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Preface

FM 2009, the 16™ International Symposium on Formal Methods, marked the 10th anni-
versary of the First World Congress on Formal Methods that was held in 1999 in
Toulouse, France. We wished to celebrate this by advertising and organizing FM 2009
as the Second World Congress in the FM series, aiming to once again bring together the
formal methods communities from all over the world. The statistics displayed in the
table on the next page include the number of countries represented by the Programme
Committee members, as well as of the authors of submitted and accepted papers.

Novel this year was a special track on tools and industrial applications. Submis-
sions of papers on these topics were especially encouraged, but not given any special
treatment. (It was just as hard to get a special track paper accepted as any other
paper.) What we did promote, however, was a discussion of how originality, contribu-
tion, and soundness should be judged for these papers. The following questions were
used by our Programme Committee.

Does the tool provide a proof of concept, or solve an important problem?

Is there an interesting algorithm implemented in the tool?

Were new techniques used to implement the tool?

If it is an industrial application, does it clearly present the lessons learned in
relation to the use of formal methods?

Is the tool available (not necessarily for free) to the community?

Are there (measured or significant) experiments that support the claims?

How does the tool scale to larger problems?

What is the (potential) impact of the tool or case study?

What is the complexity of the tool or application?

We believe these questions can help future authors and reviewers of such papers.

The authors of a selection of the papers included here will be invited to submit ex-
tended versions of their papers to special anniversary issues of two reputable journals:
Formal Aspects of Computing and Formal Methods in System Design.

An event of this scale is only possible when many put their energy and passion together.
We have attempted to thank all those people. If you feel you should have been included but
are not, rest assured that this is not intentional, and please accept our apologies.

For the first time, a number of scientific events dedicated to Formal Methods and
their application decided to co-locate under the heading of Formal Methods Week
(FMweek). We hope that you enjoyed FM 2009, as well as several of the other events.
Or, did you miss it? Maybe next time then!

August 2009 Ana Cavalcanti
Dennis Dams
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Statistics
number of PC members 83
number of countries of PC members 46
number of submissions 139
number of countries of submissions’ authors 38
number of reviews per paper** 4
number of papers accepted* 45
number of countries of accepted papers’ authors 23
number of invited papers 5

* There are 3 additional papers included from Industry Day
** with a few exceptions in both directions
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Formal Methods for Privacy

Michael Carl Tschantz and Jeannette M. Wing

Computer Science Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

mtschant@cs.cmu.edu, wing@cs.cmu.edu

Abstract. Privacy means something different to everyone. Against a
vast and rich canvas of diverse types of privacy rights and violations,
we argue technology’s dual role in privacy: new technologies raise new
threats to privacy rights and new technologies can help preserve pri-
vacy. Formal methods, as just one class of technology, can be applied to
privacy, but privacy raises new challenges, and thus new research oppor-
tunities, for the formal methods community.

1 Introduction

What is privacy? Today, the answer seems to be “It all depends on whom you
ask.” There are philosophical, legal, societal, and technical notions of privacy.
Cultures differ in their expectations regarding privacy. In some cultures, it is
impolite to ask someone’s age or someone’s salary. Governments differ in their
citizens’ rights to privacy; just witness the difference in privacy among the United
States, the European Union, and China. What an adult thinks as private differs
from what a teenager thinks, and vice versa [IJ.

New technologies give rise to new privacy concerns. Warren and Brandeis’s
1890 seminal paper, “The Right to Privacy,” was written after photographic
and printing technologies made it easier to share and spread images and text in
public [2]. Skipping ahead a century, with the explosion of the Internet, privacy
is finally getting serious attention by the scientific community. More and more
personal information about us is available online. It is by our choice that we give
our credit card numbers to on-line retailers for the convenience of on-line shop-
ping. Companies like Google, Yahoo, and Microsoft track our search queries to
personalize the ads we see alongside the response to a query. With cloud comput-
ing, we further entrust in third parties the storage and management of private
information in places unknown to us. We are making it easier for others to find
out about our personal habits, tastes, and history. In some cases it is deliberate.
The rise of social networks like Facebook, on-line community sites like Flickr,
and communication tools like Twitter raises new questions about privacy, as
people willingly give up some privacy to enhance social relationships or to share
information easily with friends. At the same time, cyberattacks have increased

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 1 2009.
© Springer-Verlag Berlin Heidelberg 2009



2 M.C. Tschantz and J.M. Wing

in number and sophistication, making it more likely that unintentionally or not,
personal information will fall into the wrong hands.

The National Academies study Engaging Privacy and Information Technology
in a Digital Age [3] presents a compelling argument for the need for technology
and policy experts to work together in addressing privacy, especially as new
technology raises new privacy concerns. It is our responsibility as scientists and
engineers to understand what can or cannot be done from a technical point of
view on privacy: what is provably possible or impossible and what is practi-
cally possible or impossible. Otherwise, society may end up in a situation where
privacy regulations put into place are technically infeasible to meet.

In this paper, we start in Section 2] by painting a broad picture of the diverse
types of privacy. Against this canvas, we discuss the dual role of technology: how
new technologies pose new threats to privacy (Section B]) and how technologies
can help preserve privacy (Section Hl). Finally, focusing on formal methods, as
a specific class of technology, we identify some opportunities and challenges in
using formal methods to protect privacy (Section [B).

2 Types of Privacy Rights and Violations

Philosophers justify the importance of privacy in different ways. Bloustein de-
fends privacy as necessary for human dignity [4]. Others focus on privacy’s role
in enabling intimate relations [SIGITU8] or interpersonal relations in general [9].
Gavison views privacy as a means of controlling access to the person [I0].

Given the numerous philosophical justifications, legal scholars, starting with
Prosser [I1], have generally viewed privacy as a collection of related rights rather
than a single concept. Solove in 2006 provided a taxonomy of possible privacy
violations [I2]. He collects these related violations into four groups: invasions,
information collection, information processing, and information dissemination.

Invasions represent interference in what is traditionally considered the private
sphere of life. Solove identifies two forms of invasions. The first involves physical
intrusions either upon private property (such as trespassing in the home) or
upon the body (such as blocking one’s passage). The second is decisional inter-
ference, which is interfering with personal decisions. For example, the Supreme
Court of the United States has used the right to privacy to justify limiting
the government’s ability to regulate contraceptives [I3II4], abortion [15], and
sodomy [16] (cf. [I7]). However, some view invasions as violations of other rights
such as property and security rights in the case of intrusions [I8], or the rights
to autonomy and liberty in the case of decisional interference [19].

Solove’s remaining three groupings of privacy rights are more difficult to re-
duce to other rights. They all involve a data subject about whom a data holder
has information. The data holder may commit privacy violations in how he col-
lects the information, how he processes it, or how he disseminates it to others.

Information collection includes making observations through surveillance and
seeking information through interrogation. Information collection affects privacy
by making people uneasy in how the collected information could be used. Thus,
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it is a violation of privacy even if the collected information is never used. Fur-
thermore, interrogation can place people in the awkward position of having to
refuse to answer questions. Even in the absence of these violations per se, in-
formation collection should be controlled to prevent other violations of privacy
such as blackmail.

Even if information is collected in privacy-respecting ways, it can be pro-
cessed in ways that violate privacy. Such information processing violations have
the following forms. Aggregation is similar to surveillance in that it makes infor-
mation available, but aggregation does so by combining diffuse pieces of infor-
mation rather than collecting new information. Aggregation enables inferences
that would be unavailable otherwise. Identification, linking information with a
person by way of an identifier, also makes information more available and may
alter how a person is treated. Insecurity makes information more available to
those who should not be granted access such as identity thieves and can also lead
to distortion of data if false data is entered. Secondary uses make information
available for purposes for which it was not originally intended. Fzclusion is the
inability of a data subject to know what records are kept, to view them, to know
how they are used, or to correct them. All these forms of information processing
create uncertainty on the part of the data subject. Exclusion directly causes this
uncertainty by keeping information about the information kept on the data sub-
ject secret. The other forms of information processing create this uncertainty by
making information available in new, possibly unanticipated ways. Even in the
absence of more material misuse of the information, such uncertainty can be a
harm in of itself as it forces the data subject to live in fear of how his information
may be used.

After information is processed, the data holder will typically disseminate it
to others for use. Some forms of information dissemination can violate privacy
by providing information to inappropriate entities. A breach of confidentiality
occurs when a trusted data holder provides information about a data subject.
An example would be a violation of patient-physician confidentiality. Disclo-
sure involves not a violation of trust as with confidentiality, but rather the
making of private information known outside the group of individuals who are
expected to know it. Exposure occurs when embarrassing but trivial information
is shared stripping the data subject of his dignity. Distortion is the presenta-
tion of false information about a person. Distortion harms not only the subject,
whose reputation is damaged, but also third parties who are no longer able to
accurately judge the subject’s character. Appropriation is related to distortion.
Appropriation associates a person with a cause or product that he did not agree
to endorse. Appropriation adversely affects the ability of the person to present
himself as he chooses. Increased accessibility occurs when a data holder makes
previously available information more easily acquirable. It is a threat to pri-
vacy as it makes possible uses of the information that were previously too ineffi-
cient, and furthermore, potentially encourage unintended secondary uses. Rather
than disseminating information, blackmail involves the threat of disseminating
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information unless some demand is met. It uses private information to create an
inappropriate power relation with no social benefits.

These types of violations exist independent of technologies. However, technol-
ogy plays a dual role in privacy. On the one hand, new technologies can create
new ways of infringing upon privacy rights. On the other hand, new technologies
can create new ways of preserving privacy.

3 Technology Raises New Privacy Concerns

Technological advances normally represent progress. The utility of these ad-
vances, however, must be balanced against any new privacy concerns they cre-
ate. This tension forces society to examine how a new technology could affect
privacy and how to mitigate any ill effects.

The courts often lead this examination. The first important U.S. law review
article on privacy, Warren and Brandeis’s “The Right to Privacy,” was written
in response to the ability of new cameras to take pictures quickly enough to
capture images of unwilling subjects [2]. The advent of wire tapping technol-
ogy led first to its acceptance [20] and then to its rejection [21I] by the U.S.
Supreme Court as its understanding of the technology, people’s uses of phones,
and government’s obligations to privacy changed. Other new forms of surveil-
lance including aerial observation [22I23], tracking devices [24I25], hidden video
cameras [26], and thermal imaging [27] have all also been studied by courts in
the U.S.

New technology has driven governments to create new regulations. The rise of
large computer databases with new aggregation abilities led to the U.S. Federal
Trade Commission’s Fair Information Practice Principles requiring security and
limiting secondary uses and exclusion [28]. In France, the public outcry over a
proposal to create an aggregate government database, the System for Adminis-
trative Files Automation and the Registration of Individuals (SAFARI), forced
the government to create the National Data Processing and Liberties Commis-
sion (CNIL), an independent regulatory agency. The rise of electronic commerce
and the privacy concerns it created resulted in Canada’s Personal Information
Protection and Electronic Documents Act. Privacy concerns about electronic
health records lead to the Privacy Rule under the Health Insurance Portability
and Accountability Act (HIPPA) in the U.S. to mixed results [29]. Each of these
regulations is designed to allow new technologies to be used, but not in ways
that could violate privacy.

Society is still forming its response to some new technologies. For example,
data mining, one technique used for aggregation, has received a mixed reaction.
In the U.S., the Total Information Awareness data mining program was largely
shut down by Congress, only to be followed by the Analysis, Dissemination,
Visualization, Insight and Semantic Enhancement (ADVISE) system, also shut
down. However, rather then banning the practice, the Federal Agency Data
Mining Reporting Act of 2007 requires agencies to report on their uses of data
mining to Congress. Apparently, Congress has not come to a consensus on how
to limit data mining and is still studying the concern on a case by case basis.
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4 Technology Helps Preserve Privacy

Some of the new threats to privacy created by technology cannot efficiently
or effectively be addressed by government action alone. Further technological
advances can in some cases provide ways to mitigate these new threats.

In this section, we first give a quick tour through many different technical
approaches used to complement or to reinforce non-technical approaches to pre-
serving privacy (Section FLT]), and then focus in detail on two related classes of
privacy violations, disclosure and aggregation, which have garnered the most at-
tention recently from the computer science community (Sectiond2]). We save till
SectionBlour discussion of the role that formal methods, as a class of technology,
can play in privacy.

4.1 A Diversity of Technical Approaches

While a government may legislate punishment for breaching the security of com-
puter systems storing private records, such punishments can at best only dis-
suade criminals; they do not prevent privacy violations in any absolute sense.
Cryptographic-based technologies with provably secure properties (e.g., one-time
pads that guarantee perfect secrecy) or systems that have been formally veri-
fied with respect to a given security property (e.g., secure operating systems
kernels [30J3TI32]) can actually make some violations impossible. Likewise, iden-
tity theft laws might discourage the practice, but digital signatures can prevent
appropriation [33I34]. Even security technologies, such as intrusion detection
systems and spam filters, which may not have provably secure properties, are
indispensable in practice for mitigating attacks of intrusion.

In some cases, a data subject might not trust the government or third-party
data holders to prevent a violation. For example, political bosses or coercive
agents might attempt to learn for which candidate someone voted. In such cases,
voting schemes that inherently prevent the disclosure of this information, even
to election officials, would be more trustworthy; such schemes have been devel-
oped using cryptography (e.g., [35l36]) or paper methods inspired by cryptog-
raphy [37]. Political dissidents who wish to hide their online activities can use
onion routing, based on repeated encryption, for anonymous Internet use [3§].
Privacy preserving data mining (e.g., [39]) offers the government a way of finding
suspicious activities without giving it access to private information [404T]. Van-
ishing data guarantees data subjects that their private data stored in the “cloud”
be permanently unreadable at a specific time; this recent work by Geambasu et
al. [42] relies on public-key cryptography, Shamir’s secret sharing scheme, and
the natural churn of distributed hash tables in the Internet.

Mathematical formulations of different notions of privacy are also useful for
guiding the development of privacy preserving technologies and making it easier
to identify privacy violations. Halpern and O’Neill formalize privacy relevant
concepts such as secrecy and anonymity using logics of knowledge [43]. In re-
sponse to Gavison’s desire for “protection from being brought to the attention
of others” [I0], Chawla et al. formalize a notion of an individual’s record being
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conspicuously different from the other records in a set [44]; they characterize
this notion in terms of high-dimensional spaces over the reals.

4.2 A Heightened Focus on Disclosure and Aggregation

As Solove notes, aggregation can violate privacy [12]. The form of aggregation
Solove describes is when the data holder combines data from multiple sources.
Another form of aggregation occurs when the data holder publishes a seemingly
harmless data set and an adversary combines this data set with others to find
out information that the data holder did not intend to be learned. In this case,
the adversary commits the violation of aggregation, but the data holder inad-
vertently commits the violation of disclosure. Thus, a responsible data holder
must ensure that any data he releases cannot be aggregated by others to learn
private information.

In the context of databases and anonymization, researchers have studied a
special case of the above attack, called linkage attacks. In its simplest form, a
collection of records, each about an individual, is anonymized by removing any
explicit identifiers, such as names or IP addresses. After a data holder releases
the anonymized database, an adversary compares it to another database that
is not anonymized but holds information about some of the same people in the
anonymized database. If one database holds a record r; and the second database
holds a record ro such that r; and ro agree on values of attributes tracked by
both databases, then the adversary can infer that the two records, r1 and rs,
refer to the same person with some probability. For example, suppose we know
a person, Leslie, is in two databases: one lists him as the only person who has
the zip code 15217 and who is male; the anonymized one contains only one
person who has the zip code 15217 and is male, and furthermore this person
has AIDS. We may conclude that Leslie has AIDS. This attack works despite
the first database listing no private information (presuming that one’s zip code
and gender are not private) and the second attempting to protect privacy by
anonymization.

In light of the 2006 release of AOL search data, attempts to anonymize search
query logs have shown they are prone to linkage and other attacks as well (e.g.,
see [45/46]). In the same year Netflix released an anonymized database of rented
movies for its Netflix Prize competition; Narayanan and Shmatikov showed how
to use a linkage-based attack to identify subscriber records in the database, and
thus discover people’s political preferences and other sensitive information [47].

A variety of attempts have been made to come up with anonymization ap-
proaches not subject to this weakness. One such approach, k-Anonymity, places
additional syntactic requirements on the anonymized database [48]. However,
for some databases, this approach failed to protect against slightly more com-
plicated versions of the linkage attack. While further work has ruled out some
of these attacks (e.g., [49J50051]), no robust, compositional approach has been
found.

A different approach comes from the statistics community. Statistical disclo-
sure limitation attempts to preserve privacy despite releasing statistics. (For an
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overview see [52].) Two methods in this line of work are based on releasing ta-
bles of data, where entries in the table are either frequencies (counts), e.g., the
number of respondents with the same combination of attributes, or magnitudes,
the aggregate of individual counts. A third method uses microdata, a sanitiza-
tion of individual responses. The public is most familiar with these statistical
approaches since they are the basis for publishing census data, performing med-
ical studies, and conducting consumer surveys. Surveyors collect information on
a large number of individuals and only release aggregations of responses. These
aggregations provide statistically significant results about the problem at hand
(e.g., the efficacy of a new pharmaceutical) while not including information that
an adversary may use to determine the responses of any of the individual re-
spondents.

A more semantic approach originates with Dalenius. He proposed the require-
ment that an adversary with the aggregate information learns nothing about any
of the data subjects that he could not have known without the aggregate infor-
mation [53]. Unfortunately, Dwork proves that if a data holder provides the exact
value of a “useful” aggregate (where “useful” is measured in terms of a utility
function), it is impossible for Dalenius’s requirement to hold [54]. Fortunately,
she with others showed that by adding noise to the value of the statistic, an ad-
versary could be kept from learning much information about any one individual,
leading to the formal definition of differential privacy [55]. This formal work on
differential privacy inspired practical applications such as the Privacy Integrated
Queries (PINQ) system, an API for querying SQL-like databases [56], and an
algorithm for releasing query click graphs [57].

Differential privacy is theoretical work, complete with formal definitions, the-
orems explaining its power, and provable guarantees for systems developed to
satisfy it [54]. While PINQ was developed with the specification of differential
privacy in mind, the development exemplifies “formal methods light” with no
attempt to verify formally that the resulting system satisfies the specification.
This line of work on differential privacy could benefit from formal methods that
enables such verification.

5 Opportunities and Challenges for Formal Methods

Formal methods can and should be applied to privacy; however, the nature of
privacy offers new challenges, and thus new research opportunities, for the formal
methods community.

We start in Section [B.1] with our traditional tools of the trade, and for each,
hint at some new problems privacy raises. We then point out in Section
privacy-specific needs, exposing new territory for the formal methods community
to explore.

5.1 Formal Methods Technology

All the machinery of the formal methods community can help us gain a more
rigorous understanding of privacy rights, threats, and violations. We can use for-
mal models, from state machines to process algebras to game theory, to model
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the behavior of the system and its threat environment. We can use formal logics
and formal languages to state different aspects of privacy, to state desired prop-
erties of these systems, to state privacy policies, to reason about when a model
satisfies a property or policy, and to detect inconsistencies between different pri-
vacy policies. Automated analyses and tools enable us to scale the applicability
of these foundational models and logics to realistic systems. Privacy does pose
new challenges, requiring possibly new models, logics, languages, analyses, and
tools.

Models

In formal methods, we traditionally model a system and its environment and
the interactions between the two. Many methods may simply make assumptions
about the environment in which the system operates, thus focusing primarily on
modeling the system. To model failures, for example, due to natural disasters or
unforeseen events, we usually can get away with abstracting from the different
classes of failures and model a single failure action (that could occur at any
state) or a single failure state.

Security already challenges this simplicity in modeling. We cannot make as-
sumptions about an adversary the way we might about hardware failures or
extreme events like hurricanes. On the other hand, it often suffices to include
the adversary as part of the system’s environment, and assume the worst case
(e.g., treating an adversary’s action as a Byzantine failure).

Privacy may require yet a new approach to or at least a new outlook on
modeling. Privacy involves three entities: the data holder (system), an adversary
(part of the environment), and the data subject. Consider this difference between
security and privacy: In security, the entity in control of the system also has an
inherent interest in its security. In privacy, the system is controlled by the data
holder, but it is the data subject that benefits from privacy. Formal methods
akin to proof-carrying code [58], which requires the data holder to provide an
easy-to-check certificate to the data subject, might be one way to address this
kind of difference.

Privacy requires modeling different relationships among the (minimally) three
entities. Complications arise because relationships do not necessarily enjoy sim-
ple algebraic properties and because relationships change over time. For example
if person X trusts Y and Y trusts Z that does not mean X trusts Z. X needs
to trust that Y will not pass on any information about X to Z. Moreover, if
X eventually breaks his trust relation with Y then X would like Y to forget
all the information Y had about X. This problem is similar to revoking access
rights in security except that instead of removing the right to access information
(knowledge about X), it is the information itself that is removed.

Logics

The success of many formal methods rests on decades of work on defining and
applying logics (e.g., temporal logics) for specifying and reasoning about system
behavior. Properties of interest, which drive the underlying logics needed to
express them, are often formulated as assertions over traces (e.g., sequences
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of states, sequences of state transitions, or sequences of alternating states and
transitions).

McLean, however, shows that a class of information-flow properties cannot be
expressed as trace properties [59]. In particular, non-interference, which charac-
terizes when no information flows from a high-level (e.g., top secret) subject to
a low-level (e.g., public) subject [60], cannot be expressed as a property over a
single trace. Non-interference formalizes the notion of keeping secure informa-
tion secret from an adversary. Since secrecy is often a starting point for thinking
about privacy, we will likely need new logics for specifying and reasoning about
such non-trace properties and other privacy properties more generally.

Formal Policy Languages

The privacy right of exclusion requires that data subjects know how their infor-
mation will be used. Thus, data holders must codify their practices into publicly
available privacy policies. While most of these policies are written in natural
language, some attempts have been made to express them in machine readable
formats. For example, EPAL is a language for expressing policies with the in-
tention of allowing automated enforcement [GI]. Other policy languages such as
P3P [62], which has a formal notation, inform website visitors of the site’s pri-
vacy practices and enable automated methods for finding privacy-conscientious
sites [63]. These languages, however, lack formal semantics.

Barth et al. do provide a formal language for specifying notions expressed
in privacy policies such as HIPAA, the Children’s Online Privacy Protection
Act, and the Gramm-Leach-Bliley Act (about financial disclosures) [64]. Their
language uses traditional linear temporal logic and its semantics is based on
a formal model of contertual integrity, Nissenbaum’s philosophical theory of
information dissemination [65]. Much work remains in extending such formal
languages to handle more forms of privacy.

Abstraction and Refinement

Formal methods have been particularly successful at reasoning above the level of
code. That success, however, relies fundamentally on abstraction and/or refine-
ment. Commuting diagrams allow us to abstract from the code and do formal
reasoning at higher levels of description, but these diagrams rely on well-defined
abstraction functions or refinement relations. Similarly, methods that succes-
sively refine a high-level specification to a lower-level one, until executable code
is reached, rely on well-defined correctness-preserving transformations.

As discussed above, some privacy relevant properties, such as secrecy, are not
trace properties. Furthermore, while a specification may satisfy a secrecy prop-
erty, a refinement of the specification might not. Mantel [66], Jirjens [67], and
Alur et al. [68] define specialized forms of refinement that preserve such secrecy
properties. Similarly, Clarkson and Schneider [69] develop a theory of hyper-
properties (sets of properties), which can express information-flow properties,
and characterize a set of hyperproperties for which refinement is valid. These
works just begin to address aspects of privacy; attention to other aspects may
require new abstraction and/or refinement methods.
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Policy Composition

Given that different components of a system might be governed by different
policies or that one system might be governed by more than one policy, we
must also provide methods of compositional reasoning: Given two components,
A and B, and privacy policies, P, and P», if A satisfies P; and B satisfies P5,
what does that say about the composition of A and B with respect to Py, P,
and P; A P»? Privacy policies are likely in practice not to be compositional.
For example, the National Science Foundation has a privacy policy that says
reviewers of each grant proposal must remain anonymous to the grant proposers;
the National Institutes of Health has a different review policy where the names
of the study (review) group members are known to the grant proposers. For
NSF and NIH to have a joint program, therefore, some compromise between
the policies needs to be made, while still preserving “to some degree” the spirit
of both policies. This general challenge of composition already exists for other
properties such as serializability in databases, feature interaction in telephone
services, and noninterference in security. Privacy adds to this challenge.

Code-level Analysis

Formal methods, especially when combined with static analysis techniques, have
been successful at finding correctness bugs (e.g., [70]) and security vulnerabilities
(e.g., [T1I72]) at the code level. What kind of code-level reasoning could we do
for privacy, either to prove that a privacy policy is preserved or to discover a
privacy violation?

Automated Tools

One of the advantages of formal methods is that formal specifications are
amenable to machine manipulation and machine analysis (e.g., finding bugs or
proving properties). Automation not just helps us catch human errors, but also
enables us to scale up pencil-and-paper techniques.

We need to explore the use of and extensions required for formal methods
tools, such as theorem provers and models checkers, for verifying privacy policies
or discovering privacy violations. While much foundational work in terms of
models, logics, and languages remain, none will become of practical import unless
our automated analysis tools scale to work for realistic systems.

5.2 Privacy-Specific Needs

Statistical/Quantitative Reasoning

The statistical nature of privacy raises a new challenge for formal methods.
For example, aggregating the weights of a large number of individuals into the
average weight is expected to make it difficult for an adversary to learn much
about any one of the individuals. Thus, this form of aggregation can protect the
private information (individual weights) while still providing a useful statistic
(the average weight). In security, information flow is viewed as black and white:
if a flow occurs from high to low, a violation has occurred. In privacy, a “small”
amount of flow may be acceptable since we are unlikely to learn a lot about the
weight of any one person from learning the average of many. While some work has
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been done on quantitative information flow (e.g., [(3ITAI7HITE]), even the tools
developed from this work would consider the system as violating security (see [77]
for why and an approach that does not), and thus would be inappropriate for a
statistical notion of privacy.

More generally, formal methods may need to be extended to assure statistical
guarantees rather than our traditional black-and-white correctness guarantees. A
hybrid approach would be to combine traditional formal models with statistical
models or formal methods with statistical methods.

Trustworthy Computing: Conflicting Requirements

While trade-offs are hardly new to computer science, privacy raises a new set of
such trade-offs. Trustworthy computing requires balancing privacy with security,
reliability, and usability. It would be good to have a formal understanding of
the relationships among these properties. For example, we want auditability for
security, to determine the source of a security breach. However, auditability is
at odds with anonymity, a desired aspect of privacy. Thus, to what degree can
we provide auditability while providing some degree of anonymity? (This is not
suggest that security and privacy are opposites: security is necessary for privacy.)
To achieve reliability, especially availability, we often replicate data at different
locations; replicas increase the likelihood that an attacker can access private
data and make it harder for users to track and manage (e.g., delete) their data.
Trade-offs between privacy and usability are similar to those between security
and usability. We want to allow users to control how much of their information is
released to others, but we want to make it easy for them to specify this control,
and even more challenging, to understand the implications of what they specify
and to be able to change the specifications over time.

6 Summary

Privacy touches the philosophy, legal, political, social science, and technical com-
munities. Technical approaches to privacy must be part of the basis in creating
privacy laws and in designing privacy regulations. Laws and policies need to be
technically feasible to implement.

In this paper we focused on the dual role of technology in this vast privacy
space: new technologies cause us to revisit old laws or create new ones; at the
same time, advances in technology can help preserve privacy rights or mitigate
consequences of privacy violations.

Formal methods is a technology that can help by providing everything from
foundational formalizations of privacy to practical tools for checking for pri-
vacy violations. However, we have barely begun to use formal methods to study
privacy in depth; we hope the community is ready to rise to the challenge.
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Abstract. This position paper argues that the operational modelling approaches
from the formal methods community can be applied fruitfully within the systems
biology domain. The results can be complementary to the traditional mathemat-
ical descriptive modelling approaches used in systems biology. We discuss one
example: a recent Petri net analysis of C. elegans vulval development.

1 Systems Biology

Systems biology studies complex interactions in biological systems, with the aim to
understand better the entirety of processes that happen in such a system, as well as to
grasp the emergent properties of such a system as a whole. This can for instance be at
the level of metabolic or interaction networks, signal transduction, genetic regulatory
networks, multi-cellular development, or social behaviour of insects.

The last decade has seen a rapid and successful development in the collaboration
between biologists and computer scientists in the area of systems biology and bioin-
formatics. It has turned out that formal modelling and analysis techniques that have
been developed for distributed computer systems, are applicable to biological systems
as well. Namely, both kinds of systems have a lot in common. Biological systems are
built from separate components that communicate with each other and thus influence
each other’s behaviour. Notably, signal transduction within a cell consists of cascades
of biochemical reactions, by which for instance genes are activated or down-regulated.
The genes themselves produce the proteins that drive signal transduction, and cells can
be connected in a multicellular organism, making this basically one large, complex dis-
tributed system. Another, very different, example at the organism level is how ants in
one colony send stimuli to each other in the form of pheromones.

Biological systems are reactive systems, as they continuously interact with their en-
vironment. In November 2002, David Harel put forward a grand challenge to com-
puter science, to build a fully animated model of a multi-cellular organism as a reactive
system; specifically, he suggested to build such a model of the C. elegans nematode
worm, which serves as a one of the model organisms in developmental biology.

Open questions in biology that could be addressed in such a modelling framework
include the following, listed in order from a detailed, molecular viewpoint to a more
global view of whole organisms:

— How complete is our knowledge of metabolic, signalling and regulatory processes
at a molecular level?
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— How is the interplay between different pathways or network modules organized and
regulated?

— How is the interaction between intra-cellular processes and inter/extra-cellular pro-
cesses organized?

— How do cells self-organize?

— How do cells differentiate?

— How are self-organization and differentiation of cells connected?

— How does self-organization and differentiation lead to the formation of complex
structures like organs (e.g. the eye, brain, kidney)?

One grand open question that pervades the whole of biological research is, how could
all of this evolve? This is exemplified by the title of the 1973 essay by Theodosius
Dobzhansky [4] that “Nothing in biology makes sense except in the light of evolution”.
Some recent theoretical work [5] highlights an interesting possibility, that flexibility in
regulation is a necessary component of evolution, but has itself been evolved in biolog-
ical systems.

2 Formal Models of Biological Systems

Why would a biologist want to use formal models? First of all, formal models can be
an excellent way to store and share knowledge on biological systems, and to reason
about such systems. Furthermore, in vivo experiments in the lab tend to take an awfully
long time, and are labour intensive. In comparison, in silico experiments (i.e. computer
experiments) can take relatively little time and effort. And for instance genetic perturba-
tions can be difficult (or unethical) to perform in the lab, while they may require trivial
adaptations of a formal model.

The time is ripe for exploiting the synergy between (systems) biology and formal
methods. First of all we have reached the point where biological knowledge of for in-
stance signal transduction has become so detailed, that enough information is available
to start building sensible formal models. Second, the development of analysis tech-
niques for formal methods, and the power of the underlying computer hardware, has
made it possible to apply formal methods to very complex systems. Although we are
certainly not (and possibly never will be) at a level where a full-fledged formal analysis
of the entire genetic regulatory network of one cell is within reach, we can definitely
already study interesting, and challenging, fragments of such networks.

It is important to realise that biology (like e.g. physics, chemistry, sociology, eco-
nomics) is an empirical science. This is basically orthogonal to the standard application
of formal methods in computer science, where a formal analysis is used to design and
prove properties of a computer system. If a desired property of a computer system turns
out to fail, then we can in principle adapt the system at hand. In contrast, biological
systems are simply (and quite literally) a fact of life, and formal models ‘only’ serve to
better understand the inner workings and emergent properties of such systems. So while
in computer science model validation typically leads to a redesign of the corresponding
computer system, in systems biology it leads to a redesign of the model itself, if in silico
experiments on the model do not correspond with in vivo experiments on the real-life
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biological system. A nice comparison between these two approaches can be found in
the introduction of [18§]].

Fisher and Henzinger [6] distinguish two kinds of models for biological systems:
operational versus denotational (or, as they phrase it, computational versus mathemati-
cal). On the one hand, operational models (such as Petri nets) are executable and mimic
biological processes. On the other hand, denotational models (such as differential equa-
tions) express mathematical relationships between quantities and how they change over
time. Denotational models are in general quantitative, and in systems biology tend to
require a lot of computation power to simulate, let alone to solve mathematically. Also
it is often practically impossible to obtain the precise quantitative information needed
for such models. Operational models are in general qualitative, and are thus at a higher
abstraction level and easier to analyse. Moreover, Fisher and Henzinger, as well as
Regev and Shapiro [17], make a convincing case that a good operational model may
explain the mechanisms behind a biological system in a more intuitive fashion than a
denotational model.

Metaphorically one can ask the question whether molecules in a cell, or cells them-
selves, solve differential equations to decide what to do in a particular situation, or
rather when they encounter one another follow simple sets of rules derived from their
physical interactions. In that respect, one may consider the continuous, mathematical
models as an approximation of the discrete molecular processes, rather than viewing
the qualitative model as a course-grained abstraction of a continuous reality.

An operational model progresses from state to state, where an event at a local compo-
nent gives rise to a state transition at the global system level. Fisher et al. [[7]] argue that
(unbounded) asynchrony does not mimic real-life biological behaviour properly. Typi-
cally, asynchrony allows that one component keeps on executing events, while another
component is frozen out, or executes only few events. While in real life, all components
are able to execute at a certain rate. Bounded asynchrony, a phrase coined by Fisher
et al. [[7], lets components proceed in an asynchronous fashion, while making sure that
they all can proceed at their own rate. A good example of bounded asynchrony is the
maximally parallel execution semantics of Petri nets; we will return to this semantics in
Section[3

We briefly mention the three modelling paradigms from the formal methods commu-
nity that are used most frequently for building operational models of biological systems.

Petri nets are well-suited for modelling biochemical networks such as genetic regula-
tory pathways. The places in a Petri net can represent genes, protein species and
complexes. Transitions represent reactions or transfer of a signal. Arcs represent
reaction substrates and products. Firing of a transition is execution of a reaction:
consuming substrates and creating products. Cell Illustrator is an example of
a Petri net tool that targets biological mechanisms and pathways.

Process calculi, such as process algebra and the mw-calculus, extended with probabili-
ties or stochastics, can be used to model the interaction between organisms. Early
ground-breaking work in this direction was done by Tofts in the context of pro-
cess algebra, with regard to ant behaviour. The Bioambients calculus [[16], which
is based on the m-calculus, targets various aspects of molecular localisation and
compartmentalization.
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Live sequence charts are an extension of the graphical specification language message
sequence charts; notably, they allow a distinction between mandatory and possible
behaviour. They have been used successfully by Harel and his co-workers to build
visual models of reactive biological systems, see e.g. [12].

Model checking is in principle an excellent methodology to verify interesting prop-
erties of specifications in any of these three formalisms. And as is well-known, ab-
straction techniques and distributed model checking (see e.g. [1]) can help to alleviate
the state explosion problem. However, in view of the very large scale and complex-
ity of biological systems, so far even these optimisation techniques cannot push model
checking applications in this area beyond toy examples. Simulations methods are com-
monly used to evaluate complex and high-dimensional models, and are applicable in
principle to both operational and denotational models. Well-known drawbacks, com-
pared to model checking, are that this approach can suffer from limited sampling due
to the high-dimensional state space, and that there may be corners of the state space
that have a biological relevance but that are very hard to reach with simulations. Still,
in spite of these drawbacks, for the moment Monte Carlo simulations are currently the
best method to analyse formal specifications of real-life biological systems.

In our view, for the successful application of formal methods in the systems biology
domain, it is expedient to use a simple modelling framework, and analysis techniques
that take relatively little computation power. This may at first sound paradoxical, but
simplicity in modelling and analysis methods will make it easier to master the enormous
complexity of real-life biological systems. Moreover, it will help to communicate with
biologists on the basis of formal models, and in the hopefully not too far future will
make it attractive for biologists to start using formal modelling tools.

3 A Petri Net Analysis of C. elegans Vulval Development

Petri nets representing regulatory and signalling networks We recall that a Petri net
is a bipartite directed graph consisting of two kinds of nodes: places that indicate the
local availability of resources, and transitions which are active components that can
change the state of the resources. Each place can hold one or more tokens. Weighted
arcs connect places and transitions. In we explained a method to represent biolog-
ical knowledge as a Petri net. As explained before, places represent genes and protein
species, i.e., bound and unbound, active and inactive, or at different locations, while
transitions represent biological processes. Firing of a transition is execution of a pro-
cess, e.g. consuming substrates or creating products. The number of tokens in a place is
interpreted as follows. For genes as a boolean value, 0 means not present and 1 present.
For proteins, there are abstract concentration levels 0-6, going from not present, via low,
medium, and high concentration to saturated level. The rationale behind this approach
is to abstract away from unknown absolute molecule concentration levels, as we intend
to represent relative concentrations and rates. If desired, a modeller could fine-tune the
granularity of the model by adjusting the number of available concentration levels.
Biological systems are highly concurrent, as in cells all reactions can happen in par-
allel and most are independent of each other. Therefore, in we advocate to use what
is called maximal parallelism [3]]. A fully asynchronous approach would allow one part
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of the network to deploy prolonged activity, while another part of the network shows
no activity at all. In real life, all parts can progress at roughly the same rate. Maximal
parallelism promotes activity throughout the network. The maximal parallel execution
semantics can be summarised informally as execute greedily as many transitions as pos-
sible in one step. A maximally parallel step leaves no enabled transitions in the net, and,
in principle, should be developed in such a way that it corresponds to one time step in
the evolution of the biological system. This is possible because the modeller can cap-
ture relative rates and concentration levels using appropriate weights on arcs. Typically,
if in one time unit a protein A is produced four times more than a protein B, then the
transition that captures production of A should have a weight that is four times as large
as the weight of the one that captures B production.

In nature a cell tends to saturate with a product, and as a result the reaction slows
down or stops. To mimic this behaviour, each place in the Petri net has a predefined
maximum capacity of six. To guarantee that the highest concentration level can be at-
tained, we introduced bounded execution with overshooting. A transition can only fire if
each output place holds fewer than six tokens. Since each transition can possibly move
more than one token at once into its output places, each transition can overshoot the
pre-given capacity at most once.

C. elegans vulval development C. elegans is a round worm, about 1mm in length, living
in soil. In order to lay eggs, the C. elegans hermaphrodites grow an organ called vulva.
The complexity and universality of the biological mechanisms underlying the vulval de-
velopment (e.g. cell-cell interactions, cell differentiation, cross-talk between pathways,
gene regulation), and the intensive biological investigations undertaken during the last
20 years [19] make this process an extremely appealing case study [8I9/T0/T4120]. In
particular, the considerable amount of descriptive biological knowledge about the pro-
cess joint with the lack of precise biochemical parameters, and the large number of
genetic perturbations tested in vivo, welcome the research of alternative modelling pro-
cedures. These approaches should be able to express the descriptive knowledge in a
formal way, abstract the processes enough to overcome the absence of fine-grained bio-
chemical parameters, and check the behaviour of the system with a sound methodology.

Recently we developed a Petri net model of the process that leads to the formation of
the vulva during C. elegans development [2]], using the Petri net framework described
above. It comprises 600 nodes (places and transitions) and 1000 arcs. In this network
we could identify different modules. These correspond to different biological functions,
such as gene expression, protein activation, and protein degradation. It is possible to
reuse modules corresponding to a function, like small building blocks, to compose more
complex modules, and eventually build a full cell. The cell itself is a module that can
be reused, as can other modules like pathways or cascades.

To analyse the Petri net model, we applied Monte Carlo simulations. We simulated
64 different genetic perturbations. Twenty-two experiments previously selected in [9]
were used for model calibration. Thirty perturbations were used for validation: 26 from
[9], three from [19]], and one from [22]]. The remaining twelve simulations constitute
new predictions that invite further in vivo experiments.

This case study shows that the basic Petri net formalism can be used effectively to
mimic and comprehend complex biological processes.
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4 Conclusions

Transforming ‘data’ into ‘knowledge’ is a holy grail in Life Sciences. Sometimes we
have much data but relatively little descriptive knowledge, e.g. a whole genome se-
quenced and protein interaction data, but little information about the single genes and
their functions. At other times we have excellent descriptive knowledge about a biolog-
ical process but lack the biochemical details to simulate or explain accurately the phe-
nomenon. For instance, we may know the response of an organism to a certain stimulus
but we do not know which molecules are responsible, or we may know the molecules
but not all the biochemical parameters to reproduce the behaviour of the organism in
silico.

Reaching the sweet spot in between abstraction and biological significance is one
of the big challenges in applying formal methods to biology. On the one hand, a fine-
grained approach potentially gives more detailed predictions and a better approximation
of the observed behaviour, but it has to cope with a huge number of parameters that are
largely unknown and could not be effectively handled by, for instance, model checking
techniques. On the other hand, a coarse-grained approach developed at a higher level
of abstraction needs fewer detailed parameters and is computationally cheaper, but it
might have to be tailored to answering a single question, lowering the overall biological
significance of the model. Therefore, it is crucial to choose the appropriate abstraction
level and formalism in respect to the biological questions that the modeller wants to
address.

To pick up the right questions is a pivotal choice, and to understand their biologi-
cal significance is essential. In order to accomplish these two goals, it is necessary to
establish a clear and unambiguous communication channel between ‘biologists’ and
‘computer scientists’. Furthermore, it is necessary to expand the application of for-
mal methods beyond the manageable but only moderately interesting collection of the
toy examples. Although several different formal methods can achieve such objectives,
in our experience the intuitiveness of its graphical representation, tied with the strict
formal definition of Petri net, contributed greatly to establish a common ground for
‘biologists’ and ‘computer scientists’.
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Abstract. The problem addressed in this paper is the increasing time and cost
of developing critical software. In particular the tried and trusted software de-
velopment processes for safety critical software are becoming untenable be-
cause of the costs involved. Model Based Development, in the general, offers a
solution to reducing time and cost in software development. Unfortunately the
requirement of independence of verification can negate any gains and indeed
lead to more cost. The approach advocated in this paper is to employ the “guess
and verify” paradigm in the context of automatic code generation to enable
automated verification that is independent of the code generation. The approach
is illustrated by the development of an automated verification capability for a
commercial automatic code generator. A research topic on metadata for auto-
matic code generators is suggested.

Keywords: Verification, Cost, Automation, Software, Models, Proof, Simulink.

1 Introduction

In Boehm and Basili’s paper on the top 10 list for software defect reduction [1] they
state:

“All other things being equal, it costs 50 percent more per source instruction to
develop high-dependability software products than to develop low-dependability
software products. ...”

To understand why this is the case it is worth considering safety critical embedded
systems. Such software systems go through rigorous verification processes before
being put into service. Verification is a major source of cost in the development proc-
ess because of the importance placed on achieving independence from software de-
velopers. It is also the case that most designs are subject to frequent change during
development, even up to flight trials. This greatly increases the cost of the develop-
ment as the complete system may need to be re-verified to the same level of rigour
several times before release to service.

1.1 Verification Costs and Complexity

There is a clear trend towards greater complexity in software systems. This growing
complexity in terms of size and distribution is making the cost of verification
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(using current methods) grow in a non-linear fashion with respect to the cost of just
writing the software. The non-linear relationship between writing software and verify-
ing it using current methods has severe implications for software projects and the risk
of them being cancelled. Consider fig 1. below:

Verification
Complexity Actual effort Cost

»

Projected

Complexity increasing linearly offort

| risk/post
-~ ) ) ] escalption
Verification effort increases non-linearly f |

Actual
Projected complexity
complexity

Time

Fig. 1. Assuming verification effort is non-linear with respect to a linear increase in complex-
ity, this figure illustrates how a small error in estimating the actual complexity of software
would cause significant time and cost overruns in a project

A small error in estimating the complexity of the software system leads to a dis-
proportionate increase in verification costs. For the kinds of capability demanded by
the market, this means that small estimation errors can lead to a significant risk of
project cancellation because of time and cost overruns. The cost implications mean
that financial directors are playing an increasing role in software development policy.
The currently favoured tool of the financial director to mitigate the risks of cost esca-
lation is that of off-shore development.

Currently the typical way cost savings are achieved is to outsource software devel-
opment and its verification to countries with significantly cheaper labour costs.
However, significant concerns with this strategy are emerging. The first concern is
possible loss of Intellectual Property. Even if this is not the case there is the concern
that potential competitors are being trained in developing key software systems. The
logical next step would be to integrate these systems and move up the value chain,
thus competing with the tier 1 or 2 system developers who originally outsourced the
software development. In the United States there is also a particular concern about
security with the threat of malicious code being inserted into outsourced software.
Therefore if the major cost driver of verification can be solved then there would be
adoption of a solution in key areas.
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1.2 The Importance of Independence

RTCA document DO-178B and EUROCAE document ED-12B, “Software Consid-
erations in Airborne Systems and Equipment Certification,” proposes verification
independence as a means of achieving additional assurance for the quality and safety
of software installed in airborne systems and equipment. Specifically, DO-178B/ED-
12B recommends verification independence. The desire for independence of verifica-
tion also occurs in other areas such as the nuclear industry.

The reason independence is desirable is that it is a basic strategy for lowering the
impact of human error. For example, to achieve a target of 10 it might be possible to
disaggregate this using an independence argument into two targets of 10~ and 10™.
The problem is that unless independence is “obvious” it can be difficult to demon-
strate it [2]. For example the notion of diverse software implementing the same func-
tionality does not stand up to scrutiny. However the use of diverse fault removing
techniques has been found to be useful in detecting errors [3].

The correctness by construction approach without independent verification means
that the burden of demonstrating freedom from error can be too difficult to empiri-
cally demonstrate. Even the use of mathematical proof is not immune to this criticism
since it is ultimately a human endeavour and therefore vulnerable to human error. For
example the presence of errors in the implementation of proof tools is well known.
The independence of one approach from another approach means that an error in one
has to exactly mask an error in the other.

There are still wrinkles that need to be ironed out, the main ones being that there
might be a common misunderstanding of the semantics of the specification/model or
of the target language. However even if independence of diverse approaches cannot
be claimed, it may still be possible to make a conservative claim for the conditional
probability of the failure of independence [4].

In summary there is a technical case for employing the “guess and verify” ap-
proach to software verification. The adoption of commercial automatic code genera-
tors means that the few times they do fail can be sufficiently mitigated by a diverse
verification approach. This paper will also argue that the “guess and verify” approach
can in general be made automatic through automatic code generators supplying meta-
data on the code generation itself.

2 An Architecture for Independent Verification

In fig. 2 a representation of the architecture used by QinetiQ is presented. Above the
dotted line the independent development of the code occurs. Below the dotted line the
independent verification consists of three tools: a Refinement Script Generator; a
Refinement Checker; and a Theorem Prover. There is a fourth tool that automatically
generates a formal specification based upon the formal semantics of the modelling
language [5]; it is elided to concentrate on the most important parts. A particular in-
stance of the architecture is described in detail in [6]. The Refinement Checker and
the Refinement Script Generator are described in more detail in subsections below.
The Refinement Script Generator takes information from various sources to gener-
ate a refinement argument that may or may not be true. As the name implies the
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Refinement Checker determines the validity of the refinement argument by generating
verification conditions that are discharged using the Theorem Prover. The simplifica-
tion theory used by the Theorem Prover is specialised for the code language and the
modelling language. By sufficiently constraining the code generated, the generation
of the refinement argument and taking the structure of the formal specification into
account then the simplification theory can in principle discharge all the verification
conditions — assuming the refinement argument is correct.

- s

Development

Verification

User Interface

o — et

Model l

‘ Verification Conditions \

|

Discharge proof

Model and code based
simplification theory

Fig. 2. An architecture for independent verification

2.1 A Refinement Checker

QinetiQ’s refinement checker developed in the early 1990s for Ada programs is called
the DAZ tool [7]. The form of refinement supported by DAZ is loosely based upon
Carroll Morgan’s refinement calculus [8]. Superficially it looks very much like Mor-
gan’s refinement calculus, but it is not a calculus and the executable code is a predict-
able subset of Ada.

A formal refinement starts with a specification statement that has a frame for the
variables that can change and uses the Z notation to express the precondition and post
condition. The refinement statement can then be refined to source code via a series of
refinement steps. Each refinement step results in verification conditions generated by
DAZ to establish the validity of the refinement.

A refinement checker, called QCZ, for a predictable subset of C is currently under
development at QinetiQ. Analogous verification tools have been produced elsewhere,
for example the Caduceus tool [9] and the verification tool for CO developed by the
Verisoft Project [10]. Both DAZ and QCZ take refinement conjectures and verify the
correctness of the refinement within the guess and verify paradigm.
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2.2 A Refinement Script Generator

QinetiQ’s refinement checker takes a refinement conjecture as input. In general it
takes considerable effort and some skill to produce a refinement argument. However
the Simulink language has a limited number of ways of constructing a model and this
constrains the form of the refinement. There are also many ways in which a refine-
ment might be constructed, for example large steps leading to fewer and more com-
plex verification conditions as opposed to smaller steps with consequently simpler but
more verification conditions.

If a canonical form of refinement is conformed with then this leads to a canonical
set of verification conditions. The canonical verification conditions can in turn be
simplified by a limited number of proof tactics. To get closer to such a canonical form
a tool is required that links parts of the Simulink diagram with the corresponding parts
of the Ada program subunit. The process is called witnessing and the tool that sup-
ports it is the Refinement Script Generator, RSG. The witnessing language processed
by the tool identifies correspondences between wires (also known as signals) in the
Simulink diagram and the values of Ada variables at specific points in the program
unit.

RSG ensures that witnessing is done by maintaining a wave front of wires in the
Simulink diagram, prompting the user to supply a witness for any wire on the wave
front. When a wire’s witness has been supplied the wave front advances along that
wire. The witness script is complete when the wave front has crossed the entire
diagram.

A witness script for a typical 80 line program unit will be around 100 to 150 lines
long. For manually developed code requiring manual witnessing this will take around
2 to 3 hours to construct, but might require re-work if an error is made. Note an error
in the witness script will result in a verification failure when the refinement check
takes place.

3 Metadata for Automated Code Generation

Automatic code generators typically produce information that allows the code gener-
ated to be traced back to that part of the model it was generated from. In some in-
stances this informal textual relationship is formalized and used as an input to tools.
For example one of the key enabling technologies of IBM’s Rational Rhapsody [11]
product is that it provides direct model code associativity. In essence this means that a
change in code brings a change in the model, and a change in the model changes the
code. The existence of such technology means that the basis for generating a refine-
ment conjecture also exists. Such a refinement conjecture would enable verification
by tools that were independent from the code generation.

Unfortunately it is unlikely that commercial vendors would be willing to expose
the details of their code generation technology. For example The Mathworks have
moved from an open template based approach for code generation to the use of
opaque code generation steps. However QinetiQ’s technology for generating refine-
ment conjectures from abstract witnessing information suggested that the traceability
information, which is already exposed by commercial automatic code generators,
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would be sufficient to generate a refinement conjecture. Further this refinement con-
jecture could be only one possible route for the development of the code, not neces-
sarily the actual code generation path.

3.1 The B4S Automatic Code Generator

The requirement for independence led QinetiQ to approach Applied Dynamics Inter-
national, ADI [12]. ADI develop and market a graphical design tool, code generator
and automated tester. This graphical tool has been in use for over a decade, generating
production quality safety critical application code for jet engine controllers. It was
their code generator, called B4S, and its capability to take Simulink models as input
that interested QinetiQ.

ADI were also interested in QinetiQ’s technology to the extent that they quickly
invested their own time and money in collaboration with QinetiQ. The purpose of the
collaboration was to determine whether ADI could generate the witnessing informa-
tion for automatically generating a refinement conjecture. As discussed this was pre-
viously generated manually with tool support.

The conjecture that traceability information, which is a customer requirement for
automatic code generators, would be sufficient to generate witnessing information
proved to be correct. Within weeks ADI were able to produce the required witness
information as annotations in the generated code that could be processed by QinetiQ.
The witnessing information is an example of metadata that provides sufficient infor-
mation for a refinement conjecture to be automatically generated and automatically
verified — assuming the code generated actually does satisfy the original model.

3.2 Harnessing the B4S Metadata

The metadata is used within a tool based process that must be set up by a person
through a user interface. The specification directory needs to be defined; this is where
the formal specifications automatically generated from the Simulink model will be
placed. Next the analysis directory, where the results of the verification will be put,
needs to be defined.

The results of the verification will be a record of all the verification conditions and
their proof. If a verification condition is unproven then the simplified verification
condition will also be placed there for examination within the ProofPower tool. In
practice QinetiQ have found that unproven verification conditions contain sufficient
information to diagnose an error in the automatically generated code.

The next step is to define the directory where the automatically generated code will
be placed by the B4S automatic code generator. The Simulink from which the formal
specification will be independently generated must also be specified through the user
interface. In particular the parts of the Simulink model that correspond to program
units needs to be given. QinetiQ use this facility to set up the verification of manually
developed code that is being analyzed for errors. For the B4S tool this information is
automatically available because the automatic code generator selects those parts of the
model specified in Simulink’s underlying .mdl file to generate the program unit. Fi-
nally which subprograms that require verification need to be defined; this is because
changes to the Simulink model will not necessarily lead to re-generation of all the
program units.
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The next stage is to perform the verification. During this stage the metadata is used
to define the formal relation between Simulink signals in the model and the variables
in the code that implement those signals. The definition of the formal relation is done
automatically because of the metadata. For manually developed code the metadata has
to be generated by a tool that is manually driven. Although the tool is simple enough
for undergraduates to use, it can be a tedious error prone activity that used to lead to
verification failures that required re-work.

At this point the verification can actually proceed and, depending upon the size of
an individual program unit, the time can range from a few minutes (for tens of lines of
code per unit) to hours (for hundreds of lines of code per unit).

The verification stage is illustrated by an annotated snapshot of the user interface
in fig. 3.

¢ Link Simulink units with Ada
subprograms T

— Automatable

* Defineinterface between Simulin
signalsand Ada variables

— Automatedfor B
* Run auto-verification
¢ Proofresults reported

— Verification condition failure
providesthe point of failure and
the pre-condition information at
that point

Fig. 3. An annotated snapshot of the user interface for the verification stage

3.3 A Research Challenge

Much work already exists on formalising modelling languages such as UML. As
already discussed there are a number of verification tools that can be used to check
refinement conjectures. Commercially available automatic code generators are readily
available for many modelling languages. The challenge is to bring these together to
provide completely automated verification processes that are independent from these
automatic code generators.

The advantage of independent verification has been discussed, but it is worth re-
peating. The advantage of independent verification is essentially the clear diversity of
software tools that means that lower levels of reliability need to be claimed in order to
meet an overall reliability figure. In practice the actual level of reliability of, for ex-
ample, QinetiQ’s verification tools will be higher than required for, other reasons.
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The requirement of a fully automated process is necessary for widespread adoption
for commercial use. Without full automation the cost reductions will be insufficient
for adoption except for the most expensive projects and there will be significant resis-
tance to doing something novel that requires manual input beyond current practices.

The key to achieving full automation for a range of models and automatic code
generators is the generation of the kind of metadata described in this paper. QinetiQ’s
research has demonstrated that it is possible for a commercially available automatic
code generator and the Simulink modelling language. The conjecture is that there is a
family of languages, or even a single unified language, that defines a set of possible
refinement conjectures that have to be true if automatically generated code correctly
implements the model it was generated from. Clearly there will need to be constraints
on the automated code generator, the target language and the modelling language.
Part of the research will be to explore and trade-off these constraints to develop a
theory that underpins a metadata language.

One reason for believing that there is a general theory for such metadata is the ob-
servation that the target languages for commercially available automatic code genera-
tors share many of the same control flow and data representation concepts. The same
seems to be true of many modelling languages, or at least those subsets of the model-
ling language that are used for automatic code generation.

4 Conclusions

It is widely accepted that the complexity of software is increasing and that the corre-
sponding verification costs are rising in a non-linear fashion. This is not sustainable
meaning that there will have to be large trade-offs between cost, capability and integrity.

High reliability or high consequence systems tend to require independence of veri-
fication. The approach advocated in this paper is to employ the “guess and verify”
paradigm in the context of automatic code generation to enable automated verification
that is independent of the code generation. The approach is illustrated by the devel-
opment of an automated verification capability for a commercial automatic code gen-
erator called B4S.

A technical argument has been made that the diversity provided by the “guess and
verify” approach leads to higher assurance of freedom from errors than just relying
upon a single fault removal procedure. In addition to this argument there is a com-
mercial imperative to adopting a “guess and verify” approach that can be automated.
This is that commercial automatic code generators will tend to change frequently in
response to their market. The reason for this is that the adoption of modelling lan-
guages is driven by the capability to model systems, simulate them and analyse them.

New capability tends to be added to modelling languages and tools in order to dif-
ferentiate them from the competition. This means that change in automatic code gen-
erators is inevitable and if they do not adapt to new modelling opportunities then they
will be relegated to niche uses. QinetiQ’s experience is that a “guess and verify”
framework can be readily adapted to evolution of the semantics of a modelling lan-
guage. Further the only aspect that requires requalification is the generation of the
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formal specification since the rest of the tools are independent of the code generator.
This independence also means that such an automated verification framework is only
dependent on the metadata generated by an automatic code generator; therefore it
could be used with any other automatic code generator that generated semantically
equivalent metadata.

QinetiQ’s experience of implementing an automated procedure for Simulink relies
upon metadata generated from B4S and suggests that it could be generalised. The
conjecture is that there is a family of languages, or even a single unified language,
that defines a set of possible refinement conjectures that have to be true if automati-
cally generated code correctly implements the model it was generated from. If a the-
ory could be developed to underpin the semantic basis for such metadata then an open
standard could be developed that could be adopted by commercial developers of
automatic code generators. Offering such a capability would be a significant differ-
entiator from competitors.

The paper started with a quote from Boehm and Basili, the full quote is:

“All other things being equal, it costs 50 percent more per source instruction to de-
velop high-dependability software products than to develop low-dependability soft-
ware products. However, the investment is more than worth it if the project involves
significant operations and maintenance costs.”

Coupling automatic code generation with independent automated verification
promises to reduce the cost of developing high-dependability software from 50% to
15% more than that of low-dependability software. This could be achieved by, for
example, stripping out unit testing and repeated re-work. Hence the old paradigm of
“guess and verify” does have a future.
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Abstract. Programming tools have expanded both in scope of the prob-
lems they solve, and in the kinds of techniques they use. Traditionally,
programming tools have focused on detecting errors in programs. Re-
cently, this scope has broadened to help with other programming tasks,
including inferring specifications, helping diagnose root cause of errors
during debugging, and managing knowledge in large projects. Also, tradi-
tionally programming tools have been based on either static or dynamic
program analysis. Modern programming tools combine static and dy-
namic program analysis together with techniques from other disciplines
such as statistical and probabilistic inference, and information retrieval.
This paper reports on some such tools built by the Rigorous Software
Engineering group at Microsoft Research India.

Large scale software development is an enormous engineering and scientific chal-
lenge. Over the past several decades several tools and techniques have been
proposed to aid programmers and testers in the complex tasks associated with
designing, implementing, testing and maintaining large software.

The “formal methods” community has been traditionally focusing on building
tools to automatically check if the program, or some abstraction or model of the
program satisfies a set of specifications. Such tools are classified as “program ver-
ification tools” or “static analysis tools”. Though program verification has been
the holy grail of the formal methods community, practical applications of veri-
fication run into major challenges. It is difficult to write detailed specifications,
and it is hard to scale verification algorithms to large software. In spite of these
difficulties, several tools have been successful in finding bugs and establishing
certain weak specifications of programs (see for example [2[76]). However, bug
finding is only one aspect of software development. Other software development
activities such as design, maintenance and debugging have received relatively
less attention from the formal methods community.

Traditionally, programming tools have been based either on static analysis
or dynamic analysis. Static analysis involves analyzing a program by inspecting
its text and reasoning about all possible behaviors without running the pro-
gram, and dynamic analysis involves running the program. We believe that by
combining static analysis and dynamic analysis together with techniques from
other disciplines such as probabilistic and statistical techniques, and information
retrieval techniques, we can solve a broader range of problems.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 33 2009.
© Springer-Verlag Berlin Heidelberg 2009
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In this paper we report on both these trends using three projects:

— YO0dlI, a tool for finding bugs and proving safety properties of programs, by
combining verification and testing,

— MERLIN, a tool to infer security specifications of software by combining static
analysis with probabilistic inference,

— DEBUGADVISOR, a tool to find relevant information during debugging by
combining domain specific knowledge about programs with information
retrieval.

1 Combining Verification and Testing

Software validation is the task of determining if the software meets the expecta-
tions of its users. For the most part, industrial practice of software engineering
uses testing to validate software. That is, we execute the software using test
inputs that mimic how the user is expected to interact with the software, and
declare success if the outcomes of the executions satisfy our expectations. There
are various granularities in which testing is performed, ranging from unit testing
that tests small portions of the system, to system-wide tests.

Testing is incomplete in the sense that it validates the software only for the
test inputs that we execute. The software might exhibit undesired behavior with
test inputs we do not have. Verification has a more ambitious goal —to formally
prove that the software meets its expectations for all possible test inputs, and
for all possible executions.

Testing and verification have complementary strengths in solving this prob-
lem. Testing typically suffers from low coverage. Thus, even if a software has
been tested by a group of testers and found satisfactory as far as the desired
specification is considered, a customer might well exercise a behavior that vio-
lates the specification, and expose a bug that was not detected during testing.
However, every violation found using testing is a true error that can happen
on the field, and this is one of the biggest strengths of testing. Verification, on
the other hand, offers the promise of full behavioral coverage. Thus, when we
use a verification tool to establish that a program satisfies the specification, we
can be certain that the specification holds for all possible behaviors of the sys-
tem. However, if a verification tool says that the program does not satisfy the
specification, it might very well be due to the tool’s inability to carry out the
proof.

Suppose a specification is given to us, and we are interested in finding either
a test input that violates the specification, or prove that the specification is
satisfied for all inputs. For simplicity, let us consider assertional specifications
that are expressed as assert statements of the form assert(e), where e is a
predicate on the state of the program. Such a specification fails if an execution
reaches an assert statement assert(e) in a state S such that predicate e does
not hold in state S.

For the past few years, we have been investigating methods for combining
static analysis in the style of counter-example driven refinement & la SLAM [3],
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with dynamic analysis in the style of concolic execution & la DART [8]. Our first
attempt in this direction was the SYNERGY algorithm [I0], which handled single
procedure programs with only integer variables. Then, we proposed Dasu [4],
which had new ideas to handle pointer aliasing and procedure calls in programs.

The DASH algorithm simultaneously maintains a set of test runs and a region-
graph abstraction of the program. The region-graph is the usual existential ab-
straction used by tools based on predicate abstraction [BIII]. Tests are used to
find bugs and abstractions are used to prove their absence. During every itera-
tion, if a concrete test has managed to reach the error region, a bug has been
found. If no path in the abstract region graph exists from the initial region to the
error region, a proof of correctness has been found. If neither of the above two
cases are true, then we have an abstract counterexample, which is a sequence
of regions in the abstract region graph, along which a test can be potentially
driven to reveal a bug. The DASH algorithm crucially relies on the notion of a
frontier [T0M4], which is the boundary between tested and untested regions along
an abstract counterexample that a concrete test has managed to reach. In ev-
ery iteration, the algorithm first attempts to extend the frontier using test case
generation techniques similar to DART. If test case generation fails, then the
algorithm refines the abstract region graph so as to eliminate the abstract coun-
terexample. For doing refinement, the DASH algorithm uses a new refinement
operator WP, which is the usual weakest precondition operator parameterized
to handle only aliasing situations that arise in the tests that are executed [4].

The DASH algorithm is related to the Lee-Yannakakis algorithm [I4], with
the main difference being that the Lee-Yannakakis algorithm computes bisimu-
lations, whereas the DASH algorithm computes simulations, which are coarser.
See [10] for a more detailed comparison with the Lee-Yannakakis algorithm.

Most program analyses scale to large programs by building so called “sum-
maries” at procedure boundaries. Summaries memoize analysis findings at proce-
dure boundaries, and enable reusing these findings at other appropriate calling
contexts of a procedure. Recently, we have proposed a new algorithm, called
SMASH, to combine so-called “may-summaries” used in verification tools like
SLAM with so-called “must-summaries” used in testing tools like DART [9].

A may-summary of a procedure is used to denote the absence of paths in
the state space of the procedure, and a must-summary is used to denote pres-
ence of paths in the state space of the procedure. One of the most interesting
aspects of the SMASH algorithm is the interplay between may-summaries and
must-summaries. Suppose we want to ask if a path exists (that is, does a must-
summary exist that shows the presence of such a path) between a set of states A
that are input states to a procedure Py, to a set of output states B of procedure
P;. Procedure P; could have several paths, and suppose one of these paths calls
procedure P». Suppose there is a may-summary of P, that can be used to prove
the absence of paths from set A to set B, then this information can be used to
prune the search to avoid exploring the path that calls procedure P (including
all the paths inside the body of P, and its transitive callees) and explore other
paths in P; to build the desired must-summary. Dually, suppose we want to ask
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if no path exists (that is, does a may-summary exist that shows the absence of
such a path) between a set of states C' that are input states to a procedure P,
to a set of output states D of procedure P;. Again, procedure P; could have
several paths, and suppose one of these paths calls procedure P,. The presence
of certain kinds of must-summaries in P, can be used to avoid potentially ex-
pensive may analysis of procedure P, and still build the desired may-summary
for P;. More details can be found in [J], where we also quantify the amount of
interplay between may-summaries and must-summaries empirically by running
the tool over a large number of programs.

All of the above ideas have been implemented in a tool called YOGI, and
empirical results from running and using the tool have been very promising [17].

2 Inferring Specifications Using Statistics

One of the difficulties with writing specifications is that they are very detailed —
sometimes as detailed as the code itself. It would be useful if general guidelines
could be given by the user at a high level, and tools would automatically infer
detailed specifications from these guidelines.

As an example, consider the problem of detecting information flow vulnera-
bilities in programs. Here, certain data elements in the software (such as ones
entered by the user, or passed from some untrusted program) are deemed to
be “tainted”, and the software is required to inspect the data and “sanitize” it
before using it in a trusted context such as a database query. A formal specifi-
cation of information flow security consists of classifying methods in a program
into (a)sources: these nodes originate taint or lack of trust, (b)sinks: these nodes
have the property that it is erroneous to pass tainted data to them, (c)sanitizers:
these nodes cleanse or untaint the input (even if input is tainted, output is not
tainted), (d)regular nodes: these nodes simply propagate taint information from
inputs to outputs without any modification. In this setting an information flow
vulnerability is a path from a source to a sink that is not sanitized.

Since typical applications have tens of thousands of methods, it takes intensive
(and error-prone) manual effort to give a detailed specification that classifies each
method into a source, sanitizer, sink or regular node. Consider a data propagation
graph of the program, whose nodes are methods and whose edges indicate flow
of information. That is, an edge exists from node (method) m; to node (method)
me iff data flows from mj to meo either using an argument or return value of a
procedure call, or using global variables.

We do not know which nodes in the propagation graph are sources, sinks or
sanitizers. We propose to use Bayesian inference to determine this. We associate
a random variable with each node in the propagation graph, where each such
random variable can take one of four values— source, sink, sanitizer or regular
node. If such random variables are chosen from independent probability dis-
tributions (for instance, a binomial distribution for each random variable), the
outcome of such an experiment is unlikely to be useful, since we are ignoring the
structure of the program and our intuitions about likely specifications. However,
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we have a lot of information about the desired outcome of such an experiment.
These beliefs can be used to constrain the probability distributions of each of
the random variables using Bayesian reasoning.

In particular, let us consider some beliefs about the desired outcome in our
example. It is reasonable to believe that errors are rare and that most paths in
propagation graphs are secure. That is, the probability that a path goes from
a source to a sink with no intervening sanitizer is very low. Also, it is unlikely
that a path between a source and a sink contains two or more sanitizers. If
information flows from method m; to mo, then m; is more likely to be a source
than ms, and my is more likely to be a sink than m;.

All the above beliefs are not absolute. If we were to treat them as boolean
constraints which all need to be satisfied, they could even be mutually con-
tradictory. Thus, we represent all these beliefs as probabilistic constraints, and
desire to compute the marginal probability distributions associated with each
individual random variable. Computing marginal distributions naively does not
scale, since the naive computation is exponential. However, if the joint prob-
ability distribution can be written as a product of factors, where each factor
is a distribution over a small number of random variables, there are very effi-
cient algorithms such as the sum-product algorithm [I3] to compute the desired
marginal distributions.

We have built a tool called MERLIN to automatically infer sources, sinks and
sanitizers using this approach. MERLIN first builds a propagation graph of the
program using static analysis, and uses the above beliefs to build a factor graph
from the propagation graph. Probabilistic inference is then performed on the
factor graph, and thresholding over the computed marginal distributions is used
to compute the desired specifications. Our implementation of MERLIN uses the
INFER.NET tool [16] to perform probabilistic inference.

We believe that this general recipe can be used to infer specifications in several
situations: model the specification associated with each component as a random
variable, model the beliefs we have about the outcome of the inference as a set
of probabilistic constraints, perform probabilistic inference to obtain marginal
probabilities for each of the random variables, and perform thresholding on the
marginals to obtain the specifications.

3 Finding Related Information during Debugging

In large software development projects, when a programmer is assigned a bug
to fix, she typically spends a lot of time searching (in an ad-hoc manner) for
instances from the past where similar bugs have been debugged, analyzed and
resolved. We have built a tool called DEBUGADVISOR [I] to automate this search
process. We first describe the major challenges associated with this problem, and
then our approach.

The first challenge involves understanding what constitutes a search query. In
principle, we would like to leverage all of the context the user has on the current
problem, including the state of the machine being debugged, information in the
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current bug report, information obtained from the user’s interaction with the
debugger, etc. This context contains several objects such as call stacks, image
names, semaphores, mutexes, memory dumps, exceptions etc. Each of them have
their own domain specific notions of similarity to be used when two instances
of such objects are compared. The second challenge involves dealing with the
diversity of information sources that contain potentially useful information for
the user. These include past bug reports, logs of interactive debugger sessions,
information on related source code changes, and information about people in the
organization. These information sources are variegated, and the data is of varied
type —a mixture of structured and unstructured data.

We approach the first challenge (capturing the context of the user) by allowing
a fat query —a query which could be kilobytes of structured and unstructured
data containing all contextual information for the issue being debugged, includ-
ing natural language text, textual rendering of core dumps, debugger output
etc. DEBUGADVISOR allows users to search through all our software reposito-
ries (version control, bug database, logs of debugger sessions, etc) using a fat
query interface. The fat query interface is quite different when compared with
short query strings commonly used in information retrieval systems. Previously,
our users had to search through each data repository separately using several
queries, each of which was restricted to a short query string, and they had no au-
tomatic mechanism to combine these search results. DEBUGADVISOR’s fat query
interface allows users to query all these diverse data repositories with a single
query.

We approach the second challenge (diversity of information sources) by parti-
tioning the search problem into two phases. The first “search” phase takes a fat
query as input and returns a ranked list of bug descriptions that match the query.
These bug descriptions contain a mix of structured and unstructured data. The
second “link analysis” phase uses the output of the first phase to retrieve a set
of related recommendations such as people, source files and functions.

The key idea in the search phase is to uniformly represent both queries and
information sources as a collection of features, which are formalized as typed
documents. Typed documents have a recursive type structure with four type
constructors:(1) unordered bag of terms, (2) ordered list of terms, (3) weighted
terms, and (4) key-value pairs. Features with arbitrary structure are expressed
by combining these type constructors. Representing features as typed documents
leads to an important advantage —it separates the process of defining and ex-
tracting domain specific structure from the process of indexing and searching.
The former needs to be done by a domain expert, but the latter can be done
generically from the type structure.

The link analysis phase of DEBUGADVISOR retrieves recommendations about
people, source files, binaries, and source functions that are relevant to the cur-
rent query, by analyzing relationships between these entities. We are inspired by
link-analysis algorithms such as Page Rank [5] and HITS [12] to compute these
recommendations. Unlike the world-wide web, where explicit URL pointers be-
tween pages provide the link structure, there are no explicit links between these
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data sources. For fixed bugs, it is possible to discover the version control revision
that was made to fix the bug. We can then find out which lines of code were
changed to fix the bug, which functions and which binaries were changed, and
who made the change. The output of such an analysis is a relationship graph,
which relates elements in bug descriptions, source files, functions, binaries and
people. Starting with a “seed” set of bug descriptions from the search phase, the
link analysis phase performs probabilistic inference and retrieves a ranked list of
people, files, binaries and functions related to the seed set.

We have deployed DEBUGADVISOR to several hundred users internally within
Microsoft, and the feedback has been very positive [1].

4 Summary

Large scale software development is a difficult engineering endeavor. So far, for-
mal methods have been primarily associated with program verification, and bug
detection in programs or models. In this paper we have taken a broader view
of programming tools, used to aid various tasks performed during the software
development life cycle including specification inference and knowledge manage-
ment. We have also illustrated the power obtained by combining various analysis
techniques such as verification, testing, statistical and probabilistic inference,
and information retrieval. We believe that such hybrid tools that exploit syner-
gies between various techniques and solve a broad set of programming tasks will
become more widely used by programmers, testers and other stakeholders in the
software development life cycle.
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Abstract. Security and probability are both artefacts that we hope to
bring increasingly within the reach of refinement-based Formal Methods;
although we have worked on them separately, in the past, the goal has
always been to bring them together.

In this report we describe our ongoing work in that direction: we relate
it to a well known problem in security, Chaum’s Dining Cryptographers,
where the various criteria of correctness that might apply to it expose
precisely the issues we have found to be significant in our efforts to deal
with security, probability and abstraction all at once.

Taking our conviction into this unfamiliar and demanding territory,
that abstraction and refinement are the key tools of software develop-
ment, has turned out to be an exciting challenge.

1 Introduction

When I took office, only high-energy physicists had ever heard of what is
called the World Wide Web... Now even my cat has its own page.

More than 10 years later, the internet is the playground of far stranger things
than White-House pets and some estimates place its size upwards of tens of
billions of websites: everybody and every thing seems to be at it. There has
been a boom not only in science and business but also in private transactions,
so that where once decisions were based on “rules of thumb” and inter-personal
relationships, now we increasingly defer to automation — even when it is our
security and privacy that is at stake.

The movement towards “transactions at a distance” has spawned a huge num-
ber of ingenious algorithms and protocols to make computers do for us what we
used to do for ourselves, using “gut feeling” and the full repertoire of body lan-
guage and other out-of-band channels. The reliance on machines has blurred the
distinction between the real world —with all its uncertainties— and software, with
its inescapable reliance on an exact unforgiving model — one that its designers
hope has some connection to its environment and purpose. As users thus we
place an increasingly heavy burden on those designers: once they could assume

* We acknowledge the support of the Australian Research Council Grant DP0879529.
! The quote is attributed to Bill Clinton in 1996 (but unconfirmed).
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absolute regularity; and now they must decide just what exactly can be assumed
in an uncertain world, and what guarantees can be given with any confidence
about the software they create.

The answer—we believe in Formal Methods— is to create rigorous models of
the phenomena with which the software must contend, as far as is possible. As
we do so, we are misunderstood by the wider Computer Science community
when they accuse us of believing that the real world can be captured entirely
in mathematics, or that the only way to write programs is to calculate them by
hand with a quill pen.

It is as if planning a household budget using decimals for dollars, and
a computer for calculation, were somehow evidence of one’s belief that
all of family life can be reduced to arithmetic. The truth —as everyone
knows— is that using arithmetic for what can be quantified leaves more
time to enjoy what can’t be.

Similarly, formalising and automating what can be captured in semantics, models
and calculi for computer applications leaves more time for concentrating on the
aspects that require intuition, common sense and good taste. Thus our aim is
always to expand our formalisations so that we can capture more

In this paper we concentrate on capturing more aspects of software systems for
which security is an issue and whose operational envorinment is only partially
predictable. Specifically, our goal is a mathematical model of probability, security
and modularity: they are —we will argue— closely linked phenomena, and (we do
not need to argue) they are all relevant to the design of computer systems and
the control and understanding of their behaviour and their applications.

Crucial to getting a grip on slippery concepts is to setting up a framework
within which one can pose precise questions and draw rigorous conclusions. If the
conclusions agree with our intuitions, or nearly so, then we proceed, elaborating
the framework; if not, we backtrack and try a different angle. Constructing a
framework requires, in turn, a repertoire of small, compelling examples that can
serve as targets for the construction.

Our compelling example is Chaum’s well known exemplary problem of the
Dining Cryptographers: we stretch it and twist it in order to illustrate the in-
tricacies that arise when we mix the above concepts. From there we discuss a
number of models which attempt to tame those intricacies, and finally we pose
some further intriguing lines of research.

2 Assailed on both sides, Formal Methods is sometimes thought to be trying to reinvent
or trivialise the long-established work of mathematicians. It’s not so. Nobody for
example worries about the correctness of Bubble Sort in principle; but because
source-level reasoning about array segments remains difficult for many people, every
day new and incorrect sorting programs are written by accident... and propagated:
that’s bad practice. Finding better ways to reason about array segments at the source
level would therefore be an improvement for everyone.
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2 The Cryptographers’ Café

In this section we introduce Chaum’s Dining Cryptographers protocol, and we
outline the point of view that will allow us to use it to explore refinement and
nondeterminism as well as the security and probability it already contains. Here
is the original abstract, which sketches the problem domain:

Keeping confidential who sends which messages, in a world where any
physical transmission can be traced to its origin, seems impossible. The
solution presented here is unconditionally or cryptographically secure,
depending on whether it is based on one-time-use keys or on public keys,
respectively. It can be adapted to address efficiently a wide variety of
practical considerations. [8]

Now we look at the solution, and see where it leads.

2.1 Chaum’s Solution: The Dining Cryptographers’ Protocol
Chaum’s protocol for anonymity is built around the following story:

Three cryptographers have finished their lunch, and ask the waiter for
their bill; the waiter says it’s already been paid. But by whom? The
cryptographers do the following to find out.

Each pair of cryptographers flips a fair coin privately between the two of
them, concealed from the third; then each announces whether she paid, (1)
but lies if the two flipped coins she sees show different faces.

If the number of “I paid” utterances is odd, then indeed one of the cryp-
tographers paid; but only she knows which one that was (i.e. herself). If
the number is even, then the bill was paid by a fourth party.

Chaum gives a rigorous mathematical proof that, no matter what an individual
cryptographer observes, because the coins are fair (50%) the chance she can
guess which other cryptographer paid after the protocol (50%) is the same as it
was before (50%).

His proof does not refer to a specific program text, and so makes no use of any-
thing that could be called a program logic. Our contribution is not however to
increase the rigour of Chaum’s argument. It is rigorous already. Rather we want
to find a way of capturing that style of argument in a programming-language
context so that we can be more confident when we confront larger, more com-
plex examples of it in actual applications, and so that we have some chance of
automating it.

As a first step, we separate concerns by dealing with the hiding and the
probability separately. We name the cryptographers A, B and C; then
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Cryptographer A’s utterance does not reveal whether she paid, since
neither of the other two cryptographers B, C knows both of the coins
A consulted when deciding whether to lie or not: Cryptographer B sees
one but not the other; and Cryptographer C' sees the other but not the
one. The same applies from Cryptographers’ B, C' points of view.

Yet when the parity of the three utterances is calculated, each coin is
tallied twice and so cancels out. Thus the parity of “I paid” claims is
the same as the parity of “I paid” acts. That number of acts is either
zero or one (because the bill is paid at most once, no matter by whom)
— and so it is determined by the parity.

The attractiveness of this formulation is that it reduces the problem to Boolean
algebra, a domain much closer to programming logic. But it raises some intrigu-
ing questions, as we now see.

2.2 What Is the Relevance of the Fair Coins?

)

Given that the statement of the protocol () refers to “fair coins,” and our ver-
sion of the correctness argument (2)) does not, it’s reasonable to ask where in our
framework the fairness should fit in. Clearly the coins’ bias has some bearing,
since in the extreme case —returning always heads, or always tails— the cryptog-
rapher’s utterances won’t be encrypted at all: with each coin’s outcome known
in advance, whether or not the coin can be seen, a cryptographer’s utterance
will reveal her act. In that case the protocol is clearly incorrect.

But what if the coins are biased only a little bit? At what point of bias does
the protocol become incorrect? If it’s correct only when the coins are exactly fair,
and incorrect otherwise, is the protocol therefore unimplementable? Or does it
become “increasingly incorrect” as the bias increases? After all, there are no
exactly fair coins in nature.

And worse — what about the case where the coins are extremely biased,
but no-one knows beforehand what that bias is? Furthermore, does it make a
difference if the bias is not fixed and is able to change with time?

2.3 The Café

The key to the questions of Sec. —and our point of departure- is time in
the sense that it implies repeated trials. We elaborate the example of Sec. 2]
by imagining that the cryptographers meet in the same café every day, and
that the protocol () is carried out on each occasion. Suppose that the waitress,
observing this, notes that Cryptographer A always says “I paid.”ﬁ What does
she conclude?

3 More precisely, she serves a statistically significant number of lunches, say a whole
year’s worth, and Cryptographer A says “I paid” on all of them. This is discussed
further in Sec. [8.10)
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She concludes quite a lot. Given that the coins are independent of each other
(irrespective of whether they are fair), and that Cryptographer A follows the
protocol properly (whether she believes she paid is not influenced post hoc by the
coin-flips), the waitress concludes that Cryptographer A either pays every time,
or never pays. Moreover, she knows also that both of the coins Cryptographer A
sees are completely unfair. For this is the only way, given independence (and in
the absence of magic) that the utterance of A can be the same every time. Note
that the waitress does not learn whether A is a philanthropist or a miser; she
learns only that A is resolutely one or the other. Thus —in spite of ([2)— without
an explicit appeal to fairness the protocol seems insecure.

Let’s push this example further, and examine its dependence on the coins’
bias when that bias is not extreme. For simplicity, we consider just one hidden
coin ¢ and a secret h: the coin is flipped, and c=h is revealed.fl What do we
learn about ¢ and h if this is done repeatedly?

From now on, for uniformity, our coins show true and false (sometimes ab-
breviated T and F). Over many runs, there will be some proportion p. of ¢’s
being T; similarly there will have been some proportion py of h’s being T. The
resulting proportion of c=h’s being true will then be

pe = pepn+ (1=pe)(1-pn) , (3)

and arithmetic shows that p; is 1/2 just when one or both of py. 5y is 1/2.

If p; is not 1/2, then it will be some distance away so that 2p; is 1+, say,
and for >0 we could say that an e-biased coin has a probability range of ¢, the
interval [(1—¢)/2, (14€)/2], an interval which we abbreviate as just [¢]. Defining
€, ep, similarly, we can bring ([B]) into a much neater form, that

E¢ = EcEh - (4)

Then, since |43 < 1, we can see immediately that |e] < |e. py|. That is,
the observed bias |e;| is a lower bound for the hidden biases |e.| and |e}|. Note
particularly that whatever |e;| we observe we can infer a no lesser bias |ep| in
the hidden h without knowing anything about the bias (or not) of the coin c.

That last sentence gives us a glimpse of the continuum we were looking for:
if there is no observed bias, i.e. &; is zero, then one of €. 5} must be zero also
and we learn nothing about the other one. On the other hand, if c=h always or
never, so that €; is one, then both e, ;) must be one as well.

Between the extremes of exactly fair (¢=0) and wholly nondeterministic (¢=1),
however, we have coins of varying quality. What can we conclude about those?

2.4 The Challenge

The series of examples and questions above are intended to reveal what we con-
sider to be important and significant challenges for any formal method operating
in the domain of probability, nondeterminism and security. In Sec. [§to come we

4 This is an example of what elsewhere we call the Encryption Lemma.
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will return to the Café and say more about what outcomes we expect from a for-
mal analysis built on a model that is practical enough to use in the construction
of actual software. Between now and then, we (re-)visit the underlying themes
that have led us to this point.

3 Underlying Themes: A Trio of Features and Their
History

Program models and logics applicable to problems like those above will in-
clude demonic choice, probabilistic choice and hidden variables. Rather than
attempting to integrate these features at once we have approached the problem
in smaller, overlapping steps. A benefit is a thorough and incremental explo-
ration of the different modelling issues; another benefit is that some of the less
feature-rich models are adequate for modelling certain classes of problems, and
so it has been worthwhile to explore these models in their own right.

One of the first steps taken towards the integration of demonic choice, proba-
bilistic choice and hidden variables was to build a framework [4TJ59] combining
the first two of these three features. Another has been the development of the
Shadow Model [B7AAA95A55/56] for programs with demonic choices and hidden
state (but not probability).

A third development, which we report in this paper, may be seen as a hy-
brid of the above two models in which the value of the hidden variables may
be unknown, but must vary according to a known distribution. This model,
the Quantum Model, does contain nondeterminism; but this nondeterminism is
“visible,” whereas uncertainty about the value of the hidden state can only be
probabilistic and not nondeterministic.

In the following sections we start by giving an overview of all of those frame-
works: the basic model, the Shadow Model and the Quantum Model. We conclude
with a discussion of the challenges posed by integrating the three and, on that
basis, we suggest another incremental way to move forward.

4 The Basics: Probability and Demonic Choicel

Demonic choice in sequential programming was conspicuously popularised by
Dijkstra [14]: it was perhaps the first elementary appearance of nondeterminism
at the source-code level, and was intended to express abstraction in the design
processﬁ As its importance and relevance increased, it acquired an operator of
its own, so that nowadays we simply write thisM that for pure demonic choice,
whereas Dijkstra would have written

if true — this
| true — that
fi.

® This section is very brief, given the availability of other literature
O 72112312 4025126127 7029U3914 014 T4 212114514614 7485215 3158159 .
5 And it was often misunderstood to be advocating nondeterminism at run-time.
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A natural refinement of the qualitative unpredictable choice M is the quantita-
tively unpredictable choice ,@, so that this,® that chooses this with probability
p and (therefore) that with probability 1—p. This replacement of M by ,® was
given a Dijkstra-like semantics by Kozen [34]35] and, later, put in a more general
setting by Jones [32/37].

Our own contribution was to treat both forms of nondeterminism —demonic
and probabilistic— within the same framework, thus simultaneously generalising
the two approaches above [41I59]. With this in place, we can describe a “nearly
fair choice” by using both forms of nondeterminism together. For example, the
behaviour of a program this ;)@ that which describes a coin “within € of being
fair” may be represented by

(this 1-e® that) M (this 14 @ that) .

This begins to address the issue of nearly fair coins that was first raised in
Sec. and to which we return in Sec.

5 The Shadow: Hidden Nondeterministic Stateﬂ

5.1 The Shadow in Essence

The Shadow Model arose in order to allow development of non-interference -
style protocols by refinement. A long-standing problem in the area was that
nondeterminism in a specification usually is an invitation to the developer (or
the run-time system) to pick one alternative out of many presented: the intention
of offering the choice is to indicate that any of the alternatives is acceptable.

In security however nondeterminism indicates instead a hidden, or high-security
value known only to be in a set; and an implementation’s picking just one of those
values is exactly what the specification is not allowing. Rather it is specifying
exactly the opposite, that the “ignorance” of the unknown value should not be
decreased.

In the Shadow Model these two conflicting uses of nondeterminism are dealt
with by partitioning the state space into wisible variables v: V), say, and hidden
variables h: H and storing the hidden part as a set of the possible values it could
be, rather than as a single definitive value — that is, the state space is VxPH
rather than the conventional VxH 8 Then (informally) conventional refinement
allows whole sets of hidden variables’ values to be discarded; but it does not
allow the sets themselves to be reduced.

For example, for the program

v:€{0,1}; h:e {v+1,v+2} (5)

the denotation in the style VxPH as above of the final states would be the set of
pairs {(0,{0,1}),(1,{1,2})}; and a possible refinement then would be to throw

7 Also this section is brief: there are two other detailed papers at this venue on The

Shadow [44155].

8 We write P- for powerset.



48 A. Mclver, L. Meinicke, and C. Morgan

the whole first pair away, leaving just the {(1,{1,2})} which is the denotation
of the program v:=1; h:€ {v+1,v+2}. On the other hand, it is not a refinement
simply to remove values from the h-sets: the denotation {(0,{1}),(1,{2})} of
the program v:€ {0,1}; h:==v+1 is not a refinement of ().

With this Shadow Model one can prove that the Dining Cryptographers Pro-
tocol is secure for a single run, in the sense that it is a secure refinement of
the specification “reveal whether a cryptographer paid, and nothing else.” (See
Sec. for a more detailed discussion of this and, in particular, for the signifi-
cance of “single run.”)

5.2 The Shadow’s Abstraction of Probability

The Shadow is a qualitative semantics for security and hiding, indicating only
what is hidden and what its possible values are. In practice, hidden values are
chosen quantitatively according to distributions that are intended to minimise
the probability that an attacker can determine what the actual hidden variables
are.

In the cases where a quantitative analysis is necessary, an obvious step is
to replace the encapsulated set PH of hidden values by instead an encapsulated
distribution DH over the same base type, so that the state space becomes VxIDH.
That leads conceptually to what we call The Quantum Model, explained in the
next section.

6 The Quantum Modelfl Hidden Probabilistic State and
Ignorant Nondeterminism

6.1 Motivation

Our work on probabilistic/demonic semantics, summarised above in Sec. @]
achieved a natural generalisation of its antecedents: its operational (relational)
model was S —PDS, generalising both the purely demonic model S—PS and the
purely probabilistic model S — DS E and its corresponding “expectation trans-
former” model (S—R) — (S—R) generalised the predicate-transformer model
(S—{0,1}) — (S—{0, 1}) 1] including the discovery of the quantitative form of
conjunctivity, called sublinearity [41], p.146].

Much of that work was achieved by “playing out” the initial insights of Kozen
and Jones [34/3532I31] along the the familiar trajectory that Dijkstra [14] and

9 Initial experiments with this are described in unpublished notes [F7I38].

We said “conceptually” above because in fact the Quantum Model was developed
ten years before The Shadow, in response to issues to do with data refinement as
explained in Sec. below. Because of the model’s complexity, however, it was
decided to “put it on ice” and seek an intermediate, simpler step in the hope that
it would make the issues clearer. We alter the fossil record by placing the Shadow
before the Quantum in this presentation.

10 We write D- for “distributions over.”
1 The predicate-transformer model is usually described as PS—PS. We used the above
equivalent formulation to make the connection clear with the more general model.
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module Fork { module Spade {
// No data. private h:=T T F;
public Flip { g:=TNF } public Flip { g:=h; h:=TNF }
}
(a) The Demonic Fork (b) The Demonic Spade

Fig. 1. The Fork has no data. The Spade has a local variable h initialised demonically.

others had established for purely probabilistic and purely demonic programs
respectively. An unexpected obstacle arose however when we attempted to con-
tinue that trajectory along the path of data refinement [B3/4IT9]. We found that
the modular probabilistic programs require the same program features —such as
the ability to hide information— as security applications do.

We explain the data-refinement problem in the following section; it leads
directly to the Quantum Model.

6.2 The Fork and the Spad

Consider the two modules shown in Fig. [l It is well known that the left-hand
module Fork can be transformed via data-refinement into the right-hand module
Spade; we just use the representation transformer h:=T M F

The algebraic inequality (actually identity) that justifies this is

g=T0MF, =TNF C h=TnNF; g:==h; h:=TNF,

that is that Opp; rep C rep; Opg where Opy is the Fork’s operation and Opg is
the Spade’s operation and rep is the representation transformer [4JT9I5]. Now we
can carry out the same transformation (structurally) if we replace demonic choice
M by probabilistic choice ,@ throughout, as in Fig. [2l This time the justifying
inequality is

g=T,0F, h=T,8F C h=T,0F;, g=h; =T ,8F. (6)

Unfortunately, in the probabilistic case the ()-like inequality fails in general for
statements in the rest of the program, whatever they might be. For example,
consider a statement ¢:=T M F in the surrounding program, for some second
global variable ¢’ distinct from g. The justifying (@))-like inequation here is the
requirement

g:=TMNF, =T ,®F (7)
C h=T,8F ¢:=TnNF. (8)

12 These two examples were prominent players in the Oxford-Manchester “football
matches” on data-refinement in 1986 [2].

13 We are using the formulation of data-refinement in which the “coupling invariant” is
given by a program rather than a predicate [4J19]: here we call it the representation
transformer.
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module Fork { module Spade {
// No data. private h:=T ,® F;
public Flip { g:=T ,®F } public Flip { g;==h; =T ,® F }
I
(a) The Probabilistic Fork (b) The Probabilistic Spade

Fig. 2. This time The Spade has a local variable h initialised probabilistically

And this putative refinement fails, for for the following reasons.

In our basic semantics of Sec. d, on the right-hand side (§]) we can have ¢’
and h finally equal on every run, since the demonic assignment to ¢’ can be
resolved to g:=h. But leaving ¢’, h equal every time is not a possible behaviour
of the left-hand side (@), since the demon’s assignment to ¢’ occurs before h’s
final value has been chosen.

This failure is not acceptable. It would mean that altering the interior of a
module could not be done without checking every statement in the surrounding
program, however large that program might be. The point of having modules is
to avoid precisely that.

6.3 Encapsulated Distributions, and the Quantum Model

The key idea for solving the data-transformation problems exemplified by the
failed refinement (M)Z(®) is to “encapsulate” the local variable h in a distribu-
tion, one to which nondeterminism related to the visible variable v does not have
access. Thus where the state-space normally would be VxH, the encapsulated
state-space would be S:=VxIDH. On top of this we introduce the basic construc-
tion for probability and nondeterminism Sec. @ which then gives S — PDS as
our model: putting them together therefore gives (VxDH) — PD(VxDH) overall
as the semantic type of a program with visible- and local variables.

From now on local variables will be called hidden variables. Here is an example
of how the above could work.

In the classical model (VxH) — PD(VxH) the program h:=T ,& h:=F pro-
duces from initial state (vo, ho) the singleton-set outcome {(vo, T) & (vo,F)},
i.e. a set containing exactly one distribution; it’s a singleton set because there’s
no demonic choice. A subsequent program v:=T Mwv:=F then acts first on the
distribution’s two points (vo, T) and (vg,F) separately, producing for each a
further pair of point distributions: we get {(T,T),(F, T)} in the first case and
{(T,F),(F,F)} in the second [ Those two sets are then interpolated Cartesian-
wise, after the fact, using the same ,@ that acted originally between the two
initial points. That gives finally the four-element set

{(T7T) PEB (T’ F)’ (T’ T) PEB (F7 F)7 (F’ T) PEB (T’ F)’ (F7T) PEB (F’ F)} ’

14 We use z for the point distribution assigning probability one to = and (therefore)
zero to everything else.
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that is a four-way demonic choice between particular distributions[™ The third
of those four demonic choices is the distribution (F,T) ,@ (T,F) in which the
final values of v, h are guaranteed to be different; the second on the other hand
is (T, T) ,® (F,F) where they are guaranteed to be the same. The demon has
access to both choices (as well as the other two remaining), and in this way can
treat a testing-inspired postcondition v=~h with complete contempt, forcing the
equality to yield true or false exactly as it pleases. The operational explanation
we give (have given) for this is that the demon, acting second, “can see” the
value of h produced first and than can target, or avoid it at will.

