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Abstract. Early support for reasoning about probabilistic system be-
haviour replaced nondeterminism with probabilism. Only relatively re-
cently have formalisms been studied that combine the two, and hence
facilitate reasoning about probabilistic systems at levels of abstraction
more general than code. Such studies have revealed an unsuspected
subtlety in the interaction between nondeterministic and probabilistic
choices that can be summarised: the demon resolving the nondetermin-
istic choice has memory of previous state changes, whilst the probabilis-
tic choice is made spontaneously. As a result, assignments to distinct
variables need no longer commute. This paper introduces a model with
explicit control of the length of the demon’s memory. It does so by ex-
panding the standard (initial-final) state view of computation to incorpo-
rate a third state, the ‘original’ state which checkpoints the most recent
nondeterministic choice. That enables a nondeterministic choice to be
made on the basis of only certain past probabilistic choices and so facil-
itates independent nondeterministic combinations to be chosen against
just those. Sound laws are presented and used to analyse first an exam-
ple in which no new behaviour should result, and second one that lies
beyond the scope of traditional models.

1 Introduction

Models of sequential systems that account for both (demonic) nondeterministic
and probabilistic choice are necessary in order to reason about system behaviour
at levels of abstraction more general than code. They find use, for example, in
the top-down incremental derivation of implementations that have been unpop-
ular since Dijkstra introduced them in the wp setting. However the interaction
between the two forms of choice turned out to be more subtle than was at first
supposed. Here is a representataive example [4]: for programs A and B, let A�B
and A 1

2
� B denote their nondeterministic and fair probabilistic choices respec-

tively; in the latter case, the result is equally likely to be A or B. Then, using
standard notation for assignment,

(x:= 0 � x:= 1) � (y:= 0 1
2
� y:= 1) �=

(y:= 0 1
2
� y:= 1) � (x:= 0 � x:= 1) .

(1)

Indeed, the probabilistic choice on the left is made after a value is assigned
to x by the nondeterministic choice. Thus the probability of guaranteeing the
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condition x= y is 1/2. But the right-hand program behaves more nondetermin-
istically: the nondeterministic choice can observe, and so exploit, the preceding
probabilistic choice, so that in the worst case it may keep ensuring x �= y; thus
the probability of guaranteeing x= y is reduced to 0. In the presence of both
probability and nondeterminism, disjoint assignments no longer commute!

Of course in standard sequential programming, disjoint assignments commute
as a result of the two distributivity laws:

(B � C) � A = (B � A) � (C � A)
A � (B � C) = (A � B) � (A � C).

It is the second that fails in probabilistic programming. That feature of prob-
abilistic systems has been used to good effect in modelling information flow
(for example [1,9] will be discussed in Section 4). But ‘unadulterated’ nonde-
terminism has been found to be too strong, so that weaker versions have been
considered. For instance, complementing [9], a restricted form of choice able to
read only certain declared variables has been considered in [12]. Here we adopt
a different approach and curtail the demons’s memory. With little effort modifi-
cations are possible to make the demon prescient, if that is required, or to have
more complex memory (see Section 5).

We consider probability, as has become standard, in the guise of a binary
combinator A p� B that chooses program A with probability p and B with the
deficit probability (1−p). That suffices to express known probabilistic algorithms
and to reason about a moderately broad range of probabilistic behaviour [8].
It is shown there that Dijsktra’s guarded-command language augmented with
p� provides a remarkably simple uniform notation facilitating the simultaneous
treatment of functional and probabilistic behaviour. So with almost no extra
complexity, probabilistic behaviour need not be handled by a ‘second pass’, but
all at once with the consideration of input/output behaviour.

Two models of probability and nondeterminism have been developed in which
the revised laws are sound: an expectation-transformer model [8] corresponding
to the predicate-transformer model of standard programming, and a distribu-
tional model [8], corresponding to the standard binary-relational model. In the
transformer model, each computation is modelled by transforming a random
variable over final states (seen as an expectation) to the (pointwise) greatest
expected value over initial states that can be guaranteed by executing the com-
putation with ‘reward’ the post random variable. In the distributional model,
each computation is seen as transforming an initial state to a set of distributions
over final states (though in this paper we prefer to make it a relation between
distributions). The distributional model is embedded in the transformer model
by a Galois connection [8]. In the distributional model where nondeterminism
is union, if sequential composition were to be the usual sequential composition
of relations then equality would hold in (1). Thus the definition of sequential
composition is more sophisticated in [4]. In common sequential programming, a
relational composition (S � T ) relates the final state of S and the initial state
of T , reflecting the sequential state changes. The sequential composition of [4],
however, also relates the initial state (distribution) of S with the final state of
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T . Note this difference remains even when the state-distribution transformers
are lifted to distribution transformers.

