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Abstract. A truly secure protocol is one which never violates its se-
curity requirements, no matter how bizarre the circumstances, provided
those circumstances are within its terms of reference. Such cast-iron guar-
antees, as far as they are possible, require formal techniques: proof or
model-checking. Informally, they are difficult or impossible to achieve.

Our technique is refinement, until recently not much applied to se-
curity. We argue its benefits by giving rigorous formal developments, in
refinement-based program algebra, of several security case studies.

A conspicuous feature of our studies is their layers of abstraction
and –for the main study, in particular– that the protocol is unbounded
in state, placing its verification beyond the reach of model checkers.

Correctness in all contexts is crucial for our goal of layered, refinement-
based developments. This is ensured by our semantics in which the
program constructors are monotonic with respect to “security-aware”
refinement, which is in turn a generalisation of compositionality.

Keywords: Refinement of security; formalised secrecy; hierarchical se-
curity reasoning; compositional semantics.

1 Introduction

This paper is about verifying computer programs that have security- as well as
functional requirements; in particular it is about developing them in a layered,
refinement-oriented way. To do that we use the novel Shadow Semantics [14,15]
that supports security refinement.

Security refinement is a variation of (classical) refinement that preserves non-
interference properties (as well as classical, functional ones), and features compo-
sitionality and hierarchical proof with an emphasis unusual for security-protocol
development. Those features are emphasised because they are essential for scale-
up and deployment into arbitrary contexts: in security protocols, the influence
of the deployment environment can be particularly subtle.

In relation to other approaches, such as model checking, ours is dual. We begin
with a specification rather than an implementation, one so simple that its se-
curity and functional properties are self-evident — or are at least small enough
to be subjected to rigorous algorithmic checking [19]. Then secure refinement
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ensures that non-interference -style flaws in the implementation code, no mat-
ter how many refinement steps are taken to reach it, must have already been
present in that specification. Because the code of course is probably too large
and complicated to understand directly, that property is especially beneficial.

Our main contribution, in summary, is to argue by example that the
secure-refinement paradigm [14,15], including its compositionality and layers
of abstraction, can greatly extend the size and complexity of security appli-
cations that can be verified. The principal case study is a protocol for Yao’s
Millionaraires’ Problem [23], especially suitable because it includes four (sub-)
protocols nested like dolls within it: our paradigm allows them to be treated
separately, so that each can be understood in isolation. That contrasts with
the Millionaires’ code “flattened” in Fig. 4 to the second-from-bottom level of
abstraction: at face value it is impenetrable.

In §3 we set out the semantics for secure refinement; and in §4 we begin our
series of case studies, in increasing order of complexity; but before any of that, in
§2 we introduce multi-party computations. Throughout we use left-associating
dot for function application, so that f.x.y means (f(x))(y) or f(x, y), and we
take (un-)Currying for granted where necessary. Comprehensions/quantifications
are written uniformly, as (Qx: T |R·E) for quantifier Q, bound variable(s) x of
type(s) T , range-predicate R (probably) constraining x and element-constructor
E in which x (probably) appears free: for sets the opening “(Q” is “{” and the
closing “)” is “}” so that e.g. the comprehension {x, y: N | y=x2 · z+y} is the
set of numbers z, z+1, z+4, · · · that exceed z by a perfect square exactly.

In the conclusions §8 we set out our strategic goals for the whole approach.

2 Secure Multi-party Computation: An Overview

Xor-shares of one conjunct

Shares of
the other

Xor these to get
the conjunction

of the inputs'
xors.

Agent A sees the upper shares, the two in-

puts and one output; B sees the lower . The

upper/lower exclusive-or of the two outputs

is the conjunction of the left- and right in-

puts’ separate upper/lower xor’s.

Fig. 1. ⊕-shared conjunction: §6.2

In Multi-party computations (MPC ’s)
separate agents hold their own shares
of a shared computation, as illus-
trated in Fig. 1. Only at the end are
the shares combined; and the compu-
tation is secure if no information is
released until that point. We specify
a typical two-party MPC as

visA a;visB b;vis x;
x:= a ⊗ b ,

(1)

in which two agents A and B, with
their respective variables a and b vis-
ible only to them separately, some-
how collaboratively calculate the re-
sult a⊗b and publish it in the variable
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x; but they reveal nothing (more) about a, b in the process, either to each other
or to a third party. Our declaration visA a means that only A can observe the
value of a (similarly for B); and the undecorated vis means x is observable to all,
in this case both A, B and third parties. For example, if ⊗ were conjunction then
(1) specifies that A (knowing a) learns b when a holds, but not otherwise; and a
third party learns the exact values a, b only when they are both true. Although
the assignment (1) cannot be executed directly when A and B are physically
distributed, nevertheless the security and functionality properties it specifies are
indeed self-evident once ⊗ is fixed. But the “somehow collaboratively calculate”
above is a matter of implementing the specification, using local variables of
limited visibility and exchange of messages between the agents. We will see
much of that in §5ff; and it is not self-evident at all.