Now we contrast this with the encapsulated “quantum” view. This time the
model is (VxDH) —PD(VxIDH) and the program h:=T ,@ h:=F produces from
initial state (vo, ho) the singleton-set outcome {(vo, T ,& F)} again containing
just one distribution: but crucially this time it is a point distribution: the proper
(non-point) probabilistic choice over h is still “suspended” further inside. Given
a point distribution, the subsequent program v:=T M v:=F has only one point
to act on, giving the set {(T,T ,&F),(F,T ,®F)} and with no Cartesian-wise
interpolation. Now if the postcondition is again v=h, then the demon’s attempt
to minimise its probability of being true is limited to just two choices (no longer
four), that is in deciding which of p and 1—p is the lesser and acting appropriately.
For example if p were 3/4, i.e. it is more likely that A is T, then the demon
would choose the second pair (corresponding to having executed v:=F), and the
probability of v=h would be only 1/4. The demon can do this because, although
it cannot see h, it can still see the program code and thus knows the value of
p. In spite of that, it cannot make the v=~h -probability lower than 1/4 and, in
particular, it cannot make it zero as it did above.

With that prologue, we can now explain why we think of this as the “quantum

model.”

6.4 The Act of Observing Collapses the Distribution

We take h:=T ,& h:=F again as our first step, and in the quantum model (which
we now call the above) we reach outcome {(vo, T ,® F)}. But now we take as
our second step the command v:=h whereby the suspended “quantum state”
T ,®F of his “observed” by an assignment to the visible v. What happens?

In this model, the assignment v:=h “collapses” the quantum state, forcing it
to resolve its suspended probabilistic choice one way or the other: the outcome
overall is {(T,T) ,® (F,F)}, now a wvisible probabilistic choice ,@ in both of
whose branches the value of & is completely determined: it’s given by the point
distribution T or by the point distribution F.

15 In the basic model this includes as well, by convention, all interpolations of those
four distributions.

16 And we must say right away that it is not at all (in our view) a real contender for a
model of quantum computation, because for a start our probabilities are real-valued:
for gbits they would instead have to be complex numbers. It does however have some
features reminiscent of popular-science accounts of quantum mechanics, as we now
see.
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As a second example of quantum collapse, we consider the program
h=0®1@2®3); v:=hmod?2

in which the repeated @’s indicate a uniform choice, in this case between four
alternatives and so 1/4 for each. Here the first command produces a fully encap-
sulated state as before; but the second statement collapses it only partially. The
final outcome has denotation {(0,0 /2@ 2) 1/2® (1,11/2® 3)} , representing a
program we could write

'UZZO; h:=0 1/2@2 1/2@ ’UZ:].; h:=1 1/2@3

in which a visible probabilistic choice | @& occurs between the two possibilities
for the low-order bit of h (0 or 1), but the value of the high-order bit is still
suspended in the hidden, internal probabilistic choice.

For this program you can be sure that afterwards you will know the parity
of h, but you cannot predict beforehand what that parity will be. And —either
way— you still know nothing about the high-order bit.

7 The Generalised Quantum Model

However compelling (or not) the Quantum Model of Sec. might be, it can
only be a step on the way: in general, hidden variable h could be the subject
of nondeterministic assignments as well as probabilistic ones; and the model
(VxDH)—PD(VxDH) is not rich enough to include that, since the encapsulated
state for h is only DH.

The ability to specify nondeterministic and probabilistic assignments to h
is especially important for real applications in which the source of randomness,
used to conceal a hidden value, is not perfect. For example, the coins used by the
Dining Cryptographers of Sec.[2lwill probably be both demonic and probabilistic,
since as we noted “fair coins” are ideal objects that do not exist in nature. Not
only will a typical coin have a heads-probability of “nearly” (but not exactly)
50%, that probability could vary slightly depending on environmental conditions
(e.g. ambient temperature): thus we must ultimately deal with not only accu-
racy but stability. The abstraction coin:=T ;@ F, introduced in Secs. &E
describes that nicely: it’s a coin whose total deviation is e, centred on being
fair. The value €, which represents the stability of the coin, may be treated as a
parameter of the problem.

7.1 Preliminary Investigations

Early investigations led us to suppose that the type of a Generalised Quantum
model might be
1 outer

(VxPDH) — PD(VxPDH) , (9)

T nner
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in which hidden assignments, such as h := A ()& B would be recorded in the
“inner” PD, and visible assignments, v := A j® B, would be captured in the
“outer” PD. In this model interactions between nondeterminism and probability
in such visible (or hidden assignments) would be treated as before: a statement
v:i=T @ F, for example, is the nondeterministic choice over all probabilities
pEle], that is [2p—1| < e, of the pure probabilistic choice v:=T ,@ F. If all this
were to be done successfully, we would be able to observe continuous range of
behaviours as € varies from 0 up to is maximum value 1: when € is zero, as small
as it can be, we have (jo®) = (1/2@®), i.e. pure probabilistic choice. And when &
is 1, as large as it can be, we have ([;;®) = (1), pure demonic choice.

In spite of this promising beginning, the proposed fully generalised model
@) stretched our expertise: calculations in it were quite complex, and its logic
was elusive [B7I38]. As a strategic move, therefore, we put that path aside and
(eventually) decided to address a simpler, but related problem: with a final
goal of encapsulated demonic/probabilistic state in mind, and a tentative model
of encapsulated probability (alone, as above), it seemed reasonable to attempt
a model of encapsulated demonic nondeterminism (alone). That became the
Shadow Model of Sec.

In this remainder of this section we outline some of the challenges we face in
generalising the Quantum model so that the encapsulated hidden state may be
both probabilistic and nondeterministic.

7.2 The Observers’ View: A Difficulty

In a typical security application there may be multiple agents with different
views of the system (that is, different partitions into visible and hidden). For
example, in the Dining Cryptographers, the waitress has one perspective of the
system, and Cryptographer A has another. Similarly, a system comprising many
modules, each with different visibility requirements, may be thought of as being
composed of multiple agents each one with her own view.

Both the Shadow and Quantum models may be used to model such applica-
tions from the perspective of any one of the agents, or observers, in the system.
In these program models, the state space describes not just the visible state from
that observer’s perspective, but what is known about the visible/hidden -state
partition. How might we represent an observer’s perspective of the state in a
model in which hidden variables may be set probabilistically and nondetermin-
istically?

Unfortunately, our earlier guess (@) is too simplistic to specify some programs
that we might be interested in. Take for example a system that is to be modelled
from the perspective of an onlooker who can see variable v, but not h. What can
that observer see, and deduce, after the operation

17 This is a revisionist history in a further sense, since the full encapsulated model —as
a goal— was sitting happily on the shelf until Engelhardt and Moses, independently,
encouraged us to look at their achievements —with van der Meyden— in dealing
simultaneously with refinement and knowledge [T6/15].
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v ::Tl/QEB F; hi=v M w I:T1/2€B F; h:=-w (10)

in which both the M and the ; o®’s are hidden?

Since the M in particular is hidden and the outcome of the visible variable v
is indistinguishable in both alternatives, the denotation of the program’s result
cannot use the outer P to express that choice: we are limited to denotations of
the form D(V x PDH). In fact (abusing notation) it must be of the form

V x PDH 1/2@ V x PDH

since the observed distribution of v between T and F will be 50% no matter
which branch is taken. What then are the candidates for the left- and the right
PDH? It can’t be {T,F} on both sides, since that loses the property of (I0) that
the h-values are also 50% distributed.

But how else might the observer describe what he can and cannot see about
that operation within the program model proposed? It doesn’t seem as though
it can be done without either revealing too much about the value of the hidden
variable, or retaining too little information about its distribution.

This suggests that a state space richer than V x PDH is going to be needed
to describe an observer’s view of the program state. That is one aspect of our
current research.

7.3 Multiple Agents: Who Makes the Choice?

In The Shadow- and in The Quantum Model the state space is used to describe
the behaviour of a program from the perspective of one of the agents in the
system. Systems with multiple agents may thus be analysed by considering the
system view of each agent separately. (The Quantum Model is limited in this
respect since it cannot be used to model the perspective of any agent for which
the hidden state is subject to nondeterminism.)

For example, take a system with Agent A, who can see variable a only, Agent
B that can see variable b only and (implicitly) an anonymous observer who can’t
see either. Suppose A sets a nondeterministically, and then B does the same with
b as in the program

visg a;visp b;  a:€x {T,F}; b:iep {T,F},

) )

where “viss” means visible only to Agent A (and similar), and “:€4” means
chosen according to what Agent A can see.

With the Shadow Model, we see that from the point of view of Agent A the
system is vis a;hid b--- , i.e. with a visible and b hidden. To Agent B it is
complementary, that is as if declared hid a;vis b--- — and for the anonymous
observer it is hid a,b--- .

The reason that each agent may be treated separately in the Shadow semantics
(which is defined using a “one-test run testing regime” — see Sec. to come)
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is that we do not care (and cannot tell) whether nondeterministic choices are
made independently or not. For example, when the Shadow is used to model the
system from Agent A’s perspective, we cannot tell whether the choice b:€p {T, F}
can be influenced by the value of a, and so as Agent A we do not need to know
what Agent B’s view of the system is. (The Quantum model avoids these issues
altogether by dissallowing hidden-state nondeterminism.)

Unfortunately, the situation is unlikely to be as simple in the Generalised
Quantum model. Consider the similar system

visa a;visp by a:=T 1,0 F; biep {T,F}

in which the first choice is probabilistic. From A’s point of view it is still
vis a; hid b but, in spite of the fact that A cannot see b it is still important to A
whether the choice b:€p {T,F} can depend on a. This is because the outcome
of a subsequent code fragment vis a’;a’:=a®b is affected by that question.[[d
That is, even from A’s point of view it has become important what B can see,
and that B makes the choice b:€g {T,F} rather than for example b:€4 {T, F}.
For this reason it might not be possible to split our analysis neatly into separate
views as we do in The Shadow. That is, if we would like to model probabilistic
programs with multiple agents, and have so-called “nuanced” nondeterministic
choices as above, controlled by different agents, then we will require a semantics
that retains information about the different agent’s views of the system.

Instead of working directly on such a feature-rich program model, we suggest
that a next step forward would be to build a model where hidden nondeter-
ministic choices must be made with either total ignorance, oblivious choice, or
knowledge of the entire state (omniscient choice). It would be sufficient in the
dining cryptographers problem, for example, to model all the choices as being
oblivious.

8 The Cryptographers’ Café: Reprise

Long ago (it must seem) in Sec. 2l we posed the problem of an accurate analysis
of the Cryptographers’ Café; in the meantime we have examined a number of
potential program models and background issues. We can note immediately that
the basic probabilistic/demonic model of Sec. @] is not rich enough to formalise
our problem, because the coins must be hidden. And since the cryptographers’
coins involve both probability (because we suspect they must be fair coins)
and demonic choice (because we cannot expect to find physical coins that are
exactly fair), neither the technique of Sec. [l (for hidden demonic choice) nor
of Sec. [@ (for hidden probability) is sufficient on its own. In Sec. [0 just above
we investigated therefore some of the issues to be faced when joining hidden
probability and hidden nondeterminism together. In this section, we speculate
on what we might find once we have done so.

18 We write @ for exclusive-or.
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hid ya,y5,yc; hid ya,ys5, yo;
reveal ya ® ys ® yc [ hid ca,cB, cc: Bool;
ca:€ Bool;
cp:€ Bool;
cc:€ Bool;

reveal ya @ cs D yc;
reveal yg ® cc D ya;
reveal yo @ ca O yB;

]

(a) Specification (b) Implementation

The three cryptographers’ choices are y;a,p,cy; the three coins are cia g ¢y with ca
being opposite ya etc. and so hidden from her. We assume the cryptographer’s choices
are made before the protocol begins; the coins, which are local variables, are flipped
during the protocol.

The statement reveal E publishes to everyone the value of E but does not expose
explicitly any of E’s constituent sub-expressions [43J49I37].

Thus the specification reveals (to everyone) the exclusive-or of the cryptographers’
actions. The implementation reveals three separate Booleans whose exclusive-or equals
the value revealed by the specification. The key question is whether the implementation
reveals more than that.

Fig. 3. The Dining Cryptographers: Specification and Implementation

8.1 The Shadow Suffices for One-Off Lunches

We must remember right at the start that the Dining Cryptographers Protocol
is not itself under suspicion. Rather we are using it —in various formulations— to
test our approaches to capturing the essential features of protocols of the kind it
exemplifies. We have already showed elsewhere [54/49] that the Shadow Model
can prove the refinement (a) C (b) in Fig.

Yet we argued in Sec. 2l that Fig. Bl(b) is not a correct implementation in the
case that the cyptographers are observed over many trials. What exactly then
did our purported proofs show? The answer depends crucially on the notion of
what tests we are allowed to perform on the implementation]é

8.2 Testing Standard Classical Sequential Programs

By standard programs we mean “non-probabilistic,” and by classical we mean
“without hiding.”

19 This is true when assessing the suitability of any notion of computer-system correct-
ness: one must know exactly what tests it is expected to pass.
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A test for a standard classical program @ is a context C into which the
program () can be put. The combination C(Q) is then run a single time, and it’s
observed whether C(Q) diverges or not. We have P C @ for testing just when,
for all C, if C(Q) fails the test by diverging, on any single run, then C(P) can
fail alsod

How does this fit in with wp-style refinement? There we have the definition
P C.p Q just when for all postconditions v the implication wp.P.¢) = wp.Q.¢
holds [BI6TI50/5TI5], where a postcondition is a subset of the state space (equiv-
alently a predicate over the program variables).

Now if P C,, @ then by monotonicity of programs and the permissible pro-
gram operators we have that C(P) C,, C(Q), and so we have as a consequence
the implication wp.C(P).true = wp.C(Q).true — that is, if C(Q) can diverge
(—~wp.C(Q).true) then so can C(P) diverge (—wp.C(P).true). That
establishes that wp-refinement implies testing refinement as we defined it
above.

For the opposite direction, we suppose that P Z,, () so that for some state
so and postcondition 1 we have wp.P.4).sg A mwp.Q.1).sg. Choose context C so
that C(X) is s:=s0; X; {¢0}, where the assumption {¢} acts as skip in states
satisfying (belonging to) ¢ and diverges otherwise [51], Sec. 1.8]. Then C(P) does
not diverge but C(Q) can diverge, so that we have P [Z ) for testing also, and
have established that in fact T, and single-time-testing refinement are exactly
the same.

8.3 Testing Standard Programs with Hiding

To capture hiding, our tests are extended: they now include as well as the above
(Sec. B2)) an attacker’s guess of the value of h within its type H: it’s expressed
as a subset H of H of the value the hidden variable h might have. A program-
in-context C(Q) is deemed to fail the test H if either it diverges (as before) or
it converges but in that latter case the attacker can prove conclusively on the
basis of his observations that he H.

With these richer tests we can see more structure in their outcomes. Whereas
in Sec. there were just two outcomes diverge and converge, now there are
many: we have diverge as before, but now also converge with h provably in H for
any HCH. The two-outcome case Sec. is just the special case in which we fix
H:=0. Clearly there is a refinement order on these outcomes, too: divergence is
at bottom, and larger guesses are above smaller ones — we could call this order
Eobs~

With the differing detail but unifying theme of this section and the previous,
the use of the context, and the general idea behind it, should now be clear: given
two programs P, () whose refinement status might be complex, we define P C @)
just when for all contexts C we have C(P) C,;s C(Q). The point of that is the

20 Here we borrow notions best known from process algebra [10]; those ideas featured
prominently in the football matches [2].
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simplicity of C,,s — it is necessarily a subjective definition, and so must be one
that the community generally can accept as self-evidently reasonable 2]

8.4 The “single-test” Convention Applies to The Shadow

In both Sec. and Sec. above we stipulated “single tests,” and this is
surprisingly important. Its consequence is that an implementation cannot be
invalidated on the basis of considering two or more testing outcomes at the
same time: each test must be considered on its own. This is not a theorem, or
even a necessity: rather it is an explicit choice we make about how we define “is
implemented by.”

It’s this single-time definition of test that prevents our telling the difference
between “cold” nondeterminism that is unknown but fixed (like having either
a heads-only or tails-only coin, but not being able to predict which it will be),
and “hot” nondeterminism that can vary (like an ordinary coin that can reveal
a different face on each flip, even though we know it’s either heads or tails).
We do not judge this distinction either as worthwhile, or worthless: it depends
on the circumstances. Nevertheless if one adopts the single-time testing regime,
then there is no point in having a semantics that distinguishes hot- from cold
nondeterminism. Given the style of computing that was dominant at the time of
flow-charts [I§], and the introduction of Hoare logic [28] and weakest precondi-
tions [I4], it’s no wonder that single-time testing was assumed: most programs
were sequential, and ran on mainframes. That assumption is one of the reasons
that the relational calculus —so simple— is sufficient for that kind of sequential
program: it need not (cannot) distinguish hot and cold.

The Shadow too, in that tradition, is based on single tests — as are many
other formal approaches to non-interference [200903663]: and that is why it does
not necessarily apply to the Café in which, effectively, many tests are made.

It is also the reason that The Shadow does not stipulate whether later hidden
nondeterministic choices can be influenced by earlier hidden nondeterministic
outcomes. (Recall Sec.[[23]) It seems a reasonable question: given that the hidden
choice hg:€ {T, F} cannot be seen by the attacker, can it be seen by a subsequent
hidden choice hi:€ {T,F} to a different variable? The surprising answer, as we
saw, is that it doesn’t matter, since in single-time testing you cannot determine
whether the hi-choice was influenced by the hg-choice or not.

8.5 Proving (in-)correctness in the Café

Having addressed the question posed at the end of Sec.[8] the next step is to ask
how the purported refinement of Fig. Bl would fare in a probabilistic/demonic-

21 A particularly good example of this is found in probabilistic/demonic process alge-
bras [I], where the notion of refinement is very complex and not generally agreed.
Research there concentrates on finding a testing regime that uses contexts to reduce
refinement to something as simple as decreasing the probability of divergence, or
increasing the probability of performing some single distinguished “success action”

[10].
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with-hiding semantics if we constructed one along the lines suggested in Sec. [1
The answer is that we expect it to fail. In this section we sketch speculatively
just how the as-yet-to-be-constructed model would signal that failure.

Rather than address the whole protocol, we concentrate on the Encryption
Lemma, a key part of its qualitative proof [B443[49]. That lemma states that in
the context of a global hidden Boolean h the following refinement holds:

skip T [ hid #/; h':€Bool;reveal h&h' | (11)

This via refinement states that the right-hide side reveals nothing about h, since
clearly the left-hand side does not.

Now suppose that the global h has been set previously via an assignment
h:=true ,® false. (In so doing, we leave the world of single-time testing, since
probabilities cannot be expressed or detected there.) Does ([ still hold?

In our semantics we might expect that the denotation of the right-hand side
of () is a set of behaviours that may be observed by an onlooker, in which
each of those observable behaviours is associated with a set of “hidden” proba-
bilistic states that could actually have produced it. In this program an onlooker
can see the outcome of the reveal statement, and so an observable behaviour
is the distribution of true and false values shown by the reveal. Given that the
demonic choice h':€ Bool is interpreted as “choose h’ with some unknown prob-
ability ¢” [4II59], where 0<¢<1, for each observable behaviour of the reveal
statement we can calculate that what A’ must have been from the fact that h
was set deterministically using probability p. This means that there can only be
one “hidden” probabilistic state associated with every visible outcome. For all
visible outcomes other than that created by choosing h’' to be 1/2, there will
be a correlation between the outcome of the reveal statement and the hidden
distribution of h-values: that means that our knowledge of h’s value will not
have been left unchanged by the operation. And this is not something that our
mathematical definition of refinement would accept as a refinement of skip since,
that would —of course— have left A’s distribution unchanged.

8.6 Testing Probabilistic Programs with Hiding

Given the conceptual programme established by our discussion of testing, the
guesswork of Sec. must be accompanied by a discussion of the testing regime
we have in mind. As remarked there, it cannot any longer be single-time.

Here we expect to be using single-tabulation testing: the program () under
test is run repeatedly in come context C, and we tabulate the outcomes and their
frequencies. What we are not allowed to do is to run the program repeatedly
on two separate occasions and then to draw conclusions from the two separate
tabulations that result.

Such a regime is implicit in our earlier probabilistic work where however we
do not model hiding [4T1I59]. We would therefore —without hiding— be dealing

22 We use brackets |[-] to delimit the scope of local declarations.
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with a quantitative version of the tests of Sec. where the refinement criterion
for PCQ would be “if program-in-context C(Q)) can diverge with a probability
at least p, then so can C(P).” Note that this single-tabulation restriction again
makes the issue of hot- vs. cold nondeterminism irrelevant: if you are restricted
to a single tabulation of outcomes, there is no way in which you can tell the
difference with respect to a demonic coin-choice h:€ Bool whether this is imple-
mented via a number of different coins with (therefore) varying bias, or whether
it is a single one whose bias is unknown P

In our speculative semantics —with hiding— our single-tabulation testing could
be a simple probabilistic powerdomain [32I31] built over the underlying order on
H-guesses sketched in Sec.

8.7 The Importance of Fair Coins

We saw in Sec. 2] that the Dining Cryptographers’ Protocol, and others like it,
is described in terms of fair coins ([l even though the fairness was not explicitly
used in our correctness argument ([2)). One reason for this (we think) is that
the correctness relies crucially on the independence of the coins from other phe-
nomena (such as the cryptographers’ already-made decisions) and indeed from
each other. That independence in its abstract demonic form is very difficult to
formalise, and so an easy route to ensuring it is realised is to make the choices
with a fair-coin -flip since —barring sophisticated nanotechnology within the coin
itself— it is going to implement precisely the kind of independence we mean but
which we cannot pin-down with a precise mathematical description

In spite of that, we saw in Sec. that the fairness really does matter; and
in Chaum’s original presentation it mattered too. That is, in our speculative
semantics it matters because we would expect the refinement

skip C [ hid A'; h':=true»@® false; reveal hdh' | (12)

23 Imagine watching a single referee throughout a football season. Could you tell with
a single tabulation for the whole season whether he decides the kickoff using one
coin or several? A multiple-tabulation testing regime would allow you to compare
one season with another, and then (only then) you would be able to distinguish the
two cases.
There are many examples of this “abstraction aversion” in everyday life. For exam-
ple, in a two-battery torch (flashlight) the batteries must be inserted in the same
direction; but either way will do. (We ignore issues of the shape of the contacts, and
concentrate on electricity.) A picture describing this abstraction is hard to imagine,
however: if both alternatives were shown, would people think they needed four bat-
teries? The usual solution is to replace the specification (either way, but consistent)
with an implementation (both facing inwards) and then cynically to present that
as the specification. Most people won’t even notice that the abstraction has been
stolen.

Similarly, what ideally would be an abstract description (“independent mutually
ignorant demonic choices”) is replaced pragmatically by a concrete one (“separate
fair coins”) — that’s the best we can do with our current tools.

24
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to go through even though (1) does not. Firstly, the denotation of the right-hand
side would no longer be a demonic choice, since the choice of i’ is deterministic
(i.e. no longer demonic, although still probabilistic). Secondly, if one asks the
Bayesian question “What is the a posteriori distribution of h after the right-hand
side of [I2)?” the answer will be that it is the same as the a priori, because the
distribution of 1’ is fair. (That is exactly the key point of Chaum’s proof.) With
any other distribution of h’/, however, the a priori and a posteriori distributions

of h would differ. Thus in this case only —an exactly fair coin— the refinement is
accepted

8.8 The Non-existence of Fair Coins

Our conclusion —generalised from the discussion of Sec. Bl- seems to be that
the Dining Cryptographers’ Protocol suffices for use in the Café just when the
coins are exactly fair, and not otherwise. But they never are exactly fair, and
so with a definition of refinement as “yes or no,” we seems to be stranded: our
refinement proofs apply only to ideal situations, ones that never occur in reality.
That is, the semantics we are hoping to develop (Sec. [1]) seems to be running
the risk of becoming “ideal” in a similar sense: pejorative.

There are two complementary steps possible to avoid, at this point, being
relegated to the Platonic School of Formal Methods. One is to introduce approz-
imate refinement, where we would say (intuitively) that P C, () means that P
is refined by @ with probability p, with a special case being probabilistic equiv-
alence [66I67B0/T3ITTIT2]. The “with probability p” applied to refinement can
be made precise in various ways, and the first thing one would prove is that C;
coincides with ordinary, certain refinement; similarly Cy would be the universal
relation.

The reason we don’t take this approach is that we cannot see how to couple
it with a notion of testing in the case that the probability p of refinement is
intermediate, not equal to zero or one. And we think the testing connection

25 The usual example of this is a nearly reliable test for a disease: say with 99% relia-
bility if the test detects the disease, the patient really is diseased; the remaining 1%
is called a “false positive.” We assume 1% for false negatives also. Now we suppose
that in the population just 1% of the people have the disease, so that if a person is
selected at random, then this is the a priori probability that she has it. If she tests
positive, what now is the probability that she really does have the disease?

The probability of her testing positive is 0.99 x 0.01 4+ 0.01 x 0.99 = 0.0198, and
the (conditional) probability she has the disease, i.e. given that she tested positive,
is then 0.01x0.99/0.0198 = 50%. This is the a posteriori probability, and it has
changed from the a priori probability (which was 1%): the test is not equivalent to
skip.

Now finally suppose that the test is only 50% reliable, either way. The calculation
becomes 0.99x0.5 + 0.5x0.99 = 0.5, i.e. the probability of testing positive is 0.5
(and in fact would be that no matter what the distribution of the disease in the
population); and the a posteriori probability is 0.99x0.5/0.5 = 99%, just the same
as the a priori. This 50%-reliable test is equivalent to skip.
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is essential. There are other more technical questions that loom as well: for
example, if we have P T, @ &, R, what then is the refinement relation between
P and R? Is it £, perhaps? But what if the fact that p and ¢ are not both
one is due to the same cause, that they are “common-mode” failures? Then we
would expect a composite probability higher than pg — but how mathematically
and quantitatively do we capture the common-mode dependence?

Thus we take a different approach: we use our ability to combine nondeter-
minism and probability to reflect the implementation’s inadequacy back into
a corresponding inadequacy, a weakening of the specification. An example of
this technique is the probabilistic steam boiler [48/41] and the tank monitor [64]
in which probabilistically unreliable sensors in the implementation force, via
a yes-or-no refinement relation, a probabilistically unreliable specification. The
refinement relation remains definite.

In applying that idea to our current examples (1l & [[2)) we would postulate
a refinement

“not-quite-skip” T [ hid A'; h':=true & false;reveal hh']  (13)

in which we have to figure out what “not-quite-skip” is. (Recall Secs. & @
the subscript [e] abbreviates [(1—¢)/2, (14¢)/2].)

In fact a good candidate for the definition of “not-quite-skip” is provided by
(I3) itself. The statement reveal F, where F is an expression possibly containing
hidden variables, publishes E to the world at large — but any calculations
done to determine E are not published [43/49]. Thus for example reveal h@h'
publishes whether h and h’ are equal but, beyond that, says nothing about either
of them.

The Shadow definition of reveal E was chosen so that it was equal to the
program fragment

[ visv; v:i=E ], (14)
where a local visible variable v is introduced temporarily to receive E’s value.
Because v is visible, everyone can see its final value (thus publishing F); but
because it is local, it does not affect the rest of the program in any other way.
We extend the revelation command so that the expression can be probabilistic
and even nondeterministic, postulating that its definition will still respect (I4).
Thus we would have

reveal h ,®—-h = [visv; vi=(h,®-h)],

in which the assignment to v is atomic 9 That suggests our weakened specifica-
tion, and respects our (still) definite refinement, in fact equality:

reveal (h®—h) = [ hid h'; h':=true @ false;reveal heh' ]| . (15)

26 For those with some familiarity with The Shadow: the atomicity requirement distin-
guishes the command from the composite (non-atomic) fragment v:i=~h ,@® v:=-h
in which the branch taken —left, or right— would be visible to the attacker. The
composite fragment is in fact for any p equal to the simpler reveal h since, after
its execution and knowing which assignment was executed, an attacker would also
know whether to “un-negate” the revelation or not in order to deduce h’s value.
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hid ya,y5, yc; hid ya,y5, yc;

[ hid ca,cB, cc: Bool;
reveal Y (5@ —Ya; ca:= (true (@ false);
reveal yp [5)® ~YB; cp:= (true )@ false);
reveal yo (5/® Wo; co:= (true @ false);

reveal ya @ cs D yc;
reveal yp @ cc B ya;
reveal ya G ys O yc reveal yo @ ca O yB;

]

(a) Specification (b) Implementation

Here the coins, which are local variables, are flipped during the protocol and are within
¢ of being fair.

The specification reveals to everyone the exclusive-or of the cryptographers’ actions col-
lectively, and a little bit about the cryptographers’ actions individually. The ¢ depends
on ¢: it should tends to zero as € tends to zero and to 1 as € tends to 1.

Below we argue informally that §:=¢? is correct, though perhaps not the best we can
do.

Fig. 4. The Dining Cryptographers: Specification and Implementation revisited

8.9 Weakening the Café’s Specification

In Fig.[E{(a) we have modified the Café’s specification along the lines suggested in
Sec. Our informal justification for the suggested choice 6:= 2 of specification
tolerance is as follows.

Each cryptographer’s act —say ya for example— is exclusive-or’d with a com-
posite Boolean: it is cg®ce in the case of y4. From our earlier calculation ()
we know that if c¢;p ) are at most e-biased then the composite cpdee is at
most ee -biased. The postulated reveal statements are then by definition (of the
extended reveal) biased by that value, that is by £2.

The reason we are not sure whether this is as good as it could be is that
the three composite values (the other two being cc@®ca and ca®cp) are not
independent: it might be that revealing a lot about one cryptographer has a
limiting effect on what can be revealed about another 27

We now discuss the importance of the § parameter from the specifier’s, that
is the customer’s point of view: we have gone to a lot of trouble to formulate it;
we should now explore how to use it. We’ll look at three cases.

Exactly fair coins. In this case e=0 and so §=0 also. Thus in the specification
we find reveal y4()®—ya etc., that is reveal ya1 /0B -y which is equivalent
to skip. Thus all three revelations of y;4 g ¢} can be removed, and we are

27 In fact we should recall that this whole construction is speculative, since we do not
yet have a finalised semantics in which to prove it.
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left with the original specification of Fig. Bl The refinement then establishes
that using fair coins results in no leaks at all.

Coins of completely unknown bias. In this case e=1 and so =1 also. Thus
in the specification we find reveal ya ;)@ —ya, that is by definition the
command reveal y4 M —y4. This, by definition again (I4), is equal to

[ vis v; v:=(ya M -wa) ] (16)

Interpreting Program (@) throws into relief one of the major issues in
the construction of our sophisticated model: what can the nondeterminism
“see”? We are assuming —speculatively— that it can see nothing, and so ([L6])
is describing an experiment where a cryptographer chooses an act (y4), and
it is decided independently of that choice whether to reveal the act or its
complement. Once that decision is made, the value (or its complement) is
revealed but we still do not know whether the complement was taken. What
can we deduce about the cryptographer’s bias in her actions? We reason as
follows.
Suppose the revealed value has distribution true ;4@ false. If the cryptogra-
pher is sufficiently biased, it is possible since the nondeterminism in (I6)
could have been resolved e.g. to just reveal y4 . Then, from our ear-
lier arithmetic, we would know that in fact the cryptographer has bias at
least 1/2, and we know that without being told anything about how (Il
was resolved. Thus we can deduce something in this case: the specification
reveal ya M —y4 expresses an insecurity, as it should — for the implemen-
tation is insecure also.
It’s instructive also to look at the situation from the cryptographer’s point
of view: suppose she is indeed 1/2 -biased but, embarrassed about that,
she wants to keep her bias secret. Should she risk dining with the others,
according to the implementation given in Fig. [d(b)? Rather than study the
implementation, she studies the specification (having been well schooled in
Formal Methods). She sees that from the specification an observer could
learn that her bias is at least 1/2, since that is what would be deduced if
the M were always taken the same way, as we saw above. (The reason for
the “at least” is that a true ;4@ false outcome in the reported result could
also result from a greater bias in the cryptographer which is masked by some
lesser bias in the 1.)

Coins that are nearly fair. Finally, in this last case, we examine whether
being able to limit the bias really does give us access to a continuum of

28 In the standard Shadow (non-probabilistic) this would reveal nothing, since we could
reason

vi=(yaMN-ya) = v:i€{ya,~ya} = v:€ {true, false} .

And indeed in a single-run testing scenario it does not reveal anything. It’s important
therefore that we remember here that our scenario is more general.
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insecurity: so far, we have seen either “all” or “nothing.” We continue with
the embarrassed cryptographer of the previous case: can she deduce that in
the current case her potential for embarrassment is smaller than before?
Yes she can; and to explain that we return one final time, in the next section,
to the issue of testing.

8.10 Hypothesis Testing

If a cryptographer is exactly fair, then also her utterances will be exactly fair
no matter what the bias of the coins. Given that, we can reason that over 100
lunches, say, with probability 95% she will say she paid for between 40 and 60
of them [

However, just as there are no exactly fair coins, neither are there going to be
exactly fair cryptographers: let’s say that a cryptographer is reasonable if her
bias is no more than 10%. In this case it does make a difference to her utterances
whether the coins she faces are biased, and indeed her most biased utterances will
result from the most biased coins. What range of utterances should we expect?

If the cryptographer is only just reasonable, and wlog is on the miserly side,
then she is described by y:=T ¢.45® F. With completely biased coins —the worst
case— then wlog this will be the description of her utterances tooPd Given that,
we can reason that over 100 lunches with probability 95% she will say “I paid”
at least 36 timesPY Thus —undoing our wlog’s— a reasonable cryptographer will
in 100 trials with 95% probability say “I paid” between 36 and 64 times.

Now let’s look at the case of the unreasonable, indeed miserly 50%-biased
cryptographer y:=T o.25® F. Using fully biased coins, with what probability will

29 With —1 assigned to F and 1 to T, the mean of her outcomes y is 0 and the variance
is 1; over 100 independent trials the distribution of the sum yi100 will therefore
have mean 0 and variance 100. From the Central Limit Theorem [22] the derived
variable §:=y100/ v/100 will be approximately normally distributed, and so we have
—1.96 < g < —1.96 with probability 95% (from tables of the Normal Distribution).
Thus —19.6 < y100 < 19.6, so that out of 100 lunches she is slightly more than 95%
certain to say “I paid” for between 40 and 60 of them.

Note this is not the same as saying “If the frequency of I-paid utterances is between
40 and 60 out of 100, then with 95% probability the cryptographer is fair.” That
kind of statement requires a prior distribution on the cryptographers, which we are
not assuming.

The “without loss of generality”’s mean that we could have taken the complementary
y:=T0.55@ F for the cryptographer, and that we could have allowed the biased coins
always to invert her outcome. But none of that makes any difference to the analysis
to come.

The mean of her utterances y is —0.1 and the variance is 0.99; the distribution of the
sum Y100 has mean —10 and variance 99. The derived variable is § := (y100+ 10)/\/99
and will satisfy —1.65 < §j with probability 95%. Thus —1.65 x /99 — 10 = —26.4 <
Y100, SO that she is slightly more than 95% certain to say “I paid” for at least
(100 — 26.4) /2 =~ 36 lunches.
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her utterances fall outside of the range 36-64 that we with confidence 95% would
expect of a reasonable cryptographer? That probability turns out to be 99.7% 3

Thus if we set 36-64 “I paid”’s in 100 trials as our “reasonableness” criterion
in the case of potentially fully biased coins, a reasonable cryptographer will be
unfairly judged as biased only 5% of the time while a 50%-biased cryptographer
will escape detection only 0.3% of the time.

All the above was prelude to our discussion of partially biased coins: we now
assume for argument’s sake that the coins’ (composite) bias is no more than
50%, and we re-do the above calculations to see how it affects the miserly cryp-
tographer’s chance of escaping detection.

As before, we determine our criteria by considering how a reasonable cryp-
tographer would be likely to behave: facing a 50%-biased coin, she will wlog
have utterances with distribution at worst y:=T . 475® F. Over 100 lunches with
probability 95% she will say “I paid” between 39 and 61 times 3

The miserly cryptographer will wlog have utterances at worst y:=T ¢.375® F
— in both cases, the coins’ bias mitigates the cryptographer’s intrinsic bias to
give a smaller bias in her utterances. With what probability will the miser’s
utterances fall outside of the range 39-61 that we might expect of a reasonable
cryptographer facing a 50%-biased coin? It turns out to be 64.8%, which though
still high is a much less rigorous test than the 99.7% she faced before P4

Thus if we set 39—61 “I paid”’s in 100 trials as our “reasonableness” criterion
in the case of 50%-biased coins, so that as before a reasonable cryptographer will
be unfairly judged as biased only 5% of the time, a 50%-biased cryptographer
will now escape judgement 35.6% of the time (in fact roughly 100 times as often
as she did in the fully biased case). The miser is being (partially) protected by
the (partial) secrecy implemented by the (partially) secure protocol.

It is interesting to speculate whether our model will have

reveal h ., j®—-h L reveal h | ® —h

whenever g1 > &.

32 The mean of her utterances y is —0.5 and the variance is 0.75; the distribution of the
sum y100 has mean —50 and variance 75. The derived variable is ¢ := (y100 +50)/v/75
which, to appear reasonable, from Footnote BI] must satisfy (—26.4 4+ 50)/v/75 =
2.72 < §. It does that with probability 0.3%.

The mean of her utterances y is —0.05 and the variance is 0.9975; the distribution of
the sum y100 has mean —5 and variance 99.75. The derived variable is 4 := (y100 +
5)/+/99.75 and will (as before) satisfy —1.65 < ¢ with probability 95%. Thus —1.65 x
V99.75 — 5 = —21.5 < w100, so that she is slightly more than 95% certain to say “I
paid” for at least 39 lunches.

The mean of her outcomes y is —0.25 and the variance is 0.875; the distribution of
the sum y100 has mean —25 and variance 87.5. The derived variable is §:= (y100 +
25)/4/87.5 which to appear reasonable must satisfy (—21.5 4+ 25)/v/87.5 = 0.37 < .
It does that with probability 35.6%.
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9 Conclusions

In this paper we have explored the abstract phenomena underpinning secure
software systems which operate in partially predictable environments; we have
suggested a number of models and investigated how they measure up to the
problems software designers face. Yet however successful a mathematical model
is at capturing the underlying phenomena, we understand that its impact may
be limited and its results marginalised if the formal techniques it can support
cannot be made accessible to actual program developers.

We say that a formal technique is usable only if it can be practically applied,
and relevant only if it delivers accurate results. Unfortunately usability and
relevance can normally coexist only if the theoretical basis for the technique is
both simple enough to be supported by automated toolsPY and yet complicated
enough to yield accurate results. As the examples of this paper show it is unlikely
that there is such a one model to fit all for any problem domain which includes
all the features of hiding, probability and multiple agents. That’s is not to say
that there is no solution at all — but as formal methods researchers the challenge
is to find accurate models with usable abstractions, models whose relationships
to each other are well enough understood to support tool-based analyses and to
apply after all to generic and relevant scenarios.

10 Epilogue: A Café-Strength Proof of the
Cryptographers’ Protocol

The Shadow Model captures the qualitative correlation between hidden and
visible state. It is simple enough to support an algebra which is amenable to
routine calculation: we have twice earlier published refinement-style proofs of
the Cryptographers’ Protocol [5449], the novelty being of course not in the
protocol (published long ago) nor in its correctness (established by its inventor)
but in the style of proof (program algebra and refinement). In doing so we hoped
to encourage Formal Methods to expand further into these application areas.

Our earlier proofs —as for the other approaches based on qualitative noninter-
ference [2009036l63]— abstracted from probability, from the fairness of the coins,
and as we explained at length above that left open the question of their validity
when repeated trials of the protocol are carried out — which is its usual environ-
ment, after all. And we proposed several methods in spe that might legitimise a
fully quantitative proof. What would that proof look like?

There is a good chance that the café-strength proof of the Cryptographers’

Protocol, thus valid for repeated trials, will have exactly the same structure as
our original qualitative proof.

That is because the original proof’s use of the “qualitative” Encryption Lemma
() seems to be its only point of vulnerability in the more general context; and

35 This is rather a stark definition, as it ignores the huge benefits to be gained in a
Formal-Methods education, which might not be based on tool support.
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the less-abstract “uniform” Encryption Lemma (I2)) is not similarly vulnerable.
All the other algebraic properties appear to carry through. If we are right, then
there will be a large class of security protocols which, if proven correct with a
carefully chosen qualititative repertoire of algebraic laws, will retain their cor-
rectness in the more general context of repeated runs — provided certain crucial
demonic choices (the ones that play a part in uses of the Encryption Lemma) are
replaced by uniform probabilistic choices. No other changes should be required.

As we have seen elsewhere, with purely qualitative treatments of probabilistic
fairness [46123], that would have a significant impact on the applicability of tools,
by allowing them to remain Boolean rather than having to deal with proper
probabilities.

Watch this space. . .
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Abstract. We consider a language of recursively defined formulas about arrays
of variables, suitable for specifying safety properties of parameterized systems.
We then present an abstract interpretation framework which translates a paramer-
ized system as a symbolic transition system which propagates such formulas
as abstractions of underlying concrete states. The main contribution is a proof
method for implications between the formulas, which then provides for an imple-
mentation of this abstract interpreter.

1 Introduction

Automation of verification of parameterized systems are an active area of research
[1L2L3L4,3L[6L[7]. One essential challenge is to reason about the unbounded parameter
n representing the number of processes in the system. This usually entails the provi-
sion of an induction hypothesis, a step that is often limited to manual intervention. This
challenge adds to the standard one when the domain of discourse of the processes are
infinite-state.

In this paper, we present an abstract interpretation [8] approach for the verification
of infinite-state parameterized systems.

First, we present a language for the general specification of properties of arrays of
variables, each of whom has length equal to the parameter n. The expressive power
of this language stems from its ability to specify complex properties on these arrays.
In particular, these complex properties are just those that arise from a language which
allows recursive definitions of properties of interest.

Second, we present a symbolic transition framework for obtaining a symbolic execu-
tion tree which (a) is finite, and (b) represents all possible concrete traces of the system.
This is achieved, as in standard abstract interpretation, by computing a symbolic exe-
cution tree but using a process of abstraction on the symbolic states so that the total
number of abstract states encountered is bounded. Verification of a particular (safety)
property of the system is then obtained simply by inspection of the tree.

Third, the key step therefore is to compute two things: (a) given an abstract state
and a transition of the parameterized system, compute the new abstract state, and (b)
determine if a computed abstract state is subsumed by the previously computed abstract
states (so that no further action is required on this state). The main contribution of this
paper is an algorithm to determine both.

Consider a driving example of a parameterized system of n > 2 process where each
process simply increments the value of shared variable x (see Figure[T] (Ieft)). The idea
is to prove, given an initial state where x = 0, that x = n at termination.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 72-88] 2009.
(© Springer-Verlag Berlin Heidelberg 2009
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G :((0,0,...,0),0)
bsti
process (id) { ’sa”sira&‘

(0) x = x + 1 (1) 61:((0,...,0,1,0,...,0),1)  G1:((0,1,1,...),m)

- ——
subsumedl/"/

G2:((0,1,1,...),m+1) G3:((1,1,...,1),n)

Fig. 1. Abstract Computation Tree of Counting Ones

Figure [T (right) outlines the steps in generating the symbolic execution tree for this
example. The tree is constructed by letting each process proceed from an initial program
point (0) to its final point (1).

We start with a program state of Gy = ((0,0,---,0),0) where the first element is a
sequence of n bits representing the program counter, and the second element represents
the value of x. A first transition would bring the system to a state G = ((0, ---, 0, 1,
0, -+, 0), 1), where the position of the “1” is anywhere in the range 1 to n, and the
value of x is now 1. At this point, we would like to abstract this state to a state G; where
the counter has, not exactly one numeral 1, but some 1 < m < n copies of the numeral
1. Further, the value of x is not 1, but instead is equal to m. Let us denote this state
((07 L, 17"')7’")'

There are now two possible transitions: first, corresponding to the case where G has
at least two 0’s, we get a new state (» whose counter has a mixture of 0’s and 1’s. But
this new state is already covered by G; and hence need not be considered further. The
second case is where G has exactly one 0, in which the final transition results in the
final state G3 = ((1,1,---,1),x) where the counter has all 1’s. Since the value of x in G3
equals the number of 1’s, it follows that x = n in this final state.

The key points in this proof are as follow. First, we employed the notion of an abstract
state G where the counter has 1 < m < n copies of 1 (the rest are 0), and x = m. We then
show that the concrete state G emanating from the initial state is in fact an instance of
Gi. We then showed that the state (> emanating from G is either (a) itself G (which
therefore requires no further consideration), or (b) the final state Gz : ((1,1,---,1),x),
and where x = n. Thus the proof that x = n at the end is established.

The main result in this paper, in terms of this example, is first to construct the com-
putation tree, but more importantly to provide an automatic proof of the conditions that
make the tree a true representation of all the traces of the underlying parameterized
system. In our example, our algorithm proves the entailments G = G and & = Gi.
Although not exemplified, all states in discussed here are written in our constraint lan-
guage using arrays and recursive definitions, which is to be discussed in Section 2l For
instance, the state (p is represented using n-element array of zeroes which is defined us-
ing a recursive definition. We provide an algorithm to prove entailments in verification
conditions which involve integer arrays and the recursive definitions.

In summary, our contributions are threefold:

e We present a language for defining recursive abstractions consisting of recursive
definitions and integer arrays. Such abstractions are to be used to represent core
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properties of the parameterized system that are invariant over the parameter n of
the system. The provision of these abstractions is generally restricted to be manual.

e Then we provide a symbolic traversal mechanism to construct a symbolic execution
tree which exhibits the behavior of the parameterized system, which is exemplified
in Figure [I] (Ieft). In constructing the tree we abstract the states encountered using
the recursive abstractions. In the above example, this is exemplified with the ab-
straction of Gj to Gj. Our objective is to produce a closed tree, where all the paths
in the tree reaches the end of the program’s execution (the case of G3 above) or ends
in a state that is subsumed by some other state in the tree (the case of ¢, which is
subsumed by G).

Now, there are two kinds of proofs needed: one is for the correctness of the
abstraction step (represented as the entailment G = G of two formulas). Similarly,
we need a proof of entailment of formulas defining the subsumption of one state
over another (eg. G = G above).

e Finally we devise a proof method where the recursive definitions and the arrays
work together in the entailment proof. In this way, the only manual intervention
required is to provide the abstraction of a state (in our example, the provision of
the abstraction G to abstract Gj). Dispensing with this kind of manual interven-
tion is, in general, clearly as challenging as discovering loop invariants in regular
programs. However, it is essentially dependent on knowledge about the algorithm
underpinning the system, and not about the proof system itself.

1.1 Related Work

Central to the present paper is the prior work [9] which presented a general method
for the proof of (entailment between) recursively defined predicates. This method is a
proof reduction strategy augmented with a principle of coinduction, the primary means
to obtain a terminating proof. In the present paper, the earlier work is extended first by
a symbolic transition system which models the behavior of the underlying parameter-
ized system. A more important extension is the consideration of array formulas. These
array formulas are particularly useful for specifying abstract properties of states of a
parameterized systems.

Recent work by [3] concerns a class of formulas, environment predicates, in a way
that systems can be abstracted into a finite number of such formulas. The essence of the
formula is a universally quantified expression relating the local variable of a reference
process to all other processes. For example, a formula of the form Vj # i : x[i] < x[}]
could be used to state that the local variable x of the reference process i is less than the
corresponding variable in all other processes. A separate method is used to ensure that
the relationships inside the quantification fall into a finite set eg. predicate abstraction.
An important advantage of these works is the possibility of automatically deriving the
abstract formulas from a system.

The indexed predicates method [4] is somewhat similar to environment predicates in
that the formula describes universally quantified statements over indices which range
over all processes. Determining which indexed predicates are appropriate is however
not completely automatic. Further, these methods are not accompanied by an abstract
transition relation.
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The paper [1]] presents safety verification technique of parameterized systems us-
ing abstraction and constraints. Key ideas include the handling of existentially and
universally-quantified transition guards), and the use of gap-order constraints. Abstrac-
tion is done by weakening the gap-order constraints.

Our method differs from the above three works because we present a general lan-
guage for the specification of any abstraction, and not a restricted class. We further
provide a transition relation which can work with the abstraction language in order to
generate lemmas sufficient for a correctness proof. The proof method, while not decid-
able, is general and can dispense with a large class of applications.

Earlier work on counter abstraction [7] clearly is relevant to our abstractions which
is centrally concerned with describing abstract properties of program counters. Later
works on invisible invariants [[6]] show that by proving properties of systems with a
fixed (and small) parameter, that the properties indeed hold when the parameter is not
restricted. In both these classes of works, however, the system is assumed to be finite
state.

There are some other works using inductive, as opposed to abstraction, methods for
example [5]]. While these methods address a large class of formulas, they often depend
on significant manual intervention.

We finally mention the work of [2]] which, in one aspect, is closest in philosophy to
our work. The main idea is to represent both the system and the property (including live-
ness properties) as logic programs. In this sense, they are using recursive definitions as
we do. The main method involves proving a predicate by a process of folding/unfolding
of the logic programs until the proof is obvious from the syntactic structure of the re-
sulting programs. They do not consider array formulas or abstract interpretation.

2 The Language

In this section we provide a short description of constraint language allowed by the
underlying constraint solver assumed in all our examples.

2.1 Basic Constraints

We first consider basic constraints which are constructed from two kinds of terms:
integer terms and array expressions. Integer terms are constructed in the usual way,
with one addition: the array element. The latter is defined recursively to be of the form
ali] where a is an array expression and i an integer term. An array expression is either an
array variable or of the form (a, i, j) where a is an array expression and i, j are integer
terms.

The meaning of an array expression is simply a map from integers into integers, and
the meaning of an array expression a’ = (a, i, j) is a map just like a except that a'[i] = j.
The meaning of array elements is governed by the classic McCarthy axioms:

i=k —{a,i,j))[k]=j

i#k —(a,i,j)k] = alk]

A basic constraint is either an integer equality or inequality, or an equation between
array expressions. The meaning of a constraint is defined in the obvious way.
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sys(N,K,X) :- 1 < Id < N, K[Id] = 0, K'=<K,Id,1>, X'=X+1, sys(N,K’',X’').
Fig. 2. Transitions of Counting Ones

In what follows, we use constraint to mean either an atomic constraint or a con-
junction of constraints. We shall use the symbol y or ¥, with or without subscripts, to
denote a constraint.

2.2 Recursive Constraints

We now formalize recursive constraints using the framework of Constraint Logic Pro-
gramming (CLP) [11]]. To keep this paper self-contained, we now provide a brief back-
ground on CLP.

An atom is of the form p(7) where p is a user-defined predicate symbol and 7 a tuple
of terms, written in the language of an underlying constraint solver. A rule is of the
form A: -V, B where the atom A is the head of the rule, and the sequence of atoms
B and constraint ¥ constitute the body of the rule. The body of the rule represents
a conjunction of the atoms and constraints within. The constraint ¥ is also written
in the language of the underlying constraint solver, which is assumed to be able to
decide (at least reasonably frequently) whether W is satisfiable or not. A rule represents
implication with the body as antecedent and the head as the conclusion. A program is
a finite set of rules, which represents a conjunction of those rules. The semantics of a
program is the smallest set of (variable-free) atoms that satisfy the program. Given a
CLP program, recursive constraints are constructed using recursive predicates defined
in the program.

Example 1 (Count Ones). The following program formalizes the states described in the
“counting ones” example (note that denotes “any” value). In the predicates below, the
number N represents the parameter, the array K represents the counter, and X represents
the shared variable. Allzeroes (N, K, X) holds for any N, K, and X when K is an array of
length N with all elements zero and X is zero. Allones (N, K, X) holds when all elements
of K are one, and X=N. Finally, the meaning of abs (N, K, M) is that K is a bit vector
and M is the number of 1’s in K.

allzeroes(0, , 0).

allzeroes(N, (K,N,0), 0) :- N > 0, allzeroes(N-1, K, 0).
allones(0, , 0).

allones(N, (XK,N,1), N) :- N > 0, allones(N-1, K, N-1).
bit(0).

bit(1).

abs(0, , 0).

abs(N, (XK,N,B), M+B) :- N > 0, bit(B), abs(N-1, K, M).

3 Formalization of a Parameterized System

We now formalize a parameterized system as a transition system. We assume inter-
leaving execution of the concurrent processes, where a transition that is executed by
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a process is considered atomic, that is, no other process can observe the system state
when another process is executing a transition. Similar to the definition of recursive
constraints in the previous section, the transition systems here are also defined using
CLP, where a CLP rule models a state transition of the system.

3.1 Abstract Computation Trees

Before proceeding, we require a few more definitions on CLP. A substitution 6 simul-
taneously replaces each variable in a term or constraint e into some expression, and we
write €6 to denote the result. We sometimes write  more specificly as [e; /11, ..., e, /1]
to denote substitution of #; by e; for 1 <i < n. A renaming is a substitution which maps
each variable in the expression into a variable distinct from other variables. A ground-
ing is a substitution which maps each integer or array variable into its intended universe
of discourse: an integer or an array. Where ‘¥ is a constraint, a grounding of ¥ results
in true or false in the usual way.

A grounding 0 of an atom p(7) is an object of the form p(76) having no variables. A
grounding of a goal G = (p(7),¥) is a grounding 6 of p(7) where W0 is frue. We write
[G]) to denote the set of groundings of G. We say that a goal G entails another goal G,
written G = G, if [G] € [G].

From now on we speak about goals which have exactly the same format as the body
of arule. A goal that contains only constraints and no atoms is called final.

Let G = (By,--+,By,'¥) and P denote a goal and program respectively. Let R =
A:-Y¥,Cy,---,Cy denote a rule in P, written so that none of its variables appear in G.
Let the equation A = B be shorthand for the pairwise equation of the corresponding
arguments of A and B. A reduct of G using a rule R which head matches an atom B; in
G, denoted REDUCT3, (G, R), is of the form

(B1,-+,Bi-1,C1,--,Cu,Biy1, -+, By, (Bi = A),¥,\¥)
provided the constraint (B; = A) AW AW is satisfiable.

Definition 1 (Unfold). Given a program P and a goal G, UNFOLDg(G) is {G'|3R €
P: G =REDUCTg(G,R)}.

A derivation sequence for a goal G, is a possibly infinite sequence of goals Gy, Gi, -
where G;, i > 0 is a reduct of G,_,. If the last goal G, is a final (hence no rule R of
the program can be applied to generate a reduct of G, ), we say that the derivation is
successful. Since a goal can be unfolded to a number of other goals (reducts), we can
identify the derivation tree of a goal.

Definition 2 (Abstract Computation Tree). An abstract computation tree is defined
Jjust like a derivation tree with one exception: the use of a derivation step may produce
not the reduct goal G as originally defined, but a generalization G of this reduct goal.
Whenever such a generalization is performed in the tree construction, we say that an
abstraction step is performed on G obtaining G.

Our concern in this paper is primarily to compute an abstract computation tree which
represents all the concrete traces of the underlying parameterized system. The following
property of abstract trees ensures this.
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Definition 3 (Closure). An abstract computation tree is closed if each leaf node repre-
sents a goal G which is either terminal, ie. no transition is possible from G, or which is
entailed by a goal labelling another node in the tree.

3.2 Symbolic Transitions

Next we describe how to represent a parameterized system as a CLP program. In doing
so, we inherit a framework of abstract computation trees of parameterized systems.
More specifically, the safety property that we seek can then be obtained by inspection
of a closed abstract computation tree that we can generate from the system.

We start with a predicate of the form sys(N, K, T,X ) where the number N represents
the parameter, the N-element array K represents the program counter, the N-element
array T represents each local variable of each process, and finally, X represents a
shared/global variable. Multiple copies of 7" and/or X may be used as appropriate.

We then write symbolic transitions of a parameterized systems using the following
general format:

sys(N, XK, T, X) :- K[Id] = o, K’ = <K, Id, B>,
Y@, K, T, X, K', T', X'), sys(N, K', T', X').

This describes a transition from a program point o to a point [ in a process. The vari-
able Id symbolically represents a (nondeterministic) choice of which process is being
executed. We call such variables index variables. The formula W denotes a (basic or
recursive) constraint relating the current values K, 7T, X and future values K', T, X’ of
the key variables.

Consider again the example of Figure[Il and consider its transition system in Figure
The transition system consists of transitions from program counter (0) to (1) of a
parameterized system, where each process simply increments its local variable X and
terminated]. The system terminates when the program counter contains only 1’s, ie.
when all processes are at point (1).

3.3 The Top-Level Verification Process

In this section we outline the verification process. The process starts with a goal repre-
senting the initial state of the system. Reduction and abstraction steps are then succes-
sively applied to the goal resulting in a number of verification conditions (obligations),
which are proved using our proof method.

We now exemplify using the Counting Ones example of Section[Il This goal repre-
senting the initial state is G, in Figure[Il Recall that we formalize the transitions of the
Counting Ones example in Figure 2l In our formalization, we represent the goal G, as
follows sys(N,K,X),allzeroes(N,K,X) denoting a state where all the elements of the
array K are zero.

We apply the transition of Figure 2] by reducing G into the goal G, which in our
formalism is the goal sys(N,K’,X"),allzeroes(N,K,X),1 <Id; < N,K[ld|] = 0,K' =
(K,Idy,1),X’ = X + 1. The goal represents a state where only one of the elements of
the array K is set to 1. Note that this reduction step is akin to strongest postcondition

! Termination here means that no further execution is defined.
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propagation [12]] since given the precondition allzeroes(N,K,X), the postcondition is
exactly (3K, X,Id; : alizeroes(N,K,X),1 <Id; < N,K[ld|] =0,K' = (K,Id,1),X' =
X+ 1)[K/K X/X'].

We now abstract the goal G into Gj, which in our formalism is represented as
sys(N,K',X"),abs(N,K’,X"). Here one verification condition in the form of an entail-
ment is generated:

allzeroes(N,K,X),1 < Id; < N,K[ld)] = 0,K' = (K,Idy,1),X' =X + 1
E abs(N,K',X").

The proof this obligation guarantess that the abstraction is an over approximation.

Now, the propagation from G to ( is again done by applying unfold (reduction) to
the predicate sys based on its definition (Figure 2). As the result, we obtain the goal G
as follows:

sys(N,K" . X"),abs(N,K',X"),1 <Idy < N,K'[ldy] = 0,K" = (K’ ,1d»,1),X" = X"+ 1

Proving of subsumption of G, by Gi is now equivalent to the proof of the verification
condition

abs(N,K',X"),1 <Idy < N,K'[Idy] = 0,K" = (K',Id>,1),X" = X'+ 1
= abs(N,K',X")[K" /K’ X" /X'].

The purpose of renaming in the above example is to match the system variables of G
with those of Gj.

4 The Proof Method

In this key section, we consider proof obligations of the form G |= # for goals G and
H possibly containing recursive constraints.

Intuitively, we proceed as follows: unfold the recursive predicates in G completely a
finite number of steps in order to obtain a “frontier” containing the goals Gi, ..., G,. We
note that “completely” here means that {Gi, ..., G,} = UNFOLD4(G). We then unfold

H obtaining goals Hy,...,Hy,

) but this time not necessarily com-
g E A pletely, that is, we only require that
com Partial {#H\,...,H,} C UN-FOLDg(H). This
Unftld Unfold /= situation is depicted in Figure[3] Then,
N ) To Prove: the proof holds if
GIV...VG [

N Ty GV..NG E HN...VHy

or alternatively, G = H V...V H,
for all 1 < i < n. This follows from
the factthat G |= G1 V...V G, (which
is not true in general, but true in the
Fig. 3. Informal Structure of Proof Process least-model semantics of CLP), and
the fact #; = # for all j such that

Coinduction

G, - Gn
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1 < j < m. If all variables in H appear in G, we can reduce the proof to Vi: 1 <
i<n3dj:1<j<m:G [ #. Finally, we seek to eliminate the predicates in #; so
the remaining proof is one about basic constraints.

In this paper we do not go further with the proof of basic constraints. We instead
assume the use of a standard black-box solver, such as the SMT solvers [13}[14}13]].
In our own experiments, we use a method from [I6] to convert constraints on array
segments into constraints on integers, and then dispatch the integer constraints using
the real-number solver of CLP(R) .

In addition to this overall idea of using left and right unfolds, there are a few more
rules, as detailed below.

4.1 The Coinduction Rule

Before presenting our collection of proof rules, one of them, the coinduction rule, de-
serves preliminary explanation. Let us illustrate this rule on a small example. Consider
the definition of the following two recursive predicates

m4 (0) . even(0) .
md (X+4) :- md(X). even (X+2) :- even(X).

whose domain is the set of non-negative integers. The predicate m4 defines the set of
multiples of four, whereas the predicate even defines the set of even numbers. We
shall attempt to prove that m4 (X) =even (X), which in fact states that every multiple
of four is even. We start the proof process by performing a complete unfolding on the
lhs goal (see definition in Sectiond). We note that m4 (X) has two possible unfoldings,
one leading to the empty goal with the answer X=0, and another one leading to the goal
m4 (X'),X’'=X-4. The two unfolding operations, applied to the original proof obligation
result in the following two new proof obligations, both of which need to be discharged
in order to prove the original one.

X=0 = even(x) (1) md (X'),X'=X-4 Eeven(X) (2)

The proof obligation (1) can be easily discharged. Since unfolding on the lhs is no
longer possible, we can only unfold on the rhs. We choose! to unfold with rule even (0),
which results in a new proof obligation which is trivially true, since its lhs and rhs are
identical.

For proof obligation (2), before attempting any further unfolding, we note that the
lhs m4 (X’) of the current proof obligation, and the lhs m4 (X) of the original proof
obligation, are unifiable (as long as we consider X’ a fresh variable), which enables the
application of the coinduction principle. First, we “discover” the induction hypothesis
md (X') =even (X'), as a variant of the original proof obligation. Then, we use this
induction hypothesis to replace m4 (X' ) in (2) by even (X’ ). This yields the new proof
obligation

even (X'),X'=X-4 = even(X) (3)

To discharge (3), we unfold twice on the rhs, using the even (X+2) :- even(X) rule.
The resulting proof obligation is

even(X’),X'=X-4 ): even(X''"),X""'=X""-2,X""=X-2 (3)
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Nu{Akg =} UNFOLD(G ) =
MU UL {Au{g bo}bg oy (G1e6n)
Nu{AFg E#}

(RU) ~ 2 € UNFOLD(7)
MU{At g 2}

(LU+I)

(co) Nw{Al ¢ =} g’|=}['€A and there
mu {A Ea'e =) exists a substitution 0 s.t. G = G'o
Nw{At G Ap(F) =+ Ap(F)}

(cp) ~
Nu{Al g EH NF=7}

Ne{Ar g |=2} -
(SPL) P Wy V... Vg s valid
NMUU_ {AFG Ay =9}

Ne{Ak g = (2)} o
(EXR) 5 z is existential
Nu{AkgArz=eE=(z)}

Fig. 4. Proof Rules for Recursive Constraints

where variables X'’ and X'’ are existentially quantiﬁecﬂ Using constraint simplifi-
cation, we reduce this proof obligation to even (X-4) =even (X-4), which is obviously
true.

In the above example, m4 (X) is unfolded to a goal with answer X=0, however, in
general the proof method does not require a base case. We could remove the factm4 (0)
from the definition of m4, and still obtain a successful proof. We call our technique
“coinduction” from the fact that it does not require any base case.

4.2 The Proof Rules

We now present a formal calculus for the proof of assertions G = H. To handle the
possibly infinite unfoldings of G and #, we shall depend on coinduction, which allows
the assumption of a previous obligation. The proof proceeds by manipulating a set of
proof obligations until it finally becomes empty or a counterexample is found. Formally,
a proof obligation is of the form A - G = # where the G and # are goals and A is a
set of assumption goals whose assumption (coinductively) can be used to discharge the
proof obligation at hand. This set is implemented in our algorithm as a memo table.
Our proof rules are presented in FigureEl The & symbol represents the disjoint union
of two sets, and emphasizes the fact that in an expression of the form A W B, we have
that A N B = 0. Each rule operates on the (possibly empty) set of proof obligations I1,
by selecting one of its proof obligations and attempting to discharge it. In this process,
new proof obligations may be produced. We note that our proof rules are presented in

2 For clarity, we sometimes prefix such variables with *?".
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REDUCE(G |= %) returns boolean
choose one of the following:

e Constraint Proof: (CP) + Constraint Solving
Apply a constraint proof to G |= # .
If successful, return true, otherwise return false
e Memoize (G |= %) as an assumption
e Coinduction: (CO)
if there is an assumption G’ |= # " such that
REDUCE(G = G'0) = true A REDUCE(%'0 =) =true

then return true.
e Unfold: .
choose left or right

case: Left: (LU+I)
choose an atom A in G to reduce
for all reducts Gz, of G using A: if REDUCE(Gy, |= # ) = false return false
return frue
case: Right: (RU)
choose an atom A in # to reduce, obtaining Gg
return REDUCE(G = Gg)
e Split:
Find an index variable Id and a parameter variable N and apply the split rule using Id #
NVId =N tosplit G into G| and G,.
return REDUCE(G] = #{) A REDUCE(G, = #)
e Existential Variable Removal:
If an existential array variable z appears in the form z = (x,i,e), then simply substitute z
by (x,i,e) everywhere (in #(). If however z appears in the form x = (z,i,e) where x is not
existential, then find an expression in G of the form x = (x’,i,¢) and replace z by x'. Let the

result be 7. ,
return REDUCE(G |= # ')

Fig. 5. Search Algorithm for Recursive Constraints

the “reverse” manner than usual, where the conclusions to be proven is written above
the horizontal line and the premise to achieve the conclusion is written below the line.
Our proof rules can be considered as a system of production of premises whose proofs
establish the desired conclusion.

The left unfold with new induction hypothesis (LU+I) (or simply “left unfold”) rule
performs a complete unfold on the lhs of a proof obligation, producing a new set of
proof obligations. The original formula, while removed from I1, is added as an assump-
tion to every newly produced proof obligation, opening the door to using coinduction
later in the proof.

The rule right unfold (RU) performs an unfold operation on the rhs of a proof obli-
gation. In general, the two unfold rules will be systematically interleaved. The resulting
proof obligations are then discharged either coinductively or directly, using the (CO)
and (CP) rules, respectively.

The rule coinduction application (CO) transforms an obligation by using an assump-
tion, and thus opens the door to discharging that obligation via the direct proof (CP)
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rule. Since assumptions can only be created using the (LU+1) rule, the (CO) rule real-
izes the coinduction principle. The underlying principle behind the (CO) rule is that a
“similar” assertion G’ |= H’ " has been previously encountered in the proof process, and
assumed as true.

Note that this test for coinduction applicability is itself of the form G = #. However,
the important point here is that this test can only be carried out using basic constraints,
in the manner prescribed for the CP rule described below. In other words, this test does
not use the definitions of (recursive) predicates.

The rule constraint proof (CP), when used repeatedly, discharges a proof obligation
by reducing it to a form which contains no recursive predicates. The intended use of
this rule is in case the recursive predicates of the rhs is the subset of the recursive pred-
icates of the lhs such that repeated applications of the rule results in rhs containing no
recursive predicates. We then simply ignore the lhs predicates and attempt to establish
the remaining obligation using our basic constraint solver.

The rule split (SPL) rule is straightforward: to break up the proof into pieces. The
rule existential removal (EXR) rule is similarly straightforward: to remove one instance
of an existential variable, one that appears only in the rhs. What is not straightforward
however is precisely how we use the SPL and EXR rules: in the former case, how do we
choose the constraints y;? And in the latter, how do we choose the expression e¢? We
present answers to this in the search algorithm below.

4.3 The Search Algorithm

Given a proof obligation G |= #, a proof shall start with [T = {0+ G = #}, and pro-
ceed by repeatedly applying the rules in FigureEto it. We now describe a strategy so as
to make the application of the rules automated. Here we propose systematic interleav-
ing of the left-unfold (LU+T) and right-unfold (RU) rules, attempting a constraint proof
along the way. As CLP can be executed by resolution, we can also execute our proof
rules, based on an algorithm which has some resemblance to tabled resolution.

We present our algorithm in pseudocode in Figure[3l Note that the presentation is in
the form of a nondeterministic algorithm, and the order executing each choice of the
nondeterministic operator choose needs to be implemented by some form of systematic
strategy, for example, by a breadth-first strategy. Clearly there is a combinatorial explo-
sion here, but in practice the number of steps required for a proof is not large. Even so,
the matter of efficiently choosing which order to apply the rules is beyond the scope of
this paper.

In Figure Bl by a constraint proof of a obligation, we mean to repeatedly apply the
CP rule in order to remove all occurrences of predicates in the obligation, in an obvious
way. Then the basic constraint solver is applied to the resulting obligation.

Next consider the split rule in Figure[3l Note that we have specified the rather specific
instance of the SPL rule in which we replace a constraint of the form Id < N, where Id is
an index variable and N represents the parameter, by (a disjunction of) two constraints
Id < N,Id =N (Id = N) and Id < N,Id # N (Id < N). The reason for this is purely
technical; it is essentially because our recursive assertions depend on /d < N and since
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they are recursive on N, a recursive state may end up

L Jeft unfold with the situation where Id > N — 1, a situation which

2a — is not similar to the parent state.
la# N ,/qp it \\Id% N Finally consider the existential variable elimina-
A/omductlon right # tion rule in Figure Bl The essential idea here is sim-
* right unfold 5 ply that an existential variable is most likely to corre-
5 unfold spond to some array expression on the lhs. Once again,

this choice of existential variable elimination is purely

technical and was created because it works in practice.
Fig. 6. Proof Tree P

Lemma 1 (Soundness of Rules). G = H if, starting with the proof obligation 0 \-
G = H, there exists a sequence of applications of proof rules that results in proof
obligations A G' |= H' such that (a) H' contains only constraints, and (b) G E H
can be discharged by the basic constraint solver.

5 Examples

5.1 Counting Ones

In Figure[T] the tree is closed is due to state subsumption formalized as G | Gi :
1: 1 <Idy <N,K'[ld;] =0 = abs(N, (K idy,1), X'+ 1)

A complete proof tree is outlined in Figure[6l The algorithm left unfolds Obligation
1 into 2a and 2b (not shown). Obligation 2a can be proved directly. Obligation 2b is now
split into 3a and 3b. For 3a, we add the constraint Id # N, and for 3b we add the com-
plementary constraint /d = N. We omit detailing 3b, and we proceed with explaining
the proof of 3a. Obligation 3a is as follows:
3a: abs(N — 1,K", X' — B),bit(B),K"[Id2) = 0,1 < Idy <N

|:abs( ,<<K”,N,B>,1d2,1>,x’+1)

We now perform the crucial step of applying coinduction to Obligation 3a. This is
permitted because the lhs of 1 is entailed by the lhs goal 3a. To see this, perform the
substitutions [N — 1/N,X’ — B/X'] on Obligation 1. The result of applying coinduction

is:
4: abs(N — 1,(K" 1d,1),X' — B+ 1),bit(B),K"[ld2] = 0,1 < 1dy < N

= abs(N,((K",N,B),1d, 1), X"+ 1)

We now right unfold this into Obligation 5, and prove Obligation 5 by constraint
reasoning, which is omitted.

5.2 Bakery Algorithm (Atomic Version)

To show a more substantial example, consider the bakery mutual exclusion algorithm
[17). Here we consider, somewhat unrealistically, a simplified presentation where the
test for entry into the critical section, which considers the collection of all processes, is
assumed to be performed atomically.
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process (id) {

(0) t[id] = max(t[1],...,t[N]) + 1;

(1) await(forall j!=id : t[id]==0 V t[id]l<t[3j]);
(2) tlid] = 0; goto (0) }

sys(K,T,N) :- K[Id]=0, 1<Id<N, max(T,N,X), sys((K,Id,1), (T,Id,X+1), N).
sys(K,T,N) :- K[Id]=1, 1<Id<N, crit(T,N,Id), sys((k,Id,2),T,N).
sys(K,T,N) :- K[Id]=2, 1<Id<N, sys((K,Id,0), (T, Id,0),N).

abs(K,T,1) :- (K[1] =0,T[1] =0)V (K[1] = 1, T[1] > 0).
abs(K,T,N) :- N > 1,((K[N] = 0,T[N] =)V (K[N] = 1,T[N] > 0)),abs(K,T,N — 1).

max(T,1,X) :- X > T[1].
max(T,N,X) :- N > 1,X > T[N],max(T,N — 1,X).

erit(T,1,1d) :- Id = 1V T[1] =0V T[1] > T[Id).
crit(T,N,Id) :- N > 1,(Id = NV T[N] = OV T[N] > T[Id)), crit(T,N — 1,1d).

Fig.7. Transitions and Predicates for Bakery

We represent the transitions and the recursive abstractions used in Figure[7]

A closed computation tree is depicted in Figure [8l The initial state Gy is where the
counter is all zeroes, and the local variables T[] (the “tickets™) are also all zero. The
state G; denotes one transition of one process, symbolically denoted by /d, from point
(0) to (1). At this point we perform an abstraction to obtain a state G; which contains
not one but a number of program points at 1. This abstraction also constrains the tickets
so that if a counter is zero, then the corresponding ticket is also zero.

No further abstraction is needed. That is, the computation tree under G is in fact
closed, as indicated. Note that mutual exclusion then follows from the fact that from
state G,,, or G, the only states in which a process is in the critical section, there is no
possible transition by a different process to enter the section. This is emphasized by the
the notation “infeasible” in Figure[§]

One of the conditions to show closure is that the (leaf) state G5, is subsumed by G,,.
(There are several others, eg. that G, is subsumed by G;. We shall omit considering
these.) This is formalized as:

D.1:abs(K',T',N),crit(T',N,Idy ),max(T',N,X),1 <Id; <N,
K'[ldy] = 1,1 <Id» <N, (K',1dy,2)[Id>] = 0
E abs(?S,(T',1dy, X +1),N),crit({T',Id>,X +1),N,?1d3),
| <%ds < N,2S[2d3) = 1, ((K',1d,.2) 1d>, 1) = (28, 1d53,2)

In the above, the prefix *?” denotes existentially-quantified variables. For space reasons,
we omit the detailed proof. Instead, we depict in the proof tree of Figure [§| the major
steps that can be used in the proof.
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D.1 existential
removal
D.2
P2 left
Go:((0,0,...,0),(0,0,...,0)) 7 F N unfold
| / D3a D3b
G,:((0,...,0,1,0,...,0),(0,...,0,1,0,...,0)) ;o left L
‘ I unfold
abstract I D4
g] : ((07171707'“)7(07‘)17V2~,07"')) “ left L
‘ \\ \\ ! unfold
(01,110, (O vavs, ), " D3
gza' ( sy Lydyees 7( yV1,V2,V3,.. . )‘\ : Sp]it/ \
Gop: ((0,1,2,0,4..),(0,v1,vz,\0,...)) ': v\\ split,/D.éi D.6b
‘ A | ‘D72 D
| ./a .
G3,:((0,1,2,1,...),(0,v1,v2,v3,..)) |
) L coinduction
/ D38
G3,:((0,2,2,0,...),(0,v1,12,0,...)) rieh
! . ght
(infeasible) J i unfold
g}(;:((07171’07-“)5(07‘}17070’”-)) D.9
right
i unfold

D.10 direct proof

Fig. 8. Computation and Proof Trees of Bakery Algorithm

5.3 Original Bakery Algorithm

We finally discuss the original version of the bakery algorithm [17]. Our purpose here
is to demonstrate abstraction beyond an array of variables. Here, abstraction is needed
because there is an additional loop implementing the incremental request for entry into
the critical section. To our knowledge, we provide the first systematic proof of the orig-
inal bakery algorithm. Our proof technique is semiautomatic, where the user only pro-
vide the declarative specification of loop invariants.

We show the program in Figure[0l We focus on the replacement of the await blocking
primitive in Figure[Zlby a loop from (3) to (8), which itself contains two internal busy-
waiting loops. Figure @] also shows the transition system of the loop, and the predicate
that is used. In the program and elsewhere, the operator < is defined as follows: when
(a,b) < (c,d) holds, then either a < b or when a = b, then b < d.

Figure depicts an abstract computation tree. The state ( represents entry
into the outerloop, and (G its abstraction. G5, is its exit. The states G, and

G,, represent the two inner loops. The interesting aspect is the abstraction indi-
cated. It alone is sufficient to produce a closed tree. More specifically, we ab-
stract G, : sys(K',C,T,J',N),K[ld\]| = 3,K' = (K,Id,4),J' = (J,Id,1) into G, :
sys(K',C,T,J',N),K'[Id\] = 4,crit(C,T,J ,1dy),1 < J'[Id1] <N+ 1.



Recursive Abstractions for Parameterized Systems 87

process (id) {
(0) clid]l = 1;
(1) t[id] = 1 + maximum(t[1],...,t[n]);
(2) clid] = 0;
(3) jlidl = 1;
(4) while (3 < N) {
(5) if (c[j]1!=0) goto (5);
(6) if (£[3]1!=0 && (t[3],3) < (t[il,i)) goto (6);
(7) j = 3+1; )
(8)  goto (0); }
sys(K,C,T,J,N) :- K[Id]=3, sys({(K,Id,4),C,T, (J,1d,1),N)
sys(K,C,T,J,N) :- K[Id]=4, J[Id]< N, sys((K 14,5),C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=4, J[Id]>N, sys((K,Id,8),C,T,J,N)
sys(k,C,T,J,N) :- K[Id]=5, C[J]# 0, sys(k,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=5, C[J]=0, sys((K,Id,6),C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=6, T[J]#0, ((T[J],J)=<(T[1d],1d)), sys(K,C,T,J,N)
sys(X,C,T,J,N) :- K[Id]=6, (T[J]=0V((T[Id],Id)=<(T[J],J)),

sys((x,1d,7),C,T,J,N)

sys(K,C,T,J,N) :- K[Id]=7, sys((K,Id,4),C, T, (J,1d,J[1d]+1),N)

erit(C,T,1,1d) - Id = 1V (C[1] = 0, (T[Id], Id) < (T[1],1))
crit(C,T,N,Id) :- Id = NV (C[N] =0, (T[Id], 1d) < (T } N)),crit(C,T,N — 1,1d).

Fig. 9. Original Bakery with Transitions of the Entry Loop and Predicate

The state subsumption is formalized as the entailment G, |= G, as follows:
K'[ld\] = 4,crit(C,T,J' 1dy),1 <J'[ld|] <N+ 1,K'[ld>] =
K" =(K'.1d»,5),K"[ld3] = 5,K" = (K’ ,1d3,6),C[J'[I1d3]] = 3,
T[J') =0V (T[Ids],Ids) < (T[J'[Ids]],J'[Ids]), K" [Ids] = 6,K™ = (K" 1d4,7),
K"[Ids) =7,K" = (K" Ids,4),J" = (J',Id,J'[Ids] + 1)
E crit(C,T,J",2de), K" [Id] = 4,1 <J"[Ud]) <N +1

which can be proven along the lines indicated above. We omit the details.

gl 6 Concluding Remarks
abstract

"Gy

92 / \ We presented a language of recursively de-
N fined formulas about arrays of variables for the

g

Gy p
N purpose of specifying abstract states of param-

>‘ Gap . eterized systems. We then present a symbolic
/ transition framework for these formulas. This

ng . can produce a finite representation of the be-
> haviour of the system from which safety prop-
G erties can be ascertained. The main result is a
two step algorithm for proving entailment of
these formulas. In the first step, we employ a

Fig.10. Abstract Computation Tree for . et
key concept of coindunction in order to reduce

Entry Loop
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the recursive definitions to formulas about arrays and integers. In the second, we re-
duced these formulas to integer formulas.

Though we considered only safety properties in this paper, it is easy to see that our

notion of closed abstract tree does in fact contain the key information needed to argue
about termination and liveness. Essentially, this is because our framework is equiped
with symbolic transitions. What is needed is to show that in every path ending in a sub-
sumed state, that the execution from the parent state decreases a well founded measure.
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Abstract. Abstraction is a fundamental technique that enables the ver-
ification of large systems. In symbolic model checking, abstractions are
defined by formulas that relate concrete and abstract variables. In predi-
cate abstraction, the abstract variables are equivalent to some predicates
over the concrete variables.

In order to apply model checking on the abstract state space, it is
usually necessary to compute a quantifier-free formula that is equivalent
to the abstract transition relation. In predicate abstraction, the quantifier
elimination can be obtained by solving an ALLSAT problem. In many
practical cases, this computation results into a bottleneck.

In this paper, we propose a new algorithm that combines abstrac-
tion with bounded model checking and k-induction. The algorithm does
not rely on quantifier elimination, but encodes the model checking prob-
lem over the abstract state space into SAT problems. The algorithm is
a novelty in the state-of-the-art of abstract model checking because it
avoids computing the abstraction. An experimental evaluation with case
studies taken from an industrial project shows that the new algorithm
is more efficient and reaches in some cases a time improvement that is
exponential in the number of predicates.

1 Introduction

Model Checking (MC) [14126] is an automatic technique to verify if a system
satisfies a property. The main problem of MC is the state-space explosion, i.e.,
the system is often too large to be verified. Abstraction [§] and symbolic repre-
sentation [3] are two major classes of techniques broadly adopted to tackle the
problem.

Abstraction defines a relationship between the states of the concrete system
and the states of a smaller system, which is more amenable for the verification.
Typically, abstraction over-approximates the semantics of the system so that if
a property holds in the abstract system, then it holds also in the concrete one.
A particular abstraction technique widely used with MC is predicate abstraction

* The author would like to thank the Provincia Autonoma di Trento for the support
with the project ANACONDA, and A. Cimatti, M. Roveri, and V. Schuppan for
helpful discussions and feedback.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 89 2009.
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[I5UTT], where a set of predicates is chosen so that the abstract state space
observes only the evolution of these predicates in the original system.

Symbolic model checking [3] represents sets of states and transitions with
formulas. Symbolic algorithms manipulate formulas exploiting BDD-based or
SAT-based techniques. SMT solvers, which combine SAT techniques with solvers
for decidable first-order theories, are used when the system is described with first-
order formulas. Bounded Model Checking (BMC) [2] is a symbolic technique
that looks for counterexamples only with a bounded length k. BMC problems
are encoded into SAT problems, which are then solved using either a SAT solver
or an SMT solver, depending on the language used to describe the system. k-
induction [27] is a technique used to prove that, if there is no counterexample
of length up to k, then we can conclude that the property holds. The conditions
to prove that k is sufficiently large are encoded into SAT problems.

In order to combine symbolic model checking with abstraction, it is necessary
to compute a quantifier-free formula representing the transition relation of the
abstract system. This is typically obtained by eliminating the quantifiers in the
definition of the abstraction. When the abstract state space is finite, as in the
case of predicate abstraction, the abstract transition relation can be obtained
by solving an ALLSAT problem, i.e., by enumerating the models satisfying the
formula that defines the abstraction. In some cases, however, quantifier elimina-
tion is not possible, and in practice, also for predicate abstraction, results to be
a bottleneck (see, e.g., [T0T9M4]).

In this paper, we propose a new algorithm for solving the problem of model
checking an abstract system. The idea is to embed the definition of the ab-
straction in the BMC and k-induction encodings. This way, we can verify the
correctness of the abstract system without computing the abstraction. The algo-
rithm can be applied to predicate abstraction, but also to infinite-state abstrac-
tion such as abstraction obtained by projection. We extend the abstract BMC
and k-induction to check the language emptiness of infinite-state fair transition
systems.

With regard to the standard approach to abstract model checking which com-
putes the abstraction upfront, the new algorithm considers only the parts of the
abstract state space that are relevant to the search. The solver is used to solve a
satisfiability problem rather than to enumerate all possible solutions. With re-
gard to model checking the concrete state space, the new algorithm exploits the
abstraction and solves more problems. When the abstract state space is finite
as in the case of predicate abstraction, k-induction is guaranteed to terminate,
which is not the case for the concrete infinite-state space.

We performed an experimental evaluation on benchmarks extracted from an
industrial project on requirements validation. The results show that the new
algorithm can solve problems where the computation of the abstraction is not
feasible, while in general is more efficient and can yield a time improvement that
is exponential in the number of predicates.

The paper is structured as follows: in Sec. B we describe the project that
motivated our research; in Sec.[Bl we overview the background of symbolic model
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checking and abstraction; in Sec. @l we present the new algorithm for model
checking an abstract system; in Sec. Bl we present the experimental evaluation;
in Sec. [l we discuss the related work; finally, in Sec. [l we conclude and hint
some future directions.

2 Motivations

2.1 Requirements Validation

Our work is motivated by a project funded by the European Railway Agency
(http://wuw.era.europa.eul). The aim of the project was to develop a method-
ology supported by a tool for the validation of the System Requirement Specifi-
cation of the European Train Control System (ETCS). The ETCS specification
is a set of requirements related to the automatic supervision of the location and
speed performed by the train on-board system. Building on emerging formal
methods for requirements validation, the requirements are formalized in first-
order temporal formulas and the analysis is based on a series of satisfiability
problems [5]. The satisfiability of the formulas is reduced to the problem of lan-
guage emptiness of fair transition systems. We use a BMC encoding with loops
to find accepting paths in the transition systems. When the problem cannot be
solved with BMC, we use predicate abstraction to check if the language of the
transition system is empty.

The systems generated by the process of requirements validation are very
large including hundreds of Boolean variables and tens of real variables. Unlike
in the standard setting of MC, there is no property that can guide the abstrac-
tion and the source of inconsistency is not known a priori. Even when a set of
predicates of the abstraction is manually defined, proving the language empti-
ness of such systems is challenging, because the computation of the abstraction
becomes prohibitive with a dozen of predicates.

3 Background

3.1 Fair Transition Systems

Fair Transition Systems (FTSs) [2I] are a symbolic representation of infinite-
state automata. In symbolic model checking [3], FTSs are used to represent
both the system and the property. Set of states are expressed by means of logical
formulas over a given set V of variables, while set of transitions are represented
by formulas over V and the set V' of next variables {v'},ey, where v’ represents
the next value of v. Symbolic algorithms manipulate such formulas in order to
check if the system satisfies the property. We assume that the formulas belong to
a decidable fragment of first-order logic for which we have a satisfiability solver.
We use the abbreviations sat and unsat for satisfiable and unsatisfiable, resp.
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Definition 1. A Fair Transition System (FTS) is a tuple (V,1,T,F), where

— V is the set of variables,

— I(V) is a formula that represents the initial condition,

— T(V,V') is a formula that represents the transition relation,

— F={F1,.... F,} is a set of formulas representing the fairness conditions.

The set Sy of states is given by all truth assignments to the variables V. Given a
state s, we use s’ to denote the corresponding truth assignment to the next state
variables, i.e. s’ = s[V'/V]. A state s is initial iff s = I(V). Given two states s;
and so, there exists a transition between s; and sq iff 1,8, ET(V, V). lf risa
sequence of states we denote with 7; the i-th state of the sequence. If 7 is finite
we denote with |7| the length of 7. A finite [resp. infinite] path of an FTS is a
finite [resp. infinite] sequence of states 7 such that, for all 4, 1 < ¢ < |n| [resp.
i > 1], there exists a transition between m; and m;y (7, 7, = T). A path
is initial iff 71 is an initial state (w1 = I). An infinite path 7 is fair iff, for all
F € F, for infinitely many i, m; = F.

Given an FTS M and a formula ¢()), the reachability problem is the problem
of finding an initial finite path s, ..., s of M such that s; E ¢. Model checking
of invariant properties can be reduced to a reachability problem.

The language of an FTS is given by the set of all initial fair paths. Given an
FTS M, the language emptiness problem is the problem of finding an initial fair
path of M. Model checking and satisfiability of linear-time temporal formulas
are typically reduced to the emptiness language problem of equivalent FTSs [28§].
Thus, also the validation of requirements expressed in temporal logic is typically
solved by looking for an initial fair path in the FTS equivalent to. the conjunction
of the requirements.

Ezample 1. Consider a system ({0, t, e}, true, T, N Ty A Te,{Fq, Fe}) where:

— Ot is a non-negative real variable representing the time elapsed at every step.

— t is a timer (real variable) that progresses when ¢; > 0 and can be reset
when §, = 0.

— e is a Boolean variable that can change only when §, = 0.

—T,: =0, >0— (¢ =eAt —t=0d;) represents the constraint of a step with
elapsing time.

—Ty:=6=0— (' =tV =0) represents the constraint of a discrete step.

—T.:=e¢— (¢! Nt/ = 1) states that when e becomes (non-deterministically)
true both e and ¢ do not change anymore.

— Fj:=d; > 0 forces the progress of time.

— F, := e forces the Boolean variable e to become eventually true.

The system has an infinite number of initial paths that reach the formula e, but
no infinite fair path, because when e becomes true the time is forced to freeze.
For example, the path shown in Fig.[Ilis an initial path of the system, but cannot
be extended to any fair path.
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Fig. 1. Example of path

3.2 Abstraction

Abstraction [§] is used to reduce the search space while preserving the satisfac-
tion of some properties. In MC, the abstraction is usually obtained by means
of a surjective function o : Sy — &, called abstraction function, that maps
states of an FTS M into states of a smaller FTS M. The concretization function
v : 8y — 25 is defined as y(8) = {s € Sy | a(s) = §}. The abstraction function
o is symbolically represented by a formula H,(V,V) such that s,§ = H, iff
a(s) = S.

Once the set V of abstract variables and the relation H, are given, the ab-
straction M, is obtained by existentially quantifying the variables of M.

Definition 2. Given an FTS M, a set V of abstract variables and the relation
H,, the abstract FTS M, = (V Ia Ta,}"a> is defined as follows:

- {a(]{) :A: EIV(I(V) A H(x(v7)>)); N
— T,(V, V') == VIV(T(V, V) A Hy(V, V) A (v' V).
— Fo = {Fa}rer where Fo(V) := IV(F(V) A Ho(V,V)).

Given a formula ¢, we define its abstract version ¢q as IV(o(V) A Hy(V, V).

The abstraction over-approximates the reachability of an FTS M, in the sense
that if a condition is reachable in M, then also its abstract version is reachable
in M, . Similarly, if M has an initial fair path, the same holds for M,. Thus, if
we prove that a set of states is not reachable in Ma, or that Ma does not have
any initial fair path, the same can be concluded for the concrete FTS M.

Predicate abstraction. In Predicate Abstraction [I5], the abstract state-space
is described with a set of predicates; each predicate is represented by an abstract
variable. Given an FTS M, we select a set IP of predicates, such that each pred-
icate P € P is a formula over the variables V that characterizes relevant facts
of the system. For every P € P, we introduce a new abstract variable vp and
define Vp as {vp}pcp.
The abstraction function ap is defined as ap(s) := {vp € Vp | s = P}, while
Hp is defined as follows:
=(V,Ve) = N\ vp = P(V (1)

PeP

Ezxample 2. Consider the system of Ex. [l and the predicates §; > 0 and e. If
we eliminate the quantifiers in the definition of abstraction, we obtain the FTS
({vs,,ve}, true,ve — (ve A—ws, ), {vs,,ve}). This abstract system has finite states
and it is easy to see that it does not have fair paths.
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3.3 Bounded Model Checking

Bounded Model Checking (BMC) ([2]) considers only initial paths of length
up to a certain bound. Given a bound k, an FTS M and a formula ¢()), the
bounded reachability problem is the problem of finding, for some j < k an initial
finite path so, ..., s; of M such that s; = ¢. The problem is usually reduced to
a satisfiability problem.

In the following, given a set X of variables, we use several copies of X, one
for each state of the path we are looking for. We will denote with X; the i-th
copy of X. Thus, V; = {v; },ey, where v; represents the i-th copy of v.

Definition 3. Given an FTS M, and a bound k, the formula PATHy; ), is de-
fined as follows:

PATHyrp o=\ T(Va-1,Vn) (2)
1<h<k

Definition 4. Given an FTS M, a bound k, and a formula o, the formula
BMChy i, is defined as follows:

BMCht,p == 1(Vo) N PATHps 1o N (Vi) (3)
The formula BMCjy,k,, encodes the bounded reachability problem.

Theorem 1. BMC)y 1, is sat iff there exists an initial path of length k reach-
mg o.

Bounded model checking with fair paths. A similar encoding is often used
to find lasso-shape initial fair paths of length up to k.

Definition 5. Given an FTS M, and a bound k, the formula BMClj\Zoi is defined
as follows:

BMCYY == I(Vo) A PATHy A\ Nui=ven \ \/ FO) (4)

0<i<k, vEV FEF,1<h<k

As BMCyyk,, is an approximation of the reachability problem, BM d&oi is an
approximation of the language emptiness problem: if the formula is éa‘m the
language is not empty; otherwise, we have to increase the bound. However, if
the state space is not finite, it is not guaranteed that there exists a bound
sufficient to solve the problem.

3.4 K-Induction

K-induction [27] is a technique that proves that if a set of states is not reachable
in k steps, then it is not reachable at all. On the lines of the induction principle,
it consists of a base step, which solves the bounded reachability problem with a
given bound k of steps, and an inductive step, which concludes that k is sufficient
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input : FTS M = (V,I,T) and formula ¢

output : Y ES if ¢ is reachable in M, NO otherwise
1 begin

2 k:=0;

3 if BMChyi i, is sat then

4 return YES

5 else if KINDF W g+1 or KINDBWy 41,0 1S unsat then
6 return NO

7 else

8 k++;

9

end

Algorithm 1. K-induction(KIND)

to solve the (unbounded) reachability problem. The idea of the inductive step is
to check either if the initial states cannot reach new (non-visited) states in k+ 1
steps, or the target set of states cannot be reached in k + 1 steps. These checks
can be solved by means of satisfiability.

Definition 6. Given an FTS M, and a bound k, the formula SIMPLEPATH ; i,
1s defined as follows:

SIMPLEPATHy; . := PATHy e A [\ =\ vi=v; (5)
0<i<j<k wEV

Definition 7. Given an FTS M, and a bound k, the formula KINDFWy , is
defined as follows:
KINDFWhy i, := I(Vo) N SIMPLEPATH ) 1, (6)

Theorem 2. If KINDF Wy 141 is unsat, then M does not have an initial simple
path with more than k states.

Definition 8. Given an FTS M, a formula ¢, and a bound k, the formula
KINDBW 1, 15 defined as follows:

KINDBWy 1. := SIMPLEPATHyz j, N (Vi) (7)

Theorem 3. If KINDBWj j41,, is unsat, M does not have a simple path
reaching @ with more than k states.

Corollary 1. If, for all i <k, BMC\yy,, is unsat and, either KINDF Wy 11
or KINDBW j41,, 1s unsat as well, then ¢ is not reachable in M.

Corollary[Mgives rise to Algorithm 34l where the formulas are iteratively checked
for increasing values of k. In case M is finite-state, Algorithm B4l is guaranteed
to terminate. The works in [27] and [I3] exploit stronger version of KINDE Wy
and KINDBW)y 1, that consider the negation of the initial condition I and the
target condition ¢ respectively.
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3.5 Abstract Model Checking with Abstraction

The standard way to solve the reachability problem or the emptiness problem
on the abstraction of an FTS M is first to compute the FTS M and then to
apply model checking techniques on the abstract state space. We denote with
AMC, cqcn such procedure when it solves the reachability problem, while with
AMC;40p the similar procedure that checks the language emptiness of the ab-
straction of M.