Here we follow the alternative of using the standard relational definition of
sequential composition but a slightly more sophisticated definition of nondeter-
minism. We start from the observation that nondeterministic choices made after
a sequential composition may be correlated with what happened well before.
Thus we introduce a model of computation that enables a ‘nondeterministic log’
to be maintained and a ‘nondeterministic checkpoint’ to be taken to reset the
log. The state from which the log extends is called the ‘original’ state of the
computation; and we consider distributions over final state. A nondeterministic
choice is resolved by reference to the log. But when the log is reset, original and
current states coincide and there is no history for the demon to work from; the
result is ‘nondeterministically closed’. A computation then becomes a relation
between such distributions. Three novel aspects of the model are:

1. each program construct is able to observe not only current state but also
some original state, allowing sequential composition to be defined succinctly
as a simple relational composition;

2. nondeterministic choice is separated into two operators: one binary operator
� that arbitrarily combines probabilistic outcomes of two programs without
the ‘demonic’ ability to act against previous probabilistic choices and another
unary operator � that performs the demonic act; such separation opens the
door to include multiple nondeterministic choices with different backward-
looking abilities;

3. the above two aspects explicitly reveal the interaction between probabil-
ity and nondeterminism, and allow a (generalised) assignment to take into
account observation of the original state, and ‘angelically’ act against a pre-
vious (demonic) nondeterministic choice, effectively achieving a kind of com-
pensation.

In Section 2 the new model is described and sound laws presented. Proofs are
largely routine using relational or predicate calculus. Section 3 contains a discus-
sion of (1) to demonstrate that the new model preserves its properties; it then
discusses the well-known Monty-Hall puzzle, and discusses a variant not able to
be handled by previous models.

2 A Relational Model for Probabilistic Programming

In this section we introduce the notion of ‘original state’ and probability distri-
butions that depend on original states. The semantic model supports seven basic
commands. Healthiness conditions are introduced and sound algebraic laws are
identified and used to transform programs into a normal form.

2.1 Distributions

Let S = (V →C) be the (finite) set of all states, each a mapping from program
variables (denoted x, y, · · · , z ) to constants. Let r, s, t, s0, · · · denote individual
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states. A (conditional) probability distribution is a function: h :S → (S → [0, 1])
whose first argument s denotes the original state and second argument denotes
the current state. Let H denote the set of such distributions, with members
h, h0, h1, · · · . Distributions are partially ordered: h1 �h2 iff h1.s.t � h2.s.t for
all s, t∈S.

A well-formed distribution d satisfies: from any original state s, the total
probability of all current states is at most 1:

∑
t d.s.t � 1. Let D denote the set

of well-formed distributions, with members d, d0, d1, · · · . A well-formed distri-
bution is a probability distribution over current states conditional on a specific
original state. A well-formed distribution satisfying d.s.t = p records that if the
original state is s, then the probability of reaching this point of the program in
a current state t is p. Thus the final distribution of a nonterminating program
may have total probability less than 1. A functional distribution f is a well-
formed distribution and f.s.t is either 0 or 1 for all s and t. For example, the
delta distribution δ is functional and yields probability 1 when the current state
equals the original state: δ.s.t =1 iff s = t . Let F denote the set of functional
distributions. We have F ⊆ D ⊆ H .

For program reasoning, we adopt convenient notation. Suppose V = {x, y } ;
then 〈x+ y, x− y〉 denotes a functional distribution indicating that the vari-
ables x and y have been updated to x+ y and x− y respectively since the
original state. The functional distribution 〈x, y〉 , on the other hand, corresponds
to the delta function in this context.

A uniform distribution u is a probability distribution such that for all t1 and
t2 we have u.s.t1 = u.s.t2 . Let U denote the set, with members u, u0, u1, · · · . A
constant distribution is uniform and for all s1 and s2 , it satisfies u.s1.t =u.s2.t .
Let C denote the set of constant distributions. For example, 1∈ C : for all states
1.s.t =1. We have C ⊆ U ⊆ H . Symmetrically, a current distribution v is a
probability distribution that is unchanged for every original state. Let V denote
the set of current distributions, with members v, v0, · · · ; then C ⊆ V ⊆ H .

A boolean distribution b is such that for all s and t , the probability b.s.t
is either 0 or 1. Let B denote the set of boolean distributions, with mem-
bers b, b0, b1, · · · . Functional distributions are singleton boolean distributions
which may depend on the original state. Evidently, F ⊆ B ⊆ H .

We will use a notation [S0] where S0 ⊆S to denote a boolean condition in-
dependent of the original state: [S0].s.t =1 = (t∈S0) . For example, [x= 1 ∧
y = 2] is equal to functional distribution 〈1, 2〉 , and [x= y] denotes the distri-
bution such that b.s.t =1 iff t(x)= t(y) and b.s.t =0 otherwise, and [x= y] =
〈0, 0〉+ 〈1, 1〉 . We have [S0]∈V .

