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Abstract. The problem of enforcing bounded-time 2-phase recovery
in real-time programs is often necessitated by conflict between fault-
tolerance requirements and timing constraints. In this paper, we address
the problem of synthesizing two types of 2-phase recovery: relaxed and
graceful. Intuitively, relaxed 2-phase recovery requires that in the pres-
ence of faults, the program recovers to an acceptable behavior within
some time θ and recovers to ideal behavior within time δ. And, graceful
2-phase recovery allows us to capture a requirement that the time to
recover from faults is proportional to the perturbation caused by that
fault. We show that the problem of synthesizing relaxed bounded-time
2-phase recovery is NP-complete although a similar problem of graceful
2-phase recovery can be solved in polynomial-time both in the size of
the input program’s region graph. Finally, based on the results in this
paper, we argue that the requirement of intermediate recording of a fault
before reaching legitimate states can increase the complexity of adding
fault-tolerance substantially.

Keywords: Fault-tolerance, Real-time, Bounded-time recovery, Phased
recovery, Program synthesis, Program transformation.

1 Introduction

Achieving correctness is perhaps the most important aspect of using formal
methods in design and development of computing systems. Such correctness
turns out to be a fundamental element in gaining assurance about reliability and
robustness of safety/mission critical embedded systems. These systems are often
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real-time due to their controlling duties and integrated with physical processes
in hostile environments. Hence, time-predictability and fault-tolerance are two
desirable features of programs that operate in such systems. However, these
features have conflicting natures, making achieving and reasoning about their
correctness fairly complex.

One way to deal with this complexity is to design automated synthesis and
revision algorithms that build programs that are correct-by-construction. Al-
gorithmic synthesis of programs in the presence of an adversary has mostly
been addressed in the context of timed controller synthesis (e.g., [12,14,4,5]) and
game theory (e.g., [13,15]). In controller synthesis (respectively, game theory),
program and fault transitions can be modeled as controllable and uncontrollable
actions (respectively, in terms of two players). In both approaches, the objective
is to restrict the actions of a plant or player at each state through synthesizing
a controller or a wining strategy, such that the behavior of the entire system
always meets some safety and/or reachability conditions. However, the notion
of dependability and in particular fault-tolerance requires other functionalities
that are not typically addressed in controller synthesis and game theory. For in-
stance, fault-tolerance is concerned with bounded-time recovery, where a program
returns to its normal behavior when its state is perturbed due to the occurrence
of faults. In this context, a recovery mechanism is normally added to a program
so that it reacts to faults properly.

Although synthesis algorithms are known to be intractable, it has been shown
that their complexity can be overcome through:

– focusing on safety and liveness properties typically used in specifying systems
rather than considering any arbitrary specification,

– rigorous complexity analysis for each class of properties to identify bottle-
necks,

– devising intelligent heuristics that address complexity bottlenecks, and
– exploiting efficient implementation techniques.

By applying these principles, we have been able to synthesize distributed fault-
tolerant programs with reachable states of size 1060 and beyond [9,11], even
though the worst case complexity (NP-completeness in the state space) initially
seemed to be unfeasible to cope with in practice. In case of real-time dependable
systems, however, the problem is more complex, because of conflicting nature of
requirements and high complexity of decision procedures simultaneously.

In this paper, we focus on one aspect of the conflict between real-time con-
straints and fault-tolerance requirements. In particular, the fault-tolerance re-
quirement of the program may require that eventually the program recovers to
its legitimate states from where its subsequent behavior is ideal, i.e., one that
could occur in the absence of faults. Also, the real-time constraints may require
that the recovery to the ideal behavior be achieved quickly. When satisfying both
these requirements is not feasible, one approach is to ensure that the program
recovers quickly to an acceptable behavior and eventually recovers to its ideal
behavior. The recovery requirements for acceptable and ideal behavior can be
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specified in terms of a set of states Q and S respectively. Thus, the requirements
for a real-time fault-tolerant system can be viewed as a 2-phase recovery, where
the program eventually reaches Q within some time θ and eventually reaches S
in some time δ.

There are different variations for such 2-phase recovery problem. The scenario
discussed above can be expressed in terms of constraints of the form (¬S �→≤θ Q)
and (Q �→≤δ S), i.e., starting from any state in ¬S, the program first recovers
to Q (acceptable behavior) in time θ and subsequently from each state in Q, it
recovers to states in S (ideal behavior) in time δ. We denote this variation as
strict 2-phase recovery.

Another variation is (¬S �→≤θ (Q − S)) and (Q �→≤δ S), i.e., the program
first recovers to (Q− S) in time θ and subsequently from each state in Q, it re-
covers to S in time δ. We denote this variation as ordered-strict 2-phase recovery.
One motivation for such a requirement is that we first record the occurrence of
the fault before ideal behavior can resume. Thus, the program behavior while
recording the fault (e.g., notifying the user) is strictly different from its ideal
behavior.

