
Chapter 2
Classical (Kolmogorovian) and Quantum (Born)
Probability

This chapter contains short introductions to classical and quantum probabilistic
models. To simplify presentation, in both cases we consider only discrete variables.

2.1 Kolmogorovian Probabilistic Model

We start with two notations. Let A be a set. The characteristic function IA of the set
A is defined as IA(x) = 1, x ∈ A, and IA(x) = 0, x �∈ A. Let A = {a1, . . . , an} be
a finite set. We shall denote the number of elements n of A by the symbol |A|.

Sets of real and complex numbers are denoted by symbols R and C, respectively.

2.1.1 Probability Space

The modern axiomatics of probability theory was invented by Andrei Nikolaevich
Kolmogorov (one of greatest mathematicians of the 20th century) in 1933, [219],
see also [121, 279, 161] and it was a natural finalization of a few hundred years long
development of the set-theoretic model for probability. A crucial point is representa-
tion of events by subsets of some basic set Ω. The collection of subsets representing
events should be sufficiently rich to be able to perform set-theoretic operations such
as intersection, union and difference of sets.1 Then one assigns weights (real num-
bers) to these subsets:

A �→ P(A) (2.1)

for an event A. They are chosen nonnegative and normalized by 1: P(Ω) = 1. The
weight of a set A which is the disjoint union of sets A1 and A2 is equal to the sum
of weights of these subsets. The latter property is called finite additivity. The map
given by (2.1) with mentioned properties is measure-theoretic probability. If the

1 However, it should not be unreasonably large. If too extended a system of subsets is selected,
then it may represent “events” that cannot be interpreted in a reasonable way.
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20 2 Classical (Kolmogorovian) and Quantum (Born) Probability

basic set Ω is finite2 one can proceed with this simple definition. However, if the
Ω is countable, i.e., it is infinite and its points can be enumerated or “continuous” –
e.g., a segment of the real line R – then finite additivity is not sufficient for creating
a fruitful mathematical model. It is extended to so-called σ-additivity (countable
additivity). A rich mathematical model is created. However, by proceeding with
σ-additivity one should not forget Kolmogorov’s remark [219] that σ-additivity is
a purely mathematical and totally nonphysical notion. It is impossible to perform
a real experiment an infinite number of times. In principle, the model based on
σ-additivity might produce probabilistic artifacts that have no real interpretation.3

We now start rigorous presentation of probability theory. But, in principle, one
can read practically the whole book by considering the model based on a finite set
Ω, a collection of events represented by all its subsets and finite-additive probability
given by assigning weights to points of Ω : ω → P(ω). For example, the uniform
probability is given by equal weights. For Ω = {ω1, . . . , ωN }, P(ω j ) = 1/N . Here,
for A ⊂ Ω , P(A) = |A|/N .

Let Ω be a set. We recall that a σ-algebra is a system of subsets of Ω that is
closed with respect to operations of countable intersection, union and difference of
sets and containing Ω and the empty set ∅.4

The simplest example of a σ-algebra is the system consisting of just two sets: Ω

and ∅. However, it is too small to do anything interesting. Another example is given
by the family of all subsets of Ω. As was mentioned, such a σ-algebra is useful
if the set Ω is finite or even countable. However, if Ω is “continuous”, then con-
sideration of all possible subsets as representing events induces visible probabilistic
pathologies, see [161] for details. So, the σ-algebra consisting of all subsets (of, e.g.,
a segment [a, b] of the real line) is too large. One chooses a smaller σ-algebra, the
so-called Borel σ-algebra. For example, for Ω = R, it is generated by all half-open
intervals: [α, β), α < β. However, in this book we will practically never operate
with continuous Ω .

Let Ω be a set and let F be a σ-algebra of its subsets. A probability measure P is
a map from F to the segment [0, 1], which is normalized P(Ω) = 1 and σ-additive

P(A1 ∪ . . . ∪ An ∪ . . .) = P(A1) + . . . + P(An) + . . . ,

for disjoint sets belonging to F .
By the Kolmogorov axiomatics [219], see also [280], the probability space is a

triple

P = (Ω,F , P).

Points ω of Ω are said to be elementary events, elements of F are events, P is
probability.

2 Since Ω can contain billions of points, this model is useful in a huge class of applications.
3 Unfortunately, this point made by Kolmogorov has been totally forgotten.
4 In some books on probability theory the terminology σ-field is used, instead of σ-algebra.
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Discrete random variables5 on the Kolmogorov space P are by definition func-
tions a : Ω → Xa , where Xa = {α1, . . . , αn, . . .} is a countable set (the range of
values), such that sets

Ca
α = {ω ∈ Ω : a(ω) = α}, α ∈ Xa, (2.2)

belong to F .

It is typically assumed that the range of values Xa is a subset of the real line.
We will proceed under this assumption practically everywhere, but sometimes, e.g.,
in cognitive and psychological modeling, it will be more convenient to consider
Boolean labels, e.g. α = yes, no.

We shall use the symbol RV D(P) to denote the space of discrete random vari-
ables for the probability space P. The probability distribution of a ∈ RV D(P) is
defined by P(a = α) = P(Ca

α), α ∈ Xa, where the set Ca
α is given by (2.2). It is

convenient to proceed with a shorter symbol

pa(α) ≡ P(ω ∈ Ω : a(ω) = α).