An unsatisfactory implementation of (1) involves a real-time trusted third
party (rTTP): both A, B submit their values to an agent C which performs the
computation privately and announces only the result. But this Agent C is a
corruptible bottleneck and, worse, it would learn a, b in the process. The rTTP
can be avoided by appealing to the sub-protocol Oblivious Transfer [17,18] in
which a TTP (no “r”) participates only off-line and before the computation
proper begins: his Agent C is not a bottleneck, and it does not learn a or b.

Our main case study is Yao’s millionaires A, B of §7 who compare their for-
tunes a, b without revealing either: only the Boolean a<b is published. For us it
is a showcase exemplar, because it makes our point of layered development so
well: it uses the Lovers’ II protocol (§6.2), using Lovers’ I (§6.1), using Oblivious
Transfer (§5), using the Encryption Lemma (§4); moreover our treatment of the
main loop (§7.3, unbounded riches) abstracts from the loop body (§7.1, the two-
bit millionaires). Layering and compositionality are conspicuous, our technique’s
specialty; and our dealing easily with unbounded state is another innovation.

Our contribution in detail is thus to formalise and prove a number of
exemplary non-interference -style security protocols while moving through layers
of abstraction and in some cases with unbounded state. We aim for a method
with the potential to scale, and to be automated, and moreover one which would
guide a designer to an understanding of the implications of his proposed design,
a paramount criterion for critical software. The Millionaires illustrate the hierar-
chical approach: when written out in full, the code comprises roughly 30 intricate
lines (Fig. 4); only abstraction controls this complexity. Finally, the proofs are
lengthy; but crucially they are boring, comprising many tiny steps similar to
those already automated in probabilistic program algebra [12], and thus easily
checked.

3 The Shadow Model of Security and Refinement

The Shadow Model extends the non-interference model of security [7] to de-
termine an attacker’s inferred knowledge of hidden (high-security) variables at
each point in the computation; we then require that the inferred knowledge is
not increased by secure refinement.
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In its original form, non-interference partitions variables into high-security-
and low-security classes: we call them hidden and visible. A “non-interference
-secure” program is then one where our attacker cannot infer hidden variables’
initial values from visible variables’ values (initial or final). With just two vari-
ables v, h of class visible, hidden resp. a possibly nondeterministic program r
thus takes initial states (v, h) to sets of final visible states v′ and is of type
V →H→ PV , where V ,H are the value sets corresponding to the types of v, h.
Such a program r is non-interference -secure just when for any initial visible the
set of possible final visibles is independent of the initial hidden [9,20], that is for
any v:V we have

(∀h0, h1:H · r.v.h0 = r.v.h1

)
.

In our approach [14] we extended this view, in several stages. The first was to
concentrate on final- (rather than initial) hidden values and therefore to model
programs as V→H→P(V×H). For two such programs r{1,2} we say that r1 � r2,
that r1 “is securely refined by” r2, whenever both the following hold:

(i) For any initial state v, h each possible r2 outcome v′, h′ is also a possible
r1 outcome, that is for all v:V and h:H we have r1.v.h ⊇ r2.v.h .
This is the classical “can reduce nondeterminism” form of refinement.

(ii) For all v:V , h:H, and v′:V satisfying
(∃h′

2:H · (v′, h′
2) ∈ r2.v.h

)
, we have

for all h′:H that (v′, h′) ∈ r1.v.h implies (v′, h′) ∈ r2.v.h.
This second condition says that for any observed visibles v, v′ and any ini-
tial h the attacker’s “deductive powers” w.r.t. final h′’s cannot be improved
by refinement: there can only be more possibilities for h′, never fewer.

In this simple setting the two conditions together do not yet allow an attacker’s
ignorance of h strictly to increase: secure refinement seems to boil down to
allowing decrease of nondeterminism in v but not in h. But strict increase of
hidden nondeterminism is possible: we meet it later, in §3.3.

Still in the simple setting, as an example restrict all our variables’ types so
that V=H={0, 1}, and let r1 be the program that can produce from any initial
values (v, h) any one of the four possible (v′, h′) final values in V × H (so that
the final values of v and h are uncorrelated). Then the program r2 that can
produce only the two final values {(0, 0), (0, 1)} is a secure refinement of r1; but
the program r3 that produces only the two final values {(0, 0), (1, 1)} is not a
secure refinement (although it is a classical one).

This is because r2 reduces r1’s visible nondeterminism, but does not affect the
hidden nondeterminism in h′. In r3, however, variables v′ and h′ are correlated.

3.1 The Shadow H of h Records h’s Inferred Values

In r1 above the set of possible final values of h′ was {0, 1} for each v′ separately.
This set is called “The Shadow,” and represents explicitly an attacker’s ignorance
of h′: it is the smallest set of possibilities he must consider possible, by inference.
In r2 that shadow was the same; but in r3 the shadow was smaller, just {v′} for
each v′, and that is why r3 was not a secure refinement of r1.