Third possible variation is (¬S �→≤θ Q) and (¬S �→≤δ S), i.e., the program
recovers to Q (acceptable behavior) in time θ and it recovers to states in S
(ideal behavior) in time δ. We denote this variation as relaxed 2-phase recovery.
One motivation for such requirements is to provide a tradeoff for the designer.
In particular, if one can obtain a quick recovery to Q, then one can utilize the
remaining time budget in recovering to S. Observe that such tradeoff is not
possible in strict 2-phase recovery.

Fourth possible variation is (Q �→≤δ S) and (¬S �→≤θ S), i.e., if the program
is perturbed to Q, then it recovers to S in time δ and if the program is perturbed
to any state, then it recovers to a state in S in time θ. We denote this variation
as graceful 2-phase recovery. One motivation for such requirements is a scenario
where (1) faults that perturb the program to Q only are more common and,
hence, a quick recovery (small δ) is desirable in restoring the ideal behavior, and
(2) faults that perturb the program to ¬Q are rare and, hence, slow recovery
(large θ) is permissible.

In [10], we introduced the notion of bounded-time 2-phase recovery in a general
sense. We also addressed the complexity of synthesizing fault-tolerant real-time
programs that mask the occurrence of faults and provide strict and ordered-strict
2-phase recovery. In this paper, we focus on synthesis of relaxed and graceful
2-phase recovery. The main contributions of the paper are as follows:

– We formally define and classify different types of bounded-time 2-phase re-
covery in the context of fault-tolerant real-time programs.

– Regarding synthesizing relaxed 2-phase recovery, we show that
• the general problem is NP-complete,
• the problem can be solved in polynomial-time, if S ⊆ Q and it is required

that Q be closed, i.e., the program cannot begin in a state in Q and reach
a state outside Q, and

• the problem remains NP-complete, if S ⊆ Q but Q is not required to be
closed.
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– Regarding synthesizing graceful 2-phase recovery, we show that the problem
can always be solved in polynomial-time.

We emphasize that all complexity results are in the size of the input program’s
region graph.

Organization of the Paper. The rest of the paper is organized as follows.
Section 2 is dedicated to define real-time programs and specifications. In Section
3, we formally define the different variations of 2-phase recovery. In Section
4, we define the problem statement for synthesizing 2-phase recovery. Section 5
presents our results on the complexity of synthesis of relaxed and graceful 2-phase
recovery. Finally, we conclude in Section 6.

2 Real-Time Programs and Specifications

2.1 Real-Time Program

In our framework, real-time programs are specified in terms of their state space
and their transitions [3,2]. Let V = {v1, v2 · · · vn}, n ≥ 1, be a finite set of discrete
variables and X = {x1, x2 · · ·xm}, m ≥ 1, be a finite set of clock variables.
Each discrete variable vi, 1 ≤ i ≤ n, is associated with a finite domain Di

of values. Each clock variable xj , 1 ≤ j ≤ m, ranges over nonnegative real
numbers (denoted R≥0). A location is a function that maps discrete variables to
a value from their respective domain. A clock constraint over the set X of clock
variables is a Boolean combination of formulae of the form x � c or x − y � c,
where x, y ∈ X , c ∈ Z≥0, and � is either < or ≤. We denote the set of all clock
constraints over X by Φ(X). A clock valuation is a function ν : X → R≥0 that
assigns a real value to each clock variable.

For τ ∈ R≥0, we write ν + τ to denote ν(x) + τ for every clock variable x
in X . Also, for λ ⊆ X , ν[λ := 0] denotes the clock valuation that assigns 0 to
each x ∈ λ and agrees with ν over the rest of the clock variables in X . A state
(denoted σ) is a pair (s, ν), where s is a location and ν is a clock valuation for
X . Let u be a (discrete or clock) variable and σ be a state. We denote the value
of u in state σ by u(σ). A transition is an ordered pair (σ0, σ1), where σ0 and
σ1 are two states. Transitions are classified into two types:

– Immediate transitions: (s0, ν) → (s1, ν[λ := 0]), where s0 and s1 are two
locations, ν is a clock valuation, and λ is a set of clock variables, where
λ ⊆ X .

– Delay transitions: (s, ν) → (s, ν + δ), where s is a location, ν is a clock
valuation, and δ ∈ R≥0 is a time duration. Note that a delay transition
only advances time and does not change the location. We denote a delay
transition of duration δ at state σ by (σ, δ).

Thus, if ψ is a set of transitions, we let ψs and ψd denote the set of immediate
and delay transitions in ψ, respectively.
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Definition 1 (real-time program). A real-time program P is a tuple
〈SP , ψP〉, where SP is the state space (i.e., the set of all possible states), and ψP
is a set of transitions such that ψP ⊆ SP × SP .

Definition 2 (state predicate). Let P = 〈SP , ψP〉 be a real-time program. A
state predicate S of program P is any subset of SP , such that if ϕ is a constraint
involving clock variables in X , where S ⇒ ϕ, then ϕ ∈ Φ(X), i.e., clock variables
are only compared with nonnegative integers.

By closure of a state predicate S in a set ψP of transitions, we mean that (1)
if an immediate transition originates in S then it must terminate in S, and (2)
if a delay transition with duration δ originates in S then it must remain in S
continuously, i.e., intermediate states where the delay is in interval (0, δ] are all
in S.