We remark that:

pa(α1) + . . . + pa(αn) + . . . = 1, pa(αn) ≥ 0. (2.3)

The average (mathematical expectation) of a random variable a is defined as

ā ≡ Ea = α1 pa(α1) + . . . + αn pa(αn) + . . . . (2.4)

For a family of random variables a1, . . . , am taking values α1
j , . . . , α

m
j , j = 1, 2, . . . ,

respectively, their joint probability distribution is defined as

pa1...am (α1
j1 , . . . , α

m
jm ) = P(ω ∈ Ω : a1(ω) = α1

j1 , . . . , am(ω) = αm
jm ). (2.5)

We remark that the joint probability is symmetric with respect to permutations; e.g.,
for two random variables a and b, we have

pab(α, β) = P(ω ∈ Ω : a(ω) = α, b(ω) = β) = pba(β, α). (2.6)

It is an important feature of the Kolmogorov model.
For two random variables a and b covariance is defined as

cov(a, b) = E(a − ā)(b − b̄) =
∑

αβ

(α − ā)(β − b̄) pab(α, β). (2.7)

5 In Chaps. 1–9 we consider only discrete random variables. In Chaps. 10 and 11 random variables
having continuous ranges of values will be used.
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It is easy to see that

cov(a, b) = Eab − āb̄. (2.8)

We remark that covariance is symmetric

cov(a, b) = cov(b, a). (2.9)

2.1.2 Conditional Probability

Kolmogorov’s probability model is based on a probability space equipped with the
operation of conditioning. In this model conditional probability is defined by the
well-known Bayes’ formula

P(B|C) = P(B ∩ C)/P(C), P(C) > 0. (2.10)

By Kolmogorov’s interpretation it is the probability that an event B occurs under
the condition that an event C occurred. We remark that this formula is a definition,
it cannot be derived. The use of this definition of conditional probability is one of
fundamental constraints induced by the Kolmogorov model.

We remark that PC (B) ≡ P(B|C) is again a probability measure on F . For a set
C ∈ F , P(C) > 0, and a (discrete) random variable a, the conditional probability
distribution is defined as

pa
C (α) ≡ P(a = α|C), α ∈ Xa .

We naturally have

pa
C (α1) + . . . + pa

C (αn) + . . . = 1, pa
C (αn) ≥ 0. (2.11)

The conditional expectation of a random variable a is defined by

E(a|C) = α1 pa
C (α1) + . . . + αn pa

C (αn) + . . . . (2.12)

For two random variables a and b, consider conditional probabilities

pβ|α ≡ P(b = β|a = α), pα|β ≡ P(a = α|b = β).

Following tradition, we will call these probabilities transition probabilities, although
this terminology might be misleading for our further considerations, see Remark 2.1.

These conditional probabilities can also be written in the form

pβ|α = P(b = β|Ca
α), pα|β = P(a = α|Cb

β), (2.13)
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where, e.g., Ca
α is defined by (2.2). It is, of course, assumed that in the first case

pa(α) > 0 and in the second case pb(β) > 0.

Remark 2.1 The terminology “transition probabilities” may be rather misleading for
this book. Typically pβ|α is considered as the probability of transition from the state
α of some system to another state β of the same system. That is why the symbol pαβ

is typically used, instead of our pβ|α. To come to the standard notation, one should
change pβ|α → pαβ and vice versa. However, we will not consider states of systems.
For us, pβ|α is probability of obtaining the value b = β of the observable b under
the condition that the result a = α was observed in the previous measurement of the
observable a. Nevertheless, we will also use the standard terminology – transition
probabilities.

It is convenient to use the following definition. A random variable a is said to be
nondegenerate if

pa(α) > 0 (2.14)

for any α ∈ Xa . In future considerations we shall use the matrices of conditional
probabilities for successive measurements – transition probabilities

Pb|a = (pβ|α), Pa|b = (pα|β). (2.15)

The first matrix is well defined if a is nondegenerate and the second if b is nonde-
generate. We remark that these matrices are always left stochastic. A left stochastic
matrix is a square matrix whose columns consist of nonnegative real numbers whose
sum is 1. For example, for Pb|a, we have that

∑

β

pβ|α =
∑

β

P(b = β|a = α) =
∑

β

PCa
α
(b = β) = 1 (2.16)

for any fixed a = α. It is a consequence of the fact that, for any set C of strictly
positive probability, PC is also a probability measure. In (2.16) we select C = Ca

α.

Coming back to Remark 2.1, we notice that in standard notation a matrix of
“transition probabilities” is not left, but right stochastic, i.e., all rows sum to 1. We
point out the following equality connecting the joint probability distribution of two
random variables a and b with their transition probabilities:

pab(α, β) = pa(α)pβ|α = pb(β)pα|β = pba(β, α). (2.17)

Conditional probabilities are basic in considerations on independent random vari-
ables, see Sect. 12.1.1.

In our further considerations one special class of matrices of transition probabil-
ities will play a fundamental role. These are so-called doubly stochastic matrices.
We recall that in a doubly stochastic matrix all entries are nonnegative and all rows
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and all columns sum to 1. Of course, in general Pb|a is only left stochastic, not dou-
bly stochastic. The following proposition characterizes random variables inducing
doubly stochastic matrices.

Proposition 2.1 Let a and b be nondegenerate random variables. Then the follow-
ing conditions are equivalent:

DS-DS Both matrices Pa|b and Pb|a are doubly stochastic.
UD Random variables are uniformly distributed: pa(α) = pb(β) = 1/2.

SC Random variables are “symmetrically conditioned” in the sense

pβ|α = pα|β. (2.18)

In the Kolmogorovian model one can guarantee double stochasticity for both b|a-
and a|b-conditioning only for uniformly distributed random variables. This is not
the case in non-Kolmogorovian models, e.g., for the quantum probabilistic model,
see Sect. 2.4. Here equivalence of conditions DS-DS and SC plays a crucial role. In
fact, the latter is coupled to the symmetry of the scalar product.

Consider now a pair of dichotomous random variables a = α1, α2 and b =
β1, β2. The matrix of transition probabilities Pb|a has the form

Pb|a =
(

pβ1|α1 pβ1|α2

pβ2|α1 pβ2|α2

)
(2.19)

It is doubly stochastic iff p1|1 = p2|2 and p1|2 = p2|1, i.e.,

Pb|a =
(

p 1 − p
1 − p p

)
(2.20)

In particular, it is automatically symmetric. In this case SC is equivalent to the con-
dition Pb|a = Pa|b.

