


Lecture Notes in Computer Science 5850
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Ana Cavalcanti Dennis Dams (Eds.)

FM 2009:
Formal Methods

Second World Congress
Eindhoven, The Netherlands, November 2-6, 2009
Proceedings

13



Volume Editors

Ana Cavalcanti
University of York
Department of Computer Science
Heslington
York Y010 5DD, UK
E-mail: ana.cavalcanti@cs.york.ac.uk

Dennis Dams
Bell Laboratories
600 Mountain Ave.
Murray Hill
NJ 07974, USA
E-mail: dennis@research.bell-labs.com

Library of Congress Control Number: 2009936485

CR Subject Classification (1998): D.2, F.3, D.3, D.1, J.1, K.6, F.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-05088-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-05088-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12778379 06/3180 5 4 3 2 1 0



 

Preface 

FM 2009, the 16th International Symposium on Formal Methods, marked the 10th anni-
versary of the First World Congress on Formal Methods that was held in 1999 in  
Toulouse, France. We wished to celebrate this by advertising and organizing FM 2009 
as the Second World Congress in the FM series, aiming to once again bring together the 
formal methods communities from all over the world. The statistics displayed in the 
table on the next page include the number of countries represented by the Programme 
Committee members, as well as of the authors of submitted and accepted papers. 

Novel this year was a special track on tools and industrial applications. Submis-
sions of papers on these topics were especially encouraged, but not given any special 
treatment. (It was just as hard to get a special track paper accepted as any other  
paper.) What we did promote, however, was a discussion of how originality, contribu-
tion, and soundness should be judged for these papers.  The following questions were 
used by our Programme Committee.  

• Does the tool provide a proof of concept, or solve an important problem? 
• Is there an interesting algorithm implemented in the tool? 
• Were new techniques used to implement the tool? 
• If it is an industrial application, does it clearly present the lessons learned in  

relation to the use of formal methods? 
• Is the tool available (not necessarily for free) to the community? 
• Are there (measured or significant) experiments that support the claims? 
• How does the tool scale to larger problems? 
• What is the (potential) impact of the tool or case study? 
• What is the complexity of the tool or application? 

We believe these questions can help future authors and reviewers of such papers. 
The authors of a selection of the papers included here will be invited to submit ex-

tended versions of their papers to special anniversary issues of two reputable journals: 
Formal Aspects of Computing and Formal Methods in System Design.  

An event of this scale is only possible when many put their energy and passion together. 
We have attempted to thank all those people. If you feel you should have been included but 
are not, rest assured that this is not intentional, and please accept our apologies. 

For the first time, a number of scientific events dedicated to Formal Methods and 
their application decided to co-locate under the heading of Formal Methods Week 
(FMweek). We hope that you enjoyed FM 2009, as well as several of the other events. 
Or, did you miss it? Maybe next time then! 

 
August 2009 Ana Cavalcanti  

Dennis Dams  
 
 
 
 
 
 
 



VI Preface 

Statistics 

number of PC members 83 
number of countries of PC members 46 
number of submissions 139 
number of countries of submissions’ authors 38 
number of reviews per paper** 4 
number of papers accepted* 45 
number of countries of accepted papers’ authors 23 
number of invited papers 5 

    *   There are 3 additional papers included from Industry Day 
    ** with a few exceptions in both directions 
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Automated Property Verification for Large Scale B Models . . . . . . . . . . . 708
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Formal Methods for Privacy

Michael Carl Tschantz and Jeannette M. Wing

Computer Science Department
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

mtschant@cs.cmu.edu, wing@cs.cmu.edu

Abstract. Privacy means something different to everyone. Against a
vast and rich canvas of diverse types of privacy rights and violations,
we argue technology’s dual role in privacy: new technologies raise new
threats to privacy rights and new technologies can help preserve pri-
vacy. Formal methods, as just one class of technology, can be applied to
privacy, but privacy raises new challenges, and thus new research oppor-
tunities, for the formal methods community.

1 Introduction

What is privacy? Today, the answer seems to be “It all depends on whom you
ask.” There are philosophical, legal, societal, and technical notions of privacy.
Cultures differ in their expectations regarding privacy. In some cultures, it is
impolite to ask someone’s age or someone’s salary. Governments differ in their
citizens’ rights to privacy; just witness the difference in privacy among the United
States, the European Union, and China. What an adult thinks as private differs
from what a teenager thinks, and vice versa [1].

New technologies give rise to new privacy concerns. Warren and Brandeis’s
1890 seminal paper, “The Right to Privacy,” was written after photographic
and printing technologies made it easier to share and spread images and text in
public [2]. Skipping ahead a century, with the explosion of the Internet, privacy
is finally getting serious attention by the scientific community. More and more
personal information about us is available online. It is by our choice that we give
our credit card numbers to on-line retailers for the convenience of on-line shop-
ping. Companies like Google, Yahoo, and Microsoft track our search queries to
personalize the ads we see alongside the response to a query. With cloud comput-
ing, we further entrust in third parties the storage and management of private
information in places unknown to us. We are making it easier for others to find
out about our personal habits, tastes, and history. In some cases it is deliberate.
The rise of social networks like Facebook, on-line community sites like Flickr,
and communication tools like Twitter raises new questions about privacy, as
people willingly give up some privacy to enhance social relationships or to share
information easily with friends. At the same time, cyberattacks have increased

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 1–15, 2009.
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2 M.C. Tschantz and J.M. Wing

in number and sophistication, making it more likely that unintentionally or not,
personal information will fall into the wrong hands.

The National Academies study Engaging Privacy and Information Technology
in a Digital Age [3] presents a compelling argument for the need for technology
and policy experts to work together in addressing privacy, especially as new
technology raises new privacy concerns. It is our responsibility as scientists and
engineers to understand what can or cannot be done from a technical point of
view on privacy: what is provably possible or impossible and what is practi-
cally possible or impossible. Otherwise, society may end up in a situation where
privacy regulations put into place are technically infeasible to meet.

In this paper, we start in Section 2 by painting a broad picture of the diverse
types of privacy. Against this canvas, we discuss the dual role of technology: how
new technologies pose new threats to privacy (Section 3) and how technologies
can help preserve privacy (Section 4). Finally, focusing on formal methods, as
a specific class of technology, we identify some opportunities and challenges in
using formal methods to protect privacy (Section 5).

2 Types of Privacy Rights and Violations

Philosophers justify the importance of privacy in different ways. Bloustein de-
fends privacy as necessary for human dignity [4]. Others focus on privacy’s role
in enabling intimate relations [5,6,7,8] or interpersonal relations in general [9].
Gavison views privacy as a means of controlling access to the person [10].

Given the numerous philosophical justifications, legal scholars, starting with
Prosser [11], have generally viewed privacy as a collection of related rights rather
than a single concept. Solove in 2006 provided a taxonomy of possible privacy
violations [12]. He collects these related violations into four groups: invasions,
information collection, information processing, and information dissemination.

Invasions represent interference in what is traditionally considered the private
sphere of life. Solove identifies two forms of invasions. The first involves physical
intrusions either upon private property (such as trespassing in the home) or
upon the body (such as blocking one’s passage). The second is decisional inter-
ference, which is interfering with personal decisions. For example, the Supreme
Court of the United States has used the right to privacy to justify limiting
the government’s ability to regulate contraceptives [13,14], abortion [15], and
sodomy [16] (cf. [17]). However, some view invasions as violations of other rights
such as property and security rights in the case of intrusions [18], or the rights
to autonomy and liberty in the case of decisional interference [19].

Solove’s remaining three groupings of privacy rights are more difficult to re-
duce to other rights. They all involve a data subject about whom a data holder
has information. The data holder may commit privacy violations in how he col-
lects the information, how he processes it, or how he disseminates it to others.

Information collection includes making observations through surveillance and
seeking information through interrogation. Information collection affects privacy
by making people uneasy in how the collected information could be used. Thus,
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it is a violation of privacy even if the collected information is never used. Fur-
thermore, interrogation can place people in the awkward position of having to
refuse to answer questions. Even in the absence of these violations per se, in-
formation collection should be controlled to prevent other violations of privacy
such as blackmail.

Even if information is collected in privacy-respecting ways, it can be pro-
cessed in ways that violate privacy. Such information processing violations have
the following forms. Aggregation is similar to surveillance in that it makes infor-
mation available, but aggregation does so by combining diffuse pieces of infor-
mation rather than collecting new information. Aggregation enables inferences
that would be unavailable otherwise. Identification, linking information with a
person by way of an identifier, also makes information more available and may
alter how a person is treated. Insecurity makes information more available to
those who should not be granted access such as identity thieves and can also lead
to distortion of data if false data is entered. Secondary uses make information
available for purposes for which it was not originally intended. Exclusion is the
inability of a data subject to know what records are kept, to view them, to know
how they are used, or to correct them. All these forms of information processing
create uncertainty on the part of the data subject. Exclusion directly causes this
uncertainty by keeping information about the information kept on the data sub-
ject secret. The other forms of information processing create this uncertainty by
making information available in new, possibly unanticipated ways. Even in the
absence of more material misuse of the information, such uncertainty can be a
harm in of itself as it forces the data subject to live in fear of how his information
may be used.

After information is processed, the data holder will typically disseminate it
to others for use. Some forms of information dissemination can violate privacy
by providing information to inappropriate entities. A breach of confidentiality
occurs when a trusted data holder provides information about a data subject.
An example would be a violation of patient-physician confidentiality. Disclo-
sure involves not a violation of trust as with confidentiality, but rather the
making of private information known outside the group of individuals who are
expected to know it. Exposure occurs when embarrassing but trivial information
is shared stripping the data subject of his dignity. Distortion is the presenta-
tion of false information about a person. Distortion harms not only the subject,
whose reputation is damaged, but also third parties who are no longer able to
accurately judge the subject’s character. Appropriation is related to distortion.
Appropriation associates a person with a cause or product that he did not agree
to endorse. Appropriation adversely affects the ability of the person to present
himself as he chooses. Increased accessibility occurs when a data holder makes
previously available information more easily acquirable. It is a threat to pri-
vacy as it makes possible uses of the information that were previously too ineffi-
cient, and furthermore, potentially encourage unintended secondary uses. Rather
than disseminating information, blackmail involves the threat of disseminating
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information unless some demand is met. It uses private information to create an
inappropriate power relation with no social benefits.

These types of violations exist independent of technologies. However, technol-
ogy plays a dual role in privacy. On the one hand, new technologies can create
new ways of infringing upon privacy rights. On the other hand, new technologies
can create new ways of preserving privacy.

3 Technology Raises New Privacy Concerns

Technological advances normally represent progress. The utility of these ad-
vances, however, must be balanced against any new privacy concerns they cre-
ate. This tension forces society to examine how a new technology could affect
privacy and how to mitigate any ill effects.

The courts often lead this examination. The first important U.S. law review
article on privacy, Warren and Brandeis’s “The Right to Privacy,” was written
in response to the ability of new cameras to take pictures quickly enough to
capture images of unwilling subjects [2]. The advent of wire tapping technol-
ogy led first to its acceptance [20] and then to its rejection [21] by the U.S.
Supreme Court as its understanding of the technology, people’s uses of phones,
and government’s obligations to privacy changed. Other new forms of surveil-
lance including aerial observation [22,23], tracking devices [24,25], hidden video
cameras [26], and thermal imaging [27] have all also been studied by courts in
the U.S.

New technology has driven governments to create new regulations. The rise of
large computer databases with new aggregation abilities led to the U.S. Federal
Trade Commission’s Fair Information Practice Principles requiring security and
limiting secondary uses and exclusion [28]. In France, the public outcry over a
proposal to create an aggregate government database, the System for Adminis-
trative Files Automation and the Registration of Individuals (SAFARI), forced
the government to create the National Data Processing and Liberties Commis-
sion (CNIL), an independent regulatory agency. The rise of electronic commerce
and the privacy concerns it created resulted in Canada’s Personal Information
Protection and Electronic Documents Act. Privacy concerns about electronic
health records lead to the Privacy Rule under the Health Insurance Portability
and Accountability Act (HIPPA) in the U.S. to mixed results [29]. Each of these
regulations is designed to allow new technologies to be used, but not in ways
that could violate privacy.

Society is still forming its response to some new technologies. For example,
data mining, one technique used for aggregation, has received a mixed reaction.
In the U.S., the Total Information Awareness data mining program was largely
shut down by Congress, only to be followed by the Analysis, Dissemination,
Visualization, Insight and Semantic Enhancement (ADVISE) system, also shut
down. However, rather then banning the practice, the Federal Agency Data
Mining Reporting Act of 2007 requires agencies to report on their uses of data
mining to Congress. Apparently, Congress has not come to a consensus on how
to limit data mining and is still studying the concern on a case by case basis.
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4 Technology Helps Preserve Privacy

Some of the new threats to privacy created by technology cannot efficiently
or effectively be addressed by government action alone. Further technological
advances can in some cases provide ways to mitigate these new threats.

In this section, we first give a quick tour through many different technical
approaches used to complement or to reinforce non-technical approaches to pre-
serving privacy (Section 4.1), and then focus in detail on two related classes of
privacy violations, disclosure and aggregation, which have garnered the most at-
tention recently from the computer science community (Section 4.2). We save till
Section 5 our discussion of the role that formal methods, as a class of technology,
can play in privacy.

4.1 A Diversity of Technical Approaches

While a government may legislate punishment for breaching the security of com-
puter systems storing private records, such punishments can at best only dis-
suade criminals; they do not prevent privacy violations in any absolute sense.
Cryptographic-based technologies with provably secure properties (e.g., one-time
pads that guarantee perfect secrecy) or systems that have been formally veri-
fied with respect to a given security property (e.g., secure operating systems
kernels [30,31,32]) can actually make some violations impossible. Likewise, iden-
tity theft laws might discourage the practice, but digital signatures can prevent
appropriation [33,34]. Even security technologies, such as intrusion detection
systems and spam filters, which may not have provably secure properties, are
indispensable in practice for mitigating attacks of intrusion.

In some cases, a data subject might not trust the government or third-party
data holders to prevent a violation. For example, political bosses or coercive
agents might attempt to learn for which candidate someone voted. In such cases,
voting schemes that inherently prevent the disclosure of this information, even
to election officials, would be more trustworthy; such schemes have been devel-
oped using cryptography (e.g., [35,36]) or paper methods inspired by cryptog-
raphy [37]. Political dissidents who wish to hide their online activities can use
onion routing, based on repeated encryption, for anonymous Internet use [38].
Privacy preserving data mining (e.g., [39]) offers the government a way of finding
suspicious activities without giving it access to private information [40,41]. Van-
ishing data guarantees data subjects that their private data stored in the “cloud”
be permanently unreadable at a specific time; this recent work by Geambasu et
al. [42] relies on public-key cryptography, Shamir’s secret sharing scheme, and
the natural churn of distributed hash tables in the Internet.

Mathematical formulations of different notions of privacy are also useful for
guiding the development of privacy preserving technologies and making it easier
to identify privacy violations. Halpern and O’Neill formalize privacy relevant
concepts such as secrecy and anonymity using logics of knowledge [43]. In re-
sponse to Gavison’s desire for “protection from being brought to the attention
of others” [10], Chawla et al. formalize a notion of an individual’s record being
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conspicuously different from the other records in a set [44]; they characterize
this notion in terms of high-dimensional spaces over the reals.

4.2 A Heightened Focus on Disclosure and Aggregation

As Solove notes, aggregation can violate privacy [12]. The form of aggregation
Solove describes is when the data holder combines data from multiple sources.
Another form of aggregation occurs when the data holder publishes a seemingly
harmless data set and an adversary combines this data set with others to find
out information that the data holder did not intend to be learned. In this case,
the adversary commits the violation of aggregation, but the data holder inad-
vertently commits the violation of disclosure. Thus, a responsible data holder
must ensure that any data he releases cannot be aggregated by others to learn
private information.

In the context of databases and anonymization, researchers have studied a
special case of the above attack, called linkage attacks. In its simplest form, a
collection of records, each about an individual, is anonymized by removing any
explicit identifiers, such as names or IP addresses. After a data holder releases
the anonymized database, an adversary compares it to another database that
is not anonymized but holds information about some of the same people in the
anonymized database. If one database holds a record r1 and the second database
holds a record r2 such that r1 and r2 agree on values of attributes tracked by
both databases, then the adversary can infer that the two records, r1 and r2,
refer to the same person with some probability. For example, suppose we know
a person, Leslie, is in two databases: one lists him as the only person who has
the zip code 15217 and who is male; the anonymized one contains only one
person who has the zip code 15217 and is male, and furthermore this person
has AIDS. We may conclude that Leslie has AIDS. This attack works despite
the first database listing no private information (presuming that one’s zip code
and gender are not private) and the second attempting to protect privacy by
anonymization.

In light of the 2006 release of AOL search data, attempts to anonymize search
query logs have shown they are prone to linkage and other attacks as well (e.g.,
see [45,46]). In the same year Netflix released an anonymized database of rented
movies for its Netflix Prize competition; Narayanan and Shmatikov showed how
to use a linkage-based attack to identify subscriber records in the database, and
thus discover people’s political preferences and other sensitive information [47].

A variety of attempts have been made to come up with anonymization ap-
proaches not subject to this weakness. One such approach, k-Anonymity, places
additional syntactic requirements on the anonymized database [48]. However,
for some databases, this approach failed to protect against slightly more com-
plicated versions of the linkage attack. While further work has ruled out some
of these attacks (e.g., [49,50,51]), no robust, compositional approach has been
found.

A different approach comes from the statistics community. Statistical disclo-
sure limitation attempts to preserve privacy despite releasing statistics. (For an



Formal Methods for Privacy 7

overview see [52].) Two methods in this line of work are based on releasing ta-
bles of data, where entries in the table are either frequencies (counts), e.g., the
number of respondents with the same combination of attributes, or magnitudes,
the aggregate of individual counts. A third method uses microdata, a sanitiza-
tion of individual responses. The public is most familiar with these statistical
approaches since they are the basis for publishing census data, performing med-
ical studies, and conducting consumer surveys. Surveyors collect information on
a large number of individuals and only release aggregations of responses. These
aggregations provide statistically significant results about the problem at hand
(e.g., the efficacy of a new pharmaceutical) while not including information that
an adversary may use to determine the responses of any of the individual re-
spondents.

A more semantic approach originates with Dalenius. He proposed the require-
ment that an adversary with the aggregate information learns nothing about any
of the data subjects that he could not have known without the aggregate infor-
mation [53]. Unfortunately, Dwork proves that if a data holder provides the exact
value of a “useful” aggregate (where “useful” is measured in terms of a utility
function), it is impossible for Dalenius’s requirement to hold [54]. Fortunately,
she with others showed that by adding noise to the value of the statistic, an ad-
versary could be kept from learning much information about any one individual,
leading to the formal definition of differential privacy [55]. This formal work on
differential privacy inspired practical applications such as the Privacy Integrated
Queries (PINQ) system, an API for querying SQL-like databases [56], and an
algorithm for releasing query click graphs [57].

Differential privacy is theoretical work, complete with formal definitions, the-
orems explaining its power, and provable guarantees for systems developed to
satisfy it [54]. While PINQ was developed with the specification of differential
privacy in mind, the development exemplifies “formal methods light” with no
attempt to verify formally that the resulting system satisfies the specification.
This line of work on differential privacy could benefit from formal methods that
enables such verification.

5 Opportunities and Challenges for Formal Methods

Formal methods can and should be applied to privacy; however, the nature of
privacy offers new challenges, and thus new research opportunities, for the formal
methods community.

We start in Section 5.1 with our traditional tools of the trade, and for each,
hint at some new problems privacy raises. We then point out in Section 5.2
privacy-specific needs, exposing new territory for the formal methods community
to explore.

5.1 Formal Methods Technology

All the machinery of the formal methods community can help us gain a more
rigorous understanding of privacy rights, threats, and violations. We can use for-
mal models, from state machines to process algebras to game theory, to model
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the behavior of the system and its threat environment. We can use formal logics
and formal languages to state different aspects of privacy, to state desired prop-
erties of these systems, to state privacy policies, to reason about when a model
satisfies a property or policy, and to detect inconsistencies between different pri-
vacy policies. Automated analyses and tools enable us to scale the applicability
of these foundational models and logics to realistic systems. Privacy does pose
new challenges, requiring possibly new models, logics, languages, analyses, and
tools.

Models
In formal methods, we traditionally model a system and its environment and
the interactions between the two. Many methods may simply make assumptions
about the environment in which the system operates, thus focusing primarily on
modeling the system. To model failures, for example, due to natural disasters or
unforeseen events, we usually can get away with abstracting from the different
classes of failures and model a single failure action (that could occur at any
state) or a single failure state.

Security already challenges this simplicity in modeling. We cannot make as-
sumptions about an adversary the way we might about hardware failures or
extreme events like hurricanes. On the other hand, it often suffices to include
the adversary as part of the system’s environment, and assume the worst case
(e.g., treating an adversary’s action as a Byzantine failure).

Privacy may require yet a new approach to or at least a new outlook on
modeling. Privacy involves three entities: the data holder (system), an adversary
(part of the environment), and the data subject. Consider this difference between
security and privacy: In security, the entity in control of the system also has an
inherent interest in its security. In privacy, the system is controlled by the data
holder, but it is the data subject that benefits from privacy. Formal methods
akin to proof-carrying code [58], which requires the data holder to provide an
easy-to-check certificate to the data subject, might be one way to address this
kind of difference.

Privacy requires modeling different relationships among the (minimally) three
entities. Complications arise because relationships do not necessarily enjoy sim-
ple algebraic properties and because relationships change over time. For example
if person X trusts Y and Y trusts Z that does not mean X trusts Z. X needs
to trust that Y will not pass on any information about X to Z. Moreover, if
X eventually breaks his trust relation with Y then X would like Y to forget
all the information Y had about X . This problem is similar to revoking access
rights in security except that instead of removing the right to access information
(knowledge about X), it is the information itself that is removed.

Logics
The success of many formal methods rests on decades of work on defining and
applying logics (e.g., temporal logics) for specifying and reasoning about system
behavior. Properties of interest, which drive the underlying logics needed to
express them, are often formulated as assertions over traces (e.g., sequences
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of states, sequences of state transitions, or sequences of alternating states and
transitions).

McLean, however, shows that a class of information-flow properties cannot be
expressed as trace properties [59]. In particular, non-interference, which charac-
terizes when no information flows from a high-level (e.g., top secret) subject to
a low-level (e.g., public) subject [60], cannot be expressed as a property over a
single trace. Non-interference formalizes the notion of keeping secure informa-
tion secret from an adversary. Since secrecy is often a starting point for thinking
about privacy, we will likely need new logics for specifying and reasoning about
such non-trace properties and other privacy properties more generally.

Formal Policy Languages
The privacy right of exclusion requires that data subjects know how their infor-
mation will be used. Thus, data holders must codify their practices into publicly
available privacy policies. While most of these policies are written in natural
language, some attempts have been made to express them in machine readable
formats. For example, EPAL is a language for expressing policies with the in-
tention of allowing automated enforcement [61]. Other policy languages such as
P3P [62], which has a formal notation, inform website visitors of the site’s pri-
vacy practices and enable automated methods for finding privacy-conscientious
sites [63]. These languages, however, lack formal semantics.

Barth et al. do provide a formal language for specifying notions expressed
in privacy policies such as HIPAA, the Children’s Online Privacy Protection
Act, and the Gramm-Leach-Bliley Act (about financial disclosures) [64]. Their
language uses traditional linear temporal logic and its semantics is based on
a formal model of contextual integrity, Nissenbaum’s philosophical theory of
information dissemination [65]. Much work remains in extending such formal
languages to handle more forms of privacy.

Abstraction and Refinement
Formal methods have been particularly successful at reasoning above the level of
code. That success, however, relies fundamentally on abstraction and/or refine-
ment. Commuting diagrams allow us to abstract from the code and do formal
reasoning at higher levels of description, but these diagrams rely on well-defined
abstraction functions or refinement relations. Similarly, methods that succes-
sively refine a high-level specification to a lower-level one, until executable code
is reached, rely on well-defined correctness-preserving transformations.

As discussed above, some privacy relevant properties, such as secrecy, are not
trace properties. Furthermore, while a specification may satisfy a secrecy prop-
erty, a refinement of the specification might not. Mantel [66], Jürjens [67], and
Alur et al. [68] define specialized forms of refinement that preserve such secrecy
properties. Similarly, Clarkson and Schneider [69] develop a theory of hyper-
properties (sets of properties), which can express information-flow properties,
and characterize a set of hyperproperties for which refinement is valid. These
works just begin to address aspects of privacy; attention to other aspects may
require new abstraction and/or refinement methods.
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Policy Composition
Given that different components of a system might be governed by different
policies or that one system might be governed by more than one policy, we
must also provide methods of compositional reasoning: Given two components,
A and B, and privacy policies, P1 and P2, if A satisfies P1 and B satisfies P2,
what does that say about the composition of A and B with respect to P1, P2,
and P1 ∧ P2? Privacy policies are likely in practice not to be compositional.
For example, the National Science Foundation has a privacy policy that says
reviewers of each grant proposal must remain anonymous to the grant proposers;
the National Institutes of Health has a different review policy where the names
of the study (review) group members are known to the grant proposers. For
NSF and NIH to have a joint program, therefore, some compromise between
the policies needs to be made, while still preserving “to some degree” the spirit
of both policies. This general challenge of composition already exists for other
properties such as serializability in databases, feature interaction in telephone
services, and noninterference in security. Privacy adds to this challenge.

Code-level Analysis
Formal methods, especially when combined with static analysis techniques, have
been successful at finding correctness bugs (e.g., [70]) and security vulnerabilities
(e.g., [71,72]) at the code level. What kind of code-level reasoning could we do
for privacy, either to prove that a privacy policy is preserved or to discover a
privacy violation?

Automated Tools
One of the advantages of formal methods is that formal specifications are
amenable to machine manipulation and machine analysis (e.g., finding bugs or
proving properties). Automation not just helps us catch human errors, but also
enables us to scale up pencil-and-paper techniques.

We need to explore the use of and extensions required for formal methods
tools, such as theorem provers and models checkers, for verifying privacy policies
or discovering privacy violations. While much foundational work in terms of
models, logics, and languages remain, none will become of practical import unless
our automated analysis tools scale to work for realistic systems.

5.2 Privacy-Specific Needs

Statistical/Quantitative Reasoning
The statistical nature of privacy raises a new challenge for formal methods.
For example, aggregating the weights of a large number of individuals into the
average weight is expected to make it difficult for an adversary to learn much
about any one of the individuals. Thus, this form of aggregation can protect the
private information (individual weights) while still providing a useful statistic
(the average weight). In security, information flow is viewed as black and white:
if a flow occurs from high to low, a violation has occurred. In privacy, a “small”
amount of flow may be acceptable since we are unlikely to learn a lot about the
weight of any one person from learning the average of many. While some work has
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been done on quantitative information flow (e.g., [73,74,75,76]), even the tools
developed from this work would consider the system as violating security (see [77]
for why and an approach that does not), and thus would be inappropriate for a
statistical notion of privacy.

More generally, formal methods may need to be extended to assure statistical
guarantees rather than our traditional black-and-white correctness guarantees. A
hybrid approach would be to combine traditional formal models with statistical
models or formal methods with statistical methods.

Trustworthy Computing: Conflicting Requirements
While trade-offs are hardly new to computer science, privacy raises a new set of
such trade-offs. Trustworthy computing requires balancing privacy with security,
reliability, and usability. It would be good to have a formal understanding of
the relationships among these properties. For example, we want auditability for
security, to determine the source of a security breach. However, auditability is
at odds with anonymity, a desired aspect of privacy. Thus, to what degree can
we provide auditability while providing some degree of anonymity? (This is not
suggest that security and privacy are opposites: security is necessary for privacy.)
To achieve reliability, especially availability, we often replicate data at different
locations; replicas increase the likelihood that an attacker can access private
data and make it harder for users to track and manage (e.g., delete) their data.
Trade-offs between privacy and usability are similar to those between security
and usability. We want to allow users to control how much of their information is
released to others, but we want to make it easy for them to specify this control,
and even more challenging, to understand the implications of what they specify
and to be able to change the specifications over time.

6 Summary

Privacy touches the philosophy, legal, political, social science, and technical com-
munities. Technical approaches to privacy must be part of the basis in creating
privacy laws and in designing privacy regulations. Laws and policies need to be
technically feasible to implement.

In this paper we focused on the dual role of technology in this vast privacy
space: new technologies cause us to revisit old laws or create new ones; at the
same time, advances in technology can help preserve privacy rights or mitigate
consequences of privacy violations.

Formal methods is a technology that can help by providing everything from
foundational formalizations of privacy to practical tools for checking for pri-
vacy violations. However, we have barely begun to use formal methods to study
privacy in depth; we hope the community is ready to rise to the challenge.
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Abstract. This position paper argues that the operational modelling approaches
from the formal methods community can be applied fruitfully within the systems
biology domain. The results can be complementary to the traditional mathemat-
ical descriptive modelling approaches used in systems biology. We discuss one
example: a recent Petri net analysis of C. elegans vulval development.

1 Systems Biology

Systems biology studies complex interactions in biological systems, with the aim to
understand better the entirety of processes that happen in such a system, as well as to
grasp the emergent properties of such a system as a whole. This can for instance be at
the level of metabolic or interaction networks, signal transduction, genetic regulatory
networks, multi-cellular development, or social behaviour of insects.

The last decade has seen a rapid and successful development in the collaboration
between biologists and computer scientists in the area of systems biology and bioin-
formatics. It has turned out that formal modelling and analysis techniques that have
been developed for distributed computer systems, are applicable to biological systems
as well. Namely, both kinds of systems have a lot in common. Biological systems are
built from separate components that communicate with each other and thus influence
each other’s behaviour. Notably, signal transduction within a cell consists of cascades
of biochemical reactions, by which for instance genes are activated or down-regulated.
The genes themselves produce the proteins that drive signal transduction, and cells can
be connected in a multicellular organism, making this basically one large, complex dis-
tributed system. Another, very different, example at the organism level is how ants in
one colony send stimuli to each other in the form of pheromones.

Biological systems are reactive systems, as they continuously interact with their en-
vironment. In November 2002, David Harel [11] put forward a grand challenge to com-
puter science, to build a fully animated model of a multi-cellular organism as a reactive
system; specifically, he suggested to build such a model of the C. elegans nematode
worm, which serves as a one of the model organisms in developmental biology.

Open questions in biology that could be addressed in such a modelling framework
include the following, listed in order from a detailed, molecular viewpoint to a more
global view of whole organisms:

– How complete is our knowledge of metabolic, signalling and regulatory processes
at a molecular level?
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– How is the interplay between different pathways or network modules organized and
regulated?

– How is the interaction between intra-cellular processes and inter/extra-cellular pro-
cesses organized?

– How do cells self-organize?
– How do cells differentiate?
– How are self-organization and differentiation of cells connected?
– How does self-organization and differentiation lead to the formation of complex

structures like organs (e.g. the eye, brain, kidney)?

One grand open question that pervades the whole of biological research is, how could
all of this evolve? This is exemplified by the title of the 1973 essay by Theodosius
Dobzhansky [4] that “Nothing in biology makes sense except in the light of evolution”.
Some recent theoretical work [5] highlights an interesting possibility, that flexibility in
regulation is a necessary component of evolution, but has itself been evolved in biolog-
ical systems.

2 Formal Models of Biological Systems

Why would a biologist want to use formal models? First of all, formal models can be
an excellent way to store and share knowledge on biological systems, and to reason
about such systems. Furthermore, in vivo experiments in the lab tend to take an awfully
long time, and are labour intensive. In comparison, in silico experiments (i.e. computer
experiments) can take relatively little time and effort. And for instance genetic perturba-
tions can be difficult (or unethical) to perform in the lab, while they may require trivial
adaptations of a formal model.

The time is ripe for exploiting the synergy between (systems) biology and formal
methods. First of all we have reached the point where biological knowledge of for in-
stance signal transduction has become so detailed, that enough information is available
to start building sensible formal models. Second, the development of analysis tech-
niques for formal methods, and the power of the underlying computer hardware, has
made it possible to apply formal methods to very complex systems. Although we are
certainly not (and possibly never will be) at a level where a full-fledged formal analysis
of the entire genetic regulatory network of one cell is within reach, we can definitely
already study interesting, and challenging, fragments of such networks.

It is important to realise that biology (like e.g. physics, chemistry, sociology, eco-
nomics) is an empirical science. This is basically orthogonal to the standard application
of formal methods in computer science, where a formal analysis is used to design and
prove properties of a computer system. If a desired property of a computer system turns
out to fail, then we can in principle adapt the system at hand. In contrast, biological
systems are simply (and quite literally) a fact of life, and formal models ‘only’ serve to
better understand the inner workings and emergent properties of such systems. So while
in computer science model validation typically leads to a redesign of the corresponding
computer system, in systems biology it leads to a redesign of the model itself, if in silico
experiments on the model do not correspond with in vivo experiments on the real-life
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biological system. A nice comparison between these two approaches can be found in
the introduction of [18].

Fisher and Henzinger [6] distinguish two kinds of models for biological systems:
operational versus denotational (or, as they phrase it, computational versus mathemati-
cal). On the one hand, operational models (such as Petri nets) are executable and mimic
biological processes. On the other hand, denotational models (such as differential equa-
tions) express mathematical relationships between quantities and how they change over
time. Denotational models are in general quantitative, and in systems biology tend to
require a lot of computation power to simulate, let alone to solve mathematically. Also
it is often practically impossible to obtain the precise quantitative information needed
for such models. Operational models are in general qualitative, and are thus at a higher
abstraction level and easier to analyse. Moreover, Fisher and Henzinger, as well as
Regev and Shapiro [17], make a convincing case that a good operational model may
explain the mechanisms behind a biological system in a more intuitive fashion than a
denotational model.

Metaphorically one can ask the question whether molecules in a cell, or cells them-
selves, solve differential equations to decide what to do in a particular situation, or
rather when they encounter one another follow simple sets of rules derived from their
physical interactions. In that respect, one may consider the continuous, mathematical
models as an approximation of the discrete molecular processes, rather than viewing
the qualitative model as a course-grained abstraction of a continuous reality.

An operational model progresses from state to state, where an event at a local compo-
nent gives rise to a state transition at the global system level. Fisher et al. [7] argue that
(unbounded) asynchrony does not mimic real-life biological behaviour properly. Typi-
cally, asynchrony allows that one component keeps on executing events, while another
component is frozen out, or executes only few events. While in real life, all components
are able to execute at a certain rate. Bounded asynchrony, a phrase coined by Fisher
et al. [7], lets components proceed in an asynchronous fashion, while making sure that
they all can proceed at their own rate. A good example of bounded asynchrony is the
maximally parallel execution semantics of Petri nets; we will return to this semantics in
Section 3.

We briefly mention the three modelling paradigms from the formal methods commu-
nity that are used most frequently for building operational models of biological systems.

Petri nets are well-suited for modelling biochemical networks such as genetic regula-
tory pathways. The places in a Petri net can represent genes, protein species and
complexes. Transitions represent reactions or transfer of a signal. Arcs represent
reaction substrates and products. Firing of a transition is execution of a reaction:
consuming substrates and creating products. Cell Illustrator [15] is an example of
a Petri net tool that targets biological mechanisms and pathways.

Process calculi, such as process algebra and the π-calculus, extended with probabili-
ties or stochastics, can be used to model the interaction between organisms. Early
ground-breaking work in this direction was done by Tofts [21] in the context of pro-
cess algebra, with regard to ant behaviour. The Bioambients calculus [16], which
is based on the π-calculus, targets various aspects of molecular localisation and
compartmentalization.
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Live sequence charts are an extension of the graphical specification language message
sequence charts; notably, they allow a distinction between mandatory and possible
behaviour. They have been used successfully by Harel and his co-workers to build
visual models of reactive biological systems, see e.g. [12].

Model checking is in principle an excellent methodology to verify interesting prop-
erties of specifications in any of these three formalisms. And as is well-known, ab-
straction techniques and distributed model checking (see e.g. [1]) can help to alleviate
the state explosion problem. However, in view of the very large scale and complex-
ity of biological systems, so far even these optimisation techniques cannot push model
checking applications in this area beyond toy examples. Simulations methods are com-
monly used to evaluate complex and high-dimensional models, and are applicable in
principle to both operational and denotational models. Well-known drawbacks, com-
pared to model checking, are that this approach can suffer from limited sampling due
to the high-dimensional state space, and that there may be corners of the state space
that have a biological relevance but that are very hard to reach with simulations. Still,
in spite of these drawbacks, for the moment Monte Carlo simulations are currently the
best method to analyse formal specifications of real-life biological systems.

In our view, for the successful application of formal methods in the systems biology
domain, it is expedient to use a simple modelling framework, and analysis techniques
that take relatively little computation power. This may at first sound paradoxical, but
simplicity in modelling and analysis methods will make it easier to master the enormous
complexity of real-life biological systems. Moreover, it will help to communicate with
biologists on the basis of formal models, and in the hopefully not too far future will
make it attractive for biologists to start using formal modelling tools.

3 A Petri Net Analysis of C. elegans Vulval Development

Petri nets representing regulatory and signalling networks We recall that a Petri net
is a bipartite directed graph consisting of two kinds of nodes: places that indicate the
local availability of resources, and transitions which are active components that can
change the state of the resources. Each place can hold one or more tokens. Weighted
arcs connect places and transitions. In [13] we explained a method to represent biolog-
ical knowledge as a Petri net. As explained before, places represent genes and protein
species, i.e., bound and unbound, active and inactive, or at different locations, while
transitions represent biological processes. Firing of a transition is execution of a pro-
cess, e.g. consuming substrates or creating products. The number of tokens in a place is
interpreted as follows. For genes as a boolean value, 0 means not present and 1 present.
For proteins, there are abstract concentration levels 0-6, going from not present, via low,
medium, and high concentration to saturated level. The rationale behind this approach
is to abstract away from unknown absolute molecule concentration levels, as we intend
to represent relative concentrations and rates. If desired, a modeller could fine-tune the
granularity of the model by adjusting the number of available concentration levels.

Biological systems are highly concurrent, as in cells all reactions can happen in par-
allel and most are independent of each other. Therefore, in [13] we advocate to use what
is called maximal parallelism [3]. A fully asynchronous approach would allow one part
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of the network to deploy prolonged activity, while another part of the network shows
no activity at all. In real life, all parts can progress at roughly the same rate. Maximal
parallelism promotes activity throughout the network. The maximal parallel execution
semantics can be summarised informally as execute greedily as many transitions as pos-
sible in one step. A maximally parallel step leaves no enabled transitions in the net, and,
in principle, should be developed in such a way that it corresponds to one time step in
the evolution of the biological system. This is possible because the modeller can cap-
ture relative rates and concentration levels using appropriate weights on arcs. Typically,
if in one time unit a protein A is produced four times more than a protein B, then the
transition that captures production of A should have a weight that is four times as large
as the weight of the one that captures B production.

In nature a cell tends to saturate with a product, and as a result the reaction slows
down or stops. To mimic this behaviour, each place in the Petri net has a predefined
maximum capacity of six. To guarantee that the highest concentration level can be at-
tained, we introduced bounded execution with overshooting. A transition can only fire if
each output place holds fewer than six tokens. Since each transition can possibly move
more than one token at once into its output places, each transition can overshoot the
pre-given capacity at most once.

C. elegans vulval development C. elegans is a round worm, about 1mm in length, living
in soil. In order to lay eggs, the C. elegans hermaphrodites grow an organ called vulva.
The complexity and universality of the biological mechanisms underlying the vulval de-
velopment (e.g. cell-cell interactions, cell differentiation, cross-talk between pathways,
gene regulation), and the intensive biological investigations undertaken during the last
20 years [19] make this process an extremely appealing case study [8,9,10,14,20]. In
particular, the considerable amount of descriptive biological knowledge about the pro-
cess joint with the lack of precise biochemical parameters, and the large number of
genetic perturbations tested in vivo, welcome the research of alternative modelling pro-
cedures. These approaches should be able to express the descriptive knowledge in a
formal way, abstract the processes enough to overcome the absence of fine-grained bio-
chemical parameters, and check the behaviour of the system with a sound methodology.

Recently we developed a Petri net model of the process that leads to the formation of
the vulva during C. elegans development [2], using the Petri net framework described
above. It comprises 600 nodes (places and transitions) and 1000 arcs. In this network
we could identify different modules. These correspond to different biological functions,
such as gene expression, protein activation, and protein degradation. It is possible to
reuse modules corresponding to a function, like small building blocks, to compose more
complex modules, and eventually build a full cell. The cell itself is a module that can
be reused, as can other modules like pathways or cascades.

To analyse the Petri net model, we applied Monte Carlo simulations. We simulated
64 different genetic perturbations. Twenty-two experiments previously selected in [9]
were used for model calibration. Thirty perturbations were used for validation: 26 from
[9], three from [19], and one from [22]. The remaining twelve simulations constitute
new predictions that invite further in vivo experiments.

This case study shows that the basic Petri net formalism can be used effectively to
mimic and comprehend complex biological processes.
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4 Conclusions

Transforming ‘data’ into ‘knowledge’ is a holy grail in Life Sciences. Sometimes we
have much data but relatively little descriptive knowledge, e.g. a whole genome se-
quenced and protein interaction data, but little information about the single genes and
their functions. At other times we have excellent descriptive knowledge about a biolog-
ical process but lack the biochemical details to simulate or explain accurately the phe-
nomenon. For instance, we may know the response of an organism to a certain stimulus
but we do not know which molecules are responsible, or we may know the molecules
but not all the biochemical parameters to reproduce the behaviour of the organism in
silico.

Reaching the sweet spot in between abstraction and biological significance is one
of the big challenges in applying formal methods to biology. On the one hand, a fine-
grained approach potentially gives more detailed predictions and a better approximation
of the observed behaviour, but it has to cope with a huge number of parameters that are
largely unknown and could not be effectively handled by, for instance, model checking
techniques. On the other hand, a coarse-grained approach developed at a higher level
of abstraction needs fewer detailed parameters and is computationally cheaper, but it
might have to be tailored to answering a single question, lowering the overall biological
significance of the model. Therefore, it is crucial to choose the appropriate abstraction
level and formalism in respect to the biological questions that the modeller wants to
address.

To pick up the right questions is a pivotal choice, and to understand their biologi-
cal significance is essential. In order to accomplish these two goals, it is necessary to
establish a clear and unambiguous communication channel between ‘biologists’ and
‘computer scientists’. Furthermore, it is necessary to expand the application of for-
mal methods beyond the manageable but only moderately interesting collection of the
toy examples. Although several different formal methods can achieve such objectives,
in our experience the intuitiveness of its graphical representation, tied with the strict
formal definition of Petri net, contributed greatly to establish a common ground for
‘biologists’ and ‘computer scientists’.
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Abstract. The problem addressed in this paper is the increasing time and cost 
of developing critical software. In particular the tried and trusted software de-
velopment processes for safety critical software are becoming untenable be-
cause of the costs involved. Model Based Development, in the general, offers a 
solution to reducing time and cost in software development. Unfortunately the 
requirement of independence of verification can negate any gains and indeed 
lead to more cost. The approach advocated in this paper is to employ the “guess 
and verify” paradigm in the context of automatic code generation to enable 
automated verification that is independent of the code generation. The approach 
is illustrated by the development of an automated verification capability for a 
commercial automatic code generator. A research topic on metadata for auto-
matic code generators is suggested.   

Keywords: Verification, Cost, Automation, Software, Models, Proof, Simulink. 

1   Introduction 

In Boehm and Basili’s paper on the top 10 list for software defect reduction [1] they 
state: 

 
“All other things being equal, it costs 50 percent more per source instruction to 
develop high-dependability software products than to develop low-dependability 
software products. ...” 
 

To understand why this is the case it is worth considering safety critical embedded 
systems. Such software systems go through rigorous verification processes before 
being put into service. Verification is a major source of cost in the development proc-
ess because of the importance placed on achieving independence from software de-
velopers. It is also the case that most designs are subject to frequent change during 
development, even up to flight trials. This greatly increases the cost of the develop-
ment as the complete system may need to be re-verified to the same level of rigour 
several times before release to service. 

1.1   Verification Costs and Complexity 

There is a clear trend towards greater complexity in software systems. This growing 
complexity in terms of size and distribution is making the cost of verification  
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(using current methods) grow in a non-linear fashion with respect to the cost of just 
writing the software. The non-linear relationship between writing software and verify-
ing it using current methods has severe implications for software projects and the risk 
of them being cancelled. Consider fig 1. below: 

 

Fig. 1. Assuming verification effort is non-linear with respect to a linear increase in complex-
ity, this figure illustrates how a small error in estimating the actual complexity of software 
would cause significant time and cost overruns in a project 

A small error in estimating the complexity of the software system leads to a dis-
proportionate increase in verification costs. For the kinds of capability demanded by 
the market, this means that small estimation errors can lead to a significant risk of 
project cancellation because of time and cost overruns. The cost implications mean 
that financial directors are playing an increasing role in software development policy. 
The currently favoured tool of the financial director to mitigate the risks of cost esca-
lation is that of off-shore development. 

Currently the typical way cost savings are achieved is to outsource software devel-
opment and its verification to countries with significantly cheaper labour costs.  
However, significant concerns with this strategy are emerging. The first concern is 
possible loss of Intellectual Property. Even if this is not the case there is the concern 
that potential competitors are being trained in developing key software systems. The 
logical next step would be to integrate these systems and move up the value chain, 
thus competing with the tier 1 or 2 system developers who originally outsourced the  
software development. In the United States there is also a particular concern about 
security with the threat of malicious code being inserted into outsourced software. 
Therefore if the major cost driver of verification can be solved then there would be 
adoption of a solution in key areas. 
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1.2   The Importance of Independence 

RTCA document DO-178B and EUROCAE document ED-12B, “Software Consid-
erations in Airborne Systems and Equipment Certification,” proposes verification 
independence as a means of achieving additional assurance for the quality and safety 
of software installed in airborne systems and equipment. Specifically, DO-178B/ED-
12B recommends verification independence. The desire for independence of verifica-
tion also occurs in other areas such as the nuclear industry. 

The reason independence is desirable is that it is a basic strategy for lowering the 
impact of human error. For example, to achieve a target of 10-6 it might be possible to 
disaggregate this using an independence argument into two targets of 10-2 and 10-4.  
The problem is that unless independence is “obvious” it can be difficult to demon-
strate it [2]. For example the notion of diverse software implementing the same func-
tionality does not stand up to scrutiny. However the use of diverse fault removing 
techniques has been found to be useful in detecting errors [3].  

The correctness by construction approach without independent verification means 
that the burden of demonstrating freedom from error can be too difficult to empiri-
cally demonstrate. Even the use of mathematical proof is not immune to this criticism 
since it is ultimately a human endeavour and therefore vulnerable to human error. For 
example the presence of errors in the implementation of proof tools is well known. 
The independence of one approach from another approach means that an error in one 
has to exactly mask an error in the other.  

There are still wrinkles that need to be ironed out, the main ones being that there 
might be a common misunderstanding of the semantics of the specification/model or 
of the target language. However even if independence of diverse approaches cannot 
be claimed, it may still be possible to make a conservative claim for the conditional 
probability of the failure of independence [4]. 

In summary there is a technical case for employing the “guess and verify” ap-
proach to software verification. The adoption of commercial automatic code genera-
tors means that the few times they do fail can be sufficiently mitigated by a diverse 
verification approach. This paper will also argue that the “guess and verify” approach 
can in general be made automatic through automatic code generators supplying meta-
data on the code generation itself. 

2   An Architecture for Independent Verification 

In fig. 2 a representation of the architecture used by QinetiQ is presented. Above the 
dotted line the independent development of the code occurs. Below the dotted line the 
independent verification consists of three tools: a Refinement Script Generator; a 
Refinement Checker; and a Theorem Prover. There is a fourth tool that automatically 
generates a formal specification based upon the formal semantics of the modelling 
language [5]; it is elided to concentrate on the most important parts. A particular in-
stance of the architecture is described in detail in [6]. The Refinement Checker and 
the Refinement Script Generator are described in more detail in subsections below.  

The Refinement Script Generator takes information from various sources to gener-
ate a refinement argument that may or may not be true. As the name implies the  
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Refinement Checker determines the validity of the refinement argument by generating 
verification conditions that are discharged using the Theorem Prover. The simplifica-
tion theory used by the Theorem Prover is specialised for the code language and the 
modelling language. By sufficiently constraining the code generated, the generation 
of the refinement argument and taking the structure of the formal specification into 
account then the simplification theory can in principle discharge all the verification 
conditions – assuming the refinement argument is correct.  

 

Fig. 2. An architecture for independent verification 

2.1   A Refinement Checker  

QinetiQ’s refinement checker developed in the early 1990s for Ada programs is called 
the DAZ tool [7]. The form of refinement supported by DAZ is loosely based upon 
Carroll Morgan’s refinement calculus [8]. Superficially it looks very much like Mor-
gan’s refinement calculus, but it is not a calculus and the executable code is a predict-
able subset of Ada. 

A formal refinement starts with a specification statement that has a frame for the 
variables that can change and uses the Z notation to express the precondition and post 
condition. The refinement statement can then be refined to source code via a series of 
refinement steps. Each refinement step results in verification conditions generated by 
DAZ to establish the validity of the refinement. 

A refinement checker, called QCZ, for a predictable subset of C is currently under 
development at QinetiQ. Analogous verification tools have been produced elsewhere, 
for example the Caduceus tool [9] and the verification tool for C0 developed by the 
Verisoft Project [10]. Both DAZ and QCZ take refinement conjectures and verify the 
correctness of the refinement within the guess and verify paradigm.  
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2.2   A Refinement Script Generator 

QinetiQ’s refinement checker takes a refinement conjecture as input. In general it 
takes considerable effort and some skill to produce a refinement argument. However 
the Simulink language has a limited number of ways of constructing a model and this 
constrains the form of the refinement. There are also many ways in which a refine-
ment might be constructed, for example large steps leading to fewer and more com-
plex verification conditions as opposed to smaller steps with consequently simpler but 
more verification conditions. 

If a canonical form of refinement is conformed with then this leads to a canonical 
set of verification conditions. The canonical verification conditions can in turn be 
simplified by a limited number of proof tactics. To get closer to such a canonical form 
a tool is required that links parts of the Simulink diagram with the corresponding parts 
of the Ada program subunit. The process is called witnessing and the tool that sup-
ports it is the Refinement Script Generator, RSG. The witnessing language processed 
by the tool identifies correspondences between wires (also known as signals) in the 
Simulink diagram and the values of Ada variables at specific points in the program 
unit.  

RSG ensures that witnessing is done by maintaining a wave front of wires in the 
Simulink diagram, prompting the user to supply a witness for any wire on the wave 
front. When a wire’s witness has been supplied the wave front advances along that 
wire. The witness script is complete when the wave front has crossed the entire  
diagram. 

A witness script for a typical 80 line program unit will be around 100 to 150 lines 
long. For manually developed code requiring manual witnessing this will take around 
2 to 3 hours to construct, but might require re-work if an error is made. Note an error 
in the witness script will result in a verification failure when the refinement check 
takes place. 

3   Metadata for Automated Code Generation 

Automatic code generators typically produce information that allows the code gener-
ated to be traced back to that part of the model it was generated from. In some in-
stances this informal textual relationship is formalized and used as an input to tools. 
For example one of the key enabling technologies of IBM’s Rational Rhapsody [11] 
product is that it provides direct model code associativity. In essence this means that a 
change in code brings a change in the model, and a change in the model changes the 
code. The existence of such technology means that the basis for generating a refine-
ment conjecture also exists. Such a refinement conjecture would enable verification 
by tools that were independent from the code generation. 

Unfortunately it is unlikely that commercial vendors would be willing to expose 
the details of their code generation technology. For example The Mathworks have 
moved from an open template based approach for code generation to the use of 
opaque code generation steps. However QinetiQ’s technology for generating refine-
ment conjectures from abstract witnessing information suggested that the traceability 
information, which is already exposed by commercial automatic code generators, 
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would be sufficient to generate a refinement conjecture. Further this refinement con-
jecture could be only one possible route for the development of the code, not neces-
sarily the actual code generation path. 

3.1   The B4S Automatic Code Generator 

The requirement for independence led QinetiQ to approach Applied Dynamics Inter-
national, ADI [12]. ADI develop and market a graphical design tool, code generator 
and automated tester. This graphical tool has been in use for over a decade, generating 
production quality safety critical application code for jet engine controllers. It was 
their code generator, called B4S, and its capability to take Simulink models as input 
that interested QinetiQ. 

ADI were also interested in QinetiQ’s technology to the extent that they quickly 
invested their own time and money in collaboration with QinetiQ. The purpose of the 
collaboration was to determine whether ADI could generate the witnessing informa-
tion for automatically generating a refinement conjecture. As discussed this was pre-
viously generated manually with tool support. 

The conjecture that traceability information, which is a customer requirement for 
automatic code generators, would be sufficient to generate witnessing information 
proved to be correct. Within weeks ADI were able to produce the required witness 
information as annotations in the generated code that could be processed by QinetiQ. 
The witnessing information is an example of metadata that provides sufficient infor-
mation for a refinement conjecture to be automatically generated and automatically 
verified – assuming the code generated actually does satisfy the original model. 

3.2   Harnessing the B4S Metadata 

The metadata is used within a tool based process that must be set up by a person 
through a user interface. The specification directory needs to be defined; this is where 
the formal specifications automatically generated from the Simulink model will be 
placed. Next the analysis directory, where the results of the verification will be put, 
needs to be defined. 

The results of the verification will be a record of all the verification conditions and 
their proof. If a verification condition is unproven then the simplified verification 
condition will also be placed there for examination within the ProofPower tool. In 
practice QinetiQ have found that unproven verification conditions contain sufficient 
information to diagnose an error in the automatically generated code. 

The next step is to define the directory where the automatically generated code will 
be placed by the B4S automatic code generator. The Simulink from which the formal 
specification will be independently generated must also be specified through the user 
interface. In particular the parts of the Simulink model that correspond to program 
units needs to be given. QinetiQ use this facility to set up the verification of manually 
developed code that is being analyzed for errors. For the B4S tool this information is 
automatically available because the automatic code generator selects those parts of the 
model specified in Simulink’s underlying .mdl file to generate the program unit. Fi-
nally which subprograms that require verification need to be defined; this is because 
changes to the Simulink model will not necessarily lead to re-generation of all the 
program units.  
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The next stage is to perform the verification. During this stage the metadata is used 
to define the formal relation between Simulink signals in the model and the variables 
in the code that implement those signals. The definition of the formal relation is done 
automatically because of the metadata. For manually developed code the metadata has 
to be generated by a tool that is manually driven. Although the tool is simple enough 
for undergraduates to use, it can be a tedious error prone activity that used to lead to 
verification failures that required re-work. 

At this point the verification can actually proceed and, depending upon the size of 
an individual program unit, the time can range from a few minutes (for tens of lines of 
code per unit) to hours (for hundreds of lines of code per unit). 

The verification stage is illustrated by an annotated snapshot of the user interface 
in fig. 3. 

 

Fig. 3. An annotated snapshot of the user interface for the verification stage 

3.3   A Research Challenge 

Much work already exists on formalising modelling languages such as UML. As 
already discussed there are a number of verification tools that can be used to check 
refinement conjectures. Commercially available automatic code generators are readily 
available for many modelling languages. The challenge is to bring these together to 
provide completely automated verification processes that are independent from these 
automatic code generators.  

The advantage of independent verification has been discussed, but it is worth re-
peating. The advantage of independent verification is essentially the clear diversity of 
software tools that means that lower levels of reliability need to be claimed in order to 
meet an overall reliability figure. In practice the actual level of reliability of, for ex-
ample, QinetiQ’s verification tools will be higher than required for, other reasons. 
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The requirement of a fully automated process is necessary for widespread adoption 
for commercial use. Without full automation the cost reductions will be insufficient 
for adoption except for the most expensive projects and there will be significant resis-
tance to doing something novel that requires manual input beyond current practices. 

The key to achieving full automation for a range of models and automatic code 
generators is the generation of the kind of metadata described in this paper. QinetiQ’s 
research has demonstrated that it is possible for a commercially available automatic 
code generator and the Simulink modelling language. The conjecture is that there is a 
family of languages, or even a single unified language, that defines a set of possible 
refinement conjectures that have to be true if automatically generated code correctly 
implements the model it was generated from. Clearly there will need to be constraints 
on the automated code generator, the target language and the modelling language. 
Part of the research will be to explore and trade-off these constraints to develop a 
theory that underpins a metadata language.  

One reason for believing that there is a general theory for such metadata is the ob-
servation that the target languages for commercially available automatic code genera-
tors share many of the same control flow and data representation concepts. The same 
seems to be true of many modelling languages, or at least those subsets of the model-
ling language that are used for automatic code generation. 

4   Conclusions 

It is widely accepted that the complexity of software is increasing and that the corre-
sponding verification costs are rising in a non-linear fashion. This is not sustainable 
meaning that there will have to be large trade-offs between cost, capability and integrity.  

High reliability or high consequence systems tend to require independence of veri-
fication. The approach advocated in this paper is to employ the “guess and verify” 
paradigm in the context of automatic code generation to enable automated verification 
that is independent of the code generation. The approach is illustrated by the devel-
opment of an automated verification capability for a commercial automatic code gen-
erator called B4S.  

A technical argument has been made that the diversity provided by the “guess and 
verify” approach leads to higher assurance of freedom from errors than just relying 
upon a single fault removal procedure. In addition to this argument there is a com-
mercial imperative to adopting a “guess and verify” approach that can be automated. 
This is that commercial automatic code generators will tend to change frequently in 
response to their market. The reason for this is that the adoption of modelling lan-
guages is driven by the capability to model systems, simulate them and analyse them.  

New capability tends to be added to modelling languages and tools in order to dif-
ferentiate them from the competition. This means that change in automatic code gen-
erators is inevitable and if they do not adapt to new modelling opportunities then they 
will be relegated to niche uses. QinetiQ’s experience is that a “guess and verify” 
framework can be readily adapted to evolution of the semantics of a modelling lan-
guage. Further the only aspect that requires requalification is the generation of the 
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formal specification since the rest of the tools are independent of the code generator. 
This independence also means that such an automated verification framework is only 
dependent on the metadata generated by an automatic code generator; therefore it 
could be used with any other automatic code generator that generated semantically 
equivalent metadata. 

QinetiQ’s experience of implementing an automated procedure for Simulink relies 
upon metadata generated from B4S and suggests that it could be generalised. The 
conjecture is that there is a family of languages, or even a single unified language, 
that defines a set of possible refinement conjectures that have to be true if automati-
cally generated code correctly implements the model it was generated from. If a the-
ory could be developed to underpin the semantic basis for such metadata then an open 
standard could be developed that could be adopted by commercial developers of 
automatic code generators. Offering such a capability would be a significant differ-
entiator from competitors.  

The paper started with a quote from Boehm and Basili, the full quote is: 
 

“All other things being equal, it costs 50 percent more per source instruction to de-
velop high-dependability software products than to develop low-dependability soft-
ware products. However, the investment is more than worth it if the project involves 
significant operations and maintenance costs.” 

 

Coupling automatic code generation with independent automated verification 
promises to reduce the cost of developing high-dependability software from 50% to 
15% more than that of low-dependability software. This could be achieved by, for 
example, stripping out unit testing and repeated re-work. Hence the old paradigm of 
“guess and verify” does have a future. 
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Abstract. Programming tools have expanded both in scope of the prob-
lems they solve, and in the kinds of techniques they use. Traditionally,
programming tools have focused on detecting errors in programs. Re-
cently, this scope has broadened to help with other programming tasks,
including inferring specifications, helping diagnose root cause of errors
during debugging, and managing knowledge in large projects. Also, tradi-
tionally programming tools have been based on either static or dynamic
program analysis. Modern programming tools combine static and dy-
namic program analysis together with techniques from other disciplines
such as statistical and probabilistic inference, and information retrieval.
This paper reports on some such tools built by the Rigorous Software
Engineering group at Microsoft Research India.

Large scale software development is an enormous engineering and scientific chal-
lenge. Over the past several decades several tools and techniques have been
proposed to aid programmers and testers in the complex tasks associated with
designing, implementing, testing and maintaining large software.

The “formal methods” community has been traditionally focusing on building
tools to automatically check if the program, or some abstraction or model of the
program satisfies a set of specifications. Such tools are classified as “program ver-
ification tools” or “static analysis tools”. Though program verification has been
the holy grail of the formal methods community, practical applications of veri-
fication run into major challenges. It is difficult to write detailed specifications,
and it is hard to scale verification algorithms to large software. In spite of these
difficulties, several tools have been successful in finding bugs and establishing
certain weak specifications of programs (see for example [2,7,6]). However, bug
finding is only one aspect of software development. Other software development
activities such as design, maintenance and debugging have received relatively
less attention from the formal methods community.

Traditionally, programming tools have been based either on static analysis
or dynamic analysis. Static analysis involves analyzing a program by inspecting
its text and reasoning about all possible behaviors without running the pro-
gram, and dynamic analysis involves running the program. We believe that by
combining static analysis and dynamic analysis together with techniques from
other disciplines such as probabilistic and statistical techniques, and information
retrieval techniques, we can solve a broader range of problems.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 33–40, 2009.
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In this paper we report on both these trends using three projects:

– Yogi, a tool for finding bugs and proving safety properties of programs, by
combining verification and testing,

– Merlin, a tool to infer security specifications of software by combining static
analysis with probabilistic inference,

– DebugAdvisor, a tool to find relevant information during debugging by
combining domain specific knowledge about programs with information
retrieval.

1 Combining Verification and Testing

Software validation is the task of determining if the software meets the expecta-
tions of its users. For the most part, industrial practice of software engineering
uses testing to validate software. That is, we execute the software using test
inputs that mimic how the user is expected to interact with the software, and
declare success if the outcomes of the executions satisfy our expectations. There
are various granularities in which testing is performed, ranging from unit testing
that tests small portions of the system, to system-wide tests.

Testing is incomplete in the sense that it validates the software only for the
test inputs that we execute. The software might exhibit undesired behavior with
test inputs we do not have. Verification has a more ambitious goal —to formally
prove that the software meets its expectations for all possible test inputs, and
for all possible executions.

Testing and verification have complementary strengths in solving this prob-
lem. Testing typically suffers from low coverage. Thus, even if a software has
been tested by a group of testers and found satisfactory as far as the desired
specification is considered, a customer might well exercise a behavior that vio-
lates the specification, and expose a bug that was not detected during testing.
However, every violation found using testing is a true error that can happen
on the field, and this is one of the biggest strengths of testing. Verification, on
the other hand, offers the promise of full behavioral coverage. Thus, when we
use a verification tool to establish that a program satisfies the specification, we
can be certain that the specification holds for all possible behaviors of the sys-
tem. However, if a verification tool says that the program does not satisfy the
specification, it might very well be due to the tool’s inability to carry out the
proof.

Suppose a specification is given to us, and we are interested in finding either
a test input that violates the specification, or prove that the specification is
satisfied for all inputs. For simplicity, let us consider assertional specifications
that are expressed as assert statements of the form assert(e), where e is a
predicate on the state of the program. Such a specification fails if an execution
reaches an assert statement assert(e) in a state S such that predicate e does
not hold in state S.

For the past few years, we have been investigating methods for combining
static analysis in the style of counter-example driven refinement à la Slam [3],
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with dynamic analysis in the style of concolic execution à la Dart [8]. Our first
attempt in this direction was the Synergy algorithm [10], which handled single
procedure programs with only integer variables. Then, we proposed Dash [4],
which had new ideas to handle pointer aliasing and procedure calls in programs.

The Dash algorithm simultaneously maintains a set of test runs and a region-
graph abstraction of the program. The region-graph is the usual existential ab-
straction used by tools based on predicate abstraction [3,11]. Tests are used to
find bugs and abstractions are used to prove their absence. During every itera-
tion, if a concrete test has managed to reach the error region, a bug has been
found. If no path in the abstract region graph exists from the initial region to the
error region, a proof of correctness has been found. If neither of the above two
cases are true, then we have an abstract counterexample, which is a sequence
of regions in the abstract region graph, along which a test can be potentially
driven to reveal a bug. The Dash algorithm crucially relies on the notion of a
frontier [10,4], which is the boundary between tested and untested regions along
an abstract counterexample that a concrete test has managed to reach. In ev-
ery iteration, the algorithm first attempts to extend the frontier using test case
generation techniques similar to Dart. If test case generation fails, then the
algorithm refines the abstract region graph so as to eliminate the abstract coun-
terexample. For doing refinement, the Dash algorithm uses a new refinement
operator WPα which is the usual weakest precondition operator parameterized
to handle only aliasing situations that arise in the tests that are executed [4].

The Dash algorithm is related to the Lee-Yannakakis algorithm [14], with
the main difference being that the Lee-Yannakakis algorithm computes bisimu-
lations, whereas the Dash algorithm computes simulations, which are coarser.
See [10] for a more detailed comparison with the Lee-Yannakakis algorithm.

Most program analyses scale to large programs by building so called “sum-
maries” at procedure boundaries. Summaries memoize analysis findings at proce-
dure boundaries, and enable reusing these findings at other appropriate calling
contexts of a procedure. Recently, we have proposed a new algorithm, called
Smash, to combine so-called “may-summaries” used in verification tools like
Slam with so-called “must-summaries” used in testing tools like Dart [9].

A may-summary of a procedure is used to denote the absence of paths in
the state space of the procedure, and a must-summary is used to denote pres-
ence of paths in the state space of the procedure. One of the most interesting
aspects of the Smash algorithm is the interplay between may-summaries and
must-summaries. Suppose we want to ask if a path exists (that is, does a must-
summary exist that shows the presence of such a path) between a set of states A
that are input states to a procedure P1, to a set of output states B of procedure
P1. Procedure P1 could have several paths, and suppose one of these paths calls
procedure P2. Suppose there is a may-summary of P2 that can be used to prove
the absence of paths from set A to set B, then this information can be used to
prune the search to avoid exploring the path that calls procedure P2 (including
all the paths inside the body of P2 and its transitive callees) and explore other
paths in P1 to build the desired must-summary. Dually, suppose we want to ask
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if no path exists (that is, does a may-summary exist that shows the absence of
such a path) between a set of states C that are input states to a procedure P1,
to a set of output states D of procedure P1. Again, procedure P1 could have
several paths, and suppose one of these paths calls procedure P2. The presence
of certain kinds of must-summaries in P2 can be used to avoid potentially ex-
pensive may analysis of procedure P2 and still build the desired may-summary
for P1. More details can be found in [9], where we also quantify the amount of
interplay between may-summaries and must-summaries empirically by running
the tool over a large number of programs.

All of the above ideas have been implemented in a tool called Yogi, and
empirical results from running and using the tool have been very promising [17].

2 Inferring Specifications Using Statistics

One of the difficulties with writing specifications is that they are very detailed —
sometimes as detailed as the code itself. It would be useful if general guidelines
could be given by the user at a high level, and tools would automatically infer
detailed specifications from these guidelines.

As an example, consider the problem of detecting information flow vulnera-
bilities in programs. Here, certain data elements in the software (such as ones
entered by the user, or passed from some untrusted program) are deemed to
be “tainted”, and the software is required to inspect the data and “sanitize” it
before using it in a trusted context such as a database query. A formal specifi-
cation of information flow security consists of classifying methods in a program
into (a)sources: these nodes originate taint or lack of trust, (b)sinks: these nodes
have the property that it is erroneous to pass tainted data to them, (c)sanitizers:
these nodes cleanse or untaint the input (even if input is tainted, output is not
tainted), (d)regular nodes: these nodes simply propagate taint information from
inputs to outputs without any modification. In this setting an information flow
vulnerability is a path from a source to a sink that is not sanitized.

Since typical applications have tens of thousands of methods, it takes intensive
(and error-prone) manual effort to give a detailed specification that classifies each
method into a source, sanitizer, sink or regular node. Consider a data propagation
graph of the program, whose nodes are methods and whose edges indicate flow
of information. That is, an edge exists from node (method) m1 to node (method)
m2 iff data flows from m1 to m2 either using an argument or return value of a
procedure call, or using global variables.

We do not know which nodes in the propagation graph are sources, sinks or
sanitizers. We propose to use Bayesian inference to determine this. We associate
a random variable with each node in the propagation graph, where each such
random variable can take one of four values— source, sink, sanitizer or regular
node. If such random variables are chosen from independent probability dis-
tributions (for instance, a binomial distribution for each random variable), the
outcome of such an experiment is unlikely to be useful, since we are ignoring the
structure of the program and our intuitions about likely specifications. However,
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we have a lot of information about the desired outcome of such an experiment.
These beliefs can be used to constrain the probability distributions of each of
the random variables using Bayesian reasoning.

In particular, let us consider some beliefs about the desired outcome in our
example. It is reasonable to believe that errors are rare and that most paths in
propagation graphs are secure. That is, the probability that a path goes from
a source to a sink with no intervening sanitizer is very low. Also, it is unlikely
that a path between a source and a sink contains two or more sanitizers. If
information flows from method m1 to m2, then m1 is more likely to be a source
than m2, and m2 is more likely to be a sink than m1.

All the above beliefs are not absolute. If we were to treat them as boolean
constraints which all need to be satisfied, they could even be mutually con-
tradictory. Thus, we represent all these beliefs as probabilistic constraints, and
desire to compute the marginal probability distributions associated with each
individual random variable. Computing marginal distributions näıvely does not
scale, since the näıve computation is exponential. However, if the joint prob-
ability distribution can be written as a product of factors, where each factor
is a distribution over a small number of random variables, there are very effi-
cient algorithms such as the sum-product algorithm [13] to compute the desired
marginal distributions.

We have built a tool called Merlin to automatically infer sources, sinks and
sanitizers using this approach. Merlin first builds a propagation graph of the
program using static analysis, and uses the above beliefs to build a factor graph
from the propagation graph. Probabilistic inference is then performed on the
factor graph, and thresholding over the computed marginal distributions is used
to compute the desired specifications. Our implementation of Merlin uses the
Infer.NET tool [16] to perform probabilistic inference.

We believe that this general recipe can be used to infer specifications in several
situations: model the specification associated with each component as a random
variable, model the beliefs we have about the outcome of the inference as a set
of probabilistic constraints, perform probabilistic inference to obtain marginal
probabilities for each of the random variables, and perform thresholding on the
marginals to obtain the specifications.

3 Finding Related Information during Debugging

In large software development projects, when a programmer is assigned a bug
to fix, she typically spends a lot of time searching (in an ad-hoc manner) for
instances from the past where similar bugs have been debugged, analyzed and
resolved. We have built a tool called DebugAdvisor [1] to automate this search
process. We first describe the major challenges associated with this problem, and
then our approach.

The first challenge involves understanding what constitutes a search query. In
principle, we would like to leverage all of the context the user has on the current
problem, including the state of the machine being debugged, information in the
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current bug report, information obtained from the user’s interaction with the
debugger, etc. This context contains several objects such as call stacks, image
names, semaphores, mutexes, memory dumps, exceptions etc. Each of them have
their own domain specific notions of similarity to be used when two instances
of such objects are compared. The second challenge involves dealing with the
diversity of information sources that contain potentially useful information for
the user. These include past bug reports, logs of interactive debugger sessions,
information on related source code changes, and information about people in the
organization. These information sources are variegated, and the data is of varied
type —a mixture of structured and unstructured data.

We approach the first challenge (capturing the context of the user) by allowing
a fat query —a query which could be kilobytes of structured and unstructured
data containing all contextual information for the issue being debugged, includ-
ing natural language text, textual rendering of core dumps, debugger output
etc. DebugAdvisor allows users to search through all our software reposito-
ries (version control, bug database, logs of debugger sessions, etc) using a fat
query interface. The fat query interface is quite different when compared with
short query strings commonly used in information retrieval systems. Previously,
our users had to search through each data repository separately using several
queries, each of which was restricted to a short query string, and they had no au-
tomatic mechanism to combine these search results. DebugAdvisor’s fat query
interface allows users to query all these diverse data repositories with a single
query.

We approach the second challenge (diversity of information sources) by parti-
tioning the search problem into two phases. The first “search” phase takes a fat
query as input and returns a ranked list of bug descriptions that match the query.
These bug descriptions contain a mix of structured and unstructured data. The
second “link analysis” phase uses the output of the first phase to retrieve a set
of related recommendations such as people, source files and functions.

The key idea in the search phase is to uniformly represent both queries and
information sources as a collection of features, which are formalized as typed
documents. Typed documents have a recursive type structure with four type
constructors:(1) unordered bag of terms, (2) ordered list of terms, (3) weighted
terms, and (4) key-value pairs. Features with arbitrary structure are expressed
by combining these type constructors. Representing features as typed documents
leads to an important advantage —it separates the process of defining and ex-
tracting domain specific structure from the process of indexing and searching.
The former needs to be done by a domain expert, but the latter can be done
generically from the type structure.

The link analysis phase of DebugAdvisor retrieves recommendations about
people, source files, binaries, and source functions that are relevant to the cur-
rent query, by analyzing relationships between these entities. We are inspired by
link-analysis algorithms such as Page Rank [5] and HITS [12] to compute these
recommendations. Unlike the world-wide web, where explicit URL pointers be-
tween pages provide the link structure, there are no explicit links between these
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data sources. For fixed bugs, it is possible to discover the version control revision
that was made to fix the bug. We can then find out which lines of code were
changed to fix the bug, which functions and which binaries were changed, and
who made the change. The output of such an analysis is a relationship graph,
which relates elements in bug descriptions, source files, functions, binaries and
people. Starting with a “seed” set of bug descriptions from the search phase, the
link analysis phase performs probabilistic inference and retrieves a ranked list of
people, files, binaries and functions related to the seed set.

We have deployed DebugAdvisor to several hundred users internally within
Microsoft, and the feedback has been very positive [1].

4 Summary

Large scale software development is a difficult engineering endeavor. So far, for-
mal methods have been primarily associated with program verification, and bug
detection in programs or models. In this paper we have taken a broader view
of programming tools, used to aid various tasks performed during the software
development life cycle including specification inference and knowledge manage-
ment. We have also illustrated the power obtained by combining various analysis
techniques such as verification, testing, statistical and probabilistic inference,
and information retrieval. We believe that such hybrid tools that exploit syner-
gies between various techniques and solve a broad set of programming tasks will
become more widely used by programmers, testers and other stakeholders in the
software development life cycle.
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Abstract. Security and probability are both artefacts that we hope to
bring increasingly within the reach of refinement-based Formal Methods;
although we have worked on them separately, in the past, the goal has
always been to bring them together.

In this report we describe our ongoing work in that direction: we relate
it to a well known problem in security, Chaum’s Dining Cryptographers,
where the various criteria of correctness that might apply to it expose
precisely the issues we have found to be significant in our efforts to deal
with security, probability and abstraction all at once.

Taking our conviction into this unfamiliar and demanding territory,
that abstraction and refinement are the key tools of software develop-
ment, has turned out to be an exciting challenge.

1 Introduction

When I took office, only high-energy physicists had ever heard of what is
called the World Wide Web. . . Now even my cat has its own page.

More than 10 years later, the internet is the playground of far stranger things
than White-House pets,1 and some estimates place its size upwards of tens of
billions of websites: everybody and every thing seems to be at it. There has
been a boom not only in science and business but also in private transactions,
so that where once decisions were based on “rules of thumb” and inter-personal
relationships, now we increasingly defer to automation — even when it is our
security and privacy that is at stake.

The movement towards “transactions at a distance” has spawned a huge num-
ber of ingenious algorithms and protocols to make computers do for us what we
used to do for ourselves, using “gut feeling” and the full repertoire of body lan-
guage and other out-of-band channels. The reliance on machines has blurred the
distinction between the real world –with all its uncertainties– and software, with
its inescapable reliance on an exact unforgiving model — one that its designers
hope has some connection to its environment and purpose. As users thus we
place an increasingly heavy burden on those designers: once they could assume
� We acknowledge the support of the Australian Research Council Grant DP0879529.
1 The quote is attributed to Bill Clinton in 1996 (but unconfirmed).
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absolute regularity; and now they must decide just what exactly can be assumed
in an uncertain world, and what guarantees can be given with any confidence
about the software they create.

The answer–we believe in Formal Methods– is to create rigorous models of
the phenomena with which the software must contend, as far as is possible. As
we do so, we are misunderstood by the wider Computer Science community
when they accuse us of believing that the real world can be captured entirely
in mathematics, or that the only way to write programs is to calculate them by
hand with a quill pen.

It is as if planning a household budget using decimals for dollars, and
a computer for calculation, were somehow evidence of one’s belief that
all of family life can be reduced to arithmetic. The truth –as everyone
knows– is that using arithmetic for what can be quantified leaves more
time to enjoy what can’t be.

Similarly, formalising and automating what can be captured in semantics, models
and calculi for computer applications leaves more time for concentrating on the
aspects that require intuition, common sense and good taste. Thus our aim is
always to expand our formalisations so that we can capture more.2

In this paper we concentrate on capturing more aspects of software systems for
which security is an issue and whose operational envorinment is only partially
predictable. Specifically, our goal is a mathematical model of probability, security
and modularity: they are –we will argue– closely linked phenomena, and (we do
not need to argue) they are all relevant to the design of computer systems and
the control and understanding of their behaviour and their applications.

Crucial to getting a grip on slippery concepts is to setting up a framework
within which one can pose precise questions and draw rigorous conclusions. If the
conclusions agree with our intuitions, or nearly so, then we proceed, elaborating
the framework; if not, we backtrack and try a different angle. Constructing a
framework requires, in turn, a repertoire of small, compelling examples that can
serve as targets for the construction.

Our compelling example is Chaum’s well known exemplary problem of the
Dining Cryptographers: we stretch it and twist it in order to illustrate the in-
tricacies that arise when we mix the above concepts. From there we discuss a
number of models which attempt to tame those intricacies, and finally we pose
some further intriguing lines of research.

2 Assailed on both sides, Formal Methods is sometimes thought to be trying to reinvent
or trivialise the long-established work of mathematicians. It’s not so. Nobody for
example worries about the correctness of Bubble Sort in principle; but because
source-level reasoning about array segments remains difficult for many people, every
day new and incorrect sorting programs are written by accident. . . and propagated:
that’s bad practice. Finding better ways to reason about array segments at the source
level would therefore be an improvement for everyone.
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2 The Cryptographers’ Café

In this section we introduce Chaum’s Dining Cryptographers protocol, and we
outline the point of view that will allow us to use it to explore refinement and
nondeterminism as well as the security and probability it already contains. Here
is the original abstract, which sketches the problem domain:

Keeping confidential who sends which messages, in a world where any
physical transmission can be traced to its origin, seems impossible. The
solution presented here is unconditionally or cryptographically secure,
depending on whether it is based on one-time-use keys or on public keys,
respectively. It can be adapted to address efficiently a wide variety of
practical considerations. [8]

Now we look at the solution, and see where it leads.

2.1 Chaum’s Solution: The Dining Cryptographers’ Protocol

Chaum’s protocol for anonymity is built around the following story:

Three cryptographers have finished their lunch, and ask the waiter for
their bill; the waiter says it’s already been paid. But by whom? The
cryptographers do the following to find out.
Each pair of cryptographers flips a fair coin privately between the two of
them, concealed from the third; then each announces whether she paid,
but lies if the two flipped coins she sees show different faces.
If the number of “I paid” utterances is odd, then indeed one of the cryp-
tographers paid; but only she knows which one that was (i.e. herself). If
the number is even, then the bill was paid by a fourth party.

(1)

Chaum gives a rigorous mathematical proof that, no matter what an individual
cryptographer observes, because the coins are fair (50%) the chance she can
guess which other cryptographer paid after the protocol (50%) is the same as it
was before (50%).

His proof does not refer to a specific program text, and so makes no use of any-
thing that could be called a program logic. Our contribution is not however to
increase the rigour of Chaum’s argument. It is rigorous already. Rather we want
to find a way of capturing that style of argument in a programming-language
context so that we can be more confident when we confront larger, more com-
plex examples of it in actual applications, and so that we have some chance of
automating it.

As a first step, we separate concerns by dealing with the hiding and the
probability separately. We name the cryptographers A, B and C; then
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Cryptographer A’s utterance does not reveal whether she paid, since
neither of the other two cryptographers B, C knows both of the coins
A consulted when deciding whether to lie or not: Cryptographer B sees
one but not the other; and Cryptographer C sees the other but not the
one. The same applies from Cryptographers’ B, C points of view.
Yet when the parity of the three utterances is calculated, each coin is
tallied twice and so cancels out. Thus the parity of “I paid” claims is
the same as the parity of “I paid” acts. That number of acts is either
zero or one (because the bill is paid at most once, no matter by whom)
— and so it is determined by the parity.

(2)

The attractiveness of this formulation is that it reduces the problem to Boolean
algebra, a domain much closer to programming logic. But it raises some intrigu-
ing questions, as we now see.

2.2 What Is the Relevance of the Fair Coins?

Given that the statement of the protocol (1) refers to “fair coins,” and our ver-
sion of the correctness argument (2) does not, it’s reasonable to ask where in our
framework the fairness should fit in. Clearly the coins’ bias has some bearing,
since in the extreme case –returning always heads, or always tails– the cryptog-
rapher’s utterances won’t be encrypted at all: with each coin’s outcome known
in advance, whether or not the coin can be seen, a cryptographer’s utterance
will reveal her act. In that case the protocol is clearly incorrect.

But what if the coins are biased only a little bit? At what point of bias does
the protocol become incorrect? If it’s correct only when the coins are exactly fair,
and incorrect otherwise, is the protocol therefore unimplementable? Or does it
become “increasingly incorrect” as the bias increases? After all, there are no
exactly fair coins in nature.

And worse — what about the case where the coins are extremely biased,
but no-one knows beforehand what that bias is? Furthermore, does it make a
difference if the bias is not fixed and is able to change with time?

2.3 The Café

The key to the questions of Sec. 2.2 –and our point of departure– is time in
the sense that it implies repeated trials. We elaborate the example of Sec. 2.1
by imagining that the cryptographers meet in the same café every day, and
that the protocol (1) is carried out on each occasion. Suppose that the waitress,
observing this, notes that Cryptographer A always says “I paid.”3 What does
she conclude?

3 More precisely, she serves a statistically significant number of lunches, say a whole
year’s worth, and Cryptographer A says “I paid” on all of them. This is discussed
further in Sec. 8.10.
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She concludes quite a lot. Given that the coins are independent of each other
(irrespective of whether they are fair), and that Cryptographer A follows the
protocol properly (whether she believes she paid is not influenced post hoc by the
coin-flips), the waitress concludes that Cryptographer A either pays every time,
or never pays. Moreover, she knows also that both of the coins Cryptographer A
sees are completely unfair. For this is the only way, given independence (and in
the absence of magic) that the utterance of A can be the same every time. Note
that the waitress does not learn whether A is a philanthropist or a miser; she
learns only that A is resolutely one or the other. Thus –in spite of (2)– without
an explicit appeal to fairness the protocol seems insecure.

Let’s push this example further, and examine its dependence on the coins’
bias when that bias is not extreme. For simplicity, we consider just one hidden
coin c and a secret h: the coin is flipped, and c=h is revealed. 4 What do we
learn about c and h if this is done repeatedly?

From now on, for uniformity, our coins show true and false (sometimes ab-
breviated T and F). Over many runs, there will be some proportion pc of c’s
being T; similarly there will have been some proportion ph of h’s being T. The
resulting proportion of c=h’s being true will then be

pt := pcph + (1−pc)(1−ph) , (3)

and arithmetic shows that pt is 1/2 just when one or both of p{c,h} is 1/2.
If pt is not 1/2, then it will be some distance away so that 2pt is 1+εt, say,

and for ε≥0 we could say that an ε-biased coin has a probability range of ε, the
interval [(1−ε)/2, (1+ε)/2], an interval which we abbreviate as just [ε]. Defining
εc, εh similarly, we can bring (3) into a much neater form, that

εt = εcεh . (4)

Then, since |ε{t,c,h}| ≤ 1, we can see immediately that |εt| ≤ |ε{c,h}|. That is,
the observed bias |εt| is a lower bound for the hidden biases |εc| and |εh|. Note
particularly that whatever |εt| we observe we can infer a no lesser bias |εh| in
the hidden h without knowing anything about the bias (or not) of the coin c.

That last sentence gives us a glimpse of the continuum we were looking for:
if there is no observed bias, i.e. εt is zero, then one of ε{c,h} must be zero also
and we learn nothing about the other one. On the other hand, if c=h always or
never, so that εt is one, then both ε{c,h} must be one as well.

Between the extremes of exactly fair (ε=0) and wholly nondeterministic (ε=1),
however, we have coins of varying quality. What can we conclude about those?

2.4 The Challenge

The series of examples and questions above are intended to reveal what we con-
sider to be important and significant challenges for any formal method operating
in the domain of probability, nondeterminism and security. In Sec. 8 to come we
4 This is an example of what elsewhere we call the Encryption Lemma.
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will return to the Café and say more about what outcomes we expect from a for-
mal analysis built on a model that is practical enough to use in the construction
of actual software. Between now and then, we (re-)visit the underlying themes
that have led us to this point.

3 Underlying Themes: A Trio of Features and Their
History

Program models and logics applicable to problems like those above will in-
clude demonic choice, probabilistic choice and hidden variables. Rather than
attempting to integrate these features at once we have approached the problem
in smaller, overlapping steps. A benefit is a thorough and incremental explo-
ration of the different modelling issues; another benefit is that some of the less
feature-rich models are adequate for modelling certain classes of problems, and
so it has been worthwhile to explore these models in their own right.

One of the first steps taken towards the integration of demonic choice, proba-
bilistic choice and hidden variables was to build a framework [41,59] combining
the first two of these three features. Another has been the development of the
Shadow Model [37,44,49,54,55,56] for programs with demonic choices and hidden
state (but not probability).

A third development, which we report in this paper, may be seen as a hy-
brid of the above two models in which the value of the hidden variables may
be unknown, but must vary according to a known distribution. This model,
the Quantum Model, does contain nondeterminism; but this nondeterminism is
“visible,” whereas uncertainty about the value of the hidden state can only be
probabilistic and not nondeterministic.

In the following sections we start by giving an overview of all of those frame-
works: the basic model, the Shadow Model and the Quantum Model. We conclude
with a discussion of the challenges posed by integrating the three and, on that
basis, we suggest another incremental way to move forward.

4 The Basics: Probability and Demonic Choice5

Demonic choice in sequential programming was conspicuously popularised by
Dijkstra [14]: it was perhaps the first elementary appearance of nondeterminism
at the source-code level, and was intended to express abstraction in the design
process.6 As its importance and relevance increased, it acquired an operator of
its own, so that nowadays we simply write this � that for pure demonic choice,
whereas Dijkstra would have written

if true → this
[] true → that
fi .

5 This section is very brief, given the availability of other literature
[6,7,17,21,23,24,25,26,27,29,39,40,41,42,21,45,46,47,48,52,53,58,59,64,65].

6 And it was often misunderstood to be advocating nondeterminism at run-time.
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A natural refinement of the qualitative unpredictable choice � is the quantita-
tively unpredictable choice p⊕, so that thisp⊕ that chooses this with probability
p and (therefore) that with probability 1−p. This replacement of � by p⊕ was
given a Dijkstra-like semantics by Kozen [34,35] and, later, put in a more general
setting by Jones [32,31].

Our own contribution was to treat both forms of nondeterminism –demonic
and probabilistic– within the same framework, thus simultaneously generalising
the two approaches above [41,59]. With this in place, we can describe a “nearly
fair choice” by using both forms of nondeterminism together. For example, the
behaviour of a program this [ε]⊕ that which describes a coin “within ε of being
fair” may be represented by

(this 1−ε
2

⊕ that) � (this 1+ε
2

⊕ that) .

This begins to address the issue of nearly fair coins that was first raised in
Sec. 2.2 and to which we return in Sec. 8.

5 The Shadow: Hidden Nondeterministic State7

5.1 The Shadow in Essence

The Shadow Model arose in order to allow development of non-interference -
style protocols by refinement. A long-standing problem in the area was that
nondeterminism in a specification usually is an invitation to the developer (or
the run-time system) to pick one alternative out of many presented: the intention
of offering the choice is to indicate that any of the alternatives is acceptable.

In security howevernondeterminism indicates instead a hidden, or high-security
value known only to be in a set; and an implementation’s picking just one of those
values is exactly what the specification is not allowing. Rather it is specifying
exactly the opposite, that the “ignorance” of the unknown value should not be
decreased.

In the Shadow Model these two conflicting uses of nondeterminism are dealt
with by partitioning the state space into visible variables v: V , say, and hidden
variables h:H and storing the hidden part as a set of the possible values it could
be, rather than as a single definitive value — that is, the state space is V×PH
rather than the conventional V×H.8 Then (informally) conventional refinement
allows whole sets of hidden variables’ values to be discarded; but it does not
allow the sets themselves to be reduced.