2.2 Operations on Distributions

The inner product (over current states from every original state) between a
well-formed distribution and a distribution is defined: (d ·h).s.t =̂

∑
r d.s.r×

h.s.r . The result distribution is always uniform. For example, the inner product
d · [x= y] represents the total probability of the current states that satisfy x= y
from each original state.
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The linear combination of two distributions h1 and h2 by a factor (uniform)
distribution u is defined: (h1 u⊕ h2).s.t =̂ h1.s.t ∗ u.s.t + h2.s.t ∗ (1 − u.s.t).
This definition allows the choosing factors (probabilities) to depend on original
states. The convex combination (d1 u⊕ d2) of two well-formed distributions by
a uniform factor u is also well-formed. Inner product distributes over convex
combination: (d1 u⊕ d2) · h = (d1 · h) u⊕ (d2 · h).

The state update of a well-formed distribution by a program expression
e :S → (S →S) is defined: (d † e).s.t =̂

∑
r:e(s,r)= t d.s.r . From any original

state (i.e. the first argument), the probability of a final state is the total prob-
ability of the initial states mapped into the final state. The result of an up-
date is always well-formed. Assignments with program expressions that depend
on the original state can be applied to perform backward compensation (see
Section 3). The current-state composition (e1 ◦ e2) of two expressions is de-
fined: (e1 ◦ e2)(s, t) =̂ e1(s, e2(s, t)) (see its use in Law 1(3)). Two consecutive
state updates correspond to the current-state composition of the expressions:
(d † e1) † e2 = d † (e2 ◦ e1) . A similar composition for distribution and program
expression is defined: (h ◦ e).s.t =̂ h.s.e(s, t) (see its use in Law 2(5)). State
update distributes over convex combination: (d1 u⊕ d2) † e = (d1 † e) u⊕ (d2 † e).
A useful equation relating inner product, state update and current-state com-
position is: (d † e) · h = d · (h ◦ e) .

The convolution composition between a well-formed distribution d and a dis-
tribution h is defined: (d ⊗ h).s.t =̂

∑
r d.s.r × h.r.t (like matrix product it

is associative). This composition represents the conditional probabilities in cor-
respondence with the original states. It is easy to check that the result is always
well-formed, and if h is uniform so is the result. The delta distribution δ is the
unit of ⊗ . In general, convolution does not distribute over probabilistic choice
for well-formed distributions, although the distributivity does hold in special
cases when the first argument of convolution is a functional distribution, the
factor function on the right is a current distribution, or the factor function on
the left is uniform:

f ⊗ (d1 h⊕ d2) = (f ⊗ d1) h⊕ (f ⊗ d2)
d ⊗ (d1 v⊕ d2) = (d ⊗ d1) v⊕ (d ⊗ d2)
(d1 u⊕ d2) ⊗ d = (d1 ⊗ d) u⊕ (d2 ⊗ d).

2.3 The Semantic Model

A computation is represented by a relation A(d, d′) between an initial (well-
formed) distribution d and a final (well-formed) distribution d′. The initial (or
final) distribution represents the probability distribution over the initial (or final)
states conditional on the probabilistic choice taken back in the original state. The
basic commands are defined as follows.

Abort ⊥, representing nontermination, is the most nondeterministic compu-
tation and may end up in any final distribution from every initial distribution.
The assignment t:= e(s, t) uses a program expression e to modify the state ac-
cording to the initial state t and the original state s. The probability of a final
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state is the sum probabilities of the initial states mapped to it, all dependent
on the original states. The final distribution may contain as much probability
for nontermination as the initial distribution. Skip II =(t:= t) (or alternatively
II = (d′ � d)), is the unit of sequential composition. We adopt the view that if
a computation, with a certain probability, does not terminate, then within that
probability, its behaviour is chaotic: it may be in any state or may be in no state.
Technically, the final distribution is always upwards-closed.

⊥ =̂ true
t:= e =̂ d′ � d † e

A � B =̂ ∃d0 · A(d, d0) ∧ B(d0, d
′)

A h� B =̂ ∃d1, d2 · A(d, d1) ∧ B(d, d2) ∧ d′ � d1 d·h⊕ d2

A� B =̂
⋃

h A h� B

�(A) =̂ ∃d0 · A(δ, d0) ∧ d′ � d ⊗ d0

μF =̂
⋃ {A | A ⊆ F (A) }

Sequential composition A � B equates, and hides, the final distribution of A
and the initial distribution of B. Probabilistic choice A h� B with a choosing dis-
tribution h linearly combines the result distributions from A and B. Open non-
deterministic choice A� B applies the universal union of convex combinations
(with arbitrary choosing distributions) between relations. Note that finite union
of relations, violating convexity closure, is not closed in the semantics, but open
nondeterminism is. Nondeterministic closure �(A) resets the initial state of A
to be the original state; it is achieved with the delta distribution δ . The results
from all possible initial states are recorded in d0 , representing how the final dis-
tributions depend on the initial states. The result distribution is convoluted with
the initial distribution d to reflect the influence of the probability distribution
of initial states. The definition of closure illustrates how a computation can take
advantage of the history (as far back as the beginning of the nearest closure). Re-
cursion is defined as the weakest (or largest) fixpoint μF where F =F (X) is a
program context that maps each relation X to another relation F (X).