2.1.3 Formula of Total Probability

In our further considerations an important role will be played by the formula of
total probability (FTP). It is a theorem of the Kolmogorov model. Let us consider a
countable family of disjoint sets Ak belonging to F such that their union is equal to
Ω and P(Ak) > 0, k = 1, . . .. Such a family is called a partition of the space Ω.

Theorem 2.1 Let {Ak} be a partition. Then, for every set B ∈ F , the following
formula of total probability holds:

P(B) = P(A1)P(B|A1) + . . . + P(Ak)P(B|Ak) + . . . . (2.21)
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Proof We have

P(B) = P(B ∩ ∪∞
k=1 Ak) =

∞∑

k=1

P(B ∩ Ak) =
∞∑

k=1

P(Ak)
P(B ∩ Ak)

P(Ak)
.

Especially interesting for us is the case such that a partition is induced by a
discrete random variable a taking values {αk}. Here

Ak = Ca
αk

= {ω ∈ Ω : a(ω) = αk}. (2.22)

Let b be another random variable. It takes values {β j }. For any β ∈ Xb, we have

P(b = β) = P(a = α1)P(b = β|a = α1) + . . . + P(a = αk)P(b = β|a = αk) + . . .

(2.23)
or in compact notation

pb(β) = pa(α1)pβ|α1 + . . . + pa(αk)pβ|αk + . . . . (2.24)

2.2 Probabilistic Incompatibility: Bell–Boole Inequalities

If the reader has not yet been excited by Bell’s inequality and such mysterious con-
sequences of its violation as quantum nonlocality and death of realism in QM, then
I strongly recommend him or her to omit this section as well as Sect. 2.7. Bell’s
inequality will not play a fundamental role in this book (nevertheless, it will appear
in Sect. 9.6).

Bell’s inequality is really the central point of modern QM. Therefore the reader
may be surprised to find it not in Sect. 2.3, devoted to QM, but in the section devoted
to classical probability theory (Kolmogorov’s model). However, I think that it is the
right place for the appearance of Bell’s inequality, i.e., before saying anything about
QM. My personal opinion is that this inequality is the standard subject of classical
probability theory. Moreover, we will see that Bell-type inequalities appeared in
probability theory long before not only Bell’s invention, but even the discovery of
QM. My main message to the reader is that attempts (which are very popular in
modern QM, especially in the quantum information community) to associate Bell-
type inequalities with quantum nonlocality or death of realism are not sufficiently
justified. In classical probability theory such inequalities were used for one hundred
years (!) without any reference to the mentioned fundamental problems or to QM in
general.
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2.2.1 Views of Boole, Kolmogorov, and Vorob’ev

In his book [219] Andrei Nikolaevich Kolmogorov emphasized that each experi-
mental arrangement (context) generates its own probability space. For him it was
totally clear that it is very naive to expect that all experimental contexts can be
described by a single (perhaps huge) probability space. In particular, the following
problem arises. Suppose that a family of observables, say O = {a1, a2, a3, . . .}, is
given. However, it is impossible to measure them all simultaneously. Thus the joint
probability distribution is not given. Nevertheless, it is possible to measure some
groups of these observables and joint probability distributions for such groups are
given.

Is it possible to construct a single probability space serving for the whole
family O?

Thus we are interested in the possibility of embedding the family of observables
O into the space of random variables on a single probability space. If the answer
is yes, then such observables exhibit probabilistic compatibility (PC), and in the
opposite case, probabilistic incompatibility (PI), see [204] for details.

It seems that G. Boole (the inventor of Boolean logic and Boolean algebra) was
the first to study this problem. He formulated a necessary condition for PC of a fam-
ily of three dichotomous observables, a1, a2, a3 = ±1, such that they can be mea-
sured pairwise, but not all simultaneously. This condition coincides with the famous
Bell’s inequality [31], which plays a fundamental role in modern QM!6. Later the
most general problem of PC (i.e., for an arbitrary family of observables) was solved
by Soviet mathematician Vorob’ev [302], who applied these results to problems of
optimal control and game theory. Unfortunately, Vorob’ev’s results were also practi-
cally forgotten.7 Of course, practically complete disregard of the PC problem in the
probabilistic community played an extremely negative role in the development of
science. In particular, if Bell or at least someone from the quantum community had
been aware of the results of Boole or Vorob’ev or at least of Kolmogorov’s message,
“context induces a probability space”, discovery of Bell-type inequalities need not
have induced coupling to such mysterious (and nowadays extremely popular) things
such as quantum nonlocality or death of realism in QM.

A pragmatic guy [161] could be completely satisfied with recognition that prob-
abilistic data collected in a few incompatible experiments (and this is the case in

6 Boole’s results were totally forgotten. Itamar Pitowsky found these results and compared them
with Bell’s inequality, see [259, 260] and also the preface in [167].
7 Walter Philipp discovered Vorob’ev’s article [302] and together with Karl Hess advertised it a
lot [143], in particular during the Växjö series of conferences on quantum foundations, see, e.g.,
[165, 167, 5, 6]. The main problem of the classical probabilistic community was concentration on
mathematical problems related to a single Kolmogorov space, especially various limit theorems.
In such a situation even the idea that something could not be embedded in such a space was not
especially welcome. Vorob’ev’s works were not highly estimated by the Soviet probabilistic com-
munity (which was one of the strongest in the world) and, as a result, not by the international
community either.
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application of Bell’s inequality in QM) cannot be described by a single probability
space, or in other words, observables are not of the PC-type. Compare the views
of Accardi, Aerts, Fine, Fuchs, Garola and Solombrino, Hess and Philipp, Khren-
nikov, Kupczynski, Larsson, Pitowsky, Rastal, Sozzo, Adenier (see [204] for the
corresponding bibliography and this author’s book [161] for mathematical details).
Then one can try to find sources of PI that are different from quantum nonlocality
or death of realism, see [204].

We now discuss the problem in mathematical notation. In principle, it is a repe-
tition of previous considerations, but with mathematical symbols.