For example, for the program

v:∈{0, 1}; h:∈{v+1, v+2} (5)

the denotation in the style V×PH as above of the final states would be the set of
pairs {(0, {0, 1}), (1, {1, 2})}; and a possible refinement then would be to throw
7 Also this section is brief: there are two other detailed papers at this venue on The

Shadow [44,55].
8 We write P· for powerset.
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the whole first pair away, leaving just the {(1, {1, 2})} which is the denotation
of the program v:= 1; h:∈{v+1, v+2}. On the other hand, it is not a refinement
simply to remove values from the h-sets: the denotation {(0, {1}), (1, {2})} of
the program v:∈{0, 1}; h:= v+1 is not a refinement of (5).

With this Shadow Model one can prove that the Dining Cryptographers Pro-
tocol is secure for a single run, in the sense that it is a secure refinement of
the specification “reveal whether a cryptographer paid, and nothing else.” (See
Sec. 8.1 for a more detailed discussion of this and, in particular, for the signifi-
cance of “single run.”)

5.2 The Shadow’s Abstraction of Probability

The Shadow is a qualitative semantics for security and hiding, indicating only
what is hidden and what its possible values are. In practice, hidden values are
chosen quantitatively according to distributions that are intended to minimise
the probability that an attacker can determine what the actual hidden variables
are.

In the cases where a quantitative analysis is necessary, an obvious step is
to replace the encapsulated set PH of hidden values by instead an encapsulated
distribution DH over the same base type, so that the state space becomes V×DH.
That leads conceptually to what we call The Quantum Model, explained in the
next section.

6 The Quantum Model:9 Hidden Probabilistic State and
Ignorant Nondeterminism

6.1 Motivation

Our work on probabilistic/demonic semantics, summarised above in Sec. 4,
achieved a natural generalisation of its antecedents: its operational (relational)
model was S→PDS, generalising both the purely demonic model S→PS and the
purely probabilistic model S →DS;10 and its corresponding “expectation trans-
former” model (S→R) → (S→R) generalised the predicate-transformer model
(S→{0, 1})→ (S→{0, 1}),11 including the discovery of the quantitative form of
conjunctivity, called sublinearity [41, p.146].

Much of that work was achieved by “playing out” the initial insights of Kozen
and Jones [34,35,32,31] along the the familiar trajectory that Dijkstra [14] and
9 Initial experiments with this are described in unpublished notes [57,38].

We said “conceptually” above because in fact the Quantum Model was developed
ten years before The Shadow, in response to issues to do with data refinement as
explained in Sec. 6.2 below. Because of the model’s complexity, however, it was
decided to “put it on ice” and seek an intermediate, simpler step in the hope that
it would make the issues clearer. We alter the fossil record by placing the Shadow
before the Quantum in this presentation.

10 We write D· for “distributions over.”
11 The predicate-transformer model is usually described as PS→PS. We used the above

equivalent formulation to make the connection clear with the more general model.
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module Fork {
// No data.

public Flip { g:= T � F }
}

(a) The Demonic Fork

module Spade {
private h:= T � F;
public Flip { g:= h; h:=T � F }

}
(b) The Demonic Spade

Fig. 1. The Fork has no data. The Spade has a local variable h initialised demonically.

others had established for purely probabilistic and purely demonic programs
respectively. An unexpected obstacle arose however when we attempted to con-
tinue that trajectory along the path of data refinement [33,4,19]. We found that
the modular probabilistic programs require the same program features –such as
the ability to hide information– as security applications do.

We explain the data-refinement problem in the following section; it leads
directly to the Quantum Model.

6.2 The Fork and the Spade12

Consider the two modules shown in Fig. 1. It is well known that the left-hand
module Fork can be transformed via data-refinement into the right-hand module
Spade; we just use the representation transformer h:= T � F.13

The algebraic inequality (actually identity) that justifies this is

g:=T � F; h:=T � F � h:=T � F; g:= h; h:= T � F ,

that is that OpF ; rep � rep;OpS where OpF is the Fork’s operation and OpS is
the Spade’s operation and rep is the representation transformer [4,19,5]. Now we
can carry out the same transformation (structurally) if we replace demonic choice
� by probabilistic choice p⊕ throughout, as in Fig. 2. This time the justifying
inequality is

g:=T p⊕ F; h:= T p⊕ F � h:=T p⊕ F; g:= h; h:=T p⊕ F . (6)

Unfortunately, in the probabilistic case the (6)-like inequality fails in general for
statements in the rest of the program, whatever they might be. For example,
consider a statement g′:= T � F in the surrounding program, for some second
global variable g′ distinct from g. The justifying (6)-like inequation here is the
requirement

g′:=T � F; h:=T p⊕ F (7)
� h:=T p⊕ F; g′:= T � F . (8)

12 These two examples were prominent players in the Oxford-Manchester “football
matches” on data-refinement in 1986 [2].

13 We are using the formulation of data-refinement in which the “coupling invariant” is
given by a program rather than a predicate [4,19]: here we call it the representation
transformer.
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module Fork {
// No data.

public Flip { g:= T p⊕ F }
}

(a) The Probabilistic Fork

module Spade {
private h:=T p⊕ F;
public Flip { g:= h; h:=T p⊕ F }

}
(b) The Probabilistic Spade

Fig. 2. This time The Spade has a local variable h initialised probabilistically

And this putative refinement fails, for for the following reasons.
In our basic semantics of Sec. 4, on the right-hand side (8) we can have g′

and h finally equal on every run, since the demonic assignment to g′ can be
resolved to g:=h. But leaving g′, h equal every time is not a possible behaviour
of the left-hand side (7), since the demon’s assignment to g′ occurs before h’s
final value has been chosen.

This failure is not acceptable. It would mean that altering the interior of a
module could not be done without checking every statement in the surrounding
program, however large that program might be. The point of having modules is
to avoid precisely that.

6.3 Encapsulated Distributions, and the Quantum Model

The key idea for solving the data-transformation problems exemplified by the
failed refinement (7)��(8) is to “encapsulate” the local variable h in a distribu-
tion, one to which nondeterminism related to the visible variable v does not have
access. Thus where the state-space normally would be V×H, the encapsulated
state-space would be S:=V×DH. On top of this we introduce the basic construc-
tion for probability and nondeterminism Sec. 4, which then gives S → PDS as
our model: putting them together therefore gives (V×DH)→PD(V×DH) overall
as the semantic type of a program with visible- and local variables.

From now on local variables will be called hidden variables. Here is an example
of how the above could work.

In the classical model (V×H) → PD(V×H) the program h:= T p⊕ h:=F pro-
duces from initial state (v0, h0) the singleton-set outcome {(v0, T) p⊕ (v0, F)},
i.e. a set containing exactly one distribution; it’s a singleton set because there’s
no demonic choice. A subsequent program v:=T � v:= F then acts first on the
distribution’s two points (v0, T) and (v0, F) separately, producing for each a
further pair of point distributions: we get {(T, T), (F, T)} in the first case and
{(T, F), (F, F)} in the second.14 Those two sets are then interpolated Cartesian-
wise, after the fact, using the same p⊕ that acted originally between the two
initial points. That gives finally the four-element set

{(T, T) p⊕ (T, F), (T, T) p⊕ (F, F), (F, T) p⊕ (T, F), (F, T) p⊕ (F, F)} ,

14 We use x for the point distribution assigning probability one to x and (therefore)
zero to everything else.
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that is a four-way demonic choice between particular distributions.15 The third
of those four demonic choices is the distribution (F, T) p⊕ (T, F) in which the
final values of v, h are guaranteed to be different; the second on the other hand
is (T, T) p⊕ (F, F) where they are guaranteed to be the same. The demon has
access to both choices (as well as the other two remaining), and in this way can
treat a testing-inspired postcondition v=h with complete contempt, forcing the
equality to yield true or false exactly as it pleases. The operational explanation
we give (have given) for this is that the demon, acting second, “can see” the
value of h produced first and than can target, or avoid it at will.

Now we contrast this with the encapsulated “quantum” view. This time the
model is (V×DH)→PD(V×DH) and the program h:= Tp⊕h:= F produces from
initial state (v0, h0) the singleton-set outcome {(v0, T p⊕ F)} again containing
just one distribution: but crucially this time it is a point distribution: the proper
(non-point) probabilistic choice over h is still “suspended” further inside. Given
a point distribution, the subsequent program v:=T � v:=F has only one point
to act on, giving the set {(T, T p⊕ F), (F, T p⊕ F)} and with no Cartesian-wise
interpolation. Now if the postcondition is again v=h, then the demon’s attempt
to minimise its probability of being true is limited to just two choices (no longer
four), that is in deciding which of p and 1−p is the lesser and acting appropriately.
For example if p were 3/4, i.e. it is more likely that h is T, then the demon
would choose the second pair (corresponding to having executed v:=F), and the
probability of v=h would be only 1/4. The demon can do this because, although
it cannot see h, it can still see the program code and thus knows the value of
p. In spite of that, it cannot make the v=h -probability lower than 1/4 and, in
particular, it cannot make it zero as it did above.

With that prologue, we can now explain why we think of this as the “quantum
model.”16

6.4 The Act of Observing Collapses the Distribution

We take h:=Tp⊕h:= F again as our first step, and in the quantum model (which
we now call the above) we reach outcome {(v0, T p⊕ F)}. But now we take as
our second step the command v:= h whereby the suspended “quantum state”
T p⊕ F of h is “observed” by an assignment to the visible v. What happens?

In this model, the assignment v:= h “collapses” the quantum state, forcing it
to resolve its suspended probabilistic choice one way or the other: the outcome
overall is {(T, T) p⊕ (F, F)}, now a visible probabilistic choice p⊕ in both of
whose branches the value of h is completely determined: it’s given by the point
distribution T or by the point distribution F.
15 In the basic model this includes as well, by convention, all interpolations of those

four distributions.
16 And we must say right away that it is not at all (in our view) a real contender for a

model of quantum computation, because for a start our probabilities are real-valued:
for qbits they would instead have to be complex numbers. It does however have some
features reminiscent of popular-science accounts of quantum mechanics, as we now
see.
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As a second example of quantum collapse, we consider the program

h:= (0 ⊕ 1 ⊕ 2 ⊕ 3); v:=h mod 2

in which the repeated ⊕’s indicate a uniform choice, in this case between four
alternatives and so 1/4 for each. Here the first command produces a fully encap-
sulated state as before; but the second statement collapses it only partially. The
final outcome has denotation {(0, 0 1/2⊕ 2) 1/2⊕ (1, 1 1/2⊕ 3)} , representing a
program we could write

v:= 0; h:= 0 1/2⊕ 2 1/2⊕ v:= 1; h:= 1 1/2⊕ 3

in which a visible probabilistic choice 1/2⊕ occurs between the two possibilities
for the low-order bit of h (0 or 1), but the value of the high-order bit is still
suspended in the hidden, internal probabilistic choice.

For this program you can be sure that afterwards you will know the parity
of h, but you cannot predict beforehand what that parity will be. And –either
way– you still know nothing about the high-order bit.

7 The Generalised Quantum Model

However compelling (or not) the Quantum Model of Sec. 6.3 might be, it can
only be a step on the way: in general, hidden variable h could be the subject
of nondeterministic assignments as well as probabilistic ones; and the model
(V×DH)→PD(V×DH) is not rich enough to include that, since the encapsulated
state for h is only DH.

The ability to specify nondeterministic and probabilistic assignments to h
is especially important for real applications in which the source of randomness,
used to conceal a hidden value, is not perfect. For example, the coins used by the
Dining Cryptographers of Sec. 2 will probably be both demonic and probabilistic,
since as we noted “fair coins” are ideal objects that do not exist in nature. Not
only will a typical coin have a heads-probability of “nearly” (but not exactly)
50%, that probability could vary slightly depending on environmental conditions
(e.g. ambient temperature): thus we must ultimately deal with not only accu-
racy but stability. The abstraction coin:=T [ε]⊕ F, introduced in Secs. 2.3 & 4,
describes that nicely: it’s a coin whose total deviation is ε, centred on being
fair. The value ε, which represents the stability of the coin, may be treated as a
parameter of the problem.

7.1 Preliminary Investigations

Early investigations led us to suppose that the type of a Generalised Quantum
model might be

↓ outer

(V×PDH) → PD(V×PDH) ,

↑ inner

(9)
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in which hidden assignments, such as h := A [ε]⊕ B would be recorded in the
“inner” PD, and visible assignments, v := A [ε]⊕ B, would be captured in the
“outer” PD. In this model interactions between nondeterminism and probability
in such visible (or hidden assignments) would be treated as before: a statement
v:= T [ε]⊕ F, for example, is the nondeterministic choice over all probabilities
p∈[ε], that is |2p−1| ≤ ε, of the pure probabilistic choice v:=T p⊕ F. If all this
were to be done successfully, we would be able to observe continuous range of
behaviours as ε varies from 0 up to is maximum value 1: when ε is zero, as small
as it can be, we have ([0]⊕) = (1/2⊕), i.e. pure probabilistic choice. And when ε
is 1, as large as it can be, we have ([1]⊕) = (�), pure demonic choice.

In spite of this promising beginning, the proposed fully generalised model
(9) stretched our expertise: calculations in it were quite complex, and its logic
was elusive [57,38]. As a strategic move, therefore, we put that path aside and
(eventually) decided to address a simpler, but related problem: with a final
goal of encapsulated demonic/probabilistic state in mind, and a tentative model
of encapsulated probability (alone, as above), it seemed reasonable to attempt
a model of encapsulated demonic nondeterminism (alone). That became the
Shadow Model of Sec. 5.17

In this remainder of this section we outline some of the challenges we face in
generalising the Quantum model so that the encapsulated hidden state may be
both probabilistic and nondeterministic.

7.2 The Observers’ View: A Difficulty

In a typical security application there may be multiple agents with different
views of the system (that is, different partitions into visible and hidden). For
example, in the Dining Cryptographers, the waitress has one perspective of the
system, and Cryptographer A has another. Similarly, a system comprising many
modules, each with different visibility requirements, may be thought of as being
composed of multiple agents each one with her own view.

Both the Shadow and Quantum models may be used to model such applica-
tions from the perspective of any one of the agents, or observers, in the system.
In these program models, the state space describes not just the visible state from
that observer’s perspective, but what is known about the visible/hidden -state
partition. How might we represent an observer’s perspective of the state in a
model in which hidden variables may be set probabilistically and nondetermin-
istically?

Unfortunately, our earlier guess (9) is too simplistic to specify some programs
that we might be interested in. Take for example a system that is to be modelled
from the perspective of an onlooker who can see variable v, but not h. What can
that observer see, and deduce, after the operation

17 This is a revisionist history in a further sense, since the full encapsulated model –as
a goal– was sitting happily on the shelf until Engelhardt and Moses, independently,
encouraged us to look at their achievements –with van der Meyden– in dealing
simultaneously with refinement and knowledge [16,15].
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v := T 1/2⊕ F; h:= v � v := T 1/2⊕ F; h:=¬v (10)

in which both the � and the 1/2⊕’s are hidden?
Since the � in particular is hidden and the outcome of the visible variable v

is indistinguishable in both alternatives, the denotation of the program’s result
cannot use the outer P to express that choice: we are limited to denotations of
the form D(V × PDH). In fact (abusing notation) it must be of the form

V × PDH 1/2⊕ V × PDH

since the observed distribution of v between T and F will be 50% no matter
which branch is taken. What then are the candidates for the left- and the right
PDH? It can’t be {T, F} on both sides, since that loses the property of (10) that
the h-values are also 50% distributed.

But how else might the observer describe what he can and cannot see about
that operation within the program model proposed? It doesn’t seem as though
it can be done without either revealing too much about the value of the hidden
variable, or retaining too little information about its distribution.

This suggests that a state space richer than V × PDH is going to be needed
to describe an observer’s view of the program state. That is one aspect of our
current research.

7.3 Multiple Agents: Who Makes the Choice?

In The Shadow- and in The Quantum Model the state space is used to describe
the behaviour of a program from the perspective of one of the agents in the
system. Systems with multiple agents may thus be analysed by considering the
system view of each agent separately. (The Quantum Model is limited in this
respect since it cannot be used to model the perspective of any agent for which
the hidden state is subject to nondeterminism.)

For example, take a system with Agent A, who can see variable a only, Agent
B that can see variable b only and (implicitly) an anonymous observer who can’t
see either. Suppose A sets a nondeterministically, and then B does the same with
b as in the program

visA a;visB b; a:∈A {T, F}; b:∈B {T, F} ,

where “visA” means visible only to Agent A (and similar), and “:∈A ” means
chosen according to what Agent A can see.

With the Shadow Model, we see that from the point of view of Agent A the
system is vis a;hid b · · · , i.e. with a visible and b hidden. To Agent B it is
complementary, that is as if declared hid a;vis b · · · — and for the anonymous
observer it is hid a, b · · · .

The reason that each agent may be treated separately in the Shadow semantics
(which is defined using a “one-test run testing regime” — see Sec. 8.3 to come)
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is that we do not care (and cannot tell) whether nondeterministic choices are
made independently or not. For example, when the Shadow is used to model the
system from Agent A’s perspective, we cannot tell whether the choice b:∈B {T, F}
can be influenced by the value of a, and so as Agent A we do not need to know
what Agent B’s view of the system is. (The Quantum model avoids these issues
altogether by dissallowing hidden-state nondeterminism.)

Unfortunately, the situation is unlikely to be as simple in the Generalised
Quantum model. Consider the similar system

visA a;visB b; a:=T 1/2⊕ F; b:∈B {T, F}

in which the first choice is probabilistic. From A’s point of view it is still
vis a;hid b but, in spite of the fact that A cannot see b it is still important to A
whether the choice b:∈B {T, F} can depend on a. This is because the outcome
of a subsequent code fragment vis a′; a′:= a⊕b is affected by that question. 18

That is, even from A’s point of view it has become important what B can see,
and that B makes the choice b:∈B {T, F} rather than for example b:∈A {T, F}.
For this reason it might not be possible to split our analysis neatly into separate
views as we do in The Shadow. That is, if we would like to model probabilistic
programs with multiple agents, and have so-called “nuanced” nondeterministic
choices as above, controlled by different agents, then we will require a semantics
that retains information about the different agent’s views of the system.

Instead of working directly on such a feature-rich program model, we suggest
that a next step forward would be to build a model where hidden nondeter-
ministic choices must be made with either total ignorance, oblivious choice, or
knowledge of the entire state (omniscient choice). It would be sufficient in the
dining cryptographers problem, for example, to model all the choices as being
oblivious.

8 The Cryptographers’ Café: Reprise

Long ago (it must seem) in Sec. 2 we posed the problem of an accurate analysis
of the Cryptographers’ Café; in the meantime we have examined a number of
potential program models and background issues. We can note immediately that
the basic probabilistic/demonic model of Sec. 4 is not rich enough to formalise
our problem, because the coins must be hidden. And since the cryptographers’
coins involve both probability (because we suspect they must be fair coins)
and demonic choice (because we cannot expect to find physical coins that are
exactly fair), neither the technique of Sec. 5 (for hidden demonic choice) nor
of Sec. 6 (for hidden probability) is sufficient on its own. In Sec. 7 just above
we investigated therefore some of the issues to be faced when joining hidden
probability and hidden nondeterminism together. In this section, we speculate
on what we might find once we have done so.

18 We write ⊕ for exclusive-or.
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hid yA, yB , yC ;

reveal yA ⊕ yB ⊕ yC

(a) Specification

hid yA, yB , yC ;

|[ hid cA, cB , cC :Bool;
cA:∈Bool;
cB:∈Bool;
cC :∈Bool;
reveal yA ⊕ cB ⊕ yC ;
reveal yB ⊕ cC ⊕ yA;
reveal yC ⊕ cA ⊕ yB ;

]|

(b) Implementation

The three cryptographers’ choices are y{A,B,C}; the three coins are c{A,B,C} with cA

being opposite yA etc. and so hidden from her. We assume the cryptographer’s choices
are made before the protocol begins; the coins, which are local variables, are flipped
during the protocol.

The statement reveal E publishes to everyone the value of E but does not expose
explicitly any of E’s constituent sub-expressions [43,49,37].

Thus the specification reveals (to everyone) the exclusive-or of the cryptographers’
actions. The implementation reveals three separate Booleans whose exclusive-or equals
the value revealed by the specification. The key question is whether the implementation
reveals more than that.

Fig. 3. The Dining Cryptographers: Specification and Implementation

8.1 The Shadow Suffices for One-Off Lunches

We must remember right at the start that the Dining Cryptographers Protocol
is not itself under suspicion. Rather we are using it –in various formulations– to
test our approaches to capturing the essential features of protocols of the kind it
exemplifies. We have already showed elsewhere [54,49] that the Shadow Model
can prove the refinement (a) � (b) in Fig. 3.

Yet we argued in Sec. 2 that Fig. 3(b) is not a correct implementation in the
case that the cyptographers are observed over many trials. What exactly then
did our purported proofs show? The answer depends crucially on the notion of
what tests we are allowed to perform on the implementation.19

8.2 Testing Standard Classical Sequential Programs

By standard programs we mean “non-probabilistic,” and by classical we mean
“without hiding.”

19 This is true when assessing the suitability of any notion of computer-system correct-
ness: one must know exactly what tests it is expected to pass.
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A test for a standard classical program Q is a context C into which the
program Q can be put. The combination C(Q) is then run a single time, and it’s
observed whether C(Q) diverges or not. We have P � Q for testing just when,
for all C, if C(Q) fails the test by diverging, on any single run, then C(P ) can
fail also.20

How does this fit in with wp-style refinement? There we have the definition
P �wp Q just when for all postconditions ψ the implication wp.P.ψ⇒wp.Q.ψ
holds [3,61,50,51,5], where a postcondition is a subset of the state space (equiv-
alently a predicate over the program variables).

Now if P �wp Q then by monotonicity of programs and the permissible pro-
gram operators we have that C(P ) �wp C(Q), and so we have as a consequence
the implication wp.C(P ).true⇒wp.C(Q).true — that is, if C(Q) can diverge
(¬wp.C(Q).true) then so can C(P ) diverge (¬wp.C(P ).true). That
establishes that wp-refinement implies testing refinement as we defined it
above.

For the opposite direction, we suppose that P ��wp Q so that for some state
s0 and postcondition ψ we have wp.P.ψ.s0 ∧ ¬wp.Q.ψ.s0. Choose context C so
that C(X) is s:= s0; X ; {ψ}, where the assumption {ψ} acts as skip in states
satisfying (belonging to) ψ and diverges otherwise [51, Sec. 1.8]. Then C(P ) does
not diverge but C(Q) can diverge, so that we have P �� Q for testing also, and
have established that in fact �wp and single-time-testing refinement are exactly
the same.

8.3 Testing Standard Programs with Hiding

To capture hiding, our tests are extended: they now include as well as the above
(Sec. 8.2) an attacker’s guess of the value of h within its type H: it’s expressed
as a subset H of H of the value the hidden variable h might have. A program-
in-context C(Q) is deemed to fail the test H if either it diverges (as before) or
it converges but in that latter case the attacker can prove conclusively on the
basis of his observations that h∈H .

With these richer tests we can see more structure in their outcomes. Whereas
in Sec. 8.2 there were just two outcomes diverge and converge, now there are
many: we have diverge as before, but now also converge with h provably in H for
any H⊆H. The two-outcome case Sec. 8.2 is just the special case in which we fix
H := ∅. Clearly there is a refinement order on these outcomes, too: divergence is
at bottom, and larger guesses are above smaller ones — we could call this order
�obs.

With the differing detail but unifying theme of this section and the previous,
the use of the context, and the general idea behind it, should now be clear: given
two programs P, Q whose refinement status might be complex, we define P � Q
just when for all contexts C we have C(P ) �obs C(Q). The point of that is the

20 Here we borrow notions best known from process algebra [10]; those ideas featured
prominently in the football matches [2].



58 A. McIver, L. Meinicke, and C. Morgan

simplicity of �obs — it is necessarily a subjective definition, and so must be one
that the community generally can accept as self-evidently reasonable.21

8.4 The “single-test” Convention Applies to The Shadow

In both Sec. 8.2 and Sec. 8.3 above we stipulated “single tests,” and this is
surprisingly important. Its consequence is that an implementation cannot be
invalidated on the basis of considering two or more testing outcomes at the
same time: each test must be considered on its own. This is not a theorem, or
even a necessity: rather it is an explicit choice we make about how we define “is
implemented by.”

It’s this single-time definition of test that prevents our telling the difference
between “cold” nondeterminism that is unknown but fixed (like having either
a heads-only or tails-only coin, but not being able to predict which it will be),
and “hot” nondeterminism that can vary (like an ordinary coin that can reveal
a different face on each flip, even though we know it’s either heads or tails).
We do not judge this distinction either as worthwhile, or worthless: it depends
on the circumstances. Nevertheless if one adopts the single-time testing regime,
then there is no point in having a semantics that distinguishes hot- from cold
nondeterminism. Given the style of computing that was dominant at the time of
flow-charts [18], and the introduction of Hoare logic [28] and weakest precondi-
tions [14], it’s no wonder that single-time testing was assumed: most programs
were sequential, and ran on mainframes. That assumption is one of the reasons
that the relational calculus –so simple– is sufficient for that kind of sequential
program: it need not (cannot) distinguish hot and cold.

The Shadow too, in that tradition, is based on single tests — as are many
other formal approaches to non-interference [20,9,36,63]: and that is why it does
not necessarily apply to the Café in which, effectively, many tests are made.

It is also the reason that The Shadow does not stipulate whether later hidden
nondeterministic choices can be influenced by earlier hidden nondeterministic
outcomes. (Recall Sec. 7.3.) It seems a reasonable question: given that the hidden
choice h0:∈{T, F} cannot be seen by the attacker, can it be seen by a subsequent
hidden choice h1:∈ {T, F} to a different variable? The surprising answer, as we
saw, is that it doesn’t matter, since in single-time testing you cannot determine
whether the h1-choice was influenced by the h0-choice or not.

8.5 Proving (in-)correctness in the Café

Having addressed the question posed at the end of Sec. 8.1, the next step is to ask
how the purported refinement of Fig. 3 would fare in a probabilistic/demonic-
21 A particularly good example of this is found in probabilistic/demonic process alge-

bras [1], where the notion of refinement is very complex and not generally agreed.
Research there concentrates on finding a testing regime that uses contexts to reduce
refinement to something as simple as decreasing the probability of divergence, or
increasing the probability of performing some single distinguished “success action”
[10].
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with-hiding semantics if we constructed one along the lines suggested in Sec. 7.
The answer is that we expect it to fail. In this section we sketch speculatively
just how the as-yet-to-be-constructed model would signal that failure.

Rather than address the whole protocol, we concentrate on the Encryption
Lemma, a key part of its qualitative proof [54,43,49]. That lemma states that in
the context of a global hidden Boolean h the following refinement holds:

skip � |[ hid h′; h′:∈Bool; reveal h⊕h′ ]| .22 (11)

This via refinement states that the right-hide side reveals nothing about h, since
clearly the left-hand side does not.

Now suppose that the global h has been set previously via an assignment
h:= true p⊕ false. (In so doing, we leave the world of single-time testing, since
probabilities cannot be expressed or detected there.) Does (11) still hold?

In our semantics we might expect that the denotation of the right-hand side
of (11) is a set of behaviours that may be observed by an onlooker, in which
each of those observable behaviours is associated with a set of “hidden” proba-
bilistic states that could actually have produced it. In this program an onlooker
can see the outcome of the reveal statement, and so an observable behaviour
is the distribution of true and false values shown by the reveal. Given that the
demonic choice h′:∈Bool is interpreted as “choose h′ with some unknown prob-
ability q” [41,59], where 0≤q≤1, for each observable behaviour of the reveal
statement we can calculate that what h′ must have been from the fact that h
was set deterministically using probability p. This means that there can only be
one “hidden” probabilistic state associated with every visible outcome. For all
visible outcomes other than that created by choosing h′ to be 1/2, there will
be a correlation between the outcome of the reveal statement and the hidden
distribution of h-values: that means that our knowledge of h’s value will not
have been left unchanged by the operation. And this is not something that our
mathematical definition of refinement would accept as a refinement of skip since,
that would –of course– have left h’s distribution unchanged.

8.6 Testing Probabilistic Programs with Hiding

Given the conceptual programme established by our discussion of testing, the
guesswork of Sec. 8.5 must be accompanied by a discussion of the testing regime
we have in mind. As remarked there, it cannot any longer be single-time.

Here we expect to be using single-tabulation testing: the program Q under
test is run repeatedly in come context C, and we tabulate the outcomes and their
frequencies. What we are not allowed to do is to run the program repeatedly
on two separate occasions and then to draw conclusions from the two separate
tabulations that result.

Such a regime is implicit in our earlier probabilistic work where however we
do not model hiding [41,59]. We would therefore –without hiding– be dealing

22 We use brackets |[ · ]| to delimit the scope of local declarations.
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with a quantitative version of the tests of Sec. 8.2 where the refinement criterion
for P�Q would be “if program-in-context C(Q) can diverge with a probability
at least p, then so can C(P ).” Note that this single-tabulation restriction again
makes the issue of hot- vs. cold nondeterminism irrelevant: if you are restricted
to a single tabulation of outcomes, there is no way in which you can tell the
difference with respect to a demonic coin-choice h:∈Bool whether this is imple-
mented via a number of different coins with (therefore) varying bias, or whether
it is a single one whose bias is unknown.23

In our speculative semantics –with hiding– our single-tabulation testing could
be a simple probabilistic powerdomain [32,31] built over the underlying order on
H-guesses sketched in Sec. 8.3.

8.7 The Importance of Fair Coins

We saw in Sec. 2.1 that the Dining Cryptographers’ Protocol, and others like it,
is described in terms of fair coins (1) even though the fairness was not explicitly
used in our correctness argument (2). One reason for this (we think) is that
the correctness relies crucially on the independence of the coins from other phe-
nomena (such as the cryptographers’ already-made decisions) and indeed from
each other. That independence in its abstract demonic form is very difficult to
formalise, and so an easy route to ensuring it is realised is to make the choices
with a fair-coin -flip since –barring sophisticated nanotechnology within the coin
itself– it is going to implement precisely the kind of independence we mean but
which we cannot pin-down with a precise mathematical description.24

In spite of that, we saw in Sec. 8.5 that the fairness really does matter; and
in Chaum’s original presentation it mattered too. That is, in our speculative
semantics it matters because we would expect the refinement

skip � |[ hid h′; h′:= true 1/2⊕ false; reveal h⊕h′ ]| (12)

23 Imagine watching a single referee throughout a football season. Could you tell with
a single tabulation for the whole season whether he decides the kickoff using one
coin or several? A multiple-tabulation testing regime would allow you to compare
one season with another, and then (only then) you would be able to distinguish the
two cases.

24 There are many examples of this “abstraction aversion” in everyday life. For exam-
ple, in a two-battery torch (flashlight) the batteries must be inserted in the same
direction; but either way will do. (We ignore issues of the shape of the contacts, and
concentrate on electricity.) A picture describing this abstraction is hard to imagine,
however: if both alternatives were shown, would people think they needed four bat-
teries? The usual solution is to replace the specification (either way, but consistent)
with an implementation (both facing inwards) and then cynically to present that
as the specification. Most people won’t even notice that the abstraction has been
stolen.

Similarly, what ideally would be an abstract description (“independent mutually
ignorant demonic choices”) is replaced pragmatically by a concrete one (“separate
fair coins”) — that’s the best we can do with our current tools.
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to go through even though (11) does not. Firstly, the denotation of the right-hand
side would no longer be a demonic choice, since the choice of h′ is deterministic
(i.e. no longer demonic, although still probabilistic). Secondly, if one asks the
Bayesian question “What is the a posteriori distribution of h after the right-hand
side of (12)?” the answer will be that it is the same as the a priori, because the
distribution of h′ is fair. (That is exactly the key point of Chaum’s proof.) With
any other distribution of h′, however, the a priori and a posteriori distributions
of h would differ. Thus in this case only –an exactly fair coin– the refinement is
accepted.25

8.8 The Non-existence of Fair Coins

Our conclusion –generalised from the discussion of Sec. 8.7– seems to be that
the Dining Cryptographers’ Protocol suffices for use in the Café just when the
coins are exactly fair, and not otherwise. But they never are exactly fair, and
so with a definition of refinement as “yes or no,” we seems to be stranded: our
refinement proofs apply only to ideal situations, ones that never occur in reality.
That is, the semantics we are hoping to develop (Sec. 7) seems to be running
the risk of becoming “ideal” in a similar sense: pejorative.

There are two complementary steps possible to avoid, at this point, being
relegated to the Platonic School of Formal Methods. One is to introduce approx-
imate refinement, where we would say (intuitively) that P �p Q means that P
is refined by Q with probability p, with a special case being probabilistic equiv-
alence [66,67,30,13,11,12]. The “with probability p” applied to refinement can
be made precise in various ways, and the first thing one would prove is that �1
coincides with ordinary, certain refinement; similarly �0 would be the universal
relation.

The reason we don’t take this approach is that we cannot see how to couple
it with a notion of testing in the case that the probability p of refinement is
intermediate, not equal to zero or one. And we think the testing connection

25 The usual example of this is a nearly reliable test for a disease: say with 99% relia-
bility if the test detects the disease, the patient really is diseased; the remaining 1%
is called a “false positive.” We assume 1% for false negatives also. Now we suppose
that in the population just 1% of the people have the disease, so that if a person is
selected at random, then this is the a priori probability that she has it. If she tests
positive, what now is the probability that she really does have the disease?

The probability of her testing positive is 0.99 × 0.01 + 0.01 × 0.99 = 0.0198, and
the (conditional) probability she has the disease, i.e. given that she tested positive,
is then 0.01×0.99/0.0198 = 50%. This is the a posteriori probability, and it has
changed from the a priori probability (which was 1%): the test is not equivalent to
skip.

Now finally suppose that the test is only 50% reliable, either way. The calculation
becomes 0.99×0.5 + 0.5×0.99 = 0.5, i.e. the probability of testing positive is 0.5
(and in fact would be that no matter what the distribution of the disease in the
population); and the a posteriori probability is 0.99×0.5/0.5 = 99%, just the same
as the a priori. This 50%-reliable test is equivalent to skip.
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is essential. There are other more technical questions that loom as well: for
example, if we have P �p Q �q R, what then is the refinement relation between
P and R ? Is it �pq perhaps? But what if the fact that p and q are not both
one is due to the same cause, that they are “common-mode” failures? Then we
would expect a composite probability higher than pq — but how mathematically
and quantitatively do we capture the common-mode dependence?

Thus we take a different approach: we use our ability to combine nondeter-
minism and probability to reflect the implementation’s inadequacy back into
a corresponding inadequacy, a weakening of the specification. An example of
this technique is the probabilistic steam boiler [48,41] and the tank monitor [64]
in which probabilistically unreliable sensors in the implementation force, via
a yes-or-no refinement relation, a probabilistically unreliable specification. The
refinement relation remains definite.

In applying that idea to our current examples (11 & 12) we would postulate
a refinement

“not-quite-skip” � |[ hid h′; h′:= true [ε]⊕ false; reveal h⊕h′ ]| (13)

in which we have to figure out what “not-quite-skip” is. (Recall Secs. 2.3 & 4:
the subscript [ε] abbreviates [(1−ε)/2, (1+ε)/2].)

In fact a good candidate for the definition of “not-quite-skip” is provided by
(13) itself. The statement reveal E, where E is an expression possibly containing
hidden variables, publishes E to the world at large — but any calculations
done to determine E are not published [43,49]. Thus for example reveal h⊕h′

publishes whether h and h′ are equal but, beyond that, says nothing about either
of them.

The Shadow definition of reveal E was chosen so that it was equal to the
program fragment

|[ vis v; v:= E ]| , (14)

where a local visible variable v is introduced temporarily to receive E’s value.
Because v is visible, everyone can see its final value (thus publishing E); but
because it is local, it does not affect the rest of the program in any other way.
We extend the revelation command so that the expression can be probabilistic
and even nondeterministic, postulating that its definition will still respect (14).
Thus we would have

reveal h p⊕ ¬h = |[ vis v; v:= (h p⊕ ¬h) ]| ,

in which the assignment to v is atomic.26 That suggests our weakened specifica-
tion, and respects our (still) definite refinement, in fact equality:

reveal (h [ε]⊕ ¬h) = |[ hid h′; h′:= true [ε]⊕ false; reveal h⊕h′ ]| . (15)
26 For those with some familiarity with The Shadow: the atomicity requirement distin-

guishes the command from the composite (non-atomic) fragment v:=h p⊕ v:=¬h
in which the branch taken –left, or right– would be visible to the attacker. The
composite fragment is in fact for any p equal to the simpler reveal h since, after
its execution and knowing which assignment was executed, an attacker would also
know whether to “un-negate” the revelation or not in order to deduce h’s value.
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hid yA, yB , yC ;

reveal yA [δ]⊕¬yA;
reveal yB [δ]⊕ ¬yB ;
reveal yC [δ]⊕ ¬yC ;

reveal yA ⊕ yB ⊕ yC

(a) Specification

hid yA, yB , yC ;

|[ hid cA, cB , cC :Bool;
cA:= (true [ε]⊕ false);
cB:= (true [ε]⊕ false);
cC := (true [ε]⊕ false);

reveal yA ⊕ cB ⊕ yC ;
reveal yB ⊕ cC ⊕ yA;
reveal yC ⊕ cA ⊕ yB ;

]|

(b) Implementation

Here the coins, which are local variables, are flipped during the protocol and are within
ε of being fair.

The specification reveals to everyone the exclusive-or of the cryptographers’ actions col-
lectively, and a little bit about the cryptographers’ actions individually. The δ depends
on ε: it should tends to zero as ε tends to zero and to 1 as ε tends to 1.

Below we argue informally that δ:= ε2 is correct, though perhaps not the best we can
do.

Fig. 4. The Dining Cryptographers: Specification and Implementation revisited

8.9 Weakening the Café’s Specification

In Fig. 4(a) we have modified the Café’s specification along the lines suggested in
Sec. 8.8. Our informal justification for the suggested choice δ:= ε2 of specification
tolerance is as follows.

Each cryptographer’s act –say yA for example– is exclusive-or’d with a com-
posite Boolean: it is cB⊕cC in the case of yA. From our earlier calculation (4)
we know that if c{B,C} are at most ε-biased then the composite cB⊕cC is at
most εε -biased. The postulated reveal statements are then by definition (of the
extended reveal) biased by that value, that is by ε2.

The reason we are not sure whether this is as good as it could be is that
the three composite values (the other two being cC⊕cA and cA⊕cB) are not
independent: it might be that revealing a lot about one cryptographer has a
limiting effect on what can be revealed about another.27

We now discuss the importance of the δ parameter from the specifier’s, that
is the customer’s point of view: we have gone to a lot of trouble to formulate it;
we should now explore how to use it. We’ll look at three cases.

Exactly fair coins. In this case ε=0 and so δ=0 also. Thus in the specification
we find reveal yA [0]⊕¬yA etc., that is reveal yA1/2⊕¬yA which is equivalent
to skip. Thus all three revelations of y{A,B,C} can be removed, and we are

27 In fact we should recall that this whole construction is speculative, since we do not
yet have a finalised semantics in which to prove it.
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left with the original specification of Fig. 3. The refinement then establishes
that using fair coins results in no leaks at all.

Coins of completely unknown bias. In this case ε=1 and so δ=1 also. Thus
in the specification we find reveal yA [1]⊕ ¬yA, that is by definition the
command reveal yA � ¬yA. This, by definition again (14), is equal to

|[ vis v; v:= (yA � ¬yA) ]| .28 (16)

Interpreting Program (16) throws into relief one of the major issues in
the construction of our sophisticated model: what can the nondeterminism
“see”? We are assuming –speculatively– that it can see nothing, and so (16)
is describing an experiment where a cryptographer chooses an act (yA), and
it is decided independently of that choice whether to reveal the act or its
complement. Once that decision is made, the value (or its complement) is
revealed but we still do not know whether the complement was taken. What
can we deduce about the cryptographer’s bias in her actions? We reason as
follows.
Suppose the revealed value has distribution true 1/4⊕ false. If the cryptogra-
pher is sufficiently biased, it is possible since the nondeterminism in (16)
could have been resolved e.g. to just reveal yA . Then, from our ear-
lier arithmetic, we would know that in fact the cryptographer has bias at
least 1/2, and we know that without being told anything about how (16)
was resolved. Thus we can deduce something in this case: the specification
reveal yA � ¬yA expresses an insecurity, as it should — for the implemen-
tation is insecure also.
It’s instructive also to look at the situation from the cryptographer’s point
of view: suppose she is indeed 1/2 -biased but, embarrassed about that,
she wants to keep her bias secret. Should she risk dining with the others,
according to the implementation given in Fig. 4(b)? Rather than study the
implementation, she studies the specification (having been well schooled in
Formal Methods). She sees that from the specification an observer could
learn that her bias is at least 1/2, since that is what would be deduced if
the � were always taken the same way, as we saw above. (The reason for
the “at least” is that a true 1/4⊕ false outcome in the reported result could
also result from a greater bias in the cryptographer which is masked by some
lesser bias in the �.)

Coins that are nearly fair. Finally, in this last case, we examine whether
being able to limit the bias really does give us access to a continuum of

28 In the standard Shadow (non-probabilistic) this would reveal nothing, since we could
reason

v:= (yA � ¬yA) = v:∈{yA,¬yA} = v:∈{true, false} .

And indeed in a single-run testing scenario it does not reveal anything. It’s important
therefore that we remember here that our scenario is more general.
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insecurity: so far, we have seen either “all” or “nothing.” We continue with
the embarrassed cryptographer of the previous case: can she deduce that in
the current case her potential for embarrassment is smaller than before?
Yes she can; and to explain that we return one final time, in the next section,
to the issue of testing.

8.10 Hypothesis Testing

If a cryptographer is exactly fair, then also her utterances will be exactly fair
no matter what the bias of the coins. Given that, we can reason that over 100
lunches, say, with probability 95% she will say she paid for between 40 and 60
of them.29

However, just as there are no exactly fair coins, neither are there going to be
exactly fair cryptographers: let’s say that a cryptographer is reasonable if her
bias is no more than 10%. In this case it does make a difference to her utterances
whether the coins she faces are biased, and indeed her most biased utterances will
result from the most biased coins. What range of utterances should we expect?

If the cryptographer is only just reasonable, and wlog is on the miserly side,
then she is described by y:=T 0.45⊕ F. With completely biased coins –the worst
case– then wlog this will be the description of her utterances too.30 Given that,
we can reason that over 100 lunches with probability 95% she will say “I paid”
at least 36 times.31 Thus –undoing our wlog’s– a reasonable cryptographer will
in 100 trials with 95% probability say “I paid” between 36 and 64 times.

Now let’s look at the case of the unreasonable, indeed miserly 50%-biased
cryptographer y:=T 0.25⊕F. Using fully biased coins, with what probability will

29 With −1 assigned to F and 1 to T, the mean of her outcomes y is 0 and the variance
is 1; over 100 independent trials the distribution of the sum y100 will therefore
have mean 0 and variance 100. From the Central Limit Theorem [22] the derived
variable ŷ := y100/

√
100 will be approximately normally distributed, and so we have

−1.96 ≤ ŷ ≤ −1.96 with probability 95% (from tables of the Normal Distribution).
Thus −19.6 ≤ y100 ≤ 19.6, so that out of 100 lunches she is slightly more than 95%
certain to say “I paid” for between 40 and 60 of them.

Note this is not the same as saying “If the frequency of I-paid utterances is between
40 and 60 out of 100, then with 95% probability the cryptographer is fair.” That
kind of statement requires a prior distribution on the cryptographers, which we are
not assuming.

30 The “without loss of generality”’s mean that we could have taken the complementary
y:=T 0.55⊕F for the cryptographer, and that we could have allowed the biased coins
always to invert her outcome. But none of that makes any difference to the analysis
to come.

31 The mean of her utterances y is −0.1 and the variance is 0.99; the distribution of the
sum y100 has mean −10 and variance 99. The derived variable is ŷ := (y100+10)/

√
99

and will satisfy −1.65 ≤ ŷ with probability 95%. Thus −1.65×√
99− 10 = −26.4 ≤

y100, so that she is slightly more than 95% certain to say “I paid” for at least
(100 − 26.4)/2 ≈ 36 lunches.
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her utterances fall outside of the range 36–64 that we with confidence 95% would
expect of a reasonable cryptographer? That probability turns out to be 99.7%.32

Thus if we set 36–64 “I paid”’s in 100 trials as our “reasonableness” criterion
in the case of potentially fully biased coins, a reasonable cryptographer will be
unfairly judged as biased only 5% of the time while a 50%-biased cryptographer
will escape detection only 0.3% of the time.

All the above was prelude to our discussion of partially biased coins: we now
assume for argument’s sake that the coins’ (composite) bias is no more than
50%, and we re-do the above calculations to see how it affects the miserly cryp-
tographer’s chance of escaping detection.

As before, we determine our criteria by considering how a reasonable cryp-
tographer would be likely to behave: facing a 50%-biased coin, she will wlog
have utterances with distribution at worst y:=T 0.475⊕F. Over 100 lunches with
probability 95% she will say “I paid” between 39 and 61 times.33

The miserly cryptographer will wlog have utterances at worst y:=T 0.375⊕ F
— in both cases, the coins’ bias mitigates the cryptographer’s intrinsic bias to
give a smaller bias in her utterances. With what probability will the miser’s
utterances fall outside of the range 39–61 that we might expect of a reasonable
cryptographer facing a 50%-biased coin? It turns out to be 64.8%, which though
still high is a much less rigorous test than the 99.7% she faced before.34

Thus if we set 39–61 “I paid”’s in 100 trials as our “reasonableness” criterion
in the case of 50%-biased coins, so that as before a reasonable cryptographer will
be unfairly judged as biased only 5% of the time, a 50%-biased cryptographer
will now escape judgement 35.6% of the time (in fact roughly 100 times as often
as she did in the fully biased case). The miser is being (partially) protected by
the (partial) secrecy implemented by the (partially) secure protocol.

It is interesting to speculate whether our model will have

reveal h [ε1]⊕ ¬h � reveal h [ε0]⊕ ¬h

whenever ε1 ≥ ε0.

32 The mean of her utterances y is −0.5 and the variance is 0.75; the distribution of the
sum y100 has mean −50 and variance 75. The derived variable is ŷ := (y100+50)/

√
75

which, to appear reasonable, from Footnote 31 must satisfy (−26.4 + 50)/
√

75 =
2.72 ≤ ŷ. It does that with probability 0.3%.

33 The mean of her utterances y is −0.05 and the variance is 0.9975; the distribution of
the sum y100 has mean −5 and variance 99.75. The derived variable is ŷ := (y100 +
5)/

√
99.75 and will (as before) satisfy −1.65 ≤ ŷ with probability 95%. Thus −1.65×√

99.75 − 5 = −21.5 ≤ y100, so that she is slightly more than 95% certain to say “I
paid” for at least 39 lunches.

34 The mean of her outcomes y is −0.25 and the variance is 0.875; the distribution of
the sum y100 has mean −25 and variance 87.5. The derived variable is ŷ := (y100 +
25)/

√
87.5 which to appear reasonable must satisfy (−21.5 + 25)/

√
87.5 = 0.37 ≤ ŷ.

It does that with probability 35.6%.
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9 Conclusions

In this paper we have explored the abstract phenomena underpinning secure
software systems which operate in partially predictable environments; we have
suggested a number of models and investigated how they measure up to the
problems software designers face. Yet however successful a mathematical model
is at capturing the underlying phenomena, we understand that its impact may
be limited and its results marginalised if the formal techniques it can support
cannot be made accessible to actual program developers.

We say that a formal technique is usable only if it can be practically applied,
and relevant only if it delivers accurate results. Unfortunately usability and
relevance can normally coexist only if the theoretical basis for the technique is
both simple enough to be supported by automated tools 35 and yet complicated
enough to yield accurate results. As the examples of this paper show it is unlikely
that there is such a one model to fit all for any problem domain which includes
all the features of hiding, probability and multiple agents. That’s is not to say
that there is no solution at all — but as formal methods researchers the challenge
is to find accurate models with usable abstractions, models whose relationships
to each other are well enough understood to support tool-based analyses and to
apply after all to generic and relevant scenarios.

10 Epilogue: A Café-Strength Proof of the
Cryptographers’ Protocol

The Shadow Model captures the qualitative correlation between hidden and
visible state. It is simple enough to support an algebra which is amenable to
routine calculation: we have twice earlier published refinement-style proofs of
the Cryptographers’ Protocol [54,49], the novelty being of course not in the
protocol (published long ago) nor in its correctness (established by its inventor)
but in the style of proof (program algebra and refinement). In doing so we hoped
to encourage Formal Methods to expand further into these application areas.

Our earlier proofs –as for the other approaches based on qualitative noninter-
ference [20,9,36,63]– abstracted from probability, from the fairness of the coins,
and as we explained at length above that left open the question of their validity
when repeated trials of the protocol are carried out — which is its usual environ-
ment, after all. And we proposed several methods in spe that might legitimise a
fully quantitative proof. What would that proof look like?

There is a good chance that the café-strength proof of the Cryptographers’
Protocol, thus valid for repeated trials, will have exactly the same structure as
our original qualitative proof.
That is because the original proof’s use of the “qualitative” Encryption Lemma
(11) seems to be its only point of vulnerability in the more general context; and

35 This is rather a stark definition, as it ignores the huge benefits to be gained in a
Formal-Methods education, which might not be based on tool support.
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the less-abstract “uniform” Encryption Lemma (12) is not similarly vulnerable.
All the other algebraic properties appear to carry through. If we are right, then
there will be a large class of security protocols which, if proven correct with a
carefully chosen qualititative repertoire of algebraic laws, will retain their cor-
rectness in the more general context of repeated runs — provided certain crucial
demonic choices (the ones that play a part in uses of the Encryption Lemma) are
replaced by uniform probabilistic choices. No other changes should be required.

As we have seen elsewhere, with purely qualitative treatments of probabilistic
fairness [46,23], that would have a significant impact on the applicability of tools,
by allowing them to remain Boolean rather than having to deal with proper
probabilities.

Watch this space. . .
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Abstract. We consider a language of recursively defined formulas about arrays
of variables, suitable for specifying safety properties of parameterized systems.
We then present an abstract interpretation framework which translates a paramer-
ized system as a symbolic transition system which propagates such formulas
as abstractions of underlying concrete states. The main contribution is a proof
method for implications between the formulas, which then provides for an imple-
mentation of this abstract interpreter.

1 Introduction

Automation of verification of parameterized systems are an active area of research
[1, 2, 3, 4, 5, 6, 7]. One essential challenge is to reason about the unbounded parameter
n representing the number of processes in the system. This usually entails the provi-
sion of an induction hypothesis, a step that is often limited to manual intervention. This
challenge adds to the standard one when the domain of discourse of the processes are
infinite-state.

In this paper, we present an abstract interpretation [8] approach for the verification
of infinite-state parameterized systems.

First, we present a language for the general specification of properties of arrays of
variables, each of whom has length equal to the parameter n. The expressive power
of this language stems from its ability to specify complex properties on these arrays.
In particular, these complex properties are just those that arise from a language which
allows recursive definitions of properties of interest.

Second, we present a symbolic transition framework for obtaining a symbolic execu-
tion tree which (a) is finite, and (b) represents all possible concrete traces of the system.
This is achieved, as in standard abstract interpretation, by computing a symbolic exe-
cution tree but using a process of abstraction on the symbolic states so that the total
number of abstract states encountered is bounded. Verification of a particular (safety)
property of the system is then obtained simply by inspection of the tree.

Third, the key step therefore is to compute two things: (a) given an abstract state
and a transition of the parameterized system, compute the new abstract state, and (b)
determine if a computed abstract state is subsumed by the previously computed abstract
states (so that no further action is required on this state). The main contribution of this
paper is an algorithm to determine both.

Consider a driving example of a parameterized system of n ≥ 2 process where each
process simply increments the value of shared variable x (see Figure 1 (left)). The idea
is to prove, given an initial state where x = 0, that x = n at termination.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 72–88, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Recursive Abstractions for Parameterized Systems 73

process(id) {
〈0〉 x = x + 1 〈1〉
}

G3 : ((1,1, . . . ,1),n)

G1 : ((0, . . . ,0,1,0, . . . ,0),1) G1 : ((0,1,1, . . .),m)

G2 : ((0,1,1, . . .),m+1)

abstract

subsumed

G 0 : ((0,0, . . . ,0),0)

Fig. 1. Abstract Computation Tree of Counting Ones

Figure 1 (right) outlines the steps in generating the symbolic execution tree for this
example. The tree is constructed by letting each process proceed from an initial program
point 〈0〉 to its final point 〈1〉.

We start with a program state of G0 = ((0,0, · · · ,0),0) where the first element is a
sequence of n bits representing the program counter, and the second element represents
the value of x. A first transition would bring the system to a state G1 = ((0, · · · , 0, 1,
0, · · · , 0), 1), where the position of the “1” is anywhere in the range 1 to n, and the
value of x is now 1. At this point, we would like to abstract this state to a state G1 where
the counter has, not exactly one numeral 1, but some 1 ≤ m < n copies of the numeral
1. Further, the value of x is not 1, but instead is equal to m. Let us denote this state
((0,1,1, · · ·),m).

There are now two possible transitions: first, corresponding to the case where G1 has
at least two 0’s, we get a new state G2 whose counter has a mixture of 0’s and 1’s. But
this new state is already covered by G1 and hence need not be considered further. The
second case is where G1 has exactly one 0, in which the final transition results in the
final state G3 = ((1,1, · · · ,1),x) where the counter has all 1’s. Since the value of x in G3

equals the number of 1’s, it follows that x = n in this final state.
The key points in this proof are as follow. First, we employed the notion of an abstract

state G1 where the counter has 1 ≤ m < n copies of 1 (the rest are 0), and x = m. We then
show that the concrete state G1 emanating from the initial state is in fact an instance of
G1. We then showed that the state G2 emanating from G1 is either (a) itself G1 (which
therefore requires no further consideration), or (b) the final state G3 : ((1,1, · · · ,1),x),
and where x = n. Thus the proof that x = n at the end is established.

The main result in this paper, in terms of this example, is first to construct the com-
putation tree, but more importantly to provide an automatic proof of the conditions that
make the tree a true representation of all the traces of the underlying parameterized
system. In our example, our algorithm proves the entailments G1 |= G1 and G2 |= G1.
Although not exemplified, all states in discussed here are written in our constraint lan-
guage using arrays and recursive definitions, which is to be discussed in Section 2. For
instance, the state G0 is represented using n-element array of zeroes which is defined us-
ing a recursive definition. We provide an algorithm to prove entailments in verification
conditions which involve integer arrays and the recursive definitions.

In summary, our contributions are threefold:

• We present a language for defining recursive abstractions consisting of recursive
definitions and integer arrays. Such abstractions are to be used to represent core
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properties of the parameterized system that are invariant over the parameter n of
the system. The provision of these abstractions is generally restricted to be manual.

• Then we provide a symbolic traversal mechanism to construct a symbolic execution
tree which exhibits the behavior of the parameterized system, which is exemplified
in Figure 1 (left). In constructing the tree we abstract the states encountered using
the recursive abstractions. In the above example, this is exemplified with the ab-
straction of G1 to G1. Our objective is to produce a closed tree, where all the paths
in the tree reaches the end of the program’s execution (the case of G3 above) or ends
in a state that is subsumed by some other state in the tree (the case of G2, which is
subsumed by G1).

Now, there are two kinds of proofs needed: one is for the correctness of the
abstraction step (represented as the entailment G1 |= G1 of two formulas). Similarly,
we need a proof of entailment of formulas defining the subsumption of one state
over another (eg. G2 |= G1 above).

• Finally we devise a proof method where the recursive definitions and the arrays
work together in the entailment proof. In this way, the only manual intervention
required is to provide the abstraction of a state (in our example, the provision of
the abstraction G1 to abstract G1). Dispensing with this kind of manual interven-
tion is, in general, clearly as challenging as discovering loop invariants in regular
programs. However, it is essentially dependent on knowledge about the algorithm
underpinning the system, and not about the proof system itself.

1.1 Related Work

Central to the present paper is the prior work [9] which presented a general method
for the proof of (entailment between) recursively defined predicates. This method is a
proof reduction strategy augmented with a principle of coinduction, the primary means
to obtain a terminating proof. In the present paper, the earlier work is extended first by
a symbolic transition system which models the behavior of the underlying parameter-
ized system. A more important extension is the consideration of array formulas. These
array formulas are particularly useful for specifying abstract properties of states of a
parameterized systems.

Recent work by [3] concerns a class of formulas, environment predicates, in a way
that systems can be abstracted into a finite number of such formulas. The essence of the
formula is a universally quantified expression relating the local variable of a reference
process to all other processes. For example, a formula of the form ∀ j �= i : x[i] < x[ j]
could be used to state that the local variable x of the reference process i is less than the
corresponding variable in all other processes. A separate method is used to ensure that
the relationships inside the quantification fall into a finite set eg. predicate abstraction.
An important advantage of these works is the possibility of automatically deriving the
abstract formulas from a system.

The indexed predicates method [4] is somewhat similar to environment predicates in
that the formula describes universally quantified statements over indices which range
over all processes. Determining which indexed predicates are appropriate is however
not completely automatic. Further, these methods are not accompanied by an abstract
transition relation.
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The paper [1] presents safety verification technique of parameterized systems us-
ing abstraction and constraints. Key ideas include the handling of existentially and
universally-quantified transition guards), and the use of gap-order constraints. Abstrac-
tion is done by weakening the gap-order constraints.

Our method differs from the above three works because we present a general lan-
guage for the specification of any abstraction, and not a restricted class. We further
provide a transition relation which can work with the abstraction language in order to
generate lemmas sufficient for a correctness proof. The proof method, while not decid-
able, is general and can dispense with a large class of applications.

Earlier work on counter abstraction [7] clearly is relevant to our abstractions which
is centrally concerned with describing abstract properties of program counters. Later
works on invisible invariants [6] show that by proving properties of systems with a
fixed (and small) parameter, that the properties indeed hold when the parameter is not
restricted. In both these classes of works, however, the system is assumed to be finite
state.

There are some other works using inductive, as opposed to abstraction, methods for
example [5]. While these methods address a large class of formulas, they often depend
on significant manual intervention.

We finally mention the work of [2] which, in one aspect, is closest in philosophy to
our work. The main idea is to represent both the system and the property (including live-
ness properties) as logic programs. In this sense, they are using recursive definitions as
we do. The main method involves proving a predicate by a process of folding/unfolding
of the logic programs until the proof is obvious from the syntactic structure of the re-
sulting programs. They do not consider array formulas or abstract interpretation.

2 The Language

In this section we provide a short description of constraint language allowed by the
underlying constraint solver assumed in all our examples.

2.1 Basic Constraints

We first consider basic constraints which are constructed from two kinds of terms:
integer terms and array expressions. Integer terms are constructed in the usual way,
with one addition: the array element. The latter is defined recursively to be of the form
a[i] where a is an array expression and i an integer term. An array expression is either an
array variable or of the form 〈a, i, j〉 where a is an array expression and i, j are integer
terms.

The meaning of an array expression is simply a map from integers into integers, and
the meaning of an array expression a′ = 〈a, i, j〉 is a map just like a except that a′[i] = j.
The meaning of array elements is governed by the classic McCarthy [10] axioms:

i = k → 〈a, i, j〉[k] = j
i �= k → 〈a, i, j〉[k] = a[k]
A basic constraint is either an integer equality or inequality, or an equation between

array expressions. The meaning of a constraint is defined in the obvious way.
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sys(N,K,X) :- 1 ≤ Id ≤ N, K[Id] = 0, K’=<K,Id,1>, X’=X+1, sys(N,K’,X’).

Fig. 2. Transitions of Counting Ones

In what follows, we use constraint to mean either an atomic constraint or a con-
junction of constraints. We shall use the symbol ψ or Ψ, with or without subscripts, to
denote a constraint.

2.2 Recursive Constraints

We now formalize recursive constraints using the framework of Constraint Logic Pro-
gramming (CLP) [11]. To keep this paper self-contained, we now provide a brief back-
ground on CLP.

An atom is of the form p(t̃) where p is a user-defined predicate symbol and t̃ a tuple
of terms, written in the language of an underlying constraint solver. A rule is of the
form A:-Ψ, B̃ where the atom A is the head of the rule, and the sequence of atoms
B̃ and constraint Ψ constitute the body of the rule. The body of the rule represents
a conjunction of the atoms and constraints within. The constraint Ψ is also written
in the language of the underlying constraint solver, which is assumed to be able to
decide (at least reasonably frequently) whether Ψ is satisfiable or not. A rule represents
implication with the body as antecedent and the head as the conclusion. A program is
a finite set of rules, which represents a conjunction of those rules. The semantics of a
program is the smallest set of (variable-free) atoms that satisfy the program. Given a
CLP program, recursive constraints are constructed using recursive predicates defined
in the program.

Example 1 (Count Ones). The following program formalizes the states described in the
“counting ones” example (note that denotes “any” value). In the predicates below, the
number N represents the parameter, the array K represents the counter, and X represents
the shared variable. Allzeroes(N,K,X) holds for any N, K, and X when K is an array of
length N with all elements zero and X is zero. Allones(N,K,X) holds when all elements
of K are one, and X=N. Finally, the meaning of abs(N, K, M) is that K is a bit vector
and M is the number of 1’s in K.
allzeroes(0, , 0).
allzeroes(N, 〈K,N,0〉, 0) :- N > 0, allzeroes(N-1, K, 0).
allones(0, , 0).
allones(N, 〈K,N,1〉, N) :- N > 0, allones(N-1, K, N-1).
bit(0).
bit(1).
abs(0, , 0).
abs(N, 〈K,N,B〉, M+B) :- N > 0, bit(B), abs(N-1, K, M).

3 Formalization of a Parameterized System

We now formalize a parameterized system as a transition system. We assume inter-
leaving execution of the concurrent processes, where a transition that is executed by
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a process is considered atomic, that is, no other process can observe the system state
when another process is executing a transition. Similar to the definition of recursive
constraints in the previous section, the transition systems here are also defined using
CLP, where a CLP rule models a state transition of the system.

3.1 Abstract Computation Trees

Before proceeding, we require a few more definitions on CLP. A substitution θ simul-
taneously replaces each variable in a term or constraint e into some expression, and we
write eθ to denote the result. We sometimes write θ more specificly as [e1/t1, . . . ,en/tn]
to denote substitution of ti by ei for 1 ≤ i ≤ n. A renaming is a substitution which maps
each variable in the expression into a variable distinct from other variables. A ground-
ing is a substitution which maps each integer or array variable into its intended universe
of discourse: an integer or an array. Where Ψ is a constraint, a grounding of Ψ results
in true or false in the usual way.

A grounding θ of an atom p(t̃) is an object of the form p(t̃θ) having no variables. A
grounding of a goal G ≡ (p(t̃),Ψ) is a grounding θ of p(t̃) where Ψθ is true. We write
[[G ]] to denote the set of groundings of G . We say that a goal G entails another goal G ′,
written G |= G ′, if [[G ]] ⊆ [[G ′]].

From now on we speak about goals which have exactly the same format as the body
of a rule. A goal that contains only constraints and no atoms is called final.

Let G ≡ (B1, · · · ,Bn,Ψ) and P denote a goal and program respectively. Let R ≡
A:-Ψ1,C1, · · · ,Cm denote a rule in P, written so that none of its variables appear in G .
Let the equation A = B be shorthand for the pairwise equation of the corresponding
arguments of A and B. A reduct of G using a rule R which head matches an atom Bi in
G , denoted REDUCTBi(G ,R), is of the form

(B1, · · · ,Bi−1,C1, · · · ,Cm,Bi+1, · · · ,Bn,(Bi = A),Ψ,Ψ1)
provided the constraint (Bi = A)∧Ψ∧Ψ1 is satisfiable.

Definition 1 (Unfold). Given a program P and a goal G , UNFOLDB(G) is {G ′|∃R ∈
P : G ′ = REDUCTB(G ,R)}.

A derivation sequence for a goal G0 is a possibly infinite sequence of goals G0, G1, · · ·
where G i, i > 0 is a reduct of G i−1. If the last goal Gn is a final (hence no rule R of
the program can be applied to generate a reduct of Gn), we say that the derivation is
successful. Since a goal can be unfolded to a number of other goals (reducts), we can
identify the derivation tree of a goal.

Definition 2 (Abstract Computation Tree). An abstract computation tree is defined
just like a derivation tree with one exception: the use of a derivation step may produce
not the reduct goal G as originally defined, but a generalization G of this reduct goal.
Whenever such a generalization is performed in the tree construction, we say that an
abstraction step is performed on G obtaining G .

Our concern in this paper is primarily to compute an abstract computation tree which
represents all the concrete traces of the underlying parameterized system. The following
property of abstract trees ensures this.
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Definition 3 (Closure). An abstract computation tree is closed if each leaf node repre-
sents a goal G which is either terminal, ie. no transition is possible from G , or which is
entailed by a goal labelling another node in the tree.

3.2 Symbolic Transitions

Next we describe how to represent a parameterized system as a CLP program. In doing
so, we inherit a framework of abstract computation trees of parameterized systems.
More specifically, the safety property that we seek can then be obtained by inspection
of a closed abstract computation tree that we can generate from the system.

We start with a predicate of the form sys(N,K,T,X) where the number N represents
the parameter, the N-element array K represents the program counter, the N-element
array T represents each local variable of each process, and finally, X represents a
shared/global variable. Multiple copies of T and/or X may be used as appropriate.

We then write symbolic transitions of a parameterized systems using the following
general format:

sys(N, K, T, X) :- K[Id] = α, K’ = <K, Id, β>,
Ψ(N, K, T, X, K’, T’, X’), sys(N, K’, T’, X’).

This describes a transition from a program point α to a point β in a process. The vari-
able Id symbolically represents a (nondeterministic) choice of which process is being
executed. We call such variables index variables. The formula Ψ denotes a (basic or
recursive) constraint relating the current values K,T,X and future values K′,T ′,X ′ of
the key variables.

Consider again the example of Figure 1, and consider its transition system in Figure
2. The transition system consists of transitions from program counter 〈0〉 to 〈1〉 of a
parameterized system, where each process simply increments its local variable X and
terminates1. The system terminates when the program counter contains only 1’s, ie.
when all processes are at point 〈1〉.

3.3 The Top-Level Verification Process

In this section we outline the verification process. The process starts with a goal repre-
senting the initial state of the system. Reduction and abstraction steps are then succes-
sively applied to the goal resulting in a number of verification conditions (obligations),
which are proved using our proof method.

We now exemplify using the Counting Ones example of Section 1. This goal repre-
senting the initial state is G0 in Figure 1. Recall that we formalize the transitions of the
Counting Ones example in Figure 2. In our formalization, we represent the goal G0 as
follows sys(N,K,X),allzeroes(N,K,X) denoting a state where all the elements of the
array K are zero.

We apply the transition of Figure 2 by reducing G0 into the goal G1, which in our
formalism is the goal sys(N,K′,X ′),allzeroes(N,K,X),1 ≤ Id1 ≤ N,K[Id1] = 0,K′ =
〈K, Id1,1〉,X ′ = X + 1. The goal represents a state where only one of the elements of
the array K is set to 1. Note that this reduction step is akin to strongest postcondition

1 Termination here means that no further execution is defined.
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propagation [12] since given the precondition allzeroes(N,K,X), the postcondition is
exactly (∃K,X , Id1 : allzeroes(N,K,X),1 ≤ Id1 ≤ N,K[Id1] = 0,K′ = 〈K, Id1,1〉,X ′ =
X + 1)[K/K′,X/X ′].

We now abstract the goal G1 into G1, which in our formalism is represented as
sys(N,K′,X ′),abs(N,K′,X ′). Here one verification condition in the form of an entail-
ment is generated:

allzeroes(N,K,X),1 ≤ Id1 ≤ N,K[Id1] = 0,K′ = 〈K, Id1,1〉,X ′ = X + 1
|= abs(N,K′,X ′).

The proof this obligation guarantess that the abstraction is an over approximation.
Now, the propagation from G1 to G2 is again done by applying unfold (reduction) to

the predicate sys based on its definition (Figure 2). As the result, we obtain the goal G2

as follows:

sys(N,K′′,X ′′),abs(N,K′,X ′),1 ≤ Id2 ≤ N,K′[Id2] = 0,K′′ = 〈K′, Id2,1〉,X ′′ = X ′ + 1

Proving of subsumption of G2 by G1 is now equivalent to the proof of the verification
condition

abs(N,K′,X ′),1 ≤ Id2 ≤ N,K′[Id2] = 0,K′′ = 〈K′, Id2,1〉,X ′′ = X ′ + 1
|= abs(N,K′,X ′)[K′′/K′,X ′′/X ′].

The purpose of renaming in the above example is to match the system variables of G2

with those of G1.

4 The Proof Method

In this key section, we consider proof obligations of the form G |= H for goals G and
H possibly containing recursive constraints.

Intuitively, we proceed as follows: unfold the recursive predicates in G completely a
finite number of steps in order to obtain a “frontier” containing the goals G1, . . . ,Gn. We
note that “completely” here means that {G1, . . . ,Gn} = UNFOLDA(G). We then unfold

G1 , . . . Gn

Unfold

Coinduction

Partial
Unfold

. . .

. . .

H1

. . .

. . .
H j

Hm

To Prove:
G1 ∨ . . .∨Gn |=
H1 ∨ . . .∨Hm

Complete

G
?
|= H

Fig. 3. Informal Structure of Proof Process

H obtaining goals H 1, . . . ,Hm,
but this time not necessarily com-
pletely, that is, we only require that
{H 1, . . . ,Hm} ⊆ UN-FOLDB(H ). This
situation is depicted in Figure 3. Then,
the proof holds if

G1 ∨ . . .∨Gn |= H1 ∨ . . .∨Hm

or alternatively, Gi |= H1 ∨ . . . ∨ Hm

for all 1 ≤ i ≤ n. This follows from
the fact that G |= G1 ∨ . . .∨Gn, (which
is not true in general, but true in the
least-model semantics of CLP), and
the fact Hj |= H for all j such that
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1 ≤ j ≤ m. If all variables in H appear in G , we can reduce the proof to ∀i : 1 ≤
i ≤ n,∃ j : 1 ≤ j ≤ m : Gi |= Hj. Finally, we seek to eliminate the predicates in Hj so
the remaining proof is one about basic constraints.

In this paper we do not go further with the proof of basic constraints. We instead
assume the use of a standard black-box solver, such as the SMT solvers [13, 14, 15].
In our own experiments, we use a method from [16] to convert constraints on array
segments into constraints on integers, and then dispatch the integer constraints using
the real-number solver of CLP(R ) .

In addition to this overall idea of using left and right unfolds, there are a few more
rules, as detailed below.

4.1 The Coinduction Rule

Before presenting our collection of proof rules, one of them, the coinduction rule, de-
serves preliminary explanation. Let us illustrate this rule on a small example. Consider
the definition of the following two recursive predicates

m4(0). even(0).
m4(X+4) :- m4(X). even(X+2) :- even(X).

whose domain is the set of non-negative integers. The predicate m4 defines the set of
multiples of four, whereas the predicate even defines the set of even numbers. We
shall attempt to prove that m4(X)|=even(X), which in fact states that every multiple
of four is even. We start the proof process by performing a complete unfolding on the
lhs goal (see definition in Section 4). We note that m4(X) has two possible unfoldings,
one leading to the empty goal with the answer X=0, and another one leading to the goal
m4(X’),X’=X-4. The two unfolding operations, applied to the original proof obligation
result in the following two new proof obligations, both of which need to be discharged
in order to prove the original one.

X=0 |= even(X) (1) m4(X’),X’=X-4 |= even(X) (2)

The proof obligation (1) can be easily discharged. Since unfolding on the lhs is no
longer possible, we can only unfold on the rhs. We choose1 to unfold with rule even(0),
which results in a new proof obligation which is trivially true, since its lhs and rhs are
identical.

For proof obligation (2), before attempting any further unfolding, we note that the
lhs m4(X’) of the current proof obligation, and the lhs m4(X) of the original proof
obligation, are unifiable (as long as we consider X’ a fresh variable), which enables the
application of the coinduction principle. First, we ”discover” the induction hypothesis
m4(X’)|=even(X’), as a variant of the original proof obligation. Then, we use this
induction hypothesis to replace m4(X’) in (2) by even(X’). This yields the new proof
obligation

even(X’),X’=X-4 |= even(X) (3)

To discharge (3), we unfold twice on the rhs, using the even(X+2) :- even(X) rule.
The resulting proof obligation is

even(X’),X’=X-4 |= even(X’’’),X’’’=X’’-2,X’’=X-2 (3)
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(LU+I)
Π�{Ã � G |= H }

Π ∪
Sn

i=1{Ã∪{G |= H } � G i |= H }

UNFOLD(G ) =
{G1, . . . ,Gn}

(RU)
Π�{Ã � G |= H }

Π∪{Ã � G |= H ′
}
H ′ ∈ UNFOLD(H )

(CO)
Π�{Ã � G |= H }

Π∪{Ã � H ′θ |= H }

G ′ |= H ′
∈ Ã and there

exists a substitution θ s.t. G |= G ′θ

(CP)
Π�{Ã � G ∧ p(x̃) |= H ∧ p(ỹ)}

Π�{Ã � G |= H ∧ x̃ = ỹ}

(SPL)
Π�{Ã � G |= H }

Π∪
Sk

i=1{Ã � G ∧ψi |= H }
ψ1 ∨ . . .∨ψk is valid

(EXR)
Π�{Ã � G |= H (z)}

Π�{Ã � G ∧ z = e |= H (z)}
z is existential

Fig. 4. Proof Rules for Recursive Constraints

where variables X’’ and X’’’ are existentially quantified2. Using constraint simplifi-
cation, we reduce this proof obligation to even(X-4)|=even(X-4), which is obviously
true.

In the above example, m4(X) is unfolded to a goal with answer X=0, however, in
general the proof method does not require a base case. We could remove the fact m4(0)
from the definition of m4, and still obtain a successful proof. We call our technique
“coinduction” from the fact that it does not require any base case.

4.2 The Proof Rules

We now present a formal calculus for the proof of assertions G |= H . To handle the
possibly infinite unfoldings of G and H , we shall depend on coinduction, which allows
the assumption of a previous obligation. The proof proceeds by manipulating a set of
proof obligations until it finally becomes empty or a counterexample is found. Formally,
a proof obligation is of the form Ã � G |= H where the G and H are goals and Ã is a
set of assumption goals whose assumption (coinductively) can be used to discharge the
proof obligation at hand. This set is implemented in our algorithm as a memo table.

Our proof rules are presented in Figure 4. The � symbol represents the disjoint union
of two sets, and emphasizes the fact that in an expression of the form A � B, we have
that A ∩ B = /0. Each rule operates on the (possibly empty) set of proof obligations Π,
by selecting one of its proof obligations and attempting to discharge it. In this process,
new proof obligations may be produced. We note that our proof rules are presented in

2 For clarity, we sometimes prefix such variables with ’?’.



82 J. Jaffar and A.E. Santosa

REDUCE(G |= H ) returns boolean

choose one of the following:

• Constraint Proof: (CP) + Constraint Solving
Apply a constraint proof to G |= H .
If successful, return true, otherwise return false

• Memoize (G |= H ) as an assumption
• Coinduction: (CO)

if there is an assumption G ′ |= H ′ such that
REDUCE(G |= G ′θ) = true ∧ REDUCE(H ′θ |= H ) = true

then return true.
• Unfold:

choose left or right
case: Left: (LU+I)

choose an atom A in G to reduce
for all reducts GL of G using A: if REDUCE(GL |= H ) = false return false
return true

case: Right: (RU)
choose an atom A in H to reduce, obtaining GR
return REDUCE(G |= GR)

• Split:
Find an index variable Id and a parameter variable N and apply the split rule using Id �=
N ∨ Id = N to split G into G1 and G2.
return REDUCE(G1 |= H ) ∧ REDUCE(G2 |= H )

• Existential Variable Removal:
If an existential array variable z appears in the form z = 〈x, i,e〉, then simply substitute z
by 〈x, i,e〉 everywhere (in H ). If however z appears in the form x = 〈z, i,e〉 where x is not
existential, then find an expression in G of the form x = 〈x′, i,e〉 and replace z by x′. Let the
result be H ′.
return REDUCE(G |= H ′)

Fig. 5. Search Algorithm for Recursive Constraints

the “reverse” manner than usual, where the conclusions to be proven is written above
the horizontal line and the premise to achieve the conclusion is written below the line.
Our proof rules can be considered as a system of production of premises whose proofs
establish the desired conclusion.

The left unfold with new induction hypothesis (LU+I) (or simply “left unfold”) rule
performs a complete unfold on the lhs of a proof obligation, producing a new set of
proof obligations. The original formula, while removed from Π, is added as an assump-
tion to every newly produced proof obligation, opening the door to using coinduction
later in the proof.

The rule right unfold (RU) performs an unfold operation on the rhs of a proof obli-
gation. In general, the two unfold rules will be systematically interleaved. The resulting
proof obligations are then discharged either coinductively or directly, using the (CO)
and (CP) rules, respectively.

The rule coinduction application (CO) transforms an obligation by using an assump-
tion, and thus opens the door to discharging that obligation via the direct proof (CP)
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rule. Since assumptions can only be created using the (LU+I) rule, the (CO) rule real-
izes the coinduction principle. The underlying principle behind the (CO) rule is that a
“similar” assertion G ′ |= H ′ has been previously encountered in the proof process, and
assumed as true.

Note that this test for coinduction applicability is itself of the form G |= H . However,
the important point here is that this test can only be carried out using basic constraints,
in the manner prescribed for the CP rule described below. In other words, this test does
not use the definitions of (recursive) predicates.

The rule constraint proof (CP), when used repeatedly, discharges a proof obligation
by reducing it to a form which contains no recursive predicates. The intended use of
this rule is in case the recursive predicates of the rhs is the subset of the recursive pred-
icates of the lhs such that repeated applications of the rule results in rhs containing no
recursive predicates. We then simply ignore the lhs predicates and attempt to establish
the remaining obligation using our basic constraint solver.

The rule split (SPL) rule is straightforward: to break up the proof into pieces. The
rule existential removal (EXR) rule is similarly straightforward: to remove one instance
of an existential variable, one that appears only in the rhs. What is not straightforward
however is precisely how we use the SPL and EXR rules: in the former case, how do we
choose the constraints ψi? And in the latter, how do we choose the expression e? We
present answers to this in the search algorithm below.

4.3 The Search Algorithm

Given a proof obligation G |= H , a proof shall start with Π = { /0 � G |= H }, and pro-
ceed by repeatedly applying the rules in Figure 4 to it. We now describe a strategy so as
to make the application of the rules automated. Here we propose systematic interleav-
ing of the left-unfold (LU+I) and right-unfold (RU) rules, attempting a constraint proof
along the way. As CLP can be executed by resolution, we can also execute our proof
rules, based on an algorithm which has some resemblance to tabled resolution.

We present our algorithm in pseudocode in Figure 5. Note that the presentation is in
the form of a nondeterministic algorithm, and the order executing each choice of the
nondeterministic operator choose needs to be implemented by some form of systematic
strategy, for example, by a breadth-first strategy. Clearly there is a combinatorial explo-
sion here, but in practice the number of steps required for a proof is not large. Even so,
the matter of efficiently choosing which order to apply the rules is beyond the scope of
this paper.

In Figure 5, by a constraint proof of a obligation, we mean to repeatedly apply the
CP rule in order to remove all occurrences of predicates in the obligation, in an obvious
way. Then the basic constraint solver is applied to the resulting obligation.

Next consider the split rule in Figure 5. Note that we have specified the rather specific
instance of the SPL rule in which we replace a constraint of the form Id ≤ N, where Id is
an index variable and N represents the parameter, by (a disjunction of) two constraints
Id ≤ N, Id = N (Id = N) and Id ≤ N, Id �= N (Id < N). The reason for this is purely
technical; it is essentially because our recursive assertions depend on Id ≤ N and since
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7

Id = N
2a 2b

left unfold1

3a 3bsplit

4

5

coinduction
right
unfold

right
unfold

Id �= N

Fig. 6. Proof Tree

they are recursive on N, a recursive state may end up
with the situation where Id > N − 1, a situation which
is not similar to the parent state.

Finally consider the existential variable elimina-
tion rule in Figure 5. The essential idea here is sim-
ply that an existential variable is most likely to corre-
spond to some array expression on the lhs. Once again,
this choice of existential variable elimination is purely
technical and was created because it works in practice.

Lemma 1 (Soundness of Rules). G |= H if, starting with the proof obligation /0 �
G |= H , there exists a sequence of applications of proof rules that results in proof
obligations Ã � G ′ |= H ′ such that (a) H ′ contains only constraints, and (b) G ′ |= H ′

can be discharged by the basic constraint solver.

5 Examples

5.1 Counting Ones

In Figure 1, the tree is closed is due to state subsumption formalized as G2 |= G1 :
1: 1 ≤ Id2 ≤ N,K′[Id2] = 0 |= abs(N,〈K′, id2,1〉,X ′ + 1)

A complete proof tree is outlined in Figure 6. The algorithm left unfolds Obligation
1 into 2a and 2b (not shown). Obligation 2a can be proved directly. Obligation 2b is now
split into 3a and 3b. For 3a, we add the constraint Id �= N, and for 3b we add the com-
plementary constraint Id = N. We omit detailing 3b, and we proceed with explaining
the proof of 3a. Obligation 3a is as follows:
3a: abs(N − 1,K′′,X ′ − B),bit(B),K′′[Id2] = 0,1 ≤ Id2 < N

|= abs(N,〈〈K′′,N,B〉, Id2,1〉,X ′ + 1)
We now perform the crucial step of applying coinduction to Obligation 3a. This is

permitted because the lhs of 1 is entailed by the lhs goal 3a. To see this, perform the
substitutions [N − 1/N,X ′ − B/X ′] on Obligation 1. The result of applying coinduction
is:
4: abs(N − 1,〈K′′, Id2,1〉,X ′ − B + 1),bit(B),K′′[Id2] = 0,1 ≤ Id2 < N

|= abs(N,〈〈K′′,N,B〉, Id2,1〉,X ′ + 1)
We now right unfold this into Obligation 5, and prove Obligation 5 by constraint

reasoning, which is omitted.

5.2 Bakery Algorithm (Atomic Version)

To show a more substantial example, consider the bakery mutual exclusion algorithm
[17]. Here we consider, somewhat unrealistically, a simplified presentation where the
test for entry into the critical section, which considers the collection of all processes, is
assumed to be performed atomically.
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process(id) {
〈0〉 t[id] = max(t[1],. . .,t[N]) + 1;
〈1〉 await(forall j!=id : t[id]==0 ∨ t[id]<t[j]);
〈2〉 t[id] = 0; goto 〈0〉 }

sys(K,T,N) :- K[Id]=0, 1≤Id≤N, max(T,N,X), sys(〈K,Id,1〉, 〈T,Id,X+1〉, N).
sys(K,T,N) :- K[Id]=1, 1≤Id≤N, crit(T,N,Id), sys(〈K,Id,2〉,T,N).
sys(K,T,N) :- K[Id]=2, 1≤Id≤N, sys(〈K,Id,0〉, 〈T,Id,0〉,N).

abs(K,T,1) :- (K[1] = 0,T [1] = 0)∨ (K[1] = 1,T [1] > 0).
abs(K,T,N) :- N > 1,((K[N] = 0,T [N] =)∨ (K[N] = 1,T [N] > 0)),abs(K,T,N −1).

max(T,1,X) :- X ≥ T [1].
max(T,N,X) :- N > 1,X ≥ T [N],max(T,N −1,X).

crit(T,1, Id) :- Id = 1∨T [1] = 0∨T [1] > T [Id].
crit(T,N, Id) :- N > 1,(Id = N ∨T [N] = 0∨T [N] > T [Id]),crit(T,N −1, Id).

Fig. 7. Transitions and Predicates for Bakery

We represent the transitions and the recursive abstractions used in Figure 7.
A closed computation tree is depicted in Figure 8. The initial state G0 is where the

counter is all zeroes, and the local variables T [] (the “tickets”) are also all zero. The
state G1 denotes one transition of one process, symbolically denoted by Id, from point
〈0〉 to 〈1〉. At this point we perform an abstraction to obtain a state G1 which contains
not one but a number of program points at 1. This abstraction also constrains the tickets
so that if a counter is zero, then the corresponding ticket is also zero.

No further abstraction is needed. That is, the computation tree under G1 is in fact
closed, as indicated. Note that mutual exclusion then follows from the fact that from
state G2b or G3a, the only states in which a process is in the critical section, there is no
possible transition by a different process to enter the section. This is emphasized by the
the notation “infeasible” in Figure 8.

One of the conditions to show closure is that the (leaf) state G3a is subsumed by G2b.
(There are several others, eg. that G3c is subsumed by G1. We shall omit considering
these.) This is formalized as:

D.1 : abs(K′,T ′,N),crit(T ′,N, Id1),max(T ′,N,X),1 ≤ Id1 ≤ N,
K′[Id1] = 1,1 ≤ Id2 ≤ N,〈K′, Id1,2〉[Id2] = 0
|= abs(?S,〈T ′, Id2,X + 1〉,N),crit(〈T ′, Id2,X + 1〉,N,?Id3),
1 ≤?Id3 ≤ N,?S[?Id3] = 1,〈〈K′, Id1,2〉, Id2,1〉 = 〈?S,?Id3,2〉

In the above, the prefix ’?’ denotes existentially-quantified variables. For space reasons,
we omit the detailed proof. Instead, we depict in the proof tree of Figure 8 the major
steps that can be used in the proof.
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G 1 : ((0, . . . ,0,1,0, . . . ,0),(0, . . . ,0,v,0, . . . ,0))

G 3c : ((0,1,1,0, . . .),(0,v1 ,0,0, . . .))

G 2a : ((0,1,1,1, . . .),(0,v1 ,v2,v3, . . .))

G 3a : ((0,1,2,1, . . .),(0,v1 ,v2,v3, . . .))

G 3b : ((0,2,2,0, . . .),(0,v1 ,v2,0, . . .))

abstract

(infeasible)

G 0 : ((0,0, . . . ,0),(0,0, . . . ,0))

G 1 : ((0,1,1,0, . . .),(0,v1 ,v2,0, . . .))

G 2b : ((0,1,2,0, . . .),(0,v1 ,v2,0, . . .))
split

unfold

right
unfold

left
unfold

existential
removal

left
unfold

left
unfold

D.3a D.3b

D.2

D.1

D.4

D.5

D.6a D.6b

D.7a D.7b

D.8

D.9

D.10

split

coinduction

direct proof

right

Fig. 8. Computation and Proof Trees of Bakery Algorithm

5.3 Original Bakery Algorithm

We finally discuss the original version of the bakery algorithm [17]. Our purpose here
is to demonstrate abstraction beyond an array of variables. Here, abstraction is needed
because there is an additional loop implementing the incremental request for entry into
the critical section. To our knowledge, we provide the first systematic proof of the orig-
inal bakery algorithm. Our proof technique is semiautomatic, where the user only pro-
vide the declarative specification of loop invariants.

We show the program in Figure 9. We focus on the replacement of the await blocking
primitive in Figure 7 by a loop from 〈3〉 to 〈8〉, which itself contains two internal busy-
waiting loops. Figure 9 also shows the transition system of the loop, and the predicate
that is used. In the program and elsewhere, the operator ≺ is defined as follows: when
(a,b) ≺ (c,d) holds, then either a < b or when a = b, then b < d.

Figure 10 depicts an abstract computation tree. The state G2 represents entry
into the outerloop, and G2 its abstraction. G3a is its exit. The states G 3b and
Gba represent the two inner loops. The interesting aspect is the abstraction indi-
cated. It alone is sufficient to produce a closed tree. More specifically, we ab-
stract G2 : sys(K′,C,T,J′,N),K[Id1] = 3,K′ = 〈K, Id1,4〉,J′ = 〈J, Id1,1〉 into G 2 :
sys(K′,C,T,J′,N),K′[Id1] = 4,crit(C,T,J′, Id1),1 ≤ J′[Id1] ≤ N + 1.
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process(id) {
〈0〉 c[id] = 1;
〈1〉 t[id] = 1 + maximum(t[1],. . .,t[n]);
〈2〉 c[id] = 0;
〈3〉 j[id] = 1;
〈4〉 while (j ≤ N) {
〈5〉 if (c[j]!=0) goto 〈5〉;
〈6〉 if (t[j]!=0 && (t[j],j) ≺ (t[i],i)) goto 〈6〉;
〈7〉 j = j+1; }
〈8〉 goto 〈0〉; }

sys(K,C,T,J,N) :- K[Id]=3, sys(〈K,Id,4〉,C,T,〈J,Id,1〉,N)
sys(K,C,T,J,N) :- K[Id]=4, J[Id]≤ N, sys(〈K,Id,5〉,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=4, J[Id]>N, sys(〈K,Id,8〉,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=5, C[J] �= 0, sys(K,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=5, C[J]=0, sys(〈K,Id,6〉,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=6, T[J] �=0, ((T[J],J)≺(T[Id],Id)), sys(K,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=6, (T[J]=0∨((T[Id],Id)≺(T[J],J)),

sys(〈K,Id,7〉,C,T,J,N)
sys(K,C,T,J,N) :- K[Id]=7, sys(〈K,Id,4〉,C,T,〈J,Id,J[Id]+1〉,N)

crit(C,T,1, Id) :- Id = 1∨ (C[1] = 0,(T [Id], Id) ≺ (T [1],1))
crit(C,T,N, Id) :- Id = N ∨ (C[N] = 0,(T [Id], Id) ≺ (T [N],N)),crit(C,T,N −1, Id).