In the shadow semantics we track this inference, so that our program state
becomes a triple (v, h, H) with H a subset of H — and in each triple the H
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contains exactly those (other) values that h might have. The (extended) output
triples of the three example programs are then respectively

r1 — {(0, 0, {0, 1}), (0, 1, {0, 1}), (1, 0, {0, 1}), (1, 1, {0, 1})}
r2 — {(0, 0, {0, 1}), (0, 1, {0, 1})}
r3 — {(0, 0, {0}), (1, 1, {1})} ,

and we have r1 � r2 because r1’s set of outcomes includes all of r2’s. But for r3

we find that its outcome (0, 0, {0}) does not occur among r1’s outcomes, nor is
there even an r1-outcome (0, 0, H ′) with H ′ ⊆ {0} that would satisfy (ii). That,
again, is why r1 
� r3.

For sequential composition of shadow-enhanced programs, not only final- but
also initial triples (v, h, H) must be dealt with: the final triples of a first com-
ponent become initial triples for a second. We now define the shadow semantics
exactly, in four stages, by showing how those triples are generated.

3.2 Step 1: The Shadow Semantics of Atomic Programs

A classical program r is an input-output relation between V ×H -pairs. Consid-
ered as a single, atomic action its shadow-enhanced semantics addShadow.r is a
relation between V ×H × PH -triples and is defined as follows:
Definition 1. Atomic shadow semantics Given a classical program r:V →
H→P(V ×H) we define its shadow enhancement addShadow.r of type V→H→
PH→ P(V ×H× PH) so that addShadow.r.v.h.H � (v′, h′, H ′) just when both

(i) r.v.h � (v′, h′) — classical
(ii) and H ′ = {h′:H | (∃h′′:H · r.v.h′′ � (v′, h′)

) } . — shadow

�
Clause (i) says that the classical projection of addShadow.r’s behaviour is the
same as the classical behaviour of just r itself. Clause (ii) says that the final
shadow H ′ contains all those values h′ compatible with allowing the original
hidden value to range as h′′ over the initial shadow H .

As a first example, let the syntax x:∈S denote the standard program that
chooses variable x’s value from a non-empty set S. Assume here only that S is
constant, not depending on v, h. Then from Def. 1 we have that

(i) Choosing v affects only v because
addShadow.(v:∈S).v.h.H = {v′:S · (v′, h, H)}

(ii) Choosing h affects both h and H , possibly introducing ignorance because
addShadow.(h:∈S).v.h.H = {h′:S · (v, h′, S)}

(iii) An assignment of hidden to visible “collapses” ignorance because
addShadow.(v:=h).v.h.H = {(h, h, {h}}

From (ii) and (iii) the composition addShadow.(h:∈S); addShadow.(v:=h) first
introduces ignorance: we do not know h’s exact value “at the semicolon.” But
then the ignorance is removed: we deduce h’s value, at the end, by observ-
ing v. The composition (ii); (iii) as a whole is nondeterministic, and it yields
{x: S · (x, x, {x})} with v, h’s common final value x drawn arbitrarily from S;
but whatever that value is, it is known that h has it because H is a singleton.
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3.3 Step 2: The Shadow Semantics of Straight-Line Programs

General (non-atomic) programs gain their shadows by repeated application of
§3.2 as implied by induction over their syntax, as shown in Fig. 2. The only
non-traditional command is reveal that publishes an expression but changes no
program variables; note it does change the shadow.

3.4 Step 3: Refinement’s Properties via Gedanken Experiments

Our definition of refinement is based on scale-up experiments with program
algebra [14,15]. Our first observation is that the semantics enforces perfect recall,
that visible variables reveal information even if subsequently overwritten. This
is because refinement must be monotonic, i.e. (A) that refinement of a program
portion must refine the whole program; and (B) that conventional refinements
involving v only must remain valid. Both principles (A,B) are required in order
to be able to develop large programs via local reasoning over small portions.

Without perfect recall, overwriting v would prevent program v:= h; v:∈{0, 1}
from revealing h. Yet from (B) we have v:∈{0, 1} � v:= v; and then from (A) we
have (v:=h; v:∈{0, 1}) � (v:=h; v:= v) — and it would be a violation of secure
refinement for the rhs to reveal h while the lhs does not. Thus the premise
–imperfect recall– is false.

A similar experiment applies to conditionals: because (A,B) validates

if h=0 then v:∈{0, 1} else v:∈{0, 1} fi � if h=0 then v:= 0 else v:= 1 fi

we must accept that the if-test reveals its outcome, in this case whether h=0
holds initially. And nondeterministic choice P1 � P2 is visible to the attacker
because each of the two branches P{1,2} can be refined separately.