Consider a system of three observables ai , i = 1, 2, 3. Suppose for simplic-
ity that they take discrete values and moreover they are dichotomous: ai = ±1.

Suppose that these observables as well as their pairs can be measured and hence
joint probabilities for pairs are well defined: pai a j (αi , α j ) ≥ 0 and

∑
αi ,α j =±1 pai a j

(αi , α j ) = 1.

Question Is it possible to construct the joint probability distribution, pa1a2a3 (α1, α2,

α3), for any triple of pairwise measurable observables?

This is the simplest case of the general problem – to find conditions for existence
of probability distribution with given marginal probabilities. First of all, it is easy
to give numerous examples of nonexistence.

Example 2.1 (see [302]) Suppose that

P(a1 = +1, a2 = +1) = P(a1 = −1, a2 = −1) = 1/2;

P(a1 = +1, a3 = +1) = P(a1 = −1, a3 = −1) = 1/2;

P(a2 = +1, a3 = −1) = P(a2 = −1, a3 = +1) = 1/2.

Hence, P(a1 = +1, a2 = −1) = P(a1 = −1, a2 = +1) = 0; P(a1 = +1,

a3 = −1) = P(a1 = −1, a3 = +1) = 0, P(a2 = +1, a3 = +1) = P(a2 = −1,

a3 = −1) = 0. It is impossible to construct a probability measure which would
produce these marginal distributions. We can show this directly [302]. Suppose that
one can find a family of real constants P(ε1, ε2, ε3), ε j = ±1, such that

P(ε1, ε2,+1) + P(ε1, ε2,−1) = P(a1 = ε1, a2 = ε2), . . . ,

P(+1, ε2, ε3) + P(−1, ε2, ε3) = P(a2 = ε2, a3 = ε3).

Then it is easy to see that some of these numbers should be negative. In a more
fashionable way one can apply Bell’s inequality, e.g., for correlations (Sect. 2.2.2)
and see that it is violated.

We emphasize that for mathematicians consideration of Bell-type inequalities did
not induce revolutionary reconsideration of the laws of nature. The joint probability
distribution does not exist simply because those observables could not be measured
simultaneously.
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2.2.2 Bell’s and Wigner’s Inequalities

Let P = (Ω,F , P) be a Kolmogorov probability space. We recall that covariance
of two random variables is given by (2.7).

Theorem 2.2 (Bell inequality for covariances) Let a1, a2, a3 = ±1 be random vari-
ables on P. Then Bell’s inequality

|〈a1, a2〉 − 〈a2, a3〉| ≤ 1 − 〈a3, a1〉 (2.25)

holds.

The proof of this inequality (in such a rigorous mathematical formulation) can
be found, e.g., in [161]; see also the original work of Bell [31] for a proof in the
physical framework.

We now turn to Example 2.1. If a1, a2, a3 can be realized on the same probability
space, then (2.25) would hold. On the other hand, we have

〈a1, a2〉 = 1; 〈a1, a3〉 = 1; 〈a2, a3〉 = −1.

Bell’s inequality should imply: 1 − (−1) = 2 ≤ 1 − 1 = 0. We remark that in
accordance with Boole we consider Bell’s inequality just as a necessary condition
for probabilistic compatibility.

We also recall the following simple mathematical result, see Wigner [304]:

Theorem 2.3 (Wigner inequality) Let a1, a2, a3 = ±1 be arbitrary random vari-
ables on a Kolmogorov space P. Then the following inequality holds:

P(a1 = +1, a2 = +1) + P(a2 = −1, a3 = +1) (2.26)

≥ P(a1 = +1, a3 = +1).

Its proof is very simple, see Sect. 12.2. The crucial point is the use of a single
probability measure P.

2.2.3 Bell-type Inequalities for Conditional Probabilities

The original Boole–Bell inequality served to solve the problem of PC. In its simplest
version this problem is based on the assumption that pairwise probability distribu-
tions are well defined – observables can be measured pairwise. However, even such
an assumption is not always satisfied. Sometimes even for pairs of observables joint
measurements are impossible, but it is possible to perform conditional measure-
ments. For example, first the observable a1 is measured and the result a1 = α1

is obtained. Then under this condition the observable a2 is measured. Conditional
probability P(a2 = α2|a1 = α1) can be found. The simplest test of PC – the pos-
sibility of realizing three observables a1, a2, a3 on a single Kolmogorov probability
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space – is based on conditional probabilities. As the author of this book noticed,
by using Bayes’ formula (2.10), i.e., assuming the validity of the Kolmogorovian
definition of conditional probability, Wigner’s inequality can be easily rewritten as
an inequality for conditional probabilities:

Theorem 2.4 (Wigner–Khrennikov inequality) Let a1, a2, a3 = ±1 be arbitrary
random variables on a Kolmogorov space P. Then the following inequality holds:

P(a1 = +1)P(a2 = +1|a1 = +1) + P(a2 = −1)P(a3 = +1|a2 = −1) (2.27)

≥ P(a3 = +1)P(a1 = +1|a3 = +1).

Thus if conditional probabilities for a triple of dichotomous observables violate
this inequality, they exhibit PI; see Sect. 9.6 for application to game theory.

2.3 Quantum Probabilistic Model

The mathematical formalism of quantum mechanics is the theory of self-adjoint
operators on complex Hilbert spaces. The symbols H and 〈·, ·〉 denote separable
complex Hilbert space and the scalar product on it; ‖ψ‖ = √〈ψ,ψ〉 the norm of
ψ ∈ H;

S = {ψ ∈ H : ‖ψ‖ = 1}

is the unit sphere in H. We also consider the set of equivalence classes in the unit
sphere S with respect to the equivalence relation: ψ1 ∼ ψ2 iff ψ1 = cψ2, where
c ∈ C and |c| = 1. Denote this set by the symbol S̃.

