at the
root. Thus Algorithm 1 will use at most h searchers in this case as well. ��

If initially there are more than one searcher in the tree, Algorithm 1 will realize
the cleaning of the network and it will stabilize after O(n3) time steps under the
distributed adversarial daemon. The number of searchers used may increase in
this situation. For each initial extra searcher situated at a node u the number of
searchers used to clean the network may increase and become O(h+hu)), where
hu is the height of Tu, the subtree rooted at u and h is the height of T .

4.4 Interaction with the Rooting Algorithm

In the previous sections we have assumed that the rooting algorithm by Blair and
Manne is stable. That is, there exists exactly one root in the tree, and for every
node, the parent is the neighbor that is closest to the root. In this section we
will consider how to deal with situations when this is not true. In the following
we denote the algorithm by Blair and Manne as Algorithm 0.
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While Algorithm 0 does not use the state of Algorithm 1 in its execution, it
is important to ensure that Algorithm 1 will stabilize regardless of the state of
Algorithm 0. If this is not the case, Algorithm 1 may execute an infinite number
of moves, possibly preventing Algorithm 0 from executing any.

In order to ensure this, we denote a node v as eligible if and only if a) v is not
privileged for an Algorithm 0 move. And b), for every w ∈ N(v) either pv = w
and pw �= v, or pw = v and pv �= w. That is, v is the parent of every neighbor,
save possibly one, which is the parent of v. Note that the set of nodes that are
eligible induce a forest (possibly disconnected). Obviously, within each tree in
this forest, the parent pointers comply with requirement b), and Algorithm 1 will
stabilize within them. Thus, if we only allow eligible nodes to execute Algorithm
1 moves, Algorithm 1 will stabilize regardless of the state of Algorithm 0.

5 Conclusion

We have presented the first self-stabilizing algorithm for solving the graph search-
ing problem in trees. We assumed that before the cleaning process starts there
is only one searcher in the network. Recontamination can occur, if for example a
node that was previously clean becomes unclean. At each step of the algorithm
at most h searchers are used, where h is the height of the tree.

Throughout the paper we focused mainly on the node searching problem,
meaning that an edge in the tree is cleaned by placing a searcher on both of its
endpoints. Our algorithm can be easily modified to solve the edge and mixed
searching problems for trees. The main modification to be done is in the way a
new searcher is introduced in the network. In order to solve the edge searching
problem a new searcher is introduced first at the parent of a node and after-
wards is slid to a specific child. We remind the reader that in the edge searching
setting an edge is cleared by sliding a searcher from one of its endpoints towards
the other. By introducing the searcher at the parent of a node that needs to
become searcher we can easily slide that new introduced searcher through the
corresponding edge and clean it. Notice that since the parent node already had
one searcher, then by sliding the second searcher, recontamination cannot occur
locally. Since mixed searching combines both node searching and edge search-
ing, each of the previously described strategies constitutes a mixed searching
strategy. In the mixed searching setting an edge is cleaned either by placing a
searcher on each of its endpoints or by sliding a searcher through it.

We believe that these results can be extended to other graph classes and we
plan to further explore this possibility.
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Abstract. We propose a communication scheme for GALS systems with
independent but approximately synchronized clock sources, which guar-
antees high-speed metastability-free communication between any two
peers via bounded-size FIFO buffers. The proposed approach can be
used atop of any multi-synchronous clocking system that guarantees a
synchronization precision in the order of several clock cycles, like our
fault-tolerant DARTS clocks. We determine detailed formulas for the
required communication buffer size, and prove that this choice indeed
guarantees metastability-free communication between correct peers, at
maximum clock speed. We also describe a fast and efficient implemen-
tation of our scheme, and calculate the required buffer size for a sample
test scenario. Experimental results confirm that the size lower bounds
provided by our formulas are tight in this setting.

1 Introduction

Over the last decades, VLSI technology has been dominated by the trends to-
wards shrinking feature sizes, increasing complexity and higher clock rates. The
VLSI design style, however, was shaped by the synchronous abstraction and the
assumption of relatively low component failure rates that do not match well
the above VLSI technology trends: First of all, clock frequencies became so high
(and chips so complex) that phase-synchronous clock distribution over the entire
chip is a substantial challenge [1]. Chip designers are hence confronted with the
erosion of the convenient globally synchronous clock abstraction, which makes
GALS (globally asynchronous locally synchronous [2]) systems an attractive al-
ternative. In GALS, the system is partitioned into modules that are compact
enough to be designed safely using the synchronous paradigm. Each module is
equipped with its own clock source, however, and communication across different
clock domains is performed in an asynchronous way.

The second problem with contemporary VLSI technology are increasing er-
ror rates [3] due to smaller critical charges, lower voltage swings and high clock
and signal frequencies. Hardening techniques at the technology and circuit level
[4,5], and redundancy concepts at the architectural level [6], as known from de-
pendable computing, are hence expected to become widespread in commercial
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c© Springer-Verlag Berlin Heidelberg 2009



A Metastability-Free Multi-synchronous Communication Scheme for SoCs 579

circuits as well. Interestingly, however, even such designs often rely on a single
clock source, usually a quartz oscillator, that ultimately constitutes a (silently
accepted) single point of failure: Typically, brute-force approaches for provid-
ing a robust clock, such as using very strong drivers, are employed here. More
sophisticated alternatives like [7,8] provide very limited fault-tolerance only.

Again, GALS seems to come for a rescue. However, while multiple independent
clock sources indeed eliminate the single point of failure, this comes at a high
price: The global notion of time that was naturally provided by the synchronous
clock does not exist anymore. The modules are running asynchronously to each
other, which not only complicates the application design, but also prohibits TMR
or voter-based fault-tolerant architectures. Moreover, asynchrony introduces the
potential of metastability [9]: Synchronizers must be employed to mitigate these
effects at the clock domain boundaries between modules. In order to cope with
(slowly) drifting clocks, adaptive synchronizers have been proposed [10,11]. Al-
though the meantime between metastable upsets can be made arbitrarily large,
they cannot be eliminated completely. Moreover, synchronizers tend to degrade
performance, since their designs need to be conservative [12].

Therefore, an inter-module communication scheme for GALS that rules out
metastability by construction would be an appealing alternative to synchronizer-
based asynchronous communication. In this paper, we describe such a communi-
cation scheme for GALS systems built atop a multi-synchronous clocking scheme.
A multi-synchronous clocking scheme employs independent clock sources that,
however, guarantee some known bound on the worst-case synchronization preci-
sion, typically in the order of a few clock cycles. One example is our fault-tolerant
DARTS clocking scheme for SoC [13]. Although the synchronization precision
of multi-synchronous clocking is much worse than that of a conventional syn-
chronous clock, it turns out that its “loose” global synchrony is – in contrast
to GALS – sufficient for implementing metastability-free communication at full
clock speed, i.e., without reducing the data rate. Implementing this scheme only
requires bounded-size FIFO buffers between communicating modules. To the
best of our knowledge, there is no related work that targets similar goals.

2 System Architecture

We assume a system consisting of different functional units (FUs) that are inter-
nally complex synchronous designs with well defined interfaces to the outside. A
typical example is a system-on-chip (SoC) built from IP modules. In the follow-
ing we will hence treat the FUs as black boxes and concentrate on the inter-FU
communication. Although we do not assume the individual FUs and channels to
be fault-tolerant, we can actually restrict our attention to the communication
between non-faulty FUs, along non-faulty communication channels: If required
by the application, fault-tolerance is rather achieved at the architectural level
by appropriate replication. Since the behavior of faulty FUs and channels can
be disregarded here, we can safely disregard failures in the sequel.
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2.1 Communication Issues

A fundamental requirement for every communication primitive is that a data
item must not be changed by a write operation while being read. It is well known
that, in this case, the receiver may remain undecided about the interpretation
of the input for an arbitrary time and exhibit arbitrary behavior, such as self-
oscillation or undecided output. This undesired effect is known as metastability
[9], and causes the need to appropriately align the activities of source and sink.

In principle, the globally synchronous abstraction provides a very efficient
solution here: A global clock source is used to clock all individual FUs and
co-ordinate their activities. As outlined in the previous section, however, the
globally synchronous abstraction is increasingly difficult to maintain, and enor-
mous efforts are hence being made to establish a sufficiently tight co-ordination
between sender and receiver at high clock frequencies.

Unfortunately, GALS does not solve this problem: Due to the lack of a common
time reference, the communication between FUs needs to be explicitly coordinated
by means of handshakes, which severely degrades communication performance.
Moreover, a handshake can provide a coordination on a transaction level, but does
not solve the synchronization issue at the signal level: The transfer of data across
clock domains inevitably introduces the potential for metastability, even during
fault-free operation. As already mentioned, synchronizers can only reduce (but
not eliminate) this risk and introduce performance penalties [12].

2.2 Multi-synchronous Clocking

In between the globally synchronous and the GALS clocking schemes there is a
“loosely synchronized” scheme termed multi-synchronous clocking [14,15]. With
this approach, all FUs receive a clock of the same frequency on the long run,
but with a significant short-term phase jitter that may amount to several clock
periods. The worst-case phase deviation between any two FUs’ clocks that will
ever be encountered is termed the precision (measured in clock ticks), and is
usually limited by design. A trivial example of a multi-synchronous solution is a
globally synchronous system with significant skew in the clock distribution tree.

Interestingly, there are ways to implement a multi-synchronous clocking scheme
also in a fully distributed and fault-tolerant manner: In our DARTS project, we
adapted a simple Byzantine fault-tolerant distributed tick generation algorithm
introduced in [16] for direct implementation in asynchronous digital logic [17].
Rather than using quartz oscillators, DARTS hence employs a special distributed
fault-tolerant ring oscillator.

In [13], it was shown that DARTS clocks guarantee some bounded worst-
case precision (π), provided that (1) some relatively uncritical layout timing
constraints are met, and (2) that at most f out of the n ≥ 3f +2 clock instances
suffer from arbitrary (Byzantine) failures. Formulas for both the minimum (T−)
and maximum (T+) clock cycle time have also been determined, as they are
needed for determining the required communication buffer size in Sect. 4.2.
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3 The Communication Layer

3.1 Fundamentals

The communication scheme traditionally used on top of the globally synchronous
paradigm relies on a precision that is considerably better than one single clock
cycle: The sender writes data at the active clock transition k, and the receiver
reads these data at the next active clock transition k + 1. Assuming perfect
synchrony, this leaves one clock period for transmission and stabilization of the
data. In case of non-perfect synchronization between sender and receiver, how-
ever, this interval may shrink, as transition k is determined by the sender’s local
perception of time, but k+1 by the receiver’s. Evidently, this simple scheme will
no longer work reliably in a multi-synchronous environment, where the synchro-
nization precision may be as large as several clock periods.

In order to reason precisely about such communication schemes for multi-
synchronous GALS systems, we employ the notation of precedence described by
Lamport in [18]. Informally, the precedence relation A → B means that action
A must have been finished before action B starts. Given a set P of FUs, termed
nodes in the sequel, and denoting the ticks of our multi-synchronous clocking
system by Ck

i , where i is the node and k the tick count, we can define the
precision π of our system by requiring that

∀i, j ∈ P, ∀k > 0 : Ck
i → Ck+π

j (1)

A simple approach would be to divide the native clock (“microticks”) such that
the resulting clock (“macroticks”) has a precision better than one. The drawback
of this approach is the limited throughput. To circumvent it, we suggest imple-
menting metastability-free communication [18] using a pipelined communication
scheme directly based on the microticks.

3.2 Pipelined Communication

Let us recall the requirement for metastability-free communication from Sect. 2.1:
For the transfer of any given data item, we need to pair write and read tran-
sitions such that writing has finished safely before reading starts. In the above
synchronous approach, clock transitions of the same direction (rising or falling)
are considered indistinguishable. Hence, this pairing is applied strictly via subse-
quent alternating edges. Consequently the phase relation between any two FUs
is of central importance and must be maintained within tight bounds.

However, if we could distinguish edges on an individual basis (e.g. by their
index), then we could establish relations between arbitrary clock transitions,
such as W 13

i → R22
j . Clearly this requires a globally consistent numbering of

clock ticks, which is, however, nothing else than the global time base established
by our multi-synchronous clock, provided that a consistent edge numbering is
ensured by the synchronous start of all FU’s local clocks at start-up.
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Based on this idea, we can pipeline transmission activities at the microtick
level, thereby avoiding the throughput penalty of macrotick-based communica-
tion. We simply exploit the precedence given in (1)

∀i, j ∈ P, ∀k > 0 : W k
i = Ck

i → Ck+α
j = Rk

j

with α being a sufficiently large time margin that separates writes and reads.
Note that writes and reads can be performed at every microtick here, which

maximizes the throughput. As the synchronization precision, however, can be in
the order of several microticks, one needs a FIFO buffer in between communi-
cating nodes to avoid data loss. Clearly, minimizing the required buffer size is
important, both with respect to costs and communication delay. In the following
we will therefore formally derive the respective bound.

4 Formal Model and Proof

4.1 System Model

To be able to prove the correctness of our approach, we first create an algorithmic
model of our system. In this model, the nodes are coupled by a single-writer
single-reader buffer memory of unbounded size (see Fig. 1). Our proof will reveal
that finite buffer size will be sufficient. The behavior of the system is modeled
by a sender algorithm (Algorithm 1) and a receiver algorithm (Algorithm 2).

Fig. 1. System model used for the proof

Informal description of the algorithms: In our description, we use the
term action for an operation with duration ≥ 0. For action A, ts(A) and te(A),
respectively, denote A’s start and end time. An action with zero duration is called
an event. The following actions and messages can be handled and/or produced
by the sender node i:

Algorithm 1. Sender algorithm for node i

1: on Ck
i do

2: Send 〈tick, k〉 to generate Di // Simulate Clk Delay
3: on Dl

i: l-th receive of any 〈tick, k〉 from node i do
4: Send 〈data, l〉 to generate Wi // Simulate Message Delay
5: on W m

i : m-th receive of any 〈data, l〉 from node i do
6: mem(m + α) := data // Memory Write Action



A Metastability-Free Multi-synchronous Communication Scheme for SoCs 583

Algorithm 2. Receiver algorithm for node j

1: on Ck
j do

2: Send 〈tick, k〉 to generate Rj // Simulate Clk Delay
3: on Rl

j : l-th receive of any 〈tick, k〉 from node j do
4: data := mem(k) // Memory Read Event

– Ck
i - This is the k-th clock tick of the sender node i. It is an event.

– 〈tick, k〉 - At every event Ck
i the clock generator of node i sends a message

to its message generator to initiate the delivery of the data message. Its
message delay ∆send(i, k) is in the interval 0 < ∆−

send ≤ ∆send(i, k) ≤ ∆+
send.

– Dl
i - This is the receive action for the l-th 〈tick, k〉 message at its message

generator. It is an event.
– 〈data, l〉 - At every event Dl

i node i’s message generator sends a message to
its memory controller to initiate the memory write operation. Its message
delay ∆msg(i, l) is in the interval 0 < ∆−

msg ≤ ∆msg(i, l) ≤ ∆+
msg.

– Wm
i - This action models the buffer memory write operation and is triggered

by the reception of the m-th 〈data, l〉 message. It has a non zero duration
∆mem(i,m) within the interval 0 < ∆−

mem ≤ ∆mem(i,m) ≤ ∆+
mem.

The receiver node can produce/handle the following actions and messages:

– Ck
j - This is the k-th clock tick of the receiver node. It is an event.

– 〈tick, k〉 - At every event Ck
j the clock generator of node j sends its mem-

ory controller a message to initiate the memory read. Its message delay
∆recv(j, k) is in the interval 0 < ∆−

recv ≤ ∆recv(j, k) ≤ ∆+
recv.

– Rl
j - This is the actual read action. It is triggered by the reception of the l-th
〈tick, k〉 message and has a specified length of ∆rd(j, l) within the interval
0 < ∆−

rd ≤ ∆rd(j, l) ≤ ∆+
rd.

It is important to note that Rk
j reads memory location k, while W k

i

writes memory location k+α. As a consequence of the shifted write index, the
memory must be pre-filled with α elements (all zero), simulating that the writes
W−α+1

i , . . . ,W 0
i to the memory locations 1, · · · , α have already been finished

before the first clock tick k = 0 (initial state). A sample execution of tick k for
both algorithms can be found in Fig. 2.

Fig. 2. Execution of tick k
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4.2 Prerequisites

We require the clocking scheme to guarantee the following properties:

Assumption 1 (Precision). ∃π : ∀i, j ∈ P, ∀k ≥ 0 : Ck
i → Ck+π

j

Assumption 2 (Accuracy). ∀i ∈ P, k > 0 : ∃T− = min
i,k

(Ck+1
i − Ck

i ) > 0

Assumption 3 (Startup). Before the first clock tick (initial state, k = 0), all
memories are prefilled with α elements (all zero) and the precision π is zero
(π0 = 0). This is easy to guarantee in systems with a common reset.

Assumption 4 (Message Order). All message channels provide FIFO or-
dering. Furthermore, the actual delays must be such that every read and write
operation is finished before the next one starts. This is always guaranteed if

T− + ∆send(i, k + 1) + ∆msg(i, k + 1)−∆send(i, k)−∆msg(i, k) > ∆mem(i, k)

and T− + ∆recv(j, k + 1)−∆recv(j, k) > ∆rd(j, k)

For a more in-depth discussion of the delays in real systems see Sect. 5.1.

4.3 Problem Definition and Relation between Events

Properties of correct operation:

(WR) The write of memory location k must be finished before the read of this
location starts (W k−α

i → Rk
j ).

(OV) In case of a bounded-size buffer, the read of an element must be finished
before it is overwritten (Rk

j →W k+π+β
i , the size of β will be fixed later).

We will now prove essential relations between the events in our system model.

Lemma 1. Algorithm 1, line 3: ∀k ≥ 1, it holds that k = l and Dk
i → Dk+1

i .

Proof. We prove this Lemma by induction.

– Induction start (k = 1): C1
i triggers the first send of a message 〈tick, 1〉. By

the FIFO property of the links it is also the first message to be delivered
and therefore triggering event D1

i . Since it is the first event the precedence
relation is obviously true.

– Induction hypothesis: Assume the lemma holds for k.
– Induction step (k → k + 1): We know that the first k 〈tick, l〉 messages

trigger the events Dl
i|l ≤ k. By FIFO order, message 〈tick, k+1〉 (generated

by event Ck+1
i ) will be the next one delivered, thereby triggering the event

Dk+1
i . Since Dl

i is a zero-length event, this implies the precedence relation.
��

Lemma 2. Algorithm 1, line 5: ∀l ≥ 1. it holds that l = m and W l
i →W l+1

i .
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Proof. The proof is similar to above.

– Induction start (l = 1): D1
i triggers the first send of a message 〈data, 1〉. By

the FIFO property of the links it is also the first message to be delivered
and therefore triggering event W 1

i . Since it is the first event the precedence
relation is valid.

– Induction hypothesis: Assume the lemma holds for l.
– Induction step (l→ l+1): We know that the first l 〈data, m〉messages trigger

the events Wm
i |m ≤ l. By FIFO order message 〈data, l + 1〉 (generated by

event Dl+1
i ) will be the next one delivered, thereby triggering the event

W l+1
i . By Assumption 4 we know that ts(W l+1

i ) > ts(W l
i ) + ∆mem(i, l) and

therefore W l
i is finished before W l+1

i is started. Therefore W l
i →W l+1

i holds.
��

We now define a new relation �. It is used to model the triggering of events.
A� B means that event B was triggered by event A. Note that A� B implies
the precedence relation (A → B). Using this notation, the trigger dependencies
implied by Lemma 1 and 2 read: Ck

i � Dk
i �W k

i .

Lemma 3. Algorithm 2, line 3: ∀k ≥ 1, it holds that k = l and Rk
j → Rk+1

j .

The proof is equivalent to the one of Lemma 2. In conjunction with Lemma 3,
this implies Ck

j � Rk
j .

4.4 Write-Read Order Proof

For the proof of (WR) we fix an arbitrary sender-receiver pair. The sender node
has the index i, the receiver node the index j. We will now derive the latest
possible end of a write operation to a certain data item. We start with the first
α items.

Lemma 4. ∀ − α + 1 ≤ k ≤ 0 : te(W k
i ) = 0

Proof. Follows directly from Assumption 3. ��

Lemma 5 gives the latest possible end time for all other write operations.

Lemma 5. ∀k > 0 : te(W k
i ) ≤ t(Ck

i ) + ∆+
send + ∆+

msg + ∆+
mem

Proof. We already know that Ck
i � Dk

i � W k
i . Since Dk

i is triggered by the
k-th 〈tick, k〉 message, we get: t(Dk

i ) = t(Ck
i )+∆send(i, k). Since W k

i is triggered
by the k-th 〈data, l〉 message, we get:

ts(W k
i ) = t(Dk

i ) + ∆msg(i, k) = t(Ck
i ) + ∆send(i, k) + ∆msg(i, k)

≤ t(Ck
i ) + ∆+

send + ∆+
msg.

We know that the event takes ∆mem(i, k) time to finish, so its end time is:

te(W k
i ) = ts(W k

i ) + ∆mem(i, k) ≤ t(Ck
i ) + ∆+

send + ∆+
msg + ∆+

mem. ��
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We determine the earliest possible time a read operation can start.

Lemma 6. ∀k > 0 : ts(Rk
j ) ≥ t(Ck

j ) + ∆−
recv

Proof. We already know that Ck
j � Rk

j . Since Rk
j is triggered by 〈tick, k〉, we

link: ts(Rk
j ) = t(Ck

j ) + ∆recv(j, k) ≥ t(Ck
j ) + ∆−

recv. ��

For proving (WR), we need to relate the latest possible end of a write with the
earliest possible start of a read of the same item, namely, ts(Rk

j )−te(W k−α
i ) ≥ 0.

In particular, we will show that this condition is true if:

α ≥ π +

⌈
∆+

send + ∆+
msg + ∆+

mem −∆−
recv

T−

⌉

Lemma 7. ∀k > 0 : ts(Rk
j )− te(W k−α

i ) ≥ 0

Proof. We use a case differentiation to prove this Lemma:

– 1 ≤ k ≤ α: ts(Rk
j )− te(W k−α

i )︸ ︷︷ ︸
=0 by Lemma 4

= ts(Rk
j ) ≥ 0.

– k > α:

ts(Rk
j ) − te(W k−α

i ) ≥ t(Ck
j ) + ∆−

recv − t(Ck−α
i ) − ∆+

send − ∆+
msg − ∆+

mem

= t(Ck
j )−t(Ck−π

i )︸ ︷︷ ︸
≥0 by Assumption 1

+ t(Ck−π
i ) − t(Ck−α

i )︸ ︷︷ ︸
≥(α−π)T− by Assumption 2

+∆−
recv − ∆+

send − ∆+
msg − ∆+

mem

≥
(

π+
⌈

∆+
send+∆+

msg+∆+
mem−∆−

recv

T −

⌉
−π

)
T − + ∆−

recv − ∆+
send − ∆+

msg − ∆+
mem

≥ T − ∆+
send+∆+

msg+∆+
mem−∆−

recv

T − + +∆−
recv − ∆+

send − ∆+
msg − ∆+

mem = 0. ��

This proof shows that if the buffer is prefilled with at least

α = π +

⌈
∆+

send + ∆+
msg + ∆+

mem −∆−
recv

T−

⌉

elements, no element is read before it is written.

4.5 Bounded Buffer Size

Now we replace the unbounded memory with a FIFO buffer of bounded size. We
will now determine a lower bound for the buffer size such that (OV) holds.

As in the previous section, we will show the start and end time, respectively,
for the read and write operations. To determine the required buffer size, we
need the earliest possible start time of all write operations (excluding the first
α writes, since they are prefilled).

Lemma 8. ∀k > 0 : ts(W k
i ) ≥ t(Ck

i ) + ∆−
send + ∆−

msg
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Proof. We already know that Ck
i � Dk

i � W k
i . Since Dk

i is triggered by the
k-th 〈tick, k〉 message, we get: t(Dk

i ) = t(Ck
i )+∆send(i, k). Since W k

i is triggered
by the k-th 〈data, l〉 message, we get:

ts(W k
i ) = t(Dk

i ) + ∆msg(i, k) = t(Ck
i ) + ∆send(i, k) + ∆msg(i, k)

≥ t(Ck
i ) + ∆−

send + ∆−
msg. ��

In addition to the start of the write operations, we need the latest possible end
time of the read operations.

Lemma 9. ∀k > 0 : te(Rk
j ) ≤ t(Ck

j ) + ∆+
recv + ∆+

rd

Proof. We already know that Ck
j � Rk

j . Since Rk
j is triggered by the k-th 〈tick, k〉

message, we get: ts(Rk
j ) = t(Ck

j ) + ∆recv(j, k) ≤ t(Ck
j ) + ∆+

recv. Knowing that a
read operation finishes within ∆rd(j, k), we get:

te(Rk
j ) = ts(Rk

j ) +∆rd(j, k) ≤ ts(Rk
j ) +∆+

rd ≤ t(Ck
j ) +∆+

recv +∆+
rd. ��

After calculating the start and end time of the operations, we will now show the
maximum possible number of unread messages in the buffer.

Lemma 10. There are always less or equal than π+α+β unread elements in the

buffer (i.e., ∀k ≥ 0 : ts(W
k+π+β
i )−te(Rk

j )≥0) with β=
⌈

∆+
recv+∆+

rd−∆−
send−∆−

msg
T−

⌉
.

Proof. We have to distinguish two cases:

– k = 0: At the beginning there are the α prefilled elements in the buffer.
Therefore the buffer size is surely sufficient.

– k > 0:

ts(W
k+π+β
i )− te(Rk

j ) ≥ t(Ck+π+β
i ) + ∆−

send + ∆−
msg − t(Ck

j )−∆+
recv −∆+

rd

= t(Ck+π+β
i )− t(Ck+β

j )︸ ︷︷ ︸
≥0 by Assumption 1

+ t(Ck+β
j )− t(Ck

j )︸ ︷︷ ︸
≥βT− by Assumption 2

+∆−
send + ∆−

msg −∆+
recv −∆+

rd

≥
⌈
∆+

recv + ∆+
rd −∆−

send −∆−
msg

T−

⌉
T−+ ∆−

send+ ∆−
msg −∆+

recv −∆+
rd

≥ ∆+
recv + ∆+

rd −∆−
send −∆−

msg + ∆−
send + ∆−

msg −∆+
recv −∆+

rd = 0. ��

Theorem 1. For α = π +
⌈

∆+
send+∆+

msg+∆+
mem−∆−

recv
T−

⌉
, a sufficient FIFO buffer

size is given by

2π +

⌈
∆+

send + ∆+
msg + ∆+

mem −∆−
recv

T−

⌉
+

⌈
∆+

recv + ∆+
rd −∆−

send −∆−
msg

T−

⌉
.
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5 VLSI Implementation

The layout of a single FU, consisting of application logic, communication subsys-
tem, and (DARTS) clocking subsystem, is shown in Fig. 3. As usual with GALS
systems, we implemented communication subsystem and application logic ac-
cording to the classic synchronous paradigm, using standard development tools.

The transmitter operates as a synchronous peripheral slave device of a con-
troller implemented in the FU’s application logic. Data to be transmitted is
passed via an 8-bit register interface. In case no data is available from the con-
troller, the transmitter is responsible for inserting idle patterns. In any case, the
data is serialized and line coding is applied. To guarantee small skew between
clock and data line, a matched (parallel) routing of the PCB traces for data and
clock is employed. (Similar constraints are found in all modern high speed source
synchronous systems like DDR memory). To relax the timing margins as far as
possible, we introduce a 180◦ phase shift between data and clock.

The memory element is integrated into the receiver node. Its read port
is controlled by the receiver clock, whereas the write port is under the con-
trol of the sender node. Recall that this buffer memory effectively compensates
the (bounded) clock skew between sender and receiver clock, and thus ensures
metastability-free data communication. As shown in Sect. 4, this can indeed be
accomplished with a sufficiently large buffer size. The memory element itself is
implemented as a ring buffer with individual address pointers for input and out-
put. Since the only potential for metastability, namely a simultaneous access to
the same address [18] is ruled out by construction, it can be written to and read
from independently.

The receiver operates as a synchronous peripheral slave device for a controller
unit implemented in the receiving FU. It takes the data out of the buffer using
its own (i.e. its controller’s) local clock. After de-serializing and decoding the
data, it supplies them to its controller via a memory-mapped 8-bit interface.

5.1 Mapping the Model to the Implementation

The correctness of the algorithms presented and proved correct in Sect. 3 and
4 depends on Assumptions 1–4, which must be guaranteed by the underlying
system. In our case, bounded precision and accuracy are inherently guaranteed
by our DARTS clocking scheme, and the synchronous start is ensured by a
system-wide reset (including DARTS). Finally, Assumption 4 is a timing con-
dition known from classic synchronous systems. It bounds the uncertainty of

Fig. 3. Layout of a functional unit
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Fig. 4. Example communication within the test system

the involved delays and relates it to the clock period. Since delay uncertainties
are caused by manufacturing variabilities and varying operation conditions only,
guaranteeing Assumption 4 is easily accomplished by means of standard timing
analysis tools.

The actions/events and messages introduced in the algorithmic model in
Sect. 4 are mapped to the implementation as follows: The messages 〈tick, k〉
are just clock ticks. The delays ∆send(i, k) and ∆recv(j, k) are the times needed
for the ticks to reach the sender output element and the read port of the memory
element, respectively. The message 〈data ,l〉 is implemented as the data and clock
transition running on the serial communication link between the sender and re-
ceiver. The corresponding delay ∆msg(i, k) is the sum of the involved output-,
line- and input-delays and the memory setup time. Obviously the simple signal
lines that convey all these messages respect FIFO order. The duration of the
write operation ∆mem(i, k) is the time needed for the new data to reach the
output element of the memory (including all combinational logic on its path)
after the clock edge and the setup time needed for the output element. ∆rd(j, k)
is mapped to the hold time of the memory output element.

5.2 Performance and Efficiency

A typical operation example of our communication subsystem is shown in the
logic analyzer trace in Fig. 4. It was generated by means of our test system (see
Sect. 6.1) using the random clock emulation mode with a precision of 4. The
clock traces reveal that our approach also works under very unfavorable clocking
conditions: The highly variable phase relation between the clocks would definitely
upset any traditional (phase-)synchronous system, and would also violate the
feasible operating conditions of synchronizer-based solutions like [10,11].

Our implementation achieves a (gross) data rate of 1 Mbps/MHz, since one
data bit is transferred with every active clock edge. This leads to a data rate
of 24 Mbps for our test system clock of 24 MHz, which uses a single data rail.
Multiplying this throughput by using parallel data lines is straightforward. For
a system with a clock frequency of 100 MHz, for example, using 16 parallel data
lines for one clock line would result in a data rate of 1.6 Gbps.

6 Experiments

We now verify the claim that the buffer size derived in Sect. 4 (a) is sufficient
for fault-free and metastability-free operation with clocks showing a precision of
several clock cycles, and (b) gives a reasonably tight lower bound.
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6.1 Test System

To evaluate our communication scheme under controllable and possibly very un-
favorable conditions, we have implemented a test system. It consists of 3 Xilinx
Virtex-4 FPGAs and a host PC. One of the FPGAs acts as a global test controller.
The other two FPGAs host target FUs that exchange messages. They are ran-
domly generated at the host PC and downloaded to both target FPGAs, such
that the receiver of a message can check its correctness. If an error is detected,
communication stops until the test controller has re-initialized the test system.

6.2 Clock Emulation

To systematically investigate worst case scenarios and reproduce interesting ef-
fects, we need full control over the speed and the relative position of the target
FUs’ clocks. To this end, we decided to use a clock emulation instead of the real
DARTS clocking scheme, which would be much harder to control. This emulation
is performed by the controller FPGA. The respective clock patterns are down-
loaded from the host PC where they have been a priori calculated. In essence,
they are a sequence of integer multiples of a base clock period that determines
the resolution of the clocking system.

In our experiments, we have used the following two types of clock emulation:

Worst case precision clock emulation. In this mode, the two clock signals
are deliberately kept as far apart as the precision allows. This way we can check
whether the system can indeed operate under unfavorable conditions. At the
same time, chances are high that the communication will fail if the buffer size
is too small, which gives an indication of whether the size calculated in Sect. 4
is a tight lower bound. To actually generate such worst case clock scenarios,
we artificially stop one clock while the other one runs at its full frequency. As
soon as the precision limit is reached, the stopped clock is speeded up to its full
frequency again.

Random clock emulation. This mode is used to assess the performance of
the system under continuously changing relative clock speeds. An example was
already shown in Fig. 4. Clock frequencies are varied over time here, by utilizing
a set of “clock primitives” (each one with a different frequency) that can be used
by the host PC when constructing an emulation schedule: Clock primitives are
randomly assembled into two different sequences that represent the clock traces
of the two target FUs. Of course, care is taken to keep the emulated clocks within
the precision limits.

6.3 Test Conditions

For the experiments reported here, we used a clocking system with a precision
of 4. The emulation base clock (emulation resolution) was set to 48 MHz. This
leads to a mean clock frequency of 24 MHz for the random emulation mode, and
a clock frequency of 24 MHz for the worst-case emulation mode. The test system
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was implemented in a way that minimizes the required buffer size according to
Theorem 1: The last term is zero, while the middle term evaluates to 1. This
leads to a required buffer size of 2π + 1 = 9.

6.4 Performed Tests and Test Results

Recall that the purpose of our experiments is to verify whether the calculated
buffer size is (a) sufficient and (b) minimal. Since it is of course not possible to
exhaustively emulate all possible clock relations, we can not prove the absence
of any buffer overruns for a buffer size 9. We can, however, check the failure-free
operation under adverse conditions during some period in order to increase the
confidence in our modeling. Furthermore, by reducing the buffer size below the
calculated limit, we can easily test the hypothesis (b).

The actual test runs were executed 5000 times for each buffer size and each
clock emulation type. For each run, we calculated new clock traces for the em-
ulation. If no failure has been encountered after 2 seconds of observation time,
the run was considered fault-free. The resulting histogram, showing the error
percentage, has been calculated after all the test runs have been completed.

Figure 5 presents the collected test results. First of all, the random emulation
mode did not produce any error in case of a buffer size of eight, whereas the
worst case emulation mode did. This indicates that the typical failure probability
is actually very low, and becomes visible within limited observation time only
if worst case conditions are artificially established. For smaller buffer sizes, the
expected failures could be observed frequently. Therefore, our results give a good
confirmation of our hypotheses (a) and (b) and, hence, of our analytical results.

Fig. 5. Results of the experiments

7 Conclusion and Future Work

Multi-synchronous clocking is an attractive alternative to globally synchronous
clocking in modern high-speed VLSI circuits, such as complex SoCs, which also
allows to avoid the single point of failure usually represented by a central clock
source. In this paper, we have shown how to employ the loose synchrony provided
by multi-synchronous GALS system for implementing a high-speed pipelined
communication scheme that is metastability-free by construction. It employs a
bounded-size FIFO buffer for compensating the skew between the sender and
receiver clock. We derived a reasonably tight lower bound for the required buffer
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size, and provided a formal proof of correctness and freedom of metastability.
Furthermore, we have described an efficient implementation of our communica-
tion scheme, and experimentally demonstrated its feasibility using a custom test
system. Part of our future work will be devoted to extensions of our approach,
in particular, flow control and timing error detection.

Acknowledgments. Our thanks go to Matthias Fuegger for guiding us
through the formal proofs and to Ulrich Schmid whose ideas initiated this work.
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Abstract. The problem of self-optimization and adaptation in the con-
text of customizable systems is becoming increasingly important with
the emergence of complex software systems and unpredictable execution
environments. Here, a general framework for automatically deciding on
when and how to adapt a system whenever it deviates from the de-
sired behavior is presented. In this framework, the adaptation targets of
the system are described in terms of a high-level policy that establishes
goals for a set of performance indicators. The decision process is based
on information provided independently for each service that describes
the available adaptations, their impact on performance indicators, and
any limitations or requirements. The technique consists of both offline
and online phases. Offline, rules are generated specifying service adapta-
tions that may help to achieve the specified goals when a given change
in the execution context occurs. Online, the corresponding rule is eval-
uated when a change occurs to choose which adaptations to perform.
Experimental results using a prototype framework in the context of a
web-based application demonstrate the effectiveness of this approach.

1 Introduction

Today’s complex software systems and services (e.g., Apache, Tomcat, MySQL,
virtual machines) offer different facilities for customizing their behavior, includ-
ing loadable modules and numerous configuration options. Such facilities can be
used to adapt the behavior of these services even during execution in response
to changes in the operational envelope. These changes might be the result of,
for instance, changes in system workload or in the available resources. While
dynamic resource allocation (e.g., [1]) can be used to respond to such changes,
adaptations that affect the service behavior itself can also be a powerful tool.

This paper addresses the problem of how to select appropriate service adapta-
tions when the system behavior deviates from that which is considered optimal,
for example, to provide a certain quality of service. This problem is extremely
challenging since the best adaptation may depend not only on the particular
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configuration of the system—that is, the set of services and how these services
are configured—but also on information that can be extremely dynamic and un-
predictable, such as the pattern of service invocations. In this paper, we consider
software systems built from one or more adaptable services. We assume that the
behavior of such service compositions can be described using a set of key per-
formance indicators (KPIs) that need to be maintained or optimized, and that
the system behavior can be controlled by applying one or more adaptations.

There are several approaches to deciding on how to adapt a service com-
position. One approach is to consider the composition as a black box and use
control theory and/or learning techniques [2,3,4] to derive adaptation policies.
Unfortunately, this approach is expensive and the resulting policy is only valid
for the specific configuration and workloads used during the learning process.
Thus, if the system configuration changes, the entire process has to be repeated.
The same applies for changes in the workload, where a small change can have
a large impact on the set of adaptations that need to be selected. Another ap-
proach relies on the system architect or system administrator specifying a low-
level adaptation policy for the system’s service composition manually based on
her own knowledge on the system operation [5]. Typically, these policies consist
of declarative Event-Condition-Action (ECA) rules specifying how the system
must adapt in the presence of specific events and conditions. Unfortunately, as
the complexity of the system composition increases, this task becomes harder
and more error-prone. Indeed, it often becomes impractical or even impossible
for the system architect to manage all the possible interactions and side effects
among the adaptations available for all services. The Cholla system [6] also ad-
dresses a similar problem, proposing a solution based on fuzzy control rules.
While rules can often be developed independently, additional coordination rules
specific to the chosen set of rules are often required. Also, this work does not
provide an explicit mapping from KPI-based goals to adaptation rules. Note that
our work is orthogonal to research on coordinating distributed adaptations [7,8].
In fact, such techniques could be combined with our approach in case distributed
coordination is required.

While a complex system of this type is hard to understand, the developer
of each individual component or module usually has a clear understanding of
the ways the component can be adapted and the impact of each adaptation
on the performance of the component in isolation. For instance, the designer
of a graphical component G may implement two operational modes: one that
produces high quality images and one that produces low quality images. The
designer, knowing the implementation details, is fully aware of the tradeoffs
involved, specifically that the low quality mode produces an image with lower
image resolution, but consumes less memory and less processor time than the
high quality counterpart. The challenge, of course, is to mesh this information
with that from other components to devise the best solution.

The goal of this work, then, is to make services adaptive by leveraging infor-
mation from service developers about the characteristics of each individual com-
ponent considered independently of where it will be used. To realize this goal, we
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propose a technique that uses this information to select the best adaptations for
a service when its execution deviates from the desired behavior. The selection
process is driven by a high-level policy that specifies the desired behavior—and,
hence, the goals the adaptations should strive to achieve—and relies on informa-
tion provided for each component describing possible adaptations, their impacts
on KPIs, and any limitations or requirements. The proposed technique consists
of both offline and online phases; in the offline phase, a set of service adaptations
that can help achieve the specified goals is created, while in the online phase,
adaptations are selected from this set in response to a change in the execution
context using the current system status and workload as input. For example, in
the above example, if the graphical service G is heavily utilized (high workload),
the change from high quality to low quality mode may yield significant memory,
processor, and/or bandwidth savings, while if G is in fact lightly utilized, the
same adaptations may have negligible impact. Thus, the adaptations selected by
our technique take into account not only the impact of each adaptation, but also
the contribution of each service to the performance of the entire composition.

The rest of the paper is organized as follows. Section 2 describes the way in
which the impact of possible adaptations on system performance is specified, and
also how high level goals can be captured in a policy. Section 3 then explains
how ECA rules are derived offline from the policy, while Section 4 describes how
these rules are evaluated online. The framework is illustrated and evaluated in
Section 5 using a web based application built from the composition of several
services that handle the process of replying to a HTTP request. Experimental
results show that selected adaptations are effective for different compositions of
the same services and different workloads. Section 6 concludes the paper.

2 Adaptable Services and Adaptation Goals

The proposed approach is based on adaptation goals defined in terms of a set
of KPIs and requires information regarding adaptations, their impacts, and con-
straints for each service component. As mentioned above, KPIs are metrics that
capture system performance, like CPU or memory use, among others [2].

The two key assumptions behind the approach are: (i) the value of each KPI
for a service composition C is

∑
s∈C s.KPI, where s.KPI is the “contribution”

of service s to that performance indicator, and (ii) it is possible to express the
(localized) impact of each adaptation of a service s in each of these KPIs. For
instance, the CPU used by a service composition is an example of a KPI that
can be defined as the sum of the CPU used by each service in the composition.
An adaptation of a service s that, if applied, changes the CPU used by s would
have to give a function that estimates the new value of s.cpu u.

A KPI definition includes a name, the type of the expected value, and the
acceptable error margin in any evaluation of the KPI, as illustrated below.

KPI cpu u : double Error 0 . 1

This means that two values of the KPI within error margin of each other are
considered indistinguishable from the point of view of goal evaluation.
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2.1 Specification of Service Adaptations

Our approach relies on local information regarding each adaptation to assess how
these adaptations can be used to change system behavior. These adaptations in-
volve either changing service parameters or exchanging service implementations.
The impacts of each adaptation on the system behavior is specified against a set
of KPIs and a service model.

Service models describe the service components available for use in compo-
sitions and, for each component, the configurable parameters and available im-
plementations. We consider service models as defined in our previous work [9],
i.e., defined in terms of a type hierarchy reflecting the is a relationship, taking
into account the functionality provided by the services. Service types can be
concrete, designating a specific service for which an implementation is available,
or abstract, representing simply the characteristics of a group of other service
types. Below is the model for a concrete service that provides static webpages
with a configurable parameter ImgQlt that controls image quality (resolution):

Service Stat i cContent
Parameters

ImgQlt :{ low , r e gu l a r }

The service model is needed to support the specification of adaptations, which
must include: a) the concerned service or service component, b) the adaptation
action(s) to be performed, c) constraints such as the required service state or
other adaptations that have to be performed simultaneously, and d) the impact
of the adaptation on each KPI. If a KPI is omitted from the impacts, it means
that the KPI is not affected. The following example shows the specification of
an adaptation of the StaticContent service:

Adaptation ToLowStatic
Service :
S tat i cContent

Actions :
setParameter ( ImgQlt , low )

Requires :
ImgQlt = = regu l a r

Impacts :
S tat i cContent . cpu u /= 1 . 21 // de c r e a se s
S t a t i cCon t en t . r e s o l u t i o n = 1 // changes to low

This adaptation changes the image quality from regular to low, with the impact
being to decrease the CPU used by the service and the image resolution. The
effect of the adaptation on the KPIs is described by impact functions under
the label Impacts, which provides an estimate for the new value of s.KPI if the
adaptation is performed given its current value. Impacts can also be expressed in
terms of current values of the configurable parameters, the current version of a
service, or the presence or absence of a given service component. Even when not
explicitly stated, any adaptation is only applicable if the target service or service
component is present in the current service composition. We assume that meta-
information about the deployed and executing service compositions, as well as
the value of their parameters, is available at runtime. The problem of deriving
the impact functions for each adaptation is outside the scope of this paper, but
existing approaches can be applied [2].
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Additional adaptation constraints can be specified by listing which adapta-
tions of different services cannot be applied at the same time. By default, adap-
tations of the same service that have impact on the same KPI are assumed to
conflict, but it is possible to specify a single adaptation that considers several
actions provided the joint impact of these actions over the KPIs can be defined.
These conflicts are simply described as pairs of adaptations:

Conflict con f l i c t name Adaptations ( se rv i ceA.adapt1 , s e rv i c eB . adap t2 )

The complete specification therefore consists of the service model, the adapta-
tions, and the conflicts.

2.2 Policies

Adaptation goals are specified in terms of a policy that describes the desired
values for a set of KPIs. A policy describes: a) the KPIs that are relevant to the
policy, b) the goals to be met by the system, and c) the values of configuration
parameters related to the runtime operation of the adaptation engine. Besides
identifying the relevant KPIs, the policy can further use them to specify com-
posite KPIs, denoted by CKPIs. CKPIs are identified by a ckpi name and their
specification consists of a function of several KPIs, and an error margin:

CKPI ckpi name = f ( kpi1 , kpi2 , . . . ) Error e rror marg in

This function also makes it possible to derive the impact of each adaptation in
the CKPI from the impacts of the adaptations in kpi1, kpi2, etc. As an example,
the definition of the CKPI gdev below measures the weighted deviation from
target CPU and memory utilization values:

CKPI gdev = 0 . 5 ∗ | cpu u−0. 6 | + 0 .5 ∗ |mem u−0 . 4 | Error 0 . 1

Henceforth, we use KPI to refer to either a basic KPI or a CKPI.
A policy can have one or more goals that are ranked to prioritize goals in

situations where it is not possible to fulfill all goals. The rank is implicit in
the order goals are listed in the policy, where the first goal has the highest
rank. Additionally, there are two types of goals: exact and approximation goals.
Exact goals separate the values of a performance indicator in two disjoint sets:
acceptable and not acceptable. We consider the following types of exact goals:
Goal goal name : kpi name Above threshold down MinimumGain gvalue
Goal goal name : kpi name Below thre sho ld up MinimumGain gvalue
Goal goal name : kpi name Between thr down thr up MinimumGain gvalue

An Above goal states that the value of the KPI should be kept above the stated
threshold, a Below goal that the value should be kept below the threshold, and a
Between goal that the value should be kept within lower and upper thresholds. In
all three, the MinimumGain specifies the minimum change necessary to perform
the adaptation; that is, if the estimated change in the KPI value is below gvalue,
the adaptation is not worth performing. The gvalue should be greater than the
error margin specified for the target KPI.

In contrast, instead of simply classifying the values of a KPI as good or bad,
approximation goals specify a total order between these values, that is, for any
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two values, it specifies which one is better. We consider the following types of
approximation goals:
Goal goal name : kpi name Close t a rge t MinimumGain gvalue Every i n t e r v a l
Goal goal name : Minimize kpi name MinimumGain gvalue Every i n t e r v a l
Goal goal name : Maximize kpi name MinimumGain gvalue Every i n t e r v a l

A Close goal states that the KPI value should be kept as close as possible to
the target value, a Minimize goal states that the KPI value should be as small
as possible, and a Maximize goal states that it should be as large as possible.
As with exact goals, it is also possible to specify the expected minimum gain
required in order to perform an adaptation. Furthermore, associated with each
approximation goal, is a time interval that specifies how often the system should
try to find an adaptation aiming for a better value for the KPI. Note that while
adaptation towards an exact goal is only triggered when the current KPI value
is unacceptable, an approximation goal opens the possibility of continuously
attempting to improve the system behavior aiming for a better value.

Finally, a policy may also define the values of configuration parameters that
control the runtime operation. For example, mon interval, which controls how
often the KPIs’ current values are read, can be configured.

3 Rule Generation

Adaptation rules are generated offline from the policy using the specifications
of the available adaptations. Each rule consists of an event and one or more
alternative sets of adaptations Ai that may help achieve the specified goals when
a change in the execution context occurs. These rules are evaluated at runtime to
determine which set of adaptations should be executed given the current system
state. The rules have the following format:

When event
Select {A1 , A2 , . . . }

The When clause defines the event that triggers the rule. This may be caused
by a change signaled by a sporadic event—when some KPI exceeds a threshold,
for example—or by the passage of time signaled by a periodic event. The Select
clause lists all relevant sets of adaptations for dealing with that particular event.
For instance, if a goal states that some KPI must be maintained above a given
threshold, only those adaptations that affect this KPI and increase it are rele-
vant. The sets Ai represent the viable combinations of the relevant adaptations,
reflecting the fact that the combination of adaptations is subject to constraints
imposed by conflicts or application conditions. Naturally, given that rules are
generated offline, it is only possible to take into account the aspects that do not
require runtime state information.

Extracting the rule sets offline in this way has two main advantages. First,
it often simplifies the online phase and improves its performance as a result.
Second, by capturing the online behavior in a human-readable form, the system
operators can better understand the behavior of the system. This is especially
valuable in cases where the observed behavior is counter-intuitive to the (ex-
pected) impact of the high-level policy.
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3.1 Event Extraction

Event extraction is the first task of rule generation. This step relies on the as-
sumption that the component that monitors the system performance, the context
monitor, is able to generate different types of events divided into sporadic and
periodic events. The kpiAbove(kpi,x) and kpiBelow(kpi,x) events signal when
the value of kpi is detected to be above or below the value x, and needs to be
decreased or increased, respectively. Similarly, kpiIncrease(kpi,θ,condition) and
kpiDecrease(kpi,θ,condition) are periodic events generated every period θ, if the
condition over the current value of kpi holds, and signals that the value of kpi
needs to be increased or decreased, respectively.

As noted above, the high-level policy has two distinct types of goals. When an
exact goal is violated, system adaptation should be triggered. For approximation
goals, adaptations are triggered periodically, thus they require the use of periodic
events. Table 1 summarizes the types of events generated for each type of goal
and how these events are triggered.

Table 1. Events generated for each type of goal

Type Goal Event 1 Event 2 Trigger
Exact Above kpiBelow(kpi, x) - threshold exceeded
Exact Below kpiAbove(kpi, y) - threshold exceeded
Exact Between kpiBelow(kpi, x) kpiAbove(kpi, y) threshold exceeded
Approx Close kpiIncrease(kpi, θ, cond) kpiDecrease(kpi, θ, cond) periodic
Approx Maximize kpiIncrease(kpi, θ, cond) - periodic
Approx Minimize kpiDecrease(kpi, θ, cond) - periodic

The specific events that are extracted from a high-level policy depend on the
different values used in the goals and KPI declarations. Here, we explain how
the values in the event attributes are defined for each type of goal. Figure 1
provides examples of events for some goal types. For an Above goal, an event of
type kpiBelow needs to be triggered when the value of the KPI falls below the
specified threshold by a margin greater than the KPI error margin. Similarly,
for a Below goal, an event of type kpiAbove needs to be triggered when the
value of the KPI exceeds the specified threshold. Since Between goals are a

Goal cpu r e s e rve : cpu u Below 0 . 6 MinimumGain 0 . 2
Event kpiAbove ( cpu u , 0 . 7 ) // 0 . 6+0. 1

Goal t a rge t cpu : cpu u Between 0 . 4 0 . 6 MinimumGain 0 . 2
Event kpiBelow ( cpu u , 0 . 3 ) // 0 .4−0. 1
Event kpiAbove ( cpu u , 0 . 7 ) // 0 . 6+0. 1

Goal min im i z e dev i a t i on : Minimize gdev MinimumGain 0 . 2 Every 10
Event kp iDecrease ( gdev , 10 , t rue )

Goal t a rge t cpu : cpu u Close 0 . 5 MinimumGain 0 . 2 Every 20
Event kp iDecrease ( cpu u , 20 , ”>0 . 6 ”) // 0 . 5+0. 1
Event kp i In c r e a se ( cpu u , 20 , ”<0 . 4 ”) // 0 .5−0. 1

Fig. 1. Example events extracted from goals
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combination of the Above and Below goals, both previous events are needed. For
the Minimize/Maximize goals, a periodic event of type kpiDecrease/kpiIncrease,
respectively, needs to be triggered with the period specified in the goal. Finally,
for the Close goals, two distinct events are extracted, one for when the KPI
needs to be decreased and the other for when the KPI needs to be increased,
as illustrated in Figure 1. For each extracted event or periodic event, a rule
is created with the When clause stating the event as the trigger for the rule
evaluation.

3.2 Selecting Service Adaptations

The second task of offline rule generation is to identify the sets of adaptations
that need to be included in each rule. The purpose of a given rule is either to
increase or decrease the value of a given KPI. Thus, the impact functions declared
in the adaptation descriptions need to be analyzed to check if the adaptation
increases or decreases the value of the relevant KPI. Consider, for instance, a rule
of the form When kpiBelow(cpu u,0.3) Select ... where the aim is to increase
the value of the cpu u, and we have an adaptation X that applies to service
S with the impact function S.cpu u *= 1.8. To assess if adaptation X should
be used in the rule, one simply checks whether the function f(kpi)− kpi has a
positive derivative. In this example, since the derivative of 1.8 · x− x is 0.8, the
adaptation X helps to increase the CPU utilization. Hence, this adaptation will
be used in the construction of the sets of adaptations to be evaluated when the
event kpiBelow(cpu u,0.3) is triggered.

Once all adaptations that contribute to achieve the goal associated with the
trigger event are known, rule generation proceeds with the calculation of the
set of viable combinations, i.e., the sets of adaptations that can be executed at
the same time. When there are adaptations that apply to the same service or
conflicts between adaptations in the main set, it is necessary to break the main
set into several sets, where all adaptations in the same set are compatible, and
have all their requirements satisfied. To help the system operator understand
the behavior of the system, an intentional representation of the set of viable
combinations is used. As illustrated in the example below (in human readable
form), all adaptations that contribute to achieve the goal associated with the
trigger event are listed, together with the pairs of conflicting adaptations and
pairs of adaptations that need to be executed together.

When event
Adaptations : S1.A , S1.B , S2.X , S2.Y , S3.Z
Conflicts : ( S1.A , S2.X ) Dependencies : ( S2.Y , S3.Z )

4 Rule Evaluation

The rules that were generated offline are evaluated at runtime. The evaluation
of a rule When e Select {A1, ..., An} occurs whenever event e is triggered,
and consists of selecting a combination of adaptations from the subsets of Ai,
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for i = 1, ..., n. The selected set includes the adaptations to be applied to the
system and, hence, the aim of the selection process is to find the combination
that best satisfies the goals defined in the adaptation policy.

The process of rule generation ensures that each Ai includes only adapta-
tions that can be executed at the same time. However, these sets may include
adaptations that cannot be applied in the current configuration of the system.
This happens if the target service is not part of the current composition or if
the constraints expressed in the Requires section of the adaptation do not hold.
Hence, the evaluation of the rule starts by removing non-applicable adaptations
from every Ai. Then, rule evaluation proceeds by searching for combinations that
best match the goals expressed in the adaptation policy, taking into account the
current system state.

As mentioned above, the search space S is the set of all subsets of all Ai.
Intuitively, the search involves analyzing the estimated effects of the different
combinations on the KPIs addressed by the goals of the adaptation policy and
deducing which ones best fit these goals. More precisely, recall that adaptation
policies define a set of ranked goals {G1, ..., Gn}, where G1 is the goal with the
highest rank. The comparison between different combinations of adaptations re-
lies on their evaluation against these goals, starting from G1. The evaluation of
a combination against a goal Gi depends on the type of goal (exact or approx-
imation), with the impact functions of the involved adaptations being used to
estimate the effect on the KPIi associated with the goal.

Let KPICi be the estimated impact of a combination of adaptations C on
KPIi. (Note that if C is the empty set, then KPICi is just the current value of
KPIi.) C best matches {G1, ..., Gi} only if the following conditions hold:

1. if i > 1, C best matches {G1, ..., Gi−1}
2. if Gi is an exact goal:

– if Gi is currently satisfied: KPICi also satisfies Gi;
– if Gi is currently violated: there is a gain w.r.t. the current value of KPIi

and it exceeds the specified minimum gain;
3. if Gi is an approximation goal:

– |KPIC
i −KPIC∗

i | < error marginkpi and, if C is not the empty set, the
gain w.r.t. the current value of KPIi exceeds the specified minimum gain;

where C∗ is, among the combinations in S that best match {G1, ..., Gi−1},
the one that puts the KPIi closer to the target specified in Gi.