4 Abstract Model Checking without Abstraction

4.1 General Idea

The key idea of the paper is to embed the definition of the abstraction in the
encoding of BMC. This highlights the possibility of pre-computing the quan-
tification of the abstract variables. Let us consider the abstract version of the
formula [3, namely:

LnWo) A N\ Ta(Vao1,V0) A @a(Vi) =
1<h<k
fa(f/o) A Ta(ffm ]}1) VAN Ta(f)kfl, f}k) A gﬁa(f)k)
If we substitute fa, Tw and ¢, with their definitions, we obtain:

I(Vo) A Ho(Vo, Vo) A Ho(Vo, Vo) AT (Vo, V1) A Ho(Vi, Vi) A ... A
Ha(Vk_l,f}k_l) ANT(Vi—1,Vi) A Ha(Vk,f}k) A Hy(Vi, VAk) A o(Vi)

where quantifiers have been lifted at top level by renaming some bound variables.
Note that the scope of abstract variables V; is limited to two copies of the
abstraction relation. Let us define the formula FQ, (V,V) as

EQ,(V,V) :=3V(H,(V,V) A Hy(V,V)) (8)

EQ,, encodes the fact that two concrete states correspond to the same abstract
state. Formally, s, s = EQ,, iff a(s) = a(s). We can use EQ,, to provide abstract
versions of the formulas used for BMC and k-induction. Intuitively, instead of
having a contiguous sequence of transitions, the encoding represents a sequence
of disconnected transitions where every gap between two transitions is forced to
lay in the same abstract state (see Fig. ().

In most of abstraction, the quantifier in £@Q, can be easily eliminated. For
example in predicate abstraction:

BEQ, = EQs(V,V):= \ P(V) = P(V) 9)
PecP

Another interesting case is the abstraction by projection where the abstract
variables are a subset V of the concrete variables and the non-abstract variables
are quantified out. In this case,

EQ, = EQy(V,V):= \v=0 (10)

vey
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Fig. 2. Abstract path

4.2 Paths and Simple Paths

We first define the abstract version of the PATHy , and SIMPLEPATH ), used
in the encoding of BMC and k-induction.

Definition 9. Given an FTS M = (V,I1,T), an abstraction function «, and a
bound k, the formula PATH; o1 s defined as follows:

PATHyran =\ (TOVh-1,V0) A EQu(Vi, Vi) AT(Vie1, Vi) (11)
1<h<k

Theorem 4. vaa’k is sat iff PATHMa L 18 sat.

Definition 10. Given an FTS M = (V,I,T), an abstraction function «, and a
bound k, the formula SIMPLEPATHy; o1 is defined as follows:

SIMPLEPATHyto = PATHypox A\ —EQ,(Vi,V)) (12)
0<i<j<k

Theorem 5. SIMPLEPATH o, is sat iff SIMPLEPATH,,  is sat.

4.3 Abstract Bounded Model Checking

We define the abstract version of the BMC encoding. The formula B/\MCJ\/LQ);WJ
is sat iff BM CMa koo is sat. Therefore, if BMC\s ok, is unsat then we can deduce

that there are no initial paths reaching ¢, in k steps in Ma. If B/\]\/[C’J\/La,;wJ is
sat, we can extract from its model a satisfying assignment for BMCy; o

Definition 11. Given an FTS M = (V,1,T), a formula @, an abstraction func-
tion o, and a bound k, the formula BMChys .k, is defined as follows:

BMCh.akp = 1(Vo) A EQ,(Vo, Vo) A PATHys o A EQ.,(Vi, Vi) A o(Vy) (13)

Theorem 6. B/M\CMmGW 1s sat iff BMCMQ 18 sat.

R

Similarly, we can define the abstract version of BM! d]&oz.
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Definition 12. Given an FTS M, a bound k, and an abstraction function a,

—_loo
the formula BMCM;k is defined as follows:

_—_loop

BMC)p p s i= 1(Vo) A EQu(Vo, Vo) A PATHg 1 A
V' A BQivior N\ F(W) (14)

0<i<k, vEV FEF,I<h<k

——_loop . . oop -
Theorem 7. BMC); , ;. is sat iff BMdM , s sat.

4.4 Abstract k-Induction

We_define the abstract version of the k-induction conditions. The formulas
KINDF Wi, and KINDBWy,q.k, are sat iff respectively KINDFWMQ . and
KINDBWMQ o A€ sat. Therefore, if B/\MCM@JCW is unsat and, either

KIWD\FWM’Q);c or KIN/IEWJ\/LQ,;WJ is unsat then we can conclude that ¢, is
not reachable.

Notice that we do not use the stronger version of KINDFW and
KINDB WMa,k.,go defined in [27], because they require to express the negation of

fa and Q. In fact, the definitions of fa and @, involve an existential quantifi-
cation, and their negation cannot be handled by the satisfiability solver.

Definition 13. Given an FTS M = (V,I,T), an abstraction function «, and a
bound k, the formula KINDF Wy o1 is defined as follows:

KINDFWag.ap == I(Vo) A EQ,(Vo, Vo) A SIMPLEPATH .0 (15)
Theorem 8. I(IWIF'WMWC 1s sat iff K]NDFWMC“,C is sat.

Definition 14. Given an FTS M = (V,1,T), a formula ¢, an abstraction func-
tion o, and a bound k, the formula KINDBW ok, 15 defined as follows:

KINDBW .o := SIMPLEPATHy; o A EQ, (Vi Vi) Ao(Vi)  (16)
Theorem 9. KIN/D\BWM,,L;CW is sat iff KINDBWMC“,CW is sat.

Corollary 2. [If, for all i < k, B/M\CM,Q,Z-W is unsat and, either KIWD\FWM,Q,;CH or
KINDBW o, k41,0 1S unsat, then ¢o ts not reachable in Ma.

4.5 Abstract Model Checking

— _—loo — —
The formulas BMChs ok, BMCM)ZJ€7 KINDFWas ok, and KINDBW s ok,
can be used to define different procedures for solving reachability and language



Abstract Model Checking without Computing the Abstraction 99

input : concrete FTS M = (V,I,T) and formula ¢
output : Y ES if ¢, is reachable in Ma, NO otherwise
begin
k:=0;
if B/\MCM’QJCW is sat then
return YES
else if KIWD\FWM,Q,;Q_H or KIWD\BWM,Q’;C_HW is unsat then
return NO
else
k45

© 0N o AW N

end
Algorithm 2. Abstract model checking without abstraction

emptiness of an abstraction of an FTS. We denote such procedures with AM-
CWAreqen, and AMCWA 4, respectively. AMCWA ¢qen is shown in Algorithm
2. On the lines of k-induction, it iteratively increases the bound k till either
it finds a counterexample or it proves the property correct. Unlike Algorithm
1, the path found by BMC is abstract and the bound used by k-induction to
conclude is related to the abstract state space. In particular, when the abstract
state space is finite, such bound is guaranteed to exist.

. .. ———loop . .
AMCWA o0p is similar to AMCWA¢qcn, but BMCM)mk is used instead of

B/\JWCM,O"kW, and only KWD\FWM)Q’;C is used to prove the absence of initial fair
paths. In principle, we can add further induction conditions based on fairness,
but in practice we experienced that they do not manage to conclude and solve
the problem, and therefore we can save the related overhead.

When predicate abstraction is adopted, both AMC and AMCWA are expo-
nential in the number of predicates. However, AMC must find all solutions of
the abstraction formula, while AMCwA delegates the blow up to the search.
The computation of the abstraction in AMC is orthogonal to the search and is
computed upfront, while AMCwa considers only the parts of the abstract state
space that are relevant to the search. The solver is used to solve a satisfiability
problem rather than to enumerate all possible solutions.

Ezample 3. Consider the FTS of Ex. [[l and the predicates of Ex. 2l AMCwa

—loo
proves that the FTS has an empty language by checking that BM CM; & 1s unsat
for k =1,2,3,4 and that KINDFW)y 5, is unsat for k = 4. Note that k-induction
on the concrete FTS cannot prove the same.

5 Experimental Evaluation

5.1 Implementation

We implemented AMCWA,¢qcr, and AMCWA 4, in CEGAR [], and we evalu-
ated the performance of the two algorithms on an Intel 2.2GHz Laptop equipped
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with 2GB of memory running Linux. We set a timeout of one hour and the space
limit of 2GB. BMC and k-induction problems have been solved with the Math-
SAT SMT solver without incrementality. The same solver has been used to solve
the ALLSAT problem for the computation of the abstraction, as already im-
plemented in CEGAR. All the data and binaries necessary to reproduce the
presented results are available at http://es.fbk.eu/people/tonetta/tests/
fm09/

5.2 Emptiness Checking for Requirements Validation

In a project funded by ERA, we investigated the feasibility of the formalization
and validation of ETCS functions (see http://www.era.europa.eu/)). The re-
quirements have been formalized in a fragment of first-order temporal logic [21].
The techniques used to validate the requirements were based on a series of checks
for the language emptiness of large transition systems, which encode the con-
sistency of different sets of requirements. The systems had around 300 Boolean
variables, 50 real variables, and few integers. Most of times, the requirements
were consistent and we used BMC to generate paths as witnesses. Inconsistencies
found during the project were mainly due to unfeasible scenarios considered on
purpose to test the formalization of the requirements.

We consider the fragment of the ETCS specification analyzed in [6], and we
add unfeasible scenarios on the lines of those proposed in the ETCS project.
For each problem, we consider a set of predicates that is sufficient to prove the
inconsistency. We ran the abstract model checking algorithms with and without
the computation of the abstraction for increasing number of predicates.

We obtained the results reported in Fig. Bl The time is plotted in log-scale
against the number of predicates. The vertical line highlights the number N
which is sufficient to prove the language emptiness of the FTS. Thus, for i < N
the algorithm find an abstract (spurious) path, while for ¢ > N the algorithm
conclude that the language is empty. The tables reports the k at which k-
induction stopped with N predicates. The other columns of the table report
the size, in terms of number of variables and number of fairness conditions of
the FTS. We use #r,#b,# f with the meaning, r real variables, b Boolean vari-
ables, and f fairness conditions.

In ETCS2 and ETCS4, the new algorithm outperforms the computation of the
abstraction. In ETCS7 and ETCSS, the improvement scales up exponentially.
Note that in ETCS7 and ETCSS, for i > N, the AMC reaches the timeout.
Thus the computation of the abstraction prevents to prove the inconsistency,
and the new algorithm manages to prove problems that were not previously
solved. Finally, in ETCS9 we have some points were the new algorithm performs
worse. However, as the number of predicates scales up the new algorithm is
definitely the winner. The data regarding memory consumption have similar
plots. As for AMC, the time is almost totally spent in the computation of the
abstraction, while the search in the abstract state space is negligible.

Note that, unlike the computation of the predicate abstraction which seems
a regular exponential function over the number of predicates, the performance
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of the new algorithm seems a step function. This is due to the dependency on
the depth necessary to use k-induction, and on the fact that some predicates
increase such depth, while others do not affect it.

5.3 Number of Predicates vs. Search Depth

We now consider a scalable system manually crafted to investigate the depen-
dency on the number N of predicates and the bound K that is necessary to
solve the problem. The system has N Boolean variables P;, with 1 < ¢ < N,
and N bounded integers v;, 1 < i < N. The variables P; are initially false and
non-deterministically become true. For 1 < i < N, the variable P; can become
true only if P;14 is true. Besides, the variable Py_ g can become true only if P
is true. Therefore the property —P; is an invariant of the concrete system, and,
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Fig. 4. Results for case study. X axis: parameter N. Y axis: time in seconds.

if we choose P = {P;}1<i<n, it is an invariant also of the abstract system. The
relationships among the variables P; involve the variables v; so that the abstrac-
tion does not result straightforward. Moreover, fixed a value for the variables
P;, the variable v; can range over the whole domain. This makes k-induction of
the concrete system infeasible because it would require a too large bound. Note
instead that the initial simple paths have at most K steps (basically, the paths
that change the variables P; for N — K +1 < i < N). This allows us to prove
the property on the abstract system by means of k-induction with bound K.

The results are plotted in Fig. @l in log-scale for increasing values of N. As
expected, the time spent in the computation of the abstraction grows exponen-
tially with the number of involved predicates. The search done by AMC,.cqcn
results to be polynomial in the number of predicates, and strongly depends on
the necessary inductive depth.

6 Related Work

Combinations of predicate abstraction with SAT-based techniques are numerous
in the literature. As discussed in the introduction, a SAT or SMT solver is
typically used to compute the abstraction. The problem of verifying if an abstract
path can be simulated on the concrete system is encoded into a BMC problem
[9]. Many works on abstraction refinement use also BMC as a model checking
procedure. The CEGAR loop described in [20] uses SAT as the only decision
procedure. The model checking of the abstract state space is based on BMC and
k-induction. Unlike this paper, the abstraction computation and the abstract
model checking are distinct steps of the loop.

In [24], BMC is used on the concrete system, the proof of unsatisfiability of
the abstract path simulation is used to build the abstraction, and the result
of the abstract model checking is used to increase the bound of the search.
The work in [I6] improves [24] by applying BMC to both the concrete and
the abstract system. Also in [22123], predicates are not used and the abstract
system is built by extracting interpolants from the unsatisfiability proof of some
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path conditions. The efficiency of these works is based on the capability of the
refinement to find constraints that are on one hand strong enough to prove the
property, on the other hand weak enough to keep the verification complexity low.
As the mentioned approaches, this paper aims at avoiding the computation of
the abstract state space, but remains in the framework of abstraction precisely
defined by a function (rather than computed by the refinement procedure).

In [I7], the abstraction is computed on demand along the search. The al-
gorithm exploits the control-flow graph of programs to localize the search to
control locations, and avoids building the abstraction for unreachable location.
Nevertheless, also this approach needs a quantifier elimination to compute the
abstract image of reachable locations.

The work presented in [I8] combines symbolic execution with abstraction,
but differently from this paper, the abstraction is based on induction and is
computed separately from the search. Notably, the counterexamples (which are
called leaping because they leap due to the abstraction) are used for diagnosis.

A common way to tackle the complexity of predicate abstraction is to ap-
proximate the computation by allowing more transitions (see, e.g., [ZJT2/1]). The
complexity is shifted to the refinement that must take care of removing spurious
transitions, resulting in an increased number of refinement iterations. This paper
focuses only on minimal abstraction, although the technique can be modified in
order to search approximated abstract state space.

The definition of EQp can be found already in [29], but is used only to compare
predicate abstraction with localization reduction.

7 Conclusions

In this paper, we proposed a new algorithm to model check an abstract sys-
tem without computing the abstraction. While the classic paradigm performs a
quantifier elimination to build the abstraction, we encode the model checking
problem into satisfiability problems over the concrete variables. We adapted the
algorithm based on k-induction to look for finite and infinite fair paths in the
abstract system. We showed that the new algorithm can obtain an exponentially
better scalability and solved real world problems that were beyond the reach of
standard predicate abstraction.

The improvement is of course affected by many parameters. In particular,
the abstract state must be amenable for proving the invariant with k-induction.
K-induction may be a very effective technique, but, since it is based on the
induction principle, it does not manage to prove always an invariant: in the
finite-state case, the technique is complete, but the bound necessary to prove
the property may become too large; in the infinite-state case, the loop is not
guaranteed to terminate. In practice, one has to exploit invariants as in [25].

We plan to integrate the abstract model checking technique into a full abstrac-
tion refinement loop. We can exploit the search done by the solver to extract
useful information such as abstract transitions, and reachability results on the
concrete state space. We can use the obtained leaping counterexamples for di-
agnosis as suggested in [I§]. We can exploit the incrementality of the solver, to
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boost the search by exploiting the clauses learned by previous iterations and
to check the satisfiability of the inductive condition in an incremental way as
described in [I13].
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Abstract. Spotlight abstractions in verification focus on one specific component
in a parallel system while disregarding most information about the rest. Existing
spotlight abstractions are either based on over- or on underapproximations of the
parallel system, thus either preserving existential or universal properties. In this
paper we present three-valued spotlight abstractions for parallel systems which
preserve both existential and universal properties. We show correctness of the
abstraction technique as well as present a procedure for abstraction refinement.
The technique has been implemented on top of an existing three-valued model
checker. Experimental results show that our technique can outperform existing
predicate abstraction tools on certain classes of parallel systems.

1 Introduction

Abstraction techniques in verification have long been studied as a means for reducing
the complexity of model checking [1l]. While early work focused on basically transfer-
ring the idea of abstract interpretation from program analysis [2] to model checking [3]],
today predicate abstractions, elaborate means for finding predicates and refining ab-
stractions are in the focus of research. Several tools implement such abstraction and
abstraction refinement techniques (e.g. Blast [4], SLAM [5], MAGIC [6], ARMC [7],
SATABS [8])).

Spotlight abstractions are specific abstraction techniques for parallel systems, where
a ’spotlight” is set on certain processes and the remaining ones are kept in the ’shade”,
i.e. are only considered to a small degree. Spotlight abstractions are usually applied
to parametrized systems, consisting of an unknown number (encoded by a parameter)
of almost identical components, a typical representative being a mutual exclusion al-
gorithm for n processes. Counter abstraction [9]] keeps one process precise while only
“counting” the number of processes which are at particular program locations (count-
ing being cut off at 2). Environment abstraction [[10] in addition keeps predicates in the
abstraction relating variables of the one component to those of other components. The
term “spotlight™ has recently been coined by Wachter and Westphal [11]], who show
that all these abstractions can be seen as an instance of canonical abstractions which
have been employed as an abstraction technique in shape analysis [12]. They apply their
canonical abstractions on car platoons with an unknown number of (identical) cars.

In this paper, we apply the spotlight principle to a different class of parallel systems.
Instead of assuming (almost) identity of parallel components, we allow for arbitrary
compositions (but fixed, not parametric), and instead of treating properties talking about

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 1061122] 2009.
© Springer-Verlag Berlin Heidelberg 2009
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all processes, we specialize to local properties of individual processes. Starting with a
given parallel system (with shared variables) and a temporal logic property for a specific
component C;, we try to verify the property by considering as few other components as
possible. Thus our first abstraction only contains an abstracted version of C;. Once we
find that the property cannot be proven on this abstraction of C; alone, we gradually re-
fine the abstraction by either adding new predicates to the abstraction of C;, or adding a
new component possibly influencing C;. As a first example, consider the simple parallel
program of Figure[Tl

int x1 = 1; int x2 = 1; int x3 = 1;

while (x1 > 0) while (x2 > 0) { while (x3 > 0) {
x1 = x1 - 1; x1 = x1 - 1; X2 = x2 - 1;
END: x2 = x2 - 1; x3 =x3 - 1;
3 }
(H 2 3)
Fig. 1. Program CHAIN;

In this program we have a chain of dependencies among the processes due to the three
variables. When checking for a property like AF (pc; = END) (i.e., check whether the
program location END in component 1 is always reached, assuming fairness), our ap-
proach constructs the following abstractions (given in Figure 2)). The first abstraction
(a) would consider component (1) alone with no predicates. Components (2) and (3)
are summarized into one component, infinitely passing through a loop. A first analysis
reveals that we need to add the predicate (x1 > 0) to the abstraction of component (1)
as to determine termination of the loop (giving abstraction (b)). Since x1 is a shared
variable, the abstraction of (2) and (3) is changed as to incorporate a possible but un-
known change (denoted by *) of predicate (x1 > 0). On this abstraction we still cannot
determine termination of the loop, since it is not clear whether x1 > 0 eventually be-
comes false. The next two abstractions thus first add another predicate (x1 > 1) and
then component (2) (steps (c) and (d)). On this final abstraction we are able to prove
validity of the above property (under the reasonable fairness assumption that every pro-
cess eventually makes progress), even without determining whether the loop in (2) is
actually executed. Thus variables x2 and x3 as well as component (3) never have to be
considered. The same effect happens for all programs CHAIN,, (with n components and
n variables x1i), i.e. independent of the number of processes, property AF(pcy = END)
can be proven with two components in the spotlight and two predicates only.

In contrast to almost all other spotlight abstractions, we use three-valued abstrac-
tions for our approach, thereby being able to preserve both existential and universal
properties. Many-valued model checking techniques [13[14] verify properties of par-
tial Kripke structures. Partiality may refer to both transitions and atomic propositions.
In a three-valued setting, transitions can be present (frue), not present (false) or simply
unknown (L), the same principle applies to atomic propositions. Such partiality may
arise out of inconsistent specifications, unknown sub-components in systems or - as in
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(x1>0) = true;

while (*) while (true) while (x1>0) while (true)
{1} {3 {(x1>0) = (x1>0)?*:false;} {(x1>0)=*;}

END: END:

(@) (1) (2,3) ) (D (2,3)

(x1>0) = true; (x1>1) = false;

while (x1>0) while (true)
{(x1>0) = (x1>1) ? true : false, {(x1>0),(x1>1) = *,*;}
(x1>1) = (x1>1) ? * : false;}

END:

(©) (D) (2,3)

(x1>0) = true; (x1>1) = false;

while(x1>0) while(*) while(true)
{(x1>0) = (x1>1)?true:false, {(x1>0) = (x1>1)?true:false, { }
(x1>1) = (x1>1)7?*:false;} (x1>1) = (x1>1)7?*:false;}

END:

() (1) 2 3

Fig. 2. Abstractions (a) to (d)

our case and alike - imprecisions due to abstraction. Model checking techniques for
partial Kripke structures have already intensively been studied, a BDD- (MDD-)based
model checker for arbitrary many-valued Kripke structures is yChek [[16]. The use of
partial Kripke structures as abstractions has the advantage of preserving both existen-
tial and universal properties (given an appropriate abstraction): The outcome of a model
checking run on a partial Kripke structure can be true, false or L. In three-valued ab-
stractions both frue and false results can be transferred to the original system, only the
1 result necessitates abstraction refinement.

In this paper, we employ three-valued Kripke structures for our spotlight abstrac-
tions. We show that our abstractions give us a completeness preorder relation [[17]]
between full and abstracted system (preserving fairness), thus guaranteeing the preser-
vation of full CTL properties. We furthermore develop a technique for abstraction
refinement which either adds further predicates to the components currently in the ab-
straction, or a new component. The approach has been implemented on top of the model
checker yChek and we report on promising results.

2 Basic Definitions

We start with a brief introduction to partial Kripke structures and the interpretation of
temporal logic formulae on them. Partial Kripke structures will be the semantic domain
of our abstracted programs. For the abstractions that we present here, we only need
three-valued Kripke structures; extension to arbitrary many values can be found in [14].
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In a three-valued Kripke structure an atomic proposition or transition can not only
be present or absent, but also unknown (Fig. 3(b)). The logical basis for this is Kleene
logic [18]]. Kleene logic 3 := {true, false, 1} extends classical logic 2 := {true, false}
by a value L standing for “unknown”. A truth order “C” (with false E L C true) and
an information order “<” (with L < true, L < false and true, false incomparable)
are defined on 3 and shown in Fig. Conjunction is defined by a A b := min(a, b)
and disjunction by a Vv b := max(a, b) where min and max apply to the truth order C.
The negation is defined as —true := false, - false := true and —L := L. Note that the
operations V, A, - applied to true and false have the same meaning as in 2.

gt t ‘ L ’ ‘

g @ @ @ [EGpI(...) =L,t1
g h [AGPI(..) =Lff
::; 1 [E[pU4II(...) = L 1, L
- truth order @. [ApUqINC.. ) = L. f. f

(a) Three-valued Kleene logic (b) Three-valued Kripke struc- (c¢) CTL formulae valuated
ture with atomic propositions in the upper 3 states of the
AP = {p.q} structure in Fig. B(B)]

Fig. 3.

A three-valued Kripke structure is a classical Kripke structure where all occurrences of
classical logic 2 are replaced by 3. The other way round, a classical Kripke structure is
a three-valued Kripke structure where no L occurs. In the following, whenever we just
talk about Kripke structures, the three-valued case is meant.

Definition 1 (Three-Valued Kripke Structure). Given a nonempty finite set of atomic
propositions AP, a three-valued Kripke structure is a 3-tuple (S, R, L) where

— S is a set of states,
- R:S xS — 3isa totall three-valued transition relation and
— L: AP XS — 3isa three-valued function labeling states with atomic propositions.

For specifying properties of programs we use computation-tree logic (CTL) [19].

Definition 2 (Syntax of CTL). Let AP be a set of atomic propositions. The syntax of
CTL is given by the following grammar:

pu=pleVelere|~¢ | EXp|AXp| EFp|AFp | EGe | AGe | E[eUe] | AloUg]
where p is an atomic proposition of AP.

! Here total means that for any s € S there is an outgoing transition, i.e. there exist t € S with
R(s,t) # false.
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In the classical setting, a function [-](-) : CTL xS — 2 tells us whether a formula holds
in a given state or not, and is defined inductively over the structure of a formula. Let
1, = {(s0, 51, 52,...) € S¥ | 59 = s and Vizg: R(s;, 5141) # false} be the set of all paths
starting in s € S, and for a path m, the i-th state is denoted as mr;. Then for instance
“there exists a path such that ¢ holds until ¢ is formally defined as:

[E[@UYIN(s) = Anell;: Tk >0: [Wl(r) A Yi<k: [e]l(r;)

For three-valued structures, the interpretation is extended in such a way that it stays con-
sistent with the classical setting if no L is used. This is achieved by replacing universal
quantifiers with conjunction and existential quantifiers with disjunction. Furthermore,
the truth values of the transitions on the path have to be taken into accounfl.

Informally, an E-formula is frue if the subformula holds on at least one path without
L -transitions. The reason for excluding paths with L-transitions is that it is unclear
whether they really exist. Therefore paths with L-transitions may only contribute false
or L to the truth value. Analogously, for an A-formula paths with _L-transitions may only
contribute true or L. To achieve this, one needs the transition value on the path from m
10 7y, i.e. R(m) := Ageick R(i, miv1). In the following we define the interpretation only
for a subset of CTL, the remaining operators can be derived by the usual dualities.

Definition 3 (Three-Valued Interpretation of CTL). Let AP be a set of atomic propo-
sitions and K = (S, R, L) a three-valued Kripke structure over AP. The interpretation
SJunction [-](-) : CTL X S — 3 with respect to K is inductively defined on the grammar
of a CTL-formula:

[pl(s) := L(p,s) for pe AP [[@ Ayll(s) := [@ll(9) Allll(s)  [—ell(s) := —llell(s)

IEXeL) = \/ (R') A Telm))  [EGel® = \/ A\ (R A Tolom)

nelly nell; k>0

[EleUwTI(s) = \/ \/(chr) A ([l A\ Telin)

nell; k>0 0<i<k

If K is not clear from the context, the interpretation function is denoted as [-|x(-)

For some properties it will be necessary to assume some kind of fairness between paral-
lel processes, e.g. that every process will eventually progress. To this end, we extend the
definition of three-valued Kripke structures with fairness and adapt the interpretation of
CTL formulae to fair Kripke structures.

Definition 4 (Fair Three-Valued Kripke Structures). A fair three-valued Kripke
structure is a 4-tuple (S,R, L, ) where S, L and R are as before and additionally a
set of fairness constraints ¥ C P(R™'({true, 1})) is given, where each constraint is a
set of non-false transitions.

2 Using the classical logic for any 7 € II, we have that R(rm;, ;) = true, and therefore all
requirements for R in Def. [3| are consistent with but also redundant for the two-valued case.
Also, notice that with Def.Blthe condition R(s;, si+1) # false is no longer needed in I7;.
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The fair interpretation of CTL formulas then requires all considered paths to be fair, i.e.
to infinitely often take a transition from every set in 7.

Next, we take a look at our programs. We model programs as control flow graphs
with operations similar to Dijkstra’s guarded commands. In most cases we also give the
programs as pseudocode (like in the introduction) assuming the translation to a control
flow graph is clear. The definitions are taken with slight changes from [[13] but extended
with parallel composition.

Definition 5 (Operations). Let Var = {vi,...,v,} be a set of variables. The set of
all operations Ops on these variables consists of all statements “assume(e) : v; =
€l,...,Vy =€, , where e, ey, ...,e, are expressions over Var.

The “assume”-part is often omitted, namely when the guard is true. As an example,
x1=x1-1 stands for assume(true) : x1 := x1 — 1. Operations appear as labels of transi-
tions in control flow graphs, often only either as guard or as variable assignments. CFGs
for the parallel components from the program of the introduction are given in Fig.[dl

Definition 6 (Programs as Control Flow Graphs (CFG)). A CFG is a structure G =
(Loc, 6) where Loc is a finite set of locations, and § : Loc X Loc — 2 is a transition
relation. A program is modeled by a labeled CFG Prg = (Loc, 6, T), where T labels each
edge of the CFG G with one operation of Ops.

Fig. 4. CFGs for CHAIN,,. The numbering of nodes is according to line numbers in the programs.
Hereby “END” (and later also “E”) denotes the last line. “x; > 0” is short for “assume(x; > 0)”.

We denote by Var(Prg) the set of all program variables, and by LVar(Prg) C Var(Prg)
the set of all variables that occur on the left-hand-side in an operation of Prg, i.e. all vari-
ables that might be changed by a program. If several programs Prg;, i from some index
set I, are composed into a parallel program ||;c; Prg;, this simply results in the product
graph of all CFGs (PCFG), where at each combined location (/y,...,l,) € X Loc;
one transition from a component is non-deterministically chosen and taken. Each tran-
sition is furthermore labeled with the component program it belongs to, i.e. the transi-
tion relation ¢ is a function Loc X I X Loc — 2 and the operations given by 7 function
LocxIxLoc — Ops. The definition is straightforward and due to lack of space omitted.

The programs, viz. PCFGs, are next equipped with a semantics in terms of (so far)
two-valued Kripke structures. To this end, we have to define valuations of variables. For
any set of typed variables Var, let Sy, be the set of all possible states, i.e. the set of all
type-correct valuations of variables. For any state s € Sy,, and any expression e over
Var, s(e) denotes the valuation of the expression in state s. The Kripke structure corre-
sponding to a program is the result of combining the PCFG with program states. There
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is a transition between two states if we have a transition between the corresponding
locations in the PCFG and the corresponding operation is consistent with the change of
program state. The fairness constraint consists of sets each one containing all transitions
caused by the same program component, i.e. a path is fair if all components eventually
progress. Note that we explicitly add atomic propositions of the form pc; = k, for k a
location in a component CFG.

Definition 7 ((Parallel) Programs as Kripke Structures). Let Prg be the parallel
program given by (Loc, 6, 7) := ||, Prgi, and P a set of quantifier free predicates over
the program variables. The corresponding Kripke structure is Kp(Prg) over AP = P U
{“pci=x"|iel,x e Loc;} with:

e S := Loc X Svar(pre)

REL ). (1) = Vi (8Lik) A s(e) A tv)=s(er) A... A tv)=s(en))
=Ri((Ls)(k,1))

assuming that 7(l,i,k) is “assume(e). vi :=e1,...,v, =€,
o L(p, (L s) = s(p) forany p € P
t if l; =
o L(pci =x,{l,s)):= rue ifli=x where l; is the location of Prg; in tuple |
false else
o F = {Ri‘l({true, J_})}iel for each Prg;: one constraint that

contains all transitions caused by Prg;

Last, we need to define syntax and semantics of abstracted programs. Here, we also
follow standard approaches for predicate abstraction (e.g. using boolean pro-
grams. Boolean programs are very much alike normal programs, viz. CFGs, except that
instead of variables we have predicates (over variables) and thus assignments are not
to variables but to predicates. In a program state, a predicate can be true, false or - in
our case - L. For a given set of predicates P, the state space is thus 37. The boolean
operations BOps appearing as labels of the CFG thus naturally are of the form

assume(pe) : p1 = pel,...,Pm = Pem

where p; € P. The expressions on the right-hand-side often take the form choice(a, b)
for boolean expressions a, b with the following semantics:

true if s(a) is true
s(choice(a, b)) = { false if s(b)is true
L else

The same abbreviations as for non-boolean operations are allowed. Additionally, L is
short for choice(f, f), ~choice(a, b) means choice(b,a) and any boolean expression e
can be written instead of choice(e, —e). The expression “(x1>0) ? *:false” in the
introduction for instance is translated into choice(false, ~(x1 > 0)), as it becomes false
if and only if =(x1 > 0) is true and its value is unknown in any other case. Particularly,
there is no case where the expression may become definitely true and therefore the first
argument of the choice operator is false.
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(Parallel) boolean programs are thus simply (P)CFGs labeled with operations from
BOps. We will denote boolean programs by BPrg; instead of Prg and the index set
for parallel processes by BI instead of I. The Kripke structure semantics for boolean
programs follows those for ordinary programs except for the fact that we might now
both have L as value for predicates as well as as a label for transitions, i.e. states are
from Loc x 37 and transitions get 1-labels if the assume-condition evaluates to L.

Boolean operations are used to approximate the operations of non-boolean programs.
This is the basis of predicate abstraction and will shortly be explained next. Predicate
abstraction is then combined with spotlight abstraction which in addition abstracts away
from components in the parallel composition.

As an example for approximation of operations, take from our concrete program of
the introduction the assignment x1 := x1 - 1.

— For P = {p; = x1 >0, p» = x1 -1 > 0} we have that p, is a weakest precondition of
p1 with respect to the assignment, i.e. if p, was true beforehand, then afterward p;
is true, and if —p, was true beforehand, then p; becomes false. Thus the operation
can be approximated by “p; := choice(pz, ~p2)”.

— Another situation already occurred in the introduction where we had the case that
P = {p; = x1 > 0}. With predicates only from P, there is no possibility to express
a condition for p; to become true after the assignment, but if —=p; was true before-
hand, then p; stays false. Here we thus need to approximate the assignment by
“p1 = choice(false,~p;)”.

A partial boolean expression pe = choice(a, b) approximates a boolean expression e
(denoted as pe < e), if a logically implies e, and b logically implies —e. The approx-
imation is extended to operations by: “assume(pe) : py = pei,...,Pm = pen’ =<
“assume(e) : vy = ey,...,v, := e, iff pe < e and pe; < wp,,(p;), where wp,,(p;)
is the weakest precondition of the predicate p; with respect to the parallel assignment
V] = ep,...,V, = e, (abbreviated as op). A sequential boolean program BPrg then
approximates a program Prg if they have isomorphic CFGs and the operations in BPrg
approximate the corresponding ones in Prg.

3 Spotlight Abstractions

Boolean programs are helpful in cutting down the state space by reducing the infor-
mation about program data in each state. Spotlight abstraction tackles another issue
specifically occurring in parallel programs: the behavior of a large number of processes
may be irrelevant for the property to be checked yet they might appear in the abstrac-
tion if they influence the value of predicates. The idea behind spotlight abstraction is
to divide processes into two groups. The ones in the spotlight are examined in detail —
each of these processes will be abstracted by its own boolean program. The others are
almost left out: together, they are all summarized into one “shade” process BPrg, con-
sisting of only one continuously executed operation that approximates all operations
from the left-out processes simultaneously. This operation simply sets all predicates
which depend on variables that might be changed by left-out processes to “unknown”.

The parallel composition of processes in spotlight and BPrg, will then be model-
checked. If in this model-checking run a left-out process turns out to be necessary, it
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joins the processes in the spotlight (by means of abstraction refinement). Alike other
approaches, we use the counterexample generated by the model checking run to refine
our abstraction. Similar to the work in [I7,[13] on multi-valued abstractions, we are
able to transfer both definite results (frue and false) from the abstraction to the original
system for any CTL-formula.

Given a parallel program Prg := ||,.; Prg;, a CTL-property ¢ and an initial set of pro-
cesses Init C I (e.g. all processes occurring in ¢), we proceed as follows:

1. spotlight := {Prg;}icimit» P := { all predicates over Var(Prg) occurring in ¢ }
2. While no definite answer is found:

3. Build the spotlight abstraction with focus only on processes in spotlight.
Model-check ¢ in the (much smaller) abstraction.
If ¢ is true or false in the abstraction, output this as result for Prg and stop,
else, use a counter-example for refinement resulting in either an additional
predicate p ¢ P or an additional component Prg; ¢ spotlight
7. spotlight := spotlight U {Prg;}, P := P U {p}

AR

For the program CHAINj; of the introduction, we let Init := {1} since the property
AF(pci = END) is local for process 1. The set of predicates is P = 0. The spotlight
abstraction in the above procedure is constructed according to the following definition.

Definition 8 (Spotlight Abstraction of Parallel Programs). Let Prg := ||.., Prg; be a
parallel program and BPrg := ||..z; BPrg; a parallel boolean program with predicates
P ={p1,..., pm} and BI C I U{L} the set of processes in the spotlight plus possibly the
shade process. BPrg approximates Prg iff

— foreveryi e BI\ {L}: BPrg; approximates Prg;.

- Bl =1 or I\BI+0, L € Bl and BPrg, is a CFG with Loc, = {1} and a
single loop labeled with p| := L,...,p; := L where{p},...,p;} C P is the subset
of all predicates depending on variables from \ Jicp gy LVar(Prg;), i.e. depending
on variables that might be changed by parallel components not in spotlight.

The PCFG of the spotlight abstraction of program CHAIN; with spotlight = {Prg;}
(i.e. BI = {1, L}) and predicates P either 0, {(x; > 0)} or {(x; > 0), (x; > 1)}, is given in
the left of Figure[3l (see page[I16), its Kripke semantics can be found in the right part.

The Kripke structure semantics for spotlight abstractions follows those of boolean
programs except for one point: besides the predicates in P we also have atomic propo-
sitions of the form pc; = k (component i is at location k). For processes not in the
spotlight, i.e. i € I \ BI, the valuation of pc; = k is always L. This reflects the fact that
we do not know at which location processes not in the spotlight might be.

Of course, we would like to transfer model-checking results from spotlight abstrac-
tions to the original program. In [17], a completeness preorder is defined between three-
valued Kripke structures, and it is proven that if some property is true/false in some
Kripke structure, then this also holds in any corresponding state of any more complete
Kripke structure. In our proof, we establish a completeness relation between a concrete
program and its spotlight abstraction that satisfies some slightly stronger properties than
required by [17]. Unfortunately, we cannot apply their theorem, as it does not consider
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fair semantics as needed here. Instead, we give a direct proof which is however close to
their work. In this proof we use the strengthened properties in our completeness relation
to preserve our specific fairness constraints from definition [7]

The following theorem relates the model checking results of concrete and abstracted
program for corresponding states. A concrete state ([, s.) and an abstract state (l,, s,)
are said to correspond to each other if the labeling of the concrete state is always “more
definitive” than that one of the abstract state. If L4 and L¢ are two labeling functions
over the same atomic propositions AP, we write Ls(q,) < Lc(gq.) for being “more
definitive” if Vp € AP : La(p, ¢a) < Le(p, g B

Theorem 1. Let Prg = ||, Prg; be a parallel program and BPrg = ||,.z, BPrg; a
boolean abstraction using predicates P = {pi,..., pm}. Furthermore, let Kp(Prg) =
(Sc¢,Re, Le, Fe) be the concrete Kripke structure and Kp(BPrg) = (S a, Ra, La, Fa) the
abstract one. Then for any two states {l., s.) € S ¢ and {l,, ) € S 4 with Ls({l4, 5.)) <
Lc({e, s¢)) and for any CTL-formula ¢ over the predicates in P or program locations
the following holds with respect to (fair) interpretation:

[elk.8rre)(qa) < [elkopro(ge)
Proof. The proof is omitted due to space constraints (see [21]]).

Hence any “definite” result (true or false) obtained on the abstraction holds for the
concrete program as well.

4 Abstraction Refinement

In this section we present our approach to refining the abstraction based on a given
counterexample. For some state s and a CTL-formula ¢ with [¢](s) =: L, a three-
valued counterexample is a finite subtree of the computation tree that explains why L
holds [22]]. In practice, a model-checker like yChek [[16] outputs only a single branch
in this counterexample representing an execution path on which ¢ is L. In this branch,
there must exist at least one _L-transition or a state with an atomic proposition labeled
with L causin£ the L-value of the path. If there exist several, then an arbitrary (e.g. the
first that is found) may be chosen. To extract a new predicate or a new component for
spotlight, we proceed as follows:

1. One reason for the path to become L might be a L-transition from some state s
to s’. This can only be due to the assume condition of the corresponding boolean
operation being L in s. There are two cases to distinguish:

3 Since the program counters are part of the atomic propositions and are either true or false
for all processes in spotlight, in corresponding abstract and concrete states these processes are
always at the same program location.

* We do without a formal definition for causing the 1-value. Instead, we give a brief example.

Consider a Kripke structure with two states (p = L, g = true) = (p = true,q = L) and the
CTL formula ¢ = EX(p A q) which is evaluated in the first state. Clearly, the L-transition as
well as ¢ = L in the second state cause the L, but p = L in the first state doesn’t.
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P

(a) Skjp Sklp

(b) choice(f,—(x,>0)) Sklp (x>0 ==L
-x,>0
(x,>0) := (x,>1) sklp (x, >0) —L
(©) (x,>1) := ch(f,~(x,>1)) (x;>1) :

Fig. 5. PCFGs and Kripke semantics for the abstractions (a) to (c) of the example program (for
those of (d) see [21])). Transitions caused by BPrg, are indicated by dashed lines.

(a) If the assume condition e of the corresponding concrete operation is already
contained in the set of predicates, then e is L in s and we continue with step 2.

(b) Else we use e as new predicate.

2. The other reason might be a predicate p that is L in some state s. Let § be the last
predecessor of s, where p was true or false and §’ the direct successor of §. There
are three cases to distinguish:

(a) The transition between § and §” is due to an operation op of a process in spot-
light, and the weakest precondition wp,,(p) is already contained in the set of
predicates. Then wp,,(p) is L in § and we further backtrack with step 2.

(b) The same, but wp,,(p) is not yet contained in the set of predicates. Then we
use wp,p(p) as new predicate.

(c) If the transition is due to an operation of BPrg , then output one arbitrary (e.g.,
the first that has been found) process writing on variables occurring in p. This
process will be added to the spotlight.

After every such step we reach an abstraction for which Theorem [I] holds. To illus-
trate the strategy we consider our example (see Fig. [[) and the CTL-formula ¢ =
(AF pcy = END). The four steps are already given in pseudocode in figure 2l Here we
will show their Kripke semantics (see Fig.[3) and how the refinement works on it.

(a) ¢ only contains an atomic proposition concerning the program counter of the first
process and no predicates over any variables. So we start with spotlight = {1} and
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P = 0. The corresponding Kripke structure is shown in figure[Bh. If we examine the
counterexample s; — s, — s; — ..., the cause for L is the transition from s; to
s>. Via step 1.b we get the new predicate p; = x; > 0.

(b) The Kripke structure for spotlight = {1} and P = {p; = x; > 0} is shown in figure
[3b. If we examine the counter-example s; — s, — §3 — §4 — 53 — ..., the cause
for L is the transition from s3 to s4. Since the corresponding assume condition is
already a predicate (step 1.a) we go on with step 2. With § = s, and §’ = s3, we get
the new predicate p, = x1 — 1 > 0 via step 2.b.

(c) The Kripke structure for spotlight = {1} and P = {p; = x; > 0,p, = x; — 1 > 0}
is shown in figure k. If we examine the counter-example s; — s — 53 — 54 —
s3 — ..., the cause for L is the transition from s4 to s3. Since the corresponding
assume condition is already a predicate (step 1.a), we go on with step 2. With § = s,
and § = s3, we add process 2 to the spotlight because of step 2.c.

(d) The Kripke structure for spotlight = {1,2} and P as in (c) still has several L-
transitions due to the abstraction (see [21]]). Nonetheless, under fair semantics the
model-checker returns [AFpc; = END](s;) = true. Due to theorem [Il we can
transfer this property to the original program and stop refinement.

5 Experimental Results

We have a prototype implementation of our spotlight abstraction and abstraction refine-
ment technique, called 3Spot, which works on top of the multi-valued model checker
xChek [16]]. Our tool reads in a parallel program (in a simple C-like syntax), constructs
its abstraction (using Z3 as prover) and builds an MDD of the partial Kripke structure
which is given to yChek. The model checker then returns true or false (which is im-
mediately reported to the user) or a counter-example as a witness for a L result. The
counter-example is next analyzed and abstraction refinement proceeds as explained be-
fore. While supporting almost all control structures of the C language, we currently
only support int, bool, and mutex as data types (i.e. no arrays, no pointers).

We have experimented with a number of case studies to test our approach. As ex-
pected, on sequential programs our tool cannot compete with other abstraction refine-
ment model checkers like BLAST [4]], SATABS [8]], and ARMC [[7] since we so far have
spent no effort at all in optimizations. The difference becomes visible when checking
parallel programs with respect to local properties.

In the following we compare our implementation 3Spot with SATABS and ARMC
using different case studies. While SATABS does provide built-in functionality to check
parallel programs, we simulate parallel programs in ARMC by adding program counter
variables for all processes and simply treating them as data. Another option would have
been to compute the product CFG and then use the single special program counter
variable that ARMC allows. Our conjecture is, however, that ARMC would then run
much slower on our examples. For our comparison we have preferred ARMC over —
for instance — BLAST because the input format used in ARMC (transition constraints)
allows us to easily encode program counters as datefl.

5 The data race checker of BLAST [23] is no longer available in the current releases.
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Table [[] shows the results of our benchmark. We ran the tests on a 3GHz Pentium
4 Linux system (Debian etch) with 1GB memory (Satabs, ARMC) and on a 3GHZ
Pentium 4 Windows system (Windows XP) with 1GB memory (3Spot) respectively.
Since some test runs took very long we stopped them after at most 2.5 hours.

As first case study we used CHAIN,, the generalized version of the introductory
program CHAING3, and tried to verify AG (pc; = END = (x1 < O)ﬂ Although our im-
plementation only needs to take two processes into the spotlight, ARMC’s performance
is almost as good as the performance of 3Spot. Interestingly, the technique to model
program counters as data allows ARMC to pick only the program counters of interest
as predicates. So in this case ARMC only considers the program counters of process 1
and process 2 while ignoring all the other processes. This allows ARMC to be as fast
as 3Spot for small n and to be significantly faster than SATABS in this example. Still,
when using large values for n like e.g. n = 100 (last row) 3Spot can take advantage of
the fact that it can ignore whole processes, while ARMC has to consider each operation
separately and in particular has to compute the abstraction of the operation.

In addition to heterogeneous programs like CHAIN,, we have looked at uniform
parallel programs, in particular those using semaphores for synchronization. To be able
to efficiently treat such programs without needing to incorporate all components, we
have developed a specific abstraction technique for semaphores.

A semaphore is modeled as an integer variable v € {-1,...,n} indicating which
process locks it (v = —1 if none). Process i may acquire v by “assume(v = —1) : v := 1"
and release v via “assume(v = i) : v := —1”. Using the technique described above,
processes not in spotlight could “maybe” release locks of processes in spotlight, as the
L -process repeatedly sets “(v = —1) := L”. We avoid this problem by changing this

assignment to “(v = —1) := choice(false,~(v = —1))”. This means, if a semaphore
is free or “maybe” locked the L-process can do anything with it (i.e. (v = —1) is set
to L), but a definitely locked semaphore will never be released (i.e. (v = —1) remains

false). One can prove a modified version of theorem[I] where the possible initial states
q. and g, are slightly restricted (see [21]]). This enables us to get model checking results
without having to look at all processes only because they share a semaphore.

As an example consider the following program MUTEX,,: n processes all consisting
of the code “while(true) {NC:skip; acquire v; CS:skip; release v}”. For
simplicity in this example, all processes are uniform, switching between a non-critical
section NC and a critical section CS, where the latter is guarded by a semaphore v. Of
course, the sections NC and CS may look very different in real-world programs, making
this example also heterogeneous.

We used MUTEX,, as second case study in our benchmark and checked the CTL-
formula AG—(pc; = CS A pcy; = CS). Thus, in this case study we try to verify that
our use of semaphores indeed ensures that process one and process two may not enter
the critical section at the very same time. The idea behind this is that process one and
process two may share a resource r we are interested in, while the other processes may
share other resources with process one and two we are not interested in at this moment,
but that cause the need of a semaphore for all processes instead of only one and two.

® We did not check the liveness property AF (pc; = END) because it can not be (directly) ex-
pressed in SATABS and ARMC.
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As for the results, 3Spot clearly outperforms ARMC in number of predicates gen-
erated and time needed (see table [T)). Unfortunately, we were not able to verify this
program with SATABS because the pthread library used for semaphores in SATABS
and that provided with the Linux distribution on our test system were different and thus
we could not test the semaphore feature in SATABS.

For our last case study we implemented Dijkstra’s mutual exclusion algorithm [24]]
and tried to verify AG—(pcy = CS A pcp = CS), i.e. the same property as for MUTEX,,
but using a mutual exclusion algorithm rather than a build-in semaphore. Although
we are not able to take advantage of our specific abstraction technique for semaphores
in this case we still only need to take the first two processes into the spotlight. This
allows us to again be faster than both SATABS and ARMC, even though the overall
performance is worse than for MUTEX,, (see table [T]).

Table 1. Benchmark results of 3Spot in comparison to Satas and Armc. (¥): No results, because
the built-in semaphores used by SataBs were not available on our test system.

3Spor SATABS ARrMC

n processes predicates time  predicates time predicates  time

CHAIN 2 2 2 0.53s 9 7.02s 5 0.09s
3 2 2 0.55s 21 66.65 5 0.11s

4 2 2 0.56s 32 17.8m 5 0.15s

5 2 2 0.56s ? > 2.5h 5 0.18s

100 2 2 0.66s ? out of memory 5 22.1s

Mutex 7 2 1 0.50s *) *) 17 1.71s
12 2 1 0.50s *) ) 27 9.31s

17 2 1 0.52s *) *) 37 32.6s

50 2 1 0.56s *) *) 103 29.0m
100 2 1 0.59s *) *) ? > 2.5h

Dukstra 2 2 2 0.88s 5 3.35s 50 29.9s
3 2 3 1.44s 6 43.6s 59 350s

4 2 4 2.51s 6 2525 66 20.5m

5 2 5 5.50s 8 65.8m 72 53.0m
6 2 6 16.4s ? > 2.5h ? > 2.5h
7 2 7 190s ? > 2.5h ? > 2.5h

6 Conclusion

In this paper we have introduced a specific predicate abstraction technique for par-
allel programs. We have been interested in verifying /local properties of components,
which can - because of shared variables of components - however be influenced by
other components. This gave rise to particular spotlight abstractions, focusing on a
set of components while completely omitting others. Due to the use of a three-valued
setting, we obtain abstractions that preserve both existential and universal properties
thus only necessitating abstraction refinement when the result of a verification run is
“unknown”. While using CTL as a logic for specifying properties here, we conjecture
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that — similar to [I7] — the same result also holds for the mu-calculus. We have fur-
thermore shown how abstraction refinement for spotlight abstractions proceeds, either
adding new predicates or further components. The technique has been implemented on
top of an existing three-valued model checker and shows promising results.

Related work. Our work is connected to other approaches in a number of ways. The
work closest to us is that in and which introduce many-valued abstractions.
From [17] we have taken the idea of showing a completeness order (here extended with
fairness) between original and abstracted system as to preserve full CTL properties.
From (and from [20]) we have taken most of our notations for describing pro-
grams and their abstractions. The particular definition of abstraction differs from [13]:
Gurfinkel and Chechik discuss three different kinds of approximations, the most pre-
cise one (called exact approximation) employs four different truth values. The main
difference however lies in the class of programs treated: neither of the two above cited
approaches consider abstractions for parallel programs. Our focus has been on the de-
velopment of a specific spotlight abstraction for parallel programs. Abstraction refine-
ment for spotlight abstractions for the verification of dynamic systems is treated in [23].
Similar to us, counterexamples are inspected as to determine the processes which need
to be moved into the spotlight. The choice between a new process and a new predicate
however has not to be taken as no predicate abstraction is used.

Two-valued abstraction techniques for parallel programs are treated in e.g. [9],
[10,[IT16]. The canonical abstractions of [11]] also employ a third value L, but do not
make use of this additional information, L is treated as false. These approaches mainly
tackle parametrized systems, consisting of an unknown number of (almost) identical
components. This is different from our approach since we do not assume identity of
components, however a fixed number. Furthermore, we allow for full CTL model check-
ing while some of the above approaches only treat safety properties.

Finally, our approach is related to other analysis techniques which construct abstrac-
tions of different parts of a program with different degrees. Examples for this are lazy
abstractions [26]] (predicate abstraction with different number of predicates for different
program parts), thread-modular abstractions [23] (employing assume-guarantee rea-
soning to show absence of data races in parallel programs, however not allowing for full
CTL model checking) or heterogeneous abstractions (program heap abstracted in
different degrees).

Future work. As future work we intend to experiment further with abstraction refine-
ment techniques. It is possible to find both examples for which the addition of a predi-
cate is to be preferred over the addition of a component and vice versa. Further experi-
mentation would allow us to find heuristics for determining when to prefer which kind
of refinement. A decisive factor for this is also the counterexample generated by the
model checker: some counterexamples hint to an addition of a predicate although this
might necessitate more refinement steps than an addition of a component would yield
(and again vice versa). A heuristic for a targeted search during model checking might
supply us with better counterexamples leading to a smaller number of refinement steps.
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Abstract. Parameterized systems are characterized by the presence of a large
(or even unbounded) number of behaviorally similar processes, and they often
appear in distributed/concurrent systems. A common state space abstraction for
checking parameterized systems involves not keeping track of process identifiers
by grouping behaviorally similar processes. Such an abstraction, while useful,
conflicts with the notion of fairness. Because process identifiers are lost in the
abstraction, it is difficult to ensure fairness (in terms of progress in executions)
among the processes. In this work, we study the problem of fair model checking
with process counter abstraction. Even without maintaining the process identi-
fiers, our on-the-fly checking algorithm enforces fairness by keeping track of the
local states from where actions are enabled / executed within an execution trace.
We enhance our home-grown PAT model checker with the technique and show
its usability via the automated verification of several real-life protocols.

1 Introduction

Parameterized concurrent systems consist of a large (or even unbounded) number of
behaviorally similar processes of the same type. Such systems frequently arise in dis-
tributed algorithms and protocols (e.g., cache coherence protocols, control software
in automotive / avionics) — where the number of behaviorally similar processes is
unbounded during system design, but is fixed later during system deployment. Thus,
the deployed system contains fixed, finite number of behaviorally similar processes.
However during system modeling/verification it is convenient to not fix the number of
processes in the system for the sake for achieving more general verification results.
A parameterized system represents an infinite family of instances, each instance be-
ing finite-state. Property verification of a parameterized system involves verifying that
every finite state instance of the system satisfies the property in question. In general,
verification of parameterized systems is undecidable [2].

A common practice for analyzing parameterized systems can be to fix the number
of processes to a constant. To avoid state space explosion, the constant is often small,
compared to the size of the real applications. Model checking is then performed in the
hope of finding a bug which is exhibited by a fixed (and small) number of processes.
This practice can be incorrect because the real size of the systems is often unknown
during system design (but fixed later during system deployment). It is also difficult to
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fix the number of processes to a “large enough” constant such that the restricted sys-
tem with fixed number of processes is observationally equivalent to the parameterized
system with unboundedly many processes. Computing such a large enough constant is
undecidable after all, since the parameterized verification problem is undecidable.
Since parameterized systems contain process types with large number of behav-
iorally similar processes (whose behavior follows a local finite state machine or FSM),
a natural state space abstraction is to group the processes based on which state of the
local FSM they reside in [23][7,24]. Thus, instead of saying “process 1 is in state s,
process 2 is in state ¢ and process 3 is in state s” — we simply say “2 processes are
in state s and 1 is in state ¢”. Such an abstraction reduces the state space by exploiting
a powerful state space symmetry (concrete global states with different process identi-
fiers but the same count of the processes in the individual local states get grouped into
the same abstract global state), as often evidenced in real-life concurrent systems such
as a caches, memories, mutual exclusion protocols and network protocols. Verification
by traversing the abstract state space here produces a sound and complete verification
procedure. However, if the total number of processes is unbounded, the aforementioned
counter abstraction still does not produce a finite state abstract system. The count of
processes in a local state can still be w (unbounded number), if the total number of
processes is w. To achieve a finite state abstract system, we can adopt a cutoff number,
so that any count greater than the cutoff number is abstracted to w. This yields a finite
state abstract system, model checking which we get a sound but incomplete verification
procedure — any linear time Temporal Logic (LTL) property verified in the abstract
system holds for all concrete finite-state instances of the system, but not vice-versa.

Contributions. In this paper, we study the problem of fair model checking with pro-
cess counter abstraction. Imagine a bus protocol where a large / unbounded number of
processors are contending for bus access. If we do not assume any fairness in the bus
arbitration policy, we cannot prove the non-starvation property, that is, bus accesses by
processors are eventually granted. In general, fairness constraints are often needed for
verification of such liveness properties — ignoring fairness constraints results in unre-
alistic counterexamples (e.g. where a processor requesting for bus access is persistently
ignored by the bus arbiter for example) being reported. These counterexamples are of
no interest to the protocol designer. To systematically rule out such unrealistic coun-
terexamples (which never happen in a real implementation), it is important to verify
the abstract system produced by our process counter abstraction under fairness. We do
so in this paper. However, this constitutes a significant fechnical challenge — since we
do not even keep track of the process identifiers, how can we ensure a fair scheduling
among the individual processes!

In this work, we develop a novel technique for model checking parameterized sys-
tems under (weak or strong) fairness, against linear temporal logic (LTL) formulae.
We show that model checking under fairness is feasible, even without the knowledge
of process identifiers. This is done by systematically keeping track of the local states
from which actions are enabled / executed within any infinite loop of the abstract state
space. We develop necessary theorems to prove the soundness of our technique, and
also present efficient on-the-fly model checking algorithms. Our method is realized
within our home-grown PAT model checker [26]. The usability / scalability of PAT is
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demonstrated via (i) automated verification of several real-life parameterized systems
and (ii) a quantitative comparison with the SPIN model checker [[17].

2 Preliminaries

We begin by formally defining our system model.

Definition 1 (System Model). A system model is a structure S = (Varg, inite, Proc)
where Varg is a finite set of global variables, initq is their initial valuation and Proc
is a parallel composition of multiple processes Proc = Py || Ps || - - such that each
process P; = (S;, init;, —;) is a transition system.

We assume that all global variables have finite domains and each P; has finitely many
local states. A local state represents a program text together with its local context
(e.g. valuation of the local variables). Two local states are equivalent if and only if
they represent the same program text and the same local context. Let State be the set
of all local states. We assume that State has finitely many elements. This disallows
unbounded non-tail recursion which results in infinite different local states. Proc may
be composed of infinitely many processes. Each process has a unique identifier. In an
abuse of notation, we use P; to represent the identifier of process P; when the con-
text is clear. Notice that two local states from different processes are equivalent only
if the process identifiers are irrelevant to the program texts they represent. Processes
may communicate through global variables, (multi-party) barrier synchronization or
synchronous/asynchronous message passing. It can be shown that parallel composition
|| is symmetric and associative.

Example 1. Fig.[[lshows a model of the readers/writers problem, which is a simple pro-
tocol for the coordination of readers and writers accessing a shared resource. The proto-
col, which we refer to as RW, is designed for arbitrary number of readers and writers.
Several readers can read concurrently, whereas writers require exclusive access. Global
variable counter records the number of readers which are currently accessing the re-
source; writing is true if and only if a writer is updating the resource. A transition is of
the form [guard|name{assignments}, where guard is a guard condition which must
be true for the transition to be taken and assignments is a simple sequential program
which updates global variables. The following are properties which are to be verified.

O!(counter > 0 A writing) — Prop;
O counter > 0 — Props

Property Prop; is a safety property which states that writing and reading cannot occur
simultaneously. Property Props is a liveness property which states that always eventu-
ally the resource can be accessed by some reader.

In order to define the operational semantics of a system model, we define the notion of a
configuration to capture the global system state during the execution, which is referred
to as concrete configurations. This terminology distinguishes the notion from the state
space abstraction and the abstract configurations which will be introduced later.
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global variables: int counter = 0; bool writing = false;

\ [!writing] \ [counter==0 && !writing]
startread { counter++} startwrite{ writing:=true }
(RO (ORI WO wi
stopread { counter--} stopwrite{ writing:=false }
proc Reader proc Writer

Fig. 1. Readers/writers model

Definition 2 (Concrete Configuration). Let S be a system model. A concrete config-
uration of S is a pair (v, (s1, $2,- - -)) where v is the valuation of the global variables
(channel buffers may be viewed as global variables), and s; € S; is the local state in
which process P; is residing.

A system transition is of the form (v, (s1,s2,---)) —ag (v, (s], 83, --)) where the
system configuration after the transition is (v, (s1, s, --)) and Ag is a set of partici-
pating processes. For simplicity, set Ag (short for agent) is often omitted if irreverent.
A system transition could be one of the following forms:

(i) a local transition of P; which updates its local state (from s; to s/) and possibly
updating global variables (from v to v’). An example is the transition from R0 to R1 of
areader. In such a case, P; is the participating process, i.e., Ag = {P;}.

(ii) a multi-party synchronous transition among processes P;, - - -, P;. Examples are
message sending/receiving through channels with buffer size 0 (e.g., as in Promela [[17])
and alphabetized barrier synchronization in the classic CSP. In such a case, local states
of the participating processes are updated simultaneously. The participating processes
are P;,---, P;.

(iii) process creation of P, by P;. In such a case, an additional local state is appended
to the sequence (s1, s2, - - -), and the state of P; is changed at the same time. Assume for
now that the sequence (s, s, - - -) is always finite before process creation. It becomes
clear in Section 3] that this assumption is not necessary. In such a case, the participating
processes are P; and P,,.

(iv) process deletion of P,. In such case, the local state of P; is removed from the
sequence ((s1, s2, - - -)). The participating process is P;.

Definition 3 (Concrete Transition System). Ler S = (Varg, inite, Proc) be a sys-
tem model, where Proc = Py || Py || - - - such that each process P; = (S;, init;, —;)
is a local transition system. The concrete transition system corresponding to S is a 3-
tuple Ts = (C,init,—) where C is the set of all reachable system configurations,
init is the initial concrete configuration (init¢, (inity, inils, - - -)) and < is the global
transition relation obtained by composing the local transition relations —; in parallel.

An execution of S is an infinite sequence of configurations £ = (cg, ¢1,- -, ¢, )
where ¢y = init and ¢; — c¢;41 forall 7 > 0. Given a model S and a system configura-
tion ¢, let enableds(c) (or enabled(c) when the context is clear) be the set of processes



Fair Model Checking with Process Counter Abstraction 127

which is ready to make some progress, i.e., enabled(c) = {P; | 3¢/, ¢ —a4 ¢’ A
P, € Ag}. The following defines two common notions of fairness in system execu-
tions, i.e., weak fairness and strong fairness.

Definition 4 (Weak Fairness). Let S be a system model. An execution {c1, ca,- ) of
Ts is weakly fair, if and only if, for every P; there are infinitely many k such that
Ck —Ag Cht1 and P; € Ag if there exists n so that P; € enabled(c,,) for all m > n.

Weak fairness states that if a process becomes enabled forever after some steps, then it
must be engaged infinitely often. From another point of view, weak fairness guarantees
that each process is only finitely faster than the others.

Definition 5 (Strong Fairness). Let S be a system model. An execution (c1, ca, - - )
of Ts is strongly fair, if and only if, for every P; there are infinitely many k such that
Ck —Ag Cht1 and P; € Ag if there are infinitely many n such that P; € enabled(c,, ).

Strong fairness states that if a process is infinitely often enabled, it must be infinitely
often engaged. This type of fairness is particularly useful in the analysis of systems that
use semaphores, synchronous communication, and other special coordination primi-
tives. Clearly, strong fairness guarantees weak fairness.

In this work, we assume that system properties are expressed as LTL formulae consti-
tuted by propositions on global variables. One way to state property of a single process
is to migrate part of its local context to global variables. Let ¢ be a property. S satisfies
¢, written as S F ¢, if and only if every execution of Ts satisfies ¢. S satisfies ¢ under
weak fairness, written as S F,y ¢, if and only if, every weakly fair execution of Ts
satisfies ¢. T satisfies ¢ under strong fairness, written as 1" Ff ¢, if and only if, every
strongly fair execution of T satisfies ¢.

Given the RW model presented in Fig.[Il it can be shown that RW F Prop;. It is,
however, not easy to prove it using standard model checking techniques. The challenge
is that many or unbounded number of readers and writers cause state space explosion.
Also, RW fails Prop, without fairness constraint. For instance, a counterexample is
(startwrite, stopwrite)™, i.e., a writer keeps updating the resource without any reader
ever accessing it. This is unreasonable if the system scheduler is well-designed or the
processors that the readers/writers execute on have comparable speed. To avoid such
counterexamples, we need to perform model checking under fairness.

3 Process Counter Representation

Parameterized systems contain behaviorally similar or even identical processes. Given
a configuration (v, (---,s;, -+, ;,---)), multiple local stated] may be equivalent. A
natural “abstraction” is to record only how many copies of a local state are there.

Let S be a system model. An alternative representation of a concrete configuration is
apair (v, ) where v is the valuation of the global variables and f is a total function from
a local state to the set of processes residing at the state. For instance, given that R0 is a
local state in Fig.[Il f(RO) = {P;, P}, Py} if and only if reader processes P;, P; and Py,

! The processes residing at the local states may or may not have the same process type.
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are residing at state R0. This representation is sound and complete because processes
at equivalent local states are behavioral equivalent and || composition is symmetric and
associative (so that processes ordering is irrelevant).

Furthermore, given a local state s and processes residing at s, we may consider the
processes indistinguishable (as the process identifiers must be irrelevant given the local
states are equivalent) and abstract the process identifiers. That is, instead of associating
a set of process identifiers with a local state, we only keep track of the number of
processes. Instead of setting f (R0) = {P;, P;, Py }, we now set f (R0) = 3. In this and
the next section, we assume that the total number of processes is bounded.

Definition 6 (Abstract Configuration). Let S be a system model. An abstract con-
figuration of S is a pair (v, f) where v is a valuation of the global variables and
f : State — N is a total functiorﬂ such that f(s) = n if and only if n processes
are residing at s.

Given a concrete configuration cc = (v, (sp, s1,--)), let F({so, s1,---)) returns the
function f (refer to Definition [6) — that is, f(s) = n if and only if there are n
states in (so, $1,---) which are equivalent to s. Further, we write F(cc) to denote
(v, F((s0, s1,---))). Given a concrete transition ¢ — 44 ¢’, the corresponding abstrac-
tion transition is written as a < o’ where a = F(c¢) and ¢’ = F(c¢’) and Ls (short
for local-states) is the local states at which processes in Ag are. That is, Ls is the set of
local states from which there is a process leaving during the transition. We remark that
Ls is obtained similarly as Ag is.

Given a local state s and an abstract configuration a, we define enabled(s, a) to be
true if and only if 3a’, a — s a’ A\ s € Ls, i.e., a process is enabled to leave s in a.
For instance, given the transition system in Fig. Rl Ls = { R0} for the transition from
A0 to Al and enabled(RO, A1) is true.

Definition 7 (Abstract Transition System). Let S = (Varg, inite, Proc) be a system
model, where Proc = Py || Py || - - - such that each process P; = (S;, init;, —;) is a lo-
cal transition system. An abstract transition system of S is a 3-tuple As = (C, init, —
) where C' is the set of all reachable abstract system configurations, init € C' is
(initg, F(initg, (inity, inite, - - -))) and — is the abstract global transition relation.

We remark that the abstract transition relation can be constructed without constructing
the concrete transition relation, which is essential to avoid state space explosion. Given
the model presented in Fig. [I] if there are 2 readers and 2 writers, then the abstract
transition system is shown in Fig.2l

A concrete execution of Ts can be uniquely mapped to an execution of As by ap-
plying F to every configuration in the sequence. For instance, let X = (¢, c1,-- -,
¢i, - -) be an execution of T’ (i.e., a concrete execution), the corresponding execution
of Asis L = (F(co), F(ec1),- -, F(¢i),---) (ie., the abstract execution). In an abuse
of notation, we write (X ) to denote L. Notice that the valuation of the global variables
are preserved. Essentially, no information is lost during the abstraction. It can be shown
that As F ¢ if and only if Ts F ¢.

% In PAT, the mapping from a local state to 0 is always omitted for memory saving.
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startread startread stopwrite
/\@/\ %
@\St\w@d/' “-stopread " startwrite

AQ: ((writing,false),(counter,0),(R0,2),(R1,0),(W0,2),(W1,0))
Al: ((writing,false),(counter,1),(R0,1),(R1,1),(WO0,2),(W1,0))
A2: ((writing,false),(counter,2),(R0,0),(R1,2),(W0,2),(W1,0))
A3: ((writing,true),(counter,0),(R0,2),(R1,0),(W0,1),(W1,1))

Fig. 2. Readers/writers model

4 Fair Model Checking Method

Process counter abstraction may significantly reduce the number of states. It is useful
for verification of safety properties. However, it conflicts with the notion of fairness.
A counterexample to a liveness property under fairness must be a fair execution of
the system. By Definition [4] and 3 the knowledge of which processes are enabled or
engaged is necessary in order to check whether an execution is fair or not. In this section,
we develop the necessary theorems and algorithms to show that model checking under
fairness constraints is feasible even without the knowledge of process identifiers.

By assumption the total number of processes is finite, the abstract transition system
As has finitely many states. An infinite execution of As must form a loop (with a
finite prefix to the loop). Assume that the loop starts with index ¢ and ends with £,
written as LY = (co, -+, ¢i, Civ1," "+, Citk, Citks1) Where ciyry1 = c;. We define
the following functions to collect loop properties and use them to define fairness later.

always(L¥) = {s: State | Vj : {4, -, i+ k}, enabled(s, c;)}
once(LY) = {s: State |37 :{i,---,i+k}, enabled(s,c;)}
leave(LF) = {s: State |35 : {i,---,i+k}, ¢ —Ls ¢cj41 A s € Ls}

Intuitively, always(L¥) is the set of local states from where there are processes, which
are ready to make some progress, throughout the execution of the loop; once(LF) is
the set of local states where there is a process which is ready to make some progress,
at least once during the execution of the loop; leave(L¥) is the set of local states from
which processes leave during the loop. For instance, given the abstract transition system
in Fig.2l X = (40, A1, A2)*° is a loop starting with index 0 and ending with index 2.
always(X) = @; once(X) = { RO, R1, WO0}; leave(X ) = { RO, R1}.

The following lemma allows us to check whether an execution is fair by only looking
at the abstract execution.

Lemma 1. Let S be a system model; X be an execution of Ts; LY = F(X) be the
respective abstract execution of As. (1). always(L¥) C leave(L¥) if X is weakly fair;
(2). once(L¥) C leave(L¥) if X is strongly fair.

Proof. (1). Assume X is weakly fair. By definition, if state s is in always(L¥), there
must be a process residing at s which is enabled to leave during every step of the loop.
If it is the same process P, P is always enabled during the loop and therefore, by
definition [l P must participate in a transition infinitely often because X is weakly
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fair. Therefore, P must leave s during the loop. By definition, s must be in leave(LF).
If there are different processes enabled at s during the loop, there must be a process
leaving s, so that s € leave(L¥). Thus, always(L¥) C leave(LF).

(2). Assume X is strongly fair. By definition, if state s is in once(L}), there must be a
process residing at s which is enabled to leave during one step of the loop. Let P be the
process. Because P is infinitely often enabled, by Definition ] P must participate in a
transition infinitely often because X is strongly fair. Therefore, P must leave s during
the loop. By definition, s must be in leave(LF). O

The following lemma allows us to generate a concrete fair execution if an abstract fair
execution is identified.

Lemma 2. Let S be a model; LY be an execution of As. (1). There exists a weakly
fair execution X of Ts such that F(X) = L¥ if always(L¥) C leave(LF); (2).
If once(L¥) C leave(LF), there exists a strongly fair execution X of Ts such that
F(X) =L~

Proof. (1). By a simple argument, there must exist an execution X of Ts such that
F(X) = L. Next, we show that we can unfold the loop (of the abstract fair execution)
as many times as necessary to let all processes make some progress, so as to generate
a weakly fair concrete execution. Assume P is the set of processes residing at a state
s during the loop. Because always(L¥) C leave(L¥), if s € always(L¥), there must
be a transition during which a process leaves s. We repeat the loop multiple times and
choose a different process from P to leave each time. The generated execution must be
weakly fair.

(2). Similarly as above. O

The following theorem shows that we can perform model checking under fairness by
examining the abstract transition system only.

Theorem 1. Let S be a system model. Let ¢ be an LTL property. (1). S Eyr ¢ if and
only if for all executions L¥ of As we have always(LF) C leave(LF) = L¥ £ ¢; (2).
S Esr ¢ if and only if for all execution LY of As we have once(L¥) C leave(L¥) =
LY E 6.

Proof. (1). if part: Assume that for all L* of As we have LF F ¢ if always(LF) C
leave(LY), and S Fuf ¢. By definition, there exists a weakly fair execution X of Ts
such that X ¥ ¢. Let L¥ be F(X). By lemmal[ll always(L¥) C leave(L¥) and hence
Lf F ¢. Because our abstraction preserves valuation of global variables, Lf # ¢ as
X E ¢. We reach a contradiction.

only if part: Assume that S F,; ¢ and there exists L of As such that always(L¥) C
leave(Lf), and Lf Fuwr ¢. By lemmaf2 there must exist X of Tis such that X is weakly
fair. Because process counter abstraction preserves valuations of global variables, X ¥
¢. Hence, we reach contradiction.

(2). Similarly as above. O

Thus, in order to prove that S satisfies ¢ under fairness, we need to show that there is no
execution L¥ of Ags such that L* # ¢ and the execution satisfies an additional constraint
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for fairness, i.e., always(L¥) C leave(L¥) for weak fairness or once(L¥) C leave(L¥)
for strong fairness. Or, if S s ¢, then there must be an execution Lf of As such
that LY satisfies the fairness condition and L¥ ¥ ¢. In such a case, we can generate a
concrete execution.

Following the above discussion, fair model checking parameterized systems is re-
duced to searching for particular loops in As. There are two groups of methods for
loop searching. One is based on nested depth-first-search (DFS) [[17] and the other is
based on identifying strongly connected components (SCC) [12]. It has been shown
that the nested DFES is not suitable for model checking under fairness assumptions, as
whether an execution is fair depends on the path instead of one state [17]. In this work,
we extend the approaches presented in [12,[27] to cope with weak or strong fairness
and process counter abstraction. Given As and a property ¢, model checking involves
searching for an execution of Ags which fails ¢. In automata-based model checking,
the negation of ¢ is translated to an equivalent Biichi automaton 3— ;, which is then
composed with As. Notice that a state in the produce of As and B— 4 is a pair (a, b)
where a is an abstract configuration of As and b is a state of B— 4. Model checking
under fairness involves searching for a fair execution which is accepted by the Biichi
automaton.

Given a transition system, a strongly connected subgraph is a subgraph such that
there is a path connecting any two states in the subgraph. An MSCC is a maximal
strongly connected subgraph. Given the product of As and B— 4, let scg be a set of
states which, together with the transitions among them, forms a strongly connected
subgraph. We say scg is accepting if and only if there exists one state (a, b) in scg
such that b is an accepting state of 5— 4. In an abuse of notation, we refer to scg as the
strongly connected subgraph in the following. The following lifts the previously defined
functions on loops to strongly connected subgraphs.

always(scg) = {y : State |V x : scg, enabled(y,z)}
once(scg) = {y: State | Iz : scg, enabled(y,z)}
leave(scg) = {z: State | 3z,y: scg, z € leave(x,y)}

always(scg) is the set of local states such that for any local state in always(scg), there
is a process ready to leave the local state for every state in scg; once(scg) is the set
of local states such that for some local state in once(scg), there is a process ready to
leave the local state for some state in scg; and leave(scg) is the set of local states such
that there is a transition in scg during which there is a process leaving the local state.
Given the abstract transition system in Fig.[2l scg = {40, A1, A2, A3} constitutes a
strongly connected subgraph. always(scg) = nil; once(scg) = {R0, R1, W0, W1};
leave(scg) = { RO, R1, W0, W1}.

Lemma 3. Let S be a system model. There exists an execution Lf of As such that
always(L¥) C leave(LF) if and only if there exists an MSCC scc of As such that
always(scc) C leave(scc).

Proof. The if part is trivially true. The only if part is proved as follows. Assume there
exists execution L¥ of As such that always(LF) C leave(LF), there must exist a
strongly connected subgraph scg which satisfies always(scg) C leave(scg). Let scc
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procedure checkingUnder WeakFairness(As, B— ;)

1. while there are un-visited states in As ® B—

2. use the improved Tarjan’s algorithm to identify one SCC, say scg;
3 if scg is accepting to B— , and always(scg) C leave(scg)
4. generate a counterexample and return false;

5. endif

6. endwhile

7. return true;

Fig. 3. Model checking algorithm under weak fairness

be the MSCC which contains scg. We have always(scc) C always(scg), therefore, the
MSCC sce satisfies always(scc) C always(scg) C leave(scg) C leave(scc). O

The above lemma allows us to use MSCC detection algorithms for model checking
under weak fairness. Fig. [3| presents an on-the-fly model checking algorithm based on
Tarjan’s algorithm for identifying MSCCs. The idea is to search for an MSCC scg such
that always(scg) C leave(scg) and scg is accepting. The algorithm terminates in two
ways, either one such MSCC is found or all MSCCs have been examined (and it returns
true). In the former case, an abstract counterexample is generated. In the latter case, we
successfully prove the property. Given the system presented in Fig.2] { 40, A1, A2, A3}
constitutes the only MSCC, which satisfies always(scg) C leave(scg). The complexity
of the algorithm is linear in the number of transitions of Ags.

Lemma 4. Let S be a system model. There exists an execution L¥ of As such that
once(L¥) C leave(L¥) if and only if there exists a strongly connected subgraph scg of
As such that once(scg) C leave(scg).

We skip the proof of the lemma as it is straightforward. The lemma allows us to extend
the algorithm proposed in for model checking under strong fairness. Fig. [l presents
the modified algorithm. The idea is to search for a strongly connected subgraph scg
such that once(scg) C leave(scg) and scg is accepting. Notice that a strongly con-
nected subgraph must be contained in one and only one MSCC. The algorithm searches
for MSCCs using Tarjan’s algorithm. Once an MSCC scg is found (at line 2), if scg
is accepting and satisfies once(scg) C leave(scg), then we generate an abstract coun-
terexample. If scg is accepting but fails once(scg) C leave(scg), instead of throwing
away the MSCC, we prune a set of bad states from the SCC and then examinate the
remaining states (at line 6) for strongly connected subgraphs. Intuitively, bad states are
the reasons why the SCC fails the condition once(scg) C leave(scg). Formally,

bad(scg) = {x : scg | Jy, y & leave(scg) Ny € enabled(y, z)}

That is, a state s is bad if and only if there exists a local state y such that a process may
leave y at state s and yet there is no process leaving y given all transitions in scg. By
pruning all bad states, there might be a strongly connected subgraph in the remaining
states which satisfies the fairness constraint.
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procedure checkingUnderStrongFairness(As, B— ,, states)
. while there are un-visited states in states
use Tarjan’s algorithm to identify a subset of states which forms an SCC, say scg;
if scg is accepting to B—
if once(scg) C leave(scg)

else if checkingUnderStrongFairness(As, B— 4, scg \ bad(scg)) is false
return false;
endif
endif
10. endwhile
11. return true;

1
2
3
4
5. generate a counterexample and return false;
6
7
8
9

Fig. 4. Model checking algorithm under strong fairness

The algorithm is partly inspired by the one presented in [[16] for checking emptiness
of Streett automata. Soundness of the algorithm follows the discussion in [27/16]]. It can
be shown that any state of a strongly connected subgraph which satisfies the constraints
is never pruned. As a result, if there exists such a strongly connected subgraph scg, a
strongly connected subgraph which contains scg or scg itself must be found eventually.
Termination of the algorithm is guaranteed because the number of visited states and
pruned states are monotonically increasing. The complexity of the algorithm is linear in
#states X #trans where #states and #trans are the number of states and transitions
of As respectively. A tighter bound on the complexity can be found in [16].

5 Counter Abstraction for Infinitely Many Processes

In the previous sections, we assume that the number of processes (and hence the size
of the abstract transition system) is finite and bounded. If the number of processes is
unbounded, there might be unbounded number of processes residing at a local state,
e.g., the number of reader processes residing at R0 in Fig.[[lmight be infinite. In such a
case, we choose a cutoff number and then apply further abstraction. In the following,
we modify the definition of abstract configurations and abstract transition systems to
handle unbounded number of processes.

Definition 8. Letr S be a system model with unboundedly many processes. Let K be a
positive natural number (i.e., the cutoff number). An abstract configuration of S is a
pair (v, g) where v is the valuation of the global variables and g : State — N U {w}
is a total function such that g(s) = n if and only if n(< K ) processes are residing at s
and g(s) = w if and only if more than K processes are at s.

Given a configuration (v, (sg, s1,- - -)), we define a function G similar to function F,
i.e., G({s0, 81, - -))) returns function g (refer to Definition[8)) such that given any state
s, g(s) = nif and only if there are n states in (s, s1, - - -) which are equivalent to s and
g(s) = wif and only if there are more than K states in (s, s1, - - -) which are equivalent
to s. Furthermore, G(c¢) = (v, G({s0, $1," - *))).
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startread
startread stopwrite
stopread )
W artwri

AO: ((writing,false),(counter,0),(R0,inf),(R1,0),(WO0,inf),(W1,0))
Al: ((writing,false),(counter, 1),(R0,inf),(R1,1),(WO0,inf),(W1,0))
A2: ((writing,false),(counter,inf),(R0,inf),(R1,inf),(WO0,inf),(W1,0))
A3: ((writing,true),(counter,0),(R0,inf),(R1,0),(WO0,inf),(W1,1))

Fig. 5. Abstract readers/writers model

The abstract transition relation of S (as per the above abstraction) can be constructed
without constructing the concrete transition relation. We illustrate how to generate an
abstract transition in the following. Given an abstract configuration (v, g), if g(s) > 0,
a local transition from state s to state ', creating a process with initial state init may re-
sult in different abstract configurations (v, ¢’) depending on g. In particular, g’ equals
g except that ¢'(s) = g(s) — 1 and ¢'(s’) = ¢(s’) + 1 and ¢’ (init) = g(init) + 1
assumingw + 1 = w, K +1 = w and w — 1 is either w or K. We remark that by as-
sumption State is a finite set and therefore the domain of ¢ is always finite. This allows
us to drop the assumption that the number of processes must be finite before process
creation. Similarly, we abstract synchronous transitions and process termination.

The abstract transition system for a system model S with unboundedly many pro-
cesses, written as Rg (to distinguish from Ag), is now obtained by applying the afore-
mentioned abstract transition relation from the initial abstract configuration.

Example 2. Assume that the cutoff number is 1 and there are infinitely many readers
and writers in the readers/writers model. Because counter is potentially unbounded
and, we mark counter as a special process counter variable which dynamically counts
the number of processes which are reading (at state R1). If the number of reading pro-
cesses is larger than the cutoff number, counter is set to w too. The abstract transition
system Apry is shown in Fig.[Sl The abstract transition system may contain spurious
traces. For instance, the trace (start, (stopread)®®) is spurious. It is straightforward to
prove that Ary E Prop; based on the abstract transition system.

The abstract transition system now has only finitely many states even if there are un-
bounded number of processes and, therefore, is subject to model checking. As illus-
trated in the preceding example, the abstraction is sound but incomplete in the presence
of unboundedly many processes. Given an execution X of Ts, let G(X) be the corre-
sponding execution of the abstract transition system. An execution L of Rgs is spurious
if and only if there does not exist an execution X of T's such that G(X) = L. Because
the abstraction only introduces execution traces (but does not remove any), we can for-
mally establish a simulation relation (but not a bisimulation) between the abstract and
concrete transition systems, that is, Rs simulates 7's. Thus, while verifying an LTL
property ¢ we can conclude Ts F ¢ if we can show that Rs F ¢. Of course, Rs F ¢
will be accomplished by model checking under fairness.

The following re-establishes Lemmal[Iland (part of) Theorem[Din the setting of Rs.
We skip the proof as they are similar to that of Lemma[lland Theorem [l respectively.
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Lemma 5. Let S be a system model, X be an execution of Ts and LY = G(X) be the
corresponding execution of Rs. We have (1). always(L¥) C leave(LY) if X is weakly
fair; (2).once(LF) C leave(L¥) if X is strongly fair.

Theorem 2. Let S be a system model and ¢ be an LTL property. (1). S F.p ¢ if for all
execution traces LY of Rs we have always(LY) C leave(L¥) = LF E ¢; (2). S g ¢
if for all execution traces L of Rs we have once(LY) C leave(LF) = Lk & ¢;

The reverse of Theorem Pl is not true because of spurious traces. We remark that the
model checking algorithms presented in Section are applicable to Rg (as the abstrac-
tion function is irrelevant to the algorithm). By Theorem 2] if model checking of Rs
(using the algorithms presented in Section ] under weak/fairness constraint) returns
true, we conclude that the system satisfies the property (under the respective fairness).

6 Case Studies

Our method has been realized in the Process Analysis Toolkit (PAT) [26]]. PAT is de-
signed for systematic validation of distributed/concurrent systems using state-of-the-art
model checking techniques. In the following, we show the usability/scalability of our
method via the automated verification of several real-life parameterized systems. All
the models are embedded in the PAT package and available online. The experimental
results are summarized in the following table, where NA means not applicable (hence
not tried, due to limit of the tool); NF means not feasible (out of 2GB memory or run-
ning for more than 4 hours). The data is obtained with Intel Core 2 Quad 9550 CPU at
2.83GHz and 2GB RAM. We compared PAT with SPIN on model checking under
no fairness or weak fairness. Notice that SPIN does not support strong fairness and is
limited to 255 processes.

Model #Proc Property No Fairness Weak Fairness Strong Fairness

Result PAT SPIN Result PAT SPIN Result PAT Spin
LE 10 <O one leader false 0.04 0.015 true  0.06 320 true 0.06 NA
LE 100 <O one leader false 0.04 0.015 true 027 NF true 0.28 NA
LE 1000 &0 one leader false 0.04 NA  true 226 NA  true 2.75 NA
LE 10000 &GO one leader false 0.04 NA  true 23.89 NA  true 68.78 NA

LE oo <O one leader false 0.06 NA true 264.78 NA true 463.9 NA
KV 2 Propguaiue false 0.05 O true 0.6 1.14 true 06 NA
KV 3 Propguaiue false 0.05 O true 4.56 61.2 true 4.59 NA
KV 4 Propvatue false 0.05 0.015 true 29.2 NF true 30.24 NA
KV 5 Propxuvaiue false 0.06 0.015 true 174.5 NF true 187.1 NA
KV o Propguaiue false 0.12 NA ? NF NA ? NF NA
Stack 5 Propsiack false 0.06 0.015 false 0.78 NF false 0.74 NA
Stack 7 Propsiack false 0.06 0.015 false 11.3 NF false 12.1 NA
9

Stack Propstack false 0.06 0.015 false 158.6 NF false 191.8 NA
Stack 10 Propsiack false 0.05 0.015 false 596.1 NF false 780.3 NA
ML 10 1< access true 0.11 21.5 true 0.11 107 true 0.11 NA
ML 100 < access true 1.04 NF true 1.04 NF true 1.04 NA
ML 1000 [ access true 11.04 NA true 11.08 NA true 11.08 NA
ML oo 1< access true 13.8 NA true 13.8 NA true 13.8 NA
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The first model (LF) is a self-stabilizing leader election protocol for complete net-
works [11]]. Mobile ad hoc networks consist of multiple mobile nodes which interact
with each other. The interactions among the nodes are subject to fairness constraints.
One essential property of a self-stabilizing population protocols is that all nodes must
eventually converge to the correct configurations. We verify the self-stabilizing leader
election algorithm for complete network graphs (i.e., any pair of nodes are connected).
The property is that eventually always there is one and only one leader in the network,
i.e., OO one leader. PAT successfully proved the property under weak or strong fair-
ness for many or unbounded number of network nodes (with cutoff number 2). SPIN
took much more time to prove the property under weak fairness. The reason is that the
fair model checking algorithm in SPIN copies the global state machine n + 2 times (for
n processes) so as to give each process a fair chance to progress, which increases the
verification time by a factor that is linear in the number of network nodes.

The second model (K'V) is a K-valued register [3]]. A shared K-valued multi-reader
single-writer register R can be simulated by an array of K binary registers. When the
single writer process wants to write v into R, it will set the v-th element of B to 1
and then set all the values before v-th element to 0. When a reader wants to read the
value, it will do an upwards scan first from O to the first element u whose value is 1,
then do a downwards scan from u to 0 and remember the index of the last element
with value 1, which is the return value of the reading operation. A progress property is
that Propgyaiwe = O(read inv — Oread res), i.e., a reading operation (read inv)
eventually returns some valid value (read res). With no fairness, both PAT and SPIN
identified a counterexample quickly. Because the model contains many local states, the
size of Ag increases rapidly. PAT proved the property under weak/strong fairness for 5
processes, whereas SPIN was limited to 3 processes with weak fairness.

The third model (Stack) is a lock-free stack [28]. In concurrent systems, in order
to improve the performance, the stack can be implemented by a linked list, which is
shared by arbitrary number of processes. Each push or pop operation keeps trying to
update the stack until no other process interrupts. The property of interest is that a
process must eventually be able to update the stack, which can be expressed as the LTL
Propsiack = O(push inv — push res) where event push inv (push res) marks
the starting (ending) of push operation. The property is false even under strong fairness.

The fourth model (ML) is the Java meta-lock algorithm [I]]. In Java language, any ob-
ject can be synchronized by different threads via synchronized methods or statements.
The Java meta-locking algorithm is designed to ensure the mutually exclusive access
to an object. A synchronized method first acquires a lock on the object, executes the
method and then releases the lock. The property is that always eventually some thread
is accessing the object, i.e., [(1<> access, which is true without fairness. This example
shows that the computational overhead due to fairness is negligible in PAT.

In another experiment, we use a model in which processes all behave differently (so
that counter abstraction results in no reduction) and each process has many local states.
We then compare the verification results with or without process counter abstraction.
The result shows the computational and memory overhead for applying the abstrac-
tion is negligible. In summary, the enhanced PAT model checker complements existing



Fair Model Checking with Process Counter Abstraction 137

model checkers in terms of not only performance but also the ability to perform model
checking under weak or strong fairness with process counter abstraction.

7 Discussion and Related Work

We studied model checking under fairness with process counter abstraction. The contri-
bution of our work is twofold. First, we presented a fully automatic method for property
checking of under fairness with process counter abstraction. We showed that fairness
can be achieved without the knowledge of process identifiers. Secondly, we enhanced
our home-grown PAT model checker to support our method and applied it on large
scale parameterized systems to demonstrate its scalability. As for future work, we plan
to investigate methods to combine well-known state space reduction techniques (such
as partial order reduction, data abstraction for infinite domain data variables) with the
process counter abstraction so as to extend the applicability of our model checker.

Verification of parameterized systems is undecidable [2]]. There are two possible
remedies to this problem: either we look for restricted subsets of parameterized sys-
tems for which the verification problem becomes decidable, or we look for sound but
not necessarily complete methods. The first approach tries to identify a restricted sub-
set of parameterized systems and temporal properties, such that if a property holds for
a system with up to a certain number of processes, then it holds for any number of
processes in the system. Moreover, the verification for the reduced system can be ac-
complished by using model checking. This approach can be used to verify a number of
systems [T3T8I[8]]. The sound but incomplete approaches include methods based on syn-
thesis of invisible invariant (e.g., [10]); methods based on network invariant (e.g., [21]])
that relies on the effectiveness of a generated invariant and the invariant refinement tech-
niques; regular model checking that requires acceleration techniques. Verification
of liveness properties under fairness constraints have been studied in [T135[17,20]. These
works are based on SCC-related algorithms and decide the existence of an accepting run
of the product of the transition system and Biichi automata, Streett automata or linear
weak alternating automaton.

The works closest to ours are the methods based on counter abstraction (e.g., [[1.24,
23])). In particular, verification of liveness properties under fairness is addressed in [23].
In [23], the fairness constraints for the abstract system are generated manually (or via
heuristics) from the fairness constraints for the concrete system. Different from the
above work, our method handles one (possibly large) instance of parameterized systems
at a time and uses counter abstraction to improve verification effectiveness. In addition,
fairness conditions are integrated into the on-the-fly model checking algorithm which
proceeds on the abstract state representation — making our method fully automated.

Our method is related to work on symmetry reduction [9l[3]. A solution for applying
symmetry reduction under fairness is discussed in [9]. Their method works by finding a
candidate fair path in the abstract transition system and then using special annotations
to resolve the abstract path to a threaded structure which then determines whether there
is a corresponding fair path in the concrete transition system. A similar approach was
presented in [14]. Different from the above, our method employs a specialized form of
symmetry reduction and deals with the abstract transition system only and requires no
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annotations. Additionally, a number of works on combining abstraction and fairness,
were presented in [[6,22,29,[423]]. Our work explores one particular kind of abstraction
and shows that it works with fairness with a simple twist.
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Abstract. In this paper, we propose a systematic approach, based on
the CSP process algebra, to preserve deadlock- and livelock-freedom by
construction in I/O component composition. In contrast to existing clas-
sical approaches, we allow components to have complex behaviour, pro-
tocols and contracts. As a consequence, it is possible to predict the
behaviour of a wide range of component-based systems prior to their
implementation, based on known properties of the system components.

1 Introduction

Because software failures can cause extensive, even disastrous, damage, the suc-
cessful deployment of systems depends on the extent to which we can justifiably
trust on them. Accidents are caused by failures of individual components and by
dysfunctional interactions between non-failed components. In fact, most dysfunc-
tional interactions are originated by classical problems in concurrent systems.

Much effort is devoted to the correctness of component-based systems (CBS)
using formal notations and techniques, after such systems are built [TI213]4].
However, instead of bringing guidance to the engineer (like suggesting how to
avoid such failures a priori), they hide the expertise needed to understand, and
predict, the quality of the developed systems. In a previous effort [5], we have
investigated patterns and compatibility notions in the integration of heteroge-
neous software components. These notions have been used to guarantee that the
behaviour of original components are preserved for a specific architectural style.

Here, we propose three basic composition rules for components and connec-
tors, which can be regarded as safe steps to form a wide variety of trustworthy
component systems. The systematic use of these rules guarantees, by construc-
tion, the absence of the classical deadlock and livelock problems.

We use the CSP process algebra [6] to formalise our entire approach. CSP al-
lows the description of system components in terms of synchronous processes that
operate independently, and interact with each other through message-passing
communication. The relationship between processes is described using process
algebraic operators from which elaborate concurrency and distributed patterns
can be constructed. Moreover, CSP offers rich semantic models that support a
wide range of process verification, and comparisons, which have shown to be
useful to support the rigorous development of CBS [7l].
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Our contributions can be summarised as follows: we first formalise I/O com-
ponents and connectors as distinguished design entities (Sect. ). Then, in Sect.
Bl we propose three composition rules for these entities that guarantee deadlock-
and livelock-freedom by construction. Finally, we present a example in Sect. [4]
which illustrates how the composition rules are applied. Related work, and our
conclusions and future work are presented in Sect.

2 Component Driven Architectures in CSP

We formalise several concepts in CBS: interfaces, components, and connectors.
We focus on interaction points of black box components and their observable
behaviour. To illustrate the proposed notions, we use an example: the commu-
nication between a CLIENT and a SERVER component in an ATM system.