Definition 3 (closure). A state predicate S is closed in programP = 〈SP , ψP〉
(or briefly ψP) iff

(∀(σ0, σ1) ∈ ψsP : ((σ0 ∈ S) ⇒ (σ1 ∈ S))) ∧
(∀(σ, δ) ∈ ψdP : ((σ ∈ S) ⇒ ∀ε | ((ε ∈ R≥0) ∧ (ε ≤ δ)) : σ + ε ∈ S)).

Definition 4 (computation). A computation of P = 〈SP , ψP〉 (or briefly ψP)
is a finite or infinite timed state sequence of the form:

σ = (σ0, τ0) → (σ1, τ1) → · · ·

if the following conditions are satisfied: (1) ∀j ∈ Z≥0 : (σj , σj+1) ∈ ψP , (2) if σ
reaches a terminating state σf where there does not exist a state σ such that
(σf , σ) ∈ ψsP , then we let σ stutter at σf , but advance time indefinitely, and (3)
the sequence τ0, τ1, · · · (called the global time), where τi ∈ R≥0 for all i ∈ Z≥0,
satisfies the following constraints:

1. (monotonicity) for all i ∈ Z≥0, τi ≤ τi+1,
2. (divergence) if σ is infinite, for all t ∈ R≥0, there exists j ∈ Z≥0 such that
τj ≥ t, and

3. (consistency) for all i ∈ Z≥0, (1) if (σi, σi+1) is a delay transition (σi, δ) in
ψdP then τi+1 − τi = δ, and (2) if (σi, σi+1) is an immediate transition in ψsP
then τi = τi+1.

We distinguish between a terminating computation and a deadlocked finite com-
putation. Precisely, when a computation σ terminates in state σf , we include
the delay transitions (σf , δ) in ψdP for all δ ∈ R≥0, i.e., σ can be extended to an
infinite computation by advancing time arbitrarily. On the other hand, if there
exists a state σd, such that there is no outgoing (delay or immediate) transition
from σd then σd is a deadlock state.
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2.2 Specification

Let P = 〈SP , ψP〉 be a program. A specification (or property), denoted SPEC ,
for P is a set of infinite computations of the form (σ0, τ0) → (σ1, τ1) → · · · where
σi ∈ SP for all i ∈ Z≥0. Following Alpern and Schneider [1] and Henzinger [17],
we require that all computations in SPEC satisfy time-monotonicity and diver-
gence. We now define what it means for a program to satisfy a specification.

Definition 5 (satisfies). Let P = 〈SP , ψP〉 be a program, S be a state pred-
icate, and SPEC be a specification for P . We write P |=S SPEC and say that
P satisfies SPEC from S iff (1) S is closed in ψP , and (2) every computation of
P that starts from S is in SPEC .

Definition 6 (invariant). Let P = 〈SP , ψP〉 be a program, S be a state pred-
icate, and SPEC be a specification for P . If P |=S SPEC and S �= {}, we say
that S is an invariant of P for SPEC .

Whenever the specification is clear from the context, we will omit it; thus, “S
is an invariant of P” abbreviates “S is an invariant of P for SPEC ”. Note that
Definition 5 introduces the notion of satisfaction with respect to infinite com-
putations. In case of finite computations, we characterize them by determining
whether they can be extended to an infinite computation in the specification.

Definition 7 (maintains). We say that program P maintains SPEC from S
iff (1) S is closed in ψP , and (2) for all computation prefixes α of P that start
in S, there exists a computation suffix β such that αβ ∈ SPEC . We say that P
violates SPEC from S iff it is not the case that P maintains SPEC from S.

We note that if P satisfies SPEC from S then P maintains SPEC from S as well,
but the reverse direction does not always hold. We, in particular, introduce the
notion of maintains for computations that a (fault-intolerant) program cannot
produce, but the computation can be extended to one that is in SPEC by adding
recovery computation suffixes, i.e., α may be a computation prefix that leaves
S, but β brings the program back to S (see Section 3 for details).
Specifying timing constraints. In order to express time-related behaviors
of real-time programs (e.g., deadlines and recovery time), we focus on a standard
property typically used in real-time computing known as the bounded response
property. A bounded response property, denoted P �→≤δ Q where P and Q are
two state predicates and δ ∈ Z≥0, is the set of all computations (σ0, τ0) →
(σ1, τ1) → · · · in which, for all i ≥ 0, if σi ∈ P then there exists j, j ≥ i, such
that (1) σj ∈ Q, and (2) τj − τi ≤ δ, i.e., it is always the case that a state in P
is followed by a state in Q within δ time units.

The specifications considered in this paper are an intersection of a safety
specification and a liveness specification [1,17]. In this paper, we consider a
special case where safety specification is characterized by a set of bad immediate
transitions and a set of bounded response properties.
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Definition 8 (safety specification). Let SPEC be a specification. The safety
specification of SPEC is the union of the sets SPEC bt and SPEC br defined as
follows:

1. (timing-independent safety) Let SPEC bt be a set of immediate bad transi-
tions. We denote the specification whose computations have no transition in
SPEC bt by SPEC bt.