For instance, consider the exact goal cpu reserve and assume that the current
cpu u value is 0.75 (the goal is currently violated). A combination with a single
adaptation whose estimated effect brings cpu u to 0.9 is excluded because it
violates the goal. A combination with a single adaptation whose estimated effect
brings cpu u to 0.65 is also excluded because it does not meet the specified
minimum gain. Two combinations with a single adaptation whose estimated
effects bring cpu u to 0.50 and 0.55, respectively, are both candidates for being
selected. Thus, the next ranked goal would be used to tie-break among them.
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5 Evaluation

To evaluate the proposed approach, we conducted a study to analyze how suc-
cessfully the rules generated offline drive the runtime adaptation, given changes
that carry the system outside the desirable or acceptable behavior defined in the
goals. To do so, we implemented a prototype of the framework in JavaTM , and
developed an experiment that illustrates the use of the proposed approach for
the autonomic management of web-based applications.

5.1 Services, Adaptations and Policy

The case study consists of a web site that offers both secure and non-secure
content; part of this content is static, and another part is dynamically generated.
The content is produced by several services that are adaptable, which allows the
quality of any provided content to be controlled.

Three services provide content: StaticContent, DynContent, and SecureCon-
tent. The first, StaticContent, provides the static content web pages that are
not secure. The service can operate on regular or low mode; in low mode it
offers lower image quality as well as de-animated GIFs. Thus, it is possible to
have two adaptations of the StaticContent service: from regular to low quality
and vice-versa. The first adaptation reduces resource consumption, while the
second increases the quality of service. The second service, DynContent, gen-
erates user-tailored non-secure webpages. The service also features regular and
low versions similar to StaticContent, which are implemented by adding, remov-
ing, or changing HTML tags using the approach described in [10]. Furthermore,
two implementations of the DynContent service can be used: a heavyweight im-
plementation that determines new recommendations and advertisements for a
user on the fly, and a lightweight implementation that uses cached recommenda-
tions and advertisements [11]. Finally, the third service, SecureContent, handles
webpages that deal with account login or sensitive data, such as order payment
information; it also generates regular and low versions in terms of image quality
and animated GIFs. The service specification is presented below. Space limita-
tions prevent us from describing the entire set of services adaptations (which
is presented in [12]), that includes the adaptation ToLowStatic introduced in
Section 2.

Abstract Service DynContent
Parameters

ImgGIFFilter :{ on , o f f }

Service LWDynContent
subtype DynContent

Service HWDynContent
subtype DynContent

Service Stat i cContent
Parameters

ImgQlt :{ low , r e gu l a r }

Service SecureContent
Parameters

Mode :{ low , r e gu l a r }

In our case study we used three KPIs. The monitored system resource is the
consumed CPU (cpu u); recent research has shown this to be the main bottleneck
for this type of application [13]. The quality of service provided to the user is
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captured by two synthetic metrics, the resolution of the images returned to the
user (resolution), and the accuracy of the recommendations included in the web
pages (harvest). We have also considered a CKPI qos, defined as the composition
of both the resolution and the harvest of the pages returned to the user as follows:

KPI cpu u : double Error 0 . 1
KPI r e s o l u t i o n : i n t e g e r Error 0
KPI harvest : i n t e g e r Error 0
CKPI qos = (2∗ r e s o l u t i o n + harvest ) Error 0

Using these KPIs, we defined the simple policy presented below that aims to
provide users the best quality of service possible without exceeding a pre-defined
threshold of CPU utilization. This policy is broadly similar to policies that have
been used in related work, including policies to achieve optimal resource use for
webservers [2,14], intermediary adaptation systems [10,15,16], and web server
and user experience improvement [13]. The policy describes two goals. The first
limits the value cpu u to a pre-defined threshold of 0.6. This limitation is imposed
to maintain an available CPU margin to deal with workload peaks. The focus of
the second goal is to maximize the quality of the content provided to the user,
ensuring that when resources are available, the best image quality, animated
GIFs, and up-to-date recommendations are returned. The policy additionally
specifies that the monitoring interval is 1 second.
Goal l im i t cpu : cpu u Below 0 . 6 MinimumGain 0 . 15
Goal max qos : Maximize qos MinimumGain 1 Every 60
Configuration mon inte rva l 1

From this policy, event extraction and rule generation was performed offline. The
extracted events are presented in Table 2. The rules, in their human readable
form, are as follows:
When kpiAbove ( cpu u , 0 . 7 )

Select {ToLowStatic , ActivateImgGIFFilter ,ToLW+FilterOn ,ToLW+Fi l t e rO f f ,
ToLW+MaintainOn ,ToLW+MaintainOff , ToLowModeSecure}

When kp i In c r e a s e ( qos , 60 , t rue )
Select {ToRegularStat ic , DeActivateImgGIFFilter ,ToHW+FilterOn ,ToHW+

Fi l t e rO f f ,ToHW+MaintainOn ,ToHW+MaintainOff , ToRegularModeSecure}

5.2 Experimental Setup

The prototype implementation consists of the overall framework, several static
webpages (StaticContent), and the web site’s dynamic generation components
(DynamicContent and SecureContent). Each component is an adaptable CGI
that offers two distinct behaviors that trade off the quality of service provided
to the user with the resources used, primarily CPU usage. Apache web server [17]
running on Linux is used to execute requests. To monitor the execution context,
i.e., CPU usage, a simple monitoring tool was implemented in Python and inte-
grated with the framework prototype. The monitoring tool can be configured in
terms of the interval between reads and the stabilization time after adapting.

To analyze how the policy drives changes in the quality of service when the
resource consumption varies, we generated several workloads to force different
adaptations. In periods when the load is high, then, the system will adapt one
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Table 2. Events generated for the case study

Type Goal Event 1 Trigger

Exact limit cpu kpiAbove(cpu u, 0.6 + 0.1) cpu u> 0.7
Approx max qos kpiIncrease(qos, 60, true) periodic

or more components to provide a lower quality of service, to keep CPU usage
below the given threshold. After adapting, the KPIs readings are ignored until
the end of a stabilization period.

The experimental testbed consists in three machines. One machine runs the
Apache Web Server as well as the services, while the other two machines run a
workload generator. The three machines are connected by a 100 Mbps Ethernet.
The server machine is a 8 x 3.22 GHz processor with 8 GB RAM running Linux
(kernel v2.6.24-21). We used Apache HTTP Server v2.2.8 configured with 150
MaxClients and a KeepAliveTimeout of 15 seconds, with CGI and SSL modules
enabled. The client machines run Pylot [18], an open source tool for testing
performance and scalability of web services based on an XML file that describes
the workload. We modified the original Pylot tool to run several workloads in
sequence, each for a period of time, thus, varying the workload.

The services in our case study are implemented as follows. First, the Static-
Content service is implemented using several HMTL pages containing text and
images with different sizes (from 5 to 500 KB), each one with a low and a regular
version. Second, the DynContent service is implemented as a CGI that gener-
ates the HTML pages on the fly according to parameters passed in the HTTP
request. The generated pages include images and text, again with two different
implementations of the service. Finally, the SecureContent service consists of
dynamically generated pages requested over HTTPS, with text and media.

In terms of adaptations, the change between different versions in the Stat-
icContent service is achieved using file system links. The HTTP request will
request a HTML file. If the low version is in use, the link will point to the low
version. When the adaptation sets ImgQlt to regular, the link is redirected to the
regular version. The same approach is used when the other remaining parameters
are set, and, also, to exchange implementations of DynContent service.

The three different workloads used are determined by the type and frequency
of requests, for each of the three services described above. The light workload
allows all services to be offered with maximum qos. The medium workload re-
quires the qos to be lowered in order to respect the cpu u threshold. Finally, the
heavy workload requires the system to operate with an even lower qos.

As defined in the policy, the consumed CPU is monitored every second. Due
to the variability of the workload, a change is only signaled if it is observed for
at least 10 out of 15 consecutive samples.

5.3 Results

Services were initially deployed with a configuration that yields the best quality
of service: static web pages and secure content are served with regular quality,
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while dynamic content is deployed using the heavyweight version and with the
content filter off. Then, we subject the system to a varying workload.

The workload consists of a collection of urls that are requested by each client.
The order of this list is randomized for each client to ensure that the sequences
will differ. Each client waits for a response before sending another request; this
interval is 10 milliseconds. Our experiment used 100 clients that run concur-
rently. The client rampup takes 25 seconds, therefore, 4 clients are launched
every second. The clients start sending requests as soon as they start. The work-
load is changed between three different levels: light (LW), medium (MW), and
heavy workload (HW) characterized as follows:

LW: 60% of requests for static content, 30% for dynamic content, and 10%
for secure content. This workload is not enough to violate any of the KPI
constraints. The experiment starts and finishes with this workload.

MW: 35% of requests for static content, 55% for dynamic content, and 10%
for secure content. This workload violates the CPU threshold defined by the
first goal, thus, triggering an adaptation to decrease CPU use.

HW: 20% of requests for static content, 30% for dynamic content, and 50%
for secure content. With this workload it is impossible to satisfy the CPU
threshold without a substantial decrease in CPU use, forcing an adaptation
with greater impact.

Figures 2 and 3 depict the described scenario under varying workloads. Each
dotted vertical line marks a change in the workload. We begin with LW, chang-
ing to MW around time 134, then to HW at around time 405, and finally switch
back to LW around time 740. The impact of the workload change on the CPU
usage may be delayed, depending of the request distribution. Between each work-
load change, there’s the current service composition and configuration. The solid
vertical lines mark when adaptations take place. After each adaptation, the mon-
itoring device ignores the readings during a stabilization period to allow ongoing
requests to be processed until they are completed by the original components.

Figure 2 depicts the evolution of the KPI values during system execution.
After changing the workload from LW to MW, the system detects that the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 500

CPU

Resolution

Harvest

Configuration:
Static: regular
HWDyn: off

Secure: regular

Configuration:
Static: regular

LWDyn: off
Secure: regular

Configuration:
Static: regular

LWDyn: off
Secure: low

Configuration:
Static: regular
HWDyn: off

Secure: regular

1

2

3

4

Time (seconds)

C
P
U

Fig. 2. Evolution of the KPIs of the system in the described scenario



606 L. Rosa et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.5

1

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 500

Time (seconds)

C
P
U

Static

Dynamic

Secure

Configuration:

Static: regular
HWDyn: off

Secure: regular

Configuration:

Static: regular
LWDyn: off

Secure: regular

Configuration:

Static: regular
LWDyn: off
Secure: low

Configuration:

Static: regular
HWDyn: off

Secure: regular

Fig. 3. CPU consumed by each service

CPU use is above the CPU limit plus the error margin (0.7), thus, it selects
an adaptation that decreases the harvest KPI. Later, the workload is switched
to HW, forcing an adaptation that lowers the resolution KPI to decrease the
CPU use; note that this adaptation requires longer to take effect. Finally, the
workload is changed back to LW and another adaptation takes place, increasing
both the resolution and harvest KPIs. This increases the quality of service to a
maximum, as in the beginning.

Figure 3 shows the contribution of each service to the global CPU utilization
for the same scenario, allowing us to assess the impact of each adaptation. As a
result of the first workload change, the system adapts around time 204 by chang-
ing the dynamic content implementation. This adaptation is selected because it
lowers the CPU use to below the limit and also offers the highest qos CKPI
value. This follows since it only decreases harvest, which has a lower weight in
the qos CKPI. When the second workload change takes place, the system adapts
around time 542 by changing the secure content from regular mode to low. This
adaptation is selected because the CPU usage by secure content is clearly higher
than the others, giving this adaptation a greater impact that the total of the
others with a higher qos value. Finally, when the workload goes back to LW, the
system adapts to its initial configuration with highest qos ; this occurs at around
813 seconds and is triggered by a periodic event. These results demonstrate that
the system adapts as expected given the characteristics of the workload and the
performance of the deployed components, always offering the highest possible
qos.

6 Conclusions and Future Work

This paper proposes a novel approach to managing adaptive behavior in cus-
tomizable software systems. This approach uses information provided by each
service designer about the impact of possible adaptations on the system KPIs
to perform the automatic offline generation of a set of rules corresponding to a
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policy that describes the intended system behavior for those KPIs. These rules
are then evaluated online to implement the adaptive behavior. Experimental re-
sults show that this approach is feasible and has a number of advantages. For
example, each service configuration can be measured independently a single time
to quantify the impact of adaptation, and still work for different configurations
or workloads. The approach is also able to balance the trade-offs due to different
goals when choosing an adaptation. Finally, as shown by experimental results,
the approach considers not only how far the current state is from the optimal
state—and, as a result, how large the impact has to be—but also uses the load
of each service to realistically estimate the impact of an adaptation.

As future work, we plan to broaden application of the approach. Currently,
for instance, we do not explicitly consider dependencies among services, so that
when such dependencies exist, each adaptation must be applied separately. We
plan to extend our model to consider such constraints.
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Abstract. This paper develops a framework forwireless security that pro-
vides confidentiality, identity authentication, message authentication, in-
tegrity, sender non-repudiation, receiver non-repudiation and anonymity.
Our framework is based on two physical primitives: collaborative jamming
and spatial signature enforcement. Notably, it eschews the use of shared
secrets, while providing a cryptosystem that is no less secure than conven-
tional cryptosystems.

1 Introduction

Wireless security design has typically been based on cryptosystems and proto-
cols used in wired networks. As such, the use of shared secrets as a cryptographic
basis is the norm today in wireless security[3]. Nevertheless, wireless networks
differ from their wired counterparts in a number of ways: they rely on a broad-
cast medium, often have higher densities of deployment, and —especially in the
context of sensor and mobile networks— have severe resource limitations. As a
result, they face a substantially more severe problem of secret management [7].

Towards reducing security management overhead, there has been academic in-
terest in recent years in shared-secret-free security in wireless communications.
Building on Wyner’s seminal result [12] on the possibility of secure communica-
tion when the eavesdropper’s channel is degraded with respect to the legitimate
receiver’s channel, diverse analyses have been performed for the capacity of con-
fidential unicast: some model exploit feedback on receiver/channel state [5][11],
some exploit the ability of the receiver to selectively jam the transmitter at se-
cretly chosen times, some exploit multipath [10], and others exploit power level
selection. Although the focus thus far largely been on theory, we recently took
a first step in the development of codes for confidential communications at the
physical layer [1], using the physical primitive of collaborative jamming.

In addition to this primitive for message confidentiality, recent work has also
considered message authentication without the use of shared secrets [8][2][6].
In [8], we proposed the concept of the “spatial signature” of a node, which is
a physical characterization of the signal that the node induces at each of its
neighbors. We also designed a lightweight and robust primitive that validates
the spatial signature of messages at run-time, and illustrated the use of the
primitive for achieving message authentication without shared secrets.

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 609–623, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Given these physical primitives for shared-secret free secure communications,
we focus on the following question in this paper: “Do physical primitives suf-
fice to develop shared-secret free protocols for conventional security properties?”
We show for the first time that a wide variety of security services are possible
without any shared secrets and with only a small basis of physical primitives.
Specifically, we design a wireless security framework that encompasses confiden-
tiality, authentication, integrity, non-repudiation and anonymity, not only for
single-hop and end-to-end communications, but unicast and broadcast contexts
as well.

The implications of reducing or eliminating shared-secrets for achieving se-
cure communications are manifold: (i) the key management overhead is greatly
reduced (if not eliminated) when there is no shared secret at all; (ii) shared-
secret-free physical layer security can be seen as a way of increasing the security
level of wireless networks wherein, say for reasons of resource limitation, a highly
secure protocol cannot be implemented at higher layers; (iii) it can be used as
a building block in efficiently bootstrapping the security parameters and config-
uration data required by higher layer protocols and applications; bootstrapping
is widely regarded as being a hard and important problem for deeply embedded
and potentially large scale wireless networks; (iv) finally, it is conceivable that
in some application scenarios that it is possible to completely eschew the use of
shared-secret based cryptosystems.

The rest of this paper is organized as follows. We review physical primitives for
cooperative jamming and spatial signature enforcement in Section 2. In Section
3, we develop a rich suite of security protocols based on these physical primitives.
We make concluding remarks as well as discuss future work in Section 4.

Table 1. Notation

j, k, l, e nodes in the system
S domain of private messages
X domain of messages sent by j

Y domain of messages received by k

Z domain of messages overheard by e

Γ domain of random time sequences
j 〈 k j shouts out a message, received by k

j 〈∼γ k j shouts out a message,
selectively jammed by k with random jamming sequence γ

Nj the neighboring nodes of j

Tj the trusted base of j

j 〈| k j shouts out a message designated to k,
authenticated by Tj via physical primitive

f , φ coding functions s.t. φ(y, γ) ≡ s
where s is a private message that j wishes to deliver,
f(s) sent by j is selectively jammed by k with jamming sequence γ,
and y is the message k receives
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2 Two Physical Primitives

In this section, we briefly review two physical primitives with which we will build
security protocols. Table 1 contains the notations that we will use in the rest of
the paper to abbreviate these primitives and other protocol concepts.

2.1 Cooperative Jamming

In [1], we proposed a cooperative jamming primitive that enables design of per-
fectly secure message communication. By perfectly secure, we mean that an
eavesdropper cannot decode the message any better than it would by random
guessing, even if it completely knew the coding and decoding schemes used for
communication. We also introduced the following secure coding problem.

Given an arbitrary message s, s ∈ S, which node j wishes to send privately
to node k, and an arbitrary time sequence γ, γ ∈ Γ , which node k applies to
cooperatively jam while j is sending. Design coding functions f and φ for j 〈∼γ

k: x such that

1. x = f(s), where x ∈ X
2. φ(y, γ) = s, where y ∈ Y
3. Pr(s) = Pr(s|z), where z ∈ Z

Note that the third requirement directly implies:

Lemma 1. Any solution to the secure coding problem ensures perfect secrecy of
message communication from j to k.

Our solution to the secure coding problem is called “dialog codes”. These codes
are derived from the following basic strategy: Each source bit is augmented
with a redundant bit; the receiver randomly jams either bit in a pair. Since the
eavesdropper does not know which bit is jammed or what the output would be,
he cannot recover the jammed bit or decode the message correctly.

Let us illustrate the basic idea behind the jamming primitive in terms of the
well-known “flipping model” in which a source bit gets flipped upon jamming.
A simple mechanism then would be as follows. Let each bit in s be represented
by two bits,

x2i−1 x2i =
{

0 0 if si = 0
1 1 if si = 1 (1)

Hence the signal transmitted from j is a stream of pairs, with values 00 or 11.
k’s cooperative jamming strategy is to jam either position of each pair, and to
recover the input simply by looking at the remaining bit within each pair. Since
the bit corruption resulting from jamming is deterministic (i.e., value flipping)
as a result of the definition of the channel model, what the eavesdropper sees
would always be either 01 or 10, which is equally likely the result of jamming
either 11 or 00. So the probability for the eavesdropper to make a correct guess
for each pair is 1

2 . Therefore, the eavesdropper’s chance of correctly guessing s
is 1

2m , where m is the number of bits in s, and that gives us perfect secrecy.
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By way of an example, this time letting s = 1101, s would be encoded as
11 11 00 11 by j. If k were to corrupt the first bit in each pair, then the eaves-
dropper would receive the corrupted value 01 01 10 01 and ?1 ?1 ?0 ?1 would
be received at k. k can certainly recover s simply by looking at the second bit
within each pair, however, the eavesdropper has no way of knowing that whether
“01” is produced by “0” or “1”.

In [1], we provided an extended class of dialog codes for diverse channel mod-
els and receiver models. We also implemented a prototype and validated the
algorithms on both CC2420 (IEEE 802.15.4) and CC1000 platforms.

2.2 Spatial Signature Enforcement

In [8], we proposed the concept of a node’s “spatial signature”, which is a phys-
ical characterization of the signal that the node induces at each of its neighbors.
We showed experimentally that a spatial signature of nodes based on physi-
cal features such as Received Signal Strength Indicator (RSSI) is unique, with
high probability, in multiple radio platforms and in diverse network topologies
that range from rather sparse to very dense. We also designed a lightweight
and robust primitive that validates and enforces the use of spatial signature in
authenticating messages at run-time.

The basic idea of this primitive lies in the following proposition: if nodes
are in a K-dimension space, K + 1 neighbors in general (i.e., non-degenerate)
position suffice for defining a unique spatial signature for nodes. The geometric
argument underlying this proposition is straightforward, and is in essence that
of ranging-based device positioning.

We illustrate the idea with an example in 2 −D space. If a node i has only
one neighbor j, then an adversary A located anywhere on the circle of radius
distij centered at j can convince j that A is i. If i has two neighbors, j and k, as
shown in Figure 1(a), A can convince both j and k that it is i by being located
at point A. But in Figure 1(b), where i has three non-collinear neighbors j, k,
and l, there exists no location at which A could be confused with i. By the same
token, i cannot hide its identity from its signature basis (i.e., all of j, k, and l)
when it sends a message. Thus, three (which is K +1 in this example) neighbors
in a general position suffice for defining a unique spatial signature.

i

A

j k
.

..

.

(a) Adversary at A
cannot be distinguished
from i by j and k

i

j k
.

.. .l

.
A

(b) Adversary cannot
imitate i without being
detected by j, or k, or l

Fig. 1. Example of minimum density required for uniqueness
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Based on the spatial signature primitive, we presented a simple cooperative
protocol for message authentication that exploits the broadcast nature of wireless
communications: any receiver in the signature basis of a node complains if a
sender claims the identity of the node but the signature does not match locally.
In other words, a message is authenticated if no node in the signature basis of
the node complains. This idea has been validated in some other works too [2][6].
We use j 〈| k to denote the use of spatial signatures to enforce reception of a
message sent by j to k. The cooperative protocol has the following properties:

Lemma 2. Liveness: if j 〈| k: x, x is delivered at k.

Lemma 3. Safety: if x is delivered at k as a result of k’s role in protocol j 〈| k:
x, x must have been sent by j.

3 Security Protocol Suite Based on Physical Primitives

We now build upon the primitives described above to describe and validate a
diverse set of security protocols, including protocols for confidentiality, iden-
tity authentication, message authentication, integrity, sender non-repudiation,
receiver non-repudiation and anonymity. We consider communications in a wire-
less network of the following sorts:
– one-hop unicast and broadcast
– end-to-end unicast and broadcast

3.1 System Model

The system consists of a wireless network of static, and potentially resource-
constrained, nodes. Let j and k be two legitimate nodes in the system; legitimate
nodes, unlike adversarial nodes, are trusted to execute their protocols correctly.
And let Tj and Tk be the respective “trusted bases” of j and k; the trusted
base of a legitimate node consists of at least c legitimate nodes in its one-hop
neighborhood, for some strictly positive constant number c (c is typically two or
three). It follows that the system has nontrivial density in the neighborhood of
each node.

We assume the following system properties:

– When some node impersonates j in a communication with k, any trusted
base node of j complaining of a signature failure communicates the complaint
to j.

– j can discover the trusted base of k, if k is in its one-hop neighborhood.

3.2 Threat Model

The adversary in this wireless setting has, in the spirit of Dolev-Yao, the capa-
bility to: (1) eavesdrop on messages in its reception range; (2) block messages
sent within its interference neighborhood; (3) replay older messages, possibly
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modifying the payload; and (4) inject arbitrary messages to nodes. The adver-
sary may physically operate via devices other than the legitimate nodes or it
may operate via nodes that it compromises. If a node is compromised, its state
becomes known to the adversary. Compromised nodes may collude with other
compromised nodes within their communication range to launch attacks.

Note that we are not in the position of dealing with communication disruption
that results in more message loss, e.g., malicious jamming. (This problem is
common to all wireless applications, and may be compensated by retransmission
or routing around jammed regions.) Instead, we are interested in whether the
proposed protocols are secure in the sense that the system satisfies its security
properties despite the adversary, and the adversary is not able to convince the
system to launch malicious or denial-of-service actions.

3.3 Confidentiality

One-hop Unicast. There are numerous contexts of message communciation
where one or both the sender and the receiver demand privacy: a sender commu-
nicating an “alarm” communication and a receiver receiving a ”query response”
may each require privacy regardless of whether the other party requires privacy
or not. Now, confidentiality in this one-hop setting is readily achievable via the
cooperative jamming primitive, assuming the receiver faithfully performs its co-
operative role. If the receiver does not cooperate, the sender’s message would be
sent in the clear.

A step towards ensuring that the receiver cooperates is to coordinate with
it before a transmission. Our protocol for one hop secure unicast, denoted by
UniSec(j → k), is formally stated below.

UniSec(j → k): s

j 〈| k : h e l l o
k 〈| j : h e l l o a c k
j 〈∼γ k : f(s)

In this protocol, j initiates by sending k an authenticated “hello” message.
After receiving “hello”, k knows that j intends to send a private message. If k
does not want to proceed, it can simply ignore the “hello” message; otherwise, it
acknowledges with an authenticated “hello ack” message, confirming to j that k
is in sync to jam j’s transmission. Note that the message authentication itself is
achieved by using the spatial signature enforcement primitive for authenticating
the principals.

After j receives the “hello ack” from k, it encodes s with the coding function
f , and sends f(s) in the clear immediately. In sync, k jams with a random
sequence γ that is (ideally) known only to itself, it can then decode the remaining
information it receives to recover s via φ and γ, as described in the secure coding
approach above. The proof sketch for this protocol can be found in [9].
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Two-way (Two-Hop) Unicast. We develop next an extension of the previous
protocol for the special case where cooperative jamming is used by two senders,
as opposed to a sender-receiver pair. The extension allows two nodes to exchange
information concurrently, without either communication being revealed to other
nodes.

Two-Way UniSec

Message exchange step :
l 〈| j, k : ready to he lp

j 〈 l : sj

| |
k 〈 l : sk

l 〈 j, k : sj � sk

In Figure 3, l servers as an intermediate router for the exchange between j and
k. We directly apply the cooperative jamming primitive in a symmetric form as
follows: j and k transmit roughly at the same time. l shouts back the raw signal
which is a combination of j’s signal and k’s signal. If the wireless channel follows
the “addition” model, both j and k can decode the message because they know
what they have sent. The router l simulates a full-duplex transceiver at both j
and k; that is, if j and k were full-duplex transceivers as opposed to half-duplex,
they could perform the exchange themselves and l would not be necessary. In
theory, j and k can simply subtract the signal they have sent from the signal
they hear from the router, and decode the message if the channel is additive [4].
In practice, the development of coding scheme is however more complicated, and
beyond the scope of this paper. Note that this extension may by attacked by
allowing l to send a bogus signal instead of what it heard. This attack is dealt
with by adding a checksum/hash value at the end of the message. Since l has no
way of knowing the value of sj and sk, it is hard for l to make up a legitimate
message that passes the checksum validation.

End-to-end Unicast. A key requirement of confidentiality for an end-to-end
unicast is that nodes in the middle of the network that forward a message should
not themselves be aware of the content of the message.

In traditional shared-key security, this is easily achieved if the message is
encrypted with an end-to-end shared secret (notwithstanding the difficulty of
initializing the end-to-end secret). Unfortunately, with the physical primitives
described above, it is difficult not to reveal the message to nodes in the middle.
Any node that helps to hide the communication via cooperative jamming is able
to decode the message if it knows the jamming time sequence. Even if nodes
on the path between two parties of interest can be trusted, this approach still
violates the requirement for end-to-end confidentiality.

A standard idea is to split the message s into multiple pieces, and to send all
pieces separately along node disjoint paths. As long as intermediate nodes from
all the paths do not collude, s is safe.
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Our protocol for end-to-end secure unicast is formally stated below.

e2eUniSec(j → k): s

s = (s1, s2, · · · , sn)
∀i, 1 ≤ i ≤ n ,
{
UniSec(j → l1i ) : f(si)
UniSec(l1i → l2i ) : f(si)
· · ·
UniSec(lmi−1

i → lmi
i ) : f(si)

UniSec(lmi
i → k) : f(si)

}

A message s is first divided into n pieces assuming that there are at least
n node disjoint paths between j and k, as shown in Figure 2. Let lti (t =
1, 2, · · · ,mt) be the nodes on path i between j and k. j first securely trans-
mits si to l1i via the UniSec(j → l1i ) protocol. l1i then forwards si to its next
forwarder along the path to k securely. In the end, lmi

i forwards si to k. The same
procedure is followed on all n paths in parallel (for pedagogical reasons, we omit
discussion of the scheduling necessary to deal with potential self-interference in
this process). As long as the adversary does not compromise n or more nodes,
with at least one each from a distinct path, the message s is safe.

One-hop Broadcast. Recall that in the cooperative jamming primitive, only
those nodes that know the jamming sequence can decode the message from the
residual information. In essence, the jamming primitive is designed for unicast
communication, as only the node that helps to jam knows the sequence that
it has applied. In order to send a packet to all the neighboring nodes securely,
a straightforward approach is to send the packet to each neighboring node in
sequence, but the communication overhead would be high. We may optimize
this approach by letting all potential receivers share a jamming sequence, which

j k
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Fig. 2. End-to-end unicast confidentiality via multiple paths

j kl
Fig. 3. End-to-end unicast confidentiality for line topology
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introduces a one-time cost in the initialization. All subsequent jamming sequence
can be derived from the knowledge of the previous jamming sequence and the
received message.

Our one-hop secure broadcast protocol is formally stated below.
A node j initializes the jamming sequence with nodes in its neighborhood,

informing every node in Nj to use γj,0 as the initial jamming sequence. When
a broadcast is initiated from j, it chooses one node k in Nj to help hide the
first message s1. Since k jams with γj,0, which is known to all other nodes in
Nj , every node in Nj can decode f(s1) to obtain s1, while nodes not in Nj

can not discover s1 without the knowledge of γj,0. In all following messages,
the new jamming sequence is generated by a one way function on the previous
jamming sequence. For initialization, the system can either perform this step for
all the senders at the very beginning or lazily in the sense that this step can be
performed only upon request. We relegate the proof to [9]. Frequent update of
the jamming sequence increases the level of difficulty for the adversary to break
the secure broadcast.

BrdSec(j 〈 Nj): s

I n i t i a l i z e the jamming sequence ( one−time cos t ) :
∀k ∈ Nj , {UniSec(j → k) : (γj,0, brd)}

F i r s t broadcast :
j 〈∼γj,1 k : f(s1)

Second broadcast :
j 〈∼γj,2 k : f(s2)

· · ·
mth broadcast :

j 〈∼γj,m k : f(sm)
· · ·
where γj,1 = γj,0 , γj,2 = H1(γj,1) , and γj,m = Hm−1(γj,m−1)

Secure Flood. Flooding is a common service in many applications. We realize
secure flooding by extending the UniSec and BrdSec protocols, for two cases.

Case 0: the network has no structure. If the underlying network does not
provide any structure, we can simply adopt a typical flood service such as a
naive flood, gossip, etc. The main difference is that the old broadcast is replaced
by our BrdSec protocol. A duplicate suppressing mechanism may be used to
reduce overhead.

Case 1: the network is partitioned into groups, each having a leader
node. This approach exploits a tree structuring of the system, to reduce com-
munication overhead. specifically, we use a tree that spans all the group leaders,
and subtrees by which each group leader spans its group. The secure flood in-
volves using a secure one-hop broadcast within each group and a secure one-hop
unicast on the leader tree. This protocol is stated below.
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Secure flood(j)

UniSec(j → Lj) : s
UniSec(Lj → NLLj ) : s
BrdSec(Li 〈 NLi) : s

First, the source node j sends a packet securely to its group leader Lj , then Lj

forwards the packet securely to its neighboring leaders NLLj and so forth. After
that, each leader Li securely broadcasts the message to all nodes in its respective
group. As in other flood protocols, a duplicate suppressing mechanism may be
used to minimize unnecessary retransmissions.

3.4 Authentication

One-hop Unicast and Broadcast. For authentication in a one-hop setting,
there is not much difference between the case of unicast and that of broadcast
when using the spatial signature primitive, because a node is authenticated by
another node as long as it is authenticated by all of its trusted neighbors. Identity
authentication and message authentication are also quite similar in this setting.

One-hop authentication is achieved by the physical primitive alone. If s is in-
deed sent by j, no one in the neighborhood of j would complain by the definition
of spatial signature enforcement, thus s can be authenticated.

One hop message authentication

j 〈| k : s

In identity authentication, node j claims that it is j, and this is validated by
its trusted neighbors. If it is the very node that he claims, no one in Nj would
complain, and its identity is authenticated.

Identity authentication

j 〈| k : (j, s)

End-to-end Unicast and Broadcast. For authentication in an end-to-end
setting, similarly, there is not much difference for unicast and broadcast. To
solve the end-to-end authentication problem, we assume, as is common in many
network applications, that trust is transitive in the sense that if a trusts b and
b trusts c, then a trusts c. The basic idea is that if in a hop-by-hop fashion
each receiver trusts the preceding sender that forwards the message, then the
intended destination can authenticate the message.

Letting l be a node between j and k, the protocol for end-to-end message
authentication is formally stated below.
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End-to-end authentication

j 〈| l : (j, s)
l 〈| k : (l, (j, s))

j informs l that it intends to send a message s along with its identity j. l au-
thenticates this message and j’s identity as well, and then forwards this message
with its own identity (l) to k. If k authenticates l, by the transitivity property,
k can authenticate that s is from j. Note that the same protocol applies to cases
where there are multiple intermediate nodes along the path from j to k.

Authentication via Certificates. This protocol allows two nodes to mutually
authenticate each other, even if they are new to each other in the system. The
protocol uses a version of certificate exchange, so that the two can learn each
other’s signature base. Specifically, their one-hop neighbors serve as the certifi-
cation authority (CA). As long as they have common neighbors in their trusted
bases, they can enforce trust in each other through their common neighbors.

Our certificate-based authentication protocol is formally stated as follows.

Authentication via certificates

j 〈| k : Tj

k 〈| j : Tk ∩ Tj

In this protocol, j shouts out its trusted base, Tj, which is verified by the
nodes in Tj. k now knows Tj. k replies with the common nodes in both its and
j’s trusted bases, which in turn is verified by Tk. Although j and k do not know
each other a priori, as long as Tk ∩ Tj is not null, they can derive trust in each
other according to the transitivity of trust. A proof sketch is provided in [9].

3.5 Integrity and Non-repudiation

For our purpose, there is not much difference between integrity, sender non-
repudiation and authentication, especially in the one-hop case. For end-to-end
integrity and sender non-repudiation, the receiver may send back a traversal that
checks whether the message has in fact been sent by the sender, by checking the
sender’s immediate neighbors’ reception history.

Our protocol for message integrity and sender non-repudiation is stated below.

One hop sender non-repudiation

j 〈| k : (j, s)

k itself can verify (j, s), and j can not lie that it has sent s because nodes in
Nj have seen an authenticated message (j, s), by the definition of the 〈| operator.
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End-to-end sender non-repudiation

j 〈| l : (j, s)
l 〈| k : (l, (j, s))
k 〈| l : v e r i f y (j, s)

In the end-to-end case, k checks back with j’s immediate neighbor l to verify
that j has sent s. This provides sender non-repudiation. In both the one-hop and
the end-to-end case, we may attach a fingerprint, computed by a well-known hash
function, to the message, to enhance the its integrity.

For receiver non-repudiation, we need to ensure that the receiver indeed ob-
tains the message. We achieve this by requiring an acknowledgement, which
allows the reception to be verified.

The protocol is formally stated below.

One hop receiver non-repudiation

j 〈 k : s
k 〈| j : ACK(s)

Note that here we only need receiver non-repudiation, therefore, we do not
need to authenticate the message sent by j. To check that the receiver k has in
fact received the message, j establishes that it has one or more ACKs for the
query in its history. Note that ACK(s) are authenticated by Tk so k can not lie
about receiving s. If k chooses to not respond to s, in other words, k does not
reply with an ACK message after he receives s, then k violates the protocol, and
be regarded as suspect.

End-to-end receiver non-repudiation

j 〈 l : s
l 〈 k : s
k 〈| l : ACK(s)
j 〈| l : v e r i f y ACK(s)

For the end-to-end case, the source can query the receiver’s immediate neigh-
bors to see whether they have seen the ACK. This makes sure that k cannot lie
that it has received s. The protocol fails iff all the nodes in Tk ∩ Tj are compro-
mised, but in this event no other protocol can do better. If there are multiple
intermediate nodes on the path between j and k, the protocol remains essentially
the same, except that we need to add one or more intermediate forwarders for
the message s and to verify that one or more ACKs were sent.

3.6 Anonymity

In addition to confidentiality and authenticity, anonymity—the requirement of
preventing the sender’s identity from being revealed—is an important one. A
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potential problem in realizing anonymity using physical primitives is that two
or more receivers have a good chance of identifying the sender, if the sender
sends a message in the clear—the receivers can learn the spatial signature of the
sender and collude in the identification. The induced signature at its neighbors
is likely to match with the one learned before, especially if the sender uses the
same transmission power for each communication.

One simple idea then is to let a node vary its transmission power, to inten-
tionally change its induced signature, and make neighbor collusion somewhat
harder. Another idea is to let a trusted node to first help to hide the commu-
nication and to then forward the message. Because the message is jammed by
the trusted node, others can not learn the spatial signature of the sender. The
trusted node that helps jam may be able to learn the signature of the message,
but can not figure out the identity of the sender by itself.

The basic procedure is as follows: First, a node that is willing to help shouts
out and it is verified by its trusted base including the potential sender. Then,
the sender desiring anonymity sends its message, in the presence of cooperative
jamming by the helper. Finally, the helper forwards the message in the clear.
Since wireless networks, especially sensor networks, enjoy node density, such a
helper is expected to be easy to find.

The protocol is formally stated below.

Unicast for Anonymity

One hop anonymity for unicast

l 〈| j : ready to he lp
j 〈∼γ l : f(s)
l 〈 k : s

where l i s a ne ighbor o f both j and k

End-to-end anonymity for unicast

l 〈| j : ready to he lp
j 〈∼γ l : f(s)
l 〈 h : s
h 〈 k : s

where h i s a common neighbor o f j , l and k

Broadcast for Anonymity

One hop anonymity for broadcast

k 〈| j : ready to he lp
j 〈∼γ k : f(s)
k 〈 Nj : s
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End-to-end anonymity for broadcast

l 〈| j : ready to he lp
j 〈∼γ l : f(s)
l 〈 Nl : s
Nl 〈 NNl : s

It is worth noting that a sender can simply shout out a message without its
identity attached, so as to achieve anonymity. This is because it could lie that the
message is owned by someone other than itself. However, one potential problem
is that if the channel is not busy shortly before this transmission, colluding
neighbors may be still able to identify that this message belongs to the sender.
That is why a volunteer is exploited to help hide the identity of the sender.1 We
provide a proof in [9].

4 Discussion and Conclusion

In this paper, we developed a wireless security framework based on two phys-
ical primitives: cooperative jamming and spatial signature enforcement. The
former is essentially for confidential wireless communication, while the latter
essentially for message authenticity. The derived protocols include a variety of
common security services, including confidentiality, identity authentication, mes-
sage authentication, integrity, sender non-repudiation, receiver non-repudiation
and anonymity, for a variety of wireless network communication contexts. This
work, together with the previous work on physical primitives, illustrates a new
approach in the field of wireless security: that communications without shared
secrets while providing the same level of security is feasible and, in fact, relatively
simple.

We should emphasize that have not attempted to address the energy efficiency
problem in this paper, even though it is conceivable that the physical primitive
based framework may be realized with low power consumption. Rather, we have
attempted to reduce the key management task that involves significant overhead
and manual effort, especially in large scale networks. By the same token, we have
not attempted to handle the problem of bootstrapping trust either. Our physical
spatial primitive assumes an initial period of trust, which motivates further study
to effectively handle bootstrapping.

Since the proposed protocols rely heavily on the correctness and efficiency of
the two primitives, future work includes further justification of these existing
primitives and development of new alternatives to enrich the primitive set. An-
other direction is to provide an automatic “InstallShield” for easy deployment
of the whole protocol suite. Last but not least, investigating the feasibility of

1 In order to cover Nj , the helper may increase its transmission power to forward the
message. An alternative would be to perform 2-hop anonymity forwarding with a
cost of increased communication overhead.
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combining this framework with the existing cryptography based security infras-
tructure to provide better domain-specific security services is worthy of further
study.
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Abstract. We introduce the Read-Write-Coding-System (RWC) – a
very flexible class of linear block codes that generate efficient and flexible
erasure codes for storage networks. In particular, given a message x of k
symbols and a codeword y of n symbols, an RW code defines additional
parameters k ≤ r, w ≤ n that offer enhanced possibilities to adjust the
fault-tolerance capability of the code. More precisely, an RWC provides
linear (n, k, d)-codes that have (a) minimum distance d = n−r+1 for any
two codewords, and (b) for each codeword there exists a codeword for
each other message with distance of at most w. Furthermore, depending
on the values r,w and the code alphabet, different block codes such as
parity codes (e.g. RAID 4/5) or Reed-Solomon (RS) codes (if r = k and
thus, w = n) can be generated. In storage networks in which I/O accesses
are very costly and redundancy is crucial, this flexibility has consider-
able advantages as r and w can optimally be adapted to read or write
intensive applications; only w symbols must be updated if the message
x changes completely, what is different from other codes which always
need to rewrite y completely as x changes. In this paper, we first state a
tight lower bound and basic conditions for all RW codes. Furthermore,
we introduce special RW codes in which all mentioned parameters are
adjustable even online, that is, those RW codes are adaptive to changing
demands. At last, we point out some useful properties regarding safety
and security of the stored data.

1 Introduction

An erasure (resilient) code maps a word x of k symbols drawn from an alphabet
Σ into a codeword y of n > k symbols from the same alphabet, and in the optimal
case, any k symbols from the n codeword symbols are sufficient to recover x. This
property has made erasure codes become very prominent in many application
areas [1,7,16]. In storage networks such as RAID-arrays [13,14] and modern
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storage area networks (SAN) [10] access to hard disks is comparably slow, and
thus, data is scattered into fixed sized blocks which are evenly distributed among
the storage devices to exploit access parallelism. If then some disks fail for reading
(erasures), in the optimal case, any k symbols from y are sufficient to recover
x, i.e. such codes can tolerate up to n − k erasures which may be caused by
failed, respectively temporarily not accessible disks. Since the number n of blocks
(symbols) in a codeword y is fixed (called data stripe) and all blocks in a stripe
are hosted by n different disk, linear block codes are mainly applied [13,5,14,8].
More importantly, linear block codes are optimal codes, i.e. they only require
any k blocks from y to recover x what is important in a scenario that suffers
from expensive I/O operations.

However, most codes applied in RAID-like storage networks almost aim at
providing a (near-)optimal recovery behavior but what implies a serious draw-
back as any code that is able to reconstruct x from up to n− k erasures suffers
from a bad update behavior. In particular, if one information symbol changes
from xi to x′

i, any codesymbol yi must also be modified. If then any of the disk
keeping yi is not accessible, there is no chance to store the modified codeword
appropriately (except merely the plain information word if a systematic code is
applied such as given, for example, with the RAID 4/5 encoding).

In order to face this negative update behavior that is inherent to usual linear
blocks codes and which turns to be pretty costly when such codes are applied in
RAID-like storage environments, we introduce the Read-Write-Coding-System
(RWC) – a very flexible framework for generating different linear block codes,
called Read-Write (RW) codes in the following, which feature enhanced update
properties for given codewords by simultaneously offering different degrees of
fault-tolerance. In contrast to common linear block codes, an RWC defines fur-
ther parameters k ≤ r, w ≤ n which offer enhanced possibilities to adjust the
redundancy, and thus, the fault-tolerance capability of an RW code. In the lan-
guage of coding theory, for any fixed r, an RWC provides linear (n, r, d)-codes
over some finite field Fq that have (a) minimum (Hamming) distance d = n−r+1
(thus, are MDS codes if r = k), and (b) for each codeword there exists a codeword
for each other message with distance of at most w, i.e. the two code words differ
in at most w symbols. More specific, an RWC generates appropriate sub-codes
of Reed-Solomon (RS) codes (see e.g. [9] for details on RS codes) of dimension r
and length n in which any two codewords have distance at least w. Depending
on the values r, w and the field Fq chosen, different block codes can be generated,
e.g. parity codes (if q = 2).

The ensured degree of redundancy mixed up with the improved update behav-
ior offered by an Read-Write code provides significant benefits for the observed
storage systems which, driven by the application’s read and write behavior, on
one hand, suffer from very costly I/O operations, and on the other hand, have
to ensure some defined level of fault-tolerance at any time. Clearly, a Read-
Write code provides best improvements for write-intensive applications because,
given an n-sized codeword y and parameters r, w, it can decode the information
from any r symbols of y whereas only any w symbols of y must be updated
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whenever the information word x changes completely (recall that we can choose
w < n). Again, this is different to other linear codes, like e.g. Reed-Solomon
codes, which always must rewrite the codeword y completely as x changes. This
novel redundancy property comes with cost of additional necessary disk space
for compensating the absence of writable disks, i.e. the data rate of RW-codes
decreases with increasing w.

For most applications it is necessary to read the data and then to update the
information such that the condition w ≥ r seems natural. Our encoding systems
allows the update without prior reading, i.e. the difference vector δ of the old
and new message is needed. E.g. if an empty file is overwritten with the first
data entries then only w disks need to be written. In such cases RW-codes with
w < r become interesting.

An example. Consider a RAID 4-parity code with n = 4 hard disks storing
a data file bit by bit, Σ = {0, 1}. We encode k = 3 bits x1, x2, x3 to symbols
y1 = x1, y2 = x2, y3 = x3 and y4 = x1+x2+x3, where addition denotes the XOR-
operation and the code symbols yi, 1 ≤ i ≤ 4, are stored separately on distinct
disks. The XOR-operation enables to recover the original three bits from any
combination of r = 3 hard disks, e.g. giving y2, y3, y4 we have x1 = y2 + y3 + y4,
x2 = y2, and x3 = y3. Thus, if any one disk is temporarily not available, reading
data is still possible. However then, writing data is not possible since a complete
change of the original information involves the change of the entire code; we
call this code consistency (this also holds for any other erasure code applied in
storage environments). The second example shows an RW-code. Again, consider
n = 4 hard disks with code bits y1, y2, y3, y4. Now, we encode k = 2 information
bits x1, x2 such that any r = 3 code bits yi, yj, yk can be used to recover the
original message, and furthermore, only any of such w = 3 code bits yi′ , yj′ , yk′

need to be changed to encode a completely new information. For instance, start
with the codeword (0, 1, 1, ?). According to Table 1, the information is (1, 1) and
therefore the complete code is (0, 1, 1, 0). Now, we want to encode (0, 1) without
changing the second entry. For this, we choose line 0 for information (0, 1) and
get code (0, 1, 0, 1).

Moreover, RW codes can exploit system information about existing erasures,
which are caused by failed or blocked disks and that have rather long-term
character in a SAN, for encoding and decoding. For instance, consider a codeword
y with symbols stored on n disks from which b ≤ n − w disks are unreachable
(e.g. failed or blocked). Then, using an RW code, y can still be updated to
the codeword y′ in a code consistent manner. Furthermore, if then some of the
formerly blocked disks become available again while some other b′ ≤ n− r disks
turn to be unreachable, we can still recover the new information word x′ by
simply selecting any r of the remaining n−b′ accessible disks. Therefore, as long
as sufficient disks are accessible, an RW code provides code consistent operations
by circumventing blocked disks.

At last, some RW codes offer the possibility to change any of the parameters
k, r, w and n during runtime, that is, a (k, r, w, n)-RW code can be changed to
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Table 1. A (2, 3, 3, 4)2-Read-Write-Code for contents x1, x2 and code y1, y2, y3, y4.
Every information vector has two possible code words. Even if only three of the four
code words are available for reading and writing, the system can perform read and
write operations (see Figure 1 for the encoding). Variable v is an internal variable of
our RW-code introduced in Chapter 5.

Contents Code Line
x1 x2 y1 y2 y3 y4 v

0 0 0 0 0 0 0
0 0 1 1 1 1 1
0 1 0 1 0 1 0
0 1 1 0 1 0 1
1 0 0 0 1 1 0
1 0 1 1 0 0 1
1 1 0 1 1 0 0
1 1 1 0 0 1 1

(nearly) any choice of (k′, r′, w′, n′) giving such codes the ability to adapt to
changing system conditions.

2 Related Work

The most popular codes used are parity-based schemes, like RAID [13] or EVEN-
ODD [4] that have low storage consumption which is given by a factor (k+1)/k
and (k+2)/k, respectively, and that base on simple but efficient XOR-operations.
Unfortunately, parity codes are able to tolerate only one or two erasures at a
time, what is often not sufficient, even in large SANs. Therefore, since in large
SANs an increased fault-tolerance is often the major focus, a code should be used
that provides a high minimum distance between any two codewords. Codes pro-
viding this feature are called MDS codes (Maximum Distance Separable), which
ensure distance d(Y ) = n − k + 1 for any two codewords [8,9]. Nevertheless,
many variants of MDS codes, like MDS array codes [3] or X-codes [2] also suf-
fer from high rates. Alternatively, Hamming codes have good rate but distance
of at most 3, and Reed-Muller codes have high distance but bad rate (c.f. [9]).
Therefore, Reed-Solomon (RS) codes have become very popular in distributed
storage systems [15,11] and disk arrays [6,14] since they combine a good rate
of (n − k)/k with distance d(Y ) = n − k + 1. Unfortunately, as RS codes are
MDS codes, they also suffer from an undesired update overhead because if x is
modified, all blocks of y must be rewritten, what is dismal in a SAN suffering
from expensive I/O accesses.

Thus, due to their beneficial properties, applying RW-codes in a SAN seems
quite self-evident. From now on, we call a (k, r, w, n)b-Read-Write code a coding
system with a k-symbol message and an n-symbol code with symbols drawn
from a b-symbol alphabet, and a parameter r for recovering the message and w
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for modification with k ≤ r, w ≤ n. In the next section, we state the operations
of the RWC formally. After that, we prove general bounds for the parameters
of RW codes and present a general scheme to generate (k, r, w, n)b-RW codes as
long as k + n ≤ r + w holds for an appropriate choice of b. Then, we introduce
adaptive RW codes called Chameleon codes, where any of the given parameters
can be subject to changes. At last, notice that the following description is given
in more operation-based terms rather than conceptual since RW codes base on
the same well-studied algebraic principles as RS codes.

3 The Operational Model

Read-Write codes encode information words into codewords. The information is
given by a k-tuple over some finite alphabet Σ, and since Read-Write codes are
linear block codes, the codeword is an n-tuple over the same alphabet Σ, k < n.
Now, for what follows, let b = |Σ| and P(M) denotes the power set of some set
M . Moreover, let P�(M) := {S ∈ P(M) | |S| = �}.

Then, the following operations are provided by a (k, r, w, n)b Read-Write-
Coding-System (RWC):

1. Initial state x0 ∈ Σk, y0 ∈ Σn

This is the initial state of the system with information x0 and codeword y0.
This state is crucial because all further operations ensuring the beneficial
features of an RW code depend on this initial state.

2. Read function f : Pr([n])×Σr → Σk

This function reconstructs the information by reading r symbols of the code-
word whose positions are known. The first parameter shows the positions
(indices) of the symbols in the code, and the second parameter gives the
corresponding code symbols. The outcome is the decoded information.

3a. Write function g :
Pr([n])×Σr ×Σk ×Pw([n])→ Σw

This function adapts the codeword to a changed information by changing
w symbols of the codeword at w given positions. The first two parameters
describe the reading of the original information. Then, we have the new
information as a parameter, and the last parameter indicates which code
symbols to change in the codeword. The outcome are the values of the new
w code symbols.

3b. Differential write function δ : Pw([n])×Σk → Σw

This is a restricted alternative to the write function whose parameters are
the positions S of symbols available for writing as well as the difference of
the original information x and the new information x′ but without reading
the w code entries. The outcome is the difference of the available old and
the new codeword symbols. Thus, for two functions ∆1 : Σk×Σk → Σk and
∆2 : Σw ×Σw → Σw and w given positions ν1, . . . , νw ∈ [n] from y, we can
describe the write function g above by the differential write function as

(y′ν1
, . . . , y′νw

) = ∆2((yν1 , . . . , yνw), δ(S,∆1(x, x′))).
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while the original write function needs to read at positions ρ1, . . . , ρw ∈ [n]
and produces the same result by the following.

(y′ν1
, . . . , y′νw

) = g({ρ1, . . . , ρr}, (yρ1 , . . . , yρr ), x′, {ν1, . . . , νw})

All RW codes presented here have such differential write functions where
∆1, ∆2 denote the bit-wise XOR-operations. The goal is that e.g. a controller
in a storage device i can, by itself, update its kept block yi by simply adding
(XOR) the received difference γ of yi and y′i, i.e. y′i = yi + γ, if, for example,
the device is blocked between reading the old and writing the modified block.

For a tuple y = (y1, . . . , yn) and a subset S ∈ P�([n]), let Choose(S, y) be
the tuple (yi1 , yi2 , . . . , yi�

) where i1, . . . , i� are the ordered elements of S. Fur-
thermore, for an �-tuple d, let Subst(S, y, d) be the tuple where according to S
each indexed element yi1 , yi2 , . . . , yi�

of y is replaced by the element taken from
d such that Choose(S,Subst(S, y, d)) = d and all other elements in y remain
unchanged in the outcome.

Now, for S′ ∈ Pr([n]), define the read operation

Read(S′, y) := f(S′,Choose(S′, y))

and for S ∈ Pw([n]) and x′ ∈ Σk, the write operation

Write(S, S′, y, x′) := Subst(S, y, g(S′,Read(S′, y), x′, S)).

Since any Read-Write code needs to start at some initial state, we define the set of
possible codewords Y as the transitive closure of the function y 	→Write(S, S′,
y, x′) starting with y = y0 and allowing all values S, S′, x. Then, an RW code is
correct if the following statements are satisfied.

1. Correctness of the initial state:

∀S ∈ Pr([n]) : Read(S, y0) = x0 .

2. Consistency of read operation:

∀S, S′ ∈ Pr([n]) ∀y ∈ Y : Read(S, y) = Read(S′, y) .

3. Correctness of write operation:

∀S∈Pw([n]), ∀S′∈Pr([n]),∀y∈Y, ∀x∈Σk :Read(S′,Write(S, S′, y, x))=x .

4 Lower Bounds

The example of a (2, 3, 3, 4)2-RW code in the previous section stores two sym-
bols of information in a four symbol code (c.f. Table 1). Unfortunately, this
storage overhead of a factor two is unavoidable, as the following theorem shows
(moreover, this implies that e.g. no (3, 3, 3, 4)b-RWC exists).
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Theorem 1. For r+w < k+n or r, w < k and any base b, there does not exist
any (k, r, w, n)b-RWC.

Proof: Consider a write operation and a subsequent read operation where the
index set W of the write operation (|W | = w) and the index set R of the read
operation (|R| = r) have an intersection: W ∩ R = S with |S| = r + w − n.
Then, there are bk possible change vectors with symbols in S that need to be
encoded by the write operation since this is the only base of information for the
subsequent read operation. This holds because all further R \ S code symbols
remain unchanged. Now, assume that |S| < k. Then, at most bk−1 possible
changes can be encoded, and therefore, the read operation will produce faulty
outputs for some write operations. Thus, r + w − n ≥ k and the claim follows.

If r < k, only br different messages can be distinguished while bk different
messages exist. Then, from the pigeonhole principle, it follows that such a code
does not exist. For the case w < k, this is analogous. �
Thus, in the best case (k, r, w, n)b-RW codes have parameters r+w = k+n. We
call such RWC codes perfect. Unfortunately, such perfect codes do not always
exist as the following lemma shows.

Lemma 1. There is no (1, 2, 2, 3)2-RWC.

Proof: Consider a read operation on the code bits y1, y2 and a write operation on
y2, y3. Then, y2 is the only intersecting bit which must be inverted in case of an
information bit flip. The same holds for bit y3 when considering a read operation
on y1, y3 and a write operation on y2, y3. Thus, together, both y2 and y3 have to be
inverted if the information bit x1 flips. Now, consider a sequence of three write op-
erations onbits (1, 2), (2, 3), (1, 3) each inverting the informationbitx1. After these
operations, all code bits have been inverted twice bringing it back to the original
state. In contrast, the information bit has been inverted thrice and is thus inverted.
Therefore, all read operations lead to wrong results. �
However, if we allow a larger symbol alphabet, we can find an RW code.

Lemma 2. There exists a (1, 2, 2, 3)3-RWC.