Fig. 9. Original Bakery with Transitions of the Entry Loop and Predicate

The state subsumption is formalized as the entailment G6 |= G2 as follows:
K′[Id1] = 4,crit(C,T,J′, Id1),1 ≤ J′[Id1] ≤ N + 1,K′[Id2] = 4,
K′′ = 〈K′, Id2,5〉,K′′[Id3] = 5,K′′′ = 〈K′, Id3,6〉,C[J′[Id3]] = 3,
T [J′] = 0 ∨ (T [Id4], Id4) ≺ (T [J′[Id4]],J′[Id4]),K′′′[Id4] = 6,Kiv = 〈K′′′, Id4,7〉,
Kiv[Id5] = 7,Kv = 〈Kiv, Id5,4〉,J′′ = 〈J′, Id,J′[Id5]+ 1〉
|= crit(C,T,J′′,?Id6),Kv[Id1] = 4,1 ≤ J′′[?Id6] ≤ N + 1

which can be proven along the lines indicated above. We omit the details.

abstract

G 6

G 1

G 2
G 2

G 3a
G 3b

G 4a

G 4b

G 5a
G 5b

Fig. 10. Abstract Computation Tree for
Entry Loop

6 Concluding Remarks

We presented a language of recursively de-
fined formulas about arrays of variables for the
purpose of specifying abstract states of param-
eterized systems. We then present a symbolic
transition framework for these formulas. This
can produce a finite representation of the be-
haviour of the system from which safety prop-
erties can be ascertained. The main result is a
two step algorithm for proving entailment of
these formulas. In the first step, we employ a
key concept of coindunction in order to reduce
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the recursive definitions to formulas about arrays and integers. In the second, we re-
duced these formulas to integer formulas.

Though we considered only safety properties in this paper, it is easy to see that our
notion of closed abstract tree does in fact contain the key information needed to argue
about termination and liveness. Essentially, this is because our framework is equiped
with symbolic transitions. What is needed is to show that in every path ending in a sub-
sumed state, that the execution from the parent state decreases a well founded measure.
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Abstract Model Checking
without Computing the Abstraction
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Abstract. Abstraction is a fundamental technique that enables the ver-
ification of large systems. In symbolic model checking, abstractions are
defined by formulas that relate concrete and abstract variables. In predi-
cate abstraction, the abstract variables are equivalent to some predicates
over the concrete variables.

In order to apply model checking on the abstract state space, it is
usually necessary to compute a quantifier-free formula that is equivalent
to the abstract transition relation. In predicate abstraction, the quantifier
elimination can be obtained by solving an ALLSAT problem. In many
practical cases, this computation results into a bottleneck.

In this paper, we propose a new algorithm that combines abstrac-
tion with bounded model checking and k-induction. The algorithm does
not rely on quantifier elimination, but encodes the model checking prob-
lem over the abstract state space into SAT problems. The algorithm is
a novelty in the state-of-the-art of abstract model checking because it
avoids computing the abstraction. An experimental evaluation with case
studies taken from an industrial project shows that the new algorithm
is more efficient and reaches in some cases a time improvement that is
exponential in the number of predicates.

1 Introduction

Model Checking (MC) [14,26] is an automatic technique to verify if a system
satisfies a property. The main problem of MC is the state-space explosion, i.e.,
the system is often too large to be verified. Abstraction [8] and symbolic repre-
sentation [3] are two major classes of techniques broadly adopted to tackle the
problem.

Abstraction defines a relationship between the states of the concrete system
and the states of a smaller system, which is more amenable for the verification.
Typically, abstraction over-approximates the semantics of the system so that if
a property holds in the abstract system, then it holds also in the concrete one.
A particular abstraction technique widely used with MC is predicate abstraction
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[15,11], where a set of predicates is chosen so that the abstract state space
observes only the evolution of these predicates in the original system.

Symbolic model checking [3] represents sets of states and transitions with
formulas. Symbolic algorithms manipulate formulas exploiting BDD-based or
SAT-based techniques. SMT solvers, which combine SAT techniques with solvers
for decidable first-order theories, are used when the system is described with first-
order formulas. Bounded Model Checking (BMC) [2] is a symbolic technique
that looks for counterexamples only with a bounded length k. BMC problems
are encoded into SAT problems, which are then solved using either a SAT solver
or an SMT solver, depending on the language used to describe the system. k-
induction [27] is a technique used to prove that, if there is no counterexample
of length up to k, then we can conclude that the property holds. The conditions
to prove that k is sufficiently large are encoded into SAT problems.

In order to combine symbolic model checking with abstraction, it is necessary
to compute a quantifier-free formula representing the transition relation of the
abstract system. This is typically obtained by eliminating the quantifiers in the
definition of the abstraction. When the abstract state space is finite, as in the
case of predicate abstraction, the abstract transition relation can be obtained
by solving an ALLSAT problem, i.e., by enumerating the models satisfying the
formula that defines the abstraction. In some cases, however, quantifier elimina-
tion is not possible, and in practice, also for predicate abstraction, results to be
a bottleneck (see, e.g., [10,19,4]).

In this paper, we propose a new algorithm for solving the problem of model
checking an abstract system. The idea is to embed the definition of the ab-
straction in the BMC and k-induction encodings. This way, we can verify the
correctness of the abstract system without computing the abstraction. The algo-
rithm can be applied to predicate abstraction, but also to infinite-state abstrac-
tion such as abstraction obtained by projection. We extend the abstract BMC
and k-induction to check the language emptiness of infinite-state fair transition
systems.

With regard to the standard approach to abstract model checking which com-
putes the abstraction upfront, the new algorithm considers only the parts of the
abstract state space that are relevant to the search. The solver is used to solve a
satisfiability problem rather than to enumerate all possible solutions. With re-
gard to model checking the concrete state space, the new algorithm exploits the
abstraction and solves more problems. When the abstract state space is finite
as in the case of predicate abstraction, k-induction is guaranteed to terminate,
which is not the case for the concrete infinite-state space.

We performed an experimental evaluation on benchmarks extracted from an
industrial project on requirements validation. The results show that the new
algorithm can solve problems where the computation of the abstraction is not
feasible, while in general is more efficient and can yield a time improvement that
is exponential in the number of predicates.

The paper is structured as follows: in Sec. 2, we describe the project that
motivated our research; in Sec. 3, we overview the background of symbolic model
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checking and abstraction; in Sec. 4, we present the new algorithm for model
checking an abstract system; in Sec. 5, we present the experimental evaluation;
in Sec. 6, we discuss the related work; finally, in Sec. 7, we conclude and hint
some future directions.

2 Motivations

2.1 Requirements Validation

Our work is motivated by a project funded by the European Railway Agency
(http://www.era.europa.eu). The aim of the project was to develop a method-
ology supported by a tool for the validation of the System Requirement Specifi-
cation of the European Train Control System (ETCS). The ETCS specification
is a set of requirements related to the automatic supervision of the location and
speed performed by the train on-board system. Building on emerging formal
methods for requirements validation, the requirements are formalized in first-
order temporal formulas and the analysis is based on a series of satisfiability
problems [5]. The satisfiability of the formulas is reduced to the problem of lan-
guage emptiness of fair transition systems. We use a BMC encoding with loops
to find accepting paths in the transition systems. When the problem cannot be
solved with BMC, we use predicate abstraction to check if the language of the
transition system is empty.

The systems generated by the process of requirements validation are very
large including hundreds of Boolean variables and tens of real variables. Unlike
in the standard setting of MC, there is no property that can guide the abstrac-
tion and the source of inconsistency is not known a priori. Even when a set of
predicates of the abstraction is manually defined, proving the language empti-
ness of such systems is challenging, because the computation of the abstraction
becomes prohibitive with a dozen of predicates.

3 Background

3.1 Fair Transition Systems

Fair Transition Systems (FTSs) [21] are a symbolic representation of infinite-
state automata. In symbolic model checking [3], FTSs are used to represent
both the system and the property. Set of states are expressed by means of logical
formulas over a given set V of variables, while set of transitions are represented
by formulas over V and the set V ′ of next variables {v′}v∈V , where v′ represents
the next value of v. Symbolic algorithms manipulate such formulas in order to
check if the system satisfies the property. We assume that the formulas belong to
a decidable fragment of first-order logic for which we have a satisfiability solver.
We use the abbreviations sat and unsat for satisfiable and unsatisfiable, resp.

http://www.era.europa.eu
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Definition 1. A Fair Transition System (FTS) is a tuple 〈V , I, T,F〉, where

– V is the set of variables,
– I(V) is a formula that represents the initial condition,
– T (V ,V ′) is a formula that represents the transition relation,
– F = {F1, ..., Fn} is a set of formulas representing the fairness conditions.

The set SV of states is given by all truth assignments to the variables V . Given a
state s, we use s′ to denote the corresponding truth assignment to the next state
variables, i.e. s′ = s[V ′/V ]. A state s is initial iff s |= I(V). Given two states s1
and s2, there exists a transition between s1 and s2 iff s1, s

′
2 |= T (V ,V ′). If π is a

sequence of states we denote with πi the i-th state of the sequence. If π is finite
we denote with |π| the length of π. A finite [resp. infinite] path of an FTS is a
finite [resp. infinite] sequence of states π such that, for all i, 1 ≤ i < |π| [resp.
i ≥ 1], there exists a transition between πi and πi+1 (πi, π

′
i+1 |= T ). A path π

is initial iff π1 is an initial state (π1 |= I). An infinite path π is fair iff, for all
F ∈ F , for infinitely many i, πi |= F .

Given an FTS M and a formula ϕ(V), the reachability problem is the problem
of finding an initial finite path s0, ..., sk of M such that sk |= ϕ. Model checking
of invariant properties can be reduced to a reachability problem.

The language of an FTS is given by the set of all initial fair paths. Given an
FTS M , the language emptiness problem is the problem of finding an initial fair
path of M . Model checking and satisfiability of linear-time temporal formulas
are typically reduced to the emptiness language problem of equivalent FTSs [28].
Thus, also the validation of requirements expressed in temporal logic is typically
solved by looking for an initial fair path in the FTS equivalent to. the conjunction
of the requirements.

Example 1. Consider a system 〈{δt, t, e}, true, Tc ∧ Td ∧ Te, {Fd, Fe}〉 where:

– δt is a non-negative real variable representing the time elapsed at every step.
– t is a timer (real variable) that progresses when δt > 0 and can be reset

when δt = 0.
– e is a Boolean variable that can change only when δt = 0.
– Tc := δt > 0→ (e′ = e ∧ t′ − t = δt) represents the constraint of a step with

elapsing time.
– Td := δt = 0→ (t′ = t ∨ t′ = 0) represents the constraint of a discrete step.
– Te := e → (e′ ∧ t′ = t) states that when e becomes (non-deterministically)

true both e and t do not change anymore.
– Fd := δt > 0 forces the progress of time.
– Fe := e forces the Boolean variable e to become eventually true.

The system has an infinite number of initial paths that reach the formula e, but
no infinite fair path, because when e becomes true the time is forced to freeze.
For example, the path shown in Fig. 1 is an initial path of the system, but cannot
be extended to any fair path.
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e = false
t = 0

δt = 0.3

e = false
t = 0.3
δt = 0.2

e = true
t = 0.5
δt = 0

e = true
t = 0.5
δt = 0

e = false
t = 0.5
δt = 0

Fig. 1. Example of path

3.2 Abstraction

Abstraction [8] is used to reduce the search space while preserving the satisfac-
tion of some properties. In MC, the abstraction is usually obtained by means
of a surjective function α : SV → SV̂ , called abstraction function, that maps
states of an FTS M into states of a smaller FTS M̂ . The concretization function
γ : SV̂ → 2SV is defined as γ(ŝ) = {s ∈ SV | α(s) = ŝ}. The abstraction function
α is symbolically represented by a formula Hα(V , V̂) such that s, ŝ |= Hα iff
α(s) = ŝ.

Once the set V̂ of abstract variables and the relation Hα are given, the ab-
straction M̂α is obtained by existentially quantifying the variables of M .

Definition 2. Given an FTS M , a set V̂ of abstract variables and the relation
Hα, the abstract FTS M̂α = 〈V̂ , Îα, T̂α, F̂α〉 is defined as follows:

– Îα(V̂) := ∃V(I(V) ∧Hα(V , V̂)),
– T̂α(V̂ , V̂ ′) := ∃V∃V ′(T (V ,V ′) ∧Hα(V , V̂) ∧ Hα(V ′, V̂ ′)).
– F̂α = {F̂α}F∈F where F̂α(V̂) := ∃V(F (V) ∧ Hα(V , V̂)).

Given a formula ϕ, we define its abstract version ϕ̂α as ∃V(ϕ(V) ∧ Hα(V , V̂)).
The abstraction over-approximates the reachability of an FTS M , in the sense

that if a condition is reachable in M , then also its abstract version is reachable
in M̂α. Similarly, if M has an initial fair path, the same holds for M̂α. Thus, if
we prove that a set of states is not reachable in M̂α, or that M̂α does not have
any initial fair path, the same can be concluded for the concrete FTS M .

Predicate abstraction. In Predicate Abstraction [15], the abstract state-space
is described with a set of predicates; each predicate is represented by an abstract
variable. Given an FTS M , we select a set P of predicates, such that each pred-
icate P ∈ P is a formula over the variables V that characterizes relevant facts
of the system. For every P ∈ P, we introduce a new abstract variable vP and
define VP as {vP }P∈P.

The abstraction function αP is defined as αP(s) := {vP ∈ VP | s |= P}, while
HP is defined as follows:

HP(V ,VP) :=
∧
P∈P

vP ↔ P (V) (1)

Example 2. Consider the system of Ex. 1 and the predicates δt > 0 and e. If
we eliminate the quantifiers in the definition of abstraction, we obtain the FTS
〈{vδt , ve}, true, ve → (ve∧¬vδt), {vδt , ve}〉. This abstract system has finite states
and it is easy to see that it does not have fair paths.
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3.3 Bounded Model Checking

Bounded Model Checking (BMC) ([2]) considers only initial paths of length
up to a certain bound. Given a bound k, an FTS M and a formula ϕ(V), the
bounded reachability problem is the problem of finding, for some j ≤ k an initial
finite path s0, ..., sj of M such that sj |= ϕ. The problem is usually reduced to
a satisfiability problem.

In the following, given a set X of variables, we use several copies of X , one
for each state of the path we are looking for. We will denote with Xi the i-th
copy of X . Thus, Vi = {vi}v∈V , where vi represents the i-th copy of v.

Definition 3. Given an FTS M , and a bound k, the formula PATHM,k is de-
fined as follows:

PATHM,k :=
∧

1≤h≤k

T (Vh−1,Vh) (2)

Definition 4. Given an FTS M , a bound k, and a formula ϕ, the formula
BMCM,k,ϕ is defined as follows:

BMCM,k,ϕ := I(V0) ∧ PATHM,k ∧ ϕ(Vk) (3)

The formula BMCM,k,ϕ encodes the bounded reachability problem.

Theorem 1. BMCM,k,ϕ is sat iff there exists an initial path of length k reach-
ing ϕ.

Bounded model checking with fair paths. A similar encoding is often used
to find lasso-shape initial fair paths of length up to k.

Definition 5. Given an FTS M , and a bound k, the formula BMCloop
M,k is defined

as follows:

BMCloop
M,k := I(V0) ∧ PATHM,k ∧

∨
0≤l<k,

∧
v∈V

vl =vk ∧
∧

F∈F ,

∨
l≤h<k

F (Vh) (4)

As BMCM,k,ϕ is an approximation of the reachability problem, BMCloop
M,k is an

approximation of the language emptiness problem: if the formula is sat, the
language is not empty; otherwise, we have to increase the bound. However, if
the state space is not finite, it is not guaranteed that there exists a bound
sufficient to solve the problem.

3.4 K-Induction

K-induction [27] is a technique that proves that if a set of states is not reachable
in k steps, then it is not reachable at all. On the lines of the induction principle,
it consists of a base step, which solves the bounded reachability problem with a
given bound k of steps, and an inductive step, which concludes that k is sufficient
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input : FTS M = 〈V, I, T 〉 and formula ϕ

output : Y ES if ϕ is reachable in M , NO otherwise
begin1

k:=0;2

if BMCM,k,ϕ is sat then3

return Y ES4

else if KINDFWM,k+1 or KINDBWM,k+1,ϕ is unsat then5

return NO6

else7

k++;8

end9

Algorithm 1. K-induction(KIND)

to solve the (unbounded) reachability problem. The idea of the inductive step is
to check either if the initial states cannot reach new (non-visited) states in k+1
steps, or the target set of states cannot be reached in k + 1 steps. These checks
can be solved by means of satisfiability.

Definition 6. Given an FTS M , and a bound k, the formula SIMPLEPATHM,k

is defined as follows:

SIMPLEPATHM,k := PATHM,k ∧
∧

0≤i<j≤k

¬
∧
v∈V

vi = vj (5)

Definition 7. Given an FTS M , and a bound k, the formula KINDFWM,k is
defined as follows:

KINDFWM,k := I(V0) ∧ SIMPLEPATHM,k (6)

Theorem 2. If KINDFWM,k+1 is unsat, then M does not have an initial simple
path with more than k states.

Definition 8. Given an FTS M , a formula ϕ, and a bound k, the formula
KINDBWM,k,ϕ is defined as follows:

KINDBWM,k,ϕ := SIMPLEPATHM,k ∧ ϕ(Vk) (7)

Theorem 3. If KINDBWM,k+1,ϕ is unsat, M does not have a simple path
reaching ϕ with more than k states.

Corollary 1. If, for all i ≤ k, BMCM,i,ϕ is unsat and, either KINDFWM,k+1
or KINDBWM,k+1,ϕ is unsat as well, then ϕ is not reachable in M .

Corollary 1 gives rise to Algorithm 3.4, where the formulas are iteratively checked
for increasing values of k. In case M is finite-state, Algorithm 3.4 is guaranteed
to terminate. The works in [27] and [13] exploit stronger version of KINDFWM,k

and KINDBWM,k,ϕ that consider the negation of the initial condition I and the
target condition ϕ respectively.
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3.5 Abstract Model Checking with Abstraction

The standard way to solve the reachability problem or the emptiness problem
on the abstraction of an FTS M is first to compute the FTS M̂ and then to
apply model checking techniques on the abstract state space. We denote with
AMCreach such procedure when it solves the reachability problem, while with
AMCloop the similar procedure that checks the language emptiness of the ab-
straction of M .

4 Abstract Model Checking without Abstraction

4.1 General Idea

The key idea of the paper is to embed the definition of the abstraction in the
encoding of BMC. This highlights the possibility of pre-computing the quan-
tification of the abstract variables. Let us consider the abstract version of the
formula 3, namely:

Îα(V̂0) ∧
∧

1≤h≤k

T̂α(V̂h−1, V̂h) ∧ ϕ̂α(V̂k) ≡

Îα(V̂0) ∧ T̂α(V̂0, V̂1) . . . ∧ T̂α(V̂k−1, V̂k) ∧ ϕ̂α(V̂k)

If we substitute Îα, T̂α, and ϕ̂α with their definitions, we obtain:

I(V0) ∧ Hα(V0, V̂0) ∧ Hα(V0, V̂0) ∧ T (V0,V1) ∧ Hα(V1, V̂1) ∧ . . . ∧
Hα(Vk−1, V̂k−1) ∧ T (Vk−1,Vk) ∧ Hα(Vk, V̂k) ∧Hα(Vk, V̂k) ∧ ϕ(Vk)

where quantifiers have been lifted at top level by renaming some bound variables.
Note that the scope of abstract variables V̂i is limited to two copies of the

abstraction relation. Let us define the formula EQα(V ,V) as

EQα(V ,V) := ∃V̂(Hα(V , V̂) ∧Hα(V , V̂)) (8)

EQα encodes the fact that two concrete states correspond to the same abstract
state. Formally, s, s |= EQα iff α(s) = α(s). We can use EQα to provide abstract
versions of the formulas used for BMC and k-induction. Intuitively, instead of
having a contiguous sequence of transitions, the encoding represents a sequence
of disconnected transitions where every gap between two transitions is forced to
lay in the same abstract state (see Fig. 2).

In most of abstraction, the quantifier in EQα can be easily eliminated. For
example in predicate abstraction:

EQα ≡ EQP(V ,V) :=
∧
P∈P

P (V)↔ P (V) (9)

Another interesting case is the abstraction by projection where the abstract
variables are a subset Ṽ of the concrete variables and the non-abstract variables
are quantified out. In this case,

EQα ≡ EQṼ(V ,V) :=
∧
v∈Ṽ

v = v (10)
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Fig. 2. Abstract path

4.2 Paths and Simple Paths

We first define the abstract version of the PATHM,k and SIMPLEPATHM,k used
in the encoding of BMC and k-induction.

Definition 9. Given an FTS M = 〈V , I, T 〉, an abstraction function α, and a
bound k, the formula P̂ATHM,α,k is defined as follows:

P̂ATHM,α,k :=
∧

1≤h<k

(T (Vh−1,Vh) ∧ EQα(Vh,Vh)) ∧ T (Vk−1,Vk) (11)

Theorem 4. P̂ATHM,α,k is sat iff PATHM̂α,k is sat.

Definition 10. Given an FTS M = 〈V , I, T 〉, an abstraction function α, and a
bound k, the formula ̂SIMPLEPATHM,α,k is defined as follows:

̂SIMPLEPATHM,α,k := P̂ATHM,α,k ∧
∧

0≤i<j≤k

¬EQα(Vi,Vj) (12)

Theorem 5. ̂SIMPLEPATHM,α,k is sat iff SIMPLEPATHM̂α,k is sat.

4.3 Abstract Bounded Model Checking

We define the abstract version of the BMC encoding. The formula B̂MCM,α,k,ϕ

is sat iff BMCM̂α,k,ϕ is sat. Therefore, if B̂MCM,α,k,ϕ is unsat then we can deduce

that there are no initial paths reaching ϕ̂α in k steps in M̂α. If B̂MCM,α,k,ϕ is
sat, we can extract from its model a satisfying assignment for BMCM̂α,k,ϕ.

Definition 11. Given an FTS M = 〈V , I, T 〉, a formula ϕ, an abstraction func-
tion α, and a bound k, the formula B̂MCM,α,k,ϕ is defined as follows:

B̂MCM,α,k,ϕ := I(V0) ∧ EQα(V0,V0) ∧ P̂ATHM,α,k ∧ EQα(Vk,Vk) ∧ ϕ(Vk) (13)

Theorem 6. B̂MCM,α,k,ϕ is sat iff BMCM̂α,k,ϕ is sat.

Similarly, we can define the abstract version of BMCloop
M,k.
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Definition 12. Given an FTS M , a bound k, and an abstraction function α,

the formula B̂MC
loop

M,α,k is defined as follows:

B̂MC
loop

M,α,k := I(V0) ∧ EQα(V0,V0) ∧ P̂ATHM,α,k ∧∨
0≤l<k,

∧
v∈V

EQα(Vl,Vk) ∧
∧

F∈F ,

∨
l≤h<k

F (Vh) (14)

Theorem 7. B̂MC
loop

M,α,k is sat iff BMCloop

M̂α,k
is sat.

4.4 Abstract k-Induction

We define the abstract version of the k-induction conditions. The formulas
̂KINDFWM,α,k and ̂KINDBWM,α,k,ϕ are sat iff respectively KINDFWM̂α,k and

KINDBWM̂α,k,ϕ are sat. Therefore, if B̂MCM,α,k,ϕ is unsat and, either
̂KINDFWM,α,k or ̂KINDBWM,α,k,ϕ is unsat then we can conclude that ϕ̂α is

not reachable.
Notice that we do not use the stronger version of KINDFWM̂α,k and

KINDBWM̂α,k,ϕ defined in [27], because they require to express the negation of
Îα and ϕ̂α. In fact, the definitions of Îα and ϕ̂α involve an existential quantifi-
cation, and their negation cannot be handled by the satisfiability solver.

Definition 13. Given an FTS M = 〈V , I, T 〉, an abstraction function α, and a
bound k, the formula ̂KINDFWM,α,k is defined as follows:

̂KINDFWM,α,k := I(V0) ∧ EQα(V0,V0) ∧ ̂SIMPLEPATHM,α,k (15)

Theorem 8. ̂KINDFWM,α,k is sat iff KINDFWM̂α,k is sat.

Definition 14. Given an FTS M = 〈V , I, T 〉, a formula ϕ, an abstraction func-
tion α, and a bound k, the formula ̂KINDBWM,α,k,ϕ is defined as follows:

̂KINDBWM,α,k,ϕ := ̂SIMPLEPATHM,α,k ∧ EQα(Vk,Vk) ∧ ϕ(Vk) (16)

Theorem 9. ̂KINDBWM,α,k,ϕ is sat iff KINDBWM̂α,k,ϕ is sat.

Corollary 2. If, for all i ≤ k, B̂MCM,α,i,ϕ is unsat and, either ̂KINDFWM,α,k+1 or
̂KINDBWM,α,k+1,ϕ is unsat, then ϕ̂α is not reachable in M̂α.

4.5 Abstract Model Checking

The formulas B̂MCM,α,k,ϕ, B̂MC
loop

M,α,k, ̂KINDFWM,α,k, and ̂KINDBWM,α,k,ϕ

can be used to define different procedures for solving reachability and language
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input : concrete FTS M = 〈V, I, T 〉 and formula ϕ

output : Y ES if ϕ̂α is reachable in M̂α, NO otherwise
begin1

k:=0;2

if B̂MCM,α,k,ϕ is sat then3

return Y ES4

else if ̂KINDFWM,α,k+1 or ̂KINDBWM,α,k+1,ϕ is unsat then5

return NO6

else7

k++;8

end9

Algorithm 2. Abstract model checking without abstraction

emptiness of an abstraction of an FTS. We denote such procedures with AM-

Cwareach and AMCwaloop respectively. AMCwareach is shown in Algorithm
2. On the lines of k-induction, it iteratively increases the bound k till either
it finds a counterexample or it proves the property correct. Unlike Algorithm
1, the path found by BMC is abstract and the bound used by k-induction to
conclude is related to the abstract state space. In particular, when the abstract
state space is finite, such bound is guaranteed to exist.

AMCwaloop is similar to AMCwareach, but B̂MC
loop

M,α,k is used instead of

B̂MCM,α,k,ϕ, and only ̂KINDFWM,α,k is used to prove the absence of initial fair
paths. In principle, we can add further induction conditions based on fairness,
but in practice we experienced that they do not manage to conclude and solve
the problem, and therefore we can save the related overhead.

When predicate abstraction is adopted, both AMC and AMCwa are expo-
nential in the number of predicates. However, AMC must find all solutions of
the abstraction formula, while AMCwa delegates the blow up to the search.
The computation of the abstraction in AMC is orthogonal to the search and is
computed upfront, while AMCwa considers only the parts of the abstract state
space that are relevant to the search. The solver is used to solve a satisfiability
problem rather than to enumerate all possible solutions.

Example 3. Consider the FTS of Ex. 1 and the predicates of Ex. 2. AMCwa

proves that the FTS has an empty language by checking that B̂MC
loop

M,α,k is unsat
for k = 1, 2, 3, 4 and that KINDFWM,k is unsat for k = 4. Note that k-induction
on the concrete FTS cannot prove the same.

5 Experimental Evaluation

5.1 Implementation

We implemented AMCwareach and AMCwaloop in CEGAR [4], and we evalu-
ated the performance of the two algorithms on an Intel 2.2GHz Laptop equipped
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with 2GB of memory running Linux. We set a timeout of one hour and the space
limit of 2GB. BMC and k-induction problems have been solved with the Math-
SAT SMT solver without incrementality. The same solver has been used to solve
the ALLSAT problem for the computation of the abstraction, as already im-
plemented in CEGAR. All the data and binaries necessary to reproduce the
presented results are available at http://es.fbk.eu/people/tonetta/tests/
fm09/

5.2 Emptiness Checking for Requirements Validation

In a project funded by ERA, we investigated the feasibility of the formalization
and validation of ETCS functions (see http://www.era.europa.eu/). The re-
quirements have been formalized in a fragment of first-order temporal logic [21].
The techniques used to validate the requirements were based on a series of checks
for the language emptiness of large transition systems, which encode the con-
sistency of different sets of requirements. The systems had around 300 Boolean
variables, 50 real variables, and few integers. Most of times, the requirements
were consistent and we used BMC to generate paths as witnesses. Inconsistencies
found during the project were mainly due to unfeasible scenarios considered on
purpose to test the formalization of the requirements.

We consider the fragment of the ETCS specification analyzed in [6], and we
add unfeasible scenarios on the lines of those proposed in the ETCS project.
For each problem, we consider a set of predicates that is sufficient to prove the
inconsistency. We ran the abstract model checking algorithms with and without
the computation of the abstraction for increasing number of predicates.

We obtained the results reported in Fig. 3. The time is plotted in log-scale
against the number of predicates. The vertical line highlights the number N
which is sufficient to prove the language emptiness of the FTS. Thus, for i < N
the algorithm find an abstract (spurious) path, while for i ≥ N the algorithm
conclude that the language is empty. The tables reports the k at which k-
induction stopped with N predicates. The other columns of the table report
the size, in terms of number of variables and number of fairness conditions of
the FTS. We use #r,#b,#f with the meaning, r real variables, b Boolean vari-
ables, and f fairness conditions.

In ETCS2 and ETCS4, the new algorithm outperforms the computation of the
abstraction. In ETCS7 and ETCS8, the improvement scales up exponentially.
Note that in ETCS7 and ETCS8, for i ≥ N , the AMC reaches the timeout.
Thus the computation of the abstraction prevents to prove the inconsistency,
and the new algorithm manages to prove problems that were not previously
solved. Finally, in ETCS9 we have some points were the new algorithm performs
worse. However, as the number of predicates scales up the new algorithm is
definitely the winner. The data regarding memory consumption have similar
plots. As for AMC, the time is almost totally spent in the computation of the
abstraction, while the search in the abstract state space is negligible.

Note that, unlike the computation of the predicate abstraction which seems
a regular exponential function over the number of predicates, the performance

http://es.fbk.eu/people/tonetta/tests/fm09/
http://es.fbk.eu/people/tonetta/tests/fm09/
http://www.era.europa.eu/
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Name: N K #r #b #f
ETCS2 11 8 4 12 2
ETCS4 13 4 7 21 2
ETCS7 15 5 50 182 11
ETCS8 21 5 51 184 12
ETCS9 10 18 66 262 19

Fig. 3. The results of the experimental evaluation

of the new algorithm seems a step function. This is due to the dependency on
the depth necessary to use k-induction, and on the fact that some predicates
increase such depth, while others do not affect it.

5.3 Number of Predicates vs. Search Depth

We now consider a scalable system manually crafted to investigate the depen-
dency on the number N of predicates and the bound K that is necessary to
solve the problem. The system has N Boolean variables Pi, with 1 ≤ i ≤ N ,
and N bounded integers vi, 1 ≤ i ≤ N . The variables Pi are initially false and
non-deterministically become true. For 1 ≤ i < N , the variable Pi can become
true only if Pi+1 is true. Besides, the variable PN−K can become true only if P1
is true. Therefore the property ¬P1 is an invariant of the concrete system, and,
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Fig. 4. Results for case study. X axis: parameter N . Y axis: time in seconds.

if we choose P = {Pi}1≤i≤N , it is an invariant also of the abstract system. The
relationships among the variables Pi involve the variables vi so that the abstrac-
tion does not result straightforward. Moreover, fixed a value for the variables
Pi, the variable vi can range over the whole domain. This makes k-induction of
the concrete system infeasible because it would require a too large bound. Note
instead that the initial simple paths have at most K steps (basically, the paths
that change the variables Pi for N −K + 1 ≤ i ≤ N). This allows us to prove
the property on the abstract system by means of k-induction with bound K.

The results are plotted in Fig. 4 in log-scale for increasing values of N . As
expected, the time spent in the computation of the abstraction grows exponen-
tially with the number of involved predicates. The search done by AMCreach

results to be polynomial in the number of predicates, and strongly depends on
the necessary inductive depth.

6 Related Work

Combinations of predicate abstraction with SAT-based techniques are numerous
in the literature. As discussed in the introduction, a SAT or SMT solver is
typically used to compute the abstraction. The problem of verifying if an abstract
path can be simulated on the concrete system is encoded into a BMC problem
[9]. Many works on abstraction refinement use also BMC as a model checking
procedure. The CEGAR loop described in [20] uses SAT as the only decision
procedure. The model checking of the abstract state space is based on BMC and
k-induction. Unlike this paper, the abstraction computation and the abstract
model checking are distinct steps of the loop.

In [24], BMC is used on the concrete system, the proof of unsatisfiability of
the abstract path simulation is used to build the abstraction, and the result
of the abstract model checking is used to increase the bound of the search.
The work in [16] improves [24] by applying BMC to both the concrete and
the abstract system. Also in [22,23], predicates are not used and the abstract
system is built by extracting interpolants from the unsatisfiability proof of some
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path conditions. The efficiency of these works is based on the capability of the
refinement to find constraints that are on one hand strong enough to prove the
property, on the other hand weak enough to keep the verification complexity low.
As the mentioned approaches, this paper aims at avoiding the computation of
the abstract state space, but remains in the framework of abstraction precisely
defined by a function (rather than computed by the refinement procedure).

In [17], the abstraction is computed on demand along the search. The al-
gorithm exploits the control-flow graph of programs to localize the search to
control locations, and avoids building the abstraction for unreachable location.
Nevertheless, also this approach needs a quantifier elimination to compute the
abstract image of reachable locations.

The work presented in [18] combines symbolic execution with abstraction,
but differently from this paper, the abstraction is based on induction and is
computed separately from the search. Notably, the counterexamples (which are
called leaping because they leap due to the abstraction) are used for diagnosis.

A common way to tackle the complexity of predicate abstraction is to ap-
proximate the computation by allowing more transitions (see, e.g., [7,12,1]). The
complexity is shifted to the refinement that must take care of removing spurious
transitions, resulting in an increased number of refinement iterations. This paper
focuses only on minimal abstraction, although the technique can be modified in
order to search approximated abstract state space.

The definition of EQP can be found already in [29], but is used only to compare
predicate abstraction with localization reduction.

7 Conclusions

In this paper, we proposed a new algorithm to model check an abstract sys-
tem without computing the abstraction. While the classic paradigm performs a
quantifier elimination to build the abstraction, we encode the model checking
problem into satisfiability problems over the concrete variables. We adapted the
algorithm based on k-induction to look for finite and infinite fair paths in the
abstract system. We showed that the new algorithm can obtain an exponentially
better scalability and solved real world problems that were beyond the reach of
standard predicate abstraction.

The improvement is of course affected by many parameters. In particular,
the abstract state must be amenable for proving the invariant with k-induction.
K-induction may be a very effective technique, but, since it is based on the
induction principle, it does not manage to prove always an invariant: in the
finite-state case, the technique is complete, but the bound necessary to prove
the property may become too large; in the infinite-state case, the loop is not
guaranteed to terminate. In practice, one has to exploit invariants as in [25].

We plan to integrate the abstract model checking technique into a full abstrac-
tion refinement loop. We can exploit the search done by the solver to extract
useful information such as abstract transitions, and reachability results on the
concrete state space. We can use the obtained leaping counterexamples for di-
agnosis as suggested in [18]. We can exploit the incrementality of the solver, to
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boost the search by exploiting the clauses learned by previous iterations and
to check the satisfiability of the inductive condition in an incremental way as
described in [13].
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13. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr.
Notes Theor. Comput. Sci. 89(4) (2003)

14. Emerson, E.A., Clarke, E.M.: Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons. Sci. Comput. Program 2(3), 241–266 (1982)
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Abstract. Spotlight abstractions in verification focus on one specific component
in a parallel system while disregarding most information about the rest. Existing
spotlight abstractions are either based on over- or on underapproximations of the
parallel system, thus either preserving existential or universal properties. In this
paper we present three-valued spotlight abstractions for parallel systems which
preserve both existential and universal properties. We show correctness of the
abstraction technique as well as present a procedure for abstraction refinement.
The technique has been implemented on top of an existing three-valued model
checker. Experimental results show that our technique can outperform existing
predicate abstraction tools on certain classes of parallel systems.

1 Introduction

Abstraction techniques in verification have long been studied as a means for reducing
the complexity of model checking [1]. While early work focused on basically transfer-
ring the idea of abstract interpretation from program analysis [2] to model checking [3],
today predicate abstractions, elaborate means for finding predicates and refining ab-
stractions are in the focus of research. Several tools implement such abstraction and
abstraction refinement techniques (e.g. Blast [4], SLAM [5], MAGIC [6], ARMC [7],
SATABS [8]).

Spotlight abstractions are specific abstraction techniques for parallel systems, where
a ”spotlight” is set on certain processes and the remaining ones are kept in the ”shade”,
i.e. are only considered to a small degree. Spotlight abstractions are usually applied
to parametrized systems, consisting of an unknown number (encoded by a parameter)
of almost identical components, a typical representative being a mutual exclusion al-
gorithm for n processes. Counter abstraction [9] keeps one process precise while only
”counting” the number of processes which are at particular program locations (count-
ing being cut off at 2). Environment abstraction [10] in addition keeps predicates in the
abstraction relating variables of the one component to those of other components. The
term ”spotlight” has recently been coined by Wachter and Westphal [11], who show
that all these abstractions can be seen as an instance of canonical abstractions which
have been employed as an abstraction technique in shape analysis [12]. They apply their
canonical abstractions on car platoons with an unknown number of (identical) cars.

In this paper, we apply the spotlight principle to a different class of parallel systems.
Instead of assuming (almost) identity of parallel components, we allow for arbitrary
compositions (but fixed, not parametric), and instead of treating properties talking about
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all processes, we specialize to local properties of individual processes. Starting with a
given parallel system (with shared variables) and a temporal logic property for a specific
component Ci, we try to verify the property by considering as few other components as
possible. Thus our first abstraction only contains an abstracted version of Ci. Once we
find that the property cannot be proven on this abstraction of Ci alone, we gradually re-
fine the abstraction by either adding new predicates to the abstraction of Ci, or adding a
new component possibly influencing Ci. As a first example, consider the simple parallel
program of Figure 1.

int x1 = 1; int x2 = 1; int x3 = 1;

while (x1 > 0) while (x2 > 0) { while (x3 > 0) {
x1 = x1 - 1; x1 = x1 - 1; x2 = x2 - 1;

END: x2 = x2 - 1; x3 = x3 - 1;
} }

(1) (2) (3)

Fig. 1. Program CHAIN3

In this program we have a chain of dependencies among the processes due to the three
variables. When checking for a property like AF (pc1 = END) (i.e., check whether the
program location END in component 1 is always reached, assuming fairness), our ap-
proach constructs the following abstractions (given in Figure 2). The first abstraction
(a) would consider component (1) alone with no predicates. Components (2) and (3)
are summarized into one component, infinitely passing through a loop. A first analysis
reveals that we need to add the predicate (x1 > 0) to the abstraction of component (1)
as to determine termination of the loop (giving abstraction (b)). Since x1 is a shared
variable, the abstraction of (2) and (3) is changed as to incorporate a possible but un-
known change (denoted by *) of predicate (x1 > 0). On this abstraction we still cannot
determine termination of the loop, since it is not clear whether x1 > 0 eventually be-
comes false. The next two abstractions thus first add another predicate (x1 > 1) and
then component (2) (steps (c) and (d)). On this final abstraction we are able to prove
validity of the above property (under the reasonable fairness assumption that every pro-
cess eventually makes progress), even without determining whether the loop in (2) is
actually executed. Thus variables x2 and x3 as well as component (3) never have to be
considered. The same effect happens for all programs CHAINn (with n components and
n variables xi), i.e. independent of the number of processes, property AF(pc1 = END)
can be proven with two components in the spotlight and two predicates only.

In contrast to almost all other spotlight abstractions, we use three-valued abstrac-
tions for our approach, thereby being able to preserve both existential and universal
properties. Many-valued model checking techniques [13, 14] verify properties of par-
tial Kripke structures. Partiality may refer to both transitions and atomic propositions.
In a three-valued setting, transitions can be present (true), not present (false) or simply
unknown (⊥), the same principle applies to atomic propositions. Such partiality may
arise out of inconsistent specifications, unknown sub-components in systems or - as in
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(x1>0) = true;

while (*) while (true)
{ } { }

END:

while (x1>0) while (true)
{(x1>0) = (x1>0)?*:false;} {(x1>0)=*;}

END:

(a) (1) (2, 3) (b) (1) (2, 3)

(x1>0) = true; (x1>1) = false;

while (x1>0) while (true)
{(x1>0) = (x1>1) ? true : false, {(x1>0),(x1>1) = *,*;}
(x1>1) = (x1>1) ? * : false;}

END:

(c) (1) (2, 3)

(x1>0) = true; (x1>1) = false;

while(x1>0) while(*) while(true)
{(x1>0) = (x1>1)?true:false, {(x1>0) = (x1>1)?true:false, { }
(x1>1) = (x1>1)?*:false;} (x1>1) = (x1>1)?*:false;}

END:

(d) (1) (2) (3)

Fig. 2. Abstractions (a) to (d)

our case and alike [15] - imprecisions due to abstraction. Model checking techniques for
partial Kripke structures have already intensively been studied, a BDD- (MDD-)based
model checker for arbitrary many-valued Kripke structures is χChek [16]. The use of
partial Kripke structures as abstractions has the advantage of preserving both existen-
tial and universal properties (given an appropriate abstraction): The outcome of a model
checking run on a partial Kripke structure can be true, false or ⊥. In three-valued ab-
stractions both true and false results can be transferred to the original system, only the
⊥ result necessitates abstraction refinement.

In this paper, we employ three-valued Kripke structures for our spotlight abstrac-
tions. We show that our abstractions give us a completeness preorder relation [17]
between full and abstracted system (preserving fairness), thus guaranteeing the preser-
vation of full CTL properties. We furthermore develop a technique for abstraction
refinement which either adds further predicates to the components currently in the ab-
straction, or a new component. The approach has been implemented on top of the model
checker χChek and we report on promising results.

2 Basic Definitions

We start with a brief introduction to partial Kripke structures and the interpretation of
temporal logic formulae on them. Partial Kripke structures will be the semantic domain
of our abstracted programs. For the abstractions that we present here, we only need
three-valued Kripke structures; extension to arbitrary many values can be found in [14].
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In a three-valued Kripke structure an atomic proposition or transition can not only
be present or absent, but also unknown (Fig. 3(b)). The logical basis for this is Kleene
logic [18]. Kleene logic 3 := {true, f alse,⊥} extends classical logic 2 := {true, f alse}
by a value ⊥ standing for “unknown”. A truth order “�” (with f alse � ⊥ � true) and
an information order “≤” (with ⊥ ≤ true, ⊥ ≤ f alse and true, f alse incomparable)
are defined on 3 and shown in Fig. 3(a). Conjunction is defined by a ∧ b := min(a, b)
and disjunction by a ∨ b := max(a, b) where min and max apply to the truth order �.
The negation is defined as ¬true := f alse, ¬ f alse := true and ¬⊥ := ⊥. Note that the
operations ∨,∧,¬ applied to true and f alse have the same meaning as in 2.

(a) Three-valued Kleene logic (b) Three-valued Kripke struc-
ture with atomic propositions
AP = {p, q}

�EGp�(. . .) = ⊥, t,⊥
�AGp�(. . .) = ⊥, f , f
�E[pUq]�(. . .) = ⊥, t,⊥
�A[pUq]�(. . .) = ⊥, f , f

(c) CTL formulae valuated
in the upper 3 states of the
structure in Fig. 3(b)

Fig. 3.

A three-valued Kripke structure is a classical Kripke structure where all occurrences of
classical logic 2 are replaced by 3. The other way round, a classical Kripke structure is
a three-valued Kripke structure where no ⊥ occurs. In the following, whenever we just
talk about Kripke structures, the three-valued case is meant.

Definition 1 (Three-Valued Kripke Structure). Given a nonempty finite set of atomic
propositions AP, a three-valued Kripke structure is a 3-tuple (S ,R, L) where

– S is a set of states,
– R : S × S → 3 is a total1 three-valued transition relation and
– L : AP×S → 3 is a three-valued function labeling states with atomic propositions.

For specifying properties of programs we use computation-tree logic (CTL) [19].

Definition 2 (Syntax of CTL). Let AP be a set of atomic propositions. The syntax of
CTL is given by the following grammar:

ϕ ::= p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | EXϕ | AXϕ | EFϕ | AFϕ | EGϕ | AGϕ | E[ϕUϕ] | A[ϕUϕ]

where p is an atomic proposition of AP.

1 Here total means that for any s ∈ S there is an outgoing transition, i.e. there exist t ∈ S with
R(s, t) � f alse.
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In the classical setting, a function �·�(·) : CT L × S → 2 tells us whether a formula holds
in a given state or not, and is defined inductively over the structure of a formula. Let
Πs =

{
(s0, s1, s2, . . .) ∈ S N | s0 = s and ∀i≥0: R(si, si+1) � f alse

}
be the set of all paths

starting in s ∈ S , and for a path π, the i-th state is denoted as πi. Then for instance
“there exists a path such that ϕ holds until ψ” is formally defined as:

�E[ϕUψ]�(s) := ∃π ∈ Πs: ∃k ≥ 0: �ψ�(πk) ∧ ∀i < k: �ϕ�(πi)

For three-valued structures, the interpretation is extended in such a way that it stays con-
sistent with the classical setting if no ⊥ is used. This is achieved by replacing universal
quantifiers with conjunction and existential quantifiers with disjunction. Furthermore,
the truth values of the transitions on the path have to be taken into account2.

Informally, an E-formula is true if the subformula holds on at least one path without
⊥-transitions. The reason for excluding paths with ⊥-transitions is that it is unclear
whether they really exist. Therefore paths with ⊥-transitions may only contribute f alse
or⊥ to the truth value. Analogously, for an A-formula paths with⊥-transitions may only
contribute true or ⊥. To achieve this, one needs the transition value on the path from π0

to πk, i.e. Rk(π) :=
∧

0≤i<k R(πi, πi+1). In the following we define the interpretation only
for a subset of CTL, the remaining operators can be derived by the usual dualities.

Definition 3 (Three-Valued Interpretation of CTL). Let AP be a set of atomic propo-
sitions and K = (S ,R, L) a three-valued Kripke structure over AP. The interpretation
function �·�(·) : CT L × S → 3 with respect to K is inductively defined on the grammar
of a CTL-formula:

�p�(s) := L(p, s) for p ∈ AP �ϕ ∧ ψ�(s) := �ϕ�(s) ∧ �ψ�(s) �¬ϕ�(s) := ¬�ϕ�(s)

�EXϕ�(s) :=
∨

π∈Πs

(
R1(π) ∧ �ϕ�(π1)

)
�EGϕ�(s) :=

∨

π∈Πs

∧

k≥0

(
Rk(π) ∧ �ϕ�(πk)

)

�E[ϕUψ]�(s) :=
∨

π∈Πs

∨

k≥0

⎛⎜⎜⎜⎜⎜⎜⎝R
k(π) ∧

(
�ψ�(πk) ∧

∧

0≤i<k

�ϕ�(πi)
)
⎞⎟⎟⎟⎟⎟⎟⎠

If K is not clear from the context, the interpretation function is denoted as �·�K(·)
For some properties it will be necessary to assume some kind of fairness between paral-
lel processes, e.g. that every process will eventually progress. To this end, we extend the
definition of three-valued Kripke structures with fairness and adapt the interpretation of
CTL formulae to fair Kripke structures.

Definition 4 (Fair Three-Valued Kripke Structures). A fair three-valued Kripke
structure is a 4-tuple (S ,R, L,F ) where S , L and R are as before and additionally a
set of fairness constraints F ⊆ P(R−1({true,⊥})) is given, where each constraint is a
set of non-false transitions.

2 Using the classical logic for any π ∈ Πs we have that R(πi, πi+1) = true, and therefore all
requirements for R in Def. 3 are consistent with but also redundant for the two-valued case.
Also, notice that with Def. 3 the condition R(si, si+1) � f alse is no longer needed in Πs.
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The fair interpretation of CTL formulas then requires all considered paths to be fair, i.e.
to infinitely often take a transition from every set in F .

Next, we take a look at our programs. We model programs as control flow graphs
with operations similar to Dijkstra’s guarded commands. In most cases we also give the
programs as pseudocode (like in the introduction) assuming the translation to a control
flow graph is clear. The definitions are taken with slight changes from [15] but extended
with parallel composition.

Definition 5 (Operations). Let Var = {v1, . . . , vn} be a set of variables. The set of
all operations Ops on these variables consists of all statements “assume(e) : v1 :=
e1, . . . , vn := en”, where e, e1, . . . , en are expressions over Var.

The “assume”-part is often omitted, namely when the guard is true. As an example,
x1=x1-1 stands for assume(true) : x1 := x1 − 1. Operations appear as labels of transi-
tions in control flow graphs, often only either as guard or as variable assignments. CFGs
for the parallel components from the program of the introduction are given in Fig. 4.

Definition 6 (Programs as Control Flow Graphs (CFG)). A CFG is a structure G =
(Loc, δ) where Loc is a finite set of locations, and δ : Loc × Loc → 2 is a transition
relation. A program is modeled by a labeled CFG Prg = (Loc, δ, τ), where τ labels each
edge of the CFG G with one operation of Ops.

Fig. 4. CFGs for CHAINn. The numbering of nodes is according to line numbers in the programs.
Hereby “END” (and later also “E”) denotes the last line. “xi > 0” is short for “assume(xi > 0)”.

We denote by Var(Prg) the set of all program variables, and by LVar(Prg) ⊆ Var(Prg)
the set of all variables that occur on the left-hand-side in an operation of Prg, i.e. all vari-
ables that might be changed by a program. If several programs Prgi, i from some index
set I, are composed into a parallel program ||i∈I Prgi, this simply results in the product
graph of all CFGs (PCFG), where at each combined location (l1, . . . , ln) ∈ �i∈I Loci

one transition from a component is non-deterministically chosen and taken. Each tran-
sition is furthermore labeled with the component program it belongs to, i.e. the transi-
tion relation δ is a function Loc × I × Loc → 2 and the operations given by τ function
Loc×I×Loc→ Ops. The definition is straightforward and due to lack of space omitted.

The programs, viz. PCFGs, are next equipped with a semantics in terms of (so far)
two-valued Kripke structures. To this end, we have to define valuations of variables. For
any set of typed variables Var, let S Var be the set of all possible states, i.e. the set of all
type-correct valuations of variables. For any state s ∈ S Var and any expression e over
Var, s(e) denotes the valuation of the expression in state s. The Kripke structure corre-
sponding to a program is the result of combining the PCFG with program states. There
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is a transition between two states if we have a transition between the corresponding
locations in the PCFG and the corresponding operation is consistent with the change of
program state. The fairness constraint consists of sets each one containing all transitions
caused by the same program component, i.e. a path is fair if all components eventually
progress. Note that we explicitly add atomic propositions of the form pci = k, for k a
location in a component CFG.

Definition 7 ((Parallel) Programs as Kripke Structures). Let Prg be the parallel
program given by 〈Loc, δ, τ〉 :=

�
i∈I Prgi, and P a set of quantifier free predicates over

the program variables. The corresponding Kripke structure is KP(Prg) over AP = P ∪
{“pci = x” | i ∈ I, x ∈ Loci} with:

• S := Loc × S Var(Prg)

• R(〈l, s〉 , 〈k, t〉) :=
∨

i∈I
(
δ(l, i, k) ∧ s(e) ∧ t(v1)= s(e1) ∧ . . . ∧ t(vn)= s(en)︸����������������������������������������������������������������︷︷����������������������������������������������������������������︸

=:Ri(〈l,s〉,〈k,t〉)

)

assuming that τ(l, i, k) is “assume(e): v1 := e1, . . . , vn := en”

• L(p, 〈l, s〉) := s(p) for any p ∈ P

• L(pci = x, 〈l, s〉) :=

⎧⎪⎪⎨⎪⎪⎩
true if li = x

f alse else
where li is the location of Prgi in tuple l

• F :=
{
R−1

i ({true,⊥})
}
i∈I for each Prgi: one constraint that

contains all transitions caused by Prgi

Last, we need to define syntax and semantics of abstracted programs. Here, we also
follow standard approaches for predicate abstraction (e.g. [15, 20] using boolean pro-
grams. Boolean programs are very much alike normal programs, viz. CFGs, except that
instead of variables we have predicates (over variables) and thus assignments are not
to variables but to predicates. In a program state, a predicate can be true, false or - in
our case - ⊥. For a given set of predicates P, the state space is thus 3P. The boolean
operations BOps appearing as labels of the CFG thus naturally are of the form

assume(pe) : p1 := pe1, . . . , pm := pem

where pi ∈ P. The expressions on the right-hand-side often take the form choice(a, b)
for boolean expressions a, b with the following semantics:

s
(
choice(a, b)

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

true if s(a) is true

f alse if s(b) is true

⊥ else

The same abbreviations as for non-boolean operations are allowed. Additionally, ⊥ is
short for choice( f , f ), ¬choice(a, b) means choice(b, a) and any boolean expression e
can be written instead of choice(e,¬e). The expression “(x1>0) ? *:false” in the
introduction for instance is translated into choice( f alse,¬(x1 > 0)), as it becomes f alse
if and only if ¬(x1 > 0) is true and its value is unknown in any other case. Particularly,
there is no case where the expression may become definitely true and therefore the first
argument of the choice operator is f alse.
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(Parallel) boolean programs are thus simply (P)CFGs labeled with operations from
BOps. We will denote boolean programs by BPrgi instead of Prg and the index set
for parallel processes by BI instead of I. The Kripke structure semantics for boolean
programs follows those for ordinary programs except for the fact that we might now
both have ⊥ as value for predicates as well as as a label for transitions, i.e. states are
from Loc × 3P and transitions get ⊥-labels if the assume-condition evaluates to ⊥.

Boolean operations are used to approximate the operations of non-boolean programs.
This is the basis of predicate abstraction and will shortly be explained next. Predicate
abstraction is then combined with spotlight abstraction which in addition abstracts away
from components in the parallel composition.

As an example for approximation of operations, take from our concrete program of
the introduction the assignment x1 := x1 - 1 .

– For P = {p1 ≡ x1 > 0, p2 ≡ x1−1 > 0}we have that p2 is a weakest precondition of
p1 with respect to the assignment, i.e. if p2 was true beforehand, then afterward p1

is true, and if ¬p2 was true beforehand, then p1 becomes f alse. Thus the operation
can be approximated by “p1 := choice(p2,¬p2)”.

– Another situation already occurred in the introduction where we had the case that
P = {p1 ≡ x1 > 0}. With predicates only from P, there is no possibility to express
a condition for p1 to become true after the assignment, but if ¬p1 was true before-
hand, then p1 stays f alse. Here we thus need to approximate the assignment by
“p1 := choice( f alse,¬p1)”.

A partial boolean expression pe = choice(a, b) approximates a boolean expression e
(denoted as pe � e), if a logically implies e, and b logically implies ¬e. The approx-
imation is extended to operations by: “assume(pe) : p1 := pe1, . . . , pm := pem” �
“assume(e) : v1 := e1, . . . , vn := en” iff pe � e and pei � wpop(pi), where wpop(pi)
is the weakest precondition of the predicate pi with respect to the parallel assignment
v1 := e1, . . . , vn := en (abbreviated as op). A sequential boolean program BPrg then
approximates a program Prg if they have isomorphic CFGs and the operations in BPrg
approximate the corresponding ones in Prg.

3 Spotlight Abstractions

Boolean programs are helpful in cutting down the state space by reducing the infor-
mation about program data in each state. Spotlight abstraction tackles another issue
specifically occurring in parallel programs: the behavior of a large number of processes
may be irrelevant for the property to be checked yet they might appear in the abstrac-
tion if they influence the value of predicates. The idea behind spotlight abstraction is
to divide processes into two groups. The ones in the spotlight are examined in detail –
each of these processes will be abstracted by its own boolean program. The others are
almost left out: together, they are all summarized into one “shade” process BPrg⊥ con-
sisting of only one continuously executed operation that approximates all operations
from the left-out processes simultaneously. This operation simply sets all predicates
which depend on variables that might be changed by left-out processes to “unknown”.

The parallel composition of processes in spotlight and BPrg⊥ will then be model-
checked. If in this model-checking run a left-out process turns out to be necessary, it
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joins the processes in the spotlight (by means of abstraction refinement). Alike other
approaches, we use the counterexample generated by the model checking run to refine
our abstraction. Similar to the work in [17, 15] on multi-valued abstractions, we are
able to transfer both definite results (true and f alse) from the abstraction to the original
system for any CTL-formula.

Given a parallel program Prg :=
�

i∈I Prgi, a CTL-property ϕ and an initial set of pro-
cesses Init ⊂ I (e.g. all processes occurring in ϕ), we proceed as follows:

1. spotlight := {Prgi}i∈Init , P := { all predicates over Var(Prg) occurring in ϕ }
2. While no definite answer is found:

3. Build the spotlight abstraction with focus only on processes in spotlight.
4. Model-check ϕ in the (much smaller) abstraction.
5. If ϕ is true or f alse in the abstraction, output this as result for Prg and stop,
6. else, use a counter-example for refinement resulting in either an additional

predicate p � P or an additional component Prgi � spotlight
7. spotlight := spotlight ∪ {Prgi}, P := P ∪ {p}

For the program CHAIN3 of the introduction, we let Init := {1} since the property
AF(pc1 = END) is local for process 1. The set of predicates is P = ∅. The spotlight
abstraction in the above procedure is constructed according to the following definition.

Definition 8 (Spotlight Abstraction of Parallel Programs). Let Prg :=
�

i∈I Prgi be a
parallel program and BPrg :=

�
i∈BI BPrgi a parallel boolean program with predicates

P = {p1, . . . , pm} and BI ⊂ I ∪̇ {⊥} the set of processes in the spotlight plus possibly the
shade process. BPrg approximates Prg iff

– for every i ∈ BI \ {⊥}: BPrgi approximates Prgi.
– BI = I or I \ BI � ∅, ⊥ ∈ BI and BPrg⊥ is a CFG with Loc⊥ = {⊥} and a

single loop labeled with p′1 := ⊥, . . . , p′s := ⊥ where {p′1, . . . , p′s} ⊆ P is the subset
of all predicates depending on variables from

⋃
i∈I\BI LVar(Prgi), i.e. depending

on variables that might be changed by parallel components not in spotlight.

The PCFG of the spotlight abstraction of program CHAIN3 with spotlight = {Prg1}
(i.e. BI = {1,⊥}) and predicates P either ∅, {(x1 > 0)} or {(x1 > 0), (x1 > 1)}, is given in
the left of Figure 5 (see page 116), its Kripke semantics can be found in the right part.

The Kripke structure semantics for spotlight abstractions follows those of boolean
programs except for one point: besides the predicates in P we also have atomic propo-
sitions of the form pci = k (component i is at location k). For processes not in the
spotlight, i.e. i ∈ I \ BI, the valuation of pci = k is always ⊥. This reflects the fact that
we do not know at which location processes not in the spotlight might be.

Of course, we would like to transfer model-checking results from spotlight abstrac-
tions to the original program. In [17], a completeness preorder is defined between three-
valued Kripke structures, and it is proven that if some property is true/ f alse in some
Kripke structure, then this also holds in any corresponding state of any more complete
Kripke structure. In our proof, we establish a completeness relation between a concrete
program and its spotlight abstraction that satisfies some slightly stronger properties than
required by [17]. Unfortunately, we cannot apply their theorem, as it does not consider
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fair semantics as needed here. Instead, we give a direct proof which is however close to
their work. In this proof we use the strengthened properties in our completeness relation
to preserve our specific fairness constraints from definition 7.

The following theorem relates the model checking results of concrete and abstracted
program for corresponding states. A concrete state 〈lc, sc〉 and an abstract state 〈la, sa〉
are said to correspond to each other if the labeling of the concrete state is always “more
definitive” than that one of the abstract state. If LA and LC are two labeling functions
over the same atomic propositions AP, we write LA(qa) ≤ LC(qc) for being “more
definitive” if ∀p ∈ AP : LA(p, qa) ≤ LC(p, qc)3.

Theorem 1. Let Prg =
�

i∈I Prgi be a parallel program and BPrg =
�

i∈BI BPrgi a
boolean abstraction using predicates P = {p1, . . . , pm}. Furthermore, let KP(Prg) =
(S C ,RC, LC ,FC) be the concrete Kripke structure and KP(BPrg) = (S A,RA, LA,FA) the
abstract one. Then for any two states 〈lc, sc〉 ∈ S C and 〈la, sa〉 ∈ S A with LA(〈la, sa〉) ≤
LC(〈lc, sc〉) and for any CTL-formula ϕ over the predicates in P or program locations
the following holds with respect to (fair) interpretation:

�ϕ�KP(BPrg)(qa) ≤ �ϕ�KP(Prg)(qc)

Proof. The proof is omitted due to space constraints (see [21]).

Hence any “definite” result (true or false) obtained on the abstraction holds for the
concrete program as well.

4 Abstraction Refinement

In this section we present our approach to refining the abstraction based on a given
counterexample. For some state s and a CTL-formula ϕ with �ϕ�(s) =: ⊥, a three-
valued counterexample is a finite subtree of the computation tree that explains why ⊥
holds [22]. In practice, a model-checker like χChek [16] outputs only a single branch
in this counterexample representing an execution path on which ϕ is ⊥. In this branch,
there must exist at least one ⊥-transition or a state with an atomic proposition labeled
with ⊥ causing4 the ⊥-value of the path. If there exist several, then an arbitrary (e.g. the
first that is found) may be chosen. To extract a new predicate or a new component for
spotlight, we proceed as follows:

1. One reason for the path to become ⊥ might be a ⊥-transition from some state s
to s′. This can only be due to the assume condition of the corresponding boolean
operation being ⊥ in s. There are two cases to distinguish:

3 Since the program counters are part of the atomic propositions and are either true or f alse
for all processes in spotlight, in corresponding abstract and concrete states these processes are
always at the same program location.

4 We do without a formal definition for causing the ⊥-value. Instead, we give a brief example.

Consider a Kripke structure with two states (p = ⊥, q = true)
⊥−→ (p = true, q = ⊥) and the

CTL formula ϕ = EX(p ∧ q) which is evaluated in the first state. Clearly, the ⊥-transition as
well as q = ⊥ in the second state cause the ⊥, but p = ⊥ in the first state doesn’t.
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(a)

(b)

(c)

Fig. 5. PCFGs and Kripke semantics for the abstractions (a) to (c) of the example program (for
those of (d) see [21]). Transitions caused by BPrg⊥ are indicated by dashed lines.

(a) If the assume condition e of the corresponding concrete operation is already
contained in the set of predicates, then e is ⊥ in s and we continue with step 2.

(b) Else we use e as new predicate.
2. The other reason might be a predicate p that is ⊥ in some state s. Let s̃ be the last

predecessor of s, where p was true or f alse and s̃′ the direct successor of s̃. There
are three cases to distinguish:
(a) The transition between s̃ and s̃′ is due to an operation op of a process in spot-

light, and the weakest precondition wpop(p) is already contained in the set of
predicates. Then wpop(p) is ⊥ in s̃ and we further backtrack with step 2.

(b) The same, but wpop(p) is not yet contained in the set of predicates. Then we
use wpop(p) as new predicate.

(c) If the transition is due to an operation of BPrg⊥, then output one arbitrary (e.g.,
the first that has been found) process writing on variables occurring in p. This
process will be added to the spotlight.

After every such step we reach an abstraction for which Theorem 1 holds. To illus-
trate the strategy we consider our example (see Fig. 1) and the CTL-formula ϕ ≡
(AF pc1 = END). The four steps are already given in pseudocode in figure 2. Here we
will show their Kripke semantics (see Fig. 5) and how the refinement works on it.

(a) ϕ only contains an atomic proposition concerning the program counter of the first
process and no predicates over any variables. So we start with spotlight = {1} and



Three-Valued Spotlight Abstractions 117

P = ∅. The corresponding Kripke structure is shown in figure 5a. If we examine the
counterexample s1 → s2 → s1 → . . ., the cause for ⊥ is the transition from s1 to
s2. Via step 1.b we get the new predicate p1 ≡ x1 > 0.

(b) The Kripke structure for spotlight = {1} and P = {p1 ≡ x1 > 0} is shown in figure
5b. If we examine the counter-example s1 → s2 → s3 → s4 → s3 → . . ., the cause
for ⊥ is the transition from s3 to s4. Since the corresponding assume condition is
already a predicate (step 1.a) we go on with step 2. With s̃ = s2 and s̃′ = s3, we get
the new predicate p2 ≡ x1 − 1 > 0 via step 2.b.

(c) The Kripke structure for spotlight = {1} and P = {p1 ≡ x1 > 0, p2 ≡ x1 − 1 > 0}
is shown in figure 5c. If we examine the counter-example s1 → s2 → s3 → s4 →
s3 → . . ., the cause for ⊥ is the transition from s4 to s3. Since the corresponding
assume condition is already a predicate (step 1.a), we go on with step 2. With s̃ = s2

and s̃′ = s3, we add process 2 to the spotlight because of step 2.c.
(d) The Kripke structure for spotlight = {1, 2} and P as in (c) still has several ⊥-

transitions due to the abstraction (see [21]). Nonetheless, under fair semantics the
model-checker returns �AF pc1 = END�(s1) = true. Due to theorem 1, we can
transfer this property to the original program and stop refinement.

5 Experimental Results

We have a prototype implementation of our spotlight abstraction and abstraction refine-
ment technique, called 3Spot, which works on top of the multi-valued model checker
χChek [16]. Our tool reads in a parallel program (in a simple C-like syntax), constructs
its abstraction (using Z3 as prover) and builds an MDD of the partial Kripke structure
which is given to χChek. The model checker then returns true or false (which is im-
mediately reported to the user) or a counter-example as a witness for a ⊥ result. The
counter-example is next analyzed and abstraction refinement proceeds as explained be-
fore. While supporting almost all control structures of the C language, we currently
only support int, bool, and mutex as data types (i.e. no arrays, no pointers).

We have experimented with a number of case studies to test our approach. As ex-
pected, on sequential programs our tool cannot compete with other abstraction refine-
ment model checkers like BLAST [4], SATABS [8], and ARMC [7] since we so far have
spent no effort at all in optimizations. The difference becomes visible when checking
parallel programs with respect to local properties.

In the following we compare our implementation 3Spot with SATABS and ARMC
using different case studies. While SATABS does provide built-in functionality to check
parallel programs, we simulate parallel programs in ARMC by adding program counter
variables for all processes and simply treating them as data. Another option would have
been to compute the product CFG and then use the single special program counter
variable that ARMC allows. Our conjecture is, however, that ARMC would then run
much slower on our examples. For our comparison we have preferred ARMC over –
for instance – BLAST because the input format used in ARMC (transition constraints)
allows us to easily encode program counters as data5.

5 The data race checker of BLAST [23] is no longer available in the current releases.
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Table 1 shows the results of our benchmark. We ran the tests on a 3GHz Pentium
4 Linux system (Debian etch) with 1GB memory (Satabs, ARMC) and on a 3GHZ
Pentium 4 Windows system (Windows XP) with 1GB memory (3Spot) respectively.
Since some test runs took very long we stopped them after at most 2.5 hours.

As first case study we used CHAINn, the generalized version of the introductory
program CHAIN3, and tried to verify AG (pc1 = END ⇒ (x1 ≤ 0))6. Although our im-
plementation only needs to take two processes into the spotlight, ARMC’s performance
is almost as good as the performance of 3Spot. Interestingly, the technique to model
program counters as data allows ARMC to pick only the program counters of interest
as predicates. So in this case ARMC only considers the program counters of process 1
and process 2 while ignoring all the other processes. This allows ARMC to be as fast
as 3Spot for small n and to be significantly faster than SATABS in this example. Still,
when using large values for n like e.g. n = 100 (last row) 3Spot can take advantage of
the fact that it can ignore whole processes, while ARMC has to consider each operation
separately and in particular has to compute the abstraction of the operation.

In addition to heterogeneous programs like CHAINn, we have looked at uniform
parallel programs, in particular those using semaphores for synchronization. To be able
to efficiently treat such programs without needing to incorporate all components, we
have developed a specific abstraction technique for semaphores.

A semaphore is modeled as an integer variable v ∈ {−1, . . . , n} indicating which
process locks it (v = −1 if none). Process i may acquire v by “assume(v = −1) : v := i”
and release v via “assume(v = i) : v := −1”. Using the technique described above,
processes not in spotlight could “maybe” release locks of processes in spotlight, as the
⊥-process repeatedly sets “(v = −1) := ⊥”. We avoid this problem by changing this
assignment to “(v = −1) := choice( f alse,¬(v = −1))”. This means, if a semaphore
is free or “maybe” locked the ⊥-process can do anything with it (i.e. (v = −1) is set
to ⊥), but a definitely locked semaphore will never be released (i.e. (v = −1) remains
f alse). One can prove a modified version of theorem 1, where the possible initial states
qa and qc are slightly restricted (see [21]). This enables us to get model checking results
without having to look at all processes only because they share a semaphore.

As an example consider the following program MUTEXn: n processes all consisting
of the code “while(true){NC:skip; acquire v; CS:skip; release v}”. For
simplicity in this example, all processes are uniform, switching between a non-critical
section NC and a critical section CS, where the latter is guarded by a semaphore v. Of
course, the sections NC and CS may look very different in real-world programs, making
this example also heterogeneous.

We used MUTEXn as second case study in our benchmark and checked the CTL-
formula AG¬(pc1 = CS ∧ pc2 = CS). Thus, in this case study we try to verify that
our use of semaphores indeed ensures that process one and process two may not enter
the critical section at the very same time. The idea behind this is that process one and
process two may share a resource r we are interested in, while the other processes may
share other resources with process one and two we are not interested in at this moment,
but that cause the need of a semaphore for all processes instead of only one and two.

6 We did not check the liveness property AF (pc1 = END) because it can not be (directly) ex-
pressed in SATABS and ARMC.
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As for the results, 3Spot clearly outperforms ARMC in number of predicates gen-
erated and time needed (see table 1). Unfortunately, we were not able to verify this
program with SATABS because the pthread library used for semaphores in SATABS
and that provided with the Linux distribution on our test system were different and thus
we could not test the semaphore feature in SATABS.

For our last case study we implemented Dijkstra’s mutual exclusion algorithm [24]
and tried to verify AG¬(pc1 = CS ∧ pc2 = CS), i.e. the same property as for MUTEXn

but using a mutual exclusion algorithm rather than a build-in semaphore. Although
we are not able to take advantage of our specific abstraction technique for semaphores
in this case we still only need to take the first two processes into the spotlight. This
allows us to again be faster than both SATABS and ARMC, even though the overall
performance is worse than for MUTEXn (see table 1).

Table 1. Benchmark results of 3Spot in comparison to Satabs and Armc. (*): No results, because
the built-in semaphores used by Satabs were not available on our test system.

3Spot Satabs Armc
n processes predicates time predicates time predicates time

Chain 2 2 2 0.53s 9 7.02s 5 0.09s
3 2 2 0.55s 21 66.6s 5 0.11s
4 2 2 0.56s 32 17.8m 5 0.15s
5 2 2 0.56s ? > 2.5h 5 0.18s

100 2 2 0.66s ? out of memory 5 22.1s
Mutex 7 2 1 0.50s (*) (*) 17 1.71s

12 2 1 0.50s (*) (*) 27 9.31s
17 2 1 0.52s (*) (*) 37 32.6s
50 2 1 0.56s (*) (*) 103 29.0m

100 2 1 0.59s (*) (*) ? > 2.5h
Dijkstra 2 2 2 0.88s 5 3.35s 50 29.9s

3 2 3 1.44s 6 43.6s 59 350s
4 2 4 2.51s 6 252s 66 20.5m
5 2 5 5.50s 8 65.8m 72 53.0m
6 2 6 16.4s ? > 2.5h ? > 2.5h
7 2 7 190s ? > 2.5h ? > 2.5h

6 Conclusion

In this paper we have introduced a specific predicate abstraction technique for par-
allel programs. We have been interested in verifying local properties of components,
which can - because of shared variables of components - however be influenced by
other components. This gave rise to particular spotlight abstractions, focusing on a
set of components while completely omitting others. Due to the use of a three-valued
setting, we obtain abstractions that preserve both existential and universal properties
thus only necessitating abstraction refinement when the result of a verification run is
”unknown”. While using CTL as a logic for specifying properties here, we conjecture
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that – similar to [17] – the same result also holds for the mu-calculus. We have fur-
thermore shown how abstraction refinement for spotlight abstractions proceeds, either
adding new predicates or further components. The technique has been implemented on
top of an existing three-valued model checker and shows promising results.

Related work. Our work is connected to other approaches in a number of ways. The
work closest to us is that in [15] and [17] which introduce many-valued abstractions.
From [17] we have taken the idea of showing a completeness order (here extended with
fairness) between original and abstracted system as to preserve full CTL properties.
From [15] (and from [20]) we have taken most of our notations for describing pro-
grams and their abstractions. The particular definition of abstraction differs from [15]:
Gurfinkel and Chechik discuss three different kinds of approximations, the most pre-
cise one (called exact approximation) employs four different truth values. The main
difference however lies in the class of programs treated: neither of the two above cited
approaches consider abstractions for parallel programs. Our focus has been on the de-
velopment of a specific spotlight abstraction for parallel programs. Abstraction refine-
ment for spotlight abstractions for the verification of dynamic systems is treated in [25].
Similar to us, counterexamples are inspected as to determine the processes which need
to be moved into the spotlight. The choice between a new process and a new predicate
however has not to be taken as no predicate abstraction is used.

Two-valued abstraction techniques for parallel programs are treated in e.g. [9],
[10, 11, 6]. The canonical abstractions of [11] also employ a third value ⊥, but do not
make use of this additional information, ⊥ is treated as false. These approaches mainly
tackle parametrized systems, consisting of an unknown number of (almost) identical
components. This is different from our approach since we do not assume identity of
components, however a fixed number. Furthermore, we allow for full CTL model check-
ing while some of the above approaches only treat safety properties.

Finally, our approach is related to other analysis techniques which construct abstrac-
tions of different parts of a program with different degrees. Examples for this are lazy
abstractions [26] (predicate abstraction with different number of predicates for different
program parts), thread-modular abstractions [23] (employing assume-guarantee rea-
soning to show absence of data races in parallel programs, however not allowing for full
CTL model checking) or heterogeneous abstractions [27] (program heap abstracted in
different degrees).

Future work. As future work we intend to experiment further with abstraction refine-
ment techniques. It is possible to find both examples for which the addition of a predi-
cate is to be preferred over the addition of a component and vice versa. Further experi-
mentation would allow us to find heuristics for determining when to prefer which kind
of refinement. A decisive factor for this is also the counterexample generated by the
model checker: some counterexamples hint to an addition of a predicate although this
might necessitate more refinement steps than an addition of a component would yield
(and again vice versa). A heuristic for a targeted search during model checking might
supply us with better counterexamples leading to a smaller number of refinement steps.
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Abstract. Parameterized systems are characterized by the presence of a large
(or even unbounded) number of behaviorally similar processes, and they often
appear in distributed/concurrent systems. A common state space abstraction for
checking parameterized systems involves not keeping track of process identifiers
by grouping behaviorally similar processes. Such an abstraction, while useful,
conflicts with the notion of fairness. Because process identifiers are lost in the
abstraction, it is difficult to ensure fairness (in terms of progress in executions)
among the processes. In this work, we study the problem of fair model checking
with process counter abstraction. Even without maintaining the process identi-
fiers, our on-the-fly checking algorithm enforces fairness by keeping track of the
local states from where actions are enabled / executed within an execution trace.
We enhance our home-grown PAT model checker with the technique and show
its usability via the automated verification of several real-life protocols.

1 Introduction

Parameterized concurrent systems consist of a large (or even unbounded) number of
behaviorally similar processes of the same type. Such systems frequently arise in dis-
tributed algorithms and protocols (e.g., cache coherence protocols, control software
in automotive / avionics) — where the number of behaviorally similar processes is
unbounded during system design, but is fixed later during system deployment. Thus,
the deployed system contains fixed, finite number of behaviorally similar processes.
However during system modeling/verification it is convenient to not fix the number of
processes in the system for the sake for achieving more general verification results.
A parameterized system represents an infinite family of instances, each instance be-
ing finite-state. Property verification of a parameterized system involves verifying that
every finite state instance of the system satisfies the property in question. In general,
verification of parameterized systems is undecidable [2].

A common practice for analyzing parameterized systems can be to fix the number
of processes to a constant. To avoid state space explosion, the constant is often small,
compared to the size of the real applications. Model checking is then performed in the
hope of finding a bug which is exhibited by a fixed (and small) number of processes.
This practice can be incorrect because the real size of the systems is often unknown
during system design (but fixed later during system deployment). It is also difficult to
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fix the number of processes to a “large enough” constant such that the restricted sys-
tem with fixed number of processes is observationally equivalent to the parameterized
system with unboundedly many processes. Computing such a large enough constant is
undecidable after all, since the parameterized verification problem is undecidable.

Since parameterized systems contain process types with large number of behav-
iorally similar processes (whose behavior follows a local finite state machine or FSM),
a natural state space abstraction is to group the processes based on which state of the
local FSM they reside in [23, 7, 24]. Thus, instead of saying “process 1 is in state s ,
process 2 is in state t and process 3 is in state s” — we simply say “2 processes are
in state s and 1 is in state t”. Such an abstraction reduces the state space by exploiting
a powerful state space symmetry (concrete global states with different process identi-
fiers but the same count of the processes in the individual local states get grouped into
the same abstract global state), as often evidenced in real-life concurrent systems such
as a caches, memories, mutual exclusion protocols and network protocols. Verification
by traversing the abstract state space here produces a sound and complete verification
procedure. However, if the total number of processes is unbounded, the aforementioned
counter abstraction still does not produce a finite state abstract system. The count of
processes in a local state can still be ω (unbounded number), if the total number of
processes is ω. To achieve a finite state abstract system, we can adopt a cutoff number,
so that any count greater than the cutoff number is abstracted to ω. This yields a finite
state abstract system, model checking which we get a sound but incomplete verification
procedure — any linear time Temporal Logic (LTL) property verified in the abstract
system holds for all concrete finite-state instances of the system, but not vice-versa.

Contributions. In this paper, we study the problem of fair model checking with pro-
cess counter abstraction. Imagine a bus protocol where a large / unbounded number of
processors are contending for bus access. If we do not assume any fairness in the bus
arbitration policy, we cannot prove the non-starvation property, that is, bus accesses by
processors are eventually granted. In general, fairness constraints are often needed for
verification of such liveness properties — ignoring fairness constraints results in unre-
alistic counterexamples (e.g. where a processor requesting for bus access is persistently
ignored by the bus arbiter for example) being reported. These counterexamples are of
no interest to the protocol designer. To systematically rule out such unrealistic coun-
terexamples (which never happen in a real implementation), it is important to verify
the abstract system produced by our process counter abstraction under fairness. We do
so in this paper. However, this constitutes a significant technical challenge — since we
do not even keep track of the process identifiers, how can we ensure a fair scheduling
among the individual processes!

In this work, we develop a novel technique for model checking parameterized sys-
tems under (weak or strong) fairness, against linear temporal logic (LTL) formulae.
We show that model checking under fairness is feasible, even without the knowledge
of process identifiers. This is done by systematically keeping track of the local states
from which actions are enabled / executed within any infinite loop of the abstract state
space. We develop necessary theorems to prove the soundness of our technique, and
also present efficient on-the-fly model checking algorithms. Our method is realized
within our home-grown PAT model checker [26]. The usability / scalability of PAT is
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demonstrated via (i) automated verification of several real-life parameterized systems
and (ii) a quantitative comparison with the SPIN model checker [17].

2 Preliminaries

We begin by formally defining our system model.

Definition 1 (System Model). A system model is a structure S = (VarG , initG ,Proc)
where VarG is a finite set of global variables, initG is their initial valuation and Proc
is a parallel composition of multiple processes Proc = P1 ‖ P2 ‖ · · · such that each
process Pi = (Si , initi ,→i) is a transition system.

We assume that all global variables have finite domains and each Pi has finitely many
local states. A local state represents a program text together with its local context
(e.g. valuation of the local variables). Two local states are equivalent if and only if
they represent the same program text and the same local context. Let State be the set
of all local states. We assume that State has finitely many elements. This disallows
unbounded non-tail recursion which results in infinite different local states. Proc may
be composed of infinitely many processes. Each process has a unique identifier. In an
abuse of notation, we use Pi to represent the identifier of process Pi when the con-
text is clear. Notice that two local states from different processes are equivalent only
if the process identifiers are irrelevant to the program texts they represent. Processes
may communicate through global variables, (multi-party) barrier synchronization or
synchronous/asynchronous message passing. It can be shown that parallel composition
‖ is symmetric and associative.

Example 1. Fig. 1 shows a model of the readers/writers problem, which is a simple pro-
tocol for the coordination of readers and writers accessing a shared resource. The proto-
col, which we refer to as RW , is designed for arbitrary number of readers and writers.
Several readers can read concurrently, whereas writers require exclusive access. Global
variable counter records the number of readers which are currently accessing the re-
source; writing is true if and only if a writer is updating the resource. A transition is of
the form [guard ]name{assignments}, where guard is a guard condition which must
be true for the transition to be taken and assignments is a simple sequential program
which updates global variables. The following are properties which are to be verified.

�!(counter > 0 ∧ writing) – Prop1

��counter > 0 – Prop2

Property Prop1 is a safety property which states that writing and reading cannot occur
simultaneously. Property Prop2 is a liveness property which states that always eventu-
ally the resource can be accessed by some reader.

In order to define the operational semantics of a system model, we define the notion of a
configuration to capture the global system state during the execution, which is referred
to as concrete configurations. This terminology distinguishes the notion from the state
space abstraction and the abstract configurations which will be introduced later.



126 J. Sun et al.

proc Reader proc Writer

R0 R1
startread{counter++}

stopread{counter--} stopwrite{writing:=false}

startwrite{writing:=true}
W0 W1

[counter==0 && !writing]

global variables: int counter = 0; bool writing = false; 

[!writing]

Fig. 1. Readers/writers model

Definition 2 (Concrete Configuration). Let S be a system model. A concrete config-
uration of S is a pair (v , 〈s1, s2, · · ·〉) where v is the valuation of the global variables
(channel buffers may be viewed as global variables), and si ∈ Si is the local state in
which process Pi is residing.

A system transition is of the form (v , 〈s1, s2, · · ·〉) →Ag (v ′, 〈s ′1, s ′2, · · ·〉) where the
system configuration after the transition is (v ′, 〈s ′1, s ′2, · · ·〉) and Ag is a set of partici-
pating processes. For simplicity, set Ag (short for agent ) is often omitted if irreverent.
A system transition could be one of the following forms:

(i) a local transition of Pi which updates its local state (from si to s ′i ) and possibly
updating global variables (from v to v ′). An example is the transition from R0 to R1 of
a reader. In such a case, Pi is the participating process, i.e., Ag = {Pi}.
(ii) a multi-party synchronous transition among processes Pi , · · · ,Pj . Examples are
message sending/receiving through channels with buffer size 0 (e.g., as in Promela [17])
and alphabetized barrier synchronization in the classic CSP. In such a case, local states
of the participating processes are updated simultaneously. The participating processes
are Pi , · · · ,Pj .

(iii) process creation of Pm by Pi . In such a case, an additional local state is appended
to the sequence 〈s1, s2, · · ·〉, and the state of Pi is changed at the same time. Assume for
now that the sequence 〈s1, s2, · · ·〉 is always finite before process creation. It becomes
clear in Section 5 that this assumption is not necessary. In such a case, the participating
processes are Pi and Pm .

(iv) process deletion of Pi . In such case, the local state of Pi is removed from the
sequence (〈s1, s2, · · ·〉). The participating process is Pi .

Definition 3 (Concrete Transition System). Let S = (VarG , initG ,Proc) be a sys-
tem model, where Proc = P1 ‖ P2 ‖ · · · such that each process Pi = (Si , initi ,→i)
is a local transition system. The concrete transition system corresponding to S is a 3-
tuple TS = (C , init , ↪→) where C is the set of all reachable system configurations,
init is the initial concrete configuration (initG , 〈init1, init2, · · ·〉) and ↪→ is the global
transition relation obtained by composing the local transition relations→i in parallel.

An execution of S is an infinite sequence of configurations E = 〈c0, c1, · · · , ci , · · ·〉
where c0 = init and ci ↪→ ci+1 for all i ≥ 0. Given a model S and a system configura-
tion c, let enabledS(c) (or enabled(c) when the context is clear) be the set of processes
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which is ready to make some progress, i.e., enabled(c) = {Pi | ∃ c′, c ↪→Ag c′ ∧
Pi ∈ Ag}. The following defines two common notions of fairness in system execu-
tions, i.e., weak fairness and strong fairness.

Definition 4 (Weak Fairness). Let S be a system model. An execution 〈c1, c2, · · ·〉 of
TS is weakly fair, if and only if, for every Pi there are infinitely many k such that
ck →Ag ck+1 and Pi ∈ Ag if there exists n so that Pi ∈ enabled(cm ) for all m > n .

Weak fairness states that if a process becomes enabled forever after some steps, then it
must be engaged infinitely often. From another point of view, weak fairness guarantees
that each process is only finitely faster than the others.

Definition 5 (Strong Fairness). Let S be a system model. An execution 〈c1, c2, · · ·〉
of TS is strongly fair, if and only if, for every Pi there are infinitely many k such that
ck →Ag ck+1 and Pi ∈ Ag if there are infinitely many n such that Pi ∈ enabled(cn ).

Strong fairness states that if a process is infinitely often enabled, it must be infinitely
often engaged. This type of fairness is particularly useful in the analysis of systems that
use semaphores, synchronous communication, and other special coordination primi-
tives. Clearly, strong fairness guarantees weak fairness.

In this work, we assume that system properties are expressed as LTL formulae consti-
tuted by propositions on global variables. One way to state property of a single process
is to migrate part of its local context to global variables. Let φ be a property. S satisfies
φ, written as S � φ, if and only if every execution of TS satisfies φ. S satisfies φ under
weak fairness, written as S �wf φ, if and only if, every weakly fair execution of TS
satisfies φ. T satisfies φ under strong fairness, written as T �sf φ, if and only if, every
strongly fair execution of T satisfies φ.

Given the RW model presented in Fig. 1, it can be shown that RW � Prop1. It is,
however, not easy to prove it using standard model checking techniques. The challenge
is that many or unbounded number of readers and writers cause state space explosion.
Also, RW fails Prop2 without fairness constraint. For instance, a counterexample is
〈startwrite, stopwrite〉∞, i.e., a writer keeps updating the resource without any reader
ever accessing it. This is unreasonable if the system scheduler is well-designed or the
processors that the readers/writers execute on have comparable speed. To avoid such
counterexamples, we need to perform model checking under fairness.

3 Process Counter Representation

Parameterized systems contain behaviorally similar or even identical processes. Given
a configuration (v , 〈· · · , si , · · · , sj , · · ·〉), multiple local states1 may be equivalent. A
natural “abstraction” is to record only how many copies of a local state are there.

Let S be a system model. An alternative representation of a concrete configuration is
a pair (v , f ) where v is the valuation of the global variables and f is a total function from
a local state to the set of processes residing at the state. For instance, given that R0 is a
local state in Fig. 1, f (R0) = {Pi ,Pj ,Pk} if and only if reader processes Pi , Pj and Pk

1 The processes residing at the local states may or may not have the same process type.
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are residing at state R0. This representation is sound and complete because processes
at equivalent local states are behavioral equivalent and ‖ composition is symmetric and
associative (so that processes ordering is irrelevant).