Fig. [[l shows the entire system as a component, which is hierarchically com-
posed of other components (CLIENT and SERVER) and a connector (CON). In
summary, the system behaves as follows: after the user identification, CLIENT
offers to the user a choice between withdrawing money and checking the account
balance. In our example, both withdraw and balance operations are expected
to be performed by another component: SERVER. The connector CON helps
to sort out communication issues between these components, such as alphabet
heterogeneity. Further details are shown in the next sections.

In our approach, components and connectors are basically represented by a
process in CSP. When reasoning in CSP, we consider the failures/divergence se-
mantic model [6] that allows us to explain whether a system deadlock or livelock.
In the failures/divergenge model, a process is represented by its traces, failures
and divergences. A trace is a set of finite sequences of communications a process
can perform. A failure is a pair (s, X), where s is a trace of the process and
X is the set of events the process can refuse to perform after s is performed. A
divergence is basically a trace which indicates when the process starts to perform
infinite sequences of consecutive internal actions.

2.1 Component Model

Component capabilities are usually described by means of interfaces, which de-
fine component provided or required services. In this work, we assume that
interfaces simply consist of input and output events in CSP. At this level of
abstraction, a pair with an input and an output event might be understood as
representing, for instance, the invocation of a method.

|— - '
I l.-:-- CLIENT -":(l .‘- server H{
:_US:_ER_' ATM System

Fig. 1. An example of a simple ATM System
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Before we define the interfaces, we present the definition of I/O types that
represent communications with distinct events for input and output.

Definition 1 (I/O Types). Let T and U be two disjoint sets of values. Then,
we define an 1/0 type as a type parameterised by these two sets, as follows:

I0Tr,u = . T | out.U

In a communication between a pair of components, typically 7" and U will be
the sets of input and output values for one component and, conversely, the set of
output and input values for the other component. Therefore, IOTr, y would be
the I/O type of one component and 10Ty, r the I/O type of the other component.
To ease readability, we use the following abbreviations.

Definition 2 (Interface). Let Tiv and Tour be sets of values for input and
output communication of a given component. We call the types that represent
the interface of such a component a regular interface and a conjugate interface
(namely I and ~I, respectively), and define them as follows:

I= ‘[OTTINaT(JUT ~I = IOTT(JUTaTIN
We also introduce the projection functions inputs and outputs as follows:

imputs(I) = ran(in) N I inputs(~I) = ran(out)N ~I
outputs(I) = ran(out) N I outputs(~I) = ran(in)N ~I

As a consequence of Def.[2] a regular interface is a type whose input and output

events are tagged by in and out, respectively, whereas a conjugated interface has
input and output tagged by out and in, respectively. The modifiers in and out
behave in CSP as functions that take an arbitrary value and yields the same value
prefixed by those modifiers; the intersection with the whole interface restricts
the range of in and out (ran(in) and ran(out)) to the values within the interface.
For instance, for Ty = {a,b} and Tour = {w,z}, inputs(I) = outputs(~1) =
{in.a,in.b} and outputs(I) = inputs(~I) = {out.w, out.z}. For the sake of brevity,
we use ~ as an operator that takes a regular interface and yields a conjugate
interface, and vice-versa. So that ~~1I = I.

Apart from a static representation provided by interfaces, design entities are
also expressed by their dynamic behaviour. In this work, we focus on components
that repeatedly present the same behaviour to the environment, which is itself
defined in terms of interaction patterns [9]. Each interaction pattern consists of
a finite sequence of events that, when performed, leads the component back to
its initial state. In this manner, the component repeatedly offers these sequences
of events, similar to possible transactions performed against a database manage-
ment system. These patterns cover a wide range of applications, found in several
technologies such as, for instance, session Enterprise JavaBeans”™ and transac-
tional conversational services. Moreover, it is aligned with a common practice,
transaction-based reduction, to alleviate state space explosion.
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To present the interaction patterns of a process P, InteractionPatterns(P), we
use the CSP operator P/s. If s € traces(P) then P/s (pronounced ‘P after s’) rep-
resents the behaviour of P after the trace s is performed. So, InteractionPatterns
(P) is the set of traces that lead the process to its initial state.

Definition 3 (Interaction Patterns). Let P be a CSP process.
InteractionPatterns(P) = {s : traces(P) | P Crp (P/s)}

Def. Blis characterised in terms of the CSP failures/divergence semantic model.
It defines the set of traces after which the process presents the same failures and
divergences; these are precisely the interaction patterns of P.

We define a component contract in terms of its behaviour, interaction points
and respective interfaces. The dynamic behaviour presents the observable com-
munication of a component through its interaction points. Each interaction point
is represented in CSP by a communication channel.

Definition 4 (Interaction Component Contract). A component contract
Ctr comprises an observational behaviour B, a set of channels €, a set of inter-
faces I, and a function R : C — J between channels and interfaces:

Ctr: (B,R,7,€)
such that

—domR=CAranR=IANaB CJ.c{lcl}
— Vs € traces(B) @ Ip : InteractionPatterns(B) e s < p
— Vit {(c.a) : traces(B) | ¢ € C A a € outputs(R(c)) o (¢,{| ¢ |} —{c.a}) € failures(B)

The operator {| ch |} stands for all events represented by a channel ch; for
instance, if ch communicates values of the set {1,2}, {| ch |} = {ch.1,ch.2}.
The notation aP stands for the alphabet of a process P. They are used in the
definition above to state that the behaviour B of Ctr (denoted by B cy) performs
only events defined in channels of C¢y-. Each of these channels is typed by an
interface within J¢4, according to the function R.

The first proviso of Def. ] states that component elements are consistent
with each other. All channels are typed by an interface, and the component
only communicates through such channels. The second proviso requires that the
component continuously repeats the same behaviour, through recursion; this is
defined in terms of interaction patterns. Its traces must be a prefix (=) of an
interaction pattern or of a combination of them; in either case they belong to
InteractionPatterns(P). The last proviso defines a component as an autonomous
entity and, furthermore, only it can choose which event is enabled from a choice
involving output events, whenever a trace (¢) enables an output event (c.a), the
component does not offer any guarantee of communicating any other possible en-
abled event (after ¢). In CSP, this means that whenever there exists a trace t*(c.a)
(concatenating ¢ and (c.a)), the tuple (¢,{| ¢ |} — {c.a}) belongs to failures(B).
Def. [4] observes a component in isolation; other constructive constraints are de-
fined in Sect. Bl to forbid undesirable synchronism with the environment.



144 R. Ramos, A. Sampaio, and A. Mota

To exemplify contracts, we show them in the CSP syntax. In our example,
the CLIENT and SERVER components have their contracts defined by Ctrer and
Ctrsv, respectively. As we focus on the interaction of these two components, we
restrict their contracts to the information that pertains this interaction.

Ctrep = (CLIENT, {us — Ius, cl — Ior}, {Ius, Ier}, {us, cl})
Ctrsy = (SERVER, {sv — Isv}, {Isv}, {sv})

Ctrer, has two channels: us and cl, which are typed by Iys and Icr, respectively.
The former channel provides services to the user, and the latter delegates the
computation of such services to the SERVER component. Ctrsy provides bank
services to the CLIENT component trough a channel sv, which is typed by Isv.
Syntactically, the elements of Ctrer are written in CSP as follows.

Ier = 10T oLy, cLopr
CLour = wd.Int | resBal.Int
CLiny = ackWd..Bool | reqBal
channel cl: I¢p
CLIENT = us.in.insertCard?num — us.in.enterPin?pin —
(WDRAW (us, cl) O BAL(us, cl)) § us.out!takeCard — CLIENT
WDRAW = us.in.withdraw?val — cl.out'wd.val — cl.in.ackWd —
us.out!takeCash — SKIP
BAL = us.in.balance — cl.out!reqBal — cl.in.resBal?z —
us.out!takeSlip.x — SKIP

In the example, the events in I¢, are those used by CLIENT to interact with
SERVER. Icr, contains the events for withdrawing money (tagged with wd) and
for requiring and receiving an account balance (tagged with regBal and resBal,
respectively). These events use the (assumed) built-in data types Bool and Int
to represent boolean and integer values, respectively.

The process CLIENT is the specification of the component dynamic behaviour
in CSP. To help readability in our specification, we assume that a request event
with an input parameter takes the form ch.in.tag?z, where ch is the name of a
channel and z acts as an input pattern, which can be empty (as in balance) or
with a variable (as in insertCard?num). The notation ch.out!v is used for response
events, where v is an expression. The data processing starts by acquiring the card
number from the environment using the channel us. Next, the prefix operator
(—) states that the event us.in.enterPin?pin takes place, representing the vali-
dation of the user token and password. Then, CLIENT offers two choices deter-
ministically (O): it engages either on the events withdraw or balance, to withdraw
money or to check the account balance, respectively. The operation is started
by the occurrence of the cl.out!wd or the cl.out!reqBal event, and can be com-
pleted by the cl.in.ackWd?a and cl.in.resBal?z events. The events us.out!takeCash,
us.out!takeCard and wus.out!takeSlip inform the user about the operation finalisa-
tion. SKIP is a primitive process that stands for a successful termination. The
sequential composition operator g composes two processes: P g @ behaves like P
until it terminates successfully, when it behaves like Q.
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Syntactically, the elements of Cirsy are written in CSP as follows.

Isy = 10T cLoyr,cLy
channel sv: Isy
SERVER = sv.in.wd?x — (["Ta : Bool e sv.outlackWd.a) — SERVER

O sv.in.reqBal — ([ y : Int e sv.out!resBal.y) — SERVER

The SERVER component has a provided interface Isy whose values for input and
output communication are defined in the opposite direction of those in Ior. We
have defined Isy as a regular interface in order to ease the understanding of the
communication direction in the SERVER behaviour. The way the communication
between CLIENT and SERVER is bridged is presented afterwards.

The process SERVER offers a deterministic choice (O) between a withdraw
and a balance request, which is represented by the occurrence of the commu-
nications sv.in.wd?z and sv.in.reqBal. After receiving a withdraw or balance re-
quest, it internally decides (nondeterministic choice [1) the value of the withdraw
acknowledgement (ackWd!a) and that of the balance response (resBal.y); the non-
deterministic choice is usually associated to internal actions of the component,
which decides the value that is output.

Naturally, specifications of the component behaviour at different abstraction
levels are desirable. For instance, it is convenient to express communications
using protocols that specify allowed execution traces of the component services,
with an exclusive focus on events communicated via a specific channel.

Definition 5 (Protocol). Let Ctr be a component contract and ch a channel,
such that ch € Cey,.. The protocol over the channel ch (denoted by Prot(Ctr, ch))
18 defined as:

Prot(Ctr, ch) = Bew [ {| ch [}/ en.s]

The restriction operator P | X can be defined in terms of the CSP operator
P\ Y, where all events within Y are hidden from P, and Y = aP — X; only
events within the alphabet of the process P («P) and not in Y are visible in
P\ Y. For instance, the process @ = (a — b — SKIP) \ {a} is the same as
Q = b — SKIP, which is also the same as Q = (a — b — SKIP) | {b}. ([*/ch.s])
is a forgetful renaming that makes the protocol behaviour independent of the
channel ch; [*/o..] represents a bijection from an event ch.z, which comprises a
channel name (ch) and a value (z), to an event z. In this manner, it is easier to
check if two communications on two channels have the same behaviour.
In our example, the protocol of CLIENT over cl is expressed as follows.

Prot(Ctrer, cl) = cl.out.wdlval — cl.in.ackWd — Prot(Ctrer, us)
O cl.out.reqBal — cl.in.resBal?x — Prot(Cirer, us)

A protocol is a projection of the component behaviour over a channel.

The direct composition of two components is described by the synchronisation
of their events in CSP, such that an output is only transmitted when the other
component is enabled to input it, and vice-versa.

Definition 6 (Direct Composition). Let P and Q be two component con-
tracts, such that CC =CpNCq, and ¥V c: CC e Rp(c) =~Rg(c). Then, the direct
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composition of P and Q (namely P Q) is given by:
P=Q={((Br ll{jccy Be) Rrqg,ran Rpq,dom Rpg)
where Rpg = CC < (Rp URg)

In the definition above, the behaviour of the composition is defined by the syn-
chronisation of the behaviour of P and @ in all interactions of the channels in
CC (this is expressed through the parallel CSP operator ||). Any communication
related to CC is hidden from the environment (using the operator \), and is
not considered in the mapping of channels. The operator < stands for domain
subtraction; it is used to restrict the mapping from channels into interfaces and,
furthermore, to restrict the set of channels and interfaces in the composition.

By definition, components are regarded as reusable units of composition. How-
ever, the direct composition excludes a wide variety of components, which would
be eligible for composition but present mismatch problems. An alternative ap-
proach is to use connectors to mediate interaction.

Connectors establish coordination rules that govern component interaction
and specify any auxiliary mechanisms required [I], such as mapping between
heterogeneous communications. They are regarded more broadly as exogenous
coordinators, intended to mean ‘coordination from outside’ the components.

To increase the range of components they integrate, connectors are abstractly
defined at the design level to serve needs of unspecified components. They be-
come components only later in the life-cycle, on the assembly with the compo-
nents, by relying on the component contracts [10].

We represent the dynamic behaviour of abstract connectors as parameterised
CSP processes, whose parameters represent component channels and protocols.

Definition 7 (Abstract Connector). An abstract connector AC(Sc, S, Sp)
1s described by a behaviour parameterised by a sequence of distinct channels Sc,
a sequence of arbitrary interfaces Sr and a sequence of processes Sp, such that

#S0 = #Sp = #Sr AVi: 0.4 e aSp(i) = {Sr(i)}.

A connector is formed of similar elements to a component, but its behaviour
is parameterised. Instead of sets of channels and interfaces, we use sequences,
which are more suitable to parametrise the connector specification. We consider
the sequence of processes as protocols over the channels that parametrise the
connector. For consistence among these parameter sequences, we establish that
they have the same size, and that all processes only communicate values on
their associated interfaces. When the connector parameters are instantiated, it
becomes a component that behaves according to the connector behaviour.

Definition 8 (Connection Instantiation). Let AC be an abstract connector,
SC a sequence of channels, SP a sequence of processes, and SI a sequence of
interfaces, such that SC', SP and SI satisfy the constraints to be parameters of
AC. Then F(AC, Sc, S1, Sp) is a component contract defined by:

F(AC, Sc, 81, 8p) = (AC(Sc, S1, Sp), {i : 0.#S5c o (Sc (i) — Si(i))},

ran S7,ran S¢)
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The definition above bridges the gap between two abstraction levels: an abstract
connector at design stage and its instantiation at component integration and
deployment level. We say that the function F has an instantiation role. It takes an
abstract connector AC and its list of parameters (S¢, S; and Sp) and constructs
a component, which is a concrete version of AC.

One of the simplest, and most common, connectors is the one presented below.
It aims at copying values from one channel to another. It does not perform any
verification concerning protocols, so they are not referenced in the definition.

Concopy({c1, c2), (I, I2), SEQP) = p X o c¢1?x : inputs(l1) — ca.reverse(z) — X
O 2?7y : inputs(l2) — ci.reverse(y) — X

where reverse(in.z) = out.z, reverse(out.x) = in.x

This connector intermediates the communication between two components,
so that an output of one is transmitted to the other, and vice-versa. Every event
value is transmitted with a tag direction; in becomes out, and out becomes in.

The composition of two components using a connector can be performed
through two direct composition steps. We first assemble a component (CLIENT,
in our example) to the connector (CON). Then, the second step is to assemble
the resulting composition to the other component (SERVER). Substituting CON
by a concrete connector that uses Concopy in our example, the resulting process
is obtained from the (two-steps) composition of CLIENT and SERVER:

ATMsyStem = Ct’I"CL = CON = Ct?”sv

where CON = F(Concopy, {(cl, sv), {IcL, Isv), (Prot(Ctrer, cl), Prot(Ctrsv, sv))).
However, the naive use of direct compositions (even through a connector),

without checking their compatibilities, can easily introduce problems in the com-

position. In order to safely compose components, some provisos must be checked.

3 Composition Rules

In this section we present three basic rules for the composition of components
(and connectors): interleave, communication and feedback composition. They
aim at guiding the developer in component integration guaranteeing, by con-
struction, preservation of deadlock- and livelock-freedom in elaborate systems.
All composition rules (see Fig. ) specialise the direct composition (Def. [6])
with the relevant provisos. The interleave composition is the simplest one. It
captures compositions where no communication is performed. The communica-
tion composition allows components to interact without introducing deadlocks
and livelocks in a system with a simple tree topology. In such a topology, the
pairwise verification of component communication guarantees deadlock-freedom
in the entire system. The absence of livelock is guaranteed by the analysis of the
interaction patterns. The last composition rule, feedback, allows the developer to
construct deadlock- and livelock-free systems with an elaborate graph topology.
These are basic composition rules that can be used together to design a wide
variety of systems. More elaborate rules can be derived from these basic ones.
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Fig. 2. The three composition rules proposed in this work

The simplest form of composition is to aggregate two independent entities
such that, after composition, these entities still do not communicate between
themselves. They directly communicate with the environment as before, with
no interference from each other. To perform this composition, there is a proviso
that they do not share any communication channel.

Definition 9 (Interleave Composition). Let P and Q be two component
contracts, such that P and Q have disjoint channels, Cp N Co = 0. Then, the
interleave composition of P and Q (namely P[||] Q) is given by:

Plile=r=Q

The above composition form is, by definition, a particular kind of direct compo-
sition that involves no communication, resulting in an entity that performs all
events defined in the original entities without any interference from each other.

Lemma 1 (Deadlock-free and Livelock-free Interleave Composition)
The interleave composition of two deadlock-free and livelock-free component con-
tracts is also deadlock-free and livelock-free.

Proof It follows direct from the condition that the components do not share any
channel and no communication is hidden. Furthermore, Bpj0 = Br || Bq. As,
Bpr and B are deadlock- and livelock-free, then so is Bp¢- O

The second form of composition states the most common way for assembling
complementary channels of two entities. It links channels of one entity to chan-
nels of the other, as in a direct composition (Def. []).

In order to allow property preservation by construction in CBS, we require
that the channels obey compatible protocols. Compatibility is achieved by check-
ing that all possible sequences of output values in one channel are accepted by
the corresponding input channel. Moreover, a component must never deadlock
waiting for an input event that does not come. Such complementarity precludes
the two common errors: message refused and message not understood.

Definition 10 (Protocol Compatibility). Let Pi and P> be two protocols
for channels ¢1 and c2, such that P1 = Prot(Ctri,c1) and P2 = Prot(Clra, c2),
I = Rewy (a1) and I, = Rewry(c2), and ~L = I». Then, the protocols Py and P
are compatible (denoted by P =~ P2) if, and only if:

Vi, j:{1,2} | i #j eVt (out.a) : traces(P;) o (t,{in.a}) ¢ failures(P;)) A
Vit (in.a) : traces(P;) o (t,{out.z | out.z € I;}) ¢ failures(P;))
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This is an effective way of ensuring that the communication between two compo-
nents is deadlock-free. This notion is related to stuck-freedom conformance [I1],
concerning events in Iz and Ij, but we consider only synchronous communication.
Another important requirement is to avoid the compositions to livelock. It
happens when a component infinitely performs internal actions, refusing any
external communication. This might be introduced, for instance, when we hide
the channels involved in a composition (see Def. [f]). An interesting observation
is that an infinite trace is formed of the concatenation of several interaction
patterns in an interaction component contract. So, in order to avoid livelocks,
we must track the channels used by the interaction patterns of a component.

Definition 11 (Interaction Channels). Let Ctr be an interaction component
contract. Then its interaction channels are:

IntChannels Ctr = {U | 3t € InteractionPatterns(B o) N U = chans(t)}

where chans(t) are the channels used in the trace t, chans(()) = 0, chans({c.z)) =
{c¢| 3 ez €rant}.

Based on the definition of protocol compatibility and interaction channels, we
define communication composition as follows:

Definition 12 (Communication Composition). Let P and Q be two com-
ponent contracts such that ic € Cp A oc € Cq, {ic} ¢ IntChannels(P) A {ic} ¢
IntChannels (Q), and Prot(P,ic) ~ Prot(Q, oc). Then, the communication compo-
sition of P and @ (namely Plic < oc]Q) via ic and oc is defined as follows:

Plic < oc]Q = P<CON < Q
where CON = F(Concopy, (ic, oc), (Rp(ic), Rg(oc)), (Prot(P,ic), Prot(Q, oc)))

In the composition Plic < oc]@, values of P are forwarded to @ through the
channel connector Concopy, which are confined in the composition (see Def. [6);
the abstract connector Concopy is instantiated by the function F.

Lemma 2 (Deadlock-free and Livelock-free Communication Compo-
sition). The communication composition of two deadlock-free and livelock-free
component contracts is also deadlock-free and livelock-free.

Proof. The communication composition is formed of two direct compositions.
The Concopy behaves as an one place buffer that always accepts communications
from P or Q. As consequence, the proof that the communication with Concopy
does not deadlock is straightforward. All communications from Concop, to P and
Q are, in fact, originated from @Q and P, respectively. As the proviso requires that
their protocols be compatible, Q always accepts communications from P, and
vice-versa. Livelock-freedom is obtained from the fact that new traces, resulted
from the synchronisation, does not have any of their events hidden. O

The last form of composition shows how we can build cyclic topologies. In partic-
ular, we focus on binding two channels of the same component, namely feedback
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composition. Since we build systems by composing entities pairwisely, a sys-
tem can always be taken as a single large grain entity. In doing so, composing
channels of this large grain component allows introducing cycles in the system.

Due to the existence of cycles, new conditions have to be taken in account to
preserve behavioural properties in the composition. This topic is closely related
to the study of more general approaches to ensure deadlock freedom [12/6]. Ac-
cording to [0], in any deadlock state of the system, there is a cycle of ungranted
requests with respect to its vocabulary. The system deadlocks when it gets into
a state where each process of a cycle is waiting to output to the next and has no
external communication. So, to avoid deadlock we simply have to avoid cycles
of ungranted requests.

In order to avoid such cycles, we base our approach on a notion of indepen-
dent channels. This concept is used to analyse the communication performed
between two communication channels, checking whether desirable scenarios for
their assembly exist. We define that a channel ¢; is independent of a channel c;
in a process when any synchronism with ¢, does not interfere with the order of
events communicated by c¢;.

Definition 13 (Independent Channels). Let ¢i and c; be two channels used
by a component contract Q. Then, ci is independent of co (denoted by c¢1 X c2)
Prot(Q, c1) Ep Prot(Q < CHAOSCOMP, c1)

where:

— CHAOSCOMP = (CHAOS(¢2),{(c2 — Rg(c2))}, {Rao(c2)},{c2})
— CHAOS(c) = Stop M (c?z — CHAOS(c)).

In the definition above, the component CHAOSCOMP represents the worst possi-
ble interferences through the channel c;. So, if the protocol of ¢; is still the same
after these interferences, then ¢; is independent of co. Channel independency is a
transitive relation. Therefore, if a channel ¢ is independent of another channel
2, it is independent of all the channels that co is independent of.

As a consequence, the simplest way to avoid ungranted request cycles is to
forbid the feedback composition of a channel ¢ with a channel that is not inde-
pendent of ¢. The intuition here is in accordance with the notion of independence
between parallel I/O processes proposed in [I2] to avoid deadlocks.

Definition 14 (FeedBack Composition). Let P be a component contract,
and ic and oc two channels, such that {ic,oc} C Cp, {ic,oc} ¢ IntChannels(P),
Prot(P,ic) ~ Prot(P, oc), and icX oc. Then, the feedback composition P (namely
Ploc < ic]) hooking oc to ic is defined as follows:

Ploc — ic] = P< CON
where CON = F(Concopy, (ic, oc), (Rp(ic),Rg(oc)), (Prot(P,ic), Prot(P, oc)))

In the resulting composition, Ploc < ic], values of P through oc are communi-
cated to the feedback channel ic. Both channels oc and ic are then confined in
the composition and are not available to the environment.
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Lemma 3 (Deadlock-free and Livelock-free Feedback Composition)
The feedback composition of a deadlock-free and livelock-free component contract
1s also deadlock-free and livelock-free.

Proof The proof is similar to the one for Lemma [2l However, in addition, we
must check that no cycle of ungranted requests is introduced in the composition.
In other words, that there is no cycle in which all components are willing to
communicate with the next component. As the two channels involved in the
composition are independent, no cycle of ungranted requests is introduced. O

From our proposed building block constructors (composition rules), any system
S can be structured as follows.

Su=P| SIS |S[er < e2]S | S[er — ¢2]

where P is a component contract whose behaviour is deadlock- and livelock-free.
We say that any component system that follows this grammar is in normal form.

Theorem 1 (Trustworthy Component Systems). Any system S in normal
form, built from deadlock-free and livelock-free components, is also deadlock-free
and livelock-free.

Proof. Direct from lemmas [Il 2l and O

4 Example

In order to illustrate the application of the composition rules proposed in the
precious section, we refine the scenario of the ATM system initially presented
in Sect 21 This more elaborate scenario consists mainly of two CLIENT and two
SERVER instances that run concurrently (see Fig. Bla). No component instance
knows each other; each CLIENT (Clientl or Client2) interacts with an arbitrary
SERVER (Serverl or Server2) to request services, without knowing the identity
of each other. The consistent interaction of CLIENTs and SERVERs must be
carefully coordinated by the system. In order to achieve that, we design an
elaborate connector (called Connector Network in Fig. Bla) composed of other
connector instances (see its structure in Fig. Blb).

The Connector Network consists of instances of two kinds of connectors: LBC
and CCM. Together, they efficiently route all communications of a CLIENT to

o-|_ cllm{}(o- — (.{IW1}( o{cllm{l{ ﬂ .-l.s_ervw‘l |-(
o cienz co- - folemml(| |ofiamalc ﬂ :@4 | server2 |

(a) Black box view of the System (b) Structure of the Connector Network

Fig. 3. Case Study: A more elaborate ATM System
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a SERVER, establishing a safe communication path between both components
until they finish their interaction. The LBC is a load balance connector, which
verifies which SERVER is available at the moment. The CCM formalises a com-
ponent communication manager, which identifies whether a SERVER is able to
interact with a new CLIENT or whether it is busy with an existing interaction.
To coordinate the information routing, these connectors communicate data and
control events. The control events are used to provide feedback on how the com-
munication is been performed. The following CCM and LBC processes represent
the equally named connectors.

CCM((CO, C1, Cz,f1,f2>,S], <P[CO],P2,P3,P4,P5>) = OC]\/[/(Q7 CQ,fl,fz, cn»P[cn])
LBC(<617 C2, ci7f17f2>7SI7 <P[cl]7P[cg]7P37P47P5>) = LBC/(Ci7f17f27 C1, 627P[61]7P[(:2])

The channels of both connectors are distinguished between control and data
information. In fact, to help understanding, we only show data channels in our
illustration (Fig. [B)). As observed in the expressions above, some protocol and
interface information are immaterial in the definition of the connectors. Bellow,
we define the auxiliary processes CCM’ and LBC'.

channel free
CCM’(Cl, Cz,fl,fz, Co, P[co]) = /LX o Copy(cl, Co, <>, P[CO]) gfree — X
O Copy(ca, co, (), Ple,)) § free = X
{1y en.preey (Avail(fi, c2,idle) || Avail(fz, c1, idle))
Avail(f, c, status) = f.in?isbusy — f.out!status — Avail(f, ¢, status)
O ¢ — Avail(f, ¢, busy)
O free — Awail(f, c, idle)
Copy(ci, o, 8, Pe,)) = ciin?x — c¢o.outle — Copy'(ci, o, s (), Ple,))
O ¢o.in?y — ci.outly — Copy’(ci, co, $™(y), Ple,])
Copy'(ci, o, 8, Ple,)) = SKIP & Pie,) Cr (Pre,1/s) 3 Copy(ci, co, 8, Ple,])

LBC'(ci, f1, f2, c1, €2, Pey), Pley)) = X ® fi.outlisbusy — fo.outlisbusy —
( A.n?idle — foiin?z — Copy(ci, c1, (), Pley)) 8§ X
O fi.in?busy — ( fo.inidle — Copy(ci, c2, (), Pley)) § X
O fo.in?busy — X))

In the CSP processes above, c¢;, ¢, c2, and ¢, are channels used for commu-
nicating data. The channels ¢; and c; are used to communicate data between
the connectors LBC and CCM, whereas ¢; and ¢, represent channels for com-
munication with the environment. The channels f; and f, are used to communi-
cate control data between the connectors. The channel free is used for internal
synchronisation in the CCM. To ease the definitions of the connectors, we use
protocol Py, where ¢; stands for the channel associated to the protocol. In fact,
these protocols represent the behaviour of the SERVER component over these
channels when the connector is instantiated.

The CCM repeatedly behaves as a connector that copies events either from
c1 or ¢ to ¢,. It chooses between the two behaviours depending on which chan-
nel has first enabled an event to be performed. It continuously transfers values
between such channels until it concludes an interaction (a trace that leads the
process to its initial state). At any time, the process can receive an event f;.isbusy
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Fig. 4. The composition of basic connectors to form the network of connectors

asking if the connector is already engaged in an interaction. If so, it communi-
cates f;.busy; otherwise, it communicates f;.idle. The LBC starts by sending an
event f;.isbusy to each connector assembled to c¢; and co. The first to answer
fj-idle enables a communication. It continuously copies data from a channel ¢;
to this connector until it finishes an interaction.

To build the Connector Network, we compose instances of these connectors
using our composition rules. This guarantees that the resulting component is
deadlock-free and livelock-free. Due to space restrictions, we do not show their
instantiation. LBC and CCM depend on the coordinated component contracts.
In our example, we assume they are used to mediate the communication between
CLIENT and SERVER, previously described in Sect. 2.1l So, data channels have
same interfaces as those components, and the protocols are based on the SERVER
protocol (P, = Prot(Ctrsy, sv)).

Based on these component contracts, we are able to incrementally construct
the Connector Network. Fig. @lsummarises our strategy to compose such concrete
connectors. To build the coordinator, we first perform an interleave composition
of the two instances of LBC using (see Fig. @la). Then, we perform a commu-
nication composition with each CCM connector to the result of the previous
composition (see Fig. @b). Subsequently, we use the feedback composition to
assembly the inner instances of the LBC to instances of the CCM (see Fig. Hc
and Mld). Control channels are assembled afterwards using similar feedback
compositions. All these transformations have been conducted based on the CSP
descriptions of the processes.

5 Conclusion

We have proposed a systematic approach for building trustworthy component-
based systems (CBS) (see Theo. [ll). The approach relies on three rules for com-
posing components (including concrete connectors): interleave, communication
and feedback compositions. They guarantee deadlock- and livelock-freedom in
the compositions based on the assumptions that the original components hold
these properties. The entire approach is underpinned by the CSP process algebra,
which offers rich semantic models that support a wide range of process verifi-
cation, and comparisons. In fact, CSP has shown to be very useful to support
the rigorous development of component based systems, as a hidden formalism
for modelling languages used in practise [7g].
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To guarantee deadlock-freedom, the composition rules include side conditions
that require the compatibility between communication protocols and the in-
dependence of channels. The former ensures compatibility between component
communications, and the latter avoids undesirable architectural configurations,
such as cycles of ungranted requests [6]. To guarantee livelock-freedom, the com-
position rules include side conditions which require that no interaction pattern
(recurring behaviour) of the original component be entirely hidden in the black-
box composition. Each composition results in a software component, whose prop-
erties are directly derived from the components involved in the composition.
These properties are called B, R, J, €, X, and represent the behaviour, chan-
nel types, interfaces, channels, and derivable metadata, such as independence
relationship among channels, of the component, and protocols.

Even though there are many approaches to formally model CBS [2IT3[I4I15],
to our knowledge the question of preserving behavioural properties by construc-
tion has not yet been fully systematised as we have done in this work. Despite
the fact that our notions are compatible with most component-based approaches,
especially those based on CSP [1l3], these approaches aim at verifying the en-
tire system before implementation, but not at predicting behavioural properties
by construction during design. We can ensure deadlock- and livelock-freedom
in a constructive way, as a result of applying composition rules, as opposed to
performing model checking verification after the system has been built.

The work reported in [I3] presents an extensive study of the verification of
important quality properties in CBS. It discusses the verification of liveness,
local progress, local and global deadlock, and fairness. We implicitly discuss these
properties, except fairness. Local progress and deadlock are addressed altogether
in our protocol compatibility notions. Liveness is addressed in each composition
rule by the guarantee of livelock-freedom. Global deadlock freedom is obtained
in the entire system by construction. Our approach is also similar to others in
some respects. For instance, similar verifications for protocol compatibility are
found in rCOS [3], SOFA [ and Interface Automata [I4]. Side conditions of
our composition rules have the same intention as the assumption to remove
potential deadlocks in [I5]. Similar to our work, [26] analyse deadlock scenarios
in several network topologies. Although they cover a wide range of topologies,
some verifications are not amenable for an approach by constructions, like ours.
Livelock verification by construction is not addressed in such works.

Some approaches [T2JT6] do predict some system properties based on the prop-
erties of its constituting components. These works focus on different properties.
The work reported in [16] does not focus on behavioural properties; rather, it
presents some results on performance. The approach presented in [I2] proposes
rules to guarantee the absence of deadlocks by construction. These rules impose
that CBS should satisfy specific architectural styles, which prevent deadlock sce-
narios. Despite the fact that it is presented a comprehensive set of styles, such
as resource sharing and client-server, these are restrictive in some situations; for
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instance, a component must always accept any input data value. In our work,
we allow components to have arbitrary protocols, with distinct input and out-
put communication. Moreover, we also use connectors as an important part of
our composition approach, and present them at two different abstraction levels,
which are aligned with practical approaches [I0/17] to model connectors.

A distinguishing feature of our approach is that each of the proposed composi-
tion rules is intentionally simple to capture a particular communication pattern
with the relevant side conditions to preserve behavioural properties. Complex in-
teractions can be progressively built from these very simple rules, as illustrated
by our case study. As future work we intend to investigate other composition
rules, or derivations of those proposed here, and build tool support for the design
of trustworthy component systems.
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Abstract. Explicit state methods have proven useful in verifying safety-
critical systems containing concurrent processes that run asynchronously
and communicate. Such methods consist of inspecting the states and
transitions of a graph representation of the system. Their main limita-
tion is state explosion, which happens when the graph is too large to be
stored in the available computer memory. Several techniques can be used
to palliate state explosion, such as on-the-fly verification, compositional
verification, and partial order reductions. In this paper, we propose a new
technique of partial order reductions based on compositional confluence
detection (CcD), which can be combined with the techniques mentioned
above. CcD is based upon a generalization of the notion of confluence
defined by Milner and exploits the fact that synchronizing transitions
that are confluent in the individual processes yield a confluent transition
in the system graph. It thus consists of analysing the transitions of the
individual process graphs and the synchronization structure to identify
such confluent transitions compositionally. Under some additional con-
ditions, the confluent transitions can be given priority over the other
transitions, thus enabling graph reductions. We propose two such addi-
tional conditions: one ensuring that the generated graph is equivalent
to the original system graph modulo branching bisimulation, and one
ensuring that the generated graph contains the same deadlock states as
the original system graph. We also describe how Ccbp-based reductions
were implemented in the CADP toolbox, and present examples and a
case study in which adding CcD improves reductions with respect to
compositional verification and other partial order reductions.

1 Introduction

This paper deals with systems, hereafter called asynchronous systems, which can
be modeled by a composition of individual processes that execute in parallel at
independent speeds and communicate. Asynchronous systems can be found in
many application domains, such as communication protocols, embedded soft-
ware, hardware architectures, distributed systems, etc.

Industrial asynchronous systems are often subject to strong constraints in
terms of development cost and/or reliability. A way to address these constraints
is to use methods allowing the identification of bugs as early as possible in the
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development cycle. Explicit state verification is such a method, and consists of
verifying properties by systematic exploration of the states and transitions of an
abstract model of the system.

Although appropriate for verifying asynchronous systems, explicit state veri-
fication may be limited by the combinatorial explosion of the number of states
and transitions (called state explosion). Among the numerous techniques that
have been proposed to palliate state explosion, the following have proved to be
effective:

— On-the-fly verification (see e.g., [QRI2TI3TI29]) consists of enumerating the
states and transitions in an order determined by a property of interest, thus
enabling one to find property violations before the whole system graph has
been generated.

— Compositional verification (see e.g., [128ATIAAA6I6CI3RITOI2A3ITATI]) con-
sists of replacing individual processes by property-preserving abstractions of
limited size.

— Partial order reductions (see e.g., [I5[423520/43B6I37ITI333I34]) consist
of choosing not to explore interleavings of actions that are not relevant with
respect to either the properties or the graph equivalence of interest.

Regarding partial order reductions, two lines of work coexist. The first addresses
the identification of a subset called persistent [15] (or ample [35], or stubborn [42],
see [36] for a surveyEl) of the operations that define the transitions of the system,
such that all operations outside this subset are independent of all operations
inside this subset. This allows the operations outside the persistent subset to
be ignored in the current state. Depending on additional conditions, persistent
subsets may preserve various classes of properties (e.g., deadlocks, LTL-X, CTL-
X, etc.) and/or graph equivalence relations (e.g., branching equivalence [45],
weak trace equivalence [5], etc). Other methods based on the identification of
independent transitions, such as sleep sets [15], can be combined with persistent
sets to obtain more reductions.

The second line of work addresses the detection of particular non-observable
transitions (non-observable transitions are also called T-transitions) that satisfy
the property of confluence [B220/T9A7I2I3I34], using either symbolic or explicit-
state techniques. Such transitions can be given priority over the rest of the
transitions of the system, thus avoiding exploration of useless states and tran-
sitions while preserving branching (and observational) equivalence. Among the
symbolic detection techniques, the proof-theoretic technique of [3] statically gen-
erates a formula encoding the confluence condition from a pCRL program, and
then solves it using a separate theorem prover. Among the explicit-state tech-
niques, the global technique of [T9] computes the maximal set of strongly conflu-
ent 7-transitions and reduces the graph with respect to this set. A local technique
was proposed in [2], which computes on-the-fly a representation map associating
a single state to each connected subgraph of confluent 7-transitions. Another

! In this paper, the term persistent will refer equally to persistent, ample, or stubborn.
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technique was proposed in [34], which reformulates the detection as the resolu-
tion of a BES (Boolean Equation System) and prioritizes confluent 7-transitions
in the individual processes before composing them, using the fact that branching
equivalence is a congruence for the parallel composition of processes. Compared
to persistent subset methods, whose practical effectiveness depends on the ac-
curacy of identifying independent operations (by analyzing the system descrip-
tion), confluence detection methods are able to detect all confluent transitions
(by exploring the system graph), potentially leading to better reductions.

In this paper, we present a new compositional partial order reduction method
for systems described as networks of communicating automata. This method,
named Ccp (Compositional Confluence Detection), exploits the confluence of
individual process transitions that are not necessarily labeled by 7 and thus
cannot be prioritized in the individual processes. CCD relies on the fact that
synchronizing such transitions always yields a confluent transition in the graph
of the composition. As an immediate consequence, if the latter transition is la-
beled by 7 (i.e., hidden after synchronization), then giving it priority preserves
branching equivalence. We also describe conditions to ensure that even tran-
sitions that are not labeled by 7 can be prioritized, while still preserving the
deadlocks of the system.

The aim of CcD is to use compositionality to detect confluence more efficiently
than explicit-state techniques applied directly to the graph of the composition,
the counterpart being that not all confluent transitions are necessarily detected
(as in persistent subset methods). Nevertheless, CcD and persistent subset meth-
ods are orthogonal, meaning that neither method applied individually performs
better than both methods applied together. Thus, CCD can be freely added in or-
der to improve the reductions achieved by persistent subset methods. Moreover,
the definition of confluent transitions is language-independent (i.e., it does not
rely upon the description language — in our case EXp.OPEN 2.0 [25] — but only
upon the system graph), making CcD suitable for networks of communicating
automata produced from any description language equipped with interleaving
semantics.

CcD was implemented in the CADP toolbox [12] and more particularly in the
existing EXP.OPEN 2.0 tool for compositional verification, which provides on-
the-fly verification of compositions of processes. A new procedure was developed,
which searches and annotates the confluent (or strictly confluent) transitions of a
graph, using a BES to encode the confluence property. This procedure is invoked
on the individual processes so that EXP.OPEN 2.0 can then generate a reduced
graph for the composition, possibly combined with already available persistent
subset methods.

Experimental results show that adding CCD may improve reductions with
respect to compositional verification and persistent subset methods.

Paper outline. Section 2 gives preliminary definitions and theorems. Section Bl
formally presents the semantic model that we use to represent asynchronous
systems. Section H] presents the main result of the paper. Section [ describes
how the CcD technique is implemented in the CADP toolbox. Section [ presents
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several experimental results. Section [0 reports about the application of CcD in
an industrial case-study. Finally, Section [8 gives concluding remarks.

2 Preliminaries

We consider the standard Lts (Labeled Transition System) semantic model [32],
which is a graph consisting of a set of states, an initial state, and a set of transi-
tions between states, each transition being labeled by an action of the system.

Definition 1 (Labeled Transition System). Let A be a set of symbols called
labels, which contains a special symbol 7, called the unobservable label. An LTs
is a quadruple (@, A, —,qo), where @ is the set of states, A C A is the set of
labels, — C Q x A x @ is the transition relation, and qo € Q is the initial state
of the Lrs. As usual, we may write ¢; —— ¢ instead of (¢1,a,¢2) € —. Any
sequence of the form q1 —5 go — ... ¢n —% @n41 is called a path of length n
from ¢1 to gp41 (n > 0). We write g1 —" gp41 if there exists such a path. The
transition relation is acyclic if every path from a state to itself has length 0. O

Branching equivalence [45] is a weak bisimulation relation between states of an
Lts that removes some 7-transitions while preserving the branching structure of
the Lirs. Therefore, branching equivalence is of interest when verifying branching-
time temporal logic properties that concern only observable labels.

Definition 2 (Branching equivalence [45]). As usual, we write — the re-
flexive and transitive closure of —. Two states ¢, g2 € Q are branching equiv-
alent if and only if there exists a relation R C @ x @ such that R(qi,¢2) and
(1) for each transition ¢, —— ¢/, either a = 7 and R(q},q2) or there is a path
¢ = ¢h % ¢lf such that R(q1,q3) and R(q;,qY), and (2) for each transition
G2 — ¢, cither @ = 7 and R(q1,q}), or there is a path ¢; — ¢} —— ¢} such
that R(¢},q2) and R(qy, ¢5). 0

The following definition of strong confluence is a synthesis of the definitions of
confluence by Milner [32], which is a property of processes, and partial strong
T-confluence by Groote and van de Pol [19], which is a property of 7-transitions.
We thus generalize Groote and van de Pol’s definition to transitions labeled by
arbitrary symbols, as was the case of Milner’s original definition. In addition,
we distinguish between the property of strong confluence, and a slightly more
constrained property, named strict strong confluence.

Definition 3 (Strong confluence). Let (Q, A, —,qp) be an Lrs and T' C —.
We write ¢ ——7 ¢ if (¢,a,q") € T. We write ¢ —— ¢’ if either ¢ = ¢’ or ¢ = ¢
and @ = 7, and similarly for ¢ =7 ¢'. T is strongly confluent if for every pair
of distinct transitions ¢i — g2 and ¢ LN q3, there exists a state ¢4 such that

g3 —=7 qu and g0 LN qq. T is strictly strongly confluent if for every pair of

distinct transitions ¢ “r q2 and ¢q LN qs3, there exists a state g4 such that
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Fig. 1. Graphical definition of strong confluence and strict strong confluence

g3 —=7 q4 and ¢ LN qa- A transition is strongly confluent (respectively strictly
strongly confluent) if there exists a strongly confluent set (respectively strictly
strongly confluent set) 7' C — containing that transition. a

Figure[D gives a graphical picture of strong confluence. Plain arrows denote tran-
sitions quantified universally, whereas dotted arrows denote transitions quanti-
fied existentially. For strict strong confluence, case (1) is excluded.

Strong 7-confluence is strong confluence of 7-transitions. Weaker notions of
7-confluence have been defined [20/47], but are out of the scope of this paper.
For brevity, we use below the terms confluent and strictly confluent instead of
strongly confluent and strictly strongly confluent, respectively.

Prioritization consists of giving priority to some transitions. Definition [ be-
low generalizes the definition of [I9], which was restricted to T-transitions.

Definition 4 (Prioritization [19]). Let (Q, A, —1,q0) be an Lts and T C
—1. A prioritization of (Q, A, —1,qo) with respect to T"is any LTs of the form
(Q, A, —2,q0), where —o C —; and for all q1,¢2 € Q,a € A, if ¢ —1 ¢o then

1) @1 sy g or (2) there exists g3 € @ and b € A such that ¢ L)Q g3 €T. O

In [19], Groote and van de Pol proved that branching bisimulation is preserved
by prioritization of 7-confluent transitions, provided the LTS does not contain
cycles of 7-transitions. Theorem [l below relaxes this constraint by only requiring
that the set of prioritized 7-confluent transitions does not contain cycles (which
is similar to the cycle-closing condition for ample sets [35]).

Theorem 1. Let (Q, A, —, qp) be an LTs and T' C — such that T is acyclic and
contains only 7-confluent transitions. Any prioritization of (Q, A, —,qo) with
respect to T yields an LTS that is branching equivalent to (Q, A, —, qo). O

Theorem [ below states that deadlock states can always be reached without
following transitions that are in choice with strictly confluent transitions. This
allows prioritization of strictly confluent transitions, while ensuring that at least
one (minimal) diagnostic path can be found for each deadlock state. The detailed
proof can be found in [27].
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Theorem 2. Let (Q, A, —,qo) be an LTs, T C — a strictly confluent set of
transitions, and g5 € Q be a deadlock state. If g1 —" g5 and ¢1 —7 g2, then
q2 —"™ q5 with m < n. O

Therefore, any prioritization of (Q, A, —,qo) with respect to T' yields an Lrs
that has the same deadlock states as (@, 4, —, qo).

Note. Theorem [l is not true for non-strict confluence, as illustrated by the
LTS consisting of the transition ¢; —— gs and the (non-strictly) confluent tran-
sition ¢1 — qy.

3 Networks of LTSs

This section introduces networks of LTss [25I26], a concurrent model close to
MEec [I] and Fc¢2 [], which consists of a set of LTSs composed in parallel and
synchronizing following general synchronization rules.

Definition 5 (Vector). A vector of length n over a set T is an element of T".
Let v, also written (vy,...,v,), be a vector of length n. The elements of 1..n are
called the indices of v. For each i € 1..n, v[i] denotes the i*™ element v; of v. O

Definition 6 (Network of LTSs). Let o ¢ A be a special symbol denoting
inaction. A synchronization vector is a vector over A U {e}. Let t be a syn-
chronization vector of length n. The active components of t, written act(t), are
defined as the set {i € 1..n | t[i] # e}. The inactive components of t, written
inact(t), are defined as the set 1..n \ act(t). A synchronization rule of length
n is a pair (t,a), where ¢ is a synchronization vector of length n and a € A.
The elements ¢t and a are called respectively the left- and right-hand sides of the
synchronization rule. A network of Ltss N of length n is a pair (S, V) where
S is a vector of length n over Lirss and V is a set of synchronization rules of
length n. O

In the sequel, we may use the term network instead of network of LTss. A
network (S, V') therefore denotes a product of LTss, where each rule expresses
a constraint on the vector of LTss S. In a given state of the product, each rule
(t,a) € V yields a transition labeled by a under the condition that, assuming
act(t) = {io,...,im}, the LTss STig],..., S[im] may synchronize altogether on
transitions labeled respectively by t[io], ..., t[iy]. This is described formally by
the following definition.

Definition 7 (Network semantics). Let N be a network of length n defined
as a couple (S,V) and for each i € 1..n, let S[i] be the Lts (Q;, Ai, —4, qo;)-
The semantics of N, written lts(N) or lts(S,V), is an Lts (Q, A, —, go) where
Q C Q1% ...xXQn q = (01,---,90,) and A = {a | (t,a) € V}. Given a
synchronization rule (¢,a) € V and a state ¢ € Q1 X ... X @, we define the
successors of g by rule (t,a), written succ(q, (¢, a)), as follows:

suce(q, (t,a)) = {q' € Q1 x ... x Qu | (¥i € act(t)) qlil “>; ']

A
(Vi € inact(t)) H q'li]

J
}
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The state set @ and the transition relation — of lts(N) are the smallest set and
the smallest relation such that go € @ and:
qgEQAN(t,a) e VAQG €succ(q,(t,a)=q¢ €QNg - q. O

Synchronization rules must obey the following admissibility condition, which
forbids cutting, synchronization and renaming of the 7 transitions present in
the individual Lrss. This is suitable for a process algebraic framework, most
parallel composition, hiding, renaming, and cutting operators of which can be
translated into rules obeying these conditions. This also ensures that weak trace
equivalence and stronger relations (e.g., safety, observational, branching, and
strong equivalences) are congruences for synchronization rules [25].

Definition 8 (Network admissibility). The network (S,V) is admissible if
for each ¢, q’,i such that ¢ —; ¢’ there exists a rule (¢;,7) € V where t;[i] = 7,
(Vj # 1) t;i[j] = o, and (V(t,a) € V \ {(t;,7)}) t[i] # 7. Below, every network
will be assumed to be admissible. O

Example 1. We consider the simple network of LTSs consisting of the vector
of Lirss (Sendery, Bag, Senders) depicted in Figure [2] (the topmost node being
the initial state of each LTs), and of the following four synchronization rules:
((81’ 51, .)’ T)’ ((.7 52, 82)7 T)7 ((.7 1, .)7 Tl)? ((.’ T2, .)’ TQ)'

This network represents two processes Sendery and Senders, which send their
respective messages s; and sp via a communication buffer that contains one
place for each sender and uses a bag policy (received messages can be delivered
in any order). Every transition in the individual LTss of this network is strictly
confluent. The Lirs (i) depicted in Figure Bl page [[65] represents the semantics
of this network.

r Ty
Sy S1
Sender; Bag Senders

Fig. 2. Individual Lss of the network defined in Example [I]

4 Compositional Confluence Detection

Although prioritizing confluent transitions yields LTS reductions, finding con-
fluent transitions in large LTss such as those obtained by parallel composition
of smaller LiTss can be quite expensive in practice. Instead, the aim of CcD is
to infer confluence in the large LTS from the (much cheaper to find) confluence
present in the smaller L.TSs that are composed.
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Definition 9. Let (S,V) be a network, (¢,a) € V, and ¢q, ¢’ be states of

Its(S, V). We write all conf(q, (¢,a),q’) for the predicate “q’ € succ(q, (t,a)) A
(Vi € act(t)) qli] ﬂi q'[i] is confluent”. We write all conf strict for the same

predicate, where “strictly confluent” replaces “confluent”. a

Theorem [B] below presents the main result of this paper: synchronizations in-
volving only confluent (resp. strictly confluent) transitions in the individual Lirss
produce confluent (resp. strictly confluent) transitions in the LTS of the network.

Theorem 3 (Compositional confluence detection). Let (S,V’) be a net-
work, (t,a) € V, and q, ¢’ be states of lts(S,V). (1) If all conf(q, (t,a),q’),
then ¢ —% ¢’ is confluent and (2) if all conf strict(q, (¢,a),q’), then ¢ - ¢’ is
strictly confluent. O

The proof [27] consists of showing that the set {p —— p’ | all conf(p, (¢,a),p’)}
is indeed a confluent set (and similarly for the strictly confluent case).

We call deadlock preserving reduction using CCD a prioritization of transitions
obtained from synchronization of strictly confluent transitions (which indeed pre-
serves the deadlocks of the system following Theorems 2l and B]), and branching
preserving reduction using CCD a prioritization of 7-transitions obtained from
synchronization of confluent transitions, provided they are acyclic (which indeed
preserves branching bisimulation following Theorems [l and B]). The major differ-
ences between both reductions are thus the following: (1) branching preserving
reduction does not require strict confluence; (2) deadlock preserving reduction
does not require any acyclicity condition; and (3) deadlock preserving reduction
does not require the prioritized transitions to be labeled by 7, which preserves
the labels of diagnostic paths leading to deadlock states.

Ezample 2. Figure[3 depicts three LTss corresponding to the network presented
in Example [Il page Lts (i) corresponds to the semantics of the network,
generated without reduction. LTs (i) is the same generated with branching
preserving reduction using CcD and thus is branching equivalent to LTS (7).
Lts (4ii) is the same generated with deadlock preserving reduction using CcD
and thus has the same deadlock state as LTS (7).

As persistent subset methods, CcD is able to detect commuting transitions by a
local analysis of the network. For persistent subsets, a relation of independence
between the transitions enabled in the current state is computed dynamically
by inspection of the transitions enabled in the individual LTSs and of their
interactions (defined here as synchronization rules). By contrast, CcD performs
a static analysis of the individual LTSs to detect which transitions are locally
confluent, the dynamic part being limited to checking whether a transition of
the network can be obtained by synchronizing only locally confluent transitions.

Branching preserving reduction using CcD does not require detection of all
confluent transitions in the individual LTss of the network, but can be restricted
to those active in a synchronization rule of the form (¢, 7). In a network (S, V)
of length n, we thus compute for each ¢ € 1..n a subset C; C A; of labels
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Q, O O
AN / /
@) O, O O
O O, O O, O
LTy TL T2 1
QO O QO O QO
X X AN
O O
(é) (i) (i)
Fig.3. Three Lrss corresponding to the semantics of the network of Example [

one generated without CcD (i) and two generated using CCD preserving respectively
branching equivalence (i7) and deadlocks (#17)

that contains all labels t[i] # e such that there exists (¢,7) € V. For deadlock
preserving reduction, the subset C; is defined as A;.

The problem of detecting confluence in the individual LTSs is reformulated in
terms of the local resolution of a BES (Boolean Equation System), following the
scheme we proposed in [34]. Given an LTs (Q;, 4;, —, qo;) and a subset C; C A;
of labels, the BES encoding the detection of confluent transitions labeled by
actions in C; is defined as follows:

{Xqulqz ;/\q b V b (\/ La /(q4:q21/\Xq3aq4)V(a:7_/\Q3:q4))}

1—4i493  qo——;q4 a3 idy
Each boolean variable X, 4¢,, Where g1, ¢2 € Q; and a € C;, evaluates to true if
and only if ¢ ——; g2 is confluent. The BES has maximal fixed point semantics
because we seek to determine the maximal set of confluent transitions contained
in an LTs. For strict confluence, \/q o, g st be merely replaced by \/%L}_q, .
3—iq} iy

The correctness of this encoding [27] is based upon a bijection between the
fixed point solutions of the BES and the sets of confluent transitions labeled by
actions in C;; thus, the maximal fixed point solution gives the whole set of such
confluent transitions.

5 Implementation

Ccp was implemented in Capt (Construction and Analysis of Distributed Pro-
cesses) [12], a toolbox for the design of communication protocols and distributed
systems, which offers a wide set of functionalities, ranging from step-by-step
simulation to massively-parallel model checking. CADP is designed in a modular
way and puts the emphasis on intermediate formats and programming inter-
faces. CADP provides the BcG compact graph format for storing explicit LiTSs
and the OPEN/CESAR [I0] application programming interface for representing
and manipulating implicit Lrss in the form of an initial state and a successor

2 http://www.inrialpes.fr/vasy/cadp
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state function. The GENERATOR tool converts an OPEN/CESAR implicit LTS
into an explicit BcG graph. The Bca MIN tool allows minimization of Bca
graphs modulo strong and branching bisimulation.

ExP.OPEN 2.0 (an extension of the previous version Exp.OPEN 1.0 of Bozga,
Fernandez, and Mounier) is a compiler into OPEN/C&ESAR implicit LiTss of sys-
tems made of BCG graphs composed using synchronization vectors and parallel
composition, hiding, renaming, and cutting operators taken from the Ccs [32],
Csp [39], Lotos [22], E-Lotos [23], and pCRL [I8] process algebras. As an
intermediate step, those systems are translated into the network of LTss model
presented in Definition Exp.OPEN 2.0 has several partial order reduction
options that allow standard persistent set methods (generalizations of Ramakr-
ishna and Smolka’s method presented in [37]) to be applied on-the-fly, among
which -branching preserves branching bisimulation, -ratebranching preserves
stochastic branching bisilrnulatiorﬁ7 -deadpreserving preserves deadlocks, and
-weaktrace preserves weak trace equivalence (i.e., observable traces).

We developed in the EXpP.OPEN 2.0 tool a new procedure that takes as input
a Bca graph, a file that contains a set of labels represented using a list of regular
expressions, and a boolean parameter for strictness. For each transition whose
label matches one of the regular expressions, this procedure checks whether this
transition is confluent (or strictly confluent if the boolean parameter is set to
true). The BEs encoding the confluence detection problem is solved using a global
algorithm similar to those in [30]. This produces as output an LTS in the Bca
format, the transition labels of which are prefixed by a special tag indicating
confluence when appropriate.

We also added to Exp.OPEN 2.0 a new -confluence option, which can only
be used in combination with one of the partial order reduction options already
available (-branching, -deadpreserving, -ratebranching, -weaktractﬂ). In
this case, EXP.OPEN 2.0 first computes the labels for which confluence detec-
tion is useful, and then calls the above procedure (setting the boolean parameter
to true if EXP.OPEN was called with the -deadpreserving option) on the in-
dividual L1ss, providing these labels as input. Finally, it uses the information
collected in the individual LTSs to prioritize the confluent transitions on the fly.

6 Experimental Results

We applied partial order reductions using CCD to several examples. To this
aim, we used a 2 GHz, 16 GB RAM, dual core AMD Opteron 64-bit com-
puter running 64-bit Linux. Examples identified by a two digit number zy (01,
10, 11, ete.) correspond to LTS compositions extracted from an official CADP
demo available at ftp://ftp.inrialpes.fr/pub/vasy/demos/demo xy. These
include telecommunication protocols (01, 10, 11, 18, 20, 27), distributed systems

3 This option is similar to -branching and additionally gives priority to 7-transitions
over stochastic transitions.

4 Note that branching preserving reduction using CcD also preserves weaker relations
such as weak trace equivalence.
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(25, 28, 35, 36, 37), and asynchronous circuits (38). Examples st(1), st(2), and
st(3) correspond to process compositions provided to us by the STMICROELEC-
TRONICS company, which uses CADP to verify critical parts of their future-
generation multiprocessor systems on chip.

In each example, the individual LTss were first minimized (compositionally)
modulo branching bisimulation using Bca MIN. This already achieves more re-
duction than the compositional 7-confluence technique presented in [34], since
minimization modulo branching bisimulation subsumes 7-confluence reduction.
The LTS of their composition was then generated using EXP.OPEN 2.0 and
GENERATOR following different strategies: (1) using no partial order reduction
at all, (2) using persistent sets, and (3) using both persistent sets and Ccb.
Figure [ reports the size (in states/transitions) of the resulting LTS obtained
when using option -branching (top) or -deadpreserving (bottom). The sym-
bol “—” indicates that the number of states and/or transitions is the same as in
the column immediately to the left.

These experiments show that CcD may improve the reductions obtained us-
ing persistent sets and compositional verification, most particularly in examples
37, 38, st(1), st(2), and st(3). Indeed, in these examples the individual LTss are
themselves obtained by parallel compositions of smaller processes. This tends to
generate confluent transitions, which are detected locally by CcbD. On the other
hand, it is not a surprise that neither CcD nor persistent sets methods preserv-
ing branching bisimulation reduce examples 25, 27(1), 27(2) and 28, since the
resulting LiTSs corresponding to these examples contain no confluent transitions.

One might be amazed by the reduction of st(1) to an LTs with only one state
and one transition in the deadlock preserving case. The reason is that one LTS
of the network has a strictly confluent self looping transition that is independent
from the other Lrss. Therefore, the network cannot have a deadlock and is
reduced by CcD to this trivial, deadlock-free LiTS.

For st(1), st(2), and st(3), we also compared the total time and peak memory
needed to generate the product LTs (using EXP.OPEN 2.0/ GENERATOR) and then
minimize it modulo branching bisimulation (using Bca MIN), without using any
partial order reduction and with persistent sets combined with CcD. This includes
time and memory used by the tools EXp.OPEN 2.0, GENERATOR and BcG MIN.
Figure[lshows that CcD may significantly reduce the total time and peak memory
(for st(3), 30% and 40%, respectively) needed to generate a minimal LTs.

7 Case Study

We present here in more detail the use of CcD in the context of the MULTIVAL
projectﬁ, which aims at the formal specification, verification, and performance
evaluation of multiprocessor multithreaded architectures developed by BULL, the
CEA/LETI, and STMicroelectronics. The case-study below concerns XSTREAM,
a multiprocessor dataflow architecture designed by STMicroelectronics for high
performance embedded multimedia streaming applications. In this architecture,

® http://www.inrialpes.fr/vasy/multival
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Branching preserving reduction

Example No partial order reduction Persistent sets Persistent sets + CcD
01 112/380 —/328 —/=
10 688/2,540 —/2,200 —/=
11 2,995/9,228 —/— —/9,200
18 129,728/749,312 — /746,880 —/=
20 504,920/5,341,821 /- —/5,340,117
25 11,031/34,728 /- —/—
27(1) 1,530/5,021 /- /=
27(2) 6,315/22,703 /- /=
28 600/1,925 —-/— —-/=
35 156,957/767,211 —/— —/-
36 23,627/84,707 21/20 —/-
37 22,545/158,318 /- 541/2,809
38 1,404/3,510 — /3,504 390/591
st(1) 6,993/100,566 /- — /79,803
st(2) 1,109,025/7,448,719 /= —/6,163,259
st(3) 5,419,575/37,639,782 —-/— 5,172,660/24,792,525
Deadlock preserving reduction
Example No partial order reduction Persistent sets Persistent sets + CcD
01 112/380 92/194 —/-
10 688/2,540 568/1,332 -/
11 2,995/9,228 2,018/4,688 —/4,670
18 129,728/749,312 124,304/689,760 90,248/431,232
20 504,920/5,341,821 481,406/4,193,022 481,397/4,191,555
25 11,031/34,728 6,414/11,625 —/—
27(1) 1,530/5,021 1,524/4,811 /=
27(2) 6,315/22,703 6,298/22,185 —/=
28 600/1,925 375/902 —/-
35 156,957/767,211 —/— —/-
36 23,627/84,707 171/170 —/=
37 22,545/158,318 —/— 76/128
38 1,404/3,510 — /3,474 492/673
st(1) 6,993/100,566 6,864/96,394 1/1
st(2) 1,109,025/7,448,719 — /7,138,844 101,575/346,534

st(3) 5,419,575/37,639,782

5,289,

255/34,202,947 397,360/1,333,014

Fig. 4. LiTs sizes in states/transitions for branching and deadlock preserving reductions

computation nodes (e.g., filters) communicate using XSTREAM queues connected
by a NOoC (Network on Chip) composed of routers connected by direct commu-

nication links.

We used as input the network of communicating L'TSs produced from a LOTOS
specification of two XSTREAM queues connected via a NOC with four routers.
The architecture of the system is depicted below, where the components NO and
N1 denote the routers involved in the communication between PUSHQ and POPQ,
the behaviour of which incorporates perturbations induced by the other two

routers of the NoC.

PUSH RQi

PUSH RSP

POP RQ

PUSHQ

TO

TO
FROM O

NO

LINK 01

‘ fPOP RSP

L POPQ _|
A

FROM 1

LINK 10

N1
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No partial order reduction Persistent sets + CcD
total time (s) peak memory (MB) total time (s) peak memory (MB)
st(1) 0.72 5.6 0.91 5.6
st(2) 271 312 287 271
st(3) 2,116 1,390 1,588 981

Fig. 5. Resources used to generate and reduce LTss modulo branching bisimulation

without Ccp with Ccp
intermediate  time (s) mem. (MB) intermediate  time (s) mem. (MB)
itf POPQ+N1 244,569/1,320,644 18.56 51 179,706/587,187 9.66 26
NO+PUSHQ 22,674/120,222 1.35 17 22,674/86,528 1.12 17
NO+N1+PUSHQ 140,364/828,930 12.62 32 95,208 /444,972 6.40 22
NOC4 324,261/2,549,399 11.32 93 310,026/1,073,316  9.77 46

Fig. 6. Performance of LiTs generation and minimization with and without CcpD

The Lts of the system can be generated and minimized compositionally using
the SvL [I1] language of CADP. The generation was done first with CcD deacti-
vated, then with CcD activated. For each case, Figure [0l gives the following in-
formation: The “intermediate” column indicates the size (in states/transitions)
of the intermediate LTS generated by the EXP.OPEN tool, before minimization
modulo branching bisimulation; The “time” and “mem.” columns indicate re-
spectively the cumulative time (in seconds) and memory peak (in megabytes)
taken by LTS generation (including confluence detection when relevant) and
minimization modulo branching bisimulation.

Figure [ shows that CcD may reduce both the time (the Lrss
"itf POPQ+NI.bcg" and "NO+N1+PUSHQ.bcg" were generated and minimized
twice faster with CcD than without CcD) and memory ("itf POPQ+NI.bcg"
and "NOC4.bcg" were generated using about half as much memory with CcD as
without Ccp).

8 Conclusion

Ccp (Compositional Confluence Detection) is a partial order reduction method
that applies to systems of communicating automata. It detects confluent tran-
sitions in the product graph, by first detecting the confluent transitions in the
individual automata and then analysing their synchronizations. Confluent tran-
sitions of the product graph can be given priority over the other transitions,
thus yielding graph reductions. We detailed two variants of CcD: one that pre-
serves branching bisimilarity with the product graph, and one that preserves its
deadlocks.

Ccp was implemented in the CADP toolbox. An encoding of the confluence
property using a BES (Boolean Equation System) allows the detection of all conflu-
ent transitions in an automaton. The existing tool EXP.OPEN 2.0, which supports
modeling and verification of systems of communicating automata, was extended
to exploit on-the-fly the confluence detected in the individual automata.



170 F. Lang and R. Mateescu

CcD can be combined with both compositional verification and other par-
tial order reductions, such as persistent sets. We presented experimental results
showing that CcD may significantly reduce both the size of the system graph
and the total time and peak memory needed to generate a minimal graph.

As future work, we plan to combine CcD reductions with distributed graph
generation [I3] in order to further scale up its capabilities. This distribution can
be done both at automata level (by launching distributed instances of confluence
detection for each automaton in the network or by performing the confluence
detection during the distributed generation of each automaton) and at network
level (by coupling Ccp with the distributed generation of the product graph).

Acknowledgements. We are grateful to W. Serwe (INRIA/VASY) and to E. Lan-
treibecq (STMicroelectronics) for providing the specifications of the XSTREAM
NoC. We also warmly thank the anonymous referees for their useful remarks.
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Abstract. It is widely agreed that building correct fault-tolerant systems is very
difficult. To address this problem, this paper introduces a new model-based ap-
proach for developing masking fault-tolerant systems. As in component-based
software development, two (or more) component specifications are developed,
one implementing the required normal behavior and the other(s) the required
fault-handling behavior. The specification of the required normal behavior is ver-
ified to satisfy system properties, whereas each specification of the required fault-
handling behavior is shown to satisfy both system properties, typically weakened,
and fault-tolerance properties, both of which can then be inferred of the composed
fault-tolerant system. The paper presents the formal foundations of our approach,
including a new notion of partial refinement and two compositional proof rules.
To demonstrate and validate the approach, the paper applies it to a real-world
avionics example.

1 Introduction

It is widely agreed that building a correct fault-tolerant system is very difficult. One
promising approach, proposed by us and others, for obtaining a high-assurance fault-
tolerant system is to specify the system requirements in two phases [4,[18.[7,[19]. In the
first phase, the normal (also called ideal) system behavior, the system behavior when
no faults can occur, is specified. In the second phase, the no-faults assumption is re-
moved, and the system’s required fault-tolerant behavior is specified. Such an approach
has many advantages. First, a specification of the normal behavior known to be correct
can be reused if the design of fault-tolerance changes. Second, if the fault-tolerant sys-
tem can be expressed as an extension of a system with normal behavior by adding a
set of fault-handling components, the specification is easier to understand and easier to
construct than a fault-tolerant system specified as a single component. Third, by apply-
ing formal specification during two separate phases, errors may be uncovered—e.g., by
applying formal verification—that might otherwise be overlooked. For example, our ap-
plication of two-phase specification and verification to a real-world avionics device [[7]
uncovered modeling errors previously unnoticed (see Section[3). Finally, specifications
of the fault-handling components may be reused in other systems.

The model-based approach proposed in this paper has attributes of two other pop-
ular approaches for developing software systems. As in aspect-oriented programming
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[17.[16], the approach weaves certain aspects, specifically, the “fault-tolerant™ aspects,
into the original program. Moreover, as in component-based software development,
two (or more) components are developed separately, and later composed to produce the
final implementation. This paper makes three contributions; it presents: 1) a component-
based approach for developing a special class of fault-tolerant systems, called “mask-
ing” fault-tolerant systems, which uses formal specification and formal verification to
obtain high confidence of system correctness; 2) a formal foundation, including a set
of sound compositional proof rules, a formal notion of fault-tolerant extension, and a
formal notion of partial refinement with an associated notion of partial property inher-
itance; and 3) a complete example of applying the approach to a real-world system.

The paper’s organization is as follows. After defining masking fault-tolerance, Sec-
tion[2] briefly reviews the SCR (Software Cost Reduction) method used in our example.
Section [3 introduces our formal method for developing fault-tolerant systems, an ex-
tension of the approach to software development presented in [7]]. To establish a formal
foundation for the method, Section [ inspired by the theory of fault tolerance in
and the theory of retrenchment applied to fault-tolerant systems in [3]], presents our new
notions of partial refinement and fault-tolerant extension, and two compositional proof
rules. To demonstrate and validate our approach and to show how formal methods can
be used to support the approach, Section [Jl applies the method to a device controller
in an avionics system [20]. Finally, Sections [] and [7] discuss related work and present
some conclusions. Although SCR is used in Section 3] to demonstrate our approach,
the method and theory presented in this paper are basically applicable in any software
development which specifies components as state machine models.

2 Background

2.1 Masking Fault-Tolerance

This paper focuses on masking fault-tolerance, a form of fault-tolerance in which the
system always recovers to normal behavior after a fault occurs, so that the occurrence of
faults is rendered mostly invisible, i.e., “masked.” We consider two variants of masking
fault tolerance. In the first variant, trransparent masking, all safety properties [2]] of the
system are preserved even in the presence of faults, and the effect of faults on the system
behavior is completely invisible. In the second variant, eventual masking, some critical
subset of the set of safety properties is preserved during fault handling, though other
safety properties guaranteed during normal behavior may be violated. When masking is
transparent, the system’s fault-tolerant behavior is a refinement of its normal behavior.
For eventual masking, system behavior during fault-handling is a degraded version of
normal behavior, and the relationship of the full fault-tolerant system behavior to nor-
mal system behavior is captured by the notions of fault-tolerant extension and partial
refinement presented in Section | The Altitude Switch (ASW) example in Section [
illustrates both variants of masking fault-tolerance.

! Many use “masking fault-tolerance” to refer only to what we call “transparent masking.”
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2.2 The SCR Requirements Method

The SCR (Software Cost Reduction) [13L[12] method uses a special tabular notation
and a set of tools for formally specifying, validating, and verifying software and system
requirements. See for a review of the SCR tabular notation, the state machine
model which defines the SCR semantics, and the SCR tools.

An important construct in SCR, the mode class, can be very useful in specifying
the required behavior of fault-tolerant systems. Conceptually, each mode in a mode
class corresponds to a “mode of operation” of the system. Thus, for example, in flight
software, pilot-visible modes determine how the software reacts to a given pilot input.
As shown in Section [3l modes similarly have a special role in SCR specifications of
fault-tolerant systems.

3 A Formal Method for Building Fault-Tolerant Systems

This section introduces a new method for building a fault-tolerant system. Based on
concepts in Parnas’ Four Variable Model [21], the method is applied in two phases.
In the first phase, the normal system behavior is specified and shown to satisfy a set
of critical properties, most commonly, safety properties [2]. In the second phase, /0
devices, e.g., sensors and actuators, are selected, hardware and other faults which may
occur are identified, and the system’s fault-tolerant behavior is designed and specified.
The fault-tolerant specification formulated in this phase is shown to satisfy 1) the critical
system properties, typically weakened, which were verified in the first phase and 2) new
properties specifying fault detection and fault recovery. While each phase is described
below as a sequence of steps, the precise ordering of the steps may vary, and some steps
may occur in parallel.

3.1 Specify the Normal System Behavior

In the first phase, the system behavior is specified under the assumption that no faults
can occur, and essential system properties are formulated and verified. The “normal”
behavior omits any mention of I/O devices, or of hardware faults and other system
malfunctions.

Specify NAT and REQ. To represent the system’s normal behavior, a state machine
model of the system requirements is formulated in terms of two sets of environmental
variables—monitored and controlled variables—and two relations—REQ and NAT—
from Parnas’ Four Variable Model [21]. Both NAT and REQ are defined on the moni-
tored and controlled variables. NAT specifies the natural constraints on monitored and
controlled variables, such as constraints imposed by physical laws and the system en-
vironment. REQ specifies the required relation the system must maintain between the
monitored and controlled variables under the assumptions defined by NAT. In the first
phase, an assumption is that the system can obtain perfect values of the monitored
quantities and compute perfect values of the controlled variables. During this phase, the
system tolerances are also defined; these may include the required precision of values
of controlled variables, timing constraints imposed by REQ on the controlled variables,
and timing constraints imposed by NAT.
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Formulate the System Properties. In this step, the critical system properties are for-
mulated as properties of the state machine model. If possible, these properties should be
safety properties, since the second phase produces a refinement (i.e., when the system
is operating normally), and safety properties are preserved under refinement [

Verify the System Properties. In the final step, the properties are verified to hold in
the state machine model, using, for example, a model checker or theorem prover.

3.2 Specify the Fault-Tolerant Behavior

In the second phase, the assumption that the system can perfectly measure values of
monitored quantities and perfectly compute values of controlled quantities is removed,
and I/O devices are selected to estimate values of monitored quantities and to set values
of controlled quantities. Also removed is the assumption that no faults occur. Possible
faults are identified, and the system is designed to tolerate some of these faults. Fi-
nally, the fault-tolerant behavior is specified as a fault-tolerant extension (see Section )
which adds extra behavior to handle faults and which may include new externally visible
behavior, e.g., operator notification of a sensor failure.

Select I/0 Devices and Identify Likely Faults. In the second phase, the first step is to
select a set of I/O devices and to document the device characteristics, including iden-
tification of possible faults. Among the possible faults are faults that invalidate either
sensor inputs or actuator outputs and faults that corrupt the program’s computations.
Examples of faults include the failure of a single sensor, the simultaneous failure of all
system sensors, and the failure of a monitored variable to change value within some
time interval. For practical reasons, the system is designed to respond to only some
possible faults. An example of an extremely unlikely fault is simultaneous failure of all
system sensors—recovery from such a massive failure is likely to be impossible. Once
a set of faults is selected, a design is developed that either makes the system tolerant of
a fault or reports a fault so that action may be taken to correct or mitigate the fault.

Design and Specify the Fault-Tolerant Behavior. A wide range of fault-tolerance
techniques have been proposed. One example is hardware redundancy, where two or
more versions of a single sensor are available, but only one is operational at a time. If
the operational sensor fails, the system switches control to a back-up sensor. In another
version of hardware redundancy, three (or any odd number of) sensors each sample a
monitored quantity’s value, and a majority vote determines the value of the quantity.
Some fault-tolerance techniques make faults transparent. For example, if three sensors
measure aircraft altitude, a majority vote may produce estimates of the altitude satisfy-
ing the system’s tolerance requirements and do so in a transparent manner. Other tech-
niques do not make faults transparent—for example, techniques which report a fault to
an operator, who then takes some corrective action.

Verify Properties of the Fault-Tolerant Specification. In this step, the critical prop-
erties verified to hold for the normal system behavior must be shown to hold for the
fault-tolerant behavior. In some cases, properties of the normal system will not hold
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throughout the fault-tolerant system but may remain true for only some behavior (e.g.,
for only the normal behavior). A new notion of partial refinement, defined in Section 4]
describes the conditions which must be established for the fault-tolerant system to par-
tially inherit properties of the normal system. In addition, new properties are formulated
to describe the required behavior when a fault is detected and when the system recovers
from a fault. It must then be shown that the fault-tolerant specification satisfies these
new properties, which can be established as invariants with the aid of compositional
proof rules, such as those presented in Section 2]

4 Formal Foundations

This section presents formal definitions, theoretical results, and formal techniques that
support our approach to developing provably correct fault-tolerant systems. The most
important concepts and results include our notions of partial refinement and fault-
tolerant extension, and two proof methods for establishing properties of a fault-tolerant
extension based on properties of the normal (fault-free) system behavior it extends. The
first proof method is based on Theorem [I] concerning property inheritance under par-
tial refinement; the second is based on compositional proof rules for invariants, two
of which are shown in Figure 2l The section begins with general notions concerning
state machines, then introduces fault-tolerance concepts, and finally, discusses addi-
tional concepts and results that apply as additional assumptions about state machines
are added—first, that states are determined by the values of a set of state variables, and
second, that the state machines are specified in SCR. Each concept or result presented
is introduced at the highest level of generality possible. The definitions, results, and
techniques of this section are illustrated in the ASW example presented in Section[3}

4.1 General Definitions

To establish some terminology, we begin with the (well-known) definitions of state ma-
chine and invariant property (invariant, for short). As is often customary, we consider
predicates to be synonymous with sets; thus, “P is a predicate on set S” = “P C S”,
“P(s) holds” = “s € P”, etc.

Definition 1. State machine. A state machine A is a triple (Sa, 04, pa), where S 4 isa
nonempty set of states, @ 4 C S 4 is a nonempty set of initial states, and py C Sa X Sa
is a set of transitions that contains the stutter step (sa,sa) for every sa in Sa. A
state sp € Sy is reachable if there is a sequence (so,s1), (S1,52),...(Spn—1,5n) of
transitions in p o such that s is an initial state and s, = s a. A transition (sa,s'y) € pa
is a reachable transition if s4 is a reachable state. Reachable states/transitions of A
are also called A-reachable states/transitions.

Definition 2. One-state and two-state predicates/invariants. Let A = (54,04, p4)
be a state machine. Then a one-state predicate of A is a predicate P C S 4, and a two-
state predicate of A is a predicate P C Sy x S4. A one-state (two-state) predicate P
is a state (transition) invariant of A if all reachable states (transitions) of A are in P.
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Fig. 1. Transitions in the fault-tolerant system FT

We next define two notions that describe how two state machines (e.g., two models of
a system) may be related. The well known notion of refinement is especially useful in
the context of software development because the existence of a refinement mapping
from a state machine C to a state machine A at a more abstract level permits impor-
tant properties—including all safety properties (and hence all one-state and two-state
invariants)—proved of A to be inferred of C. A new notion, which we call partial re-
finement, is a generalization of refinement useful in situations where the approximation
by a detailed system model to a model of normal system behavior is inexact.

Definition 3. Refinement. Let A = (S4,04,p4) and C = (Sc, Oc, pc) be two state
machines, and let o« : S¢ — Sy be a mapping from the states of C to the states of
A. Then « is a refinement mapping if 1) for every sc in O¢, a(sc) is in © 4, and 2)
pala(sc),a(sy)) for every pair of states sc, ¢, in Sc such that pc(sc, S¢).

Definition 4. Partial Refinement. Let A = (S4,04,pa) and C = (Sc,Oc, pc) be
two state machines and o : Sc > S be a partial mapping from states of C to states
of A. Then « is a partial refinement mapping if 1) for every s¢ in O¢, a(sc) is defined
and in Oy, and 2) pa(a(sc),a(sy)) for every pair of states sc, g in the domain
a™1(S4) of a such that pc(sc, si). When a partial refinement mapping « exists from
C r0 A, we say that C is a partial refinement of A (with respect to o).

The notions of vulnerable state and vulnerable transition are useful (see Theorem[I)) in
describing the circumstances under which properties proved of a state machine A can
be partially inferred for a state machine C that is a partial refinement of A.

Definition 5. Vulnerable states and vulnerable transitions. Let A = (S4,04,p4)
and C = (S¢,Oc¢, pc) be two state machines, and let « : S¢ 2 S bea partial
refinement. Then a state sc in the domain of « is vulnerable if there exists a state s,
in Sc such that pc(sc, si) but the transition (s, S¢.) does not map under « to a
transition in A (in which case we refer to (sc, s¢;) as a vulnerable transition).

4.2 Concepts for Fault Tolerance

Our method for including fault tolerance in the software development process described
in Section 3] begins with a model ID of the normal (software) system behavior. In the



A Formal Method for Developing Provably Correct Fault-Tolerant Systems 179

next phase, ID is used as a basis for constructing a model FT of the system that is a
fault-tolerant extension of ID in the following sense:

Definition 6. Fault-tolerant extension. Given a state machine model ID of a system,
a second state machine model ¥'T of the system is a fault-tolerant extension of ID if:

— the state set Spr of FT partitions naturally into two sets: 1) N, the set of normal
states, which includes O pr and 2) F, the set of fault-handling states that represent
the system state after a fault has occurred, and

— there is a map m : N — Sip and a two-state predicate O C N x N for
FT such that 1(Opr) C Orp and s1,82 € N N O(s1,82) A ppr(si,s2) =
prp(m(s1), m(s2)).

The map 7 and predicate O are, respectively, the normal state map and normal transition
predicate for FT.

Figure [dlillustrates the structure of FT and its relationship to ID. There are five classes
of transitions in FT:

1. transitions from N to /N that map to transitions in ID (Normal Behavior),
transitions from N to N that do not map to transitions in ID (not shown),
transitions from /N to F' (Fault Detection),

transitions from F' to F' (Degraded Behavior), and

transitions from F' to N (Fault Recovery).

Dk

Remark 1. When FT is a fault-tolerant extension of ID, 7 is a partial refinement map-
ping from the state machine (Spr, @pr, O N ppr) to ID. Further, if FT has no transi-
tions of class2] classBlrepresents all vulnerable transitions in FT, and 7 : S — Sip
is a partial refinement mapping from FT to ID.

Even when 7 is not a partial refinement from FT to ID, there is still guaranteed to be a
partial refinement from FT to ID whose domain can be defined in terms of the normal
transition predicate O in Definition [0l In particular, given O, let O be the one-state
predicate for FT defined by:

~ é(

O(s1) Vso € Spr i p(s1,82) = O(s1, 82))

(It is easily seen, as indicated in Figure[T] that 0] C N.) Then, for any state s € Sgr,
O(s) implies that all transitions in FT from s map to transitions in ID. Therefore,
restricted to the set O, the map 7 is a partial refinement map from FT to ID.

If (s1, s2) is a transition in FT of class[Bl we refer to so as a reentry state. Further, if
(s1, 52) is of class2l we refer to sy as an exceptional target state. By a simple inductive
argument, we have:

Lemma 1. If every reentry state and every exceptional target state in N maps under
7 to a reachable state in ID, then every FT-reachable state in N maps under 7 to a
reachable state in 1D, and every ¥T-reachable transition in OCN maps under T to a
reachable transition in ID.
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(1) @ is a one-state predicate for FT such that @) respects 7

(2) 7(@rr) C O1p C7(Q)

(3) s1,82 € Sip A w(Q)(s1) A pip(s1,s2) = m(Q)(s2)

(4) s1,s2 € Spr A prr(s1,s2) = [(Q(s1) A =O(s1,s2)) = Q(s2)]
(5) s1,82 € NC Srr Aprr(si,s2) = [O(s1,s2) = prp(w(s1),n(s2))]

Q is a state invariant of FT

(1) P and Q are two-state predicates for FT such that P = Q A P respects 7
(2) s1,82 € Sip A prp(s1,s2) =  ((m x ) (P))(s1, s2)

(3) 81,82 € Srr A pFT(Sl,Sz) = [—‘0(51,82) = Q(Sl,SQ)]

(4) s1,s2 € NC Srr Aprr(si,s2) = [O(s1,s2) = prp(w(s1),n(s2))]

Q) is a transition invariant of FT

Fig. 2. Proof rules for state and transition invariants of FT

Using the notation above, we can now state:

Theorem 1. Property inheritance under partial refinement. Let FT be a fault-toler-
ant extension of ID in which every reentry or exceptional target state maps under T to

a reachable state in ID. Then 1) for every one-state invariant P of ID, &(P) 2 Por
holds for every ¥T-reachable state in N, and 2) for every two-state invariant P of 1D,

d(P) 2 po (m x ) holds for every non-vulnerable reachable transition of FT from a
state in N (thus, in particular, for every reachable transition of FT from a state in O).

As shown below, the fault-tolerant ASW behavior is a fault-tolerant extension of the
normal ASW behavior with natural definitions for N and F' (see Section [3)), 7 (see
Section[.3)), and O (see Sectiond.4) such that all transitions from N to N are of class[Il
Further, we have proven formally that all reentry states in the fault-tolerant version of
the ASW are reachable, and there are no exceptional target states. Hence, for the ASW,
Theorem[T] can be used to deduce properties of FT from properties of ID.

In general, however, to supplement Theorem [T a method is needed for establishing
properties of FT in the case when it is difficult or impossible to establish that all reentry
states and exceptional target states in FT map under 7 to reachable states of ID. For
this purpose, we provide compositional proof rules analogous to those in [15]. We first
define what it means for a predicate to respect a mapping:

Definition 7. Let w : S1 — S5 be a mapping from set Sy to set So. Then 1) a pred-
icate Q) on Sy respects 7 if for all 5,5 in S1, Q(s) A (w(s) = 7(8)) = Q(S), and
2) a predicate QQ on Sy x Sy respects w if forall s,8,s",58 in S, Q(s,s") N (7(s) =
m(8)) A (7(s) = m(8)) = Q(5,8).

Figure [ gives proof rules for establishing that a one-state (two-state) predicate @ on
FT is a state (transition) invariant of FT. Note that line (5) of the first proof rule and
line (4) in the second proof rule are part of the definition of fault-tolerant extension.



A Formal Method for Developing Provably Correct Fault-Tolerant Systems 181

4.3 Fault Tolerance Concepts in Terms of State Variables

When the states of a state machine are defined by a vector of values associated with a
set of state variables (as is true, for example, in SCR specifications), it is possible to
interpret the concepts in Section [£.2] more explicitly. In particular, constructing a fault
tolerant system model FT from a normal system model ID is usually done by adding
any new variables, new values of types of existing variables, and new transitions needed
to describe the triggering and subsequent handling of faults. We will refer to the original
variables as normal variables, and the added variables as fault-tolerance variables; for
any normal variable, we will refer to its possible values in ID as normal values, and
any new possible values added in FT as extended values. In this terminology, the states
in N C Spp are those for which all normal variables have normal values. The map
m : N — Srp can then simply be chosen to be the projection map with respect to the
normal variables.

Although Definition [2 represents predicates abstractly as sets when states are de-
termined by the values assigned to state variables, most predicates of interest can be
represented syntactically as relations among state variables and constants. Further, on a
syntactic level, the map(s) @ defined in Theorem [l will be the identity.

4.4 Modeling Fault Tolerance in SCR

As shown in Section 3.2l below, several aspects of an SCR specification can be used to
advantage in defining FT as a fault-tolerant extension of a normal system specification
ID in the sense of Definition[6l These aspects include mode classes, tables to define the
behavior of individual variables, and the description of transitions in terms of events.

We call a fault-tolerant extension FT of ID obtained by the technique of Section[5.2]
simple if any row splits in the table of any normal variable result in new rows defin-
ing updated values of the variable that are either the same as in the original row for
ID or are among the extended values for that variable. (For example, row 3 of Table[I]
is split into rows 3a and 3b of Table[@) In the terminology of Definition [6] in a sim-
ple fault-tolerant extension, every transition from N in FT either maps under 7 to a
normal transition in ID or is a transition from N to I (class [3). It is not difficult to
prove the following:

Theorem 2. For any simple fault-tolerant extension ¥T of ID, the normal state map
7 is a partial refinement mapping and one can choose the normal transition predicate
to be

O(Sl7 52) é

N(Sl) A\ N(SQ).
Thus, since the predicate IV can be expressed simply as an assertion that no normal
variable has an extended value, it is possible in the context of SCR to compute O for
any FT defined as a simple fault-tolerant extension of DA

% We have also shown that O can be automatically computed for some examples in which FT is
not a simple fault-tolerant extension of ID.



182 R. Jeffords et al.

5 Example: Altitude Switch (ASW)

This section shows how the method presented in Section[3] can be applied using SCR
to a practical system, the Altitude Switch (ASW) controller in an avionics system [20].
The goal of the ASW example is to demonstrate the specification of a system’s normal
behavior ID and the separate specification of its fault-tolerant behavior FT as a simple
fault-tolerant extension. This is in contrast to [[7], which presents an earlier SCR speci-
fication of the ASW behavior, whose goal was to demonstrate the application of Parnas’
Four Variable Model to software development using SCR.

The primary function of the ASW is to power on a generic Device of Interest (DOI)
when an aircraft descends below a threshold altitude. In some cases, the pilot can set an
inhibitor button to prevent the powering on of the DOI. The pilot can also press a reset
button to reinitialize the ASW. Fault-tolerance is supported by three sensors and the
system clock. If certain events occur (e.g., all three sensors fail for some time period),
the system enters a fault mode and may take some action (e.g., turn on a fault indicator
lamp). Recovery from a fault occurs when the pilot resets the system.

Sections [5.1]and [5.2] describe the results of applying our method to the specification
and verification of both the normal and the fault-tolerant ASW behavior. Section
also shows how the theoretical results in Section [l can be used to prove properties of
the ASW’s fault-tolerant behavior FT. Starting from property P, of the normal ASW
behavior, our results about property inheritance allow us to derive Py, a weakening of
P,, which holds in FT, while our compositional proof rules can be used to show that
Pz, a different weakening of P, also holds in FT. Table [ defines both P, and P2
Property P, is defined in Section[5.2]

5.1 Specify and Verify the Normal Behavior of the ASW

To characterize the normal behavior ID of the ASW, this section presents a state ma-
chine model of the ASW’s normal behavior expressed in terms of NAT and REQ, and a
set of critical system properties which are expected to hold in the model.

Specify NAT and REQ. The normal ASW behavior is specified in terms of 1) con-
trolled and monitored variables, 2) environmental assumptions, 3) system modes and
how they change in response to monitored variable changes, and 4) the required rela-
tion between the monitored and controlled variables. The relation NAT is defined by 1)
and 2) and the relation REQ by 3) and 4).

The ASW has a single controlled variable cWakeUpDOI, a boolean, initially false,
which signals the DOI to power on, and six monitored variables: 1) mAl1tBelow, true
if the aircraft’s altitude is below a threshold; 2) mDOIStatus, which indicates whether
the DOl is on; 3) mInitializing, true if the DOI is initializing; 4) mInhibit, which
indicates whether powering on the DOI is inhibited; 5) mReset, true when the pilot has
pressed the reset button; and 6) mTime, the time measured by the system clock. The
ASW also has a single mode class mcStatus containing three system modes: 1) init
(system is initializing), 2) awaitD0Ion (system has requested power to the DOI and is
awaiting a signal that the DOI is operational), and 3) standby (all other cases).
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Table 1. Mode transition table for mcStatus Table 2. cWakeUpDOI cond. table
Row  Oid Event New Mode in  cWakeUpDOI
No. Mode Mode mcStatus
1 init @QF(mInitializing) standby init, standby Fulse
2  standby QT(mReset) init awaitDOTIon True

3 standby @T(mAltBelow)WHEN awaitDOIon
(NOT mInhibit AND
mDOIStatus =off)

4 awaitDOIon @QT(mDOIStatus=on) standby

awaitDOIon @QT(mReset) init

Table [1] defines the ASW mode transitions. Once initialization is complete (event
@F(mInitializing) occurs), the system moves from init to standby. It returns to
init when the pilot pushes the reset button (@T(mReset) occurs). The system moves
from standby to awaitDOIon when the aircraft descends below the threshold altitude
(@T(mAltBelow) occurs), but only when powering on is not inhibited, and the DOI is
not powered on. Once the DOI signals that it is powered on (@T(mDOIStatus = on)
occurs), the system goes from awaitDOIon to standby. Table [2| defines the value
of the controlled variable cWakeUpDOI as a function of the mode class mcStatus. If
mcStatus = awaitD0Ion, then cWakeUpDOI is True; otherwise, it is False.

Table 3. ASW Assumptions

Name System Formal Statement
A1 ID,FT (mTime’ —mTime) € {0,1}
As ID DUR(mcStatus = init) < InitDur
As ID DUR(mcStatus = awaitDOIon) < FaultDur
Ay FT DUR(cFaultIndicator = on) < FaultDur

The relation NAT for ASW contains three assumptions, A;, Ao, and As, each a
constraint on the system timing (see Table B[)E The first assumption, A;, states that
time never decreases and, if time increases, it increases by one time unitﬂ Assumptions
Ag and As define constraints on the time that the system remains in specified modes.
To represent these constraints, we require SCR’s DUR operator. Informally, if ¢ is a
condition and k is a positive integer, the predicate DUR(c¢) = k holds at step i if in step ¢
condition c¢ is true and has been true for exactly k time units. Ao requires that the ASW

3 In Tables B3] assumptions and properties of hoth the normal (ID) and fault-tolerant (FT) sys-
tems are presented. Any row in these tables that applies only to FT is described in Section[5.2]
* The primed variable mTime’ in Table Band other primed expressions refer to the expression’s
value in the new state; any unprimed expression refers to the expression’s value in the old state.
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spend no more than InitDur time units initializing, while A3 requires the system to
power on the DOI in no more than FaultDur time units.

Specify the ASW Properties. Table ] defines two required properties, Py and P», of
the ASW’s normal behavior. Pj, a safety property, states that pressing the reset button
always causes the system to return to the initial mode. P, another safety property, spec-
ifies the event and conditions that must hold to wake up the DOI. A user can execute
the SCR invariant generator to derive a set of state invariants from an SCR specifi-
cation. Such invariants may be used as auxiliary properties in proving other properties,
such as P, and P». Applying the invariant generator to the specification of the normal
ASW behavior (defined by Table [Il Table 2l and assumptions A;-As) automatically
constructs the state invariant /{1, which is defined in Table[3

Verify the ASW Properties. The property checker Salsa easily verifies that the

specification of the ASW’s normal behavior satisfies P; and P,. Completing the proof
of P, requires the auxiliary H;; proving P; requires no auxiliaries.

Table 4. ASW Properties

Name System Formal Statement
P ID,FT QT(mReset) = mcStatus’ = init
Py ID mcStatus = standby A @QT(mAltBelow) A —-mInhibit
A mDOIStatus = off = cWakeUpDOI’
Py FT mcStatus = standby A QT(mAltBelow) A —mInhibit
A mDOIStatus = off A —mAltimeterFail = cWakeUpDOI'
G FT mAltimeterFail A mcStatus = standby = mcStatus’ # awaitDOIon
Go FT mcStatus = fault = mcStatus’ = init V mcStatus’ = fault

Table 5. ASW State Invariants

Name System Formal Statement
H, ID,FT (mcStatus = awaitDOIon) <> cWakeUpDOI
Jo FT cFaultIndicator = on < mcStatus = fault
J3 FT DUR(cFaultIndicator =on)# (0 = cFaultIndicator = on

5.2 Specify and Verify the Fault-Tolerant Behavior of the ASW

This section describes how the normal behavior of the ASW can be refined to handle
faults. First, the I/O devices are selected. Next, the faults that the ASW system will be
designed to handle are identified, and the fault-tolerant and failure notification behavior
of the ASW are specified. Finally, new ASW properties are formulated to capture the
required fault-tolerant behavior, and these new properties as well as the ASW properties
proven for the normal behavior, possibly reformulated, are proven to hold in the fault-
tolerant specification.
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Select the ASW I/0 Devices. To estimate whether the aircraft is below the thresh-
old altitude, three altimeters are selected, one analog and the other two digital. For a
description of the other I/O devices selected for the ASW, see [7]].