Proof: See Table 2 for an example. The correctness is straight-forward. �
Clearly, concerning operational complexity, b = 2 (i.e. F2) is the best choice for
codes applied in SANs because XOR-based I/O operations can often efficiently
be realized in hardware. However, as common RAID 4/5 schemes as well as
parity-based Reed-Solomon codes correspond to an (n, n, n+1, n+1)2-RW code,
n ≥ 1, the following lemma shows that there is no parity-based placement scheme
offering better update properties.

Lemma 3. For n ≥ 1, there is no (n, n, n, n + 1)2-RW code.

Proof: The proof follows directly from Theorem 1. �
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5 Encoding and Decoding

We show that perfect RW codes always exist if the symbol alphabet is large
enough, and as being closely related to Reed-Solomon codes, RW codes can also
be constructed by matrix operations over finite fields. More formally, for given
information tuples x = (x1, . . . , xk) ∈ Σk whose underlying alphabet Σ is a
sufficiently large finite field Fq (and thus, x is a k-dimensional vector in the
vector space Fk

q) and additional parameters k ≤ r, w ≤ n, we examine special
subcodes of larger Reed-Solomon codes that have dimension r and length n and
in which for each codeword y = (y1, . . . , yn) ∈ Σn there exists a codeword for
each other message with distance of at most w.

For what follows, we consider the information vector x = (x1, . . . , xk) ∈ Fk
q ,

the corresponding codeword y = (y1, . . . yn) ∈ Fn
q , and for any modification in

x, let δ = ∆x be the information change vector. Moreover, let v = (v1, . . . , v�)
denote the vector of internal slack variables with � = n− w = r − k and which
carry no particular information. Then, the aforementioned operations are real-
ized by the following linear mapping using an appropriate n×r generator matrix
M with Mi,j ∈ Fq; the sub-matrix (Mi,j)i∈[n],j∈{k+1,...,r} is called the variable
matrix. In particular, an RW code relies on the following matrix approach:

⎛⎜⎜⎜⎝
M1,1 M1,2 · · · M1,r

M2,1 M2,2 · · · M2,r

...
...

...
Mn,1 Mn,2 · · · Mn,r

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝

x1...
xk

v1...
vl

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
y1
y2
...
yn

⎞⎟⎟⎟⎠

Operations

– Initialization: We start with an arbitrary given information vector x0 =
(x1, . . . , xk), for which the variables (v1, . . . , v�) can be set to arbitrary values
(if one wants to benefit from the security features of this coding system (see
section 6), these slack variables must be chosen uniformly at random). Then,
compute the codeword y0 = (y1, . . . , yn) using the matrix approach above.

– Read: Given r code entries from y, compute x We rearrange the rows of
M and the rows of y such that the first r entries of y are available for
reading. Let y′ and M ′ denote these rearranged vector and matrix. The first
r rows of M ′ describe the r× r matrix M ′′ that we assume to be invertible.
Then, the information vector x (and the variable vector v) is obtained by:
(x | v)T = (M ′′)−1y .

– Differential write: Given the information change vector δ and w code
entries from y, compute the difference vector γ for the w code entries. Recall
that y is updated by γ without first reading the information of y at the w
code positions.

The new information vector x′ is given by x′
i = xi + δ. This notation

allows to change the vector x′ without reading its entries. Clearly, only the
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choices w < r make sense. Now, due to the matrix approach, given the
new k-dimensional information vector x′, the task is to find another (r − k)-
dimensional vector ρ with v′ = v + ρ such that the new codeword y′ =
M (x′ | v′)T = M (x + δ | v + ρ)T is a vector of weight at most w. Since we
only consider at most w positions of y′, we may, without loss of generality, as-
sume that the last n−w positions are zero, so that M (x′ | v′)T = (y′w | 0)T ,
with y′w of length w, and the vector 0 = (0, . . . , 0)T is of length n−w. Clearly,
we must rearrange the rows of the matrix M due to the vector (y′w | 0)T . Af-
ter that, we partition M according to the lengths of the sub-vectors involved,
and obtain (

M←↑)x′ +
(
M↑→)

v′ = y′w(
M←↓)x′ +

(
M↓→)

v′ = 0 .

An important precondition of the write operation is the invertibility of
the submatrix M↓→. The code symbol vector is then updated by the w-
dimensional vector γ = ((M←↑)− (M↑→)(M↓→)−1(M←↓)) δ, such that the
new w codeword y′ is derived from the former code symbols at the w given
positions by simple addition, that is, y′ = y + γ.

Table 2. A (1, 2, 2, 3)3-Read-Write code for an information word x and codeword y
consisting of symbols y1, y2, y3. For every information, there are three possible code-
words, and if only any two of them three are available for reading and writing, the
system can perform read and write operations (see Figure 2 in the next section for the
encoding.

Contents Code Line
x y1 y2 y3 v

0 0 0 0 0
0 1 1 1 1
0 2 2 2 2
1 0 1 2 0
1 1 2 0 1
1 2 0 1 2
2 0 2 1 0
2 1 0 2 1
2 2 1 0 2

In fact, the (2, 3, 3, 4)2-RWC in Table 1 can be generated by this matrix based
approach whose encoding is given in Figure 1 (compare also the (1, 2, 2, 3)3-RWC
in Table 2 and Fig. 2).

Definition 1. An n × k-matrix A over any base b with n ≥ k is row-wise in-
vertible if each k × k matrix constructed by combining k distinct rows of A has
full rank (and therefore is invertible).
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⎛⎜⎜⎝
0 0 1
0 1 1
1 0 1
1 1 1

⎞⎟⎟⎠
⎛⎝x1

x2

v1

⎞⎠ =

⎛⎜⎜⎝
y1

y2

y3

y4

⎞⎟⎟⎠
Readable x1 x2

code symbols
y1, y2, y3 y1 + y3 y1 + y2

y1, y2, y4 y2 + y4 y1 + y2

y1, y3, y4 y1 + y3 y3 + y4

y2, y3, y4 y2 + y4 y3 + y4

Write (x′
1, x

′
2) = (x1 + δ1, x2 + δ2)

code y′
1 = y1+ y′

2 = y2+ y′
3 = y3+ y′

4 = y4+
1, 2, 3 δ1 + δ2 δ1 δ2 0
1, 2, 4 δ1 δ1 + δ2 0 δ2

1, 3, 4 δ2 0 δ1 + δ2 δ1

2, 3, 4 0 δ2 δ1 δ1 + δ2

Fig. 1. A (2, 3, 3, 4)2-Read-Write-Code over the alphabet F2 = {0, 1} modulo 2

⎛⎝ 0 1
1 1
2 1

⎞⎠(
x
v

)
=

⎛⎝ y1

y2

y3

⎞⎠
Readable

code symbols x

y1, y2 2y1 + y2

y1, y3 y1 + 2y3

y2, y3 2y2 + y3

x′ = x + δ
Writable symbols y′

1 = y′
2 = y′

3 =
y1, y2 δ + y1 2δ + y2 y3

y1, y3 2δ + y1 y2 δ + y3

y2, y3 y1 δ + y2 2δ + y3

Fig. 2. A (1, 2, 2, 3)3-Read-Write-Code over the field F3 = {0, 1, 2} modulo 3

Theorem 2. The matrix based RWC is correct and well-defined if the n × r
generator matrix M as well as the n × (r − k) variable sub-matrix M ′ is row-
wise invertible.

Proof: Follows from the definition of row-wise invertibility and the description
of the operations. To prove the correctness of the coding system we show that
after each operation the matrix based mapping is valid. This is straight-forward
for the initialization and read operations. It remains to prove the correctness of
the write operation.

Again, consider the additive vector (ρ1, . . . , ρ�) denoting the change of the
variable vector v and the vector (γ1, . . . , γw). With this and the information
change vector δ, we obtain x′ = x+ δ, v′ = v + ρ and y′ = y + γ.The correctness
of the write operation then follows by combining:
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M

(
x′

v′

)
= M

(
x + δ
v + ρ

)
= M

(
x
v

)
+ M

(
δ
ρ

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
...
yw

yw+1
...
yn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1
...
γw

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
This equation is equivalent to the following.

(M←↑)δ + (M↑→)ρ = γ

(M↓→)ρ + (M←↓)δ = 0 .

Since δ is given, the variable vector ρ can be computed as

ρ =
(
M↓→)−1 (−M←↓) δ ,

and γ by the last upper equation. If ρ is known, then the product M · (δ | ρ)T

(reduced to the first w rows) gives the difference vector γ which provides the
new code entries of y′ by y′ = y + γ. �

Theorem 3. For any k ≤ r, w ≤ n with r+w = k+n there exists an (k, r, w, n)b-
RWC for an appropriate base b. Furthermore, this coding system can be computed
in polynomial time.

Proof: Follows from the following lemma and the fact that we use standard
Gaussian elimination for recovery. �

Lemma 4. For each n ≥ k and basis b ≥ 2�log2 n+1, there is a row-wise-
invertible n × k-matrix over the finite field Fb. Furthermore, each submatrix
is also row-wise invertible.

Proof:
Define an n× k Vandermonde like matrix V for non-zero distinct elements

(c1, . . . , cn) ∈ F[2�log2 n+1�].

V =

⎛⎜⎜⎜⎜⎜⎝
c11 c21 . . . ck

1
c12 c22 . . . ck

2
c13 c23 . . . ck

3
...

. . .
...

c1n c2n . . . ck
n

⎞⎟⎟⎟⎟⎟⎠
Then, erase any n − k rows resulting in an k × k matrix V ′. This submatrix is
also a Vandermonde-matrix. Since all Vandermonde-matrices are invertible, the
lemma follows. �
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6 Security and Redundancy

Depending on the usage of additional slack variables, in this section, we show
that Read-Write codes furthermore offer useful properties concerning data avail-
ability and security. Consider, for instance, the very extreme scenario of a com-
bination of hard disks of n portable (laptop) computers in an office. If then a
(k, r, w, n)b-RWC is used for encoding for at most n laptops, it is sufficient if at
least max{r, w} computers are accessible at the office at any time for data access
and changes. If merely r computers are connected, at least the read operations
can be performed. Now, what happens if computer hard disks are broken or in-
formation on some hard disks has changed ? Then, the inherent redundancy of
the (k, r, w, k)b-RWC allows to point out the number of wrong data and repair
it (to some extent).

A different problem occurs if computers are stolen by some adversary to
achieve knowledge about company data. The good news is that, for every matrix
based RWC, it holds that one can give away any n−w hard disks without reveal-
ing any information to the adversary. If the slack variables are chosen uniformly
at random from Σ, the attacker will receive hard disks with perfect random
sequences, absolutely useless without the other hard disks. As a surplus, this
redundantizes the need for complex encryption algorithms.

Theorem 4. Every (k, r, w, n)b-RWC system can detect and repair � faulty code
symbols if n!(r+�)!

(n−�)!r! <
1
2 . Additionally, it can reconstruct n−r missing code symbols.

Proof: If n − r code symbols are missing, then by the definition of a RWC
system the complete information can be recovered from any r code symbols.
Furthermore, if then � out of these r code symbols are faulty, we simply test
any combination of the

(
n
r

)
combinations of r code symbols and take a majority

vote over the information vector. In this vote, at least
(

n−�
r

)
produce the correct

result. This results in a majority if
(
n−�

r

)
> 1

2

(
n
r

)
which, by transformation, is

equivalent to n!(r+�)!
(n−�)!r! <

1
2 . �

If the coded symbols are stored on distinct storage devices, with an (k, r, w, n)-
RWC the loss of at most n − max{r, w} device can be tolerated. For instance,
if these storage devices were stolen, then the following theorem shows that the
thief cannot reveal any information whatsoever from the encoded information:
the attacker sees only a completely random sequence vector.

Theorem 5. Every matrix based (k, r, w, n)b-RWC with k + n = r + w can be
used such that every choice of n−w coded symbols does not reveal any information
about the original information vector.

Proof: Choose random vectors v1, . . . , v� for the initialization. Then, there is an
isomorphism between these slack variables and the stolen coded symbols leading
b� possibilities for the stolen coded symbol to be changed. If more symbols are
added, this starts to reveal some information. �
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7 Adaptive Read-Write Codes

In a SAN, adding and removing hard disks are the most delicate maneuvers, and
provided that the size of the underlying symbol alphabet is chosen appropriately,
we show in the following that perfect RW codes exist which allow to seamlessly
continue all operations without forcing the system to be in some intermediate
and, more importantly, invalid state. For instance, assume 10 disk in a SAN using
an (8, 9, 9, 10)-RW code. Then, for better space utilization, the system adminis-
trator wants to switch to a (4, 7, 7, 10)-RW code. In a usual encoding, all disks
have to be available for such a switch. In this section, we show that there exist
some special RW codes, called Chameleon codes, that allow to switch while only
9 disks are accessible for read and write. If the 10th disk returns after computing
the re-encoding of all data on the 9 disks, it can immediately participate in the
new (4, 7, 7, 10)-RW code. Moreover, if the 10th disk is permanently lost, it can
be reconstructed from the new (4, 7, 7, 10)-RW code. In particular, a Chameleon
code is a set of RW-codes (k, r, w, n)b with fixed alphabet, and, unlike the initial
codes, has a switch function. If the code is switched, all parameters k, r, w, n can
be subject to change. Regarding the codeword y, not all of the code symbols
have to be read or changed.

Theorem 6. For a sufficiently large constant M , there is an (M, b)-Chameleon-
RWC with b ≥ 2�log2 M+1. In this system, it is possible to switch at any time
from a (k, r, w, n)b-RWC to any (k′, r′, w′, n′)b-RWC provided that n, n′ ≤ M
and k′ + n′ = r′ +w′ only by reading any set of r encoded symbols and changing
any set of w′ encoded symbols.

Proof: First, we select a base b ≥ 2�log2 M+1 and take the Vandermonde Matrix
based approach as shown in Section 5. We change the main equation to the
following.

⎛⎜⎜⎜⎝
c11 c21 · · · cM

1
c12 c22 · · · cM

2
...

...
...

c1M c2M · · · cM
M

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1...
xk

v1...
vr−k

0...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1
...
yn

z1
...

zM−n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Again, x1, . . . , xk are the content symbols, v1, · · · , vr−k are the slack variables
and y1, . . . yn are the code symbols. The variables z1, . . . , zM−n can be ignored
for the beginning; they are neither contents, slack nor code symbols and can be
generated from the content and slack symbols at any time. The initial vector
as well as the read and write function are chosen as in the matrix based ap-
proach. Then, the switch operation, that is, switching from a (k, r, w, n)-RWC
to a (k′, r′, w′, n′)-RWC, works as follows.
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First, we read r code symbols at given positions and decode the vectors x and
v according to the matrix based approach. Then, we adapt the size of the former
code to the new code size. If n′ > n, we compute the corresponding variables
zi from x and v. If n′ < n, we rename n− n′ code variables to z-variables, and
thus, reduce the code size. If r′ > r, the content/slack-variable vector (x | v)T is
extended by (r′ − r) 0-entries. We assume that new contents are written during
the switch-operation (especially, if k �= k′). For this, let v′1, . . . , v

′
r′−k′ be the

new set of slack variables. Furthermore, we suppose at most w′ code symbols
(positions) available for writing.

We start by erasing the rows n′ + 1, . . . ,M in y and in the Vandermonde
matrix since they are of no interest for this operation. Then, like in Section 5,
we rearrange the residual matrix and the residual code vector such that the first
w positions are the writable variables. We additionally rearrange the columns
of the Vandermonde matrix and the contents/slack vector such that the new
slack variables are on the rightmost columns, respectively lowermost lines. This
results in the generator matrix M ′ (c.f. Section 5), and the original vector x
is rearranged up to the lowest r′ − k′ entries (possibly containing a mixture of
old contents, old slack variables, and 0-entries). Let x′ be the vector of the new
contents (adequately rearranged), and let v′ be the new slack vector with r′− k′

entries. If r′ ≥ r, x has k′ entries, and otherwise, x (x′) has r − r′ additional
entries resulting from former slack or content variables that must to be set to 0.

We first consider the case r′ ≥ r. The number of entries in x is k′. Then,
we can perform an RWC write operation changing w′ code symbols. Let �′ =
r′−k′ = n′−w′ and partition M ′ like in Section 5. That is, let M←↑ be a w′×k′-
sub-matrix of M ′, M↑→ a w′ × k′-sub-matrix, M←↓ an �′ × n′-sub-matrix and
M↓→ an invertible �′×�′-sub-matrix of M ′. Again, according to the matrix based
approach, the new (rearranged) code vector y′ is obtained by

y′ = y +
[
(M←↑)− (M↑→)(M↓→)−1(M←↓)

]
· (x′ − x) (1)

using the old (rearranged) writable symbol vector y. The proof of correctness is
analogous to Section 5.

Now, consider the case r′ < r. Then, the number of entries in x and x′ is
k̃ = k′ + r − r′. Again, let x′ be the new (adequately rearranged) vector con-
taining the k̃ new symbols, and v′ is the new slack variable vector with r′ − k′

entries. Note that x′ − x can be computed at this stage. We now perform a
slightly adapted matrix based RWC write operation that changes w′ code sym-
bols. Clearly, compared to the previous case, that matrix consists of additional
r−r′ columns but what does not cause any problem since we only have to adapt
the sub-matrices. Furthermore, let �′ = r′ − k′ = n′ − w′ and w̃ = w + r − r′.
Then, let M←↑ be a w̃ × k̃-sub-matrix of M ′, M↑→ a w̃ × �′-sub-matrix, M←↓

an �′ × k̃-sub-matrix and M↓→ an invertible �′ × �′-sub-matrix of M ′. As usual,
y denotes the old and y′ the new writeable symbols. Then, applying the defined
matrices, the new vector y′ is obtained as given with Equation 1, and again, the
proof is analogous to the proof given in Section 5. �
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8 Conclusions

The Read-Write codes, presented here, provide linear block codes that, in con-
trast to commonly applied strategies, such as parity schemes or RS codes, feature
advanced possibilities to update any codeword, and to adjust the redundancy
and thus, the fault-tolerance capability of the code. In general, RW codes seem
to be well-designed to any setting in which I/O operations are very costly, that
feature high frequencies of write operations, and that are of dynamic behavior,
like modern storage area networks. Further results and applications of RW codes
can be found in [12].
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Abstract. We consider setting up sleep scheduling in sensor networks.
We formulate the problem as an instance of the fractional domatic par-
tition problem and obtain a distributed approximation algorithm by ap-
plying linear programming approximation techniques. Our algorithm is
an application of the Garg-Könemann (GK) scheme that requires solving
an instance of the minimum weight dominating set (MWDS) problem as
a subroutine. Our two main contributions are a distributed implemen-
tation of the GK scheme for the sleep-scheduling problem and a novel
asynchronous distributed algorithm for approximating MWDS based on
a primal-dual analysis of Chvátal’s set-cover algorithm. We evaluate our
algorithm with ns2 simulations.

1 Introduction

In sleep scheduling, sensor-network nodes switch between active and inactive
states to save energy, thus extending network lifetime. A variety of protocols
have been proposed for having a sensor network self-organize by choosing subsets
of nodes to be active and serve as a backbone for routing or providing coverage;
see e.g. [1,2,3,4]. Many protocols are heuristic and do not provide performance
guarantees.

The sleep-scheduling problem can be modeled using a pairwise redundancy
relationship between sensor nodes. In the resulting redundancy graph adjacent
nodes represent sensors that can measure the same data. When backbone con-
nectivity is not a concern, e.g., because data generation and collection phases
are separated, the network can be considered operational as long as at any time
each inactive node has an active neighbor in the redundancy graph. Although our
coverage model is very simple, we consider it useful when node density is rather
large, so that nodes nearby typically measure similar data. In graph-theoretic
terms, the problem reduces to finding dominating sets in the redundancy graph
and computing an assignment of dominating sets to time slots that achieves
maximum length while satisfying node-battery constraints. This notion of sleep
scheduling assumes a global clock to determine at any time the set of active
nodes. It is usually sufficient, however, that nodes are loosely synchronized.

Floréen et al. [5] and Suomela [6] use the same redundancy model. Cărbunar
et al. [7] consider a geometric setting where nodes have a fixed sensing radius.

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 640–654, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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They construct a graph of nodes which each individually could become inactive
without sacrificing coverage. By introducing edges between nodes that share
an edge in the Voronoi diagram and searching for large independent sets in this
graph, battery capacity of some nodes can be preserved while retaining network-
wide coverage.

Assuming uniform battery capacities and a node can only participate in one
dominating set during the operation of the network, the sleep-scheduling problem
is also known as the domatic partition problem. In the version we consider, dom-
inating sets can be active for an arbitrarily long period while satisfying battery
constraints. Removing integrality constraints enables us to apply approximation
techniques for Linear Programming (LP) and allows for a longer lifetime in some
networks, such as the five-cycle with unit capacities.

In Section 2, we formulate the sleep-scheduling problem as an LP packing
problem and apply the Garg-Könemann [8] (GK) technique to obtain a dis-
tributed approximation algorithm for general redundancy graphs. General re-
dundancy graphs are interesting for sensor networks, as other models, such as
unit-disk graphs, do not capture non-uniform sensing capabilities or obstacles
in the terrain. We also present a novel asynchronous distributed algorithm for
approximating the minimum weight dominating set (MWDS) problem, which
we will then use within the GK scheme. We develop our algorithm in Section
3 and first describe a centralized implementation. In Section 4 we present an
efficient distributed implementation which does not require network-wide clock-
synchronization. Further, in Section 5 we provide ns2 [9] simulation data, which
indicate a low number of messages required in practice. Section 6 presents our
conclusions.

2 Domatic Partition

The domatic partition problem is a well-known problem in graph theory. The
maximum number of disjoint dominating sets of a graph is called the domatic
number. Feige et al. [10] show that the domatic number can be approximated
in polynomial time within a factor of O(log n), where n is the number of nodes,
but that it is hard to approximate it within a (1 − ε) lnn factor for any ε > 0.
Moscibroda and Wattenhofer [11] extend the results of Feige et al. and obtain a
distributed, randomized algorithm for the same problem.

In this section, we give a formal description of the sleep-scheduling problem
that allows arbitrary activation periods and formulate it as an LP. We then
describe the application of the Garg-Könemann algorithm and a distributed
implementation that is suitable for wireless sensor networks. For simplicity, we
assume that all nodes have unit battery capacity. We note, however, that the
extension to arbitrary capacities is possible.

2.1 Problem Formulation

We assume a given connected transmission graph G(V,E) that models the sensor
network with unique node identifiers. The edges in E represent the links between
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the radio nodes, which we assume to be undirected. Denote by N(v) the neigh-
bors of v in G and define N+(v) to be the extended neighborhood N(v) ∪ {v}
of v. Define δ = minv∈V N(v) and δ+ = minv∈V N+(v) to be the minimum de-
gree and minimum extended degree, respectively. Similarly, define ∆ and ∆+ to
be size of the largest neighborhoods. By N+

k (v) we denote the k-hop extended
neighborhood of v, i.e., all nodes at a hop-distance of at most k from v and
define N+

0 (v) = {v}, so that N+
1 (v) = N+(v).

For simplicity of exposition, we consider the redundancy graph and G to be
identical, so that the problem involves finding dominating sets in G. This as-
sumption could be removed, when nodes know their neighbors in the redundancy
graph and can communicate with them over only a few hops in G. However, note
that we do not require any specific structural properties on either graph.

We introduce variables xD that correspond to the total activation time of
dominating set D. The domatic partition problem can be formulated as the
following LP with a possibly exponential number of variables.

FRAC DOMPART PRIMAL max
∑
D

xD

s.t.
∑

D:v∈D

xD ≤ 1 ∀v ∈ V (1)

xD ≥ 0 ∀D

The objective
∑

D xD is the length of the sleep schedule and (1) is the capacity
constraint for node v. From (1) and since there is a node that can be dominated
by at most δ+ different dominating sets it follows that δ+ is an upper bound on
the total lifetime of any feasible solution. For the domatic number problem xD

must be integral. As we assume that nodes can participate in several dominating
sets, we do not require integrality of xD. This problem has only been rarely ad-
dressed in the literature. It was shown in [6] that the hardness of approximation
result of [10] for the domatic number problem also holds in this case. Floréen
et al. [5] propose a local algorithm that achieves a constant approximation fac-
tor in so-called marked graphs, which are bounded-degree graphs that contain
specially distributed marked nodes for breaking symmetry. Since we consider
general graphs we can only aim at a logarithmic approximation factor.

We propose a distributed version of the Garg-Könemann scheme for approx-
imating LP packing problems, which requires a solution to the following dual
problem. The dual is formulated by introducing dual variables yv for the capacity
constraints of node v.

FRAC DOMPART DUAL min
∑

v

yv

s.t.
∑
v∈D

yv ≥ 1 ∀D (2)

yv ≥ 0 ∀v ∈ V

Validating constraint (2) for given yv corresponds to solving an instance of the
minimum weight dominating set (MWDS) problem with yv as constant node
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weights. Our algorithm for approximating MWDS does not require network-wide
synchronization or geometric restrictions on the dependency graph. Suomela [6]
applies the GK scheme in a centralized setting to so-called local graphs, where
V ⊆ Rd, all edges have length at most 1 and node density is bounded by a con-
stant. It was shown in [6] that the MWDS problem in these graphs can be solved
efficiently. Berman et al. [12] propose to use the greedy set-cover approximation
algorithm by Chvátal [13] within the GK scheme. Although their approach is
similar to ours, their algorithm is centralized. See also [4] for a survey of al-
gorithms for variations of lifetime maximization problems within the context
of sensor network coverage, which can be also seen as heuristics for problems
similar to domatic partition.

2.2 Garg-Könemann Scheme

For simplicity of exposition, we first describe the GK scheme as applied to prob-
lem FRAC DOMPART PRIMAL in a centralized setting and then elaborate on
a distributed version suitable for implementation in sensor networks. The GK
scheme takes as input an LP packing problem and a small positive constant ε.
After termination the primal objective value is guaranteed to be at least (1− ε)2

times the optimum (for details see [8]). The algorithm proceeds in iterations, as
described in Algorithm 1.

initially :
β ← (1 + ε)((1 + ε)L)−1/ε

for all D: xD(0) ← 0
for all v ∈ V : yv(0) ← β

in iteration k ≥ 1
use oracle to find MWDS D∗ using yv(k − 1) as node weights
if (

∑
v yv(k − 1) ≥ 1)

for all D: xD(k) ← xD(k−1)

log1+ε
1+ε

β

return
else

xD∗(k) ← xD∗(k − 1) + 1
for all v ∈ V

if v ∈ D∗ then yv(k) ← (1 + ε)yv(k − 1)
else yv(k) ← yv(k − 1)

Algorithm 1. GK scheme for fractional domatic partition

Denote by yv(k− 1) the value of the dual variable yv at the beginning and by
yv(k) its value at the end of iteration k and define xD(k) similarly. In iteration k
one selects the MWDS D∗ depending on the current node weights and increases
its activation time by one. If the total weight of all nodes in the networks is
at least one, the primal variables are scaled down by a value depending on the
size of the instance, and the algorithm terminates. Otherwise, the dual variables
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for the nodes in D∗ are multiplied by (1 + ε). For the value L in the scaling
factor it is sufficient to choose L = |V |, the maximum size of any dominating
set. Note that the dominating sets found in different iterations do not need to
be disjoint.

Instead of solving the MWDS subproblem in each iteration exactly, we use
an approximation oracle with approximation factor φ > 1. The resulting sleep
schedule is guaranteed to have a length of at least (1− ε)2/φ times the optimal
length, where ε can be chosen arbitrarily small. For details on the application of
the GK scheme in combination with an approximation oracle see the paper by
Tsaggouris and Zaroliagis [14].

In Section 3 we propose a distributed MWDS algorithm with an approxima-
tion factor of φ = O(ln∆+), so that the combined algorithm is asymptotically
optimal for the sleep-scheduling problem. By choosing a different MWDS ap-
proximation algorithm it is likely that better approximation guarantees can be
achieved for certain graph classes.

2.3 Distributed GK Implementation

We now describe a distributed implementation of Algorithm 1 and how we com-
bine it with the MWDS subroutine of Section 4. We assume the existence of a
single initiator node which knows the number of nodes |V |.

First we construct a spanning tree of the transmission graph in style of the
Shout protocol [15]. The spanning tree is used to send and receive control mes-
sages within the network. While constructing the spanning tree, the node weights
are initialized to β, as in Algorithm 1.

In the first iteration, the initiator node broadcasts an initiate message in the
network. This is a signal for the nodes to solve the subproblem within the inner
loop of the GK algorithm, in our case the MWDS problem. The nodes then solve
the subproblem, and a convergecast follows, whereby the initiator obtains the
sum of the weights yv(0) that is needed for testing the termination condition.

Until the termination condition is met, in subsequent iterations the nodes up-
date their weight yv according to the solution of the subproblem in the previous
iteration. In our case, the nodes found to be in the dominating set in the previous
iteration set yv ← (1 + ε)yv before solving the MWDS problem in the current
iteration. When the termination condition is satisfied, the initiator broadcasts a
final message to inform the other nodes of the termination.

In our implementation, nodes need to remember the iterations in which they
were in the dominating set. The sleep schedule results from this information. As
an implementation note, during the broadcast and convergecast in each itera-
tion, we let the nodes collect some data they need for the MWDS computation.
Namely, at the start of the MWDS algorithm the nodes have to know not only
their own weight but also the weights of their neighbors, as well as the number
of neighbors each neighbor has. Instead of having separate phases for collecting
this data, this is convenient to embed in the GK scheme.
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3 Minimum Weight Dominating Set Approximation

This section describes an approximation algorithm for MWDS inspired by par-
allel algorithms based on linear programming duality proposed by Rajagopalan
and Vazirani [16] for weighted set-cover. Although we use it within the GK
scheme, we consider the more general MWDS setting. Dominating sets can be
used among other purposes for network coverage, routing, and sleep scheduling.
For an overview of the relevant literature see [17].

3.1 Problem Formulation

We first formulate an LP for the problem. Introduce variable zv for each v
corresponding to v being selected for the dominating set, whereby we initially
do not require integrality of zv. Denote the weight of node v by wv.

FRAC DOMSET PRIMAL min
∑
v∈V

wv zv

s.t.
∑

u∈N+(v)

zu ≥ 1 ∀v ∈ V

zv ≥ 0 ∀v ∈ V

Algorithm 2 is Chvátal’s algorithm applied to MWDS that obtains an integral
solution to the previous LP. It repeatedly adds to the dominating set the node
with the lowest ratio of weight to span, the number of uncovered nodes that the
node would cover, until all nodes are covered. The algorithm gives a dominating
set with weight at most φ = H∆+ times the optimum, where Hi =

∑i
j=1 j

−1

is the i-th harmonic number. This follows from the results in [13], as ∆+ is the
size of the largest set in the corresponding set-cover instance.

initially :
C ← ∅
for all v ∈ V : zv ← 0

while C 	= V
v′ ← arg minv

wv

|N+(v)\C|
zv′ ← 1
C ← C ∪ N+(v′)

Algorithm 2. Greedy algorithm MWDS based on [13]

When one assumes unit node weights, one can easily obtain approximation
algorithms that achieve a constant approximation factor in unit-disk graphs [18],
and even polynomial-time approximation schemes (PTAS) are possible [19]. In
general graphs, however, the inapproximability results for the set-cover problem
[20] imply that Chvátal’s algorithm is essentially the best-possible polynomial
time approximation algorithm under standard complexity assumptions.
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Distributed algorithms based on Chvátal’s algorithm have been proposed
for both unit and arbitrary weights. Most of them, however, assume a syn-
chronous message passing model. Jia et al. [21] remark that the straightforward
distributed implementation of the greedy algorithm in the synchronous model
has linear time complexity. They propose randomized algorithms with polylog-
arithmic time complexity and approximation guarantees similar to Chvátal’s
algorithm, but their implementation requires careful clock synchronization in
the network. Alternatively, synchronization techniques proposed by Awerbuch
[22] can be applied, which further complicate the algorithm and require message
overhead. Our algorithm is deterministic, requires no synchronization, is simple
to implement, and shares the approximation guarantee of Chvátal’s algorithm.

Wang et al. [23] propose a distributed asynchronous algorithm for connected
MWDS based on a hybrid approach between the independent set approach [18]
and Chvátal’s algorithm applied locally in each neighborhood. However, for gen-
eral graphs the approximation guarantee in [23] can be worse than for Chvátal’s
algorithm and may further depend on the weights of adjacent nodes.

3.2 Centralized Implementation

We first describe our algorithm for approximating MWDS in a centralized set-
ting. Introduce dual variables αv for the coverage constraint of node v in problem
FRAC DOMSET PRIMAL. We formulate the dual as follows.

FRAC DOMSET DUAL max
∑
v∈V

αv

s.t.
∑

u∈N+(v)

αu ≤ wv ∀v ∈ V

αv ≥ 0 ∀v ∈ V

Algorithm 2 can be translated into an algorithm that maintains a pair of primal
and dual solutions. The primal solution is initially infeasible and becomes feasible
at termination. The dual solution is initially feasible but may become infeasible.
However, as one is able to bound the maximum dual constraint infeasibility, a
dual feasible solution is obtained by the technique of dual fitting [24].

The algorithm is best explained in its continuous version. Denote by z(t) and
α(t) the value of a pair of primal and dual solutions at time t respectively (not
necessarily feasible). At start, z(0) = α(0) = 0. Start increasing all αv(t) at
unit rate until the first dual constraint holds with equality, say the constraint
for zv. This happens at time t1 = wv/ |N+(v)|, so the node first chosen has the
least ratio of weight to span. Fix zv(t) = 1 for t ≥ t1 and for all v′ ∈ N+(v)
let αv′(t) = 0 for t > t1. Keep raising the other dual variables and proceed as
before, breaking ties arbitrarily. As αv′(t) = 0 for all t after v′ was covered, they
no longer contribute to the dual constraints. The order in which these get tight
is exactly the same in which Algorithm 2 adds nodes to the dominating set, and
each node is chosen at a time that equals its weight divided by the number of
its uncovered neighbors. Assume that k nodes got tight at time points t1, . . . , tk.
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One can show the following pair of primal and dual solutions is feasible and at
most a factor of H∆+ apart, therefore establishing the approximation guarantee
based on weak duality.

zv = zv(tk) ∀v ∈ V, αv =
1

H∆+
max

t1,...,tk

αv(ti) ∀v ∈ V

4 Distributed MWDS Approximation

In this section we obtain a distributed approximation algorithm for the MWDS
problem from the centralized dual-increase algorithm described above. Although
the order in which nodes enter the dominating set can be different, the resulting
dominating set is guaranteed to be the same. We assume that each node is aware
of the weight and degree of all its neighbors and also knows its neighbors in a
spanning tree rooted at the initiator by executing the steps of Section 2.3.

The previously described algorithm is only feasible in a strictly synchronized
setting, since nodes need to increase their αv variables uniformly. We now de-
scribe a voting scheme that does not require synchronization. After termination
each node knows all dominators in its one-hop neighborhood. We first explain
the basic ideas of the algorithm in 4.1 and then describe it in more detail in 4.2.

4.1 Algorithm Outline

Throughout the algorithm, each node is in one of three cover states : uncovered,
covered, or dominator. Denote by U the set of uncovered nodes, where initially
U = V . Each node v maintains its own price

pv :=

{
wv

|N+(v) ∩ U| if N+(v) ∩ U �= ∅,
∞ otherwise.

In the continuous time version, node v would become a dominator at time pv if
the set of its uncovered neighbors stayed unchanged until then. To estimate pv

node v must know the state of its neighbors.
The straightforward method of repeatedly having each node compute its price

and letting the node with the minimum pv in the network become a dominator
would be inefficient. Instead, it suffices to consider two-hop local neighborhoods
only. The crucial observation is that as the algorithm proceeds, pv can only
increase, as the number of uncovered neighbors can only decrease. Thus, if node
v has the minimum pv in N+

2 (v), it is guaranteed to become a dominator at time
pv, since N+(v)∩U stays unchanged until then. Then the idea of the distributed
algorithm is clear: whenever node v has the minimum pv in N+

2 (v), add it to the
set of dominators and let its neighbors know they are dominated.

During the algorithm each node v monitors whether it has the minimum pv in
N+

2 (v). If so, v declares itself a dominator and informs its neighbors, who then
mark themselves as covered. A node becoming covered may affect the prices of
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its neighbors, as the prices depend on the number of uncovered neighbors. The
algorithm terminates when all nodes are covered.

Each uncovered node v monitors the weights of the nodes in N+(v) and votes
for the neighbor with the lowest price. If some node receives votes from all of its
uncovered neighbors, and there is at least one of those, it has the lowest price
in N+

2 (v) and may therefore declare itself dominator.
To reduce the number of messages, when u votes for v, it also informs v of a

limit; the vote is valid as long as the price of v does not exceed the limit. When
u votes, it votes for the neighbor with the lowest price and sets the limit to that
of the neighbor with the second-lowest price. If v raises its price above the limit,
it will notify u so that u can decide again which node to vote for.

As a technical point, nodes only inform the nodes that are currently voting
for them about price updates. If a node receives a vote with a limit that is lower
than the current price of the recipient (e.g., if the voter has old information
about the price of the recipient), then the recipient will reply by informing the
voter of its current price.

4.2 Voting Scheme

We now describe the distributed implementation given in Algorithm 3. Each node
v keeps a tuple NLu = (id,weight, degree, span, limit, notify) for each u ∈ N+(v),
which together form the neighbor list NL, where id = u, degree is the degree of
u, span is the number of uncovered nodes in N+(u), limit is the highest price
limit received in any vote from u for v, and notify is a boolean variable which
indicates whether u needs to be notified of a change in the price of v. The list
is kept in increasing order of price, where ties are broken using node identifiers.
Additionally, v maintains a set U(v) ⊆ N+(v) of uncovered neighbors, a set
D(v) ⊆ N+(v) of neighbors that have become dominators, and a set S(v) ⊆
N+(v) of supporters of v, i.e., neighbors that are voting for v.

Initially, NLu = (u,wu, δu, δu + 1, 0, false) for all u ∈ N+(v), where δu is the
degree of u, and v calculates its price pv = wv

δv+1 . Node v also initializes D(v),
S(v) and U(v) accordingly. After receiving an initialization message, node v
votes for the node at the head of the list NL. We denote the kth entry of the list
by NL(k), where 1 ≤ k ≤ |N+(v)|. So v sends the message VOTE(limit) to the
node with id NL(1)[id], say u, where limit = pNL(2)[id]. Note that |N+(v)| > 1
because G is connected. When u receives the vote, it first checks whether the
vote is valid, i.e., it checks whether limit ≥ pu = wu

δu+1 . If it is valid, u records v
entering its set of supporters S(u) and stores the limit value in its local neighbor
list. If v and u are the same node, node v performs exactly the same changes in
its own neighbor list without transmitting the message.

Whenever v receives a valid vote or if one of its neighbor was covered, it checks
whether there is at least one uncovered node in N+(v) which also votes for v.
If so, i.e., if S(v) = U(v) and |S(v)| > 0, then v declares itself dominator and
informs all its neighbors with a DOMINATOR(N(v)) message. It includes the
ids of its one-hop neighbors to let each recipient u ∈ N(v) update its own price
based on the number of nodes in N+(v) ∩N+(u) that were covered by v.
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initially :
D(v) ← ∅; U(v) ← N+(v); S(v) ← ∅; NL ← ∅
for all u ∈ N+(v)

NL ← NL ∪ (id: u, weight: wu, degree: δu, span: δu + 1, limit: 0, notify: false)
schedule price update timer() after T1 seconds
cast vote() after T2 seconds

if v receives VOTE(limit) from u
if (NLv[weight]/NLv[span] < limit) // vote is valid

S(v) ← S(v) ∪ {u}
if (NLu[limit] < limit) NLu[limit] ← limit
if (check all covered and voted()) declare myself dominator()

else send PRICE(NLv[span], v ∈ U(v) ? UNCOVERED : COVERED) to u

if v receives PRICE(new span, new state) from u // (either overheard or unicast)
old first ← NL(1)
if (u ∈ U(v) and new state == COVERED) // u informs of becoming dominated

U(v) ← U(v) \ {u}
NLv[span] ← NLv[span] − 1
for all w ∈ S(v) do

if (NLw[limit] < NLv [weight]/NLv[span])
NLw[notify] ← true
S(v) ← S(v) \ {w}

NLu[span] ← new span
if (v /∈ D(v) and check all covered and voted()) declare myself dominator()
else check and terminate()
if (v ∈ U(v))

if ( old first != NL(1)[id] or (old first == u and message was unicast))
cast vote ()

if ( old first == NL(1)[id] and old first == v)
NLv [limit] ← NL(2)[weight]/NL(2)[span]
if (check all covered and voted()) declare myself dominator()

if v receives DOMINATOR(N(u)) from u
D(v) ← D(v) ∪ {u}
NLu[span] ← 0
if (|U(v) \ N+(u)| < NLv[span])

NLv[span] ← |U(v) \ N+(u)|
for w ∈ S(v) with NLw[limit] < NLv[weight]/NLv[span]

NLw[notify] ← true
S(v) ← S(v) \ {w}

if (v ∈ U(v))
for all w ∈ N(v) \ (N+(u) ∪ D(v)

)
send PRICE(NLv[span], COVERED) to w
NLw[notify] ← false

U(v) ← U(v) \ N+(u)
if (v /∈ D(v) and check all covered and voted()) declare myself dominator()
else check and terminate()

Algorithm 3. Distributed MWDS as executed by node v
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void function cast vote() at v
limit ← NL(2)[weight]/NL(2)[span]
if (NL(1)[id] 	= v)

send VOTE(limit) to NL(1)[id]
else

NLv[limit] ← limit
S(v) ← S(v) ∪ {v}
if (check all covered and voted() and v /∈ D(v))

declare myself dominator()

void function declare myself dominator() at v
D(v) ← D(v) ∪ {v}
U(v) ← ∅
for all u ∈ N(v)

send DOMINATOR(N(v)) to u
NLv[span] ← 0
stop price update timer()
check and terminate()

bool function check all covered and voted() at v
if (S(v) = U(v) and |S(v)| > 0) return true
else return false

void price update timer() at v
for all u ∈ U(v) with NLu[notify] == true

NLu[notify] ← false
if (NLu[limit] < NLv[weight]/NLv[span])

send PRICE(NLv[span], v ∈ U(v) ? UNCOVERED : COVERED) to u
if (v /∈ D(v)) schedule price update timer() after T1 seconds

void check and terminate() at v // test for local termination, perform convergecast
if (U(v) = ∅ and all child nodes in spanning tree have reported weight of their subtree
for current GK iteration)

send terminate message to parent, include sum of weights of local tree branch

Algorithm 3. (Continued)

If v receives from u an invalid VOTE(limit) (with limit < pv), then v replies
with PRICE(span, state), informing of its current span and cover state instead
of recording the limit for u. The set S(v) remains unchanged in this case. When
receiving the reply, u updates the span and state for v in its local memory. This
update may initiate a price update to be transmitted by u if v indicated it is
covered but v ∈ U(u) prior to receiving the price update from v.

When the price of a node v changes because the number of uncovered nodes
in N(v) decreases, v goes through its set of supporters and sets the notify flag
for those nodes u �= v that are required to leave S(v) because v’s price just
exceeded the limit NLu[limit] < pv. To these neighbors v later sends a price
update PRICE(span, state).
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Upon receiving a price update, each uncovered node v checks whether the
lowest-price entry NL(1) has changed. Let u be the neighbor with the former
lowest entry and let u �= v. If it has changed, i.e., if u �= NL(1)[id], then v sends
a vote to the new best entry as described above. If it stayed the same and if the
price update message originated from u, then v sends a new vote to u with a
–now larger– limit value than previously and thus reenters S(u). If u = v, then
v records the new limit value for NLv.

If a node v receives a DOMINATOR(N(u)) from node u and if v was previ-
ously uncovered, it sends a message PRICE(span, state), where state = covered,
to all neighbors in N(v) \ N(u) that are not marked as dominators in D(v),
independently of their limit value.

Communication Complexity. Assuming fixed-length fields for node identi-
fiers, weights, and number of neighbors, the communication complexity of the
distributed algorithm is O(|V |∆2). The price of a node can change at most ∆+

times. Each price change can trigger at most ∆ price updates, each of which may
require sending one vote. So the total number of vote and price update messages
is O(|V |∆2), each of constant size. At most |V | nodes may become dominators.
Each dominator sends at most ∆ dominator messages to inform its neighbors,
and each dominator message contains information on at most ∆ neighbors.

4.3 Practical Considerations

One advantage of wireless networks is their broadcast nature. As a further im-
provement, we let nodes overhear price updates sent between neighbors. Fur-
thermore, the length of network-interface queues is typically limited. To prevent
packet drops due to buffer overflows, instead of sending price updates immedi-
ately the neighbors are marked for notification, and marked nodes are notified
periodically. We study the effect of the price update interval by experiments.

5 Experimental Evaluation

We evaluate our algorithm in two parts. After generating a number of test in-
stances, we first use Matlab to compare the actual performance of the algorithm
with the theoretical guarantee and to compute the number of GK iterations re-
quired. After that, we simulate our distributed algorithm with ns2 to verify the
correctness of our algorithm and to determine the number of messages required.

5.1 Performance Evaluation of the Centralized GK Scheme

We generated a set of 20 disk graphs by scattering 150 nodes onto square areas
of various sizes uniformly at random. Connectivity was determined by the ns2
default transmission range. We varied the average node density by changing the
size of the area and discarded disconnected graphs.

Figure 1(a) shows the performance for different ε compared to the approxi-
mation bound using the upper bound on network lifetime δ+. One observes that
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Fig. 1. The x-axis shows the expected node degree on a logarithmic scale disregarding
terrain boundary effects; a) also shows the bound for the approximation factor

the total lifetime is close to its upper bound and the algorithm performs bet-
ter than what one might expect from the approximation guarantee. Figure 1(b)
shows the required number of iterations for the same set of instances. In all plots
errorbars show the standard deviation over a set of 20 instances.

5.2 Network Simulations

We implemented the combined distributed algorithm of Sections 2.3 and 4 as a
routing agent in ns2 and consider the number of control messages and simulated
termination time for the same network instances used in the Matlab experiments.
Additionally, we evaluate the effect on the simulated running time achieved by
choosing different values for the length of the price update interval (PUI).

Figure 2(a) shows the number of messages per node per iteration required
for a fixed value of PUI and ε = 0.2. The total number of messages per node
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Fig. 2. Number of messages and second per iteration versus expected node degree;
data on x-axis is shown on a logarithmic scale disregarding terrain boundary effects.
Message Counts also include retransmissions due to collisions.
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generally lies between the maximum and the average degree in the graph. Figure
2(a) also shows the number of messages split according to type. The price update
messages have the largest contribution to the number of messages, followed by
votes and dominator messages. Figure 2(b) shows the average duration of a
single iteration of the algorithm for different lengths of PUI. One observes that
the actual value of PUI generally has a minor effect on the average duration of
a single iteration of the GK scheme, particularly when the network is dense.

6 Conclusions

We present a distributed approximation algorithm for the sleep-scheduling prob-
lem based on the Garg-Könemann scheme and linear programming duality. A
key component of the algorithm is our efficient distributed implementation of
Chvátal’s greedy set-covering algorithm. The set-covering problem is a central
combinatorial problem and we believe our implementation to be useful also in
other problem settings; moreover, the LP duality technique used to obtain local-
ity may be useful also for other problems. Our algorithm is based on a mathe-
matical framework that provides a guarantee on the solution quality. Moreover,
our simulation results suggest that the algorithm also performs well in practice.
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Abstract. The emergence of large-scale distributed applications based
on many-to-many communication models, e.g., broadcast and decentral-
ized group communication, has an important impact on the underlying
layers, notably the Internet routing infrastructure. To make an effective
use of network resources, protocols should both limit the stress (amount
of messages) on each infrastructure entity like routers and links, and
balance as much as possible the load in the network. Most protocols
use application-level metrics such as delays to improve efficiency of con-
tent dissemination or routing, but the extend to which such application-
centric optimizations help reduce and balance the load imposed to the
infrastructure is unclear. In this paper, we elaborate on the design of such
network-friendly protocols and associated metrics. More specifically, we
investigate random-based gossip dissemination. We propose and evalu-
ate different ways of making this representative protocol network-friendly
while keeping its desirable properties (robustness and low delays). Simu-
lations of the proposed methods using synthetic and real network topolo-
gies convey and compare their abilities to reduce and balance the load
while keeping good performance.

1 Introduction

We have observed a major paradigm shift in distributed computing over the last
decade, with the emergence of many large-scale and widely distributed applica-
tions based on the peer-to-peer (P2P) paradigm, such as BitTorrent or Skype.
These applications rely on overlay networks that connect participating nodes via
application-level communication links. While these links may be built while con-
sidering application-level quality of service metrics, usually their construction
does not consider their impact on the underlying support infrastructure itself
as a primary goal. Given the prevalence of P2P traffic in today’s Internet, it
is important to understand the impact of protocols that are not aware of the
underlying network, and develop solutions to minimize their traffic. This impact
can be measured in two main ways: what is the stress imposed on each compo-
nent of the infrastructure (routers, links), and how is this load balanced over all
such components?
� This work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fel-

lowship Programme.
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Some P2P protocols try to build efficient peering relations using application-
level measurements, such as the round-trip time (RTT) obtained by ICMP mea-
surements, e.g., as performed during the construction of routing tables in the
Pastry distributed hashtable [22]. These techniques are used mostly to enhance
the performance as experienced by the user, by reducing communication delays,
but it remains unclear whether this approach is really effective at reducing the
burden on the network. That is, preferring low-delays routes does not necessarily
lead to using shortest paths and it tends to saturate low-delay links and associ-
ated routers. Therefore, the length of the communication paths, i.e., the number
of traversed routers, is a better indicator of the stress on the infrastructure (a
long path obviously loads the network more than a short one). This information
is not, however, readily available to the application.

In this paper, we study the problem of network-friendly P2P communication.
We focus on gossip-based dissemination protocols, because they are very simple
yet extremely robust, they are highly dynamic by nature and rely on random
interactions with a set of neighbor peers that changes over time, and they are
perfectly adapted to large-scale decentralized systems. Most importantly, clas-
sical gossip-based protocols are not particularly friendly with the infrastructure
(notably because they select random peers to communicate with) and thus they
represent good candidates to illustrate our approach.

In order to make gossip-based dissemination more usable, we propose network-
friendly gossip protocols that can use various metrics for selecting, in a semi-
random manner, application-level communication links between peers. The ob-
jective is to reduce the impact of the dissemination on the infrastructure while
keeping good performance. These protocols are based on network-aware peer
sampling services and use a combination of push- and pull-based gossiping. We
specifically consider metrics based on delay and path length on different topology
models, both synthetic and real-world. We study the efficiency of the protocols
in terms of performance of dissemination and load distribution. As such types
of protocols are lightweight in terms of bandwidth consumption (their primary
usage is the robust dissemination of small messages or meta-information with
sizes in the order of kilobytes), we do not consider the cap bandwidth of links
nor the usage of available bandwidth as being potential sources of bottlenecks
in the system.

Related work. A first approach to network awareness consists in introducing a
bias in the selection of peers in a peer-to-peer system by leveraging ISPs’ knowl-
edge of their infrastructure [3]. The ISP proposes an oracle node which, given
a list of IPs, returns this list sorted in decreasing order of network friendliness
(as determined by the ISP). While this solution is appealing because it allows
more knowledge and control by the infrastructure, in particular regarding the
peering relations of the ASes, it is unclear whether ISPs are willing to deploy
such services in the near future.

There exist other application-level solutions like ours. Synthetic coordinates
have been proposed to model the delay and the load associated with traffic
in a content delivery network [4]. Although this approach allows the network to
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balance the load on the peers and on the routers, it is only helpful for long-lasting
communication patterns with non-fluctuating bandwidth and its applicability to
gossip-based dissemination is unclear. The contribution of this paper focuses
on protocols where no stable communication patterns between peers can be
leveraged, yet the load has to be reduced and balanced on the infrastructure.
Here, bandwidth is not the primary concern, but the presence of a multitude of
lightweight operations that, summed up, can represent a considerable load for
the network. Knowledge about the network layer structure can also be used to
perform various application-level optimization [23] (e.g., balancing the routing
load by mapping the routes in the overlay onto those in the infrastructure,
or recovering faster from failures). Such knowledge is, nonetheless, not readily
available to the application nor easily exploitable in a decentralized manner.

Roadmap. We first present the basic gossip-based dissemination and member-
ship management protocols in Section 2, as the context for the presentation of
our solution. We then elaborate in Section 3 on the tools required for network
friendliness. In Section 4 we present variants of gossip-based dissemination, from
complete unawareness of the underlying infrastructure to network-friendly solu-
tions. We evaluate the resulting protocols in Section 5, in terms of performance
and impact on the network using various topologies. Finally, we conclude in
Section 6.

2 Gossip-Based Protocols

Gossip-based protocols, also known as epidemic protocols, are a class of fully de-
centralized protocols that are particularly adapted for implementing self-organi-
zing behaviors in dynamic networks. They were first introduced in the context
of database synchronization [9] and they have since received considerable at-
tention, mostly due to their ability to support large scale information systems
with a simple, yet efficient and robust approach. They rely on periodic, pairwise
exchanges of small-size state information between peers. Their scalability stems
from the balance of communication amongst peers, and from the fact that each
node only needs to know a small part of the network, which is usually called its
view. Periodically, each peer chooses one other peer in its view to perform an
information exchange. The nature of this information, as well as the result of
the exchange (i.e., what information is exchanged and what is eventually kept
on each side), defines a gossip-based protocol. The following algorithm presents
the abstract operation of the protocol at each peer:

Each node runs both an active and a passive thread. The active thread on
a node na periodically selects from the local view a partner nb to gossip with
by using the selectPartner() operation. The data sent by na to nb is de-
termined by the means of the selectToSend() operation. The passive thread
on node nb receives this information, merging it into its own state (by us-
ing the selectToKeep() operation), and optionally sends back some data to
na, which may in turn update its state. Note that while selectToSend() and
selectToKeep() operations are most often the same for both the passive and
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// Active thread: periodically
send gossip request (na)

nb ← selectPartner()
bufsend ← selectToSend()
send bufsend to nb

receive bufrecv from nb

view ← selectToKeep()

// Passive thread: reply to
incoming gossip request (nb)

receive bufrecv from na

bufsend ← selectToSend()
send bufsend to na

view ← selectToKeep()

active threads, this is not mandatory: for instance, the selection of elements to be
sent back can be based on different policies for the active or the passive threads.
The size of the state is usually of bounded size, and it often consists of the view
itself. These protocols can be used for a variety of tasks [18] (e.g., computing
aggregates of distributed values [17, 21], failure detection [24] or group manage-
ment [14]). We present here their use for application domains relevant for this
paper: membership management, clustering and dissemination.

Creating random overlays. We first discuss peer sampling [15] protocols. Their
objective is to create, for each peer, a view composed of peer samples drawn
randomly from all peers in the network. The resulting graph, when considering
bounded view sizes, is close to an Erdös-Rényi random graph [10].

Cyclon [25] is an example of a peer sampling protocol. It operates on a view
of c peers. Each node na periodically exchanges a subset of its view, plus its own
identity, with the peer nb from its view that was contacted the least recently
(selectPartner()). The result of the exchange is that links from na to this
subset are shuffled with the links received from nb, in such a way that peers
keep the same in-degree.

A simple addition [19] to a peer sampling protocol such as Cyclon allows us
to estimate the size of the system at each peer, an information that can be
fundamental to many distributed algorithms. Random identifiers are assigned
to nodes and then hashed into a key space; next, collecting the closest hashes
around na’s identifier and considering their density, one can obtain a sound
estimation of the network’s size with a very limited overhead.