A derived command, the backward-looking nondeterministic choice
A � B =̂ �(A� B) , corresponds to that of the standard probabilistic models
and performs arbitrary convex combinations against the state at the beginning.
Section 3.1 will show how this allows nondeterminism to act against the original
probabilistic choices. Binary conditional that chooses A if b is true and oth-
erwise B is a special case of probabilistic choice, equalling A b� B where b is
a boolean distribution. Note that both assignment and binary conditional may
depend on original states. Their combined uses can support more sophisticated
forms of compensation (see Section 3.2).

2.4 Healthiness Conditions

Healthiness conditions can be viewed as imposed properties that yield desirable
laws. The total probability (over initial states) from each original state is at
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most 1. When it is less than 1, the deficiency represents the probability of non-
termination. A principle of the unifying approach [5] and other totally-correct
models is to assume that if the computation has not started then the computa-
tion becomes chaotic. In our probabilistic model, this is ensured by a healthiness
condition: A = (d = 0 ∨ A) . Another healthiness condition ensures that if the
computation may not terminate, the final distribution is chaotic for the proba-
bility of nontermination: A = (A � II) . Note that II itself also satisfies the first
healthiness condition. Symmetrically, as a healthiness condition, skip is the left
unit of sequential composition: A = (II � A) . This ensures that for a specific
final distribution, the possible initial distributions are downwards-closed. Arbi-
trary convex combinations of the final distributions (independently) from each
initial state are closed (i.e. idempotence of �): A = (A� A) . This healthiness
condition ensures idempotence of probabilistic choice in Law 2(1). In this paper,
we assume that all computations are feasible (i.e. free of miracles) so that from
any initial distribution, there exists some final distribution: (A � ⊥) = ⊥ . The
fixpoint of our model uses Tarski’s fixpoint theory and hence does not require
the healthiness condition of Cauchy closure for continuity.

A specification A is called nondeterministically closed if A = �(A) . Such a
computation does not depend on original states. An assignment t:= e is closed if
e = e(t) does not depend on the original state s . A probabilistic choice A h� B
is closed if h∈V does not depend on the original state. Open nondetermin-
ism A�B and sequential composition A � B are closed if both arguments are
closed. Standard probabilistic programming corresponds to the sub-theory of
nondeterministically closed specifications in the new model. Open specifications
are useful if there exists some implementation mechanism (e.g. using a log file)
that allows a computation to compensate against nondeterministic damage of
undesirable errors in the past.

2.5 Algebraic Laws and Normal Form

The algebraic laws of this section are semantically sound. Law 1(1) and (2) are
direct results of the healthiness conditions:

Law 1. (1) ⊥ � A = ⊥ = A � ⊥ (2) II � A = A = A � II
(3) t:= e1 � t:= e2 = t:= e2 ◦ e1.

The following laws identify expected properties of probabilistic choice:

Law 2
(1) A h� A = A (2) A h� B = B 1−h� A
(3) (A h� B) h′� C = A hh′� (B h′′� C) where h′′ =h′(1−h)/(1−hh′), h < 1
(4) (A h� B) � C = (A � C) h� (B � C)
(5) t:= e � (A h� B) = (t:= e � A) h◦e� (t:= e � B).

Pure nondeterministic choice � is similar to nondeterminism in the (non-
probabilistic) sequential model. In particular, it satisfies right distributivity for
sequential composition, which does not hold in previous probabilistic models,
suggesting that the operator does not exploit history:
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Law 3. (1) The composition � is idempotent, commutative and associative.
(2) Sequential composition is associative and distributes over �.
(3) The probabilistic choice h� distributes over �.

Abort and skip are fixpoints of nondeterministic closure, which forces the current
state to coincide with the original state for the assignment:

Law 4. (1) �(⊥) = ⊥ (2) �(II) = II
(3) �(t:= e(s, t)) = t:= e(t, t).

A nondeterministic closure resets the original state to be the initial state of its
argument. Thus adjacent closures have the same effect as one closure. Closure
distributes over convex combination with a current choosing distribution. If the
second half of a sequential composition in a closure is closed, the outer closure
can be decomposed into two closures in a sequential composition:

Law 5
(1) �(A � B) = �(�(A) � B)
(3) �(A� B) = �(�(A)� B)

(2) �(A h� B) = �(�(A) h� B)
(4) �(A v� B) = �(A) v� �(B)

(5) �(A � �(B)) = �(A) � �(B).

The proof for Law 5(5) is included to illustrate the semantic reasoning style.