Furthermore, given a local state s and processes residing at s , we may consider the
processes indistinguishable (as the process identifiers must be irrelevant given the local
states are equivalent) and abstract the process identifiers. That is, instead of associating
a set of process identifiers with a local state, we only keep track of the number of
processes. Instead of setting f (R0) = {Pi ,Pj ,Pk}, we now set f (R0) = 3. In this and
the next section, we assume that the total number of processes is bounded.

Definition 6 (Abstract Configuration). Let S be a system model. An abstract con-
figuration of S is a pair (v , f ) where v is a valuation of the global variables and
f : State → N is a total function2 such that f (s) = n if and only if n processes
are residing at s .

Given a concrete configuration cc = (v , 〈s0, s1, · · ·〉), let F(〈s0, s1, · · ·〉) returns the
function f (refer to Definition 6) — that is, f (s) = n if and only if there are n
states in 〈s0, s1, · · ·〉 which are equivalent to s . Further, we write F(cc) to denote
(v ,F(〈s0, s1, · · ·〉)). Given a concrete transition c →Ag c′, the corresponding abstrac-
tion transition is written as a ↪→Ls a′ where a = F(c) and a′ = F(c′) and Ls (short
for local-states) is the local states at which processes in Ag are. That is, Ls is the set of
local states from which there is a process leaving during the transition. We remark that
Ls is obtained similarly as Ag is.

Given a local state s and an abstract configuration a, we define enabled(s , a) to be
true if and only if ∃ a′, a ↪→Ls a′ ∧ s ∈ Ls , i.e., a process is enabled to leave s in a.
For instance, given the transition system in Fig. 2, Ls = {R0} for the transition from
A0 to A1 and enabled(R0,A1) is true.

Definition 7 (Abstract Transition System). Let S = (VarG , initG ,Proc) be a system
model, where Proc = P1 ‖ P2 ‖ · · · such that each process Pi = (Si , initi ,→i) is a lo-
cal transition system. An abstract transition system of S is a 3-tuple AS = (C , init , ↪→
) where C is the set of all reachable abstract system configurations, init ∈ C is
(initG ,F(initG , 〈init1, init2, · · ·〉)) and ↪→ is the abstract global transition relation.

We remark that the abstract transition relation can be constructed without constructing
the concrete transition relation, which is essential to avoid state space explosion. Given
the model presented in Fig. 1, if there are 2 readers and 2 writers, then the abstract
transition system is shown in Fig. 2.

A concrete execution of TS can be uniquely mapped to an execution of AS by ap-
plying F to every configuration in the sequence. For instance, let X = 〈c0, c1, · · · ,
ci , · · ·〉 be an execution of TS (i.e., a concrete execution), the corresponding execution
of AS is L = 〈F(c0),F(c1), · · · ,F(ci), · · ·〉 (i.e., the abstract execution). In an abuse
of notation, we writeF(X ) to denote L. Notice that the valuation of the global variables
are preserved. Essentially, no information is lost during the abstraction. It can be shown
that AS � φ if and only if TS � φ.

2 In PAT, the mapping from a local state to 0 is always omitted for memory saving.
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A0: ((writing,false),(counter,0),(R0,2),(R1,0),(W0,2),(W1,0))
A1: ((writing,false),(counter,1),(R0,1),(R1,1),(W0,2),(W1,0))

A3: ((writing,true),(counter,0),(R0,2),(R1,0),(W0,1),(W1,1))
A2: ((writing,false),(counter,2),(R0,0),(R1,2),(W0,2),(W1,0))

A2 A0 A3A1
stopread stopread startwrite

stopwritestartreadstartread

Fig. 2. Readers/writers model

4 Fair Model Checking Method

Process counter abstraction may significantly reduce the number of states. It is useful
for verification of safety properties. However, it conflicts with the notion of fairness.
A counterexample to a liveness property under fairness must be a fair execution of
the system. By Definition 4 and 5, the knowledge of which processes are enabled or
engaged is necessary in order to check whether an execution is fair or not. In this section,
we develop the necessary theorems and algorithms to show that model checking under
fairness constraints is feasible even without the knowledge of process identifiers.

By assumption the total number of processes is finite, the abstract transition system
AS has finitely many states. An infinite execution of AS must form a loop (with a
finite prefix to the loop). Assume that the loop starts with index i and ends with k ,
written as Lk

i = 〈c0, · · · , ci , ci+1, · · · , ci+k , ci+k+1〉 where ci+k+1 = ci . We define
the following functions to collect loop properties and use them to define fairness later.

always(Lk
i ) = {s : State | ∀ j : {i , · · · , i + k}, enabled(s , cj )}

once(Lk
i ) = {s : State | ∃ j : {i , · · · , i + k}, enabled(s , cj )}

leave(Lk
i ) = {s : State | ∃ j : {i , · · · , i + k}, cj ↪→Ls cj+1 ∧ s ∈ Ls}

Intuitively, always(Lk
i ) is the set of local states from where there are processes, which

are ready to make some progress, throughout the execution of the loop; once(Lk
i ) is

the set of local states where there is a process which is ready to make some progress,
at least once during the execution of the loop; leave(Lk

i ) is the set of local states from
which processes leave during the loop. For instance, given the abstract transition system
in Fig. 2, X = 〈A0,A1,A2〉∞ is a loop starting with index 0 and ending with index 2.
always(X ) = ∅; once(X ) = {R0,R1,W 0}; leave(X ) = {R0,R1}.

The following lemma allows us to check whether an execution is fair by only looking
at the abstract execution.

Lemma 1. Let S be a system model; X be an execution of TS; Lk
i = F(X ) be the

respective abstract execution of AS . (1). always(Lk
i ) ⊆ leave(Lk

i ) if X is weakly fair;
(2). once(Lk

i ) ⊆ leave(Lk
i ) if X is strongly fair.

Proof. (1). Assume X is weakly fair. By definition, if state s is in always(Lk
i ), there

must be a process residing at s which is enabled to leave during every step of the loop.
If it is the same process P , P is always enabled during the loop and therefore, by
definition 4, P must participate in a transition infinitely often because X is weakly
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fair. Therefore, P must leave s during the loop. By definition, s must be in leave(Lk
i ).

If there are different processes enabled at s during the loop, there must be a process
leaving s , so that s ∈ leave(Lk

i ). Thus, always(Lk
i ) ⊆ leave(Lk

i ).
(2). Assume X is strongly fair. By definition, if state s is in once(Lk

i ), there must be a
process residing at s which is enabled to leave during one step of the loop. Let P be the
process. Because P is infinitely often enabled, by Definition 4, P must participate in a
transition infinitely often because X is strongly fair. Therefore, P must leave s during
the loop. By definition, s must be in leave(Lk

i ). �

The following lemma allows us to generate a concrete fair execution if an abstract fair
execution is identified.

Lemma 2. Let S be a model; Lk
i be an execution of AS . (1). There exists a weakly

fair execution X of TS such that F(X ) = Lk
i if always(Lk

i ) ⊆ leave(Lk
i ); (2).

If once(Lk
i ) ⊆ leave(Lk

i ), there exists a strongly fair execution X of TS such that
F(X ) = Lk

i .

Proof. (1). By a simple argument, there must exist an execution X of TS such that
F(X ) = Lk

i . Next, we show that we can unfold the loop (of the abstract fair execution)
as many times as necessary to let all processes make some progress, so as to generate
a weakly fair concrete execution. Assume P is the set of processes residing at a state
s during the loop. Because always(Lk

i ) ⊆ leave(Lk
i ), if s ∈ always(Lk

i ), there must
be a transition during which a process leaves s . We repeat the loop multiple times and
choose a different process from P to leave each time. The generated execution must be
weakly fair.

(2). Similarly as above. �

The following theorem shows that we can perform model checking under fairness by
examining the abstract transition system only.

Theorem 1. Let S be a system model. Let φ be an LTL property. (1). S �wf φ if and
only if for all executions Lk

i of AS we have always(Lk
i ) ⊆ leave(Lk

i ) ⇒ Lk
i � φ; (2).

S �sf φ if and only if for all execution Lk
i of AS we have once(Lk

i ) ⊆ leave(Lk
i ) ⇒

Lk
i � φ.

Proof. (1). if part: Assume that for all Lk
i of AS we have Lk

i � φ if always(Lk
i ) ⊆

leave(Lk
i ), and S ��wf φ. By definition, there exists a weakly fair execution X of TS

such that X �� φ. Let Lk
i be F(X ). By lemma 1, always(Lk

i ) ⊆ leave(Lk
i ) and hence

Lk
i � φ. Because our abstraction preserves valuation of global variables, Lk

i �� φ as
X �� φ. We reach a contradiction.
only if part: Assume that S �wf φ and there exists Lk

i of AS such that always(Lk
i ) ⊆

leave(Lk
i ), and Lk

i ��wf φ. By lemma 2, there must exist X of TS such that X is weakly
fair. Because process counter abstraction preserves valuations of global variables, X ��
φ. Hence, we reach contradiction.

(2). Similarly as above. �

Thus, in order to prove that S satisfies φ under fairness, we need to show that there is no
execution Lk

i of AS such that Lk
i �� φ and the execution satisfies an additional constraint
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for fairness, i.e., always(Lk
i ) ⊆ leave(Lk

i ) for weak fairness or once(Lk
i ) ⊆ leave(Lk

i )
for strong fairness. Or, if S ��wf φ, then there must be an execution Lk

i of AS such
that Lk

i satisfies the fairness condition and Lk
i �� φ. In such a case, we can generate a

concrete execution.
Following the above discussion, fair model checking parameterized systems is re-

duced to searching for particular loops in AS . There are two groups of methods for
loop searching. One is based on nested depth-first-search (DFS) [17] and the other is
based on identifying strongly connected components (SCC) [12]. It has been shown
that the nested DFS is not suitable for model checking under fairness assumptions, as
whether an execution is fair depends on the path instead of one state [17]. In this work,
we extend the approaches presented in [12, 27] to cope with weak or strong fairness
and process counter abstraction. Given AS and a property φ, model checking involves
searching for an execution of AS which fails φ. In automata-based model checking,
the negation of φ is translated to an equivalent Büchi automaton B¬φ, which is then
composed with AS . Notice that a state in the produce of AS and B¬φ is a pair (a, b)
where a is an abstract configuration of AS and b is a state of B¬φ. Model checking
under fairness involves searching for a fair execution which is accepted by the Büchi
automaton.

Given a transition system, a strongly connected subgraph is a subgraph such that
there is a path connecting any two states in the subgraph. An MSCC is a maximal
strongly connected subgraph. Given the product of AS and B¬φ, let scg be a set of
states which, together with the transitions among them, forms a strongly connected
subgraph. We say scg is accepting if and only if there exists one state (a, b) in scg
such that b is an accepting state of B¬φ. In an abuse of notation, we refer to scg as the
strongly connected subgraph in the following. The following lifts the previously defined
functions on loops to strongly connected subgraphs.

always(scg) = {y : State | ∀ x : scg, enabled(y, x )}
once(scg) = {y : State | ∃ x : scg, enabled(y, x )}
leave(scg) = {z : State | ∃ x , y : scg, z ∈ leave(x , y)}

always(scg) is the set of local states such that for any local state in always(scg), there
is a process ready to leave the local state for every state in scg; once(scg) is the set
of local states such that for some local state in once(scg), there is a process ready to
leave the local state for some state in scg; and leave(scg) is the set of local states such
that there is a transition in scg during which there is a process leaving the local state.
Given the abstract transition system in Fig. 2, scg = {A0,A1,A2,A3} constitutes a
strongly connected subgraph. always(scg) = nil; once(scg) = {R0,R1,W 0,W 1};
leave(scg) = {R0,R1,W 0,W 1}.

Lemma 3. Let S be a system model. There exists an execution Lk
i of AS such that

always(Lk
i ) ⊆ leave(Lk

i ) if and only if there exists an MSCC scc of AS such that
always(scc) ⊆ leave(scc).

Proof. The if part is trivially true. The only if part is proved as follows. Assume there
exists execution Lk

i of AS such that always(Lk
i ) ⊆ leave(Lk

i ), there must exist a
strongly connected subgraph scg which satisfies always(scg) ⊆ leave(scg). Let scc
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procedure checkingUnderWeakFairness(AS ,B¬φ)
1. while there are un-visited states in AS ⊗ B¬φ

2. use the improved Tarjan’s algorithm to identify one SCC, say scg ;
3. if scg is accepting to B¬φ and always(scg) ⊆ leave(scg)
4. generate a counterexample and return false;
5. endif
6. endwhile
7. return true;

Fig. 3. Model checking algorithm under weak fairness

be the MSCC which contains scg . We have always(scc) ⊆ always(scg), therefore, the
MSCC scc satisfies always(scc) ⊆ always(scg) ⊆ leave(scg) ⊆ leave(scc). �

The above lemma allows us to use MSCC detection algorithms for model checking
under weak fairness. Fig. 3 presents an on-the-fly model checking algorithm based on
Tarjan’s algorithm for identifying MSCCs. The idea is to search for an MSCC scg such
that always(scg) ⊆ leave(scg) and scg is accepting. The algorithm terminates in two
ways, either one such MSCC is found or all MSCCs have been examined (and it returns
true). In the former case, an abstract counterexample is generated. In the latter case, we
successfully prove the property. Given the system presented in Fig. 2, {A0,A1,A2,A3}
constitutes the only MSCC, which satisfies always(scg) ⊆ leave(scg). The complexity
of the algorithm is linear in the number of transitions of AS .

Lemma 4. Let S be a system model. There exists an execution Lk
i of AS such that

once(Lk
i ) ⊆ leave(Lk

i ) if and only if there exists a strongly connected subgraph scg of
AS such that once(scg) ⊆ leave(scg).

We skip the proof of the lemma as it is straightforward. The lemma allows us to extend
the algorithm proposed in [27] for model checking under strong fairness. Fig. 4 presents
the modified algorithm. The idea is to search for a strongly connected subgraph scg
such that once(scg) ⊆ leave(scg) and scg is accepting. Notice that a strongly con-
nected subgraph must be contained in one and only one MSCC. The algorithm searches
for MSCCs using Tarjan’s algorithm. Once an MSCC scg is found (at line 2), if scg
is accepting and satisfies once(scg) ⊆ leave(scg), then we generate an abstract coun-
terexample. If scg is accepting but fails once(scg) ⊆ leave(scg), instead of throwing
away the MSCC, we prune a set of bad states from the SCC and then examinate the
remaining states (at line 6) for strongly connected subgraphs. Intuitively, bad states are
the reasons why the SCC fails the condition once(scg) ⊆ leave(scg). Formally,

bad(scg) = {x : scg | ∃ y, y �∈ leave(scg) ∧ y ∈ enabled(y, x )}

That is, a state s is bad if and only if there exists a local state y such that a process may
leave y at state s and yet there is no process leaving y given all transitions in scg . By
pruning all bad states, there might be a strongly connected subgraph in the remaining
states which satisfies the fairness constraint.
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procedure checkingUnderStrongFairness(AS ,B¬φ, states)
1. while there are un-visited states in states

2. use Tarjan’s algorithm to identify a subset of states which forms an SCC, say scg ;
3. if scg is accepting to B¬φ

4. if once(scg) ⊆ leave(scg)
5. generate a counterexample and return false;
6. else if checkingUnderStrongFairness(AS ,B¬φ, scg \ bad(scg)) is false
7. return false;
8. endif
9. endif
10. endwhile
11. return true;

Fig. 4. Model checking algorithm under strong fairness

The algorithm is partly inspired by the one presented in [16] for checking emptiness
of Streett automata. Soundness of the algorithm follows the discussion in [27,16]. It can
be shown that any state of a strongly connected subgraph which satisfies the constraints
is never pruned. As a result, if there exists such a strongly connected subgraph scg , a
strongly connected subgraph which contains scg or scg itself must be found eventually.
Termination of the algorithm is guaranteed because the number of visited states and
pruned states are monotonically increasing. The complexity of the algorithm is linear in
#states ×#trans where #states and #trans are the number of states and transitions
of AS respectively. A tighter bound on the complexity can be found in [16].

5 Counter Abstraction for Infinitely Many Processes

In the previous sections, we assume that the number of processes (and hence the size
of the abstract transition system) is finite and bounded. If the number of processes is
unbounded, there might be unbounded number of processes residing at a local state,
e.g., the number of reader processes residing at R0 in Fig. 1 might be infinite. In such a
case, we choose a cutoff number and then apply further abstraction. In the following,
we modify the definition of abstract configurations and abstract transition systems to
handle unbounded number of processes.

Definition 8. Let S be a system model with unboundedly many processes. Let K be a
positive natural number (i.e., the cutoff number). An abstract configuration of S is a
pair (v , g) where v is the valuation of the global variables and g : State → N ∪ {ω}
is a total function such that g(s) = n if and only if n(≤ K ) processes are residing at s
and g(s) = ω if and only if more than K processes are at s .

Given a configuration (v , 〈s0, s1, · · ·〉), we define a function G similar to function F ,
i.e., G(〈s0, s1, · · ·〉)) returns function g (refer to Definition 8) such that given any state
s , g(s) = n if and only if there are n states in 〈s0, s1, · · ·〉 which are equivalent to s and
g(s) = ω if and only if there are more than K states in 〈s0, s1, · · ·〉which are equivalent
to s . Furthermore, G(c) = (v ,G(〈s0, s1, · · ·〉)).
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A2 A0 A3A1
stopread startwrite

stopwritestartread

stopread

startread

A0: ((writing,false),(counter,0),(R0,inf),(R1,0),(W0,inf),(W1,0))
A1: ((writing,false),(counter,1),(R0,inf),(R1,1),(W0,inf),(W1,0))
A2: ((writing,false),(counter,inf),(R0,inf),(R1,inf),(W0,inf),(W1,0))
A3: ((writing,true),(counter,0),(R0,inf),(R1,0),(W0,inf),(W1,1))

startread

stopread

Fig. 5. Abstract readers/writers model

The abstract transition relation of S (as per the above abstraction) can be constructed
without constructing the concrete transition relation. We illustrate how to generate an
abstract transition in the following. Given an abstract configuration (v , g), if g(s) > 0,
a local transition from state s to state s ′, creating a process with initial state init may re-
sult in different abstract configurations (v , g ′) depending on g . In particular, g ′ equals
g except that g ′(s) = g(s) − 1 and g ′(s ′) = g(s ′) + 1 and g ′(init) = g(init) + 1
assuming ω + 1 = ω, K + 1 = ω and ω − 1 is either ω or K . We remark that by as-
sumption State is a finite set and therefore the domain of g is always finite. This allows
us to drop the assumption that the number of processes must be finite before process
creation. Similarly, we abstract synchronous transitions and process termination.

The abstract transition system for a system model S with unboundedly many pro-
cesses, written as RS (to distinguish from AS), is now obtained by applying the afore-
mentioned abstract transition relation from the initial abstract configuration.

Example 2. Assume that the cutoff number is 1 and there are infinitely many readers
and writers in the readers/writers model. Because counter is potentially unbounded
and, we mark counter as a special process counter variable which dynamically counts
the number of processes which are reading (at state R1). If the number of reading pro-
cesses is larger than the cutoff number, counter is set to ω too. The abstract transition
system ARW is shown in Fig. 5. The abstract transition system may contain spurious
traces. For instance, the trace 〈start , (stopread)∞〉 is spurious. It is straightforward to
prove that ARW � Prop1 based on the abstract transition system.

The abstract transition system now has only finitely many states even if there are un-
bounded number of processes and, therefore, is subject to model checking. As illus-
trated in the preceding example, the abstraction is sound but incomplete in the presence
of unboundedly many processes. Given an execution X of TS , let G(X ) be the corre-
sponding execution of the abstract transition system. An execution L of RS is spurious
if and only if there does not exist an execution X of TS such that G(X ) = L. Because
the abstraction only introduces execution traces (but does not remove any), we can for-
mally establish a simulation relation (but not a bisimulation) between the abstract and
concrete transition systems, that is, RS simulates TS . Thus, while verifying an LTL
property φ we can conclude TS � φ if we can show that RS � φ. Of course, RS � φ
will be accomplished by model checking under fairness.

The following re-establishes Lemma 1 and (part of) Theorem 1 in the setting of RS .
We skip the proof as they are similar to that of Lemma 1 and Theorem 1 respectively.



Fair Model Checking with Process Counter Abstraction 135

Lemma 5. Let S be a system model, X be an execution of TS and Lk
i = G(X ) be the

corresponding execution of RS . We have (1). always(Lk
i ) ⊆ leave(Lk

i ) if X is weakly
fair; (2).once(Lk

i ) ⊆ leave(Lk
i ) if X is strongly fair.

Theorem 2. Let S be a system model and φ be an LTL property. (1). S �wf φ if for all
execution traces Lk

i of RS we have always(Lk
i ) ⊆ leave(Lk

i )⇒ Lk
i � φ; (2). S �sf φ

if for all execution traces Lk
i of RS we have once(Lk

i ) ⊆ leave(Lk
i )⇒ Lk

i � φ;

The reverse of Theorem 2 is not true because of spurious traces. We remark that the
model checking algorithms presented in Section 4 are applicable to RS (as the abstrac-
tion function is irrelevant to the algorithm). By Theorem 2, if model checking of RS
(using the algorithms presented in Section 4 under weak/fairness constraint) returns
true, we conclude that the system satisfies the property (under the respective fairness).

6 Case Studies

Our method has been realized in the Process Analysis Toolkit (PAT) [26]. PAT is de-
signed for systematic validation of distributed/concurrent systems using state-of-the-art
model checking techniques. In the following, we show the usability/scalability of our
method via the automated verification of several real-life parameterized systems. All
the models are embedded in the PAT package and available online. The experimental
results are summarized in the following table, where NA means not applicable (hence
not tried, due to limit of the tool); NF means not feasible (out of 2GB memory or run-
ning for more than 4 hours). The data is obtained with Intel Core 2 Quad 9550 CPU at
2.83GHz and 2GB RAM. We compared PAT with SPIN [17] on model checking under
no fairness or weak fairness. Notice that SPIN does not support strong fairness and is
limited to 255 processes.

Model #Proc Property No Fairness Weak Fairness Strong Fairness
Result PAT SPIN Result PAT SPIN Result PAT Spin

LE 10 �� one leader false 0.04 0.015 true 0.06 320 true 0.06 NA
LE 100 �� one leader false 0.04 0.015 true 0.27 NF true 0.28 NA
LE 1000 �� one leader false 0.04 NA true 2.26 NA true 2.75 NA
LE 10000 �� one leader false 0.04 NA true 23.89 NA true 68.78 NA
LE ∞ �� one leader false 0.06 NA true 264.78 NA true 463.9 NA
KV 2 PropKvalue false 0.05 0 true 0.6 1.14 true 0.6 NA
KV 3 PropKvalue false 0.05 0 true 4.56 61.2 true 4.59 NA
KV 4 PropKvalue false 0.05 0.015 true 29.2 NF true 30.24 NA
KV 5 PropKvalue false 0.06 0.015 true 174.5 NF true 187.1 NA
KV ∞ PropKvalue false 0.12 NA ? NF NA ? NF NA

Stack 5 Propstack false 0.06 0.015 false 0.78 NF false 0.74 NA
Stack 7 Propstack false 0.06 0.015 false 11.3 NF false 12.1 NA
Stack 9 Propstack false 0.06 0.015 false 158.6 NF false 191.8 NA
Stack 10 Propstack false 0.05 0.015 false 596.1 NF false 780.3 NA
ML 10 �� access true 0.11 21.5 true 0.11 107 true 0.11 NA
ML 100 �� access true 1.04 NF true 1.04 NF true 1.04 NA
ML 1000 �� access true 11.04 NA true 11.08 NA true 11.08 NA
ML ∞ �� access true 13.8 NA true 13.8 NA true 13.8 NA
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The first model (LE ) is a self-stabilizing leader election protocol for complete net-
works [11]. Mobile ad hoc networks consist of multiple mobile nodes which interact
with each other. The interactions among the nodes are subject to fairness constraints.
One essential property of a self-stabilizing population protocols is that all nodes must
eventually converge to the correct configurations. We verify the self-stabilizing leader
election algorithm for complete network graphs (i.e., any pair of nodes are connected).
The property is that eventually always there is one and only one leader in the network,
i.e., �� one leader . PAT successfully proved the property under weak or strong fair-
ness for many or unbounded number of network nodes (with cutoff number 2). SPIN
took much more time to prove the property under weak fairness. The reason is that the
fair model checking algorithm in SPIN copies the global state machine n + 2 times (for
n processes) so as to give each process a fair chance to progress, which increases the
verification time by a factor that is linear in the number of network nodes.

The second model (KV ) is a K-valued register [3]. A shared K-valued multi-reader
single-writer register R can be simulated by an array of K binary registers. When the
single writer process wants to write v into R, it will set the v -th element of B to 1
and then set all the values before v -th element to 0. When a reader wants to read the
value, it will do an upwards scan first from 0 to the first element u whose value is 1,
then do a downwards scan from u to 0 and remember the index of the last element
with value 1, which is the return value of the reading operation. A progress property is
that PropKvalue = �(read inv → �read res), i.e., a reading operation (read inv )
eventually returns some valid value (read res). With no fairness, both PAT and SPIN
identified a counterexample quickly. Because the model contains many local states, the
size of AS increases rapidly. PAT proved the property under weak/strong fairness for 5
processes, whereas SPIN was limited to 3 processes with weak fairness.

The third model (Stack ) is a lock-free stack [28]. In concurrent systems, in order
to improve the performance, the stack can be implemented by a linked list, which is
shared by arbitrary number of processes. Each push or pop operation keeps trying to
update the stack until no other process interrupts. The property of interest is that a
process must eventually be able to update the stack, which can be expressed as the LTL
Propstack = �(push inv → �push res) where event push inv (push res) marks
the starting (ending) of push operation. The property is false even under strong fairness.

The fourth model (ML) is the Java meta-lock algorithm [1]. In Java language, any ob-
ject can be synchronized by different threads via synchronized methods or statements.
The Java meta-locking algorithm is designed to ensure the mutually exclusive access
to an object. A synchronized method first acquires a lock on the object, executes the
method and then releases the lock. The property is that always eventually some thread
is accessing the object, i.e., �� access , which is true without fairness. This example
shows that the computational overhead due to fairness is negligible in PAT.

In another experiment, we use a model in which processes all behave differently (so
that counter abstraction results in no reduction) and each process has many local states.
We then compare the verification results with or without process counter abstraction.
The result shows the computational and memory overhead for applying the abstrac-
tion is negligible. In summary, the enhanced PAT model checker complements existing
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model checkers in terms of not only performance but also the ability to perform model
checking under weak or strong fairness with process counter abstraction.

7 Discussion and Related Work

We studied model checking under fairness with process counter abstraction. The contri-
bution of our work is twofold. First, we presented a fully automatic method for property
checking of under fairness with process counter abstraction. We showed that fairness
can be achieved without the knowledge of process identifiers. Secondly, we enhanced
our home-grown PAT model checker to support our method and applied it on large
scale parameterized systems to demonstrate its scalability. As for future work, we plan
to investigate methods to combine well-known state space reduction techniques (such
as partial order reduction, data abstraction for infinite domain data variables) with the
process counter abstraction so as to extend the applicability of our model checker.

Verification of parameterized systems is undecidable [2]. There are two possible
remedies to this problem: either we look for restricted subsets of parameterized sys-
tems for which the verification problem becomes decidable, or we look for sound but
not necessarily complete methods. The first approach tries to identify a restricted sub-
set of parameterized systems and temporal properties, such that if a property holds for
a system with up to a certain number of processes, then it holds for any number of
processes in the system. Moreover, the verification for the reduced system can be ac-
complished by using model checking. This approach can be used to verify a number of
systems [13,18,8]. The sound but incomplete approaches include methods based on syn-
thesis of invisible invariant (e.g., [10]); methods based on network invariant (e.g., [21])
that relies on the effectiveness of a generated invariant and the invariant refinement tech-
niques; regular model checking [19] that requires acceleration techniques. Verification
of liveness properties under fairness constraints have been studied in [15,17,20]. These
works are based on SCC-related algorithms and decide the existence of an accepting run
of the product of the transition system and Büchi automata, Streett automata or linear
weak alternating automaton.

The works closest to ours are the methods based on counter abstraction (e.g., [7,24,
23]). In particular, verification of liveness properties under fairness is addressed in [23].
In [23], the fairness constraints for the abstract system are generated manually (or via
heuristics) from the fairness constraints for the concrete system. Different from the
above work, our method handles one (possibly large) instance of parameterized systems
at a time and uses counter abstraction to improve verification effectiveness. In addition,
fairness conditions are integrated into the on-the-fly model checking algorithm which
proceeds on the abstract state representation — making our method fully automated.

Our method is related to work on symmetry reduction [9,5]. A solution for applying
symmetry reduction under fairness is discussed in [9]. Their method works by finding a
candidate fair path in the abstract transition system and then using special annotations
to resolve the abstract path to a threaded structure which then determines whether there
is a corresponding fair path in the concrete transition system. A similar approach was
presented in [14]. Different from the above, our method employs a specialized form of
symmetry reduction and deals with the abstract transition system only and requires no
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annotations. Additionally, a number of works on combining abstraction and fairness,
were presented in [6,22,29,4,25]. Our work explores one particular kind of abstraction
and shows that it works with fairness with a simple twist.
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Abstract. In this paper, we propose a systematic approach, based on
the CSP process algebra, to preserve deadlock- and livelock-freedom by
construction in I/O component composition. In contrast to existing clas-
sical approaches, we allow components to have complex behaviour, pro-
tocols and contracts. As a consequence, it is possible to predict the
behaviour of a wide range of component-based systems prior to their
implementation, based on known properties of the system components.

1 Introduction

Because software failures can cause extensive, even disastrous, damage, the suc-
cessful deployment of systems depends on the extent to which we can justifiably
trust on them. Accidents are caused by failures of individual components and by
dysfunctional interactions between non-failed components. In fact, most dysfunc-
tional interactions are originated by classical problems in concurrent systems.

Much effort is devoted to the correctness of component-based systems (CBS)
using formal notations and techniques, after such systems are built [1,2,3,4].
However, instead of bringing guidance to the engineer (like suggesting how to
avoid such failures a priori), they hide the expertise needed to understand, and
predict, the quality of the developed systems. In a previous effort [5], we have
investigated patterns and compatibility notions in the integration of heteroge-
neous software components. These notions have been used to guarantee that the
behaviour of original components are preserved for a specific architectural style.

Here, we propose three basic composition rules for components and connec-
tors, which can be regarded as safe steps to form a wide variety of trustworthy
component systems. The systematic use of these rules guarantees, by construc-
tion, the absence of the classical deadlock and livelock problems.

We use the CSP process algebra [6] to formalise our entire approach. CSP al-
lows the description of system components in terms of synchronous processes that
operate independently, and interact with each other through message-passing
communication. The relationship between processes is described using process
algebraic operators from which elaborate concurrency and distributed patterns
can be constructed. Moreover, CSP offers rich semantic models that support a
wide range of process verification, and comparisons, which have shown to be
useful to support the rigorous development of CBS [7,8].
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Our contributions can be summarised as follows: we first formalise I/O com-
ponents and connectors as distinguished design entities (Sect. 2). Then, in Sect.
3, we propose three composition rules for these entities that guarantee deadlock-
and livelock-freedom by construction. Finally, we present a example in Sect. 4,
which illustrates how the composition rules are applied. Related work, and our
conclusions and future work are presented in Sect. 5.

2 Component Driven Architectures in CSP

We formalise several concepts in CBS: interfaces, components, and connectors.
We focus on interaction points of black box components and their observable
behaviour. To illustrate the proposed notions, we use an example: the commu-
nication between a CLIENT and a SERVER component in an ATM system.

Fig. 1 shows the entire system as a component, which is hierarchically com-
posed of other components (CLIENT and SERVER) and a connector (CON ). In
summary, the system behaves as follows: after the user identification, CLIENT

offers to the user a choice between withdrawing money and checking the account
balance. In our example, both withdraw and balance operations are expected
to be performed by another component: SERVER. The connector CON helps
to sort out communication issues between these components, such as alphabet
heterogeneity. Further details are shown in the next sections.

In our approach, components and connectors are basically represented by a
process in CSP. When reasoning in CSP, we consider the failures/divergence se-
mantic model [6] that allows us to explain whether a system deadlock or livelock.
In the failures/divergenge model, a process is represented by its traces, failures
and divergences. A trace is a set of finite sequences of communications a process
can perform. A failure is a pair (s ,X ), where s is a trace of the process and
X is the set of events the process can refuse to perform after s is performed. A
divergence is basically a trace which indicates when the process starts to perform
infinite sequences of consecutive internal actions.

2.1 Component Model

Component capabilities are usually described by means of interfaces, which de-
fine component provided or required services. In this work, we assume that
interfaces simply consist of input and output events in CSP. At this level of
abstraction, a pair with an input and an output event might be understood as
representing, for instance, the invocation of a method.

Fig. 1. An example of a simple ATM System
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Before we define the interfaces, we present the definition of I/O types that
represent communications with distinct events for input and output.

Definition 1 (I/O Types). Let T and U be two disjoint sets of values. Then,
we define an I/O type as a type parameterised by these two sets, as follows:

IOTT ,U = in.T | out .U

In a communication between a pair of components, typically T and U will be
the sets of input and output values for one component and, conversely, the set of
output and input values for the other component. Therefore, IOTT ,U would be
the I/O type of one component and IOTU ,T the I/O type of the other component.
To ease readability, we use the following abbreviations.

Definition 2 (Interface). Let TIN and TOUT be sets of values for input and
output communication of a given component. We call the types that represent
the interface of such a component a regular interface and a conjugate interface
(namely I and ∼I , respectively), and define them as follows:

I = IOTTIN ,TOUT ∼I = IOTTOUT ,TIN

We also introduce the projection functions inputs and outputs as follows:

inputs(I ) = ran(in) ∩ I inputs(∼I ) = ran(out)∩ ∼I

outputs(I ) = ran(out) ∩ I outputs(∼I ) = ran(in)∩ ∼I

As a consequence of Def. 2, a regular interface is a type whose input and output
events are tagged by in and out, respectively, whereas a conjugated interface has
input and output tagged by out and in, respectively. The modifiers in and out

behave in CSP as functions that take an arbitrary value and yields the same value
prefixed by those modifiers; the intersection with the whole interface restricts
the range of in and out (ran(in) and ran(out)) to the values within the interface.
For instance, for TIN = {a, b} and TOUT = {w , z}, inputs(I ) = outputs(∼ I ) =
{in.a, in.b} and outputs(I ) = inputs(∼I ) = {out .w , out .z}. For the sake of brevity,
we use ∼ as an operator that takes a regular interface and yields a conjugate
interface, and vice-versa. So that ∼∼I = I .

Apart from a static representation provided by interfaces, design entities are
also expressed by their dynamic behaviour. In this work, we focus on components
that repeatedly present the same behaviour to the environment, which is itself
defined in terms of interaction patterns [9]. Each interaction pattern consists of
a finite sequence of events that, when performed, leads the component back to
its initial state. In this manner, the component repeatedly offers these sequences
of events, similar to possible transactions performed against a database manage-
ment system. These patterns cover a wide range of applications, found in several
technologies such as, for instance, session Enterprise JavaBeansTM and transac-
tional conversational services. Moreover, it is aligned with a common practice,
transaction-based reduction, to alleviate state space explosion.



Systematic Development of Trustworthy Component Systems 143

To present the interaction patterns of a process P , InteractionPatterns(P), we
use the CSP operator P/s. If s ∈ traces(P) then P/s (pronounced ‘P after s’) rep-
resents the behaviour of P after the trace s is performed. So, InteractionPatterns

(P) is the set of traces that lead the process to its initial state.

Definition 3 (Interaction Patterns). Let P be a CSP process.

InteractionPatterns(P) = {s : traces(P) | P �FD (P/s)}

Def. 3 is characterised in terms of the CSP failures/divergence semantic model.
It defines the set of traces after which the process presents the same failures and
divergences; these are precisely the interaction patterns of P .

We define a component contract in terms of its behaviour, interaction points
and respective interfaces. The dynamic behaviour presents the observable com-
munication of a component through its interaction points. Each interaction point
is represented in CSP by a communication channel.

Definition 4 (Interaction Component Contract). A component contract
Ctr comprises an observational behaviour B, a set of channels C, a set of inter-
faces I, and a function R : C → I between channels and interfaces:

Ctr : 〈B, R, I,C〉

such that

– dom R = C ∧ ran R = I ∧ αB ⊆ ⋃c: C {| c |}
– ∀ s ∈ traces(B) • ∃ p : InteractionPatterns(B) • s � p

– ∀ t 〈̂c.a〉 : traces(B) | c ∈ C ∧ a ∈ outputs(R(c)) • (t , {| c |} − {c.a}) ∈ failures(B)

The operator {| ch |} stands for all events represented by a channel ch; for
instance, if ch communicates values of the set {1, 2}, {| ch |} = {ch.1, ch.2}.
The notation αP stands for the alphabet of a process P . They are used in the
definition above to state that the behaviour B of Ctr (denoted by BCtr) performs
only events defined in channels of CCtr . Each of these channels is typed by an
interface within ICtr , according to the function R.

The first proviso of Def. 4 states that component elements are consistent
with each other. All channels are typed by an interface, and the component
only communicates through such channels. The second proviso requires that the
component continuously repeats the same behaviour, through recursion; this is
defined in terms of interaction patterns. Its traces must be a prefix (�) of an
interaction pattern or of a combination of them; in either case they belong to
InteractionPatterns(P). The last proviso defines a component as an autonomous
entity and, furthermore, only it can choose which event is enabled from a choice
involving output events, whenever a trace (t) enables an output event (c.a), the
component does not offer any guarantee of communicating any other possible en-
abled event (after t). In CSP, this means that whenever there exists a trace t 〈̂c.a〉
(concatenating t and 〈c.a〉), the tuple (t , {| c |} − {c.a}) belongs to failures(B).
Def. 4 observes a component in isolation; other constructive constraints are de-
fined in Sect. 3 to forbid undesirable synchronism with the environment.



144 R. Ramos, A. Sampaio, and A. Mota

To exemplify contracts, we show them in the CSP syntax. In our example,
the CLIENT and SERVER components have their contracts defined by CtrCL and
CtrSV , respectively. As we focus on the interaction of these two components, we
restrict their contracts to the information that pertains this interaction.

CtrCL = 〈CLIENT , {us �→ IUS , cl �→ ICL}, {IUS , ICL}, {us, cl}〉
CtrSV = 〈SERVER, {sv �→ ISV }, {ISV }, {sv}〉

CtrCL has two channels: us and cl , which are typed by IUS and ICL, respectively.
The former channel provides services to the user, and the latter delegates the
computation of such services to the SERVER component. CtrSV provides bank
services to the CLIENT component trough a channel sv , which is typed by ISV .
Syntactically, the elements of CtrCL are written in CSP as follows.

ICL = IOTCLIN ,CLOUT

CLOUT = wd .Int | resBal .Int
CLIN = ackWd ..Bool | reqBal
channel cl : ICL

CLIENT = us.in.insertCard?num → us.in.enterPin?pin →
(WDRAW (us, cl) � BAL(us, cl)) o

9 us.out !takeCard → CLIENT
WDRAW = us.in.withdraw?val → cl .out !wd .val → cl .in.ackWd →

us.out !takeCash → SKIP
BAL = us.in.balance → cl .out !reqBal → cl .in.resBal?x →

us.out !takeSlip.x → SKIP

In the example, the events in ICL are those used by CLIENT to interact with
SERVER. ICL contains the events for withdrawing money (tagged with wd) and
for requiring and receiving an account balance (tagged with reqBal and resBal ,
respectively). These events use the (assumed) built-in data types Bool and Int

to represent boolean and integer values, respectively.
The process CLIENT is the specification of the component dynamic behaviour

in CSP. To help readability in our specification, we assume that a request event
with an input parameter takes the form ch.in.tag?x , where ch is the name of a
channel and x acts as an input pattern, which can be empty (as in balance) or
with a variable (as in insertCard?num). The notation ch.out !v is used for response
events, where v is an expression. The data processing starts by acquiring the card
number from the environment using the channel us. Next, the prefix operator
(→) states that the event us.in.enterPin?pin takes place, representing the vali-
dation of the user token and password. Then, CLIENT offers two choices deter-
ministically (�): it engages either on the events withdraw or balance, to withdraw
money or to check the account balance, respectively. The operation is started
by the occurrence of the cl .out !wd or the cl .out !reqBal event, and can be com-
pleted by the cl .in.ackWd?a and cl .in.resBal?x events. The events us.out !takeCash,
us.out !takeCard and us.out !takeSlip inform the user about the operation finalisa-
tion. SKIP is a primitive process that stands for a successful termination. The
sequential composition operator o

9 composes two processes: P o
9 Q behaves like P

until it terminates successfully, when it behaves like Q .
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Syntactically, the elements of CtrSV are written in CSP as follows.

ISV = IOTCLOUT ,CLIN

channel sv : ISV

SERVER = sv .in.wd?x → (� a : Bool • sv .out !ackWd .a) → SERVER

� sv .in.reqBal → (� y : Int • sv .out !resBal .y) → SERVER

The SERVER component has a provided interface ISV whose values for input and
output communication are defined in the opposite direction of those in ICL. We
have defined ISV as a regular interface in order to ease the understanding of the
communication direction in the SERVER behaviour. The way the communication
between CLIENT and SERVER is bridged is presented afterwards.

The process SERVER offers a deterministic choice (�) between a withdraw
and a balance request, which is represented by the occurrence of the commu-
nications sv .in.wd?x and sv .in.reqBal . After receiving a withdraw or balance re-
quest, it internally decides (nondeterministic choice �) the value of the withdraw
acknowledgement (ackWd !a) and that of the balance response (resBal .y); the non-
deterministic choice is usually associated to internal actions of the component,
which decides the value that is output.

Naturally, specifications of the component behaviour at different abstraction
levels are desirable. For instance, it is convenient to express communications
using protocols that specify allowed execution traces of the component services,
with an exclusive focus on events communicated via a specific channel.

Definition 5 (Protocol). Let Ctr be a component contract and ch a channel,
such that ch ∈ CCtr . The protocol over the channel ch (denoted by Prot(Ctr , ch))
is defined as:

Prot(Ctr , ch) = BCtr � {| ch |}[x/ch.x ]

The restriction operator P � X can be defined in terms of the CSP operator
P \ Y , where all events within Y are hidden from P , and Y = αP − X ; only
events within the alphabet of the process P (αP) and not in Y are visible in
P \ Y . For instance, the process Q = (a → b → SKIP) \ {a} is the same as
Q = b → SKIP , which is also the same as Q = (a → b → SKIP) � {b}. ([x/ch.x ])
is a forgetful renaming that makes the protocol behaviour independent of the
channel ch; [x/ch.x ] represents a bijection from an event ch.x , which comprises a
channel name (ch) and a value (x), to an event x . In this manner, it is easier to
check if two communications on two channels have the same behaviour.

In our example, the protocol of CLIENT over cl is expressed as follows.

Prot(CtrCL, cl) = cl .out .wd !val → cl .in.ackWd → Prot(CtrCL, us)
� cl .out .reqBal → cl .in.resBal?x → Prot(CtrCL, us)

A protocol is a projection of the component behaviour over a channel.
The direct composition of two components is described by the synchronisation

of their events in CSP, such that an output is only transmitted when the other
component is enabled to input it, and vice-versa.

Definition 6 (Direct Composition). Let P and Q be two component con-
tracts, such that CC = CP ∩ CQ , and ∀ c : CC • RP(c) =∼RQ(c). Then, the direct
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composition of P and Q (namely P �̆Q) is given by:

P �̆Q = 〈(BP ‖{|CC |} BQ ),RPQ , ran RPQ , domRPQ〉

where RPQ = CC −� (RP ∪ RQ)

In the definition above, the behaviour of the composition is defined by the syn-
chronisation of the behaviour of P and Q in all interactions of the channels in
CC (this is expressed through the parallel CSP operator ‖). Any communication
related to CC is hidden from the environment (using the operator \), and is
not considered in the mapping of channels. The operator −� stands for domain
subtraction; it is used to restrict the mapping from channels into interfaces and,
furthermore, to restrict the set of channels and interfaces in the composition.

By definition, components are regarded as reusable units of composition. How-
ever, the direct composition excludes a wide variety of components, which would
be eligible for composition but present mismatch problems. An alternative ap-
proach is to use connectors to mediate interaction.

Connectors establish coordination rules that govern component interaction
and specify any auxiliary mechanisms required [1], such as mapping between
heterogeneous communications. They are regarded more broadly as exogenous
coordinators, intended to mean ‘coordination from outside’ the components.

To increase the range of components they integrate, connectors are abstractly
defined at the design level to serve needs of unspecified components. They be-
come components only later in the life-cycle, on the assembly with the compo-
nents, by relying on the component contracts [10].

We represent the dynamic behaviour of abstract connectors as parameterised
CSP processes, whose parameters represent component channels and protocols.

Definition 7 (Abstract Connector). An abstract connector AC (SC ,SI ,SP )
is described by a behaviour parameterised by a sequence of distinct channels SC ,
a sequence of arbitrary interfaces SI and a sequence of processes SP , such that
#SC = #SP = #SI ∧ ∀ i : 0..#SI • αSP (i) = {SI (i)}.
A connector is formed of similar elements to a component, but its behaviour
is parameterised. Instead of sets of channels and interfaces, we use sequences,
which are more suitable to parametrise the connector specification. We consider
the sequence of processes as protocols over the channels that parametrise the
connector. For consistence among these parameter sequences, we establish that
they have the same size, and that all processes only communicate values on
their associated interfaces. When the connector parameters are instantiated, it
becomes a component that behaves according to the connector behaviour.

Definition 8 (Connection Instantiation). Let AC be an abstract connector,
SC a sequence of channels, SP a sequence of processes, and SI a sequence of
interfaces, such that SC , SP and SI satisfy the constraints to be parameters of
AC . Then F(AC ,SC ,SI , SP) is a component contract defined by:

F(AC ,SC ,SI ,SP) = 〈AC (SC ,SI ,SP ), {i : 0..#SC • (SC (i) �→ SI (i))},
ranSI , ran SC 〉
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The definition above bridges the gap between two abstraction levels: an abstract
connector at design stage and its instantiation at component integration and
deployment level. We say that the function F has an instantiation role. It takes an
abstract connector AC and its list of parameters (SC , SI and SP) and constructs
a component, which is a concrete version of AC .

One of the simplest, and most common, connectors is the one presented below.
It aims at copying values from one channel to another. It does not perform any
verification concerning protocols, so they are not referenced in the definition.

Concopy(〈c1, c2〉, 〈I1, I2〉,SEQP) = µX • c1?x : inputs(I1) → c2.reverse(x) → X
� c2?y : inputs(I2)→ c1.reverse(y) → X

where reverse(in.x) = out .x , reverse(out .x) = in.x

This connector intermediates the communication between two components,
so that an output of one is transmitted to the other, and vice-versa. Every event
value is transmitted with a tag direction; in becomes out, and out becomes in.

The composition of two components using a connector can be performed
through two direct composition steps. We first assemble a component (CLIENT ,
in our example) to the connector (CON ). Then, the second step is to assemble
the resulting composition to the other component (SERVER). Substituting CON
by a concrete connector that uses Concopy in our example, the resulting process
is obtained from the (two-steps) composition of CLIENT and SERVER:

ATMsystem = CtrCL �̆CON �̆CtrSV

where CON = F(Concopy , 〈cl , sv〉, 〈ICL, ISV 〉, 〈Prot(CtrCL, cl),Prot(CtrSV , sv)〉).
However, the naive use of direct compositions (even through a connector),

without checking their compatibilities, can easily introduce problems in the com-
position. In order to safely compose components, some provisos must be checked.

3 Composition Rules

In this section we present three basic rules for the composition of components
(and connectors): interleave, communication and feedback composition. They
aim at guiding the developer in component integration guaranteeing, by con-
struction, preservation of deadlock- and livelock-freedom in elaborate systems.

All composition rules (see Fig. 2) specialise the direct composition (Def. 6)
with the relevant provisos. The interleave composition is the simplest one. It
captures compositions where no communication is performed. The communica-
tion composition allows components to interact without introducing deadlocks
and livelocks in a system with a simple tree topology. In such a topology, the
pairwise verification of component communication guarantees deadlock-freedom
in the entire system. The absence of livelock is guaranteed by the analysis of the
interaction patterns. The last composition rule, feedback, allows the developer to
construct deadlock- and livelock-free systems with an elaborate graph topology.
These are basic composition rules that can be used together to design a wide
variety of systems. More elaborate rules can be derived from these basic ones.
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Fig. 2. The three composition rules proposed in this work

The simplest form of composition is to aggregate two independent entities
such that, after composition, these entities still do not communicate between
themselves. They directly communicate with the environment as before, with
no interference from each other. To perform this composition, there is a proviso
that they do not share any communication channel.

Definition 9 (Interleave Composition). Let P and Q be two component
contracts, such that P and Q have disjoint channels, CP ∩ CQ = ∅. Then, the
interleave composition of P and Q (namely P [|||]Q) is given by:

P [|||]Q = P �̆Q

The above composition form is, by definition, a particular kind of direct compo-
sition that involves no communication, resulting in an entity that performs all
events defined in the original entities without any interference from each other.

Lemma 1 (Deadlock-free and Livelock-free Interleave Composition)
The interleave composition of two deadlock-free and livelock-free component con-
tracts is also deadlock-free and livelock-free.

Proof It follows direct from the condition that the components do not share any
channel and no communication is hidden. Furthermore, BP [|||]Q = BP ||| BQ . As,
BP and BQ are deadlock- and livelock-free, then so is BP [|||]Q . ��

The second form of composition states the most common way for assembling
complementary channels of two entities. It links channels of one entity to chan-
nels of the other, as in a direct composition (Def. 6).

In order to allow property preservation by construction in CBS, we require
that the channels obey compatible protocols. Compatibility is achieved by check-
ing that all possible sequences of output values in one channel are accepted by
the corresponding input channel. Moreover, a component must never deadlock
waiting for an input event that does not come. Such complementarity precludes
the two common errors: message refused and message not understood.
Definition 10 (Protocol Compatibility). Let P1 and P2 be two protocols
for channels c1 and c2, such that P1 = Prot(Ctr1, c1) and P2 = Prot(Ctr2, c2),
I1 = RCtr1(c1) and I2 = RCtr2(c2), and ∼I1 = I2. Then, the protocols P1 and P2

are compatible (denoted by P1 ≈ P2) if, and only if:

∀ i , j : {1, 2} | i �= j • ∀ t 〈̂out .a〉 : traces(Pi ) • (t , {in.a}) /∈ failures(Pj )) ∧
∀ t 〈̂in.a〉 : traces(Pi ) • (t , {out .x | out .x ∈ Ij}) /∈ failures(Pj ))
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This is an effective way of ensuring that the communication between two compo-
nents is deadlock-free. This notion is related to stuck-freedom conformance [11],
concerning events in Ii and Ij , but we consider only synchronous communication.

Another important requirement is to avoid the compositions to livelock. It
happens when a component infinitely performs internal actions, refusing any
external communication. This might be introduced, for instance, when we hide
the channels involved in a composition (see Def. 6). An interesting observation
is that an infinite trace is formed of the concatenation of several interaction
patterns in an interaction component contract. So, in order to avoid livelocks,
we must track the channels used by the interaction patterns of a component.

Definition 11 (Interaction Channels). Let Ctr be an interaction component
contract. Then its interaction channels are:

IntChannelsCtr = {U | ∃ t ∈ InteractionPatterns(BCtr ) ∧ U = chans(t)}

where chans(t) are the channels used in the trace t, chans(〈〉) = ∅, chans(〈c.x〉) =
{c | ∃ c.x ∈ ran t}.
Based on the definition of protocol compatibility and interaction channels, we
define communication composition as follows:

Definition 12 (Communication Composition). Let P and Q be two com-
ponent contracts such that ic ∈ CP ∧ oc ∈ CQ , {ic} /∈ IntChannels(P) ∧ {ic} /∈
IntChannels (Q), and Prot(P , ic) ≈ Prot(Q , oc). Then, the communication compo-
sition of P and Q (namely P [ic ↔ oc]Q) via ic and oc is defined as follows:

P [ic ↔ oc]Q = P �̆CON �̆Q

where CON = F(Concopy , 〈ic, oc〉, 〈RP(ic), RQ (oc)〉, 〈Prot(P , ic),Prot(Q , oc)〉)
In the composition P [ic ↔ oc]Q , values of P are forwarded to Q through the
channel connector Concopy , which are confined in the composition (see Def. 6);
the abstract connector Concopy is instantiated by the function F.

Lemma 2 (Deadlock-free and Livelock-free Communication Compo-
sition). The communication composition of two deadlock-free and livelock-free
component contracts is also deadlock-free and livelock-free.

Proof. The communication composition is formed of two direct compositions.
The Concopy behaves as an one place buffer that always accepts communications
from P or Q . As consequence, the proof that the communication with Concopy

does not deadlock is straightforward. All communications from Concopy to P and
Q are, in fact, originated from Q and P , respectively. As the proviso requires that
their protocols be compatible, Q always accepts communications from P , and
vice-versa. Livelock-freedom is obtained from the fact that new traces, resulted
from the synchronisation, does not have any of their events hidden. ��

The last form of composition shows how we can build cyclic topologies. In partic-
ular, we focus on binding two channels of the same component, namely feedback
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composition. Since we build systems by composing entities pairwisely, a sys-
tem can always be taken as a single large grain entity. In doing so, composing
channels of this large grain component allows introducing cycles in the system.

Due to the existence of cycles, new conditions have to be taken in account to
preserve behavioural properties in the composition. This topic is closely related
to the study of more general approaches to ensure deadlock freedom [12,6]. Ac-
cording to [6], in any deadlock state of the system, there is a cycle of ungranted
requests with respect to its vocabulary. The system deadlocks when it gets into
a state where each process of a cycle is waiting to output to the next and has no
external communication. So, to avoid deadlock we simply have to avoid cycles
of ungranted requests.

In order to avoid such cycles, we base our approach on a notion of indepen-
dent channels. This concept is used to analyse the communication performed
between two communication channels, checking whether desirable scenarios for
their assembly exist. We define that a channel c1 is independent of a channel c2

in a process when any synchronism with c2 does not interfere with the order of
events communicated by c1.

Definition 13 (Independent Channels). Let c1 and c2 be two channels used
by a component contract Q. Then, c1 is independent of c2 (denoted by c1 K c2)
iff:

Prot(Q , c1) �F Prot(Q �̆CHAOSCOMP , c1)

where:

– CHAOSCOMP = 〈CHAOS(c2), {(c2 �→ RQ (c2))}, {RQ (c2)}, {c2}〉
– CHAOS(c) = Stop � (c?x → CHAOS(c)).

In the definition above, the component CHAOSCOMP represents the worst possi-
ble interferences through the channel c2. So, if the protocol of c1 is still the same
after these interferences, then c1 is independent of c2. Channel independency is a
transitive relation. Therefore, if a channel c1 is independent of another channel
c2, it is independent of all the channels that c2 is independent of.

As a consequence, the simplest way to avoid ungranted request cycles is to
forbid the feedback composition of a channel c with a channel that is not inde-
pendent of c. The intuition here is in accordance with the notion of independence
between parallel I/O processes proposed in [12] to avoid deadlocks.

Definition 14 (FeedBack Composition). Let P be a component contract,
and ic and oc two channels, such that {ic, oc} ⊆ CP , {ic, oc} /∈ IntChannels(P),
Prot(P , ic) ≈ Prot(P , oc), and ic K oc. Then, the feedback composition P (namely
P [oc ↪→ ic]) hooking oc to ic is defined as follows:

P [oc ↪→ ic] = P �̆CON

where CON = F(Concopy , 〈ic, oc〉, 〈RP(ic), RQ (oc)〉, 〈Prot(P , ic),Prot(P , oc)〉)
In the resulting composition, P [oc ↪→ ic], values of P through oc are communi-
cated to the feedback channel ic. Both channels oc and ic are then confined in
the composition and are not available to the environment.
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Lemma 3 (Deadlock-free and Livelock-free Feedback Composition)
The feedback composition of a deadlock-free and livelock-free component contract
is also deadlock-free and livelock-free.

Proof The proof is similar to the one for Lemma 2. However, in addition, we
must check that no cycle of ungranted requests is introduced in the composition.
In other words, that there is no cycle in which all components are willing to
communicate with the next component. As the two channels involved in the
composition are independent, no cycle of ungranted requests is introduced. ��

From our proposed building block constructors (composition rules), any system
S can be structured as follows.

S ::= P | S [|||]S | S [c1 ↔ c2]S | S [c1 ↪→ c2]

where P is a component contract whose behaviour is deadlock- and livelock-free.
We say that any component system that follows this grammar is in normal form.

Theorem 1 (Trustworthy Component Systems). Any system S in normal
form, built from deadlock-free and livelock-free components, is also deadlock-free
and livelock-free.

Proof. Direct from lemmas 1, 2, and 3. ��

4 Example

In order to illustrate the application of the composition rules proposed in the
precious section, we refine the scenario of the ATM system initially presented
in Sect 2. This more elaborate scenario consists mainly of two CLIENT and two
SERVER instances that run concurrently (see Fig. 3.a). No component instance
knows each other; each CLIENT (Client1 or Client2) interacts with an arbitrary
SERVER (Server1 or Server2) to request services, without knowing the identity
of each other. The consistent interaction of CLIENTs and SERVERs must be
carefully coordinated by the system. In order to achieve that, we design an
elaborate connector (called Connector Network in Fig. 3.a) composed of other
connector instances (see its structure in Fig. 3.b).

The Connector Network consists of instances of two kinds of connectors: LBC
and CCM . Together, they efficiently route all communications of a CLIENT to

(a) Black box view of the System (b) Structure of the Connector Network

Fig. 3. Case Study: A more elaborate ATM System
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a SERVER, establishing a safe communication path between both components
until they finish their interaction. The LBC is a load balance connector, which
verifies which SERVER is available at the moment. The CCM formalises a com-
ponent communication manager, which identifies whether a SERVER is able to
interact with a new CLIENT or whether it is busy with an existing interaction.
To coordinate the information routing, these connectors communicate data and
control events. The control events are used to provide feedback on how the com-
munication is been performed. The following CCM and LBC processes represent
the equally named connectors.

CCM (〈co , c1, c2, f1, f2〉,SI , 〈P[co ],P2,P3, P4,P5〉) = CCM ′(c1, c2, f1, f2, co ,P[co ])
LBC (〈c1, c2, ci , f1, f2〉,SI , 〈P[c1],P[c2],P3,P4,P5〉) = LBC ′(ci , f1, f2, c1, c2,P[c1],P[c2])

The channels of both connectors are distinguished between control and data
information. In fact, to help understanding, we only show data channels in our
illustration (Fig. 3). As observed in the expressions above, some protocol and
interface information are immaterial in the definition of the connectors. Bellow,
we define the auxiliary processes CCM ′ and LBC ′.

channel free
CCM ′(c1, c2, f1, f2, co ,P[co ]) = µX • Copy(c1, co , 〈〉,P[co ]) o

9 free → X
� Copy(c2, co , 〈〉,P[co ]) o

9 free → X
‖{|c1,c2,free|} (Avail(f1, c2, idle) ||| Avail(f2, c1, idle))

Avail(f , c, status) = f .in?isbusy → f .out !status → Avail(f , c, status)
� c → Avail(f , c, busy)
� free → Avail(f , c, idle)

Copy(ci , co , s,P[co ]) = ci .in?x → co .out !x → Copy ′(ci , co , s 〈̂x〉,P[co ])
� co .in?y → ci .out !y → Copy ′(ci , co , s 〈̂y〉,P[co ])

Copy ′(ci , co , s, P[co ]) = SKIP <| P[co ] �F (P[co ]/s) >| Copy(ci , co , s, P[co ])

LBC ′(ci , f1, f2, c1, c2,P[c1], P[c2]) = µX • f1.out !isbusy → f2.out !isbusy →
( f1.in?idle → f2.in?x → Copy(ci , c1, 〈〉,P[c1]) o

9 X
� f1.in?busy → ( f2.in?idle → Copy(ci , c2, 〈〉,P[c2]) o

9 X
� f2.in?busy → X ))

In the CSP processes above, ci , c1, c2, and co are channels used for commu-
nicating data. The channels c1 and c2 are used to communicate data between
the connectors LBC and CCM , whereas ci and co represent channels for com-
munication with the environment. The channels f1 and f2 are used to communi-
cate control data between the connectors. The channel free is used for internal
synchronisation in the CCM . To ease the definitions of the connectors, we use
protocol P[cj ], where cj stands for the channel associated to the protocol. In fact,
these protocols represent the behaviour of the SERVER component over these
channels when the connector is instantiated.

The CCM repeatedly behaves as a connector that copies events either from
c1 or c2 to co . It chooses between the two behaviours depending on which chan-
nel has first enabled an event to be performed. It continuously transfers values
between such channels until it concludes an interaction (a trace that leads the
process to its initial state). At any time, the process can receive an event fj .isbusy
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(a) First Step (b) Second Step (c) Third Step (d) Fourth Step

Fig. 4. The composition of basic connectors to form the network of connectors

asking if the connector is already engaged in an interaction. If so, it communi-
cates fj .busy; otherwise, it communicates fj .idle. The LBC starts by sending an
event fj .isbusy to each connector assembled to c1 and c2. The first to answer
fj .idle enables a communication. It continuously copies data from a channel ci

to this connector until it finishes an interaction.
To build the Connector Network , we compose instances of these connectors

using our composition rules. This guarantees that the resulting component is
deadlock-free and livelock-free. Due to space restrictions, we do not show their
instantiation. LBC and CCM depend on the coordinated component contracts.
In our example, we assume they are used to mediate the communication between
CLIENT and SERVER, previously described in Sect. 2.1. So, data channels have
same interfaces as those components, and the protocols are based on the SERVER

protocol (P[cj ] = Prot(CtrSV , sv)).
Based on these component contracts, we are able to incrementally construct

the Connector Network. Fig. 4 summarises our strategy to compose such concrete
connectors. To build the coordinator, we first perform an interleave composition
of the two instances of LBC using (see Fig. 4.a). Then, we perform a commu-
nication composition with each CCM connector to the result of the previous
composition (see Fig. 4.b). Subsequently, we use the feedback composition to
assembly the inner instances of the LBC to instances of the CCM (see Fig. 4.c
and 4.d). Control channels are assembled afterwards using similar feedback
compositions. All these transformations have been conducted based on the CSP
descriptions of the processes.

5 Conclusion

We have proposed a systematic approach for building trustworthy component-
based systems (CBS) (see Theo. 1). The approach relies on three rules for com-
posing components (including concrete connectors): interleave, communication
and feedback compositions. They guarantee deadlock- and livelock-freedom in
the compositions based on the assumptions that the original components hold
these properties. The entire approach is underpinned by the CSP process algebra,
which offers rich semantic models that support a wide range of process verifi-
cation, and comparisons. In fact, CSP has shown to be very useful to support
the rigorous development of component based systems, as a hidden formalism
for modelling languages used in practise [7,8].
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To guarantee deadlock-freedom, the composition rules include side conditions
that require the compatibility between communication protocols and the in-
dependence of channels. The former ensures compatibility between component
communications, and the latter avoids undesirable architectural configurations,
such as cycles of ungranted requests [6]. To guarantee livelock-freedom, the com-
position rules include side conditions which require that no interaction pattern
(recurring behaviour) of the original component be entirely hidden in the black-
box composition. Each composition results in a software component, whose prop-
erties are directly derived from the components involved in the composition.
These properties are called B, R, I, C, K, and represent the behaviour, chan-
nel types, interfaces, channels, and derivable metadata, such as independence
relationship among channels, of the component, and protocols.

Even though there are many approaches to formally model CBS [2,13,14,15],
to our knowledge the question of preserving behavioural properties by construc-
tion has not yet been fully systematised as we have done in this work. Despite
the fact that our notions are compatible with most component-based approaches,
especially those based on CSP [1,3], these approaches aim at verifying the en-
tire system before implementation, but not at predicting behavioural properties
by construction during design. We can ensure deadlock- and livelock-freedom
in a constructive way, as a result of applying composition rules, as opposed to
performing model checking verification after the system has been built.

The work reported in [13] presents an extensive study of the verification of
important quality properties in CBS. It discusses the verification of liveness,
local progress, local and global deadlock, and fairness. We implicitly discuss these
properties, except fairness. Local progress and deadlock are addressed altogether
in our protocol compatibility notions. Liveness is addressed in each composition
rule by the guarantee of livelock-freedom. Global deadlock freedom is obtained
in the entire system by construction. Our approach is also similar to others in
some respects. For instance, similar verifications for protocol compatibility are
found in rCOS [3], SOFA [4] and Interface Automata [14]. Side conditions of
our composition rules have the same intention as the assumption to remove
potential deadlocks in [15]. Similar to our work, [2,6] analyse deadlock scenarios
in several network topologies. Although they cover a wide range of topologies,
some verifications are not amenable for an approach by constructions, like ours.
Livelock verification by construction is not addressed in such works.

Some approaches [12,16] do predict some system properties based on the prop-
erties of its constituting components. These works focus on different properties.
The work reported in [16] does not focus on behavioural properties; rather, it
presents some results on performance. The approach presented in [12] proposes
rules to guarantee the absence of deadlocks by construction. These rules impose
that CBS should satisfy specific architectural styles, which prevent deadlock sce-
narios. Despite the fact that it is presented a comprehensive set of styles, such
as resource sharing and client-server, these are restrictive in some situations; for
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instance, a component must always accept any input data value. In our work,
we allow components to have arbitrary protocols, with distinct input and out-
put communication. Moreover, we also use connectors as an important part of
our composition approach, and present them at two different abstraction levels,
which are aligned with practical approaches [10,17] to model connectors.

A distinguishing feature of our approach is that each of the proposed composi-
tion rules is intentionally simple to capture a particular communication pattern
with the relevant side conditions to preserve behavioural properties. Complex in-
teractions can be progressively built from these very simple rules, as illustrated
by our case study. As future work we intend to investigate other composition
rules, or derivations of those proposed here, and build tool support for the design
of trustworthy component systems.
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13. Gößler, G., Graf, S., Majster-Cederbaum, M., Martens, M., Sifakis, J.: An approach
to modelling and verification of component based systems. In: van Leeuwen, J.,
Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM
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Abstract. Explicit state methods have proven useful in verifying safety-
critical systems containing concurrent processes that run asynchronously
and communicate. Such methods consist of inspecting the states and
transitions of a graph representation of the system. Their main limita-
tion is state explosion, which happens when the graph is too large to be
stored in the available computer memory. Several techniques can be used
to palliate state explosion, such as on-the-fly verification, compositional
verification, and partial order reductions. In this paper, we propose a new
technique of partial order reductions based on compositional confluence
detection (Ccd), which can be combined with the techniques mentioned
above. Ccd is based upon a generalization of the notion of confluence
defined by Milner and exploits the fact that synchronizing transitions
that are confluent in the individual processes yield a confluent transition
in the system graph. It thus consists of analysing the transitions of the
individual process graphs and the synchronization structure to identify
such confluent transitions compositionally. Under some additional con-
ditions, the confluent transitions can be given priority over the other
transitions, thus enabling graph reductions. We propose two such addi-
tional conditions: one ensuring that the generated graph is equivalent
to the original system graph modulo branching bisimulation, and one
ensuring that the generated graph contains the same deadlock states as
the original system graph. We also describe how Ccd-based reductions
were implemented in the Cadp toolbox, and present examples and a
case study in which adding Ccd improves reductions with respect to
compositional verification and other partial order reductions.

1 Introduction

This paper deals with systems, hereafter called asynchronous systems, which can
be modeled by a composition of individual processes that execute in parallel at
independent speeds and communicate. Asynchronous systems can be found in
many application domains, such as communication protocols, embedded soft-
ware, hardware architectures, distributed systems, etc.

Industrial asynchronous systems are often subject to strong constraints in
terms of development cost and/or reliability. A way to address these constraints
is to use methods allowing the identification of bugs as early as possible in the
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development cycle. Explicit state verification is such a method, and consists of
verifying properties by systematic exploration of the states and transitions of an
abstract model of the system.

Although appropriate for verifying asynchronous systems, explicit state veri-
fication may be limited by the combinatorial explosion of the number of states
and transitions (called state explosion). Among the numerous techniques that
have been proposed to palliate state explosion, the following have proved to be
effective:

– On-the-fly verification (see e.g., [9,8,21,31,29]) consists of enumerating the
states and transitions in an order determined by a property of interest, thus
enabling one to find property violations before the whole system graph has
been generated.

– Compositional verification (see e.g., [7,28,41,44,46,6,38,16,24,39,14,11]) con-
sists of replacing individual processes by property-preserving abstractions of
limited size.

– Partial order reductions (see e.g., [15,42,35,20,43,36,37,19,33,3,34]) consist
of choosing not to explore interleavings of actions that are not relevant with
respect to either the properties or the graph equivalence of interest.

Regarding partial order reductions, two lines of work coexist. The first addresses
the identification of a subset called persistent [15] (or ample [35], or stubborn [42],
see [36] for a survey1) of the operations that define the transitions of the system,
such that all operations outside this subset are independent of all operations
inside this subset. This allows the operations outside the persistent subset to
be ignored in the current state. Depending on additional conditions, persistent
subsets may preserve various classes of properties (e.g., deadlocks, Ltl-X, Ctl-
X, etc.) and/or graph equivalence relations (e.g., branching equivalence [45],
weak trace equivalence [5], etc). Other methods based on the identification of
independent transitions, such as sleep sets [15], can be combined with persistent
sets to obtain more reductions.

The second line of work addresses the detection of particular non-observable
transitions (non-observable transitions are also called τ -transitions) that satisfy
the property of confluence [32,20,19,47,2,3,34], using either symbolic or explicit-
state techniques. Such transitions can be given priority over the rest of the
transitions of the system, thus avoiding exploration of useless states and tran-
sitions while preserving branching (and observational) equivalence. Among the
symbolic detection techniques, the proof-theoretic technique of [3] statically gen-
erates a formula encoding the confluence condition from a µCrl program, and
then solves it using a separate theorem prover. Among the explicit-state tech-
niques, the global technique of [19] computes the maximal set of strongly conflu-
ent τ -transitions and reduces the graph with respect to this set. A local technique
was proposed in [2], which computes on-the-fly a representation map associating
a single state to each connected subgraph of confluent τ -transitions. Another

1 In this paper, the term persistent will refer equally to persistent, ample, or stubborn.
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technique was proposed in [34], which reformulates the detection as the resolu-
tion of a Bes (Boolean Equation System) and prioritizes confluent τ -transitions
in the individual processes before composing them, using the fact that branching
equivalence is a congruence for the parallel composition of processes. Compared
to persistent subset methods, whose practical effectiveness depends on the ac-
curacy of identifying independent operations (by analyzing the system descrip-
tion), confluence detection methods are able to detect all confluent transitions
(by exploring the system graph), potentially leading to better reductions.

In this paper, we present a new compositional partial order reduction method
for systems described as networks of communicating automata. This method,
named Ccd (Compositional Confluence Detection), exploits the confluence of
individual process transitions that are not necessarily labeled by τ and thus
cannot be prioritized in the individual processes. Ccd relies on the fact that
synchronizing such transitions always yields a confluent transition in the graph
of the composition. As an immediate consequence, if the latter transition is la-
beled by τ (i.e., hidden after synchronization), then giving it priority preserves
branching equivalence. We also describe conditions to ensure that even tran-
sitions that are not labeled by τ can be prioritized, while still preserving the
deadlocks of the system.

The aim of Ccd is to use compositionality to detect confluence more efficiently
than explicit-state techniques applied directly to the graph of the composition,
the counterpart being that not all confluent transitions are necessarily detected
(as in persistent subset methods). Nevertheless, Ccd and persistent subset meth-
ods are orthogonal, meaning that neither method applied individually performs
better than both methods applied together. Thus, Ccd can be freely added in or-
der to improve the reductions achieved by persistent subset methods. Moreover,
the definition of confluent transitions is language-independent (i.e., it does not
rely upon the description language — in our case Exp.Open 2.0 [25] — but only
upon the system graph), making Ccd suitable for networks of communicating
automata produced from any description language equipped with interleaving
semantics.

Ccd was implemented in the Cadp toolbox [12] and more particularly in the
existing Exp.Open 2.0 tool for compositional verification, which provides on-
the-fly verification of compositions of processes. A new procedure was developed,
which searches and annotates the confluent (or strictly confluent) transitions of a
graph, using a Bes to encode the confluence property. This procedure is invoked
on the individual processes so that Exp.Open 2.0 can then generate a reduced
graph for the composition, possibly combined with already available persistent
subset methods.

Experimental results show that adding Ccd may improve reductions with
respect to compositional verification and persistent subset methods.

Paper outline. Section 2 gives preliminary definitions and theorems. Section 3
formally presents the semantic model that we use to represent asynchronous
systems. Section 4 presents the main result of the paper. Section 5 describes
how the Ccd technique is implemented in the Cadp toolbox. Section 6 presents
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several experimental results. Section 7 reports about the application of Ccd in
an industrial case-study. Finally, Section 8 gives concluding remarks.

2 Preliminaries

We consider the standard Lts (Labeled Transition System) semantic model [32],
which is a graph consisting of a set of states, an initial state, and a set of transi-
tions between states, each transition being labeled by an action of the system.

Definition 1 (Labeled Transition System). LetA be a set of symbols called
labels, which contains a special symbol τ , called the unobservable label. An Lts

is a quadruple (Q,A,→, q0), where Q is the set of states, A ⊆ A is the set of
labels, →⊆ Q × A× Q is the transition relation, and q0 ∈ Q is the initial state
of the Lts. As usual, we may write q1

a−→ q2 instead of (q1, a, q2) ∈→. Any
sequence of the form q1

a1−→ q2
a2−→ . . . qn

an−→ qn+1 is called a path of length n
from q1 to qn+1 (n ≥ 0). We write q1 −→n qn+1 if there exists such a path. The
transition relation is acyclic if every path from a state to itself has length 0. ��

Branching equivalence [45] is a weak bisimulation relation between states of an
Lts that removes some τ -transitions while preserving the branching structure of
the Lts. Therefore, branching equivalence is of interest when verifying branching-
time temporal logic properties that concern only observable labels.

Definition 2 (Branching equivalence [45]). As usual, we write τ∗−→ the re-
flexive and transitive closure of τ−→. Two states q1, q2 ∈ Q are branching equiv-
alent if and only if there exists a relation R ⊆ Q × Q such that R(q1, q2) and
(1) for each transition q1

a−→ q′1, either a = τ and R(q′1, q2) or there is a path
q2

τ∗−→ q′2
a−→ q′′2 such that R(q1, q′2) and R(q′1, q

′′
2 ), and (2) for each transition

q2
a−→ q′2, either a = τ and R(q1, q′2), or there is a path q1

τ∗−→ q′1
a−→ q′′1 such

that R(q′1, q2) and R(q′′1 , q′2). ��

The following definition of strong confluence is a synthesis of the definitions of
confluence by Milner [32], which is a property of processes, and partial strong
τ-confluence by Groote and van de Pol [19], which is a property of τ -transitions.
We thus generalize Groote and van de Pol’s definition to transitions labeled by
arbitrary symbols, as was the case of Milner’s original definition. In addition,
we distinguish between the property of strong confluence, and a slightly more
constrained property, named strict strong confluence.

Definition 3 (Strong confluence). Let (Q,A,→, q0) be an Lts and T ⊆→.
We write q

a−→T q′ if (q, a, q′) ∈ T . We write q
a−→ q′ if either q

a−→ q′ or q = q′

and a = τ , and similarly for q
a−→T q′. T is strongly confluent if for every pair

of distinct transitions q1
a−→T q2 and q1

b−→ q3, there exists a state q4 such that

q3
a−→T q4 and q2

b−→ q4. T is strictly strongly confluent if for every pair of
distinct transitions q1

a−→T q2 and q1
b−→ q3, there exists a state q4 such that
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where b = τ where a = τ

strict strong confluence

strong confluence
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T TT

T
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Fig. 1. Graphical definition of strong confluence and strict strong confluence

q3
a−→T q4 and q2

b−→ q4. A transition is strongly confluent (respectively strictly
strongly confluent) if there exists a strongly confluent set (respectively strictly
strongly confluent set) T ⊆→ containing that transition. ��

Figure 1 gives a graphical picture of strong confluence. Plain arrows denote tran-
sitions quantified universally, whereas dotted arrows denote transitions quanti-
fied existentially. For strict strong confluence, case (iii) is excluded.

Strong τ -confluence is strong confluence of τ -transitions. Weaker notions of
τ -confluence have been defined [20,47], but are out of the scope of this paper.
For brevity, we use below the terms confluent and strictly confluent instead of
strongly confluent and strictly strongly confluent, respectively.

Prioritization consists of giving priority to some transitions. Definition 4 be-
low generalizes the definition of [19], which was restricted to τ -transitions.

Definition 4 (Prioritization [19]). Let (Q,A,→1, q0) be an Lts and T ⊆
→1. A prioritization of (Q,A,→1, q0) with respect to T is any Lts of the form
(Q,A,→2, q0), where →2 ⊆ →1 and for all q1, q2 ∈ Q, a ∈ A, if q1

a−→1 q2 then
(1) q1

a−→2 q2 or (2) there exists q3 ∈ Q and b ∈ A such that q1
b−→2 q3 ∈ T . ��

In [19], Groote and van de Pol proved that branching bisimulation is preserved
by prioritization of τ -confluent transitions, provided the Lts does not contain
cycles of τ -transitions. Theorem 1 below relaxes this constraint by only requiring
that the set of prioritized τ -confluent transitions does not contain cycles (which
is similar to the cycle-closing condition for ample sets [35]).

Theorem 1. Let (Q,A,→, q0) be an Lts and T ⊆ → such that T is acyclic and
contains only τ -confluent transitions. Any prioritization of (Q,A,→, q0) with
respect to T yields an Lts that is branching equivalent to (Q,A,→, q0). ��

Theorem 2 below states that deadlock states can always be reached without
following transitions that are in choice with strictly confluent transitions. This
allows prioritization of strictly confluent transitions, while ensuring that at least
one (minimal) diagnostic path can be found for each deadlock state. The detailed
proof can be found in [27].
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Theorem 2. Let (Q,A,→, q0) be an Lts, T ⊆ → a strictly confluent set of
transitions, and qδ ∈ Q be a deadlock state. If q1 −→n qδ and q1

a−→T q2, then
q2 −→m qδ with m < n. ��

Therefore, any prioritization of (Q,A,→, q0) with respect to T yields an Lts

that has the same deadlock states as (Q,A,→, q0).
Note. Theorem 2 is not true for non-strict confluence, as illustrated by the

Lts consisting of the transition q1
a−→ qδ and the (non-strictly) confluent tran-

sition q1
τ−→ q1.

3 Networks of LTSs

This section introduces networks of Ltss [25,26], a concurrent model close to
Mec [1] and Fc2 [4], which consists of a set of Ltss composed in parallel and
synchronizing following general synchronization rules.

Definition 5 (Vector). A vector of length n over a set T is an element of T n.
Let v, also written (v1, . . . , vn), be a vector of length n. The elements of 1..n are
called the indices of v. For each i ∈ 1..n, v[i] denotes the ith element vi of v. ��

Definition 6 (Network of LTSs). Let • /∈ A be a special symbol denoting
inaction. A synchronization vector is a vector over A ∪ {•}. Let t be a syn-
chronization vector of length n. The active components of t, written act(t), are
defined as the set {i ∈ 1..n | t[i] �= •}. The inactive components of t, written
inact(t), are defined as the set 1..n \ act(t). A synchronization rule of length
n is a pair (t, a), where t is a synchronization vector of length n and a ∈ A.
The elements t and a are called respectively the left- and right-hand sides of the
synchronization rule. A network of Ltss N of length n is a pair (S, V ) where
S is a vector of length n over Ltss and V is a set of synchronization rules of
length n. ��

In the sequel, we may use the term network instead of network of Ltss. A
network (S, V ) therefore denotes a product of Ltss, where each rule expresses
a constraint on the vector of Ltss S. In a given state of the product, each rule
(t, a) ∈ V yields a transition labeled by a under the condition that, assuming
act(t) = {i0, . . . , im}, the Ltss S[i0], . . . ,S[im] may synchronize altogether on
transitions labeled respectively by t[i0], . . . , t[im]. This is described formally by
the following definition.

Definition 7 (Network semantics). Let N be a network of length n defined
as a couple (S, V ) and for each i ∈ 1..n, let S[i] be the Lts (Qi, Ai,→i, q0i).
The semantics of N , written lts(N) or lts(S, V ), is an Lts (Q,A,→, q0) where
Q ⊆ Q1 × . . . × Qn, q0 = (q01, . . . , q0n) and A = {a | (t, a) ∈ V }. Given a
synchronization rule (t, a) ∈ V and a state q ∈ Q1 × . . . × Qn, we define the
successors of q by rule (t, a), written succ(q, (t, a)), as follows:

succ(q, (t, a)) = {q′ ∈ Q1 × . . .×Qn | (∀i ∈ act(t)) q[i]
t[i]−→i q′[i] ∧

(∀i ∈ inact(t)) q[i] = q′[i]}
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The state set Q and the transition relation→ of lts(N) are the smallest set and
the smallest relation such that q0 ∈ Q and:

q ∈ Q ∧ (t, a) ∈ V ∧ q′ ∈ succ(q, (t, a))⇒ q′ ∈ Q ∧ q
a−→ q′. ��

Synchronization rules must obey the following admissibility condition, which
forbids cutting, synchronization and renaming of the τ transitions present in
the individual Ltss. This is suitable for a process algebraic framework, most
parallel composition, hiding, renaming, and cutting operators of which can be
translated into rules obeying these conditions. This also ensures that weak trace
equivalence and stronger relations (e.g., safety, observational, branching, and
strong equivalences) are congruences for synchronization rules [25].

Definition 8 (Network admissibility). The network (S, V ) is admissible if
for each q, q′, i such that q

τ−→i q
′ there exists a rule (ti, τ) ∈ V where ti[i] = τ ,

(∀j �= i) ti[j] = •, and (∀(t, a) ∈ V \ {(ti, τ)}) t[i] �= τ . Below, every network
will be assumed to be admissible. ��

Example 1. We consider the simple network of Ltss consisting of the vector
of Ltss (Sender1,Bag ,Sender2) depicted in Figure 2 (the topmost node being
the initial state of each Lts), and of the following four synchronization rules:
((s1, s1, •), τ), ((•, s2, s2), τ), ((•, r1, •), r1), ((•, r2, •), r2).

This network represents two processes Sender1 and Sender2, which send their
respective messages s1 and s2 via a communication buffer that contains one
place for each sender and uses a bag policy (received messages can be delivered
in any order). Every transition in the individual Ltss of this network is strictly
confluent. The Lts (i) depicted in Figure 3, page 165, represents the semantics
of this network.

Sender1 Bag Sender2

r1 r2

s1

r2

s2

r1

s2 s1

s1 s2

Fig. 2. Individual Ltss of the network defined in Example 1

4 Compositional Confluence Detection

Although prioritizing confluent transitions yields Lts reductions, finding con-
fluent transitions in large Ltss such as those obtained by parallel composition
of smaller Ltss can be quite expensive in practice. Instead, the aim of Ccd is
to infer confluence in the large Lts from the (much cheaper to find) confluence
present in the smaller Ltss that are composed.



164 F. Lang and R. Mateescu

Definition 9. Let (S, V ) be a network, (t, a) ∈ V , and q, q′ be states of
lts(S, V ). We write all conf(q, (t, a), q′) for the predicate “q′ ∈ succ(q, (t, a)) ∧
(∀i ∈ act(t)) q[i]

t[i]−→i q′[i] is confluent”. We write all conf strict for the same
predicate, where “strictly confluent” replaces “confluent”. ��

Theorem 3 below presents the main result of this paper: synchronizations in-
volving only confluent (resp. strictly confluent) transitions in the individual Ltss
produce confluent (resp. strictly confluent) transitions in the Lts of the network.

Theorem 3 (Compositional confluence detection). Let (S, V ) be a net-
work, (t, a) ∈ V , and q, q′ be states of lts(S, V ). (1) If all conf(q, (t, a), q′),
then q

a−→ q′ is confluent and (2) if all conf strict(q, (t, a), q′), then q
a−→ q′ is

strictly confluent. ��

The proof [27] consists of showing that the set {p a−→ p′ | all conf(p, (t, a),p′)}
is indeed a confluent set (and similarly for the strictly confluent case).

We call deadlock preserving reduction using Ccd a prioritization of transitions
obtained from synchronization of strictly confluent transitions (which indeed pre-
serves the deadlocks of the system following Theorems 2 and 3), and branching
preserving reduction using Ccd a prioritization of τ -transitions obtained from
synchronization of confluent transitions, provided they are acyclic (which indeed
preserves branching bisimulation following Theorems 1 and 3). The major differ-
ences between both reductions are thus the following: (1) branching preserving
reduction does not require strict confluence; (2) deadlock preserving reduction
does not require any acyclicity condition; and (3) deadlock preserving reduction
does not require the prioritized transitions to be labeled by τ , which preserves
the labels of diagnostic paths leading to deadlock states.

Example 2. Figure 3 depicts three Ltss corresponding to the network presented
in Example 1, page 163. Lts (i) corresponds to the semantics of the network,
generated without reduction. Lts (ii) is the same generated with branching
preserving reduction using Ccd and thus is branching equivalent to Lts (i).
Lts (iii) is the same generated with deadlock preserving reduction using Ccd

and thus has the same deadlock state as Lts (i).

As persistent subset methods, Ccd is able to detect commuting transitions by a
local analysis of the network. For persistent subsets, a relation of independence
between the transitions enabled in the current state is computed dynamically
by inspection of the transitions enabled in the individual Ltss and of their
interactions (defined here as synchronization rules). By contrast, Ccd performs
a static analysis of the individual Ltss to detect which transitions are locally
confluent, the dynamic part being limited to checking whether a transition of
the network can be obtained by synchronizing only locally confluent transitions.

Branching preserving reduction using Ccd does not require detection of all
confluent transitions in the individual Ltss of the network, but can be restricted
to those active in a synchronization rule of the form (t, τ). In a network (S, V )
of length n, we thus compute for each i ∈ 1..n a subset Ci ⊆ Ai of labels
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τ

τ

r1 r2

r2 r1

r1 r2

τ τ

τ

τ

τ

τ

r1

r2

τ

τ

r1 r2

r2 r1

(i) (ii) (iii)

Fig. 3. Three Ltss corresponding to the semantics of the network of Example 1,
one generated without Ccd (i) and two generated using Ccd preserving respectively
branching equivalence (ii) and deadlocks (iii)

that contains all labels t[i] �= • such that there exists (t, τ) ∈ V . For deadlock
preserving reduction, the subset Ci is defined as Ai.

The problem of detecting confluence in the individual Ltss is reformulated in
terms of the local resolution of a Bes (Boolean Equation System), following the
scheme we proposed in [34]. Given an Lts (Qi, Ai,→i, q0i) and a subset Ci ⊆ Ai

of labels, the Bes encoding the detection of confluent transitions labeled by
actions in Ci is defined as follows:{

Xq1aq2
ν=
∧

q1
b−→iq3

∨
q2

b−→iq4
(
∨

q3
a−→iq′4

(q4 = q′4 ∧Xq3aq4) ∨ (a = τ ∧ q3 = q4))
}

Each boolean variable Xq1aq2 , where q1, q2 ∈ Qi and a ∈ Ci, evaluates to true if
and only if q1

a−→i q2 is confluent. The Bes has maximal fixed point semantics
because we seek to determine the maximal set of confluent transitions contained
in an Lts. For strict confluence,

∨
q3

a−→iq′
4

must be merely replaced by
∨

q3
a−→iq′

4
.

The correctness of this encoding [27] is based upon a bijection between the
fixed point solutions of the Bes and the sets of confluent transitions labeled by
actions in Ci; thus, the maximal fixed point solution gives the whole set of such
confluent transitions.

5 Implementation

Ccd was implemented in Cadp
2 (Construction and Analysis of Distributed Pro-

cesses) [12], a toolbox for the design of communication protocols and distributed
systems, which offers a wide set of functionalities, ranging from step-by-step
simulation to massively-parallel model checking. Cadp is designed in a modular
way and puts the emphasis on intermediate formats and programming inter-
faces. Cadp provides the Bcg compact graph format for storing explicit Ltss
and the Open/Cæsar [10] application programming interface for representing
and manipulating implicit Ltss in the form of an initial state and a successor

2 http://www.inrialpes.fr/vasy/cadp
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state function. The Generator tool converts an Open/Cæsar implicit Lts

into an explicit Bcg graph. The Bcg Min tool allows minimization of Bcg

graphs modulo strong and branching bisimulation.
Exp.Open 2.0 (an extension of the previous version Exp.Open 1.0 of Bozga,

Fernandez, and Mounier) is a compiler into Open/Cæsar implicit Ltss of sys-
tems made of Bcg graphs composed using synchronization vectors and parallel
composition, hiding, renaming, and cutting operators taken from the Ccs [32],
Csp [39], Lotos [22], E-Lotos [23], and µCrl [18] process algebras. As an
intermediate step, those systems are translated into the network of Ltss model
presented in Definition 6. Exp.Open 2.0 has several partial order reduction
options that allow standard persistent set methods (generalizations of Ramakr-
ishna and Smolka’s method presented in [37]) to be applied on-the-fly, among
which -branching preserves branching bisimulation, -ratebranching preserves
stochastic branching bisimulation3, -deadpreserving preserves deadlocks, and
-weaktrace preserves weak trace equivalence (i.e., observable traces).