2. (timing constraints) We denote SPEC br by the conjunction
∧m
i=0(Pi �→≤δi

Qi), for state predicates Pi and Qi, and, response times δi.

Throughout the paper, SPEC br is meant to prescribe how a program should
carry out bounded-time phased recovery to its normal behavior after the occur-
rence of faults. We formally define the notion of recovery in Section 3.

Definition 9 (liveness specification). A liveness specification of SPEC is a
set of computations that meets the following condition: for each finite computa-
tion α, there exists a computation β such that αβ ∈ SPEC .

Remark 1. In our synthesis problem in Section 4, we begin with an initial pro-
gram that satisfies its specification (including the liveness specification). We will
show that our synthesis techniques preserve the liveness specification. Hence,
the liveness specification need not be specified explicitly.

3 Fault Model and Fault-Tolerance

3.1 Fault Model

The faults that a program is subject to are systematically represented by tran-
sitions. A class of faults f for program P = 〈SP , ψP〉 is a subset of immediate
and delay transitions of the set SP ×SP . We use ψP []f to denote the transitions
obtained by taking the union of the transitions in ψP and the transitions in f .
We emphasize that such representation is possible for different types of faults
(e.g., stuck-at, crash, fail-stop, timing, performance, Byzantine, message loss,
etc.), nature of the faults (permanent, transient, or intermittent), or the ability
of the program to observe the effects of the faults.

Definition 10 (fault-span). We say that a state predicate T is an f -span
(read as fault-span) of P = 〈SP , ψP〉 from S iff the following conditions are
satisfied: (1) S ⊆ T , and (2) T is closed in ψP []f .

Observe that for all computations of P = 〈SP , ψP〉 that start from states where
S is true, T is a boundary in the state space of P up to which (but not beyond
which) the state of P may be perturbed by the occurrence of the transitions in f .
Subsequently, as we defined the computations of P , one can define computations
of program P in the presence of faults f by simply substituting ψP with ψP []f
in Definition 4.
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3.2 Phased Recovery and Fault-Tolerance

Now, we define the different types of 2-phase recovery properties discussed in
Section 1.

Definition 11 (2-phase recovery). Let P = 〈SP , ψP〉 be a real-time program
with invariant S, Q be an arbitrary intermediate recovery predicate, f be a set of
faults, and SPEC be a specification (as defined in Definitions 8 and 9). We say
that P provides (ordered-strict, strict, relaxed or graceful) 2-phase recovery from
S and Q with recovery times δ, θ ∈ Z≥0, respectively, iff 〈SP , ψP []f〉 maintains
SPEC br ≡ (¬S �→≤θ Q1) ∧ (Q2 �→≤δ S) from S, where, depending upon the
type of the desired 2-phase recovery, Q1 and Q2 are instantiated as follows:

ordered-strict strict relaxed graceful

Q1 Q− S Q Q S
Q2 Q Q ¬S Q

We call θ and δ intermediate recovery time and recovery time, respectively.

Definition 12 (fault-tolerance). Let P = 〈SP , ψP〉 be a real-time program
with invariant S, f be a set of faults, and SPEC be a specification as defined
in Definitions 8 and 9. We say that P is f -tolerant to SPEC from S, iff (1)
P |=S SPEC , and (2) there exists T such that T is an f -span of P from S and
〈SP , ψP []f〉 maintains SPEC from T .

Notation. Whenever the specification SPEC and the invariant S are clear from
the context, we omit them; thus, “f -tolerant” abbreviates “f -tolerant to SPEC
from S”.

4 Problem Statement

Given are a fault-intolerant real-time program P = 〈SP , ψP〉, its invariant S, a
set f of faults, and a specification SPEC such that P |=S SPEC . Our goal is to
synthesize a real-time program P ′ = 〈SP′ , ψP′〉 with invariant S′ such that P ′ is
f -tolerant to SPEC from S′. We require that our synthesis methods obtain P ′

from P by adding fault-tolerance to P without introducing new behaviors in the
absence of faults. To this end, we first define the notion of projection. Projection
of a set ψP of transitions on state predicate S consists of immediate transitions
of ψsP that start in S and end in S, and delay transitions of ψdP that start and
remain in S continuously.

Definition 13 (projection). Projection of a set ψ of transitions on a state
predicate S (denoted ψ|S) is the following set of transitions:

ψ|S = {(σ0, σ1) ∈ ψs | σ0, σ1 ∈ S} ∪
{(σ, δ) ∈ ψd | σ ∈ S ∧ (∀ε | ((ε ∈ R≥0) ∧ (ε ≤ δ)) : σ + ε ∈ S)}.
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Since meeting timing constraints in the presence of faults requires time pre-
dictability, we let our synthesis methods incorporate a finite set Y of new
clock variables. We denote the set of states obtained by abstracting the clock
variables in Y from a state predicate U by U\Y . Likewise, if ψ is a set of
transitions, we denote the set of transitions obtained by abstracting the clock
variables in Y by ψP\Y . Now, observe that in the absence of faults, if S′ contains
states that are not in S then P ′ may include computations that start outside
S. Hence, we require that (S′\Y ) ⊆ S. Moreover, if ψ

′
P |S′ contains a transition

that is not in ψP |S′ then in the absence of faults, P ′ can exhibit computa-
tions that do not correspond to computations of P . Therefore, we require that
(ψP′\Y )|(S′\Y ) ⊆ ψP |(S′\Y ).