Although real quantum physics is described by infinite-dimensional Hilbert
space (of square integrable complex valued functions), quantum information is
totally fine with finite dimensional spaces:

Hn = Cn = C × . . . × C. (2.28)

Since our considerations relate merely to informational features of the quantum
model, we can proceed (practically everywhere) in the same way as in quantum
information. The space Hn is endowed with the scalar product

〈ψ, φ〉 =
n∑

j=1

ψ jφ j , ψ = (ψ1, . . . , ψn), φ = (φ1, . . . , φn) ∈ Hn. (2.29)

Self-adjoint operators can be represented by Hermitian matrices, â = (ai j ), such
that akm = amk, where z = x + iy → z = x − iy is the operation of complex
conjugation. The spectrum, Spec(̂a), is nothing else than the set of eigenvalues:
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âψ = αψ. We remark that all eigenvalues are real. Eigenvectors corresponding
to the same eigenvalue α form a linear subspace. Its dimension gives the degree
of degeneration of α. The orthogonal projector on this subspace is denoted by the
symbol Pa

α . It acts similarly to the orthogonal projector to a plane or line in R3. Of
course, the use of complex spaces makes direct geometric illustration impossible
even for the space H2 – it is the four-dimensional real space.

2.3.1 Postulates

The probabilistic model of quantum theory can be formulated as the following series
of postulates:

Postulate 1 (The mathematical description of quantum states.) Quantum (pure)
states (wave functions) are represented by normalized vectors ψ (i.e., ‖ψ‖2 =
〈ψ,ψ〉 = 1) of a complex Hilbert space H. Every normalized vector ψ ∈ H may
represent a quantum state. If a vector ψ corresponding to a state is multiplied by
any complex number c, |c| = 1, the resulting vector will correspond to the same
state.8

The physical meaning of “a quantum state” is not defined by this postulate. It
must be provided by a separate postulate; see Postulates 6, 6a.

Postulate 2 (The mathematical description of physical observables.) A physical
observable a is represented by a self-adjoint operator â in complex Hilbert space
H. Different observables are represented by different operators.

Postulate 3 (Spectral) For a physical observable a which is represented by the self-
adjoint operator â we can predict (together with some probabilities) values λ ∈
Spec(̂a) (the spectrum of â).

We restrict our considerations to the simplest self-adjoint operators, which are
analogous to discrete random variables. We recall that a self-adjoint operator â has
a purely discrete spectrum if it can be represented as

â = α1 Pa
α1

+ . . . + αm Pa
αm

+ . . . , αm ∈ R, (2.30)

where Pa
αm

are orthogonal projection operators related to the orthonormal eigenvec-
tors {ea

km}k of â corresponding to the eigenvalues αm by

Pa
αm

ψ =
∑

k

〈ψ, ea
km〉ea

km, ψ ∈ H. (2.31)

Here k labels the eigenvectors ea
km which belong to the same eigenvalue αm of â.

Thus Spec(̂a) = {α1, . . . , αm, . . .}.

8 Thus states are given by elements of S̃.
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Postulate 4 (Born’s rule – in formalization of Dirac and von Neumann) Let a phys-
ical observable a be represented by a self-adjoint operator â with purely discrete
spectrum. The probability Pψ (a = αm) of obtaining the eigenvalue αm of â for
measurement of a in a state ψ is given by

Pψ (a = αm) = ‖Pa
mψ‖2. (2.32)

If the operator â has nondegenerate (purely discrete) spectrum, then each αm is
associated with a one-dimensional subspace. The latter can be fixed by selecting any
normalized vector, say ea

m . In this case orthogonal projectors act simply as

Pa
αm

ψ = 〈ψ, ea
m〉ea

m . (2.33)

The formula (2.32) takes a very simple form

Pψ (a = αm) = |〈ψ, ea
m〉|2. (2.34)

This is Born’s rule in the Hilbert space formalism.
To obtain original Born’s rule, one should choose H as the L2-space of square

integrable functions, ψ : R �→ C. (We consider a one-dimensional particle.) The
position observable x is represented by the multiplication operator x̂

x̂(ψ)(x) = xψ(x). (2.35)

This operator has a continuous spectrum. It coincides with the whole real line. So,
this operator is unbounded. Its eigenvectors do not belong to the L2-space. They are
given by Dirac’s δ-functions, i.e., these are generalized eigenvalues, see Dirac [90]

x̂(eα)(x) = αeα(x), α ∈ R, (2.36)

where eα(x) = δ(x − α). One can reasonably define paring9

〈ψ, eα〉 = ψ(α). (2.37)

Then the rule (2.34) gives

Pψ (x = α) = |ψ(α)|2. (2.38)

9 In fact, the situation is little bit more complicated from the mathematical viewpoint. In the
rigorous mathematical framework, elements of the L2-space are given by equivalent classes of
functions. Two functions belong to the same class if the measure of points where they are distinct
is equal to zero. To proceed rigorously, one should select a subspace in the L2-space and consider
Dirac’s delta function and its shifts eα(x) = δ(x − α) as continuous linear functionals on this
subspace. This can be done in the framework of distribution theory. Here paring (2.37) is nothing
else than action of the functional eα to the test function ψ. However, physicists typically do not
pay attention to such mathematical problems.
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Remark 2.2 (Origin of Born’s rule.) This rule was invented in the following way.
Originally Schrödinger considered the ψ-function as a classical field – similar to
the electromagnetic field. The quantity E(α) = |ψ(α)|2 is the energy density of
this field. Born invented the rule (2.38) by criticizing Schrödinger’s interpretation.
Instead of the energy density, he considered this quantity as the probability density.
The latter induces automatically the normalization condition

1 =
∫ +∞

−∞
|ψ(α)|2 = 〈ψ,ψ〉

which was absent in Schrödinger’s model. After a few years of struggle, Schrödinger
gave up and kept to Born’s interpretation.