We developed in the Exp.Open 2.0 tool a new procedure that takes as input
a Bcg graph, a file that contains a set of labels represented using a list of regular
expressions, and a boolean parameter for strictness. For each transition whose
label matches one of the regular expressions, this procedure checks whether this
transition is confluent (or strictly confluent if the boolean parameter is set to
true). The Bes encoding the confluence detection problem is solved using a global
algorithm similar to those in [30]. This produces as output an Lts in the Bcg

format, the transition labels of which are prefixed by a special tag indicating
confluence when appropriate.

We also added to Exp.Open 2.0 a new -confluence option, which can only
be used in combination with one of the partial order reduction options already
available (-branching, -deadpreserving, -ratebranching, -weaktrace4). In
this case, Exp.Open 2.0 first computes the labels for which confluence detec-
tion is useful, and then calls the above procedure (setting the boolean parameter
to true if Exp.Open was called with the -deadpreserving option) on the in-
dividual Ltss, providing these labels as input. Finally, it uses the information
collected in the individual Ltss to prioritize the confluent transitions on the fly.

6 Experimental Results

We applied partial order reductions using Ccd to several examples. To this
aim, we used a 2 GHz, 16 GB RAM, dual core AMD Opteron 64-bit com-
puter running 64-bit Linux. Examples identified by a two digit number xy (01,
10, 11, etc.) correspond to Lts compositions extracted from an official Cadp

demo available at ftp://ftp.inrialpes.fr/pub/vasy/demos/demo xy. These
include telecommunication protocols (01, 10, 11, 18, 20, 27), distributed systems

3 This option is similar to -branching and additionally gives priority to τ -transitions
over stochastic transitions.

4 Note that branching preserving reduction using Ccd also preserves weaker relations
such as weak trace equivalence.
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(25, 28, 35, 36, 37), and asynchronous circuits (38). Examples st(1), st(2), and
st(3) correspond to process compositions provided to us by the STMicroelec-

tronics company, which uses Cadp to verify critical parts of their future-
generation multiprocessor systems on chip.

In each example, the individual Ltss were first minimized (compositionally)
modulo branching bisimulation using Bcg Min. This already achieves more re-
duction than the compositional τ -confluence technique presented in [34], since
minimization modulo branching bisimulation subsumes τ -confluence reduction.
The Lts of their composition was then generated using Exp.Open 2.0 and
Generator following different strategies: (1) using no partial order reduction
at all, (2) using persistent sets, and (3) using both persistent sets and Ccd.
Figure 4 reports the size (in states/transitions) of the resulting Lts obtained
when using option -branching (top) or -deadpreserving (bottom). The sym-
bol “−” indicates that the number of states and/or transitions is the same as in
the column immediately to the left.

These experiments show that Ccd may improve the reductions obtained us-
ing persistent sets and compositional verification, most particularly in examples
37, 38, st(1), st(2), and st(3). Indeed, in these examples the individual Ltss are
themselves obtained by parallel compositions of smaller processes. This tends to
generate confluent transitions, which are detected locally by Ccd. On the other
hand, it is not a surprise that neither Ccd nor persistent sets methods preserv-
ing branching bisimulation reduce examples 25, 27(1), 27(2) and 28, since the
resulting Ltss corresponding to these examples contain no confluent transitions.

One might be amazed by the reduction of st(1) to an Lts with only one state
and one transition in the deadlock preserving case. The reason is that one Lts

of the network has a strictly confluent self looping transition that is independent
from the other Ltss. Therefore, the network cannot have a deadlock and is
reduced by Ccd to this trivial, deadlock-free Lts.

For st(1), st(2), and st(3), we also compared the total time and peak memory
needed to generate the product Lts (using Exp.Open 2.0/Generator) and then
minimize it modulo branching bisimulation (using Bcg Min), without using any
partial order reduction and with persistent sets combined with Ccd. This includes
time and memory used by the tools Exp.Open 2.0, Generator and Bcg Min.
Figure 5 shows that Ccd may significantly reduce the total time and peak memory
(for st(3), 30% and 40%, respectively) needed to generate a minimal Lts.

7 Case Study

We present here in more detail the use of Ccd in the context of the Multival

project5, which aims at the formal specification, verification, and performance
evaluation of multiprocessor multithreaded architectures developed by Bull, the
Cea/Leti, and STMicroelectronics. The case-study below concerns xSTream,
a multiprocessor dataflow architecture designed by STMicroelectronics for high
performance embedded multimedia streaming applications. In this architecture,

5 http://www.inrialpes.fr/vasy/multival
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Branching preserving reduction
Example No partial order reduction Persistent sets Persistent sets + Ccd

01 112/380 −/328 −/−
10 688/2,540 −/2,200 −/−
11 2,995/9,228 −/− −/9,200
18 129,728/749,312 −/746,880 −/−
20 504,920/5,341,821 −/− −/5,340,117
25 11,031/34,728 −/− −/−

27(1) 1,530/5,021 −/− −/−
27(2) 6,315/22,703 −/− −/−
28 600/1,925 −/− −/−
35 156,957/767,211 −/− −/−
36 23,627/84,707 21/20 −/−
37 22,545/158,318 −/− 541/2,809
38 1,404/3,510 −/3,504 390/591

st(1) 6,993/100,566 −/− −/79,803
st(2) 1,109,025/7,448,719 −/− −/6,163,259
st(3) 5,419,575/37,639,782 −/− 5,172,660/24,792,525

Deadlock preserving reduction
Example No partial order reduction Persistent sets Persistent sets + Ccd

01 112/380 92/194 −/−
10 688/2,540 568/1,332 −/−
11 2,995/9,228 2,018/4,688 −/4,670
18 129,728/749,312 124,304/689,760 90,248/431,232
20 504,920/5,341,821 481,406/4,193,022 481,397/4,191,555
25 11,031/34,728 6,414/11,625 −/−

27(1) 1,530/5,021 1,524/4,811 −/−
27(2) 6,315/22,703 6,298/22,185 −/−
28 600/1,925 375/902 −/−
35 156,957/767,211 −/− −/−
36 23,627/84,707 171/170 −/−
37 22,545/158,318 −/− 76/128
38 1,404/3,510 −/3,474 492/673

st(1) 6,993/100,566 6,864/96,394 1/1
st(2) 1,109,025/7,448,719 −/7,138,844 101,575/346,534
st(3) 5,419,575/37,639,782 5,289,255/34,202,947 397,360/1,333,014

Fig. 4. Lts sizes in states/transitions for branching and deadlock preserving reductions

computation nodes (e.g., filters) communicate using xSTream queues connected
by a NoC (Network on Chip) composed of routers connected by direct commu-
nication links.

We used as input the network of communicating Ltss produced from a Lotos

specification of two xSTream queues connected via a NoC with four routers.
The architecture of the system is depicted below, where the components N0 and
N1 denote the routers involved in the communication between PUSHQ and POPQ,
the behaviour of which incorporates perturbations induced by the other two
routers of the NoC.

POP RQ
PUSH RSP POP RSP

TO 1

N0 LINK 10

LINK 01

FROM 0TO 0

PUSH RQ

FROM 1

N1

POPQPUSHQ
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No partial order reduction Persistent sets + Ccd

total time (s) peak memory (MB) total time (s) peak memory (MB)
st(1) 0.72 5.6 0.91 5.6
st(2) 271 312 287 271
st(3) 2,116 1,390 1,588 981

Fig. 5. Resources used to generate and reduce Ltss modulo branching bisimulation

without Ccd with Ccd

intermediate time (s) mem. (MB) intermediate time (s) mem. (MB)
itf POPQ+N1 244,569/1,320,644 18.56 51 179,706/587,187 9.66 26
N0+PUSHQ 22,674/120,222 1.35 17 22,674/86,528 1.12 17
N0+N1+PUSHQ 140,364/828,930 12.62 32 95,208/444,972 6.40 22
NOC4 324,261/2,549,399 11.32 93 310,026/1,073,316 9.77 46

Fig. 6. Performance of Lts generation and minimization with and without Ccd

The Lts of the system can be generated and minimized compositionally using
the Svl [11] language of Cadp. The generation was done first with Ccd deacti-
vated, then with Ccd activated. For each case, Figure 6 gives the following in-
formation: The “intermediate” column indicates the size (in states/transitions)
of the intermediate Lts generated by the Exp.Open tool, before minimization
modulo branching bisimulation; The “time” and “mem.” columns indicate re-
spectively the cumulative time (in seconds) and memory peak (in megabytes)
taken by Lts generation (including confluence detection when relevant) and
minimization modulo branching bisimulation.

Figure 6 shows that Ccd may reduce both the time (the Ltss
"itf POPQ+NI.bcg" and "N0+N1+PUSHQ.bcg" were generated and minimized
twice faster with Ccd than without Ccd) and memory ("itf POPQ+NI.bcg"
and "NOC4.bcg" were generated using about half as much memory with Ccd as
without Ccd).

8 Conclusion

Ccd (Compositional Confluence Detection) is a partial order reduction method
that applies to systems of communicating automata. It detects confluent tran-
sitions in the product graph, by first detecting the confluent transitions in the
individual automata and then analysing their synchronizations. Confluent tran-
sitions of the product graph can be given priority over the other transitions,
thus yielding graph reductions. We detailed two variants of Ccd: one that pre-
serves branching bisimilarity with the product graph, and one that preserves its
deadlocks.

Ccd was implemented in the Cadp toolbox. An encoding of the confluence
property using a Bes (Boolean Equation System) allows the detection of all conflu-
ent transitions in an automaton. The existing tool Exp.Open 2.0, which supports
modeling and verification of systems of communicating automata, was extended
to exploit on-the-fly the confluence detected in the individual automata.
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Ccd can be combined with both compositional verification and other par-
tial order reductions, such as persistent sets. We presented experimental results
showing that Ccd may significantly reduce both the size of the system graph
and the total time and peak memory needed to generate a minimal graph.

As future work, we plan to combine Ccd reductions with distributed graph
generation [13] in order to further scale up its capabilities. This distribution can
be done both at automata level (by launching distributed instances of confluence
detection for each automaton in the network or by performing the confluence
detection during the distributed generation of each automaton) and at network
level (by coupling Ccd with the distributed generation of the product graph).

Acknowledgements. We are grateful to W. Serwe (Inria/Vasy) and to E. Lan-
treibecq (STMicroelectronics) for providing the specifications of the xSTream

NoC. We also warmly thank the anonymous referees for their useful remarks.
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8. Fernandez, J.-C., Jard, C., Jéron, T., Mounier, L.: On the Fly Verification of Finite
Transition Systems. In: FMSD (1992)

9. Fernandez, J.-C., Mounier, L.: Verifying Bisimulations “On the Fly”. In: FDT
(1990)

10. Garavel, H.: OPEN/CÆSAR: An Open Software Architecture for Verification, Sim-
ulation, and Testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, p. 68.
Springer, Heidelberg (1998)

11. Garavel, H., Lang, F.: SVL: a Scripting Language for Compositional Verification.
In: FORTE. Kluwer, Dordrecht (2001)

12. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

13. Garavel, H., Mateescu, R., Bergamini, D., Curic, A., Descoubes, N., Joubert, C.,
Smarandache-Sturm, I., Stragier, G.: DISTRIBUTOR and BCG MERGE: Tools
for Distributed Explicit State Space Generation. In: Hermanns, H., Palsberg, J.
(eds.) TACAS 2006. LNCS, vol. 3920, pp. 445–449. Springer, Heidelberg (2006)



Partial Order Reductions Using Compositional Confluence Detection 171

14. Giannakopoulou, D.: Model Checking for Concurrent Software Architectures. PhD
thesis, Imperial College, Univ. of London, Dept. of Computer Science (1999)

15. Godefroid, P.: Using Partial Orders to Improve Automatic Verification Methods.
In: Computer-Aided Verification. DIMACS Series, vol. 3 (1990)
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Abstract. It is widely agreed that building correct fault-tolerant systems is very
difficult. To address this problem, this paper introduces a new model-based ap-
proach for developing masking fault-tolerant systems. As in component-based
software development, two (or more) component specifications are developed,
one implementing the required normal behavior and the other(s) the required
fault-handling behavior. The specification of the required normal behavior is ver-
ified to satisfy system properties, whereas each specification of the required fault-
handling behavior is shown to satisfy both system properties, typically weakened,
and fault-tolerance properties, both of which can then be inferred of the composed
fault-tolerant system. The paper presents the formal foundations of our approach,
including a new notion of partial refinement and two compositional proof rules.
To demonstrate and validate the approach, the paper applies it to a real-world
avionics example.

1 Introduction

It is widely agreed that building a correct fault-tolerant system is very difficult. One
promising approach, proposed by us and others, for obtaining a high-assurance fault-
tolerant system is to specify the system requirements in two phases [4, 18, 7, 19]. In the
first phase, the normal (also called ideal) system behavior, the system behavior when
no faults can occur, is specified. In the second phase, the no-faults assumption is re-
moved, and the system’s required fault-tolerant behavior is specified. Such an approach
has many advantages. First, a specification of the normal behavior known to be correct
can be reused if the design of fault-tolerance changes. Second, if the fault-tolerant sys-
tem can be expressed as an extension of a system with normal behavior by adding a
set of fault-handling components, the specification is easier to understand and easier to
construct than a fault-tolerant system specified as a single component. Third, by apply-
ing formal specification during two separate phases, errors may be uncovered—e.g., by
applying formal verification—that might otherwise be overlooked. For example, our ap-
plication of two-phase specification and verification to a real-world avionics device [7]
uncovered modeling errors previously unnoticed (see Section 5). Finally, specifications
of the fault-handling components may be reused in other systems.

The model-based approach proposed in this paper has attributes of two other pop-
ular approaches for developing software systems. As in aspect-oriented programming

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 173–189, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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[17, 16], the approach weaves certain aspects, specifically, the “fault-tolerant” aspects,
into the original program. Moreover, as in component-based software development,
two (or more) components are developed separately, and later composed to produce the
final implementation. This paper makes three contributions; it presents: 1) a component-
based approach for developing a special class of fault-tolerant systems, called “mask-
ing” fault-tolerant systems, which uses formal specification and formal verification to
obtain high confidence of system correctness; 2) a formal foundation, including a set
of sound compositional proof rules, a formal notion of fault-tolerant extension, and a
formal notion of partial refinement with an associated notion of partial property inher-
itance; and 3) a complete example of applying the approach to a real-world system.

The paper’s organization is as follows. After defining masking fault-tolerance, Sec-
tion 2 briefly reviews the SCR (Software Cost Reduction) method used in our example.
Section 3 introduces our formal method for developing fault-tolerant systems, an ex-
tension of the approach to software development presented in [7]. To establish a formal
foundation for the method, Section 4, inspired by the theory of fault tolerance in [18]
and the theory of retrenchment applied to fault-tolerant systems in [5], presents our new
notions of partial refinement and fault-tolerant extension, and two compositional proof
rules. To demonstrate and validate our approach and to show how formal methods can
be used to support the approach, Section 5 applies the method to a device controller
in an avionics system [20]. Finally, Sections 6 and 7 discuss related work and present
some conclusions. Although SCR is used in Section 5 to demonstrate our approach,
the method and theory presented in this paper are basically applicable in any software
development which specifies components as state machine models.

2 Background

2.1 Masking Fault-Tolerance

This paper focuses on masking fault-tolerance, a form of fault-tolerance in which the
system always recovers to normal behavior after a fault occurs, so that the occurrence of
faults is rendered mostly invisible, i.e., “masked.” We consider two variants of masking
fault tolerance. In the first variant, transparent masking, all safety properties [2] of the
system are preserved even in the presence of faults, and the effect of faults on the system
behavior is completely invisible. In the second variant, eventual masking, some critical
subset of the set of safety properties is preserved during fault handling, though other
safety properties guaranteed during normal behavior may be violated. When masking is
transparent, the system’s fault-tolerant behavior is a refinement of its normal behavior.
For eventual masking, system behavior during fault-handling is a degraded version of
normal behavior, and the relationship of the full fault-tolerant system behavior to nor-
mal system behavior is captured by the notions of fault-tolerant extension and partial
refinement presented in Section 4.1 The Altitude Switch (ASW) example in Section 5
illustrates both variants of masking fault-tolerance.

1 Many use “masking fault-tolerance” to refer only to what we call “transparent masking.”
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2.2 The SCR Requirements Method

The SCR (Software Cost Reduction) [13, 12] method uses a special tabular notation
and a set of tools for formally specifying, validating, and verifying software and system
requirements. See [12, 11] for a review of the SCR tabular notation, the state machine
model which defines the SCR semantics, and the SCR tools.

An important construct in SCR, the mode class, can be very useful in specifying
the required behavior of fault-tolerant systems. Conceptually, each mode in a mode
class corresponds to a “mode of operation” of the system. Thus, for example, in flight
software, pilot-visible modes determine how the software reacts to a given pilot input.
As shown in Section 5, modes similarly have a special role in SCR specifications of
fault-tolerant systems.

3 A Formal Method for Building Fault-Tolerant Systems

This section introduces a new method for building a fault-tolerant system. Based on
concepts in Parnas’ Four Variable Model [21], the method is applied in two phases.
In the first phase, the normal system behavior is specified and shown to satisfy a set
of critical properties, most commonly, safety properties [2]. In the second phase, I/O
devices, e.g., sensors and actuators, are selected, hardware and other faults which may
occur are identified, and the system’s fault-tolerant behavior is designed and specified.
The fault-tolerant specification formulated in this phase is shown to satisfy 1) the critical
system properties, typically weakened, which were verified in the first phase and 2) new
properties specifying fault detection and fault recovery. While each phase is described
below as a sequence of steps, the precise ordering of the steps may vary, and some steps
may occur in parallel.

3.1 Specify the Normal System Behavior

In the first phase, the system behavior is specified under the assumption that no faults
can occur, and essential system properties are formulated and verified. The “normal”
behavior omits any mention of I/O devices, or of hardware faults and other system
malfunctions.

Specify NAT and REQ. To represent the system’s normal behavior, a state machine
model of the system requirements is formulated in terms of two sets of environmental
variables—monitored and controlled variables—and two relations—REQ and NAT—
from Parnas’ Four Variable Model [21]. Both NAT and REQ are defined on the moni-
tored and controlled variables. NAT specifies the natural constraints on monitored and
controlled variables, such as constraints imposed by physical laws and the system en-
vironment. REQ specifies the required relation the system must maintain between the
monitored and controlled variables under the assumptions defined by NAT. In the first
phase, an assumption is that the system can obtain perfect values of the monitored
quantities and compute perfect values of the controlled variables. During this phase, the
system tolerances are also defined; these may include the required precision of values
of controlled variables, timing constraints imposed by REQ on the controlled variables,
and timing constraints imposed by NAT.
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Formulate the System Properties. In this step, the critical system properties are for-
mulated as properties of the state machine model. If possible, these properties should be
safety properties, since the second phase produces a refinement (i.e., when the system
is operating normally), and safety properties are preserved under refinement [1].

Verify the System Properties. In the final step, the properties are verified to hold in
the state machine model, using, for example, a model checker or theorem prover.

3.2 Specify the Fault-Tolerant Behavior

In the second phase, the assumption that the system can perfectly measure values of
monitored quantities and perfectly compute values of controlled quantities is removed,
and I/O devices are selected to estimate values of monitored quantities and to set values
of controlled quantities. Also removed is the assumption that no faults occur. Possible
faults are identified, and the system is designed to tolerate some of these faults. Fi-
nally, the fault-tolerant behavior is specified as a fault-tolerant extension (see Section 4)
which adds extra behavior to handle faults and which may include new externally visible
behavior, e.g., operator notification of a sensor failure.

Select I/O Devices and Identify Likely Faults. In the second phase, the first step is to
select a set of I/O devices and to document the device characteristics, including iden-
tification of possible faults. Among the possible faults are faults that invalidate either
sensor inputs or actuator outputs and faults that corrupt the program’s computations.
Examples of faults include the failure of a single sensor, the simultaneous failure of all
system sensors, and the failure of a monitored variable to change value within some
time interval. For practical reasons, the system is designed to respond to only some
possible faults. An example of an extremely unlikely fault is simultaneous failure of all
system sensors—recovery from such a massive failure is likely to be impossible. Once
a set of faults is selected, a design is developed that either makes the system tolerant of
a fault or reports a fault so that action may be taken to correct or mitigate the fault.

Design and Specify the Fault-Tolerant Behavior. A wide range of fault-tolerance
techniques have been proposed. One example is hardware redundancy, where two or
more versions of a single sensor are available, but only one is operational at a time. If
the operational sensor fails, the system switches control to a back-up sensor. In another
version of hardware redundancy, three (or any odd number of) sensors each sample a
monitored quantity’s value, and a majority vote determines the value of the quantity.
Some fault-tolerance techniques make faults transparent. For example, if three sensors
measure aircraft altitude, a majority vote may produce estimates of the altitude satisfy-
ing the system’s tolerance requirements and do so in a transparent manner. Other tech-
niques do not make faults transparent—for example, techniques which report a fault to
an operator, who then takes some corrective action.

Verify Properties of the Fault-Tolerant Specification. In this step, the critical prop-
erties verified to hold for the normal system behavior must be shown to hold for the
fault-tolerant behavior. In some cases, properties of the normal system will not hold
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throughout the fault-tolerant system but may remain true for only some behavior (e.g.,
for only the normal behavior). A new notion of partial refinement, defined in Section 4,
describes the conditions which must be established for the fault-tolerant system to par-
tially inherit properties of the normal system. In addition, new properties are formulated
to describe the required behavior when a fault is detected and when the system recovers
from a fault. It must then be shown that the fault-tolerant specification satisfies these
new properties, which can be established as invariants with the aid of compositional
proof rules, such as those presented in Section 4.2.

4 Formal Foundations

This section presents formal definitions, theoretical results, and formal techniques that
support our approach to developing provably correct fault-tolerant systems. The most
important concepts and results include our notions of partial refinement and fault-
tolerant extension, and two proof methods for establishing properties of a fault-tolerant
extension based on properties of the normal (fault-free) system behavior it extends. The
first proof method is based on Theorem 1 concerning property inheritance under par-
tial refinement; the second is based on compositional proof rules for invariants, two
of which are shown in Figure 2. The section begins with general notions concerning
state machines, then introduces fault-tolerance concepts, and finally, discusses addi-
tional concepts and results that apply as additional assumptions about state machines
are added—first, that states are determined by the values of a set of state variables, and
second, that the state machines are specified in SCR. Each concept or result presented
is introduced at the highest level of generality possible. The definitions, results, and
techniques of this section are illustrated in the ASW example presented in Section 5.

4.1 General Definitions

To establish some terminology, we begin with the (well-known) definitions of state ma-
chine and invariant property (invariant, for short). As is often customary, we consider
predicates to be synonymous with sets; thus, “P is a predicate on set S” ≡ “P ⊆ S”,
“P (s) holds”≡ “s ∈ P ”, etc.

Definition 1. State machine. A state machine A is a triple (SA, ΘA, ρA), whereSA is a
nonempty set of states, ΘA ⊆ SA is a nonempty set of initial states, and ρA ⊆ SA×SA

is a set of transitions that contains the stutter step (sA, sA) for every sA in SA. A
state sA ∈ SA is reachable if there is a sequence (s0, s1), (s1, s2), . . . (sn−1, sn) of
transitions in ρA such that s0 is an initial state and sn = sA. A transition (sA, s

′
A) ∈ ρA

is a reachable transition if sA is a reachable state. Reachable states/transitions of A
are also called A-reachable states/transitions.

Definition 2. One-state and two-state predicates/invariants. Let A = (SA, ΘA, ρA)
be a state machine. Then a one-state predicate of A is a predicate P ⊆ SA, and a two-
state predicate of A is a predicate P ⊆ SA × SA. A one-state (two-state) predicate P
is a state (transition) invariant of A if all reachable states (transitions) of A are in P .
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Fig. 1. Transitions in the fault-tolerant system FT

We next define two notions that describe how two state machines (e.g., two models of
a system) may be related. The well known notion of refinement is especially useful in
the context of software development because the existence of a refinement mapping
from a state machine C to a state machine A at a more abstract level permits impor-
tant properties—including all safety properties (and hence all one-state and two-state
invariants)—proved of A to be inferred of C. A new notion, which we call partial re-
finement, is a generalization of refinement useful in situations where the approximation
by a detailed system model to a model of normal system behavior is inexact.

Definition 3. Refinement. Let A = (SA, ΘA, ρA) and C = (SC , ΘC , ρC) be two state
machines, and let α : SC → SA be a mapping from the states of C to the states of
A. Then α is a refinement mapping if 1) for every sC in ΘC , α(sC) is in ΘA, and 2)
ρA(α(sC), α(s′C)) for every pair of states sC , s

′
C in SC such that ρC(sC , s

′
C).

Definition 4. Partial Refinement. Let A = (SA, ΘA, ρA) and C = (SC , ΘC , ρC) be
two state machines and α : SC

◦→ SA be a partial mapping from states of C to states
of A. Then α is a partial refinement mapping if 1) for every sC in ΘC , α(sC) is defined
and in ΘA, and 2) ρA(α(sC), α(s′C)) for every pair of states sC , s

′
C in the domain

α−1(SA) of α such that ρC(sC , s
′
C). When a partial refinement mapping α exists from

C to A, we say that C is a partial refinement of A (with respect to α).

The notions of vulnerable state and vulnerable transition are useful (see Theorem 1) in
describing the circumstances under which properties proved of a state machine A can
be partially inferred for a state machine C that is a partial refinement of A.

Definition 5. Vulnerable states and vulnerable transitions. Let A = (SA, ΘA, ρA)
and C = (SC , ΘC , ρC) be two state machines, and let α : SC

◦→ SA be a partial
refinement. Then a state sC in the domain of α is vulnerable if there exists a state s′C
in SC such that ρC(sC , s

′
C) but the transition (sC , s

′
C) does not map under α to a

transition in A (in which case we refer to (sC , s
′
C) as a vulnerable transition).

4.2 Concepts for Fault Tolerance

Our method for including fault tolerance in the software development process described
in Section 3 begins with a model ID of the normal (software) system behavior. In the



A Formal Method for Developing Provably Correct Fault-Tolerant Systems 179

next phase, ID is used as a basis for constructing a model FT of the system that is a
fault-tolerant extension of ID in the following sense:

Definition 6. Fault-tolerant extension. Given a state machine model ID of a system,
a second state machine model FT of the system is a fault-tolerant extension of ID if:

– the state set SFT of FT partitions naturally into two sets: 1) N , the set of normal
states, which includes ΘFT and 2) F , the set of fault-handling states that represent
the system state after a fault has occurred, and

– there is a map π : N → SID and a two-state predicate O ⊆ N × N for
FT such that π(ΘFT ) ⊆ ΘID and s1, s2 ∈ N ∧ O(s1, s2) ∧ ρFT (s1, s2) ⇒
ρID(π(s1), π(s2)).

The map π and predicateO are, respectively, the normal state map and normal transition
predicate for FT.

Figure 1 illustrates the structure of FT and its relationship to ID. There are five classes
of transitions in FT:

1. transitions from N to N that map to transitions in ID (Normal Behavior),
2. transitions from N to N that do not map to transitions in ID (not shown),
3. transitions from N to F (Fault Detection),
4. transitions from F to F (Degraded Behavior), and
5. transitions from F to N (Fault Recovery).

Remark 1. When FT is a fault-tolerant extension of ID, π is a partial refinement map-
ping from the state machine (SFT , ΘFT , O ∩ ρFT ) to ID. Further, if FT has no transi-
tions of class 2, class 3 represents all vulnerable transitions in FT, and π : SFT

◦→ SID

is a partial refinement mapping from FT to ID.

Even when π is not a partial refinement from FT to ID, there is still guaranteed to be a
partial refinement from FT to ID whose domain can be defined in terms of the normal
transition predicate O in Definition 6. In particular, given O, let Ô be the one-state
predicate for FT defined by:

Ô(s1)
	
= (∀s2 ∈ SFT : ρ(s1, s2)⇒ O(s1, s2))

(It is easily seen, as indicated in Figure 1, that Ô ⊆ N .) Then, for any state s ∈ SFT,
Ô(s) implies that all transitions in FT from s map to transitions in ID. Therefore,
restricted to the set Ô, the map π is a partial refinement map from FT to ID.

If (s1, s2) is a transition in FT of class 5, we refer to s2 as a reentry state. Further, if
(s1, s2) is of class 2, we refer to s2 as an exceptional target state. By a simple inductive
argument, we have:

Lemma 1. If every reentry state and every exceptional target state in N maps under
π to a reachable state in ID, then every FT-reachable state in N maps under π to a
reachable state in ID, and every FT-reachable transition in Ô ⊆ N maps under π to a
reachable transition in ID.
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(1) Q is a one-state predicate for FT such that Q respects π
(2) π(ΘF T ) ⊆ ΘID ⊆ π(Q)
(3) s1, s2 ∈ SID ∧ π(Q)(s1) ∧ ρID(s1, s2) ⇒ π(Q)(s2)
(4) s1, s2 ∈ SF T ∧ ρF T (s1, s2) ⇒ [(Q(s1) ∧ ¬O(s1, s2)) ⇒ Q(s2)]
(5) s1, s2 ∈ N ⊂ SF T ∧ ρF T (s1, s2) ⇒ [O(s1, s2) ⇒ ρID(π(s1), π(s2))]

Q is a state invariant of FT

(1) P and Q are two-state predicates for FT such that P ⇒ Q ∧ P respects π
(2) s1, s2 ∈ SID ∧ ρID(s1, s2) ⇒ ((π × π)(P ))(s1, s2)
(3) s1, s2 ∈ SF T ∧ ρF T (s1, s2) ⇒ [¬O(s1, s2)⇒ Q(s1, s2)]
(4) s1, s2 ∈ N ⊂ SF T ∧ ρF T (s1, s2) ⇒ [O(s1, s2) ⇒ ρID(π(s1), π(s2))]

Q is a transition invariant of FT

Fig. 2. Proof rules for state and transition invariants of FT

Using the notation above, we can now state:

Theorem 1. Property inheritance under partial refinement. Let FT be a fault-toler-
ant extension of ID in which every reentry or exceptional target state maps under π to

a reachable state in ID. Then 1) for every one-state invariant P of ID, Φ(P )
	
= P ◦ π

holds for every FT-reachable state in N , and 2) for every two-state invariant P of ID,

Φ(P )
	
= P ◦ (π × π) holds for every non-vulnerable reachable transition of FT from a

state in N (thus, in particular, for every reachable transition of FT from a state in Ô).

As shown below, the fault-tolerant ASW behavior is a fault-tolerant extension of the
normal ASW behavior with natural definitions for N and F (see Section 5), π (see
Section 4.3), and O (see Section 4.4) such that all transitions fromN to N are of class 1.
Further, we have proven formally that all reentry states in the fault-tolerant version of
the ASW are reachable, and there are no exceptional target states. Hence, for the ASW,
Theorem 1 can be used to deduce properties of FT from properties of ID.

In general, however, to supplement Theorem 1, a method is needed for establishing
properties of FT in the case when it is difficult or impossible to establish that all reentry
states and exceptional target states in FT map under π to reachable states of ID. For
this purpose, we provide compositional proof rules analogous to those in [15]. We first
define what it means for a predicate to respect a mapping:

Definition 7. Let π : S1 → S2 be a mapping from set S1 to set S2. Then 1) a pred-
icate Q on S1 respects π if for all s, ŝ in S1, Q(s) ∧ (π(s) = π(ŝ)) ⇒ Q(ŝ), and
2) a predicate Q on S1 × S1 respects π if for all s, ŝ, s′, ŝ′ in S1, Q(s, s′) ∧ (π(s) =
π(ŝ)) ∧ (π(s′) = π(ŝ′))⇒ Q(ŝ, ŝ′).

Figure 2 gives proof rules for establishing that a one-state (two-state) predicate Q on
FT is a state (transition) invariant of FT. Note that line (5) of the first proof rule and
line (4) in the second proof rule are part of the definition of fault-tolerant extension.



A Formal Method for Developing Provably Correct Fault-Tolerant Systems 181

4.3 Fault Tolerance Concepts in Terms of State Variables

When the states of a state machine are defined by a vector of values associated with a
set of state variables (as is true, for example, in SCR specifications), it is possible to
interpret the concepts in Section 4.2 more explicitly. In particular, constructing a fault
tolerant system model FT from a normal system model ID is usually done by adding
any new variables, new values of types of existing variables, and new transitions needed
to describe the triggering and subsequent handling of faults. We will refer to the original
variables as normal variables, and the added variables as fault-tolerance variables; for
any normal variable, we will refer to its possible values in ID as normal values, and
any new possible values added in FT as extended values. In this terminology, the states
in N ⊆ SFT are those for which all normal variables have normal values. The map
π : N → SID can then simply be chosen to be the projection map with respect to the
normal variables.

Although Definition 2 represents predicates abstractly as sets when states are de-
termined by the values assigned to state variables, most predicates of interest can be
represented syntactically as relations among state variables and constants. Further, on a
syntactic level, the map(s) Φ defined in Theorem 1 will be the identity.

4.4 Modeling Fault Tolerance in SCR

As shown in Section 5.2 below, several aspects of an SCR specification can be used to
advantage in defining FT as a fault-tolerant extension of a normal system specification
ID in the sense of Definition 6. These aspects include mode classes, tables to define the
behavior of individual variables, and the description of transitions in terms of events.

We call a fault-tolerant extension FT of ID obtained by the technique of Section 5.2
simple if any row splits in the table of any normal variable result in new rows defin-
ing updated values of the variable that are either the same as in the original row for
ID or are among the extended values for that variable. (For example, row 3 of Table 1
is split into rows 3a and 3b of Table 6.) In the terminology of Definition 6, in a sim-
ple fault-tolerant extension, every transition from N in FT either maps under π to a
normal transition in ID or is a transition from N to F (class 3). It is not difficult to
prove the following:

Theorem 2. For any simple fault-tolerant extension FT of ID, the normal state map
π is a partial refinement mapping and one can choose the normal transition predicate
to be

O(s1, s2)
	
= N(s1) ∧N(s2).

Thus, since the predicate N can be expressed simply as an assertion that no normal
variable has an extended value, it is possible in the context of SCR to compute O for
any FT defined as a simple fault-tolerant extension of ID.2

2 We have also shown that O can be automatically computed for some examples in which FT is
not a simple fault-tolerant extension of ID.
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5 Example: Altitude Switch (ASW)

This section shows how the method presented in Section 3 can be applied using SCR
to a practical system, the Altitude Switch (ASW) controller in an avionics system [20].
The goal of the ASW example is to demonstrate the specification of a system’s normal
behavior ID and the separate specification of its fault-tolerant behavior FT as a simple
fault-tolerant extension. This is in contrast to [7], which presents an earlier SCR speci-
fication of the ASW behavior, whose goal was to demonstrate the application of Parnas’
Four Variable Model to software development using SCR.

The primary function of the ASW is to power on a generic Device of Interest (DOI)
when an aircraft descends below a threshold altitude. In some cases, the pilot can set an
inhibitor button to prevent the powering on of the DOI. The pilot can also press a reset
button to reinitialize the ASW. Fault-tolerance is supported by three sensors and the
system clock. If certain events occur (e.g., all three sensors fail for some time period),
the system enters a fault mode and may take some action (e.g., turn on a fault indicator
lamp). Recovery from a fault occurs when the pilot resets the system.

Sections 5.1 and 5.2 describe the results of applying our method to the specification
and verification of both the normal and the fault-tolerant ASW behavior. Section 5.2
also shows how the theoretical results in Section 4 can be used to prove properties of
the ASW’s fault-tolerant behavior FT. Starting from property P2 of the normal ASW
behavior, our results about property inheritance allow us to derive P̃2, a weakening of
P2, which holds in FT, while our compositional proof rules can be used to show that
P̂2, a different weakening of P2, also holds in FT. Table 4 defines both P2 and P̂2.
Property P̃2 is defined in Section 5.2.

5.1 Specify and Verify the Normal Behavior of the ASW

To characterize the normal behavior ID of the ASW, this section presents a state ma-
chine model of the ASW’s normal behavior expressed in terms of NAT and REQ, and a
set of critical system properties which are expected to hold in the model.

Specify NAT and REQ. The normal ASW behavior is specified in terms of 1) con-
trolled and monitored variables, 2) environmental assumptions, 3) system modes and
how they change in response to monitored variable changes, and 4) the required rela-
tion between the monitored and controlled variables. The relation NAT is defined by 1)
and 2) and the relation REQ by 3) and 4).

The ASW has a single controlled variable cWakeUpDOI, a boolean, initially false,
which signals the DOI to power on, and six monitored variables: 1) mAltBelow, true
if the aircraft’s altitude is below a threshold; 2) mDOIStatus, which indicates whether
the DOI is on; 3) mInitializing, true if the DOI is initializing; 4) mInhibit, which
indicates whether powering on the DOI is inhibited; 5) mReset, true when the pilot has
pressed the reset button; and 6) mTime, the time measured by the system clock. The
ASW also has a single mode class mcStatus containing three system modes: 1) init
(system is initializing), 2) awaitDOIon (system has requested power to the DOI and is
awaiting a signal that the DOI is operational), and 3) standby (all other cases).
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Table 1. Mode transition table for mcStatus

Row Old Event New
No. Mode Mode

1 init @F(mInitializing) standby

2 standby @T(mReset) init

3 standby @T(mAltBelow) WHEN awaitDOIon

(NOT mInhibit AND

mDOIStatus=off)

4 awaitDOIon @T(mDOIStatus=on) standby

5 awaitDOIon @T(mReset) init

Table 2. cWakeUpDOI cond. table

Mode in cWakeUpDOI

mcStatus

init, standby False

awaitDOIon True

Table 1 defines the ASW mode transitions. Once initialization is complete (event
@F(mInitializing) occurs), the system moves from init to standby. It returns to
init when the pilot pushes the reset button (@T(mReset) occurs). The system moves
from standby to awaitDOIon when the aircraft descends below the threshold altitude
(@T(mAltBelow) occurs), but only when powering on is not inhibited, and the DOI is
not powered on. Once the DOI signals that it is powered on (@T(mDOIStatus = on)
occurs), the system goes from awaitDOIon to standby. Table 2 defines the value
of the controlled variable cWakeUpDOI as a function of the mode class mcStatus. If
mcStatus = awaitDOIon, then cWakeUpDOI is True; otherwise, it is False.

Table 3. ASW Assumptions

Name System Formal Statement
A1 ID, FT (mTime′ − mTime) ∈ {0, 1}
A2 ID DUR(mcStatus = init) ≤ InitDur

A3 ID DUR(mcStatus = awaitDOIon) ≤ FaultDur

A4 FT DUR(cFaultIndicator = on) ≤ FaultDur

The relation NAT for ASW contains three assumptions, A1, A2, and A3, each a
constraint on the system timing (see Table 3).3 The first assumption, A1, states that
time never decreases and, if time increases, it increases by one time unit.4 Assumptions
A2 and A3 define constraints on the time that the system remains in specified modes.
To represent these constraints, we require SCR’s DUR operator. Informally, if c is a
condition and k is a positive integer, the predicate DUR(c) = k holds at step i if in step i
condition c is true and has been true for exactly k time units. A2 requires that the ASW

3 In Tables 3-5, assumptions and properties of both the normal (ID) and fault-tolerant (FT) sys-
tems are presented. Any row in these tables that applies only to FT is described in Section 5.2.

4 The primed variable mTime′ in Table 3 and other primed expressions refer to the expression’s
value in the new state; any unprimed expression refers to the expression’s value in the old state.
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spend no more than InitDur time units initializing, while A3 requires the system to
power on the DOI in no more than FaultDur time units.

Specify the ASW Properties. Table 4 defines two required properties, P1 and P2, of
the ASW’s normal behavior. P1, a safety property, states that pressing the reset button
always causes the system to return to the initial mode. P2, another safety property, spec-
ifies the event and conditions that must hold to wake up the DOI. A user can execute
the SCR invariant generator [14] to derive a set of state invariants from an SCR specifi-
cation. Such invariants may be used as auxiliary properties in proving other properties,
such as P1 and P2. Applying the invariant generator to the specification of the normal
ASW behavior (defined by Table 1, Table 2, and assumptions A1-A3) automatically
constructs the state invariant H1, which is defined in Table 5.

Verify the ASW Properties. The property checker Salsa [8] easily verifies that the
specification of the ASW’s normal behavior satisfies P1 and P2. Completing the proof
of P2 requires the auxiliary H1; proving P1 requires no auxiliaries.

Table 4. ASW Properties

Name System Formal Statement
P1 ID, FT @T(mReset) ⇒ mcStatus′ = init

P2 ID mcStatus = standby ∧@T(mAltBelow) ∧ ¬mInhibit
∧ mDOIStatus = off⇒ cWakeUpDOI′

P̂2 FT mcStatus = standby ∧@T(mAltBelow) ∧ ¬mInhibit
∧ mDOIStatus = off ∧ ¬mAltimeterFail ⇒ cWakeUpDOI′

G1 FT mAltimeterFail ∧ mcStatus = standby ⇒ mcStatus′ �= awaitDOIon

G2 FT mcStatus = fault ⇒ mcStatus′ = init ∨ mcStatus′ = fault

Table 5. ASW State Invariants

Name System Formal Statement
H1 ID, FT (mcStatus = awaitDOIon) ⇔ cWakeUpDOI

J2 FT cFaultIndicator = on ⇔ mcStatus = fault

J3 FT DUR(cFaultIndicator = on) �= 0 ⇒ cFaultIndicator = on

5.2 Specify and Verify the Fault-Tolerant Behavior of the ASW

This section describes how the normal behavior of the ASW can be refined to handle
faults. First, the I/O devices are selected. Next, the faults that the ASW system will be
designed to handle are identified, and the fault-tolerant and failure notification behavior
of the ASW are specified. Finally, new ASW properties are formulated to capture the
required fault-tolerant behavior, and these new properties as well as the ASW properties
proven for the normal behavior, possibly reformulated, are proven to hold in the fault-
tolerant specification.
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Select the ASW I/O Devices. To estimate whether the aircraft is below the thresh-
old altitude, three altimeters are selected, one analog and the other two digital. For a
description of the other I/O devices selected for the ASW, see [7].

Identify Likely ASW Faults. The ASW is designed to tolerate three faults: 1) the fail-
ure of all three altimeters, 2) remaining in the initialization mode too long, and 3) failure
to power on the DOI on request within some time limit. All three faults are examples
of eventual masking—the system enters a fault handling state but eventually recovers
to normal behavior. To notify the pilot when a fault occurs, the ASW turns on a Fault
Indicator lamp. The ASW is also designed to handle a single altimeter failure; it uses
the remaining two altimeters to determine whether the aircraft is below the threshold
altitude. This is an example of masking where the fault is transparent at the system
level—the system never enters a fault handling state when only one altimeter fails.

Specify ASW Fault-Tolerant Behavior. Generally, adding behavior related to fault
detection, notification, and handling to the specification of normal system behavior re-
quires new monitored variables to detect faults, new controlled variable to report the oc-
currence of faults, and new values for any variable, and, in particular, new fault modes
in mode classes. To define the additional behavior in SCR, tables defining the new vari-
ables are added, and tables defining the existing variables are modified and extended.

Adding fault-handling and fault notification to the normal ASW specification ID
requires 1) a new monitored variable mAltimeterFail to signal the failure of all three
altimeters,5 2) a new controlled variable cFaultIndicator to notify the pilot of a fault
by turning on a lamp, 3) a new mode fault to indicate the detection of a fault, 4) a new
table defining cFaultIndicator, and 5) the modification and extension of two tables:
the table defining the controlled variable cWakeUpDOI and the mode transition table
defining the mode class mcStatus. The final step removes assumptions A2 and A3,
thus allowing the fault-tolerant system to suffer from these faults.

To define a new mode transition table capturing fault detection and recovery, the
mode transition table for the ASW normal behavior, Table 1, is replaced with a new
mode transition table, containing rows 1, 2, 4, and 5 of Table 1 and rows 6, 7, and
8 of Table 6, and replacing row 3 of Table 1 with rows 3a and 3b of Table 6. In the
new table, a fault is detected 1) if the system takes more than InitDur time units to
initialize (replaces the deleted A2), 2) if the DOI takes more than FaultDur time units
to power up (replaces the deleted A3), or 3) if all three altimeters have failed for more
than FaultDur time units. Three rows of Table 6 (rows 3b, 6, and 7), each marked by a
simple arrow, indicate the detection of the three faults. The system recovers from a fault
when the pilot presses mReset in response to the Fault Indicator lamp turning on. To
represent recovery, a new transition from fault to init, triggered by @T(mReset), is
added (row 8, marked by a squiggly arrow). To force the system to recover within some
bounded time, a new assumption A4 (see Table 3) is that the pilot always responds to a
failure notification by pushing reset within some time limit. To complete the new table,
row 3 of Table 1 is split into row 3a and row 3b based on whether mAltimeterFail is

5 Because this paper focuses on the fault-tolerance aspects of the ASW, the details of how
mAltimeterFail is computed are omitted. For these details, see [7].
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Table 6. Fault Handling Modifications for Mode Transition Table in Table 1

Row Old Event New
No. Mode Mode

† 3a standby @T(mAltBelow) WHEN (NOT mInhibit AND awaitDOIon

mDOIStatus=off) AND NOT mAltimeterFail

→ 3b standby @T(mAltBelow) WHEN (NOT mInhibit AND fault

mDOIStatus=off) AND mAltimeterFail
→ 6 init @T(DUR(mcStatus = init) > InitDur) fault

→ 7 awaitDOIon @T(DUR(mcStatus = awaitDOIon) > FaultDur) OR fault

@T(DUR(mAltimeterFail) > FaultDur)

� 8 fault @T(mReset) init

Table 7. New table defining cFaultIndicator

Mode in mcStatus cFaultIndicator

init, standby, awaitDOIon off

fault on

Table 8. Revised table for cWakeUpDOI

Mode in mcStatus cWakeUpDOI

init, standby, fault False

awaitDOIon True

true. If true, the system goes to fault (row 3b); otherwise, it goes to awaitDOIon as
in the normal specification ID (row 3a, marked by a dagger).

To indicate when the Fault Indicator lamp is on, a new table, Table 7, is defined to
indicate that cFaultIndicator is on when the system is in the fault mode and off
otherwise. The last step is to add the fault mode to the set of modes which assign the
value false to the table defining cWakeUpDOI (see Table 8).

Adding the new mode fault to the specification allows a normal state in the ASW
to be distinguished from a fault handling state. In particular, we define a state pred-
icate N , where N : mcStatus �= fault, and a second state predicate F , where
F : mcStatus = fault.

Verify the ASW Fault-Tolerance Properties. The safety properties, P1 and P2, prop-
erties of the specification ID of normal behavior, are also included as candidate prop-
erties of the fault-tolerant version FT of the ASW. In addition, safety properties, G1
and G2, defined in Table 4, represent part of the required fault-tolerant behavior of the
ASW [9]. To support the proofs of the properties P1, P2, G1, and G2, the SCR invariant
generator is applied to the fault-tolerant specification. Of the two invariants generated,
the first corresponds exactly to H1, the invariant generated previously from the normal
specification ID; the second invariant J2 is defined in Table 5. The third invariant J3,
also defined in Table 5, is a property of the DUR operator. Using J2 and J3 as auxiliary
invariants, we used Salsa to check the fault-tolerant specification FT for all properties
listed in Table 4. All but P2 were shown to be invariants. Thus the required behavior
represented by P2 fails in FT (that is, when all altimeters fail). Applying Theorem 1
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from Section 4, we can show that FT inherits the weakened property P̃2
�= N ′ ⇒ P2

from property P2 of ID. In addition, the second compositional proof rule from Section 4
with P = P2 provides an alternate way to show that P̂2, a weakened version of P2, holds
in FT. (See Table 4 for the definition of P̂2.)

To further evaluate the ASW specifications, we checked additional properties, e.g.,
the property DUR(mcStatus = standby ∧ mAltimeterFail) ≤ FaultDur, whose
invariance guarantees that the ASW never remains in mcStatus = standby too long.
Failure to prove this property led to the discovery (via simulation) that the ASW could
remain in mode standby forever—not a desired behavior. Although our specification
does not fix this problem, the example shows how checking properties is a useful tech-
nique for discovering errors in specifications.

6 Related Work

Our model fits the formal notion of masking fault-tolerance of [18], but rather than
expressing recovery as a liveness property, we use bounded liveness, which is more
practical. Other compositional approaches to fault-tolerance describe the design of fault-
tolerant detectors and correctors [4] and the automatic generation of fault-tolerant sys-
tems [18, 3]. Our notion of fault-tolerant extension is most closely related to the notion
of retrenchment formulated by Banach et al. [6] and the application of retrenchment
to fault-tolerant systems [5]. General retrenchment is a means of formally expressing
normal and exceptional behavior as a formula of the form A⇒ B ∨ C, where A⇒ B
is true for the normal cases, and A ⇒ C is true for the exceptional cases. Our concept
of the relation of fault-tolerant behavior to normal behavior can also be described in this
form: ρFT(s1, s2)⇒ (O(s1, s2)∧ρID(π(s1), π(s2)) ∨ ¬O(s1, s2)∧γ(s1, s2)), where
γ is derived from the transitions of classes 2–5. The novelty of our approach is recogni-
tion that this disjunction may be expressed equivalently as the conjunction of two impli-
cations, ρFT(s1, s2)∧O(s1, s2)⇒ ρID(π(s1), π(s2)) and ρFT(s1, s2)∧¬O(s1, s2)⇒
γ(s1, s2), thus providing the basis for our theory of partial refinement and the develop-
ment of compositional proof rules.

In [19], Liu and Joseph describe classical refinement of fault-tolerant systems as well
as refinement of timing and scheduling requirements. Classical refinement is well-suited
to implementation of “transparent masking fault-tolerance,” often using redundancy,
and contrasts with eventual masking fault-tolerance, which tolerates weaker invariant
properties when the system is faulty (i.e., has degraded performance), and thus requires
a different approach such as partial refinement.

Our extension of “normal” behavior with added fault-tolerant behavior may be
viewed as a transformation of the normal system. A number of researchers, e.g. [19,10],
apply the transformational approach to the development of fault-tolerant systems. This
approach is also found in Katz’ formal treatment of aspect-oriented programming [16].
In addition, Katz describes how various aspects affect temporal logic properties of a
system and defines a “weakly invasive” aspect as one implemented as code which al-
ways returns to some state of the underlying system. The relationship of a “weakly
invasive” aspect to the underlying system is analogous to the relationship of F to N in
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Figure 1 when there are no exceptional target states and every entry state maps under π
to a reachable state in ID. In this case, an analog of our Theorem 1 would hold for the
augmented system.

7 Conclusions

This paper has presented a new method, based on Parnas’ Four Variable Model, for
specifying and verifying the required behavior of a fault-tolerant system; provided a
theory of partial refinement and fault-tolerant extension, and a set of compositional
proof rules, as a foundation for the method; and demonstrated how the SCR language
and tools can be used to support the new method as a structured alternative to the ad hoc
construction and monolithic verification of fault-tolerant systems. Like Banach’s theory
of retrenchment, our theory of partial refinement and fault-tolerant extension applies not
only to fault-tolerant systems, but more generally to all systems with both normal and
exceptional behavior.

One major benefit of the compositional approach presented here is that it separates
the task of specifying the normal system behavior from the task of specifying the fault-
tolerant behavior, thus simplifying the specification of such systems and making their
specifications both easier to understand and easier to change. The theory in Section 4
provides the basis for formulating additional compositional proof rules and vulnera-
bility analyses, both topics for future research. We also plan to explore the utility of
our approach for fault-tolerance techniques other than masking. For example, omitting
recovery results in a method which applies to fail-safe fault-tolerance.

Formal proofs of state and transition invariants capturing desired system behavior,
together with properties derived from partial refinement and verified using our composi-
tional proof rules, should lead to high confidence that the specification of a given fault-
tolerant system is correct. Our new approach is supported by the SCR toolset, where
increasing confidence of correctness is supported by simulation, model-checking, and
proofs of invariants. In future research, we plan to explore the automatic construction
of efficient source code from the FT specification using the SCR code generator [22]
and other code synthesis techniques.
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Abstract. Today we see an increasing demand for flash memory because
it has certain advantages like resistance against kinetic shock. However,
reliable data storage also requires a specialized file system knowing and
handling the limitations of flash memory. This paper develops a formal,
abstract model for the UBIFS flash file system, which has recently been
included in the Linux kernel. We develop formal specifications for the
core components of the file system: the inode-based file store, the flash
index, its cached copy in the RAM and the journal to save the differences.
Based on these data structures we give an abstract specification of the
interface operations of UBIFS and prove some of the most important
properties using the interactive verification system KIV.

1 Introduction

Flash memory has become popular in recent years as a robust medium to store
data. Its main advantage compared to traditional hard disks is that it has no
moving parts and is therefore much less susceptible to mechanical shocks or
vibration. Therefore it is popular in digital audio players, digital cameras and
mobile phones.

Flash memory is also getting more and more important in embedded systems
(e.g. automotive [28]) where space restrictions rule out magnetic drives, as well
as in mass storage systems (solid state disk storage systems like the RamSan-
5000 from Texas Memory Systems) since it has shorter access times than hard
disks.

Flash memory has different characteristics when compared to a traditional
hard disk. These are explained in Section 2. In brief, flash memory cannot be
overwritten, but only erased in blocks and erasing should be done evenly (“wear
leveling”). These properties imply that standard file systems cannot be used
with flash memory directly.

Two solutions are possible: either a flash translation layer is implemented
(typically in hardware), translating standard file system operations into flash
operations. This is the standard solution used e.g. in USB flash drives. It has
the advantage that any file system can be used on top (e.g. NTFS or ext2). On
the other hand, the characteristics of file systems (e.g. partitioning of the data
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into the content of files, directory trees, or other meta data like journals etc.)
cannot be effectively exploited using this solution.

Therefore a number of flash file systems (abbreviated FFS in the following)
has been developed, that optimize the file system structure to be used with flash
memory. Many of these FFS are proprietary (see [9] for an overview). A very
recent development is UBIFS [14], which was added to the Linux kernel last
year.

Increased use of flash memory in safety-critical applications has led Joshi and
Holzmann [16] from the NASA Jet Propulsion Laboratory in 2007 to propose the
verification of a FFS as a new challenge in Hoare’s verification Grand Challenge
[13]. Their goal was a verified FFS for use in future missions. NASA already uses
flash memory in spacecraft, e.g. on the Mars Exploration Rovers. This already
had nearly disastrous consequences as the Mars Rover Spirit was almost lost due
to an anomaly in the software access to the flash store [22].

A roadmap to solving the challenge has been published by Freitas, Wood-
cock and Butterfield [8]. This paper presents our first steps towards solving this
challenge.

There has been other work on the formal specification of file systems. First,
some papers exist which start top-down by specifying directory trees and POSIX
like file operations, e.g. the specifications of [20] of a UNIX-like file system, or
our own specification of a mandatory security model for file systems on smart
cards [26]. More recently and targeted towards the Grand Challenge, Damchoom,
Butler and Abrial [5] have given a high-level model of directory trees and some
refinements. An abstract specification of POSIX is also given in [7] (some results
are also in [21]). Butterfield and Woodcock [4] have started bottom-up with
a formal specification of the ONFI standard of flash memory itself. The most
elaborate work we are aware of is the one by Kang and Jackson [17] using
Alloy. Its relation to our work will be discussed in Section 7. Our approach is
middle-out, since our main goal was to understand the critical requirements of
an efficient, real implementation. Therefore we have analyzed the code of UBIFS
(ca. 35.000 loc), and developed an abstract, formal model from it. Although the
resulting model is still very abstract and leaves out a lot of relevant details, it
already covers some of the important aspects of any FFS implementation. These
are:

1. Updates on flash are out-of-place because overwriting is impossible.
2. Like most traditional file systems the FFS is structured as a graph of inodes.
3. For efficiency, the main index data structure is cached in RAM.
4. Due to e.g. a system crash the RAM index can always get lost. The FFS

stores a journal to recover from such a crash with a replay operation.
5. Care has been taken that the elementary assignments in the file system

operations will map to atomic updates in the final implementation, to ensure
that all intermediate states will be recoverable.

The paper is organized as follows. Section 2 gives an overview over the data struc-
tures and how the implementation works. Section 3 gives details of the structure
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of inodes, and how they represent directory trees. The formal specifications we
have set up in our interactive theorem prover KIV are explained. Section 4 ex-
plains how the journal works. Section 5 lists the specified file system operations
and gives the code specifying the ‘create file’ operation as an example. Section
6 lists the properties we have verified with KIV and discusses the effort needed.
Full specifications and proofs are available from the Web [18].

Section 7 presents a number of topics which still require future work to bring
our abstract model close to a verified implementation. In particular, our model,
just as UBIFS, does not consider wear leveling, but relegates it to a separate,
lower level, called UBI (“unsorted block images”). Finally, Section 8 concludes.

2 Flash Memory and UBIFS

Flash memory has certain special characteristics that require a treatment that
is substantially different from magnetic storage. The crucial difference is that
in-place update of data, i.e. overwriting stored data, is not possible. To write
new data on a currently used part of the flash memory, that part must first
be erased, i.e. set back to an unwritten state. Flash media are organized in
so-called erase blocks, which are the smallest data units that can be erased (typ-
ically 64 KB). Simulating in-place updates by reading a complete erase block,
resetting it and writing back the modified erase block is not viable for two rea-
sons. First, it is about 100 times slower than writing the modified data to a
free erase block and second, it wears out the media. This is due to the sec-
ond great difference between magnetic and flash storage. Flash memory gets
destroyed by erasing. Depending on the used flash technology, the flash stor-
age is destroyed after 10.000 to 2.000.000 erase cycles. This requires special FFS
treatment, because the FFS must deal with the problem of deterioration of parts
of the media that are erased often and with the fact that in-place changes of
already written data are not possible. Therefore data is updated out-of-place
instead, i.e. the new version of the data is written somewhere else on the media.
This entails the need for garbage collection because sooner or later the differ-
ent erase blocks all contain parts with valid data and parts with obsolete data.
Garbage collection must be able to efficiently decide if an entry in an erase block
still belongs to a valid file or directory. This is done by storing additional meta-
data with the actual data. The combination of metadata and data is called a
node.

A node records which file (or to be precise which inode) the node belongs to,
what kind of data is stored in the node and the data themselves. The structure
of the nodes in UBIFS and our resulting specification are described in Sect. 3. In
our model, the nodes that are stored on the flash are contained in the flash store.
The flash store is modeled as a finite mapping of addresses to nodes. Figure 1
shows the 4 central data structures of UBIFS (one of them the flash store) and
explains what impacts the different operations have on them. The flash store
is represented by the third column in Fig. 1, initially containing some data FS
and some empty areas (∅). In step 1�������� of the figure, a regular operation (OP) is
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old
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RAM INDEX FLASH INDEX FLASH−STORE LOG
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old

COMMIT
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GARBAGE COLLECTION

FI + new FI newFS’ new

REPLAY after crash

FI FI FS

FI + new FI newFS’ new

FI + new FI + new FS’ new

FI + new FI + new FS’ new

Fig. 1. Impact of UBIFS operations on the data structures

performed, e.g. overwriting data in a file. The second line shows the new state:
The flash store has some new data (new ), some unchanged parts (FS ′) and some
obsolete data (old) due to the out-of-place updates. These obsolete data can be
collected by garbage collection as shown in step 4��������.

A problem that is crucial for the efficiency of the FFS is indexing. Without
an index that allows searching for a specific node efficiently, the whole media
would have to be scanned. Therefore UBIFS uses an index that maps so-called
keys (which are, roughly speaking, unique identifiers of nodes) to the address
of the node on the flash media. The index in UBIFS is organized as a B+-tree
and stored in memory (later on called RAM index ). For efficiency reasons, the
index should be stored on flash as well, because rebuilding the index by scanning
the complete media (as JFFS2 [29] does) takes up a lot of time at mount time.
Therefore UBIFS also stores the index on flash (later on flash index ). The RAM
index and the flash index are shown as the two leftmost columns in Fig. 1. Having
an index on flash poses some difficulties as

– the index must be updated out-of-place on the flash media (this is done by
using a wandering tree).

– the index has to be changed every time old data is changed or new data is
written (because the new data must be added to the index and the position
of the modified data changes due to out-of-place updates).

To limit the number of changes to the flash index, UBIFS does not update the
flash index immediately, but uses a journal (also called log) of recent changes
instead. Section 4 gives details on our model of the UBIFS journal. The log can
be seen in the rightmost column of Fig. 1. Its use is illustrated in the second line
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of Fig. 1: The log contains references to the new data written to the flash store
in step 1�������� and the RAM index was updated accordingly (FI + new) while the
flash index remained unchanged.

At certain points in time, the flash index is synchronized with the RAM
index by the commit operation. This can be seen as step 3�������� in Fig. 1: The flash
index is replaced with the current RAM index and the log is emptied1. One
problem remains: What happens when the system crashes (e.g. power-failure)
before the RAM index is written to flash? In this case, the flash index is out-
of-date, compared to the data in the flash store. This problem is solved by the
journal, because it records all changes to the data on flash that have not yet
been added to the flash index. A special operation, replay, is done after a system
crash to recover an up-to-date RAM index (step 2�������� in Fig. 1): First, the flash
index is read as preliminary RAM index. Then all changes that were recorded in
the log are applied to this preliminary RAM index. After the replay, the correct
RAM index has been rebuilt.

3 Data Layout for UBIFS

The data layout used in UBIFS follows the file system representation used in the
Linux virtual file system switch (VFS). The Linux kernel implements POSIX file
system functions [15] as calls to VFS functions that provide a common interface
for all implemented file systems.

Inodes (index nodes) are the primary data structure used in VFS2. They
represent objects in the file system (such as files, directories, symlinks or devices)
and are identified by an inode number. Inodes store information about objects,
such as size, link count, modification date or permissions, but do not contain the
name of the object. Mapping between names and objects is done using dentries
(directory entries) which say that a certain object can be found in a certain
directory under a certain name3. This separation is required as a single inode
can be referred to in multiple directories (used for hard links). The directory tree
can be viewed as an edge-labeled, directed graph consisting of inodes as vertices
and dentries as edges. Furthermore negative dentries are used in memory to
express that no object with the given name exists in a directory. These are used
as a response when looking for nonexistent files, or as parameters for the file
name when creating new files or directories. File contents are stored as fixed-
size data blocks, called pages, belonging to file inodes. When opening a file or
directory to access its contents, a file data structure (called file handle in user
space) is used in memory to manage the inode number and the current position
within the inode.

1 This can be performed atomically, because all changes are stored out-of-place and
the effective replace is executed by writing one block containing all the pointers to
the data structures.

2 See struct inode in include/linux/fs.h, [19]
3 See struct dentry in include/linux/dcache.h, [19]
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We thus define inodes, dentries and file handles as free data types generated
by constructors mkinode, mkdentry, negdentry and mkfile.

inode = mkinode (. .ino : nat; . .directory : bool; . .nlink : nat; . .size : nat)
dentry = mkdentry (. .name : string; . .ino : nat) with . .dentry?

| negdentry (. .name : string) with . .negdentry?
file = mkfile (. .ino : nat; . .pos : nat)

This definition includes selector functions .ino, .directory, .nlink, .size,
.name and .pos for accessing the constructor arguments, as well as type pred-
icates .dentry? and .negdentry? to decide between the two types of dentries
(the dot before predicates and functions indicates postfix notation).

UBIFS stores these data structures (except for file handles and negative den-
tries which are never stored) as nodes as described in the previous section. These
nodes contain meta data (called key) to uniquely identify the corresponding
node, and data containing the remaining information. For inodes, the inode
number is sufficient as a key, whereas dentries require the parent inode number
and the file name. Pages are referred to by the inode number and the position
within the file.

Figure 2 shows the representation of a sample directory tree as UBIFS nodes.
It contains two files, test.txt and empty.txt and a directory temp containing
a hard link to test.txt named test2.txt.

Fig. 2. Directory tree representation in UBIFS

Nodes for inodes in this abstraction contain extra information about size and
link count. For files, the size gives the file size, measured in number of pages, and
links gives the number of dentries (hard links) referencing the inode. Directories
use the number of contained objects as size, and the number of links is calculated
as (2 + number of subdirectories)4.
4 Directories may not appear as hard links, so this number is the result of counting

the one allowed link, the “virtual” hard link “.” of the directory to itself and the
“..” link to the parent in each subdirectory.
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For nodes and keys, we use the following specification5:

node = inodenode (. .key : key; . .directory : bool;
. .nlink : nat; . .size : nat) with . .inode?

| dentrynode (. .key : key; . .name : string;
. .ino : nat) with . .dentry?

| datanode (. .key : key; . .data : page) with . .data?
key = inodekey (. .ino : nat) with . .inode?

| datakey (. .ino : nat; . .part : nat) with . .data?
| dentrykey (. .ino : nat; . .name : string) with . .dentry?

Information about inode 1 can be found in a node with inode key 1. To list all
objects contained in this directory, all (valid) nodes with a dentry key containing
1 as a first argument have to be enumerated. The same goes for reading contents
of a file, by scanning for corresponding data keys (their first parameter denotes
the inode number, the second states the position inside the file).

File system data cannot directly be indexed and accessed using flash mem-
ory locations, as this would require overwriting flash memory on data change.
Instead, data is referred to by its unique key. Finding matching nodes for a
given key by sequentially scanning the entire flash memory however is very slow.
UBIFS holds an index datastructure mapping keys to flash memory addresses
in the RAM (called RAM index ). It allows to quickly access nodes with a given
key, or to enumerate all existing dentry or data keys for a given inode. When
writing a new version of an existing node, the new copy is written to the flash
store, and the address for its key is updated in the RAM index.

Formally, both the flash store and the two indexes (in RAM and on flash) are
an instance of the abstract data type store(elem,data).

flashstore = store(address,node) index = store(key,address)

A store is a partial function with a finite domain of elements with type elem and
codomain data. In a set-theory based language such as Z [27] stores would be
represented as a relation (set of pairs) for the function graph, and the update
operation would be written as st⊕{k �→ d}. In KIV stores are directly specified
as an abstract, non-free data type generated from the empty store and an update
operation st[k,d], which allocates k if necessary, and overwrites the value at k
with d. This avoids the need for a left-uniqueness constraint as an invariant.

4 The UBIFS Journal

This section describes how the journal operates and how it is linked to flash
and RAM index. The correlation between flash store, journal and the indices is
shown in Fig. 3.
5 See struct ubifs data node, struct ubifs ino node and struct

ubifs data node in fs/ubifs/ubifs-media.h for nodes, and struct ubifs key in
fs/ubifs/ubifs.h as well as ino key init, dent key init and data key init in
fs/ubifs/key.h, [19].
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Fig. 3. RAM index, flash index, flash store and journal

To create a new node, this is written to an unused address in the flash store
and simultaneously6 added to the log. Afterwards, its address is stored in the
RAM index for further access to its key. This way, the data is safe, even if the
RAM index gets lost without a commit e. g. caused by a power failure, because
the correct state of the RAM index can be restored by information from flash
index, flash store and log.

This method allows for creating new and overwriting existing nodes. However,
deleting nodes is not possible because it would require pure index operations
(delete a key from the index). Therefore, UBIFS uses specialized delete nodes
which are written to the flash store, but cause deletion from the RAM index
when replayed (marked as DEL7 in Fig. 3).

When performing a replay in the situation of Fig. 3, the contents of the flash
index are copied to the RAM index. When replaying address 6, the 6 is stored
in the RAM index as new address for key KEY5. The same goes for address 7,
while 8 adds KEY3 to the index. Address 9 contains a deletion entry that causes
KEY6 to be deleted from the index.

The figure also shows the need for garbage collection: addresses 1, 3 and 5
store data which are no longer in the index and therefore can be reused.

5 File System Operations

For applying changes to the contents of the file system, the Linux VFS pro-
vides file system operations. These can be grouped into inode operations, file
6 This is possible because UBIFS does not use an explicit list for the log, but treats

all nodes in certain erase blocks as log entries.
7 UBIFS uses inode nodes with link count 0 or dentry nodes with destination inode

number 0 to delete the corresponding keys.
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operations, and address space operations. Inode operations allow creating, re-
naming or deleting inodes, whereas file operations allow for working with inode
contents (data stored in files or directory entries). Address space operations in-
clude all operations that work with pages, and are used in the Linux kernel to
implement file operations accessing file contents. They are included here to allow
for using abstract pages when handling file contents.

We will start with an inode operation called create8, used for creating new
files. It expects the inode number of the containing directory (P INO), and a
negative dentry specifying the file name (DENT) as input. DENT is overwritten
with the newly created dentry.

create#(P INO; DENT, FS, RI, LOG) {
choose INO with ¬ inodekey(INO) ∈ RI ∧ INO > 0 in {

let INODE = getinode(P INO, FS, RI) in
choose ADR1, ADR2, ADR3 with new(ADR1, ADR2, ADR3, FS) in {

FS := FS
[ADR1, inodenode(inodekey(INO), false, 1, 0)]
[ADR2, dentrynode(dentrykey(P INO, DENT.name), DENT.name, INO)]
[ADR3, inodenode(inodekey(INODE.ino),

INODE.directory, INODE.nlink, INODE.size + 1)],
LOG := LOG + ADR1 + ADR2 + ADR3;
RI := RI[inodekey(INO), ADR1];
RI := RI[dentrykey(P INO, DENT.name), ADR2];
RI := RI[inodekey(INODE.ino), ADR3] };

DENT := mkdentry(DENT.name, INO) }};

The notation used to describe the rule is similar to that of ASM rules [11],
[3], but it should be noted that only parallel assignment, denoted with a comma,
is executed atomically, while sequential composition (with semicolon) is not.
choose binds new local variables (here e.g. INO) to values that satisfy the with
clause.

The operation writes a new inode node for the created file (link count 1, size
0) and a dentry node for a dentry pointing from the parent directory P INO to
the new inode, named as given in DENT. It increases the parent directory size by
1 to reflect the increased number of objects contained in the directory.

To correctly perform these changes, it first selects an unused inode number and
three new addresses (predicate new) from the flash store, and loads the inode
given by P INO. It then atomically writes three new nodes into new locations
of the flash store FS, simultaneously adding the locations to the journal LOG.
Afterwards it updates the RAM index RI with the new addresses, and changes
the reference parameter DENT to return the newly created dentry.

The following inode operations also change the directory structure. Their in-
formal description leaves out standard parameters FS, RI and LOG. Full details
can be found on the Web [18].
unlink(P INO, DENT) Removes the file referred to by DENT from the direc-
tory P INO. If the dentry was the last link to the referred file, the inode and file
8 See ubifs create in fs/ubifs/dir.c, [19].
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contents are also deleted, otherwise only the dentry is removed. DENT is returned
as a negative dentry.
link(OLD DENT, NEW INO, NEW DENT) Creates a hard link to the
file referred to by OLD DENT, placed in the directory NEW INO and named as given
by the negative dentry NEW DENT. Returns the newly created dentry in NEW DENT.
mkdir(P INO, DENT) Creates a new directory in P INO, with the name given
in the negative dentry DENT. The newly created dentry is returned in DENT.
rmdir(P INO, DENT) Removes the (empty) directory referred to by the den-
try DENT located in the parent directory P INO. DENT is changed into a negative
dentry.
rename(OLD INO, OLD DENT, NEW INO, NEW DENT) Moves the
object (file or directory) referred to by OLD DENT from directory OLD INO to di-
rectory NEW INO, changing its name to NEW DENT.name. If the object referred to
by NEW DENT exists, it has to be of the same type (file or directory) as OLD DENT,
and it is overwritten (i. e. deleted).
lookup(P INO, DENT) Checks for the existence of a object named
DENT.name in the directory P INO. If it exists, the dentry is returned in DENT,
otherwise a negative dentry is returned.

For inode contents, the following file and address space operations exist:
open(INO, FILE) Opens the file or directory given in INO, and returns a new
file handle in FILE.
release(INO, FILE) Called when the last process closes an inode (file or di-
rectory), to clean up temporary data. Unused in the given specification.
readpage(FILE, PAGENO, PAGE) Reads the page with number PAGENO
from the file referred to in FILE, and returns it in PAGE.
writepage(FILE, PAGENO, PAGE) Writes the data from PAGE as new page
numbered PAGENO to file FILE.
truncate(FILE, PAGENO) Sets the file size of the file referred to in FILE to
PAGENO, deleting all pages beyond.
readdir(FILE, DENT) Returns the next object of the directory referred to in
FILE, or a negative dentry if no further file or directory exists. The (positive or
negative) dentry is returned in DENT, and the position stored in FILE is increased
to return the next object at the next call.

Finally, our model defines garbage collection, commit and replay as described
in Sect. 2.

6 Verification

Our verification efforts have focused on three properties, described in the follow-
ing paragraphs. The last paragraph gives a summary of the effort involved.
Functional Correctness of the Operations. We proved that all specified
operations terminate and fulfill postconditions about their results. As most op-
erations and all supporting functions are non-recursive and only use loops over
the elements of finite lists, termination is quite obvious, and proving does not
pose great complexity – even regardless whether any preconditions hold or not.
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Only garbage collection has a precondition for termination, as it is specified as
a non-deterministic choice of a new, isomorphic state, which only terminates if
such a state exists.

For the other inode and file operations, we give and prove total correctness
assertions that describe their behavior. We write wp(α,ϕ) to denote the weakest
precondition of program α with respect to a postcondition ϕ9. Proofs in KIV
are done using sequent calculus and symbolic execution of programs, see [23] for
details.

For the create operation described in the previous section we demand10:

valid-dir-ino(P) ∧ valid-negdentry(P, DENT)
→ wp(create(P; DENT), valid-dentry(P, DENT) ∧ valid-file-ino(DENT.ino))

When called with a valid directory inode (i. e. the inode exists, is of type directory
and has a link count of 2 or higher) and a valid negative dentry (i. e. no dentry
with the given name exists in the given directory) as parameters, the operation
yields a dentry (ideally with the same name, but we do not demand that here)
that exists in the given directory and references a valid file (i. e. the inode referred
to exists, is a file and has a link count of at least 1).

Giving postconditions for readpage or writepage individually turned out to be
rather hard when trying to remain implementation independent, so we decided to
use the combined postcondition that reading data after writing returns exactly
the data written:

wp(writepage(file, pageno, pg) ; readpage(file, pageno; pg2), pg = pg2)

Furthermore, file contents of a file remain unchanged when writing to another
file or to another position inside the file:

valid-file(f1)∧valid-file(f2)∧(f1.ino�=f2.ino∨n1�=n2)∧ store-cons(fs,ri,fi,log)
→wp(readpage#(f1,n1;p1);writepage#(f2,n2,p);readpage#(f1,n1;p2), p1=p2)

The pre- and postconditions for the other operations as well as their proofs can
be found on the Web [18].

Consistency of the File System. Another basic requirement is that the file
system is always consistent. We formally define a predicate fs-cons(fs,ri) for the
file store fs and the RAM index ri (flash index and log are irrelevant as they are
only required for replay), and prove that it is an invariant of all operations.

For each key stored in the RAM index, fs-cons requires that its address must
be allocated in the flash store, and that the key is stored as that node’s key.
Further requirements depend on the type of key.

Dentry keys must belong to a valid directory and reference a valid inode. The
name stored in the key must be equal to the copy of the name stored in the node.
Data keys have to belong to a valid file inode, and the requirements for inode
keys are differentiated between files and directories. For files, the link count has
to be equal to the number of dentries referencing the file, and for each data key
9 In KIV wp(α,ϕ) is written as 〈|α|〉ϕ.

10 We suppress standard parameters FS, RI and LOG in all predicates and procedure
calls for better readability.
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belonging to the file, the page number (part) has to be less than the file’s size.
Directories have to have 2 + number of subdirectories as their link count, and
the number of contained dentries as size. Furthermore, no directory may have
more than 1 (stored) dentry referencing it11.

The formal proof obligation for invariance is

fs-cons(fs, ri) → wp(op, fs-cons(fs, ri))

where op stands for any of the operations defined in the previous section. As this
property describes correlations between the different types of keys, it cannot be
proven step by step for each individual update of flash store and RAM index;
the property is not restored until all steps of an operation are completed. So the
proofs have to take the operation as a whole, complicating the definition and
application of reusable lemmata.

Correctness of the Replay Process. The replay operation should be able
to restore a consistent state after a crash, losing as little data as possible. We
therefore define a predicate log-cons claiming that a replay in the current situa-
tion will correctly restore the RAM index to a state isomorphic to the one with
current RAM index contents. The formal definition is

log-cons(fs, ri, fi, log) ↔ wp(replay(fs, fi, log; ri2), (fs, ri) ∼= (fs, ri2))

If this predicate is true, we will not lose data at a crash (except maybe for the
changes of the current operation). A reliable file system should always preserve
this predicate, even in the middle of an operation. For verification we have taken
the weaker approach to prove that this predicate is invariant

log-cons(fs,ri,fi,log) ∧ store-cons(fs,ri,log) ∧ datanode-cons(fs,ri)
→ wp(op, log-cons(fs,ri,fi,log) ∧ store-cons(fs,ri,log) ∧ datanode-cons(fs,ri))

Note that log-cons used in the pre- and postcondition is defined using a wp-
formula itself, so the formula is not a total correctness formula in the usual sense,
where pre- and postcondition are defined using predicate logic only. Nevertheless
KIV’s logic can prove this formula using symbolic execution for formulas in
preconditions too.

The invariance above ensures the file system robust wrt. crashes between op-
erations. Still, the implementation of the operations is designed in a way such
that a similar property also holds anytime during the execution of operations.
As one of the next steps we plan to prove this fact using KIV’s temporal logic
[1], [2] which is able to express and prove the full property12.

Proving the invariance of log-cons required two auxiliary invariants, store-cons
and datanode-cons. The predicate store-cons requires that each address referred
to in the RAM index or log has to be allocated in the flash store, and datanode-
cons demands that each data key belongs to a valid file inode and describes a
page within the file length. The former is needed to avoid accessing addresses in
11 The root directory has no link, all other directories have one, as further hard links

to directories are not allowed.
12 An alternative would be to encode the operations as a sequence of small steps using

a program counter, as is often done for model checking. Then the property would
have to be proved to be invariant in every small step.
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the flash store that are not yet allocated, whereas the latter is needed as replay-
ing some operations causes data keys beyond the file size to be deleted.

Statistics about our Specification and Verification. Developing and ver-
ifying our specification mainly consisted of four steps. We first collected and
analyzed material about UBIFS, mainly from the UBIFS whitepaper [14] and
the UBIFS source code in the Linux kernel. During four weeks, we developed a
basic understanding of the mechanisms and found a suitable abstraction level for
the specification. In the following two weeks, the required data structures and
operations were specified, as well as the invariants we wanted to prove. Proving
the correctness of the replay operation (log-cons) took another two weeks, during
which we corrected minor errors in the specification and found the additional
preconditions needed for log consistency. Our last steps were to prove the total
correctness assertions and the file system consistency. This took about as long
as the log consistency, though the resulting proofs for fs-cons were a lot larger
than the ones for log-cons – especially for the rename operation which contains
many case distinctions (file vs. directory, rename vs. overwrite).

7 Outlook

The work of this paper defines a first abstract model of the essential data struc-
tures needed in a FFS. We intend to use it as an intermediate layer in the
development of a sequence of refinements, which starts with an abstract POSIX
specification such as the ones of [5], [7] and ends with an implementation based
on a specification of flash memory, like the one of [4]. There will be many ob-
stacles deriving such refinements, and we discuss these problems briefly in the
following paragraphs on future work.

A rather different approach has been taken by Kang and Jackson [17]. This work
builds a vertical prototype by focussing on the read/write operations for files, ig-
noring issues such as directory structure, indexes and journals (their file system
roughly corresponds to the file store component of our model). They define an ab-
stract level, where reading/writing a file is atomic. These are refined to reading
and writing pages, which is done on a model that is closer to implementation than
ours, since it already considers a mapping from logical to physical blocks. To check
properties of the model, Alloy (and the Kodkod engine) is used to check that fi-
nite approximations of the model do not have counter examples. This approach is
weaker than verification, but gives excellent results for debugging specifications.
Our current work is on attaching Kodkod as a pre-checker to validate KIV the-
orems before proof attempts [6], similar to the proposal in [7]. The Alloy model
also includes an interesting analysis of a high-level recovery mechanism for failed
write attempts. UBIFS delegates recovery mechanism mainly to UBI (see below).
Two high-level mechanisms for recovery exist in UBIFS: one for log entries, which
may not have been completely written; another for the root node of the B+-tree of
the file index, see [14]. Both are very different from the one analyzed in [17]. Since
our model is still too abstract (no B+-trees and no concrete layout of the journal
as data in erase blocks), these will only show up in refinements.
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From POSIX to our UBIFS Model. Our abstract model is based on the
interface that UBIFS offers to the general Linux virtual file system switch (VFS).
It assumes that our operations are protected by locks and will therefore not be
executed concurrently.13 However, above our specification this is no longer true.
As an example, writing a full file can no longer be assumed to be atomic: it
will consist of several pages being written (it is possible that several processes
concurrently read and write a file!). In reality, these page writes will even be
cached. Even if a write operation has finished, the data may not yet be on the
flash (only calling the Linux flush command ensures that caches are emptied). We
therefore expect the theoretical question of how concurrency should be handled
to dominate the question of a correct refinement.

As a first step, it is of course possible to ignore the concurrency problem (as
has been done in [17]). Then implementing POSIX operations correctly using
our abstract interface should be possible using standard data refinement. Of
course, for such a refinement, some additional data such as modification dates
and access rights would have to be added.

From our Model to Flash Memory. Our model has abstracted from many
details of a real flash file system. First, and most important we have abstracted
from wear leveling. Since wear leveling is not dealt within UBIFS, but in a sep-
arate UBI layer that maps logical to physical erase blocks, this seemed natural.
We expect the correctness of this layer not to pose too difficult theoretical ques-
tions. The challenging question for this refinement is whether it is possible to
prove something about the quality of wear leveling. This looks possible for UBI,
since its wear leveling strategy is based on counting erase cycles.

Second, we have abstracted index structures, which are B+-trees in reality.
The lower level representation allows two optimizations: first, only those parts
of the flash index which are currently needed, must be loaded into RAM. Sec-
ond, the commit operation does not simply copy the full B+-tree from RAM
to the flash memory as in our simple specification. Instead it copies only those
parts that have changed since the last commit. This means that the flash index
becomes a “wandering tree”. Parts of it move with every commit.

Third, all three data structures, the flash store, the flash index and the journal
will be represented uniformly by pieces of memory in logical erase blocks (LEBs).
The challenging problem here is to verify garbage collection, which we only
specified to give some isomorphic file system. This algorithm is rather complex.
It uses an auxiliary data structure to find out efficiently how much room is
left in each LEB. This data structure, the LPT (“LEB property tree”) is also
implemented as a wandering tree.

Finally, there are several more issues we have ignored: on the fly compres-
sion (using zlib or LZO), the handling of orphan nodes, which are needed to
handle still open files that have been deleted, and hashing of index keys are
three examples.

13 This is mostly true in the implementation, with one notable exception: the commit
operation may be executed in parallel with regular operations.
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In summary, we think that the development of a verified flash file system will
need a lot more effort than our previous contribution to the Grand Challenge
with the Mondex case study ([12], [25], [24], [10]).

8 Conclusion

We have given an abstract specification of a flash file system which was derived
by abstracting as much as possible from the details of the UBIFS system. We
have specified the four central data structures: the file store which stores node-
structured data, the flash index, its cached copy in the RAM and the journal.
Based on these, we have specified the most relevant interface operations.

We have verified that the operations keep the file system in a consistent state,
and that they satisfy some total correctness assertions. We have also verified
that the journal is used correctly and enables recovery at every time.

Our model should be of general interest for the development of a correct flash
file system, since variants of the data structures and operations we describe
should be relevant for every realistic, efficient implementation.

Nevertheless the model given in this paper is only our first step towards the
development of a verified flash file system implementation. We plan to use the
model as an intermediate layer of a series of refinements, which starts with
an abstract model of POSIX-like operations and leads down to to an efficient
implementation like UBIFS based on a specification of flash memory.
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2. Bäumler, S., Nafz, F., Balser, M., Reif, W.: Compositional proofs with symbolic
execution. In: Beckert, B., Klein, G. (eds.) Proceedings of the 5th International
Verification Workshop. Ceur Workshop Proceedings, vol. 372 (2008)

3. Börger, E., Stärk, R.F.: Abstract State Machines—A Method for High-Level Sys-
tem Design and Analysis. Springer, Heidelberg (2003)

4. Butterfield, A., Woodcock, J.: Formalising flash memory: First steps. In: Proc. of
the 12th IEEE Int. Conf. on Engineering Complex Computer Systems (ICECCS),
Washington DC, USA, pp. 251–260. IEEE Comp. Soc., Los Alamitos (2007)

5. Damchoom, K., Butler, M., Abrial, J.-R.: Modelling and proof of a tree-structured
file system in Event-B and Rodin. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM
2008. LNCS, vol. 5256, pp. 25–44. Springer, Heidelberg (2008)

6. Dunets, A., Schellhorn, G., Reif, W.: Automating Algebraic Specifications of
Non-freely Generated Data Types. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee,
I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 141–155. Springer,
Heidelberg (2008)



Abstract Specification of the UBIFS File System for Flash Memory 205

7. Ferreira, M.A., Silva, S.S., Oliveira, J.N.: Verifying Intel flash file system core
specification. In: Modelling and Analysis in VDM: Proceedings of the Fourth
VDM/Overture Workshop. School of Computing Science, Newcastle University
(2008) Technical Report CS-TR-1099

8. Freitas, L., Woodcock, J., Butterfield, A.: Posix and the verification grand chal-
lenge: A roadmap. In: ICECCS 2008: Proc. of the 13th IEEE Int. Conf. on Eng.
of Complex Computer Systems, Washington, DC, USA, pp. 153–162 (2008)

9. Gal, E., Toledo, S.: Algorithms and data structures for flash memory. ACM com-
puting surveys, 138–163 (2005)

10. Grandy, H., Bischof, M., Schellhorn, G., Reif, W., Stenzel, K.: Verification of Mon-
dex Electronic Purses with KIV: From a Security Protocol to Verified Code. In:
Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 165–180.
Springer, Heidelberg (2008)

11. Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Börger, E. (ed.) Specifica-
tion and Validation Methods, pp. 9–36. Oxford Univ. Press, Oxford (1995)

12. Haneberg, D., Schellhorn, G., Grandy, H., Reif, W.: Verification of Mondex Elec-
tronic Purses with KIV: From Transactions to a Security Protocol. Formal Aspects
of Computing 20(1) (January 2008)

13. Hoare, C.A.R.: The verifying compiler: A grand challenge for computing research.
J. ACM 50(1), 63–69 (2003)

14. Hunter, A.: A brief introduction to the design of UBIFS (2008),
http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf

15. The Open Group Base Specifications Issue 6, IEEE Std 1003.1, 2004 Edition (2004),
http://www.unix.org/version3/online.html (login required)

16. Joshi, R., Holzmann, G.J.: A mini challenge: build a verifiable filesystem. Formal
Aspects of Computing 19(2) (June 2007)

17. Kang, E., Jackson, D.: Formal modelling and analysis of a flash filesystem in Alloy.
In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238,
pp. 294–308. Springer, Heidelberg (2008)

18. Web presentation of the Flash File System Case Study in KIV (2009),
http://www.informatik.uni-augsburg.de/swt/projects/flash.html

19. LXR - the Linux cross reference, http://lxr.linux.no/
20. Morgan, C., Sufrin, B.: Specification of the UNIX filing system. In: Specification

case studies, pp. 91–140. Prentice Hall (UK) Ltd., Hertfordshire (1987)
21. Oliveira, J.N.: Extended Static Checking by Calculation Using the Pointfree Trans-

form. In: Bove, A., et al. (eds.) LerNet ALFA Summer School 2008. LNCS,
vol. 5520, pp. 195–251. Springer, Heidelberg (2009)

22. Reeves, G., Neilson, T.: The Mars Rover Spirit FLASH anomaly. In: Aerospace
Conference, pp. 4186–4199. IEEE, Los Alamitos (2005)

23. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications
and interactive proofs with KIV. In: Bibel, W., Schmitt, P. (eds.) Automated
Deduction—A Basis for Applications, ch. 1, vol. II, pp. 13–39. Kluwer Academic
Publishers, Dordrecht (1998)

24. Schellhorn, G., Banach, R.: A concept-driven construction of the mondex protocol
using three refinements. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.)
ABZ 2008. LNCS, vol. 5238, pp. 39–41. Springer, Heidelberg (2008)

http://www.linux-mtd.infradead.org/doc/ubifs_whitepaper.pdf
http://www.unix.org/version3/online.html
http://www.informatik.uni-augsburg.de/swt/projects/flash.html
http://lxr.linux.no/


206 A. Schierl et al.

25. Schellhorn, G., Grandy, H., Haneberg, D., Moebius, N., Reif, W.: A Systematic
Verification Approach for Mondex Electronic Purses using ASMs. In: Glässer, U.,
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Abstract. Automata learning techniques are getting significant impor-
tance for their applications in a wide variety of software engineering
problems, especially in the analysis and testing of complex systems. In
recent studies, a previous learning approach [1] has been extended to
synthesize Mealy machine models which are specifically tailored for I/O
based systems. In this paper, we discuss the inference of Mealy machines
and propose improvements that reduces the worst-time learning com-
plexity of the existing algorithm. The gain over the complexity of the
proposed algorithm has also been confirmed by experimentation on a
large set of finite state machines.