Proof. For all well-formed distributions d and d′ ,

[�(A � �(B))](d, d′)
⇔ definitions

∃d0, d1, d2 · A(δ, d1) ∧ B(δ, d2) ∧ [�(B)](d1, d0) ∧ d0 = d1 ⊗ d2 ∧ d′ = d ⊗ d0

⇔ predicate calculus

∃d1, d2 · A(δ, d1) ∧ B(δ, d2) ∧ d′ = d ⊗ (d1 ⊗ d2)
⇔ associativity

∃d1, d2 · A(δ, d1) ∧ B(δ, d2) ∧ d′ = (d ⊗ d1) ⊗ d2

⇔ predicate calculus

∃d0, d1, d2 · A(δ, d1) ∧ B(δ, d2)∧
[�(A)](d, d0) ∧ d0 = d ⊗ d1 ∧ [�(B)](d0, d

′) ∧ d′ = d0 ⊗ d2

⇔ definitions

[�(A � �(B))](d, d′) .

Thus the two programs correspond to the same relation.
�

Two usual laws hold for the weakest fixpoint operator:

Law 6. (1) F (μF ) = μF (1) if A ⊆ F (A) then A ⊆ μF .

A program is called finite if it consists of only abort ⊥, closed assignment
t:= e(t), sequential composition, closed probabilistic choice A v� B, open non-
determinism � and nondeterministic closure � . A finite program is equal to
⊥ , II or can be written as:

⊕
i

⊕
j,vij

(t:= eij(t, t) � �(Nij))
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where each Nij is a program in normal form and for any i, we assume
∑

j vij =1.
Here we are using a collective form of probabilistic choices under which A v� B
is represented as

⊕
i,vi

Ai where i =1, 2 , v1 = v, v2 =1−v , A1 = A and A2 = B.
Adjacent probabilistic choices can be aggregated using Law 2(3). The following
syntax represents the normal form formally.

Theorem 1. Every finite program is semantically equal to a program in the
following normal form N:

N ::= M | N� N
M ::= ⊥ | II | (t:= e(t) � �(N)) | M v� M.

Proof. Notice that every program M ∈M is closed according to Law 4(3) and
Law 5(5).

1. Primitives are already in normal form: ⊥, t:= e(t)∈N .
2. For two finite programs N, N ′ ∈N , their sequential composition (N � N ′)

can be reduced to normal form, because by induction:
(a) If N is a primitive, (N � N ′) is reducible according to Law 2(5) and

Law 3(2).
(b) Assume all (Ni � N ′) are reducible. Then for M, M ′ ∈M such that

M =
⊕

i,vi
(t:= ei � �(Ni)) and M ′ =

⊕
j,v′

j
(t:= e′j � �(N ′

j)) , ac-
cording to Law 2(4), we have (M � M ′) =

⊕
i,vi

(t:= ei � �(Ni) �

M ′) =
⊕

i,vi
(t:= ei � �(Ni � M ′)) ∈ N . Thus in general N =

⊕
i Mi

and N ′ =
⊕

j M ′
j , and (N � N ′) =

⊕
ij(Mi � M ′

j) ∈ N .
3. According to Law5(4), for all M, M ′ ∈M , we have (M v� M ′) ∈ M . Thus

for finite programs N, N ′ ∈N , their probabilistic choice is reducible:
(N v� N ′) =

⊕
ij(Mi � M ′

j) ∈ N.
4. Obviously (N � N ′) ∈ N for all N, N ′ ∈ N .
5. If N ∈N , then �(N) =

⊕1
i=1

⊕1
j=1,v1

(II � �(N)) ∈ N where v1 =1 .

Thus every finite program can be transformed to normal form using just the
laws, which are themselves sound in the semantic model.

�

2.6 Program Verification

An assertion can be regarded as a predicate of a single distribution variable d.
It is therefore more convenient to use a set of well-formed distributions to rep-
resent an assertion. If A is a program and P, Q ⊆ D are subsets of well-formed
distributions, then annotation (P A Q) =̂ ∀d, d′ · (d∈P ∧ A(d, d′) ⇒ d′ ∈Q)
states that if the computation A starts from an initial distribution in P , then
the final distributions that it yields lie in Q . As our model is relational, if all
assertions P∈P and Q∈Q in some set clusters satisfy (P A Q) , so does their
universal union: (

⋃P A
⋃Q) .
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3 Two Case Studies

In this section, we consider two case studies. In the first we revisit (1) and
show that the new semantic model distinguishes the two sides, just like previous
models; it illustrates the style of reasoning with the model. The second case study
illustrates how the properties of realistic probabilistic programs are treated. The
Monty-Hall problem is introduced and modified in a manner that demonstrates
the power of the model.

3.1 The Example Mentioned in Introduction

Example (1) was originally studied in [4]. The difference between the two seem-
ingly equal programs is due, semantically, to the fact that open nondeterministic
choice can make different probabilistic choices from different original states. All
commands normally share the same original state, but a nondeterministic clo-
sure can alter this and reset the original state, allowing the computation within
the closure to act against the recorded probabilistic choice in the original state.
We consider both informal and formal versions.

Let V = {x, y } be the set of all program variables whose values are boolean:
C = { 0, 1 } . To distinguish the two programs, we simply need to show that from
some initial distribution (i.e. 〈0, 0〉 ), the two programs may yield different sets of
final distributions. The functional distribution 〈0, 0〉 denotes that the probability
is 1 for x= 0 and y =0 regardless of original state.