Problem Statement 1. Given a program P = 〈SP , ψP〉, invariant S, specifica-
tion SPEC , and set f of faults such that P |=S SPEC , identify P ′ = 〈SP′ , ψP′〉
and S′ such that:

(C1) SP′\Y = SP , where Y is a finite set of new clock variables,
(C2) (S′\Y ) ⊆ S,
(C3) (ψP′\Y ) | (S′\Y ) ⊆ ψP |(S′\Y ), and
(C4) P ′ is f -tolerant to SPEC from S′.

Note that the above problem statement can be instantiated for all four types of
2-phase recovery. In this paper, we focus on relaxed and graceful 2-phase recovery.
Hence, we instantiate the problem statement with these two types and whenever
it is clear from the context, for brevity, we omit the instantiation.

Notice that conditions C1..C3 in Problem Statement 1 precisely express the
notion of behavior restriction (also called language inclusion) used in controller
synthesis and game theory. Moreover, constraint C4 implicitly implies that the
synthesized program is not allowed to exhibit new finite computations, which
is known as the non-blocking condition. It is easy to observe that unlike con-
troller synthesis problems, our notion of maintains (cf. Definition 7) embedded
in condition C4 allows the output program to exhibit recovery computations
that input program does not have.

5 Synthesizing Relaxed and Graceful 2-Phase Recovery

In this section, first, in Subsection 5.1, we show that the problem of synthesiz-
ing relaxed 2-phase recovery is NP-complete. Then, in Subsection 5.2, we show
that it can be solved in polynomial-time if Q is required to be closed in the
synthesized program. Subsequently, we interpret this result and identify its ef-
fect in Subsection 5.3. We present our polynomial algorithm for graceful 2-phase
recovery in Subsection 5.4. Finally, we consider whether there are other types of
2-phase recovery instances in Subsection 5.5.
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5.1 Complexity of Synthesizing Relaxed 2-Phase Recovery

In this section, we show that, in general, the problem of synthesizing fault-
tolerant real-time programs that provide relaxed 2-phase recovery is NP-complete
in the size of locations of the given fault-intolerant real-time program.
Instance. A real-time program P = 〈SP , ψP〉 with invariant S, a set of faults f ,
and a specification SPEC , such that P |=S SPEC , where SPEC br ≡ (¬S �→≤θ
Q) ∧ (¬S �→≤δ S) for state predicate Q and δ, θ ∈ Z≥0.
The decision problem (R2P). Does there exist an f -tolerant program P ′ =
〈SP′ , ψP′〉 with invariant S′ such that P ′ and S′ meet the constraints of Problem
Statement 1 when instantiated with relaxed 2-phase recovery?

We show that the R2P problem is NP-complete by reducing the 2-path problem
[16,6] to R2P.

Theorem 1. The problem of transforming a fault-intolerant real-time program
into a fault-tolerant program that provides relaxed 2-phased recovery is NP-
complete in the size of locations of the fault-intolerant program.

Corollary 1. The problem of transforming a fault-intolerant real-time program
into a fault-tolerant program that provides relaxed 2-phased recovery isNP-complete
in the size of locations of the fault-intolerant program even if S ⊆ Q.

5.2 Synthesizing Relaxed 2-Phase Recovery with Closure of Q

In this section, we show that if the intermediate predicate Q is required to be
closed in the synthesized program, then the problem of synthesizing relaxed 2-
phase recovery can be solved in polynomial time in the size of the time-abstract
bisimulation of the input program. Towards this end, we propose the algorithm
Add RelaxedPhasedRecovery .

Assumption 1. For simplicity of presentation, we assume that the number
of fault occurrences in any computation is at most 1. Note that the proof of
Theorem 1 is valid even with this assumption. In [8], we have shown that if
multiple faults occur within a computation, for a given state, one can compute
the maximum time required to reach a state predicate.

Next, we describe our algorithm Add RelaxedPhasedRecovery:

– (Step 1: Initialization). Using the technique described above from [2], we
obtain the region graph, R(P), for the input program by using the routine
ConstructRegionGraph (Line 1). Vertices of R(P) (denoted SrP) are regions.
Edges of R(P) (denoted ψrP) are of the form (s0, ρ0) → (s1, ρ1) iff for some
clock valuations ν0 ∈ ρ0 and ν1 ∈ ρ1, (s0, ν0) → (s1, ν1) is a transitions
in ψP . Likewise, we convert state predicates and sets of transitions into
corresponding region predicates and sets of edges. For example, Sr denotes
the region predicate obtained from input S, and it is obtained as Sr =
{(s, ρ) | ∃(s, ν) : ((s, ν) ∈ S ∧ ν ∈ ρ)}.
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Algorithm 1. Add RelaxedPhasedRecovery
Input: A real-time program P = 〈SP , ψP〉 with invariant S, fault transitions f , bad transitions

SPEC bt, and SPEC br ≡ (¬S 	→≤θ Q) ∧ (¬S 	→≤δ S), where Q is an intermediate recovery
predicate, such that S ⊆ Q.