In the same way one can consider momentum measurement. Schrödinger defined
the momentum operator as

p̂(ψ)(x) = −i
d

dx
ψ(x). (2.39)

(We eliminate the Planck constant from consideration by choosing the appropriate
system of units.) It is easy to see that its spectrum is also continuous and it coincides
with R. Its generalized eigenfunctions can be easily found from the equation

−i
d

dx
ep
β (x) = βep

β (x), β ∈ R.

Thus ep
β (x) = eiβx . Thus by (2.34)

Pψ (p = β) = |〈ψ, eb
β〉|2. (2.40)

By taking into account that

〈ψ, eb
β〉 =

∫ +∞

−∞
ψ(x)e−iβx dx = ψ̃(β)

is the Fourier transform of ψ, we write Born’s rule for the momentum measurement
as

Pψ (p = β) = |ψ̃(β)|2, (2.41)

cf. (2.38).

Remark 2.3 (Classical description of quantum measurements.) For any state ψ, each
quantum observable â can be represented as a classical random variable. In the
discrete case we take Ω = {α1, . . . , αm, . . .} ≡ Spec(̂a), the σ-algebra consists
of all subsets of Ω, and the probability measure is defined as P(A) = ∑

αm∈A Pψ
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(a = αm), where Pψ (a = αm) is given by Born’s rule. Thus each concrete quantum
measurement can be described classically. Problems arise only when one tries to
describe classically data collected for a few incompatible observables. We remark
that such attempts contradict Kolmogorov’s ideology [219]. Kolmogorov empha-
sized that each probability space is determined by the corresponding complex of
experimental conditions (context). The same message came from Bohr, who pointed
out that the whole experimental arrangement should be taken into account and
whose principle of complementarity supports Kolmogorovian ideology. For exam-
ple, the impossibility of embedding the collection of probabilities for the posi-
tion and momentum measurements (for all possible quantum states) into a single
probability space is often considered as a new astonishing probabilistic situation.
However, Kolmogorov’s ideology implies that attempts at such an embedding have
no justification – since the position and momentum measurements for a quantum
system cannot be performed in a single experimental setting.

By using Born’s rule (2.32) and the classical probabilistic definition of average
(2.4), it is easy to see that the average value of an observable a in a state ψ belonging
to the domain of definition of the operator â is given by

〈a〉ψ = 〈̂a ψ,ψ〉. (2.42)

Postulate 5 (Time evolution of wave function.) Let Ĥ be the Hamiltonian of a quan-
tum system, i.e., the self-adjoint operator corresponding to the energy observable.
The time evolution of the wave function ψ ∈ H is described by the Schrödinger
equation

i
d

dt
ψ(t) = Ĥψ(t) (2.43)

with the initial condition ψ(0) = ψ.

2.3.2 Quantization

We remark that the operators of position and momentum, x̂ and p̂, see (2.35)
and (2.39), do not commute and they satisfy Heisenberg’s canonical commutation
relation

[̂x, p̂] = i. (2.44)

Consider any real-valued function on the classical phase space, i.e., a function of
classical coordinate and momentum, f (x, p). The quantization procedure is the map

f �→ f̂ = f (̂x, p̂). (2.45)
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In general, it is a tricky mathematical problem to define a function of two noncom-
muting operators. It is typically done by using the calculus of pseudo-differential
operators.10

However, in the simplest case the operator of energy Ĥ can be easily defined.
Consider a classical particle with the mass m moving in the potential V (x). Its
Hamiltonian function (representing classical energy of this particle) is given by

H (x, p) = p2

2m
+ V (x). (2.46)

Quantization gives us the operator

Ĥ = H (̂x, p̂) = p̂2

2m
+ V (x). (2.47)

2.3.3 Interpretations of Wave Function

Now we are going to discuss one of the most important and complicated notions of
quantum mechanics: the notion of a quantum state. There are two main points of
view, which are formulated in the following postulates.

Postulate 6 (The ensemble interpretation.) A wave function provides a description of
certain statistical properties of an ensemble of similarly prepared quantum systems.

This interpretation is upheld, for example by Einstein, Popper, Blokhintsev, Mar-
genau, Ballentine, Klyshko, and in recent years by, e.g., de Muynck, De Baere,
Holevo, Santos, Khrennikov, Nieuwenhuizen, Adenier and many others.

Postulate 6a (The Copenhagen interpretation.) A wave function provides a complete
description of an individual quantum system.

This interpretation was supported by a great variety of scientists, from Schrödinger,
in his original attempt to identify the electron with a wave function solution of his
equation, to the proponents of the several versions of the Copenhagen interpretation
(for example, Heisenberg, Bohr, Pauli, Dirac, von Neumann, Landau, Fock and, in
recent years, e.g., Greenberger, Mermin, Lahti, Peres, Summhammer11). Nowadays

10 See [160] for the most general presentation of quantization procedure on the mathematical level
of rigorousness, including both bosons and fermions as well as supersymmetric systems, quantum
field theory, strings and superstrings and corresponding string field theories; see [158, 159] for
operator quantization over non-Archimedean (in particular, p-adic) number fields.
11 There is an interesting story about the correspondence between Bohr and Fock on the indi-
vidual interpretation. This story was told to me by a former student of Fock, who pointed out
that one of the strongest supporters of this interpretation was Vladimir A. Fock, and that even
though Bohr himself had doubts about its consistency, Fock demonstrated to Bohr inconsistency
in the Einsteinian ensemble interpretation. Thus interpretation, which is commonly known as the
Copenhagen interpretation, might just as well be called the “Leningrad interpretation.”
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the individual interpretation is extremely popular, especially in quantum information
and computing.

Instead of Einstein’s terminology ”ensemble interpretation”, Ballentine [25, 26]
used the terminology “statistical interpretation.” However, Ballentine’s terminol-
ogy is rather misleading, because the term “statistical interpretation” was also used
by von Neumann for individual randomness! For him “statistical interpretation” had
a meaning that is totally different from Ballentine’s “ensemble-statistical interpreta-
tion.” John von Neumann wanted to emphasize the difference between deterministic
(Newtonian) classical mechanics, in which the state of a system is determined by
values of two observables (position and momentum), and quantum mechanics, in
which the state is determined not by values of observables, but by probabilities. We
shall follow Albert Einstein and use the terminology “ensemble interpretation.”