We first consider the program on the left. The nondeterministic closure re-
sets the distribution with the delta distribution 〈x, y〉 , equating the current
state to the original state. The open nondeterministic choice performs convex
combination with an arbitrary factor distribution u between the results 〈0, y〉
and 〈1, y〉 of the assignments x:= 0 and x:= 1 . The result of arbitrary convex
combination is convoluted with the functional initial distribution. Convolution
distributes over the convex combination. The effect is equivalent to choosing be-
tween 〈0, 0〉 and 〈1, 0〉 with an arbitrary constant factor. The fair probabilistic
choice combines the result distributions with equal probability. For any constant
factor, the overall probability for x= y is always 1/2. Formally,

{ 〈0, 0〉 }
� { 〈x, y〉 }

x:= 0 { 〈0, y〉 } � x:= 1 { 〈1, y〉 }
{ 〈0, y〉 u⊕ 〈1, y〉 | u∈U }

{ 〈0, 0〉 ⊗ (〈0, 0〉 u⊕ 〈1, 0〉) | u∈U }
{ 〈0, 0〉 c⊕ 〈1, 0〉 | c∈C }
y:= 0 1

2
� y:= 1

{
(〈0, 0〉 c⊕ 〈1, 0〉) 1

2
⊕ (〈0, 1〉 c⊕ 〈1, 1〉) | c∈C

}

{ d | d · [x= y] = c/2 + (1 − c)/2 = 1/2 }.
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The annotation for the probabilistic choice requires the universal union rule of
Section 2.6 and:

{ 〈0, y〉 c⊕ 〈1, y〉 }
y:= 0 { 〈0, 0〉 c⊕ 〈1, 0〉 } 1

2
� y:= 1 { 〈0, 1〉 c⊕ 〈1, 1〉 }

{ (〈0, 0〉 c⊕ 〈1, 0〉) 1
2
⊕ (〈0, 1〉 c⊕ 〈1, 1〉) }.

On the right-hand side of Example (1), the distribution before the nondetermin-
istic choice has equal probability for distributions 〈0, 0〉 and 〈0, 1〉. That means
the arbitrary uniform factor u ’s values at two original states (0, 0) and (0, 1)
are exploited for convex combination in the subsequent nondeterminism. So no
non-zero probability for x= y can be guaranteed. Formally,

{ 〈0, 0〉 } y:= 0 1
2
� y:= 1

{
〈0, 0〉 1

2
⊕ 〈0, 1〉

}

� { 〈x, y〉 }
x:= 0 { 〈0, y〉 } � x:= 1 { 〈1, y〉 }

{ 〈0, y〉 u⊕ 〈1, y〉 | u∈U }
{

(〈0, 0〉 1
2
⊕ 〈0, 1〉) ⊗ (〈0, y〉 u⊕ 〈1, y〉) | u∈U

}

{
(〈0, 0〉 c1⊕ 〈1, 1〉) 1

2
⊕ (〈1, 0〉 c2⊕ 〈1, 1〉) | c1, c2 ∈C

}

{
d | d · [x= y] = c1 1

2
⊕ (1 − c2), c1, c2 ∈C

}
.

3.2 The Monty-Hall Problem

This case study illustrates how the nondeterministic demon and the computation
can both benefit from the extra information recorded in the original state. The
last variation of the case study is not captured by previous models.

The famous Monty-Hall puzzle (in this context, from [8]) describes a game
show with a host, a contestant and three closed doors: one of them hides a car,
which the contestant wishes to win, whilst the other two hide goats, which the
contestant intends to avoid. The contestant begins by choosing a door, but it
is not opened immediately. Instead, the host opens a door different from the
one just chosen by the contestant and then offers the contestant the option of
switching choices to one of the other two unopened doors. Contrary to common
perception that the chance of winning the car is unchanged by whether or not
the contestant switches, the correct move is to switch, and it doubles the overall
chance from 1/3 (independent initial right choice among three) to 2/3 (initial
wrong choice to be corrected with the host’s assistance).

This puzzle and its solution involve both probability and nondeterminism.
Let the variable x denote the host’s initial choice (in program HC ) of the door
(number 1, 2 or 3) for the car, which is completely unknown to the contestant:

HC =̂ x:= 1 � (x:= 2 � x:= 3).
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The variable y denotes the contestant’s choice. The contestant, with no knowl-
edge of the position of the car, chooses fairly among the three:

PC =̂ y:= 1 1
3
� (y:= 2 1

2
� y:= 3).