Output: If successful, a fault-tolerant real-time program P′ = 〈SP′ , ψP′〉 and invariant S′ such

that 〈SP , ψ
′
P []f〉 |=S′ SPEC br and Q is closed in ψP′ .

1: 〈Sr
P , ψ

r
P〉, Sr

1 , Qr , fr, SPEC r
bt := ConstructRegionGraph(〈SP , ψP〉, S, Q, f , SPEC bt);

2: ms := {r0 | ∃r1, r2 · · · rn : (∀j | 0≤j<n : (rj , rj+1) ∈ fr) ∧ (rn−1, rn) ∈ SPEC r
bt};

3: mt := {(r0, r1) ∈ ψr
P | (r1 ∈ ms) ∨ ((r0, r1) ∈ SPEC r

bt)};
4: T r

1 := Sr
P − ms;

5: repeat
6: T r

2 , S
r
2 := T r

1 , S
r
1 ;

7: ψr
P1

:= ψr
P |Sr

1 ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (T r
1 −Qr) ∧ (s1, ρ1) ∈ T r

1 ∧
∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} ∪

{((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (Qr − Sr
1 ) ∧ (s1, ρ1) ∈ Qr ∧

∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} − mt;
8: ψr

P1
, ns := Add BoundedResponse(〈Sr

P, ψ
r
P1

〉, Qr − Sr, Sr, δ);

9: T r
1 := T r

1 − ns;

10: ψr
P1
, ns := transform (Add BoundedResponse(transform(〈Sr

P , ψ
r
P1

〉), T r
1 −Qr , Qr, θ));

11: T r
1 , Q

r := T r
1 − ns, Qr − ns;

12: while (∃r0, r1 : r0∈T r
1 ∧ r1 �∈T r

1 ∧ (r0, r1)∈fr) do
13: T r

1 := T r
1 − {r0};

14: end while
15: while (∃r0∈ (Sr

1 ∩ T r
1 ) : (∀r1 | (r1 �= r0 ∧ r1 ∈ Sr

1) : (r0, r1) �∈ ψr
P1

)) do

16: Sr
1 := Sr

1 − {r0};
17: end while
18: if (Sr

1 = {} ∨ T r
1 = {}) then

19: print ‘‘no solution to relaxed 2-phase recovery exists’’; exit;
20: end if
21: until (T1 = T2 ∧ S1 = S2)
22: 〈SP′ , ψP′ 〉, S′, T ′ := ConstructRealTimeProgram(〈Sr

P, ψ
r
P1

〉, Sr
1 , T

r
1 );

23: return 〈SP′ , ψP′ 〉, S′, T ′;

In order to ensure that the synthesized program does not violate timing-
independent safety, we identify the set ms of regions from where a computa-
tion can violate SPEC bt by the occurrence of faults alone (Line 2). Clearly,
the program should not reach a region in ms . Hence, we remove (Line 4)
ms from the region predicate T r1 , which is used to compute the fault-span of
the program being synthesized. The set of edges that should not be included
in the synthesized program, mt , consists of edges that reach ms and the
edges in SPEC r

bt. These edges are removed while constructing the possible
program transitions (Line 7).

– (Step 2: Adding (Q �→≤δ S) ). In this step, we first recompute the set
ψP1

of program edges (Line 7) that could potentially be used during phased
recovery in the synthesized program. Towards this end, we partition the
edges based on their originating states: If an edge originates from a state in
Sr1 (estimated invariant of the synthesized program), then by constraint C3
of Problem Statement 1, the edge must be included in the original program.
If the edge originates in a region in Qr1 −Sr1 then due to closure requirement
ofQ, it must end in Qr1. And, if the edge originates in a region in T r1 −Qr1 then
due to closure requirement of fault-span, it must end in T r1 . Furthermore,
the edges must meet the time monotonicity condition and not present in the
set mt . It is straightforward to observe that the edges computed on Line 7
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must be a superset of the edges in a program that satisfies constraints of
Problem Statement 1.
We use the program constructed on Line 7 and invoke the procedure
Add BoundedResponse to add (Q �→≤δ S). Add BoundedResponse (from [7])
adds a clock variable, say t1, which gets reset when Q− S becomes true. It
computes a shortest path from every region in Qr1 − Sr1 to some region in
Sr1 . If the delay on this path is less than or equal to δ, it includes that path
in the synthesized program. If the delay is more than δ then it includes the
corresponding region in Qr1 − Sr1 in ns. It follows that regions in ns cannot
be included in the synthesized program. Hence, we remove ns from T r1 and
Qr on Lines 9 and 11, respectively. Add BoundedResponse can also add ad-
ditional paths whose length is larger than that of the shortest paths but less
than δ. However, for relaxed 2-phase recovery, addition of such additional
paths needs to be performed after adding the second timing constraint in
Line 10.