Finally, we point out recent papers concerning the foundations and, in particular,
various interpretations of quantum mechanics: [3–6, 13, 21, 106, 116, 130, 4, 17,
21, 27, 45, 47, 66, 77, 79, 83–85, 106, 116, 117, 130, 119, 127, 142–144, 148, 161–
214, 215, 225, 226, 261– 264, 272, 284–292].

2.4 Quantum Conditional Probability

As in the classical Kolmogorov probabilistic model, Born’s postulate should be
completed by a definition of conditional probability. We present the contempo-
rary definition that is conventional in quantum logic [32] and quantum information
theory.

Definition 2.1 Let physical observables a and b be represented by self-adjoint oper-
ators with purely discrete (possibly degenerate) spectra:

â =
∑

m

αm Pa
αm

, b̂ =
∑

m

βm Pb
βm

(2.48)

Let ψ be a pure state and let Pa
αk

ψ �= 0. Then the probability of obtaining the value
b = βm under the condition that the value a = αk was observed in the preceding
measurement of the observable a on the state ψ is given by

Pψ (b = βm |a = αk) ≡ ‖Pb
βm

Pa
αk

ψ‖2

‖Pa
αk

ψ‖2
(2.49)

Let the operator â have a nondegenerate spectrum, i.e., for any eigenvalue α the
corresponding eigenspace (i.e., generated by eigenvectors with âψ = αψ) is one
dimensional. We can write

Pψ (b = βm |a = αk) = ‖Pb
βm

ea
k ‖2 (2.50)
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(here âea
k = αkea

k ). Thus the conditional probability in this case does not depend
on the original state ψ. We can say that the memory of the original state has
been destroyed. If also the operator b̂ has a nondegenerate spectrum then we have
Pψ (b = βm |a = αk) = |〈eb

m, ea
k 〉|2 and Pψ (a = αk |b = βm) = |〈ea

k , eb
m〉|2. By using

symmetry of the scalar product we obtain:

Proposition 2.2 Let both operators â and b̂ have purely discrete nondegenerate
spectra and let Pa

k ψ �= 0 and Pb
mψ �= 0. Then conditional probability is symmetric

and it does not depend on the original state ψ :

Pψ (b = βm |a = αk) = Pψ (a = αk |b = βm) = |〈eb
m, ea

k 〉|2.

We remark that classical (Kolmogorov–Bayes) conditional probability is not sym-
metric, except in very special situations; the same is valid for my general contextual
probabilistic model, see Chapt. 3. Thus QM is described by a very specific proba-
bilistic model.

Consider two nondegenerate observables. Set pβ|α = P(b = β|a = α). The
matrix of transition probabilities Pb|a, see (2.15) for the definition (but do not for-
get that transition probabilities are no longer defined by Bayes’ rule!), is not only
stochastic but doubly stochastic. It is easy to see that

∑

α

pβ|α =
∑

α

|〈eb
β, ea

α〉|2 = 〈eb
β, eb

β〉 = 1.

Double stochasticity is also a very specific property of quantum probability, cf. the
Kolmogorovian model and my model Chap. 3. In fact, condition DS-DS holds: both
matrices of transition probabilities Pa|b and Pb|a are doubly stochastic. Moreover,
any pair of quantum observables (with nondegenerate spectra) satisfies to condition
SC; they are “symmetrically conditioned”, see (2.18).

In the quantum framework independent observables are considered in
Sect. 12.1.2.

2.5 Interference of Probabilities in Quantum Mechanics

We will show that quantum probabilistic calculus violates the conventional FTP, see
Sect. 2.1.3.

Let H2 = C × C be the two-dimensional complex Hilbert space and let ψ ∈
H2 be a quantum state. Let us consider two dichotomous observables b = β1, β2

and a = α1, α2 represented by self-adjoint operators b̂ and â, respectively (one
may consider simply Hermitian matrices). Let eb = {eb

β} and ea = {ea
α} be two

orthonormal bases consisting of eigenvectors of the operators. The state ψ can be
represented in the two ways

ψ = c1ea
1 + c2ea

2 , cα = 〈ψ, ea
α〉; (2.51)
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ψ = d1eb
1 + d2eb

2, dβ = 〈ψ, eb
β〉. (2.52)

By Postulate 4 we have

P(a = α) ≡ Pψ (a = α) = |cα|2; (2.53)

P(b = β) ≡ Pψ (b = β) = |dβ |2. (2.54)

The possibility of expanding one basis with respect to another basis induces connec-
tion between the probabilities P(a = α) and P(b = β). Let us expand the vectors ea

α

with respect to the basis eb

ea
1 = u11eb

1 + u12eb
2; (2.55)

ea
2 = u21eb

1 + u22eb
2, (2.56)

where uαβ = 〈ea
α, eb

β〉. Thus d1 = c1u11 + c2u21, d2 = c1u12 + c1u22. We obtain the
quantum rule for transformation of probabilities

P(b = β) = |c1u1β + c2u2β |2. (2.57)

On the other hand, by the definition of quantum conditional probability, see (2.49),
we obtain

P(b = β|a = α) ≡ Pψ (b = β|a = α) = |〈ea
α, eb

β〉|2. (2.58)

By combining (2.53), (2.54) and (2.57), (2.58) we obtain the quantum formula of
total probability – the formula of interference of probabilities:

P(b = β) =
∑

α

P(a = α)P(b = β|A = α)

+2 cos θ
√

P(a = α1)P(b = β|a = α1)P(a = α2)P(b = β|a = α2)

(2.59)

In general cos θ �= 0. Thus the quantum FTP does not coincide with the classical
FTP (2.23) which is based on Bayes’ formula