1 Introduction

The field of automata learning has made a significant impact on a wide area of
software engineering problems. For example, the learning techniques have been
used to study the unknown behaviors of the system [2], testing the system [3],
verifying interesting properties [4], building specification and maintaining the ap-
plications [5]. The use of such techniques actually ease the traditional practice
of model driven engineering for the systems that consist of third-party compo-
nents. The fact that these components come from different sources and have
gone through various revisions before they are actually used, the components
usually do not come with the formal and up-to-date specifications. Normally,
the users of the components have to confront with their informal or insufficient
information that hinders the direct applications of formal validation approaches.
The application of automata learning techniques is a solution to synthesize the
behavior models of the components, so that they could be used to analyze, test
and validate the overall system using formal approaches.

Among various learning approaches, a well-known approach which has re-
mained a major focus of the applied research in learning is the classical proce-
dure, called L∗ (aka Angluin’s algorithm) [1]. Under this view, a component is
assumed to be an unknown regular language whose alphabet is known. Then,
the algorithm is applied to infer a Deterministic Finite Automaton (DFA) that
models the unknown language in polynomial time (under certain assumptions).

Recent studies on reactive systems, e.g, telecom services, web-based applica-
tions, data acquisition modules, embedded system controllers etc, advocate the
need of learning other forms of automata. This is due to the fact that complex
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systems characterize their behaviors in terms of input/output (i/o). Typically,
such systems receive inputs from the environment, take decisions on internal
transitions, perform computations and finally produce the corresponding out-
puts to the environment. Arguably, DFA models are not appropriate for model-
ing such systems since they lack the structure of i/o based behavior modeling.
The more natural modeling of such systems is through Mealy machines that
is much more concise compared to DFA models. Moreover, it is observed that
a DFA model normally contains far more states than a Mealy machine if they
model the same problem [6] [7]. Thus, efforts of learning Mealy machines are
beneficial in terms of learning the state space of the problem to cater the com-
plexity. We refer to the previous studies [7][5][6] for a detailed comparison of
DFA and Mealy machine modeling of reactive systems.

In this paper, we discuss the learning of Mealy machines using the settings
from Angluin’s algorithm. There are many works which formally and informally
present the adaptation of Angluin’s algorithm to learn Mealy machines. However,
we propose here some modifications in the adapted algorithm that brings down
the complexity of learning Mealy machines significantly in some contexts.

The paper is organized as follows. Section 2 provides the basics of Angluin’s al-
gorithm informally. Section 3 discusses how Angluin’s algorithm can be adapted
for Mealy machine inference and how the adaptation can further be improved.
Section 4 presents the adapted algorithm to learn Mealy machines, its complex-
ity and its illustration on an example. Section 5 presents our improvements on
the adapted algorithm, its complexity and its illustration on an example. Sec-
tion 6 compares the complexity of the two algorithms on a finite state machine
workbench experimentally. Section 7 concludes the paper.

2 Overview of Angluin’s Algorithm

We refer to the original paper [1] for the complete discussion on learning DFA
using Angluin’s algorithm L∗. Here, we describe the algorithm informally.

The learning algorithm L∗ starts by asking membership queries over the
known alphabet Σ of the language to check whether certain strings from Σ∗

are accepted or rejected by the language. The result of each such query in terms
of ′′1′′ (accepted) or ′′0′′ (rejected) is recorded as an observation in a table.
These queries are asked iteratively until the conditions on the observation table,
i.e., it must be closed and consistent, are satisfied. The algorithm then conjec-
tures a DFA based upon the observations recorded in the table. It then asks an
equivalence query to a so called oracle, that knows the unknown language, to
verify whether the conjecture is equivalent to the target DFA. The oracle vali-
dates the conjecture if it is correct or replies with a counterexample otherwise. A
counterexample is a sequence that distinguishes the conjecture with the target
DFA. The algorithm processes the counterexample in the table and performs
another run of asking membership queries to construct a “better” conjecture.
The algorithm iterates in this fashion until it produces a correct conjecture that
is isomorphic to the target DFA.
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Let |Σ| be the size of the alphabet Σ, n be the total number of states in the
target DFA and m be the length of the longest counterexample provided by the
oracle, then the worst case complexity of Angluin’s algorithm is O(|Σ|mn2).

3 From DFA to Mealy Machine

It is observed that Angluin’s algorithm L∗ can be used to learn Mealy machines
through model transformation techniques. A simple way is to define a mapping
from inputs and outputs of the machine to letters in a DFA’s alphabet Σ. This
can be done either by taking inputs and outputs as letters, i.e., Σ = I ∪O [5] or
by considering couples of inputs and outputs as letters, i.e., Σ = I ×O [8]. But
these methods increase the size of Σ and thus raise complexity problems because
the algorithm is polynomial on these factors. However, there is a straightforward
implication of L∗ on learning Mealy machines by slightly modifying the structure
of the observation table. The idea is to record the behaviors of the system as
output strings in the table instead of recording just “1” and “0”, as in the case
of language inference. Similarly, we can modify the related concepts, such as
making the table closed and consistent and making a conjecture from the table
etc. For processing counterexamples in the table, we can also easily adapt the
corresponding method from L∗. This adaptation of L∗ to learn Mealy machines
has already been discussed, formally [7] [9] [10] [3], and informally [6] [11].

However, our contribution in the inference of Mealy machines is the proposal
of a new method for processing counterexamples that consequently reduces the
complexity of the algorithm. The complexity analysis shows that by using our
method for processing counterexamples, the algorithm for learning Mealy ma-
chines requires less number of queries, compared to the adapted method.

4 Inferring Mealy Machines

Definition 1. A Mealy Machine is a sextuple (Q, I,O, δ, λ, q0), where Q is the
non-empty finite set of states, q0 ∈ Q is the initial state, I is the finite set
of input symbols, O is the finite set of output symbols, δ : Q × I → Q is the
transition function, λ : Q× I → O is the output function.

Definition 1 provides the formal definition of (deterministic) Mealy machines.
When a Mealy machine is in the current (source) state q ∈ Q and receives
i ∈ I, it moves to the target state specified by δ(q, i) and produces an output
given by λ(q, i). The functions δ and λ are extended from symbols to strings in
the standard way. We consider that the Mealy machines are input-enabled, i.e.,
dom(δ) = dom(λ) = Q × I. We denote by suff k (ω), the suffix of a string ω of
length k. Let ω = a · b · · ·x ·y ·z, then suff 3 (ω) = x ·y ·z. An example of a Mealy
machine over the sets I = {a, b} and O = {x, y} is shown in Figure 1.

Now, we detail the learning of Mealy machines using the settings from An-
gluin’s algorithm L∗, that has also been mentioned in the existing works. As for
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Fig. 1. Example of a Mealy Machine

DFA learning, the two main assumptions in learning Mealy machines are i) The
basic input set I is known, and ii) The machine can be reset before each query.

The algorithm asks output queries [3] that are strings from I+ and obtain the
corresponding output strings from the machine. This is similar to the concept of
membership queries in L∗. The difference is that instead of 1 or 0, the machine
replies with the complete output string. Let ω ∈ I+, i.e., an input string of the
query, then the machine replies to the query with λ(q0, ω). The response to each
query is recorded in the observation table. The queries are asked iteratively until
the conditions on the observation table, i.e., it must be closed and consistent, are
satisfied. This follows by making the Mealy machine conjecture from the table.
The algorithm then asks equivalence query to the oracle. If the oracle says “yes”,
i.e., the conjecture is correct, then the algorithm terminates the procedure by
outputting the conjecture. If the oracle replies with a counterexample, then the
algorithm processes the counterexample in the table and refines the conjecture.

The formal description of learning Mealy machines is given in the subsequent
sections. We denote by M = {QM, I, O, δM, λM, q0M} the unknown Mealy
machine model that has a minimum number of states. We assume that the
input/output interfaces of the machines are accessible, i.e., the input interface
from where an input can be sent and the output interface from where an output
can be observed.

4.1 Observation Table

We denote by LM
∗ the learning algorithm for Mealy machines. At any given

time, LM
∗ has information about a finite collection of input strings from I+ and

their corresponding output strings from O+. This information is organized into
an observation table, denoted by (SM , EM , TM ). The structure of the table is
directly imported from Angluin’s algorithm L∗. Let SM and EM be non-empty
finite sets of finite strings over I. SM is a prefix-closed set that always contains
an empty string ε. EM is a suffix-closed set (except ε �∈ EM ). Let TM be a finite
function that maps (SM ∪ SM · I)×EM to O+. If s ∈ SM ∪ SM · I and e ∈ EM ,
then TM (s, e) contains the output string from λM(q0M, s · e). The rows of the
table consist of the elements of SM ∪ SM · I and the columns consist of the
elements of EM .

Since SM and EM are non-empty sets, the table is initialized by SM = {ε}
and EM = I, i.e., every input symbol makes one column in the table, with the
entry for a row s ∈ SM ∪ SM · I and a column e ∈ EM equals to TM (s, e). The
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equivalence of rows is defined with respect to the strings in EM . Suppose s, t ∈
SM ∪SM ·I are two rows, then s and t are equivalent, denoted by s ∼=EM t, if and
only if TM (s, e) = TM (t, e), for all e ∈ EM . We denote by [s] the equivalence class
of rows that also includes s. An example of the observation table (SM , EM , TM )
for learning the Mealy machine in Figure 1 is given in Table 1.

Table 1. Example of the Observation Table (SM , EM , TM )

EM

a b

SM ε x x

SM · I a y x
b x x

The algorithm LM
∗ eventually uses the observation table (SM , EM , TM ) to

build a Mealy machine conjecture. The strings or prefixes in SM are the potential
states of the conjecture, and the strings or suffixes in EM distinguish these states
from each other.

To build a valid Mealy machine conjecture from the observations, the table
must satisfy two conditions. The first condition is that the table must be closed,
i.e., for each t ∈ SM · I, there exists an s ∈ SM , such that s ∼=EM t. If the table
is not closed, then a potential state that can be observed in the table would
not appear in the conjecture. The second condition is that the table must be
consistent, i.e., for each s, t ∈ SM such that s ∼=EM t, it holds that s · i ∼=EM t · i,
for all i ∈ I. If the table is not consistent then two seemingly equivalent states
in the conjecture may point to different target states for the same input.

When the observation table (SM , EM , TM ) is closed and consistent, then a
Mealy machine conjecture can be constructed as follows:

Definition 2. Let (SM , EM , TM ) be a closed and consistent observation table,
then the Mealy machine conjecture MM = (QM , I, O, δM , λM , q0M ) is defined,
where

– QM = {[s]|s ∈ SM}
– q0M = [ε]
– δM ([s], i) = [s · i], ∀s ∈ SM , i ∈ I

– λM ([s], i) = TM (s, i), ∀i ∈ I

To see that MM is well defined, note that SM is a non-empty prefix-closed set
and it contains at least one row ε, hence QM and q0M are well-defined. For all
s, t ∈ SM such that s ∼=EM t, we have [s] = [t]. Since the table is consistent, for
all i ∈ I, [s · i] = [t · i] holds. Since the table is closed, there exists u ∈ SM such
that [u] = [s · i] = [t · i] holds. Hence δM is well defined. Since EM is non-empty
and EM ⊇ I always hold. If there exists s, t ∈ SM such that s ∼=EM t, then for
all i ∈ I, TM (s, i) = TM (t, i). Hence, λM is well defined.
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Theorem 1. If (SM , EM , TM ) is a closed and consistent observation table, then
the Mealy machine conjecture MM from (SM , EM , TM ) is consistent with the
finite function TM . That is, for every s ∈ SM ∪ SM · I and e ∈ EM ,
λM (δM (q0M , s), e) = TM (s, e). Any other Mealy machine consistent with TM but
inequivalent to MM must have more states.

Theorem 1 claims the correctness of the conjecture. Niese [7] has given a formal
proof of the correctness, which is a simple adaptation of the proofs in Angluin’s
algorithm, in which the range of the output function is replaced by O+. Note
that the conjecture is proved to be consistent with the observation table by ex-
hibiting the prefix-closed and suffix-closed properties of SM and EM respectively.
Moreover, the conjecture is the minimum machine by construction.

4.2 The Algorithm LM
∗

The algorithm LM
∗ starts by initializing (SM , EM , TM ) with SM = {ε} and

EM = I. To determine TM , it asks output queries constructed from the table.
For each s ∈ SM ∪ SM · I and e ∈ EM , a query is constructed as s · e. The
corresponding output string of the machine, i.e., λM(q0M, s ·e), is recorded with
the help of the function TM . Note that the table is prefix-closed which means
that λM(q0M, s) can be derived from the observations already recorded in the
table. Therefore, LM

∗ records only the suffix of the output string of the length
of e in the table as TM (s, e) = suff |e|(λM(q0M, s · e)).

After filling the table with the result of the queries, LM
∗ checks if the table

is closed and consistent. If it is not closed, then LM
∗ finds t ∈ SM · I such that

t �EM s, for all s ∈ SM . Then, it moves t to SM and TM (t · i, e) is determined
for all i ∈ I, e ∈ EM in SM · I. If the table is not consistent, then LM

∗ finds
s, t ∈ SM , e ∈ EM and i ∈ I such that s ∼=EM t, but TM (s · i, e) �= TM (t · i, e).
Then, it adds the string i · e to EM and extends the table by asking output
queries for the missing elements.

When the table is closed and consistent, LM
∗ makes a Mealy machine con-

jecture MM from the table according to Definition 2.

4.3 Example

We illustrate the algorithm LM
∗ on the Mealy machineM given in Figure 1. The

algorithm initializes (SM , EM , TM ) with SM = {ε} and SM · I = EM = {a, b}.
Then, it asks the output queries to fill the table, as shown in Table 1. When the
table is filled, LM

∗ checks if it is closed and consistent.
Table 1 is not closed since the row a in SM · I is not equivalent to any row in

SM . Therefore, LM
∗ moves the row a to SM and extends the table accordingly.

Then, LM
∗ asks the output queries for the missing elements of the table. Table

2 shows the resulting observation table.
The new table is closed and consistent, so LM

∗ makes the conjecture
MM

(1) = (QMM
(1) , I, O, δMM

(1) , λMM
(1) , q0MM

(1)) from Table 2. The conjecture
MM

(1) is shown in Figure 2.
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Table 2. Closed and Consistent Obser-
vation Table (SM , EM , TM ) for learn-
ing M in Figure 1

a b

ε x x
a y x

b x x
a · a y x
a · b x x

Fig. 2. The conjecture MM
(1) from

Table 2

Now, LM
∗ asks an equivalence query to the oracle. Since, the conjecture

MM
(1) is not correct, the oracle replies with a counterexample. The methods

for processing counterexamples are discussed in the following sections. We shall
illustrate the methods with the help of the same example. We provide here a
counterexample that will be used in their illustrations.

Let a · b · a · b · b · a · a be a counterexample for MM
(1), since

– λMM
(1)(q0MM

(1) , a · b · a · b · b · a · a) = x · x · x · x · x · x · y and
– λM(q0M, a · b · a · b · b · a · a) = x · x · x · x · x · x · x.

We choose a long counterexample to better illustrate the methods and to realize
how they work when the counterexamples of arbitrary lengths are provided. In
practice1, it is not sure whether we obtain always the shortest counterexample.

4.4 Processing Counterexamples in LM
∗

Angluin’s algorithm L∗ provides a method for processing a counterexample in
the observation table, so that the conjecture is refined with at least one more
state. For the algorithm LM

∗, we can adapt Angluin’s method straightforwardly.
The adapted method is described as follows.

Directly Adapted Method from L∗. Let MM = (QM , I, O, δM , λM , q0M )
be the conjecture from a closed and consistent observation table (SM , EM , TM )
for learning the machineM. Let ν be a string from I+ as a counterexample such
that λM (q0M , ν) �= λM(q0M, ν). Then, LM

∗ adds all the prefixes of ν to SM and
extends (SM , EM , TM ) accordingly. The algorithm makes another run of output
queries until (SM , EM , TM ) is closed and consistent, followed by making a new
conjecture.

4.5 Complexity

We analyze the total number of output queries asked by LM
∗ in the worst case

by the factors |I|, i.e., the size of I, n, i.e., the number of states of the minimum
1 There are many frameworks that have been proposed to replace the oracle in An-

gluin’s settings. The interested reader is referred to the works [12] [4] [13] for the
comprehensive discussions on the limits of learning without oracles.
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Table 3. The Observation Tables (SM , EM , TM ) for processing the counterexample
a · b ·a · b · b ·a ·a for MM

(1) using the adapted method from L∗. The boxes in the tables
show the rows which make the tables inconsistent.

a b

ε x x
a y x

a · b x x
a · b · a x x

a · b · a · b x x
a · b · a · b · b x x

a · b · a · b · b · a x x
a · b · a · b · b · a · a y x

b x x
a · a y x

a · b · b x x
a · b · a · a x x

a · b · a · b · a y x
a · b · a · b · b · b x x

a · b · a · b · b · a · b x x
a · b · a · b · b · a · a · a y x
a · b · a · b · b · a · a · b x x

(i) Adding the prefixes of
a · b · a · b · b · a · a to SM

a b a · a
ε x x x · y
a y x y · y

a · b x x x · x
a · b · a x x x · x

a · b · a · b x x x · y
a · b · a · b · b x x x · x

a · b · a · b · b · a x x x · y
a · b · a · b · b · a · a y x y · y

b x x x · x
a · a y x y · y

a · b · b x x x · x
a · b · a · a x x x · y

a · b · a · b · a y x y · y
a · b · a · b · b · b x x x · y

a · b · a · b · b · a · b x x x · x
a · b · a · b · b · a · a · a y x y · y
a · b · a · b · b · a · a · b x x x · x

(ii) Adding a · a to EM

a b a · a a · a · a b · a · a
ε x x x · y x · y · y x · x · x
a y x y · y y · y · y x · x · x

a · b x x x · x x · x · x x · x · x
a · b · a x x x · x x · x · y x · x · y

a · b · a · b x x x · y x · y · y x · x · x
a · b · a · b · b x x x · x x · x · y x · x · y

a · b · a · b · b · a x x x · y x · y · y x · x · x
a · b · a · b · b · a · a y x y · y y · y · y x · x · x

b x x x · x x · x · y x · x · y
a · a y x y · y y · y · y x · x · x

a · b · b x x x · x x · x · y x · x · y
a · b · a · a x x x · y x · y · y x · x · x

a · b · a · b · a y x y · y y · y · y x · x · x
a · b · a · b · b · b x x x · y x · y · y x · x · x

a · b · a · b · b · a · b x x x · x x · x · y x · x · y
a · b · a · b · b · a · a · a y x y · y y · y · y x · x · x
a · b · a · b · b · a · a · b x x x · x x · x · x x · x · x

(iii) Adding a · a · a and b · a · a to EM

machine M and m, i.e., the maximum length of any counterexample provided
for learningM.

Initially, SM contains one element. Each time (SM , EM , TM ) is found not
closed, one element is added to SM . This introduces a new row to SM , so a
new state in the conjecture. This can happen for at most n− 1 times. For each
counterexample of length at most m, there can be at most m strings that are
added to SM , and there can be at most n− 1 counterexamples to distinguish n
states. Thus, the size of SM cannot exceed n + m(n− 1).

Initially, EM contains |I| elements. Each time (SM , EM , TM ) is found not
consistent, one element is added to EM . This can happen for at most n−1 times
to distinguish n states. Thus, the size of EM cannot exceed |I|+ n− 1.

Thus, LM
∗ produces a correct conjecture by asking maximum (SM ∪SM ·I)×

EM = O(|I|2nm + |I|mn2) output queries.

4.6 Example

For the conjecture MM
(1) in Figure 2 for learning the Mealy machine M in

Figure 1, we have a counterexample as ν = a · b · a · b · b · a · a. According to the
adapted method for processing counterexample, LM

∗ adds all the prefixes of ν,
i.e., a, a · b, a · b · a, a · b · a · b, a · b · a · b · b, a · b · a · b · b · a, and a · b · a · b · b · a · a
to SM and extends SM · I accordingly. The table is then filled with the missing
elements by asking output queries. Table 3 (i) shows the resulting observation
table. Then, LM

∗ checks if the table is closed and consistent.
Table 3 (i) is closed but not consistent since ε ∼=EM a · b, but TM (ε · a, a) �=

TM (a · b · a, a). To make the table consistent, the string a · a is added to EM and
the table is filled accordingly. Table 3 (ii) shows the resulting observation table,
in which the rows ε and a · b have become different. Now, LM

∗ checks if Table 3
(ii) is closed and consistent.

Table 3 (ii) is closed but not consistent since a · b ∼=EM a · b · a but TM (a · b ·
a, a · a) �= TM (a · b · a · a, a · a). To make the table consistent, the string a · a · a
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is added to EM . For the same rows, the other reason for inconsistency is due to
TM (a · b · b, a · a) �= TM (a · b · a · b, a · a). Therefore, the string b · a · a is also
added to EM and the table is filled accordingly. Table 3 (iii) shows the resulting
observation table, in which the rows a · b and a · b · a have become different.

Table 3 (iii) is closed and consistent, and thus LM
∗ terminates by making a

conjecture isomorphic toM. The total number of output queries asked by LM
∗

is 85.

5 Improvements to Mealy Machine Inference

We propose improvements to the algorithm of learning Mealy machines by pro-
viding a new method for processing counterexamples in the observation table
(SM , EM , TM ). The complexity calculations and the experimental results of our
proposal show a significant reduction in the output queries that the algorithm
asks during the learning procedure. We denote the algorithm with the improved
method for processing counterexamples by LM

+. In this section, we describe
the idea of our improvements and the complete algorithm with its complexity,
correctness and example illustration.

5.1 Motivation

Rivest & Schapire [14] observed that the basic Angluin’s algorithm L∗ can be
improved by removing consistency check of the observation table. Consistency is
checked only when two rows in the upper part of the table are found equivalent.
That means, if the rows of the table remain inequivalent, then inconsistency
will never occur and the condition will always hold trivially. They observed
that the rows become equivalent in the table due to the improper handling of
counterexamples. A counterexample is an experiment that distinguishes two or
more equivalent rows (or states) in the table and thereby causes an increase in
the size of the column. However, L∗ does not follow this scheme directly, rather
it adds a new row for each prefix of the counterexample in the table, assuming
that all are potential states of the conjecture. Later, the rows are filled with
the help of membership queries (no new column is added yet). This is where an
inconsistency can occur in the table if the two rows become equivalent but their
future behaviors are not equivalent. Thus, the two rows must be distinguished
by adding a distinguishing sequence as a column in the table.

Rivest & Schapire proposed a method for processing counterexamples, which
does not add the prefixes in the table. Thus, the rows remain inequivalent during
the whole learning process. Their method consists in finding a distinguishing
sequence from the counterexample and directly add the sequence in the columns.
However, their method requires a relaxation on the prefix-closed and suffix-
closed properties of the table, which are in fact the vital properties for having a
consistent conjecture from the table [1]. If the table does not have such properties
then the new conjecture might not be consistent with the table, and therefore,
might still classify the previous counterexamples incorrectly. Balcazar et al. [15]
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argued that by using the method of Rivest & Schapire, one can obtain the same
counterexample to answer several equivalence queries in L∗. In addition, Berg
& Raffelt [16] compiled the results from Balcazar et al. [15] and explained the
complete method of Rivest & Schapire.

Our improvement in the algorithm for learning Mealy machines is inspired
by Rivest & Schapire’s idea. We also suggest to keep only inequivalent rows in
SM so that inconsistencies can never occur. However, we propose a new method
for processing counterexamples such that it does not import the same problem
as in the case of Rivest & Schapire. Our method for processing counterexample
keeps (SM , EM , TM ) prefix-closed and suffix-closed, and therefore, the new con-
jecture is always consistent with the observations in (SM , EM , TM ), according
to Theorem 1.

5.2 The Algorithm LM
+

In the algorithm LM
+, the definition of the observation table (SM , EM , TM ),

described in Section 4.1, and the basic flow of the algorithm, described in Section
4.2, remain unchanged. However, the additional property of (SM , EM , TM ) is
that all the rows in SM are inequivalent, i.e., for all s, t ∈ SM , s �EM t. This
means LM

+ does not need to check for consistency because it always trivially
holds. However, LM

+ processes counterexamples according to the new method,
which is described in the following.

5.3 Processing Counterexamples in LM
+

Let MM = (QM , I, O, δM , λM , q0M ) be the conjecture from the closed (and con-
sistent) observation table (SM , EM , TM ) for learning the machine M. Let ν be
a string from I+ as a counterexample such that λM (q0M , ν) �= λM(q0M, ν). The
main objective of a counterexample is to distinguish the conjecture from the un-
known machine. That means, the counterexample must contain a distinguishing
sequence to distinguish at least two seemingly equivalent states of the conjec-
ture; so that when applying the distinguishing sequence on these states, they
become different.

In our method of processing counterexample, we look for the distinguishing
sequence in the counterexample and add the sequence directly to EM . Then, the
two seemingly equivalent rows2 in SM become different. For this purpose, we
divide ν into its appropriate prefix and suffix such that the suffix contains the
distinguishing sequence. The division occurs in the following way.

We divide ν by looking at its longest prefix in SM ∪ SM · I and take the
remaining string as the suffix. Let ν = u · v such that u ∈ SM ∪ SM · I. If there
exists u′ ∈ SM ∪ SM · I another prefix of ν then |u| > |u′|, i.e., u is the longest
prefix of ν in SM∪SM ·I. The idea of selecting u from the observation table is that
u is the access string that is already known such that λM (q0M , u) = λM(q0M, u).
The fact that ν is a counterexample then λM (q0M , u · v) �= λM(q0M, u · v) must

2 Recall that the rows in SM represent the states of the conjecture.
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suff 1 (v) suff 2 (v) suff |v|(v)

u v

The counterexample ν = u · v

u

. . .

ε..
.

The Observation Table (SM , EM , TM )

find

.

.
.

. . .

add the suffixes of v

Fig. 3. Conceptual view of the method for processing counterexamples in LM
+

hold. That means, v contains the distinguishing sequence to distinguish two rows
in SM . So, it is sufficient to add v to EM . In fact, we add all the suffixes of v
such that EM remains suffix-closed.

Figure 3 provides a conceptual view of the method for processing a counterex-
ample ν. It shows that ν is divided into the prefix u and the suffix v, such that
u ∈ SM ∪SM · I. Then, ν is processed by adding all the suffixes of v to EM . The
correctness proof of the method is given in the following section.

5.4 Correctness

Let MM = (QM , I, O, δM , λM , q0M ) be the conjecture from the closed (and con-
sistent) observation table (SM , EM , TM ). Let ν = u · i · v be the counterexample
for MM such that λM (q0M , u · i · v) �= λM(q0M, u · i · v). Let u · i be the longest
prefix of ν in SM ∪ SM · I and v be the corresponding suffix of ν. If ν is a coun-
terexample then it must distinguish [u · i] from a seemingly equivalent state, i.e.,
λM(q0M, u · i · v) �= λM(q0M, t · v), for some t ∈ SM such that [t] = [u · i]. Thus,
v contains a distinguishing sequence for the rows u · i and t.

Suppose we process ν in (SM , EM , TM ) by adding all the suffixes of v to
EM . Let us name the table as (S′

M , E′
M , T ′

M ) after this addition. Later, we ask
output queries to fill the missing elements of the table (S′

M , E′
M , T ′

M ). Then, E′
M

contains the distinguishing sequence that distinguishes the rows t and u · i in
(S′

M , E′
M , T ′

M ). That is, there must exist some experiment e ∈ E′
M such that

T ′
M (t, e) �= T ′

M (u · i, e). This implies that u · i �∼=E′
M

t. In fact, u · i ∈ S′
M · I,

since t ∈ S′
M and there cannot be two equivalent rows in S′

M . If u · i ∈ S′
M · I

then trivially u ∈ S′
M . Moreover, in the table (SM , EM , TM ), if u · i �EM s, for

s ∈ SM , then in the extended table (S′
M , E′

M , T ′
M ), u · i �E′

M
s also holds, for

s ∈ S′
M . Therefore, u · i is a row in (S′

M , E′
M , T ′

M ) that is inequivalent to any
row in S′

M . This makes the table not closed. Thus, making the table closed will
move u · i to S′

M . Since, u is already in S′
M , this operation keeps (S′

M , E′
M , T ′

M )
prefix-closed. Since, S′

M is extended by one row, the new conjecture M ′
M from

the closed (S′
M , E′

M , T ′
M ) will contain at least one more state than MM .



218 M. Shahbaz and R. Groz

It is simple to check whether (S′
M , E′

M , T ′
M ) is suffix-closed, since E′

M is ex-
tended from EM , which is suffix-closed, and E′

M contains the suffixes of v. Thus,
(S′

M , E′
M , T ′

M ) is suffix-closed.
This proves the correctness of the method, since (S′

M , E′
M , T ′

M ) is a closed (and
consistent) observation table that is prefix-closed and suffix-closed and contains
the prefix u ·i and the suffix v of the counterexample ν. Therefore, the conjecture
M ′

M from (S′
M , E′

M , T ′
M ) will be consistent with the function T ′

M (Theorem 1)
that will find at least one more state. ��

Theorem 2. Let (SM , EM , TM ) be a closed (and consistent) observation table
and MM be the conjecture from (SM , EM , TM ). Let ν = u · i · v be the coun-
terexample for MM , where u · i is in SM ∪ SM · I. Let the table be extended as
(S′

M , E′
M , T ′

M ) by adding all the suffixes of v to EM , then the closed (and con-
sistent) observation table (S′

M , E′
M , T ′

M ) is prefix-closed and suffix-closed. The
conjecture M ′

M from (S′
M , E′

M , T ′
M ) will be consistent with T ′

M and must have at
least one more state than MM .

5.5 Complexity

We analyze the total number of output queries asked by LM
+ in the worst case

by the factors |I|, i.e., the size of I, n, i.e., the number of states of the minimum
machine M and m, i.e., the maximum length of any counterexample provided
for learningM.

The size of SM increases monotonically up to the limit of n as the algorithm
runs. The only operation that extends SM is making the table closed. Every
time (SM , EM , TM ) is not closed, one element is added to SM . This introduces a
new row to SM , so a new state in the conjecture. This can happen at most n−1
times, since it keeps one element initially. Hence, the size of SM is at most n.

EM contains |I| elements initially. If a counterexample is provided then at
most m suffixes are added to EM . There can be provided at most n − 1 coun-
terexamples to distinguish n states, thus the maximum size of EM cannot exceed
|I|+ m(n− 1).

Thus, LM
+ produces a correct conjecture by asking maximum (SM ∪ SM ·

I)× EM = O(|I|2n + |I|mn2) output queries.

5.6 Example

We illustrate the algorithm LM
+ on the Mealy machine M given in Figure 1.

Since, LM
+ is only different from LM

∗ with respect to the method for processing
counterexamples, the initial run of LM

+ is same as described in Section 4.3. So,
LM

+ finds a closed (and consistent) table as Table 2 and draws the conjecture
MM

(1), shown in Figure 2, from Table 2. Here, we illustrate how LM
+ processes

counterexamples to refine the conjecture.
For the conjecture MM

(1), we have a counterexample as ν = a · b ·a · b · b ·a ·a.
According to the improved method for processing counterexample, LM

+ finds
the longest prefix u of the counterexample in SM ∪SM · I in Table 2. The prefix
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Table 4. The Observation Tables (SM , EM , TM ) for processing the counterexample
a · b · a · b · b · a · a for MM

(1) using the improved method. The boxes in the tables show
the rows which make the tables not closed.

a b a · a b · a · a b · b · a · a a · b · b · a · a
ε x x x · y x · x · x x · x · x · y x · x · x · x · x
a y x y · y x · x · x x · x · x · x y · x · x · x · x
b x x x · x x · x · y x · x · x · x x · x · x · x · y

a · a y x y · y x · x · x x · x · x · x y · x · x · x · x
a · b x x x · x x · x · x x · x · x · y x · x · x · x · x

(i) Adding the suffixes of a · b · b · a · a to EM

a b a · a b · a · a b · b · a · a a · b · b · a · a
ε x x x · y x · x · x x · x · x · y x · x · x · x · x
a y x y · y x · x · x x · x · x · x y · x · x · x · x
b x x x · x x · x · y x · x · x · x x · x · x · x · y

a · b x x x · x x · x · x x · x · x · y x · x · x · x · x
a · a y x y · y x · x · x x · x · x · x y · x · x · x · x
b · a x x x · y x · x · x x · x · x · y x · x · x · x · x
b · b x x x · y x · x · x x · x · x · y x · x · x · x · x

a · b · a x x x · x x · x · y x · x · x · x x · x · x · x · y
a · b · b x x x · x x · x · y x · x · x · x x · x · x · x · y

(ii) Moving the rows b and a · b to SM

u = a · b is the longest prefix found, so the remaining suffix is v = a · b · b · a · a.
The algorithm adds all the suffixes of v, i.e., a, a · a, b · a · a, b · b · a · a and
a · b · b · a · a to EM . The table is filled by asking output queries for the missing
elements. Table 4 (i) is the resulting observation table. Then, LM

+ checks if the
table is closed.

Table 4 (i) is not closed since the rows b and a·b are not equivalent to any rows
in SM . Hence, the rows b and a · b are moved to SM and the table is extended
accordingly. The table is filled by asking output queries for the missing elements.
Table 4 (ii) is the resulting observation table. Now, LM

+ checks whether Table
4 (ii) is closed.

Table 4 (ii) is closed, and thus LM
+ terminates by making a conjecture iso-

morphic toM. The total number of output queries asked by LM
+ is 54.

6 Experimentation

We have performed an experimental evaluation to compare the adaptation of
Angluin’s algorithm for learning Mealy machines LM

∗ with our improved al-
gorithm LM

+. The worst case theoretical complexity analysis has shown that
LM

+ outperforms LM
∗ in terms of number of output queries. It is interesting

to evaluate the average case complexity of the algorithms when the input sets,
the number of states and the length of counterexamples are of arbitrary sizes.

The examples in the experiments are the synthetic finite state models of real
world systems (e.g., Vending machine, ATM and ABP protocols, Mailing Sys-
tems etc) that are shipped with Edinburgh Concurrency Workbench (CWB) [17].
CWB is a tool for manipulating, analyzing and verifying concurrent systems. The
examples in the workbench have also been used to investigate the applicability
of Angluin’s algorithm in learning reactive systems [18]. These examples were
originally modeled as Non-Deterministic Finite Automata (NFA), with partial
transition relations, in which every state is a final state. Therefore, we have trans-
ferred first each example to its corresponding DFA. The resulting DFA contains
every state as final, plus one non-final (sink) state which loops itself for all inputs.
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All inputs from a state that are invalid (missing transitions in the original NFA)
are directed to the sink state. Then, we learn the Mealy machines models of the
CWB examples using both algorithms one by one. We have also simulated an
oracle so that the algorithms could ask equivalence queries for conjectures until
they find correct models. The oracle obtains a counterexample by calculating a
symmetric difference between the original example and the provided conjecture.

The number of output queries asked by the algorithms are given in Table 5.
The first column labels the example. The second column shows the size of the
input set I. The third column shows the minimum number of states in the ex-
ample when modeled as DFA and Mealy machines. The fourth and fifth columns
show the number of output queries asked by LM

∗ and LM
+, respectively. The

last column shows the reduction factor in queries asked by LM
+ against LM

∗,
i.e., no. of output queries in LM

∗

no. of output queries in LM
+ − 1.

Table 5. Comparison of LM
∗ with LM

+ on the examples of CWB workbench. The
examples are listed in ascending order with respect to the number of states.

Examples |I | No. of States No. of Output Queries Reduction Factor
DFA / Mealy (min) LM

∗ LM
+

ABP-Lossy 3 11 754 340 1.22
Peterson2 3 11 910 374 1.43

Small 5 11 462 392 0.18
VM 5 11 836 392 1.13

Buff3 3 12 580 259 1.24
Shed2 6 13 824 790 0.04

ABP-Safe 3 19 2336 754 2.1
TMR1 5 19 1396 1728 -0.2
VMnew 4 29 2595 1404 0.85

CSPROT 5 44 4864 3094 0.57

The experiments have been conducted on 10 CWB examples. All examples
are of different sizes in terms of number of states and input set size. The results
show that LM

+ outperformed LM
∗ in almost all the examples. The greatest

reduction factor achieved is 2.1 on the example ABP-Safe. However, there is only
one example TMR1 in which LM

+ has performed negatively. This is because
the implementation of our oracle provides arbitrary counterexamples that could
influence the number of output queries in few cases.

Apart from the CWB workbench, we have also experimented on arbitrary
random Mealy machines. We generated a set of 1500 machines with sizes ranging
between 1 and 500 states and input size up to 15. The average reduction factor
we achieved on this set is 1.32. We also studied the query complexity with respect
to the relation of input size with the number of states. Up to 1250 machines were
generated with larger inputs and relatively fewer states. We achieved the best
result on this set with the average reduction factor of 1.66.

As we know from our worst case complexity analysis, LM
+ performs better

than LM
∗. We have experimentally confirmed the difference in complexity of the

two algorithms on the finite state machine workbench, as well as on a large set
of arbitrary random Mealy machines.
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7 Conclusion and Perspectives

We have presented two algorithms for inferring Mealy machines, namely LM
∗

and LM
+. The algorithm LM

∗ is a straightforward adaptation from the algo-
rithm L∗. The algorithm LM

+ is our proposal that contains a new method for
processing counterexamples. The complexity calculations of the two algorithms
shows that LM

+ has a gain on the number of output queries over LM
∗.

The crux of the complexity comparison comes from the fact that when we deal
with real systems, they work on huge data sets as their possible inputs. When
these systems are learned, the size of the input set I becomes large enough to
cripple the learning procedure. In most cases, |I| is a dominant factor over the
number of the states n. Therefore, when we look on the parts of the complexity
calculations which exhibit a difference, i.e., |I|2nm for LM

∗ and |I|2n for LM
+,

then it is obvious that LM
+ has a clear gain over LM

∗ as |I| grows3.
Another aspect of the complexity gain of LM

+ comes from the fact that it is
not easy to obtain always “smart” counterexamples that are short and yet can
find the difference between the black box machine and the conjecture. Normally,
we obtain counterexamples of arbitrary lengths in practice (without assuming
a perfect oracle). They are usually long input strings that run over the same
states of the black box machine many times to exhibit the difference. When
LM

∗ processes such counterexamples in the observation table by adding all the
prefixes of the counterexample to SM , it adds unnecessarily as many states as
the length of the counterexample. This follows the extension of the table due to
SM · I. However, after filling the table with output queries, it is realized that
only few prefixes in SM are the potential states. On the contrary, the method
for processing counterexample in LM

+ consists in adding the suffixes of only a
part of the counterexample to EM . Then, LM

+ finds the exact rows through
output queries which must be the potential states and then moves the rows to
SM (see Section 5.4). So, the length of a counterexample m is less worrisome
when applying LM

+. As m becomes large, LM
+ has more gain over LM

∗.
From the above discussion, we conclude that LM

+ outperforms LM
∗, notably

when the size of the input set I and the length of the counterexamples m are
large. We have also confirmed the gain of LM

+ over LM
∗ by experimentation

on CWB [17] workbench of synthetic finite state models of real world systems,
as well as on the random machines, where m, I and n are of different sizes.

The research in the approach of combining learning and testing has remained
our major focus in the recent past [13]. We intend to continue our research in
these directions to explore the benefits of our approach in disciplines, such as
learning other forms of automata and its application on the integrated systems
of black box components.

3 Contrary to CWB examples which are small enough to realize the impact of the
input size on the complexity, the experiments with random machines with large
input sizes provides a good confidence on the gain.
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Formal Management of CAD/CAM Processes�
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Abstract. Systematic engineering design processes have many aspects in com-
mon with software engineering, with CAD/CAM objects replacing program code
as the implementation stage of the development. They are, however, currently
considerably less formal. We propose to draw on the mentioned similarities and
transfer methods from software engineering to engineering design in order to en-
hance in particular the reliability and reusability of engineering processes. We lay
out a vision of a document-oriented design process that integrates CAD/CAM
documents with requirement specifications; as a first step towards supporting
such a process, we present a tool that interfaces a CAD system with program veri-
fication workflows, thus allowing for completely formalised development strands
within a semi-formal methodology.

1 Introduction

Much of our life is shaped by technical artifacts, ranging in terms of intrinsic complexity
from ball point pens to autonomous robots. These artifacts are the result of engineering
design processes that determine their quality, safety, and suitability for their intended
purposes and are governed by best practices, norms, and regulations. The systematic
development of products is guided by descriptions of problems and their solutions on
different levels of abstraction, such as the requirements list, the function structure, the
principle solution, and eventually the embodiment design. The elements of these rep-
resentations are linked by dependencies within and across the different levels of ab-
straction. The present state of the art in computer-aided design and manufacture of
industrial artifacts (CAD/CAM) does not support this cross-linking of dependencies.
Consequently, e.g. non-embodied principle solutions are still often shared and stored
in the form of hand-made sketches and oral explanations. In other words, large parts
of the engineering process are not completely representable in current CAD/CAM sys-
tems, which are focused primarily on the embodiment level.

In contrast, software engineers have long acknowledged the need for a formal mathe-
matical representation of the software development process. In particular, formal speci-
fication and verification of software and hardware systems are essential in safety-critical
or security areas where one cannot take the risk of failure. Formal method success sto-
ries include the verification of the Pentium IV arithmetic, the Traffic Collision Avoid-
ance System TCAS, and various security protocols. In many cases, only the use of

� Work performed as part of the project FormalSafe funded by the German Federal Ministry of
Education and Research (FKZ 01IW07002).

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 223–238, 2009.
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logic-based techniques has been able to reveal serious bugs in software and hardware
systems; in other cases, spectacular and costly failures such as the loss of the Mars
Climate Orbiter could have been avoided by formal techniques. Norms such as IEC
61508 make the use of formal methods mandatory for software of the highest safety in-
tegrity level (SIL 3). Thus, formal methods will form an integral part of any systematic
methodology for safe system design.

The main goal of the present work is to outline how formal methods, hitherto used
predominantly in areas such as software development and circuit design that are inher-
ently dominated by logic-oriented thinking anyway, can be transferred to the domain of
CAD/CAM, which is more closely tied to the physical world. In particular, we wish to
tie formal specification documents in with a semi-formal engineering design process.
Potential benefits for the CAD/CAM process include

– formal verification of physical properties of the objects designed
– tracing of (formalized) requirements across the development process
– improved control over the coherence of designs
– semantically founded change management.

We lay out this vision in some more detail, relating it to an extended discussion of current
best practice in engineering design (Section 2), before we proceed to report a first step
towards enabling the use of formal methods in engineering design: we describe a tool
that extracts formal descriptions of geometric objects from CAD/CAM designs (Sec-
tion 3). Specifically, the tool exports designs in the CAD/CAM system SOLIDWORKS

into a syntactic representation in the wide-spectrum language HASCASL [12], thereby
making the connection to a formal semantics of CAD/CAM objects in terms of standard
three-dimensional affine geometry as defined in a corresponding specification library. We
apply the tool in a case study (Section 4) involving a toy but pioneering example where
we prove that a simple CAD drawing implements an abstractly described geometric ob-
ject, using the semi-automatic theorem prover Isabelle/HOL, interaction with which is
via logic translations implemented in the Bremen heterogeneous tool set HETS [9].

2 A Document-Oriented Process for CAD/CAM

Best practices for designing technical artifacts are typically standardised by profes-
sional societies. In our exposition here, we will follow the German VDI 2221 [14],

Fig. 1. The V-model of Software Engineering

which postulates that the design
process proceeds in well-defined
phases, in which an initial idea
is refined step-by-step to a fully
specified product documentation.
We observe that the process is
similar to the software engineer-
ing process and that the stages
in the design process result in
specification documents, as they
are e.g. found in the V-model
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(see Fig. 1). In contrast to software engineering approaches like the V-model, how-
ever, VDI 2221 (and actual current practice in engineering design) does not provide a
mechanism to ensure consistency between the design stages, or methods for verifying
that products actually meet requirements specified in preceding phases of the devel-
opment. In fact, the VDI 2221 process corresponds only to the left leg of the process
depicted in Fig. 1, while the quality control process (the right leg in Fig. 1 and the main
contribution of the V-model) is left unspecified.

2.1 The Engineering Design Process

To make the correspondence between VDI 2221 and the V-model explicit we review
the six stages of VDI 22211 and relate them to the V-model before we illustrate them
with a simple example.

S1 Purpose/Problem: a concise formulation of the purpose of the product to be de-
signed.

S2 Requirements List: a list of explicit named properties of the envisioned product.
It is developed in cooperation between designer and client and corresponds to the
user specification document in the V-model.

S3 Functional Structure: A document that identifies the functional components of
the envisioned product and puts them into relation with each other.

S4 Solution in Principle: a specification of the most salient aspects of the design. It
can either be a CAD design like the one in Fig. 2 below or a hand drawing [8].

S5 Embodiment Design/“Gestalt”: a CAD design which specifies the exact shape of
the finished product.

S6 Documentation: accompanies all steps of the design process.

Note that most of these design steps result in informal text documents, with step S5 be-
ing the notable exception. In the envisioned document-oriented engineering design pro-
cess we will concentrate on these documents, enhance them with semantic annotations
and link them to background specifications to enable machine support: e.g. require-
ments tracing, management of change, or verification of physical properties. Before
discussing this vision in more detail, let us set up an example.

2.2 The Design of a Hammer

A rational reconstruction of the design process of a machinist’s hammer according to
the German industrial norm DIN 1041 would proceed as follows.

The Purpose of a Hammer. The first and most important step in setting up a require-
ments list is the specification of the purpose of the product. The purpose describes the
intended use of the product solution-neutrally. This is the highest level of abstraction
within the design process. In the case of a hammering tool, the purpose can be in the
form of a very simple definition:

1 In fact, [14] specifies additional stages for determining modular structures and developing their
embodiments, which we will subsume in steps S3 and S5.
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A hammer is an apparatus for transmitting an impulse to an object, e.g. for
driving a nail into a wall.

In reference to a hand-tool in contrast to e.g. a hammer mill, the purpose can be nar-
rowed to:

A hammer is an apparatus for the manual generation and transmission of a
defined impulse to an object, e.g. for driving a nail into a wall.

Ideally, the list of requirements of a product should be unambiguous, clear and com-
plete. However, this is rarely the case in a real life design process, e.g. due to implicit
customer wishes, which in fact are often more important to the market-success of a
product than the explicitly named requirements. In the case of the hammer, the require-
ments might include the following.

Explicit Requirements

E1 The hammer has to fulfil the standard DIN 1041 and all related subsequent stan-
dards, namely: DIN 1193, DIN 1195, DIN 5111, DIN 68340 and DIN ISO 2786-1.

E2 The handle has to be painted with a clear lacquer over all and with colour RAL
7011 (iron grey) at 10 cm from the lower end.

E3 A company logo of 20mm length is placed on each of the two sides of the handle.

Implicit Requirements

I1 The hammer must be usable for right-handed and left-handed persons.
I2 The hammer should be ergonomic.
I3 The hammer must fit into a standard tool chest.
I4 The hammer shall look strong and matter-of-fact.

Functional Specification of a Hammer. Within the design process, the functional
specification is done by setting up the function structure that breaks down the complex
problem into manageable smaller sub-functions and represents the logical interrelation-
ships of the given tasks. As in the previous design steps, the function structure is still
solution neutral. The aim is to open up a preferably broad solution field, which will be
narrowed by explicit named criteria within further steps of the design process.

The function structure is intended to explain interrelationships within the fu-
ture embodied product; therefore, the connection between function structure and
the given product has to be clear. Every sub-function can be found within the
product, or the product is not a suitable solution. On the other hand, function
structures are not appropriate as a tool for reverse engineering, because the re-
lation between the embodied product and the underlying functions is ambiguous.
On the right,
we depict
one possible
functional
structure for
the hammer as an apparatus for the manual generation and transmission of a defined
impulse to an object.
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The Principle Solution for a Hammer. From the functional specification,
we develop a principle solution (see Fig. 2). This solution abstracts from

Fig. 2. A principle solution for a Hammer

the physical traits of the
eventual product and
identifies the functional
parts. For a hammer,
one of these is the han-
dle, here a cylindri-
cal part of the hammer
shaft used for gripping.
The fact that it is sym-
metric/cylindrical is a
response to the require-
ment E1. The handle
is connected to an in-
ert mass (depicted by
a solid ball in Fig. 2)
which is again connected to an active surface that delivers the impact on the object.
The size and form of the active surface will be determined by the requirement I2. In
fact, the principle solution reveals that there is a second possible active area of the ham-
mer, opposite to the primary one; Fig. 2 shows three variants of the principle solution
with differing secondary active surfaces.

The Embodiment of a Hammer. Note that the principle solution is not a finished de-
sign yet, since it abstracts from most of the physical traits of a hammer, e.g. the dimen-
sions of the shaft and the form of the head, which will be specified in the embodiment
design step. Here, the ultimate three-dimensional shape and the materials of the prod-
uct are derived, taking into account material properties, manufacturability constraints,
specialised purposes, and aesthetic factors. These can lead to the widely differing final
designs we see in use today.

2.3 A Document-Oriented Design Process

We propose to reinforce the systematic engineering design process laid out above with
technologies and practices from software engineering and Formal Methods to obtain
a document-oriented process where designs are semantically enhanced and linked to
formal and semi-formal specifications. It is crucial to note that the various design doc-
uments necessarily have differing levels of rigour, ranging from informal and hard-
to-quantify requirements like I2 to mathematical proofs of security-relevant properties,
e.g. in aerospace applications. Additionally, different product parts and aspects underlie
differing economic and security-related constraints, so that design quality control must
be supported at various levels of formality (going beyond strictly ontological annota-
tion as e.g. in the EXPRESS language that forms part of the STEP Standard for product
data exchange, ISO 10303 [6,11]). As a consequence, design documents need to be en-
coded in a document format that supports flexible degrees of formality, such as OMDOC

(Open Mathematical Documents [7]). The OMDOC format concentrates on structural
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aspects of the knowledge embedded in documents and provides a markup infrastructure
to make it explicit by annotation. Crucially, the format supports a fine-granular mixture
of formal and informal elements and thus supports, e.g., the stepwise migration from
informal user requirements to specifications expressed in formal logics supported by
verification environments like the Bremen heterogeneous tool set HETS [9]. The for-
mat itself is semi-formal, i.e. focuses on explicitly structured documents where relevant
concepts are annotated by references to content dictionaries that specify the meaning
of the terms used in design documents. Semi-formal design documents already bring
added value to the engineering process by enabling machine support for many common
quality control tasks like requirements tracing and management of change which are
based on an explicitly given dependency relation (see [1] for details). Fully formal de-
velopment strands embedded in a semi-formal process additionally allow for the rigor-
ous verification of critical properties in a design, thus providing a reliable link between
various stages of the engineering design process. It is this aspect that we concentrate on
in the following.

3 Invading SOLIDWORKS

We now illustrate how the document-oriented formal/semi-formal methodology in en-
gineering design processes laid out in the last section can be supported by means of an
integration of formal methods tools with the widely used CAD system SOLIDWORKS

[13]. The latter serves mainly as a demonstration platform; our overall approach is suf-
ficiently general to apply equally well to any other CAD system that provides suitable
interfaces.

Our approach to interfacing with SOLIDWORKS is invasive, i.e. we implement se-
mantic services through direct access to the data structures of the CAD system. At
present, we provide a SOLIDWORKS plug-in2 that extracts designs as formal specifi-
cations, i.e. as lists of terms denoting sketches and features, and as formulas express-
ing constraints relating these sketches and features. These data are obtained using the
SOLIDWORKS API, and are output as a HASCASL [12] specification encoded in an
OMDOC file [7].

Overview of HASCASL. HASCASL is a higher order extension of the standard alge-
braic specification language CASL (Common Algebraic Specification Language) [2,10]
with partial higher order functions and type-class based shallow polymorphism. The
HASCASL syntax appearing in the specifications shown in the following is largely self-
explanatory; we briefly recall the meaning of some keywords, referring to [12] for the
full language definition. Variables for individuals, functions and types are declared us-
ing the keyword var. The keyword type declares, possibly polymorphic, types. Types
are, a priori, loose; a free type, however, is an algebraic data type built from construc-
tor operations following the standard no-junk-no-confusion principle. Types are used
in the profiles of operations, declared and, optionally, defined using the keyword op.

2 Available as a Visual Basic macro for SOLIDWORKS 2008, SP1 or higher, from:
http://www.informatik.uni-bremen.de/˜lschrode/SolidWorks/
SWExtractor.swp

http://www.informatik.uni-bremen.de/~lschrode/SolidWorks/SWExtractor.swp
http://www.informatik.uni-bremen.de/~lschrode/SolidWorks/SWExtractor.swp
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Operations may be used to state axioms in standard higher order syntax, with some ad-
ditional features necessitated through the presence of partial functions, which however
will not play a major role in the specifications shown here (although they do show up
in the geometric libraries under discussion). Names of axioms are declared in the form
%(axiom name)%.

Beyond these basic specification constructs, HASCASL inherits mechanisms for
structured specification from CASL. In particular, named specifications are introduced
by the keyword spec; specification extensions that use previously defined syntactic ma-
terial in new declarations are indicated by the keyword then; and unions of syntacti-
cally independent specifications are constructed using the keyword and. Annotation of
extensions in the form then %implies indicates that the extension consists purely of
theorems that follow from the axioms declared previously. Named specifications may
be parameterized over arbitrary specifications. They may be imported using the given
name. Named morphisms between two specifications can be defined using the keyword
view to express that modulo a specified symbol translation, the source specification
is a logical consequence of the target specification. HASCASL is connected to the Is-
abelle/HOL theorem prover via HETS [9].

The SOLIDWORKS Object Model. In order to obtain a formal representation of CAD
designs, we define the SOLIDWORKS object types as algebraic data types in a HAS-
CASL specification3 following the SOLIDWORKS object hierarchy, using a predefined
polymorphic data type List a of lists over a. (All specifications shown below are
abridged.)

spec SOLIDWORKS = AFFINEREALSPACE3DWITHSETS

then free types
SWPlane ::= SWPlane (SpacePoint : Point; NormalVector : VectorStar;

InnerCS : Vector);
SWArc ::= SWArc (Center : Point; Start : Point; End : Point);
SWLine ::= SWLine (From : Point; To : Point);
SWSpline ::= SWSpline (Points : List Point);
SWSketchObject ::= type SWArc | type SWLine | type SWSpline;
SWSketch ::= SWSketch (Objects : List SWSketchObject;

Plane : SWPlane);
SWExtrusion ::= SWExtrusion (Sketch : SWSketch; Depth : Real);
. . .
SWFeature ::= type SWExtrusion | . . .

This provides a formal syntax of CAD designs, which we then underpin with a formal
geometric semantics. The constructs are classified as follows.

– Base objects are real numbers, vectors , points , and planes , the latter given by a
point on the plane, the normal vector and a vector in the plane to indicate an inner
coordinate system.

3 All mentioned HASCASL specifications can be obtained under https://svn-agbkb.
informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/

https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/
https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/
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– Sketch objects: From base objects, we can construct sketch objects which are lines
defined by a start and an end point, arcs also given by start and end, and additionally
a center point, and splines given by a list of anchor points.

– Sketch: A plane together with a list of sketch objects contained in it constitutes a
sketch .

– Features represent three dimensional solid objects. They can be constructed from
one or more sketches by several feature constructors, which may take additional
parameters.

We will focus in the following on the extrusion feature constructor which represents
the figure that results as the space covered by a sketch when moved orthogonally to the
plane of the sketch for a given distance.

In order to reason formally about SOLIDWORKS designs, we equip them with a
semantics in terms of point sets in three-dimensional affine space (i.e. in R3 equipped
with the standard affine structure). For example, the term SWLine(A,B) is interpreted
as a line segment from point A to point B in R3. Formally, the semantics is based on
point set constructors that correspond to the syntax constructors, specified as follows.

spec SOLIDWORKSSEMANTICCONSTRUCTORS =
AFFINEREALSPACE3DWITHSETS

then ops
VWithLength(v : Vector; s : Real) : Vector =

v when v = 0 else (s / (|| v || as NonZero)) ∗ v;
VPlane(normal : Vector) : VectorSet = λ y : Vector • orth (y, normal);
VBall(r : Real) : VectorSet = λ y : Vector • || y || ≤ r;
ActAttach(p : Point; vs : VectorSet) : PointSet = p + vs;
ActExtrude(ax : Vector; ps : PointSet) : PointSet =
λ x : Point • ∃ l : Real; y : Point

• l isIn closedinterval (0, 1) ∧ y isIn ps ∧ x = y + l ∗ ax;

Using these semantic constructors, the point set interpretation of, e.g., planes and fea-
tures is given by the specification below. Note that the semantics of sketch objects addi-
tionally depends on a plane, which is specified only at the level of the enclosing sketch.
We give a simplified version of the semantics where we ignore the fact that one has to
distinguish between open and closed sketches — open sketches are implicitly equipped
with a default wall thickness, while closed sketches are understood as filled objects.
In particular, we elide the full definition of the semantics of arcs; we are, for purposes
of the case study of Section 4, only interested in the case of closed arcs, which define
discs.

spec SOLIDWORKSWITHSEMANTICS = SOLIDWORKS

and SOLIDWORKSSEMANTICCONSTRUCTORS

then ops
i : SWExtrusion→ PointSet;
i : SWPlane→ PointSet
i : SWSketch→ PointSet;
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is : SWSketchObject × SWPlane→ PointSet;
is : (List SWSketchObject)× SWPlane→ PointSet;
vars o, x, y, z : Point; n : VectorStar; ics : Vector; l : Real;

sk : SWSketch; plane : SWPlane;
sko : SWSketchObject; skos : List SWSketchObject

• i (SWPlane (o, n, ics)) = ActAttach (o, VPlane n);
• is ([ ], plane) = emptySet;
• is (sko :: skos, plane) = is (sko, plane) union is (skos, plane);
• is (SWArc (x, y, z), plane) = . . .
• i (SWSketch (skos, plane)) = is (skos, plane);
• i (SWPlane (o, n, ics)) = ActAttach (o, VPlane n);
• i (SWExtrusion (sk, l))

= ActExtrude(VWithLength (NormalVector (Plane sk), l), i sk);

In the case study of the next section, we will show a concrete example which illustrates
the use of the plug-in in the context of our envisioned development process. Here, the
tool chain connects SOLIDWORKS to HASCASL via the plug-in, and the heterogeneous
tool set HETS then allows for the automatic generation of proof obligations to be dis-
charged in a semiautomatic theorem prover such as Isabelle/HOL. The case study is
mainly concerned with the verification of designs against abstract requirements. Fur-
ther potential uses of the invasive approach include semantic preloading, i.e. automated
rapid prototyping of designs from abstract specifications, as well as requirements trac-
ing and a closer general integration of specifications and designs, e.g. by user-accessible
links between specifications and parts in the SOLIDWORKS design.

4 Case Study: Simple Geometric Objects

We will now illustrate what form a formal strand of the integrated formal/semi-formal
development process advocated above might take on a very basic case study: we con-
struct a simple object in the CAD/CAM system, specifically a cylinder, export its formal
description using our tool, and then formally verify that it implements a prescribed ab-
stract geometric shape, i.e., that it really is a cylinder; here, we use the standard concept
of specification refinement made available in HETS via the syntactic construct of views
as exemplified below.

In practice it turns out that, rather than verify the correctness of a particular design
directly, it is more convenient to develop a library of common design patterns. Given a
formal export of a CAD/CAM object and an abstract specification for this object, we
then only have to match the object term against the patterns in our pattern library, for
which correctness has already been verified once and for all. In Section 4.1 we will
show a sample proof of a design pattern.

Naively, one would imagine that there is really nothing to verify about a geometric
object: a cylinder is a cylinder is a cylinder. But as soon as one starts using a real CAD
system, it becomes clear that the situation is actually more complex. The mathematical
concept of a three-dimensional geometric object is a set of points in three-dimensional
euclidean space, typically described by a general formation principle and a number of
parameters. E.g. in the case of a (solid) cylinder, the parameters are
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– the coordinates of some anchor point, say the centre of the cylinder,
– the spatial direction of the axis,
– the height h and the radius r,

and the formation principle for cylinders prescribes that these parameters describe the
set of points p such that

– p has distance at most r from the axis (regarded as an infinite straight line);
– the orthogonal projection of p onto the axis has distance at most h from the centre

point, and
– p lies in the positive half space determined by the base plane.

On the other hand, the design that we extract from our CAD construction4 takes a totally
different form: instead of defining a point set using the above-mentioned parameters, we
construct the cylinder as a feature by applying a suitable feature constructor to more
basic two-dimensional objects called sketches as laid out in Section 3. Additionally,
we may impose constraints on the dimensions involved, e.g. equality of two sides in
a triangle, a point which we have not explicitly treated in Section 3. Specifically, the
construction of a cylinder in SOLIDWORKS would typically proceed as follows.

– Create a plane.
– Insert a circle into the plane, described as a circular arc with coincident start and

end points.
– Extrude the circle to a certain depth.

Thus, the cylinder is constructed as a feature stemming from the extrusion

g

Fig. 3. Call to the SOLIDWORKS plug-in to export a cylinder

feature con-
structor which
is anchored
in a sketch
consisting of
one sketch
object, a circle.
We shall gen-
erally refer to a
combination of
features as de-
scribed above
as a concrete
design, while
a definition via
mathematical
point sets will
be called an ab-
stract design.

4 The CAD design of the cylinder is available under http://www.informatik.
uni-bremen.de/˜lschrode/SolidWorks/CylinderTestCase.SLDPRT

http://www.informatik.uni-bremen.de/~lschrode/SolidWorks/CylinderTestCase.SLDPRT
http://www.informatik.uni-bremen.de/~lschrode/SolidWorks/CylinderTestCase.SLDPRT
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While in the above case it is easy to see intuitively that the concrete design matches the
abstract design, i.e. that extruding a circle really yields a cylinder, the formalisation of
this intuition is by no means an entirely trivial enterprise, and more complex objects
quickly lead to quite challenging verification tasks – imagine e.g. having to check
that two given circular extrusions of two circles yield two interlocking chain links.
Additional complexity arises from the above-mentioned constraints – e.g. one may
initially leave the height of the cylinder open, cut part of the cylinder off using a
skewed plane placed at a defined angle to the base plane and touching the perimeter of
the bottom circle, and then impose that the height of the short side of the arising cut
cylinder is half that of the long side, thus completely determining the height.

It is therefore desirable to have machine support for checking that an abstract design
is actually implemented by a given concrete design. Besides the mere fact that one can
verify geometric shapes, added benefits include

– Easy proofs of physical and geometric properties of the objects involved – e.g. once
one has matched the abstract cylinder to the concrete cylinder, one can now prove
on the abstract side (much more easily than on the concrete side) that the cylinder
adheres to a prescribed surface area, volume, or mass (if the density is known).

– Better control over the cohesion and consistency of the design – e.g. if it turns out
that the design fails to match the abstract object, this may mean that the designer
has accidentally left extraneous degrees of freedom. Such errors may later lead to
blocked designs that cannot be completed due to unsatisfiability of their constraints,
a notorious problem in computer-aided construction; verification against abstract
designs may help in detecting such errors at an early stage of the development
process.

– The abstract design may in fact properly abstract from the concrete shape of the
final object, e.g. by leaving less relevant dimensions open (within certain ranges)
or omitting features that do not play a central role in the present stage of the design
process, thus providing for a property-centered approach to evolutionary design.

Further possible semantic services enabled by the connection between abstract and con-
crete designs within HETS include semantic annotation and requirements tracing as
discussed in Section 2. A more visionary potential application of abstract designs is
the automated derivation of concrete designs, i.e. rapid prototyping by compilation of
abstract designs into preliminary formally verified CAD documents.

A collection of geometry libraries. The basis of the proposed formal geometric ver-
ification framework is a collection of HASCASL specification libraries, structured as
follows. The abstract specification of three dimensional basic geometry is contained in
a library which provides the fundamental types and objects such as the data types Point
and Vector for points and vectors in R3, types for point sets and vector sets, and op-
erations on these types. These specifications import parametrised specifications from a
library of abstract linear algebra and affine geometry, which provides the basic notions
of a Euclidean vector space such as linear dependency, norm and distance, the inner
product and orthogonality, and the operations which relate points and vectors in affine
geometry. For instance, the basic definition of an affine space, i.e. intuitively a vector
space without origin, is given as follows.
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spec AFFINESPACE[VECTORSPACE[FIELD]] =
type Point
op + : Point × Space→ Point %(point space map)%
vars p, q : Point; v, w : Space
• p + v = p + w⇒ v = w %(plus injective)%
• ∃ y : Space • p + y = q %(plus surjective)%
• p + (v + w) = p + v + w; %(point vector plus associative)%

then %implies
∀ p : Point; v, w : Space
• p + v + w = p + w + v; %(point vector plus commutative)%

end

spec EXTAFFINESPACE [AFFINESPACE[VECTORSPACE[FIELD]]] = %def
op vec : Point × Point→ Space
∀ p, q : Point • p + vec (p, q) = q; %(vec def)%

then %implies
vars p, q, r : Point; v, w : Space
• vec (p, q) + vec (q, r) = vec (p, r) %(transitivity of vec plus)%
• vec (p, q) = − vec (q, p) %(antisymmetry of vec)%
• p + v = q⇒ v = vec (p, q); %(plus vec identity)%

end

(Here, we employ a pattern where specifications are separated into a base part con-
taining only the bare definitions and an extended part containing derived operations,
marked as such by the semantic annotation %def.)

The libraries for SOLIDWORKS consist of the data types and semantics introduced
in Section 3 and common concrete design patterns such as, e.g., the construction of a
cylinder described earlier in this section. They also contain views stating the correct-
ness of these patterns, as exemplified next. Constructions exported from SOLIDWORKS

using our tool can then be matched with design patterns in the library via (trivial) views,
thus inheriting the correctness w.r.t. the abstract design from the design pattern.

4.1 A Proof of a Refinement View

We illustrate the verification of concrete design patterns against abstract designs on our
running example, the cylinder. The abstract design is specified as follows.

spec CYLINDER = AFFINEREALSPACE3DWITHSETS

then op Cylinder(offset : Point; r : RealPos; ax : VectorStar) : PointSet =
λ x : Point • let v = vec (offset, x) in

|| proj (v, ax) || ≤ || ax ||
∧ || orthcomp (v, ax) || ≤ r
∧ (v ∗ ax) ≥ 0;

We wish to match this with the concrete design pattern modelling the CAD construc-
tion process outlined above (importing the previously established fact that planes in
SOLIDWORKS are really affine planes):
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spec SOLIDWORKSCYLBYARCEXTRUSION =
SOLIDWORKSPLANE IS AFFINEPLANE

then op
SWCylinder(center, boundarypt : Point; axis : VectorStar): SWFeature =
let plane = SWPlane (center, axis, V (0, 0, 0));

arc = SWArc (center, boundarypt, boundarypt);
height = || axis ||

in SWExtrusion (SWSketch ([ arc ], plane), height);

view SWCYLBYAE ISCYLINDER : CYLINDER to
{SOLIDWORKSCYLBYARCEXTRUSION

then op
Cylinder(offset : Point; r : RealPos; axis : VectorStar): PointSet =
let boundary = λ p : Point • let v = vec (offset, p)

in orth (v, axis) ∧ || v || = r;
boundarypt = choose boundary

in i (SWCylinder (offset, boundarypt, axis));
}

The above view expresses that every affine cylinder can be realized by our concrete
design pattern. It induces a proof obligation stating that the operation Cylinder defined
in the view by means of i ◦ SWCylinder is equal to the operation Cylinder defined
in the specification Cylinder, the source of the view. Translated into an Isabelle/HOL
assertion via HETS, the proof obligation takes the following shape.

theorem def of Cylinder :
”ALL axis offset r .
Cylinder (( offset , r ), axis ) =
(% x. let v = vec( offset , x)

in ( || proj (v, gn inj ( axis )) || <=’ || gn inj ( axis ) || &
|| orthcomp(v, gn inj ( axis )) || <=’ gn inj( r )) &

v ∗ 4 gn inj ( axis ) >=’ 0’’)”

We will sketch the corresponding proof in Isabelle/HOL, using a slightly more readable
notation than those in the original Isabelle source code5. After the unfolding of function
definitions such as SWCylinder , SWExtrusion , i , ActExtrude and some bookkeeping
steps involving let-environments, conditionals, and function equality, we arrive at an
equivalence of the form

(1) Exists l:Real , y:Point .
(1.1) l in [0..1] /\ (1.2) y in ( ball intersection plane) /\ (1.3) x = y + l ∗ axis

<=> (2)
(2.1) ||vp|| <= ||axis || /\ (2.2) ||vo|| <= r /\ (2.3) v ∗ axis >= 0

with free variables x, offset, r and axis and a local environment containing the
following variable bindings (function symbols are explained in Table 1).

5 The Isabelle source code for this proof can be obtained under https://svn-agbkb.
informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/
SolidWorks/CylinderView.thy

https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/SolidWorks/CylinderView.thy
https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/SolidWorks/CylinderView.thy
https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/SolidWorks/CylinderView.thy
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(0.1) boundary = \p. let v=vec( offset , p) in orth (v, axis ) /\ ||v|| = r
(0.2) bp = choose(boundary)
(0.3) r1 = vec( offset , bp)
(0.4) pln = SWPlane offset axis 0
(0.5) arc = SWArc offset bp bp
(0.6) ht = || axis ||
(0.7) ball = ActAttach( offset , VBall(|| r1 ||))
(0.8) plane = i (pln)
(0.9) v = vec( offset , x)
(0.10) vp = proj (v, axis )
(0.11) vo = orthcomp(v, axis )

Table 1. Function symbols and their meaning

FUNCTION DESCRIPTION

[0..1] closed unit interval
intersectionbinary set intersection

* overloaded binary operator (inner product, scalar multiplication, ...)
|| || norm of a vector
vec the vector connecting two points
orth the orthogonality predicate for two vectors
choose usual choice operator for a predicate
SWPlane SOLIDWORKS constructor for a plane (see Section 3)
SWArc SOLIDWORKS constructor for an arc (see Section 3)
VBall vector set constructor for a ball (see Section 3)
ActAttach point set constructor adding a vector set to a point (see Section 3)
i interpretation function (see Section 3)
proj orthogonal projection of a vector onto another
orthcomp the orthogonal component of an orthogonal decomposition

The key to the proof is the relation between v, y and l and the orthogonal decomposi-
tion of v along the axis: v = vp + vo. From (0.8) together with (0.4) and the
semantics definition for a plane, we obtain plane = offset + VPlane(axis)
= offset + {z | orth(z,axis)}, and with (1.2), which gives us y in
plane, we have y = offset + y’ with y’ satisfying orth(y’,axis). Simi-
larly we obtain from (0.7) that y = offset + y’’ with y’’ <= ||r1|| and
of course y’ = y’’ by injectivity of the addition of vectors to points in affine space.
Substituting y into (1.3) gives us x = offset + y’ + l * axis.

On the other hand, from (0.9) we have x = offset + v = offset +
vo + vp with vp a multiple of axis and vo orthogonal to it. Hence we ob-
tain offset + y’ + l * axis = offset + vo + vp and thus y’ + l

* axis = vo + vp. As l * axis and vp are linearly dependent and each side
of the equation is the unique orthogonal decomposition of v, we obtain finally our rela-
tion as y’ = vo and l * axis = vp. To show (1) => (2) using this relation
it remains to establish the following.
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(1’ ) l in [0..1] /\ (1.2 ’ ) y in ball
=> (2)

(2.1 ’ ) || l ∗ axis || <= ||axis || /\ (2.2 ’ ) ||y’ || <= r
/\ (2.3 ’ ) (vo + l ∗ axis ) ∗ axis >= 0

The rest is now real arithmetic together with the distributive law of the inner product
and some basic facts concerning the inner product and the norm, thus concluding the
correctness proof of the concrete design pattern for cylinders.

5 Conclusion and Further Work

We have argued that systematic engineering design processes (as laid down e.g. in VDI
2221) have many commonalities with software engineering. To transfer methods from
software engineering to engineering design we have to deal with the fact that engi-
neering design processes are considerably less formal and are geared towards produc-
ing CAD/CAM objects instead of program code. We have formulated a semi-formal,
document-oriented design process that integrates CAD/CAM documents with specifi-
cation documents of various degrees of formalisation, up to and including fully formal
specification and verification. To support the CAD/CAM parts of this design process,
we have extended a widely used CAD system with an interface for exporting CAD ob-
jects to the Bremen heterogeneous tool set HETS, specifically to translate them into
specifications in the wide-spectrum language HASCASL. Thereby, we turn CAD de-
signs into fully formal documents, as the export mechanism defines a rigorous geo-
metric semantics for them. Moreover, we have illustrated the formal proof obligations
that may arise in this process, and as a proof of concept, we have presented a sample
proof that verifies the implementation of a simple abstract geometric object by a CAD
design. One of the lessons to be learned from even such a basic case study is that the
matching of concrete CAD designs with geometric concepts should be via a library of
pre-established design and construction patterns. Together with the modularisation fa-
cilities afforded by the use of HASCASL within HETS, such a library will also play an
important role in eventually making formal approaches to engineering design scale to
realistic systems.

The present work forms part of a long-term endeavor where we want to rethink the
systematic engineering design process as a whole. Further steps in this program include
improved automated proof support for geometric proofs possibly using an integration of
computer algebra systems into the HETS framework, rapid prototyping of CAD/CAM
objects from abstract specifications, and verification of CAD/CAM designs against for-
malised industrial standards. The immediate next stage in this process is to go one
step further up the ladder, proceeding from the specification and verification of simple
shapes to simple artifacts such as the hammer. Besides being technically more com-
plex, this leads to a conceptually higher level of abstraction as one will wish to specify
abstract properties rather than the shape of the artifact. The reasoning support for for-
malised geometry may eventually profit from existing results on automated theorem
proving in geometry including [3,15,4,5], either by reuse of concepts or by importing
existing theorems using the heterogeneous mechanisms provided by HETS.
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12. Schröder, L., Mossakowski, T.: HASCASL: Integrated higher-order specification and pro-

gram development. Theoret. Comput. Sci. 410, 1217–1260 (2009)
13. Introducing SolidWorks. SolidWorks Corporation, Concord, MA (2002)
14. VDI-Gesellschaft Entwicklung Konstruktion Vertrieb. Methodik zum Entwickeln und Kon-

struieren technischer Systeme und Produkte (1995), English title: Systematic approach to the
development and design of technical systems and products

15. Wu, W.-T.: Mechanical Theorem Proving in Geometries. Texts and Monographs in Symbolic
Computation, vol. 1. Springer, Heidelberg (1994)



Translating Safe Petri Nets to Statecharts
in a Structure-Preserving Way

Rik Eshuis

Eindhoven University of Technology, School of Industrial Engineering
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

h.eshuis@tue.nl

Abstract. Statecharts and Petri nets are two popular visual formalisms
for modelling complex systems that exhibit concurrency. Both formalisms
are supported by various design tools. To enable the automated exchange
of models between Petri net and statechart tools, we present a structural,
polynomial algorithm that translates safe Petri nets into statecharts. The
translation algorithm preserves both the structure and the behaviour of
the input net. The algorithm can fail, since not every safe net has a stat-
echart translation that preserves both its structure and behaviour. The
class of safe nets for which the algorithm succeeds is formally charac-
terised. Some statechart translations are not constructible by the algo-
rithm, but this does not seem to be a severe limitation in practice.

1 Introduction

While finite state machines are a popular technique for formally modelling the
control flow of simple systems, it has long been recognised that for complex
concurrent systems more powerful techniques are needed. Petri nets [15] and
statecharts [8] are two visual formalisms that extend finite state machines with
constructs for modelling concurrency in succinct way. In practice, both for-
malisms are used side by side. For instance, UML [16] contains both activity
diagrams, which have been inspired by Petri nets, and statecharts.

Both formalisms are supported by various tools, such as GreatSPN [1] and
PEP [6] for Petri nets, and Statemate [10], Stateflow [14], and several UML
tools such as Rational Rose [12] for statecharts. Tools supporting Petri nets, like
GreatSPN and PEP, are strongly focused on analysis of functional and stochastic
properties, while tools supporting statecharts, like Statemate and UML tools, are
usually more focused on interactive simulation and on software code generation.

To allow designers to use both Petri net and statechart tools, it is useful
to have formally defined translations between the two formalisms. Such for-
mal translations enable the automated exchange of models between different
tools [6,7,17]. For instance, a designer can first use a Petri net tool to anal-
yse functional properties of a net design, next use an automated translation to
transform the net into a statechart, and then use a statechart tool to generate
software code.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 239–255, 2009.
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Fig. 1. Example Petri net

Ideally, such translations preserve the behaviour of the original model [7],
neither reducing nor adding behaviour. Moreover, such translations should pre-
serve the syntactic structure of the input models as much as possible, to support
roundtrip engineering and to make it easier for designers to understand the pro-
duced translations. Without the requirement of structure preservation, for each
model with finite behavior a trivial translation exists: compute the transition
system of a model in formalism A, which resembles a finite state machine, and
translate this transition system into formalism B. However, the syntactic struc-
ture of the two models would then be completely different, as the input model
is concurrent but the output model sequential. Moreover, such a translation is
prohibitively expensive for large models due to the state explosion problem.

While structure-preserving translations from statecharts to Petri nets ex-
ist [11,18], translations for the reverse direction are lacking. This paper defines
a structure/behaviour-preserving translation from Petri nets to statecharts, i.e.
a translation that preserves both the structure and the behaviour of the in-
put nets. To introduce the translation, Fig. 1 shows a Petri net and Fig. 2 its
structure/behaviour-preserving statechart translation (the syntax of Petri nets
and statecharts is explained in Sect. 2). To show the correspondence between
both models, statechart BASIC nodes and hyperedges are labelled with the
names of the corresponding Petri net constructs.

As the example shows, the key difficulty in defining the translation algorithm
is constructing the statechart AND/OR tree, which has no counterpart in Petri
net syntax. Still, the translation algorithm we define in this paper is structural: it
maps Petri net syntax to statechart syntax, without using any Petri net analysis
technique like place invariants or reachability graphs. The time complexity of
the algorithm is polynomial, so it scales to large Petri net models.

Not every net has a structure/behaviour-preserving statechart translation, so
the algorithm can fail. For example, in statecharts each node is either present
or not present in the current state, while in Petri nets a place can be present
multiple times in the current state, i.e. a place can contain multiple tokens. In
that case, the place and the Petri net are called unsafe. Therefore, an unsafe
Petri net like Fig. 3(a) has no structure/behaviour-preserving statechart trans-
lation, since an unsafe place cannot map to one BASIC node. Still, by using a
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Fig. 2. Statechart translation and its AND/OR tree for the Petri net in Fig. 1
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Fig. 3. Two Petri nets without structure/behaviour-preserving statechart translations

behaviour-preserving translation from unsafe nets to safe nets [2], also an unsafe
net can be translated to a statechart using the translation algorithm defined this
paper.

However, there do exist safe Petri nets like Fig. 3(b) that have no structure/
behaviour-preserving statechart translation, as we explain in Sect. 5. There we
also show that there are safe nets for which the algorithm does not construct a
statechart even though a structure/behaviour-preserving statechart translation
does exist. Since these statecharts are not constructible by the algorithm, the
algorithm is incomplete. However, such statecharts are not likely to be drawn
in practice, so this does not seem to be a severe limitation. In Sect. 5, we also
formally characterise the subclass of safe nets for which the algorithm returns a
statechart, so the algorithm is sound and complete for this class of Petri nets.

To simplify the exposition, we do not consider transition labels for statecharts
and Petri nets in this paper. This implies we use a generic, abstract statechart
semantics in which a transition is not triggered by an event, but is taken when its
input state nodes are in the current state. The translation defined in this paper
can provide the basis for more advanced translations which deal with events and
data, for example. Moreover, we do not consider weights on Petri net arcs, since
these are only useful for unsafe nets.

The remainder of this paper is structured as follows. Section 2 provides
background on Petri nets and statecharts. Section 3 explains the basics of the
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translation, including two reduction steps on Petri nets. These steps are used in
Sect. 4 in a polynomial translation algorithm. The algorithm preserves the struc-
ture and the behaviour of the input net. Section 5 discusses the expressiveness
and completeness of the translation. Section 6 presents related work. Section 7
winds up with conclusions and further work.

2 Background

We informally present the basics of Petri nets and statecharts. More formal
introductions can be found in an accompanying technical report [5] and in [15]
for Petri nets, and [4] for statecharts.

2.1 Petri Nets

A Petri net (Place/Transition net) consists of places, represented by circles, tran-
sitions, represented by bars, and directed arcs connecting places to transitions
and vice versa. The preset of an element x ∈ P ∪ T , denoted •x, is the set of
elements that have an outgoing arc that enters x, while the postset of x, denoted
x•, is the set of elements that have an incoming arc that leaves x. For example,
in Fig. 1, for t1 we have •t1 = {p1} and t1• = {p2, p4, p6, p11}. We require that
each transition has a non-empty preset and a non-empty postset. If a place is in
the preset(postset) of t, then it is input(output) to t.

As explained in the introduction, we are concerned here with safe nets, which
are nets in which each place contains at most one token, visualised as a black dot.
Places marked with a token belong to the current state (also called marking).
A transition t is enabled in a state if all its input places have a token, so are in
the state. In Fig. 1, transition t1 is enabled. Upon firing, from each input place
a token is removed, and to each output place a token is added.

We require that each net has a single start place ι, like p1 in Fig. 1. For each
place in the net, there must be a path from ι to that place. The initial state of
each net will be {ι}. Standard definitions of Petri nets do not enforce a single
start place, but we use it here to simplify the translation. Furthermore, each safe
net having an initial marking in which set of places X ⊆ P is marked can be
extended into a net with from a conceptual modelling point of view equivalent
behaviour, by adding a single start place ι and a new transition tι with preset
{ι} and postset X .

Formally, a Petri net is a tuple (P, T, F, ι) where P is the set of places, T the
set of transitions such that P ∩ T = ∅, F ⊆ (P × T ) ∪ (T × P ) the set of arcs,
and ι ∈ P the start place. Standard definitions of Petri nets also use weights on
arcs, but since weights are only useful for unsafe nets, we do not consider these.

2.2 Statecharts

Statecharts extend finite state machines with AND/OR decomposition of state
nodes and event broadcasting. As explained in the introduction, we do not focus
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on events, and therefore statechart transitions do not carry any label here. State
nodes are arranged in an AND/OR tree. Visually, the parent-child relation is
represented by nesting the child inside the parent node. Leaves of the tree are
BASIC nodes, while internal nodes are either AND nodes or OR nodes. An AND
node specifies parallel decomposition, while an OR node specifies exclusive-or
decomposition. For technical reasons, the root rt of the tree is always an OR
node. The root is never shown in a statechart diagram. A node x is a descendant
of node y if x = y or x is (indirectly) contained inside y; node y is then ancestor
of x. For example, p2 is descendant of A3 in Fig. 2.

A state C of a statechart, called a configuration, is a maximal set of nodes
that the system can be in simultaneously. Configurations for the statechart in
Fig. 2 are for example {p1, rt} and {p5, p8, p11,O3,O4,O5,O6,A2,A3, rt}. Each
configuration C has to satisfy the following three constraints:

– if a non-root node is in C, its parent is in C too,
– if an AND node is in C, all its children are in C too,
– if an OR node is in C, then one of its children is in C too.

Like Petri nets, nodes in a statechart can be connected by transitions, which
we call hyperedges from now on to avoid confusion with transitions in a Petri
net. Hyperedges can have input nodes (called source nodes) and output nodes
(called target nodes). A hyperedge can have a non-BASIC node as source or
target node. For hyperedge h, set source(h) denotes the set of source nodes of h
while target(h) the set of target nodes. It is required that each pair of nodes in
source(h) and each pair of nodes in target(h) are orthogonal, that is, given two
different sources (targets), the smallest node containing both sources (targets)
is an AND node, so the sources (targets) can be in the same configuration. In
Fig. 4, n2 and n4 are orthogonal since the smallest node containing both is AND
node A. We adopt the UML notation for statecharts: a hyperedge with a single
source node and a single target node is visualised as a simple directed edge, while
a hyperedge having more than one source or target node is visualised as a bar
having incoming and outgoing edges.

A hyperedge is enabled if all its source nodes are in the current configuration.
However, the computation of the state reached after taking the hyperedge is more
involved than for Petri nets, since the next state has to satisfy the constraints
for configurations. First, all nodes below the scope of h are left, so they are
removed from the current configuration. The scope of h is the smallest OR node
that contains all the input and output nodes of h, i.e., all other OR node that
contain all the input and output nodes also contain the scope of h. For example,
the scope of hyperedge t6 in Fig. 2 is O5.

Next, the targets of h (and their ancestors below the scope of h) are added to
the state. If the resulting state is not a configuration, then target(h) is not com-
plete. For instance, in Fig. 4, the target set of h4 is incomplete, since {n5,O2,A,rt}
is not a configuration, as it contains AND node A, but not all children of A. Harel
and Naamad [10] explain a static procedure for normalising statecharts, in which
each incomplete target set X of a hyperedge is extended into a complete target
set. The resulting hyperedges with complete target sets are called full compound
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Fig. 4. Non-normalised statechart

transitions [10]. A complete description of the procedure is out of scope here,
but an important element is the use of the default child node (pointed to by an
arrow leaving a black dot) for each OR node that causes incompletion of X . For
example, the default node of O1 in Fig. 4 is BASIC node n3, and therefore the
complete target set for h4 is {n3, n5}.

Our translation maps Petri nets to normalised statecharts, such as the one in
Fig. 2. Note that a normalised statechart is like an ordinary statechart, except
that default nodes are superfluous, since each hyperedge already has a complete
target set. Therefore, we omit default nodes from the statechart definition.

Formally, a (normalised) statechart is a tuple (N,H,source,target,child,type,I).
Set N contains the nodes, set H the hyperedges, where N ∩H = ∅. Functions
source, target : H −→P(N) specify for each hyperedge the non-empty sets of
input nodes and output nodes, respectively. Predicate child ⊆ N ×N relates a
node to its parent node, so (n, n′) ∈ child means n is child of n′. There should
be one node rt that has no parent, so rt is the root of the tree. Function type :
N −→{BASIC,AND,OR} assigns to each node from N its type. A node is BASIC
if and only if it has no children. Set I ⊆ N is the initial configuration. For non-
normalised statecharts, I can be computed by taking the default completion of
OR root rt [4], similar to the way target sets are completed [10]. Our translation
will construct I explicitly.

3 Translation Basics

In this section, we explain the basics of the translation algorithm defined in the
next section.

Preserving structure. To ensure that the constructed translation is structure-
preserving, the algorithm maps each place to a BASIC node and each transition
t with preset X and postset Y to a hyperedge h having source set X and target
set Y . Both mappings are bijective. Thus, the translation algorithm embeds the
Petri net structure in the statechart structure.

Building the AND/OR tree. The AND/OR nodes of the statechart have no coun-
terpart in the Petri net, but are constructed by the translation algorithm. These
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nodes have to be arranged in a tree, the leaves of which are the BASIC nodes.
To construct the internal nodes of the tree, of type AND and OR, transitions
are processed. For each transition t, an OR node o must be created which acts
as the scope of hyperedge t in the statechart. Moreover, if t has a non-singleton
preset (postset), then the places in the preset (postset) are active in parallel,
so an AND node, child of o, needs to be constructed that contains all BASIC
nodes in •t (t•). For example, for transition t3 in Fig. 1, in the corresponding
statechart in Fig. 2 AND node A1 has been created.