– (Step 3: Adding (¬S �→≤γ Q) ). For each region r in Qr, we identify wt(r)
that denotes the length of the path from r to a region in Sr. Next, we add
the property (¬S �→≤γ Q), where the value of γ depends upon the exact
state reached in Q. Since we need to ensure (¬S �→≤θ Q), γ must be less
than θ. And, since we need to ensure (¬S �→≤δ S), the time to reach a region
r in Qr must be less than δ − wt(r).
To achieve this with Add BoundedResponse, we transform the given region
graph by the function transform , where we replace each region r in Qr by
r1 (that is outside Qr) and r2 (that is in Qr) such that there is an edge
from r1 to r2. All incoming edges from T r1 − Qr to r now reach r1. All
other edges (edges reaching r from another state in Qr and outgoing edges
from r) are connected to r2. The weight of the edge from r1 to r2 is set
to max(0, θ + wt(r) − δ). Now, we call Add BoundedResponse add (T1 −
Q �→≤θ Q). Notice that the transformation of the region graph along with
invocation of Add BoundedResponse (Line 10) ensures that any computation
of the synthesized program that that starts from a state σ0 in ¬S and reaches
a state σ1 in Q− S within θ still has sufficient time to reach a state σ2 in S
such that the overall delay between σ0 and σ2 is less than δ. In other words,
the output program will satisfy (T1−Q �→≤δ S) no matter what path it takes
to achieve 2-phase recovery. We now collapse region r1 and r2 (created by
transform) to obtain region r. We use transform to denote such collapsing.

– (Step 4: Repeat if needed or construct synthesized program). Since we remove
some regions from T r1 , we ensure closure of T r1 in f by the loop on Lines 12-
14. Furthermore, due to constraint C4 of the problem statement, Sr1 cannot
have deadlock regions from where there are no outgoing edges. Hence, on
Lines 15-17, we remove such deadlocks. If this removal causes Sr1 or T r1 to
be an empty set then the algorithm declares failure (Line 19).
Since removal of regions from Sr1 or T r1 can potentially affect the bounded
response properties added on Lines 8 and 10, Steps 2 and 3 may have to be
repeated. If no regions are removed (i.e., we reach a fixpoint), then we con-
struct the corresponding real-time program P ′ = 〈SP′ , ψP′〉 on Line 22. Since
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the construction of the region graph is a bisimulation of the corresponding
real-time program, such reverse transformation is possible.

Theorem 2. The Algorithm Add RelaxedPhasedRecovery is sound, i.e., the
synthesized program satisfies the constraints of Problem Statement 1, and com-
plete, i.e., the algorithm finds a fault-tolerant program provided one exists.

5.3 Interpretation of Closure of Q

One main observation from the results in Subsections 5.1 and 5.2 is that the
requirement of ‘closure of Q’, where Q is the intermediate recovery predicate,
appears to play a crucial role in reducing the complexity. Thus, one may pose
questions on the intuitive implication of this requirement in practice. There are
two ways of characterizing the intermediate recovery predicate:

– One characterization is that predicate Q identifies an acceptable behavior
of the program. In this case, it is expected that once the program starts
exhibiting acceptable behavior, it continues to exhibit acceptable (or ideal)
behavior in future. In such a characterization, closure of Q is satisfied.

– Another characterization is that the predicate Q identifies a special behavior
that does not occur in the absence of faults. This special behavior can include
notification or recording of the fault, suspension of normal operation for a
certain duration, etc. Thus, in such a characterization, the program reaches
Q, then leaves Q and eventually starts exhibiting its ideal behavior. In such
a characterization, closure of Q is not satisfied.

The results in this paper shows that the complexity of the former characteriza-
tion is significantly less than the latter. In other words, requiring that faults be
recorded causes a significant growth in the complexity.

5.4 Complexity of Synthesizing Graceful 2-Phase Recovery

We present a somewhat counter-intuitive result: a sound and complete solution
to the Problem Statement 1 when instantiated for graceful 2-phase recovery.
This algorithm also requires Assumption 1 from Subsection 5.2. Without loss
of generality, we assume that δ ≤ θ. If δ > θ, then graceful 2-phase recovery
corresponds to the requirement (¬S �→≤θ S). We now describe the algorithm.

– (Step 1: Initialization). This step is identical to that in Algorithm 1 and it
constructs the region graph R(P).

– (Step 2: Adding (Q �→≤δ S) ). In this step, we add recovery paths to R(P)
so that R(P) satisfies (Q �→≤δ S). The set of edges used in this step (Line 7)
differs from the corresponding step in Add RelaxedPhasedRecovery. In par-
ticular, if an edge originates in Qr1, it need not terminate in Qr1. This is
due to the fact that Q is not necessarily closed in graceful 2-phase recovery.
Thus, the transitions computed for ψP1

of program edges are as specified on
Line 7.
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Algorithm 2. Add GracefulPhasedRecovery
Input: A real-time program P = 〈SP , ψP〉 with invariant S, fault transitions f , bad transitions

SPEC bt, and SPEC br ≡ (¬S 	→≤θ S) ∧ (¬Q 	→≤δ S), where Q is an intermediate recovery
predicate, such that S ⊆ Q.

Output: If successful, a fault-tolerant real-time program P′ = 〈SP′ , ψP′〉 and invariant S′ such

that 〈SP , ψ
′
P []f〉 |=S′ SPEC br.