Identify Likely ASW Faults. The ASW is designed to tolerate three faults: 1) the fail-
ure of all three altimeters, 2) remaining in the initialization mode too long, and 3) failure
to power on the DOI on request within some time limit. All three faults are examples
of eventual masking—the system enters a fault handling state but eventually recovers
to normal behavior. To notify the pilot when a fault occurs, the ASW turns on a Fault
Indicator lamp. The ASW is also designed to handle a single altimeter failure; it uses
the remaining two altimeters to determine whether the aircraft is below the threshold
altitude. This is an example of masking where the fault is transparent at the system
level—the system never enters a fault handling state when only one altimeter fails.

Specify ASW Fault-Tolerant Behavior. Generally, adding behavior related to fault
detection, notification, and handling to the specification of normal system behavior re-
quires new monitored variables to detect faults, new controlled variable to report the oc-
currence of faults, and new values for any variable, and, in particular, new fault modes
in mode classes. To define the additional behavior in SCR, tables defining the new vari-
ables are added, and tables defining the existing variables are modified and extended.

Adding fault-handling and fault notification to the normal ASW specification ID
requires 1) a new monitored variable mAltimeterFail to signal the failure of all three
altimetersﬁ 2) anew controlled variable cFaultIndicator to notify the pilot of a fault
by turning on a lamp, 3) a new mode fault to indicate the detection of a fault, 4) a new
table defining cFaultIndicator, and 5) the modification and extension of two tables:
the table defining the controlled variable cWakeUpDOI and the mode transition table
defining the mode class mcStatus. The final step removes assumptions Ao and As,
thus allowing the fault-tolerant system to suffer from these faults.

To define a new mode transition table capturing fault detection and recovery, the
mode transition table for the ASW normal behavior, Table [l is replaced with a new
mode transition table, containing rows 1, 2, 4, and 5 of Table [l and rows 6, 7, and
8 of Table[fl and replacing row 3 of Table [Tl with rows 3a and 3b of Table [6l In the
new table, a fault is detected 1) if the system takes more than InitDur time units to
initialize (replaces the deleted As), 2) if the DOI takes more than FaultDur time units
to power up (replaces the deleted Ag), or 3) if all three altimeters have failed for more
than FaultDur time units. Three rows of Table[6] (rows 3b, 6, and 7), each marked by a
simple arrow, indicate the detection of the three faults. The system recovers from a fault
when the pilot presses mReset in response to the Fault Indicator lamp turning on. To
represent recovery, a new transition from fault to init, triggered by QT(mReset), is
added (row 8, marked by a squiggly arrow). To force the system to recover within some
bounded time, a new assumption A, (see Table[3)) is that the pilot always responds to a
failure notification by pushing reset within some time limit. To complete the new table,
row 3 of Table[Tlis split into row 3a and row 3b based on whether mAltimeterFail is

3 Because this paper focuses on the fault-tolerance aspects of the ASW, the details of how
mAltimeterFail is computed are omitted. For these details, see [7].
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Table 6. Fault Handling Modifications for Mode Transition Table in Table[T]

Row Old Event New
No. Mode Mode
T 3a standby @T(mAltBelow) WHEN (NOT mInhibit AND awaitDOIon
mDOIStatus=off) AND NOT mAltimeterFail
— 3b standby @T(mAltBelow) WHEN (NOT mInhibit AND fault
mDOIStatus =off) AND mAltimeterFail
— 6 init @QT(DUR(mcStatus = init) > InitDur) fault
— 7 awaitDOIon QT(DUR(mcStatus = awaitDOIon) > FaultDur) OR fault

@QT(DUR(mAltimeterFail) > FaultDur)
~ 8 fault  @QT(mReset) init

Table 7. New table defining cFaultIndicator Table 8. Revised table for cWakeUpDOI

Mode in mcStatus cFaultIndicator Mode in mcStatus cWakeUpDOI
init, standby, awaitDOIon off init, standby, fault False
fault on awaitDOIon True

true. If true, the system goes to fault (row 3b); otherwise, it goes to awaitDOIon as
in the normal specification ID (row 3a, marked by a dagger).

To indicate when the Fault Indicator lamp is on, a new table, Table [} is defined to
indicate that cFaultIndicator is on when the system is in the fault mode and off
otherwise. The last step is to add the fault mode to the set of modes which assign the
value false to the table defining cWakeUpDOI (see Tablel[S)).

Adding the new mode fault to the specification allows a normal state in the ASW
to be distinguished from a fault handling state. In particular, we define a state pred-
icate N, where N : mcStatus # fault, and a second state predicate I, where
F' :mcStatus = fault.

Verify the ASW Fault-Tolerance Properties. The safety properties, P, and P, prop-
erties of the specification ID of normal behavior, are also included as candidate prop-
erties of the fault-tolerant version FT of the ASW. In addition, safety properties, G
and G, defined in Table [ represent part of the required fault-tolerant behavior of the
ASW [9]. To support the proofs of the properties Py, P>, G, and G2, the SCR invariant
generator is applied to the fault-tolerant specification. Of the two invariants generated,
the first corresponds exactly to H1, the invariant generated previously from the normal
specification ID; the second invariant .J, is defined in Table 3l The third invariant .J3,
also defined in Table[3] is a property of the DUR operator. Using .Jo and .J3 as auxiliary
invariants, we used Salsa to check the fault-tolerant specification FT for all properties
listed in Table @ All but P, were shown to be invariants. Thus the required behavior
represented by P fails in FT (that is, when all altimeters fail). Applying Theorem [I]
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from Section @ we can show that FT inherits the weakened property P, = N’ = P,
from property P of ID. In addition, the second compositional proof rule from Section]
with P = P, provides an alternate way to show that Pg, a weakened version of %, holds
in FT. (See Table H for the definition of P.)

To further evaluate the ASW specifications, we checked additional properties, e.g.,
the property DUR(mcStatus = standby A mAltimeterFail) < FaultDur, whose
invariance guarantees that the ASW never remains in mcStatus = standby too long.
Failure to prove this property led to the discovery (via simulation) that the ASW could
remain in mode standby forever—not a desired behavior. Although our specification
does not fix this problem, the example shows how checking properties is a useful tech-
nique for discovering errors in specifications.

6 Related Work

Our model fits the formal notion of masking fault-tolerance of [18]], but rather than
expressing recovery as a liveness property, we use bounded liveness, which is more
practical. Other compositional approaches to fault-tolerance describe the design of fault-
tolerant detectors and correctors [4] and the automatic generation of fault-tolerant sys-
tems [I83]]. Our notion of fault-tolerant extension is most closely related to the notion
of retrenchment formulated by Banach et al. [6] and the application of retrenchment
to fault-tolerant systems [5]]. General retrenchment is a means of formally expressing
normal and exceptional behavior as a formula of the form A = BV C, where A = B
is true for the normal cases, and A = C'is true for the exceptional cases. Our concept
of the relation of fault-tolerant behavior to normal behavior can also be described in this
form: ppr(s1, s2) = (O(s1, s2) Apip(7(s1), 7(s2)) V =O(s1, s2) Av(s1, $2)), where
~ is derived from the transitions of classes 2-5. The novelty of our approach is recogni-
tion that this disjunction may be expressed equivalently as the conjunction of two impli-
cations, pFT(Sla 82) /\0(81, 82) = PID (’/T(Sl)7 7T(52)) and pFT(Sla 82) /\“O(Sl7 52) =
~(s1, s2), thus providing the basis for our theory of partial refinement and the develop-
ment of compositional proof rules.

In [19], Liu and Joseph describe classical refinement of fault-tolerant systems as well
as refinement of timing and scheduling requirements. Classical refinement is well-suited
to implementation of “transparent masking fault-tolerance,” often using redundancy,
and contrasts with eventual masking fault-tolerance, which tolerates weaker invariant
properties when the system is faulty (i.e., has degraded performance), and thus requires
a different approach such as partial refinement.

Our extension of “normal” behavior with added fault-tolerant behavior may be
viewed as a transformation of the normal system. A number of researchers, e.g. [19/10],
apply the transformational approach to the development of fault-tolerant systems. This
approach is also found in Katz’ formal treatment of aspect-oriented programming [16].
In addition, Katz describes how various aspects affect temporal logic properties of a
system and defines a “weakly invasive” aspect as one implemented as code which al-
ways returns to some state of the underlying system. The relationship of a “weakly
invasive” aspect to the underlying system is analogous to the relationship of F'to N in
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Figure Il when there are no exceptional target states and every entry state maps under 7
to a reachable state in ID. In this case, an analog of our Theorem[I]l would hold for the
augmented system.

7 Conclusions

This paper has presented a new method, based on Parnas’ Four Variable Model, for
specifying and verifying the required behavior of a fault-tolerant system; provided a
theory of partial refinement and fault-tolerant extension, and a set of compositional
proof rules, as a foundation for the method; and demonstrated how the SCR language
and tools can be used to support the new method as a structured alternative to the ad hoc
construction and monolithic verification of fault-tolerant systems. Like Banach’s theory
of retrenchment, our theory of partial refinement and fault-tolerant extension applies not
only to fault-tolerant systems, but more generally to all systems with both normal and
exceptional behavior.

One major benefit of the compositional approach presented here is that it separates
the task of specifying the normal system behavior from the task of specifying the fault-
tolerant behavior, thus simplifying the specification of such systems and making their
specifications both easier to understand and easier to change. The theory in Section M
provides the basis for formulating additional compositional proof rules and vulnera-
bility analyses, both topics for future research. We also plan to explore the utility of
our approach for fault-tolerance techniques other than masking. For example, omitting
recovery results in a method which applies to fail-safe fault-tolerance.

Formal proofs of state and transition invariants capturing desired system behavior,
together with properties derived from partial refinement and verified using our composi-
tional proof rules, should lead to high confidence that the specification of a given fault-
tolerant system is correct. Our new approach is supported by the SCR toolset, where
increasing confidence of correctness is supported by simulation, model-checking, and
proofs of invariants. In future research, we plan to explore the automatic construction
of efficient source code from the FT specification using the SCR code generator
and other code synthesis techniques.
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Abstract. Today we see an increasing demand for flash memory because
it has certain advantages like resistance against kinetic shock. However,
reliable data storage also requires a specialized file system knowing and
handling the limitations of flash memory. This paper develops a formal,
abstract model for the UBIF'S flash file system, which has recently been
included in the Linux kernel. We develop formal specifications for the
core components of the file system: the inode-based file store, the flash
index, its cached copy in the RAM and the journal to save the differences.
Based on these data structures we give an abstract specification of the
interface operations of UBIFS and prove some of the most important
properties using the interactive verification system KIV.

1 Introduction

Flash memory has become popular in recent years as a robust medium to store
data. Its main advantage compared to traditional hard disks is that it has no
moving parts and is therefore much less susceptible to mechanical shocks or
vibration. Therefore it is popular in digital audio players, digital cameras and
mobile phones.

Flash memory is also getting more and more important in embedded systems
(e.g. automotive [28]) where space restrictions rule out magnetic drives, as well
as in mass storage systems (solid state disk storage systems like the RamSan-
5000 from Texas Memory Systems) since it has shorter access times than hard
disks.

Flash memory has different characteristics when compared to a traditional
hard disk. These are explained in Section 2l In brief, flash memory cannot be
overwritten, but only erased in blocks and erasing should be done evenly (“wear
leveling”). These properties imply that standard file systems cannot be used
with flash memory directly.

Two solutions are possible: either a flash translation layer is implemented
(typically in hardware), translating standard file system operations into flash
operations. This is the standard solution used e.g. in USB flash drives. It has
the advantage that any file system can be used on top (e.g. NTFS or ext2). On
the other hand, the characteristics of file systems (e.g. partitioning of the data
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into the content of files, directory trees, or other meta data like journals etc.)
cannot be effectively exploited using this solution.

Therefore a number of flash file systems (abbreviated FFS in the following)
has been developed, that optimize the file system structure to be used with flash
memory. Many of these FFS are proprietary (see [9] for an overview). A very
recent development is UBIFS [14], which was added to the Linux kernel last
year.

Increased use of flash memory in safety-critical applications has led Joshi and
Holzmann [I6] from the NASA Jet Propulsion Laboratory in 2007 to propose the
verification of a FFS as a new challenge in Hoare’s verification Grand Challenge
[13]. Their goal was a verified FFS for use in future missions. NASA already uses
flash memory in spacecraft, e.g. on the Mars Exploration Rovers. This already
had nearly disastrous consequences as the Mars Rover Spirit was almost lost due
to an anomaly in the software access to the flash store [22].

A roadmap to solving the challenge has been published by Freitas, Wood-
cock and Butterfield []]. This paper presents our first steps towards solving this
challenge.

There has been other work on the formal specification of file systems. First,
some papers exist which start top-down by specifying directory trees and POSIX
like file operations, e.g. the specifications of [20] of a UNIX-like file system, or
our own specification of a mandatory security model for file systems on smart
cards [26]. More recently and targeted towards the Grand Challenge, Damchoom,
Butler and Abrial [5] have given a high-level model of directory trees and some
refinements. An abstract specification of POSIX is also given in [7] (some results
are also in [21]). Butterfield and Woodcock [4] have started bottom-up with
a formal specification of the ONFI standard of flash memory itself. The most
elaborate work we are aware of is the one by Kang and Jackson [17] using
Alloy. Its relation to our work will be discussed in Section [l Our approach is
middle-out, since our main goal was to understand the critical requirements of
an efficient, real implementation. Therefore we have analyzed the code of UBIFS
(ca. 35.000 loc), and developed an abstract, formal model from it. Although the
resulting model is still very abstract and leaves out a lot of relevant details, it
already covers some of the important aspects of any FFS implementation. These
are:

Updates on flash are out-of-place because overwriting is impossible.

Like most traditional file systems the FFS is structured as a graph of inodes.
For efficiency, the main index data structure is cached in RAM.

Due to e.g. a system crash the RAM index can always get lost. The FFS
stores a journal to recover from such a crash with a replay operation.

5. Care has been taken that the elementary assignments in the file system
operations will map to atomic updates in the final implementation, to ensure
that all intermediate states will be recoverable.

= L=

The paper is organized as follows. Section 2lgives an overview over the data struc-
tures and how the implementation works. Section [ gives details of the structure
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of inodes, and how they represent directory trees. The formal specifications we
have set up in our interactive theorem prover KIV are explained. Section H] ex-
plains how the journal works. Section [l lists the specified file system operations
and gives the code specifying the ‘create file’ operation as an example. Section
lists the properties we have verified with KIV and discusses the effort needed.
Full specifications and proofs are available from the Web [18].

Section [ presents a number of topics which still require future work to bring
our abstract model close to a verified implementation. In particular, our model,
just as UBIFS, does not consider wear leveling, but relegates it to a separate,
lower level, called UBI (“unsorted block images”). Finally, Section [§ concludes.

2 Flash Memory and UBIFS

Flash memory has certain special characteristics that require a treatment that
is substantially different from magnetic storage. The crucial difference is that
in-place update of data, i.e. overwriting stored data, is not possible. To write
new data on a currently used part of the flash memory, that part must first
be erased, i.e. set back to an unwritten state. Flash media are organized in
so-called erase blocks, which are the smallest data units that can be erased (typ-
ically 64 KB). Simulating in-place updates by reading a complete erase block,
resetting it and writing back the modified erase block is not viable for two rea-
sons. First, it is about 100 times slower than writing the modified data to a
free erase block and second, it wears out the media. This is due to the sec-
ond great difference between magnetic and flash storage. Flash memory gets
destroyed by erasing. Depending on the used flash technology, the flash stor-
age is destroyed after 10.000 to 2.000.000 erase cycles. This requires special FFS
treatment, because the FF'S must deal with the problem of deterioration of parts
of the media that are erased often and with the fact that in-place changes of
already written data are not possible. Therefore data is updated out-of-place
instead, i.e. the new version of the data is written somewhere else on the media.
This entails the need for garbage collection because sooner or later the differ-
ent erase blocks all contain parts with valid data and parts with obsolete data.
Garbage collection must be able to efficiently decide if an entry in an erase block
still belongs to a valid file or directory. This is done by storing additional meta-
data with the actual data. The combination of metadata and data is called a
node.

A node records which file (or to be precise which inode) the node belongs to,
what kind of data is stored in the node and the data themselves. The structure
of the nodes in UBIF'S and our resulting specification are described in Sect.[3 In
our model, the nodes that are stored on the flash are contained in the flash store.
The flash store is modeled as a finite mapping of addresses to nodes. Figure [I]
shows the 4 central data structures of UBIFS (one of them the flash store) and
explains what impacts the different operations have on them. The flash store
is represented by the third column in Fig. [ initially containing some data FS
and some empty areas ({}). In step @ of the figure, a regular operation (OP) is
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Fig. 1. Impact of UBIFS operations on the data structures

performed, e.g. overwriting data in a file. The second line shows the new state:
The flash store has some new data (new), some unchanged parts (F'S”) and some
obsolete data (old) due to the out-of-place updates. These obsolete data can be
collected by garbage collection as shown in step @

A problem that is crucial for the efficiency of the FFS is indexing. Without
an index that allows searching for a specific node efficiently, the whole media
would have to be scanned. Therefore UBIFS uses an index that maps so-called
keys (which are, roughly speaking, unique identifiers of nodes) to the address
of the node on the flash media. The index in UBIFS is organized as a BT-tree
and stored in memory (later on called RAM index). For efficiency reasons, the
index should be stored on flash as well, because rebuilding the index by scanning
the complete media (as JFFS2 [29] does) takes up a lot of time at mount time.
Therefore UBIFS also stores the index on flash (later on flash index). The RAM
index and the flash index are shown as the two leftmost columns in Fig.[Il Having
an index on flash poses some difficulties as

— the index must be updated out-of-place on the flash media (this is done by
using a wandering tree).

— the index has to be changed every time old data is changed or new data is
written (because the new data must be added to the index and the position
of the modified data changes due to out-of-place updates).

To limit the number of changes to the flash index, UBIFS does not update the
flash index immediately, but uses a journal (also called log) of recent changes
instead. Section Ml gives details on our model of the UBIFS journal. The log can
be seen in the rightmost column of Fig. [Il Its use is illustrated in the second line
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of Fig. [Tt The log contains references to the new data written to the flash store
in step @ and the RAM index was updated accordingly (FI + new) while the
flash index remained unchanged.

At certain points in time, the flash index is synchronized with the RAM
index by the commit operation. This can be seen as step @ in Fig. [} The flash
index is replaced with the current RAM index and the log is emptie. One
problem remains: What happens when the system crashes (e.g. power-failure)
before the RAM index is written to flash? In this case, the flash index is out-
of-date, compared to the data in the flash store. This problem is solved by the
journal, because it records all changes to the data on flash that have not yet
been added to the flash index. A special operation, replay, is done after a system
crash to recover an up-to-date RAM index (step @ in Fig. [): First, the flash
index is read as preliminary RAM index. Then all changes that were recorded in
the log are applied to this preliminary RAM index. After the replay, the correct
RAM index has been rebuilt.

3 Data Layout for UBIFS

The data layout used in UBIF'S follows the file system representation used in the
Linux virtual file system switch (VFS). The Linux kernel implements POSIX file
system functions [15] as calls to VFS functions that provide a common interface
for all implemented file systems.

Inodes (index nodes) are the primary data structure used in viSa. They
represent objects in the file system (such as files, directories, symlinks or devices)
and are identified by an inode number. Inodes store information about objects,
such as size, link count, modification date or permissions, but do not contain the
name of the object. Mapping between names and objects is done using dentries
(directory entries) which say that a certain object can be found in a certain
directory under a certain namd”. This separation is required as a single inode
can be referred to in multiple directories (used for hard links). The directory tree
can be viewed as an edge-labeled, directed graph consisting of inodes as vertices
and dentries as edges. Furthermore negative dentries are used in memory to
express that no object with the given name exists in a directory. These are used
as a response when looking for nonexistent files, or as parameters for the file
name when creating new files or directories. File contents are stored as fixed-
size data blocks, called pages, belonging to file inodes. When opening a file or
directory to access its contents, a file data structure (called file handle in user
space) is used in memory to manage the inode number and the current position
within the inode.

! This can be performed atomically, because all changes are stored out-of-place and
the effective replace is executed by writing one block containing all the pointers to
the data structures.

% See struct inode in include/linux/fs.h, [19]

3 See struct dentry in include/linux/dcache.h, [19]
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We thus define inodes, dentries and file handles as free data types generated
by constructors mkinode, mkdentry, negdentry and mkfile.

inode = mkinode (. .ino : nat; . .directory : bool; . .nlink : nat; . .size : nat)
dentry = mkdentry (. .name : string; . .ino : nat) with . .dentry?

| negdentry (. .name : string) with . .negdentry?
file = mkfile (. .ino : nat; . .pos : nat)

This definition includes selector functions .ino, .directory, .nlink, .size,
.name and .pos for accessing the constructor arguments, as well as type pred-
icates .dentry? and .negdentry? to decide between the two types of dentries
(the dot before predicates and functions indicates postfix notation).

UBIF'S stores these data structures (except for file handles and negative den-
tries which are never stored) as nodes as described in the previous section. These
nodes contain meta data (called key) to uniquely identify the corresponding
node, and data containing the remaining information. For inodes, the inode
number is sufficient as a key, whereas dentries require the parent inode number
and the file name. Pages are referred to by the inode number and the position
within the file.

Figure 2lshows the representation of a sample directory tree as UBIFS nodes.
It contains two files, test.txt and empty.txt and a directory temp containing
a hard link to test.txt named test2.txt.

Directory Tree UBIFS Representation (Nodes)

Name Inode [INeTSI=NeIs[=ll] INODEKEY(1) | directory: true, nlink: 3, size: 2 |
[ROOT] 1 DENTRYKEY(1, test.txt) | name: test.ixt",ino:2 |
test txt 2 DENTRYKEY(1, empty.txt) | name: ,empty.txt", ino: 4 |
DENTRYKEY(1, temp) [ name: temp*, ino: 3 |

empty.txt 4 : : .
INODEKEY(2) | directory: false, nlink: 2, size: 2 |
temp/ 3 BYSYAREI DATAKEY (2, 1)] PAYLOAD DATA |
L test2.txt 2 | INEIINUCHENN OATAKEYE. 2] PAYLOAD DATA |
[INeTSI=NIeIs[=ll] INODEKEY(3) | directory: true, nlink: 2, size: 1 |
DENTRYKEY(3, test2.txt) [ name: test2.txt", inode: 2 |
INODEKEY(4) | directory: false, nlink: 1, size: 0|

Fig. 2. Directory tree representation in UBIFS

Nodes for inodes in this abstraction contain extra information about size and
link count. For files, the size gives the file size, measured in number of pages, and
links gives the number of dentries (hard links) referencing the inode. Directories
use the number of contained objects as size, and the number of links is calculated
as (2 + number of subdirectoriesﬁ.

4 Directories may not appear as hard links, so this number is the result of counting
the one allowed link, the “virtual” hard link “.” of the directory to itself and the
“..” link to the parent in each subdirectory.
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For nodes and keys, we use the following speciﬁcatiorﬁ:

node = inodenode (. .key : key; . .directory : bool;
. .nlink : nat; . .size : nat) with . .inode?
| dentrynode (. .key : key; . .name : string;
. .ino : nat) with . .dentry?
| datanode (. .key : key; . .data : page) with . .data?
key = inodekey (. .ino : nat) with . .inode?
| datakey (. .ino : nat; . .part : nat) with . .data?
| dentrykey (. .ino : nat; . .name : string) with . .dentry?

Information about inode 1 can be found in a node with inode key 1. To list all
objects contained in this directory, all (valid) nodes with a dentry key containing
1 as a first argument have to be enumerated. The same goes for reading contents
of a file, by scanning for corresponding data keys (their first parameter denotes
the inode number, the second states the position inside the file).

File system data cannot directly be indexed and accessed using flash mem-
ory locations, as this would require overwriting flash memory on data change.
Instead, data is referred to by its unique key. Finding matching nodes for a
given key by sequentially scanning the entire flash memory however is very slow.
UBIFS holds an index datastructure mapping keys to flash memory addresses
in the RAM (called RAM index). It allows to quickly access nodes with a given
key, or to enumerate all existing dentry or data keys for a given inode. When
writing a new version of an existing node, the new copy is written to the flash
store, and the address for its key is updated in the RAM index.

Formally, both the flash store and the two indexes (in RAM and on flash) are
an instance of the abstract data type store(elem,data).

flashstore = store(address,node) index = store(key,address)

A store is a partial function with a finite domain of elements with type elem and
codomain data. In a set-theory based language such as Z [27] stores would be
represented as a relation (set of pairs) for the function graph, and the update
operation would be written as st@® {k — d}. In KIV stores are directly specified
as an abstract, non-free data type generated from the empty store and an update
operation stfk,d], which allocates k if necessary, and overwrites the value at k
with d. This avoids the need for a left-uniqueness constraint as an invariant.

4 The UBIFS Journal

This section describes how the journal operates and how it is linked to flash
and RAM index. The correlation between flash store, journal and the indices is
shown in Fig.[3]

5 See struct ubifs data node, struct ubifs ino node and struct
ubifs data node in fs/ubifs/ubifs-media.h for nodes, and struct ubifs key in
fs/ubifs/ubifs.h as well as ino key init, dent key init and data key init in
fs/ubifs/key.h, [19].
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Fig. 3. RAM index, flash index, flash store and journal

To create a new node, this is written to an unused address in the flash store
and simultaneouslyﬁ added to the log. Afterwards, its address is stored in the
RAM index for further access to its key. This way, the data is safe, even if the
RAM index gets lost without a commit e. g. caused by a power failure, because
the correct state of the RAM index can be restored by information from flash
index, flash store and log.

This method allows for creating new and overwriting existing nodes. However,
deleting nodes is not possible because it would require pure index operations
(delete a key from the index). Therefore, UBIFS uses specialized delete nodes
which are written to the flash store, but cause deletion from the RAM index
when replayed (marked as DEI[ in Fig.[).

When performing a replay in the situation of Fig.[3l the contents of the flash
index are copied to the RAM index. When replaying address 6, the 6 is stored
in the RAM index as new address for key KEY5. The same goes for address 7,
while 8 adds KEY3 to the index. Address 9 contains a deletion entry that causes
KEY6 to be deleted from the index.

The figure also shows the need for garbage collection: addresses 1, 3 and 5
store data which are no longer in the index and therefore can be reused.

5 File System Operations

For applying changes to the contents of the file system, the Linux VFS pro-
vides file system operations. These can be grouped into inode operations, file

5 This is possible because UBIFS does not use an explicit list for the log, but treats
all nodes in certain erase blocks as log entries.

7 UBIFS uses inode nodes with link count 0 or dentry nodes with destination inode
number 0 to delete the corresponding keys.
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operations, and address space operations. Inode operations allow creating, re-
naming or deleting inodes, whereas file operations allow for working with inode
contents (data stored in files or directory entries). Address space operations in-
clude all operations that work with pages, and are used in the Linux kernel to
implement file operations accessing file contents. They are included here to allow
for using abstract pages when handling file contents.

We will start with an inode operation called createﬁ, used for creating new
files. It expects the inode number of the containing directory (P INO), and a
negative dentry specifying the file name (DENT) as input. DENT is overwritten
with the newly created dentry.

create#(P INO; DENT, FS, RI, LOG) {
choose INO with — inodekey(INO) € RI A INO > 0 in {
let INODE = getinode(P INO, FS, RI) in
choose ADR;, ADR;, ADR3 with new(ADR:, ADR,, ADR3, FS) in {
FS:=FS
[ADR4, inodenode(inodekey (INO), false, 1, 0)]
[ADR3, dentrynode(dentrykey(P INO, DENT.name), DENT.name, INO)]
[ADR3, inodenode(inodekey(INODE.ino),
INODE.directory, INODE.nlink, INODE.size + 1)],
LOG := LOG + ADR: + ADR» + ADRg;
RI := RI[inodekey(INO), ADR,]J;
RI := RI[dentrykey(P INO, DENT.name), ADRz];
RI := Rl[inodekey(INODE.ino), ADR3] };
DENT := mkdentry(DENT.name, INO) }};

The notation used to describe the rule is similar to that of ASM rules [I1],
[3], but it should be noted that only parallel assignment, denoted with a comma,
is executed atomically, while sequential composition (with semicolon) is not.
choose binds new local variables (here e.g. INO) to values that satisfy the with
clause.

The operation writes a new inode node for the created file (link count 1, size
0) and a dentry node for a dentry pointing from the parent directory P INO to
the new inode, named as given in DENT. It increases the parent directory size by
1 to reflect the increased number of objects contained in the directory.

To correctly perform these changes, it first selects an unused inode number and
three new addresses (predicate new) from the flash store, and loads the inode
given by P INO. It then atomically writes three new nodes into new locations
of the flash store FS, simultaneously adding the locations to the journal LOG.
Afterwards it updates the RAM index RI with the new addresses, and changes
the reference parameter DENT to return the newly created dentry.

The following inode operations also change the directory structure. Their in-
formal description leaves out standard parameters F'S, RI and LOG. Full details
can be found on the Web [I§].
unlink(P INO, DENT) Removes the file referred to by DENT from the direc-
tory P INQ. If the dentry was the last link to the referred file, the inode and file

8 See ubifs create in fs/ubifs/dir.c, [19)].
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contents are also deleted, otherwise only the dentry is removed. DENT is returned
as a negative dentry.

link(OLD DENT, NEW INO, NEW DENT) Creates a hard link to the
file referred to by OLD DENT, placed in the directory NEW INO and named as given
by the negative dentry NEW DENT. Returns the newly created dentry in NEW DENT.
mkdir(P INO, DENT) Creates a new directory in P INO, with the name given
in the negative dentry DENT. The newly created dentry is returned in DENT.
rmdir(P INO, DENT) Removes the (empty) directory referred to by the den-
try DENT located in the parent directory P INO. DENT is changed into a negative
dentry.

rename(OLD INO, OLD DENT, NEW INO, NEW DENT) Moves the
object (file or directory) referred to by OLD DENT from directory OLD INO to di-
rectory NEW INO, changing its name to NEW DENT.name. If the object referred to
by NEW DENT exists, it has to be of the same type (file or directory) as OLD DENT,
and it is overwritten (i.e. deleted).

lookup(P INO, DENT) Checks for the existence of a object named
DENT.name in the directory P INO. If it exists, the dentry is returned in DENT,
otherwise a negative dentry is returned.

For inode contents, the following file and address space operations exist:
open(INO, FILE) Opens the file or directory given in INO, and returns a new
file handle in FILE.
release(INO, FILE) Called when the last process closes an inode (file or di-
rectory), to clean up temporary data. Unused in the given specification.
readpage(FILE, PAGENO, PAGE) Reads the page with number PAGENO
from the file referred to in FILE, and returns it in PAGE.
writepage(FILE, PAGENO, PAGE) Writes the data from PAGE as new page
numbered PAGENO to file FILE.
truncate(FILE, PAGENO) Sets the file size of the file referred to in FILE to
PAGEND, deleting all pages beyond.
readdir(FILE, DENT) Returns the next object of the directory referred to in
FILE, or a negative dentry if no further file or directory exists. The (positive or
negative) dentry is returned in DENT, and the position stored in FILE is increased
to return the next object at the next call.

Finally, our model defines garbage collection, commit and replay as described
in Sect.

6 Verification

Our verification efforts have focused on three properties, described in the follow-
ing paragraphs. The last paragraph gives a summary of the effort involved.

Functional Correctness of the Operations. We proved that all specified
operations terminate and fulfill postconditions about their results. As most op-
erations and all supporting functions are non-recursive and only use loops over
the elements of finite lists, termination is quite obvious, and proving does not
pose great complexity — even regardless whether any preconditions hold or not.
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Only garbage collection has a precondition for termination, as it is specified as
a non-deterministic choice of a new, isomorphic state, which only terminates if
such a state exists.

For the other inode and file operations, we give and prove total correctness
assertions that describe their behavior. We write wp(a,p) to denote the weakest
precondition of program « with respect to a postcondition @g. Proofs in KIV
are done using sequent calculus and symbolic execution of programs, see [23] for
details.

For the create operation described in the previous section we demand™:

valid-dir-ino(P) A valid-negdentry(P, DENT)
— wp(create(P; DENT), valid-dentry (P, DENT) A valid-file-ino(DENT.ino))

When called with a valid directory inode (i. e. the inode exists, is of type directory
and has a link count of 2 or higher) and a valid negative dentry (i.e. no dentry
with the given name exists in the given directory) as parameters, the operation
yields a dentry (ideally with the same name, but we do not demand that here)
that exists in the given directory and references a valid file (i. e. the inode referred
to exists, is a file and has a link count of at least 1).

Giving postconditions for readpage or writepage individually turned out to be
rather hard when trying to remain implementation independent, so we decided to
use the combined postcondition that reading data after writing returns exactly
the data written:

wp(writepage(file, pageno, pg) ; readpage(file, pageno; pg2), pg = pg2)

Furthermore, file contents of a file remain unchanged when writing to another
file or to another position inside the file:
valid-file(f1) A valid-file(f2) A (f1.ino#f2.ino V n1#n2) A store-cons(fs,ri,fi,log)
— wp(readpage#(f1,n1;pl);writepage# (f2,n2,p);readpage#(f1,n1;p2), p1=p2)

The pre- and postconditions for the other operations as well as their proofs can
be found on the Web [18].

Consistency of the File System. Another basic requirement is that the file
system is always consistent. We formally define a predicate fs-cons(fs,ri) for the
file store fs and the RAM index ri (flash index and log are irrelevant as they are
only required for replay), and prove that it is an invariant of all operations.

For each key stored in the RAM index, fs-cons requires that its address must
be allocated in the flash store, and that the key is stored as that node’s key.
Further requirements depend on the type of key.

Dentry keys must belong to a valid directory and reference a valid inode. The
name stored in the key must be equal to the copy of the name stored in the node.
Data keys have to belong to a valid file inode, and the requirements for inode
keys are differentiated between files and directories. For files, the link count has
to be equal to the number of dentries referencing the file, and for each data key

9 In KIV wp(a,p) is written as (o).
10 We suppress standard parameters FS, RI and LOG in all predicates and procedure
calls for better readability.
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belonging to the file, the page number (part) has to be less than the file’s size.
Directories have to have 2 + number of subdirectories as their link count, and
the number of contained dentries as size. Furthermore, no directory may have
more than 1 (stored) dentry referencing i,

The formal proof obligation for invariance is

fs-cons(fs, ri) — wp(op, fs-cons(fs, ri))

where op stands for any of the operations defined in the previous section. As this
property describes correlations between the different types of keys, it cannot be
proven step by step for each individual update of flash store and RAM index;
the property is not restored until all steps of an operation are completed. So the
proofs have to take the operation as a whole, complicating the definition and
application of reusable lemmata.

Correctness of the Replay Process. The replay operation should be able
to restore a consistent state after a crash, losing as little data as possible. We
therefore define a predicate log-cons claiming that a replay in the current situa-
tion will correctly restore the RAM index to a state isomorphic to the one with
current RAM index contents. The formal definition is

~

log-cons(fs, ri, fi, log) < wp(replay(fs, fi, log; ri2), (fs, ri) = (fs, ri2))

If this predicate is true, we will not lose data at a crash (except maybe for the
changes of the current operation). A reliable file system should always preserve

this predicate, even in the middle of an operation. For verification we have taken
the weaker approach to prove that this predicate is invariant

log-cons(fs,ri,fi,log) A store-cons(fs,ri,log) A datanode-cons(fs,ri)
— wp(op, log-cons(fs,ri,fi,log) A store-cons(fs,ri,log) A datanode-cons(fs,ri))

Note that log-cons used in the pre- and postcondition is defined using a wp-
formula itself, so the formula is not a total correctness formula in the usual sense,
where pre- and postcondition are defined using predicate logic only. Nevertheless
KIV’s logic can prove this formula using symbolic execution for formulas in
preconditions too.

The invariance above ensures the file system robust wrt. crashes between op-
erations. Still, the implementation of the operations is designed in a way such
that a similar property also holds anytime during the execution of operations.
As one of the next steps we plan to prove this fact using KIV’s temporal logic
[, [2] which is able to express and prove the full propert.

Proving the invariance of log-cons required two auxiliary invariants, store-cons
and datanode-cons. The predicate store-cons requires that each address referred
to in the RAM index or log has to be allocated in the flash store, and datanode-
cons demands that each data key belongs to a valid file inode and describes a
page within the file length. The former is needed to avoid accessing addresses in

1 The root directory has no link, all other directories have one, as further hard links
to directories are not allowed.

2 An alternative would be to encode the operations as a sequence of small steps using
a program counter, as is often done for model checking. Then the property would
have to be proved to be invariant in every small step.
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the flash store that are not yet allocated, whereas the latter is needed as replay-
ing some operations causes data keys beyond the file size to be deleted.

Statistics about our Specification and Verification. Developing and ver-
ifying our specification mainly consisted of four steps. We first collected and
analyzed material about UBIFS, mainly from the UBIFS whitepaper [14] and
the UBIF'S source code in the Linux kernel. During four weeks, we developed a
basic understanding of the mechanisms and found a suitable abstraction level for
the specification. In the following two weeks, the required data structures and
operations were specified, as well as the invariants we wanted to prove. Proving
the correctness of the replay operation (log-cons) took another two weeks, during
which we corrected minor errors in the specification and found the additional
preconditions needed for log consistency. Our last steps were to prove the total
correctness assertions and the file system consistency. This took about as long
as the log consistency, though the resulting proofs for fs-cons were a lot larger
than the ones for log-cons — especially for the rename operation which contains
many case distinctions (file vs. directory, rename vs. overwrite).

7 Outlook

The work of this paper defines a first abstract model of the essential data struc-
tures needed in a FFS. We intend to use it as an intermediate layer in the
development of a sequence of refinements, which starts with an abstract POSIX
specification such as the ones of [5], [7] and ends with an implementation based
on a specification of flash memory, like the one of [4]. There will be many ob-
stacles deriving such refinements, and we discuss these problems briefly in the
following paragraphs on future work.

A rather different approach has been taken by Kang and Jackson [I7]. This work
builds a vertical prototype by focussing on the read/write operations for files, ig-
noring issues such as directory structure, indexes and journals (their file system
roughly corresponds to the file store component of our model). They define an ab-
stract level, where reading/writing a file is atomic. These are refined to reading
and writing pages, which is done on a model that is closer to implementation than
ours, since it already considers a mapping from logical to physical blocks. To check
properties of the model, Alloy (and the Kodkod engine) is used to check that fi-
nite approximations of the model do not have counter examples. This approach is
weaker than verification, but gives excellent results for debugging specifications.
Our current work is on attaching Kodkod as a pre-checker to validate KIV the-
orems before proof attempts [6], similar to the proposal in [7]. The Alloy model
also includes an interesting analysis of a high-level recovery mechanism for failed
write attempts. UBIFS delegates recovery mechanism mainly to UBI (see below).
Two high-level mechanisms for recovery exist in UBIF'S: one for log entries, which
may not have been completely written; another for the root node of the BT-tree of
the file index, see [14]. Both are very different from the one analyzed in [17]. Since
our model is still too abstract (no BT-trees and no concrete layout of the journal
as data in erase blocks), these will only show up in refinements.
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From POSIX to our UBIFS Model. Our abstract model is based on the
interface that UBIFS offers to the general Linux virtual file system switch (VFS).
It assumes that our operations are protected by locks and will therefore not be
executed concurrently However, above our specification this is no longer true.
As an example, writing a full file can no longer be assumed to be atomic: it
will consist of several pages being written (it is possible that several processes
concurrently read and write a file!). In reality, these page writes will even be
cached. Even if a write operation has finished, the data may not yet be on the
flash (only calling the Linux flush command ensures that caches are emptied). We
therefore expect the theoretical question of how concurrency should be handled
to dominate the question of a correct refinement.

As a first step, it is of course possible to ignore the concurrency problem (as
has been done in [I7]). Then implementing POSIX operations correctly using
our abstract interface should be possible using standard data refinement. Of
course, for such a refinement, some additional data such as modification dates
and access rights would have to be added.

From our Model to Flash Memory. Our model has abstracted from many
details of a real flash file system. First, and most important we have abstracted
from wear leveling. Since wear leveling is not dealt within UBIFS, but in a sep-
arate UBI layer that maps logical to physical erase blocks, this seemed natural.
We expect the correctness of this layer not to pose too difficult theoretical ques-
tions. The challenging question for this refinement is whether it is possible to
prove something about the quality of wear leveling. This looks possible for UBI,
since its wear leveling strategy is based on counting erase cycles.

Second, we have abstracted index structures, which are BT-trees in reality.
The lower level representation allows two optimizations: first, only those parts
of the flash index which are currently needed, must be loaded into RAM. Sec-
ond, the commit operation does not simply copy the full BT-tree from RAM
to the flash memory as in our simple specification. Instead it copies only those
parts that have changed since the last commit. This means that the flash index
becomes a “wandering tree”. Parts of it move with every commit.

Third, all three data structures, the flash store, the flash index and the journal
will be represented uniformly by pieces of memory in logical erase blocks (LEBS).
The challenging problem here is to verify garbage collection, which we only
specified to give some isomorphic file system. This algorithm is rather complex.
It uses an auxiliary data structure to find out efficiently how much room is
left in each LEB. This data structure, the LPT (“LEB property tree”) is also
implemented as a wandering tree.

Finally, there are several more issues we have ignored: on the fly compres-
sion (using zlib or LZO), the handling of orphan nodes, which are needed to
handle still open files that have been deleted, and hashing of index keys are
three examples.

13 This is mostly true in the implementation, with one notable exception: the commit
operation may be executed in parallel with regular operations.
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In summary, we think that the development of a verified flash file system will
need a lot more effort than our previous contribution to the Grand Challenge

with the Mondex case study ([12], [25], [24], [10]).

8 Conclusion

We have given an abstract specification of a flash file system which was derived
by abstracting as much as possible from the details of the UBIFS system. We
have specified the four central data structures: the file store which stores node-
structured data, the flash index, its cached copy in the RAM and the journal.
Based on these, we have specified the most relevant interface operations.

We have verified that the operations keep the file system in a consistent state,
and that they satisfy some total correctness assertions. We have also verified
that the journal is used correctly and enables recovery at every time.

Our model should be of general interest for the development of a correct flash
file system, since variants of the data structures and operations we describe
should be relevant for every realistic, efficient implementation.

Nevertheless the model given in this paper is only our first step towards the
development of a verified flash file system implementation. We plan to use the
model as an intermediate layer of a series of refinements, which starts with
an abstract model of POSIX-like operations and leads down to to an efficient
implementation like UBIFS based on a specification of flash memory.
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Abstract. Automata learning techniques are getting significant impor-
tance for their applications in a wide variety of software engineering
problems, especially in the analysis and testing of complex systems. In
recent studies, a previous learning approach [I] has been extended to
synthesize Mealy machine models which are specifically tailored for I/O
based systems. In this paper, we discuss the inference of Mealy machines
and propose improvements that reduces the worst-time learning com-
plexity of the existing algorithm. The gain over the complexity of the
proposed algorithm has also been confirmed by experimentation on a
large set of finite state machines.

1 Introduction

The field of automata learning has made a significant impact on a wide area of
software engineering problems. For example, the learning techniques have been
used to study the unknown behaviors of the system [2], testing the system [3],
verifying interesting properties [4], building specification and maintaining the ap-
plications [5]. The use of such techniques actually ease the traditional practice
of model driven engineering for the systems that consist of third-party compo-
nents. The fact that these components come from different sources and have
gone through various revisions before they are actually used, the components
usually do not come with the formal and up-to-date specifications. Normally,
the users of the components have to confront with their informal or insufficient
information that hinders the direct applications of formal validation approaches.
The application of automata learning techniques is a solution to synthesize the
behavior models of the components, so that they could be used to analyze, test
and validate the overall system using formal approaches.

Among various learning approaches, a well-known approach which has re-
mained a major focus of the applied research in learning is the classical proce-
dure, called L* (aka Angluin’s algorithm) [I]. Under this view, a component is
assumed to be an unknown regular language whose alphabet is known. Then,
the algorithm is applied to infer a Deterministic Finite Automaton (DFA) that
models the unknown language in polynomial time (under certain assumptions).

Recent studies on reactive systems, e.g, telecom services, web-based applica-
tions, data acquisition modules, embedded system controllers etc, advocate the
need of learning other forms of automata. This is due to the fact that complex
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systems characterize their behaviors in terms of input/output (i/0). Typically,
such systems receive inputs from the environment, take decisions on internal
transitions, perform computations and finally produce the corresponding out-
puts to the environment. Arguably, DFA models are not appropriate for model-
ing such systems since they lack the structure of i/o based behavior modeling.
The more natural modeling of such systems is through Mealy machines that
is much more concise compared to DFA models. Moreover, it is observed that
a DFA model normally contains far more states than a Mealy machine if they
model the same problem [6] [7]. Thus, efforts of learning Mealy machines are
beneficial in terms of learning the state space of the problem to cater the com-
plexity. We refer to the previous studies [7][5][6] for a detailed comparison of
DFA and Mealy machine modeling of reactive systems.

In this paper, we discuss the learning of Mealy machines using the settings
from Angluin’s algorithm. There are many works which formally and informally
present the adaptation of Angluin’s algorithm to learn Mealy machines. However,
we propose here some modifications in the adapted algorithm that brings down
the complexity of learning Mealy machines significantly in some contexts.

The paper is organized as follows. Section 2 provides the basics of Angluin’s al-
gorithm informally. Section [ discusses how Angluin’s algorithm can be adapted
for Mealy machine inference and how the adaptation can further be improved.
Section Ml presents the adapted algorithm to learn Mealy machines, its complex-
ity and its illustration on an example. Section [ presents our improvements on
the adapted algorithm, its complexity and its illustration on an example. Sec-
tion [0 compares the complexity of the two algorithms on a finite state machine
workbench experimentally. Section [ concludes the paper.

2 Overview of Angluin’s Algorithm

We refer to the original paper [I] for the complete discussion on learning DFA
using Angluin’s algorithm L*. Here, we describe the algorithm informally.

The learning algorithm L* starts by asking membership queries over the
known alphabet X' of the language to check whether certain strings from X*
are accepted or rejected by the language. The result of each such query in terms
of "1” (accepted) or "0” (rejected) is recorded as an observation in a table.
These queries are asked iteratively until the conditions on the observation table,
i.e., it must be closed and consistent, are satisfied. The algorithm then conjec-
tures a DFA based upon the observations recorded in the table. It then asks an
equivalence query to a so called oracle, that knows the unknown language, to
verify whether the conjecture is equivalent to the target DFA. The oracle vali-
dates the conjecture if it is correct or replies with a counterexample otherwise. A
counterexample is a sequence that distinguishes the conjecture with the target
DFA. The algorithm processes the counterexample in the table and performs
another run of asking membership queries to construct a “better” conjecture.
The algorithm iterates in this fashion until it produces a correct conjecture that
is isomorphic to the target DFA.
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Let | X| be the size of the alphabet X, n be the total number of states in the
target DFA and m be the length of the longest counterexample provided by the
oracle, then the worst case complexity of Angluin’s algorithm is O(]X|mn?).

3 From DFA to Mealy Machine

It is observed that Angluin’s algorithm L* can be used to learn Mealy machines
through model transformation techniques. A simple way is to define a mapping
from inputs and outputs of the machine to letters in a DFA’s alphabet X'. This
can be done either by taking inputs and outputs as letters, i.e., ¥ = TUO [5] or
by considering couples of inputs and outputs as letters, i.e., X = I x O [§]. But
these methods increase the size of X’ and thus raise complexity problems because
the algorithm is polynomial on these factors. However, there is a straightforward
implication of L* on learning Mealy machines by slightly modifying the structure
of the observation table. The idea is to record the behaviors of the system as
output strings in the table instead of recording just “1” and “0”, as in the case
of language inference. Similarly, we can modify the related concepts, such as
making the table closed and consistent and making a conjecture from the table
etc. For processing counterexamples in the table, we can also easily adapt the
corresponding method from L*. This adaptation of L* to learn Mealy machines
has already been discussed, formally [7] [9] [10] [3], and informally [6] [IT].
However, our contribution in the inference of Mealy machines is the proposal
of a new method for processing counterexamples that consequently reduces the
complexity of the algorithm. The complexity analysis shows that by using our
method for processing counterexamples, the algorithm for learning Mealy ma-
chines requires less number of queries, compared to the adapted method.

4 Inferring Mealy Machines

Definition 1. A Mealy Machine is a sextuple (Q,I,0,9, X\, qv), where Q is the
non-empty finite set of states, qo € @Q is the initial state, I is the finite set
of input symbols, O 1is the finite set of output symbols, § : Q x I — @Q is the
transition function, A : Q X I — O is the output function.

Definition [ provides the formal definition of (deterministic) Mealy machines.
When a Mealy machine is in the current (source) state ¢ € @ and receives
i € I, it moves to the target state specified by 0(g,?) and produces an output
given by A(g, 7). The functions § and A are extended from symbols to strings in
the standard way. We consider that the Mealy machines are input-enabled, i.e.,
dom(d) = dom()\) = Q x I. We denote by suff*(w), the suffix of a string w of
length k. Let w =a-b---x-y- 2, then suff > (w) = z-y- z. An example of a Mealy
machine over the sets I = {a,b} and O = {z,y} is shown in Figure[Il

Now, we detail the learning of Mealy machines using the settings from An-
gluin’s algorithm L*, that has also been mentioned in the existing works. As for
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Fig. 1. Example of a Mealy Machine

DFA learning, the two main assumptions in learning Mealy machines are i) The
basic input set I is known, and ii) The machine can be reset before each query.

The algorithm asks output queries |3] that are strings from It and obtain the
corresponding output strings from the machine. This is similar to the concept of
membership queries in L*. The difference is that instead of 1 or 0, the machine
replies with the complete output string. Let w € I™, i.e., an input string of the
query, then the machine replies to the query with A(gp,w). The response to each
query is recorded in the observation table. The queries are asked iteratively until
the conditions on the observation table, i.e., it must be closed and consistent, are
satisfied. This follows by making the Mealy machine conjecture from the table.
The algorithm then asks equivalence query to the oracle. If the oracle says “yes”,
i.e., the conjecture is correct, then the algorithm terminates the procedure by
outputting the conjecture. If the oracle replies with a counterexample, then the
algorithm processes the counterexample in the table and refines the conjecture.

The formal description of learning Mealy machines is given in the subsequent
sections. We denote by M = {Qum, 1, 0,00, A, qorq} the unknown Mealy
machine model that has a minimum number of states. We assume that the
input/output interfaces of the machines are accessible, i.e., the input interface
from where an input can be sent and the output interface from where an output
can be observed.

4.1 Observation Table

We denote by L™ the learning algorithm for Mealy machines. At any given
time, Ly;* has information about a finite collection of input strings from I and
their corresponding output strings from O7. This information is organized into
an observation table, denoted by (Sys, Ear, Th). The structure of the table is
directly imported from Angluin’s algorithm L*. Let Sys and Fjs be non-empty
finite sets of finite strings over I. Sy is a prefix-closed set that always contains
an empty string e. Fjy is a suffix-closed set (except € € Eyy). Let Ty be a finite
function that maps (Syr U Sy -T) X Epp to OF. If s € Spy U Sy - T and e € By,
then Tas(s,e) contains the output string from Aaq(qo g, s - €). The rows of the
table consist of the elements of Sy; U Sps - I and the columns consist of the
elements of F);.

Since Sp; and Ejs are non-empty sets, the table is initialized by Sy = {e}
and Fy; = I, i.e., every input symbol makes one column in the table, with the
entry for a row s € Sy U Sy - I and a column e € Eyy equals to Th (s, e). The
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equivalence of rows is defined with respect to the strings in Fjy;. Suppose s,t €
SprUSys - I are two rows, then s and ¢ are equivalent, denoted by s =g,, t, if and
only if Th(s,e) = T (t, e), for all e € Eps. We denote by [s] the equivalence class
of rows that also includes s. An example of the observation table (Sys, Ear, Thr)
for learning the Mealy machine in Figure[Ilis given in Table [Tl

Table 1. Example of the Observation Table (Sar, Ear, Thar)

Ewm
ab
Su exx
SM'Iayz
bx x

The algorithm L eventually uses the observation table (Syr, Ear, Tas) to
build a Mealy machine conjecture. The strings or prefixes in Sj; are the potential
states of the conjecture, and the strings or suffixes in Fj; distinguish these states
from each other.

To build a valid Mealy machine conjecture from the observations, the table
must satisfy two conditions. The first condition is that the table must be closed,
ie., for each t € Syr - I, there exists an s € Sy, such that s =g, t. If the table
is not closed, then a potential state that can be observed in the table would
not appear in the conjecture. The second condition is that the table must be
consistent, i.e., for each s,t € Sy such that s =g, ¢, it holds that s-i =g, t-1,
for all 4 € I. If the table is not consistent then two seemingly equivalent states
in the conjecture may point to different target states for the same input.

When the observation table (Sys, Ear, Th) is closed and consistent, then a
Mealy machine conjecture can be constructed as follows:

Definition 2. Let (Syr, Ear, Tar) be a closed and consistent observation table,
then the Mealy machine conjecture My = (Qnr, I, 0,001, Aas, qopy) 18 defined,
where

To see that M, is well defined, note that Sy; is a non-empty prefix-closed set
and it contains at least one row €, hence Qs and qp,; are well-defined. For all
s,t € Sy such that s 2p,, ¢, we have [s] = [t]. Since the table is consistent, for
all i € I, [s-1] = [t - 4] holds. Since the table is closed, there exists u € Sys such
that [u] = [s-i] = [t -] holds. Hence dps is well defined. Since E); is non-empty
and Fyr O I always hold. If there exists s, € Sy such that s =g, ¢, then for
all i € I, Tas(s,i) = Tas(t, ). Hence, A\pr is well defined.
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Theorem 1. If (Sy, Enr, Tar) is a closed and consistent observation table, then
the Mealy machine conjecture Myy from (Sar, Eng, Tar) is consistent with the
finite function Tyr. That is, for every s € Syy U Sy - I and e € Eyy,

v (0nr(qopgs s)s€) = Th(s, e). Any other Mealy machine consistent with Thy but
iequivalent to My; must have more states.

Theorem [ claims the correctness of the conjecture. Niese [7] has given a formal
proof of the correctness, which is a simple adaptation of the proofs in Angluin’s
algorithm, in which the range of the output function is replaced by O'. Note
that the conjecture is proved to be consistent with the observation table by ex-
hibiting the prefix-closed and suffix-closed properties of Sj; and Ejs respectively.
Moreover, the conjecture is the minimum machine by construction.

4.2 The Algorithm Ly;*

The algorithm Lj;* starts by initializing (Sps, Ear, Tar) with Sy = {e} and
FEy = 1. To determine Ty, it asks output queries constructed from the table.
For each s € Sy U Sy - I and e € Eyy, a query is constructed as s - e. The
corresponding output string of the machine, i.e., Ayt(go s, $-€), is recorded with
the help of the function T);. Note that the table is prefix-closed which means
that Aat(qgoag, s) can be derived from the observations already recorded in the
table. Therefore, Ly,™ records only the suffix of the output string of the length
of e in the table as Thr(s,e) = suff!*l(A(qoag, s - €))-

After filling the table with the result of the queries, L™ checks if the table
is closed and consistent. If it is not closed, then L,;* finds ¢ € Sy, - I such that
t 2g,, s, for all s € Sy;. Then, it moves ¢ to Sy and Tas(t - i, ¢e) is determined
for all i € I,e € Ejr in Sy - I. If the table is not consistent, then L™ finds
s,t € Syr,e € Epp and @ € T such that s g, t, but Tar(s - i,e) # Ta(t - i,e).
Then, it adds the string 7 - e to Ej; and extends the table by asking output
queries for the missing elements.

When the table is closed and consistent, Lj;* makes a Mealy machine con-
jecture M, from the table according to Definition

4.3 Example

We illustrate the algorithm L™ on the Mealy machine M given in Figure[ll The
algorithm initializes (Sas, Ear, Tar) with Sy = {e} and Sy - I = Ey = {a, b}.
Then, it asks the output queries to fill the table, as shown in Table[[l When the
table is filled, Lys" checks if it is closed and consistent.

Table [l is not closed since the row a in Sy - I is not equivalent to any row in
Snr. Therefore, L™ moves the row a to Sy and extends the table accordingly.
Then, L™ asks the output queries for the missing elements of the table. Table
shows the resulting observation table.

The new table is closed and consistent, so Lj;* makes the conjecture
MM(l) = (QMJW(D s I, O, 5MM(1) , >‘MM(1) y qoMM(l)) from Table The conjecture

My is shown in Figure B
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Table 2. Closed and Consistent Obser- b/x of
vation Table (Sar, Ear,Tar) for learn- (3 X aly
ing M in Figure[ll @-@'
b/x
ab
€ T Fig.2. The conjecture MM(1> from
a yz Table
b xzx
a-ayw
a-brx

Now, L™ asks an equivalence query to the oracle. Since, the conjecture
My is not correct, the oracle replies with a counterexample. The methods
for processing counterexamples are discussed in the following sections. We shall
illustrate the methods with the help of the same example. We provide here a
counterexample that will be used in their illustrations.

Let a-b-a-b-b-a-a be a counterexample for MM(I), since

= Ay, (Qops,,msa-b-a-b-b-a-a)=z- -z -2 -2 -7 7 yand
- mlgoppa-b-a-b-ba-a)=x-z-z-x-c-T- .

We choose a long counterexample to better illustrate the methods and to realize
how they work when the counterexamples of arbitrary lengths are provided. In
practicdl, it is not sure whether we obtain always the shortest counterexample.

4.4 Processing Counterexamples in Lj;*

Angluin’s algorithm L* provides a method for processing a counterexample in
the observation table, so that the conjecture is refined with at least one more
state. For the algorithm Lj;*, we can adapt Angluin’s method straightforwardly.
The adapted method is described as follows.

Directly Adapted Method from L*. Let My = (Qnr, I,0,00, Anry qopr)
be the conjecture from a closed and consistent observation table (Sys, Eas, Thr)
for learning the machine M. Let v be a string from I+ as a counterexample such
that Aar(qoar, v) # Am(qo g, v). Then, L™ adds all the prefixes of v to Sy and
extends (Snr, Enr, Thr) accordingly. The algorithm makes another run of output
queries until (Sas, Ear, Thr) is closed and consistent, followed by making a new
conjecture.

4.5 Complexity

We analyze the total number of output queries asked by Lj;™ in the worst case
by the factors |I|, i.e., the size of I, n, i.e., the number of states of the minimum

! There are many frameworks that have been proposed to replace the oracle in An-
gluin’s settings. The interested reader is referred to the works [12] [4] [I3] for the
comprehensive discussions on the limits of learning without oracles.
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Table 3. The Observation Tables (Sas, Ear, Thr) for processing the counterexample
a-b-a-b-b-a-afor My using the adapted method from L*. The boxes in the tables
show the rows which make the tables inconsistent.

. vz aba-a aba-aa-a-ab-a-a
a Y N TLEY € TrT-yTyyroT-T
L a yry-y a T
"['" v a-b zez-x a-b p
AL Sl S :
a-b-a-b-b zx a-b-a-b rxa-y a-b-a-b x
w-boabba za a-b-abb  zza-w a-b-a-b-b oy
a-boa-b-ba-a ya a-brab-ba zwa-y a-b-a-b-bea z
) . a-b-a-b-b-aa yry-y a-b-a-b-baa x
a-a ya 1'11-:1: ”l.)u j:
a-b-b v @ 1 d
a-baa oz @ “I;b'b Y
a-b-ab-a yx iy a-b-a-a x
B . a-bea-b-a -~
aba-bbab zaz o
a-b-a-b-boa-a-aya a y
a-brabbaabea a . o
o a-b-abboaabrrroraora

(i) Adding the prefixes of

ii ing iii) Adding a-a-aand b-a-a to Ey
w-b-a-b.b-a-atoSu (i) Adding a - a to Exr (i) d M

machine M and m, i.e., the maximum length of any counterexample provided
for learning M.

Initially, Sps contains one element. Each time (Sys, Ea, Th) is found not
closed, one element is added to Sj;. This introduces a new row to Sys, so a
new state in the conjecture. This can happen for at most n — 1 times. For each
counterexample of length at most m, there can be at most m strings that are
added to Sy, and there can be at most n — 1 counterexamples to distinguish n
states. Thus, the size of Sy; cannot exceed n + m(n —1).

Initially, Ejs contains |I| elements. Each time (Sas, Ear, Thr) is found not
consistent, one element is added to E);. This can happen for at most n— 1 times
to distinguish n states. Thus, the size of Fj; cannot exceed |I] +n — 1.

Thus, L produces a correct conjecture by asking maximum (SprUSys - 1) X
Ey = O(|I*nm + |I|mn?) output queries.

4.6 Example

For the conjecture M v in Figure [ for learning the Mealy machine M in
Figure [l we have a counterexample as v =a-b-a-b-b-a-a. According to the
adapted method for processing counterexample, Lj;* adds all the prefixes of v,
ie,a,a-b,a-b-a,a-b-a-b,a-b-a-b-b,a-b-a-b-b-a,anda-b-a-b-b-a-a
to Sps and extends Sy - I accordingly. The table is then filled with the missing
elements by asking output queries. Table Bl (i) shows the resulting observation
table. Then, Lj;* checks if the table is closed and consistent.

Table B (i) is closed but not consistent since € =pg,, a - b, but T (e a,a) #
Tr(a-b-a,a). To make the table consistent, the string a - a is added to Ej; and
the table is filled accordingly. Table 3] (ii) shows the resulting observation table,
in which the rows € and a - b have become different. Now, Lj;* checks if Table
(ii) is closed and consistent.

Table [3 (ii) is closed but not consistent since a - b =pg,, a-b-a but Thr(a-b-
a,a-a) #Ty(a-b-a-a,a-a). To make the table consistent, the string a-a-a
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is added to Ejs. For the same rows, the other reason for inconsistency is due to
Tyv(a-b-ba-a) # Ty(a-b-a-bya-a). Therefore, the string b-a - a is also
added to Ej; and the table is filled accordingly. Table Bl (iii) shows the resulting
observation table, in which the rows a - b and a - b - @ have become different.

Table B (iii) is closed and consistent, and thus Lj;* terminates by making a
conjecture isomorphic to M. The total number of output queries asked by L *
is 85.

5 Improvements to Mealy Machine Inference

We propose improvements to the algorithm of learning Mealy machines by pro-
viding a new method for processing counterexamples in the observation table
(Sa, Enr, Th). The complexity calculations and the experimental results of our
proposal show a significant reduction in the output queries that the algorithm
asks during the learning procedure. We denote the algorithm with the improved
method for processing counterexamples by Ly +. In this section, we describe
the idea of our improvements and the complete algorithm with its complexity,
correctness and example illustration.

5.1 Motivation

Rivest & Schapire [I4] observed that the basic Angluin’s algorithm L* can be
improved by removing consistency check of the observation table. Consistency is
checked only when two rows in the upper part of the table are found equivalent.
That means, if the rows of the table remain inequivalent, then inconsistency
will never occur and the condition will always hold trivially. They observed
that the rows become equivalent in the table due to the improper handling of
counterexamples. A counterexample is an experiment that distinguishes two or
more equivalent rows (or states) in the table and thereby causes an increase in
the size of the column. However, L* does not follow this scheme directly, rather
it adds a new row for each prefix of the counterexample in the table, assuming
that all are potential states of the conjecture. Later, the rows are filled with
the help of membership queries (no new column is added yet). This is where an
inconsistency can occur in the table if the two rows become equivalent but their
future behaviors are not equivalent. Thus, the two rows must be distinguished
by adding a distinguishing sequence as a column in the table.

Rivest & Schapire proposed a method for processing counterexamples, which
does not add the prefixes in the table. Thus, the rows remain inequivalent during
the whole learning process. Their method consists in finding a distinguishing
sequence from the counterexample and directly add the sequence in the columns.
However, their method requires a relaxation on the prefix-closed and suffix-
closed properties of the table, which are in fact the vital properties for having a
consistent conjecture from the table [I]. If the table does not have such properties
then the new conjecture might not be consistent with the table, and therefore,
might still classify the previous counterexamples incorrectly. Balcazar et al. [15]
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argued that by using the method of Rivest & Schapire, one can obtain the same
counterexample to answer several equivalence queries in L*. In addition, Berg
& Raffelt [I6] compiled the results from Balcazar et al. [I5] and explained the
complete method of Rivest & Schapire.

Our improvement in the algorithm for learning Mealy machines is inspired
by Rivest & Schapire’s idea. We also suggest to keep only inequivalent rows in
S so that inconsistencies can never occur. However, we propose a new method
for processing counterexamples such that it does not import the same problem
as in the case of Rivest & Schapire. Our method for processing counterexample
keeps (Snr, Enr, Thr) prefix-closed and suffix-closed, and therefore, the new con-
jecture is always consistent with the observations in (Sys, Ear, Th), according
to Theorem [T

5.2 The Algorithm Ly, T

In the algorithm Lj;, the definition of the observation table (S, Eas, Thr),
described in Section 1] and the basic flow of the algorithm, described in Section
2] remain unchanged. However, the additional property of (Sas, Ear, Thr) is
that all the rows in Sjs are inequivalent, i.e., for all s,t € Sus, s Zg,, t. This
means Ly, does not need to check for consistency because it always trivially
holds. However, Lj; ™ processes counterexamples according to the new method,
which is described in the following.

5.3 Processing Counterexamples in Lp;T

Let My = (Qury I, 0,00, A,y gopy) be the conjecture from the closed (and con-
sistent) observation table (Sys, Ear, Tar) for learning the machine M. Let v be
a string from I as a counterexample such that A\ (qo s, ) # A (goags v)- The
main objective of a counterexample is to distinguish the conjecture from the un-
known machine. That means, the counterexample must contain a distinguishing
sequence to distinguish at least two seemingly equivalent states of the conjec-
ture; so that when applying the distinguishing sequence on these states, they
become different.

In our method of processing counterexample, we look for the distinguishing
sequence in the counterexample and add the sequence directly to Ej;. Then, the
two seemingly equivalent rowdd in S v become different. For this purpose, we
divide v into its appropriate prefix and suffix such that the suffix contains the
distinguishing sequence. The division occurs in the following way.

We divide v by looking at its longest prefix in Sy U Sps - I and take the
remaining string as the suffix. Let v = u - v such that v € Sy; U Sy - I. If there
exists u’ € Sy U Sy - I another prefix of v then |u| > |u/|, i.e., u is the longest
prefix of v in Sy;USys-I. The idea of selecting u from the observation table is that
w is the access string that is already known such that Aaz(qo sz, ) = A (go pgs ).
The fact that v is a counterexample then Aas(goas, - v) # A (Go g, w - v) must

2 Recall that the rows in Sas represent the states of the conjecture.
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The counterexample v = u - v

u I |

add the suffixes of v

suff!(v) |suff?(v) suff!(v)

The Observation Table (Sar, Ear, Thv)

Fig. 3. Conceptual view of the method for processing counterexamples in Ly ™

hold. That means, v contains the distinguishing sequence to distinguish two rows
in Sys. So, it is sufficient to add v to Fjs. In fact, we add all the suffixes of v
such that Fj; remains suffix-closed.

FigureBl provides a conceptual view of the method for processing a counterex-
ample v. It shows that v is divided into the prefix u and the suffix v, such that
u € SpyUSys - I. Then, v is processed by adding all the suffixes of v to Ejy;. The
correctness proof of the method is given in the following section.

5.4 Correctness

Let My = (Qury I, O, 00, Ao,y gopyr) be the conjecture from the closed (and con-
sistent) observation table (Sar, Ear, Tar). Let v = w - i - v be the counterexample
for Ms such that A\as(qoas,u-4-v) # Am(gopg, w7+ v). Let w- 4 be the longest
prefix of v in Sy U Sy - I and v be the corresponding suffix of v. If v is a coun-
terexample then it must distinguish [u -] from a seemingly equivalent state, i.e.,
A (qopgs w7 v) # A (go g, t-v), for some t € Sy such that [t] = [u-4]. Thus,
v contains a distinguishing sequence for the rows u - ¢ and t.

Suppose we process v in (S, Ea, Thr) by adding all the suffixes of v to
Ep. Let us name the table as (S, E);, T},) after this addition. Later, we ask
output queries to fill the missing elements of the table (S}, E4;, Thy)- Then, E),
contains the distinguishing sequence that distinguishes the rows ¢ and u - 7 in
(S Ehys Thp)- That is, there must exist some experiment e € E}; such that
Ty (t,e) # Thp(u-i,e). This implies that w -i ¥pg; t. In fact, u-i € Sj, - I,
since ¢t € S}, and there cannot be two equivalent rows in Sy,. If u-7 € Sy, - I
then trivially u € S,;. Moreover, in the table (Sas, Ear, Tar), if u-i 2g,, s, for
s € S, then in the extended table (S}, By, Thy), u -1 Zpy, s also holds, for
s € Sh. Therefore, u - i is a row in (S}, E},, Ty,) that is inequivalent to any
row in S%,. This makes the table not closed. Thus, making the table closed will
move u -4 to S),. Since, u is already in S}, this operation keeps (S, Ey, /)
prefix-closed. Since, S}, is extended by one row, the new conjecture M}, from
the closed (S}, E}, Ty,) will contain at least one more state than M.
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It is simple to check whether (S, E},,Ty,) is suffix-closed, since EY, is ex-
tended from Ejs, which is suffix-closed, and E; contains the suffixes of v. Thus,
(S Ehys Thy) is suffix-closed.

This proves the correctness of the method, since (S, E};, T},) is a closed (and
consistent) observation table that is prefix-closed and suffix-closed and contains
the prefix w7 and the suffix v of the counterexample v. Therefore, the conjecture
My, from (S}, E};, Th,) will be consistent with the function T, (Theorem [IJ)
that will find at least one more state. O

Theorem 2. Let (Sar, Ear, Tar) be a closed (and consistent) observation table
and My be the conjecture from (Snyr, Eni,Thar). Let v = w4 -v be the coun-
terexample for Myr, where w -4 is in Spr U Say - I. Let the table be extended as
(St B, Thp) by adding all the suffizes of v to Enr, then the closed (and con-
sistent) observation table (S, B4, Thy) is prefiz-closed and suffiz-closed. The
conjecture My, from (S, Eyy, Thy) will be consistent with T}, and must have at
least one more state than M.

5.5 Complexity

We analyze the total number of output queries asked by Lj; " in the worst case
by the factors |I|, i.e., the size of I, n, i.e., the number of states of the minimum
machine M and m, i.e., the maximum length of any counterexample provided
for learning M.

The size of Sy increases monotonically up to the limit of n as the algorithm
runs. The only operation that extends Sj; is making the table closed. Every
time (Sar, Ear, Thar) is not closed, one element is added to Sy;. This introduces a
new row to Sys, so a new state in the conjecture. This can happen at most n — 1
times, since it keeps one element initially. Hence, the size of S); is at most n.

E)s contains |I| elements initially. If a counterexample is provided then at
most m suffixes are added to Ej;. There can be provided at most n — 1 coun-
terexamples to distinguish n states, thus the maximum size of Fj; cannot exceed
[I| +m(n —1).

Thus, Ly produces a correct conjecture by asking maximum (Sps U Sy -
I) x Eyp = O(/I)?n + |I|mn?) output queries.

5.6 Example

We illustrate the algorithm Lj;™ on the Mealy machine M given in Figure [l
Since, Ly, is only different from Ly, * with respect to the method for processing
counterexamples, the initial run of Ly, is same as described in Section I3 So,
Ly finds a closed (and consistent) table as Table 2l and draws the conjecture
My, shown in Figure @ from Table @l Here, we illustrate how Lj; ™ processes
counterexamples to refine the conjecture.

For the conjecture MM(I)7 we have a counterexample as v =a-b-a-b-b-a-a.
According to the improved method for processing counterexample, Ly, finds
the longest prefix u of the counterexample in Sy; U Sy - I in Table Pl The prefix
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Table 4. The Observation Tables (Sas, Ear,Thr) for processing the counterexample
a-b-a-b-b-a-afor My using the improved method. The boxes in the tables show
the rows which make the tables not closed.

aba-ab-a-ab-b-aaabbaa

aba-ab-a-ab-b-aaabb-aa ¢ Yry-yr-r-rr-T-T-TY-T-T-T-T

O Yyry-yr-r-rTr-T-T-TY-T-T-T-T b TTrT-TT-T-TTT-T-YT-T-T-T-T
b wrxr-rr-T-yr-T-T-TT-T-T-T-Y -0 Yry-yr-r-rr-T-T-TY-T-T-T-T
-4 Yyry - yr-r-TrT-T-T-TY-T-T-T-T b-a zzx-yx-z-rr-T-T-Yyr-r-r-T-T
a-brrr rTT T TTT-T-YT-T-T-T-T b-b zzxx-yr-z-zr-T-T-Yyr-r-Tr-T-T
a-b-arzrxr-zr-T-Yyr-T-T-TT-T-T-T-Y

(i) Adding the suffixes of a-b-b-a-a to En abberrrrayrr ooy

(i) Moving the rows b and a - b to S

u = a - b is the longest prefix found, so the remaining suffixisv=a-b-b-a-a.
The algorithm adds all the suffixes of v, i.e., a, a-a,b-a-a,b-b-a-a and
a-b-b-a-ato Ep. The table is filled by asking output queries for the missing
elements. Table[ (i) is the resulting observation table. Then, Ly, checks if the
table is closed.

TableM (i) is not closed since the rows b and a-b are not equivalent to any rows
in Sp;. Hence, the rows b and a - b are moved to Sj; and the table is extended
accordingly. The table is filled by asking output queries for the missing elements.
Table | (ii) is the resulting observation table. Now, LT checks whether Table
[ (ii) is closed.

Table @ (ii) is closed, and thus Lj;" terminates by making a conjecture iso-
morphic to M. The total number of output queries asked by L™ is 54.

6 Experimentation

We have performed an experimental evaluation to compare the adaptation of
Angluin’s algorithm for learning Mealy machines Lj,™ with our improved al-
gorithm Ly, . The worst case theoretical complexity analysis has shown that
L™ outperforms Ljs* in terms of number of output queries. It is interesting
to evaluate the average case complexity of the algorithms when the input sets,
the number of states and the length of counterexamples are of arbitrary sizes.
The examples in the experiments are the synthetic finite state models of real
world systems (e.g., Vending machine, ATM and ABP protocols, Mailing Sys-
tems etc) that are shipped with Edinburgh Concurrency Workbench (CWB) [11].
CWRB is a tool for manipulating, analyzing and verifying concurrent systems. The
examples in the workbench have also been used to investigate the applicability
of Angluin’s algorithm in learning reactive systems [I8]. These examples were
originally modeled as Non-Deterministic Finite Automata (NFA), with partial
transition relations, in which every state is a final state. Therefore, we have trans-
ferred first each example to its corresponding DFA. The resulting DFA contains
every state as final, plus one non-final (sink) state which loops itself for all inputs.
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All inputs from a state that are invalid (missing transitions in the original NFA)
are directed to the sink state. Then, we learn the Mealy machines models of the
CWB examples using both algorithms one by one. We have also simulated an
oracle so that the algorithms could ask equivalence queries for conjectures until
they find correct models. The oracle obtains a counterexample by calculating a
symmetric difference between the original example and the provided conjecture.

The number of output queries asked by the algorithms are given in Table
The first column labels the example. The second column shows the size of the
input set I. The third column shows the minimum number of states in the ex-
ample when modeled as DFA and Mealy machines. The fourth and fifth columns
show the number of output queries asked by Ly;* and Ly, ", respectively. The

last column shows the reduction factor in queries asked by L™ against L™,
ie no. of output queries in L™ 1
Y no. of output queries in Lyt :

Table 5. Comparison of Lj™ with Lut on the examples of CWB workbench. The
examples are listed in ascending order with respect to the number of states.

Examples |I| No. of States No. of Output Queries Reduction Factor

DFA / Mealy (min) L™ L™

ABP-Lossy 3 11 754 340 1.22
Peterson2 3 11 910 374 1.43
Small 5 11 462 392 0.18
VM 5 11 836 392 1.13
Buff3 3 12 580 259 1.24
Shed2 6 13 824 790 0.04
ABP-Safe 3 19 2336 754 2.1
TMR1 5 19 1396 1728 -0.2
VMnew 4 29 2595 1404 0.85
CSPROT 5 44 4864 3094 0.57

The experiments have been conducted on 10 CWB examples. All examples
are of different sizes in terms of number of states and input set size. The results
show that Ly ™ outperformed Lj;* in almost all the examples. The greatest
reduction factor achieved is 2.1 on the example A BP-Safe. However, there is only
one example TMR1 in which Lj; T has performed negatively. This is because
the implementation of our oracle provides arbitrary counterexamples that could
influence the number of output queries in few cases.

Apart from the CWB workbench, we have also experimented on arbitrary
random Mealy machines. We generated a set of 1500 machines with sizes ranging
between 1 and 500 states and input size up to 15. The average reduction factor
we achieved on this set is 1.32. We also studied the query complexity with respect
to the relation of input size with the number of states. Up to 1250 machines were
generated with larger inputs and relatively fewer states. We achieved the best
result on this set with the average reduction factor of 1.66.

As we know from our worst case complexity analysis, Ly performs better
than Lj;*. We have experimentally confirmed the difference in complexity of the
two algorithms on the finite state machine workbench, as well as on a large set
of arbitrary random Mealy machines.
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7 Conclusion and Perspectives

We have presented two algorithms for inferring Mealy machines, namely L™
and Ly, ™. The algorithm L;* is a straightforward adaptation from the algo-
rithm L*. The algorithm L™ is our proposal that contains a new method for
processing counterexamples. The complexity calculations of the two algorithms
shows that Lj;" has a gain on the number of output queries over Lj;*.

The crux of the complexity comparison comes from the fact that when we deal
with real systems, they work on huge data sets as their possible inputs. When
these systems are learned, the size of the input set I becomes large enough to
cripple the learning procedure. In most cases, |I| is a dominant factor over the
number of the states n. Therefore, when we look on the parts of the complexity
calculations which exhibit a difference, i.e., |I|>nm for L™ and |I|?n for Ly,
then it is obvious that Ly, has a clear gain over Ly* as |I| growsd.

Another aspect of the complexity gain of Ly, " comes from the fact that it is
not easy to obtain always “smart” counterexamples that are short and yet can
find the difference between the black box machine and the conjecture. Normally,
we obtain counterexamples of arbitrary lengths in practice (without assuming
a perfect oracle). They are usually long input strings that run over the same
states of the black box machine many times to exhibit the difference. When
L™ processes such counterexamples in the observation table by adding all the
prefixes of the counterexample to Sy, it adds unnecessarily as many states as
the length of the counterexample. This follows the extension of the table due to
Sw - 1. However, after filling the table with output queries, it is realized that
only few prefixes in Sy, are the potential states. On the contrary, the method
for processing counterexample in Lj;t consists in adding the suffixes of only a
part of the counterexample to Ej;. Then, Ly T finds the exact rows through
output queries which must be the potential states and then moves the rows to
S (see Section [4). So, the length of a counterexample m is less worrisome
when applying Ly, ™. As m becomes large, Ly, has more gain over Ly, *.

From the above discussion, we conclude that L, outperforms Ly, *, notably
when the size of the input set I and the length of the counterexamples m are
large. We have also confirmed the gain of Ly over Ly by experimentation
on CWB [I7] workbench of synthetic finite state models of real world systems,
as well as on the random machines, where m, I and n are of different sizes.

The research in the approach of combining learning and testing has remained
our major focus in the recent past [I3]. We intend to continue our research in
these directions to explore the benefits of our approach in disciplines, such as
learning other forms of automata and its application on the integrated systems
of black box components.

3 Contrary to CWB examples which are small enough to realize the impact of the
input size on the complexity, the experiments with random machines with large
input sizes provides a good confidence on the gain.
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Abstract. Systematic engineering design processes have many aspects in com-
mon with software engineering, with CAD/CAM objects replacing program code
as the implementation stage of the development. They are, however, currently
considerably less formal. We propose to draw on the mentioned similarities and
transfer methods from software engineering to engineering design in order to en-
hance in particular the reliability and reusability of engineering processes. We lay
out a vision of a document-oriented design process that integrates CAD/CAM
documents with requirement specifications; as a first step towards supporting
such a process, we present a tool that interfaces a CAD system with program veri-
fication workflows, thus allowing for completely formalised development strands
within a semi-formal methodology.

1 Introduction

Much of our life is shaped by technical artifacts, ranging in terms of intrinsic complexity
from ball point pens to autonomous robots. These artifacts are the result of engineering
design processes that determine their quality, safety, and suitability for their intended
purposes and are governed by best practices, norms, and regulations. The systematic
development of products is guided by descriptions of problems and their solutions on
different levels of abstraction, such as the requirements list, the function structure, the
principle solution, and eventually the embodiment design. The elements of these rep-
resentations are linked by dependencies within and across the different levels of ab-
straction. The present state of the art in computer-aided design and manufacture of
industrial artifacts (CAD/CAM) does not support this cross-linking of dependencies.
Consequently, e.g. non-embodied principle solutions are still often shared and stored
in the form of hand-made sketches and oral explanations. In other words, large parts
of the engineering process are not completely representable in current CAD/CAM sys-
tems, which are focused primarily on the embodiment level.

In contrast, software engineers have long acknowledged the need for a formal mathe-
matical representation of the software development process. In particular, formal speci-
fication and verification of software and hardware systems are essential in safety-critical
or security areas where one cannot take the risk of failure. Formal method success sto-
ries include the verification of the Pentium IV arithmetic, the Traffic Collision Avoid-
ance System TCAS, and various security protocols. In many cases, only the use of

* Work performed as part of the project FormalSafe funded by the German Federal Ministry of
Education and Research (FKZ 011W07002).

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 223238} 2009.
(© Springer-Verlag Berlin Heidelberg 2009
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logic-based techniques has been able to reveal serious bugs in software and hardware
systems; in other cases, spectacular and costly failures such as the loss of the Mars
Climate Orbiter could have been avoided by formal techniques. Norms such as IEC
61508 make the use of formal methods mandatory for software of the highest safety in-
tegrity level (SIL 3). Thus, formal methods will form an integral part of any systematic
methodology for safe system design.

The main goal of the present work is to outline how formal methods, hitherto used
predominantly in areas such as software development and circuit design that are inher-
ently dominated by logic-oriented thinking anyway, can be transferred to the domain of
CAD/CAM, which is more closely tied to the physical world. In particular, we wish to
tie formal specification documents in with a semi-formal engineering design process.
Potential benefits for the CAD/CAM process include

— formal verification of physical properties of the objects designed
tracing of (formalized) requirements across the development process
improved control over the coherence of designs

semantically founded change management.

We lay out this vision in some more detail, relating it to an extended discussion of current
best practice in engineering design (Section[2)), before we proceed to report a first step
towards enabling the use of formal methods in engineering design: we describe a tool
that extracts formal descriptions of geometric objects from CAD/CAM designs (Sec-
tion3)). Specifically, the tool exports designs in the CAD/CAM system SOLIDWORKS
into a syntactic representation in the wide-spectrum language HASCASL [12]], thereby
making the connection to a formal semantics of CAD/CAM objects in terms of standard
three-dimensional affine geometry as defined in a corresponding specification library. We
apply the tool in a case study (Section[d)) involving a toy but pioneering example where
we prove that a simple CAD drawing implements an abstractly described geometric ob-
ject, using the semi-automatic theorem prover Isabelle/HOL, interaction with which is
via logic translations implemented in the Bremen heterogeneous tool set HETS [9].

2 A Document-Oriented Process for CAD/CAM

Best practices for designing technical artifacts are typically standardised by profes-
sional societies. In our exposition here, we will follow the German VDI 2221 [14],
which postulates that the design

process proceeds in well-defined Verification & Validation
. . AR =
Phases, in which an initial idea Spedﬂmuﬂm MWI : A
is refined step-by-step to a fully
specified product documentation. Delivery

We observe that the process is
similar to the software engineer-
ing process and that the stages Yam \;. -/ System

in the design process result in m’l '

specification documents, as they
are e.g. found in the V-model Fig. 1. The V-model of Software Engineering
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(see Fig. [I). In contrast to software engineering approaches like the V-model, how-
ever, VDI 2221 (and actual current practice in engineering design) does not provide a
mechanism to ensure consistency between the design stages, or methods for verifying
that products actually meet requirements specified in preceding phases of the devel-
opment. In fact, the VDI 2221 process corresponds only to the left leg of the process
depicted in Fig. [Tl while the quality control process (the right leg in Fig.[Tland the main
contribution of the V-model) is left unspecified.

2.1 The Engineering Design Process

To make the correspondence between VDI 2221 and the V-model explicit we review
the six stages of VDI 2221[1 and relate them to the V-model before we illustrate them
with a simple example.

S1 Purpose/Problem: a concise formulation of the purpose of the product to be de-
signed.

S2 Requirements List: a list of explicit named properties of the envisioned product.
It is developed in cooperation between designer and client and corresponds to the
user specification document in the V-model.

S3 Functional Structure: A document that identifies the functional components of
the envisioned product and puts them into relation with each other.

S4 Solution in Principle: a specification of the most salient aspects of the design. It
can either be a CAD design like the one in Fig. 2lbelow or a hand drawing [§]].

S5 Embodiment Design/“Gestalt”: a CAD design which specifies the exact shape of
the finished product.

S6 Documentation: accompanies all steps of the design process.

Note that most of these design steps result in informal text documents, with step[S3] be-
ing the notable exception. In the envisioned document-oriented engineering design pro-
cess we will concentrate on these documents, enhance them with semantic annotations
and link them to background specifications to enable machine support: e.g. require-
ments tracing, management of change, or verification of physical properties. Before
discussing this vision in more detail, let us set up an example.

2.2 The Design of a Hammer

A rational reconstruction of the design process of a machinist’s hammer according to
the German industrial norm DIN 1041 would proceed as follows.

The Purpose of a Hammer. The first and most important step in setting up a require-
ments list is the specification of the purpose of the product. The purpose describes the
intended use of the product solution-neutrally. This is the highest level of abstraction
within the design process. In the case of a hammering tool, the purpose can be in the
form of a very simple definition:

! In fact, [[14]] specifies additional stages for determining modular structures and developing their
embodiments, which we will subsume in steps [S3]and [S3]
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A hammer is an apparatus for transmitting an impulse to an object, e.g. for
driving a nail into a wall.

In reference to a hand-tool in contrast to e.g. a hammer mill, the purpose can be nar-
rowed to:

A hammer is an apparatus for the manual generation and transmission of a
defined impulse to an object, e.g. for driving a nail into a wall.

Ideally, the list of requirements of a product should be unambiguous, clear and com-
plete. However, this is rarely the case in a real life design process, e.g. due to implicit
customer wishes, which in fact are often more important to the market-success of a
product than the explicitly named requirements. In the case of the hammer, the require-
ments might include the following.

Explicit Requirements

E1 The hammer has to fulfil the standard DIN 1041 and all related subsequent stan-
dards, namely: DIN 1193, DIN 1195, DIN 5111, DIN 68340 and DIN ISO 2786-1.

E2 The handle has to be painted with a clear lacquer over all and with colour RAL
7011 (iron grey) at 10 cm from the lower end.

E3 A company logo of 20mm length is placed on each of the two sides of the handle.

Implicit Requirements

I1 The hammer must be usable for right-handed and left-handed persons.
12 The hammer should be ergonomic.

I3 The hammer must fit into a standard tool chest.

14 The hammer shall look strong and matter-of-fact.

Functional Specification of a Hammer. Within the design process, the functional
specification is done by setting up the function structure that breaks down the complex
problem into manageable smaller sub-functions and represents the logical interrelation-
ships of the given tasks. As in the previous design steps, the function structure is still
solution neutral. The aim is to open up a preferably broad solution field, which will be
narrowed by explicit named criteria within further steps of the design process.

The function structure is intended to explain interrelationships within the fu-
ture embodied product; therefore, the connection between function structure and
the given product has to be clear. Every sub-function can be found within the
product, or the product is not a suitable solution. On the other hand, function
structures are not appropriate as a tool for reverse engineering, because the re-
lation between the embodied product and the underlying functions is ambiguous.
On the right,

. . object with
we depict  hand movement velocity impulse f impulse
one possible i
functional e O object  matedarand

energy

structure  for
the hammer as an apparatus for the manual generation and transmission of a defined
impulse to an object.
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The Principle Solution for a Hammer. From the functional specification,
we develop a principle solution (see Fig. D). This solution abstracts from
the physical traits of the

eventual product and .. T

identifies the functional L‘
parts. For a hammer, 2
one of these is the han-
dle, here a cylindri-
cal part of the hammer
shaft used for gripping.
The fact that it is sym-
metric/cylindrical is a
response to the require-
ment [ETl The handle
is connected to an in-
ert mass (depicted by Fig. 2. A principle solution for a Hammer

a solid ball in Fig. 2)

which is again connected to an active surface that delivers the impact on the object.
The size and form of the active surface will be determined by the requirement 2l In
fact, the principle solution reveals that there is a second possible active area of the ham-
mer, opposite to the primary one; Fig. [2] shows three variants of the principle solution
with differing secondary active surfaces.

surface
edge

point
support structure

handle

The Embodiment of a Hammer. Note that the principle solution is not a finished de-
sign yet, since it abstracts from most of the physical traits of a hammer, e.g. the dimen-
sions of the shaft and the form of the head, which will be specified in the embodiment
design step. Here, the ultimate three-dimensional shape and the materials of the prod-
uct are derived, taking into account material properties, manufacturability constraints,
specialised purposes, and aesthetic factors. These can lead to the widely differing final
designs we see in use today.

2.3 A Document-Oriented Design Process

We propose to reinforce the systematic engineering design process laid out above with
technologies and practices from software engineering and Formal Methods to obtain
a document-oriented process where designs are semantically enhanced and linked to
formal and semi-formal specifications. It is crucial to note that the various design doc-
uments necessarily have differing levels of rigour, ranging from informal and hard-
to-quantify requirements like [[2] to mathematical proofs of security-relevant properties,
e.g. in aerospace applications. Additionally, different product parts and aspects underlie
differing economic and security-related constraints, so that design quality control must
be supported at various levels of formality (going beyond strictly ontological annota-
tion as e.g. in the EXPRESS language that forms part of the STEP Standard for product
data exchange, 1SO 10303 [6I11])). As a consequence, design documents need to be en-
coded in a document format that supports flexible degrees of formality, such as OMDOC
(Open Mathematical Documents [7]). The OMDOC format concentrates on structural
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aspects of the knowledge embedded in documents and provides a markup infrastructure
to make it explicit by annotation. Crucially, the format supports a fine-granular mixture
of formal and informal elements and thus supports, e.g., the stepwise migration from
informal user requirements to specifications expressed in formal logics supported by
verification environments like the Bremen heterogeneous tool set HETS [9]. The for-
mat itself is semi-formal, i.e. focuses on explicitly structured documents where relevant
concepts are annotated by references to content dictionaries that specify the meaning
of the terms used in design documents. Semi-formal design documents already bring
added value to the engineering process by enabling machine support for many common
quality control tasks like requirements tracing and management of change which are
based on an explicitly given dependency relation (see [[1]] for details). Fully formal de-
velopment strands embedded in a semi-formal process additionally allow for the rigor-
ous verification of critical properties in a design, thus providing a reliable link between
various stages of the engineering design process. It is this aspect that we concentrate on
in the following.

3 Invading SOLIDWORKS

We now illustrate how the document-oriented formal/semi-formal methodology in en-
gineering design processes laid out in the last section can be supported by means of an
integration of formal methods tools with the widely used CAD system SOLIDWORKS
[13]. The latter serves mainly as a demonstration platform; our overall approach is suf-
ficiently general to apply equally well to any other CAD system that provides suitable
interfaces.

Our approach to interfacing with SOLIDWORKS is invasive, i.e. we implement se-
mantic services through direct access to the data structures of the CAD system. At
present, we provide a SOLIDWORKS plug-ilﬂ that extracts designs as formal specifi-
cations, i.e. as lists of terms denoting sketches and features, and as formulas express-
ing constraints relating these sketches and features. These data are obtained using the
SOLIDWORKS API, and are output as a HASCASL specification encoded in an
OMDoc file [[7].

Overview of HasCasL. HASCASL is a higher order extension of the standard alge-
braic specification language CASL (Common Algebraic Specification Language)
with partial higher order functions and type-class based shallow polymorphism. The
HASCASL syntax appearing in the specifications shown in the following is largely self-
explanatory; we briefly recall the meaning of some keywords, referring to [12]] for the
full language definition. Variables for individuals, functions and types are declared us-
ing the keyword var. The keyword type declares, possibly polymorphic, types. Types
are, a priori, loose; a free type, however, is an algebraic data type built from construc-
tor operations following the standard no-junk-no-confusion principle. Types are used
in the profiles of operations, declared and, optionally, defined using the keyword op.

2 Available as a Visual Basic macro for SOLIDWORKS 2008, SP1 or higher, from:
http://www.informatik.uni-bremen.de/~1schrode/SolidWorks/
SWExtractor.swp


http://www.informatik.uni-bremen.de/~lschrode/SolidWorks/SWExtractor.swp
http://www.informatik.uni-bremen.de/~lschrode/SolidWorks/SWExtractor.swp
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Operations may be used to state axioms in standard higher order syntax, with some ad-
ditional features necessitated through the presence of partial functions, which however
will not play a major role in the specifications shown here (although they do show up
in the geometric libraries under discussion). Names of axioms are declared in the form
% (axiom name) %.

Beyond these basic specification constructs, HASCASL inherits mechanisms for
structured specification from CASL. In particular, named specifications are introduced
by the keyword spec; specification extensions that use previously defined syntactic ma-
terial in new declarations are indicated by the keyword then; and unions of syntacti-
cally independent specifications are constructed using the keyword and. Annotation of
extensions in the form then %implies indicates that the extension consists purely of
theorems that follow from the axioms declared previously. Named specifications may
be parameterized over arbitrary specifications. They may be imported using the given
name. Named morphisms between two specifications can be defined using the keyword
view to express that modulo a specified symbol translation, the source specification
is a logical consequence of the target specification. HASCASL is connected to the Is-
abelle/HOL theorem prover via HETS [9].

The SoLipWorks Object Model. In order to obtain a formal representation of CAD
designs, we define the SOLIDWORKS object types as algebraic data types in a HAS-
CASL speciﬁcatiOIE following the SOLIDWORKS object hierarchy, using a predefined
polymorphic data type List a of lists over a. (All specifications shown below are
abridged.)

spec SOLIDWORKS = AFFINEREALSPACE3DWITHSETS
then free types
SWPlane ::= SWPlane (SpacePoint : Point; NormalVector : VectorStar;
InnerCS : Vector);
SWArc ::= SWArc (Center : Point; Start : Point, End : Point);
SWLine ::= SWLine (From : Point; To : Point);
SWSpline ::= SWSpline (Points : List Point);
SWSketchObject ::= type SWArc | type SWLine | type SWSpline;
SWSketch ::= SWSketch (Objects : List SWSketchObject;
Plane : SWPlane);
SWEXxtrusion ::= SWEXxtrusion (Sketch : SWSketch; Depth : Real);

SWFeature ::= type SWExtrusion | ...
This provides a formal syntax of CAD designs, which we then underpin with a formal
geometric semantics. The constructs are classified as follows.