Equality of programs is a special case of refinement, whence compositionality
is a special case of monotonicity: two programs with equal semantics in isolation
must remain equal in all contexts. With those ideas in place, we define refinement
as follows:
Definition 2. Refinement For programs P{1,2} we say that P1 is securely
refined by P2 and write P1 � P2 just when for all v, h, H we have

(∀ (v′, h′, H ′
2): [[P2]].v.h.H ·(∃H ′
1:PH | H ′

1 ⊆ H ′
2 · (v′, h′, H ′

1) ∈ [[P1]].v.h.H
)

) ,

with [[·]] as defined in Fig. 2.
This means that for each initial triple (v, h, H) every final triple (v′, h′, H ′

2)
produced by P2 must be “justified” by the existence of a triple (v′, h′, H ′

1), with
equal or smaller ignorance, produced by P1 under the same circumstances. �
From Fig. 2 we have e.g. that [[h:= 0 � h:= 1]].v.h.H is {(v, 0, {0}), (v, 1, {1})},
yet the strictly more refined [[h:∈ {0, 1}]].v.h.H is {(v, 0, {0, 1}), (v, 1, {0, 1})}.
This is thus an example of a strict refinement where the two commands differ
only by an increase of ignorance: they have equal nondeterminism classically, but
in one case (�) it can be observed by the attacker and in the other case (:∈ ) it
cannot. The “more ignorant” triple (v, 0, {0, 1}) is strictly justified by the “less
ignorant” triple (v, 0, {0}), where we say “strictly” because {0} ⊂ {0, 1}.
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Program P Semantics [[P ]].v.h.H

Publish a value reveal E.v.h { (v, h, {h′: H | E.v.h′ = E.v.h}) }

Assign to visible v:= E.v.h { (E.v.h, h, {h′: H | E.v.h′ = E.v.h}) } �
Assign to hidden h:= E.v.h { (v, E.v.h, {h′: H · E.v.h′}) } �

Choose visible v:∈S.v.h {v′: S.v.h · (v′, h, {h′: H | v′ ∈ S.v.h′}) } �
Choose hidden h:∈S.v.h {h′: S.v.h · (v, h′, {h′: H ; h′′: S.v.h′ · h′′}) } �

Execute atomically 〈〈P 〉〉 addShadow.(“classical semantics of P”)
Sequential composition P1; P2 lift.[[P2]].([[P1 ]].v.h.H)

Demonic choice P1 � P2 [[P1]].v.h.H ∪ [[P2]].v.h.H

Conditional

We write if � cond � else [8] −→
if E.v.h then Pt else Pf fi [[Pt]].v.h.{h′: H | E.v.h′ = true}

� E.v.h �
[[Pf ]].v.h.{h′: H | E.v.h′ = false}

The syntactically atomic commands A marked � have the property that A = 〈〈A〉〉.
This is deliberate: syntactic atoms execute atomically. The function lift.[[P2]] applies
[[P2]] to all triples in its set-valued argument, un-Currying each time, and then takes
the union of all results.
The extension to many variables v1, v2, · · · and h1, h2, · · ·, including local declarations,
is straightforward [14,15].

Fig. 2. Semantics of non-looping commands

3.5 Step 4: Properties –and Utility– of Atomicity Brackets 〈〈·〉〉
The atomicity brackets 〈〈·〉〉 treat their contents as a single classical command,
and thus classical equality (although not classical refinement) can be used within
them. In simple cases atomicity is preserved by composition, but not in general:

Lemma 1. atomicity and composition Given two programs P{1,2} over v, h
we have 〈〈P1; P2〉〉 = 〈〈P1〉〉; 〈〈P2〉〉 just when v’s intermediate value, i.e. “at the
semicolon,” can be deduced from its endpoint values, i.e. initial and final, possibly
in combination. The semicolon is interpreted classically on the left, and as in
Fig. 2 on the right.

Proof. Given in [1, App. A]. �

This lemma is as significant when its conditions are not met as when they are. It
means for example that we cannot conclude from Lem. 1 that 〈〈v:=h; v:= 0〉〉 =
〈〈v:=h〉〉; 〈〈v:= 0〉〉, since on the left the intermediate value of v cannot be deduced
from its endpoint values: for h is not visible at the beginning and v itself has
been “erased” at the end. And indeed from Def. 1
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(i) On the left we have 〈〈v:= h; v:= 0〉〉.v.h.H = {(0, h, H)}
(ii) Whereas on the right we have (〈〈v:=h〉〉; 〈〈v:= 0〉〉).v.h.H = {(0, h, {h})}

This is perfect recall again. More interesting is the utility of introducing atom-
icity temporarily in a derivation, as illustrated in §4 below: when applicable, we
can infer security properties via (simpler) classical equalities within 〈〈·〉〉.