Emerging structure. The second and more general kind of view management
protocols construct overlays whose structure emerges in a totally decentralized
fashion (e.g., distributed hashtables [20] or semantic overlays [26]). T-Man [13]
and Vicinity [26] are two generic protocols for expressing emerging structures.
Both operate on the same principle. Each node constructs a view, usually of fixed
size t, that satisfies some constraints expressed as functions over the neighbors
characteristics. The goal is to make views evolve towards a set of peers whose
“sum of desirability” is the highest possible, as defined by a proximity function.
selectPartner() selects a partner node np in the view (e.g., the least recently
contacted peer) and selectToSend() picks a subset of the view (e.g., by choos-
ing nodes with the lowest proximity scores w.r.t. np). selectToKeep() simply
merges the received elements with the local view, sorts the nodes according to
the proximity function, then keeps the first t elements.
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Gossip-based dissemination. The most common use of gossip is arguably for
information spreading [16,6,11]. The information spreads much like an epidemy
in a human population. We distinguish two types of pairwise contaminations
between an “infected” and a “non-infected” node: by push and by pull. In a push
model, a node that receives a message for the first time sends it during the next
round to f other peers. The message is tagged by a hops-to-live (htl) value, which
is decreased at each peer encountered; the message is no further propagated if htl
reaches 0. A pull operation is a periodic request sent by an active thread on node
na and handled by a passive thread on node nb. Node na sends its set of message
identifiers (selectToSend()) to node nb, which sends back the messages that na

is missing. Note that pull requests can be piggybacked on top of existing gossip-
based messages such as the ones used for membership management. A push-
only dissemination protocol reaches all nodes in the network w.h.p. in O(logN)
rounds if f = O(logN). The nodes that have not been infected by a push
operation can later obtain the message by pull requests. As such, a dissemination
protocol combining synchronous push and pull operations exhibits a two-phase
scenario. First, the number of infected nodes follows an exponential growth;
then, as the probability to infect virgin nodes by a push operation decreases, the
number of virgin nodes decreases in a quadratic manner. The dissemination in
the first phase is mostly due to pushes, while the second phase relies essentially
on pulls [6].

3 Network Friendliness

We define network friendliness as the ability of a protocol to limit and balance
the load it imposes on the elements of the network upon which it operates. In
this section, we elaborate on the facilities, available to the protocol designer,
that we will use for making gossip-based dissemination network friendly.

We consider a network composed of multiple entities (autonomous systems or
ASes, each composed of multiple routers), in which a communication between
two nodes follows a path of routers: na → ra → ...ri... → rb → nb, where
ra, ri, ..., rb belong to the set of all routers R. A message of size m between
na and nb loads each router on the path by m. Network friendliness aims at
(1) reducing the overall load on all routers, i.e.,

∑
r∈R load(r) and (2) balancing

the load on each router, reducing the differences between load(r) for all r ∈ R.
Intuitively, one can approach both objectives by preferring short routes and using
routers that lie in the vicinity of na and nb (e.g., in the same AS). It is clear that
randomly selecting communication partners will lead to configurations that are
far from network-friendly, with actual message paths that unnecessarily traverses
routers over several continents. We now present the two main metrics that are
available to an application for choosing nearby communication partners: using
the delay as an estimation of the route size, or discovering the actual route size
by lightweight probing of the IP network. We will use both these metrics in our
network-friendly solution presented in Section 4.
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Algorithm1. Lightweight probing of path length using the TTL field in IP messages
(left). Route sizes distribution for 610 PlanetLab [1] nodes (right).

Application level round-trip times (RTT). The first metric, which is also the most
commonly used (e.g., when constructing routing tables in Pastry [22]), is the time
required for a message to go from a node na to another node nb, estimated as
half the round trip time of a small packet exchanged between na and nb (RTT).
The RTT can be measured either at the application level, which can benefit from
pre-established connections, or by using the ICMP layer (ping). Note that this
metric is usually leveraged for enhancing the application performance, not for
improving network friendliness. While the relation between low delays and low
path length may seem intuitive, it is interesting to investigate whether using the
RTT estimation for path lengths achieves the best possible network friendliness.

Routes lengths. The knowledge of route lengths is usually a metric that is avail-
able to the infrastructure manager only, i.e., the Internet service provider (ISP).
In the general case, when collaboration between the application and the ISP [3]
is not available, it is necessary to probe the network for retrieving this informa-
tion. The traditional way of discovering a route (and hence determine its length)
is to use the traceroute tool. This poses two problems: (1) this tool requires
administrator rights, which is not desirable for an application and (2) its load is
quite high as it obtains additional information (e.g., the name and addresses of
all routers in the path) that are not needed in our context.

We use instead a lightweight mechanism to obtain route length at the appli-
cation level, using regular ICMP packets. Every packet sent from a node na to
another node nb contains a TTL field. On each router ra, ri, ..., rb, IP specifies [7]
that the TTL is decreased by the number of seconds the message has passed onto
the router, or by one if this time is less than a second. Obviously, the latter
case largely dominates in today’s Internet, that is, it is safe to consider that on
each router the TTL is reduced by 1. Messages that reach TTL 0 are dropped. It
follows that a probe message sent with TTL x will only reach its destination if
|ra, ri, ..., rb| ≤ x. The lowest necessary TTL t for successfully probing nb from
na thus indicates the path length from na to nb. Algorithm 1 presents a simple
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dir ← u(cb − ca)
mv ← ||ca, cb||
diff ← mv − mr

δ ← max(δ , δ − δ )

ca[i] ← ca[i] + dir[i] ∗ diff ∗ δ

mv

mr

dir
na

nb

Algorithm2. Vivaldi network coordinates update

method to determine t. This algorithm uses a divide-and-conquer approach to
determine the lowest TTL for a message to reach its destination. The expected
median value of the TTL is T which, properly set, allows for faster probing but
this is not a requisite. The expected number of sent probes is O(log2 T ). We
tested this algorithm by discovering the path lengths between all nodes-pair in a
set of 610 worldwide nodes on PlanetLab [1]. The method successfully detected
all route lengths, in most cases within 5 message exchanges (T was set to 15).

The use of the TTL field in TCP packets for discovering infrastructure charac-
teristics without relying on tools such as traceroute has been successfully used
in a different way by the Recursive Packet Train (RPT) method [12], whose
goal is to discover bottlenecks (i.e., links that are limiting the overall bandwidth
offered by the route) in the path between any two Internet end hosts.

Network coordinates. An overlay substrate for gossip-based dissemination is
likely (and willingly) dynamic. It is contrary to the objective of network friend-
liness, and particularly to the reduction of the load, to have each single peer
probe any possible neighbor node it encounters. It is not necessary either to
use perfect measurements (especially if the act of performing them produces as
much load as they were meant to avoid). An appealing technique for reducing
measurements is to use network coordinates [8]. The idea is to embed all nodes
in a metric space of moderate dimensionality,1 such that the distance between
the points representing two nodes in this space provides a good estimate of the
metric (delay or route length). Each node “bootstraps” its coordinates by eval-
uating the metric with a set of landmark nodes. The evolution of coordinates is
similar to that of a spring-mass relaxation system: the goal is to reduce, gradu-
ally, the differences between the predicted and experienced metrics. Algorithm 2
details the coordinate update of a node na, after probing the peer nb chosen by
selectPartner() for the exchange (in case of delays, this probing is done using
application messages, while for path length an explicit probing is needed). Node
na knows its coordinate, ca, and the coordinate of nb, cb. The actual measure
is mr while the estimate mv is given by ||ca, cb|| (distance between na’s and
nb’s coordinates). The difference between mr and mv is compensated by slightly
moving na’s coordinate, covering part of the difference between the estimate and
1 We use 5 dimensions, as it represents a good tradeoff between the accuracy of the

estimations, and associated computational costs and convergence times [8].
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the measurement. Note that the whole distance between ca and cb is not compen-
sated, in order to avoid oscillations of coordinates. The portion of the difference
is given by δ, which is moderate for the first adjustments (we use δ = 0.1) and
decreases down to its minimum value as the node converges towards its “ideal
coordinate” for each exchange (we use δdecr = 0.005 and δmin = 0.05). The initial
setup is done by probing 20 landmarks.

4 Network-Friendly Gossip-Based Dissemination

This section describes the design of network-friendly gossip-based dissemination
protocols, based on the building blocks that have been presented in the previous
sections. We first discuss the limited push approach, intended to reduce the load
of useless duplicate messages, then describe the creation of the support overlay,
and finally elaborate on the various dissemination scenarios.

Limited push. Gossip-based push propagation reaches all N nodes in the network
w.h.p. in O(logN) rounds if the fanout f = O(logN). During dissemination the
number of messages sent by push grows exponentially, and so does the num-
ber of duplicates (messages received more than once), because the probability
of reaching an already infected node increases. Figure 1 presents the behavior
(simulated, and averaged over 1,000 runs on a 100,000 nodes network) of a push-
only dissemination, in terms of coverage and redundancy. We observe that close
to 100% coverage is achieved with f = 4 and htl = 8 but much higher values of
f and htl are required to ensure that all peers get all messages. Yet, the number
of duplicates is extremely high even with f = 4 and htl = 8, which is contrary
to our objective of network friendliness.

We thus propose to combine push and pull in the following way. An initial,
limited push seeds the network, leveraging the initial exponential growth phase,
but stops before yielding many duplicates. Periodic, lightweight pull messages
are then used to disseminate the message to all peers. The values of f and htl
have to be set properly to reach a certain proportion (e.g., 10%) of the network.
Obviously, these values depend on the size of the network, an information that is
not known to the peers directly, but that can be calculated by a simple mecha-
nism [19] on top of membership management messages. As the desired coverage
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Fig. 2. Peer selection strategies. Dotted circles represent close views. Solid lines corre-
spond to pushes and dashed lines to pulls.

is small enough for not having duplicates, the number of nodes touched by a push
can be estimated as

∑htl
h=0 f

htl. Since f is fixed, a node ni issuing a new message
uses the htl value that best approximates the desired coverage (almost 10% in
our experiments). Alternatively, different push messages can be initiated by ni,
with different htl values for getting closer to the target coverage.

Construction of the support overlay. Gossip-based dissemination relies on some
randomness in the peer samples available at each node. We call the set of peers
constructed by regular sampling “random peers”, gathered in the “random view”.
These views are constructed using Cyclon [25]. Moreover, we use the T-Man pro-
tocol [13] along with Vivaldi coordinates [8] to construct a set of close peers, called
the “close view” at each node. Both Cyclon and T-Man use views of size 20, and 8
peers are exchanged at each cycle. The proximity function between a node na and
a potential neighbor ni is the distance between their coordinates (based on delay
or route length). Obviously, the overlay composed of only close peers is not likely
to be connected (e.g., all peers from the same institution will form a separate over-
lay), thus both views are necessary to ensure dissemination termination and we
need to use appropriate peer selection strategies, as discussed next.

Peer selection strategies. Classical gossip-based dissemination [16, 6, 11] uses
random partner selection for both push and pull. Instead, we choose to use
two selectPartner() operations, depending on whether the transmission of
information is by push (i.e., finding a partner to send data to) or by pull (i.e.,
finding a partner to ask data from). Each selection can be made in any of the two
views (of random or close neighbors), yielding thus four possible strategies. An
important point is that a push message is of a greater size than a pull request:
the former contains the epidemic message, while the latter only contains a digest
of the epidemic messages the requesting node already holds (e.g., a Bloom filter).

The push-close/pull-close strategy can be dismissed right away: the clustering
madeby the selection of close peerswillmost likely produce non-connected overlays
which, lacking random links, cannot preserve robustness nor ensure termination.
The push-random/pull-random (RR) strategy, depicted in Figure 2(a), refers to
“classical” gossip without close view. It imposes the highest load on the network,
as arbitrarily long routes are used. Nonetheless, its performance is expected to be
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good as the network is uniformly seeded by the limited push, and the probability
to touch an infected node by pull requests does not depend on the position of the
requester in the network. The two network-friendly strategies are push-close/pull-
random (CR) and push-random/pull-close (RC), shown respectively in Figure 2(b)
and Figure 2(c). CR seeds by limited push the vicinity of the initiator ns. This
increases the risks of duplicates in ns’s vicinity but presents the advantage of us-
ing short paths for the push phase. Intuitively, the better strategy is RC: ns pays
the price of seeding remote nodes through long routes, and these nodes are then in
charge of propagating the message by pull requests to their vicinity, using smaller
routes. However, if no node has been touched by push in a cluster of nearby nodes
(possibly not connected with the rest of the networks by their close views), RC may
produce large delays for message delivery, or even lead to some messages not being
delivered at all. To avoid this scenario, we force RC to sometimes select a random
partner for a pull request (with 5% probability).

5 Evaluation

We evaluate metrics and strategies for network-friendly gossiping by the mean
of simulations of both the application layer and the network layer. Our discrete
time simulator considers the network as a set of routers and links between them.
Each application node is attached to a router, and messages follow the shortest
path in the network in terms of the sums of delays for all traversed links. We
chose to use simulation rather than a deployment for being able to compare
inter-router delays and routes lengths w.r.t. the ones estimated by Vivaldi at the
application layer. Each application node runs the Vivaldi coordinates system, a
Cyclon peer sampling service, our route length measurement algorithm, a T-
Man protocol for clustering nodes in local views according to the chosen metric,
and the dissemination protocol. To allow for a fair modeling of Vivaldi and the
associated estimation error, delays on each link are subject to a ±10% variance.

Topologies. We use both synthetic topologies representing classical network mod-
els found in the literature, as well as a real topology model collected from a
university network. All topologies are composed of 651 routers to match the size
of the real one. Their characteristics are presented in Figure 3: (i) distribution of
route sizes (bottom); (ii) dispersion of routes lengths for each route size (scatter
plot on top), as well as the evolution of the distribution of delays for each route
length for the real topology.

Synthetic topologies are helpful for understanding the behavior of network
friendly gossiping in various well-studied graphs models. We use 4 different syn-
thetic topologies that are representative of global characteristics of real networks,
and that are the most commonly used for modeling these networks character-
istics. Unless explicitly noted, all links between routers have a delay of 50 ms
±10%.
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Fig. 3. Characterization of the five topologies

Fig. 4. Synthetic topologies

Figure 4 illustrates the character-
istics of synthetic topologies. (1) The
“random/balanced” topology links
routers in an Erdös-Rényi random
graph [10], each router being linked
to two other routers drawn at ran-
dom. This topology has a low clus-
tering, low diameter and a balanced
distribution of in-degrees. (2) The “scale-free” topology is representative of
networks where central elements are acting as hubs in the network, e.g., the
main routers in each linked institution on a campus. It uses a preferential
attachment incremental construction (Albert & Barabási [5]): each link con-
structed from a router r has a probability to target a router rd that is
proportional to rd’s current in-degree. This topology presents a high clus-
tering and a low diameter, and a sparse distribution of in-degrees. (3) The
“small-world” topology is built according to the shuffling model of Watts
& Strogatz [27]: starting with a ring composed of all routers (each router
being linked to its two neighbors in the ring), randomly chosen links are
shuffled and directed to random routers, creating shortcuts. This topology
presents a high clustering, low diameter and balanced in-degrees. (4) The “ran-
dom/sparse” topology is similar to the random/balanced one, but links are
assigned highly varying delays: 50 ms -75%/+150%. As can be observed in
Figure 3, this topology presents a high dispersion of delays for a given route
length. The random/balanced and random/sparse topologies can be considered
as the two extreme cases for this study. In the former, using delays as a metric for
deciding on low-length routes is likely to succeed most often, while for the latter
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Fig. 5. Distribution of the number of cycles required for receiving the first message

it is not. (5) Finally, our last topology, “UIUC laboratory”, is part of a set of
real Internet topologies [2] that were produced by collecting BGP routing maps
and benchmarking inter-router delays. This topology corresponds to a large local
area network on a university campus, composed of 448 pure routers, 203 routers
and attachment points, connected by 8,486 links.

Experimental setup. Each experiment involves 10,000 nodes randomly distributed
over routers. We measure the time used for propagation in cycles, that is, the cy-
cle period of all gossip-based protocols. As we assume that Vivaldi coordinates
are bootstrapped (e.g., provided by an external service), we let the system run
for 200 cycles to let them stabilize using a set of 20 landmarks nodes, before
the actual gossip-based dissemination (push and pull) takes place. 500 messages
from random initial peers are then published, each of size 10kB, and the sim-
ulation stops when all peers have received all messages. We monitor the loads
on routers only during the dissemination phase. The parameters for the push
dissemination are fpush = 3 (fanout) and htl = 6, which seeds 10% of the nodes.
The dissemination is done synchronously with the cycles (a node that receives a
message m forwards it to fpush other random peers during the next cycle, when
it also sends 1 pull request).

Time efficiency of the dissemination. We first evaluate the impact of network-
friendly gossiping strategies on the actual performance of the dissemination, i.e.,
if the number of cycles required to notify a given percentage of the network
varies. Figure 5 shows the distribution of the number of cycles required, by the
means of percentiles. The 50th percentiles (mid-shaded grey) is the median value.
The dissemination takes up to 9 or 10 cycles, and half of the nodes receive the
message within 4 or 5 cycles. We observe that using network-friendly gossiping
has a small positive impact on the dissemination delays, which is slightly more
important when using RC. This conveys the fact that our protocols can reduce
the load without affecting dissemination efficiency.

Impact on the load at each router. We evaluate the impact of our strategies
on the load imposed on each router in the network, both in terms of number
of messages and bandwidth. The first criterion is important as a longer path
stresses more routers for every connection established and message sent along
that path, while the second criterion represents the actual routing load at each
router and is a fundamental concern to ensure true network friendliness.
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Fig. 6. Distribution of load on all routers: (a) route lengths and (b) bandwidth

Figure 6(a) presents the distribution of the route lengths, for all routes used
during one simulation, regardless of the size of the message. We observe that,
as expected, the CR strategy produces nearly as much load as RR in terms of
number of messages on the routers, as the pull requests largely dominate. Using
the number of hops as a metric instead of the delays yields better results in
all cases, but this is more noticeable in the random/sparse scenario due to the
mismatch between both metrics.

Figure 6(b) presents the distribution of bandwidth on all routers, for all mes-
sages sent during one simulation. 500 messages of size 10kB are sent, with pull
requests and empty replies of 50 bytes. Note the logarithmic scale for the or-
dinates. We observe on all topologies that the RC strategy greatly reduces the
amount of data imposed on each router. Moreover, it appears clearly that the
CR strategy is not very efficient with respect to bandwidth because messages are
much bigger than pull requests. We also observe that RC is able to reduce not
only the load on all routers, but also the difference between the median and the
maximal load in all cases. Finally, in the random/sparse topology with the RC
strategy, the load is much lower when using the number of hops as a metric rather
than the delay, highlighting the benefits of the former metric for infrastructures
where there is no clear matching between path lengths and delays. Note that this
matching can be tested online by the protocol itself, by comparing measures of
path lengths and delays between random pairs of nodes, and switching to actual
route length measurements when necessary.

Experimental results summary. The experiments conducted and presented in
this section bring three main observations. First, using infrastructure-awareness
for gossip-based dissemination protocols does not impact the performance (de-
lays and coverage) of the diffusion, and that regardless of the metric used for
implementing the network awareness. Second, the best policy for ensuring the
completion of the dissemination in a short time with no or very few duplicates
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reception and an overall short dissemination delay, is Random/Close (RC). The
principle of RC is to seed the network by an initial set of random limited push
operations, followed by pull operations that use close links for the majority of
the exchanges. Finally, the best results achieved for reducing the load on the
infrastructure are obtained with the same RC policy. Noteworthy, the load re-
duction that can be achieved by using application-level delays/RTT as a metric
for constructing infrastructure-aware links is limited, and is depending on the
correlation between path lengths and delays. This correlation is not necessarily
present in real networks or common synthetic network topologies. Therefore, the
use of the measured route length as a metric for constructing close-links yields
more stable and effective load reduction.

6 Conclusion

We presented network-friendly algorithms for disseminating messages by gossip
on multi-hops networks such as the Internet. By clustering peers that are at short
distances, an important part of the burden usually imposed on the infrastructure
can be avoided, and the remaining load is better balanced amongst routers. It
also appears that using application-level delays as a primary metric for choosing
good (network-friendly) neighbors does not work well on all types of topologies.
Route lengths, which can be determined by a lightweight probing method, can
provide a better metric. As for the gossiping strategies, the best results are
achieved by combining a limited push-based seeding of the network using random
links, followed by periodic pull-based dissemination using short routes. Network
friendliness has no impact on the efficiency of the gossip dissemination itself,
which makes our solution particularly appropriate for real networks.
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Abstract. We study the Black Hole search problem using mobile agents
in three interconnected network topologies: hypercube, torus and com-
plete network. We do so without relying on local storage. Instead we
use a less-demanding and less-expensive token mechanism. We demon-
strate that the Black Hole can be located with a minimum of two (2)
co-located agents performing Θ(n) moves with O(1) tokens, in each of
these three topologies. Then we study the Black Hole search problem
with scattered agents. We show that the optimal number of moves can
be achieved with the optimal number of mobile agents using O(1) tokens.

Keywords: Black Hole, Mobile Agent, Token, Ring, Scattered,
Un-oriented.

1 Introduction

Computational and algorithmic research has just recently started to consider
security issues, mainly in regards to the presence of a harmful host (i.e., a network
node damaging incoming agents) or of a harmful agent (e.g., a mobile virus
infecting the network nodes), see [1,2]. With respect to the computational issues
related to the presence of a harmful host, the focus has been on a black hole (BH),
a node that disposes of any incoming agent without leaving any observable trace
of this destruction [3,4, 5, 6,7,8]. In this paper, we continue the investigation of
the black hole search (Bhs) problem. Our research concern is to determine under
what conditions and at what cost, within finite time, at least one of a team of
mobile agents can survive and know all the links leading to a BH.

Most of the existing investigations on Bhs have assumed the presence of a
powerful inter-agent communication mechanism, whiteboards, at all nodes. In
the whiteboard model, each node has a local storage area where information can
be written and read by the agents (e.g. see [9]). In this research, we investigate
the Bhs in a token model. Communication between mobile agents is consider-
ably more restricted (and complex) in a token model than in a whiteboard one:
information-rich messages written to and read from a whiteboard must instead be
represented using a limited number of tokens. The question then is whether this
additional constraint complicates significantly token-based solutions to the Bhs.
In this paper, we show that is not the case for the following three interconnection
networks: hypercube, torus and complete network. We also answer the following
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question: under what conditions and at what cost is the Bhs problem solvable.
Notice that the use of tokens introduces another complexity measure: the num-
ber of tokens. Indeed, if the number of tokens is unlimited, each information-rich
message of a whiteboard environment can be mapped to a specific configuration
of tokens and thus it is possible to simulate a whiteboard environment. The
question then is how few agents are truly required by a solution to Bhs.

The problem of locating the BH using tokens has been examined in the ring
topology in both cases of co-located agents (i.e., all the agents start from the same
node in the network) [4, 10] and of scattered agents (i.e., the agents start from
different unknown nodes in the network) [7,8]. In [4] it is demonstrated that in
order to locate the BH without whiteboards, O(∆2M2n7) moves suffice with ∆+1
mobile agents and one token per agent.1 Also, a recent solution proposed in [11]
solves the Bhs problem in an arbitrary network with a team of two asynchronous
agents with a map, using Θ(n logn) moves, where n is the number of nodes.
All existing solutions except for [7, 8], solve the Bhs problem using co-located
agents. Here we propose to solve the Bhs problem for some specific network
topologies, hoping to achieve better complexity than for the Bhs problem on
an arbitrary network. We first consider the Bhs problem in hypercube, torus
and complete network using co-located agents. We then study the Bhs problem
in torus and complete network with a group of scattered agents. The scattered
initial locations of the team of agents significantly complicate the solution of
the problem. Yet, we show that for Bhs in these network topologies, the token
model is computationally and complexity-wise as powerful as the whiteboard
model, regardless of the initial position of the agents and of the orientation of
the topology. Also, with specific knowledge of the network, the number of moves
executed by a team of two asynchronous agents can be reduced to Θ(n). The
results hold even without using a map for a team of two agents in a complete
network. In the scattered agents case, we show that the Bhs problem can be
solved in a complete network with O(n2) moves, where n is both the number of
scattered agents and the number of nodes in the network. We then show that,
with 3 scattered agents and 7 tokens per agent, a black hole can be located
with Θ(n) moves in a torus. We also observe that, when the number of scattered
agents in a torus increases, the problem becomes significantly more complicated.
A simple algorithm we develop solves Bhs with k (k > 3) scattered agents, with
O(k2n2) moves using only 1 token per agent.

2 Model, Assumptions and Terminology

Let G = (V,E) denote a simple connected undirected graph, where V is the
set of vertices or nodes and E is the set of edges or links in G. At each node
x ∈ V , the incident edges are labeled by an injective mapping λx. Hence, each
edge (x, y) has two labels, λx(x, y) at x, and λy(x, y) at y. λx(x, y) and λy(x, y)
will be called the port numbers. We say a graph is oriented, if there is a globally
1 Here, M is the number of edges in the graph, n is the number of nodes in the graph,

and ∆ is the maximum degree of the graph.
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consistency of such labeling (or sense of direction) of all the edges (links), un-
oriented otherwise [7,8].

Operating on G is a set of k agents a1, a2, ..., ak. The agents have limited
computing capabilities and bounded storage. They all obey an identical set of
behavioral rules (referred to as the “protocol”), and can move from node to
neighboring node. We make no assumptions on the amount of time required by
an agent’s actions (e.g., computation, movement, etc.) except that it is finite.
Thus, the agents are asynchronous [5]. Also, these agents are anonymous (i.e., do
not have distinct identifiers) and autonomous (i.e., each has its own computing
and bounded memory capabilities). If co-located, agents start at the same node,
called homebase (H for brevity). Scattered agents start at different Hs.

We postulate that, while executing a Bhs, the agents can interact with their
environment and with each other only through the means of tokens. A token is an
atomic object that the agents can see, carry, place in the middle or on a port of a
node, or remove. Several tokens can be placed at the same location. The agents
can detect such multiplicity, but the tokens themselves are undistinguishable
from each other. Initially, there are no tokens in the network, and each agent
starts with O(1) number of tokens.

The basic computational behavior of an agent (executed either when an agent
arrives at a node, or upon wake-up) consists of three actions called steps. First an
agent need to examine its current node and evaluate (as a non-negative integer)
the multiplicity of tokens at the middle of the node and/or on its ports. (An
agent therefore may have to evaluate several multiplicities for its current node.)
Second, an agent may modify tokens (by placing/removing some of the tokens at
the current node). Third, an agent may either become Passive(i.e., temporarily
stop participating to the Bhs) or leave the node through a port. Finally, an agent
may become DONE, namely terminate the whole algorithm. A step is performed
as a single atomic (i.e., none interruptable) operation. We assume that there is
a fair scheduling of the steps of the operation at the nodes, so that, at any node
at any time, at most one computational step will take place, and every intended
step is performed within finite time. This computation is asynchronous in the
sense that the time an agent sleeps or travels is finite but unpredictable. It is
known that in an asynchronous system, it is undecidable to determine if there
is a BH or not [6]. The consequences of this fact are numerous and render the
asynchronous case considerably difficult. Hence, in this research, we assume that
there is one and exactly one BH in the network. All the agents are aware of the
presence of the BH, but, at the beginning of the search, the location of the BH
is unknown. The goal of this search is to identify all the links leading to the BH.
At the end of the search, there must be at least one agent that has survived (i.e.,
not entered the BH ) and knows the location of the BH.

We will consider three complexity measures for the Bhs problem. The first one
is size: the number of agents needed to locate the BH. The other two complexity
measures of interest are the token size (i.e., the number of tokens each agent
needs to start with) and the cost (i.e., the total number of moves executed by
the agents in the worst case over all possible timings). We study the following
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three topologies in such model and under such assumptions: hypercube, torus
and complete network.

3 Basic Tool and Technique

3.1 CWWT

Cautious Walk with Token (henceforth CWWT for brevity) is an adaptation of
the cautious walk technique used in systems with whiteboards [5]. It is a basic
step in all our algorithms and is explained below.

At any time during the execution of this algorithm, a port will be classified
either as With Tokens (i.e., one or more tokens have been placed on this port)
or Without Tokens (i.e., no tokens on this port). The details of how to establish
that a port is with or without tokens will differ across the algorithms that we
introduce throughout this paper. During a CWWT, having a certain number of
tokens on a port indicates that the link of this port is currently being explored by
an agent. The exact number and location of tokens required to determine that
a port is being explored may vary between the algorithms that use CWWT.
Clearly, a port under exploration may be dangerous (i.e., possibly leading to the
BH ). To prevent unnecessary loss of agents, we require that no two agents enter
the BH through the same link. In order to achieve this, we establish two basic
rules for the agents that use CWWT. The first rule is:

When an agent a arrives at a node u with a port p under exploration, that
agent is not allowed to move through port p. In fact, agent a can only leave
through port p once p becomes safe.

In order to explain how a port becomes safe, consider an agent a that leaves
token(s) on a port p of node u in order to explore the node v through the link
of p. Our second rule captures how p becomes safe:

Upon reaching node v through port q, if v is not a BH, then a immediately
returns to u and removes tokens on p. Thus, p necessarily becomes Without-
Tokens and both its link and itself are thereafter considered safe. Port q is also
considered safe once visited by a.

3.2 Bypass Technique

The Bypass technique is used in the algorithms to solve Bhs in both hypercube
and torus with co-located agents. For those topologies, in contrast to a ring, each
node has more than two links and ports adjacent to it. This significantly compli-
cates the communication between agents using tokens, but also offers multiple
paths between any of the two nodes in the graph. In fact, we get the following
observation:

Observation 1. Both hypercube and torus topologies contain one or more ring
subgraphs, as shown in Figure 1.
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Fig. 1. Hypercube and Torus

According to our assumption that “there is one and only one BH in the
network”, we remark:

Observation 2. It is impossible that the BH is in both ring a and ring b.

We then call the ring without the BH a safe ring; a dangerous ring otherwise.
The basic idea of the Bypass technique is to use the links and nodes on a safe

ring to create a bridge over an unknown node (possibly BH) on the dangerous
ring that is under exploration by an agent. This bridge will allow a second agent
to continue exploring the rest of the dangerous ring. This technique ensures a)
that two agents do not explore the same node at the same time; and b) that all
the nodes in the network get traversed using a linear number of moves, so that
the total number of moves for locating the BH stays linear. Details follow:

Once in the “Bypass” procedure, an agent acts differently whether advancing
in a safe ring or in a dangerous ring. Let Ad denote the agent that is exploring
a node I in the dangerous ring, and As denote the agent that is going to bypass
node I through path J ,K ,L,M ,N (see Figure 2). When As arrives at node J
, it moves the token(s) from port Jd to Js if Js is without token. Otherwise, As

picks up the token(s) from port Jd , then As walks through Js to node K . As

then walks to node M through node L. If port Ms is with token, then As moves
the tokens from port Ms1 to port Ms2 , then walks to the next node on the safe
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Fig. 2. Two agents executing “Bypass on a dangerous ring and a safe ring
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ring. Otherwise, As leaves a token at port Md , then it becomes ready to go back
to the dangerous ring. From this point on, As becomes an agent exploring the
dangerous ring M ′

d in the next stage. If the old Ad does not die in node I , then
it becomes an agent trying to bypass node N that is under exploration by the
other agent. Namely, in the new stage, agent Ad will become a new A′

s . These
two agents keep changing roles to bypass a node in the dangerous ring that is
under exploration, until one dies in the BH.

4 Bhs with Co-located Agents

4.1 Bhs in Hypercube — Algorithm Two Rings

The following well-known property of a hypercube is the key to our solution to
the Bhs problem in this topology:

Property 1. Qd consists of two d−1-hypercubes connected by 2d−1 links labeled
as d.

Given this property, we find a way for two mobile agents (given 2 is the minimum
team size for the Bhs problem) to traverse the hypercube with tokens. The basic
idea can be carried out using the following three steps2:

– let one agent stay in the common H, and the other agent move to the other
ring through the connecting link using CWWT.

– have both agents explore a Hamiltonian Cycle (i.e., a ring) of each (d − 1)-
hypercube according to a specific permutation (see below) with CWWT.
After an agent has finished exploring its ring, we call this ring a safe ring,
and call the other ring, which has not finished being exploring, a dangerous
ring.

– let the agent that finished exploring the safe ring go to the other ring through
a connecting link. This agent will help the other agent exploring the dan-
gerous ring. It keeps walking on the dangerous ring until it sees the marker
of the other agent. The two agents then repeat multiple stages of the bypass
technique until one agent dies in the BH and the surviving agent finishes
exploring all but one nodes in the entire hypercube. The only node the sur-
viving agent has not visited is the BH.

The detail we need to address is how do we make the agents only walk on an
appropriate Hamiltonian cycle and 2d−1 links labeled as d, in a labeled Qd. The
following technique makes it possible:

We define a permutation that can construct a unique Hamiltonian cycle when
a starting node is given. Let Pd be a permutation of length n: {p1, p2, ..., pn/2, p1,
p2, ..., pn/2}. The sequence is constructed as follows:

2 Due to the page limit, most Lemmas and Theorems and their proofs are omitted.
Details can be found in:
http://www.scs.carleton.ca/∼swei4/FinalThesis(VF2007May23).pdf
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– when d = 2, n = 22 = 4, P2: {1, 2, 1, 2};
– when d = 3, n = 23 = 8, P3: {1, 2, 3, 2, 1, 2, 3, 2};
– when d = 4, n = 24 = 16, P4:

{1, 2, 3, 2, 4, 2, 3, 2, 1, 2, 3, 2, 4, 2, 3, 2};
– when d = 5, n = 25 = 32, P5:

{1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3,
2, 1, 2, 3, 2, 4, 2, 3, 2, 5, 2, 3, 2, 4, 2, 3, 2};
If we let P ′d denote the sequence from the second digit to the 2d−1th digit
of Pd, then:

– when d = i− 1, n = 2i−1, Pi−1: {1,P ′i−2, i− 1,P ′i−2, 1,P ′i−2, i− 1,P ′i−2}
– when d = i, n = 2i, Pi: {1,P ′i−1, i,P ′i−1, 1,P ′i−1, i,P ′i−1}

While d increases, each permutation Pd can be constructed by executing the
following two steps on permutation Pd−1:

a) replace the second occurrence of ‘1’ found in the sequence by ‘d’;
b) duplicate this modified sequence and append it to its own end (effectively

creating a sequence that consists of the modified sequence followed by itself).

Given all the agents know the size of the hypercube n = 2d, they can all come
up with such a permutation individually. All their permutations will be the
same, because they construct it according the same rules. Each element in the
permutation represents a label of a link. Every such number indicates which link
an agent is going to explore next.

Theorem 1. Permutation Pd computed by an agent constructs a Hamiltonian
cycle of Qd.

4.2 Bhs in Torus — Algorithm Cross Rings

Informally, a torus is a mesh with “wrap-around” links that transform it into a
regular graph: every node has exactly four neighbors. We develop an algorithm
Cross Rings, to locate the BH in a torus with co-located agents when the torus
is oriented, that is, when the ports of each node in the torus are consistently
labeled as: East, West, North, and South.

Let R−NS denote a ring with only links labeled South and North in a labeled
torus and, let R− EW denote a ring with only links labeled East and West in
a labeled torus. Starting from a node, there are two obvious paths that allow an
agent to traverse the torus and go back to the starting node. See Figure 3:

It is clear that a north-south ring A and an east-west ring B share exactly
one node, say v. If node v is not the BH, we know the BH cannot be on both A
and B. We then get the following observation:

Observation 3. Let 2 agents start from v. If we let one agent traverse the
north-south ring A, and another agent traverse the east-west ring B, then there
is at least one agent that survives its traversal.
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Fig. 3. Two paths that allow an agent to traverse all the nodes in a labeled 3∗4 torus:
1. an east-west ring, plus every north-south ring that starts with a node in this east-
west ring, and 2. a north-south ring, plus every east-west ring that starts with a node
in this north-south ring

If only one agent finishes traversing a ring (i.e., the other agent died in the BH ),
then we call this ring a Base ring. If both agents finish traversing their rings,
then we call the ring that is traversed the earliest, a Base ring, which is also a
safe ring. Hereafter, we assume that the Base ring is a north-south ring. (The
algorithm would be essentially the same if the Base ring were an east-west ring).
Now, we let the surviving agent(s) (either one or two) explore all the east-west
rings, each of which starts from a node on the Base ring. In order to prevent the
two agents from both dying in the BH, we let both agents explore a dangerous
node using CWWT with 1 token on a port.

Before one agent starts exploring an east-west ring, it puts 1 token in the mid-
dle of the homebase u. This agent then explores the first east-west ring. When
this agent finishes exploring an east-west ring, it will move the single token it left
in u to the next node to the North of u on the Base ring. We call the east-west
ring marked by this token, a RUE (Ring Under Exploration). An agent contin-
ues exploring east-west rings one by one, until it sees a token in the next node.
It then puts a second token in the next node to the north, comes back to pick up
the token it left in the previous node, goes to the next node to the north again
and starts exploring a new east-west ring. Given there is only one BH, and there
is no common node(s) shared by any two east-west rings, we obtain Lemma 1.
Given one agent a1 will finish exploring all but one east-west ring. The other
agent a2 is either exploring the RUE or died in the BH in the last RUE. Then
a1 will go and help a2 to explore the last east-west ring. Because we assumed
that one of the north-south rings is the Base ring, we say that an agent finishes
a stage as soon as it finishes exploring an east-west ring. An agent a1 will not
visit a RUE (by a2) until this is the only east-west ring left. Also, a1 follows
the path that a2 took on this last east-west ring, until it sees the CWWT to-
ken of a2. Now a1 and a2 will execute the procedure “Bypass on Torus”, sketched
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out earlier. Eventually the algorithm terminates when there is only one node
that is not explored in the last RUE. The only node left unexplored is the BH.

Lemma 1. Eventually all but one east-west rings are explored.

4.3 Bhs in a Complete Network — Algorithm Take Turn

In this subsection, we present the solution to the Bhs problem in a complete
network without using sense of direction, that is, no ports of any node is labeled.
However, it is important to note that, even without a common labeling, the co-
located agents share a common reference (e.g., indexing) mechanism for the n−1
links of their H and thus can share a common order of traversal of these links.

For simplicity, we will say that the links are traversed ‘clockwise’ when going
from the lowest to the highest index, ‘counterclockwise’ otherwise (This is merely
a convention and the actual order of traversal could be defined differently, as long
as it is shared by the co-located agents.). A team of two co-located agents is used
to solve the problem. We can imagine the complete network as a star-shape
network with a node (which we will take to be the H of this pair of co-located
agents) in the middle.

The idea is very simple: once an agent a1 wakes up, it puts one token on a port
of its node, which it views as its H. a1 then explores the node reachable from
this port. When a1 comes back to its H after exploring a node, if the token of a1
is still at the port where it was left, then a1 will move this token to the next port
clockwise, and repeat this exploration step. Once the second agent a2 wakes up,
it moves the token of a1 to the next clockwise, and explores the node accessible
through this port. When an agent comes back from the exploration of a node,
if it sees the token it left is missing, then this agent continues clockwise until
it finds the port with one token. It moves this token to the next port clockwise
and starts exploring another node through this port. During this process, an
agent keeps counting the number of ports it visited (i.e., ports it used to access
nodes to explore) or passed (i.e., ports that are between the port this agent just
visited and the port that currently has a token). As soon as one agent notices
that this total (of ports being counted) reaches n−1, it terminates the algorithm
immediately. It is important to know that we use a variable bhlocation to record
the location of the BH. Each time an agent ai moves the token used by partner
aj to the next port, ai resets the variable bhlocation to 0, then keeps increasing it
by one each time it explores a new node. Also, variable nCount is incremented
as ports are used. ai terminates the algorithm as soon as it realizes nCount
reaches n − 1, at which point bhlocation indicates the location of the BH : the
bhlocationth port counter clockwise leads to the BH.

Theorem 2. Using two (2) co-located agents and one (1) token in total, the BH
can be successfully located in a complete network of n nodes, with Θ(n) moves
in total.
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5 Bhs with Scattered Agents

5.1 In a Complete Network

The algorithm for locating the BH with scattered agents follows: upon one agent
waking up, it leaves a token in the middle of its H and waits. This agent starts
executing algorithm Take Turn as soon as its token is moved to a port of its H. If
an agent wakes up in a node that has a token in the middle, then this agent starts
executing algorithm Take Turn immediately. Once an agent wakes up in a node
that has a token on a port of its H, it becomes Passive immediately. Eventually,
a maximum of n/2 pairs of agents will execute algorithm Take Turn and finally
locate the BH. Given algorithm Take Turn requires n moves, n/2∗n = n2 moves
in total suffice with n scattered agents. 1 token per agent for n agents suffice to
correctly locate the BH. Hence we get the following theorem:

Theorem 3. Using n scattered agents, one (1) token per agent and O(n2)
moves, the BH can be successfully located in an un-oriented complete network
Kn.

5.2 In a Torus with Minimum Number of Agents

Again in this section, we assume the torus under investigation is oriented. We
also assume no agent wakes up in the BH. It is possible that 4 agents could die
immediately after the first move: one enters the BH through the North port, one
through the South port, one through the East port, and one through the West
port. In order to minimize team size, we program each mobile agent to enter
each node through only the South or West ports3, and thus a maximum of two
agents die after the first move. Hence, we conclude:

Lemma 2. At least 3 scattered agents are needed to locate the BH in an oriented
torus .

The basic idea for solving the BH s problem with scattered agents is to let two of
the three agents form a pair that execute algorithm Cross Rings starting from
the node (their H) where they formed this pair. In the following paragraphs
we will explain how the agents form a pair and how a pair of agents finds a
Base ring. Then, the rest of the algorithm is almost the same as algorithm Cross
Rings. In algorithm Cross Rings, there are only two agents working on the Bhs.
But in the scattered agents case, we need to find out a way to eliminate the
third scattered agents. Consequently, we work out a way for the third agent
to become DONE, in order to simplify the communication between the work-
ing pair: as soon as an agent goes into a node with 2 tokens on any of a port
(the indication of a single agent), it will pick up all the tokens and then continue.

3 In order for an agent to traverse an oriented torus, each agent must visit at least
two ports of each node.
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Procedure “Initialization” and “Single Agent Explores a north-south
Ring: upon waking up, an agent becomes a single agent and it immediately
executes procedure “Single Agent Explores a north-south Ring” to the north.
In procedure “Single Agent Explores a north-south Ring”, an agent a1 explores
the north-south ring starting from node u (H), with CWWT (two tokens on the
port). a1 keeps counting the number of nodes in this north-south ring.

Case 1: When a1 goes into a node with one token in the middle of a node, a1
becomes DONE immediately.
Case 2:When a1 goes into a node with two tokens on the east port, it executes
“Paired agent finds a Base ring” to the north.
Case 3: a1 goes into a node with two tokens on the north port, it leaves one
extra token in the middle of the node. It then executes “Paired agent finds a
Base ring” to the east.
Case 4: When a1 comes back to the node where it left its CWWT tokens, if
two tokens are in the middle and at least one token on the east port of the node,
it then executes “Paired agent finds a Base ring” to the north.
Case 5: When a1 goes into a node, if any of the following three situations
happens, a1 will become Passive immediately. All three situations indicate that
a pair was formed. The situations are: either there is at least one token in the
middle of the node (there may be also token(s) on a port of that node), or there
is a token on the north port, or there is a token on the east port.
Case 6: When a1 finished exploring the north-south ring, it then executes pro-
cedure “Single Agent Explores an east-west Ring”.
Case 7: When a1 comes back to the node where it left its CWWT tokens, if all
the CWWT tokens are no longer there, it becomes DONE.
Case 8: When a1 finishes exploring one east-west ring, it immediately explores
the next east-west ring that starts from the next node to the north on the
north-south ring. a1 then executes procedure “Single Agent Explores an east-
west Ring” again.

Procedure “Paired Agent Finds a Base Ring”: As a single agent, as soon
as a1 sees two tokens on a port of a node (the CWWT) of another single agent
a2, it modifies the token configuration in this node and becomes a paired agent
immediately. After a1 becomes a paired agent, it executes procedure “Paired
Agent Finds a Base Ring”. Once an agent a2 becomes a paired agent (after
seeing the modified token configuration a1 left to it) it also executes procedure
“Paired Agent Finds a Base Ring”. We call this node with the modified token
configuration the homebase (H for brevity as used earlier) of these two paired
agents. It is worth repeating that if a1 executes “Paired Agent Finds a Base
Ring” to the north, then a2 will execute “Paired Agent Finds a Base Ring” to
the east, or vice versa.

Upon starting “Paired Agent Finds a Base Ring” to the north. A paired agent
a1 keeps walking to the north with CWWT, until it goes back to the H of this
pair. It is possible to have the following token configurations in this node:
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1. there is 1 token on the north port and two tokens in the middle of their
H (and maybe another token on the east port if the other paired agent a2 is
exploring the node to the east after being a paired agent). In this case, the
north-south ring becomes the Base ring. a1 informs a2 of this result by picking
up the token on the north port.

2. there are 2 or 3 tokens in the middle of the node. In this case, 2 tokens
in the middle of the H shows that the second agent a2 finished exploring the
east-west ring before a1 finished exploring the north-south ring. So, the east-west
ring becomes the Base ring.

In either case, a1 then keeps walking to the east until it sees 1 token in the
middle of a node. It then executes algorithm Cross Rings to the east port. If there
are 3 tokens in the middle (a2 is exploring the first east-west ring as a paired
agent), a1 executes algorithm Cross Rings to the east port immediately. When
agent a2 walks back to the H of this paired agent after exploring an east-west
ring, there are either

a) 2 tokens in the middle of the H (a1 informed a2 that the north-south ring
is the Base ring). So a2 keeps walking to the north until it arrives in the node
with a token in the middle. It then executes algorithm Cross Rings to the north.

b) or 3 tokens in the middle of the H or 1 token on the north port and 2
tokens in the middle of their H (this means that not only a1 informed a2 that
the north-south ring becomes the Base ring, but also that a1 is exploring the
east-west ring that a2 just finished). Then a2 will execute algorithm Cross Rings
to the north.

c) or, in the third case, a2 decides that the east-west ring is the Base ring and
picks up the token on the north port of the pair’s H. a2 then executes algorithm
Cross Rings to the east.

During the execution of procedure “Paired Agent Finds a Base Ring”, there
are two other possible scenarios: 1) as soon as a1 or a2 goes into a node with 2
tokens on any of a port, it will pick up all the tokens then continue. 2) as soon
as a1 or a2 notices its CWWT token is moved, it will continue using the Bypass
technique as a paired agent.

5.3 In a Torus with k Scattered Agents

We also study the Bhs problem in a labeled torus with k (k > 3) scattered
mobile agents. Here, k is not known to any of the agents. From the result shown
in Theorem 4 we conclude that: not only an increase of team size does not
help to reduce the total number of moves, but also drastically complicates the
communication mechanism and increases the total number of moves performed
during the Bhs.

Theorem 4. Using k (k > 3) scattered agents and one token per agent, the BH
can be successfully located using O(k2n2) moves in a labeled torus with n nodes.
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6 Conclusion

In this paper, we developed a set of token-based algorithms for locating a BH in
three interconnected network topologies. We sketched out solutions with both co-
located agents and scattered agents. This set of algorithms suggests that the token
model is computationally and complexity-wise as powerful as the whiteboard
model, regardless of the topology of the network, and with the knowledge of a
specific network topology, the cost of Bhs is improved from Θ(n log n) to Θ(n).
Moreover, in section 5, we show that Bhs with a team of scattered agents is rather
complex but solvable in some dense graphs. We are now exploring a solution for
Bhs on Hypercube with optimal complexity using scattered agents.
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Abstract. This paper considers a system of autonomous mobile robots
that can move freely in a two-dimensional plane, and where a number
of them can fail by crashing. The crash of a robot can be either perma-
nent or temporary, that is, after its crash the robot either executes no
action or it recovers from its failure. These robots repeatedly go through
a succession of activation cycles during which they observe the environ-
ment, compute a destination and move. In particular, we assume weak
robots, in the sense that robots cannot communicate explicitly between
each other. Also, they cannot remember their past computations (i.e.,
oblivious). Finally, robots do not agree on a common coordinate system.

In this paper, we address a fault-tolerant flocking problem under the
crash-recovery model. That is, starting from any initial configuration, a
group of non-faulty robots are required to form a desired pattern, and
move together while following a robot leader on a given trajectory, and
keeping such a pattern in movement. Specifically, we propose a fault-
tolerant flocking algorithm in the semi-synchronous model that allows
correct robots to dynamically form a regular polygon in finite time, and
maintain it in movement infinitely often. Our algorithm relies on the
existence of two devices, namely an eventually perfect failure detector
oracle to ensure failure detection, and an eventual leader oracle to handle
leader election. The algorithm tolerates permanent crash failures, and
also crash recovery failures of robots due to its oblivious feature. The
proposed algorithm ensures the necessary restrictions on the movement
of robots in order to avoid collisions between them. In addition, it is
self-stabilizing.

1 Introduction

During the past decade, increasingly more research has been focussing on the
coordination and self-organization of mobile robot systems involving multiple
simple robots working together, rather than a single highly-complex one. This
view is motivated by a variety of reasons, including reduced manufacturing costs,
increased fault resilience, improved overall maneuverability, or simply better
polyvalence of the system. The challenge is however to ensure enough coordi-
nation so that the multiple robots appear as a single coherent system rather
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than as a set of independent entities. Consider for instance, a group of robots
working together in unknown environment to carry out missions such as search
and rescue, cooperative localization, or scouting. To maximize the capability of
performing tasks collaboratively as a team, robots need to achieve and maintain
a coherent group movement. This problem is referred as flocking. That is, robots
need to move together while keeping some shape in movement like a flock of
birds or soldiers. Flocking is not an end in itself, but rather can be used as a
component of a larger multi-robot system, for instance simplifying the transport
of objects by a large number of robots, or organizing the nodes of a distributed
sensing system.

Model and problem. We consider a system in which the robots are represented
as points moving in a plane. Each robot executes its own instance of the same
algorithm which consists of repeatedly (1) observing the environment, (2) com-
puting a destination, and (3) moving toward it. Robots are semi-synchronous in
the sense that if robots are activated simultaneously, they see the same thing.
Otherwise, the robots can see the environment only when the other robots has
already finished their moves. In addition, we assume that robots do not share a
common coordinate system, except the unit distance. Besides, they are identical
(i.e., the algorithm cannot distinguish them), and they are oblivious, meaning
that they do not retain any information between activations. This last assump-
tion is useful both for memory management and because an algorithm designed
for such robots is inherently self-stabilizing.1

In this paper, we focus on an agreement problem, called flocking in a system
where robots can fail by crashing. The crash of robots can be either permanent,
that is after the crash, the robot executes no action, or it can be temporary,
and after which the robot recovers again from its failure. In short, the problem
of fault-tolerant flocking requires that non crashed robots, located at random
locations, move in such a way that they eventually form a pattern in finite
number of steps, and then they keep such a pattern while moving. In the lit-
erature, the flocking problem was mainly addressed based on a leader-followers
approach [1,2], where the leader is predefined or fixed, and robots followers will
adjust their moves by following the movement of a robot leader.

Gervasi and Prencipe [1] have provided a flocking algorithm for asynchronous
robots based on a leader-followers model, but introduce additional assumptions
on the speed of the robots. In particular, they proposed a flocking algorithm for
formations that are symmetric with respect to the leader’s movement, without
agreement on a common coordinate system (except for the unit distance). How-
ever, their algorithm requires that the leader is distinguished from the robots
followers.

Canepa and Potop-Butucaru [2] build upon the work of Gervasi and Prencipe
[1], and they proposed a flocking algorithm, also in an asynchronous system with
oblivious robots. First, the robots elect a leader using a probabilistic algorithm.
After that, the robots position themselves according to a specific formation.
1 Self-stabilization is the property of a system which, starting in an arbitrary state,

always converges toward a desired behavior [8].
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Finally, the formation moves ahead. Their algorithm only lets the formation
move straight forward. Although the leader is determined dynamically, once
elected it can no longer change. In the absence of faulty robots, this is a rea-
sonable limitation in their model. Note that, the above two algorithms do not
work properly in the presence of failures of robots, and that their adaptation is
not straightforward. The first result on fault-tolerant flocking was by Souissi et
al. [3], and then the result by Yang et al. [4] follows it. In these two works, the
fault-tolerant flocking problem was only studied in the permanent crash failure
model. In particular, fault-tolerant flocking algorithms in both the asynchronous
and semi-synchronous models were proposed when robots’ activations follow a
k-bounded scheduler. The algorithm developed in the asynchronous model [3] al-
lows robots to realize the flocking by maintaining an approximation of a regular
polygon while moving. However, the algorithm does not allow the rotation of the
formation. In the later algorithm [4], which is developed in the semi-synchronous
model, the rotation of the formation is allowed. Although, the above two works
investigated the problem of flocking only in the permanent crash model, achiev-
ing the flocking was quite difficult. In fact, the authors made a lot of additional
assumptions and restrictions on the movement of robots, which were mainly
necessary to the detection of faulty robots, and the election of a leader of flock-
ing. So, we can easily imagine that handling crash and recovery becomes quite
complicated, and needs a large number of tedious assumptions. To avoid such
a complication, we suppose the help of a failure-detection oracle, which encap-
sulates the necessary assumptions to identify faulty robots. In particular, our
algorithm uses an eventually perfect failure detector oracle as a building block,
together with an eventual leader election oracle to handle leader election. This
algorithm appropriately handle the complication caused by the crash and re-
covery. We believe that this algorithm is a good example to show the benefit
of modular based approach for mobile robot algorithms. The weak assumptions
made on the capabilities of robots (such as, oblivious, no common coordinate
system) made the problem of flocking difficult to solve. For instance, correct
robots need to find a way to determine their targets on the formation since they
do not agree on a common coordinate system. Besides, robots need to avoid col-
lisions between each other, and with crashed robots, especially when the failure
detector and leader election oracles output erroneous information on the status
of robots.

Contribution. This paper proposes a fault-tolerant flocking problem rigorously
where, a group of correct robots dynamically form a regular polygon in a finite
number of steps, and maintain it infinitely often in movement by following the
movement of a robot leader in a given trajectory. In particular, our algorithm al-
lows correct robots to solve the flocking problem in the semi-synchronous model,
by tolerating permanent and crash-finite-recovery failures of robots. Although
our algorithm relies on the existence of a failure detector and a leader election
oracles, we exhibit solvability of weak robots for the flocking problem. Finally,
considering oblivious robots makes the proposed algorithm very robust in that
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it can tolerate additions, removals and relocations of any of the robots, and it is
intrinsically self-stabilizing.

Structure. The remainder of this paper is structured as follows. In Section 2, we
introduce the system model and the terminology used in the paper. In Section 3,
we describe our flocking algorithm in the crash-recovery model, and in Section 4,
we prove its correctness. Finally, in Section 4.3, we conclude the paper.

2 Preliminaries

2.1 System Model

Robot model. In this paper, we consider the system model of Suzuki and Ya-
mashita [7], which is defined as follows. The system consists of a set of au-
tonomous mobile robots R = {r1, · · · , rn} roaming on the two-dimensional plane
devoid of any landmark. Each robot is modelled and viewed as a point in the
plane, and equipped with sensors to observe the positions of the other robots. In
particular, each robot proceeds by repeatedly observing the environment, per-
forming computations based on the observed positions of robots, and moving
toward the computed destination. This behavior constitutes its cycle of sensing,
computing, and moving. The sequence look -compute-move is called the cycle of
a robot.

The robots are anonymous, in the sense that they cannot be distinguished by
their appearance, and they do not have any kind of identifiers that can be used
during their computation. In addition, there is no direct means of communica-
tion among them. Hence, the only way for robots to acquire information is by
observing each other’s positions. In this paper, we assume that the robots are
oblivious or memory-less, which implies that they are unable to remember their
past actions and observations, and thus, their computations cannot be based on
previous observations.

In this model, time is represented as an infinite sequence of discrete time
instants t0, t1, t2, . . ., during which each robot can be either active or inactive.
When a robot becomes active, it performs a look-compute-move cycle. In partic-
ular, the robots execute their activities of observation, computation and move-
ment instantaneously, and thus a robot observes the other robots only when a
cycle begins.

The cycle of a robot is finite, and the activation of robots is determined by
an activation schedule, which is unpredictable and unknown to the robots. At
each time instant, a subset of the robots becomes active, with the guarantees
that: (1) Every robot becomes active at infinitely-many times (fairness), (2) At
least one robot is active during each time instant, and (3) The time between two
consecutive activations is finite.