— Base objects are real numbers, vectors, points, and planes, the latter given by a
point on the plane, the normal vector and a vector in the plane to indicate an inner
coordinate system.

3 All mentioned HASCASL specifications can be obtained under https://svn-agbkb.
informatik.uni-bremen.de/Hets-1ib/trunk/HasCASL/Real3D/


https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/
https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/
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— Sketch objects: From base objects, we can construct sketch objects which are lines
defined by a start and an end point, arcs also given by start and end, and additionally
a center point, and splines given by a list of anchor points.

— Sketch: A plane together with a list of sketch objects contained in it constitutes a
sketch.

— Features represent three dimensional solid objects. They can be constructed from
one or more sketches by several feature constructors, which may take additional
parameters.

We will focus in the following on the eztrusion feature constructor which represents
the figure that results as the space covered by a sketch when moved orthogonally to the
plane of the sketch for a given distance.

In order to reason formally about SOLIDWORKS designs, we equip them with a
semantics in terms of point sets in three-dimensional affine space (i.e. in R? equipped
with the standard affine structure). For example, the term SWLine(A, B) is interpreted
as a line segment from point A to point B in R?. Formally, the semantics is based on
point set constructors that correspond to the syntax constructors, specified as follows.

spec SOLIDWORKSSEMANTICCONSTRUCTORS =
AFFINEREALSPACE3DWITHSETS
then ops
VWithLength(v : Vector; s : Real) : Vector =
vwhenv =0 else (s / (|| v || as NonZero)) * v;
VPlane(normal : Vector) : VectorSet = \ y : Vector e orth (y, normal);
VBall(r : Real) : VectorSet = \y : Vector e || y || < r;
ActAttach(p : Point; vs : VectorSet) : PointSet = p + vs;
ActExtrude(ax : Vector; ps : PointSet) : PointSet =
Ax: Point e 31 : Real;y : Point
e [ isIn closedinterval (0, 1) Ayislnps Nx =y + [ x ax;

Using these semantic constructors, the point set interpretation of, e.g., planes and fea-
tures is given by the specification below. Note that the semantics of sketch objects addi-
tionally depends on a plane, which is specified only at the level of the enclosing sketch.
We give a simplified version of the semantics where we ignore the fact that one has to
distinguish between open and closed sketches — open sketches are implicitly equipped
with a default wall thickness, while closed sketches are understood as filled objects.
In particular, we elide the full definition of the semantics of arcs; we are, for purposes
of the case study of Section[d] only interested in the case of closed arcs, which define
discs.

spec SOLIDWORKSWITHSEMANTICS = SOLIDWORKS
and SOLIDWORKSSEMANTICCONSTRUCTORS
then ops

i : SWExtrusion — PointSet;

i : SWPlane — PointSet

i : SWSketch — PointSet;
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is : SWSketchObject x SWPIlane — PointSet;
is : (List SWSketchObject) x SWPlane — PointSet;
vars o, Xx, Yy, z: Point; n : VectorStar; ics : Vector; | : Real;
sk : SWSketch; plane : SWPlane;
sko : SWSketchObject; skos : List SWSketchObject
e i (SWPlane (o, n, ics)) = ActAttach (o, VPlane n);
e is ([ ], plane) = emptySet;
o is (sko :: skos, plane) = is (sko, plane) union is (skos, plane);
o is (SWArc (x,y, 2), plane) = . ..
o | (SWSketch (skos, plane)) = is (skos, plane);
e i (SWPlane (o, n, ics)) = ActAttach (o, VPlane n);
o | (SWExtrusion (sk, 1))
= ActExtrude(VWithLength (NormalVector (Plane sk), 1), i sk);

In the case study of the next section, we will show a concrete example which illustrates
the use of the plug-in in the context of our envisioned development process. Here, the
tool chain connects SOLIDWORKS to HASCASL via the plug-in, and the heterogeneous
tool set HETS then allows for the automatic generation of proof obligations to be dis-
charged in a semiautomatic theorem prover such as Isabelle/HOL. The case study is
mainly concerned with the verification of designs against abstract requirements. Fur-
ther potential uses of the invasive approach include semantic preloading, i.e. automated
rapid prototyping of designs from abstract specifications, as well as requirements trac-
ing and a closer general integration of specifications and designs, e.g. by user-accessible
links between specifications and parts in the SOLIDWORKS design.

4 Case Study: Simple Geometric Objects

We will now illustrate what form a formal strand of the integrated formal/semi-formal
development process advocated above might take on a very basic case study: we con-
struct a simple object in the CAD/CAM system, specifically a cylinder, export its formal
description using our tool, and then formally verify that it implements a prescribed ab-
stract geometric shape, i.e., that it really is a cylinder; here, we use the standard concept
of specification refinement made available in HETS via the syntactic construct of views
as exemplified below.

In practice it turns out that, rather than verify the correctness of a particular design
directly, it is more convenient to develop a library of common design patterns. Given a
formal export of a CAD/CAM object and an abstract specification for this object, we
then only have to match the object term against the patterns in our pattern library, for
which correctness has already been verified once and for all. In Section 1] we will
show a sample proof of a design pattern.

Naively, one would imagine that there is really nothing to verify about a geometric
object: a cylinder is a cylinder is a cylinder. But as soon as one starts using a real CAD
system, it becomes clear that the situation is actually more complex. The mathematical
concept of a three-dimensional geometric object is a set of points in three-dimensional
euclidean space, typically described by a general formation principle and a number of
parameters. E.g. in the case of a (solid) cylinder, the parameters are
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— the coordinates of some anchor point, say the centre of the cylinder,
— the spatial direction of the axis,
— the height h and the radius r,

and the formation principle for cylinders prescribes that these parameters describe the
set of points p such that

— p has distance at most r from the axis (regarded as an infinite straight line);

— the orthogonal projection of p onto the axis has distance at most h from the centre
point, and

— p lies in the positive half space determined by the base plane.

On the other hand, the design that we extract from our CAD constructiond takes a totally
different form: instead of defining a point set using the above-mentioned parameters, we
construct the cylinder as a feature by applying a suitable feature constructor to more
basic two-dimensional objects called sketches as laid out in Section Bl Additionally,
we may impose constraints on the dimensions involved, e.g. equality of two sides in
a triangle, a point which we have not explicitly treated in Section Bl Specifically, the
construction of a cylinder in SOLIDWORKS would typically proceed as follows.

— Create a plane.

— Insert a circle into the plane, described as a circular arc with coincident start and
end points.

— Extrude the circle to a certain depth.

Thus, the cylinder is constructed as a feature stemming from the extrusion
feature con-
structor which
is anchored
in a sketch
consisting  of
one sketch
object, a circle.
We shall gen-
erally refer to a
combination of
features as de-
scribed above
as a concrete
design, while
a definition via
mathematical

point sets will
be called an ab-
stract  design.

Fig. 3. Call to the SOLIDWORKS plug-in to export a cylinder

*The CAD design of the cylinder is available under [http://www.informatik.
uni-bremen.de/~1lschrode/SolidWorks/CylinderTestCase.SLDPRT


http://www.informatik.uni-bremen.de/~lschrode/SolidWorks/CylinderTestCase.SLDPRT
http://www.informatik.uni-bremen.de/~lschrode/SolidWorks/CylinderTestCase.SLDPRT
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While in the above case it is easy to see intuitively that the concrete design matches the
abstract design, i.e. that extruding a circle really yields a cylinder, the formalisation of
this intuition is by no means an entirely trivial enterprise, and more complex objects
quickly lead to quite challenging verification tasks — imagine e.g. having to check
that two given circular extrusions of two circles yield two interlocking chain links.
Additional complexity arises from the above-mentioned constraints — e.g. one may
initially leave the height of the cylinder open, cut part of the cylinder off using a
skewed plane placed at a defined angle to the base plane and touching the perimeter of
the bottom circle, and then impose that the height of the short side of the arising cut
cylinder is half that of the long side, thus completely determining the height.

It is therefore desirable to have machine support for checking that an abstract design
is actually implemented by a given concrete design. Besides the mere fact that one can
verify geometric shapes, added benefits include

— Easy proofs of physical and geometric properties of the objects involved — e.g. once
one has matched the abstract cylinder to the concrete cylinder, one can now prove
on the abstract side (much more easily than on the concrete side) that the cylinder
adheres to a prescribed surface area, volume, or mass (if the density is known).

— Better control over the cohesion and consistency of the design — e.g. if it turns out
that the design fails to match the abstract object, this may mean that the designer
has accidentally left extraneous degrees of freedom. Such errors may later lead to
blocked designs that cannot be completed due to unsatisfiability of their constraints,
a notorious problem in computer-aided construction; verification against abstract
designs may help in detecting such errors at an early stage of the development
process.

— The abstract design may in fact properly abstract from the concrete shape of the
final object, e.g. by leaving less relevant dimensions open (within certain ranges)
or omitting features that do not play a central role in the present stage of the design
process, thus providing for a property-centered approach to evolutionary design.

Further possible semantic services enabled by the connection between abstract and con-
crete designs within HETS include semantic annotation and requirements tracing as
discussed in Section [2I A more visionary potential application of abstract designs is
the automated derivation of concrete designs, i.e. rapid prototyping by compilation of
abstract designs into preliminary formally verified CAD documents.

A collection of geometry libraries. The basis of the proposed formal geometric ver-
ification framework is a collection of HASCASL specification libraries, structured as
follows. The abstract specification of three dimensional basic geometry is contained in
a library which provides the fundamental types and objects such as the data types Point
and Vector for points and vectors in R?, types for point sets and vector sets, and op-
erations on these types. These specifications import parametrised specifications from a
library of abstract linear algebra and affine geometry, which provides the basic notions
of a Euclidean vector space such as linear dependency, norm and distance, the inner
product and orthogonality, and the operations which relate points and vectors in affine
geometry. For instance, the basic definition of an affine space, i.e. intuitively a vector
space without origin, is given as follows.
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spec AFFINESPACE[VECTORSPACE[FIELD]] =

type Point

op + : Point x Space — Point % (point space map) %
vars p, q: Point; v, w: Space

*p+V=pt+tw=v=w % (plus injective) %
edy:Spaceep+y=gq % (plus surjective) %
op+(V+w=p+v+w % (point vector plus associative) %

then %implies

¥ p : Point; v, w : Space

ep+v+w=p+w-+y; % (point vector plus commutative) %
end

spec EXTAFFINESPACE [AFFINESPACE[VECTORSPACE[FIELD]]] = %def

op vec: Point X Point — Space

¥V p,q: Point e p + vec (p, q) = q; % (vec def) %
then %implies

vars p,q,r: Point; v, w : Space

e vec (p, q) + vec (q, r) = vec (p, r) % (transitivity of vec plus) %
e vec (p, q) = — vec (q, p) % (antisymmetry of vec)%
ep+v=gqg=v=vec(p,q); % (plus vec identity) %

end

(Here, we employ a pattern where specifications are separated into a base part con-
taining only the bare definitions and an extended part containing derived operations,
marked as such by the semantic annotation %def.)

The libraries for SOLIDWORKS consist of the data types and semantics introduced
in Section Bl and common concrete design patterns such as, e.g., the construction of a
cylinder described earlier in this section. They also contain views stating the correct-
ness of these patterns, as exemplified next. Constructions exported from SOLIDWORKS
using our tool can then be matched with design patterns in the library via (trivial) views,
thus inheriting the correctness w.r.t. the abstract design from the design pattern.

4.1 A Proof of a Refinement View

We illustrate the verification of concrete design patterns against abstract designs on our
running example, the cylinder. The abstract design is specified as follows.

spec CYLINDER = AFFINEREALSPACE3DWITHSETS
then op  Cylinder(offset : Point; r : RealPos; ax : VectorStar) : PointSet =
A x : Point e let v = vec (offset, x) in
|l proj (v, ax) || < || ax ||
A || orthcomp (v, ax) || < r
A (v *ax) > 0;

We wish to match this with the concrete design pattern modelling the CAD construc-
tion process outlined above (importing the previously established fact that planes in
SOLIDWORKS are really affine planes):
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spec SOLIDWORKSCYLBYARCEXTRUSION =
SOLIDWORKSPLANE 1S AFFINEPLANE
then op
SWCylinder(center, boundarypt : Point; axis : VectorStar): SWFeature =
let plane = SWPIlane (center, axis, V (0, 0, 0));
arc = SWArc (center, boundarypt, boundarypt);
height = || axis ||
in SWExtrusion (SWSketch ([ arc ], plane), height);

view SWCYLBYAE ISCYLINDER : CYLINDER to
{SOLIDWORKSCYLBYARCEXTRUSION
then op
Cylinder(offset : Point; r : RealPos; axis : VectorStar): PointSet =
let boundary = \ p : Point e let v = vec (offset, p)
inorth (v,axis) AN || v =r;
boundarypt = choose boundary
in i (SWCylinder (offset, boundarypt, axis));

The above view expresses that every affine cylinder can be realized by our concrete
design pattern. It induces a proof obligation stating that the operation Cylinder defined
in the view by means of 7 o SW C'ylinder is equal to the operation Cylinder defined
in the specification Cylinder, the source of the view. Translated into an Isabelle/HOL
assertion via HETS, the proof obligation takes the following shape.

theorem def of Cylinder :
“ALL axis offset r.
Cylinder (( offset, r), axis) =
(% x. let v = vec(offset, x)
in (|| proj(v. gninj(axis) || <=|| gninj(axis) || &
|| orthcomp(v, gn inj(axis)) || <= gninj(r)) &
v x4 gn inj (axis) >="0")"

We will sketch the corresponding proof in Isabelle/HOL, using a slightly more readable
notation than those in the original Isabelle source codd]. After the unfolding of function
definitions such as SWClylinder, SWExtrusion, i, ActExtrude and some bookkeeping
steps involving let-environments, conditionals, and function equality, we arrive at an
equivalence of the form

(1) Exists 1:Real, y:Point.

(1.1) 1in [0..1] /\ (1.2) y in (ball intersection plane) /\ (1.3) x =y + 1 * axis
<=>(2)

Q2.1 ||vpl| <=[laxis|| /\ (2.2) [|vo|| <=r/\ (2.3) v * axis >=0

with free variables x, offset, r and axis and a local environment containing the
following variable bindings (function symbols are explained in Table [T).

> The Isabelle source code for this proof can be obtained under https://svn-agbkb.
informatik.uni-bremen.de/Hets-1ib/trunk/HasCASL/Real3D/
SolidWorks/CylinderView. thy


https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/SolidWorks/CylinderView.thy
https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/SolidWorks/CylinderView.thy
https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/SolidWorks/CylinderView.thy
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(0.1) boundary = \p. let v=vec(offset, p) in orth(v, axis) /\ ||v]| =1
(0.2) bp = choose(boundary)

(0.3) rl = vec( offset, bp)

(0.4) pln = SWPlane offset axis 0

(0.5) arc = SWArc offset bp bp

(0.6) ht = || axis ||

(0.7) ball = ActAttach( offset , VBall(||r1 |]))
(0.8) plane = i(pln)

(0.9) v = vec( offset , x)

(0.10) vp = proj (v, axis)

(0.11) vo = orthcomp(v, axis)

Table 1. Function symbols and their meaning

FUNCTION DESCRIPTION
[0..1] closed unit interval
intersectionbinary set intersection

* overloaded binary operator (inner product, scalar multiplication, ...)
[ 1] norm of a vector

vec the vector connecting two points

orth the orthogonality predicate for two vectors

choose usual choice operator for a predicate

SWPlane SOLIDWORKS constructor for a plane (see Section [3])

SWArc SOLIDWORKS constructor for an arc (see Section[3))

VBall vector set constructor for a ball (see Section[3))

ActAttach point set constructor adding a vector set to a point (see Section[3])
i interpretation function (see Section[3))

proj orthogonal projection of a vector onto another

orthcomp the orthogonal component of an orthogonal decomposition

The key to the proof is the relation between v, y and 1 and the orthogonal decomposi-
tion of v alongthe axis:v = vp + vo.From (0.8) together with (0.4) and the
semantics definition for a plane, we obtain plane = offset + VPlane (axis)
= offset + {z | orth(z,axis)}, and with (1.2), which gives us y in
plane, we havey = offset + y’ with vy’ satisfying orth(y’,axis). Simi-
larly we obtain from (0.7) thaty = offset + y’’ withy’’ <= ||rl]|| and
of course y’ = y’’ by injectivity of the addition of vectors to points in affine space.
Substituting y into (1.3) givesusx = offset + y’ + 1 * axis.

On the other hand, from (0.9) we have x = offset + v = offset +
vo + vp with vp a multiple of axis and vo orthogonal to it. Hence we ob-
tain offset + vy’ + 1 % axis = offset + vo + vp and thus y’ + 1
* axis = vo + vp.As1l % axis and vp are linearly dependent and each side
of the equation is the unique orthogonal decomposition of v, we obtain finally our rela-
tionasy’ = voand1l » axis = vp.Toshow (1) => (2) using this relation
it remains to establish the following.
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(1") 1in [0.1] /\ (1.27) y in ball
=> (2)

@2.17) |1 x axis || <=|]axis|| /\ 22°) ||y’|]|] <=r
/\ (237) (vo+1 x axis) x axis >=0

The rest is now real arithmetic together with the distributive law of the inner product
and some basic facts concerning the inner product and the norm, thus concluding the
correctness proof of the concrete design pattern for cylinders.

5 Conclusion and Further Work

We have argued that systematic engineering design processes (as laid down e.g. in VDI
2221) have many commonalities with software engineering. To transfer methods from
software engineering to engineering design we have to deal with the fact that engi-
neering design processes are considerably less formal and are geared towards produc-
ing CAD/CAM objects instead of program code. We have formulated a semi-formal,
document-oriented design process that integrates CAD/CAM documents with specifi-
cation documents of various degrees of formalisation, up to and including fully formal
specification and verification. To support the CAD/CAM parts of this design process,
we have extended a widely used CAD system with an interface for exporting CAD ob-
jects to the Bremen heterogeneous tool set HETS, specifically to translate them into
specifications in the wide-spectrum language HASCASL. Thereby, we turn CAD de-
signs into fully formal documents, as the export mechanism defines a rigorous geo-
metric semantics for them. Moreover, we have illustrated the formal proof obligations
that may arise in this process, and as a proof of concept, we have presented a sample
proof that verifies the implementation of a simple abstract geometric object by a CAD
design. One of the lessons to be learned from even such a basic case study is that the
matching of concrete CAD designs with geometric concepts should be via a library of
pre-established design and construction patterns. Together with the modularisation fa-
cilities afforded by the use of HASCASL within HETS, such a library will also play an
important role in eventually making formal approaches to engineering design scale to
realistic systems.

The present work forms part of a long-term endeavor where we want to rethink the
systematic engineering design process as a whole. Further steps in this program include
improved automated proof support for geometric proofs possibly using an integration of
computer algebra systems into the HETS framework, rapid prototyping of CAD/CAM
objects from abstract specifications, and verification of CAD/CAM designs against for-
malised industrial standards. The immediate next stage in this process is to go one
step further up the ladder, proceeding from the specification and verification of simple
shapes to simple artifacts such as the hammer. Besides being technically more com-
plex, this leads to a conceptually higher level of abstraction as one will wish to specify
abstract properties rather than the shape of the artifact. The reasoning support for for-
malised geometry may eventually profit from existing results on automated theorem
proving in geometry including [3I13l43], either by reuse of concepts or by importing
existing theorems using the heterogeneous mechanisms provided by HETS.
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Abstract. Statecharts and Petri nets are two popular visual formalisms
for modelling complex systems that exhibit concurrency. Both formalisms
are supported by various design tools. To enable the automated exchange
of models between Petri net and statechart tools, we present a structural,
polynomial algorithm that translates safe Petri nets into statecharts. The
translation algorithm preserves both the structure and the behaviour of
the input net. The algorithm can fail, since not every safe net has a stat-
echart translation that preserves both its structure and behaviour. The
class of safe nets for which the algorithm succeeds is formally charac-
terised. Some statechart translations are not constructible by the algo-
rithm, but this does not seem to be a severe limitation in practice.

1 Introduction

While finite state machines are a popular technique for formally modelling the
control flow of simple systems, it has long been recognised that for complex
concurrent systems more powerful techniques are needed. Petri nets [I5] and
statecharts [§] are two visual formalisms that extend finite state machines with
constructs for modelling concurrency in succinct way. In practice, both for-
malisms are used side by side. For instance, UML [I6] contains both activity
diagrams, which have been inspired by Petri nets, and statecharts.

Both formalisms are supported by various tools, such as GreatSPN [I] and
PEP [0] for Petri nets, and Statemate [I0], Stateflow [14], and several UML
tools such as Rational Rose [12] for statecharts. Tools supporting Petri nets, like
GreatSPN and PEP, are strongly focused on analysis of functional and stochastic
properties, while tools supporting statecharts, like Statemate and UML tools, are
usually more focused on interactive simulation and on software code generation.

To allow designers to use both Petri net and statechart tools, it is useful
to have formally defined translations between the two formalisms. Such for-
mal translations enable the automated exchange of models between different
tools [6I7UT7]. For instance, a designer can first use a Petri net tool to anal-
yse functional properties of a net design, next use an automated translation to
transform the net into a statechart, and then use a statechart tool to generate
software code.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 239 255| 2009.
© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Example Petri net

Ideally, such translations preserve the behaviour of the original model [7],
neither reducing nor adding behaviour. Moreover, such translations should pre-
serve the syntactic structure of the input models as much as possible, to support
roundtrip engineering and to make it easier for designers to understand the pro-
duced translations. Without the requirement of structure preservation, for each
model with finite behavior a trivial translation exists: compute the transition
system of a model in formalism A, which resembles a finite state machine, and
translate this transition system into formalism B. However, the syntactic struc-
ture of the two models would then be completely different, as the input model
is concurrent but the output model sequential. Moreover, such a translation is
prohibitively expensive for large models due to the state explosion problem.

While structure-preserving translations from statecharts to Petri nets ex-
ist [ITI18], translations for the reverse direction are lacking. This paper defines
a structure/behaviour-preserving translation from Petri nets to statecharts, i.e.
a translation that preserves both the structure and the behaviour of the in-
put nets. To introduce the translation, Fig. [[l shows a Petri net and Fig. [ its
structure/behaviour-preserving statechart translation (the syntax of Petri nets
and statecharts is explained in Sect. ). To show the correspondence between
both models, statechart BASIC nodes and hyperedges are labelled with the
names of the corresponding Petri net constructs.

As the example shows, the key difficulty in defining the translation algorithm
is constructing the statechart AND/OR tree, which has no counterpart in Petri
net syntax. Still, the translation algorithm we define in this paper is structural: it
maps Petri net syntax to statechart syntax, without using any Petri net analysis
technique like place invariants or reachability graphs. The time complexity of
the algorithm is polynomial, so it scales to large Petri net models.

Not every net has a structure/behaviour-preserving statechart translation, so
the algorithm can fail. For example, in statecharts each node is either present
or not present in the current state, while in Petri nets a place can be present
multiple times in the current state, i.e. a place can contain multiple tokens. In
that case, the place and the Petri net are called unsafe. Therefore, an unsafe
Petri net like Fig. Bl(a) has no structure/behaviour-preserving statechart trans-
lation, since an unsafe place cannot map to one BASIC node. Still, by using a
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Fig. 3. Two Petri nets without structure/behaviour-preserving statechart translations

behaviour-preserving translation from unsafe nets to safe nets [2], also an unsafe
net can be translated to a statechart using the translation algorithm defined this
paper.

However, there do exist safe Petri nets like Fig. [B(b) that have no structure/
behaviour-preserving statechart translation, as we explain in Sect. Bl There we
also show that there are safe nets for which the algorithm does not construct a
statechart even though a structure/behaviour-preserving statechart translation
does exist. Since these statecharts are not constructible by the algorithm, the
algorithm is incomplete. However, such statecharts are not likely to be drawn
in practice, so this does not seem to be a severe limitation. In Sect. Bl we also
formally characterise the subclass of safe nets for which the algorithm returns a
statechart, so the algorithm is sound and complete for this class of Petri nets.

To simplify the exposition, we do not consider transition labels for statecharts
and Petri nets in this paper. This implies we use a generic, abstract statechart
semantics in which a transition is not triggered by an event, but is taken when its
input state nodes are in the current state. The translation defined in this paper
can provide the basis for more advanced translations which deal with events and
data, for example. Moreover, we do not consider weights on Petri net arcs, since
these are only useful for unsafe nets.

The remainder of this paper is structured as follows. Section [2 provides
background on Petri nets and statecharts. Section Bl explains the basics of the
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translation, including two reduction steps on Petri nets. These steps are used in
Sect.in a polynomial translation algorithm. The algorithm preserves the struc-
ture and the behaviour of the input net. Section [0 discusses the expressiveness
and completeness of the translation. Section [ presents related work. Section [1]
winds up with conclusions and further work.

2 Background

We informally present the basics of Petri nets and statecharts. More formal
introductions can be found in an accompanying technical report [5] and in [15]
for Petri nets, and [] for statecharts.

2.1 DPetri Nets

A Petri net (Place/Transition net) consists of places, represented by circles, tran-
sitions, represented by bars, and directed arcs connecting places to transitions
and vice versa. The preset of an element z € P U T, denoted ex, is the set of
elements that have an outgoing arc that enters x, while the postset of x, denoted
xe, is the set of elements that have an incoming arc that leaves x. For example,
in Fig. [l for t1 we have etl = {pl} and tle = {p2, p4, p6, pl1}. We require that
each transition has a non-empty preset and a non-empty postset. If a place is in
the preset(postset) of ¢, then it is input(output) to t.

As explained in the introduction, we are concerned here with safe nets, which
are nets in which each place contains at most one token, visualised as a black dot.
Places marked with a token belong to the current state (also called marking).
A transition ¢ is enabled in a state if all its input places have a token, so are in
the state. In Fig. [l transition t1 is enabled. Upon firing, from each input place
a token is removed, and to each output place a token is added.

We require that each net has a single start place ¢, like pl in Fig.[Il For each
place in the net, there must be a path from ¢ to that place. The initial state of
each net will be {¢}. Standard definitions of Petri nets do not enforce a single
start place, but we use it here to simplify the translation. Furthermore, each safe
net having an initial marking in which set of places X C P is marked can be
extended into a net with from a conceptual modelling point of view equivalent
behaviour, by adding a single start place ¢ and a new transition ¢, with preset
{¢} and postset X.

Formally, a Petri net is a tuple (P, T, F,¢) where P is the set of places, T the
set of transitions such that PNT = (), FF C (P x T) U (T x P) the set of arcs,
and ¢ € P the start place. Standard definitions of Petri nets also use weights on
arcs, but since weights are only useful for unsafe nets, we do not consider these.

2.2 Statecharts

Statecharts extend finite state machines with AND/OR decomposition of state
nodes and event broadcasting. As explained in the introduction, we do not focus
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on events, and therefore statechart transitions do not carry any label here. State
nodes are arranged in an AND/OR tree. Visually, the parent-child relation is
represented by nesting the child inside the parent node. Leaves of the tree are
BASIC nodes, while internal nodes are either AND nodes or OR nodes. An AND
node specifies parallel decomposition, while an OR node specifies exclusive-or
decomposition. For technical reasons, the root rt of the tree is always an OR
node. The root is never shown in a statechart diagram. A node x is a descendant
of node y if x = y or x is (indirectly) contained inside y; node y is then ancestor
of z. For example, p2 is descendant of A3 in Fig.

A state C of a statechart, called a configuration, is a maximal set of nodes
that the system can be in simultaneously. Configurations for the statechart in
Fig. 2 are for example {pl,rt} and {p5, p8, pl1, 03, 04,05,06,A2, A3, rt}. Each
configuration C' has to satisfy the following three constraints:

— if a non-root node is in C, its parent is in C' too,
— if an AND node is in C| all its children are in C' too,
— if an OR node is in C, then one of its children is in C' too.

Like Petri nets, nodes in a statechart can be connected by transitions, which
we call hyperedges from now on to avoid confusion with transitions in a Petri
net. Hyperedges can have input nodes (called source nodes) and output nodes
(called target nodes). A hyperedge can have a non-BASIC node as source or
target node. For hyperedge h, set source(h) denotes the set of source nodes of h
while target(h) the set of target nodes. It is required that each pair of nodes in
source(h) and each pair of nodes in target(h) are orthogonal, that is, given two
different sources (targets), the smallest node containing both sources (targets)
is an AND node, so the sources (targets) can be in the same configuration. In
Fig.@ n2 and n4 are orthogonal since the smallest node containing both is AND
node A. We adopt the UML notation for statecharts: a hyperedge with a single
source node and a single target node is visualised as a simple directed edge, while
a hyperedge having more than one source or target node is visualised as a bar
having incoming and outgoing edges.

A hyperedge is enabled if all its source nodes are in the current configuration.
However, the computation of the state reached after taking the hyperedge is more
involved than for Petri nets, since the next state has to satisfy the constraints
for configurations. First, all nodes below the scope of h are left, so they are
removed from the current configuration. The scope of & is the smallest OR node
that contains all the input and output nodes of h, i.e., all other OR node that
contain all the input and output nodes also contain the scope of h. For example,
the scope of hyperedge t6 in Fig. @lis O5.

Next, the targets of h (and their ancestors below the scope of h) are added to
the state. If the resulting state is not a configuration, then target(h) is not com-
plete. For instance, in Fig.Hl the target set of h4 is incomplete, since {n5,02,Art}
is not a configuration, as it contains AND node A, but not all children of A. Harel
and Naamad [I0] explain a static procedure for normalising statecharts, in which
each incomplete target set X of a hyperedge is extended into a complete target
set. The resulting hyperedges with complete target sets are called full compound
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. [~ ]

Fig. 4. Non-normalised statechart

transitions [I0]. A complete description of the procedure is out of scope here,
but an important element is the use of the default child node (pointed to by an
arrow leaving a black dot) for each OR node that causes incompletion of X. For
example, the default node of O1 in Fig. dlis BASIC node n3, and therefore the
complete target set for h4 is {n3,n5}.

Our translation maps Petri nets to normalised statecharts, such as the one in
Fig. 2 Note that a normalised statechart is like an ordinary statechart, except
that default nodes are superfluous, since each hyperedge already has a complete
target set. Therefore, we omit default nodes from the statechart definition.

Formally, a (normalised) statechart is a tuple (N, H,source,target,child,type,I).
Set N contains the nodes, set H the hyperedges, where N N H = (). Functions
source,target : H— P(N) specify for each hyperedge the non-empty sets of
input nodes and output nodes, respectively. Predicate child C N x N relates a
node to its parent node, so (n,n’) € child means n is child of n’. There should
be one node rt that has no parent, so 7t is the root of the tree. Function type :
N — {BASIC,AND,OR} assigns to each node from N its type. A node is BASIC
if and only if it has no children. Set I C N is the initial configuration. For non-
normalised statecharts, I can be computed by taking the default completion of
OR root rt [4], similar to the way target sets are completed [10]. Our translation
will construct I explicitly.

3 Translation Basics

In this section, we explain the basics of the translation algorithm defined in the
next section.

Preserving structure. To ensure that the constructed translation is structure-
preserving, the algorithm maps each place to a BASIC node and each transition
t with preset X and postset Y to a hyperedge h having source set X and target
set Y. Both mappings are bijective. Thus, the translation algorithm embeds the
Petri net structure in the statechart structure.

Building the AND/OR tree. The AND/OR nodes of the statechart have no coun-
terpart in the Petri net, but are constructed by the translation algorithm. These
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nodes have to be arranged in a tree, the leaves of which are the BASIC nodes.
To construct the internal nodes of the tree, of type AND and OR, transitions
are processed. For each transition ¢, an OR node o must be created which acts
as the scope of hyperedge t in the statechart. Moreover, if ¢ has a non-singleton
preset (postset), then the places in the preset (postset) are active in parallel,
so an AND node, child of o, needs to be constructed that contains all BASIC
nodes in et (te). For example, for transition t3 in Fig. [Il in the corresponding
statechart in Fig. 2 AND node Al has been created.

Nesting nodes. Complicating issue is that an AND node can be nested inside
another AND node. For example, in Fig. 2] AND node Al is nested inside A2
and A3. Thus, the translation algorithm cannot create for the postset of t1 an
AND node a with four OR children that have the output places of t1 as BASIC
children; instead, it needs to create an AND node with two OR children, in
one of which AND nodes A2 and Al are nested. To create a proper nesting, we
construct the AND/OR tree bottom-up. So, when creating the AND/OR tree
for the Petri net in Fig.[Il first AND node Al and its OR children is constructed,
then A2 and its OR children, and finally A3 and its OR children.

Ordering of transitions. To ensure that the tree is constructed bottom-up, tran-
sitions need to be processed in a certain order. For example, we see that in Fig.
the scope of hyperedge t2 (OR node O1) is more nested than that of t1 (root
rt). Therefore, the transition t2 needs to be processed before t1.

The ordering constraint we use is that a transition ¢; should be processed
before a transition to, written t1 < to, if either of; C toe or t1e C et5. In both
cases, in the resulting statechart the scope of hyperedge t; is nested inside the
scope of ty. Therefore ¢1 needs to be processed before t5. A transition ¢ can only
be processed if there exists no other transition ¢’ such that ¢’ < ¢.

Processing of transitions. Conceptually, the actual construction of the AND/OR
tree is done by letting each place link to a partial AND/OR tree that has an OR
root. A transition is processed by reducing it, as well as its preset and postset, to
a single place. The AND/OR tree of this new place is constructed by aggregating
the AND/OR trees of the places in the pre- and postset of t.

To simplify the presentation, we let each place be the root of the corresponding
tree, rather than annotating a place with a tree. Initially, for each place p a
corresponding tree, consisting of OR root o, and its child p is constructed. Place
op replaces p in the original input net. Figure [} shows for the example Petri net
in Fig. [l the initial net and the initially constructed AND/OR trees.

Next, we explain the reduction steps, in which the AND/OR trees get merged,
in detail.

Reduction step 1. The first reduction step consists of two substeps that are
symmetrical, one reducing the preset of a transition, the other its postset. In
step la, the non-singleton preset Q = {qu, .., ¢, } of transition ¢ is reduced to a
place p that becomes the single input place of ¢. If ¢ already has a singe input
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Fig. 5. Initial Petri net and initially constructed AND/OR trees for Fig. [l

Petri net

AND/OR tree a a, /

Fig. 6. Reduction step la; a dotted cross indicates absence of a transition

place, step la is skipped. Otherwise, each transition in 7' that has a place in
Q@ as input or output place, instead gets p as input or output place. If such a
neighbouring transition has multiple places in () in its preset or postset, these
are all removed and replaced by single place p. The AND/OR tree for p is
constructed by creating an AND node a which becomes child of new OR root
p. Children of a are the places in @), which are the roots of the corresponding
trees. Figure [l specifies reduction step la graphically.

However, step la is only allowed if each place in @ has the same input and
output transitions, and skipped otherwise. If the condition were dropped, this
reduction step would violate the statechart syntax or not preserve behaviour:

— Statechart syntax is violated if a transition ¢’ has some places of @ in its
postset, but not all. To see why, suppose that step la is executed, so an
AND node a is created that is parent of all places in Q). Let g € @ be a place
that is not in the postset of ¢’. Then each BASIC node in the AND/OR tree
linked to ¢ is orthogonal to each of the BASIC nodes in Q. So ¢ maps to a
hyperedge that has an incomplete target set Q. But normalised statecharts
only allow hyperedges with complete target sets.
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Fig. 7. Applying reduction step la for t3 in Fig. [0 (t2, t5, t7 have been processed)

To illustrate this: the net in Fig. Bl(b) violates the condition for ¢ = t2 due to
t’ = t3. Executing step la for t2 would create an AND node for the preset of
t2, but then the target set of t3 is incomplete (BASIC node p2 is lacking).

— Behaviour is not preserved if a transition ¢’ leaves some places in ) but not
all. By similar reasoning as in the previous case, executing step la would map
t to a hyperedge that has an incomplete source set, i.e., there is a BASIC
node outside the source set that is orthogonal to each state in the source
set. Taking such a hyperedge implies that a BASIC node is left that is not
a source of the hyperedge. For instance, if in Fig. Ml hyperedge h5 is taken
in configuration {n3,n4,01,02, A, rt}, then the next configuration will be
{n6,rt}. So BASIC node n4 is left even though it was not a source of h5. In
Petri nets, such behaviour is impossible due the locality principle [3], which
states that each transition can only consume tokens from places that are in
its preset. Thus, mapping a transition to a hyperedge with an incomplete
source set does not preserve behaviour.

To illustrate reduction step la, we show how t3 from Fig. [ is reduced. The
reduced net in the top-left of Fig.[dhas been obtained after processing transitions
t2, tb and t7. Note that t6 £ t7, so t7 can reduced before t6. Next, the preset
of transition t3 in Fig. [l can be reduced. The resulting Petri net and AND/OR
trees are shown on the right.

In step 1b, step la is repeated but then for the postset of ¢. Again, step 1b
is skipped if the postset is a singleton or if not each place in Q has the same
input and output transitions. Reduction step 1b can be specified graphically by
reversing all arrows between places q1, . ., ¢,, p and transition ¢ in Fig.

Reduction step 2. The second step reduces a transition ¢t with a single input
place ¢ and a single output place r to a new place p. If the preset or postset
of t is not a singleton, step 2 is skipped. Otherwise, all transitions in 7" that
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Fig. 9. Applying reduction step 2 for t3 in Fig. [l

have ¢ or r as input or output place, instead get p as input or output place. The
AND/OR tree of p is constructed by merging the roots of the two trees of ¢ and
r. Figure [§] specifies the reduction step graphically.

However, this reduction is only allowed if there is not a transition ¢’ that
has both ¢ and 7 in its preset or both ¢ and r in its postset. If the condition
were dropped, this reduction step would result in BASIC nodes ¢, r not being
orthogonal, since they have the same OR parent, namely p, while they are both
source or target node of hyperedge ', which violates the statechart syntax. For
instance, in Fig. Bl(a), if transition t2 has been reduced and replaced by a place
p that is output place of t1 and p3, then t3 cannot be reduced next in step 2,
since t1 has both the input place (p3) and output place (p) of t3 in its postset.

Continuing with the processing of t3, the reduced net on the righthand side in
Fig. [ can be further reduced since t3 has a single input place 02,3,4 and a single
output place o5. Figure [3 shows the resulting net and the node hierarchies.
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Failure. If one the steps cannot be applied since its condition is not met, then
the translation algorithm fails. In some peculiar cases, a structure/behaviour-
preserving statechart translation may exist; see the detailed discussion in Sect.

4 Algorithm

We now explain the actual translation algorithm PETRINETTOSTATECHART
in detail. The algorithm expects as input a Petri net (P, T, F,:) and returns a
statechart. If the translation fails, the returned statechart is empty. Due to space
limitations, formal definitions of the reduction steps and the updates of variables
child and type have been omitted; they can be found in a technical report [5].
A prototype tool implementing the algorithm is available for download from
http://is.ieis.tue.nl/staff/heshuis/pn2sc.

The algorithm uses three variables, child, type, and root, that will be used
as part of the returned statechart structure. Variable child models the child-of
relation of the statechart nodes, which are places from the Petri net plus the
new places created by the reduction steps. We use U to denote the universe of
all possible places, where P C U. Variable type is a function assigning to each
node its type. Variable root is the root node of the constructed statechart.

In the actual procedure, first a copy of the input Petri net is created. This
copy is passed as parameter to the algorithm CONSTRUCTTREE, which computes
child, type and root. A copy is passed and not the original net, since at 1.
the presets and postsets of the original net are used, not the ones of the reduced
net. If CONSTRUCTTREE has computed a non-empty relation child, a statechart
SC'is constructed and returned. Nodes of SC' are all places in P plus the places
created by CONSTRUCTTREE, which equals the domain of function type. The
initial configuration is the initial place of the input net, which is a child of root.
Otherwise, if child is empty, then no AND/OR tree could be constructed and
therefore the empty statechart is returned.

1: procedure PETRINETTOSTATECHART((P, T, F, 1))
2: var child : P(U x U)

3: var type : U — {BASIC, AND, OR}
4: var root : U
5: begin
6: (P, T',F',)) = (P, T, F,)
7: child := 0; type =0
8: CONSTRUCTTREE((P',T', F',."))
9: if child # () then
10: SC := (dom(type),T, {t—et |t €T}, {t—te|t € T}, child, type, {t,root})
11: else
12: SC = (0,0,0,0,0,0,0)
13: end if
14: return SC
15: end

We now detail the most important procedure, CONSTRUCTTREE, which is a
subprocedure of the main procedure. First, for each place p a new place o, is
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constructed, which acts as OR parent of p in the constructed node hierarchy.
Place o, replaces p in the net. Next, each transition from 7" is processed in a
while loop. A transition ¢ € T is selected for processing if it is a lower bound
according to <, i.e., there is no other transition ¢’ € T such that et C te or
oi’ C te. For the example net in Fig. Bl the lower bound transitions are t2, t4,
t5, and t7. Note that by definition of <, for example t3 £ t1 and t4 A t5.

16: procedure CONSTRUCTTREE((P, T, F,())

17: for p € P do

18: replace p with new place op; let o, be OR parent of p (upd. child, type)
19: end for

20: while T # () do

21: t := a lower bound of T using <

During the processing of ¢, the two reduction steps specified in Sect. [ are
applied if their preconditions are met. If step 2 cannot be applied, then either
step la or 1b could not be applied. Consequently, the procedure can stop, reset
child, and return (1. B4)), since no structure/behaviour-preserving statechart can
be constructed. If one the places ¢ or 7 is the initial place ¢, then ¢ must be
updated with the new place p (1. BIJ).

If the while loop is finished, so there are no more transitions in 7', then single
place ¢ remains. This place is root of the constructed AND/OR tree. Therefore,
root is updated with ¢ (1. B).

22: if each pair ¢1, g2 € ot has equal pre- and postsets then
23: apply reduction step la (upd. child, type)

24: end if

25: if each pair r1,r2 € te has equal pre- and postsets then
26: apply reduction step 1b (upd. child, type)

27: end if

28: if ot = {q} and te = {r} and }t' € T : ¢,r C o’ V q,7 € t'e then
29: apply reduction step 2 (upd. child, type)

30: if 1 =qV =1 then

31: L := the new place p

32: end if

33: else

34: child := (); return

35: end if

36: end while

37: root :=1

38: end procedure

39: end procedure

In an accompanying technical report [5], the algorithm is proven correct, i.e.,
if a non-empty statechart is returned, the translation is behaviour-preserving:
the behaviour of the statechart is isomorphic to the behaviour of the input net.
Also in [5], the worst-case time complexity is shown to be quadratic in the size
of the input Petri net.
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5 Analysis
We analyse the expressiveness and completeness of the translation algorithm.

Expressiveness. To characterise the class of nets for which the algorithm returns
a non-empty statechart, we first need the auxiliary notion of an area, which is a
new concept in Petri net theory. Let PN = (P, T, F, () be a Petri net and X C P
be a nonempty set of places. Then X is an area if and only if for every t € T,
ot C X < te C X. For example, in Fig. [[] sets {p2, p3} and {p2, p3, p4, p5} are
areas, but {p5} is not. Given a set of places X C P, the minimal area of X,
denoted minArea(X), is the minimal set of places Y C P such that X C Y and
Y is an area. For example, minArea({p3,p4}) = {p2, p3, p4,p5}.

We use the notion of area to define the notion of cover. Let X be the preset or
postset of some transition ¢. Then the cover of X, written cover(X) is defined to
be (J,c x minArea({x}). If the translation succeeds, then the AND node created
for X contains all places in cover(X) as BASIC nodes. For example, in Fig. [I]
cover({p3,p4}) = {p2, p3,p4}. The places in this set are BASIC descendants of
Al in Fig.[21 Note that p5 is not included in cover({p3, p4}).

A Petrinet PN has nestable covers if and only if for every X,Y C P such that
X and Y are preset or postset of some transitions in T', cover(X)Ncover(Y') # (
implies cover(X) C cover(Y) or cover(Y) C cover(X). The net in Fig. [I0 does
not have nestable covers, since cover(t2e) and cover(eth) are not nestable. But
both unsafe nets in Fig. [B] do have nestable covers, so we need an additional
criterion to rule out those nets.

A transition ¢ has consistent areas if and only if for every set X, Y C P such
that XUY C et or XUY C te, if XNY = @) then minArea(X)NminArea(Y) = 0.
A Petri net PN has consistent areas if each transition has consistent areas. The
nets in Fig. Bl do not have consistent areas: in both nets, minArea({p2}) N
minArea({p3}) # 0. In Fig. Blb), minArea({p3}) = {p1, p2, p3, p4}.

In the technical report [5], we prove that the algorithm returns a non-empty
statechart if and only if the input Petri net has nestable covers and consistent
areas. Thus, the algorithm is sound and complete for this class of Petri nets.

This result implies that for Fig. [0 no structure-preserving statechart transla-
tion exists, due to place p5 which synchronises two parallel branches. However, in
statecharts cross-synchronisation is typically expressed with event broadcasting.
For example, Fig. [I0 can map to a statechart in which there is no BASIC node
corresponding to p5 and in which hyperedge t2 generates an event that trig-
gers hyperedge t5. Thus, there does exist a statechart translation with similar
behaviour as the Petri net, but the translation is not structure-preserving. Ex-
tending our translation to handle safe nets with cross-synchronisation by using
statecharts with event broadcasting is part of future work.

As a final note on the expressiveness of the translation, consider the example
net in Fig. [l Tt exhibits a high degree of (block-)structuredness, since it does
not contain choices or loops. In the corresponding statechart in Fig.[2l no goto-
like constructs are used: for example OR nodes O1, 02, O4, and O6 each have
a single entry and a single exit point. However, the example in Fig. [Tl shows
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Fig. 10. Safe Petri net with cross-synchronisation which has no structure-preserving
statechart translation

Fig. 11. Unstructured Petri net for which the algorithm constructs the same AND/OR
tree as in Fig.

that the algorithm can also deal with unstructured nets that have a mixture of
choices and loops: transition t8 leaves the loop headed by pb6 in a goto-like way.
The AND/OR tree constructed for this example by the algorithm is the same as
in Fig. 2 but now for instance O4 has two exit points: p7 (for t8) and p8 (for t6).

Incompleteness. Still there are Petri nets that are outside the class defined above,
but for which structure/behaviour-preserving statechart translations do exist. In
this sense, the algorithm is incomplete. Statecharts which the algorithm fails to
construct contain OR nodes with unconnected BASIC descendants. For instance,
the algorithm cannot construct a statechart for the Petri net in Fig.[I2(b), since
the non-singleton presets and postsets {p1,p2} and {p2,p3} cannot be reduced.
A structure/behaviour-preserving statechart translation does exist, as shown in
the same figure. Note that the BASIC descendants pl and p3 of the OR node
are not connected by any hyperedge with a scope lower than or equal to O1.

In practice, this incompleteness does not seem to be a severe limitation. Stat-
echarts in which some OR nodes contain unconnected BASIC children do not
occur in practice, since a common though unwritten rule of thumb is to group
only related (connected) BASIC nodes in an OR node, as can be inferred from
the many statechart examples in the literature, e.g. [4I8]. A much more obvious
translation for the Petri net in Fig. [[2(b) is to use statecharts with overlap-
ping [9] and to construct a statechart with two overlapping AND nodes, one
for {p1,p2} and one for {p2,p3}.
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Fig. 12. Petri net and corresponding structure/behaviour-preserving statechart trans-
lation that the algorithm cannot construct

6 Related Work

Only a few papers consider translations from Petri nets to statecharts. The only
published work with a considerable amount of detail is a paper by Schnabel et
al. [19]. They outline an interactive method to translate a safe Petri net into
a statechart. A place invariant is a set of places for which the sum of tokens
in these places remains constant during any execution. Roughly speaking, each
invariant maps to a parallel OR node o of a statechart, and each place in the
invariant to a BASIC node in o. Since the same place can occur in several place
invariants, it can translate into several BASIC nodes. Schnabel et al. outline
some ways to prevent such duplications, but sometimes duplications cannot be
avoided, for example for the net in Fig. [[Il Our approach does not duplicate
places and is fully automated.

For UML 1.x activity diagrams, whose syntax resembles Petri net syntax,
a syntactic constraint was defined to give them a semantics in terms of UML
statecharts [16]. For Petri nets, the constraint states that each transition having
more than two output places is followed by a matching transition having the
same number of input places, and that different pairs of transitions are properly
nested, so a transition can only match one other transition. Each pair of match-
ing transitions translates into an AND node. Our translation does not impose
such a constraint on input nets (cf. the nets in Fig. [l and [IT), so it is more
general.

As stated in the introduction, translations for the reverse direction, from stat-
echarts to Petri nets, appear quite frequently in the literature (e.g. [TIJI8]). Main
difference with our approach is that our translation constructs the AND/OR tree,
while these other translations remove the AND/OR tree by omitting composite
nodes. So our translation is more complex than these reverse translations.

Finally, Kishinevsky et al. [I3] define a Petri net variant that incorporates
some statechart features. The variant, called place chart net, uses hierarchy on
places and preemptive transitions: a transition does not only empty its input
places but also all descendant places of the input places. However, the relation
between place chart nets and Petri nets is not formally analysed.
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7 Conclusion

We have defined a polynomial algorithm that translates a subclass of safe Petri
nets to statecharts in a structure-preserving way, so constructed statecharts re-
semble the input nets. The algorithm is structural and does not use any Petri
net analysis technique. Moreover, it preserves the behaviour of the input net.
Since the algorithm is polynomial, it is also efficient for large Petri nets.

There are several directions for further work. First, by considering statecharts
with event broadcasting, the translation can be extended to deal with a broader
class of safe nets. Also, the algorithm can be extended to statecharts with over-
lapping [9]. On the more applied side, the algorithm can be used as a foundation
for implementing model transformations between UML activity diagrams, which
resemble Petri nets, and UML statecharts [I6]. Activity diagrams can specify
the stateful behaviour of objects, whose lifecycles are independently specified in
UML statecharts. The translation algorithm can be used to transform object
behaviour specified in UML activity diagrams into UML statecharts, either to
check consistency with an existing object lifecycle or to synthesise an object
lifecycle from scratch.
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Abstract. Predictive analysis aims at detecting concurrency errors during run-
time by monitoring a concrete execution trace of a concurrent program. In re-
cent years, various models based on happens-before causality relations have been
proposed for predictive analysis to improve the interleaving coverage while en-
suring the absence of false alarms. However, these models are based on only
the observed events, and typically do not utilize source code. Furthermore, the
enumerative algorithms they use for verifying safety properties in the predicted
execution traces often suffer from the interleaving explosion problem. In this pa-
per, we introduce a new symbolic causal model based on source code and the
observed events, and propose a symbolic algorithm to check whether a safety
property holds in all feasible permutations of events in the given execution trace.
Rather than explicitly enumerating the interleavings, our algorithm conducts the
verification using a novel encoding of the causal model and symbolic reasoning
with a satisfiability modulo theory (SMT) solver. Our algorithm has a larger in-
terleaving coverage than known causal models in the literature. We also propose
a method to symbolically bound the number of context switches allowed in an
interleaving, to further improve the scalability of the algorithm.

1 Introduction

Predictive analysis aims at detecting concurrency errors by observing execution traces
of a concurrent program which themselves may be non-erroneous. Due to the inherent
nondeterminism in scheduling concurrent processes/threads, executing a program with
the same test input may lead to different program behaviors. This poses a significant
challenge in testing—even if a test input may cause a failure, the erroneous interleaving
manifesting the failure may not be executed during testing. Furthermore, merely exe-
cuting the same test multiple times does not always increase the interleaving coverage.
In predictive analysis, a concrete execution trace is given, together with a correctness
property in the form of assertions embedded in the trace. The given execution trace need
not violate the property, but there may exist an alternative trace, i.e., a feasible permu-
tation of events of the given trace, that violates the property. The goal of predictive
analysis is to detect such erroneous traces by statically analyzing the given execution
trace without re-executing the program.

Existing predictive analysis algorithms can be classified into two categories based
on the quality of reported bugs. The first category consists of methods that do not miss
real errors but may report bogus errors. Historically, algorithms based on lockset anal-
ysis fall into the first category. They strive to cover all possible interleavings
that are feasible permutations of events of the given trace, but at the same time may
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introduce some interleavings that can never appear in the actual program execution.
The second category consists of methods that do not report bogus errors but may miss
some real errors. In these methods [4/5/6], various causal models have been used, with
many inspired by Lamport’s happens-before causality [7]]. They provide the feasibility
guarantee—that all the reported erroneous interleavings are actual program executions,
but they may not cover all interleavings allowed by the program source code.

This paper also focuses on predictive analysis algorithms with the feasibility guar-
antee. In this context, one can view the given execution trace as a total order of events
appearing in the trace, and view the causal model as a partial order of events, which ad-
mits the given trace as well as many alternative interleavings. However, two significant
problems remain to be solved. First, checking all the feasible interleavings allowed by
a causal model for property violations is a bottleneck. Despite the long quest for more
coverage in causal models, little has been done to improve the underlying checking al-
gorithms. Existing methods often rely on explicit enumeration of interleavings,
which does not scale when the number of interleavings is large. In reality, the more gen-
eral a causal model is, the larger the number of interleavings it admits. Second, these
causal models often do not assume that source code is available, and therefore rely on
observing only the concrete events during execution. In a concrete event, typically the
values read from or written to shared memory locations are available, whereas the actual
program code that produces the event is not known. Consequently, often unnecessarily
strong happens-before causality is imposed to achieve the desired feasibility guarantee.

In this paper, we propose a symbolic predictive analysis algorithm to address these
two problems. We assume that the source code is available for instrumentation to obtain
symbolic events at runtime. We introduce a symbolic causal model based on program
source code and observed events in a trace. The new model is designed to achieve
the goal of covering more interleavings; it also facilitates a constraint-based modeling
where various concurrency primitives or semantics (locks, semaphores, happens-before,
sequential consistency, etc.) are handled easily and uniformly. More specifically, we
make the following contributions:

— We introduce a concurrent trace program as a symbolic predictive model to capture
feasible interleavings that can be predicted from a given execution trace.

— We propose a safety property checking algorithm using a concurrent static single
assignment (CSSA) based encoding and symbolic reasoning with a SMT solver.
The symbolic search automatically captures property- or goal-directed pruning,
through conflict analysis and learning features in modern SMT solvers.

— We propose a simple method to symbolically bound the number of context switches
in an interleaving, which further improves the scalability of our algorithm.

If desired, our symbolic algorithm can be further constrained to match the interleaving
coverage of known causal models in the literature. In effect, our new model has a larger
interleaving coverage than the existing models.

The remainder of this paper is organized as follows. In Section Pl we provide a
motivating example and illustrate our ideas. In Section[3] we formally define execution
traces and our predictive model. In Section 4l we present the SMT-based symbolic
property checking algorithm. In Section[3] we present the symbolic encoding to enforce
context-bounding. In Section [0l we demonstrate how our algorithm can be constrained
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to match a more restrictive causal model [6]]. We present our experimental results in
Section[7l We review related work in Section[8land give our conclusions in Section[0]

2 Motivating Example

Fig. [[l shows a multithreaded program execution trace, modified from an example in
[6]. There are two concurrent threads 7; and T%, three shared variables z, y and z,
two thread-local variables a and b, and a counting semaphore [. The semaphore [ can
be viewed as an integer variable initialized to 1. acq(l) acquires the semaphore when
(I > 0) and decreases [ by one, while rel(l) releases the semaphore and increases [ by
one. The initial program state is = y = 0. The sequence p = t;—t;1¢;13 of statements
denotes the execution order of the given trace. The correctness property is specified as
an assertion in ¢12. The given trace p does not violate this assertion. However, a feasible
permutation of this trace, p’ = (t1—t4)tot10t11t12t13(t5—ts), exposes the error.

To our knowledge, none of the sound causal models in the literature, including
[704I56], can predict this error. By sound, we mean that the predictive technique does
not generate false alarms (most of the lockset based algorithms are not sound). For in-
stance, if Lamport’s happens-before causality is used to define the feasible trace permu-
tations of p, the execution order of all read-after-write event pairs in p, which are over
the same shared variable, must be respected. It means that event tg must be executed be-
fore t19 and event t; must be executed before ¢11. These happens-before constraints are
sufficient but often not necessary to ensure that the admitted traces are feasible—many
other feasible interleavings are left out.

Various causal models proposed subsequently aimed at lifting some of these
happens-before constraints without jeopardizing the feasibility guarantee [4/316]. How-
ever, when applied to the example in Fig. [Il none of them can predict the erroneous
trace p' = (t1—t4)tot10t11t12t13(t5—ts). Consider, for example, the maximal causal
model in [6]. The model relies on the axioms of semaphore and sequential consistency
and is general enough to subsume other known causal models. This model allows all the
classic happens-before constraints to be lifted, except for the one stating that event ¢
must happen before ¢1;. Changing their execution order may lead to a different program
state. As a result, the model in [6] cannot be used to predict the error in p'.

The reason these sound models cannot predict the error in Fig.[Ilis that they model
events in p as the concrete values read from or written to shared variables. Such concrete
events are tied closely to the given trace. Consider ¢1; :if (x>b), for instance; it is
regarded as an event that reads value 1 from variable x. This is a partial interpretation
because other program statements, such as if (b>x), i £ (x>1), and even assignment
b: =x, may produce the same event. Consequently, unnecessarily strong happens-before
constraints are imposed over event ¢1; to ensure the feasibility of all admitted traces,
regardless of what statement produces the event.

In contrast, we model the execution trace as a sequence of symbolic events by consid-
ering the program statements that produce p and capturing abstract values (e.g. relevant
predicates). For instance, we model event £y, as assume(z > b), where assume(c)
means the condition ¢ holds when the event is executed, indicating that ¢;; is pro-
duced by a branching statement and (x > b) is the condition taken. We do not use
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the happens-before causality to define the set of admitted traces. Instead, we allow all
possible interleavings of these symbolic events as long as the sequential consistency
semantics of a concurrent program execution is respected. In the running example, it
is possible to move symbolic events t9—t;o ahead of ¢5—tg while still maintaining the
sequential consistency. As a result, our new algorithm, while maintaining the feasibility
guarantee, is capable of predicting the erroneous behavior in p’.

Thread T4 Thread T
ti:a:=g t1: (1, (assume(true ), {a:==x}) )
ta : acq(l) to : (1, (assume(l > 0), {l:=1—-1}) )
ts:z:=24a ts : (1, (assume(true ), {z :=2+a}) )
ty : rel(l) ty : (1, (assume(true ), {l:=1+1}) )
ts:y:=1+a ts : (1, (assume(true ), {y :=1+a}) )
te : acq(l) te : (1, (assume(l > 0), {l:=1—-1}) )
trixi=14a t7 : (1, (assume(true ), {z:=1+a}) )
ts : rel(l) tg : (1, (assume(true ), {l:=1+1}) )
tg :b:=0 to : (2, (assume(true ), {b:=0}) )
tio : acq(l) ti0 : (2, (assume(l > 0), {l:=1—-1}) )
tiy :if(z > b) t11 : (2, (assume(z > b), { }) )
ti2 @ assert(y == 1) tia @ (2, (assert(y = 1)) )
t1s : rel(l) tiz @ (2, (assume(true ), {l:=1+1}) )
Fig. 1. The sequencie.qf executed program Fig. 2. The symbolic representation of the
statements (z=y=0 initially) execution trace (z=y=0 initially)

3 Preliminaries

In this section, we define programs, execution traces, and concurrent trace programs.
Concurrent trace programs are our models for symbolic predictive analysis.

3.1 Programs and Execution Traces

A concurrent program has a finite set of threads and a finite set SV of shared variables.
Each thread T}, where 1 < ¢ < k, has a finite set of local variables LV ;.

- LetTid = {1, ..., k} be the set of thread indices.
— LetV; = SV ULV;, where 1 < ¢ < k, be the set of variables accessible in T;.

The remaining aspects of a concurrent program, including the control flow and the
expression syntax, are intentionally left unspecified in order to be more general. Instead,
we directly define the symbolic execution traces.

A symbolic execution trace of a program is a finite sequence of events p = t1 ... ¢,.
Aneventt € pisatuple (tid, action), where tid € Tid is a thread index and action is
an atomic computation. An action in thread 7; may be one of the following:

— (assume(c), asgn) is the atomic guarded assignment action, where
e asgn is a set of assignments, each of the form v := exp, where v € V; is a
variable and exp is an expression over V.
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e assume(c) means the conditional expression ¢ over V; must be true for the
assignments in asgn to execute.
— assert(c) is the assertion action. The conditional expression ¢ over V; must be true
when the event is executed; otherwise, an error is raised.

Each event in the execution trace is unique. If a statement in the textual representation
of the program is executed again, e.g., when it is inside a loop or a routine called by
multiple threads, a new event will be generated at run time [8]).

By defining the expression syntax suitably, the symbolic trace representation can
model the execution of any shared-memory multithreaded program. Details on model-
ing generic C/C++ language constructs are not directly related to concurrency; for more
information refer to recent efforts in [OI10].

The guarded assignment action has the following three variants: (1) when the guard
¢ = true, it can model normal assignments in a basic block; (2) when the assignment set
asgn is empty, assume(c) or assume(—c) can model the execution of a branching state-
ment if (c)-else; and (3) with both the guard and the assignment set, it can model
the atomic check-and-set operation, which is the foundation of all types of concurrency
primitives. For example, acquiring a counting semaphore [ can be modeled as the action
(assume(l > 0),{l:=1—1}).

Example. Fig.2lshows an example symbolic execution trace representation, which cor-
responds to p in Fig.[Il Note that the synchronization primitive acq(l) in t2 is modeled
as an atomic guarded assignment action. The normal assignment in ¢; is modeled with
assume(true). The 7 f-statement in ¢1; is modeled with asgn being an empty set.

3.2 Concurrent Trace Programs

The semantics of a symbolic execution trace is defined using a state transition system.
LetV = SV U UZ LV;, 1 <1 < k, be the set of all program variables and Val be a
set of values of variables in V. A state isamap s : V' — Val assigning a value to each
variable. We also use s[v] and s[exp] to denote the values of v € V and expression exp

. .. t . .
in state s. We say that a state transition s — s’ exists, where s, s’ are states and ¢ is
an event in thread T;, 1 < ¢ < k, iff one of the following conditions holds:

- t = (i, (assume(c), asgn)), s[c] is true, and for each assignment v := exp in asgn,
s'[v] = s[exp] holds; states s and s’ agree on all other variables.

- t = (i,assert(c)) and s|c| is true. When s[c] is false, an attempt to execute event ¢
raises an error.

Let p = t;...t, be a symbolic execution trace of a concurrent program P. It defines
a total order on the symbolic events. From p we can derive a partial order called the
concurrent trace program (CTP).

Definition 1. The concurrent trace program of p is a partially ordered set CTP, =
(T, C) such that,

- T = {t |t € p} is the set of events, and
- C is a partial order such that, for any t;,t; € T, t; T t; iff tid(t;) = tid(t;) and
1 < j (in p, event t; appears before t;).
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In the sequel, we will say a transition ¢ € C'I'P, to mean that ¢t € T is associated with
the CTP. Intuitively, C'T' P, orders events from the same thread by their execution order
in p; events from different threads are not explicitly ordered with each other. Keeping
events symbolic and allowing events from different threads to remain un-ordered with
each other is the crucial difference from existing sound causal models [[7/415]6].

We guarantee the feasibility of predicted traces through the notion of feasible lin-
earizations of C'T'P,. A linearization of this partial order is an alternative interleaving
of events in p. Let p’ = ¢} ...t], be a linearization of C'T'P,. We say that p’ is a fea-
sible linearization iff there exist states sq, ..., s, such that, so is the initial state of

’

the program and for all ¢ = 1,..., n, there exists a transition s;_; N s;. Note that
this definition captures the standard sequential consistency semantics for concurrent
programs, where we modeled concurrency primitives such as locks by using auxiliary
shared variables in atomic guarded assignment events.

4 Symbolic Predictive Analysis Algorithm

Given an execution trace p, we derive the model C'T'P, and symbolically check all its
feasible linearizations for property violations. For this, we create a formula ¢ p, such
that dorp, is satisfiable iff there exists a feasible linearization of CTP, that violates
the property. Specifically, we use an encoding that creates the formula in a quantifier-
free first-order logic to facilitate the application of off-the-shelf SMT solvers .

4.1 Concurrent Static Single Assignment

Our encoding is based on transforming the concurrent trace program into a concurrent
static single assignment (CSSA) form, inspired by [12]]. The CSSA form has the prop-
erty that each variable is defined exactly once. Here a definition of variable v € V is
an event that modifies v, and a use of v is an event where it appears in an expression.
In our case, an event defines v iff v appears in the left-hand-side of an assignment; an
event uses v iff v appears in a condition (an assume or the assert) or the right-hand-side
of an assignment.

Unlike in the classic sequential SSA form, we need not add ¢-functions to model
the confluence of multiple if-else branches because in a concurrent trace program, each
thread has a single control path. The branching decisions have already been made during
program execution resulting in the trace p.

We differentiate shared variables in SV from local variables in LV;, 1 < i < k.
Each use of variable v € LV, corresponds to a unique definition, a preceding event in
the same thread 7; that defines v. For shared variables, however, each use of variable
v € SV may map to multiple definitions due to thread interleaving. A w-function is
added to model the confluence of these possible definitions.

Definition 2. A w-function, introduced for a shared variable v immediately before its
use, has the form m(v1,...,v;), where each v;, 1 < i < I, is either the most recent
definition of v in the same thread as the use, or a definition of v in another concurrent
thread.
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Therefore, the construction of CSSA consists of the following steps:

1. Create unique names for local/shared variables in their definitions.

2. For each use of a local variable v € LV;, 1 < ¢ < k, replace v with the most recent
(unique) definition v’.

3. For each use of a shared variable v € SV, create a unique name v’ and add the
definition v' < 7(v1, ..., v;). Then replace v with the new definition v’.

Example. Fig.[Blshows the CSSA form of the CTP in Fig.2l We add new names 7' -7
and 7-functions for the shared variable uses. The condition (z > b) in ¢1; becomes
(77 > by) where 77 « m(z0, 71, 22) denotes the current value of shared variable x
and by denotes the value of local variable b defined in tg. The names xq, 1, x2 denote
the values of = defined in to, t3 and t7, respectively. Event ¢( is added to model the
initial values of the variables.

to : (1, (assume(true ), {zo:=0,y0 :=0,1lp:=1}))

t1: (1, (assume(true ), {a1:=7'}) ) where 7!« 7 (o)

to : (1, (assume(n? > 0), {l; := 7% —1}) Y where 72 «— 7 (lo, Is, lg)
ts : (1, (assume(true ), {z1:=2+4+a1}) )

ty: (1, (assume(true ), {l2 :==>+1}) Y where 73— (11,15, lg)
ts ¢ (1, (assume(true ), {y1:=14ai}) )

te : (1, (assume(n® > 0), {l3:=7*—1}) ) where 7 «— 7(l2, s, ls)
t7 : (1, (assume(true ), {zo:=1+4+a1}) )

ts : (1, (assume(true ), {ly =7 +1}) ) where 7° «— 7 (I3, 5, ls)
to : (2, (assume(true ), {by :=0})
tio @ (2, (assume(ﬂ'6 >0), {ls:= w6 — 1}) where 7° «— 7(lo, l1,1l2,13,14)

— m(z0, 1, T2)
— m(yo,y1)

6
7
8
O 7w(los 1,12, 13,14, 15)

: (2, (assert(n® = 1)) where 7

( )
( )

ti1: (2, (assume(n” > b1), { }) ) where 7
( )

: (2, (assume(true ), {lg:= 72 +1}) ) where

Fig. 3. The CSSA form of the concurrent trace program

Semantics of w-Functions. Let v/ < 7(vq,...,v;) be defined in event ¢, and each v;,
1 <4 <[, be defined in event ¢;. The w-function may return any of the parameters as the
result depending on the write-read consistency in a particular interleaving. Intuitively,
(v = wv;) in an interleaving iff v; is the most recent definition before event ¢. More
formally, (v' = v;), 1 < i <, holds iff the following conditions hold,

— event ¢;, which defines v;, is executed before event ¢; and
— any event ¢; that defines v;, 1 <4 < [and j # 1, is executed either before the
definition ¢; or after the use .

4.2 CSSA-Based SAT Encoding

We construct the quantifier-free first-order logic formula o1 pEl based on the notion
of feasible linearizations of CTP (in Section[3.2)) and the w-function semantics (in Sec-
tion [1). The construction is straightforward and follows their definitions. The entire

! We omit the subscript p in CT P, where it is understood from the context.
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formula @7 p consists of the following four subformulas:
Perp = Ppo NPyp NPpr AN ~Pprp

where @®po encodes the program order, v p encodes the variable definitions, ®p;
encodes the m-functions, and @ ppp encodes the property.
To help present the encoding algorithm, we use the following notations:

— first event tf,:: we add a dummy event 5, to be the first executed event in the
CTP. That is, Vt € CT P and t # tgst, event t must be executed after tfst;

— last event ?j,:: we add a dummy event 5 to be the last executed event in the
CTP. Thatis, Vt € CT P and t # t),st, event ¢t must be executed before ast;

— first event ¢/, _, of thread T;: for each i € T'id, this is the first event of the thread;

- last event ¢/, of thread T}: for each i € T'id, this is the last event of the thread;

— thread-local preceding event: for each event ¢, we define its thread-local preced-
ing event ¢’ as follows: tid(t') = tid(t) and for any other event t” € CTP such
that tid(t"”) = tid(t), eithert” T ' ort C ¢”.

— HB-constraint: we use HB(t,t’) to denote that event ¢ is executed before event
t’. The actual constraint comprising H B(t, t') is described in the next section.

Path Conditions. For each event t € C'T P, we define path condition g(¢) such that ¢
is executed iff g(t) is true. The path conditions are computed as follows:

1. If t = tgirse, Or t = i, where i € Tid, let g(t) := true.
2. Otherwise, t has a thread-local preceding event t'.
— if ¢’ has action (assume(c), asgn), let g(t) := c A g(t');
— if ¢ has action assert(c), let g(t) := g(t').
Note that an assert event does not contribute to the path condition.

Program Order (?pp). Formula @ po captures the event order within each thread. It
does not impose any inter-thread constraint. Let @ po := true initially. For each event
te CTP,

If t = tst, do nothing;

Ift = t}irst, where i € T'id, let ®po := Ppo N H B(tirst, t?irst);

Ift = tlast, let gpPO = gpPO A /\VieTid HB(tlzast atlast );

Otherwise, ¢ has a thread-local preceding event t'; let ®po := Ppo N HB(', t).

b e

Variable Definition ($y p). Formula @y is the conjunction of all variable definitions.
Let @y p := true initially. For each eventt € CT P,

1. If ¢ has action (assume(c),asgn), for each assignment v := exp in asgn, let
Pyp = Pyp A (v = exp);
2. Otherwise, do nothing.

The 7-Function (@ p;). Each m-function defines a new variable v/, and @ p; is a con-
junction of all these variable definitions. Let ®p; := true initially. For each
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v' «— m(vy,...,v) defined in event ¢, where v’ is used; also assume that each v;,
1 <4 <, is defined in event ¢;. Let

l l
Bpr=@pr A\ (V' =vi) Ag(ts) NHB(ti, t) A [\ (HB(t;,t;) vV HB(t,1;))
i=1 J=1,j#i
Intuitively, the 7-function evaluates to v; iff it chooses the ¢-th definition in the 7-set

(indicated by ¢(t;) A HB(t;,1)), such that any other definition v;, 1 < j <land j # i,
is either before ¢;, or after this use of v; in t.

Assertion Property (Pprp). Let t € C'T P be the event with action assert(c), which
specifies the correctness property.

Pprp = (9(t) — ¢)

Intuitively, the assertion condition ¢ must hold if ¢ is executed. Recall that ®prp is
negated in @cp, to search for property violations.

Example. Fig. @ illustrates the CSSA-based encoding of the example in Fig. 3l where
the subformulas that form @ po and @y p are listed. In the figure, ¢, 14 are the dummy
entry and exit events. ®prp (at t12) is defined as =gy V (78 = 1). The subformula in
&pg for 7 « 7(wg, x1,2) in t1; is defined as follows:

t11 : ( 7r7 = X9 N\ (true) /\HB(tu,t;;) /\HB(t11,t7)
\/7T7:J;‘1 /\g3/\HB(t3,t11) Atrue /\HB(t11,t7)
vl =xa A gr A HB(t7,t11) Atrue Atrue)

Note that some HB-constraints evaluate to constant false and true—such simplification
is frequent and is performed in our implementation to reduce the formula size.

Let n be the number of events in a CTP, n, be the number of shared variable uses,
and [; be the maximal number of parameters in any 7-function. Our encoding produces
a formula of size O(n + n, x [2). Although in the worst case—when each event reads
and writes all shared variables—(n x [2) becomes O(n?), it is rare in realistic appli-
cations. The reason is that shared variable accesses in a concurrent program are often
kept few and far in between, especially when compared to computations within threads,
to minimize the synchronization overhead. In contrast, conventional bounded model
checking (BMC) algorithms, e.g. [13I14]], often generate significantly larger formulas.
To cover all feasible interleavings in a CTP, the BMC unrolling depth needs to be n, and
within each time frame all the n events need to be modeled. Furthermore, the BMC for-
mula size cannot be easily reduced even though [, and n are significantly smaller than
n. In Section[7] we will present experimental comparison of our CSSA-based encoding
with the BMC algorithm in [13]].

4.3 Proof of Correctness

Recall that for two arbitrary events ¢ and ¢/, the constraint H B(t, t') denote that ¢ must
be executed before ¢'. Consider a model where we introduce for each event t € CT P
a fresh integer variable O(t) denoting its execution timd. A satisfiable solution for

% The execution time is an integer denoting its position in the linearization.
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Path Conditions: Program Order: Variable Definitions:
to 2o =0Ayo=0Alg=1
t1: g1 = true HB(to,t1) a; = p

ta: g2 =g1A(x°>0) HB(ty,t3) L= 72— 1

t3 : g3 = g2 HB(t2,t3) 1 =2+ a1

ta: g4 =93 HB(ts, ts) ly =73 + 1

t5: g5 =94 HB(ta,15) vi=1+a

te : g6:g5/\(7r4>0) HB(t5,t6) 1 :71_471

tr: g7 =go HB(ts, t7) ;2 14 a

ls: g8 =gr HB(tr,1ts) l=a5+1

tg go = true HB(tD,tQ) by =0

tio: gi0o=ge A (7° > 0) HB(tg,t10) ll: 6_q
t11: 911 =gi0 A (n’ >b1) HB(tio,t11) ST

ti2: gi2 = g1 HB(t11,t12) 9

tiz: 913 = g13 HB(t12,t13) le=m"+1

t14 : HB(tg,t14)/\HB(t13,t14)

Fig. 4. The CSSA-based symbolic encoding of the CTP in Fig.[3]

SPCTpp therefore induces values of O(t), i.e., times of all events in the linearization.
The constraint H B(t,t') is captured as follows:

HB(t,t') := O(t) < O(t")
We now state the correctness of our encoding.

Theorem 1. Formula ®c7p is satisfiable iff there exists a feasible linearization of the
CTP that violates the assertion property.

Proof. The encoding closely follows our definitions of CTP, feasible linearizations, and
the semantics of m-functions. The proof is straightforward and is omitted for brevity.

5 Symbolic Context Bounding

In this section, we present a symbolic encoding that effectively bounds the number of
context switches allowed by an interleaving.

Traditionally, a context switch is defined as the computing process of storing and
restoring the CPU state (context) when executing a concurrent program, such that mul-
tiple processes or threads can share a single CPU resource. The idea of using context
bounding to reduce complexity in verifying concurrent programs was introduced by
Qadeer and Rehof [13]]. Several subsequent studies have confirmed that concur-
rency bugs in practice can often be exposed in interleavings with a surprisingly small
number of context switches.

Example. Consider the running example in Fig. [Il If we restrict the number of context
switches of an interleaving to 1, there are only two possibilities:

pl = (tth cee tS)(tQtlo Ce t13)
p" = (totio .. . t13)(trta .. . tg)
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In both cases the context switch happens when one thread completes its execution.
However, none of the two traces is erroneous; and p” is not even feasible. When we
increase the context bound to 2, the number of admitted interleavings remains small but
now the following trace is included:

P = (titats)(totrot11tiz)(ta . . . ts)

The trace has two context switches and exposes the error in ¢12 (where y = 0).

5.1 Revisiting the HB-Constraints

We defined HB(t,t') as O(t) < O(t') earlier. However, the strictly-less-than con-
straint is sufficient, but not necessary, to ensure the correctness of our encoding. To
facilitate context bounding, we modify the definition of H B(t,t’) as follows:

1. HB(t,t') := O(t) < O(t) if one of the following conditions hold: tid(t) =
tid(t/), or t = tirst, OF t' = tlast.
2. HB(t,t') := O(t) < O(t') otherwise.

Note first that, if two events ¢,¢’ are from the same thread, the execution time O(t)
need not be strictly less than O(¢') to enforce HB(t,t'). This is because the CSSA
form, through the renaming of definitions and uses of thread-local variables, already
guarantees the flow-sensitivity within each thread; that is, implicitly, a definition always
happens before the subsequent uses. Therefore, when tid(t) = tid(t'), we relax the
definition of H B(t,t") by using less than or equal .

Second, if events ¢, ¢’ are from two different threads (and ¢ # tfist, t 7 tiast), ac-
cording to our encoding rules, the constraint H B(t,t') must have been introduced by
the subformula @ p; encoding 7-functions. In such case, H B(t,t") means that there is
at least one context switch between the execution of ¢ and ¢'. Therefore, when tid(t) #
tid(t"), we force event t to happen strictly before event t' in time.

5.2 Adding the Context Bound

Let b be the maximal number of context switches allowed in an interleaving. Given the
formula crp, as defined in the previous section, we construct the context-bounded
formula @crp, (b) as follows:

Pcrp,(b) = Porp, N (O(tast) — O(tsist) < b)

The additional constraint states that ¢,s, the unique exit event, must be executed no
more than b steps later than ¢, the unique entry event.

The execution times of the events in a trace always form a non-decreasing sequence.
Furthermore, the execution time is forced to increase whenever a context switch hap-
pens, i.e., as a result of HB(¢,t") when tid(t) # tid(t"). In the above constraint, such
increases of execution time is limited to less than or equal to 4.

* When H B(t,t') is a constant, we replace it with true or false.
* In CHESS [16], whose exploration algorithm is purely explicit rather than symbolic, a variant
is used to count only the preemptive context switches.
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Theorem 2. Let p' be a feasible linearization of CT P,. Let CB(p') be the number of
context switches in p'. If CB(p') < b and p’ violates the correctness property, then
Pcrp,(b) is satisfiable.

Proof. Let m = CB(p'). We partition p’ into m + 1 segments segy segi . .. S€gm
such that each segment is a subsequence of events without context switch. Now we
assign an execution time (integer) for all t € p’ as follows: O(t) = i iff t € seg;,
where 0 < ¢ < m. In our encoding, only the H B-constraints in @ po and @ p; and the
context-bound constraint refer to the O(t) variables. The above variable assignment is
guaranteed to satisfy these constraints. Therefore, if p’ violates the correctness property,
then @c7p, (b) is satisfiable. a

By the same reasoning, if CB(p") > b, trace p’ is excluded by formula @crp, (b).

5.3 Lifting the CB Constraint

In the context bounded analysis, one can empirically choose a bound b,,,, and check
the satisfiability of formula ®c7p, (b ). Alternatively, one can iteratively set b =
1,2, ..., bmas; and for each b, check the satisfiability of the formula

¢CTPP A (O(t|ast) — O(tfirst) = b)

In both cases, if the formula is satisfiable, an error has been found. Otherwise, the SMT
solver used to decide the formula can return a subset of the given formula as a proof
of unsatisfiability. More formally, the proof of unsatisfiability of a formula f, which is
unsatisfiable, is a subformula fy,, 54+ of f such that f,,,,sq: itself is also unsatisfiable.

The proof of unsatisfiability f,,s.¢ can be viewed as a generalization of the given
formula f; it is more general because some of the constraints of f may not be needed
to prove unsatisfiability. In our method, we can check whether the context-bound con-
straint appears in fynsq¢- If the context-bound constraint does not appear in fy;,sq¢, it
means that, even without context bounding, the formula @1 P, itself is unsatisfiable. In
other words, we have generalized the context-bounded proof into a proof of the general
case—that the property holds in all the feasible interleavings.

6 Relating to Other Causal Models

In this section, we show that our symbolic algorithm can be further constrained to match
known causal models in the literature. By doing this exercise, we also demonstrate that
our algorithm has a larger interleaving coverage. Since the maximal causal model [6],
proposed recently by Serbanutid, Chen and Rosu, has the capability of capturing more
feasible interleavings than prior sound causal models, we will use it as an example. In
this case, our algorithm provides a symbolic property checking algorithm, in contrast
to their model checking algorithm based on explicit enumeration.

We assume that during the program execution, only events involving shared objects
are monitored, and except for synchronization primitives, the program code that pro-
duces the events are not available. Therefore, an event is in one of the following forms:
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A concurrency synchronization/communication primitive;
Reading value val from a shared variable v € SV
Writing value val to a shared variable v € SV

An assertion event (the property);

Example. We slightly modify the example in Fig. [l as follows: we always replace
ts 1z := 24 awithty : x := 1 + a. The sequence of concrete events in p is shown
in Fig. [3l There still exists an erroneous trace that violates the assertion in ;5. The
difference between the two examples is subtle: in the original example, the erroneous
trace p’ in Section 2] cannot be predicted by the maximal causal model; whereas in the
modified example, the erroneous trace can be predicted by the maximal causal model.
The reason is that in the modified example, the program code in t5 and t; produce
identical events in p: Writing value I to the shared variable x. Therefore, t1; can be
moved ahead of t5 but after ¢, (the permutation satisfies the sequential consistency
axioms used in the maximal causal model).

Thread T4 Thread T
t1 : reading O from x **t1: (1, (assume(z = 0), { BB
to : acq(l) to: (1,(assume(l >0), {l:=1—-11}))
ty : writing 1 to * %ty : (1, (assume(true ), {z:=1 }))
ty : rel(l) ta: (1, (assume(true ), {l:=1+11}))
ts : writing 1 toy **t5 : (1, (assume(true ), {y:=1 D)
te : acq(l) te : (1, (assume(l >0), {l:=1—-11}))
t7 : writing 1 to * % t7 ¢ (1, (assume(true ), {z:=1 BB
ts : rel(l) tg : (1, (assume(true ), {l:=1+11}))
tg : nop * % tg : ( 2, (assume(true ), { D)
t1o @ acq(l) tio : (2, (assume(l >0), {l:=1—-11}))
t11 : reading 1 from = **t11 ¢ ( 2, (assume(z = 1), { BB
ti2:  assert(y == 1) tia @ ( 2, (assert(y = 1) ) )
t1s @ rel(l) tiz : ( 2, (assume(true ), {l:=1+11}))

Fig. 5. The concrete event sequence

Fig. 6. The reduced causal model

Let CTP, = (T,C) be the model as in Definition [l We derive the constrained
model C'M,, as shown in Fig. [0l Whenever an event has a different form in C'M,,
from the one in CTP, (Fig. 2), we mark it with the symbol . Note that all the
semaphore events remain symbolic, whereas the rest are underapproximated into con-
crete values. For instance, event t; is reduced from (1, (assume(true), {a := z})) to
(1, (assume(x = 0),{ })), because value O is being read from the shared variable x in
the given trace p. Similarly, event ¢4 is reduced from (1, (assume(true), {z := 1+a}))
to (1, (assume(true), {z := 1})), because the right-hand-side expression evaluates to
1 in p. These events are no longer symbolic. Note that concrete events correspond to
constant values, which can be propagated to further simplify the constraints in our en-
coding. However, these also result in less coverage in C M, than C'T'P,.

Semantics of the Constrained CTP. Since C'M,, shares the same symbolic represen-
tation as C'I'P,, the notion of feasible linearizations of a CTP, defined in Section 3.2
and the symbolic algorithm in Section ] remain applicable. In the running example, the
erroneous trace pl = (t1t2t3t4)t9t10t11t12t13(t5—t8) is admitted by CMp
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Table 1. Experimental results of symbolic predictive analysis (MO-memory out 800 MB)

The Test Program The Given Trace Run Time (s) Run Time (s)
program name threads shared / vars property length slicing predict predict-cb BMC[T3] Explicit
banking-2 2 97/264 passed 843 1.4 0.1 0.1 0.3 36.5
banking-2a 2 971264  error 843 1.4 0.1 0.1 7.2 1.2
banking-5 5 104 /331 passed 1622 1.7 0.3 0.1 2.7 >600
banking-5a 5 104 /331  error 1622 1.7 0.1 0.1 >600 1.8
banking-10 10 114 /441 passed 2725 7.0 1.6 0.6 31.8 >600
banking-10a 10 114 /441  error 2725 7.0 0.1 0.1 MO 2.8
indexer-10 10 285/539 passed 3000 1.1 0.1 0.1 0.1 12.8
indexer-15 15 305/669 passed 4277 2.3 0.1 0.1 >600  >600
indexer-15a 15 305/669  error 4277 22 0.4 0.2 >600  >600
indexer-20 20 325/799 passed 5647 4.0 0.4 0.1 MO >600
indexer-20a 20 325/799  error 5647 4.1 32 0.7 MO >600
indexer-25 25 345/829 passed 7482 6.0 0.9 0.1 MO >600
indexer-25a 25 345/829  error 7482 6.1 26.1 9.8 MO >600

7 Experiments

We have implemented the proposed symbolic predictive analysis algorithm in a tool
called Fusion. Our tool is capable of handling symbolic execution traces generated by
arbitrary multi-threaded C programs using the Linux PThreads library. We use the Yices
SMT solver [[I]] to solve the satisfiability formulas.

We have conducted preliminary experiments using the following benchmarks. The
first set consists of C variants of the banking example [18] with known bugs due to
atomicity violations. Unlike previous work [3l5l6], we directly check the functional
correctness property, stating the consistency of all bank accounts at the end of the exe-
cution; this is a significantly harder problem than detecting data races [5l6] or atomicity
violations [3]] (which may not cause a violation of the functional property). The second
set of benchmarks are the indexer examples from [19]], which we implemented using
C and the Linux PThreads library. In these examples, multiple threads share a hash ta-
ble with 128 entries. With less than 12 threads, there is no hash table collision among
different threads—although this fact cannot be easily inferred by purely static analysis.
With more than 12 threads, the number of irredundant interleavings (after partial order
reduction) quickly explodes. In our experiments, we set the number of threads to 15,
20, and 25, respectively. Our properties are assertions stating that no collision has hap-
pened on a particular hash table entry. The experimentsﬁ were conducted on a PC with
1.6 GHz Intel processor and 2GB memory running Fedora 8.

Table[[shows the results. The first three columns show the statistics of the test cases,
including the name, the number of threads, and the number of shared and total variables
(that are accessed in the trace). The next two columns show whether the given (non-
erroneous) trace has an erroneous permutation, and the trace length after slicing. The
next three columns show the run times of trace capturing and slicing, our symbolic
analysis, and our context-bounded symbolic analysis (with bound 2). The final two

5 Examples’re available at http://www.nec-labs.com/~chaowang/pubDOC/predict-example.tar
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columns show the run times of a BMC algorithm [I3] with the unrolling depth set to
the trace length and an explicit search algorithm enhanced by DPOR [[19].

The slicing in our experiments is thread-sensitive and the traces after slicing consist
of mostly irreducible shared variable accesses—for each access, there exists at least
one conflicting access from a concurrent thread. The number of equivalence classes
of interleavings is directly related to the number of such shared accesses (worst-case
double-exponential [13]]). In the indexer examples, for instance, since there is no hash
table collision with fewer than 12 threads, the problem is easier to solve. (In [19], such
cases were used to showcase the power of the DPOR algorithm in dynamically detecting
these non-conflicting variable accesses). However, when the number of threads is set
to 15, 20, and 25, the number of collisions increases rapidly. Our results show that
purely explicit algorithms, even with DPOR, do not scale well in such cases. This is
likely a bottleneck for other explicit enumeration based approaches as well. The BMC
algorithm did not perform well because of its large formula sizes as a result of explicitly
unrolling the transition relation. In contrast, our symbolic algorithm remains efficient
in navigating the large search space.

8 Related Work

The fundamental concept used in this paper is the partial order over the events in an
execution trace. This is related to the happens-before causality introduced by Lamport
in [[7]l. However, Lamport’s happens-before causality, as well as the various subsequent
causal models [4U5l6], has a strictly less interleaving coverage than our model. Our use
of the HB constraints to specify the execution order among events is related to, but is
more abstract than, the logical clocks [[7] and the vector clocks [20]].

Our symbolic encoding is related to, but is different from, the SSA-based SAT en-
coding [9]], which is popular for sequential programs. We use difference logic to directly
capture the partial order. This differs from CheckFence [21]], which explicitly encodes
ordering between all pairs of relevant events (shared variable accesses) in pure Boolean
logic. Our context-bounded analysis differs from the work in [[17], since they do not
use SAT, but reduce concurrent programs to sequential programs and then use SMV.
TCBMC [22] also uses context-bounding in their symbolic encoding. However, it has
to a priori fix the number of bounded context switches. In contrast, our method in Sec-
tion Ml is for the unbounded case—the context-bounding constraint in Section [Blis op-
tional and is used to further improve performance. Furthermore, all the aforementioned
methods were applied to whole programs and not to trace programs.

At a high level, our work also relates to dynamic model checking [23IT6/24113].
However, these algorithms need to re-execute the program when exploring different
interleavings, and in general, they are not property-directed. Our goal is to detect er-
rors without re-executing the program. In our previous work [8]], we have used the
notion of concurrent trace program but the goal was to prune the search space in dy-
namic model checking. In this work, we use the CTP and the CSSA-based encoding
for predictive analysis. To our knowledge, this is the first attempt at symbolic predictive
analysis.
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9 Conclusions

In this paper, we propose a symbolic algorithm for detecting concurrency errors in all
feasible permutations of events in a give execution trace. The new algorithm uses a suc-
cinct concurrent static single assignment (CSSA) based encoding to generate an SMT
formula such that the violation of an assertion property exists iff the SMT formula is sat-
isfiable. We also propose a symbolic method to bound the number of context switches
in an interleaving. The new algorithm can achieve a better interleaving coverage, and
at the same time is more scalable than the explicit enumeration algorithms used by the
various existing methods for predictive analysis. Besides predictive analysis, we believe
that our CSSA-based encoding can be useful in many other contexts, since it is general
enough to handle any bounded straight-line concurrent program.

Acknowledgements

We would like to thank Fang Yu for his help with implementing the CSSA-based encod-
ing. We would also like to thank Sriram Sankaranarayanan, Rajeev Alur, and Nishant
Sinha for their critique of the draft.

References

1. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: A dynamic data
race detector for multithreaded programs. ACM Trans. Comput. Syst. 15(4), 391-411 (1997)

2. Flanagan, C., Freund, S.N.: Atomizer: A dynamic atomicity checker for multithreaded pro-
grams. In: Parallel and Distributed Processing Symposium (IPDPS). IEEE, Los Alamitos
(2004)

3. Wang, L., Stoller, S.D.: Runtime analysis of atomicity for multithreaded programs. IEEE
Trans. Software Eng. 32(2), 93—110 (2006)

4. Sen, K., Rosu, G., Agha, G.: Detecting errors in multithreaded programs by generalized pre-
dictive analysis of executions. In: Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS,
vol. 3535, pp. 211-226. Springer, Heidelberg (2005)

5. Chen, F., Rosu, G.: Parametric and sliced causality. In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 240-253. Springer, Heidelberg (2007)

6. Serbanutd, T.F., Chen, F., Rosu, G.: Maximal causal models for multithreaded systems. Tech-
nical Report UIUCDCS-R-2008-3017, University of Illinois at Urbana-Champaign (2008)

7. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21(7), 558-565 (1978)

8. Wang, C., Chaudhuri, S., Gupta, A., Yang, Y.: Symbolic pruning of concurrent program
executions. In: Foundations of Software Engineering. ACM, New York (2009)

9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen,
K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168-176. Springer, Heidelberg
(2004)

10. Lahiri, S., Qadeer, S.: Back to the future: revisiting precise program verification using SMT
solvers. In: Principles of Programming Languages, pp. 171-182. ACM, New York (2008)

11. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81-94. Springer, Heidelberg (2006)



272

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

C. Wang et al.

Lee, J., Padua, D., Midkiff, S.: Basic compiler algorithms for parallel programs. In: Principles
and Practice of Parallel Programming, pp. 1-12 (1999)

Wang, C., Yang, Z., Kahlon, V., Gupta, A.: Peephole partial order reduction. In: Ramakrish-
nan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 382-396. Springer, Heidel-
berg (2008)

Kahlon, V., Wang, C., Gupta, A.: Monotonic partial order reduction: An optimal symbolic
partial order reduction technique. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 398-413. Springer, Heidelberg (2009)

Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software. In: Halb-
wachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93—107. Springer, Heidel-
berg (2005)

Musuvathi, M., Qadeer, S.: CHESS: Systematic stress testing of concurrent software. In:
Puebla, G. (ed.) LOPSTR 2006. LNCS, vol. 4407, pp. 15-16. Springer, Heidelberg (2007)
Lal, A., Reps, T.W.: Reducing concurrent analysis under a context bound to sequential anal-
ysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 37-51. Springer, Hei-
delberg (2008)

Farchi, E., Nir, Y., Ur, S.: Concurrent bug patterns and how to test them. In: Guo, M. (ed.)
ISPA 2003. LNCS, vol. 2745, p. 286. Springer, Heidelberg (2003)

Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software.
In: Principles of programming languages, pp. 110-121 (2005)

Fidge, C.J.: Logical time in distributed computing systems. IEEE Computer 24(8), 28-33
(1991)

Burckhardt, S., Alur, R., Martin, M.: CheckFence: checking consistency of concurrent data
types on relaxed memory models. In: Programming Language Design and Implementation,
pp. 12-21. ACM, New York (2007)

Rabinovitz, 1., Grumberg, O.: Bounded model checking of concurrent programs. In: Etes-
sami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 82-97. Springer, Heidel-
berg (2005)

Godefroid, P.: Software model checking: The VeriSoft approach. Formal Methods in System
Design 26(2), 77-101 (2005)

Yang, Y., Chen, X., Gopalakrishnan, G.: Inspect: A Runtime Model Checker for Multi-
threaded C Programs. Technical Report UUCS-08-004, University of Utah (2008)



On the Difficulties of Concurrent-System Design,
Ilustrated with a 2x 2 Switch Case Study

Edgar G. Daylight! and Sandeep K. Shukla?

! ak.a. Karel Van Oudheusden,

Institute of Logic, Language, and Computation,
University of Amsterdam, The Netherlands
egdaylight@yahoo.com
2 Department of Electrical & Computer Engineering,
Virginia Tech., USA
shukla@vt.edu

Abstract. While various specification languages for concurrent-system
design exist today, it is often not clear which specification language is
more suitable than another for a particular case study. To address this
problem, we study four different specification languages for the same
2x 2 Switch case study: TLAT, Bluespec, Statecharts, and the Algebra
of Communicating Processes (ACP). By slightly altering the design in-
tent of the Switch, we obtain more complicated behaviors of the Switch.
For each design intent, we investigate how each specification, in each of
the specification languages, captures the corresponding behavior. By us-
ing three different criteria, we judge each specification and specification
language. For our case study, however, all four specification languages
perform poorly in at least two criteria! Hence, this paper illustrates,
on a seemingly simple case study, some of the prevailing difficulties of
concurrent-system design.