3.6 Multiple Agents, and the Attacker’S Capabilities

In a multi-agent system each agent has a limited knowledge of the system state,
determined by his point of view ; and different agents have different views. The
above simple semantics reflects A’s viewpoint, say, by interpreting variables de-
clared to be vislist as visible (v) variables if A is in list and as hidden (h) variables
otherwise. More precisely,

– var means the associated variable’s visibility is unknown or irrelevant.
– vis means the associated variable is visible to all agents.
– hid means the associated variable is hidden from all agents.
– vislist means the associated variable is visible to all agents in the (non-

empty) list, and is hidden from all others (including third parties).
– hidlist means the associated variable is hidden from all agents in the list,

and is visible to all others (including third parties).

For example in (1), from A’s viewpoint the specification would be interpreted
with a and x visible and b hidden; for B the interpretation hides a instead of b.
For a third party X , say, both a, b are hidden but x is still visible.

From Agent A’s point of view (say) an attacker uses a run-time debugger to
single-step through an execution of the program. Each step’s size is determined
by atomicity, either implied syntactically or given by 〈〈·〉〉; when the program is
paused, the current point in the program source-code is indicated; and hovering
over a variable reveals its value provided its annotation (in this case) makes it
visible to A: e.g. “yes” for visA or hidB, and “no” for hidA or visB.

Conventionally, a successful attack is one that “breaks the security.” For us,
however, a successful attack is one that breaks the refinement : if we claim that
P � Q, and yet an attacker subjects Q to hostile tests that reveal something
P cannot reveal, then our claimed refinement must be false (and we’d bet-
ter review the reasoning that seemed to prove it). Crucially however we will
have suffered a failure of calculation, not of guesswork: only the former can be
audited.

The conventional view is a special case of ours: if P reveals nothing, then
P � Q means that also Q must reveal nothing. Thus a successful attack with
such a specification P is one in which Q is forced to reveal anything at all.

Finally, if a refinement is valid yet an insecurity is discovered (relative to
some informal requirement), then the security-preservation property of refine-
ment means that the insecurity was already present in the specification.
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4 First Case Study: The Encryption Lemma (EL)

For Booleans x, y we write (x⊕y):= E to abbreviate the specification statement
x, y:[x⊕y = E], thus an atomic command that sets x, y nondeterministically so
that their exclusive-or equals E [13]. By making the command atomic, we have
(x⊕y:=E) = 〈〈x, y:[x⊕y = E]〉〉 by definition.

A very common pattern in non-interference -style protocols is the idiom
|[ vis v;hid h′· (v⊕h′):= h ]| in the context of a declaration hid h; it is equiva-
lent classically to skip because it assigns only to local variables, whose scope is
indicated by |[ · · · ]|. As our first example of secure refinement (actually equality)
we show it is security-equivalent to skip also, in spite of its assigning a hidden
rhs (variable h) to a partly visible lhs (includes v). We have via Shadow-secure
program algebra the equalities

|[ vis v;hid h′· v⊕h′:=h ]|
= |[ vis v;hid h′· 〈〈v, h′:[v⊕h′ = h]〉〉 ]| “defined above”

= |[ vis v;hid h′· 〈〈v:∈{0, 1}; h′:=h⊕v〉〉 ]| “classical reasoning within 〈〈·〉〉”
= |[ vis v;hid h′· 〈〈v:∈{0, 1}〉〉; 〈〈h′:= h⊕v〉〉 ]| “Lem. 1”

= |[ vis v;hid h′· v:∈{0, 1}; h′:= h⊕v ]| “syntactic atoms”

= |[ vis v· v:∈{0, 1}; |[ hid h′· h′:= h⊕v ]|]| “h′ not free ♥ ”

= |[ vis v· v:∈{0, 1}]| “assignment of anything to local hidden is skip ♥ ”

= skip , “assignment of visibles to local visible is skip ♥ ”

where at ♥ we appeal to manipulations of scope, and more primitive skip-
equivalences, that because of space we must justify elsewhere [14,15]. That is,
each step can be justified by the semantics of §3, and the overall chain of equal-
ities establishes our Encryption Lemma: we will see it often.

5 Second Case Study: §4⇒ Oblivious Transfer (OT)

The Oblivious Transfer Protocol builds on §4: an agent A transfers to Agent B
one of two secrets, as B chooses: but A does not learn which secret B chose; and
B does not learn the other secret. The protocol is originally due to Rabin [17];
we use Rivest’s specialisation of it [18]. Its specification is

visA m0, m1;
visB c: Bool, m;

m := (m1 � c � m0) , ⇐ We write (left if condition else right) [8].

“Oblivious Transfer specification”

where the variables without scope brackets are global, and are assumed subse-
quently. It is implemented via a third, trusted party C who contributes before
the protocol begins, and indeed before A, B need even have decided what their
variables’ values are to be. A complete derivation is published elsewhere [15],
and it relies on the Encryption Lemma of §4.