Note that this is one possible strategy for the contestant, and a program may well
adopt a different (and possibly bad) strategy. The contestant’s only knowledge is
that the host chooses the door before the contestant’s initial choice, and that the
host is not prescient. The host’s subsequent door opening (denoted with variable
z) depends on the contestant’s initial choice. If the choice is right, then the host
chooses one of the two remaining goat doors; otherwise, the host chooses the
only remaining goat door:

HC1 =̂ (z:= goat1(x) � z:= goat2(x)) [x= y]� z:= goat(x, y)

where the function goat1(x) returns the smaller door number other than x ,
goat2(x) returns the larger number, and goat(x, y) , defined only when x �= y ,
returns the only other number. For example, goat2(2)=3 and goat(1, 2)=3 .
The contestant’s second choice results either in stay ST =̂ II or switch
SW =̂ y:= goat(y, z) . The game corresponds to the computation:

HC � PC � HC1 � ? .

A routine calculation guarantees probability 1/3 if the question mark is replaced
by ST but 2/3 if that is replaced by SW . Note that the position of the car must
not depend on the contestant’s initial choice. The host’s placement of the car
after the contestant’s choice is:

PC � HC � HC1 � ? .

It is unknown whether the (nondeterministic) host places the car against or for
the contestant’s interests, or indeed chooses neutrally. As a result, no matter
what the contestant does in the end, the strategy cannot guarantee even a small
probability of success. That phenomenon is modelled correctly by both this and
previous models.

Now consider a less honest host who, though setting the car before the con-
testant, has detected the contestant’s tendency to switch. He secretely tries to
move the car to the door of the contestant’s first choice with probability 1/3 (no
move if the contestant is right):

HC2 =̂ (x:= y 1
3
� II).

The host performs this dishonest act after opening a door but before the con-
testant’s final choice:

HC � PC � HC1 � HC2 � ? .

Now the probability of initial correctness and staying with the original choice
is increased to 1/3 + (2/3 × 1/3) = 5/9, while the probability of success for
switching drops to 4/9.
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However, an alert contestant decides to stay whenever he detects any noise of
car movement (i.e. detecting a change of state; we assume that the host is not
devious enough to move the car around behind the same door) but to switch
otherwise:

AC =̂ SW δ� ST .

The contestant performs that scrutiny by comparing the original state, immedi-
ately after the host opens a door, with the current state before the final decision:

HC � PC � HC1 � �(HC2 � AC ) .

The car moves with probability 2/3 × 1/3 = 2/9 when the contestant’s initial
choice was wrong. It is always favourable for the contestant to stay after detecting
noise. Switching yields probability 2/3×2/3 = 4/9 of success for the contestant’s
unswitched initial wrong choice (greater than the success probability 1/3 for
staying). The overall probability of success of AC is 2/9+4/9 = 2/3. Formally:

{ 〈1, 1, 1〉 }
� � { 〈x, y, z〉 } Host’s choice

x:= 1� (x:= 2� x:= 3) �

{ 〈1, 1, 1〉 c1� (〈2, 1, 1〉 c2� 〈3, 1, 1〉) | c1, c2, ∈C }
y:= 1 1

3
� (y:= 2 1

2
� y:= 3) � Player’s choice

{ d | d · [x= y] = 1/3 }
(z:= goat1(x) � z:= goat2(x)) [x = y]� z:= goat(x, y) � Host opens a door
{ d | d · [x= y] = 1/3 ∧ d · [y �=x= goat(y, z)] = 2/3 }
� { 〈x, y, z〉 }

x:= y 1
3
� II � Car move

{
〈y, y, z〉 1

3
⊕ 〈x, y, z〉

}

y:= goat(y, z) δ� II Alert contestant’s choice
{

d | d · [x= y] = 2
3 × 1

3 + 2
3 × 2

3 =2/3
}
.

4 Related Work

This work is most closely related to the distributional model of He et al. [4]
which appeared more than two decades after Rabin’s demonstration [11] of the
remarkable effectiveness of probabilistic algorithms. The obvious difference is
that in our model distributions are conditional (depending on two states rather
than just one). That has an interesting consequence for the definition of se-
quential composition. In [4] the definition is complicated by having to take the
average over each intermediate distribution in the composition; our definition is
simply composition of binary relations as a result of our use of conditional dis-
tributions. That makes our definition more properly ‘relational’ in the style of
UTP [5]. Rabin’s paper was followed more closely by a succession of interesting
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probabilistic algorithms and of logics to facilitate model checking of probabilis-
tic properties. For example Hansson and Jonsson [3] incorporate both time and
probability. However in most of that work (demonic) nondeterminism is replaced
by probabilism.

Our interest is in semantic models and (sound) laws for the top-down in-
cremental derivation of an implementation from its specification. That requires
nondeterminism (seen as arising from specification and modelling) as well as
probabilism. McIver and Morgan’s textbook [8] provides the fundamentals and
indicates how a theory in the Dijkstra-Hoare style unfolds. It also contains Ga-
lois connections relating He et al.’s distributional model to the relational and
predicate-transformer models of nonprobabilistic sequential programs and to the
expectation-transformer model of probabilistic (nondeterministic) programs.