// This algorithm is obtained by changing the following lines from Algorithm 1
7 : ψr

P1
:= ψr

P |Sr
1 ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (T r

1 − Sr) ∧ (s1, ρ1) ∈ T r
1 ∧

∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} − mt;
10 : ψr

P1
, ns := Add BoundedResponse((〈Sr

P, ψ
r
P1

〉), T r − Sr
1 , Sr

1 , θ);

After adding recovery edges, we invoke the procedure Add BoundedResponse
(Line 8) with parametersQr−Sr, Sr, and δ to ensure that R(P) indeed satis-
fies the bounded response property Q �→≤δ S. Since the value of ns returned
by Add BoundedResponse indicates that there does not exist a computation
prefix that maintains the corresponding bounded response property from the
regions in ns, in Line 9, the algorithm removes ns from T r1 .

– (Step 3: Adding (¬S �→≤θ S) ). This task is achieved by calling
Add BoundedResponse, where from each state in ¬S, we add a shortest path
from that state to a state in S. Note that the paths from states in Q have a
delay of at most δ. If such a path does not exist from a state in Q then, in
Step 2, that state would have been included in ns and, hence, removed from
T r1 . While the addition of the second bounded response property is possible
for graceful 2-phase recovery, for reasons discussed after Theorem 3, it is not
possible for relaxed 2-phase recovery.

– (Step 4 ). This step is identical to that in Algorithm 1.

Theorem 3. The Algorithm Add GracefulPhasedRecovery is sound and com-
plete.

Next, we discuss the main the main reason that permits solution of graceful
2-phase recovery be in polynomial-time without closure of Q, but causes the
addition of relaxed 2-phase recovery to be NP-complete. Observe that in Line 10
in Add RelaxedPhasedRecovery, we added recovery paths from states in T1 to
states in Q. Without closure property of Q, the paths added for
Add RelaxedPhasedRecovery can create cycles with paths added from Q to S.
Such cycles outside S prevent the program from recovering to the invariant
predicate within the required timing constraint. To the contrary, in Line 10
in Add GracefulPhasedRecovery, we added recovery paths from states in T1 to
states in S. These paths cannot create cycles with paths added from Q − S.
Moreover, the paths also do not increase the delay in recovering from Q to S.
For this reason, the problem of Add GracefulPhasedRecovery could be solved in
polynomial-time.
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5.5 Other Types of 2-Phase Recovery

Let us consider Definition 11 closely. Interesting possible values for Q1 are Q,
S and Q − S and interesting possible values for Q2 are ¬S and Q. Thus, the
different combinations for 2-phase recovery are as shown in the table below.

Q1 = Q Q1 = S Q1 = Q− S

Q2 = Q strict graceful ordered-strict
Q2 = ¬S relaxed single phase ordered-relaxed

Of these, we showed that the problem of relaxed 2-phase recovery is NP-
complete. It is straightforward to observe that this proof can be extended to show
that synthesizing ordered-relaxed 2-phase recovery is also NP-complete. More-
over, in [10], we showed that the problems of synthesizing strict and ordered-strict
2-phase recovery are NP-complete. As mentioned in Subsection 5.4, one surpris-
ing result in this table, however, is that the problem of synthesizing graceful
2-phase recovery can be solved in polynomial-time.

6 Conclusion

In this paper, we focused on complexity analysis of synthesizing bounded-time 2-
phase recovery. This type of recovery consists of two bounded response properties
of the form: (¬S �→≤θ Q1) ∧ (Q2 �→≤δ S). We characterized S as an ideal
behavior and Q1,2 as acceptable intermediate behaviors during recovery. Each
property expresses one phase of recovery within the respective time bounds θ and
δ in a fault-tolerant real-time program. We formally defined different scenarios
of 2-phased recovery, characterized their applications in real-world systems, and
considered two types of them called relaxed (where Q1 = Q and Q2 = ¬S) and
graceful (where Q1 = S and Q2 = Q). We showed that, in general, the problem
of synthesizing relaxed 2-phase recovery is NP-complete. However, the problem
can be solved in polynomial-time, if S ⊆ Q and Q is closed in the synthesized
program. We also found a surprising result that the problem of synthesizing
graceful 2-phase recovery can be solved in polynomial-time even though all other
variations are NP-complete. We emphasize that all complexities are in the size
of the input program’s region graph.

Based on the complexity analysis, we find that the problem of synthesizing
relaxed 2-phase recovery is significantly simpler, if the intermediate recovery
predicate Q is closed in the execution of the synthesized program. This result
implies that if the intermediate recovery predicate is used for recording the fault,
then the complexity of the corresponding problem is substantially higher than
the case where the program quickly provides acceptable behavior.

One future research direction is to develop heuristics to cope with the NP-
complete instances. Based on our experience with synthesizing distributed fault-
tolerant programs [9,11], we believe that efficient implementation of such heuris-
tics makes it possible to synthesize real programs in practice. Another research
problem is to consider the case where a real-time program is subject to different
classes of faults and a different type of tolerance is required for each fault class.
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