In brief (and approximately), Agent C gives two secret keys k{x,y} to A; and
as well C gives one of those keys to B, telling him which one it is; Agent C then
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leaves. When the protocol proper begins, Agent B instructs A to encrypt m{0,1}
either with k{x,y} or k{y,x} resp. so as to ensure B holds the correct key for the
value he wants to decode. Agent A sends both encrypted values to B. Because
A sends both, he cannot tell which B really wants; because B holds only one
key, he can decrypt only his choice. The derivation is also given in [1, App. C].

6 Third Case Study: The Lovers’ Protocols

The Lovers’ Protocols (see for example “Dating without embarrassment” [21])
in this section are our first examples of two-party computations, and form the
backbone of the later derivation of the Millionaires’ Protocol. Throughout we
assume two agents A, B.

6.1 §5⇒ Lovers’ Protocol I (LP1)

In this simple protocol Agent A knows a Boolean a and Agent B knows a Boolean
b; they construct two Boolean outcomes a′, b′ known by A, B resp. so that

1. neither agent learns anything more about a∧b as a result of learning its own
a′ or b′ (as well as knowing its own a, b); and

2. the exclusive-or a′ ⊕ b′ reveals a ∧ b without revealing anything more about
either of a, b to any agent, whether A, B or some third party.

Here is the derivation; remember that each step has to be valid from both A and
B’s point of view. We have

visA a, a′;visB b, b′; ⇐ Global variables: assumed below.

(a′ ⊕ b′):= a ∧ b
“specification”

= 〈〈 a′:∈{0, 1}; b′:= (a ∧ b) ⊕ a′ 〉〉 “atomicity reasoning: compare EL”

= a′:∈{0, 1}; b′:= (a ∧ b) ⊕ a′ “Lem. 1: compare EL”

= a′:∈{0, 1}; b′:= (a � b � 0) ⊕ a′ “Boolean algebra: true is 1, false is 0”

= a′:∈{0, 1};
b′:= (a⊕a′ � b � a′) . ⇐ Implemented by Oblivious Transfer.

“Boolean algebra”

Our semantics §3 plays two roles here, in the background: it legitimises the ma-
nipulations immediately above that introduced OT into the implementation,
which in §8 we call horizontal reasoning. And it assures us (compositional-
ity/monotonicity) that when OT is in its turn replaced by a still lower-level
implementation derived elsewhere, but in the same semantics, the validity will
be preserved: that is vertical reasoning.

6.2 §4, §6.1⇒ Lovers’ Protocol II (LP2) from Fig. 1

The second Lovers’ Protocol extends the first: here even the incoming values a, b
are available only as “⊕-shares” so that a = aA ⊕ aB and b = bA ⊕ bB, just as
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they might have been constructed by an LP1. That is Agent A knows aA and
bA; Agent B knows aB and bB; but neither knows a or b. We want to construct
a′, b′ known by A, B resp. so that a′⊕ b′ = (aA⊕aB)∧ (bB⊕bA) = a∧ b. We have

visA a′, aA, bA; ⇐ These globals assumed below.

visB b′, aB, bB;

(a′ ⊕ b′):= (aA⊕aB) ∧ (bA⊕bB)

“specification”

= (a′ ⊕ b′):= aA∧bA ⊕ aA∧bB ⊕ aB∧bA ⊕ aB∧bB “Boolean algebra”

= |[ visA rA; visB wB;
(rA ⊕ wB):= aA∧bB;
(a′ ⊕ b′):= aA∧bA ⊕ aA∧bB ⊕ aB∧bA ⊕ aB∧bB ]|

“EL for A, and for B (different visibilities),
where h is the expression aA∧bB;

then scope”

= |[ visA rA, wA; visB rB , wB;
(rA ⊕ wB):= aA∧bB; (rB ⊕ wA):= aB∧bA;
(a′ ⊕ b′):= aA∧bA ⊕ aA∧bB ⊕ aB∧bA ⊕ aB∧bB ]|

“EL for A, and for B;
then scope”

= |[ visA rA, wA; visB rB , wB;
(rA ⊕ wB):= aA∧bB; (rB ⊕ wA):= aB∧bA;
(a′ ⊕ b′):= aA∧bA ⊕ rA ⊕ wA ⊕ wB ⊕ rB ⊕ aB∧bB ]|

“Program- and Boolean algebra”

� |[ visA rA, wA; visB rB , wB;
(rA ⊕ wB):= aA∧bB; (rB ⊕ wA):= aB∧bA; ⇐ Implemented by LP1.

a′:= aA∧bA ⊕ rA ⊕ wA;
b′:=wB ⊕ rB ⊕ aB∧bB ]| .

“see below”

The last step is clearly a classical refinement; it is secure (as well) because A, B
already know the values revealed to them by the individual assignments to a′, b′.
Note that it is a proper refinement, not an equality.1

7 Main Case Study: The Millionaires Do Their Sums

This, our main example, sets us apart from validation of straight-line protocols
over finite state-spaces: we develop a (secure) loop; and the state-space can be
arbitrarily large. Two millionaires want to find which has the bigger fortune
without either revealing to the other how big their fortunes actually are. Since
two-bit millionaires expose the main issues of the protocol, we will start with
them — and then we generalise to “-aires” of arbitrary wealth.