In order to handle original states we have adopted the view standard in math-
ematics but less so in computation where it has great relevance—that a condi-
tional probability P (A|B) may be used to update knowledge about P (A) (for
example by Bayes’s formula) in the light of further, in our case sequentially pro-
vided, information. The idea of using conditional probabilities for a semantics
of probabilistic programs, is not new. Incisive use of it has been made, notably,
by Panangaden [10] and Ying [17]. Pananganden makes a convincing case that
conditional probability distributions are the counterpart—in general—of ‘prob-
abilistic relations’. His treatment is aimed at the more general continuous case,
but his insights apply here. It would be interesting to calculate his duality start-
ing from our (nonstandard) state-based model to see what transformer model
results; also to apply, to the model proposed here, the ideas captured in those
extensions to ‘probabilistic’ predicates or relations, both at the level of the types
of our semantics and in the monadic setting. Ying, on the other hand, uses
conditional probability as the basis for a semantics of guarded-command-like
programs with angelic choice and (of course) demonic choice but without recur-
sion, iteration or explicit probabilistic choice that has the strength to support a
refinement calculus. His models extend the distributional and expectation trans-
former models, by considering instead probabilistic predicates. As a result his
semantics makes finer distinctions between programs and he is able to introduce
a refinement relation that is probabilistic rather than Boolean in nature.

Varacca and Winskel [16] give an elegant analysis of how the monads for prob-
ability and nondeterminism might be combined. They contrast the distributive
combination of the two (used, for instance, by Mislove et al. [7]) with their com-
bination after modifying the probabilistic monad to contain only affine identities
(hence ensuring the result can be lifted to the power set).

As indicated by our treatment of the Monty Hall problem and its variations,
a framework incorporating probability and nondeterminism addresses issues of
secrecy and information flow. Most closely related to our approach in that direc-
tion is the work of Morgan [9]. Whilst our nondeterminism has limited memory,
his has limited vision, since program state is separated into visible and hidden
parts; but then his novel refinement relation becomes the primary tool (whilst
we retain the standard equivalence connecting nondeterminism and refinement:
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P � Q iff P = P �Q). Morgan’s approach is demonstrated on Chaum’s ‘Dining
Cryptographers’ and Rivest’s ‘Oblivious Transfer’. Pananganden’s work men-
tioned above also provides an approach to the analysis of information flow in
security protocols; see for instance [1] which contains further references.

There is a very much greater literature devoted to the difficult topic of prob-
ability in reactive and parallel programs. See [14] for a survey to 2004, in the
setting of probabilistic automata. Inevitably some of those contributions are rel-
evant to the sequential case. Typically there demonic nondeterminism is viewed
as freedom to be exploited by a scheduler [13]. Whilst true as far is that is able
to be exploited in the sequential case (for ‘scheduler’ read ‘implementer’), here
it is not the overriding consideration, which is the interaction between proba-
bilistic choice and sequential composition. Focusing on that, the sequential case
might be viewed as a convenient starting point for a later study of reactive non-
deterministic and probabilistic computation, in which the interaction between
nondeterminism and probability is studied without the concerns of deadlock,
divergence and so on. Contributions to the reactive case that will no doubt be
influential due to the combination of nondeterminism and probability include the
work of Mislove et al. [7] and Tix et al. [15] which construct models of process
algebra with nondeterminism and probability, as a solution to a domain equa-
tion using the Plotkin powerdomain. Also the probabilistic automata of Segala
[13] embody important principles. As theories for reactive probabilistic systems
account largely for the various forms of ‘process testing’, they appear currently
to be surprisingly divergent from those for sequential probabilistic systems.

5 Conclusion and Further Work

This paper has introduced a relational probabilistic model containing both prob-
abilistic choice and nondeterministic choice. The standard demonic nondetermin-
istic choice is decomposed into two operators: one that performs convex closure
and the other that performs nondeterministic closure. The introduction of orig-
inal states and consequent use of conditional probability distributions help to
relate sequential specifications with some past state, whilst at the same time
ensuring that sequential composition remains relational.

That clarifies what nondeterminism really does, and facilitates further gen-
eralisations. One such is to allow commands, like assignment and probabilistic
choice, to observe original state. That allows a later computation to perform
compensation back to the starting point of the closest nondeterministic closure.
Another possibility is to strengthen the manner in which a nondeterministic
choice can exploit further history by introducing more original states; then an
open nondeterministic choice can act against the probabilistic choices at several
points set by nested nondeterministic closures. Such generalisations become pos-
sible only after we explicitly reveal what nondeterministic choices really do and
they have, as we have seen, important application beyond the realm of prob-
abilistic programs (for example in the design of security protocols, where the
adversary can be regarded as nondeterministic if it is unknown whether it can
observe certain information and take advantage of the observation).
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Sequential composition of programs has been modelled as composition of bi-
nary relations, but at the expense of a mild complexity in the semantics. In the
distributional model, the reverse is the case: the definition of sequential com-
position requires imposition of healthiness conditions. As a result, our version
may prove easier in the so-far-unachieved goal of unifying probabilism with other
programming constructs in the style of Unifying Theories of Programming, [5].
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