P(b = β) =
∑

α

P(a = α)P(b = β|a = α). (2.60)
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2.6 Contextual Point of View of Interference

The difference between the quantum rule (2.59) and the classical rule (2.60) is not
surprising. As was pointed out in Remark 2.2, there are no reasons to expect that
data obtained for observables a and b which could not be jointly measured can be
described by a single Kolmogorov probability space. However, the classical FTP,
see Sect. 2.1.3, was derived under the assumption that both observables can be
represented by random variables belong to the same Kolmogorov space.12

The crucial point is that one cannot use the same symbol P to denote all proba-
bilities in (2.59). In one formula, (2.59), one combines probabilistic data obtained
in four different experiments (experimental contexts):

a) measurement of the observable a under the complex of physical conditions (con-
text) C which is represented by the initial state ψ ;

b) measurement of the observable b under the same context C ;

After performing the a-measurement one can create through selection procedures
Cα1 and Cα2 (selections of systems with respect to the values a = α1 and a = α2)
two new ensembles of systems Sα1 and Sα2 . In quantum mechanics (with the ensem-
ble interpretation) these ensembles are represented by the eigenvectors ea

1 , ea
2 of the

operator â. Therefore we can perform the b-measurement for two new contexts:

a1) measurement of the observable b under the complex of physical conditions
(context) Cα1 which is represented by the state ea

1 ;
a2) measurement of the observable b under the complex of physical conditions

(context) Cα2 which is represented by the state ea
2 .

The a)-experiment gives probabilities Pψ (a = α); the b)-experiment – Pψ (b =
β); the a1)-experiment – Pea

1
(b = β); the a2)-experiment – Pea

2
(b = β).

What could be the reason to assume that we can use a single probability measure
P in all these experiments?

2.7 Bell’s Inequality in Quantum Physics

As was pointed out in Sect. 2.2, inequalities of Boole–Bell type provide neces-
sary conditions for probabilistic compatibility (PC) of families of observables and,
hence, their violations provide sufficient conditions for probabilistic incompatibil-
ity (PI). As was first pointed out by Bell, see [31] for details, quantum formalism

12 We remark that Feynman [105] considered violation of FTP in the two-slit experiment as vio-
lation of the laws of classical probability. For him it was an exhibition of special, even mystical,
properties of quantum systems. A similar comment by d’Espagnat on violation of FTP can be
found in [87].
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predicts the existence of such quantum states13 that inequality (2.25) is violated
for a special choice of a family of pairwise measurable observables.14 Thus these
observables are of the PI-type.

In any domain of science, one should look for special roots of PI. In particular,
in physics Bell found two possible roots: quantum nonlocality and death of real-
ism. Moreover, he was sure that one can still proceed in QM by using the realistic
description in its strongest (Einsteinian) form: assigning values of observables to the
state of a quantum system before measurement.15 In principle, one cannot exclude
that he found the right possible roots.

My approach is essentially more general. By considering the problem from the
PI viewpoint, we can look for other roots of PI, which need not coincide with those
proposed by Bell. One can still keep to realism and locality. PI can arise from, e.g.,
taking into account parameters of measurement devices (so considering values of
observables as depending on internal states not only of systems, but also of mea-
surement devices16), or from unfair sampling; details can be found in [204, 7].

Moreover, Bell-type inequalities for probability distributions (or covariances)
of pairwise measurements are not the simplest tests of PC. As was mentioned in
Sect. 2.2.3, PC can be tested by conditional measurements of three observables
by using the Wigner–Khrennikov inequality (2.27). It is easy to see [214] that this
inequality is violated for specially selected projections of spin or polarization. Con-
ditional measurements, e.g., spin projections to one direction and then to another,
can be performed on a single particle. Unlike Bell’s original scheme, we need not
consider pairs of entangled particles. Hence, PI of spin or polarization projections
take place even for a single particle. It is completely clear that the source of PI is the
impossibility of measuring these observables simultaneously. It would be surprising
if PI for spin or polarization projections derived by using Bell’s original inequality
for entangled pairs has another explanation, e.g., nonlocality. By operating with
the Wigner–Khrennikov inequality for conditional probabilities one can see how
artificial Bell’s appeal to nonlocality was.

13 These are so called EPR-type states, see Einstein, Podolsky, Rosen [99] for details.
14 For example, spin or polarization projections to specially chosen directions.
15 Here by state we understood “prequantum state”, hidden variable, λ. Thus, first of all, J. Bell was
sure that QM does not provide the complete description of phenomena. As well as Einstein, he was
sure that one can finally find a better description of physical reality than given by QM. The reason
of Bell’s belief in naive Einsteinian realism were precise correlations (anti-correlations) exhibited
by measurements for EPR-type states. Thus Bell was sure that violation of inequality (2.25) implies
nonlocality. For him, the best model of prequantum reality was given by Bohmian mechanics.
Later, as is often happen in science, majority of people combine nonlocality with rejection of
realism. The monster of mysterious “quantum nonlocality” was born. It is clear that Bell would not
be happy with such an interpretation of his studies. However, it is clear as well that Einstein would
not be happy with nonlocal realism. His reaction to creation of Bohmian mechanics was negative.
16 Such sort of realism differs from naive Einsteinian realism and it is closer to Bohr’s views; cf.
also with Accardi’s chameleon effect [1, 4] and Ohya’s adaptive dynamics [245, 246].
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2.8 Växjö Interpretation of Quantum Mechanics

The Växjö interpretation [177] is a variant of the ensemble interpretation, Postu-
late 6:

A wave function provides a description of certain statistical properties of an
ensemble of similarly prepared quantum systems.

However, “properties” are not Einsteinian properties, which can be assigned to
a system before measurement. Properties should be understood in Bohr’s sense: as
results of interaction of systems with measurement devices. However, unlike Bohr, I
do not claim that QM is complete and it is in principle impossible to provide a finer
description of reality, e.g., by taking into account internal states of measurement
devices, see [214, 184, 191].
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