1 Other proper classical refinements of (a′⊕b′):= EA⊕EB include a′, b′:=¬EA,¬EB

and a′, b′:= EB, EA. In the former case the extra ¬’s are pointless; and the latter
case would not be a secure refinement, since e.g. it would reveal EB to A.
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7.1 §6⇒ The Two-Bit Millionaires (MP2)

We compare a pair of two-bit numbers without revealing either: two integers
0 ≤ a, b < 4 with a=〈a1, a0〉 and b=〈b1, b0〉 are given in binary, and we reveal
(2a1+a0 < 2b1+b0) by calculating a1<b1 ⊕ (a1=b1 ∧ a0<b0).2 Thus we have a
formula in which only conjunctions, negations and exclusive-or appear, and the
implementation is simply a stitching together of what we did earlier in §6. Its
derivation is given in [1, App. B]; the result is

visA a′, a{0,1}; visB b′, b{0,1}
(a′ ⊕ b′):= (2a1+a0 < 2b1+b0)

“specification”

� |[ visA aA, bA, wA; visB aB, bB, wB;
(aA ⊕ aB):=¬a1 ∧ b1; ⇐ Lovers’ Protocol I.

(wA ⊕ wB):=¬a0 ∧ b0; ⇐ Lovers’ Protocol I.

(bA ⊕ bB):= (¬a1 ⊕ b1) ∧ (wA ⊕ wB); ⇐ Lovers’ Protocol II.

a′, b′:= (aA ⊕ bA), (aB ⊕ bB) ]| .

“from [1, App. B]”
(2)

7.2 §7.1, §7.3 (to Come)⇒ The Unbounded Millionaires (MPN)

Now we imagine more generally that we have two N -bit numbers a(N..0] and
b(N..0] and we want to compare them in the same oblivious way as in the two-bit
case. There we moved from least- to most-significant bit: that suggests as the
“effect so far” invariant that some Boolean l always indicates whether a(n..0] is
strictly less than b(n..0] as n increases from 0 to N ; obviously for security we
split that l into two shares l{a,b}. At the end the shares’ exclusive-or gives the
Boolean a<b the millionaries seek; but the shares are not directly combined until
then. Thus the specification is

visA a(N..0], la;
visB b(N..0], lb;

(la ⊕ lb):= a(N..0] < b(N..0]

“specification”

(3)

and, because of our comments above, we aim at the implementation

|[ vis n;
n:= 0;
(la ⊕ lb):= 0;
while n<N do

(la ⊕ lb):= an<bn ⊕ (an=bn ∧ la⊕lb); ⇐ MP2 modified:
maintains the invariant.n:=n + 1

od
]| .

“implementation guess”

(4)

2 We thank Berry Schoenmakers for this suggestion of using ⊕ rather than ∨ here.
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7.3 How Do We Deal with Loops?

Moving to an unbounded state-space leads consequentially away from straight-
line programs: for arbitrarily rich millionaires our comparison requires a loop.
We extend our semantics with fixed points in the usual way: thus a terminating
loop while B do body od equals some other program fragment P just when via
secure program algebra we can manipulate if B then (body;P ) fi to become P
again. For our case we hypothesise that our while-loop at (4) implements the
straight-line code fragment P as follows:

if n<N then
(la ⊕ lb):= a(N..n]<b(N..n] ⊕ (a(N..n]=b(N..n] ∧ la ⊕ lb);
n:=N

fi .

“postulated effect
of loop”

(5)

We check this program-algebraically in [1, App. D]. Most of the manipulations
are routine (i.e. would be the same steps even if one were reasoning carefully with
only functional properties in mind); but a crucial step (marked � in the appendix)
uses EL to establish that the individual calculations within each iteration do not
leak any information as the loop proceeds.

Thus in our proposed implementation (4) we can again rely on compositional
semantics to replace the loop by its equivalent straight-line code (5). That gives

|[ vis n;
n:= 0;
(la ⊕ lb):= 0;
if n<N then

(la ⊕ lb):= a(N..n]<b(N..n] ⊕ (a(N..n]=b(N..n] ∧ la ⊕ lb);
n:=N

fi ]|

“loop within (4) replaced by
equivalent straight-line code (5)”

= |[ vis n;
n:= 0;
(la ⊕ lb):= 0;
if 0<N then

(la ⊕ lb):= a(N..0]<b(N..0] ⊕ (a(N..0]=b(N..0] ∧ 0);
n:=N

fi ]|

“program algebra”

= (la ⊕ lb):= 0;
if 0<N then (la ⊕ lb):= a(N..0] < b(N..0] fi

“Eliminate local n
and simplify ∧0”

= (la ⊕ lb):= a(N..0] < b(N..0] , “0≤N assumed, and a(0..0]<b(0..0] = 0”

thus establishing that (3) is indeed implemented by (4).
The interior assignment of the loop (4, MP2 modified) is based on the two-

bit protocol MP2, a small difference being that the final sub-expression is la⊕lb
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rather than a comparison of two data-bits a0<b0 as it was in §7.1 above. By
analogy with the derivation of (2) in [1, App. B], we complete our verified imple-
mentation as shown in Fig. 4, where the appeals to LP1,2 have been expanded.