In this model, each robot uses its own local x-y coordinate system which
includes an origin, a unit distance, and the directions of the two x and y axes,
together with their orientations. However, the robots share neither knowledge of
the coordinate systems of the other robots, nor of a global coordinate system,
except the unit distance.
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Failure model. In this paper, we address permanent crash and crash-recovery
failures of robots. Before we define the failure model in more details, we classify
robots as follows: A robot is called stable if eventually it becomes up (correct), or
eventually it becomes down (i.e., the robot executes no actions forever). A robot
is called unstable if it alternates between the two states up and down infinitely
often. A robot is called good, if it is stable and it is eventually up. On the other
hand, a robot is called bad, if it is stable and eventually down or it is unstable.

In this model, we assume that robots are equipped with an eventually perfect
failure detection device to ensure failure detection. Intuitively, an eventually
perfect failure detector is responsible for monitoring the operational state of all
robots in the system. The failure detector may make mistakes in the beginning,
however, it eventually gives a correct view of the system. If robot ri believes robot
rj to be down, we say that ri suspects rj . Otherwise, if ri believes rj to be up,
we say that ri trusts rj . So, the output of the eventually perfect failure detector
is the list of trusted robots, that is robots that are detected to be correct. An
eventually perfect failure detector or ♦P for the crash-recovery model as defined
by [9] has the following properties:

Definition 1 (Eventual Perfect Failure Detector for crash-recovery).

– Completeness: (1) every bad and stable robot is eventually permanently sus-
pected by all good robots. (2) every bad and unstable robot is either eventually
permanently suspected by all good robots, or suspected and trusted infinitely
often by all good robots.

– Accuracy: every good robot is permanently trusted by all good robots.

Note that, if there are no unstable robots in the system, then eventually all good
robots agree on which robots are currently up. Since unstable robots may cause
infinite number of mistakes by the eventual perfect failure detector oracle, we
assume a crash-finite-recovery model, in which there exists no unstable robots,
and eventually every robot stays up or down. In other words, the crash-finite-
recovery model includes permanent and temporary crash failures of robots. A
crash is permanent if the robot is stable and eventually down. However, the
robot stays physically in the system, and it is seen by the other correct robots.
Alternatively, a crash is temporary if a robot crashed, and then it recovers within
reasonable amount of time, and becomes eventually up. The above definition of
crash-finite-recovery model implies that there is a time GST 0, called Global
Stabilization Time, which is unknown to robots, after which all robots detect
and agree on the same set of correct robots.

2.2 Problem Definition

The problem addressed in this paper is the fault-tolerant flocking by a group of
oblivious mobile robots. Before we define the problem more rigorously, we first
provide the following definitions:

Definition 2 (Formation problem). Let R = {r1, ..., rn} be a set of robots,
and F = Formation(P1, ..., Pn) a given formation with n ≥ 3, we say that robots
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in R solve the formation problem, if starting from any arbitrary configuration at
time t0, there exists t ≥ t0 such that, each robot ri ∈ R occupies a point Pi ∈ F .

In this paper, we assume that the formation F is a regular polygon. We denote by
d the length of the polygon edge (known to the robots), and by α = (n−2)180◦/n
the angle of the polygon, where n is the number of robots that form F . Note
that, to form a polygon, n should be greater than or equal to three robots.

Definition 3 (Fault-tolerant formation problem). The fault-tolerant for-
mation for a set of robots R = {r1, ..., rn} is defined as the formation problem
for the set of correct robots R′ ⊆ R. That is, among all robots in the system,
the remaining correct robots R′ are required to form the formation F , where
|R′| ≥ 3.

Using the above definition, we define the fault-tolerant flocking problem as fol-
lows:

Definition 4 (Fault-tolerant flocking problem). Given a trajectory T , and
a group of robots R = {r1, ..., rn}, we say that the robots solve the fault-tolerant
flocking problem if (1) there exists infinitely many time instants t0, t1, ..., such
that at any time ti, robots in R solve the fault-tolerant formation problem, and
a correct robot r∗ ∈ R is on the trajectory T . (2) Given pj and pk the positions
of robot r∗ on the trajectory T at time tj and tk, with tj �= tk, then pj �= pk.

We assume that the trajectory T is given as a sequence of discrete points online.
That is, the robots do not know the points of the trajectory a priori.

Following the definition of fault-tolerant flocking, the robot that is moving
on the trajectory is called a robot leader, and the other remaining robots are
called followers. The leader computes its trajectory T in real time, and it is not
known to the other robots in the system. Therefore, we need some leader election
mechanism to elect the robot leader that will lead the formation. In this paper,
we assume that the leader election is given by an eventual leader oracle, called
Ω, which is defined as follows:

Definition 5 (Eventual leader Ω). Given a set of correct robots S, there is
a time GST ≥ GST 0, which is unknown to robots, such that after GST, every
invocation of the eventual leader oracle by a correct robot returns r as leader,
with r ∈ S.

Note that, before the time GST , that is between GST 0 and GST , there can be
no leader, or there exist many leaders in the system. However, after GST only
one single leader exists in the system , and all robots agree on the same robot
leader.

2.3 Notations

Smallest enclosing circle. The smallest enclosing circle of a set of points P is
denoted by SEC, and its center is called o. It can be defined by either two opposite
points that form the diameter of SEC, or by at least three points. The smallest
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enclosing circle is unique, and can be computed in O(n) time [5]. We shall denote
by p ∈ boundary(SEC), the point p that belongs to the circumference of SEC.
Also, we denote by q ∈ inside(SEC), the point q that is located on the interior
of SEC, and does not belong to its boundary.

Voronoi diagram. The Voronoi diagram Voronoi(P ) of a set of points P =
{p1, . . . , pn} is a subdivision of the plane into n cells, one for each point in
P . The cells have the property that a point q belongs to the Voronoi cell
of point pi, denoted Vcellpi(P ), if and only if, for any other point pj ∈ P ,
dist(q, pi) < dist(q, pj), where dist(p, q) is the Euclidean distance between p and
q. In particular, the strict inequality means that points located on the boundary
of the Voronoi diagram do not belong to any Voronoi cell. Significantly more
details about Voronoi diagrams are surveyed by Aurenhammer [6].

Before we proceed, we give the following notations that will be used through-
out this paper. Let A and B be two points, with AB, we will indicate the segment
starting at A and terminating at B, and dist(A,B) is the length of such a seg-
ment. We also denote by [AB), the ray starting at A and passing through B.
Given a region X , we denote by |X |, the number of robots in that region at time
t. Finally, let S be a set of robots, then |S| indicates the number of robots in S.

3 Fault-Tolerant Flocking in the Crash-Recovery Model

In this section, we present a fault-tolerant flocking algorithm for mobile robots
in the semi-synchronous model with crash and recovery. The algorithm allows a
group of oblivious correct robots to dynamically generate a regular polygon, and
move together by following the movement of a robot leader on some trajectory.
The algorithm solves the flocking problem in the crash-finite-recovery model, and
relies on the existence of an eventually perfect failure detector, and an eventual
leader election oracles.

Algorithm 1. Fault-tolerant Flocking (code executed by robot ri)
1: When ri is activated
2: ri takes a snapshot of the positions of robots;
3: R:= the set of positions of all robots in the system including faulty ones;
4: Scorrect := Output of ♦P Failure Detector Oracle on R;
5: L := Output of Eventual Leader Oracle on the set Scorrect;
6: if (|Scorrect| ≥ 3) then {at least three correct robots}
7: if (ri = L) then {leader}
8: Flocking Leader(R, Scorrect, L);
9: else {follower}

10: Flocking Follower(R, Scorrect, L);
11: end if
12: else
13: Do Nothing();
14: end if
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Algorithm 2. Flocking Leader: Code executed by a robot leader L

1: procedure Flocking Leader(R, Scorrect, L)
2: d := the desired distance of the polygon edge;
3: T := the trajectory of the leader;
4: n := |Scorrect|;
5: α := (n − 2)180◦/n;
6: Compute Voronoi(R);
7: Compute SEC(Scorrect);
8: o:= Origin of SEC(Scorrect);
9: if (L = o) then {the leader is at the origin of SEC}

10: Move within Vcellri(R) to different nearest point from trajectory T ;
11: end if
12: if (L /∈ T ) then {the leader is not on trajectory}
13: if (T ∩ SEC = ∅) then
14: Move within Vcellri(R) to nearest point from trajectory T ;
15: else {T ∩ SEC 	= ∅}
16: if (L ∈ boundary(SEC) ∧ n = 3) then
17: Move within Vcellri(R) toward p ∈ T by Restriction 1 and Restriction 2;
18: else
19: Move within Vcellri(R) toward p ∈ T ;
20: end if
21: end if
22: else {the leader is on trajectory}
23: if (n = 3 ∧ L ∈ inside(SEC)) then
24: if (T ∩ SEC � {rj , rk}, with {rj , rk} ⊂ Scorrect) then
25: Move within Vcellri(R) to p ∈ (T ∩ SEC);
26: else
27: Move within Vcellri(R) to p ∈ boundary(SEC);
28: end if
29: else
30: if (∀rj ∈ Scorrect, F = Formation(P1, ..., Pn) is formed) then
31: if (no faulty robot on T prevents leader from moving) then
32: Move within Vcellri(R) to a desired point on trajectory T ;
33: else
34: Move within Vcellri(R) to some point p /∈ T ;
35: end if
36: else {formation is not formed}
37: ∆:= Ray starting at leader’s position L, and passing through o;
38: αL := angle equal to α and having as bisector ∆;
39: Compute F = Formation(P1, ..., Pn) with P1 = L, and α = αL;
40: if (Some targets on F are occupied by faulty robots) then
41: Move within Vcellri(R) to some different point on T ;
42: else if (∀rj ∈ Scorrect − {L}, rj ∈ boundary(SEC)) then
43: Compute the rays ∆1 and ∆2 starting at L, and at angle α/2 from ∆;
44: p1 := ∆1 ∩ SEC;
45: p2 := ∆2 ∩ SEC;
46: if (∀rj ∈ Scorrect−{L}, rj is unable to move on SEC to p1 or p2) then
47: Move within Vcellri(R) to some point that breaks SEC;
48: end if
49: else
50: Do Nothing();
51: end if
52: end if
53: end if
54: end if
55: end
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Algorithm 3. Flocking Follower: Code executed by a robot follower ri

1: procedure Flocking Follower(R, Scorrect, L)
2: d := the desired distance of the polygon edge;
3: n := |Scorrect|;
4: α := (n − 2)180◦/n;
5: if (F = Formation(P1, ..., Pn) is formed) then {regular polygon is formed}
6: Do Nothing();
7: else
8: Compute SEC(Scorrect);
9: o:= origin of SEC(Scorrect);

10: ∆:= Ray starting from leader’s position L and passing through o;
11: αL := angle equal to α, with ∆ its bisector and formed by two correct robots;
12: Compute the two rays ∆1 and ∆2 starting at L, and at angle α/2 from ∆;
13: Compute Voronoi(R);
14: if (αL is formed) then {angle with leader is formed}
15: Compute targets of F = Formation(P1, ..., Pn) with P1 = L, and α = αL;
16: if (ri ∈ ∆1 ∧ ri is nearest to L in ∆1) ∨(ri ∈ ∆2 ∧ ri is nearest to L in ∆2)

then
17: Move linearly on ∆1 or ∆2 within Vcellri(R) toward target;
18: else if (∃Pi ∈ Vcellri(R)) ∧(Pi /∈ ∆1 ∧ Pi /∈ ∆2) then
19: Move to nearest target Pi in Vcellri(R);
20: else
21: Move to last point on Vcellri(R) toward a nearest target Pi;
22: end if
23: else {αL is not yet formed; keep SEC invariant}
24: if (ri /∈ boundary of SEC) then
25: if (n = 3) then
26: Move within Vcellri(R) to the boundary of SEC;
27: else {n > 3}
28: Zone1 := Vcellri(R) ∩ SEC ∩ ∆1;
29: Zone2 := Vcellri(R) ∩ SEC ∩ ∆2;
30: if (Zone1 	= ∅) ∨ (Zone2 	= ∅) then
31: Move linearly to last point in rip, such that dist(L, p) = d within the

non empty zone Zone1 or Zone2 ;
32: end if
33: end if
34: else {ri ∈ boundary of SEC}
35: Pc(t):= the set of robots on the boundary of SEC at time t;
36: if (|Pc(t)| = 2) then {only two robots are on SEC}
37: Do Nothing();
38: else
39: p1 := SEC ∩ ∆1;
40: p2 := SEC ∩ ∆2;
41: Pc(t):= the set of robots on the boundary of SEC at time t;
42: prev ri

(t) := direct clockwise neighbor of ri on Pc(t);
43: nextri(t) := direct counter-clockwise neighbor of ri on Pc(t);
44: αprevri

(t):= the angular distance from ri to prev ri
(t);

45: αnextri
(t):= the angular distance from ri to nextri(t);

46: αm(t + 1):= the angular movement of ri at time t + 1;
47: Move within Vcellri(R) on boundary of SEC to nearest point p1 or p2,

with
αprevri

(t)−π

2
≤ αm(t + 1) ≤ π−αnextri

(t)

2
;

48: end if
49: end if
50: end if
51: end if
52: end
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The flocking algorithm is depicted on Algorithm 1, and it must guarantee that
(1) there is no collision between robots, especially when there is instability in the
system, that is when the failure detection device makes mistakes about the status
of robots, and also before the leader election oracle gives the same output for all
correct robots (2) The robot leader moves on the trajectory (3) eventually correct
robots form dynamically the regular polygon with the leader in finite time. The
overall idea of the algorithm is as follow. Recall that robots are anonymous, and
they do not share a common coordinate system, so correct robots need some
way to find their targets on the polygon. The polygon construction starts from
the position of the leader, which is given by the eventual leader oracle. After
that, two correct robots must form the first angle of the polygon having as a
vertex the position of the leader. In order to restrict the number of angles that
can be formed at the position of the leader with two correct robots to a unique
angle (called, αL), αL must have as bisector the ray starting as the position
of the leader, and passing through the center of the smallest enclosing circle
(referred as SEC) of the positions of correct robots. Therefore, as long as αL

is not formed, correct robots need to keep SEC invariant. When the angle αL

is formed, correct robots are allowed to break SEC, and move to the remaining
targets of the polygon within their Voronoi cells.

Before we describe the algorithm in more details, we first give the following
restrictions that are imposed on the movements of robots that are located on the
boundary of SEC before the construction of the angle αL in order to preserve
the invariance of SEC until αL is formed:

Restriction 1. If αL is not formed, then correct robots located on the circum-
ference of the smallest enclosing circle do not move unless there are at least three
such robots with distinct positions. That is, when only two robots are located on
the boundary of SEC, they are not allowed to move.

Restriction 2. Let Pc(t) be the set of correct robots on the boundary of SEC at
time t, and ri one such robot. Let prev ri

(t) (resp., nextri(t)) denote the direct
clockwise (resp., counter-clockwise) neighbor of ri on Pc(t). Let also αprevri

(t)and
αnextri

(t)be the angular distance from ri to prev ri
(t) and nextri(t), respectively.

Then, the angular movement of ri at time t+1, denoted by αm(t+ 1) is restricted
as follows:

αprevri
(t) − π

2
≤ αm(t + 1) ≤

π − αnextri
(t)

2

The above restriction ensures that the movement of correct robots located on
the smallest enclosing circle SEC does not leave an empty angle greater than π,
or else SEC would no longer be the smallest circle enclosing all correct robots.

We now describe the algorithm in more details as follows. First, when robot
ri becomes active, it executes the following steps:

– Robot ri calls the eventually perfect failure detection module to get the set
of correct robots, Scorrect.
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– Robot ri calls the eventual leader election module, and gets the position of
the leader, L.

– Depending on the status of robot ri, ri executes the procedure described in
Algorithm 2; Flocking Leader(R, Scorrect, L) if it is a leader. Otherwise, it exe-
cutes the procedure described in Algorithm 3, Flocking Follower(R, Scorrect, L).

– If robot ri is a leader, then first it has to move to a point that is located on
its trajectory T . We distinguish the following cases depending on the leader’
position:

1. If the leader ri is located at the origin of the smallest enclosing circle, then
it needs to move toward a different point on its trajectory, and within its
Voronoi cell, otherwise robots cannot compute the ray ∆, which represents
the bisector of the angle αL (Algorithm 2, line 10).
2. If the leader is not located on its trajectory T , then it has to move within
its Voronoi cell to some point on T (Algorithm 2, line 14).
3. If the leader is located on T , but inside SEC, and the number of correct
robots is equal to three (including the leader), then the leader needs to move
to the boundary of SEC (Algorithm 2, lines 24 − 27) in order for the two
other correct robots forming SEC to be able to move on the boundary of SEC,
without breaking it, and form the angle αL. After being on the boundary
of SEC, the leader needs to move on the boundary of SEC toward a point on
T by following Restriction 1 and Restriction 2 (Algorithm 2, line 17). The
whole idea behind this special case of three correct robots in the system is
to have eventually the robot leader located on the boundary of SEC, and on
its trajectory T . After that, the two other robots followers can construct the
angle αL of the formation.

Note that, we assume that the portion of the plane delimiting the tra-
jectory of a robot leader is larger enough than the portion of the plane
enclosing the smallest circle of the positions of correct robots SEC. It follows
that, when the leader is located on T , there exists at least one point that
intersects T with SEC.

After being on the trajectory, the leader ri checks if the formation F
is already formed. Then, two cases follow: if the formation F is formed
by correct robots, then the leader ri computes the Voronoi diagram of all
robots in the system, including faulty ones, and moves within its Voronoi
cell to a desired point on its trajectory T (Algorithm 2, line 32). In the
situations where, some faulty robots are located on its trajectory, and block
robot ri from moving, robot ri can deviate from its trajectory until it passes
the positions of faulty robots, and then goes back again to its trajectory
(Algorithm 2, line 34).

In the case, where the formation F is not yet constructed, the following
cases arise. If some targets of the formation F are occupied by some faulty
robots, then the leader moves within its Voronoi cell to some different point
on its trajectory in order to free the targets of the formation from faulty
robots (Algorithm 2, line 41). Finally, in the case where all correct robots
are located on the boundary of SEC, and all of them are unable to move
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on its boundary because they are blocked by faulty robots, then the leader
needs to move to some different point in its trajectory T within its Voronoi
cell in such a way it breaks the current SEC.

– If robot ri is a follower then it has to find its target on the formation F if it
is not formed yet. Todo so, robot ri needs to compute an angle, called αL,
which is equal to α, and having as vertex the leader’s position L, and with
the bisector the ray passing through the origin of SEC(computed on correct
robots). The algorithm for a robot follower distinguishes the following two
cases:

1. The angle αL is already constructed by the leader and two correct robots
located respectively on the two rays ∆1 and ∆2 (delimiting αL), robots
followers need to move toward the remaining targets of the formation within
their Voronoi cells, by excluding the two targets on ∆1 and ∆2.2 In the case
when many correct robots form the angle αL, each of the two nearest robots
from the leader that are located respectively, on ∆1 and ∆2 will move to the
target that belongs to the same ray it is located (i.e., ∆1 or ∆2) within its
Voronoi cell (Algorithm 3, line 17).
2. The angle αL is not yet formed. In this case, robots followers need to
keep the smallest enclosing circle of correct robots invariant until that angle
is constructed. So, if the number of correct robots is equal to three (includ-
ing the leader), and robot ri is located inside SEC, then it has to move to
the boundary of SEC (Algorithm 3, line 26) within its Voronoi cell. Such
a movement will result on three robots that are located on the boundary
of SEC, which will allow two of them to move on the boundary of SEC to
construct the angle αL. Then, if a robot follower ri is located on the bound-
ary of SEC, in addition to the restriction of moving within its Voronoi cell,
Restriction 1 and Restriction 2 are imposed on its movement in order to
preserve the invariance of SEC until αL is formed.

In this paper, we studied the fault-tolerant flocking, when the formation is a
regular polygon, however even if the problem is defined for the partial polygon,
we can solve the problem similarly.

4 Correctness of the Algorithm

In this section, we prove the correctness of our algorithm by first showing that
no two robots ever move to the same location (Theorem 3). Second, we prove
that the smallest enclosing circle remains invariant until the first angle of the
polygon is formed by correct robots (Theorem 4). Then, we show that all correct
robots form the regular polygon in finite time after the global stabilization time

2 We mean by the angle αL is constructed, the fact that two correct robots are located
respectively in ∆1 and ∆2, and they are located at angle α/2 from the ray passing
through the position of the leader and the center of SEC. This does not mean that
the two robots are in their final targets of the formation.



Oracle-Based Flocking of Mobile Robots in Crash-Recovery Model 695

GST (Theorem 5). Finally, we prove that the flocking algorithm tolerates crash-
finite-recovery failures of robots due to its oblivious feature (Theorem 6). The
proofs of some lemmas are omitted due to lack of space.

4.1 Collision Avoidance

Lemma 1. By Algorithm 1, at any time t (before or after GST), there is no
collision between any two robots in the system.

Theorem 3. Algorithm 1 is collision free.

4.2 Polygon Formation

In this section, we first prove that Algorithm 1 allows correct robots to form the
regular polygon deterministically after the global stabilization time GST . In the
following, we consider the system after time GST has been reached. Thus, all
robots agree on the same set of correct robots, and also on the eventual leader.
We first prove show that the leader can be located on its trajectory within finite
time, and then we prove that the smallest circle enclosing all correct robots
SEC remains invariant from the time when the leader is located on its trajectory
until the angle αL having as vertex the position of the leader is constructed with
two correct robots.

Lemma 2. After the time GST, the robot leader can be located in finite time
on some point on its trajectory T .

Theorem 4. After GST, the smallest circle enclosing all correct robots remains
invariant until the angle αL is formed.

Lemma 3. The angle αL is constructed in finite time by two correct robots and
the position of the leader as the angle vertex after the time GST.

Proof (Lemma 3). We consider the system after the time GST has been reached,
and thus by the definition of the eventually perfect failure detector, and the
leader election oracle, all robots agree on the same set of correct robots, and
there exists exactly one single leader in the system. First, by Lemma 2, the
leader can be located on its trajectory T in finite time. Second, observe that
there exists exactly one ray ∆ that starts at the position of the leader, and
that passes through the center of SEC because the leader is unique. Also, the
center of SEC is unique since SEC is invariant before the construction of αL

by Theorem 4. So, there exists exactly one angle αL having as angle vertex the
position of the leader, and that has ∆ as its bisector.

Let ∆1 and ∆2 be respectively, the two rays starting at the position of leader
ri, and located at angle α/2 from ∆. The angle αL is constructed by the posi-
tion of ri as the angle vertex, and the two correct robots that will be located
respectively, on ∆1 and ∆2. Let p1 and p2 be the intersection respectively, of ∆1
and ∆2 with SEC. We first prove the case for three robots, and we distinguish
the following cases:
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– The leader ri, and the two correct robots followers rj and rk are located on
the circumference of SEC. We also, assume that rj and rk are not blocked by
faulty robots to move on SEC, then we will easily show that in finite number
of steps, rj and rk will reach p1 and p2. By the algorithm, the leader ri is on
its trajectory, then it does not move. Robots rj and rk are able to move on
SEC by following Restriction 2, besides their activation cycle is finite, and
at each cycle they can progress by non-zero distance toward p1 or p2, and
thus αL can be constructed in finite time.

– The leader ri is located inside SEC, and the two other correct robots rj and
rk form SEC (i.e., they are located on the circumference of SEC). This case is
the most interesting one because the leader has to move to the boundary of
SEC (otherwise, rj and rk cannot form αL because they are not allowed to
move by Restriction 1), and also to a point on its trajectory T . By Lemma 2,
the leader ri can be located in finite time in some point on its trajectory T ,
and also without modifying SEC. It results that, this situation is reduced to
the above case.

– The leader ri, and one correct robot rj (without loss of generality) are located
on the circumference of SEC, and robot rk is located inside SEC. This case is
trivial, since robot rk has to move to the boundary of SEC by the algorithm,
and then this situation is also reduced to the same case discussed above.

– All correct robots are located on the boundary of SEC, and they are unable
to move because they are blocked by faulty robots. This case is handled as
a special case by the algorithm, where the leader has to move in order to
modify the current SEC, and make free correct robots. So, this case can be
also reduced to the general case in finite time after the movement of the
leader to a different point on the trajectory.

As a conclusion, in every possible case where the number of correct robots is
equal to three, αL is constructed in finite time. When n > 3, the rest follows by
induction. 	


Theorem 5. All correct robots reach their targets on the polygon in finite time
after the time GST.

4.3 Fault-Tolerant Flocking

Theorem 6. Algorithm 1 is a fault-tolerant flocking algorithm that tolerates
permanent crash failures, and also finite-crash-recovery failures of robots.

Proof (Theorem 6). Let us consider the system after the global stabilization
time GST . By the algorithm, stable correct robots are determined in finite time
by the eventually perfect failure detector oracle. Also, unstable robots that crash
for some arbitrary periods, and then they recover and become correct will be
included in the list of correct robots by the eventually perfect failure detector
oracle. Since, Algorithm 1 is oblivious and does not depend on past computations
and observations, handling the recovery of some robot can be seen as a new



Oracle-Based Flocking of Mobile Robots in Crash-Recovery Model 697

activation for that robot. Thus, the recovery of robots is implicitly encapsulated
by the oblivious feature of the algorithm.

By Theorem 3, there is no collisions between any two robots in the system, and
by Theorem 5, the polygon formation is constructed dynamically in finite time
by correct robots. By the algorithm, after the construction of the polygon, the
robot leader changes its position on the trajectory, and robots followers adjust
their movements. Consequently, Algorithm 1 is a dynamic flocking algorithm
that tolerates permanent and crash finite recovery failures of robots. 	
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Abstract. We present and evaluate a framework, ParExC, to reduce
the runtime penalties of compiler generated runtime checks. An obvious
approach is to use idle cores of modern multi-core CPUs to parallelize
the runtime checks. This could be accomplished by (a) parallelizing the
application and in this way, implicitly parallelizing the checks, or (b) by
parallelizing the checks only. Parallelizing an application is rarely easy
and frameworks that simplify the parallelization, e.g., like software trans-
actional memory (STM), can introduce considerable overhead. ParExC is
based on alternative (b). We compare it with an approach using a trans-
actional memory-based alternative. Our experience shows that ParExC
is not only more efficient than the STM-based solution but the manual
effort for an application developer to integrate ParExC is lower. ParExC
has – in contrast to similar frameworks – two noteworthy features that
permit a more efficient parallelization of checks: (1) speculative variables,
and (2) the ability to add checks by static instrumentation.

1 Introduction

Despite several decades of intensive research, software bugs and execution failures
are still major threats to software dependability. Compilers can not only help
to detect software bugs by performing type checks during compilation but also
by adding runtime checks to a program to enable self-repairing and self-healing.
Unsafe languages like C/C++ are particularly prone to software bugs – some of
which enable, for example, buffer overflow attacks. Buffer overflows are especially
a problem in distributed systems as they might enable remote attackers to gain
access via the network. Buffer overflow attacks can be detected via precise out-
of-bounds checking which can introduce an up to 12x slowdown – even for state
of the art bounds checkers [1]. A lower-cost alternative is, for example, data-flow
integrity checking [2] which does not prevent buffer overflows but instead detects
invalid data flows and effectively prevents attacks that exploit buffer overflows.
Nevertheless, data-flow integrity checking has still a slowdown of 2.5x or higher.

In future, hardware failures are expected to become more likely [3]. To en-
sure the correctness of critical programs, one might need to detect the incorrect
execution of programs. One can use replicated execution to detect simple tran-
sient hardware failures. However, if one needs to detect hardware design failures

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 698–710, 2009.
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and compiler failures, one needs to use other alternatives. Arithmetic encoding
with an AN-code [4] is one such alternative. Our own measurements show a 45x
slowdown when encoding almost all operations of a program with an AN-code.

Given the potentially very large slowdowns introduced by runtime checks,
our goal is to make runtime checking more palatable by reducing its impact on
the runtime of applications. Given the prevalence of multi-core CPUs and the
difficulty of many applications to harness the full power of multi-core CPUs, it
makes sense to use additional cores to try to mask the overhead of the runtime
checks. This could be accomplished by (a) parallelizing the application and in
this way, implicitly parallelizing the checks, or (b) by parallelizing the checks
only.

The problem with alternative (a) is that parallelizing existing applications
and even writing new parallel applications is very difficult and introduces new
sources of software bugs resulting in, e.g., data races and deadlocks. To simplify
the parallelization of applications, one could use software transactional mem-
ory (STM). STM alleviates several drawbacks of lock-based and also lock-free
mechanisms.

Alternative (b), i.e., the parallelization of runtime checks has recently been
investigated by Speck [5]. While Speck scales very well with the number of cores,
the performance measurements of [5] do not seem to result in any performance
gain when compared to sequential checking. The parallel taint analysis of Speck
has a slowdown of 18.4x on an 8-core CPU [5] . This is in the same order of
magnitude than checking without parallelization on one core [6]. Newer sequen-
tial taint checking approaches using static instrumentation perform even better:
slowdowns are between 1.58x and 2.06x [7].

Given the current state of the art, it is not clear if one should choose alternative
(a) or (b) or maybe, even just use sequential checks using static instrumentation?
The main question is on how much we can reduce the overheads of the competing
alternatives. We have been working on reducing the overheads of STM and with
TinySTM [8] we have a very efficient – and according to our own measurements
– the most efficient STM. In our analysis of alternative (b), we have identified
two sources for the high overheads of existing parallelized checking frameworks:

(1) If runtime checks need to exchange state between epochs, state accesses are
serialized. Parallel Dynamic Information Flow Tracking (DIFT) [9] uses a non-
trivial hardware extension to stream meta data to another core and Speck [5]
streams taint data to a single core. This limits scalability and performance.
(2) Runtime checks are added by dynamic binary instrumentation (DBI). DBI
introduces a high overhead that must be compensated by additional cores. Our
goal is to be faster than the sequential execution of statically instrumented code
and DBI does not seem to be competitive in that regard. Furthermore, some
checkers cannot be implemented by DBI. For instance, bounds for objects on
the stack are not available in binaries without debug information. Therefore,
it is not possible to build a precise out-of-bounds checker with DBI for stack
objects.
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Based on the above two observations, we developed a new framework, ParExC,
for writing parallelized runtime checkers. It parallelizes the runtime checks only,
i.e., it does not require the application itself to be parallelized. To demonstrate
the effectiveness and versatility of our approach, we implemented checkers for
two very different threats: buffer overflow attacks and hardware errors. Further-
more, we compare ParExC with an STM-implementation using two parallelized
STM-benchmarks, i.e., benchmarks for which STM implementations have been
optimized. We describe how to add checks to parallelized applications using
software transactional memory in Sec. 3.

Our approach for parallelizing runtime checks is introduced in Sec. 2. A
checker instruments applications with runtime checks. When a check fails at run-
time, the application is aborted. The basic approach is very similar to Speck [5].
We execute the original application as predictor without any runtime checks on
one core. The predictor’s execution is partitioned into epochs. Each epoch is
replayed with runtime checks enabled by an executor. Because of the runtime
checks, the executor is typically an order of magnitude slower than the predictor
for the same epoch. We achieve a speedup by running the executors in parallel
to each other and to the predictor.

We make three novel contributions in this paper:

(A) Speculative Variables. To scale, executors run out-of-order and share
the runtime state of the checkers. Nevertheless, accesses to the shared state have
to happen in-order to preserve semantic correctness of the runtime checks. We
solve this problem with speculative variables (see Sec. 4). Executors access the
shared state speculatively and later verify the validity of those accesses. With
that, we overcome the limiting single core used in Speck [5] and the meta data
stream of DIFT [9].

(B) Static Instrumentation. We have implemented three checkers using static
instrumentation: a precise out-of-bounds checker (OOB), a data-flow integrity
checker (DFI) [2], and an AN-code checker (AN) [10]. The OOB and AN checker
cannot be implemented using DBI, as they rely on information only available at
compile time. Furthermore, static instrumentation enables – in contrast to DBI
– more optimizations such as inlining. We discuss the implementation of these
checkers in Sec. 5.

(C) Comparison to STM. ParExC parallelizes an application by speculat-
ing on the correct execution of epochs. On the other hand, STM parallelizes by
speculating on the absence of memory-contention between concurrent data ac-
cesses. In Sec. 6, we demonstrate that checking an application with ParExC can
scale better than checking an application which was already parallelized using
an STM.

2 ParExC

ParExC reduces the performance impact of expensive runtime checks by paral-
lelizing these checks (Fig. 1). At compile time, runtime checking code is added
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Fig. 1. (a) Original application execution without checks. (b) Sequential execution
with checks. (c) Parallelized execution with checks. Unchecked predictor for fast state
prediction. Parallelized executors including slow checks.

to the original application. Our approach supports the addition of one or more
runtime checkers to the same application, e.g., a bounds checker and a data-flow
integrity checker can be used together. These checkers are executed in paral-
lel and each checker itself is also parallelized. We focus on using just one kind
of checker to simplify the presentation. The overall approach is very similar
to [5] with two important exceptions: (1) to reduce the overall overhead, we use
static instrumentation instead of DBI, and (2) we introduce speculative variables
(Sec. 4) to decouple the execution of the individual epochs of a checker.

An execution with runtime checks (Fig. 1 (b)) introduces, in general, a sub-
stantial overhead compared to the original application (Fig. 1 (a)). To par-
allelize the runtime checks (Fig. 1 (c)), we execute the original application
without checks by a predictor process. The predictor’s execution is partitioned
into epochs. The objective of the predictor is to predict the state of the applica-
tion at the start of each epoch. An executor process re-executes the epoch with
runtime checks activated. Executors run on additional cores in parallel to each
other and to the predictor.

At compile time, ParExC generates the checker code base by duplicating the
original (predictor) code base. ParExC instruments both code bases to enable
switching from the predictor code base to the checker code base at epoch bound-
aries. After these preparations, checkers can analyze and instrument the checker
code base. The instrumentation process is the same as for checking without
parallelization. For instrumentation, ParExC uses the LLVM compiler frame-
work [11] which provides very nice support for static instrumentations using the
LLVM intermediate code. However, our approach does not depend on LLVM
specifics, i.e., LLVM could be replaced by another compiler framework.

At runtime, we provide a copy-on-write snapshot mechanism (similar to the
UNIX system call fork) to copy the application state from the predictor to the
new executor at the beginning of a new epoch. The executor replays the same
computation for an epoch e as the predictor performed for e but with addi-
tionally added runtime checks. Therefore, any input received by the predictor
is deterministically replayed in the executors. All externally visible side-effects
(issued via system calls) of the predictor are held back by ParExC until they are
verified by the executors. An executor explicitly approves an epoch e to make
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e’s side-effects externally visible. Because the executors are running in paral-
lel, the verification order of system calls might be different from the order they
were issued in the predictor. We allow out-of-order issuing of system calls by the
executors but ensure their in-order retirement.

The deterministic replay and speculative execution of external side-effects
at runtime is mostly transparent to the executors. We implemented these two
features as kernel-module for Linux similar to Speck [5]. To be able to log any
non-determinism we require that accessing any non-determinism has to happen
via system calls, e.g., instead of reading the time stamp counter (rdtsc) the
application has to call gettimeofday.

To allow the deterministic replay, an application-developer has to mark po-
tential places in the code where ParExC should take a snapshot, i.e., start a new
epoch. Ideally, these snapshot-places are executed periodically with constant fre-
quency at runtime. Therefore, using ParExC is not completely transparent to
the application developer, but the manual instrumentation overhead for using
ParExC in an application is small.

3 Runtime Checking in STM-Based Applications

Software transaction memory (STM) provides transactions at the programming
language level. An STM detects read/write and write/write conflicts of transac-
tions and aborts or delays a conflicting transaction. On abort, all state changes
are rolled back and the transaction is then retried. STMs require all shared data
accesses within a transaction to be instrumented. This instrumentation incurs
synchronization and book-keeping overhead. However, this book-keeping over-
head can often be amortized by achieving better scalability through speculation.

In our experiments, we used a C++ version of TinySTM [8]. Instead of in-
strumenting the code by hand, we used Tanger [12] which is an extension for
LLVM [11] that automatically transactifies applications. The programmer only
has to mark the start and the end of the transactions. The instrumentation
delegates all shared data accesses in these regions to an STM.

To parallelize the application with runtime checks, we perform two steps.
First, we apply the same compiler transformations as the ParExC checkers. Sec-
ond, we apply the Tanger transformations on the code resulting from the first
step. Due to this ordering, Tanger automatically puts the book-keeping state of
the runtime checks under the control of TinySTM.

Note, an application-developer who wants to use an STM to parallelize the
runtime-checks themselves would have to identify (1) where to spawn threads and
(2) critical sections and encapsulate these in transactions. If the application is not
yet parallelized, the developer would have the additional burden of parallelizing
the application itself. We therefore believe that an STM is more difficult to use
for the application-developer than the ParExC approach. Furthermore, while an
application must itself be parallelizable to parallelize its runtime-checks using
STM, this restriction is not the case for ParExC.
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4 Speculative Variables

In ParExC, runtime checks need to update and read checker specific book-
keeping state. For instance, the out-of-bounds checker (OOB) adds for each
executed malloc the address and size of the newly allocated object to its book-
keeping state. OOB verifies that each memory access reads from or writes to a
currently allocated memory area. Fig. 2 shows that in the predictor, a malloc
and a memory write are in a causal order. However, the malloc and the write
may happen in a different order in the executors as can be seen in Fig. 2: the
write access in the second executor happens before the malloc in the first ex-
ecutor. Therefore, the OOB checker cannot immediately verify that the write
accesses an allocated region in the memory. (Note that the predictor allocates
the memory for the executor but the predictor does not update any book-keeping
information).

We propose to use speculation to decouple the accesses to shared state. Book-
keeping state is stored in speculative variables. At runtime, each executor has a
private view of the speculative variables. After finishing the checking of an epoch,
an executor merges its private view into a shared view. Merges happen exclusively
and in the order of the epochs, e.g., executor Ei has to wait for executor Ei−1 to
finish before Ei can merge its private view into the shared view.

Interface. Speculative variables have a generic interface so that different check-
ers can use the same speculative variable implementation. The semantic of the
values stored in speculative variables depends on the checker. For example, the
OOB checker maintains for each memory object a speculative variable storing
the bounds of the memory object. Speculative variables are addressed by ids.
The OOB checker uses the memory address of an object as id.

A speculative variable provides two operations: read and write. read (id,
ob) returns the value of the speculative variable addressed by id. The read
operation only operates on the private view. Therefore, if there is not yet a spec-
ulative variable for id, the value ob is returned. Additionally, a new speculative
variable is created in the private view and its current value is set to ob. We call
ob an obligation. A check must always provide an obligation to a read operation.
The obligation is calculated by assuming the current check succeeds. Hence, the
obligation is a speculative value. For instance, an OOB check speculates that the
checked memory access is valid. Therefore, the obligation is the memory area
size at least required for the checked memory access. We explain in Section 5
how to calculate the obligations for our other checkers. The obligation is also
stored within the speculative variable for later validation.

Fig. 2. The temporal order of malloc and the write access are different between pre-
dictor and executors. Checks use speculative variables to defer the check of the write.



704 M. Süßkraut et al.

The write operation write(id, val) stores val in the speculative variable
addressed by id. A write does neither create an obligation nor does it change or
delete an existing obligation with the same id. The latter property is important:
Consider that the write in Fig. 2 would be followed by a realloc in the same
epoch. Although, we know which size the buffer has after the realloc, we still
do not know which size it had before the realloc. But we need this knowledge
to check the validity of the preceding write. Thus, the obligation has to remain
until it is verified using the shared view.

After the epoch ei is completely replayed, all its obligations need to be vali-
dated. Therefore, executor Ei, checking epoch ei, waits for Ei−1 to finish checking
ei−1. After Ei−1 finishes its checking, it updates the shared view. Ei validates
all obligations of its private view against the view shared by all executors. The
shared view does neither contain speculative values nor obligations. The exact
semantics of the validation is provided by the checker via a callback function.
The OOB checker validates that bounds stored in the obligation of a speculative
variable are within the bounds stored in the shared view. A failed validation is
treated as a failed check, i.e., the application is aborted. After the validation, Ei

updates the shared view with the current values of all speculative variables.

Deadlock avoidance. Because of the use of speculative variables, we need to
post-pone the commit of external actions until all obligations are validated. If
a checked application in the same epoch sends out a request to a server and
then waits for a reply, it could block forever. The reason is that the request is
held back until all obligations are validated at the end of the epoch. Hence, it is
never made visible to the server and the reply will never be sent. Therefore, we
implemented a second validation scheme to overcome this problem. After execu-
tor Ei−1 successfully finishes checking epoch ei−1, Ei−1 validates the obligations
of the private view of Ei. As soon as all obligations are validated and no new
obligations were created during the validation, Ei can commit all outstanding
external actions and also all new external actions immediately.

5 Experience

We used the ParExC framework to create three parallelized checkers. The paral-
lelization itself is in most parts transparent to our checkers. The major exception
is the usage of speculative variables for holding the checkers book-keeping state.
Furthermore, system calls which are additionally introduced in the executors
have to be excluded from replay. Therefore, ParExC provides a library of com-
monly used functions such as allocating memory or performing IO which has to
be used by the checkers for performing, e.g., logging. This library is not subject
to any replay and speculation restriction. It marks the system calls such that
the ParExC kernel module executes these immediately.

Data Flow Integrity. The motivation of the data-flow integrity checker (DFI) [2]
is to protect against memory access errors. DFI checks that a read value was writ-
ten from an allowed store instruction, i.e., variables are only allowed to be written
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at certain positions in an application. Our DFI checker conservatively extracts for
each memory location m a set of stores that are permitted to write to m. All loads
and stores are instrumented. At runtime, each used memory location has a specu-
lative variable that contains a unique writer ID. Each executed store updates the
corresponding writer ID. For each load, we check that the writer ID of the last
writer of the read location is within the set of allowed stores. If we do not find a
writer ID for the loaded memory location, the store was executed in a previous
epoch. In that case, our obligation contains the set of allowed stores for this lo-
cation. On obligation checking, we verify that the writer ID in the global view is
indeed an element of the set of allowed stores.

AN-Encoding. Our AN-encoding checker (AN) detects hardware errors, which
if undetected, could lead to arbitrary failures [10]. The whole encoded state is
stored in speculative variables. When a variable is loaded for the first time in an
epoch ei, the executor Ei does not know its encoded value. Ei speculates by en-
coding the value which it got from the predictor’s snapshot for this variable. The
obtained value is the obligation. The global view after executing Ei−1 contains
the complete encoded state of the application at the end of ei−1. The application
is aborted by Ei if the value of an obligation is not equal to the encoded state
in the global view at the end of ei−1.

Out-Of-Bounds. Our out-of-bounds checker (OOB) detects buffer overflow
bugs. The checker instruments all memory allocation code for the heap and
the stack. In this way, it can keep track of all currently allocated buffers. Loads,
stores and address computations are also instrumented. Address computation
is statically identifiable in LLVM since a special instruction is used. By instru-
menting these address computations, the checker can at runtime identify the
buffer accessed by a load or a store. For each load and store, the used offset is
checked against the allocated size of the identified buffer. If the offset is larger
than the allocated size, the program is aborted. The OOB checker makes use of
the fact that allocations on the stack are identifiable in the LLVM intermediate
code. The size of individual allocations on the stack are not necessarily known
at runtime. Thus, DBI-based checkers cannot implement precise out-of-bounds
checking for buffers allocated on the stack.

We already introduced in Sec. 4 how OOB makes use of speculative variables
when allocation of a buffer buf and access to buf happen in different epochs.

Transactification. To transactify the out-of-bounds checking with
Tanger/TinySTM, it is sufficient to perform every access to the book-keeping
state inside a transaction. The out-of-bounds checker is the only checker that has
been enriched with STM-support for the following reasons: (1) The AN-checker
does not yet support all features (in particular, floating point numbers) to run
the STM benchmark suite STAMP [13]. Also, the micro-benchmarks we use
for the AN-checker are not yet parallelized. (2) The data-flow integrity checker
cannot easily be extended to support parallel accesses to its state because the
assumption that for each load the last writer-id is actually the last writer-id
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cannot hold if more than one thread writes to the same location in memory but
from different locations in the code.

6 Evaluation

Our evaluation focuses on the scalability of our checkers and the comparison
between Tanger/TinySTM and ParExC. For out-of-bounds checking (OOB) and
data-flow integrity checking (DFI), we used two STAMP [13] benchmarks. We
performed all measurements using Fedora 8 on a 2xIntel Xeon E5430 with 2.66
GHz (8 cores) and 16 GB RAM. Every measured value is the median of 3 runs.
For the comparison between ParExC and Tanger/TinySTM, every measured
value represents the median over 5 runs. Like [5], we used the real time, reported
by the time command to measure the runtime.

6.1 Speedup

We compared the performance of sequential and parallel checking using the
checkers introduced in Sec. 5. The focus of our experiments is on scalability. We
limited the number of parallel executors to simulate CPUs with fewer cores. If
the maximum number of parallel executors is reached, the predictor blocks before
spawning a new executor until at least one of the currently checking executors
finishes. In our experiments, we measured either throughput or runtime.

Fig. 3 shows the runtime for parallel and sequential DFI checking of the
Vacation and Labyrinth STAMP benchmarks. To adapt both benchmarks to
ParExC we manually added 3 and 1 calls to our checkpointing function, respec-
tively. For Vacation, we plot transactions per second and for Labyrinth the total
runtime. Vacation performs 363, 000 transactions per second without runtime
checks. Thus, according to the measurements in Fig. 3, DFI has a slowdown
of 7.26x in the sequential execution without ParExC and 1.91x with ParExC.
Labyrinth runs for 56.21s without runtime checks on a 512x512 maze. The DFI
slowdown without ParExC is 7.14x and 1.37x with ParExC.

For the AN checker, we used three micro-benchmarks: md5 calculates the md5
hash of 500, 000 bytes at 69.0Mbyte/s. primes calculates all primes up to 700, 000
at 5.0 million primes/s. PID is a proportional, integral, derivative controller. It
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Fig. 4. Runtime of sequential vs parallel AN checker for 3 micro-benchmarks

performs 500, 000 steps at 27 million steps/s. All previous numbers were mea-
sured without checking. Fig. 4 compares the runtime of sequential and parallel
versions of the AN checker. The throughput scales well with the number of par-
allel executors. 16 parallel executors are faster than 8 on an 8 core machine
because some executors need to wait for their predecessor executors to finish.
During this wait time, the CPU idles when running only 8 parallel executors.

6.2 Comparison between ParExC and Tanger/TinySTM

The STAMP benchmarks are explicitly written for benchmarking STM libraries.
Therefore, all shared memory accesses have been marked explicitly by experts.
However, as we focus on as few manual changes as possible, Tanger ignores these
markings (except the transaction boundaries) and puts all potentially shared
memory accesses under the control of TinySTM. We expect different results if
TinySTM would be used directly without Tanger. But this would additionally
involve the manual transactification of the OOB checker, what we want to avoid.
As the STM-version of Labyrinth contains some very sophisticated optimizations
for the shared memory accesses, which cannot be automatically generated by
Tanger, we decided to use Genome instead.

We also measured the percentage of application runtime executed sequentially,
in particular the startup and the cleanup phase of both benchmarks without
any instrumentation. These parts have not been parallelized by the benchmark-
developers. In Vacation, only 0.16% of the execution runs sequentially. In con-
trast, Genome’s startup phase takes very long, i.e., 14.3%. While ParExC can
parallelize the checks of this phase, Tanger cannot be used for this purpose.

For both benchmarks, the measurements depicted in Fig. 5 show that the
sequential overhead is higher with the Tanger instrumentation than with the
ParExC instrumentation. In contrast to applications instrumented with ParExC,
those instrumented with Tanger need to acquire and check locks for every mem-
ory access within transactions and in the OOB runtime library.

Furthermore, we can see in Fig. 5 that both benchmarks scale better when
instrumented with ParExC than when instrumented with Tanger. Vacation in-
strumented by Tanger actually scales worse if more threads are used than cores
are available. One reason could be increased contention, which would lead to
higher abort rates. Another reason could be the lack of transaction scheduling
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Fig. 5. Runtime of the OOB checker with ParExC and Tanger/TinySTM. The error
bars show the minimum and the maximum of our measurements, respectively.

by TinySTM. Both issues do not arise using the ParExC approach. First, there
is no contention between executors. Second, executors are scheduled by the OS
transparently. However, more measurements are necessary to clarify this issue.

Since only the checks are parallelized, the application parallelized using the
ParExC framework cannot be faster than the original application. Therefore, if
the workload is easily parallelizable, and enough cores are available, the Tanger
approach will eventually result in better scaling applications. On the other hand,
the ParExC approach also works with applications or parts of applications that
are difficult to parallelize, as long as heavy runtime checks have to be applied.

7 Related Work

Parallel checking has been introduced using dynamic binary instrumentation
(DBI) [5,9,14]. The general approach is similar to ParExC: the original applica-
tion (our predictor) runs on one core and is partitioned into epochs. Each epoch is
deterministically replayed with runtime checks on another core. Replayed epochs
run in parallel to each other. This basic approach was already presented by [15].
However, there it was used for parallelizing the application itself with modest
performance gains and not for runtime checks. SuperPIN [14] does not hold back
externally visible side effects. Therefore, it can only detect errors but not prevent
their propagation into other components of the system. Parallel DIFT [9] uses a
non-trivial hardware extension to stream data from the core running the original
application to the cores used for checking. This hardware extension enables very
low overheads for taint analysis checking. [9] reports slowdowns between 1.2 and
3.1. In contrast to Parallel DIFT, Speck [5] is as ParExC a software only ap-
proach. As already discussed, Speck scales well, but incurs a high overhead due
to DBI and serializing checking on a single core. FastTrack [16] uses the same
approach as Speck for parallelizing an out-of-bounder checker. Like ParExC, it
uses static instrumentation. However, FastTrack tracks the array-bounds in the
predictor. Fig. 1 shows that the predictor’s runtime limits the overall speedup
for all related work including ParExC. We avoid the slowdown of the predictor
by using speculative variables. In contrast to Speck and ParExC, FastTrack has
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to wait for all outstanding executors to finish before each system call. Hence,
FastTracks scalability is reduced in applications with many system calls.

ParExC uses speculation in two ways: (1) it speculates on the failure free exe-
cution of the predictor, and (2) uses speculative variables to decouple executors.
Thread-level speculation tries to exploit parallelism in sequentially programmed
applications. Therefore, applications are divided into parts, similar to our epochs.
This requires either code analysis or hints by the programmer [17]. The obtained
epochs are characterized by no or minimal data dependencies and are executed in
parallel [18,19]. Our speculative variables are similar to value speculation used
in thread-level speculation [18,19,20]. Transactional memory (TM) [13,8] pro-
vides atomicity for critical regions. Optimistic TM implementations speculate
on low contention between concurrently executed critical regions. If a conflict
between two concurrently performed critical regions is detected, at least one of
the critical regions is rolled back and its changes are undone. ParExC speculates
on a failure free execution. Thus, we abort the application as soon as we detect
a failed speculation.

8 Conclusion

In our experience, the ParExC framework is relatively easy to use by program-
mers of checkers because it is mainly transparent - except for the use of spec-
ulative variables. The overhead of the ParExC instrumentation is low when
compared to dynamic binary instrumentation or transactional memory. More-
over, ParExC has demonstrated that it can scale well with the number of cores
for various checkers. From our evaluation, we conclude that for applications in-
strumented with heavy-weight runtime checks, it seems to be more promising
to parallelize the runtime checks than the application itself. When the number
of cores is getting larger than the slowdown introduced by the runtime checks,
we expect that STM will eventually do better for parallelized applications that
scale well with the number of cores.
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Abstract. Efficiency of optimistic fair exchange using trusted devices
is studied. Pfitzmann, Schunter and Waidner (podc 1998) have shown
that four messages in the main sub-protocol is optimal when exchang-
ing idempotent items using non-trusted devices. It is straightforward
that when using trusted devices for exchanging non-idempotent items
this number can be reduced to three. This however comes at the cost
of providing trusted devices with an unlimited amount of storage. We
prove that exchanging non-idempotent items using trusted devices with
a limited storage capacity requires exactly four messages in the main
sub-protocol.

1 Introduction

Fair exchange protocols (hereafter called FE) aim at exchanging items in a fair
manner. Informally, fair means that all involved parties receive a desired item
in exchange for their own, or none of them does so. Deterministic fair exchange
protocols cannot be constructed with no presumed trust in the system [4]. There-
fore, many FE protocols rely on impartial processes which are trusted by all the
protocol participants, hence called trusted third parties (TTPs). In the opti-
mistic family of FE protocols, normally the participants execute an optimistic
(or, main) sub-protocol which does not involve the TTP at all. However, if a
failure maliciously or accidentally occurs, the participants are provided with
fallback scenarios, which enable them to recover to a fair state with the TTP’s
help. When failures are infrequent, optimistic protocols are preferred over those
which involve the TTP in each exchange.

In this paper, we study optimistic FE between trusted computing devices
(TDs). TDs, by construction, follow their certified software, and are guaranteed
to observe the terms of use and distribution of digital contents. These devices
are nowadays becoming prevalent, particularly in entertainment and multime-
dia industries. A very common application of TDs pertains to protecting digital
contents from unauthorized access (e.g. rendering a media file) and illicit distri-
bution.

Using TDs in optimistic FE protocols is hardly new. TDs have previously been
used in order to enrich services provided by FE protocols, e.g. for exchanging
time-sensitive data [23], for exchanging electronic vouchers [18], and for robust
efficient multi-party computation, which is a general form of fair exchange [7].
Moreover, in [5] a class of FE protocols using TDs is developed which also toler-
ate accidental failures of devices. Note that TDs are not necessarily operated by
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honest owners, and usually have to communicate over insecure media. Therefore,
using TDs does not entirely obliterate the need for security protocols to ensure
fairness in exchange. One would however expect that using TDs results in sim-
pler, more efficient, or value-added FE protocols. Our main contribution here is
a negative result concerning two-party FE between TDs: Using TDs does not
increase the efficiency of optimistic fair exchange protocols in common practical
scenarios. In the following, we describe what is meant by efficiency and common
practical scenarios.

The premise of optimistic FE is that failures are infrequent, and consequently
fallback sub-protocols are executed rarely. Therefore, a meaningful measure of
efficiency in these protocols is the number of messages exchanged in the main
sub-protocol. This number will serve as our measure of efficiency for FE protocols
as well. As a convention we refer to n-message FE protocols, where n refers to
the number of messages exchanged in their optimistic sub-protocol.

Most existing protocols for fair exchange assume that the items subject to
exchange are idempotent, meaning that receiving (or possessing) an item once is
not different from receiving it multiple times [1,15]. For instance, once Alice gets
access to Bob’s signature on a contract, receiving it again does not add anything
to Alice’s knowledge. The idempotency assumption reflects mass reproducibility
of digital contents. Certain digital items are however not idempotent. Electronic
vouchers [10,9] are prominent examples of non-idempotent items. Depending on
the implementation, right tokens in various digital rights management schemes
are as well digital non-idempotent items, e.g. see [12,20]. As mentioned above,
a common approach to secure use and dissemination of non-idempotent items
is to limit their distribution to TDs. We focus on practical scenarios in which
fair exchange between TDs needs to ensure that non-idempotent items are not
cloned arbitrarily.

Contributions. We confine to two-party exchange protocols. Pfitzmann et al. [16]
have shown that four messages in the optimistic sub-protocol are sufficient and
necessary for secure fair exchange of idempotent items between non-trusted de-
vices. We show that when exchanging non-idempotent items between TDs, the
number of messages in the optimistic sub-protocol can be reduced to three.
This would however come at a cost which is often intolerable in practice: The
TDs need to keep record of all their previous exchanges. If TDs are provided
with limited non-volatile storage capacity (hence not being able to store finger-
prints of all their previous exchanges), four messages in the main sub-protocol
are proved to be necessary. In order to prove our minimality results, we give a
knowledge-based model of optimistic FE protocols between TDs. Our formaliza-
tion mainly follows [2]. Logics of knowledge have proved to be a useful tool in
deriving communication lower bounds in various distributed systems, cf. [6].

Related work. In this paper, we investigate to which extent using trusted com-
puting devices can increase the efficiency of optimistic FE protocols. The only
papers on the optimal efficiency of FE protocols, to our knowledge, are [16] for
two-party protocols, and [13] for protocols with more than two participants. The
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bounds derived in these work are relevant for non-trusted participants, and their
focus is on exchanging idempotent digital signatures over contracts.