Nesting nodes. Complicating issue is that an AND node can be nested inside
another AND node. For example, in Fig. 2, AND node A1 is nested inside A2
and A3. Thus, the translation algorithm cannot create for the postset of t1 an
AND node a with four OR children that have the output places of t1 as BASIC
children; instead, it needs to create an AND node with two OR children, in
one of which AND nodes A2 and A1 are nested. To create a proper nesting, we
construct the AND/OR tree bottom-up. So, when creating the AND/OR tree
for the Petri net in Fig. 1, first AND node A1 and its OR children is constructed,
then A2 and its OR children, and finally A3 and its OR children.

Ordering of transitions. To ensure that the tree is constructed bottom-up, tran-
sitions need to be processed in a certain order. For example, we see that in Fig. 2
the scope of hyperedge t2 (OR node O1) is more nested than that of t1 (root
rt). Therefore, the transition t2 needs to be processed before t1.

The ordering constraint we use is that a transition t1 should be processed
before a transition t2, written t1 ≺ t2, if either •t1 ⊂ t2• or t1• ⊂ •t2. In both
cases, in the resulting statechart the scope of hyperedge t1 is nested inside the
scope of t2. Therefore t1 needs to be processed before t2. A transition t can only
be processed if there exists no other transition t′ such that t′ ≺ t.

Processing of transitions. Conceptually, the actual construction of the AND/OR
tree is done by letting each place link to a partial AND/OR tree that has an OR
root. A transition is processed by reducing it, as well as its preset and postset, to
a single place. The AND/OR tree of this new place is constructed by aggregating
the AND/OR trees of the places in the pre- and postset of t.

To simplify the presentation, we let each place be the root of the corresponding
tree, rather than annotating a place with a tree. Initially, for each place p a
corresponding tree, consisting of OR root op and its child p is constructed. Place
op replaces p in the original input net. Figure 5 shows for the example Petri net
in Fig. 1 the initial net and the initially constructed AND/OR trees.

Next, we explain the reduction steps, in which the AND/OR trees get merged,
in detail.

Reduction step 1. The first reduction step consists of two substeps that are
symmetrical, one reducing the preset of a transition, the other its postset. In
step 1a, the non-singleton preset Q = {q1, . ., qn} of transition t is reduced to a
place p that becomes the single input place of t. If t already has a singe input
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Fig. 5. Initial Petri net and initially constructed AND/OR trees for Fig. 1

p

q1

...

qn

...

t
qn

q1

t 2

t 1

...Petri net

AND/OR tree

...

...

...

...

... t

t 2

t 1

...

...

...

...
q1

...

qn

...

...

a

p
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place, step 1a is skipped. Otherwise, each transition in T that has a place in
Q as input or output place, instead gets p as input or output place. If such a
neighbouring transition has multiple places in Q in its preset or postset, these
are all removed and replaced by single place p. The AND/OR tree for p is
constructed by creating an AND node a which becomes child of new OR root
p. Children of a are the places in Q, which are the roots of the corresponding
trees. Figure 6 specifies reduction step 1a graphically.

However, step 1a is only allowed if each place in Q has the same input and
output transitions, and skipped otherwise. If the condition were dropped, this
reduction step would violate the statechart syntax or not preserve behaviour:

– Statechart syntax is violated if a transition t′ has some places of Q in its
postset, but not all. To see why, suppose that step 1a is executed, so an
AND node a is created that is parent of all places in Q. Let q ∈ Q be a place
that is not in the postset of t′. Then each BASIC node in the AND/OR tree
linked to q is orthogonal to each of the BASIC nodes in Q. So t′ maps to a
hyperedge that has an incomplete target set Q. But normalised statecharts
only allow hyperedges with complete target sets.
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Fig. 7. Applying reduction step 1a for t3 in Fig. 1 (t2, t5, t7 have been processed)

To illustrate this: the net in Fig. 3(b) violates the condition for t = t2 due to
t′ = t3. Executing step 1a for t2 would create an AND node for the preset of
t2, but then the target set of t3 is incomplete (BASIC node p2 is lacking).

– Behaviour is not preserved if a transition t′ leaves some places in Q but not
all. By similar reasoning as in the previous case, executing step 1a would map
t to a hyperedge that has an incomplete source set, i.e., there is a BASIC
node outside the source set that is orthogonal to each state in the source
set. Taking such a hyperedge implies that a BASIC node is left that is not
a source of the hyperedge. For instance, if in Fig. 4 hyperedge h5 is taken
in configuration {n3, n4,O1,O2,A, rt}, then the next configuration will be
{n6, rt}. So BASIC node n4 is left even though it was not a source of h5. In
Petri nets, such behaviour is impossible due the locality principle [3], which
states that each transition can only consume tokens from places that are in
its preset. Thus, mapping a transition to a hyperedge with an incomplete
source set does not preserve behaviour.

To illustrate reduction step 1a, we show how t3 from Fig. 5 is reduced. The
reduced net in the top-left of Fig. 7 has been obtained after processing transitions
t2, t5 and t7. Note that t6 �≺ t7, so t7 can reduced before t6. Next, the preset
of transition t3 in Fig. 7 can be reduced. The resulting Petri net and AND/OR
trees are shown on the right.

In step 1b, step 1a is repeated but then for the postset of t. Again, step 1b
is skipped if the postset is a singleton or if not each place in Q has the same
input and output transitions. Reduction step 1b can be specified graphically by
reversing all arrows between places q1, . ., qn, p and transition t in Fig. 6.

Reduction step 2. The second step reduces a transition t with a single input
place q and a single output place r to a new place p. If the preset or postset
of t is not a singleton, step 2 is skipped. Otherwise, all transitions in T that
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Fig. 9. Applying reduction step 2 for t3 in Fig. 1

have q or r as input or output place, instead get p as input or output place. The
AND/OR tree of p is constructed by merging the roots of the two trees of q and
r. Figure 8 specifies the reduction step graphically.

However, this reduction is only allowed if there is not a transition t′ that
has both q and r in its preset or both q and r in its postset. If the condition
were dropped, this reduction step would result in BASIC nodes q, r not being
orthogonal, since they have the same OR parent, namely p, while they are both
source or target node of hyperedge t′, which violates the statechart syntax. For
instance, in Fig. 3(a), if transition t2 has been reduced and replaced by a place
p that is output place of t1 and p3, then t3 cannot be reduced next in step 2,
since t1 has both the input place (p3) and output place (p) of t3 in its postset.

Continuing with the processing of t3, the reduced net on the righthand side in
Fig. 7 can be further reduced since t3 has a single input place o2,3,4 and a single
output place o5. Figure 9 shows the resulting net and the node hierarchies.
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Failure. If one the steps cannot be applied since its condition is not met, then
the translation algorithm fails. In some peculiar cases, a structure/behaviour-
preserving statechart translation may exist; see the detailed discussion in Sect. 5.

4 Algorithm

We now explain the actual translation algorithm PetriNetToStatechart

in detail. The algorithm expects as input a Petri net (P, T, F, ι) and returns a
statechart. If the translation fails, the returned statechart is empty. Due to space
limitations, formal definitions of the reduction steps and the updates of variables
child and type have been omitted; they can be found in a technical report [5].
A prototype tool implementing the algorithm is available for download from
http://is.ieis.tue.nl/staff/heshuis/pn2sc.

The algorithm uses three variables, child, type, and root, that will be used
as part of the returned statechart structure. Variable child models the child-of
relation of the statechart nodes, which are places from the Petri net plus the
new places created by the reduction steps. We use U to denote the universe of
all possible places, where P ⊆ U . Variable type is a function assigning to each
node its type. Variable root is the root node of the constructed statechart.

In the actual procedure, first a copy of the input Petri net is created. This
copy is passed as parameter to the algorithm constructTree, which computes
child, type and root. A copy is passed and not the original net, since at l. 10
the presets and postsets of the original net are used, not the ones of the reduced
net. If constructTree has computed a non-empty relation child, a statechart
SC is constructed and returned. Nodes of SC are all places in P plus the places
created by constructTree, which equals the domain of function type. The
initial configuration is the initial place of the input net, which is a child of root.
Otherwise, if child is empty, then no AND/OR tree could be constructed and
therefore the empty statechart is returned.
1: procedure PetriNetToStatechart((P,T, F, ι))
2: var child : P(U × U)
3: var type : U −→{BASIC, AND, OR}
4: var root : U
5: begin
6: (P ′, T ′, F ′, ι′) := (P, T, F, ι)
7: child := ∅; type := ∅
8: constructTree((P ′, T ′, F ′, ι′))
9: if child �= ∅ then

10: SC := (dom(type),T, {t �→•t | t∈T}, {t �→t• | t∈T}, child, type,{ι, root})
11: else
12: SC := (∅, ∅, ∅, ∅, ∅, ∅, ∅)
13: end if
14: return SC
15: end

We now detail the most important procedure, constructTree, which is a
subprocedure of the main procedure. First, for each place p a new place op is
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constructed, which acts as OR parent of p in the constructed node hierarchy.
Place op replaces p in the net. Next, each transition from T is processed in a
while loop. A transition t ∈ T is selected for processing if it is a lower bound
according to ≺, i.e., there is no other transition t′ ∈ T such that •t′ ⊂ t• or
•t′ ⊂ t•. For the example net in Fig. 5, the lower bound transitions are t2, t4,
t5, and t7. Note that by definition of ≺, for example t3 �≺ t1 and t4 �≺ t5.
16: procedure constructTree((P, T, F, ι))
17: for p ∈ P do
18: replace p with new place op; let op be OR parent of p (upd. child, type)
19: end for
20: while T �= ∅ do
21: t := a lower bound of T using ≺

During the processing of t, the two reduction steps specified in Sect. 3 are
applied if their preconditions are met. If step 2 cannot be applied, then either
step 1a or 1b could not be applied. Consequently, the procedure can stop, reset
child, and return (l. 34), since no structure/behaviour-preserving statechart can
be constructed. If one the places q or r is the initial place ι, then ι must be
updated with the new place p (l. 31).

If the while loop is finished, so there are no more transitions in T , then single
place ι remains. This place is root of the constructed AND/OR tree. Therefore,
root is updated with ι (l. 37).
22: if each pair q1, q2 ∈ •t has equal pre- and postsets then
23: apply reduction step 1a (upd. child, type)
24: end if
25: if each pair r1, r2 ∈ t• has equal pre- and postsets then
26: apply reduction step 1b (upd. child, type)
27: end if
28: if •t = {q} and t• = {r} and �t′ ∈ T : q, r ∈ •t′ ∨ q, r ∈ t′• then
29: apply reduction step 2 (upd. child, type)
30: if ι = q ∨ ι = r then
31: ι := the new place p
32: end if
33: else
34: child := ∅; return
35: end if
36: end while
37: root := ι
38: end procedure
39: end procedure

In an accompanying technical report [5], the algorithm is proven correct, i.e.,
if a non-empty statechart is returned, the translation is behaviour-preserving:
the behaviour of the statechart is isomorphic to the behaviour of the input net.
Also in [5], the worst-case time complexity is shown to be quadratic in the size
of the input Petri net.
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5 Analysis

We analyse the expressiveness and completeness of the translation algorithm.

Expressiveness. To characterise the class of nets for which the algorithm returns
a non-empty statechart, we first need the auxiliary notion of an area, which is a
new concept in Petri net theory. Let PN = (P, T, F, ι) be a Petri net and X ⊆ P
be a nonempty set of places. Then X is an area if and only if for every t ∈ T ,
•t ⊆ X ⇔ t• ⊆ X . For example, in Fig. 1, sets {p2, p3} and {p2, p3, p4, p5} are
areas, but {p5} is not. Given a set of places X ⊆ P , the minimal area of X ,
denoted minArea(X), is the minimal set of places Y ⊆ P such that X ⊆ Y and
Y is an area. For example, minArea({p3, p4}) = {p2, p3, p4, p5}.

We use the notion of area to define the notion of cover. Let X be the preset or
postset of some transition t. Then the cover of X , written cover(X) is defined to
be
⋃

x∈X minArea({x}). If the translation succeeds, then the AND node created
for X contains all places in cover(X) as BASIC nodes. For example, in Fig. 1,
cover({p3, p4}) = {p2, p3, p4}. The places in this set are BASIC descendants of
A1 in Fig. 2. Note that p5 is not included in cover({p3, p4}).

A Petri net PN has nestable covers if and only if for every X,Y ⊆ P such that
X and Y are preset or postset of some transitions in T , cover(X)∩cover(Y ) �= ∅
implies cover(X) ⊆ cover(Y ) or cover(Y ) ⊆ cover(X). The net in Fig. 10 does
not have nestable covers, since cover(t2•) and cover(•t5) are not nestable. But
both unsafe nets in Fig. 3 do have nestable covers, so we need an additional
criterion to rule out those nets.

A transition t has consistent areas if and only if for every set X,Y ⊆ P such
that X∪Y ⊆ •t or X∪Y ⊆ t•, if X∩Y = ∅ then minArea(X)∩minArea(Y ) = ∅.
A Petri net PN has consistent areas if each transition has consistent areas. The
nets in Fig. 3 do not have consistent areas: in both nets, minArea({p2}) ∩
minArea({p3}) �= ∅. In Fig. 3(b), minArea({p3}) = {p1, p2, p3, p4}.

In the technical report [5], we prove that the algorithm returns a non-empty
statechart if and only if the input Petri net has nestable covers and consistent
areas. Thus, the algorithm is sound and complete for this class of Petri nets.

This result implies that for Fig. 10 no structure-preserving statechart transla-
tion exists, due to place p5 which synchronises two parallel branches. However, in
statecharts cross-synchronisation is typically expressed with event broadcasting.
For example, Fig. 10 can map to a statechart in which there is no BASIC node
corresponding to p5 and in which hyperedge t2 generates an event that trig-
gers hyperedge t5. Thus, there does exist a statechart translation with similar
behaviour as the Petri net, but the translation is not structure-preserving. Ex-
tending our translation to handle safe nets with cross-synchronisation by using
statecharts with event broadcasting is part of future work.

As a final note on the expressiveness of the translation, consider the example
net in Fig. 1. It exhibits a high degree of (block-)structuredness, since it does
not contain choices or loops. In the corresponding statechart in Fig. 2, no goto-
like constructs are used: for example OR nodes O1, O2, O4, and O6 each have
a single entry and a single exit point. However, the example in Fig. 11 shows
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Fig. 10. Safe Petri net with cross-synchronisation which has no structure-preserving
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Fig. 11. Unstructured Petri net for which the algorithm constructs the same AND/OR
tree as in Fig. 2

that the algorithm can also deal with unstructured nets that have a mixture of
choices and loops: transition t8 leaves the loop headed by p6 in a goto-like way.
The AND/OR tree constructed for this example by the algorithm is the same as
in Fig. 2, but now for instance O4 has two exit points: p7 (for t8) and p8 (for t6).

Incompleteness. Still there are Petri nets that are outside the class defined above,
but for which structure/behaviour-preserving statechart translations do exist. In
this sense, the algorithm is incomplete. Statecharts which the algorithm fails to
construct contain OR nodes with unconnected BASIC descendants. For instance,
the algorithm cannot construct a statechart for the Petri net in Fig. 12(b), since
the non-singleton presets and postsets {p1,p2} and {p2,p3} cannot be reduced.
A structure/behaviour-preserving statechart translation does exist, as shown in
the same figure. Note that the BASIC descendants p1 and p3 of the OR node
are not connected by any hyperedge with a scope lower than or equal to O1.

In practice, this incompleteness does not seem to be a severe limitation. Stat-
echarts in which some OR nodes contain unconnected BASIC children do not
occur in practice, since a common though unwritten rule of thumb is to group
only related (connected) BASIC nodes in an OR node, as can be inferred from
the many statechart examples in the literature, e.g. [4,8]. A much more obvious
translation for the Petri net in Fig. 12(b) is to use statecharts with overlap-
ping [9] and to construct a statechart with two overlapping AND nodes, one
for {p1,p2} and one for {p2,p3}.
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Fig. 12. Petri net and corresponding structure/behaviour-preserving statechart trans-
lation that the algorithm cannot construct

6 Related Work

Only a few papers consider translations from Petri nets to statecharts. The only
published work with a considerable amount of detail is a paper by Schnabel et
al. [19]. They outline an interactive method to translate a safe Petri net into
a statechart. A place invariant is a set of places for which the sum of tokens
in these places remains constant during any execution. Roughly speaking, each
invariant maps to a parallel OR node o of a statechart, and each place in the
invariant to a BASIC node in o. Since the same place can occur in several place
invariants, it can translate into several BASIC nodes. Schnabel et al. outline
some ways to prevent such duplications, but sometimes duplications cannot be
avoided, for example for the net in Fig. 11. Our approach does not duplicate
places and is fully automated.

For UML 1.x activity diagrams, whose syntax resembles Petri net syntax,
a syntactic constraint was defined to give them a semantics in terms of UML
statecharts [16]. For Petri nets, the constraint states that each transition having
more than two output places is followed by a matching transition having the
same number of input places, and that different pairs of transitions are properly
nested, so a transition can only match one other transition. Each pair of match-
ing transitions translates into an AND node. Our translation does not impose
such a constraint on input nets (cf. the nets in Fig. 1 and 11), so it is more
general.

As stated in the introduction, translations for the reverse direction, from stat-
echarts to Petri nets, appear quite frequently in the literature (e.g. [11,18]). Main
difference with our approach is that our translation constructs the AND/OR tree,
while these other translations remove the AND/OR tree by omitting composite
nodes. So our translation is more complex than these reverse translations.

Finally, Kishinevsky et al. [13] define a Petri net variant that incorporates
some statechart features. The variant, called place chart net, uses hierarchy on
places and preemptive transitions: a transition does not only empty its input
places but also all descendant places of the input places. However, the relation
between place chart nets and Petri nets is not formally analysed.
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7 Conclusion

We have defined a polynomial algorithm that translates a subclass of safe Petri
nets to statecharts in a structure-preserving way, so constructed statecharts re-
semble the input nets. The algorithm is structural and does not use any Petri
net analysis technique. Moreover, it preserves the behaviour of the input net.
Since the algorithm is polynomial, it is also efficient for large Petri nets.

There are several directions for further work. First, by considering statecharts
with event broadcasting, the translation can be extended to deal with a broader
class of safe nets. Also, the algorithm can be extended to statecharts with over-
lapping [9]. On the more applied side, the algorithm can be used as a foundation
for implementing model transformations between UML activity diagrams, which
resemble Petri nets, and UML statecharts [16]. Activity diagrams can specify
the stateful behaviour of objects, whose lifecycles are independently specified in
UML statecharts. The translation algorithm can be used to transform object
behaviour specified in UML activity diagrams into UML statecharts, either to
check consistency with an existing object lifecycle or to synthesise an object
lifecycle from scratch.
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Abstract. Predictive analysis aims at detecting concurrency errors during run-
time by monitoring a concrete execution trace of a concurrent program. In re-
cent years, various models based on happens-before causality relations have been
proposed for predictive analysis to improve the interleaving coverage while en-
suring the absence of false alarms. However, these models are based on only
the observed events, and typically do not utilize source code. Furthermore, the
enumerative algorithms they use for verifying safety properties in the predicted
execution traces often suffer from the interleaving explosion problem. In this pa-
per, we introduce a new symbolic causal model based on source code and the
observed events, and propose a symbolic algorithm to check whether a safety
property holds in all feasible permutations of events in the given execution trace.
Rather than explicitly enumerating the interleavings, our algorithm conducts the
verification using a novel encoding of the causal model and symbolic reasoning
with a satisfiability modulo theory (SMT) solver. Our algorithm has a larger in-
terleaving coverage than known causal models in the literature. We also propose
a method to symbolically bound the number of context switches allowed in an
interleaving, to further improve the scalability of the algorithm.

1 Introduction

Predictive analysis aims at detecting concurrency errors by observing execution traces
of a concurrent program which themselves may be non-erroneous. Due to the inherent
nondeterminism in scheduling concurrent processes/threads, executing a program with
the same test input may lead to different program behaviors. This poses a significant
challenge in testing—even if a test input may cause a failure, the erroneous interleaving
manifesting the failure may not be executed during testing. Furthermore, merely exe-
cuting the same test multiple times does not always increase the interleaving coverage.
In predictive analysis, a concrete execution trace is given, together with a correctness
property in the form of assertions embedded in the trace. The given execution trace need
not violate the property, but there may exist an alternative trace, i.e., a feasible permu-
tation of events of the given trace, that violates the property. The goal of predictive
analysis is to detect such erroneous traces by statically analyzing the given execution
trace without re-executing the program.

Existing predictive analysis algorithms can be classified into two categories based
on the quality of reported bugs. The first category consists of methods that do not miss
real errors but may report bogus errors. Historically, algorithms based on lockset anal-
ysis [1,2,3] fall into the first category. They strive to cover all possible interleavings
that are feasible permutations of events of the given trace, but at the same time may
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introduce some interleavings that can never appear in the actual program execution.
The second category consists of methods that do not report bogus errors but may miss
some real errors. In these methods [4,5,6], various causal models have been used, with
many inspired by Lamport’s happens-before causality [7]. They provide the feasibility
guarantee–that all the reported erroneous interleavings are actual program executions,
but they may not cover all interleavings allowed by the program source code.

This paper also focuses on predictive analysis algorithms with the feasibility guar-
antee. In this context, one can view the given execution trace as a total order of events
appearing in the trace, and view the causal model as a partial order of events, which ad-
mits the given trace as well as many alternative interleavings. However, two significant
problems remain to be solved. First, checking all the feasible interleavings allowed by
a causal model for property violations is a bottleneck. Despite the long quest for more
coverage in causal models, little has been done to improve the underlying checking al-
gorithms. Existing methods [4,5,6] often rely on explicit enumeration of interleavings,
which does not scale when the number of interleavings is large. In reality, the more gen-
eral a causal model is, the larger the number of interleavings it admits. Second, these
causal models often do not assume that source code is available, and therefore rely on
observing only the concrete events during execution. In a concrete event, typically the
values read from or written to shared memory locations are available, whereas the actual
program code that produces the event is not known. Consequently, often unnecessarily
strong happens-before causality is imposed to achieve the desired feasibility guarantee.

In this paper, we propose a symbolic predictive analysis algorithm to address these
two problems. We assume that the source code is available for instrumentation to obtain
symbolic events at runtime. We introduce a symbolic causal model based on program
source code and observed events in a trace. The new model is designed to achieve
the goal of covering more interleavings; it also facilitates a constraint-based modeling
where various concurrency primitives or semantics (locks, semaphores, happens-before,
sequential consistency, etc.) are handled easily and uniformly. More specifically, we
make the following contributions:

– We introduce a concurrent trace program as a symbolic predictive model to capture
feasible interleavings that can be predicted from a given execution trace.

– We propose a safety property checking algorithm using a concurrent static single
assignment (CSSA) based encoding and symbolic reasoning with a SMT solver.
The symbolic search automatically captures property- or goal-directed pruning,
through conflict analysis and learning features in modern SMT solvers.

– We propose a simple method to symbolically bound the number of context switches
in an interleaving, which further improves the scalability of our algorithm.

If desired, our symbolic algorithm can be further constrained to match the interleaving
coverage of known causal models in the literature. In effect, our new model has a larger
interleaving coverage than the existing models.

The remainder of this paper is organized as follows. In Section 2, we provide a
motivating example and illustrate our ideas. In Section 3, we formally define execution
traces and our predictive model. In Section 4, we present the SMT-based symbolic
property checking algorithm. In Section 5, we present the symbolic encoding to enforce
context-bounding. In Section 6, we demonstrate how our algorithm can be constrained
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to match a more restrictive causal model [6]. We present our experimental results in
Section 7. We review related work in Section 8 and give our conclusions in Section 9.

2 Motivating Example

Fig. 1 shows a multithreaded program execution trace, modified from an example in
[6]. There are two concurrent threads T1 and T2, three shared variables x, y and z,
two thread-local variables a and b, and a counting semaphore l. The semaphore l can
be viewed as an integer variable initialized to 1. acq(l) acquires the semaphore when
(l > 0) and decreases l by one, while rel(l) releases the semaphore and increases l by
one. The initial program state is x = y = 0. The sequence ρ = t1–t11t13 of statements
denotes the execution order of the given trace. The correctness property is specified as
an assertion in t12. The given trace ρ does not violate this assertion. However, a feasible
permutation of this trace, ρ′ = (t1–t4)t9t10t11t12t13(t5–t8), exposes the error.

To our knowledge, none of the sound causal models in the literature, including
[7,4,5,6], can predict this error. By sound, we mean that the predictive technique does
not generate false alarms (most of the lockset based algorithms are not sound). For in-
stance, if Lamport’s happens-before causality is used to define the feasible trace permu-
tations of ρ, the execution order of all read-after-write event pairs in ρ, which are over
the same shared variable, must be respected. It means that event t8 must be executed be-
fore t10 and event t7 must be executed before t11. These happens-before constraints are
sufficient but often not necessary to ensure that the admitted traces are feasible—many
other feasible interleavings are left out.

Various causal models proposed subsequently aimed at lifting some of these
happens-before constraints without jeopardizing the feasibility guarantee [4,5,6]. How-
ever, when applied to the example in Fig. 1, none of them can predict the erroneous
trace ρ′ = (t1–t4)t9t10t11t12t13(t5–t8). Consider, for example, the maximal causal
model in [6]. The model relies on the axioms of semaphore and sequential consistency
and is general enough to subsume other known causal models. This model allows all the
classic happens-before constraints to be lifted, except for the one stating that event t7
must happen before t11. Changing their execution order may lead to a different program
state. As a result, the model in [6] cannot be used to predict the error in ρ′.

The reason these sound models cannot predict the error in Fig. 1 is that they model
events in ρ as the concrete values read from or written to shared variables. Such concrete
events are tied closely to the given trace. Consider t11 :if(x>b), for instance; it is
regarded as an event that reads value 1 from variable x. This is a partial interpretation
because other program statements, such as if(b>x), if(x>1), and even assignment
b:=x, may produce the same event. Consequently, unnecessarily strong happens-before
constraints are imposed over event t11 to ensure the feasibility of all admitted traces,
regardless of what statement produces the event.

In contrast, we model the execution trace as a sequence of symbolic events by consid-
ering the program statements that produce ρ and capturing abstract values (e.g. relevant
predicates). For instance, we model event t11 as assume(x > b), where assume(c)
means the condition c holds when the event is executed, indicating that t11 is pro-
duced by a branching statement and (x > b) is the condition taken. We do not use
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the happens-before causality to define the set of admitted traces. Instead, we allow all
possible interleavings of these symbolic events as long as the sequential consistency
semantics of a concurrent program execution is respected. In the running example, it
is possible to move symbolic events t9–t12 ahead of t5–t8 while still maintaining the
sequential consistency. As a result, our new algorithm, while maintaining the feasibility
guarantee, is capable of predicting the erroneous behavior in ρ′.

Thread T1 Thread T2

t1 : a := x
t2 : acq(l)
t3 : x := 2 + a
t4 : rel(l)
t5 : y := 1 + a
t6 : acq(l)
t7 : x := 1 + a
t8 : rel(l)

t9 : b := 0
t10 : acq(l)
t11 : if(x > b)
t12 : assert(y == 1)
t13 : rel(l)

Fig. 1. The sequence of executed program
statements (x=y=0 initially)

t1 : 〈1, (assume(true ), {a := x}) 〉
t2 : 〈1, (assume(l > 0), {l := l − 1}) 〉
t3 : 〈1, (assume(true ), {x := 2 + a}) 〉
t4 : 〈1, (assume(true ), {l := l + 1}) 〉
t5 : 〈1, (assume(true ), {y := 1 + a}) 〉
t6 : 〈1, (assume(l > 0), {l := l − 1}) 〉
t7 : 〈1, (assume(true ), {x := 1 + a}) 〉
t8 : 〈1, (assume(true ), {l := l + 1}) 〉

t9 : 〈2, (assume(true ), {b := 0}) 〉
t10 : 〈2, (assume(l > 0), {l := l − 1}) 〉
t11 : 〈2, (assume(x > b), { }) 〉
t12 : 〈2, (assert(y = 1) ) 〉
t13 : 〈2, (assume(true ), {l := l + 1}) 〉

Fig. 2. The symbolic representation of the
execution trace (x=y=0 initially)

3 Preliminaries

In this section, we define programs, execution traces, and concurrent trace programs.
Concurrent trace programs are our models for symbolic predictive analysis.

3.1 Programs and Execution Traces

A concurrent program has a finite set of threads and a finite set SV of shared variables.
Each thread Ti, where 1 ≤ i ≤ k, has a finite set of local variables LV i.

– Let T id = {1, . . . , k} be the set of thread indices.
– Let Vi = SV ∪ LV i, where 1 ≤ i ≤ k, be the set of variables accessible in Ti.

The remaining aspects of a concurrent program, including the control flow and the
expression syntax, are intentionally left unspecified in order to be more general. Instead,
we directly define the symbolic execution traces.

A symbolic execution trace of a program is a finite sequence of events ρ = t1 . . . tn.
An event t ∈ ρ is a tuple 〈tid, action〉, where tid ∈ T id is a thread index and action is
an atomic computation. An action in thread Ti may be one of the following:

– (assume(c), asgn) is the atomic guarded assignment action, where
• asgn is a set of assignments, each of the form v := exp, where v ∈ Vi is a

variable and exp is an expression over Vi.
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• assume(c) means the conditional expression c over Vi must be true for the
assignments in asgn to execute.

– assert(c) is the assertion action. The conditional expression c over Vi must be true
when the event is executed; otherwise, an error is raised.

Each event in the execution trace is unique. If a statement in the textual representation
of the program is executed again, e.g., when it is inside a loop or a routine called by
multiple threads, a new event will be generated at run time [8].

By defining the expression syntax suitably, the symbolic trace representation can
model the execution of any shared-memory multithreaded program. Details on model-
ing generic C/C++ language constructs are not directly related to concurrency; for more
information refer to recent efforts in [9,10].

The guarded assignment action has the following three variants: (1) when the guard
c = true, it can model normal assignments in a basic block; (2) when the assignment set
asgn is empty, assume(c) or assume(¬c) can model the execution of a branching state-
ment if(c)-else; and (3) with both the guard and the assignment set, it can model
the atomic check-and-set operation, which is the foundation of all types of concurrency
primitives. For example, acquiring a counting semaphore l can be modeled as the action
(assume(l > 0), {l := l − 1}).
Example. Fig. 2 shows an example symbolic execution trace representation, which cor-
responds to ρ in Fig. 1. Note that the synchronization primitive acq(l) in t2 is modeled
as an atomic guarded assignment action. The normal assignment in t1 is modeled with
assume(true). The if -statement in t11 is modeled with asgn being an empty set.

3.2 Concurrent Trace Programs

The semantics of a symbolic execution trace is defined using a state transition system.
Let V = SV ∪

⋃
i LV i, 1 ≤ i ≤ k, be the set of all program variables and Val be a

set of values of variables in V . A state is a map s : V → Val assigning a value to each
variable. We also use s[v] and s[exp] to denote the values of v ∈ V and expression exp

in state s. We say that a state transition s
t−→ s′ exists, where s, s′ are states and t is

an event in thread Ti, 1 ≤ i ≤ k, iff one of the following conditions holds:

– t = 〈i, (assume(c), asgn)〉, s[c] is true, and for each assignment v := exp in asgn,
s′[v] = s[exp] holds; states s and s′ agree on all other variables.

– t = 〈i, assert(c)〉 and s[c] is true. When s[c] is false, an attempt to execute event t
raises an error.

Let ρ = t1 . . . tn be a symbolic execution trace of a concurrent program P . It defines
a total order on the symbolic events. From ρ we can derive a partial order called the
concurrent trace program (CTP).

Definition 1. The concurrent trace program of ρ is a partially ordered set CTPρ =
(T,�) such that,

– T = {t | t ∈ ρ} is the set of events, and
– � is a partial order such that, for any ti, tj ∈ T , ti � tj iff tid(ti) = tid(tj) and

i < j (in ρ, event ti appears before tj).
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In the sequel, we will say a transition t ∈ CTPρ to mean that t ∈ T is associated with
the CTP. Intuitively, CTPρ orders events from the same thread by their execution order
in ρ; events from different threads are not explicitly ordered with each other. Keeping
events symbolic and allowing events from different threads to remain un-ordered with
each other is the crucial difference from existing sound causal models [7,4,5,6].

We guarantee the feasibility of predicted traces through the notion of feasible lin-
earizations of CTPρ. A linearization of this partial order is an alternative interleaving
of events in ρ. Let ρ′ = t′1 . . . t′n be a linearization of CTPρ. We say that ρ′ is a fea-
sible linearization iff there exist states s0, . . . , sn such that, s0 is the initial state of

the program and for all i = 1, . . . , n, there exists a transition si−1
t′i−→ si. Note that

this definition captures the standard sequential consistency semantics for concurrent
programs, where we modeled concurrency primitives such as locks by using auxiliary
shared variables in atomic guarded assignment events.

4 Symbolic Predictive Analysis Algorithm

Given an execution trace ρ, we derive the model CTPρ and symbolically check all its
feasible linearizations for property violations. For this, we create a formula ΦCTPρ such
that ΦCTPρ is satisfiable iff there exists a feasible linearization of CTPρ that violates
the property. Specifically, we use an encoding that creates the formula in a quantifier-
free first-order logic to facilitate the application of off-the-shelf SMT solvers [11].

4.1 Concurrent Static Single Assignment

Our encoding is based on transforming the concurrent trace program into a concurrent
static single assignment (CSSA) form, inspired by [12]. The CSSA form has the prop-
erty that each variable is defined exactly once. Here a definition of variable v ∈ V is
an event that modifies v, and a use of v is an event where it appears in an expression.
In our case, an event defines v iff v appears in the left-hand-side of an assignment; an
event uses v iff v appears in a condition (an assume or the assert) or the right-hand-side
of an assignment.

Unlike in the classic sequential SSA form, we need not add φ-functions to model
the confluence of multiple if-else branches because in a concurrent trace program, each
thread has a single control path. The branching decisions have already been made during
program execution resulting in the trace ρ.

We differentiate shared variables in SV from local variables in LVi, 1 ≤ i ≤ k.
Each use of variable v ∈ LVi corresponds to a unique definition, a preceding event in
the same thread Ti that defines v. For shared variables, however, each use of variable
v ∈ SV may map to multiple definitions due to thread interleaving. A π-function is
added to model the confluence of these possible definitions.

Definition 2. A π-function, introduced for a shared variable v immediately before its
use, has the form π(v1, . . . , vl), where each vi, 1 ≤ i ≤ l, is either the most recent
definition of v in the same thread as the use, or a definition of v in another concurrent
thread.
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Therefore, the construction of CSSA consists of the following steps:

1. Create unique names for local/shared variables in their definitions.
2. For each use of a local variable v ∈ LVi, 1 ≤ i ≤ k, replace v with the most recent

(unique) definition v′.
3. For each use of a shared variable v ∈ SV , create a unique name v′ and add the

definition v′ ← π(v1, . . . , vl). Then replace v with the new definition v′.

Example. Fig. 3 shows the CSSA form of the CTP in Fig. 2. We add new names π1–π9

and π-functions for the shared variable uses. The condition (x > b) in t11 becomes
(π7 > b1) where π7 ← π(x0, x1, x2) denotes the current value of shared variable x
and b1 denotes the value of local variable b defined in t9. The names x0, x1, x2 denote
the values of x defined in t0, t3 and t7, respectively. Event t0 is added to model the
initial values of the variables.

t0 : 〈1, (assume(true ), {x0 := 0, y0 := 0, l0 := 1}) 〉
t1 : 〈1, (assume(true ), {a1 := π1}) 〉 where π1 ← π(x0)
t2 : 〈1, (assume(π2 > 0 ), {l1 := π2 − 1}) 〉 where π2 ← π(l0, l5, l6)
t3 : 〈1, (assume(true ), {x1 := 2 + a1}) 〉
t4 : 〈1, (assume(true ), {l2 := π3 + 1}) 〉 where π3 ← π(l1, l5, l6)
t5 : 〈1, (assume(true ), {y1 := 1 + a1}) 〉
t6 : 〈1, (assume(π4 > 0 ), {l3 := π4 − 1}) 〉 where π4 ← π(l2, l5, l6)
t7 : 〈1, (assume(true ), {x2 := 1 + a1}) 〉
t8 : 〈1, (assume(true ), {l4 := π5 + 1}) 〉 where π5 ← π(l3, l5, l6)

t9 : 〈2, (assume(true ), {b1 := 0}) 〉
t10 : 〈2, (assume(π6 > 0 ), {l5 := π6 − 1}) 〉 where π6 ← π(l0, l1, l2, l3, l4)
t11 : 〈2, (assume(π7 > b1), { }) 〉 where π7 ← π(x0, x1, x2)
t12 : 〈2, (assert(π8 = 1) ) 〉 where π8 ← π(y0, y1)
t13 : 〈2, (assume(true ), {l6 := π9 + 1}) 〉 where π9 ← π(l0, l1, l2, l3, l4, l5)

Fig. 3. The CSSA form of the concurrent trace program

Semantics of π-Functions. Let v′ ← π(v1, . . . , vl) be defined in event t, and each vi,
1 ≤ i ≤ l, be defined in event ti. The π-function may return any of the parameters as the
result depending on the write-read consistency in a particular interleaving. Intuitively,
(v′ = vi) in an interleaving iff vi is the most recent definition before event t. More
formally, (v′ = vi), 1 ≤ i ≤ l, holds iff the following conditions hold,

– event ti, which defines vi, is executed before event t; and
– any event tj that defines vj , 1 ≤ i ≤ l and j �= i, is executed either before the

definition ti or after the use t.

4.2 CSSA-Based SAT Encoding

We construct the quantifier-free first-order logic formula ΦCTP
1 based on the notion

of feasible linearizations of CTP (in Section 3.2) and the π-function semantics (in Sec-
tion 4.1). The construction is straightforward and follows their definitions. The entire

1 We omit the subscript ρ in CTPρ where it is understood from the context.
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formula ΦCTP consists of the following four subformulas:

ΦCTP := ΦPO ∧ ΦV D ∧ ΦPI ∧ ¬ΦPRP

where ΦPO encodes the program order, ΦV D encodes the variable definitions, ΦPI

encodes the π-functions, and ΦPRP encodes the property.
To help present the encoding algorithm, we use the following notations:

– first event tfirst: we add a dummy event tfirst to be the first executed event in the
CTP. That is, ∀t ∈ CTP and t �= tfirst, event t must be executed after tfirst;

– last event tlast: we add a dummy event tlast to be the last executed event in the
CTP. That is, ∀t ∈ CTP and t �= tlast, event t must be executed before tlast;

– first event tifirst of thread Ti: for each i ∈ T id, this is the first event of the thread;
– last event tilast of thread Ti: for each i ∈ T id, this is the last event of the thread;
– thread-local preceding event: for each event t, we define its thread-local preced-

ing event t′ as follows: tid(t′) = tid(t) and for any other event t′′ ∈ CTP such
that tid(t′′) = tid(t), either t′′ � t′ or t � t′′.

– HB-constraint: we use HB(t, t′) to denote that event t is executed before event
t′. The actual constraint comprising HB(t, t′) is described in the next section.

Path Conditions. For each event t ∈ CTP , we define path condition g(t) such that t
is executed iff g(t) is true. The path conditions are computed as follows:

1. If t = tfirst, or t = tifirst where i ∈ T id, let g(t) := true.
2. Otherwise, t has a thread-local preceding event t′.

– if t′ has action (assume(c), asgn), let g(t) := c ∧ g(t′);
– if t′ has action assert(c), let g(t) := g(t′).

Note that an assert event does not contribute to the path condition.

Program Order (ΦPO). Formula ΦPO captures the event order within each thread. It
does not impose any inter-thread constraint. Let ΦPO := true initially. For each event
t ∈ CTP ,

1. If t = tfirst, do nothing;
2. If t = tifirst, where i ∈ T id, let ΦPO := ΦPO ∧HB(tfirst, t

i
first);

3. If t = tlast, let ΦPO := ΦPO ∧
∧

∀i∈Tid HB(tilast , tlast );
4. Otherwise, t has a thread-local preceding event t′; let ΦPO := ΦPO ∧HB(t′, t).

Variable Definition (ΦV D). Formula ΦV D is the conjunction of all variable definitions.
Let ΦV D := true initially. For each event t ∈ CTP ,

1. If t has action (assume(c), asgn), for each assignment v := exp in asgn, let
ΦV D := ΦV D ∧ (v = exp);

2. Otherwise, do nothing.

The π-Function (ΦPI ). Each π-function defines a new variable v′, and ΦPI is a con-
junction of all these variable definitions. Let ΦPI := true initially. For each
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v′ ← π(v1, . . . , vl) defined in event t, where v′ is used; also assume that each vi,
1 ≤ i ≤ l, is defined in event ti. Let

ΦPI := ΦPI ∧
l∨

i=1

(v′ = vi) ∧ g(ti) ∧HB(ti, t) ∧
l∧

j=1,j �=i

(HB(tj , ti) ∨HB(t, tj))

Intuitively, the π-function evaluates to vi iff it chooses the i-th definition in the π-set
(indicated by g(ti)∧HB(ti, t)), such that any other definition vj , 1 ≤ j ≤ l and j �= i,
is either before ti, or after this use of vi in t.

Assertion Property (ΦPRP ). Let t ∈ CTP be the event with action assert(c), which
specifies the correctness property.

ΦPRP := (g(t)→ c)

Intuitively, the assertion condition c must hold if t is executed. Recall that ΦPRP is
negated in ΦCTPρ to search for property violations.

Example. Fig. 4 illustrates the CSSA-based encoding of the example in Fig. 3, where
the subformulas that form ΦPO and ΦV D are listed. In the figure, t0, t14 are the dummy
entry and exit events. ΦPRP (at t12) is defined as ¬g12 ∨ (π8 = 1). The subformula in
ΦPI for π7 ← π(x0, x1, x2) in t11 is defined as follows:

t11 : ( π7 = x0 ∧ (true) ∧HB(t11, t3) ∧HB(t11, t7)
∨π7 = x1 ∧ g3 ∧HB(t3, t11) ∧true ∧HB(t11, t7)
∨π7 = x2 ∧ g7 ∧HB(t7, t11) ∧true ∧true)

Note that some HB-constraints evaluate to constant false and true—such simplification
is frequent and is performed in our implementation to reduce the formula size.

Let n be the number of events in a CTP, nπ be the number of shared variable uses,
and lπ be the maximal number of parameters in any π-function. Our encoding produces
a formula of size O(n+ nπ × l2π). Although in the worst case—when each event reads
and writes all shared variables—(nπ × l2π) becomes O(n3), it is rare in realistic appli-
cations. The reason is that shared variable accesses in a concurrent program are often
kept few and far in between, especially when compared to computations within threads,
to minimize the synchronization overhead. In contrast, conventional bounded model
checking (BMC) algorithms, e.g. [13,14], often generate significantly larger formulas.
To cover all feasible interleavings in a CTP, the BMC unrolling depth needs to be n, and
within each time frame all the n events need to be modeled. Furthermore, the BMC for-
mula size cannot be easily reduced even though lπ and nπ are significantly smaller than
n. In Section 7, we will present experimental comparison of our CSSA-based encoding
with the BMC algorithm in [13].

4.3 Proof of Correctness

Recall that for two arbitrary events t and t′, the constraint HB(t, t′) denote that t must
be executed before t′. Consider a model where we introduce for each event t ∈ CTP
a fresh integer variable O(t) denoting its execution time2. A satisfiable solution for

2 The execution time is an integer denoting its position in the linearization.
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Path Conditions:

t0 :
t1 : g1 = true
t2 : g2 = g1 ∧ (π2 > 0)
t3 : g3 = g2
t4 : g4 = g3
t5 : g5 = g4

t6 : g6 = g5 ∧ (π4 > 0)
t7 : g7 = g6
t8 : g8 = g7

t9 : g9 = true
t10 : g10 = g9 ∧ (π6 > 0)
t11 : g11 = g10 ∧ (π7 > b1)
t12 : g12 = g11
t13 : g13 = g13
t14 :

Program Order:

HB(t0, t1)
HB(t1, t2)
HB(t2, t3)
HB(t3, t4)
HB(t4, t5)
HB(t5, t6)
HB(t6, t7)
HB(t7, t8)

HB(t0, t9)
HB(t9, t10)
HB(t10, t11)
HB(t11, t12)
HB(t12, t13)
HB(t8, t14) ∧ HB(t13, t14)

Variable Definitions:

x0 = 0 ∧ y0 = 0 ∧ l0 = 1
a1 = π1

l1 = π2 − 1
x1 = 2 + a1
l2 = π3 + 1
y1 = 1 + a1
l3 = π4 − 1
x2 = 1 + a1

l4 = π5 + 1

b1 = 0
l5 = π6 − 1

l6 = π9 + 1

Fig. 4. The CSSA-based symbolic encoding of the CTP in Fig. 3

ΦCTPρ therefore induces values of O(t), i.e., times of all events in the linearization.
The constraint HB(t, t′) is captured as follows:

HB(t, t′) := O(t) < O(t′)

We now state the correctness of our encoding.

Theorem 1. Formula ΦCTP is satisfiable iff there exists a feasible linearization of the
CTP that violates the assertion property.

Proof. The encoding closely follows our definitions of CTP, feasible linearizations, and
the semantics of π-functions. The proof is straightforward and is omitted for brevity.

5 Symbolic Context Bounding

In this section, we present a symbolic encoding that effectively bounds the number of
context switches allowed by an interleaving.

Traditionally, a context switch is defined as the computing process of storing and
restoring the CPU state (context) when executing a concurrent program, such that mul-
tiple processes or threads can share a single CPU resource. The idea of using context
bounding to reduce complexity in verifying concurrent programs was introduced by
Qadeer and Rehof [15]. Several subsequent studies have confirmed [16,17] that concur-
rency bugs in practice can often be exposed in interleavings with a surprisingly small
number of context switches.

Example. Consider the running example in Fig. 1. If we restrict the number of context
switches of an interleaving to 1, there are only two possibilities:

ρ′ = (t1t2 . . . t8)(t9t10 . . . t13)
ρ′′ = (t9t10 . . . t13)(t1t2 . . . t8)
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In both cases the context switch happens when one thread completes its execution.
However, none of the two traces is erroneous; and ρ′′ is not even feasible. When we
increase the context bound to 2, the number of admitted interleavings remains small but
now the following trace is included:

ρ′′′ = (t1t2t3)(t9t10t11t12)(t4 . . . t8)

The trace has two context switches and exposes the error in t12 (where y = 0).

5.1 Revisiting the HB-Constraints

We defined HB(t, t′) as O(t) < O(t′) earlier. However, the strictly-less-than con-
straint is sufficient, but not necessary, to ensure the correctness of our encoding. To
facilitate context bounding, we modify the definition of HB(t, t′) as follows:

1. HB(t, t′) := O(t) ≤ O(t′) if one of the following conditions hold: tid(t) =
tid(t′), or t = tfirst, or t′ = tlast.

2. HB(t, t′) := O(t) < O(t′) otherwise.

Note first that, if two events t, t′ are from the same thread, the execution time O(t)
need not be strictly less than O(t′) to enforce HB(t, t′). This is because the CSSA
form, through the renaming of definitions and uses of thread-local variables, already
guarantees the flow-sensitivity within each thread; that is, implicitly, a definition always
happens before the subsequent uses. Therefore, when tid(t) = tid(t′), we relax the
definition of HB(t, t′) by using less than or equal to3.

Second, if events t, t′ are from two different threads (and t �= tfirst, t �= tlast), ac-
cording to our encoding rules, the constraint HB(t, t′) must have been introduced by
the subformula ΦPI encoding π-functions. In such case, HB(t, t′) means that there is
at least one context switch between the execution of t and t′. Therefore, when tid(t) �=
tid(t′), we force event t to happen strictly before event t′ in time.

5.2 Adding the Context Bound

Let b be the maximal number of context switches allowed in an interleaving. Given the
formula ΦCTPρ as defined in the previous section, we construct the context-bounded
formula ΦCTPρ(b) as follows:

ΦCTPρ(b) := ΦCTPρ ∧ (O(tlast)−O(tfirst) ≤ b)

The additional constraint states that tlast, the unique exit event, must be executed no
more than b steps later than tfirst, the unique entry event.

The execution times of the events in a trace always form a non-decreasing sequence.
Furthermore, the execution time is forced to increase whenever a context switch hap-
pens, i.e., as a result of HB(t, t′) when tid(t) �= tid(t′). In the above constraint, such
increases of execution time is limited to less than or equal to b4.

3 When HB(t, t′) is a constant, we replace it with true or false.
4 In CHESS [16], whose exploration algorithm is purely explicit rather than symbolic, a variant

is used to count only the preemptive context switches.
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Theorem 2. Let ρ′ be a feasible linearization of CTPρ. Let CB(ρ′) be the number of
context switches in ρ′. If CB(ρ′) ≤ b and ρ′ violates the correctness property, then
ΦCTPρ(b) is satisfiable.

Proof. Let m = CB(ρ′). We partition ρ′ into m + 1 segments seg0 seg1 . . . segm

such that each segment is a subsequence of events without context switch. Now we
assign an execution time (integer) for all t ∈ ρ′ as follows: O(t) = i iff t ∈ segi,
where 0 ≤ i ≤ m. In our encoding, only the HB-constraints in ΦPO and ΦPI and the
context-bound constraint refer to the O(t) variables. The above variable assignment is
guaranteed to satisfy these constraints. Therefore, if ρ′ violates the correctness property,
then ΦCTPρ(b) is satisfiable. ��

By the same reasoning, if CB(ρ′) > b, trace ρ′ is excluded by formula ΦCTPρ(b).

5.3 Lifting the CB Constraint

In the context bounded analysis, one can empirically choose a bound bmax and check
the satisfiability of formula ΦCTPρ(bmax). Alternatively, one can iteratively set b =
1, 2, . . . , bmax; and for each b, check the satisfiability of the formula

ΦCTPρ ∧ (O(tlast)−O(tfirst) = b)

In both cases, if the formula is satisfiable, an error has been found. Otherwise, the SMT
solver used to decide the formula can return a subset of the given formula as a proof
of unsatisfiability. More formally, the proof of unsatisfiability of a formula f , which is
unsatisfiable, is a subformula funsat of f such that funsat itself is also unsatisfiable.

The proof of unsatisfiability funsat can be viewed as a generalization of the given
formula f ; it is more general because some of the constraints of f may not be needed
to prove unsatisfiability. In our method, we can check whether the context-bound con-
straint appears in funsat. If the context-bound constraint does not appear in funsat, it
means that, even without context bounding, the formulaΦCTPρ itself is unsatisfiable. In
other words, we have generalized the context-bounded proof into a proof of the general
case—that the property holds in all the feasible interleavings.

6 Relating to Other Causal Models

In this section, we show that our symbolic algorithm can be further constrained to match
known causal models in the literature. By doing this exercise, we also demonstrate that
our algorithm has a larger interleaving coverage. Since the maximal causal model [6],
proposed recently by Serbănută, Chen and Rosu, has the capability of capturing more
feasible interleavings than prior sound causal models, we will use it as an example. In
this case, our algorithm provides a symbolic property checking algorithm, in contrast
to their model checking algorithm based on explicit enumeration.

We assume that during the program execution, only events involving shared objects
are monitored, and except for synchronization primitives, the program code that pro-
duces the events are not available. Therefore, an event is in one of the following forms:
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– A concurrency synchronization/communication primitive;
– Reading value val from a shared variable v ∈ SV ;
– Writing value val to a shared variable v ∈ SV .
– An assertion event (the property);

Example. We slightly modify the example in Fig. 1 as follows: we always replace
t3 : x := 2 + a with t′3 : x := 1 + a. The sequence of concrete events in ρ is shown
in Fig. 5. There still exists an erroneous trace that violates the assertion in t12. The
difference between the two examples is subtle: in the original example, the erroneous
trace ρ′ in Section 2 cannot be predicted by the maximal causal model; whereas in the
modified example, the erroneous trace can be predicted by the maximal causal model.
The reason is that in the modified example, the program code in t′3 and t7 produce
identical events in ρ: Writing value 1 to the shared variable x. Therefore, t11 can be
moved ahead of t5 but after t4 (the permutation satisfies the sequential consistency
axioms used in the maximal causal model).

Thread T1 Thread T2

t1 : reading 0 from x
t2 : acq(l)
t′3 : writing 1 to x
t4 : rel(l)
t5 : writing 1 to y
t6 : acq(l)
t7 : writing 1 to x
t8 : rel(l)

t9 : nop
t10 : acq(l)
t11 : reading 1 from x
t12 : assert(y == 1)
t13 : rel(l)

Fig. 5. The concrete event sequence

� � t1 : 〈 1, (assume(x = 0), { }) 〉
t2 : 〈 1, (assume(l > 0 ), {l := l − 1 }) 〉

� � t′3 : 〈 1, (assume(true ), {x := 1 }) 〉
t4 : 〈 1, (assume(true ), {l := l + 1 }) 〉

� � t5 : 〈 1, (assume(true ), {y := 1 }) 〉
t6 : 〈 1, (assume(l > 0 ), {l := l − 1 }) 〉

� � t7 : 〈 1, (assume(true ), {x := 1 }) 〉
t8 : 〈 1, (assume(true ), {l := l + 1 }) 〉

� � t9 : 〈 2, (assume(true ), { }) 〉
t10 : 〈 2, (assume(l > 0 ), {l := l − 1 }) 〉

� � t11 : 〈 2, (assume(x = 1), { }) 〉
t12 : 〈 2, (assert(y = 1) ) 〉
t13 : 〈 2, (assume(true ), {l := l + 1 }) 〉

Fig. 6. The reduced causal model

Let CTPρ = (T,�) be the model as in Definition 1. We derive the constrained
model CMρ as shown in Fig. 6. Whenever an event has a different form in CMρ

from the one in CTPρ (Fig. 2), we mark it with the symbol ��. Note that all the
semaphore events remain symbolic, whereas the rest are underapproximated into con-
crete values. For instance, event t1 is reduced from 〈1, (assume(true), {a := x})〉 to
〈1, (assume(x = 0), { })〉, because value 0 is being read from the shared variable x in
the given trace ρ. Similarly, event t′3 is reduced from 〈1, (assume(true), {x := 1+a})〉
to 〈1, (assume(true), {x := 1})〉, because the right-hand-side expression evaluates to
1 in ρ. These events are no longer symbolic. Note that concrete events correspond to
constant values, which can be propagated to further simplify the constraints in our en-
coding. However, these also result in less coverage in CMρ than CTPρ.

Semantics of the Constrained CTP. Since CMρ shares the same symbolic represen-
tation as CTPρ, the notion of feasible linearizations of a CTP, defined in Section 3.2,
and the symbolic algorithm in Section 4 remain applicable. In the running example, the
erroneous trace ρ′ = (t1t2t′3t4)t9t10t11t12t13(t5–t8) is admitted by CMρ.
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Table 1. Experimental results of symbolic predictive analysis (MO–memory out 800 MB)

The Test Program The Given Trace Run Time (s) Run Time (s)
program name threads shared / vars property length slicing predict predict-cb BMC[13] Explicit
banking-2 2 97 / 264 passed 843 1.4 0.1 0.1 0.3 36.5
banking-2a 2 97 / 264 error 843 1.4 0.1 0.1 7.2 1.2
banking-5 5 104 / 331 passed 1622 1.7 0.3 0.1 2.7 >600
banking-5a 5 104 / 331 error 1622 1.7 0.1 0.1 >600 1.8
banking-10 10 114 / 441 passed 2725 7.0 1.6 0.6 31.8 >600
banking-10a 10 114 / 441 error 2725 7.0 0.1 0.1 MO 2.8
indexer-10 10 285 / 539 passed 3000 1.1 0.1 0.1 0.1 12.8
indexer-15 15 305 / 669 passed 4277 2.3 0.1 0.1 >600 >600
indexer-15a 15 305 / 669 error 4277 2.2 0.4 0.2 >600 >600
indexer-20 20 325 / 799 passed 5647 4.0 0.4 0.1 MO >600
indexer-20a 20 325 / 799 error 5647 4.1 3.2 0.7 MO >600
indexer-25 25 345 / 829 passed 7482 6.0 0.9 0.1 MO >600
indexer-25a 25 345 / 829 error 7482 6.1 26.1 9.8 MO >600

7 Experiments

We have implemented the proposed symbolic predictive analysis algorithm in a tool
called Fusion. Our tool is capable of handling symbolic execution traces generated by
arbitrary multi-threaded C programs using the Linux PThreads library. We use the Yices
SMT solver [11] to solve the satisfiability formulas.

We have conducted preliminary experiments using the following benchmarks. The
first set consists of C variants of the banking example [18] with known bugs due to
atomicity violations. Unlike previous work [3,5,6], we directly check the functional
correctness property, stating the consistency of all bank accounts at the end of the exe-
cution; this is a significantly harder problem than detecting data races [5,6] or atomicity
violations [3] (which may not cause a violation of the functional property). The second
set of benchmarks are the indexer examples from [19], which we implemented using
C and the Linux PThreads library. In these examples, multiple threads share a hash ta-
ble with 128 entries. With less than 12 threads, there is no hash table collision among
different threads—although this fact cannot be easily inferred by purely static analysis.
With more than 12 threads, the number of irredundant interleavings (after partial order
reduction) quickly explodes. In our experiments, we set the number of threads to 15,
20, and 25, respectively. Our properties are assertions stating that no collision has hap-
pened on a particular hash table entry. The experiments5 were conducted on a PC with
1.6 GHz Intel processor and 2GB memory running Fedora 8.

Table 1 shows the results. The first three columns show the statistics of the test cases,
including the name, the number of threads, and the number of shared and total variables
(that are accessed in the trace). The next two columns show whether the given (non-
erroneous) trace has an erroneous permutation, and the trace length after slicing. The
next three columns show the run times of trace capturing and slicing, our symbolic
analysis, and our context-bounded symbolic analysis (with bound 2). The final two

5 Examples’re available at http://www.nec-labs.com/∼chaowang/pubDOC/predict-example.tar
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columns show the run times of a BMC algorithm [13] with the unrolling depth set to
the trace length and an explicit search algorithm enhanced by DPOR [19].

The slicing in our experiments is thread-sensitive and the traces after slicing consist
of mostly irreducible shared variable accesses—for each access, there exists at least
one conflicting access from a concurrent thread. The number of equivalence classes
of interleavings is directly related to the number of such shared accesses (worst-case
double-exponential [15]). In the indexer examples, for instance, since there is no hash
table collision with fewer than 12 threads, the problem is easier to solve. (In [19], such
cases were used to showcase the power of the DPOR algorithm in dynamically detecting
these non-conflicting variable accesses). However, when the number of threads is set
to 15, 20, and 25, the number of collisions increases rapidly. Our results show that
purely explicit algorithms, even with DPOR, do not scale well in such cases. This is
likely a bottleneck for other explicit enumeration based approaches as well. The BMC
algorithm did not perform well because of its large formula sizes as a result of explicitly
unrolling the transition relation. In contrast, our symbolic algorithm remains efficient
in navigating the large search space.

8 Related Work

The fundamental concept used in this paper is the partial order over the events in an
execution trace. This is related to the happens-before causality introduced by Lamport
in [7]. However, Lamport’s happens-before causality, as well as the various subsequent
causal models [4,5,6], has a strictly less interleaving coverage than our model. Our use
of the HB constraints to specify the execution order among events is related to, but is
more abstract than, the logical clocks [7] and the vector clocks [20].

Our symbolic encoding is related to, but is different from, the SSA-based SAT en-
coding [9], which is popular for sequential programs. We use difference logic to directly
capture the partial order. This differs from CheckFence [21], which explicitly encodes
ordering between all pairs of relevant events (shared variable accesses) in pure Boolean
logic. Our context-bounded analysis differs from the work in [17], since they do not
use SAT, but reduce concurrent programs to sequential programs and then use SMV.
TCBMC [22] also uses context-bounding in their symbolic encoding. However, it has
to a priori fix the number of bounded context switches. In contrast, our method in Sec-
tion 4 is for the unbounded case—the context-bounding constraint in Section 5 is op-
tional and is used to further improve performance. Furthermore, all the aforementioned
methods were applied to whole programs and not to trace programs.

At a high level, our work also relates to dynamic model checking [23,16,24,13].
However, these algorithms need to re-execute the program when exploring different
interleavings, and in general, they are not property-directed. Our goal is to detect er-
rors without re-executing the program. In our previous work [8], we have used the
notion of concurrent trace program but the goal was to prune the search space in dy-
namic model checking. In this work, we use the CTP and the CSSA-based encoding
for predictive analysis. To our knowledge, this is the first attempt at symbolic predictive
analysis.
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9 Conclusions

In this paper, we propose a symbolic algorithm for detecting concurrency errors in all
feasible permutations of events in a give execution trace. The new algorithm uses a suc-
cinct concurrent static single assignment (CSSA) based encoding to generate an SMT
formula such that the violation of an assertion property exists iff the SMT formula is sat-
isfiable. We also propose a symbolic method to bound the number of context switches
in an interleaving. The new algorithm can achieve a better interleaving coverage, and
at the same time is more scalable than the explicit enumeration algorithms used by the
various existing methods for predictive analysis. Besides predictive analysis, we believe
that our CSSA-based encoding can be useful in many other contexts, since it is general
enough to handle any bounded straight-line concurrent program.
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Abstract. While various specification languages for concurrent-system
design exist today, it is often not clear which specification language is
more suitable than another for a particular case study. To address this
problem, we study four different specification languages for the same
2×2 Switch case study: TLA+, Bluespec, Statecharts, and the Algebra
of Communicating Processes (ACP). By slightly altering the design in-
tent of the Switch, we obtain more complicated behaviors of the Switch.
For each design intent, we investigate how each specification, in each of
the specification languages, captures the corresponding behavior. By us-
ing three different criteria, we judge each specification and specification
language. For our case study, however, all four specification languages
perform poorly in at least two criteria! Hence, this paper illustrates,
on a seemingly simple case study, some of the prevailing difficulties of
concurrent-system design.

Keywords: formal specification languages, local reasoning, adaptability,
non-functional requirements.

1 Introduction

Many papers on concurrent-system design introduce a specification language,
backed up by multiple case studies. This paper, in contrast, studies various
specification languages for a particular case study, i.e. a 2×2 Switch. In fact,
we will examine three different behaviors of the Switch by means of the same
specification language, and do this for four different languages: TLA+, Bluespec,
Statecharts, and the Algebra of Communicating Processes (ACP).

To compare specifications, we introduce three criteria in Sections 1.1-1.3. The
importance of each criterion depends primarily on the designer’s purpose to use
the specification language.
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1.1 Local Reasoning

In order to introduce our first criterion, we present the following line of thought.
The complexity encountered when specifying a concurrent system is proportional
to the degree of global spatial and temporal reasoning that is required on behalf
of the designer. Global spatial reasoning is synonymous for reasoning across rela-
tively many spatial elements of the system under investigation (i.e., the Switch).
For example, a designer who reasons across four different buffers of the Switch
applies more global spatial reasoning than a designer who only has to reason
across a maximum of two buffers while specifying the Switch’s behavior. Global
temporal reasoning is synonymous for reasoning across relatively many states of
the system. A designer who reasons across five consecutive states of the Switch’s
underlying Finite State Machine applies more global temporal reasoning than a
designer who only has to reason across a maximum of two consecutive states.

Global (spatial and temporal) reasoning may depend on either the case study,
the chosen specification language, or both. An important remark is, that, if global
reasoning for the Switch is not influenced by the chosen specification language,
then there is little to gain from our subsequent discussions in terms of global rea-
soning. Our analysis, however, will show that the chosen specification language
does in fact matter. For instance, global reasoning about a TLA+ specification
generally differs from that of an ACP specification, even though the amount of
global reasoning can be the same in both cases.

Our first criterion, therefore, is the local (as opposed to global) reasoning that
is required by the designer in order to specify the Switch’s behavior.

Local Reasoning as an Ideal. It should be noted, however, that since each
system is built from localized components that work together by means of some
form of communication, we view local reasoning more as an ideal than as a
realistic attribute of a specification language. We also stress that it is a subjective
matter as to whether a specification language should avoid global reasoning as
much as possible or not.

The ideal of local reasoning is best illustrated by means of a Kahn Process
Network (KPN). In his 1974 paper [7], Kahn showed that if (i) each component
process in a KPN is monotonic and continuous, and if (ii) the communications
between such processes are infinitely buffered, then (iii) the entire system is de-
terministic and deadlock-free. Proving (i) and (ii) only requires local reasoning,
while the result (iii) is a global property of the system under investigation. How-
ever, when confronted with a realistic (i.e. implementable) system, property (ii)
does not hold. This, in turn, results in global reasoning when proving correctness
claims, such as deadlock-freedom.

1.2 Adaptability

A second criterion is adaptability to variations in design intent. A specification
language is adaptable for the Switch case study if it is capable of coping well with
variations in the design intent of the Switch. For instance, consider two specifi-
cations in the same language of a simple 2×2 Switch and a more complicated
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2×2 Switch, respectively. Is the second specification, relative to the complicated
Switch’s behavior, as “clear” as the original specification relative to the simple
Switch’s behavior?

Unfortunately, we currently lack a practically applicable metric for “clarity”.
However, instead of ignoring the second criterion altogether, we shall attempt to
improve our understanding of what it is that makes a specification “clear”. We
will make claims about adaptability in this paper, but then primarily based on
intuition instead of on a rigorous definition. The reader is, of course, free to use
his or her own notion of “clarity” when studying the presented specifications.

1.3 Capturing the Design Intent

Our third criterion amounts to checking whether each specification captures
the corresponding design intent of the Switch. In particular, since each of the
Switch’s design intents, presented later, contains a constraint of maximum
throughput, we will check whether this constraint is met by each specification.

Two important remarks are, however, in order. First, it is a subjective matter as
to whether a “high-level” specification should be able to capture a non-functional
requirement, such as maximal throughput, or not. Second, many variations of the
presented specification languages exist, such as timed process algebras, which we
do not cover in this paper. These variations are explicitly designed to capture such
non-functional requirements.

Outline. After presenting three different design intents of the 2×2 Switch in
Section 2, we start off with two guarded-command languages in Section 3: TLA+

and Bluespec. The short intermezzo in Section 4 then distinguishes between
TLA+ and Bluespec on the one hand and Statecharts and ACP on the other
hand. Afterwards, we discuss Statecharts in Section 5 and ACP in Section 6.
Finally, conclusions and future work are presented in Section 7.

2 Design Intent

We distinguish between a Simplified Switch, the Original Switch initially pre-
sented in [1], and a Modified Switch.

The Simplified 2×2 Switch. Figure 1(i) depicts the Simplified Switch. Its
design intent can be described as follows. The Switch contains two input FIFOs
(i0 and i1) and two output FIFOs (o0 and o1). A packet can arrive on i0 or i1. If
the first bit of the packet has the value 0, then it is routed to o0, else to o1. Each
FIFO has the same finite capacity of cap ≥ 1 packets. Each packet contains 32
bits. A packet can only move if the output FIFO is not full. Maximum throughput
is required: a packet should move if it can. A shared resource collision can occur
when the packets at the head of both input FIFOs have the same destination. In
this case, i0 is given priority and i1’s packet is delayed.
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i0

i1

o0

o1

switch
packets

+1

counter

count interesting packets

(ii)(i)

Fig. 1. A 2×2 Switch (i) and a counter (ii)

The Original 2×2 Switch. The Original Switch is the Simplified Switch in
Figure 1(i) together with a counter shown in Figure 1(ii). The counter counts
all “interesting” packets that are routed from the input to the output buffers. A
packet is “interesting” if its second, third, and fourth bit are all equal to zero;
else, the packet is “boring”. The counter is intentionally restricted: it can only
be incremented by one value at each clock cycle. Therefore, a shared resource
collision can occur when both head packets (of the input FIFOs) are interesting.
In this case, again, i0 is given priority and i1’s head packet is delayed.

The Modified 2×2 Switch. Based on the design intent of the Original Switch,
we define (�) two conditions C1 and C2 as follows:
C1 � both head packets have the same destination
C2 � both head packets are interesting
These definitions allow us to distinguish between the following three disjoint
cases in which a shared resource collision can occur:
Case 1: C1 ∧ C2 i0

Case 2: C1 ∧ ¬C2 i0

Case 3: ¬C1 ∧ C2 i1

So far we have, in all three cases, given priority to i0’s head packet. Now,
however, we alter the design intent by giving priority to i1’s head packet in the
third case, as is shown in the third column above. I.e., if both head packets have
a different destination and are interesting, then i0’s head packet is delayed and
i1’s is routed. The latter, of course, only occurs if the destination buffer is not
full. Note also that a shared collision can not occur when ¬ (C1 ∨ C2) holds.
The corresponding Switch is called the Modified Switch in the sequel.

3 Two Guarded-Command Languages

The guarded-command languages TLA+ and Bluespec are addressed in this sec-
tion. By specifying the Simplified Switch in TLA+ (Section 3.1) and the Original
Switch in Bluespec (Section 3.2), we show that both languages are syntacti-
cally very similar and, hence, do not differ much in terms of the first and second
criterion. That is, local reasoning and adaptability are not affected when using
TLA+ instead of Bluespec or vice versa. In terms of implementation, however,
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both languages do differ greatly and this has implications for the third criterion
(Section 3.3). Finally, by continuing with Bluespec and specifying the Modified
Switch (Section 3.4), we show that Bluespec is not as adaptable as we1 would
like, thereby addressing the second criterion. The first criterion of local reasoning
is addressed throughout the following sections.

3.1 TLA+ and the Simplified Switch

Lamport’s TLA+ is a specification language for systems, ranging from program
interfaces to distributed systems. A TLA+ specification of the Simplified Switch
is presented in Table 1 and discussed below.

Lamport’s objective with TLA+ is to specify a complete system in a single
formula [8, p.16]. For the Simplified Switch, this single formula corresponds to
line 7 in Table 1. It will be discussed later.

Lines 1 to 2 in Table 1 can be described as follows. Line 1 introduces the four
variables of the TLA+ specification. Each variable represents a buffer (i.e. a list
of packets). Line 2 specifies that all buffers are initially empty.

A TLA+ specification contains actions such as action R0 in line 3 and action R1
in line 5. Action R0 describes the transfer of a packet from input buffer i0 to
output buffer o0 or o1. Similarly, action R1 describes the transfer of a packet
from i1 to o0 or o1.

Each action is a logical implication (→). For instance, action R0 contains
premises, an implication in line 4, and state changes as conclusions. Action R0
can be described in greater detail as follows. First, an abbreviation is introduced:
pack denotes the head packet of input buffer i0 (if there is a head packet).
Second, the three premises state that (a) input buffer i0 is not empty, (b) if
pack’s first bit is equal to zero, then output buffer o0 is not full, and (c) if
pack’s first bit is equal to one, then output buffer o1 is not full. Third, if all
premises hold, then the conclusions need to hold as well. The conclusions state
that (d) the new value of input buffer i0 (i.e. i0′) is obtained by dequeuing i0’s
head packet, (e) output buffer o0′ is obtained either by appending pack to o0 or
by leaving o0 unchanged, and (f) output buffer o1′ is obtained either by leaving
o1 unchanged or by appending pack to o1. An important remark here is, that,
if pack is routed to o0, then o1 remains unchanged: o1′ = o1. That is, it is not
possible that a packet from i1 is simultaneously routed to o1. A similar remark
holds for the scenario in which pack is routed from i0 to o1 and o0 has to remain
unchanged: o0′ = o0.

Action R1 describes the routing of a packet pack2 from i1 to o0 or o1. The
specification of the logical implication is more complicated (in comparison to
that of R0) because it captures i0’s priority over i1: when the head packets of
both i0 (i.e. pack1) and i1 (i.e. pack2) have the same destination, then pack2

1 “we” refers here to the authors and other readers. Of course, due to the subjective
nature of this exposition, which we can not completely avoid, Bluespec advocates
and others may disagree with our stated point of view. Similar remarks hold for
some of the other statements in this paper.
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has to be delayed and pack1 is given priority. This behaviour is captured by the
last premise. The rest of R1, however, is similar to R0.

Either action R0 or R1 suffices to illustrate global spatial reasoning. Action R1,
for instance, relies on the head packets of both i0 and i1 and on the status of
both output buffers o0 and o1. That is, the designer has to reason across all four
state elements of the Simplified Switch.

To illustrate global temporal reasoning, we refer to the “single-formula speci-
fication” of the Simplified Switch in line 7. It expresses that, at every moment,
either R0 is executed, or R1 is executed, or nothing is executed (due to the sub-
script 〈i0, i1, o0, o1〉 which expresses the potential for stuttering). To understand
line 7, the designer has to reason across both actions R0 and R1 and mentally
simulate the Switch’s behaviour across multiple (e.g. three) clock cycles.

Table 1. The Simplified 2×2 Switch in TLA+

(1) variables: i0, i1, o0, o1 (5) Act R1:

i0, i1, o0, o1 ∈ List of Packets let pack1 = i0.first

let pack2 = i1.first

(2) Init: i0 = i1 = o0 = o1 = 〈 〉, i1 �= 〈 〉
∧ (pack2 [0] = 0) → (¬ o0.full)

(3) Act R0: ∧ (pack2 [0] = 1) → (¬ o1.full)

let pack = i0.first ∧ ¬ (pack1 [0] = pack2 [0])

i0 �= 〈 〉 (6) →
∧ (pack [0] = 0) → (¬ o0.full) 〈
∧ (pack [0] = 1) → (¬ o1.full) i1′ = i1.deq;

(4) → o0′ = ((pack2 [0] = 0) ? o0.enq (pack2) : o0) ;

〈 o1′ = ((pack2 [0] = 0) ? o1 : o1.enq (pack2)) ;

i0′ = i0.deq; 〉
o0′ = ((pack [0] = 0) ? o0.enq (pack) : o0) ;

o1′ = ((pack [0] = 0) ? o1 : o1.enq (pack)) ; (7) [ Act R0 ∨ Act R1 ]〈i0, i1, o0, o1〉
〉

3.2 Bluespec and the Original Switch

The guarded command language Bluespec [6] can be used to ‘elegantly’ specify
the Original Switch’s behavior. Indeed, this is accomplished by just two rules
(i.e. guarded commands) r0 and r1 in Table 2.

Rule r0 describes the behaviour of i0 with respect to o0, o1, and the counter
c. Line 3 presents a trivially true guard. Lines 4-6 contain let statements and
lines 7-9 constitute the main body of the rule. Note that lines 7-9 are all executed
in the same clock cycle. That is, a semicolon denotes parallel composition.

Lines 4-6 can be clarified as follows. Line 4 assigns to x the head packet of
buffer i0. This assignment can only occur if i0 is not empty. We discuss later
what happens if i0 actually is empty. Line 5 is a comment for line 6 which, in
turn, assigns the appropriate output buffer (o0 or o1) to out, depending on the
first bit of packet x.
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Table 2. The Original 2×2 Switch in Bluespec, as defined in [1]

(1) (* descending_urgency = "r0, r1" *)

(2) // Rule for moving packets from i0:

(3) rule r0; // Trivially true guard.
(4) let x = i0.first;

(5) // Pick destination FIFO, called out:

(6) let out = ( (x[0]==0) ? o0 : o1 );

(7) i0.deq;

(8) out.enq(x);

(9) if (x[3:1]==0) c<=c+1;

(10) endrule

(11) // Rule for moving packets from i1:

(12) rule r1; // Trivially true guard.
(13) let x = i1.first;

(14) let out = ( (x[0]==0) ? o0 : o1 );

(15) i1.deq;

(16) out.enq(x);

(17) if (x[3:1]==0) c<=c+1;

(18) endrule

Lines 7-9 can be clarified as follows. Line 7 describes the dequeuing (of the
head packet) from i0. Line 8 describes the enqueueing of that packet (i.e. x)
into the appropriate output buffer out. Line 9 describes the incrementation of
the counter if packet x is interesting.

Rule r1, on the other hand, describes the behaviour of i1 with respect to o0,
o1, and c. It is very similar to rule r0.

Table 2’s meaning relies on three hidden assumptions which need to be made
explicit (at least mentally) when reasoning about the correctness of the spec-
ification. First, the descending urgency, expressed in line 1, specifies rule r0’s
priority over rule r1. This means that, if the execution of both rules were to
result in the access of a shared state element (e.g. counter c), then only r0 is
actually executed and r1’s execution is postponed. Second, since rule r0 relies
on the head packet of i0 (in line 4), the guard of r0 implicitly contains a test
to check whether i0 actually contains at least one packet. In other words, even
though line 3 presents a trivially true guard; the actual guard, behind the scenes,
is not trivially true at all. The designer can, of course, according to his prefer-
ence, specify this guard explicitly as we have done with TLA+ in Table 1 –but
it is considered elegant practice not to do so [1]. Third, since rule r0 relies on
output buffers o0 and o1 (in line 6), the guard of r0 implicitly contains a test
to check whether these buffers aren’t full. This assumption is very similar to the
previous one and has also been made explicit with TLA+ in Table 1.

Bluespec requires global spatial reasoning. For instance, rule r1 in Table 2
relies on at least four state elements: the head packet of i1, the output buffers
o0 and o1, and the counter c. To illustrate global temporal reasoning, we refer
to the Bluespec specification of the Modified Switch in Section 3.4.

3.3 Comparison: TLA+ vs. Bluespec

A difference between TLA+ and Bluespec is that the semantics of the former
does not rely on a run-time scheduler while that of the latter does. The impli-
cation is that at most one rule in Table 1 is executed during each cycle, while
Bluespec’s compiler will implement a greedy run-time scheduler that guarantees
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that all the non conflicting rules in Table 2 execute2. Therefore, in terms of the
third criterion in Section 1, it is tempting to state that TLA+ does not meet the
requirement of maximum throughput while Bluespec does. In retrospect, how-
ever, it should be noted that the TLA+ specification by no means excludes the
possibility that the final implementation (i.e. hardware) will respect the maxi-
mum throughput requirement as well. A guarantee, however, can not be made
in this case.

It is also interesting to note that the TLA+ and Bluespec specifications differ
in how they express the priority that i0 has over i1. In the TLA+ specification
in Table 1, the priority constraint is made explicit in the two actions R0 and R1.
In the Bluespec specification in Table 2, a priority operator is used in Line 1.
This operator is, however, merely syntactic sugar and therefore does not reduce
the amount of global reasoning that is required on behalf of the designer (in
comparison to the TLA+ specification).

3.4 Bluespec and the Modified Switch

For the Modified Switch, we present our own Bluespec specification in Table 3.
To clarify, we first refer to Section 2 where we introduced three cases in which a
shared-resource collision can occur. Cases 1 and 2 can be dealt with in one rule,
called rule r1. Case 3 can be dealt with in another rule, called rule r2. The
guards of each rule are:
rule r1 C1
rule r2 ¬C1 ∧ C2
Clearly, rule r1 and rule r2 are mutually exclusive. That is, Bluespec’s run-
time scheduler will never select both rules to execute in parallel.

To specify the Modified Switch we also have to take into account when a
shared collision can not occur, i.e. when ¬ (C1 ∨ C2) holds. We accomplish this
in two rules rule r3A and rule r3B (very similar to those in Table 2).

The specification in Table 3 is self explanatory. It has been criticized by others
because all four rules contain very similar statements. For instance, the incre-
mentation of counter c is expressed in all four rules. (The same remark holds for
the two rules in Table 2.) The criticism is understandable but due to lack of an
alternative, we (currently) think Table 3 is representative for a Bluespec design
of the Modified Switch. In other words, Table 2 and Table 3, together, illustrate
that the Bluespec language is not as adaptable as we would like.

Table 3 also suffers from global reasoning. First, global spatial reasoning is
required for each of the four rules. For instance, rule r2 requires the designer to
reason in terms of four state elements i1, o0, o1, and c –not to mention the bits
of i0 and i1’s head packets when writing down the guard ¬C1 ∧ C2. Second,
2 Maximum throughput is achieved by our two presented Bluespec specifications (Ta-

ble 2 and also Table 3, discussed later). But, it should be noted that, in general, this
may not be the case, even though all conflict-free rules are selected at every cycle (by
a greedy run-time scheduler). In other words, maximum throughput is, in general,
not so easily obtainable. See e.g. [9] for details concerning Bluespec’s semantics and
run-time scheduler.



On the Difficulties of Concurrent-System Design 281

global temporal reasoning is more apparent here, in comparison to the Original
Switch, since the designer has to reason across four rules (instead of two) in
order to convince himself that all rules, together, exhibit the desired behavior.

Table 3. The Modified 2×2 Switch in Bluespec

(1) rule r1 when C1

(2) let x = i0.first;

(3) let out = ( (x[0]==0) ? o0 : o1 );

(4) i0.deq;

(5) out.enq(x);

(6) if (x[3:1]==0) c<=c+1;

(7) endrule

(15) rule r3A when ¬ (C1 ∨ C2)

(16) let x = i0.first;

(17) let out = ( (x[0]==0) ? o0 : o1 );

(18) i0.deq;

(19) out.enq(x);

(20) if (x[3:1]==0) c<=c+1;

(21) endrule

(8) rule r2 when ¬C1 ∧ C2

(9) let x = i1.first;

(10) let out = ( (x[0]==0) ? o0 : o1 );

(11) i1.deq;

(12) out.enq(x);

(13) if (x[3:1]==0) c<=c+1;

(14) endrule

(22) rule r3B when ¬ (C1 ∨ C2)

(23) let x = i1.first;

(24) let out = ( (x[0]==0) ? o0 : o1 );

(25) i1.deq;

(26) out.enq(x);

(27) if (x[3:1]==0) c<=c+1;

(28) endrule

4 Intermezzo: TLA+ and Bluespec vs. Statecharts and ACP

Having presented TLA+ and Bluespec in the previous section, we address State-
charts [5] and ACP [4] in the next two sections. At this point, however, we describe
a major difference between TLA+ & Bluespec on the one hand and Statecharts
& ACP on the other hand.

TLA+ & Bluespec do not partition their state space. I.e., TLA+ & Bluespec
are global state models, where guards (of guarded actions) are evaluated on
the global state. When an action in TLA+ (or a rule in Bluespec) is executed,
it can affect any part of the global state. For this reason, each such action
is atomic. In TLA+, actions are ensured to be atomic by interleaving. Hence,
no explicit synchronization is needed. In Bluespec, rules are made atomic by
ensuring that (i) they do not conflict each other when executed in the same clock
cycle, and (ii) the changes they make to the global state only become visible at
the synchronization points of a global clock tick.

Statecharts & ACP, on the other hand, do partition their state space. That is, in
Statecharts & ACP, there is no global state visible to each action. In Statecharts,
for instance, the state is partitioned into smaller Statecharts and each such
Statechart changes its corresponding local state. Only when synchronous com-
munication takes place between two Statecharts, can common (partially global)
state be modified. A similar remark holds for ACP where each process acts on its
own local state.
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5 Statecharts

Statecharts can be used to model the design intent of the Original Switch, as
shown in Figure 2. After describing this figure, an important discussion follows.

inc

o0

0 i0[ ] && boring_i0

interesting_i0

o0, inc

0 i0[ ] &&

o1

1 i0[ ] && boring_i0

interesting_i0

o1, inc

1 i0[ ] &&

i0’s Statechart

o0

0 i1[ ] && boring_i1

i1’s Statechart
0 i0![ ]&&

o1

1 i1[ ] && boring_i11 i0![ ]&&

o0, inc

0 i1[ ]
&& interesting_i1

0 i0![ ]&&

&&!interesting_i0

o1, inc

1 i1[ ]
&& interesting_i1

1 i0![ ]&&

&&!interesting_i0

o0’s Statechart

notFull_o0 && o0

o1’s Statechart

notFull_o1 && o1

Counter’s Statechart

Fig. 2. The Statechart design of the Original 2×2 Switch

The behavior of the Original Switch is captured in Figure 2. It consists of
five smaller concurrent Statecharts3, one for each of the following five spatial
elements: i0, i1, o0, o1, and the counter. Statechart i0 can be clarified as
follows. It consists of one state and four transitions. The top leftmost transition,
for instance, amounts to checking whether i0’s head packet has a leading bit 0
and is boring: [0i0] && boring_i0. If so, then i0’s Statechart synchronizes with
o0’s Statechart by means of o0, signifying the transfer of i0’s head packet to o0.
Note, however, that o0’s Statechart tests whether o0 is not full, as desired, and
that this functionality does not belong to i0’s Statechart. The other transitions
in i0’s Statechart are self explanatory.

An interesting observation is that each Statechart contains just a single state.
This does not, however, imply that one can solely reason about each smaller
Statechart’s state in isolation in order to convince oneself that the complete
3 We received this design from an anonymous reviewer in the Spring of 2008. It is

much simpler than our own original Statechart design in [3].
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specification is correct. For instance, to understand i0’s Statechart, we are re-
quired to study o0’s Statechart’s transition as well in order to then visualize
the transfer of a packet from i0 to o0. Likewise, in order to visualize the si-
multaneous transfer of two packets, we are required to reason across (at least)
four different Statecharts: i0, i1, o0, and o1. This amounts to global spatial
reasoning. Likewise, to capture the priority that i0 has over i1, we are required
to visualize the sequentialized transfer of head packets from i0 and i1. This
amounts to global temporal reasoning.

To specify the Simplified Switch, the reader merely needs to remove the
boring_X , interesting_X , and inc notation from Figure 2 along with the small
Statechart of the counter.

Discussion. After (a previous version of) this paper was accepted, we, the
authors, found a serious error in Figure 2, which we illustrate by means of the
following scenario. Input buffers i0 and i1 have interesting head packets that
have to be routed to o0 and o1, respectively. Assume also that buffer o0 is full
and o1 is not full. Then, in accordance to the design intent, it should be the
case that i0’s head packet is delayed while i1’s head packet is routed (and the
counter is incremented by one). But this scenario, amongst other similar ones,
is not specified in Figure 2. To resolve this problem, i1’s Statechart needs to
be modified such that it also contains functionality that checks whether output
buffer o0 is full or not (likewise for o1). Hence, more global reasoning is required
to correctly capture the Switch’s behavior.

Lack of space and relevance prevents us from presenting an improved, yet more
complicated, Statechart diagram of the Original Switch. The lack of relevance is
due to two reasons. First, we are unable to convince ourselves that the “improved”
specification is correct with respect to the design intent. This remark essentially
holds for all specifications in this paper and embodies our main message in
Section 7. Second, many readers of (previous versions of) this paper, including
ourselves, have mistakingly approved of Figure 2. It is exactly this incorrect
approval that illustrates the difficulty of concurrent-system design; presenting
improved Statechart diagrams would only obscure this important observation.

6 The Algebra of Communicating Processes

The Algebra of Communicating Processes (ACP) is used below to specify the
behavior of the Original Switch. The corresponding specification is called Spec.
It is based on priorities from [2] to capture i0’s dominance over i1 and is similar
to the previous specifications in the sense that it abstracts4 away the behavior
of the buffers.

The outline of this section can be described as follows. Section 6.1 presents
short but important definitions in order to obtain Spec. In Section 6.2 we explain

4 This abstraction is an essential difference between Spec and the ACP specifications
presented in [4] where buffers are typically not abstracted away.
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Fig. 3. Input (I0 and I1), output (O0 and O1), and counter (C) processes

how Spec can be modified in order to obtain specifications of the Simple and
Modified Switches. Finally, Section 6.3 addresses the three criteria for ACP.

6.1 The ACP Specification Spec

Let D denote a finite set of data elements where each element d ∈ D is a packet
of 32 bits; i.e., D = {0, 1}32. We write d0 to denote a packet whose first bit has
the value zero appended by the 31 bits in d; i.e. d ∈ {0, 1}31. Likewise for d1
where the first bit has the value one.

In the sequel, we denote the input-buffer processes by I0 and I1, the output-
buffer processes by O0 and O1, and the counter by C. Figure 3 presents names
for the input- and output channels. For instance, I0 has one input channel r0
(where r abbreviates “read”) and three output channels s00, s01, and s′0 (where
s abbreviates “send”). Similarly for I1. Process O0 has two input channels r00
and r10 and two output channels check0 and store0. Channel check0 is used to
check whether the corresponding output buffer is not full, and store0 is used to
store a data packet in that buffer. Likewise for O1, check1, and store1.