System-integration
reasoning

Specification of
component C

System S

Implementation of
component C

Refinement
reasoning

The compositionality of the security semantics is

necessary for the correctness of the two types of rea-

soning separately. . .

. . . and for their mutual consistency.

Fig. 3. Horizontal- and vertical reasoning

“Horizontal” reasoning across
the disc of Fig. 3 (recall §6.1)
uses the specification of Com-
ponent C to establish that
it plays its proper role in
the context of system S; this
is done (1) without referring
to the implementation of C
at all. “Vertical” reasoning,
down the cone, establishes
that C’s implementation has
properties no worse than its
specification; this is done (2)
in isolation, without referring
to any contextual system S at
all. Then compositionality (3)
ensures that these two sepa-
rate activities (1,2) are consis-
tent when combined. These basic features (1,2,3) of refinement are well known,
but in each case require a semantics appropriate to the application domain: our
overall strategy is to formulate such a semantics [14,15] for the non-interference
-style security domain, and thus to make the rigorous development of security
applications more accessible to our (refinement) community.

Our specific aim in this paper, for which we chose the Millionaires’ prob-
lem, was to demonstrate scalability within a topical application domain. (See
for example the recent practical application of two-party secure computation
[4], and the current interest in the use of the oblivious transfer as a crypto-
graphic primitive [10].) We used both vertical reasoning (from specification to
implementation of components) and horizontal reasoning (use of components’
specifications only) in doing so. To our knowledge our proof here is the first
(formally) for the full Millionaires’ problem. More generally our goal is to verify
security-critical software, hence our particular focus on source-level reasoning
and proofs which apply in all contexts; within those specific confines we are
amongst the first to prove a (randomised) security protocol with unbounded
state. Paulson [16] and Coble [5] also have general proofs relating to specific
security properties over computations with unbounded resources.

The Shadow has been extended to deal semantically with loops §7.3 and syn-
tactically with labelled views §3.6, the latter to enable the uniform treatment of
the complementary security goals of multiple agents. The relationship to other

8 Conclusions and Strategy
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(la ⊕ lb):= (a(N..0] < b(N..0]) ⇐ Exclusive-or l{a,b} finally, for the outcome a<b.

� |[ vis n;
n:= 0;
(la ⊕ lb):= 0;
while n<N do

visA aA, bA, wA, xA, rA; visB aB , bB, wB, xB , rB;
aA:∈{0, 1}; aB:= (an≡aA � bn � aA);

⎫
⎪⎪⎬

⎪⎪⎭

Each of these expands to six statements

and four further pre-distributed bits.

wA:∈{0, 1}; wB := (la≡wA � lb � wA);
rA:∈{0, 1}; xB:= (rA≡an � wB � rA);
rB:∈{0, 1}; xA:= (rB⊕bn � wA � rB);
bA, bB := (¬an∧wA ⊕ rA ⊕ xA), (xB ⊕ rB ⊕ bn∧wB);
la, lb:= (aA ⊕ bA), (aB ⊕ bB);
n:=n + 1

od ]| .

Each of the four transfers abstracts from six elementary statements, making over thirty
elementary statements in all. Ten local variables are declared in the loop body, at this
level. The TTP acts within the Oblivious Transfers, supplying four random bits for
each: thus 24N further random bits are used in total.

Fig. 4. Millionaires: The complete code at the level of Oblivious Transfers

formal semantics of non-intereference has been summarised in detail elsewhere
[14,15]; it is comparable to Leino [9] and Sabelfeld [20], but differs in details;
and it shares the goals of the pioneering work of Mantel [11] and Engelhardt [6].

We believe that three prominent features of our approach make it suitable for
practical verification: (a) secure refinement preserves (non-interference) security
properties; (b) refinement is monotonic (implying compositionality); and (c) we
exploit a simple source-level program algebra.

Features (a,b) allow layering of design; and (c) allows proofs to be constructed
from many small (algebraic) steps, of the kind suited to automation [12]. This
distinguishes us from other refinement-oriented approaches that do not so much
emphasise code-level algebraic reasoning [9,20,11,6], on the one hand, or appear
not to be compositional [3,2], on the other.

Our plans include constructing/extending computer-based tools to prove the
small algebraic steps, based on theorem-proving over the Shadow semantics, and
thus to form a library of allowed transformations. At the same time we hope
to integrate Shadow-style reasoning, based on such a library, into industrial-
strength refinement-based developments [22].
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