Road map. Section 2 gives an informal introduction to optimistic FE protocols,
idempotent and non-idempotent items, TTP logic, etc. In section 3 we develop a
knowledge-based model for optimistic FE protocols using TDs. The main result
of this section is to formally determine the resolve pattern of three-message
optimistic FE protocols, by proving that a TD p can successfully complete an
exchange only if p knows that his opponent q can also successfully complete
the exchange. Intuitively, a resolve pattern describes alternatives available to
protocol participants in case they are waiting for a message from their opponent
and the message does not arrive in time, or received messages at that point do
not conform with the protocol. Section 4 concerns FE of non-idempotent items
between TDs with limited storage capacity. We give a four message protocol
which satisfies the desired security requirements. To prove that four messages in
the optimistic sub-protocol are necessary, we build upon the result of section 3
and give a generic replay attack on all the three-message protocols between
TDs with limited storage which aim at exchanging non-idempotent items. We
also show that the mentioned replay attack can be countered if TDs possess
an unlimited storage capacity, by presenting a 3-message protocol for this case.
Section 5 concludes the paper. Proofs omitted in the text due to space constraints
can be found in [19].

2 An Informal Introduction to Optimistic FE

Non-idempotent items. We consider electronic vouchers as a generic model for
non-idempotent items. An electronic voucher, according to RFC 3506, is “a
digital representation of the right to claim goods or services” [9]. A voucher
v is a tuple v = (〈I, P 〉, H), where I is the voucher’s issuer, who guarantees
the contents of the voucher, H is the voucher’s owner, and P is I’s promise to
the owner of the voucher (i.e. H). Voucher forgery and alteration are assumed
infeasible: No one, except I, can create 〈I, P 〉, and once it is created, no one
can alter P . This can be realized, e.g., using secure digital signature schemes.
Duplicating vouchers is nonetheless possible, and has to be prevented.

Two voucher duplication scenarios are conceivable: (1) local duplication, where
H , the owner of 〈I, P 〉, duplicates the voucher for its own (excessive) use, and (2)
remote duplication, where H ′, a device different from H , gets a copy of 〈I, P 〉
and stores it for its own use, without H destroying its copy of the voucher. Using
TDs to store and spend vouchers can prevent local duplications. Security protocols
designed for distribution, exchange and use of vouchers are in charge of preventing
remote duplications, by ensuring that H destroys (〈I, P 〉, H) before H ′ stores the
voucher.

Trusted computing devices. Trusted devices are tamper-proof hardware that,
though possibly operated by malicious owners, follow only their embedded sealed
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software. Trusted devices typically contain a secure scratch memory and (a lim-
ited amount of) non-volatile storage capacity. Device X maintains a multiset
of vouchers VX . Before adding the voucher v = (〈I, P 〉, Y ) to VX , the device
transforms v to (〈I, P 〉, X).

The owner of a TD can deliberately turn the device off, or permanently destroy
it. We assume that TDs are stateful: If a TD is abruptly turned off, it would
resume its previous state when turned on later. This can be realized using various
logging systems. For TDs, thus, we assume the crash-recovery failure model with
no amnesia, e.g. see [11]. For the moment, we ignore the possibility that the
owner delays, blocks or tampers with the messages destined to the device, or
transmitted by the device. These issues are discussed within the system and
communication model below.

The TTP is a trusted device, which is immune to failures, and has access to
an unlimited secure persistent database. It is assumed that the identity of the
TTP is a common knowledge in the system.

A computing device which is not trusted, called non-trusted, can be faulty. In
this case, it would follow the Byzantine failure model.

System and communication model. We assume a fully connected asynchronous
message passing network which connects all TDs; computations are asynchronous,
and communication delays, although being finite, are not bounded. The commu-
nication channels between any two device X and Y are assumed to be reliable,
meaning:

– (resilience) No messages are lost in transition.
– (authenticity) A message delivered at Y , has been previously sent by X .
– (confidentiality) Messages sent from X to Y are readable only to Y .

We remark that over reliable channels messages can be delayed, reordered or
replayed. These operations are usually attributed to an omnipresent adversary
in the system.

Authenticity and confidentiality can be guaranteed using standard secure en-
cryption and digital signature schemes, assuming a deployed secure public key
infrastructure. Below, we discuss the prerequisites and implications of the re-
silience condition.

Assuming resilient channels, as observed in [1], is unavoidable, in order to
guarantee termination of FE protocols (cf. Gray’s generals paradox). In practice,
if two principals fail to properly establish a channel over computer networks,
they can ultimately resort to other communication means, such as various postal
services. These services, although being much slower, are very reliable and well
protected by law.

The resilience assumption may however seem to be unrealistic when TDs are
operated by malicious owners, who may block messages destined to the devices.
Below, we argue that such communication failures are subsumed in our device
failure model and communication model. Assume that X is a TD which expects
to receive a message. Device X either (1) has alternative actions to take if the
message does not arrive in time, or (2) no such option is available. The effect
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of blocking the message in case (1) is the same as delaying the message in the
communication network, which is allowed in our model. As a convention, when
a message is delayed long enough so that the intended recipient device takes
an alternative action, we say that the message has been intercepted. In case (2),
however, the device would not take any steps unless it receives that very message.
Preventing the message to ever arrive, thus, corresponds to turning the device
off; this is indeed allowed in our device failure model (see above).

Optimistic fair exchange. Below, we briefly introduce optimistic FE. For an
extensive exposition of FE in general see [1]. In the following, we opt for a high
level description that underlines the exchange patterns, and for the moment we
do not focus on exchanges between TDs. Exact message contents are abstracted
away, and all messages are assumed to contain enough information for protocol
participants to distinguish different protocol instantiations, and different roles
in protocols. Detailed specification of these issues is orthogonal to our current
purpose.

Optimistic protocols typically consist of three sub-protocols: main or opti-
mistic sub-protocol, abort sub-protocol and recovery sub-protocol. Figure 1 de-
picts a generic main sub-protocol between A and B. The regions in which the
other two sub-protocols are alternative possibilities are numbered (1–4) in the
figure. In the main sub-protocol, that does not involve the TTP, the agents
first commit to release their items and then they actually release them. The
items subject to exchange, and commitments are respectively denoted by iA, iB
and cA(iA), cB(iB). In figure 1 we have m1 = cA(iA), m2 = cB(iB), m3 = iA
and m4 = iB. If no failures occur, the participants exchange their items success-
fully using the main sub-protocol.

If an expected message does not arrive in time, or the arrived message does
not conform to the protocol, then the participant expecting that massage can
resort to the TTP using abort or recovery sub-protocols. Here we introduce the
notion of resolve patterns. This notion helps us in reasoning about optimistic FE
protocols. Consider again the generic four message protocol shown in figure 1.
A resolve pattern characterizes the alternative sub-protocols which are available
to participants when they are waiting for a message from their opponent in the
main sub-protocol; namely, the alternative sub-protocols envisaged for points 1,
2, 3 and 4 in figure 1.

Four different symbols can be assigned to a point in the resolve pattern: abort
(a), recovery (r), quit (q), and none (−). Intuitively, a (r) means that the device
can initiate an abort (resolve) sub-protocol, and q means that in case the expected
message does not arrive in time, the participant can safely quit the exchange. Nat-
urally, if no message has been exchanged, the participant quits the protocol, e.g.
B is figure 1 quits the exchange, if it does not receive the first message in time. A
‘none’ option (−) indicates that the participant has no alternatives but following
the optimistic protocol. It will be proved later (in theorem 3) that ‘none’ options
undermine termination of optimistic FE protocol. This is intuitively because TDs
may crash and never send the message their opponent is waiting for. When com-
municating with the TTP (using resolve sub-protocols), however, TDs know that
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Fig. 1. Generic four message protocol (left); Abstract Mealy machine of TTP (right)

the message they send to and expect to receive from the TTP will be delivered in
a finite time. This is due to resilience of the channels, and the fact that the TTP is
immune to failures (see TTP assumptions, above). We use tuples for representing
resolve patterns. For instance, a resolve pattern for the protocol of figure 1 can
be π = (q, a, r, r); then we write π1 = q, π2 = a, etc.

The resolve sub-protocols (abort/recovery) involve the TTP. Without loss of
generality we assume that the participant sends its message history (all messages
sent and received up to now by the participant in the current execution of the
protocol) to the TTP, and based on these the TTP either returns an abort token
A, or a recovery token R. Token A often has no intrinsic value; it merely indicates
that the TTP will never send an R token in the context of the current exchange.
Token R should however help a participant to recover to a fair state. Although
it is impossible for B alone to derive iA from cA(iA) (and vice versa), it is often
assumed that the TTP can generate iA from cA(iA), and iB from cB(iB), and
that R contains iA and iB. In case the TTP cannot do so, usually an affidavit
from the TTP is deemed adequate, cf. weak fairness [15].

The TTP logic matching the resolve pattern (q, a, r, r) for the protocol of
figure 1 is also shown in figure 1. For each exchanged item, the finite state
(Mealy) machine of the TTP is initially in the undisputed state sU. If the TTP
receives a valid abort request (from A) while being at state sU, then it sends
back an abort token, and moves to aborted state sA. Similarly, if the TTP is in
state sU, and receives a valid resolve request (from either A or B), then it sends
back R, containing iA and iB, and moves to recovered state sR. When the TTP
is in either of sA or sR states, no matter it receives an abort or a recovery request
on this exchange, it consistently replies with A or R, respectively.

Security requirements. A process is correct if it does not deviate from the terms
of the protocol; otherwise it is faulty. In particular, a TD is correct if it does not
crash. Due to our assumptions, TTP is always correct. A fair exchange protocol
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is secure iff it satisfies the following conditions in presence of any number of
faulty processes [1]:1

– Timeliness: Any correct process can terminate the protocol in a finite amount
of time, with no help from its opponent.

– Fairness: When the exchange terminates, if A owns iB (or R) and B does
not own iA, then we say the protocol is unfair for B. A protocol is fair iff
it is not unfair for any correct process.

– Functionality: If A and B are correct, and communication delays are negli-
gible, then the A gets iB and B gets iA, with no contact to the TTP.

Furthermore, any secure protocol for exchanging non-idempotent items (between
TDs) has to guarantee the following requirement [9]:

– No-duplication: The total number of instances of any non-idempotent item
v is never increased in the system (i.e. in the VX sets collectively maintained
by TDs).

The scenario in which issuer I injects new vouchers to the system is here con-
sidered to occur out-of-band. We remark that assigning unique (serial) numbers
to non-idempotent items does not in general address the problem of ensuring
no-duplication.

We recall the following theorem from [16].

Theorem 1. Four messages in the main sub-protocol is sufficient and neces-
sary for secure fair exchange of idempotent items, using non-trusted computing
devices.

Remark 1. The four-message FE protocol that is given in [16] as a witness has
the resolve pattern πin = (q, a, r, r). It can easily be verified that πin is the
only resolve pattern suitable for secure fair exchange of idempotent items using
non-trusted devices.

3 A Formal Model for Optimistic FE Using TDs

We introduce a minimal formal system for reasoning about FE protocols. The
formalization mostly follows the knowledge-based approach of [2], see also [6].

A formal model for protocols. For finite set Σ we write Σ∗ for the set of all finite
sequences of elements of Σ, containing the empty sequence ε. Concatenation of
sequences x and y is denoted xy. For two sequences x, y ∈ Σ∗, we write x ≤ y
iff x is a prefix of y, i.e. ∃z ∈ Σ∗. xz = y; we write y − x for z. We write
x < y if x ≤ y and x �= y. The prefix closure of set Y ⊆ Σ∗ is defined as
Y = {x ∈ Σ∗ | ∃y ∈ Y. x ≤ y}. Set Y is prefix closed iff Y = Y .

1 Fairness is a safety trace property, timeliness is a liveness trace property, while
functionality is not a trace property: It concerns existence of particular traces in the
system.
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We define the set of actions as Act = S ∪ S̄∪ I, where S, S̄ and I are pairwise
disjoint, and respectively contain the set of send, receive and internal actions.
We assume there is a bijective function .̄ : S → S̄ such that ∀s ∈ S. ā ∈ S̄.
Intuitively, a ∈ S denotes the event of sending a message, and ā ∈ S̄ stands for
the corresponding receive event.

A process is a prefix closed subset of Act∗. A protocol P is a finite number
of processes. We assume the set of actions appearing in different processes are
disjoint. This makes it possible to associate a unique process to each action. Let
x ∈ Act∗, and write xp for the sequence of actions that results from x after
erasing all the actions not performed by process p. We say x is a computation of
protocol P iff (1) for all p ∈ P , xp belongs to process p, and (2) any ā ∈ S̄ which
appear in x is preceded by a in x. It follows that computations of protocols are
prefix closed. That is, any protocol can be seen as a process in itself. We write
a ∈ x, with a ∈ Act , x ∈ Act∗, if a appears in x.

Let us fix a finite nonempty set of propositions Φ, and an interpretation func-
tion I : Act∗ → Φ → {tt,ff} which assigns truth values to the elements of Φ,
given a computation. We augment the set of propositions with the standard
negation and disjunction operators, and also a knowledge-based operator E , in
order to define the syntax of our knowledge-based logic EL: (1) Every element
of Φ is an EL formula; (2) If e is an EL formula and p a process, then Ep(e) is
an EL formula; (3) If e and e′ are EL formulas, then so are ¬e and e ∨ e′. Read
Ep(e) as “p knows e”.

In the following we introduce the notion of isomorphism: Two computation
x and y are isomorphic w.r.t. process p iff xp = yp. Clearly the isomorphism
relation is an equivalence relation on the set of all computations. Isomorphism
is the core of EL’s semantics: Processes have only local views, and cannot there-
fore distinguish computations which are isomorphic in their view [2]. Models
of EL formulas are computations. For computation x and EL formula e, the
relation x |= e is inductively defined as:

– x |= e with e ∈ Φ iff I(x)e = tt.
– x |= Ep(e) iff y |= e for all computations y that are isomorphic to x w.r.t. p.
– x |= ¬e iff ¬(x |= e).
– x |= e ∨ e′ iff x |= e or x |= e′.

A formal model for fair exchange protocols using TDs. Below, TDs are referred
to as processes. We assume that any process p which finishes the optimistic sub-
protocol successfully executes an internal action �(p) and terminates: (Recall
that the set of computations of p is prefix closed.)

∀x ∈ p. �(p) ∈ x =⇒ ¬∃y ∈ p. x < y

Since communications with the TTP are over reliable channels, and the TTP
is indeed always correct, we choose to model these communications as internal
actions for processes. We write R(p) and A(p), with p ∈ P , for receiving the
recovery and abort tokens by p. Notation Q(p) denotes p quiting the exchange.
Immediately after executing any of these actions, the process terminates:
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∀x ∈ p. A(p) ∈ x ∨ R(p) ∈ x ∨ Q(p) ∈ x =⇒ ¬∃y ∈ p. x < y

This condition in particular implies that only one of A(p), R(p) or Q(p) can
appear in any execution x.

When a process p crashes it simply executes ⊥(p) and terminates:

∀x ∈ p. ⊥(p) ∈ x =⇒ ¬∃y ∈ p. x < y

Since any process p (except TTP) may crash at any moment (before terminating)
we assume:

∀x ∈ p. �(p) �∈ x ∧ ⊥(p) �∈ x ∧ A(p) �∈ x ∧ R(p) �∈ x ∧ Q(p) �∈ x =⇒ x⊥(p) ∈ p

The consistent behavior of the TTP is captured via considering only TTP-
consistent computations, as defined below. Computation x of an FE protocol
is TTP-consistent iff

– If R(p) appears in x for process p, then A(q) does not appear in x for any
q ∈ P .

We also need to assert that if a correct process has the choice to, e.g., contact the
TTP in computations x, then the computations x also allows (or, covers) this
possibility. That is, we confine only to maximal computations. For a computation
of protocol P like x, we say x is maximal iff

– For any p ∈ P , for all y ∈ p such that xp < y and ⊥(p) �∈ y − xp, we have
x(y − xp) is not a computation in P .

This constraint, intuitively, implies that computation x is considered maximal
only if no process p can progress further in computation x except by crashing.
Note that since processes are prefix closed, if p can progress further than xp,
then there exists a y ∈ p such that y − xp contains only one action.

TTP-consistence and maximality can be seen as fairness constraints on pro-
tocol computations, cf. [8]. From this point on, by a computation we mean a
TTP-consistent and maximal computation, unless otherwise stated.

Fair exchange security requirements. A protocol P is a secure fair exchange pro-
tocol iff it satisfies the following properties. Here, x : P stands for “computation
x belongs to protocol P”.

– Functionality:
∃x : Prot.∀p ∈ P . �(p) ∈ x

– Timeliness:

∀x : P .∀p ∈ P . Q(p) ∈ x ∨ A(p) ∈ x ∨ R(p) ∈ x ∨ �(p) ∈ x ∨⊥(p) ∈ x

– Fairness:

∀x : P .∀p, q ∈ P . (R(p) ∈ x∨�(p) ∈ x) =⇒ (R(q) ∈ x∨�(q) ∈ x∨⊥(q) ∈ x)
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The following theorem is the main technical result of our formalization that re-
lates fairness to knowledge. For a computation x and p ∈ P , we write I(x)G(p) =
tt iff �(p) ∈ x ∨ R(p) ∈ x.

Theorem 2. For any computation x in a protocol between p and q that satisfies
fairness, x |= G(p) only if x |= Ep(G(q) ∨⊥(q)).

Proof. Let x |= G(p), and assume y is any computation in the protocol such
that xp = yp. We need to show that y |= G(q)∨⊥(q). From xp = yp we conclude
y |= G(p). As the protocol satisfies fairness we get y |= G(q) ∨ ⊥(q). 	


Intuitively, the theorem states that p can add an item iq to Vp iff p knows that
a correct q would add iq to Vq.

3.1 Three-Message Protocols for FE Using TDs

In this section we determine the resolve pattern of any three-message FE protocol
that satisfies functionality, timeliness and fairness. Figure 2 shows a generic
three message protocol. Our focus in this section is on optimistic non-redundant
protocols, as defined below. A protocol is optimistic iff it satisfies functionality
and π1 �∈ {r, a}. The intuition behind this definition is that by functionality the
protocol has at least one successful computation without contacting the TTP,
and the condition π1 �∈ {r, a} implies that in case the receiver of the first message,
say Bob, in the protocol does not receive this message he can either wait, or quite
the exchange, but may not contact the TTP. In other words, if no messages are
exchanged in Bob’s view, then he does not contact the TTP.

An optimistic protocol with � messages is non-redundant iff the protocol has
no computation of length less that 2� + 2 which contains both �(p) and �(q).
Here, 2� counts all the mi and m̄i for 1 ≤ i ≤ �, and then two actions �(p)
and �(q) are added to the result. Intuitively, this implies that all the messages
of the protocol are required to be exchanged in order to successfully complete
the protocol, with no TTP interventions.

Below, in order to capture the intuitive meaning of resolve patterns we require
that given resolve pattern π = (π1, π2, π3) and any computation x in which only,
say p, contacts the TTP at a point corresponding to πi, the TTP answer with R
if πi = r and the TTP will answers with A if πi = a. This is in accordance with
the description of TTP logic in section 2. The proof of the following theorem
relies on theorem 2, and can be found in [19].

Theorem 3. The resolve pattern of any three-message optimistic FE protocol
between p and q that satisfies fairness, timeliness and functionality, is necessarily
π = (q, a, r).

The resolve pattern determined in theorem 3 is a necessary, but not generally suf-
ficient, condition for satisfying fairness, timeliness and functionality. If processes
are not trusted, there is no 3-message protocol for secure FE, see theorem 1.
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Fig. 2. Generic three message protocol

4 Optimistic FE of Non-idempotent Items between TDs

Below, we focus on exchanging non-idempotent items between TDs. In section 4.1
we give a four-message FE protocol for exchanging non-idempotent items between
TDs with limited storage capacity. It is worth mentioning that the resolve pat-
tern of the protocol of section 4.1 is different from πin (see remark 1); using πin

would require TDs with unlimited storage capacity. In section 4.2 we show that
four messages in the optimistic sub-protocol are necessary by giving a generic re-
play attack on any three-message FE protocol between TDs with limited storage
capacity. Protocols with one or two messages in the optimistic sub-protocol are not
discussed, due to their trivial inadequacy. In section 4.3 we give a three-message
FE protocol for exchanging non-idempotent items between TDs with unlimited
storage capacity.

4.1 A Four-Message FE Protocol between TDs with Limited
Storage

It can be easily verified that the resolve pattern πin is not suitable for exchanging
non-idempotent items. Namely, there exists a generic replay attack on protocols
with resolve pattern πin which can be countered only if the TDs have access to
an unlimited amount of secure storage. The attack is due to the no-duplication
requirement. The proof of the following proposition is given in [19].

Proposition 1. The resolve pattern πin = (q, a, r, r) is not secure for fair ex-
change of non-idempotent items, using TDs with limited storage capacity.

Next, we present a protocol with resolve pattern (q, q, a, r) for exchanging non-
idempotent items using trusted devices with limited storage capacity. This pro-
tocol is inspired by a protocol of Terada et al. [18].

In order to give a detailed description of the protocol, we relax the integrity,
authenticity and confidentiality assumptions on communication channels (cf.
section 2) for proving theorem 4, and also theorem 6. Below, [M ]X denotes
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message M signed by participant X ; and M can be extracted from [M ]X . We
write h(M) for the hash value of M , where h is a one-way secure hash function.
A secure PKI infrastructure is also assumed to be in place. The cryptographic
apparatus are assumed to be ideal, as in Dolev and Yao [3].

Theorem 4. Resolve pattern π = (q, q, a, r) can be used for secure fair exchange
of non-idempotent items, using TDs with limited storage capacity.

Proof. Consider an instantiation of the 4-message protocol and the TTP logic
of figure 1, with resolve pattern π. Initially v ∈ VA, v′ ∈ VB , and A and B want
to exchange v for v′. We assume that

1. A temporarily removes v from VA when starting the exchange. If A receives
token A, it puts v back into VA. Upon a successful exchange with B, or
receiving token R, A adds v′ to VA and destroys v. A similar assumption is
made for B.

2. A and B are programmed such that once they start the resolve sub-protocols,
they will ignore all the messages from the main sub-protocol.

These assumptions are tenable, since A and B are trusted devices. The speci-
fications for initiator A and responder B are given in table 1. We assume that
confidentiality of the vouchers v and v′ is not a concern (otherwise, communi-
cations between A, B and the TTP have to be encrypted in the following). The
message contents for the protocol (referred to in table 1) are described below.
We recall that messages are communicated over resilient channels, and A and B
are TDs.

– m1 := [v, v′, B, n]A, where n is a fresh nonce generated by A.
– m2 := [h(v, v′, A,B, n), h(n′)]B , where n′ is a fresh nonce generated by B.

Table 1. Specification of processes in theorem 4

Specification of initiator A

VA := VA \ {v}
send m1 to B

recv m2 from B

IF recv times out THEN quit
send m3 to B

recv m4 from B

IF recv times out THEN
send recovery request r to TTP
IF recv abort token A from TTP THEN
VA := VA ∪ {v}

ELSE IF recv recovery token R
from TTP THEN

VA := VA ∪ {v′}
ELSE

VA := VA ∪ {v′}

Specification of responder B

recv m1 from A

IF recv times out THEN quit
VB := VB \ {v′}
send m2 to A

recv m3 from A

IF recv times out THEN
send abort request a to TTP
IF recv abort token A from TTP THEN
VB := VB ∪ {v′}

ELSE IF recv recovery token R
from TTP THEN

VB := VB ∪ {v}
ELSE

send m4 to A

VB := VB ∪ {v}



Optimistic Fair Exchange Using Trusted Devices 723

– m3 := [h(n′)]A
– m4 := n′

We assume upon receiving a message, the TDs check the integrity of the mes-
sage, and its conformance to the protocol. A bogus message is destroyed, and
considered as not having been received. For contacting the TTP, the following
messages are used:

– a := [f1, A,B, v, v′, n, h(n′)]B
– r := [f2, A,B, v, v′, n, h(n′)]A
– A := [ack (f1), A,B, v, v′, n, h(n′)]TTP

– R := [ack (f2), A,B, v, v′, n, h(n′)]TTP

Here f1, f2 and ack (f1) and ack(f2) are unique flags respectively denoting an
abort request, a resolve request, an abort token, and a recovery token. Notice
that in this protocol, the TTP can readily extract v and v′ from m1 and m2.
In fact, to recover to a fair state, the participants do not require the contents of
their opponent’s item, but rather the permission to add the item to their local
voucher set. A complete security analysis of the protocol is omitted due to space
constraints. We however note that assumption (1) in the beginning of this proof,
and fairness imply that during exchanges no items are duplicated. A subtlety
here is to ensure that replay attacks are not possible. Note that abort option for
B (that is π3 = a) thwarts the replay attack described in proposition 1. 	


4.2 Four Messages Are Necessary for FE between TDs with
Limited Storage

Theorem 3 maps out the resolve pattern of any three-message FE protocol that
satisfies fairness, timeliness and functionality; namely, π = (q, a, r). Below, we use
this result to show that any three-message protocol that is used for exchanging
non-idempotent items between TDs with limited storage capacity is susceptible
to a generic replay attack.

Theorem 5. There is no three-message protocol for secure exchange of non-
idempotent items between TDs with limited storage capacity.

Proof. Assume there exists a three-message FE protocol for secure exchange of
non-idempotent items. The resolve pattern of the protocol needs to be (q, a, r),
due to theorem 3. Now, assume the protocol is repeatedly executed between
processes p and q. Let computation x be one of these computations which has
completed successfully without resorting to the TTP. Such a computation exists
due to the functionality property. Let

x = m1m̄1m2m̄2m3m̄3�(p)�(q)

Since the processes have limited storage capacity, there exists a point in time θ,
when all the information about computation x is erased from the storage of p
and q. Note that at time θ, the adversary can replay m1. Now the compu-
tation y = m1m̄1m2R(q) is a valid computation: It is maximal, and indeed
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TTP-consistent. Note that p has no actions to perform in this computation, and
is in fact not even “aware” that the exchange is happening. Clearly y violates the
no-duplication property of non-idempotent items. It is worth mentioning that
fairness is not violated in computation y. 	

Remark that simply assigning sequence numbers to different transactions be-
tween TDs A and B does prevent the replay attack described in theorem 5.
However, such sequence numbers must be of an unbounded length, in order to
prevent repetition. That is, TDs require an unbounded storage capacity to store
the sequence numbers in general.

4.3 Three-Message FE Protocols between TDs with Unlimited
Storage

For exchanging non-idempotent items between TDs with unlimited storage ca-
pacity one can use a three-message FE protocol with resolve pattern (q, a, r). The
main idea of the protocol is that TDs can use their unlimited storage to counter
the replay attack described in theorem 5. The proof of the following theorem is
similar to theorem 4, and can be found in [19].

Theorem 6. Resolve pattern π = (q, a, r) can be used for secure fair exchange
of non-idempotent items, using TDs with unlimited storage capacity.

Remark 2. Micali has proposed [14] a three-message protocol for fair exchange
of idempotent items between non-trusted devices, which has the resolve pat-
tern (q,−, r). That is, A cannot run the abort sub-protocol (A’s access to abort
jeopardizes fairness if A is non-trusted). As A is not provided with any means
to contact the TTP in Micali’s protocol, in case A does not receive m2, time-
liness is violated (as observed in [1]), since A can terminate the protocol only
when B takes actions. The resolve pattern (q, a, r) of theorem 6 has also been
used in [17] and [22] for secure fair exchange of the so-called revocable digital
contents; intuitively the TTP’s testimony is necessary for the validity of (some
of) the exchanged items in these protocols.

5 Concluding Remarks

We analyze the efficiency of optimistic protocols for fair exchange of non-
idempotent items using trusted devices. Four messages in the main sub-protocol
is proved to be necessary, given that the trusted devices have access to a lim-
ited amount of storage. With an unlimited non-volatile storage, this number can
however be reduced to three.

It must be interesting to explore the efficiency of FE protocols which guar-
antee atomicity for non-idempotent items, that is no-duplication and also no-
destruction. Atomicity is a typical requirement for financial transactions [21].
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15. Pagnia, H., Vogt, H., Gärtner, F.C.: Fair exchange. Computer Journal 46(1), 55–67
(2003)

16. Pfitzmann, B., Schunter, M., Waidner, M.: Optimal efficiency of optimistic contract
signing. In: PODC 1998, pp. 113–122. ACM Press, New York (1998)

17. Schunter, M.: Optimistic fair exchange. PhD thesis, Universität des Saarlandes
(2000)

18. Terada, M., Mori, K., Ishii, K., Hongo, S., Usaka, T., Koshizuka, N., Sakamura,
K.: A framework for distributed inter-smartcard communication. IPSJ Digital
Courier 2, 120–132 (2006)

19. Torabi Dashti, M.: Optimistic fair exchange using trusted devices. Technical Report
TR 635, Dept. of Computer Science, ETH Zürich (2009)
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Abstract. Host-based intrusion detection systems may be coarsely di-
vided into two categories. Misuse-based intrusion detection systems, whi-
ch rely on a database of malicious behavior; and anomaly-based intrusion
detection systems which rely on the comparison of the observed behavior
of the monitored application with a previously built model of its normal
behavior called the reference profile. In this last approach, the reference
profile is often built on the basis of the sequence of system calls the appli-
cation emits during its normal executions. Unfortunately, this approach
allows attackers to remain undetected by mimicing the attempted be-
havior of the application. Furthermore, such intrusion detection systems
cannot by nature detect anything but violations of the integrity of the
control flow of an application. Although, there exist quite critical attacks
which do not disturb the control flow of an application and thus remain
undetected. We thus propose a different approach relying on the idea
that attacks often break simple constraints on the data manipulated by
the program. In this perspective, we first propose to define which data
are sensitive to intrusions. Then we intend to extract the constraints
applying on these data items, afterwards controlling them to detect in-
trusions. We finally introduce an implementation of such an approach,
and some encouraging results.

1 Introduction

Two approaches co-exist in the domain of intrusion detection: the misuse-based
approach and the anomaly-based approach. The misuse-based approach consists
in looking for known attack signatures in the data collected by the intrusion
detection system. However, this method cannot detect unknown attacks. The
anomaly-based approach requires to build the normal application behavior. At
runtime, the observed application behavior is compared with the normal behav-
ior, and if a deviation arises, we consider an intrusion has occurred.

In the domain of intrusion detection at application level, the anomaly detec-
tion approach is largely preferred. Either the normal behavioral model is derived
from the specification [1], or it is learned dynamically. This last approach is the
basis of most work. In this domain, literature focuses mostly on the system calls,
on the basis of the work of Forrest et al. [2]. The goal of these methods is to
detect if the control flow of an application is corrupted or not. However, such an
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approach is nowadays considered as insufficient because it is possible to perform
mimicry attacks to evade from intrusion detection systems. These attacks can
take two different aspects: the attack can execute additional code and gener-
ate an additional sequence of system calls that appears licit from the point of
view of the intrusion detection system, or the attack can focus on modifying the
program internal state by executing application legal code (e.g., data attacks
with no impact on the application executed control flow). These kinds of attacks
aim thus at corrupting either the control flow integrity or the application data
integrity.

To enhance the detection of the first category of attacks, a lot of recent work
have focused on adding processes internal information in the application behav-
ioral model. Such information may consist in the content of the process call stack
or the value of the program counter at the time of the system calls. However
if such approaches may be efficient to detect hidden control flow modification,
they remain blind to non-control data attacks, i.e., attacks that impact the value
of program variables without modifying its control flow, as it is explained in the
article of Chen et al. [3].

In this paper, we focus on a method that would enhance the detection of
this last category of attacks. This approach consists in building a data oriented
application model. The core problem of such an approach is to have access to the
internal state of the application. This is performed by emulating a processor on
which the monitored application is executed. Then we try to discover relations
between the variables of the executed program, which would permit to detect
inconsistencies between them at runtime.

This paper is organized as follows: we first discuss the existing work on this
topic, then we show how we build the application data model. At last, the paper
exhibits how we can implement such an approach to detect intrusions at the
application level, and the results we obtain.

2 Related Work

Most recent application level anomaly-based intrusion detection systems rely on
an approach introduced by Forrest et al. [2]. This approach consists in monitoring
the sequence of system calls emitted by the applications hosted on the system [4].
The idea behind this approach is that these sequences of system calls constitute
a good model of how applications interact with the remains of the system and
thus constitute a good model of the behavior of the applications. Such intrusion
detection systems are efficient against classical attacks, which obviously modify
the expected sequence of system calls emitted by an application. For instance,
a classical attack which exploits a buffer overflow to spawn a shell will likely
call the socket(), bind(), listen(), accept(), read(), fork() system calls,
which is quite unlikely what a classical web browser would do.

However, it is possible to easily evade system call monitoring based intrusion
detection systems for two main reasons. First of all, the model used to define the
normal behavior of the monitored applications is quite coarse, in that sense that
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it observes the application from an external point of view and with a relatively
high granularity. Given this limitation, an attacker may adapt his attack in
such a way that it does not modify the behavior of the exploited application
in the eyes of the intrusion detection system. In other words, an attacker may
indeed take control of the application control flow, but yet make this control flow
appear normal to the intrusion detection system. As they mimic the expected
behavior of the monitored application, these attacks are often called mimicry
attacks. In [5], Wagner et al. thus describe various possibilities to adapt classical
attacks which modify the control flow of the application and make them unseen
to most intrusion detection systems. To contend with this kind of attacks, a lot
of recent work in intrusion detection has focused on extending the part of an
application one could actually monitor. In this perspective, many process internal
information have been added to the original behavioral model based on system
call sequences. As they go and look inside the application, such approaches are
called gray-box approaches in opposition with black-box approaches which limit
their observation to the interactions of the application with the rest of the system
through the system calls they emit. A few examples of gray-box attempts can be
found in [6] or [7]. Thus, in [6], Sekar et al. propose to extract the value of the
program counter at the time of a system call. With the same goal, in [7], Gao
et al. suggest to examine the content of the stack at the time of each function
call. By enhancing the accuracy and the granularity of the control flow model,
gray-box approaches indeed make mimicry attacks quite difficult to succeed.
However, these approaches carry their limitations in their nature itself. Indeed,
as they focus on the monitoring of the control flow, these works are unable
to detect anything but control flow integrity violation. This objective is quite
pertinent as most of the attacks indeed modify the control flow of the application.
Nevertheless, as shown in [8] and [3], another kind of attacks exists, which does
not disturb the control flow of the application but nonetheless leads to the same
threat than classical attacks.

This second class of attacks focuses on the pure data manipulated by the
program, i.e. on the data which do not influence the application control flow,
and are thus called pure data attacks or non-control data attacks. In [8], Wagner
et al. show that these attacks constitute an important threat for the confiden-
tiality and the integrity of the data, all the more so it cannot be detected by
none of the actual intrusion detection system. Furthermore, in [3], Chen et al.
prove that there exists a realistic danger concerning these kind of attacks by
analyzing several memory corruption vulnerabilities in different real-world ap-
plications and showing how a lot of them can be exploited without modifying
the control flow of the program but still gaining the same privileges on the host
than classical attacks. As such attacks cannot be detected by the monitoring of
the application control flow, they bring us to the study of the data manipulated
by the application.

Several approaches have been investigated to detect pure data attacks. Castro
et al. [9] propose to build the normal data-flow graph from a program static
analysis, and verifies at run-time the data-flow integrity, detecting thus incorrect
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affectations. Some articles propose (such as [10,11]) a taint-check based approach,
in order to know which variables of a program are dependent on the user inputs,
and must then be considered as potentially incorrect. Larson and Austin [12]
propose to detect out of bounds errors in programs by using tainted data analysis
(i.e., data that depend on a user entry, and can be incorrect) and predicates on
most used string related functions. In this approach, the predicates are defined
statically. In the method we propose in this paper, we try to discover dynamically
from the program execution which invariants must be verified, in order to detect
incorrect behaviors. This approach relies on the definition of the set of variables
that are sensible for intrusion detection, and thus on the notion of tainted data.

3 Pure Data Attacks

As explained in the previous section, if actual intrusion detection systems man-
age to detect quite accurately what we call classical attacks, i.e., attacks which
violate the application control flow integrity, they remain helpless in detecting
what we call pure data attacks, i.e., attacks which do not violate the application
control flow integrity. In order to understand how these attacks may be charac-
terized and thus how they may be detected, we first introduce in this section an
example of such a pure data attack, and then study it in the perspective of the
properties it breaks concerning the data it modifies.

3.1 An Example of a Pure Data Attack

A typical example of a pure data attack may be found in the exploitation of the
WU-FTPD Site Exec Command Format String Vulnerability [13] described in
[3]. This vulnerability, among other things, allows an attacker to overwrite a C
structure, denoted pw. The severity of this vulnerability resides in the fact that
this pw structure owns an important role in the security logic of the application
as it contains the uid of the authenticated user. It thus basically allows an at-
tacker to authenticate beside the WU-FTPD server as an unprivileged user and
afterwards overwrite the pw structure to gain administrative privileges. More pre-
cisely, the successive steps of the attack, illustrated on Figure 1, may be described
as follows. First, the attacker authenticates himself beside the WU-FTPD server
as an unprivileged user. His password is then checked and the pw->pw uid is set
to the value of its uid. At this time, the attacker can exploit the Site Exec Com-
mand Format String vulnerability to overwrite the pw->pw uid field and set its
value to 0. A soon as the attacker performs a GET or a PUT command, the server
call seteuid(0) to gain the privileges necessary for a call to setsockopt(). Af-
ter the call to setsockopt() has returned, the server call seteuid(pw->pw uid)
to drop its privileges. As, the pw->pw uid has been overwritten to 0, the privi-
leges of the attacker are set to those of the root user, allowing him to overwrite
the /etc/shadow file and thus to gain permanent administrative privileges on
the host.

As explained above, this attack is interesting as it clearly does not disturb the
control flow of the application, and thus would not be detected by any of the
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- pw->pw_uid undefined
- euid = 0

Unauthenticated

- pw->pw_uid = 1000
- euid = 1000

Authenticated as Alice

In this example, Alice's uid = 1000

- pw->pw_uid = 0
- euid = 1000

- pw->pw_uid = 0
- euid = 0 *

Authenticated as root

USER Alice
PASS alicepassword

OK

Attack
SITE EXEC \x22\x33 ... %d%n

CD /etc
GET passwd

* Due to the call of seteuid(pw->pw_uid)
  at the beginning of the data transfer

Alice has permanent 
administrative privileges

/etc/passwd

PUT passwd 

Modify the passwd file

Server state Client State

Fig. 1. WU-FTPD pure-data attack

classical system call based approaches or more accurate gray-box based intrusion
detection systems, although it appears quite critical as it allows an attacker to
gain administrative privileges on the host. An other interesting point in the study
of this attack is that it appears to be characteristic of the properties pure data
attacks break when they are performed. We discuss this idea in more details in
the next subsection.

3.2 Attack Characterization

The pure data attack described in the previous subsection appears to be inter-
esting in how characteristic it is in the disturbance of the expected properties of
the application data. Indeed, this attack breaks a very simple property verified
during a normal use of the application, which is that the pw->pw uid variable
should remain constant during a given session. In this perspective, denoting
pw->pw uid1, pw->pw uid2, ..., pw->pw uidn different values of pw->pw uid dur-
ing the execution of a given session, this attack may be characterized by the
fact that whenever pw->pw uid1, pw->pw uid2, ..., pw->pw uidn are extracted, it
breaks the simple following constraint :
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pw->pw uid1 = pw->pw uid2 = ... = pw->pw uidn

More generally, it appears that most pure data attacks - and even more classical
attacks - can be characterized by the fact that they break one of the constraints
which qualify the normal use of the application. In other words, we can say
that these attacks break the properties verified by the application data when
this application remains in a “ normal ” state, i.e., when it runs without being
attacked. In this perspective, we first introduce in the next section a formal
model of an application state to work with. Then, we propose a definition of an
attack in the eyes of this model. Finally, we suggest a detection model based on
that previously established definition of an attack.

4 Data-Based Intrusion Detection Model

As explained above, pure data attacks can be characterized by the fact that they
break some properties verified by the application data when this application
remains in a “ normal ” state. Thus, we believe that extracting and afterwards
controlling these properties would allow us to detect intrusions more accurately.
In this section, we first introduce a formal definition of a process state and
propose an abstraction of this definition focused on the properties verified by
the application data. Then, we intend to define the notion of an attack in the
eyes of this abstraction, still focusing on the properties verified by the application
data. Finally, we propose a detection model based on that previously introduced
considerations.

4.1 State of a Process

For each discrete time i, the snapshot state si of a process may be defined by :

si = 〈pci, v1i , ..., vni〉

where pci is the location in the process of the executed instruction at time i, i.e.
the value of the program counter, and v1i , ..., vni the values of the various data
manipulated by the program at time i (registers, environment variables, global
and local variables, etc ...).

This definition of the state of a process may be insufficient in the perspective
of intrusion detection. Indeed, controlling the consistency of snapshot state si

at a given time i sometimes requires the knowledge of all the previous snapshot
states s0, ..., si−1. We thus define the global state Si of a process - in its temporal
meaning - at time i by :

Si = 〈s0, ..., si〉 = 〈pc0, ..., pci, v10 , ..., vn0 , ..., v1i , ..., vni〉

The set of all potential global states of a process, denoted S, is a set whose
elements depend on the definition sets of its variables which are platform depen-
dent (for example, on a 32 bit platform, an unsigned integer is constrained to the
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interval [-2147483648, 2147483647]). However during the “ normal ” executions
of a given program, all global states cannot be reached. For instance, a given
integer variable may be constrained by the program to remain in the interval
[0, 4]. In the same way, access rights on a given file are likely to be the same
at the time the program checks it and at the time the program reads or writes
it. Though, we may define the set of allowed global state of a process, denoted
A as the set of licitly reachable global states of a process. However, the notion
of licitly reachable global state is quite difficult to define. Indeed, if an attack
against a given application is possible, it is precisely because it is possible for
an attacker to lead this application in a problematic state, which is therefore
reachable. We finally may define the set of allowed global states A as the set of
all states which can be reached in a “ normal ” use context, i.e., in a context
where no attack against the application is performed. We suppose in addition
that these states would be those described by a complete specification of the
application if such a specification could exist.

In practice, it appears that A constitutes a quite small subset of S that
we would like to define in order to discern the “ allowed ” states and the “
unallowed ” states. As it seems impossible and probably not much relevant to
explicitly define A, we propose to abstract the state definition to implicitly define
it by expressing the various constraints on the values that application data can
effectively take when this application is in an allowed global state. In other
words, we define a number of relationships which constitutes a constraint system
C. Given a global state Si = 〈s0, ..., si〉 = 〈pc0, ..., pci, v10 , ..., vn0 , ..., v1i , ..., vni〉
we consider that :

Si ∈ A ⇐⇒ 〈pc0, ..., pci, v10 , ..., vn0 , ..., v1i , ..., vni〉 verifies C

In this subsection, we have thus given a definition of a process state and have
proposed an abstraction of this definition which brings us to consider the state
of an application through the properties or the constraints verified by its data.
In the next subsection we propose an attack model based on this proposition.

4.2 Attack Model

In the perspective of the state model proposed above, we may assume that the
application is in an unallowed global state, i.e., a state S ∈ S\A when one of the
constraints of C is broken. Thus, we propose, on the basis of our data constraint
based state model, a definition of an attack. In this model, we can indeed affirm
that an attack can be characterized as a sequence of “ user actions ” leading
the application from a state Si ∈ A into a state Sf ∈ S\A, therefore breaking
the constraints on the application data which characterize the set A. In the
pure data attack example given in section 3, the attack is thus characterized by
the fact it breaks the simple pw->pw uid1 = pw->pw uid2 = ... = pw->pw uidn
constraint.

Given this definition of an attack, focused on the constraints verified by the
application data when this application is in an allowed global state, we can now
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propose a model to detect these attacks. In the next section, we introduce such a
detection model, based on the previously stated attack definition, and therefore
focused on the data and the constraints they verify.

4.3 Detection Model

In this perspective of the attack model proposed in the previous subsection, we
now define a detection model focused on the constraints verified by the appli-
cation data. Our detection model relies on the assumption that it is possible to
extract in whatever manner the set of constraints C which characterize the set of
allowed global states A. Supposing this assumption verified, we thus propose to
monitor the application by controlling the enforcement of this set of constraints
C and to raise an alert as soon as one of these constraints seems broken. The ma-
jor interest of such an approach is the accuracy of the detection, as it potentially
enables the detection of both control flow integrity attacks and pure data at-
tacks, what classical intrusion detection systems would not allow. However, this
detection model relies on the quite complex extraction of the set of constraints
C on the application data. Nevertheless, our goal in this paper is not to fully
qualify the consistency of a given state, but only to qualify this consistency with
regards to security concerns. In this approach, it clearly appears that not all the
data manipulated by the application would be of interest for us, and therefore
allows us to restrict our study to a smallest security critical data set. In the next
section, we thus try to define which data can be critical in a security focused
perspective and then examine a way to practically extract this data out of the
whole application data set.

5 Intrusion Sensitive Data Set

As explained in the previous section, not all data items are interesting for our
model. In this section we first try to define which data can be considered as
critical in a security perspective and then introduce a formal characterization
of these data in order to clearly define which data must be studied out of the
whole application data set.

The set of interesting data we try to extract, henceforward called intrusion
sensitive data set and noted ISDS, is defined by the two main properties it ver-
ifies. First, in an immunological approach, we may consider that this intrusion
sensitive data set constitutes a subset of the data which may influence, directly
or indirectly, the system calls or their arguments. Indeed, if a data item has no
influence on the system calls or their arguments, it cannot have any influence
on any critical behavior (reading a file, writing on a socket, modifying the uid of
a process, etc ...). Thus, we may consider that the data which do not influence
the system calls or their arguments is of little interest for an attacker and thus
is of little interest in an intrusion detection perspective. Secondly, we may con-
sider that the intrusion sensitive data set constitutes a subset of the data being
influenced, directly or indirectly, by user inputs. Indeed, one must remind that



734 O. Sarrouy, E. Totel, and B. Jouga

an attack always occurs through a pernicious user input (configuration file, data
read on a socket, etc ...). In this perspective, the data we are interesting in must
be influenced, directly or indirectly by user inputs. These data are said to be
tainted as the threat they sustain propagates through them.

The notion of influence between two or more data can be formally defined by
the notion of causal dependency largely tackled in [14], [15] and [16]. Denoting
(o,t) the content of the data object o (a byte or a variable depending on the
level of granularity) at time t, we may then denote (o’,t’) → (o,t), with t′ ≤ t the
causal dependency of (o,t) in relation to (o’,t’). The relation → being transitive,
we may then define the causality cone of a point (o,t) as :

cause(o, t) = {(o′, t′)/(o′, t′) → (o, t)}

In the same way, we may define the dependency cone dep(o,t) as the set of points
which causally depends on (o,t) :

dep(o, t) = {(o′, t′)/(o, t) → (o′, t′)}

More informally, the causality cone of a given point (o,t) represents the set of
point (o’,t’) influencing, directly or indirectly, the set (o,t). In the same way,
the dependency cone of a given point (o,t) represents the set of points (o’,t’)
influenced, directly or indirectly, by (o,t). The notions of causality cone and
dependency cone are the expression of the notions of information flow and/or
control flow.

The notions of causality cone and dependency cone being introduced, we may
now give a more formal definition of the intrusion sensitive data set. As explained
above, the first property characterizing the intrusion sensitive data set is that
it constitutes a subset of the data influencing, directly or indirectly, the system
calls emitted by the application and their argument. Thus, we may denote (with
sc the set of system calls):

ISDS ⊆ cause(sc)

Furthermore, the second property characterizing the intrusion sensitive data
set is that it constitutes a subset of the tainted data, i.e., of the data being

t

data item

user input

syscall

data item belonging to isds

Fig. 2. Intrusion Sensitive Data Set
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influenced, directly or indirectly by user inputs. Thus, we may denote (with ui
the set of user inputs):

ISDS ⊆ dep(ui)

Finally, we may define the set of intrusion sensitive data set as the intersection
of both the causality cone of system calls or their arguments and the dependency
cone of user inputs (c.f. Figure 2):

ISDS = cause(sc) ∩ dep(ui)

In this section, we have explained how to reduce the application of our detection
model to a small subset of all the data manipulated by the application. The set
of data to which we restrict our detection model has been defined, in a security
perspective, as the intersection of the causality cone of the system calls and their
arguments and of the dependency cone of the user inputs. In the next section,
we present the kind of constraints we aim at extracting. Then we introduce an
implementation of our detection model, describing how to technically extract
the intrusion sensitive data set execution traces and how to extract the set of
constraints C out of this execution traces.

6 Constraints Determination

As explained in section 4.2, we state that an attack breaks the constraints apply-
ing on the sensitive data manipulated by the application. The simple example
we have given shows that an equality relationship between many instances of the
same variable at different times must be fulfilled. In a more general approach, we
have formulated the hypothesis that attacks aim at modifying one or more vari-
ables, and that this modification leads to the violation of invariant constraints
on the variables.

Our main problem is thus to automatically extract these constraints, which
constitute the basis of our behavioral model. To do so, we have used an auto-
mated tool called Daikon, and developed by Michael Ernst [17], [18]. Daikon is
a likely invariant discovery tool which analyzes the execution traces of a given
application and try to extract invariant properties out of it. In this goal it im-
plements an algorithm based on a property grammar which contains the set of
all invariants looked for in the execution traces. These invariants are thus ex-
haustively verified on the execution trace data. These invariants can be very
complex: constant data item (e.g., x = a), data item taking only a few distinct
different values (e.g., x ∈ {a, b, c}), definition set (e.g., x ∈ [a..b]), non-nullity,
linear relationship (e.g., x = ay + bz + c), order relationship (e.g., x ≥ y), single
invariants on x + y, x - y, etc.

As explained above, these invariants are extracted out of the execution traces
of the monitored application. In the next section, we introduce our implemen-
tation of an intrusion detection prototype, and explain how to generate the
execution traces needed to extract the invariant properties out of the intrusion
sensitive data set.
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7 Implementation

The implementation of an intrusion detection system based on the ideas intro-
duced in the previous sections raises several issues. Firstly, we must wonder how
to generate the execution traces necessary to the analysis of the various data ma-
nipulated by the application during the learning phase of the intrusion detection
system deployment. Secondly, we must determine how to analyze this execution
traces to extract the constraints characterizing the integrity of the application
state.

7.1 Processor Emulation

In order to generate the execution traces used during the learning phase of our
approach, we need a runtime access to the data manipulated by the monitored
application. Several solutions exist which may coarsely be divided into two cate-
gories. A first approach consists in using the debugging facilities provided by the
operating system, such as the ptrace system call. A second approach consists
in emulating a processor controlled by the intrusion detection system and to ex-
ecute the monitored application in this context. We have decided to follow this
second approach, using the Valgrind dedicated dynamic binary instrumentation
framework [19,20].

Valgrind is a dynamic binary instrumentation framework which aims at easing
dynamic binary instrumentation. In this goal, it offers a dedicated programming
interface and exposes an emulated processor to the studied binary (c.f. Figure 3).
More concretely, Valgrind proposes the writing of plugins to which it delegates
the control of the application. Thus, when a monitored application is executed,
Valgrind first extracts its current basic block, i.e., the current sequence of code
until the next jump. It then translates this basic block into an intermediate
representation (IR), build over a set of C structures representing the various
instructions and their operands. Once this operation achieved, Valgrind trans-
mits the translated basic block to the plugin. The plugin can then analyze the

Binary

Plugin

Translator
binary code / IR 

and
IR / binary code

Host processor

1. Binary Code

2. IR

3. Instrumented IR

4. Instrumented Binary Code

Valgrind

Emulated Processor

Plugin

3

Fig. 3. Valgrind architecture
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instructions contained in the block and modify it by adding or removing instruc-
tions and by inserting internal C function calls. Once this operation finished, the
plugin transmits the modified block back to Valgrind which translates it back
into binary code and executes it on the host processor. The instructions or the
function calls inserted by the plugin are then executed dynamically. A cache
system is furthermore implemented in order to instrument each block only one
time. One of the main advantages of Valgrind is that it aims at making all of
this processing as transparent as possible.

Thus, our intrusion detection system prototype, called Fatgrind, has been de-
signed as a plugin to Valgrind. Through the dynamic binary instrument abilities
Valgrind provides, this prototype is able to dynamically determine the intrusion
sensitive data set and to generate the associated execution traces.

7.2 Execution Traces Generation

As said above Fatgrind, our intrusion detection system prototype, has been de-
signed as a plugin to Valgrind. This plugin mainly aims at dynamically extracting
the intrusion sensitive data set ISDS, and at dynamically generating the execu-
tion traces containing the values of the various intrusion sensitive data items.
In order to achieve these goals, Fatgrind builds a shadow of the memory of the
monitored process [21]. This shadow memory keeps a trace of which data items
are tainted and which are not. Furthermore, it keeps a copy of the value of the
data which are tainted. Each time a byte of the monitored process memory is
written, Fatgrind draws the causality cone of this byte. Once the causality cone
has been determined, Fatgrind inspects whether this byte is tainted or not. In
the case the byte is indeed tainted, it is shadowed for further use. Finally, each
time a system call is emitted, Fatgrind draws the causality cone of the system
call and of its arguments. Each tainted byte belonging to this causality cone is
then considered as belonging to the intrusion sensitive data set and is dumped
into a file.

7.3 Likely Invariants Extraction

Once enough executions of a given application have been done, the execution
traces generated are considered complete enough and are analyzed by Daikon to
automatically extract the likely invariants it contains. Of course, the quality of
the extracted invariants depends on the exhaustivity of the normal application
behavior learning.

8 Results

To evaluate our model, we have studied the following snippet of code, equivalent
to the one studied in section 3:
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1. int main(int argc, char ** argv)
2. {
3. char buffer[256];
4. uid_t uid;
5.
6. uid = 1000;
7. seteuid(uid);
8.
9. while(gets[buffer])
10. {
11. seteuid(0);
12. printf(buffer);
13. seteuid(uid);
14. }
15.
16. }

This example is representative of the wu-ftpd vulnerability (i.e., of a format
string attack at line 12, which allows the modification of the uid variable),
although generating very few traces and thus very few invariant properties, al-
lowing us to easily check their consistency. Indeed, we have focused here on the
validation of our approach, that is on the validation of the extracted invariants.
We have thus tried to control one by one the invariants inferred by Daikon out
of the execution traces generated by Fatgrind. Among the various properties
extracted by Daikon, we obtain in particular the equality of the uid variable
at the beginning of the loop and at the end of the loop. Moreover, given the
obtained results, it appears that most of the attacks described in [3] would be
detected by our approach. Indeed, the attack against the NULL HTTPD server
described in this article modifies a configuration variable allowing to define the
root of the cgi scripts. This variable remains constant during a normal use of the
server, thus we could extract an invariant property out of it. In the same way,
the TOCTTOU (Time Of Check To Time Of Use) attack against the GTTPD
server, rely on an abnormal modification of a variable between the time it is
checked and the time it is used. As this variable remains constant between these
two instants during a normal use of the server, we should be able to extract an
invariant property out of it. The attack against the SSH server could however
be more difficult to detect. Indeed, this attack exploits a memory corruption
vulnerability allowing one to modify an authentication control data, but this
data is whatever modified during a normal use of the application. It is thus not
obvious that we could extract an invariant property which would be broken by
the attack.

The obtained results therefore show the viability of the approach on the pre-
vious examples, which although small are quite representative of the attacks we
aim at detecting. This report thus encourages us to pursue the prospective work
we have engaged. Nevertheless, a lot of enhancements could be brought to our
approach. We are going to discuss them in the next section.
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9 Conclusion and Future Work

The work presented in this paper proposes a way to enhance application level
intrusion detection by introducing a data-oriented detection model. This ap-
proach relies on the automatic generation of a behavioral model based on the
relationship between application data aiming at detecting state inconsistency at
runtime. In order to pursue such an approach, it is necessary to determine which
data are sensitive to intrusions and how these data items are related to each
other. These two goals are fulfilled through the use of a dynamic binary instru-
mentation framework, namely Valgrind, and of an automatic invariant discovery
tool, namely Daikon.