Keywords: formal specification languages, local reasoning, adaptability,
non-functional requirements.

1 Introduction

Many papers on concurrent-system design introduce a specification language,
backed up by multiple case studies. This paper, in contrast, studies various
specification languages for a particular case study, i.e. a 2 x 2 Switch. In fact,
we will examine three different behaviors of the Switch by means of the same
specification language, and do this for four different languages: TLAT, Bluespec,
Statecharts, and the Algebra of Communicating Processes (ACP).

To compare specifications, we introduce three criteria in Sections [LTHT3l The
importance of each criterion depends primarily on the designer’s purpose to use
the specification language.
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1.1 Local Reasoning

In order to introduce our first criterion, we present the following line of thought.
The complexity encountered when specifying a concurrent system is proportional
to the degree of global spatial and temporal reasoning that is required on behalf
of the designer. Global spatial reasoning is synonymous for reasoning across rela-
tively many spatial elements of the system under investigation (i.e., the Switch).
For example, a designer who reasons across four different buffers of the Switch
applies more global spatial reasoning than a designer who only has to reason
across a maximum of two buffers while specifying the Switch’s behavior. Global
temporal reasoning is synonymous for reasoning across relatively many states of
the system. A designer who reasons across five consecutive states of the Switch’s
underlying Finite State Machine applies more global temporal reasoning than a
designer who only has to reason across a maximum of two consecutive states.

Global (spatial and temporal) reasoning may depend on either the case study,
the chosen specification language, or both. An important remark is, that, if global
reasoning for the Switch is not influenced by the chosen specification language,
then there is little to gain from our subsequent discussions in terms of global rea-
soning. Our analysis, however, will show that the chosen specification language
does in fact matter. For instance, global reasoning about a TLAT specification
generally differs from that of an ACP specification, even though the amount of
global reasoning can be the same in both cases.

Our first criterion, therefore, is the local (as opposed to global) reasoning that
is required by the designer in order to specify the Switch’s behavior.

Local Reasoning as an Ideal. It should be noted, however, that since each
system is built from localized components that work together by means of some
form of communication, we view local reasoning more as an ideal than as a
realistic attribute of a specification language. We also stress that it is a subjective
matter as to whether a specification language should avoid global reasoning as
much as possible or not.

The ideal of local reasoning is best illustrated by means of a Kahn Process
Network (KPN). In his 1974 paper [7], Kahn showed that if (i) each component
process in a KPN is monotonic and continuous, and if (ii) the communications
between such processes are infinitely buffered, then (iii) the entire system is de-
terministic and deadlock-free. Proving (i) and (ii) only requires local reasoning,
while the result (iii) is a global property of the system under investigation. How-
ever, when confronted with a realistic (i.e. implementable) system, property (ii)
does not hold. This, in turn, results in global reasoning when proving correctness
claims, such as deadlock-freedom.

1.2 Adaptability

A second criterion is adaptability to variations in design intent. A specification
language is adaptable for the Switch case study if it is capable of coping well with
variations in the design intent of the Switch. For instance, consider two specifi-
cations in the same language of a simple 2 x2 Switch and a more complicated
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2x2 Switch, respectively. Is the second specification, relative to the complicated
Switch’s behavior, as “clear” as the original specification relative to the simple
Switch’s behavior?

Unfortunately, we currently lack a practically applicable metric for “clarity”.
However, instead of ignoring the second criterion altogether, we shall attempt to
improve our understanding of what it is that makes a specification “clear”. We
will make claims about adaptability in this paper, but then primarily based on
intuition instead of on a rigorous definition. The reader is, of course, free to use
his or her own notion of “clarity” when studying the presented specifications.

1.3 Capturing the Design Intent

Our third criterion amounts to checking whether each specification captures
the corresponding design intent of the Switch. In particular, since each of the
Switch’s design intents, presented later, contains a constraint of maximum
throughput, we will check whether this constraint is met by each specification.

Two important remarks are, however, in order. First, it is a subjective matter as
to whether a “high-level” specification should be able to capture a non-functional
requirement, such as maximal throughput, or not. Second, many variations of the
presented specification languages exist, such as timed process algebras, which we
do not cover in this paper. These variations are explicitly designed to capture such
non-functional requirements.

Outline. After presenting three different design intents of the 2 x 2 Switch in
Section B we start off with two guarded-command languages in Section B TLAT
and Bluespec. The short intermezzo in Section Ml then distinguishes between
TLAT and Bluespec on the one hand and Statecharts and ACP on the other
hand. Afterwards, we discuss Statecharts in Section [ and ACP in Section
Finally, conclusions and future work are presented in Section [7}

2 Design Intent

We distinguish between a Simplified Switch, the Original Switch initially pre-
sented in [I], and a Modified Switch.

The Simplified 2 x 2 Switch. Figure [Ii) depicts the Simplified Switch. Its
design intent can be described as follows. The Switch contains two input FIFOs
(10 and i1) and two output FIFOs (00 and o1). A packet can arrive on i0 or i1. If
the first bit of the packet has the value 0, then it is routed to 00, else to o1. Each
FIFO has the same finite capacity of cap > 1 packets. Each packet contains 32
bits. A packet can only move if the output FIFO is not full. Maximum throughput
is required: a packet should move if it can. A shared resource collision can occur
when the packets at the head of both input FIFOs have the same destination. In
this case, i0 is given priority and i1’s packet is delayed.
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counter

count interesting packets

1) (i)

Fig.1. A 2x2 Switch (i) and a counter (ii)

The Original 2 X 2 Switch. The Original Switch is the Simplified Switch in
Figure [[[i) together with a counter shown in Figure [Ii(ii). The counter counts
all “interesting” packets that are routed from the input to the output buffers. A
packet is “interesting” if its second, third, and fourth bit are all equal to zero;
else, the packet is “boring”. The counter is intentionally restricted: it can only
be incremented by one value at each clock cycle. Therefore, a shared resource
collision can occur when both head packets (of the input FIFOs) are interesting.
In this case, again, i0 is given priority and i1’s head packet is delayed.

The Modified 2x2 Switch. Based on the design intent of the Original Switch,
we define (£) two conditions C1 and C2 as follows:

C1 £ both head packets have the same destination

C2 £ both head packets are interesting

These definitions allow us to distinguish between the following three disjoint

cases in which a shared resource collision can occur:
Case 1: C1 A C2 i0

Case 2: C1 A =C2 i0

Case 3: —~C1 A C2 i1

So far we have, in all three cases, given priority to 10’s head packet. Now,
however, we alter the design intent by giving priority to i1’s head packet in the
third case, as is shown in the third column above. L.e., if both head packets have
a different destination and are interesting, then i0’s head packet is delayed and
i1’s is routed. The latter, of course, only occurs if the destination buffer is not
full. Note also that a shared collision can not occur when = (C1 V C2) holds.
The corresponding Switch is called the Modified Switch in the sequel.

3 Two Guarded-Command Languages

The guarded-command languages TLAT and Bluespec are addressed in this sec-
tion. By specifying the Simplified Switch in TLAT (Section [B]) and the Original
Switch in Bluespec (Section B2)), we show that both languages are syntacti-
cally very similar and, hence, do not differ much in terms of the first and second
criterion. That is, local reasoning and adaptability are not affected when using
TLAT instead of Bluespec or vice versa. In terms of implementation, however,
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both languages do differ greatly and this has implications for the third criterion
(Section B3)). Finally, by continuing with Bluespec and specifying the Modified
Switch (Section B4l), we show that Bluespec is not as adaptable as wd] would
like, thereby addressing the second criterion. The first criterion of local reasoning
is addressed throughout the following sections.

3.1 TLAT and the Simplified Switch

Lamport’s TLAY is a specification language for systems, ranging from program
interfaces to distributed systems. A TLA™ specification of the Simplified Switch
is presented in Table [Tl and discussed below.

Lamport’s objective with TLAT is to specify a complete system in a single
formula [8, p.16]. For the Simplified Switch, this single formula corresponds to
line 7 in Table[l It will be discussed later.

Lines 1 to 2 in Table[I can be described as follows. Line 1 introduces the four
variables of the TLAT specification. Each variable represents a buffer (i.e. a list
of packets). Line 2 specifies that all buffers are initially empty.

A TLAT specification contains actions such as action Ry in line 3 and action Ry
in line 5. Action Ry describes the transfer of a packet from input buffer i0 to
output buffer 00 or ol. Similarly, action R; describes the transfer of a packet
from i1 to o0 or ol.

Each action is a logical implication (—). For instance, action Ry contains
premises, an implication in line 4, and state changes as conclusions. Action Ry
can be described in greater detail as follows. First, an abbreviation is introduced:
pack denotes the head packet of input buffer i0 (if there is a head packet).
Second, the three premises state that (a) input buffer i0 is not empty, (b) if
pack’s first bit is equal to zero, then output buffer 00 is not full, and (c) if
pack’s first bit is equal to one, then output buffer ol is not full. Third, if all
premises hold, then the conclusions need to hold as well. The conclusions state
that (d) the new value of input buffer 10 (i.e. i0’) is obtained by dequeuing i0’s
head packet, (e) output buffer 00’ is obtained either by appending pack to o0 or
by leaving 00 unchanged, and (f) output buffer o1’ is obtained either by leaving
ol unchanged or by appending pack to ol. An important remark here is, that,
if pack is routed to 00, then ol remains unchanged: 01’ = ol. That is, it is not
possible that a packet from i1 is simultaneously routed to ol. A similar remark
holds for the scenario in which pack is routed from i0 to o1 and 00 has to remain
unchanged: 00’ = 00.

Action R; describes the routing of a packet packs from i1 to o0 or ol. The
specification of the logical implication is more complicated (in comparison to
that of Rg) because it captures i0’s priority over il: when the head packets of
both i0 (i.e. packi) and i1 (i.e. packs) have the same destination, then packs
! “we” refers here to the authors and other readers. Of course, due to the subjective
nature of this exposition, which we can not completely avoid, Bluespec advocates
and others may disagree with our stated point of view. Similar remarks hold for
some of the other statements in this paper.
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has to be delayed and pack; is given priority. This behaviour is captured by the
last premise. The rest of Ry, however, is similar to Rj.

Either action Ry or R; suffices to illustrate global spatial reasoning. Action Ry,
for instance, relies on the head packets of both i0 and i1 and on the status of
both output buffers 00 and o1. That is, the designer has to reason across all four
state elements of the Simplified Switch.

To illustrate global temporal reasoning, we refer to the “single-formula speci-
fication” of the Simplified Switch in line 7. It expresses that, at every moment,
either Ry is executed, or R; is executed, or nothing is executed (due to the sub-
seript (40, i1, 00, o1) which expresses the potential for stuttering). To understand
line 7, the designer has to reason across both actions Ry and R; and mentally
simulate the Switch’s behaviour across multiple (e.g. three) clock cycles.

Table 1. The Simplified 2 x 2 Switch in TLAT

(1) variables: i0, i1, 00, ol (5) Act Ry:
10, i1, 00, ol € List of Packets let packy = i0.first
let packs = il.first
(2) Init: ¢0 =41 = 00 = ol = (), il # ()
A (packs [0] = 0) — (= 00.full)
(3) Act Ro: A (packs [0] = 1) — (- ol.full)
let pack = 40.first A = (packy [0] = packs [0])
0 # () ©) —
A (pack[0] = 0) — (= 00.full) (
A (pack[0] = 1) — (- ol.full) i1’ = il.deg;
4) — 00" = ((packs [0] = 0) ? 00.eng (packs) : 00);
( ol = ((packsz [0] = 0) ? 01 : ol.eng (packs));
i0" = i0.degq; )

00’ = ((pack [0] = 0) ? 00.enq (pack) : 00);
ol’ = ((pack[0] = 0) ? ol : ol.enq (pack)); (7) [Act Ry V Act Ry ](io,“, 00, o1)
)

3.2 Bluespec and the Original Switch

The guarded command language Bluespec [6] can be used to ‘elegantly’ specify
the Original Switch’s behavior. Indeed, this is accomplished by just two rules
(i.e. guarded commands) r0 and r1 in Table

Rule r0 describes the behaviour of 10 with respect to 00, o1, and the counter
c. Line 3 presents a trivially true guard. Lines 4-6 contain let statements and
lines 7-9 constitute the main body of the rule. Note that lines 7-9 are all executed
in the same clock cycle. That is, a semicolon denotes parallel composition.

Lines 4-6 can be clarified as follows. Line 4 assigns to x the head packet of
buffer 10. This assignment can only occur if 10 is not empty. We discuss later
what happens if 10 actually is empty. Line 5 is a comment for line 6 which, in
turn, assigns the appropriate output buffer (00 or o1) to out, depending on the
first bit of packet x.
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Table 2. The Original 2x2 Switch in Bluespec, as defined in [I]

—~
—

) (* descending_urgency = "r0, rl" *)

2) // Rule for moving packets from i0: 11) // Rule for moving packets from i1:

8) out.enq(x); 17) if (x[3:1]==0) c<=c+1;

18) endrule

( (

(3) rule r0; // Trivially true guard. (12) rule r1; // Trivially true guard.

(4) let x = i0.first; (13) let x = il.first;

(5) // Pick destination FIFO, called out: (14) let out = ( (x[0]==0) ? 00 : ol );
(6) 1let out = ( (x[0]==0) ? 00 : ol ); (15) il.deq;

(7) 10.deq; (16) out.enq(x);

( (

( (

9) if (x[3:1]==0) c<=c+1;
(10) endrule

Lines 7-9 can be clarified as follows. Line 7 describes the dequeuing (of the
head packet) from i0. Line 8 describes the enqueueing of that packet (i.e. x)
into the appropriate output buffer out. Line 9 describes the incrementation of
the counter if packet x is interesting.

Rule r1, on the other hand, describes the behaviour of i1 with respect to 00,
ol, and c. It is very similar to rule r0.

Table PI's meaning relies on three hidden assumptions which need to be made
explicit (at least mentally) when reasoning about the correctness of the spec-
ification. First, the descending urgency, expressed in line 1, specifies rule r0’s
priority over rule ri. This means that, if the execution of both rules were to
result in the access of a shared state element (e.g. counter c), then only ro0 is
actually executed and r1’s execution is postponed. Second, since rule r0 relies
on the head packet of i0 (in line 4), the guard of r0 implicitly contains a test
to check whether 10 actually contains at least one packet. In other words, even
though line 3 presents a trivially true guard; the actual guard, behind the scenes,
is not trivially true at all. The designer can, of course, according to his prefer-
ence, specify this guard explicitly as we have done with TLAT in Table [ ~but
it is considered elegant practice not to do so [I]. Third, since rule r0 relies on
output buffers 00 and o1 (in line 6), the guard of r0 implicitly contains a test
to check whether these buffers aren’t full. This assumption is very similar to the
previous one and has also been made explicit with TLAT in Table [

Bluespec requires global spatial reasoning. For instance, rule r1 in Table
relies on at least four state elements: the head packet of i1, the output buffers
00 and o1, and the counter c. To illustrate global temporal reasoning, we refer
to the Bluespec specification of the Modified Switch in Section [3.4]

3.3 Comparison: TLAT vs. Bluespec

A difference between TLAT and Bluespec is that the semantics of the former
does not rely on a run-time scheduler while that of the latter does. The impli-
cation is that at most one rule in Table [I] is executed during each cycle, while
Bluespec’s compiler will implement a greedy run-time scheduler that guarantees
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that all the non conflicting rules in Table executdd. Therefore, in terms of the
third criterion in Section [ it is tempting to state that TLAT does not meet the
requirement of maximum throughput while Bluespec does. In retrospect, how-
ever, it should be noted that the TLAT specification by no means excludes the
possibility that the final implementation (i.e. hardware) will respect the maxi-
mum throughput requirement as well. A guarantee, however, can not be made
in this case.

It is also interesting to note that the TLAT and Bluespec specifications differ
in how they express the priority that i0 has over i1. In the TLAT specification
in Table[Il the priority constraint is made explicit in the two actions Ry and Rj.
In the Bluespec specification in Table Pl a priority operator is used in Line 1.
This operator is, however, merely syntactic sugar and therefore does not reduce
the amount of global reasoning that is required on behalf of the designer (in
comparison to the TLAT specification).

3.4 Bluespec and the Modified Switch

For the Modified Switch, we present our own Bluespec specification in Table 3
To clarify, we first refer to Section 2l where we introduced three cases in which a
shared-resource collision can occur. Cases 1 and 2 can be dealt with in one rule,
called rule ri1. Case 3 can be dealt with in another rule, called rule r2. The
guards of each rule are:

rule r1 (1

rule r2 —-C1 A C2

Clearly, rule r1 and rule r2 are mutually exclusive. That is, Bluespec’s run-
time scheduler will never select both rules to execute in parallel.

To specify the Modified Switch we also have to take into account when a
shared collision can not occur, i.e. when = (C1 V C2) holds. We accomplish this
in two rules rule r3A and rule r3B (very similar to those in Table ).

The specification in Table[3is self explanatory. It has been criticized by others
because all four rules contain very similar statements. For instance, the incre-
mentation of counter c is expressed in all four rules. (The same remark holds for
the two rules in Table[2) The criticism is understandable but due to lack of an
alternative, we (currently) think Table [ is representative for a Bluespec design
of the Modified Switch. In other words, Table @ and Table 3 together, illustrate
that the Bluespec language is not as adaptable as we would like.

Table [ also suffers from global reasoning. First, global spatial reasoning is
required for each of the four rules. For instance, rule r2 requires the designer to
reason in terms of four state elements i1, 00, o1, and ¢ —not to mention the bits
of 10 and i1’s head packets when writing down the guard -C1 A C2. Second,

2 Maximum throughput is achieved by our two presented Bluespec specifications (Ta-
ble2land also Table[B] discussed later). But, it should be noted that, in general, this
may not be the case, even though all conflict-free rules are selected at every cycle (by
a greedy run-time scheduler). In other words, maximum throughput is, in general,
not so easily obtainable. See e.g. [9] for details concerning Bluespec’s semantics and
run-time scheduler.
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global temporal reasoning is more apparent here, in comparison to the Original
Switch, since the designer has to reason across four rules (instead of two) in
order to convince himself that all rules, together, exhibit the desired behavior.

Table 3. The Modified 2x2 Switch in Bluespec

(1) rule r1 when C1 (15) rule r3A when - (C1 Vv C2)

(2) 1let x = i0.first; (16) let x = i0.first;

(3) let out = ( (x[0]==0) ? o0 : o1 ); (17) let out = ( (x[0]==0) ? 00 : ol );

(4) 1i0.deq; (18) 10.deq;

(5) out.enq(x); (19) out.enq(x);

(6) if (x[3:1]1==0) c<=c+1; O) if (x[3:1]1==0) c<=c+1;

(7) endrule (21) endrule

(8) rule r2 when -C1 A C2 (22) rule r3B when - (C1 VvV C2)

(9) 1let x = il.first; (23) let x = il.first;

(10) let out = ( (x[0]==0) ? 00 : ol ); (24) let out = ( (x[0]==0) ? o0 : ol );
(11) il.degq; (25) il.deq;

(12) out.enq(x); (26) out.enq(x);

(13) if (x[3:1]==0) c<=c+1; (27) if (x[3:1]1==0) c<=c+1;

(14) endrule (28) endrule

4 Intermezzo: TLAT and Bluespec vs. Statecharts and ACP

Having presented TLA™ and Bluespec in the previous section, we address State-
charts [5] and ACP [4] in the next two sections. At this point, however, we describe
a major difference between TLAT & Bluespec on the one hand and Statecharts
& ACP on the other hand.

TLAT & Bluespec do not partition their state space. Le., TLAT & Bluespec
are global state models, where guards (of guarded actions) are evaluated on
the global state. When an action in TLAT (or a rule in Bluespec) is executed,
it can affect any part of the global state. For this reason, each such action
is atomic. In TLAT, actions are ensured to be atomic by interleaving. Hence,
no explicit synchronization is needed. In Bluespec, rules are made atomic by
ensuring that (i) they do not conflict each other when executed in the same clock
cycle, and (ii) the changes they make to the global state only become visible at
the synchronization points of a global clock tick.

Statecharts & ACP, on the other hand, do partition their state space. That is, in
Statecharts & ACP, there is no global state visible to each action. In Statecharts,
for instance, the state is partitioned into smaller Statecharts and each such
Statechart changes its corresponding local state. Only when synchronous com-
munication takes place between two Statecharts, can common (partially global)
state be modified. A similar remark holds for ACP where each process acts on its
own local state.
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5 Statecharts

Statecharts can be used to model the design intent of the Original Switch, as
shown in Figure 2l After describing this figure, an important discussion follows.

10’s Statechart

[040] && boring_i0 [1i0] && boring_i0
o0 ol
[040] && interesting_i0 [1i0] && interesting_i0
00, inc ol, inc

11’s Statechart

110i0]&&[0;] && boring_il I[1i0]&&[1i1] && boring_il
o0 ol

'[050]&&[04] '[Mio]&&[1i1]

&& linteresting_i0 & & interesting_il && linteresting_i0&& interesting_il
00, inc ol, inc

00’s Statechart ol’s Statechart Counter’s Statechart

notFull_o0 && o0

e

notFull_ol && ol

e

inc

e

Fig. 2. The Statechart design of the Original 2x 2 Switch

The behavior of the Original Switch is captured in Figure 2l It consists of
five smaller concurrent Statechartaﬁ one for each of the following five spatial
elements: 10, i1, 00, o1, and the counter. Statechart i0 can be clarified as
follows. It consists of one state and four transitions. The top leftmost transition,
for instance, amounts to checking whether i0’s head packet has a leading bit 0
and is boring: [0s0] && boring i0. If so, then i0’s Statechart synchronizes with
00’s Statechart by means of 00, signifying the transfer of 10’s head packet to 00.
Note, however, that 00’s Statechart tests whether o0 is not full, as desired, and
that this functionality does not belong to i0’s Statechart. The other transitions
in 10’s Statechart are self explanatory.

An interesting observation is that each Statechart contains just a single state.
This does not, however, imply that one can solely reason about each smaller
Statechart’s state in isolation in order to convince oneself that the complete

3 We received this design from an anonymous reviewer in the Spring of 2008. It is
much simpler than our own original Statechart design in [3].
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specification is correct. For instance, to understand i0’s Statechart, we are re-
quired to study o0’s Statechart’s transition as well in order to then visualize
the transfer of a packet from i0 to 00. Likewise, in order to visualize the si-
multaneous transfer of two packets, we are required to reason across (at least)
four different Statecharts: i0, i1, 00, and ol. This amounts to global spatial
reasoning. Likewise, to capture the priority that 10 has over i1, we are required
to visualize the sequentialized transfer of head packets from i0 and il. This
amounts to global temporal reasoning.

To specify the Simplified Switch, the reader merely needs to remove the
boring X, interesting X, and inc notation from Figure [2 along with the small
Statechart of the counter.

Discussion. After (a previous version of) this paper was accepted, we, the
authors, found a serious error in Figure 2l which we illustrate by means of the
following scenario. Input buffers 10 and i1 have interesting head packets that
have to be routed to 00 and o1, respectively. Assume also that buffer o0 is full
and ol is not full. Then, in accordance to the design intent, it should be the
case that i0’s head packet is delayed while i1’s head packet is routed (and the
counter is incremented by one). But this scenario, amongst other similar ones,
is not specified in Figure 2l To resolve this problem, i1’s Statechart needs to
be modified such that it also contains functionality that checks whether output
buffer o0 is full or not (likewise for o1). Hence, more global reasoning is required
to correctly capture the Switch’s behavior.

Lack of space and relevance prevents us from presenting an improved, yet more
complicated, Statechart diagram of the Original Switch. The lack of relevance is
due to two reasons. First, we are unable to convince ourselves that the “improved”
specification is correct with respect to the design intent. This remark essentially
holds for all specifications in this paper and embodies our main message in
Section [1l Second, many readers of (previous versions of) this paper, including
ourselves, have mistakingly approved of Figure [2 It is exactly this incorrect
approval that illustrates the difficulty of concurrent-system design; presenting
improved Statechart diagrams would only obscure this important observation.

6 The Algebra of Communicating Processes

The Algebra of Communicating Processes (ACP) is used below to specify the
behavior of the Original Switch. The corresponding specification is called Spec.
It is based on priorities from [2] to capture 10’s dominance over i1 and is similar
to the previous specifications in the sense that it abstractd away the behavior
of the buffers.

The outline of this section can be described as follows. Section presents
short but important definitions in order to obtain Spec. In Section [6.2] we explain

4 This abstraction is an essential difference between Spec and the ACP specifications
presented in [4] where buffers are typically not abstracted away.
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Fig. 3. Input (Ip and I1), output (Og and O1), and counter (C') processes

how Spec can be modified in order to obtain specifications of the Simple and
Modified Switches. Finally, Section addresses the three criteria for ACP.

6.1 The ACP Specification Spec

Let D denote a finite set of data elements where each element d € D is a packet
of 32 bits; i.e., D = {0,1}32. We write d0 to denote a packet whose first bit has
the value zero appended by the 31 bits in d; i.e. d € {0,1}3!. Likewise for d1
where the first bit has the value one.

In the sequel, we denote the input-buffer processes by Iy and I7, the output-
buffer processes by Oy and O1, and the counter by C'. Figure ] presents names
for the input- and output channels. For instance, Iy has one input channel rq
(where r abbreviates “read”) and three output channels sgo, So1, and s{, (where
s abbreviates “send”). Similarly for I;. Process Oy has two input channels g
and r1p and two output channels checky and storeg. Channel checkg is used to
check whether the corresponding output buffer is not full, and store is used to
store a data packet in that buffer. Likewise for Oy, checky, and store;.

Communications. Concerning I, we want its output channels sgg, so1, and
s( to communicate with 7o, 701, and r{, respectively. We capture these require-
ments in the left-hand column below with x = y denoting that = is syntactic

sugar for y:

coo(d) = v(s00(d), To0(d)) c10(d) = v(s10(d), T10(d))

co1(d) = v(s01(d), 701(d)) c11(d) = v(s11(d), m11(d))
co = (50, 70) cy =(sh, 1)

where d is an arbitrary element of D. The v notation is defined in [4]. Likewise
for I, we want its output channels s19, s11, and s| to communicate with 71,
r11, and 7}, respectively, as is shown in the right-hand column above.

Specification Spec - Encapsulation - Priorities

To capture the behavior of the Original Switch, we define:

Spec = O (9 (Lo [| I [| Oo || O1 [ €(0)))

The five processes are placed in parallel (||) and the counter is initialized to 0.
The encapsulation operator 0y and priority operator © are addressed next.
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The encapsulation operator dy is defined by means of the encapsulation set:

H = {S()o(d)7 8()1(d)7 S1()(d)7 S11(d) | de D} @]
{roo(d), ro1(d), r10(d), r11(d) | d € D} U {rg, s, 1, 51}

Based on this definition, dy in Spec forces the send processes to synchronize
with the read processes.

The priority operator © is defined by expressing the precedence (>) that I
has over I as follows:
Vd, d e {0, 1}31. Coo(dO) > Clo(dIO) & C(n(dl) > Cll(dll) & 06 > Cll

Spatial or Temporal Reasoning. At this stage of our exposition, we make
the following interesting observation. The specifications, presented so far, mainly
require reasoning in one dimension, i.e. in terms of either space or time but
typically not both. For instance, to specify each communication (), we only
need to reason across two processes and do not require any temporal reasoning.
Likewise, to specify Spec, we combine the terms Iy, I1, Op, O1, and C. This is
a spatial decomposition (global spatial reasoning) in which we do not need to
reason in time. While a similar remark holds for the set H, we note that this is
not the case for the > orderfl.

In short, the reasoning has been relatively local so far, especially when com-
pared to the specifications presented in previous sections. However, as expected,
global reasoning can not be completely avoided, as the following process defini-
tions illustrate.

The Processes. The two input processes are defined as follows:
Iy = ro(dOOO 0) . 86 . Soo(dooo 0) g + ro(dcba 0) . Soo(dcba 0) Ay +
r0(d0001).s(.501(d0001). 1y + ro(dcbal).spi(dcbal). Iy
I = rl(dOOO 0) . 8/1 . slo(dOOO 0) I+ Tl(dCbCLO) . slo(dcbaO) L+
r1(d0001) .5} .511(d0001).1y + ri(dcbal).sii(dcbal). Iy
with cba € {0,1}3\ {000} and d € {0, 1}%.

The notation ro(d cba 1) expresses the arrival of a data packet on channel rgy
whose first bit is 1, its second bit is a, third bit is b, fourth bit is ¢, and all other
28 bits, together, constitute d.

The four terms of Ij’s definition are separated by a + sign, expressing disjunc-
tion. For further clarification, consider the first term of Iy which is: 7¢(d0000).
85 - 800(d0000) . Iy. It states that if an interesting data packet with destination
00 arrives on input channel rg, then the counter has to be incremented (by means
of s(,) and the packet has to be send to 00 (by means of sgp). After these actions
have taken place, the state Iy is re-entered.

The two output processes and the counter process are defined as:

Op = checkg . (roo(d0) 4 r19(d0) ) . storeg(d0) . Og

O; = checky . (ro1(dl) +r11(d1)) . storei(d1).O;  with d € {0,1}3!
Cn)=ry.Cn+1)+7.C(n+1) with n € N

® As pointed out by an anonymous referee, the > order is merely another way to
reason about time and, hence, does not decrease the global reasoning.
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To understand each process definition (e.g. Ip), one has to reason across mul-
tiple clock cycles (i.e. data packets) and across multiple channels. On the one
hand, the reasoning is still relatively local in the sense that the four process terms
are separated from each other by means of the channels. On the other hand, to
convince oneself that the specification is correct, a designer will typically derive
(part of) the specification’s underlying state-transition graph and reason about
it’s correctness with respect to the original design intent. This reasoning is global
(in both space and time).

6.2 The Simplified and Modified Switches

We briefly explain how the previous ACP-based definitions need to be modified
in order to obtain specifications of the Simplified and the Modified Switches.

To specify the Simplified Switch, apply the following six steps. First, remove
the counter C and 7, sy, r}, and s from Figure[Bl Second, remove the communi-
cations ¢j and ¢j. Third, remove C'(0) from Spec. Fourth, remove {r{, s{, ri, s}
from H. Fifth, remove the last conjunct from the priorities. Sixth, redefine the
two input process terms as follows:

Io = To(dO) . Soo(dO) . Io + To(dl) . Sm(dl) . Io
L =nr (dO) . Slo(dO) I+ (d].) . Sll(dl) Wi with d € {0, 1}31.

To specify the Modified Switch, recall conditions C1 and C2 in Section
The formal definitions of C1(d,d’') and C2(d,d’) —~where d and d’ denote the two
head data packets under consideration— are straightforward and hence omitted.
Given these conditions, we need to modify the priorities of Spec as followdd:
vd,d € {0,1}32.

C].(d, d/) A C2(d, d/) = Coo(d) > Clo(d/) & co1 (d) > C11(d/) & C6(d) > Cll(d/)
C].(d, d/) A —|C2(d, d/) = Coo(d) > Clo(d/) & co1 (d) > C11(d/)
=C1(d,d" )y NC2(d,d") = ¢(d) < i (d)

All of the extensions, described in the previous two paragraphs, are straight-
forward]. We are therefore tempted to conclude that: the ACP language fares well
in terms of adaptability for the 2x2 Switch case study.

6.3 Three Criteria

The three criteria of Section[Ilfor ACP are addressed as follows. First, ACP requires
global reasoning in order to convince oneself that the specification is correct.
Second, ACP fares well in terms of adaptability for the presented case study.
Third, ACP is similar to TLAT in the sense that it can not guarantee that the
final implementation respects the maximum-throughput requirement (i.e. ACP
has an interleaving semantics).

5 The critical reader will note the difference between c(d) and ¢ (d’) from ¢} and cj.
Hence, the communications and encapsulation set H need to be modified accordingly.

" For the first author. And, not so for at least one ACP expert (an anonymous referee).
This suggests that we are using ACP in a non-standard way in this paper.
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Table 4. Results of our comparative study

local rea- adapta- maximum
soning  bility throughput L2
TLAT - - - N
Formal Specification
Bluespec - - +

1 ok
Statecharts N N Formal Implementation
ACP — + - P

(i) (i)

Informal Design Intent

7 Conclusions and Future Work

We have compared four specification languages on the same case study (i.e. the
Switch), as opposed to promoting one language by selectively choosing ‘suit-
able’ case studies. Our comparisons, based on three criteria, are summarized
in Table (i), where a plus is preferable over a minus. The blank entry for the
maximum-throughput criterion for Statecharts denotes that, in this (short) pa-
per, we have not been able to show that either a plus or a minus sign is warranted.

On the one hand, the presented results in Table (i) are of course debatable:
they are based on our level of expertise in each of the specification languages
and on only one concurrent system (the Switch). In particular, Table HYi) states
that Statecharts don’t fare well for adaptability but this is primarily due to our
unsuccessful attempt to correctly capture the behavior of the Original Switch.

On the other hand, it is interesting to note that two of the four anonymous
reviewers of this paper have championed our incorrect Statechart design. Both
reviewers also disfavored the ACP specification while at least one of them claimed
to be experienced in ACP. These comments merely serve the purpose of backing
up our main conclusion:

The seemingly simple design intents of the Switch case study are ex-
tremely difficult to formalize correctly.

Table [(ii) captures this message graphically: the first refinement step, labelled
with a question mark, is far more problematic than the second, labelled with
‘ok’. But, it is the second step that is heavily researched today and not the first.

Since we have been unable to adequately capture the Switches’ behaviors in
this paper, further investigations are warranted. With respect to the question
mark in Table [(ii), it seems desirable to have a concurrent specification frame-
work, endowed with a tool for formal verification or theorem proving to verify
that design intents are correctly captured. But then the question arises: How
does one even formulate the properties to verify, if capturing the design intent is
hard? We hope the reader will join us in our quest to address this problem and
inform us if relevant work along these lines has already been conducted.
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Abstract. A truly secure protocol is one which never violates its se-
curity requirements, no matter how bizarre the circumstances, provided
those circumstances are within its terms of reference. Such cast-iron guar-
antees, as far as they are possible, require formal techniques: proof or
model-checking. Informally, they are difficult or impossible to achieve.

Our technique is refinement, until recently not much applied to se-
curity. We argue its benefits by giving rigorous formal developments, in
refinement-based program algebra, of several security case studies.

A conspicuous feature of our studies is their layers of abstraction
and —for the main study, in particular— that the protocol is unbounded
in state, placing its verification beyond the reach of model checkers.

Correctness in all contexts is crucial for our goal of layered, refinement-
based developments. This is ensured by our semantics in which the
program constructors are monotonic with respect to “security-aware”
refinement, which is in turn a generalisation of compositionality.

Keywords: Refinement of security; formalised secrecy; hierarchical se-
curity reasoning; compositional semantics.

1 Introduction

This paper is about verifying computer programs that have security- as well as
functional requirements; in particular it is about developing them in a layered,
refinement-oriented way. To do that we use the novel Shadow Semantics [1415]
that supports security refinement.

Security refinement is a variation of (classical) refinement that preserves non-
interference properties (as well as classical, functional ones), and features compo-
sitionality and hierarchical proof with an emphasis unusual for security-protocol
development. Those features are emphasised because they are essential for scale-
up and deployment into arbitrary contexts: in security protocols, the influence
of the deployment environment can be particularly subtle.

In relation to other approaches, such as model checking, ours is dual. We begin
with a specification rather than an implementation, one so simple that its se-
curity and functional properties are self-evident — or are at least small enough
to be subjected to rigorous algorithmic checking [19]. Then secure refinement
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© Springer-Verlag Berlin Heidelberg 2009



290 A.K. Mclver and C.C. Morgan

ensures that non-interference -style flaws in the implementation code, no mat-
ter how many refinement steps are taken to reach it, must have already been
present in that specification. Because the code of course is probably too large
and complicated to understand directly, that property is especially beneficial.

Our main contribution, in summary, is to argue by example that the
secure-refinement paradigm [I415], including its compositionality and layers
of abstraction, can greatly extend the size and complexity of security appli-
cations that can be verified. The principal case study is a protocol for Yao’s
Millionaraires’ Problem [23], especially suitable because it includes four (sub-)
protocols nested like dolls within it: our paradigm allows them to be treated
separately, so that each can be understood in isolation. That contrasts with
the Millionaires’ code “flattened” in Fig. @l to the second-from-bottom level of
abstraction: at face value it is impenetrable.

In §3 we set out the semantics for secure refinement; and in §4 we begin our
series of case studies, in increasing order of complexity; but before any of that, in
g2 we introduce multi-party computations. Throughout we use left-associating
dot for function application, so that f.z.y means (f(z))(y) or f(z,y), and we
take (un-)Currying for granted where necessary. Comprehensions/quantifications
are written uniformly, as (Qz: T|R-E) for quantifier Q, bound variable(s) z of
type(s) T, range-predicate R (probably) constraining « and element-constructor
E in which = (probably) appears free: for sets the opening “(Q” is “{” and the
closing “)” is “}” so that e.g. the comprehension {z,y:N | y=2? - 24y} is the
set of numbers z, 241, z+4, - - - that exceed z by a perfect square exactly.

In the conclusions §§ we set out our strategic goals for the whole approach.

2 Secure Multi-party Computation: An Overview

In Multi-party computations (MPC's)
separate agents hold their own shares
of a shared computation, as illus-
trated in Fig. [l Only at the end are W
the shares combined; and the compu-

tation is secure if no information is \&“\“‘ -

released until that point. We specify Shares of b ‘Xhzrc";:fj;‘c’tii
a typical two-party MPC' as theother of the inputs'

XOrs.

i Xor-shares of one conjunct
visg a;visg b; vis z; (1)
r=a®b,

Agent A sees the upper shares, the two in-

in which two agents A and B, with puts and one output; B sees the lower . The

their respective variables a and b vis-
ible only to them separately, some-
how collaboratively calculate the re-
sult a®b and publish it in the variable

upper/lower exclusive-or of the two outputs
is the conjunction of the left- and right in-
puts’ separate upper/lower xor’s.

Fig. 1. ®-shared conjunction: §6.2]
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x; but they reveal nothing (more) about a,b in the process, either to each other
or to a third party. Our declaration visy a means that only A can observe the
value of a (similarly for B); and the undecorated vis means z is observable to all,
in this case both A, B and third parties. For example, if ® were conjunction then
(@) specifies that A (knowing a) learns b when a holds, but not otherwise; and a
third party learns the exact values a, b only when they are both true. Although
the assignment () cannot be executed directly when A and B are physically
distributed, nevertheless the security and functionality properties it specifies are
indeed self-evident once ® is fixed. But the “somehow collaboratively calculate”
above is a matter of implementing the specification, using local variables of
limited visibility and exchange of messages between the agents. We will see
much of that in §0f; and it is not self-evident at all.

An wunsatisfactory implementation of () involves a real-time trusted third
party (rTTP): both A, B submit their values to an agent C' which performs the
computation privately and announces only the result. But this Agent C' is a
corruptible bottleneck and, worse, it would learn a, b in the process. The rTTP
can be avoided by appealing to the sub-protocol Oblivious Transfer [T718] in
which a TTP (no “r”) participates only off-line and before the computation
proper begins: his Agent C is not a bottleneck, and it does not learn a or b.

Our main case study is Yao’s millionaires A, B of 7 who compare their for-
tunes a, b without revealing either: only the Boolean a<b is published. For us it
is a showcase exemplar, because it makes our point of layered development so
well: it uses the Lovers’ IT protocol (§6.2)), using Lovers’ I (§6.11), using Oblivious
Transfer (§5), using the Encryption Lemma (§4)); moreover our treatment of the
main loop (§7.3] unbounded riches) abstracts from the loop body (711 the two-
bit millionaires). Layering and compositionality are conspicuous, our technique’s
specialty; and our dealing easily with unbounded state is another innovation.

Our contribution in detail is thus to formalise and prove a number of
exemplary non-interference -style security protocols while moving through layers
of abstraction and in some cases with unbounded state. We aim for a method
with the potential to scale, and to be automated, and moreover one which would
guide a designer to an understanding of the implications of his proposed design,
a paramount criterion for critical software. The Millionaires illustrate the hierar-
chical approach: when written out in full, the code comprises roughly 30 intricate
lines (Fig. H); only abstraction controls this complexity. Finally, the proofs are
lengthy; but crucially they are boring, comprising many tiny steps similar to
those already automated in probabilistic program algebra [12], and thus easily
checked.

3 The Shadow Model of Security and Refinement

The Shadow Model extends the non-interference model of security [7] to de-
termine an attacker’s inferred knowledge of hidden (high-security) variables at
each point in the computation; we then require that the inferred knowledge is
not increased by secure refinement.
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In its original form, non-interference partitions variables into high-security-
and low-security classes: we call them hidden and wvisible. A “non-interference
-secure” program is then one where our attacker cannot infer hidden variables’
initial values from wvisible variables’ values (initial or final). With just two vari-
ables v, h of class visible, hidden resp. a possibly nondeterministic program r
thus takes initial states (v,h) to sets of final visible states v/ and is of type
V — H — PV, where V,’H are the value sets corresponding to the types of v, h.
Such a program r is non-interference -secure just when for any initial visible the
set of possible final visibles is independent of the initial hidden [9J20], that is for
any v: ) we have (Vho, hi:H - rwv.hg = r.v.hl) .

In our approach [14] we extended this view, in several stages. The first was to
concentrate on final- (rather than initial) hidden values and therefore to model
programs as V—H—P(V x H). For two such programs r; o3 we say that 7 C 7o,
that r; “is securely refined by” 79, whenever both the following hold:

(i) For any initial state v, h each possible ro outcome v’, A’ is also a possible
r1 outcome, that is for all v:V and h: H we have ry.v.h D ro.v.h .
This is the classical “can reduce nondeterminism” form of refinement.

(ii) For all v:V, h:'H, and v':V satisfying (3hb:'H - (v', hYy) € r2.v.h ), we have
for all A':H that (v, h') € r1.v.h implies (v', ') € ro.v.h.
This second condition says that for any observed visibles v, v’ and any ini-
tial h the attacker’s “deductive powers” w.r.t. final h’’s cannot be improved
by refinement: there can only be more possibilities for h’, never fewer.

In this simple setting the two conditions together do not yet allow an attacker’s
ignorance of h strictly to increase: secure refinement seems to boil down to
allowing decrease of nondeterminism in v but not in A. But strict increase of
hidden nondeterminism is possible: we meet it later, in §3.3

Still in the simple setting, as an example restrict all our variables’ types so
that V=H={0,1}, and let r; be the program that can produce from any initial
values (v, h) any one of the four possible (v, h’) final values in V x H (so that
the final values of v and h are uncorrelated). Then the program re that can
produce only the two final values {(0,0), (0,1)} is a secure refinement of r1; but
the program r3 that produces only the two final values {(0,0),(1,1)} is not a
secure refinement (although it is a classical one).

This is because ro reduces r1’s visible nondeterminism, but does not affect the
hidden nondeterminism in A’. In r3, however, variables v' and h’ are correlated.

3.1 The Shadow H of h Records h’s Inferred Values

In r; above the set of possible final values of A’ was {0, 1} for each v’ separately.
This set is called “The Shadow,” and represents explicitly an attacker’s ignorance
of h': it is the smallest set of possibilities he must consider possible, by inference.
In ro that shadow was the same; but in r3 the shadow was smaller, just {v'} for
each v’, and that is why r3 was not a secure refinement of ry.

In the shadow semantics we track this inference, so that our program state
becomes a triple (v, h, H) with H a subset of H — and in each triple the H
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contains exactly those (other) values that A might have. The (extended) output
triples of the three example programs are then respectively

o {(0707 {071})7 (0717{071})7 (1707{071})7 (1717{071})}
ro — {(0707 {071})7 (0717{071})}
r3 — {(0707 {0})7 (1717{1})}7

and we have r1 C ro because r1’s set of outcomes includes all of r5’s. But for r3
we find that its outcome (0,0, {0}) does not occur among r1’s outcomes, nor is
there even an ri-outcome (0,0, H') with H' C {0} that would satisfy (). That,
again, is why r1 £ r3.

For sequential composition of shadow-enhanced programs, not only final- but
also initial triples (v, h, H) must be dealt with: the final triples of a first com-
ponent become initial triples for a second. We now define the shadow semantics
exactly, in four stages, by showing how those triples are generated.

3.2 Step 1: The Shadow Semantics of Atomic Programs

A classical program r is an input-output relation between V x H -pairs. Consid-
ered as a single, atomic action its shadow-enhanced semantics addShadow.r is a
relation between V x H x PH -triples and is defined as follows:

Definition 1. Atomic shadow semantics  Given a classical program r:)V —
H—P(V x H) we define its shadow enhancement addShadow.r of type V—H —
PH — P(V x H x PH) so that addShadow.r.v.h.H > (v',h', H') just when both

(1) rw.h > (VR — classical
(i) and H'={n:H|(3n":H rovh"> @ K))} . — shadow
([

Clause () says that the classical projection of addShadow.r’s behaviour is the
same as the classical behaviour of just r itself. Clause () says that the final
shadow H’ contains all those values h’ compatible with allowing the original
hidden value to range as h’ over the initial shadow H.

As a first example, let the syntax z:€ .S denote the standard program that
chooses variable x’s value from a non-empty set S. Assume here only that S is
constant, not depending on v, h. Then from Def. [[l we have that

(i) Choosing v affects only v because
addShadow.(v:€ S).v.h.H = {v':S - (v',h, H)}
(ii) Choosing h affects both h and H, possibly introducing ignorance because
addShadow.(h:€ S).v.h.H = {h': S - (v, 1/, S)}
(iii) An assignment of hidden to visible “collapses” ignorance because

addShadow.(v:=h).v.h.H = {(h, h,{h}}

From (@) and () the composition addShadow.(h:€ S); addShadow.(v:=h) first
introduces ignorance: we do not know h’s exact value “at the semicolon.” But
then the ignorance is removed: we deduce h’s value, at the end, by observ-
ing v. The composition (ii); (iii) as a whole is nondeterministic, and it yields
{z:S - (x,z,{z})} with v, h’s common final value z drawn arbitrarily from S;
but whatever that value is, it is known that h has it because H is a singleton.
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3.3 Step 2: The Shadow Semantics of Straight-Line Programs

General (non-atomic) programs gain their shadows by repeated application of
§3.2 as implied by induction over their syntax, as shown in Fig. Bl The only
non-traditional command is reveal that publishes an expression but changes no
program variables; note it does change the shadow.

3.4 Step 3: Refinement’s Properties via Gedanken Experiments

Our definition of refinement is based on scale-up experiments with program
algebra [I4IT5]. Our first observation is that the semantics enforces perfect recall,
that visible variables reveal information even if subsequently overwritten. This
is because refinement must be monotonic, i.e. (A) that refinement of a program
portion must refine the whole program; and (B) that conventional refinements
involving v only must remain valid. Both principles (A,B) are required in order
to be able to develop large programs via local reasoning over small portions.

Without perfect recall, overwriting v would prevent program v:= h; v:€ {0, 1}
from revealing h. Yet from (B) we have v:€ {0,1} C v:=v; and then from (A) we
have (v:=h;v:€{0,1}) C (v:=h;v:=v) — and it would be a violation of secure
refinement for the rhs to reveal h while the [hs does not. Thus the premise
—imperfect recall- is false.

A similar experiment applies to conditionals: because (A,B) validates

if h=0 then v:€ {0,1} else v::€ {0,1} fi T if h=0 then v:=0 else v:=1 fi

we must accept that the if-test reveals its outcome, in this case whether h=0
holds initially. And nondeterministic choice P; M P, is visible to the attacker
because each of the two branches Py oy can be refined separately.

Equality of programs is a special case of refinement, whence compositionality
is a special case of monotonicity: two programs with equal semantics in isolation
must remain equal in all contexts. With those ideas in place, we define refinement
as follows:

Definition 2. Refinement For programs P2y we say that P is securely
refined by P, and write P; C P just when for all v, h, H we have

(V (v, 1, HY): [Pa].v.h H -
(3H}:PH | H] C Hy- (v',0,H}) € [P]whH) ),

with [-] as defined in Fig.

This means that for each initial triple (v, h, H) every final triple (v',h', H})
produced by P, must be “justified” by the existence of a triple (v', A/, H}), with
equal or smaller ignorance, produced by P; under the same circumstances. [J

From Fig. @l we have e.g. that [h:=0 M h:=1].v.h.H is {(v,0,{0}), (v,1,{1})},
yet the strictly more refined [h:€ {0,1}].v.h.H is {(v,0,{0,1}), (v,1,{0,1})}.
This is thus an example of a strict refinement where the two commands differ
only by an increase of ignorance: they have equal nondeterminism classically, but
in one case (M) it can be observed by the attacker and in the other case (:€) it
cannot. The “more ignorant” triple (v,0,{0,1}) is strictly justified by the “less
ignorant” triple (v,0,{0}), where we say “strictly” because {0} C {0, 1}.
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Program P Semantics [P].v.h.H
Publish a valne reveal F.v.h { (v, h, {:H | Ev.l/ = Ew.h}) }
Assign to visible U= FE.ov.h { (E.’U.h, h, {h/IH | E.'U.h/ = E'Uh}) } *
Assign to hidden N:=FE.v.h { (v, Ewh, {k':H - Ev.h})} *
Choose visible V:€ S.0.h {v':Sw.h - (W, h, {h:H|v € Sv.h'})} *
Choose hidden h:€ S.v.h {h/: S.w.h - ('U7 h/, {h/I If{7 h”: S.'U.h/ . h”}) } *
Execute atomically  ((P)) addShadow. (“classical semantics of P”)
Sequential composition P1; P> |Ift[[P2]]([[P1]]’UhH)
Demonic choice P1 M P2 [[P1]]’UhH U [[PQ]]'UhH
Conditional if E.v.h then P, else Py fi [P].v.h AN H | Ev.h' = true}
We write if < cond > else [§] —— < Ew.h >

[Pf]w.h{h':H | Ev.h' = false}

The syntactically atomic commands A marked % have the property that A = ((A)).
This is deliberate: syntactic atoms execute atomically. The function lift.[P:] applies
[P:] to all triples in its set-valued argument, un-Currying each time, and then takes
the union of all results.

The extension to many variables v1,vs, - - and hi, ha, - -, including local declarations,
is straightforward [I415].

Fig. 2. Semantics of non-looping commands

3.5 Step 4: Properties —and Utility— of Atomicity Brackets {(-))

The atomicity brackets {(-)) treat their contents as a single classical command,
and thus classical equality (although not classical refinement) can be used within
them. In simple cases atomicity is preserved by composition, but not in general:

Lemma 1. atomicity and composition — Given two programs Py ) over v,h
we have (Py; Po) = (P1)); (P)) just when v’s intermediate value, i.e. “at the
semicolon,” can be deduced from its endpoint values, i.e. initial and final, possibly
in combination. The semicolon is interpreted classically on the left, and as in
Fig. 2 on the right.

Proof. Given in [I, App. A]. O

This lemma is as significant when its conditions are not met as when they are. It
means for example that we cannot conclude from Lem. [l that {(v:=h;v:=0)) =
{(v:=h)); (v:=0)), since on the left the intermediate value of v cannot be deduced
from its endpoint values: for h is not visible at the beginning and v itself has
been “erased” at the end. And indeed from Def. [T
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(i) On the left we have {(v:i=h;v:=0).v.h.H = {(0,h, H)}
(ii) Whereas on the right we have  ({v:=h); (v:=0))).v.h.H = {(0,h,{h})}

This is perfect recall again. More interesting is the utility of introducing atom-
icity temporarily in a derivation, as illustrated in §] below: when applicable, we
can infer security properties via (simpler) classical equalities within ((-)).

3.6 Multiple Agents, and the Attacker’S Capabilities

In a multi-agent system each agent has a limited knowledge of the system state,
determined by his point of view; and different agents have different views. The
above simple semantics reflects A’s viewpoint, say, by interpreting variables de-
clared to be visy; as visible (v) variables if A is in list and as hidden (h) variables
otherwise. More precisely,

— var means the associated variable’s visibility is unknown or irrelevant.

— vis means the associated variable is visible to all agents.

— hid means the associated variable is hidden from all agents.

— visye means the associated variable is visible to all agents in the (non-
empty) list, and is hidden from all others (including third parties).

— hid;;s; means the associated variable is hidden from all agents in the list,
and is visible to all others (including third parties).

For example in (), from A’s viewpoint the specification would be interpreted
with @ and x visible and b hidden; for B the interpretation hides a instead of b.
For a third party X, say, both a,b are hidden but x is still visible.

From Agent A’s point of view (say) an attacker uses a run-time debugger to
single-step through an execution of the program. Each step’s size is determined
by atomicity, either implied syntactically or given by ((-)); when the program is
paused, the current point in the program source-code is indicated; and hovering
over a variable reveals its value provided its annotation (in this case) makes it
visible to A: e.g. “yes” for vis4 or hidpg, and “no” for hid4 or visg.

Conventionally, a successful attack is one that “breaks the security.” For us,
however, a successful attack is one that breaks the refinement: if we claim that
P C @, and yet an attacker subjects @ to hostile tests that reveal something
P cannot reveal, then our claimed refinement must be false (and we’d bet-
ter review the reasoning that seemed to prove it). Crucially however we will
have suffered a failure of calculation, not of guesswork: only the former can be
audited.

The conventional view is a special case of ours: if P reveals nothing, then
P C @ means that also Q must reveal nothing. Thus a successful attack with
such a specification P is one in which @ is forced to reveal anything at all.

Finally, if a refinement is valid yet an insecurity is discovered (relative to
some informal requirement), then the security-preservation property of refine-
ment means that the insecurity was already present in the specification.
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4 First Case Study: The Encryption Lemma (EL)

For Booleans x,y we write (x®y):= E to abbreviate the specification statement
x,y:[x®y = E], thus an atomic command that sets x,y nondeterministically so
that their exclusive-or equals E [13]. By making the command atomic, we have
(z®y:=FE) = ((x,y:[lz®y = E])) by definition.

A very common pattern in non-interference -style protocols is the idiom
[ vis v;hid A'- (v@®h’):=h ] in the context of a declaration hid h; it is equiva-
lent classically to skip because it assigns only to local variables, whose scope is
indicated by [[---]. As our first example of secure refinement (actually equality)
we show it is security-equivalent to skip also, in spite of its assigning a hidden
rhs (variable h) to a partly visible lhs (includes v). We have via Shadow-secure
program algebra the equalities

[ vis v;hid A'- vh:=h ||

= | vis v;hid /- (v, h:[v®h’ = h]) ] “defined above”

= | vis v;hid A+ {(v:€{0,1}; h:=hdv)) ] “classical reasoning within ((-))”

= [ vis v;hid /- {v:€{0,1})); (h:=hodv)) | “Lem. [

= vis v;hid 1/ v:€ {0,1}; A/ := hdv “syntactic atoms”
|[ ) ISR Y

= vis v- v:€ {0,1}; [ hid /- B/:= hdv “h’ not free V7
[ {0,1};

= vis v- v:€ {0, 1 “assignment of anything to local hidden is skip ©”
[ {

= skip, “assignment of visibles to local visible is skip ©7”

where at O we appeal to manipulations of scope, and more primitive skip-
equivalences, that because of space we must justify elsewhere [T4JI5]. That is,
each step can be justified by the semantics of §3] and the overall chain of equal-
ities establishes our Encryption Lemma: we will see it often.

5 Second Case Study: §4= Oblivious Transfer (OT)

The Oblivious Transfer Protocol builds on &t an agent A transfers to Agent B
one of two secrets, as B chooses: but A does not learn which secret B chose; and
B does not learn the other secret. The protocol is originally due to Rabin [I7];
we use Rivest’s specialisation of it [I8]. Its specification is

visa mo, m1; “Oblivious Transfer specification”
visp c: Bool, m;
m:=(my <c>mg), < We write (left if condition else right) [S].

where the variables without scope brackets are global, and are assumed subse-
quently. It is implemented via a third, trusted party C' who contributes before
the protocol begins, and indeed before A, B need even have decided what their
variables’ values are to be. A complete derivation is published elsewhere [I5],
and it relies on the Encryption Lemma of {4l

In brief (and approximately), Agent C gives two secret keys k() to A; and
as well C' gives one of those keys to B, telling him which one it is; Agent C' then
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leaves. When the protocol proper begins, Agent B instructs A to encrypt myo, 1}
either with kg, ., or kyy ;) resp. so as to ensure B holds the correct key for the
value he wants to decode. Agent A sends both encrypted values to B. Because
A sends both, he cannot tell which B really wants; because B holds only one
key, he can decrypt only his choice. The derivation is also given in [I, App. CJ.

6 Third Case Study: The Lovers’ Protocols

The Lovers’ Protocols (see for example “Dating without embarrassment” [21])
in this section are our first examples of two-party computations, and form the
backbone of the later derivation of the Millionaires’ Protocol. Throughout we
assume two agents A, B.

6.1 §5= Lovers’ Protocol I (LP1)

In this simple protocol Agent A knows a Boolean a and Agent B knows a Boolean
b; they construct two Boolean outcomes a’, b’ known by A, B resp. so that

1. neither agent learns anything more about a Ab as a result of learning its own
a’ or b’ (as well as knowing its own a,b); and

2. the exclusive-or a’ @ I’ reveals a A b without revealing anything more about
either of a, b to any agent, whether A, B or some third party.

Here is the derivation; remember that each step has to be valid from both A and
B’s point of view. We have

visa a,a’;visg b,b’; < Global variables: assumed below. “specification”
(¢ ®bV):= aNnb

= (d:€{0,1}; V:i=(anb)Dd ) “atomicity reasoning: compare EL”
= d:€{0,1}; Vi=(anb)Dd “Lem. [t compare EL”
= a:€{0,1}; V:i=(a<b>0)dd “Boolean algebra: true is 1, false is 0”
= ad:€{0,1}; “Boolean algebra”

b:=(aPa’ <br>a’) . <« Implemented by Oblivious Transfer.

Our semantics §3l plays two roles here, in the background: it legitimises the ma-
nipulations immediately above that introduced OT into the implementation,
which in §§ we call horizontal reasoning. And it assures us (compositional-
ity /monotonicity) that when OT is in its turn replaced by a still lower-level
implementation derived elsewhere, but in the same semantics, the validity will
be preserved: that is vertical reasoning.

6.2 §4, §6.7= Lovers’ Protocol II (LP2) from Fig. [l

The second Lovers’ Protocol extends the first: here even the incoming values a, b
are available only as “@-shares” so that a = a4 ® ap and b = b @ bp, just as
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they might have been constructed by an LP1. That is Agent A knows a4 and
ba; Agent B knows ap and bg; but neither knows a or b. We want to construct
a’, b’ known by A, B resp. so that ' @b = (aaPap) A (bp®ba) = aAb. We have

visa a’,a4,ba; < These globals assumed below. “specification”
ViSB blu ap, bB?

(¢ ®V):=(aa®ap) A (ba®bp)

= (d®V)=aalNbs ® aaNbp @ apA\ba ® ap/Nbp “Boolean algebra”
= | visa ra; visp wp; “EL for A, and for B (different visibilities),
(ra ®wp):=aalbp; where h is the expression aaAbg;
(d®b):=aaNba & aaNbp & apAbs @ apAbp | then scope”
= | visa ra,wa; visp rp, wp; “EL for A, and for B;
(ra®wp):=aaNbp; (rg ®wa):=apAba; then scope”

(@ &V ):=aaNba & aaNbp & apNba & apNbp |

= | visa ra,wa; visg 7B, wp; “Program- and Boolean algebra”
(ra ® wp)=aalbp; (rp ® wa)=apNba;
(a’@b’)::aA/\bAEBrAGBwA & wpPrp®dagAbp ]I

1M1

visg ra,wa; Visp 7B, wWs; “see below”
(ra ®wp):=aaNbp; (rg ®wa):=apAbs; < Implemented by LP1.
a':'=aaNbg @ TA D wa;

V:=wp ®rg ® ag/Abp ]l .

The last step is clearly a classical refinement; it is secure (as well) because A, B
already know the values revealed to them by the individual assignments to a’, b’.
Note that it is a proper refinement, not an equality

7 Main Case Study: The Millionaires Do Their Sums

This, our main example, sets us apart from validation of straight-line protocols
over finite state-spaces: we develop a (secure) loop; and the state-space can be
arbitrarily large. Two millionaires want to find which has the bigger fortune
without either revealing to the other how big their fortunes actually are. Since
two-bit millionaires expose the main issues of the protocol, we will start with
them — and then we generalise to “-aires” of arbitrary wealth.

! Other proper classical refinements of (a’@®b'):= Ea®Ep include a’,b:=—FE4,-Ep
and a/,b:= Ep, E4. In the former case the extra —’s are pointless; and the latter
case would not be a secure refinement, since e.g. it would reveal Ep to A.
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7.1 §6= The Two-Bit Millionaires (MP-)

We compare a pair of two-bit numbers without revealing either: two integers
0 < a,b <4 with a=(a1,a) and b=(b1,b) are given in binary, and we reveal
(2a1+ap < 2b1+bg) by calculating a1 <by @ (a1=b1 A a0<b0)H Thus we have a
formula in which only conjunctions, negations and exclusive-or appear, and the
implementation is simply a stitching together of what we did earlier in 6l Its
derivation is given in [I, App. BJ; the result is

visa a’,aqo,1y; visp V', b 13 “specification”
(a’ D b/)I: (2a1—|—ao < 2b1+bo)

C | visa aa,ba,wa; visg ap,bp, wp; “from [I, App. B]”
(aa ®ap):=-a1 Aby; < Lovers’ Protocol . (2)
(wa ® wp):=-ag Aby; < Lovers’ Protocol L.
(ba®bp):=(—a1 ®by) A (wa G wp); <« Lovers’ Protocol I1.
a,V:=(aas®ba),(ap®bp) | -

7.2 §77] §7.3 (to Come)= The Unbounded Millionaires (MPy)

Now we imagine more generally that we have two N-bit numbers a(N..0] and
b(N..0] and we want to compare them in the same oblivious way as in the two-bit
case. There we moved from least- to most-significant bit: that suggests as the
“effect so far” invariant that some Boolean I always indicates whether a(n..0] is
strictly less than b(n..0] as n increases from 0 to N; obviously for security we
split that [ into two shares ¢, ;). At the end the shares’ exclusive-or gives the
Boolean a<b the millionaries seek; but the shares are not directly combined until
then. Thus the specification is

visy a(N..0],1,; “specification”
visg b(N..0], ly;

(la D)= a.o) < b0

and, because of our comments above, we aim at the implementation

[ vis n; “implementation guess”
n:=0;
(la ®1):=0;
while n<N do
(la ®lp):= an<b, ® (an=b, AN1,®lp); <« MP> modified: (4)
ni=n+1 maintains the invariant.
od

2 We thank Berry Schoenmakers for this suggestion of using @ rather than V here.
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7.3 How Do We Deal with Loops?

Moving to an unbounded state-space leads consequentially away from straight-
line programs: for arbitrarily rich millionaires our comparison requires a loop.
We extend our semantics with fixed points in the usual way: thus a terminating
loop while B do body od equals some other program fragment P just when via
secure program algebra we can manipulate if B then (body;P) fi to become P
again. For our case we hypothesise that our while-loop at () implements the
straight-line code fragment P as follows:

if n</N then “postulated effect

(la® )= aw.<bn.n] © (A(N.n)=bN..) Nla © 1p);  of loop”

n:=N (5)
fi.

We check this program-algebraically in [I, App. D]. Most of the manipulations
are routine (i.e. would be the same steps even if one were reasoning carefully with
only functional properties in mind); but a crucial step (marked x in the appendix)
uses EL to establish that the individual calculations within each iteration do not
leak any information as the loop proceeds.

Thus in our proposed implementation {#l) we can again rely on compositional
semantics to replace the loop by its equivalent straight-line code (B). That gives

[ vis n; “loop within (@) replaced by
n:=0; equivalent straight-line code (&)”
(la @ lb):: 0;

if n</N then
(la ®lp):= an.n)<b(N..n] D (A(N..0)=ON..0) Nla D 1p);

n=N
fi ]
= | visn; “program algebra”
n:=0;
(la ®1):=0;
if 0O<N then
(la ®lp):= a.0)<bn.o) D (an.0j=bw.o) A O);
n:=N
fi ]
= (la®l):=0; “Eliminate local n
if 0<N then (I, ® l):= an..0) < b(N..O] fi and simplify A0”
= (la &) lb);: an..0 < b(N..O] , “0<N assumed, and ag..0]<b(..0) = 0”

thus establishing that (@) is indeed implemented by (H).
The interior assignment of the loop @ MP> modified) is based on the two-
bit protocol MPs, a small difference being that the final sub-expression is ,®l}
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rather than a comparison of two data-bits ag<by as it was in 1] above. By
analogy with the derivation of (@) in [I, App. B], we complete our verified imple-
mentation as shown in Fig. 4l where the appeals to LP1,2 have been expanded.

8 Conclusions and Strategy

System S

“Horizontal” reasoning across
the disc of Fig. Bl (recall §6.1I)
uses the specification of Com-
ponent C to establish that
it plays its proper role in
the context of system S; this Specification of ______.--—
is done (1) without referring component C
to the implementation of C' A

at all. “Vertical” reasoning, 'mp]ecr;ir;g:::tocf

f

Refinement

reasoning
down the cone, establishes . ﬂ

that C’s implementation has

properties no worse than its The compositionality of the security semantics is
specification; this is done (2) necessary for the correctness of the two types of rea-
in isolation, without referring soning separately. ..

to any contextual system S at ... and for their mutual consistency.

all. Then compositionality (3)
ensures that these two sepa-
rate activities (1,2) are consis-
tent when combined. These basic features (1,2,3) of refinement are well known,
but in each case require a semantics appropriate to the application domain: our
overall strategy is to formulate such a semantics [T4UT5] for the non-interference
-style security domain, and thus to make the rigorous development of security
applications more accessible to our (refinement) community.

Our specific aim in this paper, for which we chose the Millionaires’ prob-
lem, was to demonstrate scalability within a topical application domain. (See
for example the recent practical application of two-party secure computation
[4], and the current interest in the use of the oblivious transfer as a crypto-
graphic primitive [I0].) We used both vertical reasoning (from specification to
implementation of components) and horizontal reasoning (use of components’
specifications only) in doing so. To our knowledge our proof here is the first
(formally) for the full Millionaires’ problem. More generally our goal is to verify
security-critical software, hence our particular focus on source-level reasoning
and proofs which apply in all contexts; within those specific confines we are
amongst the first to prove a (randomised) security protocol with unbounded
state. Paulson [I6] and Coble [5] also have general proofs relating to specific
security properties over computations with unbounded resources.

The Shadow has been extended to deal semantically with loops 73] and syn-
tactically with labelled views §3.6, the latter to enable the uniform treatment of
the complementary security goals of multiple agents. The relationship to other

Fig. 3. Horizontal- and vertical reasoning
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(la ®lp):= (a(n..0] < bn.q) < Exclusive-or I, ;) finally, for the outcome a<b.

C [ visn

n:=0;

(la ®1lp):=0;

while n<N do
visa aa,ba,wa,xa,ra; Visp ap,bp,wB, TR, TB;
aa:€4{0,1}; ap:=(an=aa <bn > an);
wa:€{0,1}; wp:=(la=wa <1y > wa);
ra:€{0,1}; xp:=(ra=an <wp >ra); and four further pre-distributed bits.
re:€{0,1}; xa:=(rp®b, <wa > TB);
ba,bp:=(manNwa ®1aA D xA), (TB B TB Db AWR);
la,ly:=(aa ®ba), (a @ bp);
ni=n-+1

od ] .

Each of these expands to six statements

Each of the four transfers abstracts from six elementary statements, making over thirty
elementary statements in all. Ten local variables are declared in the loop body, at this
level. The TTP acts within the Oblivious Transfers, supplying four random bits for
each: thus 24N further random bits are used in total.

Fig. 4. Millionaires: The complete code at the level of Oblivious Transfers

formal semantics of non-intereference has been summarised in detail elsewhere
[14/15]; it is comparable to Leino [9] and Sabelfeld [20], but differs in details;
and it shares the goals of the pioneering work of Mantel [I1] and Engelhardt [6].

We believe that three prominent features of our approach make it suitable for
practical verification: (a) secure refinement preserves (non-interference) security
properties; (b) refinement is monotonic (implying compositionality); and (c) we
exploit a simple source-level program algebra.

Features (a,b) allow layering of design; and (c) allows proofs to be constructed
from many small (algebraic) steps, of the kind suited to automation [I2]. This
distinguishes us from other refinement-oriented approaches that do not so much
emphasise code-level algebraic reasoning [9J20/TT16], on the one hand, or appear
not to be compositional [32], on the other.

Our plans include constructing/extending computer-based tools to prove the
small algebraic steps, based on theorem-proving over the Shadow semantics, and
thus to form a library of allowed transformations. At the same time we hope
to integrate Shadow-style reasoning, based on such a library, into industrial-
strength refinement-based developments [22].
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Iterative Refinement of Reverse-Engineered
Models by Model-Based Testing

Neil Walkinshaw, John Derrick, and Qiang Guo

Department of Computer Science, The University of Sheffield, Sheffield, UK

Abstract. This paper presents an iterative technique to accurately re-
verse engineer models of the behaviour of software systems. A key novelty
of the approach is the fact that it uses model-based testing to refine the
hypothesised model. The process can in principle be entirely automated,
and only requires a very small amount of manually generated informa-
tion to begin with. We have implemented the technique for use in the
development of Erlang systems and describe both the methodology as
well as our implementation.

Keywords: Reverse engineering; model-based testing; Erlang.

1 Introduction

Several important software verification and validation techniques rely on the
availability of models that describe the software behaviour, models which should
be accurate, and capture every relevant requirement of the system. In practice
this requirement is unrealistic. The manual process of developing a specification
can be error-prone and expensive. Moreover, software is commonly developed
under restrictive time constraints; developers tend to concentrate on developing
the implementation and do not have time to generate and maintain accurate
specifications in tandem. The notion of a fully accurate model being maintained
(or even existing to begin with) is unfortunately at present largely a myth.

An alternative approach is to generate models, or specifications, of a system
from the implementation itself, and this paper is concerned with the challenge
of reverse-engineering state machine models from an implementation. Ideally,
such a reverse-engineering technique can be run at any point during the devel-
opment of an implementation to provide a snapshot of system behaviour. The
use of reverse-engineered models is that they can be inspected by developers to
give an understanding of how the system behaves in practice. If they are correct
(with respect to the developer’s requirements), they can be used for core soft-
ware maintenance tasks such as documentation and regression-testing. If, upon
inspection, they are found to be out of step with system requirements, they can
be used to identify which parts of the system are faulty.

In reality, reverse-engineering techniques tend to be less straightforward. They
tend to require an extensive sample of program execution traces, which can be
difficult to identify and collect. Consequently, the models can be inaccurate, and
are therefore less useful to the developer.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 305 2009.
© Springer-Verlag Berlin Heidelberg 2009
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In this paper we introduce an iterative reverse-engineering method that will
ensure an adequate sample of execution traces by incorporating a model-based
testing technique. Unlike most other existing techniques, no initial traces or
models are required at all. Instead, a model-based testing framework is used
to iteratively populate the set of traces that are used to infer the model, the
inference being performed with our StateChum model inference tool [I]. One nice
aspect of the approach is that the inference technique uses heuristics that have
been shown to be effective for sparse samples of traces, meaning that it does not
rely on systematic, expensive testing techniques. In this paper we demonstrate its
effectiveness with respect to the QuickCheck testing framework and the Erlang
programming language.

Implementation of the technique for use in Erlang development. This
work has been carried out in the context of the EU ProTest projectEl7 which
aims to improve the model-based testing of concurrent and distributed telecoms
systems.

Erlang [2] was, along with its Open Telecoms Platform (OTP), originally de-
veloped by Ericsson for the rapid development of network applications. However,
its usage has now spread beyond that domain to a number of sectors. Erlang
has been designed to provide a paradigm for the development of distributed soft
real-time systems, where multiple processes can be spread across many nodes
in a network. Consequently, a lot of the development effort involved in imple-
menting an Erlang system is concerned with how these processes interact with
each other and their environment. The protocol an Erlang process follows when
communicating with other processes or responds to internal events is often im-
plemented in terms of finite state machines, which is why they play a particularly
important role and our technique is particularly appropriate.

The rapid development that is facilitated by Erlang means that formal speci-
fications are, however, often neglected. It is often perceived to be more expedient
to verify and document the system on an ad-hoc basis, and it is unrealistic to
expect a developer in a commercial environment to provide an accurate and
complete formal specification that can be used for more rigorous verification
techniques. Producing an accurate specification that captures all of the neces-
sary functionality can be a challenging and time-consuming task, particularly
for complex systems. Furthermore, as the requirements change and the system
is modified, keeping complex specifications up to date can be overwhelming, even
with the best of intentions.

It is this problem that the technique presented in this paper aims to solve.
The technique we develop iteratively reverse-engineers a state-machine from the
implementation by using program tests, with only a small amount of manual
input required. The result is a model that closely conforms to the actual sys-
tem behaviour. The intention is that this final model can be validated and,
if necessary, refined by the developer, and then used as a reference model for

! http://www.protest-project.eu/
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subsequent program development tasks such as regression testing, and as a basis
for communication amongst developers.

The paper is structured as follows. Section [ provides some background on
Erlang and QuickCheck, and the challenge of reverse-engineering finite state ma-
chines from software implementations. Section Blintroduces our iterative process
that adopts model-based testing techniques to drive the inference and provides
details of our implementation. The process is illustrated with a case study in
Section ] and Section [l concludes.

2 Background

2.1 Erlang and QuickCheck

Erlang is a concurrent functional language with specific support for the devel-
opment of distributed, fault-tolerant systems with soft real-time requirements
[2]. Tt was designed from the start to support a concurrency-oriented program-
ming paradigm and large distributed implementations that this supports. It was
developed initially by Ericsson as a platform for rapid development of network-
applications, but its applications have now expanded to include computer tele-
phony, banking, TCP/IP programming (HTTP, SSL, Email, Instant messaging,
etc) and 3D-modelling. It is increasingly used to develop applications that are
business-critical, for example, its use in Ericsson’s AXD-301 switch that provides
British Telecom’s internet backbone.

However, verification and validation of Erlang systems is to-date a largely ad-
hoc, manual process. Consequently there is an inherent danger that important
functionality remains untested and undocumented. Thus along with its recent
growth in popularity, there has been a concerted drive to develop more auto-
mated and systematic techniques.

QuickCheck. One of these techniques is QuickCheck [3], an automated model-
based testing tool for Erlang. It has become one of the standard testing tools used
by Erlang developers. The ‘model’ is conventionally provided by the developer,
as a set of simple properties that must hold for the program to behave correctly,
and these are expressed as temporal logic properties in Erlang itself. For example,
the following property would check that the reverse function for lists behaves as
expected:
prop\_reverse() ->

?FORALL(Xs,1list (int()),

lists:reverse(lists:reverse(Xs)) == Xs).
Given such a property, QuickCheck uses random data generators to produce
inputs that will exercise the system, with the aim of producing counter-examples.
Once a counter-example is found, QuickCheck attempts to use successive tests
to home in on the precise reason for the failure, with the aim of producing the
smallest possible counter-example.

QuickCheck has recently been extended to so that one can test an imple-

mentation against a model given as a finite state machine (rather than just a
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predicate). The use of a finite state machine allows one to specify the permitted
sequences of program functions, along with their effect on the data-state of the
system. As well as selecting random data-inputs for the functions, QuickCheck
also selects random paths through the state machine, with the aim of verify-
ing the existence of state transitions. The key fact for our reverse-engineering
technique is that for a given state-machine model, QuickCheck can produce the
requisite sequences of inputs (with the necessary data parameters) to automati-
cally test any path in the model against the actual software system.

2.2 Reverse-Engineering State Machines

Reverse-engineering techniques aim to address this problem. Broadly speaking,
these approaches can be separated into two categories: Those based on source-
code analysis (c.f. [4]), and those based on analysis of execution traces. Here
we focus on the latter (dynamic) approaches. They are based on the analysis of
program traces [56] which are sequences of events (e.g. function calls, message-
passing events etc.), that may optionally be annotated with variable values. The
traces can be recorded by instrumenting the source code, or by using one of the
trace tools, e.g. for Erlang those that are included in the OTP framework. Traces
that lead to a program failure (i.e. an exception) are annotated as such, so that
the last recorded trace event corresponds to the point of failure.

From a given set of traces, the challenge for reverse-engineering techniques
is to produce a candidate state machine that conforms to the provided set of
traces. This is akin to the challenge of inferring a regular grammar, which is con-
ventionally represented as a state machine from a given set of strings (a problem
originally posed in 1967 [7]). In fact, most reverse-engineering techniques are in-
spired by techniques that were initially devised as grammar-inference techniques
[BIT]

It is unrealistic to expect an inference technique to be able to infer a ma-
chine that exactly represents the underlying software system from any arbitrary
set of traces. An inference technique will only produce an accurate result if
the provided set of traces is characteristic of the behaviour of the underlying
software system [8l6]. In terms of state machines, this must include enough in-
formation about what the program can and cannot do to enable the inference
technique to identify every state transition, and to distinguish between every
pair of non-equivalent states. Thus the key challenges lie in (a) identifying the
relevant subset of executions and (b) collecting them - a potentially expensive
and time-consuming process.

Most reverse-engineering inference techniques are passive [9I0], in that they
presume that the necessary traces have already been identified and collected
prior to inferring the candidate model. However, given that the initial set of
traces is unlikely to contain all of the necessary information, the resulting model
is often only poor approximation of the real implementation.

In an effort to address this, a number of active techniques have been devel-
oped. Active techniques are augmented with the ability to pose questions about
the target model, to help the developer to identify the set of required traces. Such
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techniques come in two flavours: those based on Angluin’s L* algorithm [I1], and
those based on state-merging techniques [§]. Both techniques are iterative; they
construct a hypothesis model, and use it as a basis for posing questions to some
oracle. The essential difference between the two techniques comes down to ex-
pense. Techniques based on Angluin’s algorithm rely on asking a large number
of questions in order to produce an accurate model - and such an approach is
infeasible in the setting our work is placed. Thus here we use state-merging tech-
niques which place a greater emphasis on heuristics. These are less demanding
in terms of the number of questions asked, but have nonetheless been shown to
produce models that are reasonably accurate [36].

In our previous work we have applied active state-merging to the challenge
of reverse-engineering [I/12], however, this has relied on a substantial amount of
human intervention, where each query posed by the technique either had to be
answered directly by the human or had to be executed manually. Expecting a
human to be able to directly answer every query is unrealistic; the amount of
knowledge required would undermine the whole purpose of reverse engineering
the model in the first place. Expecting a human to manually execute each query
is a tedious and time-consuming process, requiring the generation of suitable
data parameters for each execution as well.

Here we describe an extension of this approach, that leverages the strengths
of model-based testing techniques with the powerful heuristic inference abilities
of state-merging techniques. The resulting process removes the human bottle-
neck. Instead of being driven by a built-in question-generator, which can be
very expensive, it will be up to the model-based tester to select the tests and to
execute them. This means that the developer can choose the testing technique,
and determine the expense (and resulting accuracy) of the technique. In our
implementation of the technique we use the QuickCheck framework, but this
can be substituted according to circumstance.

3 Iteratively Testing Reverse-Engineered Models

This paper introduces a technique to remove the human bottle-neck that arises
with conventional dynamic model inference techniques. Instead of requiring a
human to identify relevant program executions and collect the ensuing traces,
model-based testing techniques are used to automate the process. The amount
of a-priori knowledge of the program under analysis is minimal, although there
are a number of optional mechanisms that can be used to add this information
if it is available.

To explain the technique we use a simple example of a text editor, the LTS
for which is shown in Figure [[[(a), where as usual we take an LTS is a quadruple
A =(Q,X,0,q0), where @ is a finite set of states, X is a finite alphabet, § :
Q x X — @ is a partial function and ¢g € Q.

Our technique builds up a sequence of candidate models, each one being a
bit more accurate than the last, these models can be viewed as partial LTS’s,
defined as follows [I3], which allow us to distinguish between model transitions
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that are known to be invalid, and transitions that are simply not known to exist
at all.

Definition 1 (Partial LTS (PLTS)). A PLTS is a tuple A = (Q, X, 0, qo, V).
This is defined as a LTS, but it is assumed to be only partial. To make the explicit
distinction between unknown and invalid behaviour, ¥ makes the set of invalid
labels from a given state explicit— W C Q x X where (q,0) € ¥ implies that

8(g,0) ¢ Q.

To define the language of a PLTS, we draw on the inductive definition for an
extended transition function § used by Hopcroft et al. [14] to define two notions
of language: prescribed and proscribed which are used below.

Definition 2 (Prescribed and Proscribed Languages of a PLTS). For a
state p and a string w, the extended transition function § returns the state p that
1s reached when starting in state p and processing sequence w. For the base case

0(q,€) = q. For the inductive case, let w be of the form xa, where a is the last
element, and x is the prefiz. Then S(q, w) = 5(5(q, x),a).

Given the extended transition function, the prescribed language of a PLTS A
can be defined as follows: PreL(A) = {w|d(qo, w) € Q}.

The proscribed language of a PLTS can be defined as:
ProL(A){za|(6(qo, ), a) € 1}. By construction PreL(A) N ProL(A) = (.

3.1 The Basic Process

The basic technique is straightforward. A human user provides the program of
interest, along with a small initial set of traces, these are required to identify
the set of functions of the program that are of interest (i.e. the alphabet of the
target machine). From this an initial hypothesis model is constructed - a single
state, with transitions for each element of the alphabet that loop back to that
state. This is provided as input to a state-machine testing framework, which
generates tests from the model. These tests are executed in the program, and a
tracing mechanism is used to record the executions. As soon as a test is found
that contradicts the expected behaviour as described by the model, the process
is restarted, but this time the model is inferred from the test traces. This process
iterates until no further discrepancies can be found by testing.

The basic process is captured by algorithm 1. It takes as input the program
under analysis Prog, along with a valid trace (or several if necessary) that con-
tains every element in the alphabet of the target machine. It uses four external
functions: infer PLTS, sub, generateTests and runTest. inferPLTS will be
described in more detail below. sub simply returns a substring of a string String
up to some index i. generateTests and runTest represent the functionality of
the model-based testing framework. generateT ests is responsible for generating
tests from a PLTS, which may be achieved by a number of standard state ma-
chine testing algorithms. runTest executes a test test on a program Prog, and
returns a zero if the test passes, or a number pointing to the index of test where
the failure happened.
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Input: Prog, Pos

Data: Neg, test, fail, failed PLTS

Uses: inferPLTS(TT,T7), generateTests(PLTS), runTest(t, Prog), sub(String, i)
Result: PLTS

1 Neg « 0;
2 PLTS «— inferPLTS(Pos, Neg);
3 while test < generateTests(PLTS) do
4 fail — runTest(test, Prog);
5 if fail = 0 then
6 Pos < Pos U {test};
7 if test € ProL(PLTS) then
8 PLTS «— inferPLTS(Pos, Neg);
9
10 else
11 failed « sub(test, fail);
12 Neg — Neg U {failed};
13 if failed € PreL(PLTS) then
14 PLTS «— inferPLTS(Pos, Neg);
15
16 end
17 end

18 return PLTS

Algorithm 1. Basic iterative algorithm

An initial PLTS is generated by calling the in fer PLTS function with Neg =
() and Pos to contain one possible initial trace: the only requirement for the
initial trace is that it contains every function in the alphabet of the target
machine at least once. For our editor example, the initial sequence could simply
be < load, edit, save, close, exit >, but any sequence in X* is valid. infer PLTS
returns the most general model possible and in this initial iteration will always
consist of a single state, with one looping transition that is labelled by the
transitions from the trace in Pos. Formally, the resulting PLTS is defined as
A= (Q,%, A, q,¥) where: Q = {qo}, Yo € X, 6(q0,0) — qo and ¥ = (.
The purpose of the ensuing process is to refine this model - to ensure that the
behaviour represented by the final PLTS accurately reflects that of the actual
implementation. In our example, this initial model is shown in Figure [[ia).

Thus the algorithm iterates. To illustrate this suppose that we have chosen to
use the QuickCheck testing framework (i.e. this will provide the functionality of
the external functions generateTests(PLTS) and runTest(test, Prog)). Being
a model-based testing framework, QuickCheck needs a model to generate tests
from. For this we use our initial model, the one in Figure [l (b).

QuickCheck chooses a random test - and may choose to try to execute the se-
quence < load, close, close, edit > (line 3). This fails, so the variable fail, which
stores the point of failure in the test is set to the index returned by runTest, which
is 3. The failing sub-sequence failed is identified by taking the first three elements
of the test: < load, close, close > (line 11). This is added to the set of impossi-
ble sequences Neg (line 12). Because the sequence failed is possible in the cur-
rent candidate model (belongs to the prescribed language), a discrepancy has been
identified (line 13). Consequently a new model is inferred, taking the updated set
Neg into account, which results in the model shown in Figure[}c).
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(a) correct model
load edit
cI0§e load save
edit exit
save

exit (y edt [

(b) (c) (d)

Fig. 1. Inference iterations on editor example

In the next iteration, the updated model is used as a basis for generateT ests.
Suppose that this time it returns the test < load, edit, exit >, which when exe-
cuted does not fail. fail is thus set to 0 (line 4), and the test is added to the set
of valid traces Pos (line 6). Since the test has passed, and this is prescribed by
the model, there is no disagreement between the test outcome and the model,
so another test can be executed. It is important to note that QuickCheck, our
tester of choice, will never generate tests that should fail according to the pro-
vided model, so in our case the branch in line 8 will not occur. Nevertheless,
more systematic testing techniques such as the W-Method [I5] do attempt tests
that should fail; in this case, if a test does not fail when it should according to
the current model, a new model has to be generated.

3.2 Model Inference

The inference process, which is called by the infer PLTS function in the al-
gorithm, is based upon the EDSM / blue-fringe state-merging method [TGIS|/T].
A brief illustration will be provided with respect to the editor example. As de-
scribed above, the algorithm gradually gathers a set of traces that are either
valid, or invalid. The purpose of inferPLTS is to infer a state machine from
these, that is a suitable generalisation - i.e. will correctly classify previously
unseen traces as either valid or invalid.

To do this, the two sets of traces Pos and Neg are aggregated into a single tree
- referred to as an augmented prefix tree acceptor (APTA). This tree represents
the most specific and precise machine possible, that exactly corresponds to the
provided sets of traces. For example, suppose the model-based tester has selected
the test < load, edit, edit, save,load > for the next iteration from the model in
Figure [ (c). This test fails, because only one file can be opened at a time.
InferPT A is called to build a new model, incorporating this test. Figure 2] (a)
shows the corresponding APTA (valid traces are listed under S, and invalid
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Initial traces

St

< load, edit, save, close, exit >
< load, edit, exit >

ST

< load, close, close >

< load, edit, edit, save, load >

Fig. 2. Augmented Prefix Tree Acceptor and illustration of merging

traces are listed under S7). Dashed lines in this tree represent paths in the tree
that are invalid.

The goal of the inference is to identify states in this tree that are actually
equivalent, and to merge them. In doing so, this will collapse the machine down
to a minimal machine that is a generalisation of the set of traces. The merging
process is iterative - lots of subsequent merges are required to reach the final
machine. At each iteration, a set of state-pairs is selected using the Blue-Fringe
algorithm [I6], a colour-based breadth-first traversal algorithm (a description
of this is beyond the scope of this paper). Each candidate pair is assigned a
score, which indicates the likelihood that the states are equivalent. The score is
computed by comparing the extent to which the suffixes of each state overlap
with each otheifd. Any pairs with non-negative scores can potentially be merged.
A pair of states is incompatible if a sequence is possible from one state, but
impossible from the other - this leads to a score of -1. Once the scores have
been computed, the pair with the highest score is merged, and the entire process
starts afresh, until no further pairs can be merged.

To illustrate the scoring process, we refer back to the example prefix-tree in
Figure[2 (a). Initially, the Blue-Fringe algorithm suggests only one pair of states
(a,b). They have a score of zero, so they can be merged. The result is shown in
Figure[2 (b). In the next iteration, we are given the option of selecting to merge
either pairs ((ab),c) or ((ab),d). This is where the scoring comes into play - we
want to select the pair that are most likely to be equivalent. In this case it is
straightforward because the score for ((ab),d) is -1; a close is possible from state
ab, but not from state d, ruling out that merge. The score for ((ab),c) is 2; both

2 The Blue-Fringe algorithm ensures that the suffixes of one state are guaranteed to
be a tree without loops, which facilitates this score computation.
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Fig. 3. Schematic overview of implementation

states share the suffix < edit, save >, so this is chosen to be merged. This is
how the merging process continues until no more merges can be carried out. The
resulting machine is shown in Figure [II(d).

3.3 Implementation of the Technique

We have implemented the technique for use on programs written in Erlang.
However, the approach is essentially a black-box one, and is not tied to a specific
language or paradigm. A schematic overview of the key components is given in
Figure [3l and the tools that are used for the inference, testing and tracing are
briefly described below.

Model Inference: StateChunf] is an open-source model inference framework
that has been developed by the authors [I]. It implements a state-merging ap-
proach as described in the previous section. The tracing mechanism (described
below) has been augmented with a small script that translates traces into suit-
able input files.

Tracing: Erlang has a wide array of tracing tools, many of which are included in
the standard Erlang OTP libraries. The traces used in this work are however laid
out in a particular format, to facilitate the application of other trace-analysis
tools such as Daikon [I7]. To this end, a small Erlang tracing module was de-
velope(ﬂ7 which runs as an independent Erlang process. The source code is in-
strumented at the exit points of functions that are of interest, such that every
time an instrumented point is executed, it sends the relevant details (function
name and variable values) to the trace process. The tracing process produces an
output in the form of a Daikon trace file. It is optionally possible to add abstrac-
tions, which map the traces from lower level events to sequences of higher-level
program functions.

Testing: As discussed earlier QuickCheck is particularly suited to this work
because it can incorporate finite state machine (FSM) specificationsd. The

3http://statechum.sourceforge.net/
4http://www.dcs.shef.ac.uk/~nw/Files/FM2009/dtraceGenerator. erl
® http://quviq.com/eqc_fsm%20example/index.htm
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-record(state,{openfilel}).

% openfile stores the name of a(s) [{b,{call,editor,exit,[1}},

% the open file {d,{call,editor,load, [filename()]}}].

Yi===== initial state ===== b(s) [1.

initial_state() -> a. c(8) [{c,{call,editor,edit, [chars(4)]1}},

initial_state_data() -> {a,{call,editor,close, [S#state.openfilel}},
#state{openfile=[]}. {b,{call,editor,exit, [1}},

%===== data generator ===== {d,{call,editor,save, [1}}].

filename() -> elements([‘‘testl’’, d(S) [{c,{call,editor,edit, [chars(4)]}},
’rtest2’’,’’test37’]). {a,{call,editor,close, [S#state.openfilel}},

% data transformations {b,{call,editor,exit, [1}}].

%===== state transition system =====

Fig. 4. Example QuickCheck FSM specification of text-editor

specification of an FSM is essentially divided into four parts: The initial state
specification, the state transition system, the data transformations and the data
generators. A small example specification is shown in Figure[l It should be noted
that this example only contains the essential information for a FSM construction;
QuickCheck supports a variety of other constructs (such as pre/post-conditions),
which are omitted here.

Currently, all of the steps in FigureBlare automated. With our implementation
the user to provide an initial trace, along with a parameter stating the number
of tests that should be executed for each candidate model. This will cause the
entire process to iterate, terminating once it has produced a model that does
not disagree with any tests.

4 Case Study

The case study revolves around a simple FTP-client that is a modified version
of the ssh sftp, which is part of the Erlang OTP ssh libraries (version 1.0.2)
released by Ericssord. For reference the main files involved in the tracing and
testing are available on the weH1.

Subject system and set-up. The main functions of the FTP client are pre-
sented in Table[Il In this model we will only consider the operation of the FTP
client with respect to a single file. The client has been deliberately designed to
incorporate some reasonably intricate state-based rules. Only one file-handle can
exist at a given time. Since a file has to be opened in either ‘read’ or ‘write’ mode,
this means that a file can not be written to and read from at the same time. We
have added the constraint that it is impossible to read from an empty file, and
it is impossible to write to, or read from, a specific position in the file without
having explicitly obtained the position using the write position / read position
files first.

We start off by identifying the instrumentation points in the source code.
This consists of identifying the points in the source code that correspond to exit

Shttp://www3.erlang.org/documentation/doc-5.6.5/1ib/ssh-1.0.2/doc/html/
"http://www.dcs.shef .ac.uk/~nw/Files/FM2009/
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Table 1. Functions of the FTP client (X in the PLTS)

Function Description
connect connect to server, only one connection permitted at a time
disconnect disconnect from server

open writable, open readable open file in ‘write’ or ‘read’ mode
close writable, close readable close file in ‘write’ or ‘read’ mode

write, read write data to or read data from beginning of the file

write position, read position obtain a specific position for writing to or reading from the file
pwrite, pread write to or read from a specific position in the file

delete delete the file

points for the abstract functions. In our case this is straightforward, as the ab-
stract functions all correspond to actual function definitions in ssh sftp. As an
example, at the end point of ssh sftp.open we insert a statement to add the
name of the function “open”, its arguments and the output of the function (see
accompanying website for sample files). Depending on the arguments, the tracer
either records an execution of the function as “open new” or “open existing”.
Having set up the tracer, all that remains is to set up the QuickCheck tester. Stat-
eChum has been augmented to automatically generate the QuickCheck model
files from the inferred transition systems.

The inferred models. Figure[d contains two snapshots from the inference pro-
cess, which consisted of 57 iterations in total when run using the implementation
of our technique described above. The process terminated when the testing pro-
cess yielded no further tests that revealed faults in the hypothesis. The entire set
of iterations is available on the accompanying website. For the sake of readabil-
ity, proscribed transitions are not shown. Figure[l] (a) shows the model produced
after 28 iterations. This model contains a number of errors (e.g., it permits the
file to be opened in ‘read’ mode while it is still open in ‘write’ mode). The final
candidate specification, which is produced after 57 iterations has 9 states, and
is the most accurate version produced. Every state transition that is permitted
in the model is also possible in the actual implementation (i.e., the inference
process has made no over-generalisations).

Degree of accuracy. The key question is: how useful is the technique? One
aspect of this is to what extent the inferred model is the actual behaviour of the
implementation, although it should be noted that even a partial model will be
of use to a developer in increasing their understanding of the system.

Figure [0l shows a “diff” between the final inferred model and the target. The
technique used to compute this is defined in [I8]. From this comparison it can
be established that 19 transitions were correctly inferred by the machine, that
16 transitions are missing, and that 6 superfluous transitions have been added.
Most of the missing transitions are of a particular nature: they are events that
should be possible from every state in the system and would consequently require
a very large number of tests to capture. The events “disconnect” and “delete”
should be possible from most states, and account for 9 of the 16 transitions. The
remaining missing transitions represent relatively minor differences in behaviour.
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Fig. 5. Inferred models

The correctly inferred transitions produce a reasonably accurate overview of how
the system behaves; the system has its three well defined phases of operation -
connection, writing to a file, and reading from that file. The requirement that
a file can only be open either in “write” or “read” mode is correctly captured,
and a file must be written to before it can be read.