As shown by the results, the proposed approach indeed enables the detection
of pure data attacks. However, regarding the conclusion of this prospective work,
it appears that several enhancements could be brought. Indeed, the binary level
does not allow us to access a high semantical level, as, for instance, we do not
get any information about the type of the manipulated data. We therefore plan
to apply this approach to programming language using a native intermediate
representation (Java, .Net, PHP, etc.). Through the direct modification of the
virtual machine or interpreter, we thus expect to access richest information than
those available at the binary level.
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Abstract. High-interaction honeypots are relevant to provide rich and
useful information obtained from attackers. Honeypots come in different
flavors with respect to their interaction potential. A honeypot can be
very restrictive, but then only a few interactions can be observed. If a
honeypot is very tolerant though, attackers can quickly achieve their
goal. Having the best trade-off between attacker freedom and honeypot
restrictions is challenging. In this paper, we address the issue of self
adaptive honeypots, that can change their behavior and lure attackers
into revealing as much information as possible about themselves. The
key idea is to leverage game-theoretic concepts for the configuration and
reciprocal actions of high-interaction honeypots.

1 Introduction

Simulating failures in order to lure attackers was reported for the first time in
the classical paper ”An Evening with Berferd” [1], where manual interactions
from a human system administrator lured an attacker into revealing many of
his tactics and tools. During the operation of an high-interaction honeypot we
observed that attackers follow a dedicated goal. We manually interfered with
the tools installed and operated by attackers and noticed that some attackers
connected back to the honeypot and tried to solve the problems. Some attack-
ers even tried to harden the system aiming to lock out other attackers. Thus,
we assume that attackers are rational and follow a specific goal during attacks.
We address in this paper a first step towards an automated failure injecting
honeypot aiming to disclose as much information as possible about an attacker.
According to Lance Spitzner, a honeypot is a resource dedicated to be attacked
[2]. Honeypots are frequently used to monitor or lure attackers and serve as
baits for attackers. Once honeypots are compromised, attackers can be traced
and attacking techniques can be learnt. On the one hand, if a honeypot has too
limited capabilities some attack goals can not be reached and not much can be
learnt. On the other hand, if a honeypot exposes to many and easily accessible
features to an attacker, the attack goal can be easily reached and only a part
of the attack can be observed. The goal of an attacker is also often unknown.
The challenge addressed in this work is to elaborate an adaptive high-interaction
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honeypot that tries to optimize the retrieval of knowledge from an attacker. The
level of interaction is a consequence of the capabilities of a honeypot. The more
features are implemented in a honeypot, the more interactions are possible be-
tween attackers and the honeypot. One way to obtain more interactions, is to
partially allow attackers to execute some programs, leading them to explore al-
ternative execution paths and reveal more information about themselves (attack
tools) and to disclose other repositories, used for malicious purposes. Similarly,
an adaptive honeypot can abnormally terminate the execution of programs by
an attacker and lead the attacker to perform other activities, that can provide
insightful information to the security community. We address in this paper, the
design, implementation and validation of adaptive high-interaction honeypots.
The major research challenges that we had to address were:

– to design an adaptive behavior for a honeypot that should be optimal and
remain stealthy.

– to implement an effective Linux kernel monitoring solution capable to trace
attacker activities on a system.

The remainingpaper isorganizedas follows: Section2explainsourhigh-interaction
honeypot model. Section 3 formally describes the game between attackers and the
honeypot and shows that our honeypotmodel can be fed with data delivered froma
deployed high-interaction honeypot. Our experiments are shown in section 4 and
the state of the art activities are summarized in section 5. Finally, the article is
concluded in section 6 and future work activities are announced.

2 Modeling a High-Interaction Honeypot

We consider high-interaction honeypots operating a Linux operating system
exposing a SSH server to attackers. The rationale behind this choice is that
attackers often use specialized tricks or side effects to detect or evade from low-
interaction honeypots and that SSH is a popular attack vector for attackers
[3], [4]. We model high-interaction honeypots with a hierarchical probabilistic
automaton. This model, as detailed in the following, is needed to frame the
honeypot capabilities in the context of game theory.

2.1 Honeypot Hierarchical Probabilistic Automaton

Probabilistic automata are often used in the field of pattern recognition [5]. An
attacker can connect to a high-interaction honeypot and can execute programs.
Downloads can be performed with tools like wget, curl, ftp, archives can be
extracted with programs like tar and gzip and so on. We define the states of the
automaton as the programs that can be executed on the honeypot. Moreover,
we add a state labeled unknown in order to describe the fact that new and un-
seen tools could be installed and used later on. Each program has some program
arguments that are passed as array to the main function. If no command line ar-
guments are explicitly passed to the program, the first command line argument
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Fig. 1. Honeypot hierarchical probabilistic automaton example

corresponds to the program name [6]. Moreover, a program can have the same
command line argument than another one but with a different semantic. Thus,
we introduce a hierarchy between programs and command line arguments. Each
program is formalized as automaton where each state represents a command
line argument. The states in an automaton representing a program are called
macro states and each macro state contains micro states (i.e. the command line
arguments). Some transitions between programs or command line arguments
are more likely than others. The program wget is often executed previously to
the program tar. Therefore, each transition can be modeled using a transition
probability. The same notation as proposed by Thollard et al. [5] is used. The
set QA contains the programs installed on the honeypot including an unknown
state and the set of states for a given program is denoted Q′

A. Attackers pene-
trate the honeypot through the SSH server. Thus, the initial probability for the
state /usr/sbin/sshd is 1 and 0 for all the other states. Moreover the alphabet
consists of the commands executed by the attacker. An example of such a hierar-
chical probabilistic automaton is shown in figure 11. An attacker connects to the
honeypot via SSH and stays in the sshd state. Next he or she can execute the
program bash or uname with the equal probability of 0.5. After the execution of
the program bash, the programs wget, rm and uname have the same likelihood
to be executed, namely 0.25. The program ls is executed with the command
line arguments -la, -l with an equal probability of 0.5.

2.2 Process Vectors

The transitions between programs are described by the conditional probabilities,
capturing the likelihood of one program being executed after a previous one. We
use sequences of program executions from a deployed high-interaction honeypot

1 For the purpose of understanding a simplified automaton is presented.
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to determine these probabilities. Such a sequence of programs is considered as
process vector which is observed from one attack and where each element is
a program that is executed during an attack. An attacker who executes the
programs /bin/bash, /usr/bin/wget and /usr/bin/tar, generates the process
vector < / bin/bash , /usr/bin/wget , /usr/bin/tar >.

2.3 Attacker Process Trees

In order to obtain the process vectors, we have to dig into the kernel data struc-
ture (on the honeypot) holding process tree information. After having compro-
mised the honeypot, an attacker usually executes programs. Such an execution
triggers a clone or do exec ve system call which should be monitored. Multiple
attackers can be connected to the honeypot at the same time and the operating
system itself is using do exec ve and clone system calls. The system calls that
are related to a given attack can be identified as follows: In a Linux operating
system each process has a process identifier (PID) and a parent process identi-
fier (PPID) [7]. An attack usually starts with a privilege separated process of
the SSH server [8], denoted p0. The process p0 then forks, resulting in a clone
system call or directly executes a program via the do exec ve system call. We
consider that the process p0 executes a program and creates another copy of the
process, denoted p1. The parent process of p1 is thus p0 and the result of the
execution of a sequence of programs is a process tree of an attack which is a
subtree of the Unix process tree on the honeypot. We define a process tree as a
tree structure where each node can contain a process id, a timestamp, a program
name or a command line argument resulting from a do exec ve or clone system
call. An edge links two process identifiers with each other, which represents the
parent child relationship. Furthermore, in a process tree, each parent of a leaf
represents a program name and each leaf represents command line argument (at
least the program name [6]).

One process tree is shown in figure 2. The privileged separated process of the
SSH server has the process identifier 4121 and is the root of the tree. Two clone
system calls are done; one results in a process with the process identifier 4127 and
another one in the process identifier 4129. The process with the identifier 4127 is

Fig. 2. Process tree example
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created after one second and the process with the identifier 4129 is created after
3 seconds. Then the process with the identifier 4127 executes a program called
/bin/bash after one second and the process with the identifier 4129 starts the
/bin/uname program after 5 seconds. The program /bin/uname is started with
the argument -a and the command line arguments bash and uname represent
the respective program names.

2.4 Inducing a Honeypot Hierarchical Probabilistic Automaton

We model the honeypot capabilities as a hierarchical probabilistic automaton
where each state represents a program. Each state is furthermore an automaton
on its own, where combinations of command line arguments build the states
of the sub-automaton. From a deployed high-interaction honeypot we have ex-
tracted the process trees related to an attack. A process tree can be composed
of PID nodes, nodes containing the programs that were executed and nodes
modeling command line arguments. Due to the fact that the process identifiers
change from one attack to another, we are interested to transform these process
trees in process vectors describing the sequences of programs that were executed
during an attack. The order of program execution is important. A good example
is when a tool was downloaded that is then extracted and executed. To recover
the order we use the timestamps in the process trees. The time difference of
each leaf with the root enables us to determine the position of a program in
the process vector. In the example shown in figure 2 the process vector −→v is
< /bin/bash, /bin/uname > because the program /bin/bash was executed be-
fore the program /bin/uname. Each attacker generates a process tree that is
converted to a process vector. All these vectors are now inserted in a two dimen-
sional matrix transition matrix. The observed programs are used as labels for
the columns and rows respectively. Each cell contains the frequency of how often
a couple of programs was observed. The transition probability PA is computed
from the transition matrix. Each cell is divided by the sum of the row. The
automaton containing the macro states is created from the transition matrix. In
figure 1, each state is represented by a circle and the edges are labeled with the
transition probability. For instance, a transition from the macro state sshd can
be done to the macro state bash with a probability of 0.5. Another transition
can then be done to the macro state ls. The program ls can operated in differ-
ent modes by accepting different command line arguments. In this example the
states denoted by ”l” and ”-la” are micro states and belong to the automaton
ls. First, the hierarchical probabilistic automaton may be incomplete because
it is constructed from honeypot observations. Therefore, we integrate a state
in the automaton which is called ”unknown”. Second, rare transitions may be
unobserved. To counteract this phenomenon we smooth the probabilities that
we derived from honeypot observations, where the smoothing factor is denoted
ε. In this case each probability > 0 is multiplied by (1 − ε) and from a given
state, transitions are created to all other remaining states. If we assume that our
automaton has N states and the number of transitions for a given state is n, then
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N − n transitions are created having the probability ε
N−n . The automaton has

now N2 transitions and is able to capture all possible transitions. In practice,
the automaton could be periodically induced in order to adjust the transition
probabilities.

3 The Honeypot Game

Intuitively, the fact that attackers connecting to the honeypot can be seen as
game between the honeypot and the attackers. We assume that attackers try
to achieve their goal as fast as possible. They want to minimize the number of
interactions with the honeypot. The honeypot aims to maximize the number of
interactions or to learn as much as possible from attackers or to distract them as
long as possible from real assets. In this article we define two possible actions for
the honeypot and three different strategies for an attacker. We determine Nash
Equilibriums [9], providing the optimal strategies for both the attacker and the
honeypot.

3.1 Modeling Attacker and Honeypot Actions

Our current adaptive honeypot can accept or block the execution of a program
which is implemented by allowing or blocking the do exec ve system call in a
Linux kernel [7].

Block a do exec ve system call. The honeypot can crash a tool of an at-
tacker which can be derived from blocking the do exec ve system call. In
that case an error code is immediately returned instead of executing the reg-
ular code of the do exec ve system call. Let Pr(Block) be the probability
that the adaptive honeypot blocks the system call do exec ve. This decision
is taken at each do exec ve system call2.

Allow a do exec ve system call. The honeypot behaves like a normal high-
interaction honeypot. The probability to allow a system call is 1−Pr(Block).

Attackers often find out that the honeypot is not immediately ready for their
malicious activities. Thus, they download their tools, install them and execute
them. They download tar balls containing a pre-compiled version of their pro-
gram or the source code is downloaded and compiled on the honeypot. In both
cases attackers often configure their programs on the honeypot. All these ac-
tions results in interactions with the honeypot. In our hierarchical probabilistic
automaton, the interactions with the honeypot result in transitions from one
state to another one. We assume that attackers are rational and that they select
the next transition on the most probable path in the automaton. In the game
between attackers and the honeypot we define three actions for attacker when
their transitions are blocked.

2 Practically, an explicit error code of the system call could be returned.
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Retry of a command. Attackers can retry a command from a failure. First a
failure might be due to a syntax error. The second reason might be a time-
out that emerged during the program execution. For instance, an attacker
may to download a file and a network timeout may emerge. In this case
another repository might be disclosed. Third, the execution of a program
might produce an undesired effect. A wrong command line argument might
have been used. The program is executed again with a different command
line argument. Let Pr(Retry) denote the probability that attackers execute
the same command again.

Select an alternative solution. A downloaded program may fail during ex-
ecution. Some attackers try to debug the problem on the honeypot. They
can check the configuration file of the program or run an inspection tool like
strace on the program. They might try to download another program or
to download the source code of the program that will be compiled on the
honeypot. No matter which option they select, their behavior can be classi-
fied in a category describing the actions of choosing an alternative solution
for obtaining their goal. Let Pr(Alternative) denote the probability that
attacker select an alternative command to achieve their initial goal.

Quit. Some attackers check the capabilities of the honeypot and if they suspect
a trap or a worthless system, then they will leave. Let Pr(Quit) describe the
probability that attacker quit.

The relation 1 holds for the attacker strategies.

Pr(Quit) + Pr(Retry) + Pr(Alternative) = 1 (1)

An example of attacker and honeypot strategies is shown in figure 3. We observe
that an attacker tries to invoke the command nmap (a popular network scanner).
The honeypot might allow the execution (with the probability 1 − Pr(Block))
and in this case the attacker continues and executes the program wget (with
a probability of 0.95). If the tool nmap is not allowed by the honeypot, the at-
tacker can decide to either quit (with a probability of Pr(Quit)) or to retry the
execution of nmap or to execute another command (for instance uname - with a
probability of 0.6). The execution of nmap was blocked and its probability was
equally distributed among the transitions to the states wget and uname. The
probabilities used by attackers to choose the next command to be executed can
be estimated from an operational high-interaction honeypot. The probabilities
used by the honeypot to block the execution of a command is a configuration
setting and reflects the strategy played by the honeypot. Similarly, the prob-
abilities used by the attacker to either quit the session, or retry a command
(and consequently to choose another command) give the strategy played by the
attacker.

The main question is related to what are the optimal settings for both
the honeypot (Pr(Block)) as well as for the attacker (Pr(Quit), P r(Retry),
P r(Alternative)).
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Fig. 3. Honeypot game example

3.2 Modeling Attacker and Honeypot Games

We reuse the definitions and notations proposed by Amy Greenwald [9] in
order to formally describe our games between attackers and the honeypot.
The game between the attacker and the honeypot has two players. Thus,
N = {honeypot, attacker}. The honeypot can block do exec ve system calls
with different probabilities. The set Ah corresponds to the set of blocking prob-
abilities the honeypot can choose. An attacker can choose to retry a command,
to search for an alternative command or to leave. We define an attacker strategy
with a 3-tuple (Pr(Retry), P r(Alternative), P r(Quit)) and the set Aa contains
all these strategies. One purpose of game theory is to compute the optimal strat-
egy profiles for the players which results in the computation of Nash Equilibrium.
A Nash Equilibrium in the context of honeypot game means that neither the
honeypot nor the attacker can increase their expected payoffs assuming that
neither player does not change his strategy during the game.

Computing Payoffs. Respective to attacker and honeypot strategies we pro-
pose two honeypot games. The games are different with respect to the payoff
computation. We propose the following payoff computations3:

Number of transitions. We assume that attackers are rational and that they
want to achieve their goal as fast as possible. Thus, an attacker tries to min-
imize the number of transitions in the hierarchical probabilistic automaton.
The honeypot tries to learn as much as possible from the attacker. Potential
useful information for a honeypot is to collect tools owned by attackers or to
discover the sources where they are downloaded from. Hence, the honeypot
tries to maximize the number of transitions performed by an attacker. The
payoff for the honeypot Rt

h returns the number of transitions performed by
an attacker. The more transitions an attacker does, the better it is for the
honeypot. Attackers try to minimize their transitions and their payoff func-
tion returns −1 multiplied by the number of transitions. The less transitions
attackers do, the less they are punished in terms of payoff. This game seems
at first glance unfair regarding attackers. If we assume that attackers want

3 Which can be setup on two different honeypots.
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to be undiscovered while they are doing their attack, they have already lost
because they connected to a monitored honeypot instead to real assets. The
only chance they have is to divulge less information as possible and thus try
to minimize the number of transitions.

Path probability payoff. The payoff computations purely based on the state
transitions ignores the fact whether attackers reached their goal or not. More-
over, the payoff should take into account how likely a path is regarding obser-
vations from a deployed honeypot. We are looking for a payoff computation
that rewards the honeypot for blocking and that penalizes the attacker when
being blocked.

The payoff for the honeypot is shown in definition 2 and the payoff for the at-
tacker is presented in definition 3. The probability Pr(path) denotes the proba-
bility of the path the attacker has chosen and Pr∗(path) denotes the probability
of the most probable path from the source to the selected destination by the
attacker.

Rp
a =

Pr(path)
Pr∗(path)

(2)

Rp
h = 1 − Pr(path)

Pr∗(path)
(3)

The more the path probability gets close to the most probable path probability,
the payoff for the attacker converges to 1. In this case, the payoff of the honeypot
gets close to 0 which is the minimum payoff for the honeypot. If the path of the
attacker is diverted due to blocked programs, the path probability chosen by the
attacker diverges from the most probable path probability and gets lower than
the most probable path probability. Hence, the payoff gets minimized for the
attacker and maximized for the honeypot.

3.3 Computing Payoffs with Simulations

In order to compute the payoff values for all possible combination of strategies,
we use a Monte Carlo simulation. We have built a simulator that uses bootstrap
data obtained from an operational honeypot deployed over a period of 3 months.
Due to computation and deployment constraints we are forced to do simulations
since, doing real world experiments for all possible behaviors would require 2684
different honeypots setups.

Honeypot Simulator. Attackers and the honeypot select their strategies ac-
cording to a given discrete probability. These probabilities are fixed and an at-
tack is simulated. The simulation provides the number of transitions an attacker
did, the optimal path probability, the path probability for the attacker, the fact
that the attacker left and the fact that the maximum number of transitions was
reached. The variable src specifies the initial state and the variable dst stands
for the destination state in the hierarchical probabilistic automaton. Hence, the
final state probability, required by the automaton, is 1 for the state dst and 0
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for all the other states. During a simulation, the transitions performed by an
attacker are recorded. The states, that an attacker passed through are kept in a
list. When the simulation starts, the attacker enters the initial state. We assume
that an attacker chooses the next transitions on the most probable path. If the
attacker is not blocked, the attacker follows the same path. An attacker has a
fixed goal. If this goal is reached then the simulation ends. (src = dst). Moreover
the number of transitions during a simulation is recorded and if this number ex-
ceeds a defined threshold the simulation ends because we want to avoid endless
transitions. The attacker can retry a command or compute the next state and
the step is recorded. The honeypot decides to block or allow this step accord-
ing to the probability Pr(Block). The attacker now decides whether to quit or
continue the game according the probability Pr(Quit). If the attacker quits, the
simulation ends. If the attacker decides to choose an alternative command, the
hierarchical probabilistic automaton is modified due to implementation issues.
The probability for the blocked transition is set to 0 and the probability for this
transition is equally distributed for all outgoing transitions. An attacker always
computes the most probable path and the same path could not be selected due
to the 0 probability transition. Of course this effect is undone for the next sim-
ulation round. If the attacker decides to retry a command the state alternative
is set to false, the loop ends and the next round starts.

4 Experimental Evaluation

We set up a high-interaction honeypot capable to record do exec ve and clone
system calls. We directly patched the Linux kernel in order to avoid a detection
by address arithmetic which is an attack described by McCarty [10]. We trans-
mit the collected data in kernel space directly to the hardware level in order
to avoid that collected information passes through the hands of the attacker.
The honeypot is operated with the Qemu a x86 emulator [11]. The kernel inside
the Qemu was modified such that process ids are logged. On the host machine
this data is put in a database. The honeypot has also an additional network
interface where system logs are transmitted to a syslog-ng server like it is the
case for current production systems. The default running service is a SSH server
which serves as entry point for attackers. We could configure the SSH server
that the PAM module pam permit should be used. In this case no password is
asked, which may be very suspicious for attackers. Thus, we preferred to mod-
ify the pam unix module, which is responsible for password authentication in a
Linux operating system. With our patch, the system asks for a password but
then neglects all non-privileged user passwords. This implementation choice is
also resistant against password changes performed by attacker, because the pass-
word is not checked anymore. In theory an attacker could also change the PAM
modules but we did not observe this phenomenon during the operation of our
honeypot. Moreover, we observed that some attackers installed their own shell
in order to be sure that they do not use a shell with additional monitoring fea-
tures. Furthermore some attackers replaced the SSH server on the honeypot. An
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alternative solution is to perform a MITM attack in order to filter the command
executed by attackers. However, from an engineering perspective this solution
requires additional efforts to become stealthy. From this honeypot we recovered
the process trees related to attackers which are sub trees of the Unix process
tree on the honeypot. Then we transformed these process trees in process vec-
tors. Each vector corresponds to an attack. From the observed process vectors
we created a hierarchical probabilistic automaton to drive the simulation. Our
data sets and developed software are publicly available4.

4.1 Data Sets

The honeypot was operated on one public IPv4 address and consisted of a
Ubuntu Linux 7.10 operating system. The Linux operating system was executed
in a virtual machine operated by Qemu, version 0.9.1. We patched the pam unix
module, version 0.99.7.1 in order to facilitate access to the attackers and to mit-
igate the effects of an attacker that changed the password of a compromised
account. We extended the Linux kernel, version 2.6.28-rc6 with the do exec ve
and clone monitoring features.

The honeypot was operated from 2009-01-21 until 2009-03-09. In this period
we observed 637 successful ssh logins and 12140 ssh failures. Despite the patched
pam unix module, a high number of ssh failures was discovered. Our pam unix
module patch lets the pam unix module ignore passwords for non privileged user
accounts on the honeypot. For 61% of the failed ssh attempts the root account
was targeted which was explicitly blocked by our pam unixmodule patch. Besides
the 13 system accounts, we created 12 additional user accounts. Thus, we have
25 non privileged user accounts. Attackers tested 1763 non existing accounts
with different passwords which is another explanation for the high number of
SSH failures. For the successful logins we observed 183 different IP addresses.
Some attackers modified the kernel but the virtual machine was configured in
such a way that a reboot was translated into a power off. The kernel changes
are noticed because the file system of the honeypot was periodically mounted
(loop back) and checksums were computed to detect changes. If the kernel was
changed we replaced the modified kernel with the original.

Process Trees. We recovered 637 process trees. The root of each process tree
was the privileged separated process by sshd. The smallest trees have only one
node and the tree with the maximum nodes has 1954 nodes. The small trees
can be explained due to the fact that a brute force attacks against the SSH
server was performed by some attackers with automated tools. The automated
tool managed to break into the honeypot and immediately left. The maximum
length of a process tree is due to bots that were installed on our honeypot. The
bot master had long sessions with the bot in order to operate it. Due to data
processing capabilities we stopped to reassemble the tree if the length is longer
than 100 nodes. The average number of nodes per process tree is 105 with a
standard deviation of 231.

4 http://quuxlabs.com/~gerard/jogy-experiment

http://quuxlabs.com/~gerard/jogy-experiment
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Process Vectors. Each process tree was converted in a process vector aiming
to extract the program sequences done by an attacker. The longest process vector
is composed of 85 programs and the smallest one contains only 1 program. The
average process vector length is 6.16 with a standard deviation of 2.81.

4.2 Simulation Results

The hierarchical probabilistic automaton was set up using the process trees.
We obtained 91 different programs (states). Each program is on its own an au-
tomaton based on the command line arguments. To simplify the automaton, we
removed the first command line argument which corresponds to the program
name in a Linux operating system. On average, programs have 9.72 command
line arguments. The program with the most observed command line arguments
has 181 arguments and some programs have one program argument. The stan-
dard deviation of the program arguments per program is 23.5. A large number of
command line arguments can be explained by substitutions done by the program
bash [12]. For instance the argument * is substituted by the program bash with a
file list in the current directory. Moreover the hierarchical probabilistic automa-
ton contains 581 different transitions. To model unknown or unseen transitions
we smoothed the transition probabilities. Due to the fact that in our simulator
the attacker selects the path with the highest probability, the smoothing factor is
selected in such a way that the path probabilities are not affected. We evaluated
the smoothing factor from 4.48 · 10−15 to 4.48 · 10−3 which are multiples of 10 of
the lowest path probability. For each smoothing factor, we computed the average
number of transitions from the initial states (always /usr/sbin/sshd) until the
final states (last programs executed by attackers). In the range of 4.48 · 10−15

to 4.48 · 10−6 the average number of transitions remains constant and for values
larger that 4.48 ·10−6 the average number of transitions linearly decreases due to
the fact that an attacker can select artificial shortcuts. We used a smoothing fac-
tor of 4.48 · 10−08, which does not change the number of average transitions and
is large enough to avoid rounding errors. The number of transitions increased to
8281 which is the square of the number of states which can be explained that
we have a fully interconnected automaton.

The hierarchical probabilistic automaton was used to simulate attacks in
order to compute the average payoff. We simulated the honeypot strategies
(Pr(Block)) and attacker strategies (Pr(Quit), P r(Retry), P r(Alternative))
in a range of 0 and 1 in a step of 0.10 respecting the relation 1. In a first step
we evaluate the impact of blocking system calls of an attacker. We noticed that
the average of transitions performed by an attacker increases with the blocking
probability.

In a second step, we computed Nash Equilibriums using the game theory
simulator Gambit [13]. Only mixed equilibriums have been found. If we consider
the first game (upper half of the table 1) then one mixed Nash Equilibrium
exists: for instance, the honeypot can decide to use either a blocking probability
of 0.10 or of 0.90. It should use 0.10 in 54% of the cases and 0.9 in 46% of
the cases. The attacker should use Pr(Quit) equal to 0.3 or 0.4 with associated



Self Adaptive High Interaction Honeypots Driven by Game Theory 753

Table 1. Gambit simulation results

Rp
h Rp

a

q Pr(Block) q Pr(Quit) Pr(Retry) Pr(Alternative)
0.54 0.1 0.73 0.3 0.4 0.3
0.46 0.9 0.27 0.4 0.2 0.4

Rt
h Rt

a

0.3 0.4 0.14 0.6 0.2 0.2
0.51 0.7 0.26 0.8 0 0.2
0.19 1 0.6 0.8 0.1 0.1

probabilities 0.73 and 0.27 respectively. Similarly, value choices according to the
table can be set for Pr(Retry) and Pr(Alternative). The second game, (lower
half of the table 1), has also a mixed equilibrium: the honeypot should use
three different blocking probabilities (0.4, 0.7, 1) with corresponding probabilities
0.3, 0.51 and respectively 0.19. This is interesting, since blocking all transitions
( Pr(Block) = 1 ) should be done in 19% of the cases. The attacker can also set
his optimal strategies with respect to this table.

5 Related Work

The article of McCarty [10] describes an arm race between honeypots and at-
tackers: attackers improve their techniques as soon as new monitoring techniques
are deployed, which furthermore leads to defenders improving their previous ap-
proach. Some researchers modified shells aiming to observe the commands that
an attacker used [2]. The major assumption of such a strategy is that the at-
tacker does not change the shell on the honeypot. Other papers considered kernel
patching [10] to mitigate this attack. Recently, virtualization based solutions [14]
allowed to monitor from an external point of view high-interaction honeypots.
Our operational deployment results are in line with the observations made by
Eric Alata et al. [4] and Daniel Ramsbrock et al [3]. However, we preferred to
patch the Linux authentication module PAM in order to avoid the case where
attackers can lock out other attackers by changing the password of a compro-
mised account. Next, we preferred to extract the process trees related to a SSH
server instead of patching SSH as it is proposed by Eric Alata et al, because we
have observed several times that attackers changed the SSH server. Although our
implementation is based on a modified kernel running in Qemu, the conceptual
approach using game theory with high-interaction honeypots can also be used
in the context of virtualization based solutions. Garg et al. [15] also used game
theory, where they established a different game: an attacker is rewarded if he
or she probes a real machine and punished when he or she probes a honeypots.
Bistarelli et al. [16] propose high level attack trees and associated attacks with
countermeasures, where each action is linked to a cost or payoff. Game theory
was also used in the general context of dependability and network security [17]
for predicting future attacks.
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Our honeypot model is based on a hierarchical probabilistic automaton boot-
strapped with operational data from a high-interaction honeypot. Attacker ac-
tions are frequently grouped in high-level attack categories which describe the
automaton [3]. Our approach is different from the work described by Kong-wei
Lye et. al [18], because we recover the states and the transitions probabilities
from a deployed honeypot compared to a manual definition. In order to compute
the payoffs for the formal game, we used a simulation strategy that is similar to
the approach used by Shishir et al. [19].

6 Conclusions and Future Work

This paper proposes a new paradigm for adaptive high-interaction honeypots
that rely on game theoretical concepts as main driving force. We modeled the
interaction between the honeypot and an attacker as a game, where appropriate
payoff functions model the behavior goals observed in the real world. We derive
the best strategies from the well known Nash Equilibrium and use operational
honeypots in order to parametrize the game model. We make the strong as-
sumption that hackers are always rational - this might be not the case with all
attackers. The obtained results permit practical solutions for designing adaptive
high-interaction honeypots. The adaptability is given by blocking one system
call according to the optimal blocking probabilities. We leveraged data obtained
from a deployed high-interaction honeypot in order to parametrize our model.
We plan to investigate other game theoretical models, where repetitive and itera-
tive learning from the past is possible. From an implementation point of view, we
are not focusing on indirect attacks: for instance, we do not fully model attacks,
where a script is added and gets executed later by the system itself. Moreover,
our automaton may be biased by the specifics of the deployed honeypot and at-
tackers that are aware of the game could poison the transition probabilities. This
motivates further research on simplifying and comparing hierarchical probabilis-
tic automata from different honeypots. We also planned to compare adaptive
and non adaptive honeypots.
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Abstract. The centralized management of large distributed systems is often im-
practical, particularly when the both the topology and status of the system 
change dynamically. This paper proposes an approach to application-centric self-
management in large distributed systems consisting of a collection of autonomic 
components that join and leave the system dynamically. Cooperative autonomic 
components self-organize into a dynamically created overlay network. Through 
local information sharing with neighbors, each component gains access to global 
information as needed for optimizing performance of applications. The approach 
has been validated and evaluated by developing a decentralized autonomic sys-
tem consisting of multiple autonomic application managers previously developed 
for the In-VIGO grid-computing system. Using analytical results from complex 
random network and measurements done in a prototype system, we demonstrate 
the robustness, self-organization and adaptability of our approach, both theoreti-
cally and experimentally. 

1   Introduction 

Scalability, cost and administrative overheads make it desirable for large dynamic 
distributed computing systems to be self-manageable. This is a particularly challeng-
ing goal in dynamic environments, such as grids, where large numbers of resources 
are discovered or aggregated on-demand and are subject to hard-to-predict loads, 
failures or off-times. With the increasing complexity of system management, the need 
for self-managing systems, as proposed in [24], has never been more important than 
today. Extensive research [11][12][22] has focused on providing autonomic capabili-
ties to individual system components, such as databases, application servers and mid-
dleware components. In general, these autonomic components use an application-level 
manager that is capable of monitoring and/or predicting performance and allocating 
resources as needed to deliver reliable applications with the expected Quality of Ser-
vice (QoS). One can envision the use of these or similar components and their auto-
nomic capabilities as the basic building blocks of large distributed systems.  

Three questions that arise in this context are addressed in this paper. First, what in-
teractions should take place among individual components, in order to achieve system-
level self-management needed to support application-level autonomics? Implicit in this 
question is the need for information sharing among different components. Second, 
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what type of network should be used to support the interactions? Implicit in this ques-
tion is the need for the network to be highly scalable and robust to failures. Third, how 
should autonomic managers be designed to interact with other components, and en-
hance their autonomic ability? Implicit in this question is the need for cooperation 
among managers to efficiently collect and share information.  

This paper proposes an approach for distributed-system self-management arising 
from interactions among the autonomic components deployed in the system. The key 
features of the proposed design are the effective use of components’ limited monitor-
ing and communicating capability, and their adaptation to the surrounding environment 
on the basis of information provided through a management overlay. The proposed 
system has the following properties:  
• Self-adaptation: The system can dynamically respond to a changing environment 

to provide individual application managers with information and resources 
needed for achieving the desired QoS. 

• Self-organization: The decentralized coordination enables the system to adapt to 
changes without external control. The global optimization is achieved through lo-
cal decisions and interactions among neighbors.  

• Robustness: There are no central resources that could become single points of 
failure or performance bottlenecks. Reconfiguration mechanisms effectively deal 
with dynamic resource availability.  

An application of proposed approach in the context of the In-VIGO grid-computing 
system [1], is presented in this paper. In-VIGO provides a distributed environment 
where multiple application instances can coexist in virtual or physical resources. A 
virtual application manager (VAM) is a middleware component used to process user 
requests and manage application execution. Previous work considered the integration 
of autonomic capabilities into VAM to achieve self-optimizing and self-healing com-
putation [22]. In this paper, a decentralized autonomic virtual application management 
system (DAVAM) is designed and implemented to further improve the scalability, 
efficiency and robustness. The DAVAM system is deployed on a large testbed that 
consists of tens of dynamic VAMs managing continuous jobs on hundreds of virtual 
machines with time-varying loads. Compared with our previously proposed centralized 
approach, the DAVAM system produces much lower job execution time and higher 
throughput in highly dynamic environments.  

The rest of the paper is organized as follows. Section 2 describes the architecture of 
the decentralized autonomic system. Section 3 presents an analytical analysis of the 
system. The case study on DAVAM is presented in Section 4 and its experimental 
evaluation is discussed in Section 5. Section 6 reviews related work and Section 7 
concludes the paper.  

2   Autonomic System Model 

We consider a highly dynamic distributed computing system consisting of a large 
collection of autonomic components [10]. Multiple components share distributed 
resources, as exemplified by grid-computing systems.  
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2.1   Autonomic Manager (AM) Model 

The distributed system contains multiple autonomic components, each consisting of 
one or more managed components (e.g. jobs and resources) and an autonomic man-
ager (AM). The behaviors of the components are independently managed by their 
AMs. To make optimal decisions towards desired states, AMs require global knowl-
edge of the changing environment. However, in large distributed systems it is not 
scalable to collect and provide global knowledge through a central location. 

 

Fig. 1. A distributed autonomic system consisting of autonomic managers (AMs) across two 
domains, each with a registry indexing resources in the domain. Each AM contacts its domain 
registry to choose both the resources to be monitored (called local resources) and other AMs 
(called neighbors) to exchange local information. 

To solve this problem, individual AMs are extended to monitor a small piece of 
their environment (hereon called local resources). Each AM has only a local view of 
the whole environment. However, interactions among the managers provide them 
with a global view of the system. The AM model (Fig. 1.) consists of the following 
components: 

 Monitor: it collects, aggregates and filters the status information from its man-
aged elements and its local resources.  

 Controller: it manages the elements’ behaviors based on analysis and prediction 
using the local knowledge. 

 Communicator: it supports information exchanges with other autonomic managers.  
 Local Knowledge Base: it stores the information obtained locally and through 

information exchanges between neighbors. 

2.2   Decentralized Autonomic System 

Because the computing resources are organized into domains which may correspond 
to administrative domains, a distributed domain registry infrastructure is designed to 
provide scalable and reliable resource location and AM discovery services. Each 
registry maintains an index of resources and the list of existing AMs in its domain. 
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When an autonomic component joins the domain, its AM registers its unique id in the 
registry, and chooses some existing AMs to cooperate with and selects some re-
sources in the domain as its local resources. To improve reliability, nearby domain 
registries periodically exchange information so that each registry’s local resource and 
AM lists are replicated in some other registries.  

Local resource claiming: Each AM randomly selects a number of resources in the 
domain which have not yet selected by other AMs registry and claims them by 
marking the corresponding entries with its id. Once a resource is claimed by an AM, 
its status is monitored by the AM and stored in its local knowledge base during the 
claiming period. An AM disclaims its resources by unmarking them in the registry 
before its departure from the system.  

Neighborhood building: When an AM joins a domain it selects m existing AMs in the 
same domain as its potential neighbors. AMs in the same neighborhood cooperate 
with each other by exchanging information. The neighbor selection can take place 
randomly, or preferentially which means that some AMs are more attractive and have 
a better chance to get neighbors. When departing from its domain, an AM unregisters 
itself by deleting its id from the domain registry and sends a message to its neighbors. 
In case an AM needs other domain’s information, it can ask its domain registry for 
AMs in other domains to build a "cross-domain" neighborhood.  

Information sharing and  filtering: During its lifecycle, each AM becomes a dynamic 
information source by monitoring its local resources. This local information can be 
propagated through multi-AM cooperation. Every AM that receives a message from a 
neighbor must store it and later forward it to its other neighbors. Two approaches are 
used toghether to reduce the number of messages transmitted among the AMs. One is 
to define an obsolescence relation [14] between messages: a message m1 is recognized 
as obsolete if m2 contains more recent information that subsumes m1. The other way is 
to evaluate how useful each message is, and drop the low-value messages.  

2.3   Dynamic AM Network 

The AM neighborhoods define a dynamic overlay network that changes as the AMs 
join and leave the system, in a manner similar to a peer-to-peer network [18][17]. The 
AMs must adapt their behaviors and interactions to the changing state. For example, 
an AM leaving or crashing may cause serious effects - claimed local resources may be 
no longer monitored by anyone, and some AMs may become isolated from others. To 
prevent and repair the damages, the following mechanisms are proposed. 

Dynamic resource claiming: By periodically checking the domain registry, AMs can 
obtain the domain information such as the number of resources and AMs currently in 
the system, and then adjust the number of resources it should monitor to balance the 
monitoring load over the network. However, the information provided by domain 
registries might be incorrect because of AMs’ unpredictable failures. To solve this 
problem, once an AM detects its neighbor’s failure, it informs the domain registry and 
reclaims the resources that became unmonitored because of the failure. 
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Dynamic neighborhood building: If an AM decides to leave, it informs its neighbors 
by sending them a farewell message. In the case of AM or network failure, each AM 
measures the interval between two successive messages sent from the same neighbor 
and sets a timeout to detect the failure. When an AM is informed of a neighbor’s 
departure or detects a neighbor’s failure, it chooses its new neighbor with probability 
p (set to 0.5 as explained in Section 3.3). This mechanism allows AMs to maintain 
network connectivity. 

3   Analytical Evaluation 

3.1   Network Model 

We use the conceptual framework and notations from complex network theory [2][6] 
to model the AM network and analyze its topology features. The decentralized auto-
nomic system is modeled as a network in which each AM is represented by a node, 
and two nodes are linked if they are neighbors. The following notations are used to 
describe the network. 

)(tn : the total number of nodes at time t. 

)(tr : the total number of resources at time t. 

m : the number of neighbors a node connects to when joining the network. 

:)(tki
the degree (the number of neighbors) of  the ith node at time t. 

)(toi
: the local load (the number of claimed resources) of the ith node at time t. 

The first two parameters describe the entire network and can be obtained directly 
from the domain registry, while the rest of the parameters describe the behavior of 
individual nodes.  

3.2   Node Joining and Neighbor Selection 

Consider the case where the network starts with one node, and at each step, a new 
node joins and connects to m existing nodes. At time t  the network has a total of n(t) 
nodes ( mtn >>)( , for a large system). It is well known that the resulting network has 

the following properties [6]. 

Total number of links: )(2/)()()( 2 tmnmmtmnte ≈+−=  (1)

Average degree: k (t) = 2e(t) / n(t) ≈ 2m  (2)

Diameter: d (t) = ln n(t) / ln k (t) ≈ ln n(t) / ln 2m  (3)

Eq. (3) shows that the network diameter (shortest-path length between any two nodes) 
is small even for a large network. This “small world effect” [20] ensures that local 
information of one node can be propagated to any other node very quickly even in 
large networks. Different neighbor selection policies result in different network degree 
distributions. The random selection results in exponential distribution. In contrast, the 
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preferential linking (the likelihood of connecting to a node is proportional to the node’s 
degree) leads to a power-law distribution [2]. The major differences between these 
networks are their robustness against random network errors as discussed next. 

3.3   Neighborhood Rebuilding 

The effect of random damage on networks was simulated in [2] and the results show 
that scale-free networks display a high degree of tolerance against random failures. 
For exponential networks, Eq. (4) indicates that average degree decreases linearly 
with growing f (the fraction of removed nodes), which in turn increases network di-
ameter (see Eq. (3)).  

k '= k (1− f )  (4)

A dynamic neighborhood rebuilding mechanism is proposed to avoid this impact. 
When a node leaves the network, a fraction p of its neighbors establish new relation-
ships with other nodes. Eq. (5) indicates that by choosing p equal to 0.5 the average 
degree can remain approximately constant, so does the network diameter. 

k '= 2e'
n' ≈

2 k n / 2 − (1− p)k fn( )
n(1− f ) ⇒

p= 0.5

k  (5)

3.4   Local Load Adjustment 

We use )(/)()(~ tntrto =  to express the average ratio of the number of resources r(t) to 

the network size n(t) at time t . To balance the load on all the nodes, when a node 
joins the network, oi(t) is initialized as follows: 

⎡ ⎤
⎪⎩

⎪
⎨
⎧ <

=
otherwiseo

otoifto
toi max

max)(~)(~
)(  (6)

The maximum number of resources each node can monitor is bounded to avoid over-
loading. Because the value of õ(t) may change as the network size and resource avail-
ability vary, each node periodically compares its current load with õ(t) and adjusts it 
accordingly. 

3.5   Communication Cost 

Each node in the network sends messages to its neighbors at constant time inter-
val T∆ . With information filtering, the message size si can be bound to a fixed value 
S. The global communication cost of the network is  

StnmStestkC ii ⋅⋅=⋅≤⋅=∑ )(2)(2)(  (7)

which grows linearly with the network size. But from the perspective of a single node, 
the average communication cost stays almost constant. 

SmtnCc ⋅≈= 2)(/  (8)
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4   Case Study: DAVAM System 

In order to validate the proposed model, we used In-VIGO [1] grid middleware to 
implement a decentralized Autonomic Virtual Application Management (DAVAM) 
system.  

 

Fig. 2. The high-level view of autonomic VAM in In-VIGO. This figure shows multiple VAMs 
that submit jobs on multiple machines. 

4.1   Background 

In-VIGO is a grid-computing infrastructure that uses virtualization technologies to 
provide secure application execution environments. Fig. 2 provides a high-level view 
of the role of the autonomic Virtual Application Manager (AVAM) in In-VIGO (de-
tailed in [22]). Typically, a user initiates an application session to run instances of a 
computational tool on grid resources1. 

Each session is managed by a middleware component, called the Virtual Applica-
tion Manager. Autonomic features including self-optimization and self-healing are 
integrated into the AVAM. It relies on monitoring of job and resource conditions, 
predicting violations of user- and/or system-expected execution times, and restarting 
jobs in resources capable of delivering acceptable times. To achieve desired per-
formance, each AVAM requires global knowledge of the time-varying resource 
information. However, the centralized approach in [22] using a global controller to 
collect and maintain the whole system status does not scale well in large-scale dis-
tributed systems.  

4.2   Cooperative AVAM 

Fig. 3. shows the major functions implemented in an AVAM. The local knowledge 
base stores information such as dynamic local resources’ status, application run-time 
performance, the list of the neighbors and local resources claimed by the AVAM.  

                                                           
1  A “tool” or “application” can consist of more than a single application, e.g., it could entail the 

execution of a workflow of application. 
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4.2.1   Controller  
The controller is responsible for controlling the application execution to achieve reli-
able and optimized performance. The functions in the controller are listed below:  

 

Fig. 3. The functions and information flow of a cooperative AVAM 

Predict function: A memory-based learning algorithm [22][9] is used to predict re-
source usage for a given job, such as CPU cycles and memory usage. The basic idea 
is that the resources consumed by a job often depend on the input parameters supplied 
to the tool. Therefore, the “similarity” of two jobs is defined by the distance metric of 
two sets of inputs and resource usage is predicted based on the tool execution history.  

Select function: The controller scans the list of resources in the local knowledge base 
and ranks them based on the job’s resource requirements and the resources’ capacity. 
To optimize the job’s performance, the controller selects the resource with the highest 
score. However, resource contention may happen if multiple AVAMs try to submit 
jobs to the same “best” resource simultaneously. A ε-random rule is used to deal with 
this problem. A randomly generated small number ε in the range [-0.1, 0.1] is added 
to each resource’s score, and then Select function ranks the resource list with these 
“modified” scores. By setting a small number ε, the ε-random rule is able to mitigate 
resource contention to a certain extent. 

Verify function: After a resource is selected, this function checks the current status of 
the resource and verifies whether its score is still valid. If not, the controller selects 
the next candidate resource in the ranked list and repeats this verification process. 

Analyze function: After a job is submitted to the chosen resource, the monitor keeps 
collecting the job's running status (e.g., current CPU time, elapsed time, and CPU 
utilization consumed by the job), which is used to estimate the job’s progress (see 
[22]). If it is predicted that the job cannot finish before the deadline, the controller 
will try to find a better resource that can satisfy the job requirements and reschedules 
the job to that resource. In the case when all the resources in one domain are heavily 
loaded, the controller selects its “cross-domain” neighbors and communicates with 
them to quickly get the resource information in other domains and determine on 
which resource it can submit the job.   
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4.2.2   Monitor and Communicator 
The monitor periodically collects local resources’ status information and checks every 
submitted job periodically. If the job finishes successfully, the monitor collects some 
statistic data about this execution and reports it to the local knowledge base for his-
torical records. The communicator is responsible for sending and receiving messages 
to and from neighbors. There are four types of messages exchanged between 
neighbors. 

Joining/leaving: An AVAM sends messages to its neighbors to notify its arrival or 
departure.  

Local resource table: Each AVAM has its own current view of the resources’ status 
and stores it in a local resource table. To disseminate this information, every AVAM 
periodically (every 10 seconds in our implementation) sends its local resource table to 
the neighbors. 

Rewiring: Before leaving, an AVAM selects a fraction p (set to 0.5 in our case) of its 
neighbors and sends them rewiring messages. The receivers then choose some other 
AVAMs as their new neighbors. 

4.2.3   Information filtering 
The resources information collected by an AVAM must be filtered before being 
added to the local resource table to reduce message size. Each record has an age at-
tribute to indicate the time elapsed since the last update. If two records contain the 
same resource’s status, the older one gets filtered out.   

Information filtering also happens by purging the lower-values records from the 
table. Concentrating on CPU-intensive applications, AVAMs are interested in re-
sources with high CPU processing power. Thus, the value of the ith resource is de-
fined as follows. If CPU utilization stays below 100%, the CPU capacity is calculated 
by the CPU speed and utilization; otherwise, it is computed using the CPU load (the 
queue length of the runnable processes). A weight of 0.01 is used to make these two 
measurements comparable.  

Valuei = 
CPU _ Speedi × (1− CPU _Utilizationi)    if CPU_Utilizationi < 100%

CPU _ Speedi /CPU _ Loadi × 0.01                                        otherwise

⎧ 
⎨ 
⎩ 

 (9)

Due to the dynamic nature of grid resources, the older a resource record becomes, the 
less accurate it is. Therefore, the record’s value is reduced by a factor corresponding 
to its age, represented as α (α = 1− age /max ), where the max is set to 60 seconds in 
our implementation. With this information filtering, a local resource table’s size is 
reduced by only retaining the resources with high CPU processing capability. 

5   Experimental Evaluation 

This section evaluates the proposed DAVAM system with respect to scalability, effi-
ciency and robustness. 
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5.1   Setup 

The experiments were conducted on a subset of the In-VIGO system. The computer 
resources consist of 200 VMware-server virtual machines (each has 128 MB memory 
and runs Red Hat 7.3) hosted on a cluster of ten dual 2.4GHz hyper-threaded Xeon 
nodes. In the experiments, a considerable amount of background load was also intro-
duced into the resources by launching CPU-intensive jobs. Dynamic loading envi-
ronments were created by randomly choosing and loading different subsets of the 
resources (100 randomly chosen resources, unless otherwise noted) every 50 seconds. 
The domain registries are implemented with MySQL. TunProb (Numerical Calcula-
tion of the Transmission Probability for One-Dimensional Electron Tunneling), a tool 
available on the In-VIGO portal, is used as a benchmark representative of CPU-
intensive workloads. In the experiments each AVAM was used to manage the execu-
tion of one or more instances of TunProb.  

The DAVAM system initialization process starts with one AVAM. Then at each 
increment of time (one second) one new AVAM is started until the expected system 
size is reached. Each AVAM establishes connections with m (0~6) existing AVAMs 
in its domain. Each AVAM monitors up to five virtual machines as its local resources, 
and updates their status in its local resource table every ten seconds. AVAM 
neighbors exchange their local resource tables every ten seconds and the table can 
only keep up to ten records. 

5.2   Experimental Evaluation of Efficiency 

The efficiency of the DAVAM system is reflected by each AVAM being able to quickly 
obtain the current status of the entire system and find good resources for its jobs. The 
first experiment investigates how the performance changes with different numbers of 
neighbors each AVAM contacts when joining the system. Fifty AVAMs were initially 
started in the domain, and ten seconds later another five AVAMs joined and each se-
lected m  (0~6) neighbors. After ten seconds of their arrivals, the five AVAMs began to 
submit jobs continuously until they left the domain 140 seconds later. 
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Fig. 4. The comparison of the total number of jobs finished by 5 AVAMs (a) and the TunProb 
jobs’ average execution time (b) with different values of m during 150 seconds 
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Fig. 4. compares the average job runtime and the throughput (the total number of 
jobs completed by the five AVAMs) with different values of m. As expected, the worst 
performance occurs when each AVAM does not have any neighbors. As the value of m 
increases, the performance improves because AVAMs can learn more resources’ infor-
mation through interaction with their neighbors and select resources more wisely. Fig-
ure 4 also indicates that, when m exceeds five, the throughput drops because the benefit 
from contacting more neighbors is outweighed by communication overhead. 

5.3   Experimental Evaluation of Scalability 

In the second experiment, we studied the system scalability by comparing the per-
formance of DAVAM with centralized and round-robin approaches. Forty AVAMs 
join the domain and each one submits jobs continuously for 150 seconds. In the 
DAVAM approach, each AVAM selects two neighbors. The neighbor selections, with 
and without preference, lead to two types of networks, power-law and exponential 
networks [2], respectively. The centralized approach uses a central monitor to collect 
and store resources’ status in a central database. Each AVAM chooses the best re-
source currently available in the database to submit its jobs. The round-robin ap-
proach does not need any resource status information and chooses resources in a 
round-robin manner. The experiments were conducted in three loading environments 
– low, medium and high, in which 30%, 50% and 70% of randomly chosen resources 
were loaded with CPU-intensive processes, respectively.  

Fig. 5. shows the average job runtime and the overall throughput of the different 
approaches. Both exponential and power-law AVAM networks deliver similar best 
performance because the small world property makes sure that each AVAM in the 
network can obtain the latest system-wide resource status very quickly. Furthermore, 
the ε-random resource selection rule avoids resource contention among multiple 
AVAMs. In contrast, the centralized approach suffers from database-access conten-
tion between the AVAMs and the central monitor. The round-robin approach gives 
the worst performance because it does not consider any dynamic information for 
resource selection. 

 

Fig. 5. The comparison of the jobs’ average execution time and the total number of jobs fin-
ished by 40 AVAMs for the DAVAM and the centralized and round-robin approaches in three 
different loading environments 
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5.4   Experimental Evaluation of Robustness 

The third experiment studies the robustness of the DAVAM approach, where the 
system-level information is constructed by the distributed cooperative AVAMs, in 
contrast with the centralized approach, where a central database is used to store the 
global knowledge. In the experiment, 50 AVAMs were started at the same time. After 
200 seconds, half of them left and the others continued to work and submit jobs for 
another 200 seconds. In DAVAM the remaining AVAMs react to system changes by 
contacting new neighbors and reclaiming resources from the domain registry. The 
neighborhood rebuilding mechanism maintains the DAVAM network connectivity, 
and the resource reclaiming ensures that most of the resources are monitored by at 
least one AVAM. Fig. 6. compares the average job runtime and the throughput by the 
25 AVAMs before and after the other AVAMs’ leaving. For both exponential and 
power-law networks, the performance of the remaining AVAMs is almost unaffected 
even if a high number of AVAMs left the system.  

For the centralized approach, on the contrary, if the central database fails, none of 
the AVAMs can retrieve any new information from the database, so they have to 
continue using the resources chosen before the database failure. Figure 6 shows that, 
without the dynamic resource information provided by the database, the performance 
drops dramatically. Similar effects can be observed if the central monitor fails. 
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Fig. 6. TunProb jobs’ average execution time and the total number of jobs finished by 25 
AVAMs before and after AVAM leaving, for DAVAM exponential and power-law networks, 
and before and after failure of a central database when it is used for centralized monitoring 

5.5   Discussion 

It may possible to design a hierarchical system to circumvent scalability issues caused 
by a purely centralized approach and also achieve the similar performance with the 
p2p approach.  However, in a dynamic environment where nodes can join and leave at 
any time, it is very difficult to construct and maintain a balanced, optimal hierarchical 
structure. Moreover, the supernodes (root notes) at the top level in the hierarchical 
system can potentially cause single-point system failures and/or lead to isolated nodes 
in the system. Although replication can compensate for potential unstable behavior of 
a supernode, it will add resource costs and communication overhead to keep replicas 
consistent.  
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6   Related Work 

Agent-based [8][16] modeling is a very natural and flexible way to model distributed 
interconnected systems. In [2] several distributed and self-organizing algorithms are 
proposed for placement of services on servers. For each service a service manager is 
instantiated to create multiple “ants” (agents) and send them out to the server net-
work. The ant travels from one server to another, choosing the servers along the path 
based on locally available information. The ant then finally makes a decision, based 
on the knowledge it has accumulated on its travel. Service manager and the spawned 
ants work with local information, which ensures scalability. Similarly, Messor pro-
posed to use “ants” wandering over the network to explore load conditions. The goal 
is to achieve load balancing by ants moving jobs from the most overloaded node to 
underloaded ones.  

In our system, each autonomic component can be identified as an agent, and the 
autonomic system as a multi-agent system. Each autonomic component is both coop-
erative (sharing its local knowledge with neighbors) and selfish (trying to find and 
allocate the best resources for its own jobs). The authors in [8] claim that no obvious 
gain can be achieved from communication between agents. The reason is that if all the 
agents have a "better" picture of the whole system, they all tend to use the best re-
sources and thus cause competition. In contrast, the resource verification and ε-
random selection mechanisms applied to our system can prevent this problem and 
their effectiveness is proved by the experiments. 

The peer-to-peer model offers an alternative to the traditional client-server model 
for many large-scale applications in distributed setting. Epidemic (or gossip) algo-
rithms [7][4] have proved to be effective solutions for disseminating information in 
large-scale systems. The basic idea is that each process periodically chooses a random 
subset of processes in the system and sends them the new information it has received.  

Traditional epidemic algorithms rely on each process having knowledge of the 
global membership which is not realistic for large groups of processes. Our system 
uses a very simple membership protocol to establish and rebuild neighbor connec-
tivity with support from the decentralized domain registry service. 