To compare the language of the inferred model with its intended target pre-
cision, we adopt a technique that is defined in [I9]. Precision denotes the extent
to which the language that is represented by the inferred machine represents
the language of the target state machine of the actual software system. Recall
denotes the extent to which the language that is represented by the target ma-
chine is covered by the inferred machine. These measures have been applied to
the inferred machine to separately assess the accuracy in terms of both valid
and invalid languages. In terms of the valid language of the two machines, the
precision is 96.2%, with a recall of 41%. The low positive recall tallies with the
large number of missing transitions; a large number of sequences that should be
accepted by the inferred machine are missing. In terms of negative precision and
recall, the machine has a precision of 85%, and a recall of 99.5%.

In summary, both methods of comparison indicate that the model is precise, and
that it captures the essential functionality of the system. Inaccuracies are primarily
due to the fact that the model is inferred model can end up missing certain transi-
tions, especially those that are possible from every state (such as “disconnect”). In
practice, this can be explained by the choice of testing technique. Current versions
of QuickCheck explore the model randomly, and only choose transitions that are in
the model - they do not attempt to explore unspecified behaviour. This inevitably
leads to some transitions potentially being missed out.
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Fig. 6. Difference between final inferred model and reference model - Bold transitions
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A major strength of the technique demonstrated above is that it is based on
an inference technique (the EDSM-bluefringe state-merging technique) that ex-
cels at dealing with sparse samples of program traces or tests. It can arrive at a
reasonable hypothesis of how the program behaves, without requiring an exhaus-
tive or impractically large number of traces or tests. One potential weakness of
the implementation here is that, if errors are made early on in the state-merging
process, they are compounded by future merges, so it relies on a sufficient base
of traces to prevent invalid merges from happening. The iterative testing process
is responsible for gathering this base of traces in the form of tests.

As a result, the accuracy of the final result is highly dependent on the testing
technique that is used - in the name of efficiency we have used a simple random
testing approach in QuickCheck. There are however a number of systematic
testing techniques, such as the W-method mentioned above [15], and evaluation
of how these can be integrated into the process is a key area of future work that
we wish to undertake.

5 Conclusions and Future Work

This paper has presented an iterative approach to reverse-engineering labelled
transition systems. The approach has been implemented and demonstrated with
respect to and Erlang system, but can in princple be applied to any system re-
gardless of the underlying language. The inference engine, along with the various
illustratory resources are openly available.

The approach was demonstrated with respect to a small model of a real Erlang
implementation of a FTP client. The resulting model is shown to be very precise,
both in terms of the graph structure and the language that this represents.



Iterative Refinement of Reverse-Engineered Models by Model-Based Testing 319

There are a number of ways by which the authors intend to extend this work.
A more extensive case-study will be used, to ensure that the approach scales
reasonably to larger systems. There is already a lot of experimental evidence
from the grammar inference community [I6] to suggest that this will be the
case. Previous work by the authors has involved the manual provision of se-
lected LTL constraints to increase the efficiency and accuracy of the inference
process. It is our intention to integrate these techniques with the current testing
infrastructure.

As mentioned in Section B3] the traces are produced in the Daikon format
[I7]. Daikon can infer data constraints on variables from execution traces. We
are currently investigating the use of Daikon to infer pre/post-conditions from
Erlang executions, which can then be used to annotate the reverse-engineered
state machines.

There are a number of QuickCheck features that could be used to increase
the efficacy of the testing process. As mentioned previously, it is our intention
to use the transition-weighting feature to coax the tester towards certain states
that would otherwise be in danger of being left unexplored by random tests. It
is envisaged that Uchitel’s PLTS formalism could be particularly useful in this
respect, helping to identify those states with lots of ‘unknown’ transitions, to
automate the assignment of weights in the hypothesis machine.
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Abstract. Linearizability is an important correctness criterion for implementa-
tions of concurrent objects. Automatic checking of linearizability is challenging
because it requires checking that 1) all executions of concurrent operations be
serializable, and 2) the serialized executions be correct with respect to the se-
quential semantics. This paper describes a new method to automatically check
linearizability based on refinement relations from abstract specifications to con-
crete implementations. Our method avoids the often difficult task of determining
linearization points in implementations, but can also take advantage of lineariza-
tion points if they are given. The method exploits model checking of finite state
systems specified as concurrent processes with shared variables. Partial order re-
duction is used to effectively reduce the search space. The approach is built into a
toolset that supports a rich set of concurrent operators. The tool has been used to
automatically check a variety of implementations of concurrent objects, including
the first algorithms for the mailbox problem and scalable NonZero indicators. Our
system was able to find all known and injected bugs in these implementations.

1 Introduction

Linearizability is an important correctness criterion for implementations of objects
shared by concurrent processes, where each process performs a sequence of operations
on the shared objects. Informally, a shared object is linearizable if each operation on
the object can be understood as occurring instantaneously at some point, called the
linearization point, between its invocation and its response, and its behavior at that
point is consistent with the specification for the corresponding sequential execution of
the operation.

One common strategy for proving linearizability of an implementation (used in man-
ual proofs or automatic verification) is to determine linearization points in the imple-
mentation of all operations and then show that these operations are executed atomically
at the linearization points [11/229]]. However, for many concurrent algorithms, it is dif-
ficult or even impossible to statically determine all linearization points. For example,
in the K-valued register algorithm (Section 10.2.1 of [4]]), linearization points differ
depending on the execution history. Furthermore, the linearization points determined
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might be incorrect, which can give wrong results of linearizability. Therefore, it is de-
sirable to have automatic solutions to verifying these algorithms without knowing lin-
earization points. However, existing methods for automatic verification without using
linearization points either apply to limited kinds of concurrent algorithms or are
inefficient [29].

Contribution. This paper describes a new method for automatically checking lineariz-
ability based on refinement relations from abstract specifications to concrete imple-
mentations. Our method does not rely on knowing linearization points, but can take
advantage of them if given. The method exploits model checking of finite state systems
specified as concurrent processes with shared variables, and is not limited to any partic-
ular kinds of concurrent algorithms. We exploit powerful optimizations to improve the
efficiency and scalability of our checking method.

Refinement requires that the set of execution traces of a concrete implementation be
a subset of that of an abstract specification. Thus, we express linearizability as trace
refinement of operation invocations and responses from the abstract specification to the
concrete implementation, where the abstract specification is correct with respect to se-
quential semantics. The idea of refinement has been explored before: Alur et al.
showed that linearizability can be cast as containment of two regular languages, and
Derrick et al. expressed linearizability as non-atomic refinement of Object-Z and
CSP models. Some similar approaches prove linearizability using trace simu-
lation. In this work, we give a general and rigorous definition of linearizability, regard-
less of the modeling language used, using refinement.

Our model checking method exploits on-the-fly refinement checking (so that coun-
terexamples, if any, can be produced without generating the entire search space, as in
FDR [20Q]), partial order reduction (to effectively reduce the search space), symmetry
reduction (to handel large or even unbounded number of processes) and other optimiza-
tions. If linearization points are known and can be marked in the implementation, our
approach constructs an even smaller search space. Some of the optimizations are spe-
cialized for linearizability checking while others are general. The result is a powerful
linearizability checking method that is much more efficient than prior work. A model
checking tool, PAT [24] (http://pat.comp.nus.edu.sg),is developed to provide automated
support for this approach. PAT supports an event-based modeling language that has a
rich set of concurrent operators. Our engineering effort realizes all these optimizations
in PAT. We have used PAT to automatically check not only established algorithms, such
as concurrent stack and queue algorithms, but also larger and more sophisticated al-
gorithms that were not formally verified before—the first algorithms for the mailbox
problem [3] and scalable NonZero indicators [[T1]]. Both algorithms use sophisticated
data structures and control structures, so the linearization points are difficulty to de-
termine. The verification details of the two algorithms can be found in and
respectively. Counterexamples were reported quickly for incorrect algorithms, such as
an incorrect implementation of concurrent queues [21]]. Experimental results show that
our solution is much more efficient and scalable than prior work [29].

The rest of the paper is structured as follows. Section 2 gives the standard defini-
tion of linearizability. Section 3 shows how to express linearizability using refinement



Model Checking Linearizability via Refinement 323

relations in general. Section 4 describes verification and optimization methods. Section 5
presents experimental results. Section 6 discusses related work and concludes.

2 Linearizability

Linearizability is a safety property of concurrent systems, over sequences of events
corresponding to the invocations and responses of the operations on shared objects. It
is formalized as follows.

In a shared memory model M, O = {01, ..., o5} denotes the set of k shared objects,
P ={p1,...,pn} denotes the set of n processes accessing the objects. Shared objects
support a set of operations, which are pairs of invocations and matching responses.
Every shared object has a set of states that it could be in. A sequential specification
of a (deterministic) shared objecﬂl is a function that maps every pair of invocation and
object state to a pair of response and a new object state.

The behavior of M is defined as H, the set of all possible sequences of invocations
and responses together with the initial states of the objects. A history o € H induces
an irreflexive partial order <, on operations such that op; <, ops if the response of
operation op; occurs in o before the invocation of operation ops. Operations in o that
are not related by <, are concurrent. o is sequential iff <, is a strict total order. Let
ol; be the projection of o on process p;, which is the subsequence of o consisting of all
invocations and responses that are performed by p;. Let o|,, be the projection of o on
object o;, which is the subsequence of ¢ consisting of all invocations and responses of
operations that are performed on object o;.

A sequential history o is legal if it respects the sequential specifications of the ob-
jects. More specifically, for each object o;, if s; is the state of o; before the invocation of
the j-th operation op; in o|,,, then response of op; and the resulting new state s; 1 of
o,; follow the sequential specification of o;. For example, a sequence of read and write
operations of an object is legal if each read returns the value of the preceding write
if there is one, and otherwise it returns the initial value. Every history ¢ of a shared
memory model M must satisfy the following basic properties:

Correct interaction. For each process p;, o|; consists of alternating invocations and
matching responses, starting with an invocation. This property prevents pipelining
operations.

Closeness. Every invocation has a matching response. This property prevents pending
operations.

In addition to these two, liveness property is also important for some critical systems,
which guarantees the progress of the systems. Even if the model satisfies linearizabil-
ity, it may not progress as desired. For instance, even under a fair scheduler Treiber’s
push/pop might never terminate if there is always another concurrent push/pop.
We remark that liveness properties can be formulated as Linear Temporal Logic (LTL)
formulae (an example is given at the end of Example 1) and checked using standard
LTL model checkers (with or without the assumption of a fair scheduler).

! More rigorously, the sequential specification is for a rype of shared objects. For simplicity,
however, we refer to both actual shared objects and their types interchangeably in this paper.
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Given a history o, a sequential permutation 7 of ¢ is a sequential history in which
the set of operations as well as the initial states of the objects are the same as in . The
formal definition of linearizability is given as follows.

Linearizability. There exists a sequential permutation 7 of o such that
1. for each object o;, 7|,, is a legal sequential history (i.e. 7 respects the sequen-
tial specification of the objects), and
2. if op1 <, op2, then op; <, ops (i.e., ™ respects the run-time ordering of
operations).

Linearizability can be equivalently defined as follows: In every history o, if we assign
increasing time values to all invocations and responses, then every operation can be
shrunk to a single time point between its invocation time and response time such that
the operation appears to be completed instantaneously at this time point [16/4]]. This
time point for each operation is called its linearization point. Linearizability is a safety
property [[16], so its violation can be detected in a finite prefix of the execution history.

Linearizability is defined in terms of the interface (invocations and responses) of
high-level operations. In a real concurrent program, the high-level operations are im-
plemented by algorithms on concrete shared data structures, e.g., using a linked list to
implement a shared stack object. Therefore, the execution of high-level operations may
have complicated interleaving of low-level actions. Linearizability of a concrete con-
current algorithm requires that, despite complicated low-level interleaving, the history
of high-level invocation and response events still has a sequential permutation that re-
spects both the run-time ordering among operations and the sequential specification of
the objects. This idea is formally presented in the next section using refinement relations
in a process algebra extended with shared variables.

3 Linearizability as Refinement Relations

We model concurrent systems using a process algebra extended with shared variables.
The behavior of a model is described using a labeled transition system generated from
the model. We define linearizability as a refinement relation from an implementation
model to a specification model.

3.1 Modeling Language

We introduce the relevant subset of syntax of CSP (Communicating Sequential Pro-
cesses) [14] extended with shared variables and give its operational semantics. Note
that our approach is not limited to process algebra like CSP; it is also applicable to
any programming language with formal operational semantics. We chose this language
because of its rich set of operators for concurrent communications.

Definition 1 (Process). A process P is defined using the grammaiﬁ:

P ::= Stop | Skip | e{assignments} — P | P\ X | Py; Py | Py O Py
| Pr<b> Py | Pl Pal] - |l Pn

% Parallel composition (P || P || --- || Py) is omitted in the paper since it is irrelevant to our
discussion. We include it in our technical report [13].
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where P, Py, Po, ..., P, are processes, e is a name representing an event with an op-
tionally attached sequence of assignments to shared variables, X is a set of names,
and b is a Boolean expression.

Stop is the process that communicates nothing, also called deadlock. Skip = v* —
Stop, where v is the termination event. Event prefixing e — P performs e and af-
terwards behaves as process P. If e is attached with assignments, the valuation of the
shared variables is updated accordingly. For simplicity, assignments are restricted to
update only shared variables. Process P \ X hides all occurrences of events in X. An
event is invisible iff it is explicitly hidden by the hiding operator P \ X. Sequential
composition, Py; Ps, behaves as P; until its termination and then behaves as Ps. Ex-
ternal choice P; O Ps is solved only by the occurrence of a visible event. Conditional
choice P; <1 b > P, behaves as P; if the Boolean expression b evaluates to true, and
behaves as P» otherwise. Indexed interleaving Py ||| P2 ||| - - - ||| Py runs all processes
independently except for communication through shared variables. Processes may be
recursively defined, and may have parameters (see examples later).

The most noticeable extension to CSP is the use of shared variables. It has long
been known [14]] that one can model a variable as a process parallel to the processes
that use it. Nevertheless, direct support of variables allows concise modeling and ef-
ficient verification. The shared memory contains integer/Boolean variables and arrays,
which can be read/written atomically by all processes. Nonblocking algorithms use syn-
chronization primitives such as compare and swap (CAS) and load linked (LL)/store-
conditional (SC). Our language provides strong support for these synchronization
primitives by using conditional choices, which is elaborated in [32]]. The complete syn-
tax and formal operational semantics of our language is presented in [23]).

The semantics of a model is defined with a labeled transition system (LTS). Let X/
denote the set of all visible events and 7 denote the set of all invisible events. Since
invisible events are indistinguishable, we sometimes also use 7 to represent an arbitrary
invisible event. Let X* be the set of finite traces. Let - be X U 7.

Definition 2 (LTS). A LTS is a 3-tuple L = (S, init, T) where S is a set of states,
it € S is the initial state, and T C S x X, x S is a labeled transition relation.

For states s, s’ € S and e € X, we write s — s’ to denote (s, e,s’) € T. The set of
enabled events at s is enabled(s) = {e: 3, | Is' € 8,5 5 s'}. We write s ~ 257"
s’ iff there exist s1,-- -, $,41 € S such that s; 5 si41 foralll < i < n, sy = sand

. T T
Sne1 = s, and s 5 ¢ iff s = s’ or s ' '. The set of states reachable from s
by performing zero or more 7 transitions is 7*(s) = {s’ : S | s =5 s'}. Let tr : X*

.. t . . .
be a sequence of visible events. s = s’ if and only if there exist e, e, - -, e, € X
such that s 257 &/ and tr = (ey, ea,- -, e,) | 7 is the trace with invisible events

removed. The set of traces of L is traces(L) = {tr: X* | I’ € S, init £ s’}

For example, Fig. [[lshows a LT generated from ReaderA process in Example 1,
where 7 labels are omitted for simplicity. Due to the use of shared variables, a state of
the system is a pair (P, V), where P is the current process expression, and V is the

3 The dotted circles will be explained in Section @l and should be ignored for now.



326 Y. Liu et al.

- ~Tread_iny; P ~read_iny—"-
ool iy o)

""" " Tead_res.2

Fig.1. A LTS Example

current valuation of the shared variables represented as a mapping from names to values.
Given a LTS (S, init, T), the size of .S can be infinite for two reasons. First, variables
may have infinite domains. Second, processes may allow unbounded replication by
recursion, e.g., P = (¢ — P; ¢ — Skip) O b — Skip,or P = a — P ||| P. In this
paper, we consider only LTSs with a finite number of states. In particular, we bound
the sizes of value domains and the number of processes by constants. In our examples,
bounding the sizes of value domains also bounds the depths of recursions.

Definition 3 (Refinement). Let L;,, = (Sim, initim, Tim) be a LTS for an implemen-
tation. Let Lgy, = (Ssp, initsp, Tsp) be a LTS for a specification. Liy, refines Lgy,, writ-
ten as Ly .5 Lgp, iff traces(Liy) C traces(Lgp).

3.2 Linearizability

This section shows how to create high-level linearizable specifications and how to use
a refinement relation to define linearizability of concurrent implementations.

To create a high-level linearizable specification for a shared object, we rely on the
idea that in any linearizable history, any operation can be thought of as occurring at
some linearization point. We define the specification LTS L, = (Ssp, initsp, Tsp) for
a shared object o in the following way. Every execution of an operation op of o on a
process p; includes three atomic steps: the invocation action inv(op);, the lineariza-
tion action lin(op);, and the response action res(op, resp);. The linearization action
lin(op); performs the computation based on the sequential specification of the object.
In particular, it maps the invocation and the object state before the operation to a new
object state and a response, changes the object to the new state, and buffers the re-
sponse resp locally. The response action res(op, resp), generates the actual response
resp using the buffered result from the linearization action. Each of the three actions is
executed atomically without being interfered by any other action, but the three actions
of one operation may be interleaved with the actions of other operations. In Lg,, all
inv(op),; and res(op, resp), are visible events, while lin(op); are invisible events.

In a LTS Ly, = (Ssp, initsp, Tsp), each process p; has (a) an idle state s, o, (b)
a state s(op)p, 1 for every operation op of object o, representing the state after the
invocation of op but before the linearization action of op, and (¢) s(op, resp)p, 2 for
every operation op and every possible response resp of this operation, representing the
state after the linearization action of op but before the response of op. Then S, is
the cross product of all object values and all process states. init,, is the combination
of the initial value of object o and sy, o’s for all processes p,. For s € Ss,, let s, be
the value of object o encoded in s, s, be the state of p; in s, and s_,,, and s_,, _, be
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the state s excluding s,, and excluding s,, and s,, , respectively. The labeled transition
relation Ty, is such that for (s,e,s’) € T, (a) if e = inv(op),, then s_,, = s’fpi,
Sp, = Sp,0, and s, = s(op)y, 15 (b) if e = lin(op);, then s_p, —, = s, _, .
sp, = s(0p)p,,1, and s, = s(op, resp),, 2, such that s, and resp are the new object
value and the response, respectively, based on the sequential specification of object o
as well as the old object state s, and the state s,, = s(op),, 1 of process p;; (c) if

A A
e = res(op, resp);, then s_,, = 8L s Sp = s(op, resp)p, 2, and 8y, = Sp;.0-

Example 1 (K-valued register). We use a shared K-valued single-reader single-writer
register algorithm (Section 10.2.1 of [4]) to demonstrate the ideas above. The lineariz-
able abstract model is defined as follows, where R is the shared register with initial
value K, and M is a local variable to store the value read from R.

ReaderA() = read inv — read{M = R; } — read res.M — ReaderA();
WriteA(v) = write inv.v — write{ R = v; } — write res — Skip;

WriterA() = (WriteA(0) O WriteA(1) O ... O WriteA(K — 1)); WriterA();
RegisterA() = (ReaderA() ||| WriterA())\{read, write};

The ReaderA process repeatedly reads the value of register R and stores the value
in local variable M. Event read res.M returns the value in M. WriteA(v) writes the
given value v into R. Event write inv.v stores the value v to be written into the register.
The WriterA process repeatedly writes a value in the range of 0 to K — 1. External
choices are used here to enumerate all possible values. RegisterA interleaves the reader
and writer processes and hides the read and write events (linearization actions). The
only visible events are the invocation and response of the read and write operations.
This model generates all the possible linearizable traces.

We now consider a LTS L;,;, = (Sim, initin, Tim) that supposedly implements ob-
ject o. The visible events of L;,, are also those inv(op);’s and res(op, resp);’s. For
example, the following models an implementation of a K -valued register using an ar-
ray B of K binary registers (storing only 0 and 1).

Reader() = read inv — UpScan(0);
UpScan(1) = DownScan(i —1,i) < B[i] =1 > UpScan(i + 1);
DownScan(i,v) = (read res.v — Reader()) < i < 0>

(DownScan(i —1,4) < Bli] = 1 > DownScan(i — 1, v));
Write(v) = write inv.v — T7{B[v] = 1; } — WriterScan(v — 1);
WriterScan (i) = (write res — Skip) <1 < 0 >

(r{Bi] = 0; } — WriterScan(i — 1));

Writer() = (Write(0) O Write(1) O ... 0O Write(K)); Writer();
Register() = Reader() ||| Writer();

The Reader process first does a upward scan from element 0 to the first non-zero ele-
ment ¢, and then does a downward scan from element ¢ — 1 to element 0 and returns
the index of last element whose value is 1. Event read res.v returns this index as the
return value of the read operation. The Write(v) process first sets the v-th element of
B to 1, and then does a downward scan to set all elements before 7 to 0. Note that
in this implementation, the linearization point for Reader is the last point where the
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parameter v in DownScan process is assigned in the execution. Therefore, the lin-
earization point can not be statically determined. Instead, it can be in either UpScan or
DownScan. We remark that one liveness property can be verified by model checking
Oread inv = Oread res where [0 and > are modal operators which read as ‘always’
and ‘eventually’ respectively. O

Theorem 1 characterizes linearizability of the implementation through a refinement
relation and thus establishes our approach to verifying linearizability. Different ver-
sions of this result appeared in distributed computing literature, for example, in Lynch’s
book [16], Theorems 13.3-13.5.

Theorem 1. All traces of Liy, are linearizable iff Liy, 3 L.

Proof (sketch). Sufficient condition: For any trace o € traces(L;p, ), because Ly, 5
Ly, o is also a trace of Lg,. Let p be the execution history of L, that generates the
trace 0. We define the sequential permutation 7 of ¢ as the reordering of operations in
o in the same order as the linearization actions lin(op);’s of all operations op and all
processes p; in p. If op; <, op2, the linearization action of op; must be ordered before
the linearization action of ops in p, and thus op; <, ops. It is also easy to verify that 7
is a legal sequential history of object o, since the linearization action of every operation
in p is the only action in the operation that affects the object state based on its sequential
specification, and the order of operations in 7 respects the order of linearization actions
in p.

Necessary condition: Let o be a trace of L;,,. By assumption o is linearizable. We
need to show that o is also a trace of L,. Since o is linearizable, there is a sequential
permutation 7 of o such that 7 respects both the sequential specification of object o and
the run-time ordering of the operations in o. We construct an execution history p of Ly,
from o and 7 as follows. Starting from the first event of o, for any event e in o, (a) if it
is an invocation event, append it to p; (b) if it is a response event res(op, resp);, locate
the operation op in 7, and for each unprocessed operation op’ by a process j before
op in m, process op’ by appending a linearization action lin(op’); to p, following the
order of 7; finally append lin(op); and res(op, resp); to p. It is not difficult to show
that the execution history p constructed this way is indeed a history of L,. Moreover,
obviously the trace of p is 0. Therefore, o is also a trace of L. O

The above theorem shows that to verify linearizability of an implementation, it is
necessary and sufficient to show that the implementation LTS is a refinement of the
specification LTS as we defined above. This provides the theoretical foundation of our
verification of linearizability. Notice that the verification by refinement given above
does not require identifying low-level actions in the implementation as linearization
points, which is a difficult (and sometimes even impossible) task. In fact, the verifica-
tion can be automatically carried out without any special knowledge about the imple-
mentation beyond knowing the implementation code.

In some cases, one may be able to identify certain events in an implementation as
linearization points. We call these linearization events. For example, three linearization
events have been identified in the stack algorithm [2]]. In these cases, we can make these
events visible and hide other events (including the invocation and response events) and
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verify refinement relation only for these events. More specifically, we obtain a speci-
fication LTS L’Sp by the following two modifications to Lg),: (a) for each linearization
action lin(op);, we change it to lin(op, resp); so that the response resp computed by
this linearization action is included; and (b) all linearization actions are visible while all
inv(op); and res(op, resp); are invisible. Let L, be an implementation LTS such that
its linearization events are visible and all other events are invisible, and its linearization
events are also specified as lin(op, resp);.

Theorem 2. Let L’sp and L', be the specification and implementation LTSs such that
linearization events are specified as lin(op, resp); and are the only visible events. If
L, 3., L;p, then the implementation is linearizable. Conversely, if the implementation
is linearizable, and it can be shown that no other actions in the implementation can be

L . ) )
linearization actions, then Ly, Jp Ly,.

The proof of the theorem can be found [15]. With this theorem, the verification of lin-
earizability could be more efficient based on only linearization events. However, one
important remark is that, as stated in the theorem, to make refinement a necessary con-
dition of linearizability in this case, one has to show that no other actions in the im-
plementation can be linearization points. In other words, the determined linearization
points have to be complete. Otherwise, even if the verification finds a counterexample
for the refinement relation, we cannot conclude that the implementation is not lineariz-
able since we may have failed in determining all possible linearization events. Examples
of implementations modeled using linearization points can be found in [13]].

4 Verification of Linearizability

This section presents a general algorithm for refinement checking, which is further ex-
tended with partial order reduction and other optimizations.

4.1 Refinement Checking Algorithm

To establish a refinement relationship, every reachable state of the implementation must
be compared with every state of the specification reachable via the same trace. Because
of nondeterminism caused by interleaving of multiple clients and invisible events, there
may be many such states in the specification. Thus, the specification is normalized, by
standard subset construction. A normalized state is a set of states that can be reached
by the same trace from a given state.

Definition 4 (Normalized LTS). Let (S, init, T') be a LTS. The normalized LTS is
(NS, Ninit, NT) where NS is the set of subsets of S, Ninit = 7*(init), and NT =
{(P,e,Q) | PeENSAQ={s:S |3 :P, Fn:8, (n,e,m2) € TAsEcE
7 (v2)}}

Given a normalized state s € NS, enabled(s) is |, ., enabled(r). Given a LTS con-
structed from a process, the normalized LTS corresponds to the normalized process. A
state in the normalized LTS groups a set of states in the original LTS which are all con-
nected by T-transitions. For instance, the dotted circles in Fig. [l shows the normalized
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procedure linearizability (Impl, Spec)
1. checked := @; pending.push((initim, 7" (initsp)));
2. while pending is not empty do

3. (Im, NSp) := pending.pop();

4 checked := checked U {(Im,NSp)};

5. if enabled(Im) ¢ (enabled(NSp) U {r}) then -C1
6. return false;

7 endif

8 foreach (Im', NSp') € next(Im, NSp)

9. if (Im’, NSp') & checked then

10. pending.push((Im’, NSp"));

11. endif

12. endfor

13. endwhile
14. return true;

Fig. 2. Algorithm: linearizability(Impl, Spec)

states. Notice that, given a trace, the normalized transition relation N7 is deterministic,
i.e., for any normalized state P and any event e, there is at most one normalized state
@ such that (P,e, Q) € NT.

Based on the refinement checking algorithms in FDR [19], we present a modi-
fied on-the-fly refinement checking algorithm that applies partial order reduction. We
remark that partial order reduction is an effective reduction method due to the na-
ture of concurrent algorithms. Let Spec = (Ssp, inits,, Tsp) be a specification and
Impl = (Sim, initiy,, Tim) be an implementation. Refinement checking is reduced to
reachability analysis of the product of Impl and normalized Spec. Because normaliza-
tion in general is computationally expensive, our checking algorithm in Fig. 2l performs
normalization on-the-fly, whilst searching for a counterexample.

The algorithm in Fig. Rlperforms a depth-first search for a pair (Im, NSp) where Im
is a state of the implementation and NSp is a normalized state of the specification such
that, the set of enabled events of Im is not a subset of those of NSp (C1). The algorithm
returns true if no such pair is found. If C1 is satisfied, a counterexample violating trace
refinement is found. The procedure for producing a counterexample is straightforward
and hence omitted. Lines 8 to 12 proceed to explore new states of the product of Impl
and Spec and push them onto the stack pending. Function next(Im, NSp) returns the
children of state (/m, NSp) in the product, which is the following set,

{(Im’', NSp) | (Im,7,Im") € Tin,} U {(Im',NSp") | 3e, (Im,e,Im’) € Tim A
Vs: NSp', 3s1: NSp, Iso: NSp', (s1,€,8) € Tsp A s € 7(s2)}

A new state of the product is obtained by either the implementation taking a 7 transition
(and the specification remains unchanged) or the implementation and the specification
engaging the same event simultaneously. To compute next(Im, NSp) (e.g., calculating
T*(s2)), it is necessary to compute the set of states reached by a 7-transition from a
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procedure tau(S)

1. foreach P;

2. por := enabledp,(S) C 7U X A enabledp,(S) = current(P;);

3. foreach e € enabledp, (S)

4. por := por A Tonstack(e) AV e :X;, j#1i= "dep(e,e');

5. endfor

6. if por then return {(((-+- ||| P/ Il \ X), V) | (i, V) = (P, V)};
7. endfor

8. return {S' | S = S'};

Fig. 3. Algorithm: tau(S)

given state. This function is implemented by procedure tau(.S) (Fig.[3), which explores
all outgoing transitions of S and returns the set of states reachable from S via one
T-transition. It uses partial order reduction and is explained in the next section.

The linearizability algorithm is linear in the number of transitions in the prod-
uct. Assume both Impl and Spec have finite states. The algorithm terminates because
checked is monotonically increasing. The soundness of the algorithm follows from [19].
Because normalization is done on-the-fly, it is possible to find a counterexample before
the specification is completely normalized.

4.2 Optimizations

Like any model checking algorithm, linearizability checking suffers from state space
explosion. This section describes several optimization techniques to solve this problem.
Partial order reduction (POR) is effective for checking linearizability. Our reduc-
tion realizes and extends early works on POR for process algebras and refine-
ment checking [31]]. The idea of the reduction is that events may be independent, e.g.,
read inv of different readers are independent of each other. Given P = Py ||| - -+ ||| Py
and two enabled events e; and ez, e; depends on eq, written as dep(eq, e2), if e; and ey
are from the same process or e; updates a variable to be accessed by ez, or vice versa.
Notice that dep(e;, e2) < dep(ez, e1). Two events are independent if neither depends
on the other. Because the ordering of independent events is irrelevant to the correctness
of linearizability checking, we may ignore some of the ordering so as to reduce the
search space. Since interleaving composition is the main source of state space explo-
sion, we consider that Im is in the form of ((Py ||| P2 ||| -+ ||| Pn) \ X, V), where
P; is a process, X is a set of events and V is the valuation of the variables. We show
how to explore only a subset of enabled transitions and yet preserve soundness.
Function next(Im, NSp), which depends on function tau(S), is used to expand the
search tree. POR is mainly applied to function tau(S). Because tau is applied to the
specification or implementation independently, as long as we guarantee that the reduced
state graph (of either Impl or Spec) is trace-equivalent to the full state graph, there is
a refinement relationship in the reduced state space if and only if there is one in the
full state space. Fig. 3] shows function tau(S). The idea is to identify one process P;
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such that all 7-transitions from P; are independent of those from other processes, by
checking a set of heuristic conditions. Intuitively, a process P; is chosen if and only if,

— enabledp,(S) C 7 U X, i.e., events enabled in process P; are all invisible,

- enabledp,(S) = current(P;), i.e., given P; and any valuation of the global vari-
ables, all events that could be enabled in process P; (denoted by current(P;)) are
enabled (denoted by enabledp, (.S)). This is a sufficient condition to guarantee that
an event that is dependent on a transition from P; cannot be executed without a
transition from P; occurring first,

— = onstack(e), i.e., executing e does not result in a state on the search stack,

-Ve X, j#i= —dep(e, ¢),1ie., all enabled events are independent of events
from other process P; (denoted as ;).

If no such P; is found, we expand the node with all enabled events (line 8). Following
the arguments of [28]] and [31]}, it can be shown that the reduced state graph is trace-
equivalent to the full graph.

The above applies POR to 7-transitions only. PAT is capable of applying POR to
visible events. Because both Impl and Spec must make corresponding transitions for a
visible event, reduction for visible events is complicated. Fig. d presents the algorithm,
i.e., the refined next. If I'm is not stable (i.e., tau(Im) # Im), we apply the algorithm
tau’ (taw' is same as tau in Fig. 3] except that line 8 returns @) to identify a subset
of T-transitions (line 2). If no such subset exists, the pair (Im, NSp) is fully expanded
(line 10). An algorithm wvisible similar to tau’ is used to check if a given visible event
e is a candidate for POR. Function processes(e) returns all process components (of the
composition) whose alphabet contains e. Firstly, we choose a possible candidate from
Im using the algorithm wvisible. Event e is chosen if and only if, for each process in
processes(e), e is the only event from the process that can be enabled, all other enabled
events are independent of e, and performing e does not result in a state on the stack.
Next, we check if e satisfies the same set of conditions for each state in the normalized
state of the specification. If it does, e is used to expand the search tree at line 9 (and all
other enabled events are ignored). In order to find such e efficiently, the candidate events
are selected in a pre-defined order, i.e., events that have the least number of associated
processes are chosen first. The soundness proof of the algorithm can be found in our
technical report [15].

Our approach works without knowledge of linearization points. Nonetheless, having
the knowledge would allow us to take full advantage of POR. Because the linearization
points are the only places where data consistency must be checked, we may amend
the above algorithm to perform data consistency check at the linearization points. As
a result, encoding relevant data as part of the event is not necessary and the model
contains fewer events, which translates to fewer traces. Furthermore, because only the
linearization points need to be synchronized, we may hide all other events, and turn
visible transitions into T-transitions that are subject to POR.

Besides partial order reduction, our approach is compatible with other state space
reduction techniques or abstract interpretation techniques. Distributed algorithms and
protocols are usually designed for a large (or even unbounded) number of similar pro-
cesses. They are therefore subject to symmetric reduction [12]]. For instance, different
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procedure next’ (Im, NSp)
1. if 7 € enabled(Im) then

2. nextmoves := tau'(Im);

3. if (nextmoves # @) then return nextmoves;

4. else

5. foreach e € enabled(Im)

6. por := visible(Im, e);

7. foreach S € NSp

8. por := por A visible(S, e);

9. if por then return {(Im/,7*(NSp')) | Im = Im’ A NSp % NSp'};

10. return nezt(Im, NSp);

procedure visible(Im, e)

1. por := —1onstack(e) AVe' :X;, ¢ # e= —1dep(e,e);
2. foreach P; € processes(e)

3. por := por A enabledp,(Im) = current(P;) = {e};
4. return por;

Fig. 4. Algorithm: next’(Im, NSp) and visible(Im, e)

writers (i.e., WriterA(4)) in Example[Ilare symmetric and therefore, it is sound (subject
to property-specific conditions) to only explore one writer and conclude the same for
all other writers. If the processes are identical, then it is subject to process counter ab-
straction. For example, in the concurrent stack algorithm, the processes invoking push
and pop are symmetric and therefore, we only keep track of the number of processes,
instead of the exact processes. In this way, we may prove the property for arbitrary
number of processes. We skip the details due to space constraints.

5 Experiments

Our method has been implemented and applied to a number of concurrent algorithms,
including register—the K-valued register algorithnﬂ in Section 3, stack—a concur-
rent stack algorithm [23]], queue—a concurrent non-blocking queue algorithm in Fig.
3 of 18], buggy queue—an incorrect queue algorithm [21], and mailbox and SNZI—
the first algorithms for the mailbox problem [3]] and scalable Non-Zero indicators ,
respectively. Details for verifying these examples can be found in our technical re-
port [13]]. Table [T summarizes part of our experiments, where ‘-” means out of memory
or more than 4 hours, and ‘(points)’ means that linearization points are given.

The number of states and running time increase rapidly with data size and the num-
ber of processes, e.g., 3 processes for register, stack, queue, and SNZI vs. 2 processes.
The results conform to theoretical results [[1]: model checking linearizability is in EX-
PSPACE for both time and space. When linearization points are known, the complexity

* We extend this example with 2 readers and 1 writer. The correctness is verified using PAT.
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Table 1. Experiment results on a PC with 2.83 GHz Intel Q9550 CPU and 2 GB memory

Algorithm #Proc. Linear- Time(sec) #States Time(sec) #States
izable w/o POR w/o POR with POR with POR

4-valued register 2 true 6.14 50893 5.72 43977

5-valued register 2 true 44.9 349333 60.4 307155
2 true 297 2062437 789 1838177

3 true 294 479859 393 361255

6-valued register
3-valued register with
2 readers and 1 writer

stack of size 12 2 true 138 540769 65.9 395345
stack of size 14 2 true 411 763401 99.4 599077
stack of size 2 3 true - - 4321 4767519
stack of size 12 (points) 2 true 0.62 9677 0.82 9677
stack of size 14 (points) 2 true 0.82 12963 1.11 12963
stack of size 2 (points) 3 true 1.14 10385 1.56 10385
stack of size 2 (points) 4 true 37.6 219471 49.4 219471
queue of size 6 2 true 134 432511 86.2 343446
queue of size 8 2 true 256 104582 218 938542
buggy queue of size 10 2 false 10.9 32126 6.87 32126
buggy queue of size 20 2 false 52.73 105326 41.1 105326
mailbox of 3 operations 2 true 71.6 272608 27.8 120166
mailbox of 4 operations 2 true 2904 9928706 954 3696700
SNZI of size 2 2 true 1298 712857 322 341845
SNZI of size 3 3 true - - 6214 8451568

is still EXPSPACE, but the state space reduces significantly since the state spaces of im-
plementation and specification are smaller. We show that the speedup of knowing lin-
earization points is in the order of O(2+2"(*"=k")) where k is the size of the shared
object and n is the number of processes [[13]]. Use of partial order reduction effectively
reduces the search space and running time in most cases, including stack and queue,
and especially mailbox and SNZI because their algorithms have multiple internal tran-
sitions. For register, the state space is reduced but running time increases because of
computational overhead. For buggy queue [21]], the counterexamples (discovered firstly
in [7]) are produced quickly after exploring only part of the state space.

Vechev and Yahav [29] also provided automated verification. Their approach needs
to find a linearizable sequence for each history, whose worst-case time is exponential in
the length of the history, as it may have to try all possible permutations of the history. As
aresult, the number of operations they can check is only 2 or 3. In contrast, our approach
handles all possible interleaving of operations given sizes of the shared objects. Because
of partial order reduction and other optimizations, our approach is more scalable than
theirs. For instance, we can verify stacks of size 14, which means any number of stack
operations that contain up to 14 consecutive push operations.

Experiments suggest that PAT is faster than FDR for systems without variables [22]].
Modeling variables using processes and lack of partial order reduction will make FDR
even slower. Therefore we skip comparison with FDR on these examples.
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6 Discussions

In terms of modeling of linearizability, our approach is based on the trace refinement of
LTSs, which is similar to [1]]. Our refinement checking algorithm is related to existing
on-the-fly behavioral equivalence and pre-order checking algorithms (e.g., [19/9]). The
non-atomic refinement defined in [8] separates the data explicitly as state-based formal-
ism Object-Z. This modeling requires to have the knowledge of linearization points, and
also prevents automatic verification techniques such as model checking to be used.

Formal verification of linearizability is a much studied research area, since lineariz-
ability is a central property for the correctness of concurrent algorithms. There are var-
ious approaches in the literature, as discussed below.

Manual proving. Herlihy and Wing present a methodology for verifying lineariz-
ability by defining a function that maps every state of an concurrent object to the set of
all possible abstract values representing it. Vafeiadis et. al. use rely-guarantee rea-
soning to verify linearizability for a family of implementations for linked lists. Neither
of them requires statically determined linearization points, but they are manual.

Using theorem provers. Verification using theorem provers (e.g., PVS) is another
approach [10l6]. In these works, algorithms are proved to be linearizable by using sim-
ulation between input/output automata modeling the behavior of an abstract set and the
implementation. However, theorem prover based approach is not automatic. Conversion
to IO automata and use of PVS require strong expertise.

Static analysis. Wang and Stoller present a static analysis that verifies linearizabil-
ity for an unbounded number of threads. Their approach detects certain coding patterns,
which are known to be atomic regardless of the environment. This solution is not com-
plete (i.e., not applicable to all algorithms).

Model checking. Amit et al. [2]] presented a shape difference abstraction that tracks the
difference between two heaps. This approach works well if the concrete heap and the
abstract heap have almost identical shapes. Recently, Manevich et al. and Berdine
et al. [3] extended it to handle larger number and unbounded number of threads, re-
spectively. Vafeiadis [26] further improved this solution to allow linearization points in
different threads. The main limitation of these approaches is that users need to pro-
vide linearization points, which are unknown for some algorithms. In [29], Vechev
and Yahav provided two methods for linearizability checking. The first method is a
fully automatic, but inefficient as discussed in Section 5. The second method requires
algorithm-specific user annotations for linearization points, which is not generic.

In this work, we expressed linearizability using a refinement relation. A fully auto-
matic model checking algorithm for linearizability verification is developed and built in
a practical tool PAT. Several case studies show that our approach is capable of verifying
practical algorithms and identifying bugs inX faulty implementations. Several future di-
rections are possible. Algorithms that accept an infinite number of threads or unbound
data structures make model checking impossible. Symmetric properties among threads
can reduce infinite number of threads to a small number. Shape analysis can also be
incorporated into the model checking to handle unbounded data size.
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Abstract. Programming errors found early are the cheapest. Tools ap-
plying to the early stage of code development exist but either they suffer
from false positives (“noise”) or they require strong user interaction. We
propose to avoid this deficiency by defining a new class of errors. A pro-
gram fragment is doomed if its execution will inevitably fail, in whatever
state it is started. We use a formal verification method to identify such er-
rors fully automatically and, most significantly, without producing noise.
We report on preliminary experiments with a prototype tool.

1 Introduction

Software engineers agree on that bugs found early are the cheapest. Tools apply-
ing to this stage of development, however, usually suffer from false positives or
require strong user interaction. Perhaps the only “cheap” bugs are those found
by the compiler. Fixing them is cheap since they are fixed by the programmer
as they appear. We note that no programmer would doubt the relevance of a
compiling error in a program fragment because this is an error regardless of the
intended use of the program fragment, i.e., there is no way it can be dismissed
(there is no “noise”).

In this paper, we propose the definition of a class of program errors that
can be detected as early (i.e., for a possibly isolated program fragment), as
automatically (i.e., by a tool, without user input and without user interaction)
and as precisely (no noise) as, e.g., a missing semicolon.

We define that a program fragment is doomed if an execution that reaches
it will inevitably fail, i.e., executing the program fragment will never lead to a
normal termination of the program.

We present a formal verification method (on top of an existing static checker)
to identify such errors fully automatically and, most significantly, without pro-
ducing noise. We report on a prototype implementation on top of Boogie
[20[4] that can be used in combination with Spec# or VCC [G] to either ana-
lyze C# or C programs. Preliminary experimental results indicate its practical
potential.
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Related Work. We first want to point out that the class of errors our approach
finds is subsumed by almost every bug detection tool and that most tools will
find even more real bugs. However, the increased error detection rate comes
at a price: these tools either produce a lot of noise or they require heavy user
interaction. For instance, a set of unit tests that executes every statement in the
program at least once will detect all errors related to doomed program points
but one has to write or generate the test cases.

Our work can best be compared to Findbugs [1], which tries to find a rea-
sonable amount of bugs using different control and dataflow analysis approaches
while having in mind that flooding the user with false positives would ruin ev-
erything. With Findbugs, we share the idea of searching for contradictions in the
dataflow. For this purpose, Findbugs uses a special pattern detection mechanism
which is very fast but can miss errors and produce false positives. We give an
experimental comparison of our approach and Findbugs in Section [7}

Other static analysis tools like e.g., Splint [9] are less comparable since they
focus on finding as many bugs as possible and therefore produce noise or require
special code annotations.

The results produced by our tool could be reproduced using full fledged auto-
matic verifiers such as BLAST [I2] by first trying to prove the program, collecting
all unverified assertions, negating them and rerunning the verification. If the ver-
ifier is able to prove such a negated assertion then, the corresponding statement
will fail under any circumstances. However, this would be a rather convoluted
and costly way to find doomed program points. Also, tools such as BLAST are
meant to be applied to the whole program, i.e., at a rather late stage of devel-
opment when the errors we are targeting have probably already been fixed.

From the algorithmic point of view, our approach is strongly related to ex-
tended static checkers such as ESC/Java [10] and modular program verifiers such
as Spec# [4[2]. While these tools issue warnings whenever they cannot prove
the absence of an error, as opposed to issuing warnings only for definite errors,
we share their approach of transforming the program and the idea of using pred-
icate transformers to obtain a representation that can be checked by a theorem
prover [T7]. These tools use special annotations such as invariants to prove cer-
tain properties. For the purpose of error detection, though, these annotations are
not required. As we show later on, the user can still provide such information in
order to increase the error detection rate.

Proving the existence of bad states, as done by Riimmer and Shah [21], differs
from our approach in that they prove the existence of inputs for which something
bad might happen while a doomed program point guarantees that nothing good
can happen when reaching it. Their approach will find more errors, but requires a
specification of the desired inputs or will otherwise be imprecise. Doomed points
are errors regardless of the desired program behavior.

There is also previous work on refinement and noise reduction techniques for
existing error detection and verification approaches. That work has the effect of
reducing false positives, but we instead take a new approach.
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2 Examples

In the following, we present a collection of examples that demonstrate what
kinds of errors our approach is able to find and, more importantly, what kinds
of vulnerabilities it does not report.

Ezxample 1. Our first example is given in Figure [l It demonstrates a trivial,
yet common error that can happen during development. In fact, the example is
inspired by an error that was found in an old version of Eclipse [I4].

If our algorithm identifies an error in a program, then it will report not just the
statement that crashes, but also the statements that actually lead to the crash.
This provides additional hints to the developer that help him to fix the error. If
we apply our algorithm to the example program, then it will report lines 5 and
6 as a guaranteed error. It reports line 6 because whenever the expression *ptr
is evaluated, this will cause a null pointer dereference. It further reports line 5
because if the else branch of the conditional is taken, ptr==0 has been evaluated
to true, which guarantees the error in line 6.

int access(int *ptr)

{

1 1 int getMin(int =xa, int x) {
2 2 int i, j, temp;

3 if (ptr) 3 for (i=x—-1; i >= 0; i—) {
4 xptr = 0; 4 for (j=1; j <= 1; j++) {
5 else 5 if (a[j—1] > a[j]) {

6 printf ("%d”, xptr); 6 temp = al[j—1];

7 7 alj—1] = a[j];

8 8 j
9

return 0; a[j] = temp;
} 9 }
10 }
11 }
12 return ali];
13}
Fig. 1. TRIVIAL Fig. 2. Loor

Ezample 2. Our second example is less trivial, yet contains a common error.
The function getMin in Figure ] returns the minimal element of an array. For
this purpose, it first sorts the array and then returns the first element. However,
there is a mistake in the loop bound of the for loop in line 3. The loop will
decrease the variable i until it has a negative value. This leads to an out-of-
bounds array access in line 12. Our algorithm detects that the out-of-bounds
access is inevitable. It reports lines 3 and 12 as what leads to the error. This is
the only warning emitted by our algorithm. Since there is no precondition saying
that array a is allocated and its size is given by x, any attempt to verify that the
procedure is safe without taking into account its calling context would generate
additional warnings of potential boundary errors.
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; /% Sorted tree x/ 12 void update(Entry root,
3 typedef voidx T; 13 int key, T dat) {
14 Entry x = root;
4 typedef struct .
15 while (x—>key != key) {
5 entry xEntry; .
16 if (key < x—>key)
6 struct entry
17 x = x—>left;
[ 18 else
8 Entry left ; 19 — x—>right :
9 Entry right ; X = XTorigat;
10 int key ; 20 }
Yo 21 x—>data = dat;
11 T data ; 22}
12 };

Fig. 3. COMPLEX

Example 3. Our last example demonstrates how the user of our tool benefits
from the fact that it detects guaranteed errors rather than arbitrary errors. The
program fragment in Figure[Blis taken from a library that implements a map data
structure using a sorted binary tree. The function update takes three parameters:
the root of the data structure, a key to an entry in the data structure, and a
data value. It then traverses the tree to find the entry for the given key and
updates the data value associated with this key. The function works correctly if
the calling context guarantees that there is already an entry for the given key
in the data structure. If this assumption is violated, the function crashes. Note
that there is no null pointer check that guards the dereference of variable x in
the while condition at line 16. The fact that there is an entry for the given key
guarantees that x is not null.

It is a real challenge for any bug finding tool to prove that line 15 does
not cause a null pointer dereference and, thus, not report this line as a potential
error. For extended static checking or a modular program verifier, the user needs
to specify the precondition saying that there exists an entry in the tree for
the given key. However, this is not sufficient to prove the absence of a null
pointer dereference. The user further needs to specify a data structure invariant
that expresses the fact that the tree is sorted. This information is required in
the loop invariant of the while loop. Even if all necessary specifications are
given, automatically proving that the loop invariant implies the absence of null
pointer dereferences is still tricky. Extended static checkers use theorem provers
to automate this task. The theorem prover needs to conclude from the sortedness
property and the existence of an entry for the given key that this entry is located
in the subtree that the while loop traverses into. Modern theorem provers still
require proof hints from the user to accomplish such proofs. All these tasks are
time consuming and require the expertise of a verification engineer.

If, on the other hand, one attempts to use abstraction based program analyses
to automatically infer the necessary preconditions, then only the use of a very
sophisticated shape analysis would leave any hope for success. However, such
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analyses are expensive and do not yet scale well to large programs. Using them
online while coding is unrealistic.

In contrast, our algorithm will not report any errors, simply because there
exist executions that never dereference any null pointers.

3 Doomed Program Points

We now formally define the new class of errors that we consider in this paper.

In order to abstract away from the details of a concrete programming lan-
guage, we only assume that a program defines a set of possibly infinite executions
(sequences of states).

We assume that executions are divided into two types: admissible executions
and inadmissible executions. An execution is inadmissible if it causes some un-
desirable behavior; in particular, it is inadmissible if it diverges or violates an
assertion. Syntactically, we only assume that a program comes with a finite set
of program points.

Each state in an execution belongs to a unique program point. We say that an
execution passes through a program point £ if one of its states belongs to £.

Definition 1. A program point ¢ is called doomed if all executions that pass
through £ are inadmissible.

In particular, a program containing a doomed program point has an inadmissible
execution, or no execution passes through it (i.e., it is part of dead code). Once a
doomed program point is reached in an execution, this execution is guaranteed
to fail. In this sense, doomed program points are the witnesses of guaranteed
erTorS.

We define the problem of error verification as the problem of identifying all
doomed program points in a given program. We say that an algorithm for this
problem is sound if, for any given program, it identifies only doomed program
points. We say that it is complete if it identifies all doomed program points.

4 Preliminaries

We define our algorithm with respect to a subset of the BOOGIE language [2I[18].
BOOGIE is an intermediate verification language designed for program analysis.
It provides a small set of control constructs that, yet, allows the encoding of
full-fledged programming languages such as C, C#, and Java (see, e.g., [2LBL6]).

The syntax of our simple language is defined in Figuredl A program consists of
a sequence of blocks. Each block consists of a unique program point, a sequential
statement, and a goto statement that connects the block with a non-empty set
of successor blocks. The atomic statements of our language are assignments,
non-deterministic assignments (havoc) of program variables, assert statements,
and assume statements. We do not specify the concrete syntax of expressions
that are used in these statements. In principle, they can be arbitrarily complex
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Program ::= Blockt
Block ::= PPId: Stmt; goto PPId"
Stmt ::= Varld := Ezpr | havoc Varld"
| assert Exzpr | assume Ezpr
| Stmt; Stmt

Fig. 4. Simple Language

logical formulae. Each block either has a transition to other blocks or goes to a
unique program point called Term which means that the program has terminated
normally.

A program state is a valuation of the program variables and a program counter
that evaluates to a program point id. A program gives rise to a set of executions.
An execution consists of a sequence of states describing the successive execution
of the program blocks starting from some block in the program. An execution
terminates normally if it reaches the block Term, it ends in an error if an assert
in some block evaluates to false, and it is infinite if the program does not termi-
nate. A sequence of states where an assume in a block evaluates to false models
an infeasible computation. The admissible executions are the feasible executions
that terminate normally.

If we translate a real program into our simple language, we can model arrays
and the program’s heap using function-valued program variables that map in-
dices or memory addresses to values. The concrete representation of the heap
depends on the semantics of the translated language. For example, one way to
model a Java-like language is to use a function-valued program variable per field
in a class; other possible memory models are discussed, e.g., in [6LI6I8T19]. For
brevity of exposition, our simple language does not support procedures (although
BOOGIE does).

5 Error Verification Algorithm

Outline. We now give the outline of our algorithm for error verification. It is
implemented by the procedure Exorcise given in Figure Bl Procedure Exorcise
takes a program as input and returns a set of doomed program points. The
procedure first transforms the input program P into a program P’ in loop-free
passive form. This means, that (1) program P’ has no cycle in the graph formed
by its blocks and goto statements and (2) blocks in P’ consist only of assume and
assert statements. The transformation is such that the set of doomed program
points in P’ is a subset of the set of doomed program points of P.

After the transformation, procedure Exorcise iterates over all program points
in program P’. For each program point £, it generates a logical formula
EVC(¢, P’). We call EVC(¢, P’) an error verification condition. The error veri-
fication condition is valid if and only if program point £ is doomed in P’. The
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proc Exorcise(P : program)
var Doomed : set of doomed program points
var P’ : program
var ¢ : formula

begin
P’ := Transform(P)
for each program point £ in P’ do
@ = EVC(, P')
if Valid(¢) then
add ¢ to Doomed
od
return Doomed
end

Fig. 5. Error verification algorithm

procedure then calls the subroutine Valid, which checks whether the error verifi-
cation condition is valid. We assume that Valid is a sound test for logical validity,
e.g., implemented by a theorem prover. If the error verification condition is valid,
then the program point ¢ is added to the set of doomed program points.

For exposition purposes, we will present simplified versions of subroutines
Transform and EVC, and argue that procedure Exorcise is sound. Afterwards, we
discuss improvements of these subroutines that are crucial for scalability of the
algorithm and increased error detection rate.

Program transformation. In the following, we describe a simple version of sub-
routine Transform that transforms a program into loop-free passive form [TTL[3].
Note that the transformation described below is by now standard and is used in
several extended static checkers and program verifiers (e.g.,, [L0J2]). We therefore
provide only a brief description. For a more detailed discussion, see [3].

The first step in Transform(P) is to transform program P into a loop-free
program. We now think of our program P as a control flow graph where each
block is a single node labeled with the program point associated with the block.
We assume that each cycle in the graph has a unique entry point, the loop header
(if not, one can first apply node splitting, see e.g., [15]). Edges from nodes inside
a cycle back to the loop header are called back edges. We assume without loss of
generality that a loop header is a block that consists of just one goto statement
that either goes to the first block of the loop body or skips the loop, jumping to
a block that we call the loop exit. The variables that are modified by a statement
in the loop are called loop targets. We can now over-approximate any number of
loop iterations as follows: first, wipe out all information about the loop targets
by inserting appropriate havoc statements on entry to the loop body; then,
replace each back edge of the loop with an edge to the loop exit. We can think
of this transformation as eliminating loops using trivial loop invariants. In fact,
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if the user or some preceding analysis provides loop invariants, they can be
incorporated into the transformation to increase precision (see [3]).

Once our program is loop free, procedure Transform(P) transforms it to passive
form. First, we apply a single assignment transformation [7] where auxiliary
variables are introduced to ensure that each program variable is assigned at
most once per execution path [T1]. The general idea is to replace each read of a
variable by the auxiliary variable that represents its value at that point in the
program, and to introduce a new auxiliary variable for every write. For example,
an assignment x := x + 1 may be transformed into xy1 := xx + 1, where k is
some sequence number (see [LIL[3] for details). Second, since no assignment of
an auxiliary variable is preceded by a use of that variable, we can replace each
assignment xj, := e by an assume statement assume(zy = e).

The following proposition states soundness of the transformation into loop-
free passive form.

Proposition 1. For any program P, the set of doomed program points of pro-
gram Transform(P) is a subset of the doomed program points of program P.

The proof relies on the fact that the program obtained from loop elimination
preserves all admissible executions of the original program. Furthermore, there is
a mapping from executions of the loop-free program to executions of the passive
program that preserves admissibility.

Error Verification Conditions. We now describe how we generate an error veri-
fication condition for a given program point in a loop-free passive program.

Recall that the weakest precondition wp.S.Q of a statement S with respect
to predicate ) describes the pre-states of S from which every execution of §
terminates normally in a state satisfying @ [8]. Thus, if the weakest precondition
wp.S.true is universally valid, then all executions of statement S are admissible.
Therefore, weakest preconditions are used for generating verification conditions
that prove program correctness.

We can use a similar approach to check for doomed program points. The
weakest liberal precondition of a statement S with respect to a predicate @
describes the pre-states of S from which every terminating execution of S ends in
Q [8]. Thus, wip.S.false is the set of all states such that any normally terminating
execution of S ends in a state satisfying false, which means that there are no
executions of S that terminate normally. Thus, weakest liberal preconditions
allow us to precisely characterize statements with guaranteed errors.

Proposition 2. Let S be a passive loop-free program. If wip.S.false is univer-
sally valid, then all executions of S are inadmissible.

The proof of Proposition [2] goes by structural induction over S using the predi-
cate transformer semantics of passive loop-free programs from [20] that is given
in Table [l Hereby, the statement S 0T stands for non-deterministic choice be-
tween statements S and T'. Since our program is in passive form, the statements
of the program do not affect the program state. The only effect of a passive
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Table 1. Semantics of predicate transformers

Stmt wp.Stmt.Q) wlp.Stmt.Q
assert £ EANQ EFE = Q
assume E F = Q EF = Q

S;T wp.S(wp.T.Q)  wip.S.(wlp.T.Q)
SAOT  wp.S.QANwp.T.Q wip.S.Q N wip. T.Q

statement is to choose whether the execution is admissible. As described in [I1],
this allows us to capture the semantics of a passive program in terms of so called
outcome predicates. Given a statement S, the predicate N.S denotes the pre-
states of S from which the execution of S may be admissible, while predicate
W.S denotes the pre-states from which the execution of S may be inadmissible.
The formal semantics of these two outcome predicates is given in Table[2l Using

Table 2. Semantics of outcome predicates

Stmt N.Stmt W.Stmt
assert F E K
assume F E false

S$;T N.SANT W.SV (N.SAWT)
SOT N.SVNT  W.SvVWT

these outcome predicates, it is shown in [I7] that weakest preconditions can be
characterized as

wp.S.Q =-~(WS)ANNS = Q) .
Similarly, we can characterize weakest liberal preconditions as follows.

Proposition 3. Let S be a program in passive form and @Q a predicate. Then
the following equivalence holds:

wlp.S.Q = (N.S = Q) .

The size of predicate N.S is linear in the size of statement S. We can, thus,
conclude that the size of the weakest liberal precondition wlp.S.false is also
linear in S. In contrast, the weakest precondition is worst-case quadratic.

For a program point £ in a loop-free passive program P we denote by st(¢, P)
the statement that corresponds to the subprogram following this program point.
The statement st(¢, P) can be computed from the control-flow structure of the
program as follows: given the block

{: S;gotoly,... 0,

for a program point ¢ in P, the corresponding statement st(¢, P) is defined
recursively as
st(¢, P) = S;(st(ty, P)O---Ost(ly, P)) .
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For the terminating program point Term, the statement st(Term, P) is the
empty statement. Since program P is loop-free, statement st(¢, P) is well-defined
for all program points.

We can now define the error verification condition EVC(¢, P) as follows:

EVC((, P) = wip.st({, P).false .

Hereby, wip.st(¢, P) is computed according to Proposition[Bl From Proposition 2]
we conclude that error verification condition generation is sound.

Proposition 4. Let P be a program in loop-free passive form and ¢ a program
point in P. Then, € is doomed if the error verification condition EVC(¢, P) is
valid.

Soundness. From Proposition[Iland [ we can now conclude the soundness of our
algorithm.

Theorem 1. Procedure Exorcise is a sound algorithm for the error verification
problem.

Avoiding exponential blow-up. The weakest liberal precondition for statement
st(¢, P) and a predicate () can be computed recursively as follows:

wlp.st(ly, P).Q
wip.st(¢, P).Q = wlp.S. | A ... (1)
A wip.st(y, P).Q

However, there is a crucial problem when one computes wlip.st(¢, P).false using
Equation [II If a program point ¢’ is reachable from ¢ then wip.st(¢', P).false
occurs as a subformula in wip.st(¢, P).false as many times as there are paths in
the control-flow graph from ¢ to #'. This can lead to an exponential blow-up in
the size of the resulting verification condition. We follow the idea of [3] and [I7]
and avoid this blow-up by defining Equation [l in the underlying logic. For this
purpose, we introduce auxiliary Boolean variables By for wip.st(¢, P).false and
build the formula

FBdef : /\ (Be = wlp.s.(Bgl VANEIERIVAN Ben)
lepP

A (BTerm = false)
Using this definition we redefine our EVC as follows.

EVC((, P) = Fpaey = —By.

6 Extended EVC Generation

Until now, our algorithm only detects errors that occur in every path that starts
in a program point /. Code that precedes the program point is not taken into



348 J. Hoenicke et al.

account when checking EVC(¢, P). An example is given in Figure[ll The program
point in line 3 is doomed, since the value of i is never a valid pointer at this
program point. To prove this, one needs to consider the assignment in line 1. It is
not enough to just consider every conditional block by itself. We detect program
points in conditional blocks by introducing a new variable R, that indicates that
the block B, was reached. The variable is initially false; an assignment that sets
the variable to true is added to the block and we change the post-condition from
false to Ry = false.

1 int xi = 0;
2 if (k != 0)
3 *i = 3;

Fig. 6. PATHPROG

We introduce all reachability variables at the same time but set only one
Ry to false in the precondition. Thus, we do the following transformation of
the program (before passifying the program). The Block ¢ : S;goto/y,..., ¢, is
transformed to

{: Ry :=true; S;gotoly, ..., 0,

and in the block T'erm we add the assertion

assert( /\ Ry)

tepP

We compute Fpgey for this annotated program as described in the previous
section.

We now redefine our EVC. To check if there is a doomed program point in
block By we check the validity of

EVC((, P) = =Ry A Fpaey = —Batart -

Proposition 5. Let P be a program in loop-free passive form and ¢ a program
point in P. Then, { is doomed if and only if the error verification condition
EVC(¢, P) is valid.

As for the weaker Propositiondl we can conclude from Proposition [l and [, that
our algorithm is sound.

Completeness. Our algorithm is not complete for unrestricted programs because

the error verification problem is in general undecidabld. However, if we start

from a loop-free program then the algorithm is complete under the assumption

that the generated verification conditions are expressible in some logical theory

for which validity checking is decidable.

1 An instance of the error verification problem is to decide whether a given program
never terminates.
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Faster Theorem Prover Interaction. Instead of checking validity of EVC, we check
the unsatisfiability of its negation

_‘RE A FBdef A Bstart .

Since the part Fpger A Bstart does not change, we can push it as axiom and
then just check unsatisfiability of =Ry for each Block By. This way the theorem
prover has to parse the main part of the verification condition only once and can
reuse lemmas that are derived from this formula.

7 Implementation and Experiments

We have built a prototype implementation of algorithm Exorcise on top of Boo-
gie [2] and applied it to a C# version of the Findbugs Null Pointer Microbench-
mark [I3] and the examples in Figures [ 2 and Bl For our prototype, we have
used heuristics for dealing with loops and function calls. We describe these
heuristics in the following.

Loops: In order to increase detection rate we unroll each loop body three times.
One unrolling for the first, the last, and an arbitrary iteration. For the arbitrary
iteration, we set all variables modified inside the loop body to havoc at the
beginning and at the end of the unrolled iteration. The back edges of the original
loop are replaced. For the first iteration, the back edges are changed to the first
block of the arbitrary and the last iteration. For the arbitrary iteration, the
back edge is changed to the last iteration. The last iteration will always leave
the loop. This simple unrolling allows us e.g., to find doomed program points
caused by iteration across array bounds as in Figure 2] as well as simple cases of
non-termination where an iterator is not iterated inside the loop body.

By unrolling the first and last iteration, we might have introduced unreachable
control flow (e.g., there is a condition in the loop body that is satisfied only in
the third iteration). We are not allowed to check these program points since
they might be false positives. Thus we only check the first block of the unrolled
iterations. Most guaranteed errors inside the loop body will propagate to this
point.

Function Calls: We handle functions calls by simple inlining. As for loops, we
have to be careful that we do not introduce additional control flow paths. Thus,
we check only the first block of an inlined function.

Obviously, inlining will not scale, since we still have to check all functions
separately. Therefore, we inline only up to a certain depth and use trivial con-
tracts for any further calls. So far, we have experienced that this is not as bad
as it would seem, since doomed program points tend to have a local scope, i.e.,
in practice there are only few guaranteed errors that involve multiple function
calls.
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Ezperiments: The results of our experiments are shown in Table Bl The result
columns show whether the respective tool detects an existing error (true posi-
tive), a non-existing error (false positive), misses an error (false negative), or does
not produce a warning on correct code (true negative). The benchmark contains
nine functions with one null pointer error and five without. Our algorithm is able
to detect all nine null pointer errors without producing false positives. Findbugs
misses three errors, but does not produce false positives either. Spec# misses true
positives and produces false positives if no further information is provided. More
benchmarks on the Findbugs Null Pointer Micro Benchmark can be found in [I3].

All benchmarks were executed several times on a 2.4 GHz machine with 2 GB
of RAM running Windows XP. Our approach is slower than Spec#. While Spec#
checks each function once, our tool has to check each block of a function sep-
arately in the worst case. We are working on optimizations concerning the size
and construction of the formula and the interaction with the theorem prover,
but for the worst case our algorithm will always be slower than Spec#.

Table 3. Comparison of Exorcise, Findbugs and Spec# on the Findbugs Null Pointer
Micro Benchmark and the example from Figures [Il @l and [l The columns list the
analyzed function, whether it contains a bug, the running time and result of Exorcise,
the result of Findbugs, and running time and result of Spec#. Results can either be
true positives if an error is found, true negatives if no error is reported on correct
programs, false positives if a non-existing error is reported, or false negatives if an
existing error is overlooked.

Exorcise Findbugs [13] Spec# [2]
program  incorrect? time (in ms)  result result time (in ms) result
fpl no 156 true neg true neg 39  true neg
tpl yes 171 true pos false neg 27  true pos
fp2 no 160 true neg true neg 35 true neg
tp2 yes 160 true pos false neg 27  true pos
fp3 no 175 true neg true neg 50  true neg
tp3 yes 187.5 true pos true pos 58.5  true pos
tp4 yes 109.2 true pos true pos 35 true pos
fp4 no 171 true neg true neg 43 true neg
tph yes 152 true pos true pos 15.5 true pos
tp6 yes 144 true pos true pos 31  true pos
itpl yes 109.2 true pos false neg 15.6 false neg
ifpl no 93.6 true neg true neg 46.8 true neg
itp2 yes 15.6 true pos true pos 0 false neg
itp3 yes 46.8 true pos true pos 15.6 false neg
TRIVIAL yes 179.5 true pos true pos 54.5  true pos
Loor yes 699 true pos false neg 129 true pos,

3 false pos
COMPLEX no 246 true neg true neg 43 2 false pos

Total Time 3.2s 4.53 s 0.67 s
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The times measured for Findbugs are not directly comparable to those for
our analysis, since Findbugs computes many pieces of additional information.
For larger programs, Findbugs should be faster than Spec# and Exorcise, but so
far we have not found a good benchmark that is available in both C# and Java.

The big bottleneck of this approach is that our algorithm has to check for
each block if it contains a doomed program point. Using the insight that a block
that has only one successor will be doomed if the successor is doomed, we can
reduce the number of checked blocks. Furthermore, using the optimization from
the previous section, we observe that the theorem prover, after checking the first
block, can reuse large parts of its work for the remaining blocks. Table [ shows
how much time our implementation spends on constructing the EVC, checking
the first block, and checking all further blocks. Looking at e.g., the function
Loopr, we observe that the time spent on checking all blocks but the first one is
less then checking the first block.

Table 4. Number of total blocks checked and the time (in ms) consumed for construct-
ing the EVC, checking the first block, and the average time for all further blocks

program # queries EVC construction (ms) 1st block (ms) avg ms/block

tpl 5 17 134 2
TRIVIAL 3 17 150 2
Loop 7 62 391 23
COMPLEX 5 18 166 5

8 Conclusion

The main contribution of this work is the idea of error verification and the
demonstration that this idea can be realized in practice. We have shown that
error verification can easily be integrated in extended static checkers or program
verifiers that provide the infrastructure for generating verification conditions and
automatic theorem provers to check them. We therefore believe that this idea can
now be adopted and extended by many others. We see a huge potential in this
work as this can be a formal method which is applicable by every programmer.
Using the fact that it can be built on top of e.g., Spec#, it also allows the
programmer to annotate his program using e.g., pre- and postconditions to see
if certain properties are always violated. This allows a smooth learning curve
towards the use of full program verification.

We see much room for further improvements of our method. For instance,
we want to optimize error verification by developing specialized techniques for
finding correct executions, so that error verification conditions are quickly rec-
ognized as invalid. Doomed program points are sparse; i.e., almost all generated
error verification conditions are not valid in practice (this is in contrast with the
usual verification conditions, for correctness). Every programmer’s experience
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confirms the intuition that it is easier to find a correct execution (for a program
fragment that has no guaranteed error) than to find an incorrect one (for a pro-
gram fragment that may lead to an error). This gives an interesting potential
for optimization.

Maybe the best reason to use our approach is that there is no argument
against it: our method is fully automatic and it remains invisible to the user as
long as no doomed program point is found. If a warning is emitted, then this is
a definite indication that the program is incorrect.
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Abstract. Bounding resource usage is important for a number of ar-
eas, notably real-time embedded systems and safety-critical systems. In
this paper, we present a fully automatic static type-based analysis for
inferring upper bounds on resource usage for programs involving general
algebraic datatypes and full recursion. Our method can easily be used
to bound any countable resource, without needing to revisit proofs. We
apply the analysis to the important metrics of worst-case execution time,
stack- and heap-space usage. Our results from several realistic embed-
ded control applications demonstrate good matches between our inferred
bounds and measured worst-case costs for heap and stack usage. For time
usage we infer good bounds for one application. Where we obtain less
tight bounds, this is due to the use of software floating-point libraries.

1 Introduction

Programs often produce undesirable “emissions”, such as littering the memory
with garbage. Our work is aimed at predicting limits on such emissions in advance
of execution. “Emissions” here refer to any quantifiable resource that is used by
the program. In this paper, we will focus on the key resources of worst-case
execution time, heap allocations, and stack usage. Predicting emissions limits is
clearly desirable in general, and can be vital in safety-critical, embedded systems.

Our method can be explained by analogy to an attempted countermeasure to
global warming: some governments are attempting to reduce industrial pollution
by issuing tradable carbon credits. The law then dictates that each CO2 emission
must be offset by expending an appropriate number of carbon credits. It follows
that the total amount of emissions is a priori bounded by the number of car-
bon credits that have been previously issued by the authorities. Following this
analogy, we will similarly issue credits for computer programs. The “emissions”
of each program operation must then be immediately justified by spending a
corresponding number of credits. The use of “carbon credits” for software anal-
ysis does, however, have several advantages over the political situation: i) we can
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prove that each and every emission that occurs is legitimate and that it has been
properly paid for by spending credits; ii) we have zero bureaucratic overhead,
since we use an efficient compile-time analysis, there need be no modifications
whatever to the original program, and we therefore do not change actual execu-
tion costs; and iii) we provide an automatic static analysis that, when successful,
provides a guaranteed upper bound on the number of credits that must be issued
initially to ensure that a program can run to completion, rather than using a
heuristic to determine the requirements. The amount of credits a program is
allowed to spend is specified as part of its type. This allows the absolute number
of credits to vary in relation to the actual input, as shown below.

Example: Tree Processing. Consider a tree-processing function mill, whose argu-
ment has been determined by our analysis to have type tree(Node(7) | Leaf(0.5)).
Given this type, we can determine that processing the first tree below requires
at most 23 = |23.5] creditd]: 7 credits per node and 0.5 credits for each leaf
reference; and that processing either of the other trees requires at most |15.5]
credits, regardless of aliasing.

z a a
+ v N ¥ N N
Yy x w b C C
v \ 4 N v N N4
v U t S d e e

In fact, the type given by our analysis allows us to easily determine an upper
bound on the cost of mill for any input tree. For example, for a tree of 27 nodes
and 75 leaves, we can compute the credit quota from the type as 7-274+0.5-75 =
226.5, without needing to consider the actual node or leaf values. The crucial
point is that while we are analysing mill, our analysis only needs to keep track
of this single number. Indeed, the entire dynamic state of the program at any
time during its execution could be abstracted into such a number, representing
the total unspent credits at that point in its execution. Because the number of
credits must always be non-negative, this then establishes an upper bound on
the total future execution costs (time or space, etc.) of the program. Note that
since this includes the cost incurred by all subsequent function calls, recursive or
otherwise, it follows that our analysis will also deal with outsourced emissions.

Nowel contributions made by this paper: We present a fully automatic compile-
time analysis for inferring upper bounds on generic program execution costs, in
the form of a new resource-aware type system. The underlying principle used
in our automatic analysis is a modified version of Tarjan’s amortised cost anal-
ysis [I7], as previously applied to heap allocation by Hofmann and Jost [I1].
We prove that the annotated type of terms describes its maximal resource re-
quirement with respect to a given operational semantics. Our analysis becomes
automatic by providing type inference for this system and solving any constraints
that are generated by using an external linear programming solver.

! Note while only whole credits may be spent, fractional credits can be accumulated.
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Moreover, we extend previous work:

a) by dealing with arbitrary (recursive) algebraic datatypes;

b) by providing a unified generic approach that presents a soundness proof that
holds for arbitrary cost metrics and for many different operational models;

¢) by applying the approach to real-world examples, notably worst-case execu-
tion time on the Renesas M32C/85U processor.

Section [2] introduces a simple functional language that exhibits our analysis.
We consider the soundness of our analysis in Section Bl discuss several example
programs in Section [ and cover related work in Section [l Section B concludes.

2 The Schopenhauer Notation

We illustrate our approach using a simple, strict, purely functional programming
language Schopenhauer (named after the German philosopher), which includes
recursive datatypes and full recursion, and which is intended as a simple core
language for richer notations, such as our own Hume language [9]. Schopenhauer
programs comprise a set of one or more (possibly mutually recursive) function
declarations. For simplicity, functions and datatypes are monomorphic (we are
currently investigating the extension to polymorphic definitions).

prog = wvaridy varsy = expry ; ... ; varid, vVars, = expr, n>1
vars == (waridy, , ... , wvarid, ) n >0
expr == const | varid | varid wvars | conid wvars

| case warid of conid wvars —-> expr; | expry

| let warid = expr; in expry
| LET warid = expr, IN expr,

The Schopenhauer syntax is fairly conventional, except that: i) we distinguish
variable and constructor identifiers; ii) pattern matches are not nested and only
allow two branches; iii) we have two forms of let-expression; and iv) function
calls are in let-normal form, i.e. arguments are always simple variables. The
latter restriction is purely for convenience, since it simplifies the construction of
our soundness proof in Section [ by removing some tedious redundancies. There
is no drawback to this since Schopenhauer features two kinds of let-expressions,
let and LET, the former appearing in source programs, and the latter introduced
as a result of internal translation. Both forms have identical semantics but they
may have differing operational costs, depending on the desired operational model
and on the translation into let-normal form. Since the ordinary let-expression
usually incurs some overhead for managing the created reference, it cannot be
used to transform expressions into let-normal form in a cost-preserving manner.

3 Schopenhauer Operational Semantics

Our operational semantics (Figure [I]) is fairly standard, using a program sig-
nature X to map function identifiers to their defining bodies. The interesting
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nez ¢ ¢ dom(3H) V(z)=14¢

q + KmkInt

vV, H q nvé,ﬂ{[ZH (int, n)] v, H

q' + KpushVar
’

q x~ b, H

X(fid) = (er;vn, ..o, ur; Cs )
q — Kcall(k) ,
yi=V(@), e V()] H gy kearr/ (k) e~ 6

VK g fid (w1, a) ~ 4K

c € Constrs £ ¢ dom(¥H) k>0  w= (constre,V(z1),...,V(xk))
q' + KCons(k)

vV, H 7 c(x1,...,xK) ~ L, H[ — w]

— KCaseT(k
H(K) = (e, K1y k) V[yr — Kayo ooy yn — K, H Z/+KCZS;T(/(I)€) e1~s £, H'
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q

— KCaseF(k
%(V(m)) 5& (c7 Kl? ] Kk) V’g{ Z'+](K(éasel:l;('(l)c) €2 ™~ E? 3’

V, H 9, case z of ¢ (Y1, yk) > e1lea ~ £, H'

q

q1 — KLet1 q2 — KLet2
V., H 4o e1~ 01,y V[z— ], H1 g frets €2~ Lo, Ho

3] .
V.H 4 letz =e1inez~ lo,Ho

Note that the rule for LET ... IN is identical to that for let ... in above, except in
replacing constants KLet1, KLet2 and KLet3 with KLET1, KLET2 and KLET3, respectively.

Fig. 1. Schopenhauer Operational Semantics

feature of our semantics is that it is instrumented by a (non-negative) resource
counter, which defines the cost of each operation. This counter is intended to
measure execution costs, with the execution being stuck if the counter becomes
negative. We will prove later that our analysis determines an upper bound on
the smallest starting value for this counter, and so prevents this from happening.

An environment, V, is a mapping from variables to locations, denoted by £. A
heap, H, is a partial map from locations to values w. H[¢ — w] denotes a heap
that maps ¢ to value w and otherwise acts as H. Values are simple tuples whose
first component is a flag that indicates the kind of the value, e.g. (bool,tt) for
the boolean constant true, (int,42) for the integer 42, etc. The judgement

V,H e~ O, H

then means that under the initial environment V and heap H, the expression
e evaluates to location ¢ (all values are boxed) and post-heap H’', provided
at least n units of the selected resource are available before the computation.
Furthermore, n’ units are available after the computation. Hence, for example,
vV, H i) e~ £, H' simply means that 3 resource units are sufficient for evaluat-
ing e, and that exactly one is unused after the computation. This one unit might,
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or might not, have been used temporarily. We will simply write V, H e ~ £, H’
if there exists n,n’ such that V, H Z/ e~ 0, H'.

Cost Parameters. The operational rules involve a number of constants which
serve as parameters for an arbitrary cost model. For example, the constant
KmkInt denotes the cost for an integer constant. If an integer occupies two heap
units, and we are interested in heap usage, we set this constant to two; if each
pointer occupies a single stack unit, and we are interested in stack usage, we set
this value to one; and so on. Some cost parameters are parametrised to allow
better precision to be obtained, e.g. for execution time, the cost of matching a
constructor may vary according to the number of arguments it has.

It is important to note that our soundness proof does not rely on any spe-
cific values for these constants. Any suitable values may be used according to
the required operational cost model. While it would be possible to expand the
cost parameters to vectors, in order to deal with several simultaneous metrics,
for example, this would require similar vector annotations in our type systems,
requiring a high notational overhead, without making a new contribution.

4 Schopenhauer Type Rules

The annotated types of Schopenhauer are given by the following grammar:
i — — — p ,
To=int| X | pX{ er(q, T) 1o Vewi(qn, Te) YT 7 T

where X is a type variable, ¢; € Constrs are constructor labels; p, p’, ¢; are either
non-negative rational constants or resource variables belonging to the infinite
set of resource variables CV ranging over Q7; and we write T for (Ty ... T,)
where n > 0. For convenience, we extend all operators pointwise when used in
conjunction with the vector notation i.e. Z - B stands for Vi.A; = B;. Let
¥, ¢, & range over sets of linear inequalities over resource variables. We write
1 = ¢ to denote that ¢ entails ¢, i.e. all valuations v: CV — Q% which satisfy
1 also satisfy all constraints in ¢. We write v = ¢ if the valuations satisfies
all constraints. We extend valuations to types and type contexts in the obvious
way. Valuations using non-negative real numbers are permissible, but rational
annotations are of most interest since they allow the use of in-place update, as
described in [IT].

Algebraic datatypes are defined as usual, except that the type carries a re-
source variable for each constructor. The type rules for Schopenhauer then gov-
ern how credits are associated with runtime values of an annotated type. The
number of credits associated with a runtime value w of type A is denoted by
@7 (w: A), formalised in Definition 2 in Section[Al Intuitively, it is the sum over
all constructor nodes reachable from w, where the weight of each constructor in
the sum is determined by the type A. As we have seen in the tree/mill example
in the introduction, a single constructor node may contribute many times to this
sum, possibly each time with a different weight, determined by the type of the
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reference used to access it. While this definition is paramount to our soundness
proof, any practical application only requires the computation of this number
for the initial memory configuration, for which it can always be easily computed.
It is easy to see, for example, that the number of credits associated with a list
of integers having the type pX.{Nil : (zp,())|Cons : (z,(int, X))} is simply
zo+n -z, where n is the length of the list. We naturally extend this definition to
environments and type contexts by summation over the domain of the context.

We can now formulate the type rules for Schopenhauer (which are standard
apart from the references to cost and resource variables). Let I" denote a typing
context mapping identifiers to annotated Schopenhauer types. The Schopen-
hauer typing judgement I" Z’ e: A | ¢ then reads “for all valuations v that
satisfy all constraints in ¢, the expression e has Schopenhauer type v(A) under
context v(I"); moreover evaluating e under environment V and heap 3 requires
at most v(q) + ®5.(V : I') credits and leaves at least v(q') + ®5.(V : I') credits
available afterwards”. The types thus bound resource usage and we will formalise
the above statement as our main theorem (Theorem [Il), which requires as a pre-
condition that the context, environment and heap are all mutually consistent.

A Schopenhauer program is a mapping X, called the signature of the program,
which maps function identifiers fid belonging to the set Var to a quadruple con-
sisting of: i) a term defining the function’s body; ii) an ordered list of argument
variables; iii) a type; and iv) a set of constraints involving the annotations of the
type. Since the signature X' is fixed for each program to be analysed, for sim-
plicity, we omit it from the premises of each type rule. A Schopenhauer program
is well-typed if and only if for each identifier fid

D(fid) = (efasy1,- - Yas (A1, ., Ad) 37 Ci0) =

p — Kcall(a
ylelv R ya:Aa p’ + Kcall’(a) Cfid * c | ¢

Basic Expressions. Primitive terms have fixed costs. Requiring all available cred-
its to be spent simplifies proofs, without imposing any restrictions, since a sub-
structural rule allows costs to be relaxed where required.

n ez

kIn (INT) SshVar (VAR)
g M niint |0 wA P A0

Function Call. The cost of function application is represented by the constants
Kcall(k) and Kcall’(k), which specify, respectively, the absolute costs of setting
up before the call and clearing up after the call. In addition, each argument may
carry further credits, depending on its type, to pay for the function’s execution.
For simplicity, we have prohibited zero-arity function calls.

Z(ﬁd):(eﬁd§y1w~7yk§<A17~~7Alc>§_’)C%w) kE>1
+ Kcall(k)
yiiAL U AR ke (o fid (1, Ly C | Y

(App)
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Algebraic Datatypes. The CONSTR rule plays a crucial role in our annotated
type system, since this is where available credits may be associated with a new
data structure. Credits cannot be used while they are associated with data.

¢ € Constrs C=puXA{ le:(p,(B1,....,Bp)| -}
k
T1:AL, . T A p+KC(;mS( ) ¢ (T1, ..., ¢y C | 0
The dual to the above rule is the CASE rule; the only point where credits as-
sociated with data can be released again. This is because this is the only point
where we know about the actual constructor that is referenced by a variable, i.e.
where we know whether a variable of a list type refers to a non-empty list, etc.

c€Constrs  Iyi:Bi[A/X],...,y:Bi[A/X] 3 e1:C |1y

A=pX{o--lei(p,(Br,. o, B -} LaAd ol ex:C oy
w_{p+QZQt+KcaSGT(k) q, = ¢ +KCaseT'(k) }
(

(CONSTR)

g = ¢y + KCaseF(k) q} = ¢’ +KCaseF'(k)
CASE)

Iz:A Z' case z of ¢ (y1,...Yk) > eilea: C | YUY Uty

Let-bindings. The two rules for let-expressions are the only ones that thread
credits sequentially through the sub-rules. As in the operational semantics rules,
the type rule for LET ... IN isidentical to that below, except in replacing KLet1,
KLet2, KLet3 with KLET1, KLET2, KLET3, respectively. Note that we use a comma
for the disjoint union of contexts throughout, hence duplicated uses of variables
must be introduced through the SHARE rule, described in the next paragraph.

q aq
I qi 611A1 ‘ ¢1 A,.I‘IAl QZ 622142 | ¢2

Yo={q =q—KLetl ¢ =¢) —KLet2 ¢ =g —KLet3 }

I A Z’ let x=e1iney : A | Yo Uth Uthg

(LET)

Substructural rules. We use explicit substructural type rules. Apart from
simplifying proofs, the SHARE rule makes multiple uses of a variable explicit.
Unlike in a strictly linear type system, variables can be used several times.
However, the types of all occurrences must “add up” in such a way that the
total credit associated with all occurrences is no larger than the credit initially
associated with the variable. It is the job of the SHARE rule to track multiple
occurrences, and it is the job of the Y-function to apportion credits.

LBy e:C|l¢ YFA<B I v e:D|¢ ¢vFD<:C
NaA o e:C|¢uy r o e:Clouy

(SUPERTYPE) (SUBTYPE)
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I g: e:A| Y
= YU > —p>d —p q/ .
=1 {qq_;mq p=>q p}(RELAX) r qqe.0|¢ (WaAK)
I' geAlo LA e C|é
IaAL,yAds Loe:C
CALYA2 g C ¢ (SHARE)

LzA yoelz/z,z/y]: C | ¢UY(A|A1, Az)

The ternary function Y(A|B,C') is only defined for structurally-identical type-
triples which differ in at most the names of resource variables. It returns a set
of constraints that enforce the property that each resource variable in A is equal
to the sum of its counterparts in B and C. The crucial property of this function
is expressed in Lemma [l For example,

A = pX A{Nil:(a,())| Cons:(d,(int, X))} B = uX.{Nil:(b,())|Cons:(e,(int, X))}
C = uX {Nil:(¢,())|Cons:(f,(int, X))} Y(A|B,C)={a=b+c,d=e+ [}

Subtyping. The type rules for subtyping depend on another inductively defined
relation £ A <: B between two types A and B, relative to constraint set £. For
any fixed constraint set £, the relation is both reflexive and transitive.

for all i holds & = {p; > ¢;} and £ - A; <: B;
£|_A<~A g}_,U’X'{' |C’L:(p’L7A_’L))| .}<'MX{.. |C,L'(q,“B—;)| ...}

/ / = ._) .
E={p<q.p>2q¢d} EFB<A EFC<:D
crALrc<BH D

The inference itself follows straightforwardly from these type rules. First, a stan-
dard typing derivation is constructed, and each type occurrence is annotated
with fresh resource variables. The standard typing derivation is then traversed
once to gather all the constraints. Since we found this easier to implement, sub-
structural rules have been amalgamated with the other typing rules. Because all
types have been annotated with fresh resource variables, subtyping is required
throughout. Subtyping simply generates the necessary inequalities between cor-
responding resource variables, and will always succeed, since it is only permitted
between types that differ at most in their resource annotations. Likewise, the
RELAX rule is applied at each step, using the minimal constraints shown in the
rule. (However, inequalities are turned into equalities using explicit slack vari-
ables, in order to minimise wasted credits.) The WEAK and SHARE rule are
applied based on the free variables of the subterms.

In the final step, the constraints that have been gathered are fed to an LP-
solver [2]. Any solution that is found is presented to the user in the form of an
annotated type and a human-readable closed cost formula. In practice, we have
found that these constraints can be easily solved by a standard LP-solver running
on a typical laptop or desktop computer, partly because of their structure [IT].
Since only a single pass over the program code is needed to construct these
constraints, this leads to a highly efficient analysis.
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5 Soundness of the Analysis

We now sketch the important steps for proving the main theorem. We first
formalise the notion of a “well-formed” machine state, which simply says that
for each variable, the type assigned by the typing context agrees with the actual
value found in the heap location assigned to that variable by the environment.
This is an essential invariant for our soundness proof.

Definition 1. A memory configuration consisting of heap H and stack V is
well-formed with respect to context I' and valuation v, written HE,V I, if and
only if HELV(x):I'(z) can be derived for all variables x € I.
H(¢) = (int,n) nez HE,0:A dJp.v<=dNopFHA<B
HELL:int HE,(:B
j‘f(ﬁ) = (COI"IStrC7€1, . ;gk) Vi € {].7 ey k} . HEL;:B;
HEL:uX - le: (¢, (B1,...,Bp))l -}

It is obvious that evaluation must maintain a well-formed memory configuration.

Lemma 1. If HE,V:I" and V,H t e~ £,H then also H'E,V:I.

We remark that one might wish to prove a stronger statement to the effect that
the result ¢ of the valuation is also well-formed given that the expression e was
typeable. Unfortunately such a statement cannot be proven on its own and must
necessarily be interwoven in Theorem [

We now formally define how credits are associated with runtime values, fol-
lowing our intuitive description from the previous section.

Definition 2. If HE, L : A holds, then ®5(¢:A) denotes the number of credits
associated with location € for type A in heap H under valuation v. This value is
always zero, except when A is a recursive datatype in which case il is recursively
defined by

Y (1:A) = v(q) + Z DY (¢;:B;[A) X))

when A = pX.A{---le(q, (B1y...,Bi)) | -+ } and H(L) = (constre, by, ..., 0).
We extend to contexts by ©5¢(V: I') = 3= caom(r) 5 (V(z):v(I'(x)))

Subsumption cannot increase the number of associated credits.

Lemma 2. If HE,(:A and ¢ B A<: B holds and v is a valuation satisfying ¢,
then @4 (¢:A) > ®5.(¢:B)

If a reference is duplicated, then the type of each duplicate must be a subtype
of the original type.

Lemma 3. If Y(A|B,C) = ¢ holds then also o - A<:B and ¢ - A<:C.

The number of credits attached to any value of a certain type is always linearly
shared between the two types introduced by sharing. In other words, the overall
amount of available credits does not increase by using SHARE.
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Lemma 4. If the judgements HF,£:A and Y(A|B,C) = ¢ hold and v satisfies
the constraint set ¢ then ®5.(0:A) = ®5(¢:B) + @5, (£:C). Moreover, for A= B
and A = C, it follows that ®5:(¢:A) = 0 also holds.

We can now formulate the main theorem (described intuitively in Section HI).

Theorem 1 (Soundness). Fiz a well-typed Schopenhauer program. Let r € QT
be fixed, but arbitrary. If the following statements hold

q
r , eAlog (5.1)
V,H e~ £, 3 (5.2)
v:CV — QF, satisfying ¢ (5.3)
HE,V (D) (5.4)

then for all m € N such that
m > v(q) + @5 (V:o(I)) +r (5.5)

there exists m’ € N satisfying
VH e~ 0, H (5.6)
m' > v(q') + 5 (C:v(A)) +r (5.7)
H'E l:v(A) (5.8)

The proof is by induction on the lengths of the derivations of (52) and (&1
ordered lexicographically, with the derivation of the evaluation taking priority
over the typing derivation. This is required since an induction on the length of
the typing derivation alone would fail for the case of function application, which
increases the length of the typing derivation. On the other hand, the length of the
derivation for the term evaluation never increases, but may remain unchanged
where the final step of the typing derivation was obtained by a substructural
rule. In these cases, the length of the typing derivation does decrease, allowing
an induction over lexicographically ordered lengths of both derivations.

The proof is complex, but unsurprising for most rules. The arbitrary value
r is required to “hide” excess credits when applying the induction hypothesis
for subexpressions, which leaves those credits untouched. We show one case to
provide some flavour of the overall proof:

~» CASE SUCCEED: By the induction hypothesis, we obtain for all mo > v(q;)+
D50 (k;i:Bi[A)X]) + ®5.(V:I") + r a suitable m{, > v(q;) + ®5,(¢:C) + r such
that e; evaluates under the annotated operational semantics with mg and
my. Observe that we have ®7(K:A) = v(p)+>_, P5(Ki:B;[A/X]) and v(p)+
v(q) = v(q) + KCaseT(k) and v(q;) = v(¢') + KCaseT'(k). Therefore m =
mo + KCaseT(k) > v(q) + v(p) + P4 (Ki:Bi[A/ X]) + 5 (V:I") +r = v(q) +
D5 (K:A)+P5.(V:I") +7 and m’ = m(, —KCaseT(k) > val(q') + @5 (£:C) +r
as required.
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Table 1. Table of Resource Constants for Stack, Heap and Time

Constant Stack Heap WCET? Constant Stack Heap WCET?
KCaseF (k) 0 o0 205

KnlkInt bz KCaseF'(k) 0 0 56+ RET
KpushVar 1 0 39
KLet1 1 0 142
Kcall(k) 4+ k 0 142 KLet2 0 o 0
Kcall'(k) — (4+k) 0 53+ RET KLets —1 0 3 1 Rer
KCons(k) 1—k 2+ Fk 107 + 54k
KLET1 0 0 0
KCaseT(k) k—1 0 301 + 80k
KCaseT (k) k0 65+RET KLET2 00 0
ase KLET3 0 0 0

Table 2. Measurement and Analysis Results for Tree-Flattening

N=1 N=2 N=3 N=4 N=5

Stack
Stack
Time

o
o]

[
jan

Stack
Time

o8
o]
o
jus

Stack
Time

o8
o]
o
=

Stack
Time

oY
o]
[
=

Time

o
3
[}
st
revApp
Analysis 14 252440 24 26 3596 34 274752 44 28 5908 54 29 7064
Measured 14 24 1762 24 24 2745 34 24 3725 44 24 4707 54 24 5687
Ratio 1 1.04 1.39 1 1.08 1.31 1 1.13 1.27 1 1.17 1.26 1 1.21 1.24

flatten
Analysis 17 24 3311 34 346189 51 44 9067 68 54 11945 85 64 14823

Measured 17 24 2484 34 33 4372 51 43 6260 68 43 8148 85 43 10036
Ratio 1 100 1.33 1 1.03 1.42 1 1.02 1.45 1 1.26 147 1 1.49 148

6 Example Cost Analysis Results

In this section, we compare the bounds inferred by our analysis with concrete
measurements for one operational model. Heap and stack results were obtained
by instrumenting the generated code. Time measurements were obtained from
unmodified code on a 32MHz Renesas M32C/85U embedded micro-controller
with 32kB RAM. The cost parameters used for this operational model are shown
in Table [l The time metrics were obtained by applying AbsInt GmbH’s aiT