7   Conclusions 

This paper presents an autonomic computing system in which multiple autonomic 
components collaborate to optimize the behavior of the system. A general autonomic 
manager model is designed to control the managed elements’ internal state and man-
age its interactions with the surrounding environment. The autonomic manager is 
lightweight, making it suitable for many distributed systems. Each has a local view of 
the system state and communicates periodically its partial knowledge to its neighbors, 
thus contributing to building a common, shared global view of the system state. A 
decentralized registry provides scalable and reliable neighbor and resource discovery 
service for the system. The overlay network structured by the neighbor relationships 
is demonstrated to be highly reliable and efficient. The results show that the decen-
tralized and cooperative nature of the system yields a number of desirable properties, 
including efficiency, robustness, and scalability under a highly dynamic environment.  
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In Introduction we raised the question of what component interactions are needed 
for system-level self-management to support autonomic applications. Our results show 
that simple exchanges of local information suffice to enable application managers to 
find resources that best suit performance requirements of an application. Another ques-
tion asked which network should be used to support the communication needed to 
establish connectivity and share information. We found that both exponential and 
power-law networks yield small diameters to support low-latency communication 
needed for timely sharing of information among system components. The question of 
how to design autonomic managers capable of cooperatively interacting with each 
other has been answered by describing a set of functions implemented by the typical 
components of an autonomic manager: monitor, communicator, controller and a local 
knowledge base. The interaction between managers consists of simple information 
exchanges and each manager has a small cache to store partial “global” information to 
enhance its autonomic ability.  The resulting design is rather lightweight and applicable 
beyond the concrete In-VIGO scenario used in this paper to validate the proposed 
approach. 

There are additional questions that require further research. Among them, to what 
degree does our design mitigate the occurrence of races or oscillations among re-
quests or job allocations? Our approach reduces their likelihood because communica-
tion latencies are small, age attributes are used to avoid using very dated information 
and an ε-random resource selection rule is used to mitigate the probability of resource 
contention. A complete answer would require a characterization of the conditions that 
lead to oscillations and races in distributed systems without (and with) our techniques. 
This is outside the scope of this paper and left as a challenge for future work. 
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Abstract. We discuss the stabilization properties of networks that are
composed of “displacement elements”. Each displacement element is de-
fined by an integer K, called the displacement of the element, an input
variable x, and an output variable y, where the values of x and y are
non-negative integers. An execution step of this element assigns to y
the maximum of 0 and K + x. The objective of our discussion is to
demonstrate that two principles play an important role in ensuring that
a network N is stabilizing, i.e. starting from any global state, network
N is guaranteed to reach a global fixed point. The first principle, named
consistent fixed points, states that if a variable is written by two subnet-
works of N , then the values of this variable, when these two subnetworks
reach fixed points, are equal. The second principle, named negative gain,
states that the sum of displacements along every directed loop in network
N is negative.

1 Introduction

A network of communicating elements is stabilizing iff, starting from any global
state, the network is guaranteed to reach a fixed point [1]. The theory of network
stabilization, though highly studied, has not yet identified the general principles
which can explain the stabilization of rich classes of networks. We identify two
such general principles, and illustrate their utility by showing how these prin-
ciples can be used to design interesting classes of stabilizing networks. In our
study, we focus on a simple model, called displacement networks.

A displacement network consists of one or more displacement elements. Each
element is defined by an integer K, called the displacement of the element, an
input variable x, and an output variable y, where the values of x and y are non-
negative integers. The execution step of this element assigns to y the maximum
of 0 and K + x (provided that this assignment changes the value of y). Later,
we generalize the model to allow elements with multiple inputs.

We propose two general principles to adopt while designing a stabilizing dis-
placement network N : consistent fixed points and negative gain. The principle of
consistent fixed points states that, if a variable is written by two or more subnet-
works of N , then the values of this variable written by these subnetworks, when
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these subnetworks reach fixed points, are equal. The principle of negative gain
states that the sum of the displacements along every directed loop in network
N is negative.

These two principles have counterparts in control theory. Specifically, the
principle of consistent fixed points is analogous to the requirement that a control
system be free from self-oscillations; the principle of negative gain is analogous
to the requirement that the feedback loop of a control system be negative.

2 Results

1. An acyclic network N is stabilizing iff every two chains, that terminate at
the same variable in N , are consistent.

2. Given a particular assignment of input values, a stabilizing acyclic network
has exactly one fixed point.

3. A loop network is stabilizing iff one of the following two conditions holds:
– the total gain of the loop is negative.
– the total gain of the loop is zero and the loop has no more than two

elements.
4. A stabilizing loop network has exactly one fixed point.
5. A composite network (composed of stabilizing acyclic and loop networks) is

stabilizing iff it is consistent.
6. If the gain of each directed loop in an m-bow network N is negative, then

N is stabilizing.
7. A composition of a stabilizing loop or m-bow network with a stabilizing

acyclic network, is stabilizing if every variable shared by both components
is an input variable of the acyclic network.

3 Concluding Remarks

Our two principles, of consistent fixed points and negative gain, are seen to
be sufficient (and sometimes also necessary) to establish stabilization of many
classes of networks. It would be interesting to study whether these principles
remain sufficient to ensure self-stabilization if we allow a richer network model,
in which an element can perform any linear operation on its inputs and output
the result.
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Awerbuch and Scheideler [2] have shown that peer-to-peer overlays networks can
only survive Byzantine attacks if malicious nodes are not able to predict what will
be the topology of the network for a given sequence of join and leave operations.
A prerequisite for this condition to hold is to guarantee that nodes identifiers
randomness is continuously preserved. However targeted join/leave attacks may
quickly endanger the relevance of such an assumption. Inducing churn has been
shown to be the other fundamental ingredient to preserve randomness. Several
strategies based on these principles have been proposed. Most of them are based
on locally induced churn. However either they have been proven incorrect or
they involve a too high level of complexity to be practically acceptable [2]. The
other ones, based on globally induced churn, enforce limited lifetime for each
node in the system. However, these solutions keep the system in an unnecessary
hyper-activity, and thus need to impose strict restrictions on nodes joining rate
which clearly limit their applicability to open systems.

In this paper we propose to leverage the power of clustering to design a prov-
ably correct and practically usable solution that preserves randomness under an
ε-bounded adversary. Our solution relies on the clusterized version of peer-to-peer
overlays combined with a mechanism that allows the enforcement of limited nodes
lifetime. Clusterized versions of structured-based overlays [1,3] are such that clus-
ters of nodes substitute nodes at the vertices of the graph. Nodes are grouped
together according to some distance function. Our solution is based on the par-
titioning of the cluster population into two sets, called resp. core and spare sets.
Core members are responsible for implementing the overlay. By using classical
quorum-based active replication mechanisms among core members, the impact of
a minority of malicious nodes is easily masked. The spare set is used to reduce
the management overhead caused by the natural churn that is present in typical
overlay networks. Nodes in the spare set that leave the system cause next to no
overhead, and so do most of the nodes joining the system as they are inserted in
the spare set of their corresponding clusters. On the other hand, whenever a core
member leaves the system, new core and spare sets are possibly generated.

We propose two strategies to handle these leaves. These strategies mainly dif-
fer in the amount of randomisation they impose to introduce the unpredictability
� Supported by the Direction Générale des Entreprises - P2Pim@ges project.
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required to deal with attacks. In the first one, a core member that leaves is replaced
by a randomly chosen spare member, while in the second one, the departure of a
core member leads to the renewal of the whole core set by randomly selecting new
core members within both core and spare sets. Then we model each strategy as a
game.

The long term behavior of both games is evaluated by using a homogeneous
Markov chain X = {Xn, n ≥ 0} that represents the evolution of the number of
malicious nodes in both core and spare sets of a cluster. Both games are played
against an adversary whose strength represents the amount of induced churn at
a cluster level. In its stronger version, the adversary is free to keep the nodes it
manipulates forever in the cluster, while in its weakest form, manipulated nodes
are forced to move (they can rejoin later if they wish). The adversary wins the
game when process X reaches a set of polluted states from which it can never
exit. A state is polluted if the fraction of malicious nodes in the core set exceeds
ε (i.e., a collusion is mounted). A state that is not polluted is safe.

The first step of our work shows that the amount of randomization imple-
mented at cluster level does not prevent a strong adversary from winning in
both games in a bounded number of steps, however randomization together with
cluster size influence the speed at which this pollution is reached. In particular,
the second game alternates, for a random number of steps, between safe and
polluted states.

The second step evaluates the benefit of constraining the adversary by limiting
the sojourn time of its manipulated nodes in both sets, so that randomness
among manipulated and honest nodes is continuously preserved. We first show
that none of the games exhibit an absorbing class of states (i.e., both games
never ends). Next we prove that process X reaches a stationary distribution
which is surprisingly the same for both games. Specifically

Theorem 1. For both games 1 and 2, the stationary distribution is the same.
For all x = 0, . . . , c and y = 0, . . . , s, where c (resp. s) represents the upper
bound of the core (resp. spare) sets, we have

lim
n−→∞

�{Xn = (x, y)} = α(x, y),

where
α(x, y) =

(
c
x

)
µx(1 − µ)c−x

(
s
y

)
µy(1 − µ)s−y. (1)
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Introduction. A self-stabilizing algorithm [2] is a distributed algorithm with
an additional property: it guarantees to eventually execute its task, by reaching
a legitimate configuration, regardless of the state in which the processes and
communication links are started.

Some algorithms are supposed to remain safe at all times while they carry out
their task. Safety, however, is impossible when very high levels of failures over-
whelm the system, e.g., when more than a third of the processes are Byzantine,
or in the extreme case, when all the processes disappear.

To combine the safety of non-stabilizing algorithms and the eventual safety of
self-stabilizing algorithms, we argue that each self-stabilizing algorithm should
have initial configurations. If the system is started in an initial configuration,
there is no need to overcome any problem stemming from the starting configura-
tion. Thus, safety is guaranteed throughout the execution. Since the system is
self-stabilizing, it guarantees convergence from any configuration to a legitimate
configuration, thereby also providing eventual safety.

An initial configuration is intended as a good starting point for a self-stabilizing
algorithm. Such a configuration must be safe, introducing the notion of initial
safety. Roughly speaking, an initial configuration is an “empty” configuration, in
which the algorithm has not yet obtained any information. It is therefore not a le-
gitimate configuration. For example, in the initial configuration for an algorithm
that maintains routing tables, all tables should be empty. For a spanning tree al-
gorithm, each process should have no parent and no child.

Contributions. To illustrate the notion of initial configuration, we apply it to
the Update protocol, a self-stabilizing routing table algorithm. We prove that if
the system is started in a configuration, where all the routing tables are empty,
then it never acquires any wrong information, such as a routing table entry for
a nonexisting process or a distance shorter than the actual distance.

� A detailed version appears in a technical report [1].
�� Partially supported by the ICT Programme of the European Union under contract

number ICT-2008-215270, US Air Force, and Rita Altura chair in computer science.
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We generalize the notion of initial configurations by characterizing all the
configurations of a system with regards to initial configurations using a frame-
work that classifies configurations into categories. In addition to the legitimate
and initial configurations, we identify configurations that are reachable from an
initial configuration. All the other configurations are corrupted. We apply this
framework to information gathering algorithms, like census and routing table
algorithms. The framework can be extended to composed algorithms, i.e. self-
stabilizing algorithms obtained by merging several algorithms.

We then introduce a special tool for composed algorithms: self-stabilizing
stabilization detectors. We provide, as an example, an algorithm that detects
whether the Update protocol is in a legitimate configuration. If the system is
started in a non-initial configuration, it converges toward a legitimate configu-
ration where the Update protocol has converged and the detector outputs true.
The detector can wrongly output true before the Update protocol has converged.
However, if the system is started in an initial configuration, the stabilization
detector only outputs true when the Update protocol has converged. This indi-
cation assists in scheduling higher layers only when lower layers are stabilized,
and thus allows smoother restarts following a distributed invocation of a reset.

To illustrate the combination of safety and eventual safety, we provide a self-
stabilizing n-modular redundancy (NMR) implementation. NMR is a fundamen-
tal tool for fault masking. Consider a state machine with transition function T
and a function out that maps states to outputs. NMR replicates this state ma-
chine n times and allows tolerating faults in any minority of the machines. Our
self-stabilizing NMR is thus safe, like a regular NMR system, if started in an
initial configuration. Moreover, being self-stabilizing, after any sequence of tran-
sient failures, it converges toward a legitimate configuration. Therefore, while the
behavior of the regular NMR system is unpredictable following an overwhelming
number of transient faults, the self-stabilizing NMR system eventually places
all the processes in the same state, and then, correctly executes the transition
function. Thus, the self-stabilizing NMR system is also eventually safe.
Conclusion. Our main contribution is the definition of initial configurations,
i.e. preferred starting configurations, from which a self-stabilizing algorithm can
safely converge toward a legitimate configuration. Being self-stabilizing, the al-
gorithm converges if initialized in any other configuration too. We believe that
specifying initial configurations with self-stabilizing algorithms should be the
standard. It provides the user who wants to run the algorithm with instructions
on how to start the system in order to obtain the best possible conditions, com-
bining safety, in normal conditions, and eventual safety, in the presence of a very
high number of failures. We thus argue that self-stabilizing systems should no
longer be regarded as only eventually safe, but as safe and eventually safe.
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Introduction. We propose a new open addressing hash function, the unique-
permutation hash function, and a performance analysis of its hash computation.
A hash function h is simple uniform if items are equally likely to be hashed
to any table location (in the first trial). A hash function h is random or strong
uniform if the probability of any permutation to be a probe sequence, when using
h, is 1

N ! , where N is the size of the table. We show that the unique-permutation
hash function is strong uniform and therefore has the lowest expected cost; each
probe sequence is equally likely to be chosen, when the keys are uniformly chosen.
Thus, the unique-permutation hash ensures that each empty table location has
the same probability to be assigned with a uniformly chosen key.

For constant load factors α < 1, where α is the ratio between the number of
inserted items and the table size, the expected time for computing the unique-
permutation hash function is O(1) and the expected number of table locations
that are checked before an empty location is found, during insertion (or search),
is also O(1).

Hashing. Given a hash table of size N , a hash function h maps a key to a
table location in 1, 2, . . . , N . The probe sequence of a key, defined by the hashing
method and h is, in fact, a permutation of 1, 2, . . . , N . For a given key x, assume
that the probe sequence is i1, i2, . . . , iN . In such case, when inserting an item
with key x to the hash table, the first location which is checked is i1. If location
i1 is filled, location i2 is then checked and so on until finding an empty location
into which the item is inserted. Similarly, the same probe sequence also defines
the sequence of table locations that are checked when searching for x. In such
case, table locations are checked until x is found or until an empty location is
found, indicating the search has failed (x is not on the table).

Unique permutation. Given a hash table of size N , with locations denoted
by 1, 2, . . . , N . Let Π(N) = {π1, π2, . . . , πN !} be the set of all permutations
of 1, 2, . . . , N , lexicographically ordered. The unique-permutation hash function
maps a key to a unique probe sequence in Π(N). That is, if for an item x, h(x) =
π ∈ Π(N) and π = i1, i2, . . . , iN , then π is the probe sequence used for insert-

� Partially supported by EU ICT-2008-215270 FRONTS, Rita Altura Trust Chair
in Computer Sciences, and the Lynne and William Frankel Center for Computer
Sciences. See [1] for a detailed version.
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ing x, as well as for searching for x. As there are N ! permutations of the N table
locations, the items can be divided into N ! classes [π], where [π] = {x : h(x) = π}.

We show that our unique-permutation hash function is a random hash func-
tion, (also defined strong uniform hash function), which ensures that each empty
entry has the same probability to be filled with a uniformly chosen key. Ob-
viously, the random property neither holds for linear probing, nor for double
hashing, since when probing a filled location, according to these methods, some
locations have a higher probability to be tried next, as we demonstrate in [1].
We distinguish local steps, which refers to the hash function computation from
a hash table entry access. In case keys are given as integers and obviously, when
keys are explicitly given as permutations, we present a simple algorithm that (lo-
cally) calculates the next probe number in the probe sequence upon a request.
The expected number of local steps done by this algorithm, during insertion, is
a function of the load factor (i.e. 1

(1−α)3 ). For a bounded load factor, both the
expected number of local steps and number of table entry accesses are constants.

Given two integers N and k, we use an algorithm which generates the kth per-
mutation in Π(N) (when lexicographically ordered). We compute each number in
the permutation only upon a request. For the sake of presentation completeness,
we present a simple algorithm which finds the first j numbers in the kth permuta-
tion in O(j2) operations. Roughly speaking, this algorithm is based on modular
operations, starting with computing the key mod N , next the key mod N−1, and
so on until the key mod 2, using the resulting indexes as an indexes in the non yet
explored locations. In fact we prove in [1], that it takes O(1) expected number of
operations for inserting an item, when α is bounded, say α < 2

3 .

Number of keys. We also address the cases in which the number of items inserted
is greater than or smaller than N !. In case the number of items is c · N !, where c
is a positive integer, our function satisfies the random property. Note that when
c is a non integer number greater than 1, there are some permutations that are
chosen with probability �c�

N ! , while other permutations are chosen with probability
�c�+1

N ! . The ratio between these probabilities is negligible for a large enough c. In
case the number of items is less thanN !, we can start probing the first table locations
in a uniform fashion, using our hash function (mapping the key to an index of a
permutation in shorter permutations domain N !/k!, largest domain that is equal
to or smaller than the domain of the keys) and continuing in any deterministic
fashion (say in a linear probing fashion) that probes the rest of the table locations.

Applications. In addition to the obvious possible usage of the unique-
permutation hash function being an optimal hash function, the unique-
permutation hash function has an application for parallel, distributed and
multi-core systems that avoid contention as much as possible. See [1] for some
relevant references to such applications.
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Introduction. Self-stabilizing algorithms are designed to start from an arbitrary
state and eventually exhibit a desired behavior. Self-stabilizing algorithms that
use randomization are able to achieve tasks that cannot be achieved by determin-
istic means. In addition, in some cases, randomization enables faster convergence
of self-stabilizing algorithms. Often, randomized self-stabilizing algorithms are
designed to use an infinite amount of random bits to operate correctly. However,
the creation of (real) random bits is considered expensive; thus, a randomization
adaptive self-stabilizing algorithm which uses random bits during convergence
but does not use random bits following the convergence is desirable. Such a no-
tion of adaptiveness has been studied in the past, where the resource demands
of a self-stabilizing algorithm are reduced upon convergence, be it memory re-
quirements, or communication requirements.

We suggest a new scheme for converting randomized self-stabilizing algorithms
to randomization adaptive self-stabilizing algorithms. Our scheme can be em-
ployed when every execution of the algorithm, starting in a safe configuration,
is legal, regardless of the random input – as opposed to legal with some prob-
ability. Our scheme can also be applied in case there is at least one random
sequence that implies liveness from every safe configuration. Generally speak-
ing, the scheme is based on collecting the entire history of the system at each
node, and examining this history to check if the algorithm has converged. If so,
no randomization is used. We demonstrate the scheme on a leader election al-
gorithm derived from the token circulation algorithm of Ted Herman, 1990. We
also obtain token circulation with deterministic behavior following convergence.

When Byzantine nodes are introduced, we suggest a scheme based on unre-
liable stabilization detectors. The unreliable stabilization detector gives an un-
reliable indication whether the algorithm is in a safe configuration. Roughly,
when the algorithm has converged, the detector eventually notifies all nodes of
this fact; before the algorithm converges the detector notifies at least one node
that randomization is still needed. The other part of the conversion scheme
is a randomization surrogate, where each node that gets an indication on non-
convergence from the unreliable stabilization detector supplies random bits to all
� Partially supported by EU ICT-2008-215270 FRONTS, Rita Altura Trust Chair

in Computer Sciences, and the Lynne and William Frankel Center for Computer
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the nodes including itself; each node xors the random bits received from all nodes
in the system and uses the result as its source for random bits. Roughly speaking,
in the presence of Byzantine nodes, such randomization assistance must be done
atomically, avoiding the Byzantine nodes’ choice which can potentially nullify
the random bits selected.

We demonstrate our second scheme over the non-randomization adaptive
self-stabilizing clock synchronization algorithm presented by Ben-Or, Dolev and
Hoch in 2008. The application of our scheme results in the first constant time
Byzantine self-stabilizing clock synchronization algorithm that uses an expected
bounded number of random bits.

Self-stabilizing stabilization detector. The detector is based on collecting a
historical view, similar to the monitoring suggested by Afek and Dolev in 1997.
The history collection algorithm maintains, at each node, an array of the last
d system configurations – the historyp array. At each pulse, each node p first
shifts p’s historyp array to the right, discarding the last entry historyp[d − 1],
and places the current partial configuration {sp} (the state of p) in historyp[0].
p then proceeds to send historyp to all of p’s neighbors. Finally, p merges the
histories p receives from p’s neighbors with p’s history array (the identifiers of
the nodes are used to facilitate a simple merge).

Eventually, each node has the correct state of the system d rounds in the
past, where d is the diameter of the communication graph. At each round i,
each node p examines the history of round i − d to check if the system was in
a safe configuration. If the system was in a safe configuration in round i− d, p
uses no random bits. Otherwise, p uses random bits.

Randomization adaptiveness in the presence of Byzantine faults. As-
sume that the communication graph is complete, thus, preventing interference
of the Byzantine nodes with communications between non-Byzantine nodes.

In each round each node p directly collects information about the current
configuration from the rest of the nodes. In case p detects that the system is
not stabilized, p proceeds to send a different random number to each node (in-
cluding itself). Otherwise, p sends a fixed default number to all nodes. All the
(random/default) numbers received by a node are xored to replace the origi-
nal result of the random function. Thus, if at least one non Byzantine node
identifies the current configuration as unstable, then all non-Byzantine nodes
use random numbers. Moreover, when all non Byzantine nodes identify a stable
configuration, none of them invoke the random function.
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1 Introduction

This brief announcement proposes a new model to measure the distributed
time complexity of topological self-stabilization. In the field of topological self-
stabilization, nodes—e.g., machines in a p2p network—seek to establish a certain
network structure in a robust manner (see, e.g., [2] for a distributed algorithm
for skip graphs). While several complexity models have been proposed and an-
alyzed over the last years, these models are often inappropriate to adequately
model parallel efficiency: either they are overly pessimistic in the sense that they
can force the algorithm to work serially, or they are too optimistic in the sense
that contention issues are neglected. We hope that our approach will inspire re-
searchers in the community to analyze other problems from this perspective. For
a complete technical report about our model, related literature and algorithms,
the reader is referred to [1].

2 Case Study: Graph Linearization

Our model is best understood with an example. We hence examine a concrete
problem, namely graph linearization: Given a connected overlay network with
unique node identifiers, we want to construct a chain network which is sorted
w.r.t. these IDs. For simplicity, we consider undirected graphs only.

We study two distributed algorithms LINall and LINmax that work on node
triples : A so-called linearization step involves three nodes u, v, and v′ with the
property that u is connected to v and v′ and either u < v < v′ or v′ < v < u.
In both cases, u may command the nodes to move the edge {u, v′} to {v, v′}. If
u < v < v′, this is called a right linearization and otherwise a left linearization
(see Figure 1). Since only three nodes are involved in such a linearization, this
is an efficient operation.

Algorithm LINall is very simple: Each node constantly tries to linearize its
neighbors according to the linearize left and linearize right rules. In doing so, all
possible triples on both sides are proposed to a hypothetical scheduler. LINmax
is similar to LINall: but instead of proposing all possible triples on each side,
LINmax only proposes the triple which is the furthest (w.r.t. IDs) on the corre-
sponding side.
� Research supported by the DFG project SCHE 1592/1-1, and NSF Award number
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3 Parallel Time Complexity

We define the distributed runtime of a self-stabilizing algorithm as the total
number of rounds required in the worst-case to establish a desirable topology
(e.g., a linearized one) from an arbitrary initial network.

A round should capture what can be done in a distributed setting per unit
time. In our approach, in each round, the scheduling layer may select any set of
independent operations to be executed by the nodes, in the sense that each node
v can only be part of one operation (i.e., one linearization triple): if multiple
neighbors of v (or v itself) want to change—i.e., add or remove—edges incident
to v, at most one edge change is scheduled. Thus, no node is overloaded.

v’ v u v’vu

Fig. 1. Left and right linearization step

We studied the runtime
of LINall and LINmax for
different scheduling regimes:
(1) Worst-case scheduler Swc:
This scheduler must select a
maximal independent set of
possible linearization steps in
each round, but it may do so

to enforce a runtime (or work) that is as large as possible. (2) Randomized sched-
uler Srand: This scheduler considers the set of operations in a random order and
selects, in one round, every operation that is independent of the previously se-
lected operations in that order. (3) Greedy scheduler Sgreedy: This scheduler
orders the nodes according to their degrees, from maximum to minimum. (4)
Best-case scheduler Sopt: The round triples are selected in order to minimize the
runtime (or work) of the algorithm.

The analysis of the different schedulers provides interesting insights into an al-
gorithm’s performance. In particular, the randomized scheduler can be regarded
as a distributed mechanism where node coordinate their operations by local
control. We have derived the following bounds [1].

Theorem 1. Under a worst-case scheduler Swc, LINmax terminates after O(n2)
work (single linearization steps), where n is the total number of nodes in the sys-
tem. This is tight in the sense that there are situations where LINmax requires
Ω(n2) rounds under Swc. LINall runs at most O(n2 logn) rounds under Swcand
at most O(n log n) rounds under Sgreedy. On the other hand, there are situa-
tions where both LINall and LINmax require at least Ω(n) rounds, even under an
optimal scheduler Sopt.
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What is VSK? By introducing context-awareness in the system layer, perva-
sive computing is a turning point in OS design. Device mobility and dynamicity
of situations raise strong challenges for run-time adaptability of embedded soft-
ware, while at the same time inducing new, serious threats to device security.
Paradoxically, due to the multiplicity of protection requirements specific to each
environment illustrated by the heterogeneity of network security policies, the so-
lution may come from applying context-awareness to security itself. The idea is
to tune security mechanisms to match the protection needs of the current device
environment, such as the estimated level of risk. A manual adaptation is ruled
out by the administration overhead and error potential of human intervention.
To automate reconfiguration, security needs to be autonomic [2]. But how?

In the case of access control, the OS should satisfy two main requirements: (1)
full run-time customization with limited performance overhead1; and (2) flexible
policy-neutral access control2.We present a new OS authorization architecture
called Virtual Security Kernel (VSK) which meets these requirements, making
it applicable to make pervasive devices self-protected.

VSK completely separates a minimal kernel from execution resources. The
kernel performs efficient run-time reconfiguration of resources. It also manages
authorization through a policy-neutral reference monitor, protection being non
invasive thanks to an optimized access control strategy. The architecture is com-
pletely component-based, which allows flexibility both at resource level for cus-
tomization, and in the kernel to support multiple authorization policies and
enable their run-time reconfiguration. The result is a highly adaptable OS ar-
chitecture where security mechanisms may be self-managed.
Solution Overview. Our architecture for self-protection of devices can be
divided into 3 layers (see Figure 1): (1) the execution space provides a run-time
environment for components, either application- or system-level; (2) the VSK
controls the execution space, both to enable application-specific customization
and to guarantee security of resources; and (3) the autonomic layer performs
automatic adaptation of authorization policies enforced in the VSK.
� This work has been partially funded by the ANR SelfXL project.
1 The OS should be flexible enough to tune running services, while meeting embedded

device resource limitations.
2 Devices will roam betwen multiple networks, each with its own authorization require-

ments which cannot be embraced by a single policy. The OS should thus support
several classes of authorization policies with run-time reconfiguration capabilities
between them to select the most adequate policy when changing network.
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Fig. 1. A 3-Level OS Architecture

The VSK consists of a Virtual Kernel (VK) and of an Access Control Engine
(ACE). The VK provides run-time management capabilities over components
and their bindings to reconfigure the execution space. Access control to com-
ponents is optimized by enforcing ACE decisions at binding creation time only,
a binding being considered secure for subsequent access requests until the next
change of authorization policy. Apart from these operations, the VK remains
hidden in the background to minimize interactions between kernel and execu-
tion space for performance optimization. The ACE is a flexible decision engine
allowing run-time selection of different authorization policies. The ACE design
is compliant with the attribute-based vision of access control, by managing sep-
arately security attributes and permissions, both of which may be dynamically
updated [3]. The VSK is supervised by an Autonomic Manager which triggers
reconfiguration of security policies depending on context information received
from the environment. This layer implements two autonomic loops, respectively
for self-protection of the device and the network.
Current and Future Work. A first prototype of VSK architecture was imple-
mented on a Nokia N800 Internet tablet using the Think [1] component-based
OS framework. The prototype was tested on self-protection scenarios for home
networking, and evaluated in terms of performance, flexibility, and security. Pre-
liminary performance assessments are promising, showing that the VSK design
yields significant improvements, notably compared to micro-kernels. Future work
will focus on: hardware mechanisms to guarantee VSK integrity; and a policy
management framework in the autonomic layer to control the VSK.
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Abstract. Security of cloud computing in the strict cryptographic sense
is impossible to achieve practically. We propose a pragmatic security ap-
proach providing application-specific security under practical constraints.

Keywords: Software as a Service, Cloud Computing Security.

Introduction andMotivation. Cloud computing enables flexible and resource-
efficient services [1], but privacy concerns prevent its application in sensitive sce-
narios.Most service providersoffer protection against external threats arising from
insecure communication. But a provider that has full control over the data makes
an insider attack an intolerable risk.

Solutions provided by theoretical cryptography have impractically high costs.
On the other hand the security properties of practical approaches are not well un-
derstood. In this brief announcement we propose a pragmatic security approach
to provide application-specific security under practical constraints (better-than-
nothing security).

A Pragmatic Approach. Privacy issues that arise from cloud computing [2]
are twofold: The intellectual properties of both the client and the service provider
have to be protected.

The confidentiality of the client’s private data can be achieved by encrypted
cloud storage. However, this prevents providers from executing services on this
data. Application-specific encryption (e. g. searchable encryption [3], order pre-
serving encryption [4] or homomorphic encryption) enables the provider to offer
specific functionalities such as database services. However, the server may still
gain additional information by observing access patterns and through other side
channels. By adding fake data and queries the amount of information leaking
can be reduced. Another approach is to reduce the amount of information the
server can extract by using coarse indices (similar to range queries [5]) and post-
processing the results on the client.

To prevent malicious behavior of the service provider, software certification
may be used. Additionally, techniques like digital rights management (DRM) [6]
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can ensure that only trusted software can access the sensitive data. Depending
on the application context it may even be sufficient to obtain forensic evidence
for illegal behavior.

Some of these approaches require postprocessing or even execution of complete
services on the client. For the provider this raises the problem of protecting his
intellectual property. DRM techniques or code obfuscation [7] may be used to
protect code from being copied or reverse-engineered by the client. To protect
the client from malicious code, certification can be used.

Conclusion and Open Problems. Theoretical cryptography became very
successful by abstraction. However, application-specific security can be by far
more efficient. We propose a pragmatic approach to the security of cloud comput-
ing. This will lead to the development of usable techniques providing a sufficient
level of security depending on the application.

Pragmatic security cannot provide ideal protection in general. An open prob-
lem is to formally define and quantify the level of security reached by pragmatic
approaches. Further research has to be done to find combinations of existing and
new pragmatic approaches. This will allow for individual trade-offs between the
workloads and security concerns of both service provider and client.
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Introduction. The clustering problem consists of partitioning network nodes
into groups called clusters. Each cluster has a single clusterhead that acts as
local coordinator of cluster.

A technique for designing solutions that tolerate transient faults is self-
stabilization. Self-stabilizing protocols are attractive because they need not be
initialized: they converge from any configuration to a legitimate one. Also, they
are adaptive to topological changes. If the current configuration is inconsistent
with the network topology, the self-stabilizing protocol eventually converges to a
legitimate configuration. Nevertheless, self-stabilizing protocols do not guarantee
any property during the convergence period. In addition, the convergence time
may be proportional to the size of the network; particularly, in weight-based
clustering protocols. In order to overcome these drawbacks, we are interested
to the robust stabilization. Robust stabilization guarantees that from an illegiti-
mate configuration, the system reaches quickly a safe configuration, in which the
safety property is satisfied. The safety property has to be defined such that the
system performs correctly its task in a safe configuration. During the convergence
to a legitimate configuration, the safety property stays always verified.

Related works. In [1], a robust self-stabilizing protocol building a minimum
connected dominating set is proposed. In a safe configuration, the built set is a
dominating set. A robust self-stabilizing weight-based clustering protocol for ad
hoc networks is proposed in [2]. In [2], a configuration is safe if and only if the
network is partitioned into clusters.

To our knowledge, the only protocols building bounded size clusters are [3,4,5].
In [5], the size of obtained clusters is bounded by a lower and an upper bound.
This solution cannot be applied to one-hop clusters, because the degree of nodes
may be less than the lower bound. However, [3,5] are not self-stabilizing, and [4]
is self-stabilizing but it is not robust.

Contributions. We propose the first robust self-stabilizing protocol that con-
structs 1-hop clusters whose size is bounded, and the clusterhead selection is
weight-based. The detailed version can be found on [6].

Our protocol is weight based: the clusterhead selection criteria is based on
the weight of nodes. Each node has an input variable, its weight, named w,
representing its capacity to be clusterhead. The higher the weight of a node,
the more suitable this node is for the role of clusterhead. The weight value can
increase or decrease reflecting the changes in the node’s status.
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The proposed clustering protocol provides bounded size clusters; at most
SizeBound ordinary nodes can be in a cluster. This limitation on the num-
ber of nodes that a clusterhead handles, ensures the load balancing over the
network: no clusterhead is overloaded at any time.

As clusters are bounded, several clusterheads may be neighbors. To limit
the number of clusterheads locally, a node v may become clusterhead only if it
does not have a suitable clusterhead in the neighborhood. Furthermore, v stays
clusterhead only if it cannot join a neighbor cluster : neighbor clusters are full
(they contain SizeBound members), or v is the leader having the highest weight.

The obtained clusters have to satisfy the well-balanced clustering properties:

• Affiliation condition: each ordinary node affiliates with a neighboring cluster-
head, such that the weight of its clusterhead is greater than its weight.
• Size condition: each cluster contains at most SizeBound ordinary nodes.
• Clusterhead neighboring condition: if a clusterhead v has a neighboring clus-
terhead u such that wu > wv, then the size of u’s cluster is SizeBound.

Convergence and time complexity. Our protocol is silent; no node executes
an action once a legitimate configuration is reached. Starting from an arbitrary
configuration, the protocol reaches a safe configuration in 4 rounds.

Once a safe configuration is reached, each node belongs to a cluster having
an effectual leader, and each cluster contains at most SizeBound members, but
clusters may not satisfy the well-balanced clustering properties. During the con-
struction of the final clusters, that satisfy the well-balanced clustering properties,
the safety property is preserved under any computation, and also under the fol-
lowing input changes: (1) change on node’s weight, (2) crash of an ordinary node,
(3) failure of a link between: (a) a clusterhead and a nearly ordinary node, (b)
two clusterheads, (c) two nearly ordinary nodes, or (d) two ordinary nodes, (4)
joining of a sub-network that verifies the safety property.

The time of convergence to a legitimate configuration is at most 7∗N
2 + 5,

where N is the number of nodes in the network.

References

1. Kamei, S., Kakugawa, H.: A self-stabilizing approximation for the minimum con-
nected dominating set with safe convergence. In: Baker, T.P., Bui, A., Tixeuil, S.
(eds.) OPODIS 2008. LNCS, vol. 5401, pp. 496–511. Springer, Heidelberg (2008)

2. Johnen, C., Nguyen, L.H.: Robust self-stabilizing weight-based clustering algorithm.
Theoretical Computer Science 410(6-7), 581–594 (2009)

3. Chatterjee, M., Das, S.K., Turgut, D.: WCA: A weighted clustering algorithm for
mobile ad hoc networks. Journal of Cluster Computing 5(2), 193–204 (2002)

4. Johnen, C., Nguyen, L.H.: Self-stabilizing construction of bounded size clusters. In:
ISPA 2008, pp. 43–50 (2008)

5. Tomoyuki, O., Shinji, I., Yoshiaki, K., Kenji, I., Kaori, M.: An adaptive maintenance
of hierarchical structure in ad hoc networks and its evaluation. In: ICDCS 2002, pp.
7–13 (2002)

6. Johnen, C., Mekhaldi, F.: Robust self-stabilizing construction of bounded size
weight-based clusters. Technical Report No 1518, LRI (2009),
http://www.lri.fr/~bibli/Rapports-internes/2009/RR1518.pdf

http://www.lri.fr/~bibli/Rapports-internes/2009/RR1518.pdf


Brief Announcement: A Stabilizing Algorithm
for Finding Two Disjoint Paths in Arbitrary

Networks

Mehmet Hakan Karaata1 and Rachid Hadid2

1 Department of Computer Eng., Kuwait University
P.O. Box 5969, Safat 13060 Kuwait

karaata@eng.kuniv.edu.kw
2 Clinical Research Laboratory, Saad Specialist Hospital

Saudi Arabia P.O. Box 3053, Al-Khobar 31952
rhadid@saad.com.sa

The problem of finding disjoint paths in a network is a fundamental problem with
numerous applications. Two paths in a network are said to be (node) disjoint if
they do not share any nodes except for the endpoints. The two node disjoint paths
problem is to find two node-disjoint paths in G = (V,E) from source s ∈ V to
the target t ∈ V . The two-node-disjoint paths problem is a fundamental problem
with several applications in diverse areas including VLSI layout, reliable network
routing, secure message transmission, and network survivability. The two node
disjoint path problem is fundamental, extensively studied in graph theory.

In this paper, we present the basis of the first stabilizing distributed algorithm
to find two possible node-disjoint paths between two distinct nodes s and t in
anonymous arbitrary networks. Since the proposed solution is self-stabilizing, it
does not require initialization and withstands transient faults. The proposed al-
gorithm constructs the two node-disjoint paths in two concurrent phases, namely
the shortest path construction and the node-disjoint paths construction phase.
The disjoint paths construction phase is based on the shortest path construction
phase, i.e., the progress of this phase is ensured only after the shortest path con-
struction phase terminates successfully. Upon termination of the shortest path
(path P0), two disjoint paths (denoted by P1 and P2) are constructed from the
source node s to the target node t using the shortest path as follows.

Let ds(x) denote the distance of node x on path P0 from source s. After the
construction ofP0, the source process finds two paths P2 and P1 disjoint from each
other and P0 from s to two distinct nodes x2 and x1, respectively, on P0 such that
x2 and x1 are the farthest and the second farthest nodes on P0 (see Figure 1). The
two sub-paths P1 and P2 are constructed in a way to include the minimum number
of nodes of P0. Observe that after the construction of P1 and P2, if x1 = x2 = t,
then two node-disjoint paths (P1 and P2) between s and t are found. Otherwise,
if x1 �= t, then, we find nodes x′

1 and x3 on P0 such that ds(s) < ds(x′
1) < ds(x2),

ds(x2) < ds(x3), x′
1 and x3 are connected by a path P3 disjoint from P1 and P2,

and x3 and x′
1 are selected to maximize first ds(x3) and then ds(x′

1). Subsequently,
we combine P1 and P3 and the segment of P0 from x1 to x′

1 to extend P1. Observe
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Fig. 1. Example showing the construction of the two disjoint paths

that, now P1 is a path from s to x3 disjoint from P2. Similarly, if x2 �= t, then we
find nodes x′

2 and x4 on P0 such that ds(x1) < ds(x′
2) < ds(x3) , ds(x3) < ds(x4),

x′
2 and x4 are connected by a path P4 disjoint from (extended) P1 and P2, and

x4 and x′
2 are selected to maximize first ds(x4) and then ds(x′

2). Subsequently, we
combine P2 and P4 and the segment of P0 from x2 to x′

2 to extend P2. Observe
that, now P2 is a path from s to x4 disjoint from P1. The process of alternately
extending paths P1 and P2 continues in this manner until they both reach target
process t. Thus, after each step, alternately the length of the two disjoint paths (P1
or P2) increases. In Figure 1, after the construction of the two sub-paths P3 and
P4, since we did not reach the target process t, the construction of the two disjoint
paths (P1 and P2) is not terminated. Thus, additional steps are needed to finish
the construction. In the following step, we find the farthest node on P0 reachable
from x4 via a path disjoint from P4 to be target node t. Hence, the construction of
the first disjoint path (P1) terminates. Subsequently, iterating the same process,
a new sub-path (P5) is constructed from node x′

3 such that P5 is disjoint from
P3 and P4. Then, P5 is used to extend P1 in the earlier manner. Observe that
the farthest process on P0 from x′

3 is the target process t. So, the construction of
second disjoint path (P2) terminates.

The following lemma establishes the basis of the proposed algorithm.

Lemma 1. Let P be an arbitrary path between two arbitrary but distinct nodes
s and t in G = (V,E). Let x0, x1, x2, ..., xn, for n > 0 be a sequence of vertices
on P such that ds(xi) < ds(xi+1), 0 < i < n, x0 = s and xn = t, where ds(xi)
denotes the distance of process xi from process s on path P, and if two node
disjoint paths exist between s and t, then the following two conditions hold.

1. There exists a path P1 from s to x1 node-disjoint from path P or there
exists two paths P1 and P2 node-disjoint from P and each other to x1 and x2
on P, respectively, such that ds(x2) and ds(x1) are the largest and the second
largest values among all possible nodes x1, x2,..., and xn on P.

2. For each k, 1 < k ≤ n, if xk is not the target process t, there exists a path
Pk+1 from xk to xk+1 disjoint from paths P1 through Pk and xk+1 is the node
on P that makes ds(xk+1) largest.

The above lemma implicitly presents additional algorithmic details to further
describe the presented approach. However, the details that make the algorithm
stabilizing is out of the scope of this version of the paper due to space restrictions.
It is anticipated that the entirely new proposed approach will initiate further
research in this area with numerous useful applications.
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The designers of media access control (MAC) protocols often do not consider the
relocation of mobile nodes. Alternatively, when they do assume that the nodes
are not stationary, designers tend to assume that some nodes temporarily do not
change their location and coordinate the communications among mobile nodes.
An understanding is needed of the relationship between the performances of
MAC algorithms and the different settings by which the location of the mobile
nodes is modeled. We study this relationship with an emphasis on stabilization
concepts, which are imperative in mobile ad hoc networks (MANETs). We show
that efficient MAC algorithms must balance a trade-off between two strategies;
one that is oblivious to the history of local broadcasts and one that is not.
Modeling the location of mobile nodes. Let us look into scenarios in which
each mobile node randomly moves in the Euclidian plane [0, 1]2 and in which two
mobile nodes can directly communicate if their distance is less than a threshold
χ ∈ [0, 1]. This scenario can be modeled by a sequence of evolving communica-
tion graphs, G = (G0, G1, . . .), such that at time instant t, the communication
graph, Gt = (V,Et), includes the set of mobile nodes, V , and the set of edges,
Et, which represents pairs of processors that can directly communicate at time
t. Let us consider two consecutive communication graphs, Gt, Gt+1 ∈ G. In this
short run, it can be expected that many of the mobile nodes have similar neigh-
borhoods in Gt and Gt+1, say, when the threshold χ → 1.1. In the long run, this
similarity may disappear because there are (independent) random relocations of
the mobile nodes due to their random motion, e.g., Gt and Gt+x are independent
when x → ∞. These properties of neighborhood similarity and (independent)
random relocation motivate the studied system settings in the context of MAC
algorithms. To model the evolution of the communication graphs, we assume that
between every two consecutive communication graphs, Gt, Gt+1 ∈ G, a fraction
of the mobile nodes, α, relocates from their neighborhood, where α ∈ [0, 1] is the
relocation rate. The relocating nodes and their new neighborhoods are chosen
randomly. This leads to a mixed property of short-term (independent) random
relocation and long-term neighborhood similarity. The mix is defined by the re-
location rate, α, that can be viewed as the ratio of non-stationary nodes over
(temporarily) stationary ones.
� An extended version of this work appears in ALGOSENSORS’09 and
http://tinyurl.com/LPS08. The 1st author is partially supported by the ICT Pro-
gramme ICT-2008-215270 (FRONT’S).

1 Neighborhood similarity refers to situations in which a number of the neighbors
remain neighbors after a broadcasting round.
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Our contribution. We start by considering arbitrary values of the relocation
rate and then focus on bounded values. We show that when the relocation rate is
arbitrary, the best that you can hope for is a randomized oblivious strategy that
ignores the history of broadcasts. This claim considers the extreme scenario in
which the communication graph is always connected, but can drastically change
between any two algorithm steps. We focus on demonstrating a throughput-
related trade-off between oblivious and non-oblivious strategies of algorithms
for MAC protocols. We view the relocation rate as the ratio of non-stationary
mobile nodes over (temporarily) stationary ones. We identify a critical threshold,
αc, of the relocation rate and we show that above this critical threshold, it is
best to employ an oblivious strategy (Fig. 1). The non-oblivious algorithm is a
fault-tolerant MAC algorithm for which we analytically estimate the throughput
in settings that model the location of mobile nodes, and wireless communications
in which broadcasts can collide. The algorithm is TDMA based and has natural
self-stabilizing version. The analysis considers saturation situations in which the
number of transmitters is equal to the number of slots in the TDMA frames. We
verify that the algorithm converges to a guaranteed throughput, within Õ(log n)
broadcasting rounds, where n is the number of nodes.

20%
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80%
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Relocation rate α

αc = 0.24

�

x

x

oblivious strategy

Fig. 1. Throughput of oblivious and non-oblivious
strategies; [x, x] bounds the latter

Conclusions. This work
is an analytical study of
the relationship between a
fundamental protocol for
MANETs and the settings
that model the location of
mobile nodes. The study fo-
cuses on a novel throughput-
related trade-offbetween obliv-
ious and non-oblivious strate-
gies of MAC algorithms. The
trade-off depends on the re-
location rate of mobile nodes.
The non-oblivious algorithm
can balance such trade-offs and can be extended to consider stronger requirements
of fault-tolerance as well as other trade-offs. The studied algorithm is the first of
its kind, because it is a “stateful” and fault-tolerant one. Thus, our methods can
simplify the design of “stateful” self-stabilizing algorithms for MANETs, because
we explain how to consider practical details, such as broadcast collisions and the
location of mobile nodes. Moreover, we expect that the methodology used in this
paper can study more trade-offs in this context. Expressive models facilitate the
demonstration of lower bounds, impossibility results and other limitations, such
as trade-offs. It is difficult to discover negative results by employing approaches
that perform numerical or empirical studies. In addition, Kinetic models can be
restrictive and difficult to analyze; it is hard to consider arbitrary behavior of mo-
bile nodes and transient faults when algebraic equations are used. Interestingly,
the simpler analytical model is more expressive than the existing approaches; in
the context of MANETs, it is the first to facilitate the analysis of “stateful” algo-
rithms as well as negative results.
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Abstract. We present a simple algorithm that implements the Omega
failure detector in the crash-recovery model. The algorithm is quiescent,
i.e., eventually all the processes but the leader stop sending messages. It
assumes that processes have access to a nondecreasing local clock.

1 Introduction and System Model

Omega has been shown to be the weakest failure detector for solving consen-
sus [2]. Informally, Omega provides an eventual leader election functionality,
i.e., eventually all processes agree on a common process. Several consensus algo-
rithms based on such a weak leader election mechanism have been proposed [3].

This brief announcement presents a new algorithm implementing Omega in
the crash-recovery model. Contrary to the algorithms proposed in [5], this algo-
rithm does not rely on the use of stable storage, but on a nondecreasing local
clock that each process has access to. Besides this, the algorithm is quiescent,
i.e., eventually all the processes but the elected leader stop sending messages.

We consider a system S composed of a finite and totally ordered set Π of
synchronous processes that communicate only by sending and receiving mes-
sages. Processes can only fail by crashing, and crashed processes can recover.
In every execution of the system, Π is composed of the following three disjoint
subsets: eventually up (processes that eventually remain up forever), eventually
down (processes that eventually remain crashed forever), and unstable (processes
that crash and recover an infinite number of times). By definition, eventually up
processes are correct, while the rest are incorrect. We assume that the number
of correct processes in any execution is at least one.

Concerning communication reliability and synchrony, we assume that for every
correct process p, there is an eventually timely link [1] from p to every correct and
every unstable process. The rest of links of S, i.e., the links from/to eventually
down processes and the links from unstable processes, can be lossy.

Each process has a nondecreasing local clock that can measure intervals of
time with a bounded drift. The clocks of the processes are not synchronized.
� Research supported by the Spanish and Madrid Research Councils, grants TIN2007-

67353-C02-02, TIN2006-15617-C03-01 and S-0505/TIC/0285.

R. Guerraoui and F. Petit (Eds.): SSS 2009, LNCS 5873, pp. 793–794, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



794 C. Mart́ın and M. Larrea

Finally, the Omega failure detector, adapted to system S, satisfies the fol-
lowing property [4]: there is a time after which (1) every correct process always
trusts the same correct process l, and (2) every unstable process, upon recovery,
always trusts first ⊥ (i.e., it does not trust any process), and —if it remains up
for sufficiently long— then l until it crashes.

2 The Algorithm

Figure 1 presents a quiescent algorithm implementing Omega in system S. With
this algorithm, the elected leader l will be the “oldest” correct process, i.e., the
process that first recovers definitely. The waiting instruction at the beginning of
Task 1 guarantees that, eventually and permanently, unstable processes always
change their leader from ⊥ to l before the end of the waiting.

Initialization:
leaderp ← ⊥
Timeoutp ← clock()
tsp ← clock()
tsmin ← tsp

start tasks 1, 2 and 3

Task 1:
wait (Timeoutp) time units
if leaderp = ⊥ then

leaderp ← p
else

reset timerp to Timeoutp

repeat forever every η time units
if leaderp = p then

send (LEADER, p, tsp) to all except p

Task 2:
upon reception of (LEADER, q, tsq) do

if (tsq < tsmin)
or [(tsq = tsmin) and (leaderp = ⊥)

and (q < p)]
or [(tsq = tsmin) and (leaderp �= ⊥)

and (q ≤ leaderp)] then
leaderp ← q
tsmin ← tsq

reset timerp to Timeoutp

Task 3:
upon expiration of timerp do

Timeoutp ← Timeoutp + 1
leaderp ← p
tsmin ← tsp

Fig. 1. Quiescent Omega algorithm. Code for process p
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Abstract. A distributed system consists of processes linked to one an-
other by communication links. A classical problem is how to realistically
model these links so that it is possible to write correct algorithms. This
paper presents a new solution that results in more natural executions
and removes the need for artificial workarounds.

1 Introduction

Distributed systems are an abstraction over computer networks, where machines
communicate with one another via specialized hardware, like wires and wireless
links, themselves linked by routers and other networking equipment. Various
models, and algorithms using them, have been described in the literature [4].

It is common to assume bounded FIFO channels, based on the observation
that a real wire does not reorder messages and has a finite capacity. Bounded
FIFO channels do have their shortcomings, though. This is illustrated by the
method that Afek and Bremler had to design in order to work around these
shortcomings for their power supply spanning tree algorithm [1]. They assume
that it is possible to detect the message loss that occurs when one tries to send
a message into a full channel and set up buffer variables in which lost messages
are stored, to be sent again later. This hypothesis is stronger than it appears,
since it requires observing a link into which no message can be sent.

Contemporary systems are commuted networks. The “channel” between two
processes is a set of links, routers and other processes. Since several routes exist
between any two processes, such a channel is not FIFO and has no fixed bound.
Hence the idea of moving the constraints from the channels to the scheduler.

This new approach is called IO-fairness, because the scheduler is forbidden
to make unrealistic decisions (fairness) related to the messages. More precisely,
it cannot store an infinite amount of messages in the channels. The channels are
unbounded, they are not FIFO, and no attempt is made at making them FIFO.

This is not equivalent to a bound on the channels in the traditional sense,
because no individual channel has a fixed bound. Therefore, sending a message
cannot fail and processes cannot measure the bounds on their channels, a trick
commonly used to turn a non-FIFO channel into a FIFO one.
� A more detailed version appears as a technical report [3].

�� Partially funded by the ICT program of the European Union under contract number
ICT-2008-215270.
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variable : state ∈ {0,1,2}
true −→ send +; send −; send −
reception of − −→ state ← max(0, state − 1)
reception of + −→ if state �= 0 then state ← min(2, state + 1)

Fig. 1. +/− Algorithm

2 An Application of IO-Fairness

One would expect the +/− algorithm, provided in Figure 1, to work in any
realistic system. Each of the two processes in the system has a state in {0, 1, 2},
initialized arbitrarily. Each process periodically sends to the other the sequence
of messages +,−,−. + increments the state of the receiver and − decrements it,
however the state cannot be greater than 2 or change if it is 0. In other words, the
system should converge towards a legitimate configuration where all the states
are 0, which the system cannot leave. This algorithm is thus self-stabilizing [2].

Suppose that the initial state of both processes is 2. If the scheduler is not IO-
fair, it can prevent convergence by first almost filling the channel with messages,
leaving space for only one or two of them. Then, it lets the +,−,− sequence be
sent, so that one or two of the − are lost. With bounded FIFO channels, one
would have to work around this problem by detecting the message losses and
compensating for them.

An IO-fair scheduler, on the other hand, forbids this pathological behavior,
even though the channels are not FIFO and unbounded. Indeed, not converging
would mean storing an infinite amount of − messages in the channels. Any
scheduler allowing this would, by definition, not be IO-fair.

3 Conclusion

This paper presents IO-fairness, a new point of view on communication channels
that moves the constraints from the channels to the scheduler, more accurately
modeling the reality of a commuted network by preventing the system from
exhibiting a pathological behavior. IO-fairness allows to use directly unbounded
non-FIFO channels, without any trick to make them FIFO and without having
to detect message losses and account for them.
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Network file systems provide access to data in a networked environment. If such
systems operate in a client-server (C/S) mode, e.g., NFS (Network File System)
or SMB (Server Message Block), issues concerning the scalability, the presence
of a single point of failure, and fault tolerance emerge. Scalability issues, such
as coping with an increasing number of clients, need to be addressed, since
bandwidth on the server side may be limited and expensive. Peer-to-peer (P2P)
systems are, in contrast to C/S systems, fault-tolerant, robust, and scalable.
Distributed file systems based on P2P networks can help to avoid such prob-
lems. Besides, P2P systems are self-organizing, requiring less management, thus
reducing maintenance costs.

A categorization of existing P2P file systems is provided in [1]. This survey
outlines P2P file systems with distinct features and it focuses on particular
problem areas. A disadvantage is that some of them do not support the write
operation for all peers. Another shortcoming is that some store data at locations
related to the content. Other systems offer access to stored data using specialized,
less-transparent interfaces.

Allowing all peers write access may cause data consistency issues, if the op-
eration is executed concurrently on the same data and security issues arise, if
peers cannot be trusted. According to [2], in corporate distributed file systems
“file sharing is rarely concurrent and sharing is usually read-only. Only 5% of
files opened by multiple clients are concurrent and 90% of sharing is read-only.”
Thus, a weaker consistency model can be applied. The use case considered in this
extended abstract is a small to medium-sized office LAN, in which trust among
participants is assumed. Each workstation runs an instance of DRFS, dedicating
disk space and bandwidth.

Distributed Reliable File System (DRFS) Design and Evaluation

This extended abstract presents DRFS (Distributed Reliable File System), a P2P
file system, which uses content-independent identifiers for data storage, while
maintaining high performance and low overhead. A dynamic replication mecha-
nism ensures data availability, under high churn. Files in DRFS are accessed
transparently through the Filesystem in Userspace (FUSE) interface. DRFS
offers a tree-based view of the file system structure, together with read-write
� This work has been performed partially in the framework of EU IST Project EC-GIN

(FP6-2006-IST-045256) and EU IST NoE EMANICS (FP6-2004-IST-026854).
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Fig. 1. NFS and DRFS read and write performance with concurrent access

support for all participants. Data is stored under random keys, independently
of the data content. Thus, in case of updates, it does not have to be moved to
other nodes. Modifying data stored according to its content can be an expensive
operation: if a file saved under the hash of its data is modified, the hash value
will change and thus its new location, which brings communication overhead.
To address those issues, DRFS introduces random chunk addressing. The key
idea of DRFS is to split each file in chunks and abstract chunk addresses from
its content. DRFS combines active and passive replication, to prevent data loss
due to peer failures. DRFS has been designed and implemented as a prototype.
The source code of the DRFS implementation is available for download [3].

The current implementation has been evaluated with respect to performance,
reliability, and overhead, and is compared to NFS as shown in Figure 1. Those
experimental results indicate that the DRFS implementation is scalable, and
the performance of read and write operations is not influenced by the size of
the system. DRFS shows better performance than NFS for many peers and with
large file sizes. DRFS has the advantage of avoiding a single point of failure.
However, the experiments showed also that failure of peers storing the root
directory resulted in complete loss of data. Thus, this information needs to be
replicated more to prevent complete data loss. Further future work will comprise
the implementation of an optimistic consistency mechanism and possibility of
introduction of user access rights.
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