Communications. Concerning I0, we want its output channels s00, s01, and
s′0 to communicate with r00, r01, and r′0, respectively. We capture these require-
ments in the left-hand column below with x ≡ y denoting that x is syntactic
sugar for y:
c00(d) ≡ γ(s00(d), r00(d))
c01(d) ≡ γ(s01(d), r01(d))

c′0 ≡ γ(s′0, r′0)

c10(d) ≡ γ(s10(d), r10(d))
c11(d) ≡ γ(s11(d), r11(d))

c′1 ≡ γ(s′1, r′1)
where d is an arbitrary element of D. The γ notation is defined in [4]. Likewise
for I1, we want its output channels s10, s11, and s′1 to communicate with r10,
r11, and r′1, respectively, as is shown in the right-hand column above.

Specification Spec - Encapsulation - Priorities
To capture the behavior of the Original Switch, we define:
Spec = Θ (∂H ( I0 ‖ I1 ‖O0 ‖O1 ‖C(0)))
The five processes are placed in parallel (‖) and the counter is initialized to 0.
The encapsulation operator ∂H and priority operator Θ are addressed next.
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The encapsulation operator ∂H is defined by means of the encapsulation set:
H = {s00(d), s01(d), s10(d), s11(d) | d ∈ D} ∪

{r00(d), r01(d), r10(d), r11(d) | d ∈ D} ∪ {r′0, s′0, r′1, s′1}
Based on this definition, ∂H in Spec forces the send processes to synchronize
with the read processes.

The priority operator Θ is defined by expressing the precedence (>) that I0
has over I1 as follows:
∀d, d′ ∈ {0, 1}31. c00(d0) > c10(d′0) & c01(d1) > c11(d′1) & c′0 > c′1

Spatial or Temporal Reasoning. At this stage of our exposition, we make
the following interesting observation. The specifications, presented so far, mainly
require reasoning in one dimension, i.e. in terms of either space or time but
typically not both. For instance, to specify each communication (γ), we only
need to reason across two processes and do not require any temporal reasoning.
Likewise, to specify Spec, we combine the terms I0, I1, O0, O1, and C. This is
a spatial decomposition (global spatial reasoning) in which we do not need to
reason in time. While a similar remark holds for the set H , we note that this is
not the case for the > order5.

In short, the reasoning has been relatively local so far, especially when com-
pared to the specifications presented in previous sections. However, as expected,
global reasoning can not be completely avoided, as the following process defini-
tions illustrate.

The Processes. The two input processes are defined as follows:
I0 = r0(d 000 0) . s′0 . s00(d 000 0) . I0 + r0(d cba 0) . s00(d cba 0) . I0 +

r0(d 000 1) . s′0 . s01(d 000 1) . I0 + r0(d cba 1) . s01(d cba 1) . I0
I1 = r1(d 000 0) . s′1 . s10(d 000 0) . I1 + r1(d cba 0) . s10(d cba 0) . I1 +

r1(d 000 1) . s′1 . s11(d 000 1) . I1 + r1(d cba 1) . s11(d cba 1) . I1
with cba ∈ {0, 1}3 \ {000} and d ∈ {0, 1}28.

The notation r0(d cba 1) expresses the arrival of a data packet on channel r0
whose first bit is 1, its second bit is a, third bit is b, fourth bit is c, and all other
28 bits, together, constitute d.

The four terms of I0’s definition are separated by a + sign, expressing disjunc-
tion. For further clarification, consider the first term of I0 which is: r0(d 000 0) .
s′0 . s00(d 000 0) . I0. It states that if an interesting data packet with destination
o0 arrives on input channel r0, then the counter has to be incremented (by means
of s′0) and the packet has to be send to o0 (by means of s00). After these actions
have taken place, the state I0 is re-entered.

The two output processes and the counter process are defined as:
O0 = check0 . ( r00(d0) + r10(d0) ) . store0(d0) . O0
O1 = check1 . ( r01(d1) + r11(d1) ) . store1(d1) . O1 with d ∈ {0, 1}31

C(n) = r′0 . C(n + 1) + r′1 . C(n + 1) with n ∈ N

5 As pointed out by an anonymous referee, the > order is merely another way to
reason about time and, hence, does not decrease the global reasoning.
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To understand each process definition (e.g. I0), one has to reason across mul-
tiple clock cycles (i.e. data packets) and across multiple channels. On the one
hand, the reasoning is still relatively local in the sense that the four process terms
are separated from each other by means of the channels. On the other hand, to
convince oneself that the specification is correct, a designer will typically derive
(part of) the specification’s underlying state-transition graph and reason about
it’s correctness with respect to the original design intent. This reasoning is global
(in both space and time).

6.2 The Simplified and Modified Switches

We briefly explain how the previous ACP-based definitions need to be modified
in order to obtain specifications of the Simplified and the Modified Switches.

To specify the Simplified Switch, apply the following six steps. First, remove
the counter C and r′0, s′0, r′1, and s′1 from Figure 3. Second, remove the communi-
cations c′0 and c′1. Third, remove C(0) from Spec. Fourth, remove {r′0, s′0, r′1, s′1}
from H . Fifth, remove the last conjunct from the priorities. Sixth, redefine the
two input process terms as follows:
I0 = r0(d0) . s00(d0) . I0 + r0(d1) . s01(d1) . I0
I1 = r1(d0) . s10(d0) . I1 + r1(d1) . s11(d1) . I1 with d ∈ {0, 1}31.

To specify the Modified Switch, recall conditions C1 and C2 in Section 2.
The formal definitions of C1(d, d′) and C2(d, d′) –where d and d′ denote the two
head data packets under consideration– are straightforward and hence omitted.
Given these conditions, we need to modify the priorities of Spec as follows6:
∀d, d′ ∈ {0, 1}32.
C1(d, d′) ∧ C2(d, d′) ⇒ c00(d) > c10(d′) & c01(d) > c11(d′) & c′0(d) > c′1(d

′)
C1(d, d′) ∧ ¬C2(d, d′) ⇒ c00(d) > c10(d′) & c01(d) > c11(d′)
¬C1(d, d′) ∧C2(d, d′) ⇒ c′0(d) < c′1(d

′)
All of the extensions, described in the previous two paragraphs, are straight-

forward7. We are therefore tempted to conclude that: the ACP language fares well
in terms of adaptability for the 2×2 Switch case study.

6.3 Three Criteria

The three criteria of Section 1 for ACP are addressed as follows. First, ACP requires
global reasoning in order to convince oneself that the specification is correct.
Second, ACP fares well in terms of adaptability for the presented case study.
Third, ACP is similar to TLA+ in the sense that it can not guarantee that the
final implementation respects the maximum-throughput requirement (i.e. ACP
has an interleaving semantics).

6 The critical reader will note the difference between c′0(d) and c′1(d′) from c′0 and c′1.
Hence, the communications and encapsulation set H need to be modified accordingly.

7 For the first author. And, not so for at least one ACP expert (an anonymous referee).
This suggests that we are using ACP in a non-standard way in this paper.
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Table 4. Results of our comparative study

local rea- adapta- maximum
soning bility throughput

TLA+ − − −
Bluespec − − +

Statecharts − −
ACP − + −

Informal Design Intent
↓ ?

Formal Specification
↓ ok

Formal Implementation

(i) (ii)

7 Conclusions and Future Work

We have compared four specification languages on the same case study (i.e. the
Switch), as opposed to promoting one language by selectively choosing ‘suit-
able’ case studies. Our comparisons, based on three criteria, are summarized
in Table 4(i), where a plus is preferable over a minus. The blank entry for the
maximum-throughput criterion for Statecharts denotes that, in this (short) pa-
per, we have not been able to show that either a plus or a minus sign is warranted.

On the one hand, the presented results in Table 4(i) are of course debatable:
they are based on our level of expertise in each of the specification languages
and on only one concurrent system (the Switch). In particular, Table 4(i) states
that Statecharts don’t fare well for adaptability but this is primarily due to our
unsuccessful attempt to correctly capture the behavior of the Original Switch.

On the other hand, it is interesting to note that two of the four anonymous
reviewers of this paper have championed our incorrect Statechart design. Both
reviewers also disfavored the ACP specification while at least one of them claimed
to be experienced in ACP. These comments merely serve the purpose of backing
up our main conclusion:

The seemingly simple design intents of the Switch case study are ex-
tremely difficult to formalize correctly.

Table 4(ii) captures this message graphically: the first refinement step, labelled
with a question mark, is far more problematic than the second, labelled with
‘ok’. But, it is the second step that is heavily researched today and not the first.

Since we have been unable to adequately capture the Switches’ behaviors in
this paper, further investigations are warranted. With respect to the question
mark in Table 4(ii), it seems desirable to have a concurrent specification frame-
work, endowed with a tool for formal verification or theorem proving to verify
that design intents are correctly captured. But then the question arises: How
does one even formulate the properties to verify, if capturing the design intent is
hard? We hope the reader will join us in our quest to address this problem and
inform us if relevant work along these lines has already been conducted.
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Abstract. A truly secure protocol is one which never violates its se-
curity requirements, no matter how bizarre the circumstances, provided
those circumstances are within its terms of reference. Such cast-iron guar-
antees, as far as they are possible, require formal techniques: proof or
model-checking. Informally, they are difficult or impossible to achieve.

Our technique is refinement, until recently not much applied to se-
curity. We argue its benefits by giving rigorous formal developments, in
refinement-based program algebra, of several security case studies.

A conspicuous feature of our studies is their layers of abstraction
and –for the main study, in particular– that the protocol is unbounded
in state, placing its verification beyond the reach of model checkers.

Correctness in all contexts is crucial for our goal of layered, refinement-
based developments. This is ensured by our semantics in which the
program constructors are monotonic with respect to “security-aware”
refinement, which is in turn a generalisation of compositionality.

Keywords: Refinement of security; formalised secrecy; hierarchical se-
curity reasoning; compositional semantics.

1 Introduction

This paper is about verifying computer programs that have security- as well as
functional requirements; in particular it is about developing them in a layered,
refinement-oriented way. To do that we use the novel Shadow Semantics [14,15]
that supports security refinement.

Security refinement is a variation of (classical) refinement that preserves non-
interference properties (as well as classical, functional ones), and features compo-
sitionality and hierarchical proof with an emphasis unusual for security-protocol
development. Those features are emphasised because they are essential for scale-
up and deployment into arbitrary contexts: in security protocols, the influence
of the deployment environment can be particularly subtle.

In relation to other approaches, such as model checking, ours is dual. We begin
with a specification rather than an implementation, one so simple that its se-
curity and functional properties are self-evident — or are at least small enough
to be subjected to rigorous algorithmic checking [19]. Then secure refinement
� We acknowledge the support of the Australian Research Council Grant DP0879529.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 289–304, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



290 A.K. McIver and C.C. Morgan

ensures that non-interference -style flaws in the implementation code, no mat-
ter how many refinement steps are taken to reach it, must have already been
present in that specification. Because the code of course is probably too large
and complicated to understand directly, that property is especially beneficial.

Our main contribution, in summary, is to argue by example that the
secure-refinement paradigm [14,15], including its compositionality and layers
of abstraction, can greatly extend the size and complexity of security appli-
cations that can be verified. The principal case study is a protocol for Yao’s
Millionaraires’ Problem [23], especially suitable because it includes four (sub-)
protocols nested like dolls within it: our paradigm allows them to be treated
separately, so that each can be understood in isolation. That contrasts with
the Millionaires’ code “flattened” in Fig. 4 to the second-from-bottom level of
abstraction: at face value it is impenetrable.

In §3 we set out the semantics for secure refinement; and in §4 we begin our
series of case studies, in increasing order of complexity; but before any of that, in
§2 we introduce multi-party computations. Throughout we use left-associating
dot for function application, so that f.x.y means (f(x))(y) or f(x, y), and we
take (un-)Currying for granted where necessary. Comprehensions/quantifications
are written uniformly, as (Qx:T |R·E) for quantifier Q, bound variable(s) x of
type(s) T , range-predicate R (probably) constraining x and element-constructor
E in which x (probably) appears free: for sets the opening “(Q” is “{” and the
closing “)” is “}” so that e.g. the comprehension {x, y: N | y=x2 · z+y} is the
set of numbers z, z+1, z+4, · · · that exceed z by a perfect square exactly.

In the conclusions §8 we set out our strategic goals for the whole approach.

2 Secure Multi-party Computation: An Overview

Xor-shares of one conjunct

Shares of
the other

Xor these to get
the conjunction

of the inputs'
xors.

Agent A sees the upper shares, the two in-

puts and one output; B sees the lower . The

upper/lower exclusive-or of the two outputs

is the conjunction of the left- and right in-

puts’ separate upper/lower xor’s.

Fig. 1. ⊕-shared conjunction: §6.2

In Multi-party computations (MPC ’s)
separate agents hold their own shares
of a shared computation, as illus-
trated in Fig. 1. Only at the end are
the shares combined; and the compu-
tation is secure if no information is
released until that point. We specify
a typical two-party MPC as

visA a;visB b;vis x;
x:= a⊗ b ,

(1)

in which two agents A and B, with
their respective variables a and b vis-
ible only to them separately, some-
how collaboratively calculate the re-
sult a⊗b and publish it in the variable
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x; but they reveal nothing (more) about a, b in the process, either to each other
or to a third party. Our declaration visA a means that only A can observe the
value of a (similarly for B); and the undecorated vis means x is observable to all,
in this case both A,B and third parties. For example, if ⊗ were conjunction then
(1) specifies that A (knowing a) learns b when a holds, but not otherwise; and a
third party learns the exact values a, b only when they are both true. Although
the assignment (1) cannot be executed directly when A and B are physically
distributed, nevertheless the security and functionality properties it specifies are
indeed self-evident once ⊗ is fixed. But the “somehow collaboratively calculate”
above is a matter of implementing the specification, using local variables of
limited visibility and exchange of messages between the agents. We will see
much of that in §5ff; and it is not self-evident at all.

An unsatisfactory implementation of (1) involves a real-time trusted third
party (rTTP): both A,B submit their values to an agent C which performs the
computation privately and announces only the result. But this Agent C is a
corruptible bottleneck and, worse, it would learn a, b in the process. The rTTP
can be avoided by appealing to the sub-protocol Oblivious Transfer [17,18] in
which a TTP (no “r”) participates only off-line and before the computation
proper begins: his Agent C is not a bottleneck, and it does not learn a or b.

Our main case study is Yao’s millionaires A,B of §7 who compare their for-
tunes a, b without revealing either: only the Boolean a<b is published. For us it
is a showcase exemplar, because it makes our point of layered development so
well: it uses the Lovers’ II protocol (§6.2), using Lovers’ I (§6.1), using Oblivious
Transfer (§5), using the Encryption Lemma (§4); moreover our treatment of the
main loop (§7.3, unbounded riches) abstracts from the loop body (§7.1, the two-
bit millionaires). Layering and compositionality are conspicuous, our technique’s
specialty; and our dealing easily with unbounded state is another innovation.

Our contribution in detail is thus to formalise and prove a number of
exemplary non-interference -style security protocols while moving through layers
of abstraction and in some cases with unbounded state. We aim for a method
with the potential to scale, and to be automated, and moreover one which would
guide a designer to an understanding of the implications of his proposed design,
a paramount criterion for critical software. The Millionaires illustrate the hierar-
chical approach: when written out in full, the code comprises roughly 30 intricate
lines (Fig. 4); only abstraction controls this complexity. Finally, the proofs are
lengthy; but crucially they are boring, comprising many tiny steps similar to
those already automated in probabilistic program algebra [12], and thus easily
checked.

3 The Shadow Model of Security and Refinement

The Shadow Model extends the non-interference model of security [7] to de-
termine an attacker’s inferred knowledge of hidden (high-security) variables at
each point in the computation; we then require that the inferred knowledge is
not increased by secure refinement.



292 A.K. McIver and C.C. Morgan

In its original form, non-interference partitions variables into high-security-
and low-security classes: we call them hidden and visible. A “non-interference
-secure” program is then one where our attacker cannot infer hidden variables’
initial values from visible variables’ values (initial or final). With just two vari-
ables v, h of class visible, hidden resp. a possibly nondeterministic program r
thus takes initial states (v, h) to sets of final visible states v′ and is of type
V →H→ PV , where V ,H are the value sets corresponding to the types of v, h.
Such a program r is non-interference -secure just when for any initial visible the
set of possible final visibles is independent of the initial hidden [9,20], that is for
any v:V we have

(
∀h0, h1:H · r.v.h0 = r.v.h1

)
.

In our approach [14] we extended this view, in several stages. The first was to
concentrate on final- (rather than initial) hidden values and therefore to model
programs as V→H→P(V×H). For two such programs r{1,2} we say that r1 � r2,
that r1 “is securely refined by” r2, whenever both the following hold:

(i) For any initial state v, h each possible r2 outcome v′, h′ is also a possible
r1 outcome, that is for all v:V and h:H we have r1.v.h ⊇ r2.v.h .
This is the classical “can reduce nondeterminism” form of refinement.

(ii) For all v:V , h:H, and v′:V satisfying
(
∃h′

2:H · (v′, h′
2) ∈ r2.v.h

)
, we have

for all h′:H that (v′, h′) ∈ r1.v.h implies (v′, h′) ∈ r2.v.h.
This second condition says that for any observed visibles v, v′ and any ini-
tial h the attacker’s “deductive powers” w.r.t. final h′’s cannot be improved
by refinement: there can only be more possibilities for h′, never fewer.

In this simple setting the two conditions together do not yet allow an attacker’s
ignorance of h strictly to increase: secure refinement seems to boil down to
allowing decrease of nondeterminism in v but not in h. But strict increase of
hidden nondeterminism is possible: we meet it later, in §3.3.

Still in the simple setting, as an example restrict all our variables’ types so
that V=H={0, 1}, and let r1 be the program that can produce from any initial
values (v, h) any one of the four possible (v′, h′) final values in V × H (so that
the final values of v and h are uncorrelated). Then the program r2 that can
produce only the two final values {(0, 0), (0, 1)} is a secure refinement of r1; but
the program r3 that produces only the two final values {(0, 0), (1, 1)} is not a
secure refinement (although it is a classical one).

This is because r2 reduces r1’s visible nondeterminism, but does not affect the
hidden nondeterminism in h′. In r3, however, variables v′ and h′ are correlated.

3.1 The Shadow H of h Records h’s Inferred Values

In r1 above the set of possible final values of h′ was {0, 1} for each v′ separately.
This set is called “The Shadow,” and represents explicitly an attacker’s ignorance
of h′: it is the smallest set of possibilities he must consider possible, by inference.
In r2 that shadow was the same; but in r3 the shadow was smaller, just {v′} for
each v′, and that is why r3 was not a secure refinement of r1.

In the shadow semantics we track this inference, so that our program state
becomes a triple (v, h,H) with H a subset of H — and in each triple the H
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contains exactly those (other) values that h might have. The (extended) output
triples of the three example programs are then respectively

r1 — {(0, 0, {0, 1}), (0, 1, {0, 1}), (1, 0, {0, 1}), (1, 1, {0, 1})}
r2 — {(0, 0, {0, 1}), (0, 1, {0, 1})}
r3 — {(0, 0, {0}), (1, 1, {1})} ,

and we have r1 � r2 because r1’s set of outcomes includes all of r2’s. But for r3
we find that its outcome (0, 0, {0}) does not occur among r1’s outcomes, nor is
there even an r1-outcome (0, 0, H ′) with H ′ ⊆ {0} that would satisfy (ii). That,
again, is why r1 �� r3.

For sequential composition of shadow-enhanced programs, not only final- but
also initial triples (v, h,H) must be dealt with: the final triples of a first com-
ponent become initial triples for a second. We now define the shadow semantics
exactly, in four stages, by showing how those triples are generated.

3.2 Step 1: The Shadow Semantics of Atomic Programs

A classical program r is an input-output relation between V ×H -pairs. Consid-
ered as a single, atomic action its shadow-enhanced semantics addShadow.r is a
relation between V ×H × PH -triples and is defined as follows:
Definition 1. Atomic shadow semantics Given a classical program r:V →
H→P(V ×H) we define its shadow enhancement addShadow.r of type V→H→
PH→ P(V ×H× PH) so that addShadow.r.v.h.H " (v′, h′, H ′) just when both

(i) r.v.h " (v′, h′) — classical
(ii) and H ′ = {h′:H |

(
∃h′′:H · r.v.h′′ " (v′, h′)

)
} . — shadow

�
Clause (i) says that the classical projection of addShadow.r’s behaviour is the
same as the classical behaviour of just r itself. Clause (ii) says that the final
shadow H ′ contains all those values h′ compatible with allowing the original
hidden value to range as h′′ over the initial shadow H .

As a first example, let the syntax x:∈S denote the standard program that
chooses variable x’s value from a non-empty set S. Assume here only that S is
constant, not depending on v, h. Then from Def. 1 we have that

(i) Choosing v affects only v because
addShadow.(v:∈S).v.h.H = {v′:S · (v′, h,H)}

(ii) Choosing h affects both h and H , possibly introducing ignorance because
addShadow.(h:∈S).v.h.H = {h′:S · (v, h′, S)}

(iii) An assignment of hidden to visible “collapses” ignorance because
addShadow.(v:=h).v.h.H = {(h, h, {h}}

From (ii) and (iii) the composition addShadow.(h:∈S); addShadow.(v:=h) first
introduces ignorance: we do not know h’s exact value “at the semicolon.” But
then the ignorance is removed: we deduce h’s value, at the end, by observ-
ing v. The composition (ii); (iii) as a whole is nondeterministic, and it yields
{x:S · (x, x, {x})} with v, h’s common final value x drawn arbitrarily from S;
but whatever that value is, it is known that h has it because H is a singleton.
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3.3 Step 2: The Shadow Semantics of Straight-Line Programs

General (non-atomic) programs gain their shadows by repeated application of
§3.2 as implied by induction over their syntax, as shown in Fig. 2. The only
non-traditional command is reveal that publishes an expression but changes no
program variables; note it does change the shadow.

3.4 Step 3: Refinement’s Properties via Gedanken Experiments

Our definition of refinement is based on scale-up experiments with program
algebra [14,15]. Our first observation is that the semantics enforces perfect recall,
that visible variables reveal information even if subsequently overwritten. This
is because refinement must be monotonic, i.e. (A) that refinement of a program
portion must refine the whole program; and (B) that conventional refinements
involving v only must remain valid. Both principles (A,B) are required in order
to be able to develop large programs via local reasoning over small portions.

Without perfect recall, overwriting v would prevent program v:= h; v:∈{0, 1}
from revealing h. Yet from (B) we have v:∈{0, 1} � v:= v; and then from (A) we
have (v:=h; v:∈{0, 1}) � (v:=h; v:= v) — and it would be a violation of secure
refinement for the rhs to reveal h while the lhs does not. Thus the premise
–imperfect recall– is false.

A similar experiment applies to conditionals: because (A,B) validates

if h=0 then v:∈{0, 1} else v:∈{0, 1} fi � if h=0 then v:= 0 else v:= 1 fi

we must accept that the if-test reveals its outcome, in this case whether h=0
holds initially. And nondeterministic choice P1 � P2 is visible to the attacker
because each of the two branches P{1,2} can be refined separately.

Equality of programs is a special case of refinement, whence compositionality
is a special case of monotonicity: two programs with equal semantics in isolation
must remain equal in all contexts. With those ideas in place, we define refinement
as follows:
Definition 2. Refinement For programs P{1,2} we say that P1 is securely
refined by P2 and write P1 � P2 just when for all v, h,H we have

(∀ (v′, h′, H ′
2): [[P2]].v.h.H ·(

∃H ′
1:PH | H ′

1 ⊆ H ′
2 · (v′, h′, H ′

1) ∈ [[P1]].v.h.H
)

) ,

with [[·]] as defined in Fig. 2.
This means that for each initial triple (v, h,H) every final triple (v′, h′, H ′

2)
produced by P2 must be “justified” by the existence of a triple (v′, h′, H ′

1), with
equal or smaller ignorance, produced by P1 under the same circumstances. �
From Fig. 2 we have e.g. that [[h:= 0 � h:= 1]].v.h.H is {(v, 0, {0}), (v, 1, {1})},
yet the strictly more refined [[h:∈ {0, 1}]].v.h.H is {(v, 0, {0, 1}), (v, 1, {0, 1})}.
This is thus an example of a strict refinement where the two commands differ
only by an increase of ignorance: they have equal nondeterminism classically, but
in one case (�) it can be observed by the attacker and in the other case (:∈ ) it
cannot. The “more ignorant” triple (v, 0, {0, 1}) is strictly justified by the “less
ignorant” triple (v, 0, {0}), where we say “strictly” because {0} ⊂ {0, 1}.
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Program P Semantics [[P ]].v.h.H

Publish a value reveal E.v.h { (v, h, {h′: H | E.v.h′ = E.v.h}) }

Assign to visible v:= E.v.h { (E.v.h, h, {h′: H | E.v.h′ = E.v.h}) } 

Assign to hidden h:= E.v.h { (v, E.v.h, {h′: H · E.v.h′}) } 


Choose visible v:∈S.v.h {v′: S.v.h · (v′, h, {h′: H | v′ ∈ S.v.h′}) } 

Choose hidden h:∈S.v.h {h′: S.v.h · (v, h′, {h′: H ; h′′: S.v.h′ · h′′}) } 


Execute atomically 〈〈P 〉〉 addShadow.(“classical semantics of P”)
Sequential composition P1; P2 lift.[[P2]].([[P1 ]].v.h.H)

Demonic choice P1 � P2 [[P1]].v.h.H ∪ [[P2]].v.h.H

Conditional

We write if � cond � else [8] −→
if E.v.h then Pt else Pf fi [[Pt]].v.h.{h′: H | E.v.h′ = true}

� E.v.h �
[[Pf ]].v.h.{h′: H | E.v.h′ = false}

The syntactically atomic commands A marked 
 have the property that A = 〈〈A〉〉.
This is deliberate: syntactic atoms execute atomically. The function lift.[[P2]] applies
[[P2]] to all triples in its set-valued argument, un-Currying each time, and then takes
the union of all results.
The extension to many variables v1, v2, · · · and h1, h2, · · ·, including local declarations,
is straightforward [14,15].

Fig. 2. Semantics of non-looping commands

3.5 Step 4: Properties –and Utility– of Atomicity Brackets 〈〈·〉〉

The atomicity brackets 〈〈·〉〉 treat their contents as a single classical command,
and thus classical equality (although not classical refinement) can be used within
them. In simple cases atomicity is preserved by composition, but not in general:

Lemma 1. atomicity and composition Given two programs P{1,2} over v, h
we have 〈〈P1;P2〉〉 = 〈〈P1〉〉; 〈〈P2〉〉 just when v’s intermediate value, i.e. “at the
semicolon,” can be deduced from its endpoint values, i.e. initial and final, possibly
in combination. The semicolon is interpreted classically on the left, and as in
Fig. 2 on the right.

Proof. Given in [1, App. A]. �

This lemma is as significant when its conditions are not met as when they are. It
means for example that we cannot conclude from Lem. 1 that 〈〈v:=h; v:= 0〉〉 =
〈〈v:=h〉〉; 〈〈v:= 0〉〉, since on the left the intermediate value of v cannot be deduced
from its endpoint values: for h is not visible at the beginning and v itself has
been “erased” at the end. And indeed from Def. 1
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(i) On the left we have 〈〈v:= h; v:= 0〉〉.v.h.H = {(0, h,H)}
(ii) Whereas on the right we have (〈〈v:=h〉〉; 〈〈v:= 0〉〉).v.h.H = {(0, h, {h})}

This is perfect recall again. More interesting is the utility of introducing atom-
icity temporarily in a derivation, as illustrated in §4 below: when applicable, we
can infer security properties via (simpler) classical equalities within 〈〈·〉〉.

3.6 Multiple Agents, and the Attacker’S Capabilities

In a multi-agent system each agent has a limited knowledge of the system state,
determined by his point of view ; and different agents have different views. The
above simple semantics reflects A’s viewpoint, say, by interpreting variables de-
clared to be vislist as visible (v) variables if A is in list and as hidden (h) variables
otherwise. More precisely,

– var means the associated variable’s visibility is unknown or irrelevant.
– vis means the associated variable is visible to all agents.
– hid means the associated variable is hidden from all agents.
– vislist means the associated variable is visible to all agents in the (non-

empty) list, and is hidden from all others (including third parties).
– hidlist means the associated variable is hidden from all agents in the list,

and is visible to all others (including third parties).

For example in (1), from A’s viewpoint the specification would be interpreted
with a and x visible and b hidden; for B the interpretation hides a instead of b.
For a third party X , say, both a, b are hidden but x is still visible.

From Agent A’s point of view (say) an attacker uses a run-time debugger to
single-step through an execution of the program. Each step’s size is determined
by atomicity, either implied syntactically or given by 〈〈·〉〉; when the program is
paused, the current point in the program source-code is indicated; and hovering
over a variable reveals its value provided its annotation (in this case) makes it
visible to A: e.g. “yes” for visA or hidB, and “no” for hidA or visB.

Conventionally, a successful attack is one that “breaks the security.” For us,
however, a successful attack is one that breaks the refinement : if we claim that
P � Q, and yet an attacker subjects Q to hostile tests that reveal something
P cannot reveal, then our claimed refinement must be false (and we’d bet-
ter review the reasoning that seemed to prove it). Crucially however we will
have suffered a failure of calculation, not of guesswork: only the former can be
audited.

The conventional view is a special case of ours: if P reveals nothing, then
P � Q means that also Q must reveal nothing. Thus a successful attack with
such a specification P is one in which Q is forced to reveal anything at all.

Finally, if a refinement is valid yet an insecurity is discovered (relative to
some informal requirement), then the security-preservation property of refine-
ment means that the insecurity was already present in the specification.
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4 First Case Study: The Encryption Lemma (EL)

For Booleans x, y we write (x⊕y):=E to abbreviate the specification statement
x, y:[x⊕y = E], thus an atomic command that sets x, y nondeterministically so
that their exclusive-or equals E [13]. By making the command atomic, we have
(x⊕y:=E) = 〈〈x, y:[x⊕y = E]〉〉 by definition.

A very common pattern in non-interference -style protocols is the idiom
|[ vis v;hid h′· (v⊕h′):= h ]| in the context of a declaration hid h; it is equiva-
lent classically to skip because it assigns only to local variables, whose scope is
indicated by |[ · · · ]|. As our first example of secure refinement (actually equality)
we show it is security-equivalent to skip also, in spite of its assigning a hidden
rhs (variable h) to a partly visible lhs (includes v). We have via Shadow-secure
program algebra the equalities

|[ vis v;hid h′· v⊕h′:=h ]|
= |[ vis v;hid h′· 〈〈v, h′:[v⊕h′ = h]〉〉 ]| “defined above”
= |[ vis v;hid h′· 〈〈v:∈{0, 1};h′:=h⊕v〉〉 ]| “classical reasoning within 〈〈·〉〉”
= |[ vis v;hid h′· 〈〈v:∈{0, 1}〉〉; 〈〈h′:= h⊕v〉〉 ]| “Lem. 1”
= |[ vis v;hid h′· v:∈{0, 1};h′:= h⊕v ]| “syntactic atoms”
= |[ vis v· v:∈{0, 1}; |[ hid h′· h′:= h⊕v ]|]| “h′ not free ♥ ”
= |[ vis v· v:∈{0, 1}]| “assignment of anything to local hidden is skip ♥ ”
= skip , “assignment of visibles to local visible is skip ♥ ”

where at ♥ we appeal to manipulations of scope, and more primitive skip-
equivalences, that because of space we must justify elsewhere [14,15]. That is,
each step can be justified by the semantics of §3, and the overall chain of equal-
ities establishes our Encryption Lemma: we will see it often.

5 Second Case Study: §4⇒ Oblivious Transfer (OT)

The Oblivious Transfer Protocol builds on §4: an agent A transfers to Agent B
one of two secrets, as B chooses: but A does not learn which secret B chose; and
B does not learn the other secret. The protocol is originally due to Rabin [17];
we use Rivest’s specialisation of it [18]. Its specification is

visA m0,m1;
visB c: Bool,m;

m := (m1 � c � m0) , ⇐ We write (left if condition else right) [8].

“Oblivious Transfer specification”

where the variables without scope brackets are global, and are assumed subse-
quently. It is implemented via a third, trusted party C who contributes before
the protocol begins, and indeed before A,B need even have decided what their
variables’ values are to be. A complete derivation is published elsewhere [15],
and it relies on the Encryption Lemma of §4.

In brief (and approximately), Agent C gives two secret keys k{x,y} to A; and
as well C gives one of those keys to B, telling him which one it is; Agent C then
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leaves. When the protocol proper begins, Agent B instructs A to encrypt m{0,1}
either with k{x,y} or k{y,x} resp. so as to ensure B holds the correct key for the
value he wants to decode. Agent A sends both encrypted values to B. Because
A sends both, he cannot tell which B really wants; because B holds only one
key, he can decrypt only his choice. The derivation is also given in [1, App. C].

6 Third Case Study: The Lovers’ Protocols

The Lovers’ Protocols (see for example “Dating without embarrassment” [21])
in this section are our first examples of two-party computations, and form the
backbone of the later derivation of the Millionaires’ Protocol. Throughout we
assume two agents A,B.

6.1 §5⇒ Lovers’ Protocol I (LP1)

In this simple protocol Agent A knows a Boolean a and Agent B knows a Boolean
b; they construct two Boolean outcomes a′, b′ known by A,B resp. so that

1. neither agent learns anything more about a∧b as a result of learning its own
a′ or b′ (as well as knowing its own a, b); and

2. the exclusive-or a′ ⊕ b′ reveals a ∧ b without revealing anything more about
either of a, b to any agent, whether A,B or some third party.

Here is the derivation; remember that each step has to be valid from both A and
B’s point of view. We have

visA a, a′;visB b, b′; ⇐ Global variables: assumed below.
(a′ ⊕ b′):= a ∧ b

“specification”

= 〈〈 a′:∈{0, 1}; b′:= (a ∧ b)⊕ a′ 〉〉 “atomicity reasoning: compare EL”
= a′:∈{0, 1}; b′:= (a ∧ b)⊕ a′ “Lem. 1: compare EL”
= a′:∈{0, 1}; b′:= (a � b � 0)⊕ a′ “Boolean algebra: true is 1, false is 0”

= a′:∈{0, 1};
b′:= (a⊕a′ � b � a′) . ⇐ Implemented by Oblivious Transfer.

“Boolean algebra”

Our semantics §3 plays two roles here, in the background: it legitimises the ma-
nipulations immediately above that introduced OT into the implementation,
which in §8 we call horizontal reasoning. And it assures us (compositional-
ity/monotonicity) that when OT is in its turn replaced by a still lower-level
implementation derived elsewhere, but in the same semantics, the validity will
be preserved: that is vertical reasoning.

6.2 §4, §6.1⇒ Lovers’ Protocol II (LP2) from Fig. 1

The second Lovers’ Protocol extends the first: here even the incoming values a, b
are available only as “⊕-shares” so that a = aA ⊕ aB and b = bA ⊕ bB, just as
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they might have been constructed by an LP1. That is Agent A knows aA and
bA; Agent B knows aB and bB; but neither knows a or b. We want to construct
a′, b′ known by A,B resp. so that a′⊕ b′ = (aA⊕aB)∧ (bB⊕bA) = a∧ b. We have

visA a′, aA, bA; ⇐ These globals assumed below.
visB b′, aB, bB;

(a′ ⊕ b′):= (aA⊕aB) ∧ (bA⊕bB)

“specification”

= (a′ ⊕ b′):= aA∧bA ⊕ aA∧bB ⊕ aB∧bA ⊕ aB∧bB “Boolean algebra”

= |[ visA rA; visB wB;
(rA ⊕ wB):= aA∧bB;
(a′ ⊕ b′):= aA∧bA ⊕ aA∧bB ⊕ aB∧bA ⊕ aB∧bB ]|

“EL for A, and for B (different visibilities),
where h is the expression aA∧bB;

then scope”

= |[ visA rA, wA; visB rB , wB;
(rA ⊕ wB):= aA∧bB; (rB ⊕ wA):= aB∧bA;
(a′ ⊕ b′):= aA∧bA ⊕ aA∧bB ⊕ aB∧bA ⊕ aB∧bB ]|

“EL for A, and for B;
then scope”

= |[ visA rA, wA; visB rB , wB;
(rA ⊕ wB):= aA∧bB; (rB ⊕ wA):= aB∧bA;
(a′ ⊕ b′):= aA∧bA ⊕ rA ⊕ wA ⊕ wB ⊕ rB ⊕ aB∧bB ]|

“Program- and Boolean algebra”

� |[ visA rA, wA; visB rB , wB;
(rA ⊕ wB):= aA∧bB; (rB ⊕ wA):= aB∧bA; ⇐ Implemented by LP1.
a′:= aA∧bA ⊕ rA ⊕ wA;
b′:=wB ⊕ rB ⊕ aB∧bB ]| .

“see below”

The last step is clearly a classical refinement; it is secure (as well) because A,B
already know the values revealed to them by the individual assignments to a′, b′.
Note that it is a proper refinement, not an equality.1

7 Main Case Study: The Millionaires Do Their Sums

This, our main example, sets us apart from validation of straight-line protocols
over finite state-spaces: we develop a (secure) loop; and the state-space can be
arbitrarily large. Two millionaires want to find which has the bigger fortune
without either revealing to the other how big their fortunes actually are. Since
two-bit millionaires expose the main issues of the protocol, we will start with
them — and then we generalise to “-aires” of arbitrary wealth.

1 Other proper classical refinements of (a′⊕b′):= EA⊕EB include a′, b′:=¬EA,¬EB

and a′, b′:= EB, EA. In the former case the extra ¬’s are pointless; and the latter
case would not be a secure refinement, since e.g. it would reveal EB to A.
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7.1 §6⇒ The Two-Bit Millionaires (MP2)

We compare a pair of two-bit numbers without revealing either: two integers
0 ≤ a, b < 4 with a=〈a1, a0〉 and b=〈b1, b0〉 are given in binary, and we reveal
(2a1+a0 < 2b1+b0) by calculating a1<b1 ⊕ (a1=b1 ∧ a0<b0).2 Thus we have a
formula in which only conjunctions, negations and exclusive-or appear, and the
implementation is simply a stitching together of what we did earlier in §6. Its
derivation is given in [1, App. B]; the result is

visA a′, a{0,1}; visB b′, b{0,1}
(a′ ⊕ b′):= (2a1+a0 < 2b1+b0)

“specification”

� |[ visA aA, bA, wA; visB aB, bB, wB;
(aA ⊕ aB):=¬a1 ∧ b1; ⇐ Lovers’ Protocol I.
(wA ⊕ wB):=¬a0 ∧ b0; ⇐ Lovers’ Protocol I.
(bA ⊕ bB):= (¬a1 ⊕ b1) ∧ (wA ⊕ wB); ⇐ Lovers’ Protocol II.
a′, b′:= (aA ⊕ bA), (aB ⊕ bB) ]| .

“from [1, App. B]”
(2)

7.2 §7.1, §7.3 (to Come)⇒ The Unbounded Millionaires (MPN)

Now we imagine more generally that we have two N -bit numbers a(N..0] and
b(N..0] and we want to compare them in the same oblivious way as in the two-bit
case. There we moved from least- to most-significant bit: that suggests as the
“effect so far” invariant that some Boolean l always indicates whether a(n..0] is
strictly less than b(n..0] as n increases from 0 to N ; obviously for security we
split that l into two shares l{a,b}. At the end the shares’ exclusive-or gives the
Boolean a<b the millionaries seek; but the shares are not directly combined until
then. Thus the specification is

visA a(N..0], la;
visB b(N..0], lb;

(la ⊕ lb):= a(N..0] < b(N..0]

“specification”

(3)

and, because of our comments above, we aim at the implementation

|[ vis n;
n:= 0;
(la ⊕ lb):= 0;
while n<N do

(la ⊕ lb):= an<bn ⊕ (an=bn ∧ la⊕lb); ⇐ MP2 modified:
maintains the invariant.n:=n + 1

od
]| .

“implementation guess”

(4)

2 We thank Berry Schoenmakers for this suggestion of using ⊕ rather than ∨ here.
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7.3 How Do We Deal with Loops?

Moving to an unbounded state-space leads consequentially away from straight-
line programs: for arbitrarily rich millionaires our comparison requires a loop.
We extend our semantics with fixed points in the usual way: thus a terminating
loop while B do body od equals some other program fragment P just when via
secure program algebra we can manipulate if B then (body;P ) fi to become P
again. For our case we hypothesise that our while-loop at (4) implements the
straight-line code fragment P as follows:

if n<N then
(la ⊕ lb):= a(N..n]<b(N..n] ⊕ (a(N..n]=b(N..n] ∧ la ⊕ lb);
n:=N

fi .

“postulated effect
of loop”

(5)

We check this program-algebraically in [1, App. D]. Most of the manipulations
are routine (i.e. would be the same steps even if one were reasoning carefully with
only functional properties in mind); but a crucial step (marked � in the appendix)
uses EL to establish that the individual calculations within each iteration do not
leak any information as the loop proceeds.

Thus in our proposed implementation (4) we can again rely on compositional
semantics to replace the loop by its equivalent straight-line code (5). That gives

|[ vis n;
n:= 0;
(la ⊕ lb):= 0;
if n<N then

(la ⊕ lb):= a(N..n]<b(N..n] ⊕ (a(N..n]=b(N..n] ∧ la ⊕ lb);
n:=N

fi ]|

“loop within (4) replaced by
equivalent straight-line code (5)”

= |[ vis n;
n:= 0;
(la ⊕ lb):= 0;
if 0<N then

(la ⊕ lb):= a(N..0]<b(N..0] ⊕ (a(N..0]=b(N..0] ∧ 0);
n:=N

fi ]|

“program algebra”

= (la ⊕ lb):= 0;
if 0<N then (la ⊕ lb):= a(N..0] < b(N..0] fi

“Eliminate local n
and simplify ∧0”

= (la ⊕ lb):= a(N..0] < b(N..0] , “0≤N assumed, and a(0..0]<b(0..0] = 0”

thus establishing that (3) is indeed implemented by (4).
The interior assignment of the loop (4, MP2 modified) is based on the two-

bit protocol MP2, a small difference being that the final sub-expression is la⊕lb
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rather than a comparison of two data-bits a0<b0 as it was in §7.1 above. By
analogy with the derivation of (2) in [1, App. B], we complete our verified imple-
mentation as shown in Fig. 4, where the appeals to LP1,2 have been expanded.

System-integration
reasoning

Specification of
component C

System S

Implementation of
component C

Refinement
reasoning

The compositionality of the security semantics is

necessary for the correctness of the two types of rea-

soning separately. . .

. . . and for their mutual consistency.

Fig. 3. Horizontal- and vertical reasoning

“Horizontal” reasoning across
the disc of Fig. 3 (recall §6.1)
uses the specification of Com-
ponent C to establish that
it plays its proper role in
the context of system S; this
is done (1) without referring
to the implementation of C
at all. “Vertical” reasoning,
down the cone, establishes
that C’s implementation has
properties no worse than its
specification; this is done (2)
in isolation, without referring
to any contextual system S at
all. Then compositionality (3)
ensures that these two sepa-
rate activities (1,2) are consis-
tent when combined. These basic features (1,2,3) of refinement are well known,
but in each case require a semantics appropriate to the application domain: our
overall strategy is to formulate such a semantics [14,15] for the non-interference
-style security domain, and thus to make the rigorous development of security
applications more accessible to our (refinement) community.

Our specific aim in this paper, for which we chose the Millionaires’ prob-
lem, was to demonstrate scalability within a topical application domain. (See
for example the recent practical application of two-party secure computation
[4], and the current interest in the use of the oblivious transfer as a crypto-
graphic primitive [10].) We used both vertical reasoning (from specification to
implementation of components) and horizontal reasoning (use of components’
specifications only) in doing so. To our knowledge our proof here is the first
(formally) for the full Millionaires’ problem. More generally our goal is to verify
security-critical software, hence our particular focus on source-level reasoning
and proofs which apply in all contexts; within those specific confines we are
amongst the first to prove a (randomised) security protocol with unbounded
state. Paulson [16] and Coble [5] also have general proofs relating to specific
security properties over computations with unbounded resources.

The Shadow has been extended to deal semantically with loops §7.3 and syn-
tactically with labelled views §3.6, the latter to enable the uniform treatment of
the complementary security goals of multiple agents. The relationship to other

8 Conclusions and Strategy
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(la ⊕ lb):= (a(N..0] < b(N..0]) ⇐ Exclusive-or l{a,b} finally, for the outcome a<b.

� |[ vis n;
n:= 0;
(la ⊕ lb):= 0;
while n<N do

visA aA, bA, wA, xA, rA; visB aB , bB, wB, xB , rB;
aA:∈{0, 1}; aB:= (an≡aA � bn � aA);

⎫⎪⎪⎬⎪⎪⎭ Each of these expands to six statements

and four further pre-distributed bits.

wA:∈{0, 1}; wB := (la≡wA � lb � wA);
rA:∈{0, 1}; xB:= (rA≡an � wB � rA);
rB:∈{0, 1}; xA:= (rB⊕bn � wA � rB);
bA, bB := (¬an∧wA ⊕ rA ⊕ xA), (xB ⊕ rB ⊕ bn∧wB);
la, lb:= (aA ⊕ bA), (aB ⊕ bB);
n:=n + 1

od ]| .

Each of the four transfers abstracts from six elementary statements, making over thirty
elementary statements in all. Ten local variables are declared in the loop body, at this
level. The TTP acts within the Oblivious Transfers, supplying four random bits for
each: thus 24N further random bits are used in total.

Fig. 4. Millionaires: The complete code at the level of Oblivious Transfers

formal semantics of non-intereference has been summarised in detail elsewhere
[14,15]; it is comparable to Leino [9] and Sabelfeld [20], but differs in details;
and it shares the goals of the pioneering work of Mantel [11] and Engelhardt [6].

We believe that three prominent features of our approach make it suitable for
practical verification: (a) secure refinement preserves (non-interference) security
properties; (b) refinement is monotonic (implying compositionality); and (c) we
exploit a simple source-level program algebra.

Features (a,b) allow layering of design; and (c) allows proofs to be constructed
from many small (algebraic) steps, of the kind suited to automation [12]. This
distinguishes us from other refinement-oriented approaches that do not so much
emphasise code-level algebraic reasoning [9,20,11,6], on the one hand, or appear
not to be compositional [3,2], on the other.

Our plans include constructing/extending computer-based tools to prove the
small algebraic steps, based on theorem-proving over the Shadow semantics, and
thus to form a library of allowed transformations. At the same time we hope
to integrate Shadow-style reasoning, based on such a library, into industrial-
strength refinement-based developments [22].

References

1. Appendices are available at,
www.cse.unsw.edu.au/~carrollm/probs/bibliographyBody.html#McIver:09

2. Černý, P.: Private communication (February 2009)

www.cse.unsw.edu.au/~carrollm/probs/bibliographyBody.html#McIver:09


304 A.K. McIver and C.C. Morgan
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Iterative Refinement of Reverse-Engineered
Models by Model-Based Testing

Neil Walkinshaw, John Derrick, and Qiang Guo
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Abstract. This paper presents an iterative technique to accurately re-
verse engineer models of the behaviour of software systems. A key novelty
of the approach is the fact that it uses model-based testing to refine the
hypothesised model. The process can in principle be entirely automated,
and only requires a very small amount of manually generated informa-
tion to begin with. We have implemented the technique for use in the
development of Erlang systems and describe both the methodology as
well as our implementation.

Keywords: Reverse engineering; model-based testing; Erlang.

1 Introduction

Several important software verification and validation techniques rely on the
availability of models that describe the software behaviour, models which should
be accurate, and capture every relevant requirement of the system. In practice
this requirement is unrealistic. The manual process of developing a specification
can be error-prone and expensive. Moreover, software is commonly developed
under restrictive time constraints; developers tend to concentrate on developing
the implementation and do not have time to generate and maintain accurate
specifications in tandem. The notion of a fully accurate model being maintained
(or even existing to begin with) is unfortunately at present largely a myth.

An alternative approach is to generate models, or specifications, of a system
from the implementation itself, and this paper is concerned with the challenge
of reverse-engineering state machine models from an implementation. Ideally,
such a reverse-engineering technique can be run at any point during the devel-
opment of an implementation to provide a snapshot of system behaviour. The
use of reverse-engineered models is that they can be inspected by developers to
give an understanding of how the system behaves in practice. If they are correct
(with respect to the developer’s requirements), they can be used for core soft-
ware maintenance tasks such as documentation and regression-testing. If, upon
inspection, they are found to be out of step with system requirements, they can
be used to identify which parts of the system are faulty.

In reality, reverse-engineering techniques tend to be less straightforward. They
tend to require an extensive sample of program execution traces, which can be
difficult to identify and collect. Consequently, the models can be inaccurate, and
are therefore less useful to the developer.
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In this paper we introduce an iterative reverse-engineering method that will
ensure an adequate sample of execution traces by incorporating a model-based
testing technique. Unlike most other existing techniques, no initial traces or
models are required at all. Instead, a model-based testing framework is used
to iteratively populate the set of traces that are used to infer the model, the
inference being performed with our StateChum model inference tool [1]. One nice
aspect of the approach is that the inference technique uses heuristics that have
been shown to be effective for sparse samples of traces, meaning that it does not
rely on systematic, expensive testing techniques. In this paper we demonstrate its
effectiveness with respect to the QuickCheck testing framework and the Erlang
programming language.

Implementation of the technique for use in Erlang development. This
work has been carried out in the context of the EU ProTest project1, which
aims to improve the model-based testing of concurrent and distributed telecoms
systems.

Erlang [2] was, along with its Open Telecoms Platform (OTP), originally de-
veloped by Ericsson for the rapid development of network applications. However,
its usage has now spread beyond that domain to a number of sectors. Erlang
has been designed to provide a paradigm for the development of distributed soft
real-time systems, where multiple processes can be spread across many nodes
in a network. Consequently, a lot of the development effort involved in imple-
menting an Erlang system is concerned with how these processes interact with
each other and their environment. The protocol an Erlang process follows when
communicating with other processes or responds to internal events is often im-
plemented in terms of finite state machines, which is why they play a particularly
important role and our technique is particularly appropriate.

The rapid development that is facilitated by Erlang means that formal speci-
fications are, however, often neglected. It is often perceived to be more expedient
to verify and document the system on an ad-hoc basis, and it is unrealistic to
expect a developer in a commercial environment to provide an accurate and
complete formal specification that can be used for more rigorous verification
techniques. Producing an accurate specification that captures all of the neces-
sary functionality can be a challenging and time-consuming task, particularly
for complex systems. Furthermore, as the requirements change and the system
is modified, keeping complex specifications up to date can be overwhelming, even
with the best of intentions.

It is this problem that the technique presented in this paper aims to solve.
The technique we develop iteratively reverse-engineers a state-machine from the
implementation by using program tests, with only a small amount of manual
input required. The result is a model that closely conforms to the actual sys-
tem behaviour. The intention is that this final model can be validated and,
if necessary, refined by the developer, and then used as a reference model for

1 http://www.protest-project.eu/

http://www.protest-project.eu/
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subsequent program development tasks such as regression testing, and as a basis
for communication amongst developers.

The paper is structured as follows. Section 2 provides some background on
Erlang and QuickCheck, and the challenge of reverse-engineering finite state ma-
chines from software implementations. Section 3 introduces our iterative process
that adopts model-based testing techniques to drive the inference and provides
details of our implementation. The process is illustrated with a case study in
Section 4, and Section 5 concludes.

2 Background

2.1 Erlang and QuickCheck

Erlang is a concurrent functional language with specific support for the devel-
opment of distributed, fault-tolerant systems with soft real-time requirements
[2]. It was designed from the start to support a concurrency-oriented program-
ming paradigm and large distributed implementations that this supports. It was
developed initially by Ericsson as a platform for rapid development of network-
applications, but its applications have now expanded to include computer tele-
phony, banking, TCP/IP programming (HTTP, SSL, Email, Instant messaging,
etc) and 3D-modelling. It is increasingly used to develop applications that are
business-critical, for example, its use in Ericsson’s AXD-301 switch that provides
British Telecom’s internet backbone.

However, verification and validation of Erlang systems is to-date a largely ad-
hoc, manual process. Consequently there is an inherent danger that important
functionality remains untested and undocumented. Thus along with its recent
growth in popularity, there has been a concerted drive to develop more auto-
mated and systematic techniques.

QuickCheck. One of these techniques is QuickCheck [3], an automated model-
based testing tool for Erlang. It has become one of the standard testing tools used
by Erlang developers. The ‘model’ is conventionally provided by the developer,
as a set of simple properties that must hold for the program to behave correctly,
and these are expressed as temporal logic properties in Erlang itself. For example,
the following property would check that the reverse function for lists behaves as
expected:

prop\_reverse() ->
?FORALL(Xs,list(int()),
lists:reverse(lists:reverse(Xs)) == Xs).

Given such a property, QuickCheck uses random data generators to produce
inputs that will exercise the system, with the aim of producing counter-examples.
Once a counter-example is found, QuickCheck attempts to use successive tests
to home in on the precise reason for the failure, with the aim of producing the
smallest possible counter-example.

QuickCheck has recently been extended to so that one can test an imple-
mentation against a model given as a finite state machine (rather than just a
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predicate). The use of a finite state machine allows one to specify the permitted
sequences of program functions, along with their effect on the data-state of the
system. As well as selecting random data-inputs for the functions, QuickCheck
also selects random paths through the state machine, with the aim of verify-
ing the existence of state transitions. The key fact for our reverse-engineering
technique is that for a given state-machine model, QuickCheck can produce the
requisite sequences of inputs (with the necessary data parameters) to automati-
cally test any path in the model against the actual software system.

2.2 Reverse-Engineering State Machines

Reverse-engineering techniques aim to address this problem. Broadly speaking,
these approaches can be separated into two categories: Those based on source-
code analysis (c.f. [4]), and those based on analysis of execution traces. Here
we focus on the latter (dynamic) approaches. They are based on the analysis of
program traces [5,6] which are sequences of events (e.g. function calls, message-
passing events etc.), that may optionally be annotated with variable values. The
traces can be recorded by instrumenting the source code, or by using one of the
trace tools, e.g. for Erlang those that are included in the OTP framework. Traces
that lead to a program failure (i.e. an exception) are annotated as such, so that
the last recorded trace event corresponds to the point of failure.

From a given set of traces, the challenge for reverse-engineering techniques
is to produce a candidate state machine that conforms to the provided set of
traces. This is akin to the challenge of inferring a regular grammar, which is con-
ventionally represented as a state machine from a given set of strings (a problem
originally posed in 1967 [7]). In fact, most reverse-engineering techniques are in-
spired by techniques that were initially devised as grammar-inference techniques
[8,1,6].

It is unrealistic to expect an inference technique to be able to infer a ma-
chine that exactly represents the underlying software system from any arbitrary
set of traces. An inference technique will only produce an accurate result if
the provided set of traces is characteristic of the behaviour of the underlying
software system [8,6]. In terms of state machines, this must include enough in-
formation about what the program can and cannot do to enable the inference
technique to identify every state transition, and to distinguish between every
pair of non-equivalent states. Thus the key challenges lie in (a) identifying the
relevant subset of executions and (b) collecting them - a potentially expensive
and time-consuming process.

Most reverse-engineering inference techniques are passive [9,10], in that they
presume that the necessary traces have already been identified and collected
prior to inferring the candidate model. However, given that the initial set of
traces is unlikely to contain all of the necessary information, the resulting model
is often only poor approximation of the real implementation.

In an effort to address this, a number of active techniques have been devel-
oped. Active techniques are augmented with the ability to pose questions about
the target model, to help the developer to identify the set of required traces. Such
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techniques come in two flavours: those based on Angluin’s L∗ algorithm [11], and
those based on state-merging techniques [8]. Both techniques are iterative; they
construct a hypothesis model, and use it as a basis for posing questions to some
oracle. The essential difference between the two techniques comes down to ex-
pense. Techniques based on Angluin’s algorithm rely on asking a large number
of questions in order to produce an accurate model - and such an approach is
infeasible in the setting our work is placed. Thus here we use state-merging tech-
niques which place a greater emphasis on heuristics. These are less demanding
in terms of the number of questions asked, but have nonetheless been shown to
produce models that are reasonably accurate [8,6].

In our previous work we have applied active state-merging to the challenge
of reverse-engineering [1,12], however, this has relied on a substantial amount of
human intervention, where each query posed by the technique either had to be
answered directly by the human or had to be executed manually. Expecting a
human to be able to directly answer every query is unrealistic; the amount of
knowledge required would undermine the whole purpose of reverse engineering
the model in the first place. Expecting a human to manually execute each query
is a tedious and time-consuming process, requiring the generation of suitable
data parameters for each execution as well.

Here we describe an extension of this approach, that leverages the strengths
of model-based testing techniques with the powerful heuristic inference abilities
of state-merging techniques. The resulting process removes the human bottle-
neck. Instead of being driven by a built-in question-generator, which can be
very expensive, it will be up to the model-based tester to select the tests and to
execute them. This means that the developer can choose the testing technique,
and determine the expense (and resulting accuracy) of the technique. In our
implementation of the technique we use the QuickCheck framework, but this
can be substituted according to circumstance.

3 Iteratively Testing Reverse-Engineered Models

This paper introduces a technique to remove the human bottle-neck that arises
with conventional dynamic model inference techniques. Instead of requiring a
human to identify relevant program executions and collect the ensuing traces,
model-based testing techniques are used to automate the process. The amount
of a-priori knowledge of the program under analysis is minimal, although there
are a number of optional mechanisms that can be used to add this information
if it is available.

To explain the technique we use a simple example of a text editor, the LTS
for which is shown in Figure 1(a), where as usual we take an LTS is a quadruple
A = (Q,Σ, δ, q0), where Q is a finite set of states, Σ is a finite alphabet, δ :
Q×Σ → Q is a partial function and q0 ∈ Q.

Our technique builds up a sequence of candidate models, each one being a
bit more accurate than the last, these models can be viewed as partial LTS’s,
defined as follows [13], which allow us to distinguish between model transitions
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that are known to be invalid, and transitions that are simply not known to exist
at all.

Definition 1 (Partial LTS (PLTS)). A PLTS is a tuple A = (Q,Σ, δ, q0, Ψ).
This is defined as a LTS, but it is assumed to be only partial. To make the explicit
distinction between unknown and invalid behaviour, Ψ makes the set of invalid
labels from a given state explicit – Ψ ⊆ Q × Σ where (q, σ) ∈ Ψ implies that
δ(q, σ) /∈ Q.

To define the language of a PLTS, we draw on the inductive definition for an
extended transition function δ̂ used by Hopcroft et al. [14] to define two notions
of language: prescribed and proscribed which are used below.

Definition 2 (Prescribed and Proscribed Languages of a PLTS). For a
state p and a string w, the extended transition function δ̂ returns the state p that
is reached when starting in state p and processing sequence w. For the base case
δ̂(q, ε) = q. For the inductive case, let w be of the form xa, where a is the last
element, and x is the prefix. Then δ̂(q, w) = δ(δ̂(q, x), a).

Given the extended transition function, the prescribed language of a PLTS A
can be defined as follows: PreL(A) = {w|δ̂(q0, w) ∈ Q}.

The proscribed language of a PLTS can be defined as:
ProL(A){xa|(δ̂(q0, x), a) ∈ ψ}. By construction PreL(A) ∩ ProL(A) = ∅.

3.1 The Basic Process

The basic technique is straightforward. A human user provides the program of
interest, along with a small initial set of traces, these are required to identify
the set of functions of the program that are of interest (i.e. the alphabet of the
target machine). From this an initial hypothesis model is constructed - a single
state, with transitions for each element of the alphabet that loop back to that
state. This is provided as input to a state-machine testing framework, which
generates tests from the model. These tests are executed in the program, and a
tracing mechanism is used to record the executions. As soon as a test is found
that contradicts the expected behaviour as described by the model, the process
is restarted, but this time the model is inferred from the test traces. This process
iterates until no further discrepancies can be found by testing.

The basic process is captured by algorithm 1. It takes as input the program
under analysis Prog, along with a valid trace (or several if necessary) that con-
tains every element in the alphabet of the target machine. It uses four external
functions: inferPLTS, sub, generateT ests and runTest. inferPLTS will be
described in more detail below. sub simply returns a substring of a string String
up to some index i. generateT ests and runTest represent the functionality of
the model-based testing framework. generateT ests is responsible for generating
tests from a PLTS, which may be achieved by a number of standard state ma-
chine testing algorithms. runTest executes a test test on a program Prog, and
returns a zero if the test passes, or a number pointing to the index of test where
the failure happened.
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Input: Prog, Pos

Data: Neg, test, fail, failedPLTS

Uses: inferPLTS(T+, T−), generateTests(PLTS), runTest(t, Prog), sub(String, i)
Result: PLTS

Neg ← ∅;1
PLTS ← inferPLTS(Pos, Neg);2
while test ← generateTests(PLTS) do3

fail ← runTest(test, Prog);4
if fail = 0 then5

Pos ← Pos ∪ {test};6
if test ∈ ProL(PLTS) then7

PLTS ← inferPLTS(Pos, Neg);8
9

else10
failed ← sub(test, fail);11
Neg ← Neg ∪ {failed};12
if failed ∈ PreL(PLTS) then13

PLTS ← inferPLTS(Pos, Neg);14
15

end16
end17

return PLTS18

Algorithm 1. Basic iterative algorithm

An initial PLTS is generated by calling the inferPLTS function with Neg =
∅ and Pos to contain one possible initial trace: the only requirement for the
initial trace is that it contains every function in the alphabet of the target
machine at least once. For our editor example, the initial sequence could simply
be < load, edit, save, close, exit >, but any sequence in Σ∗ is valid. inferPLTS
returns the most general model possible and in this initial iteration will always
consist of a single state, with one looping transition that is labelled by the
transitions from the trace in Pos. Formally, the resulting PLTS is defined as
A = (Q,Σ,∆, q0, Ψ) where: Q = {q0}, ∀σ ∈ Σ, δ(q0, σ) → q0 and Ψ = ∅.
The purpose of the ensuing process is to refine this model - to ensure that the
behaviour represented by the final PLTS accurately reflects that of the actual
implementation. In our example, this initial model is shown in Figure 1(a).

Thus the algorithm iterates. To illustrate this suppose that we have chosen to
use the QuickCheck testing framework (i.e. this will provide the functionality of
the external functions generateT ests(PLTS) and runTest(test, Prog)). Being
a model-based testing framework, QuickCheck needs a model to generate tests
from. For this we use our initial model, the one in Figure 1 (b).

QuickCheck chooses a random test - and may choose to try to execute the se-
quence < load, close, close, edit > (line 3). This fails, so the variable fail, which
stores the point of failure in the test is set to the index returned by runTest, which
is 3. The failing sub-sequence failed is identified by taking the first three elements
of the test: < load, close, close > (line 11). This is added to the set of impossi-
ble sequences Neg (line 12). Because the sequence failed is possible in the cur-
rent candidate model (belongs to the prescribed language), a discrepancy has been
identified (line 13). Consequently a new model is inferred, taking the updated set
Neg into account, which results in the model shown in Figure 1(c).
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(a) correct model

(b) (c) (d)

Fig. 1. Inference iterations on editor example

In the next iteration, the updated model is used as a basis for generateT ests.
Suppose that this time it returns the test < load, edit, exit >, which when exe-
cuted does not fail. fail is thus set to 0 (line 4), and the test is added to the set
of valid traces Pos (line 6). Since the test has passed, and this is prescribed by
the model, there is no disagreement between the test outcome and the model,
so another test can be executed. It is important to note that QuickCheck, our
tester of choice, will never generate tests that should fail according to the pro-
vided model, so in our case the branch in line 8 will not occur. Nevertheless,
more systematic testing techniques such as the W-Method [15] do attempt tests
that should fail; in this case, if a test does not fail when it should according to
the current model, a new model has to be generated.

3.2 Model Inference

The inference process, which is called by the inferPLTS function in the al-
gorithm, is based upon the EDSM / blue-fringe state-merging method [16,8,1].
A brief illustration will be provided with respect to the editor example. As de-
scribed above, the algorithm gradually gathers a set of traces that are either
valid, or invalid. The purpose of inferPLTS is to infer a state machine from
these, that is a suitable generalisation - i.e. will correctly classify previously
unseen traces as either valid or invalid.

To do this, the two sets of traces Pos and Neg are aggregated into a single tree
- referred to as an augmented prefix tree acceptor (APTA). This tree represents
the most specific and precise machine possible, that exactly corresponds to the
provided sets of traces. For example, suppose the model-based tester has selected
the test < load, edit, edit, save, load > for the next iteration from the model in
Figure 1 (c). This test fails, because only one file can be opened at a time.
InferPTA is called to build a new model, incorporating this test. Figure 2 (a)
shows the corresponding APTA (valid traces are listed under S+, and invalid
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Initial traces
S+:
< load, edit, save, close, exit >
< load, edit, exit >
S−:
< load, close, close >
< load, edit, edit, save, load >

(a) (b)

Fig. 2. Augmented Prefix Tree Acceptor and illustration of merging

traces are listed under S−). Dashed lines in this tree represent paths in the tree
that are invalid.

The goal of the inference is to identify states in this tree that are actually
equivalent, and to merge them. In doing so, this will collapse the machine down
to a minimal machine that is a generalisation of the set of traces. The merging
process is iterative - lots of subsequent merges are required to reach the final
machine. At each iteration, a set of state-pairs is selected using the Blue-Fringe
algorithm [16], a colour-based breadth-first traversal algorithm (a description
of this is beyond the scope of this paper). Each candidate pair is assigned a
score, which indicates the likelihood that the states are equivalent. The score is
computed by comparing the extent to which the suffixes of each state overlap
with each other2. Any pairs with non-negative scores can potentially be merged.
A pair of states is incompatible if a sequence is possible from one state, but
impossible from the other - this leads to a score of -1. Once the scores have
been computed, the pair with the highest score is merged, and the entire process
starts afresh, until no further pairs can be merged.

To illustrate the scoring process, we refer back to the example prefix-tree in
Figure 2 (a). Initially, the Blue-Fringe algorithm suggests only one pair of states
(a,b). They have a score of zero, so they can be merged. The result is shown in
Figure 2 (b). In the next iteration, we are given the option of selecting to merge
either pairs ((ab),c) or ((ab),d). This is where the scoring comes into play - we
want to select the pair that are most likely to be equivalent. In this case it is
straightforward because the score for ((ab),d) is -1; a close is possible from state
ab, but not from state d, ruling out that merge. The score for ((ab),c) is 2; both

2 The Blue-Fringe algorithm ensures that the suffixes of one state are guaranteed to
be a tree without loops, which facilitates this score computation.
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Fig. 3. Schematic overview of implementation

states share the suffix < edit, save >, so this is chosen to be merged. This is
how the merging process continues until no more merges can be carried out. The
resulting machine is shown in Figure 1(d).

3.3 Implementation of the Technique

We have implemented the technique for use on programs written in Erlang.
However, the approach is essentially a black-box one, and is not tied to a specific
language or paradigm. A schematic overview of the key components is given in
Figure 3, and the tools that are used for the inference, testing and tracing are
briefly described below.

Model Inference: StateChum3 is an open-source model inference framework
that has been developed by the authors [1]. It implements a state-merging ap-
proach as described in the previous section. The tracing mechanism (described
below) has been augmented with a small script that translates traces into suit-
able input files.

Tracing: Erlang has a wide array of tracing tools, many of which are included in
the standard Erlang OTP libraries. The traces used in this work are however laid
out in a particular format, to facilitate the application of other trace-analysis
tools such as Daikon [17]. To this end, a small Erlang tracing module was de-
veloped4, which runs as an independent Erlang process. The source code is in-
strumented at the exit points of functions that are of interest, such that every
time an instrumented point is executed, it sends the relevant details (function
name and variable values) to the trace process. The tracing process produces an
output in the form of a Daikon trace file. It is optionally possible to add abstrac-
tions, which map the traces from lower level events to sequences of higher-level
program functions.

Testing: As discussed earlier QuickCheck is particularly suited to this work
because it can incorporate finite state machine (FSM) specifications5. The
3 http://statechum.sourceforge.net/
4 http://www.dcs.shef.ac.uk/~nw/Files/FM2009/dtraceGenerator.erl
5 http://quviq.com/eqc_fsm%20example/index.htm

http://statechum.sourceforge.net/
http://www.dcs.shef.ac.uk/~nw/Files/FM2009/dtraceGenerator.erl
http://quviq.com/eqc_fsm%20example/index.htm
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-record(state,{openfile}).
% openfile stores the name of
% the open file
%===== initial state =====
initial_state() -> a.
initial_state_data() ->

#state{openfile=[]}.
%===== data generator =====
filename() -> elements([‘‘test1’’,

’’test2’’,’’test3’’]).
% data transformations
%===== state transition system =====

a(S) [{b,{call,editor,exit,[]}},
{d,{call,editor,load,[filename()]}}].

b(S) [].
c(S) [{c,{call,editor,edit,[chars(4)]}},
{a,{call,editor,close,[S#state.openfile]}},
{b,{call,editor,exit,[]}},
{d,{call,editor,save,[]}}].

d(S) [{c,{call,editor,edit,[chars(4)]}},
{a,{call,editor,close,[S#state.openfile]}},
{b,{call,editor,exit,[]}}].

Fig. 4. Example QuickCheck FSM specification of text-editor

specification of an FSM is essentially divided into four parts: The initial state
specification, the state transition system, the data transformations and the data
generators. A small example specification is shown in Figure 4. It should be noted
that this example only contains the essential information for a FSM construction;
QuickCheck supports a variety of other constructs (such as pre/post-conditions),
which are omitted here.

Currently, all of the steps in Figure 3 are automated. With our implementation
the user to provide an initial trace, along with a parameter stating the number
of tests that should be executed for each candidate model. This will cause the
entire process to iterate, terminating once it has produced a model that does
not disagree with any tests.

4 Case Study

The case study revolves around a simple FTP-client that is a modified version
of the ssh sftp, which is part of the Erlang OTP ssh libraries (version 1.0.2)
released by Ericsson6. For reference the main files involved in the tracing and
testing are available on the web7.

Subject system and set-up. The main functions of the FTP client are pre-
sented in Table 1. In this model we will only consider the operation of the FTP
client with respect to a single file. The client has been deliberately designed to
incorporate some reasonably intricate state-based rules. Only one file-handle can
exist at a given time. Since a file has to be opened in either ‘read’ or ‘write’ mode,
this means that a file can not be written to and read from at the same time. We
have added the constraint that it is impossible to read from an empty file, and
it is impossible to write to, or read from, a specific position in the file without
having explicitly obtained the position using the write position / read position
files first.

We start off by identifying the instrumentation points in the source code.
This consists of identifying the points in the source code that correspond to exit
6 http://www3.erlang.org/documentation/doc-5.6.5/lib/ssh-1.0.2/doc/html/
7 http://www.dcs.shef.ac.uk/~nw/Files/FM2009/

http://www3.erlang.org/documentation/doc-5.6.5/lib/ssh-1.0.2/doc/html/
http://www.dcs.shef.ac.uk/~nw/Files/FM2009/
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Table 1. Functions of the FTP client (Σ in the PLTS)

Function Description
connect connect to server, only one connection permitted at a time
disconnect disconnect from server
open writable, open readable open file in ‘write’ or ‘read’ mode
close writable, close readable close file in ‘write’ or ‘read’ mode
write, read write data to or read data from beginning of the file
write position, read position obtain a specific position for writing to or reading from the file
pwrite, pread write to or read from a specific position in the file
delete delete the file

points for the abstract functions. In our case this is straightforward, as the ab-
stract functions all correspond to actual function definitions in ssh sftp. As an
example, at the end point of ssh sftp.open we insert a statement to add the
name of the function “open”, its arguments and the output of the function (see
accompanying website for sample files). Depending on the arguments, the tracer
either records an execution of the function as “open new” or “open existing”.
Having set up the tracer, all that remains is to set up the QuickCheck tester. Stat-
eChum has been augmented to automatically generate the QuickCheck model
files from the inferred transition systems.

The inferred models. Figure 5 contains two snapshots from the inference pro-
cess, which consisted of 57 iterations in total when run using the implementation
of our technique described above. The process terminated when the testing pro-
cess yielded no further tests that revealed faults in the hypothesis. The entire set
of iterations is available on the accompanying website. For the sake of readabil-
ity, proscribed transitions are not shown. Figure 5 (a) shows the model produced
after 28 iterations. This model contains a number of errors (e.g., it permits the
file to be opened in ‘read’ mode while it is still open in ‘write’ mode). The final
candidate specification, which is produced after 57 iterations has 9 states, and
is the most accurate version produced. Every state transition that is permitted
in the model is also possible in the actual implementation (i.e., the inference
process has made no over-generalisations).

Degree of accuracy. The key question is: how useful is the technique? One
aspect of this is to what extent the inferred model is the actual behaviour of the
implementation, although it should be noted that even a partial model will be
of use to a developer in increasing their understanding of the system.

Figure 6 shows a “diff” between the final inferred model and the target. The
technique used to compute this is defined in [18]. From this comparison it can
be established that 19 transitions were correctly inferred by the machine, that
16 transitions are missing, and that 6 superfluous transitions have been added.
Most of the missing transitions are of a particular nature: they are events that
should be possible from every state in the system and would consequently require
a very large number of tests to capture. The events “disconnect” and “delete”
should be possible from most states, and account for 9 of the 16 transitions. The
remaining missing transitions represent relatively minor differences in behaviour.
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(a) 28th iteration

(b) 57th (final) iteration

Fig. 5. Inferred models

The correctly inferred transitions produce a reasonably accurate overview of how
the system behaves; the system has its three well defined phases of operation -
connection, writing to a file, and reading from that file. The requirement that
a file can only be open either in “write” or “read” mode is correctly captured,
and a file must be written to before it can be read.

To compare the language of the inferred model with its intended target pre-
cision, we adopt a technique that is defined in [19]. Precision denotes the extent
to which the language that is represented by the inferred machine represents
the language of the target state machine of the actual software system. Recall
denotes the extent to which the language that is represented by the target ma-
chine is covered by the inferred machine. These measures have been applied to
the inferred machine to separately assess the accuracy in terms of both valid
and invalid languages. In terms of the valid language of the two machines, the
precision is 96.2%, with a recall of 41%. The low positive recall tallies with the
large number of missing transitions; a large number of sequences that should be
accepted by the inferred machine are missing. In terms of negative precision and
recall, the machine has a precision of 85%, and a recall of 99.5%.

In summary, both methods of comparison indicate that the model is precise, and
that it captures the essential functionality of the system. Inaccuracies are primarily
due to the fact that the model is inferred model can end up missing certain transi-
tions, especially those that are possible from every state (such as “disconnect”). In
practice, this can be explained by the choice of testing technique. Current versions
of QuickCheck explore the model randomly, and only choose transitions that are in
the model - they do not attempt to explore unspecified behaviour. This inevitably
leads to some transitions potentially being missed out.
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Fig. 6. Difference between final inferred model and reference model - Bold transitions
are correct, thin (green) lines are added, dashed (red) lines are missing

A major strength of the technique demonstrated above is that it is based on
an inference technique (the EDSM-bluefringe state-merging technique) that ex-
cels at dealing with sparse samples of program traces or tests. It can arrive at a
reasonable hypothesis of how the program behaves, without requiring an exhaus-
tive or impractically large number of traces or tests. One potential weakness of
the implementation here is that, if errors are made early on in the state-merging
process, they are compounded by future merges, so it relies on a sufficient base
of traces to prevent invalid merges from happening. The iterative testing process
is responsible for gathering this base of traces in the form of tests.

As a result, the accuracy of the final result is highly dependent on the testing
technique that is used - in the name of efficiency we have used a simple random
testing approach in QuickCheck. There are however a number of systematic
testing techniques, such as the W-method mentioned above [15], and evaluation
of how these can be integrated into the process is a key area of future work that
we wish to undertake.

5 Conclusions and Future Work

This paper has presented an iterative approach to reverse-engineering labelled
transition systems. The approach has been implemented and demonstrated with
respect to and Erlang system, but can in princple be applied to any system re-
gardless of the underlying language. The inference engine, along with the various
illustratory resources are openly available.

The approach was demonstrated with respect to a small model of a real Erlang
implementation of a FTP client. The resulting model is shown to be very precise,
both in terms of the graph structure and the language that this represents.
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There are a number of ways by which the authors intend to extend this work.
A more extensive case-study will be used, to ensure that the approach scales
reasonably to larger systems. There is already a lot of experimental evidence
from the grammar inference community [16] to suggest that this will be the
case. Previous work by the authors has involved the manual provision of se-
lected LTL constraints to increase the efficiency and accuracy of the inference
process. It is our intention to integrate these techniques with the current testing
infrastructure.

As mentioned in Section 3.3, the traces are produced in the Daikon format
[17]. Daikon can infer data constraints on variables from execution traces. We
are currently investigating the use of Daikon to infer pre/post-conditions from
Erlang executions, which can then be used to annotate the reverse-engineered
state machines.

There are a number of QuickCheck features that could be used to increase
the efficacy of the testing process. As mentioned previously, it is our intention
to use the transition-weighting feature to coax the tester towards certain states
that would otherwise be in danger of being left unexplored by random tests. It
is envisaged that Uchitel’s PLTS formalism could be particularly useful in this
respect, helping to identify those states with lots of ‘unknown’ transitions, to
automate the assignment of weights in the hypothesis machine.
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Abstract. Linearizability is an important correctness criterion for implementa-
tions of concurrent objects. Automatic checking of linearizability is challenging
because it requires checking that 1) all executions of concurrent operations be
serializable, and 2) the serialized executions be correct with respect to the se-
quential semantics. This paper describes a new method to automatically check
linearizability based on refinement relations from abstract specifications to con-
crete implementations. Our method avoids the often difficult task of determining
linearization points in implementations, but can also take advantage of lineariza-
tion points if they are given. The method exploits model checking of finite state
systems specified as concurrent processes with shared variables. Partial order re-
duction is used to effectively reduce the search space. The approach is built into a
toolset that supports a rich set of concurrent operators. The tool has been used to
automatically check a variety of implementations of concurrent objects, including
the first algorithms for the mailbox problem and scalable NonZero indicators. Our
system was able to find all known and injected bugs in these implementations.

1 Introduction

Linearizability [13] is an important correctness criterion for implementations of objects
shared by concurrent processes, where each process performs a sequence of operations
on the shared objects. Informally, a shared object is linearizable if each operation on
the object can be understood as occurring instantaneously at some point, called the
linearization point, between its invocation and its response, and its behavior at that
point is consistent with the specification for the corresponding sequential execution of
the operation.

One common strategy for proving linearizability of an implementation (used in man-
ual proofs or automatic verification) is to determine linearization points in the imple-
mentation of all operations and then show that these operations are executed atomically
at the linearization points [11,2,29]. However, for many concurrent algorithms, it is dif-
ficult or even impossible to statically determine all linearization points. For example,
in the K-valued register algorithm (Section 10.2.1 of [4]), linearization points differ
depending on the execution history. Furthermore, the linearization points determined
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might be incorrect, which can give wrong results of linearizability. Therefore, it is de-
sirable to have automatic solutions to verifying these algorithms without knowing lin-
earization points. However, existing methods for automatic verification without using
linearization points either apply to limited kinds of concurrent algorithms [30] or are
inefficient [29].

Contribution. This paper describes a new method for automatically checking lineariz-
ability based on refinement relations from abstract specifications to concrete imple-
mentations. Our method does not rely on knowing linearization points, but can take
advantage of them if given. The method exploits model checking of finite state systems
specified as concurrent processes with shared variables, and is not limited to any partic-
ular kinds of concurrent algorithms. We exploit powerful optimizations to improve the
efficiency and scalability of our checking method.

Refinement requires that the set of execution traces of a concrete implementation be
a subset of that of an abstract specification. Thus, we express linearizability as trace
refinement of operation invocations and responses from the abstract specification to the
concrete implementation, where the abstract specification is correct with respect to se-
quential semantics. The idea of refinement has been explored before: Alur et al. [1]
showed that linearizability can be cast as containment of two regular languages, and
Derrick et al. [8] expressed linearizability as non-atomic refinement of Object-Z and
CSP models. Some similar approaches [6,10,16] prove linearizability using trace simu-
lation. In this work, we give a general and rigorous definition of linearizability, regard-
less of the modeling language used, using refinement.

Our model checking method exploits on-the-fly refinement checking (so that coun-
terexamples, if any, can be produced without generating the entire search space, as in
FDR [20]), partial order reduction (to effectively reduce the search space), symmetry
reduction (to handel large or even unbounded number of processes) and other optimiza-
tions. If linearization points are known and can be marked in the implementation, our
approach constructs an even smaller search space. Some of the optimizations are spe-
cialized for linearizability checking while others are general. The result is a powerful
linearizability checking method that is much more efficient than prior work. A model
checking tool, PAT [24] (http://pat.comp.nus.edu.sg), is developed to provide automated
support for this approach. PAT supports an event-based modeling language that has a
rich set of concurrent operators. Our engineering effort realizes all these optimizations
in PAT. We have used PAT to automatically check not only established algorithms, such
as concurrent stack and queue algorithms, but also larger and more sophisticated al-
gorithms that were not formally verified before—the first algorithms for the mailbox
problem [3] and scalable NonZero indicators [11]. Both algorithms use sophisticated
data structures and control structures, so the linearization points are difficulty to de-
termine. The verification details of the two algorithms can be found in [15] and [32]
respectively. Counterexamples were reported quickly for incorrect algorithms, such as
an incorrect implementation of concurrent queues [21]. Experimental results show that
our solution is much more efficient and scalable than prior work [29].

The rest of the paper is structured as follows. Section 2 gives the standard defini-
tion of linearizability. Section 3 shows how to express linearizability using refinement
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relations in general. Section 4 describes verification and optimization methods. Section 5
presents experimental results. Section 6 discusses related work and concludes.

2 Linearizability

Linearizability [13] is a safety property of concurrent systems, over sequences of events
corresponding to the invocations and responses of the operations on shared objects. It
is formalized as follows.

In a shared memory modelM, O = {o1, . . . , ok} denotes the set of k shared objects,
P = {p1, . . . , pn} denotes the set of n processes accessing the objects. Shared objects
support a set of operations, which are pairs of invocations and matching responses.
Every shared object has a set of states that it could be in. A sequential specification
of a (deterministic) shared object1 is a function that maps every pair of invocation and
object state to a pair of response and a new object state.

The behavior ofM is defined as H , the set of all possible sequences of invocations
and responses together with the initial states of the objects. A history σ ∈ H induces
an irreflexive partial order <σ on operations such that op1 <σ op2 if the response of
operation op1 occurs in σ before the invocation of operation op2. Operations in σ that
are not related by <σ are concurrent. σ is sequential iff <σ is a strict total order. Let
σ|i be the projection of σ on process pi , which is the subsequence of σ consisting of all
invocations and responses that are performed by pi . Let σ|oi be the projection of σ on
object oi , which is the subsequence of σ consisting of all invocations and responses of
operations that are performed on object oi .

A sequential history σ is legal if it respects the sequential specifications of the ob-
jects. More specifically, for each object oi , if sj is the state of oi before the invocation of
the j -th operation opj in σ|oi , then response of opj and the resulting new state sj+1 of
oi follow the sequential specification of oi . For example, a sequence of read and write
operations of an object is legal if each read returns the value of the preceding write
if there is one, and otherwise it returns the initial value. Every history σ of a shared
memory modelM must satisfy the following basic properties:

Correct interaction. For each process pi , σ|i consists of alternating invocations and
matching responses, starting with an invocation. This property prevents pipelining
operations.

Closeness. Every invocation has a matching response. This property prevents pending
operations.

In addition to these two, liveness property is also important for some critical systems,
which guarantees the progress of the systems. Even if the model satisfies linearizabil-
ity, it may not progress as desired. For instance, even under a fair scheduler Treiber’s
push/pop [25] might never terminate if there is always another concurrent push/pop.
We remark that liveness properties can be formulated as Linear Temporal Logic (LTL)
formulae (an example is given at the end of Example 1) and checked using standard
LTL model checkers (with or without the assumption of a fair scheduler).

1 More rigorously, the sequential specification is for a type of shared objects. For simplicity,
however, we refer to both actual shared objects and their types interchangeably in this paper.
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Given a history σ, a sequential permutation π of σ is a sequential history in which
the set of operations as well as the initial states of the objects are the same as in σ. The
formal definition of linearizability is given as follows.

Linearizability. There exists a sequential permutation π of σ such that
1. for each object oi , π|oi is a legal sequential history (i.e. π respects the sequen-

tial specification of the objects), and
2. if op1 <σ op2, then op1 <π op2 (i.e., π respects the run-time ordering of

operations).

Linearizability can be equivalently defined as follows: In every history σ, if we assign
increasing time values to all invocations and responses, then every operation can be
shrunk to a single time point between its invocation time and response time such that
the operation appears to be completed instantaneously at this time point [16,4]. This
time point for each operation is called its linearization point. Linearizability is a safety
property [16], so its violation can be detected in a finite prefix of the execution history.

Linearizability is defined in terms of the interface (invocations and responses) of
high-level operations. In a real concurrent program, the high-level operations are im-
plemented by algorithms on concrete shared data structures, e.g., using a linked list to
implement a shared stack object. Therefore, the execution of high-level operations may
have complicated interleaving of low-level actions. Linearizability of a concrete con-
current algorithm requires that, despite complicated low-level interleaving, the history
of high-level invocation and response events still has a sequential permutation that re-
spects both the run-time ordering among operations and the sequential specification of
the objects. This idea is formally presented in the next section using refinement relations
in a process algebra extended with shared variables.

3 Linearizability as Refinement Relations

We model concurrent systems using a process algebra extended with shared variables.
The behavior of a model is described using a labeled transition system generated from
the model. We define linearizability as a refinement relation from an implementation
model to a specification model.

3.1 Modeling Language

We introduce the relevant subset of syntax of CSP (Communicating Sequential Pro-
cesses) [14] extended with shared variables and give its operational semantics. Note
that our approach is not limited to process algebra like CSP; it is also applicable to
any programming language with formal operational semantics. We chose this language
because of its rich set of operators for concurrent communications.

Definition 1 (Process). A process P is defined using the grammar2:

P ::= Stop | Skip | e{assignments} → P | P \X | P1; P2 | P1 � P2
| P1 � b � P2 | P1 ||| P2 ||| · · · ||| Pn

2 Parallel composition (P1 ‖ P2 ‖ · · · ‖ Pn) is omitted in the paper since it is irrelevant to our
discussion. We include it in our technical report [15].
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where P ,P1,P2, . . . ,Pn are processes, e is a name representing an event with an op-
tionally attached sequence of assignments to shared variables, X is a set of names,
and b is a Boolean expression.

Stop is the process that communicates nothing, also called deadlock. Skip = � →
Stop, where � is the termination event. Event prefixing e → P performs e and af-
terwards behaves as process P . If e is attached with assignments, the valuation of the
shared variables is updated accordingly. For simplicity, assignments are restricted to
update only shared variables. Process P \ X hides all occurrences of events in X . An
event is invisible iff it is explicitly hidden by the hiding operator P \ X . Sequential
composition, P1; P2, behaves as P1 until its termination and then behaves as P2. Ex-
ternal choice P1 � P2 is solved only by the occurrence of a visible event. Conditional
choice P1 � b � P2 behaves as P1 if the Boolean expression b evaluates to true, and
behaves as P2 otherwise. Indexed interleaving P1 ||| P2 ||| · · · ||| Pn runs all processes
independently except for communication through shared variables. Processes may be
recursively defined, and may have parameters (see examples later).

The most noticeable extension to CSP is the use of shared variables. It has long
been known [14] that one can model a variable as a process parallel to the processes
that use it. Nevertheless, direct support of variables allows concise modeling and ef-
ficient verification. The shared memory contains integer/Boolean variables and arrays,
which can be read/written atomically by all processes. Nonblocking algorithms use syn-
chronization primitives such as compare and swap (CAS) and load linked (LL)/store-
conditional (SC). Our language provides strong support for these synchronization
primitives by using conditional choices, which is elaborated in [32]. The complete syn-
tax and formal operational semantics of our language is presented in [23].

The semantics of a model is defined with a labeled transition system (LTS). Let Σ
denote the set of all visible events and τ denote the set of all invisible events. Since
invisible events are indistinguishable, we sometimes also use τ to represent an arbitrary
invisible event. Let Σ∗ be the set of finite traces. Let Στ be Σ ∪ τ .

Definition 2 (LTS). A LTS is a 3-tuple L = (S , init ,T ) where S is a set of states,
init ∈ S is the initial state, and T ⊆ S ×Στ × S is a labeled transition relation.

For states s , s ′ ∈ S and e ∈ Στ , we write s e→ s ′ to denote (s , e, s ′) ∈ T . The set of
enabled events at s is enabled(s) = {e : Στ | ∃ s ′ ∈ S , s e→ s ′}. We write s

e1,e2,···,en→
s ′ iff there exist s1, · · · , sn+1 ∈ S such that si

ei→ si+1 for all 1 ≤ i ≤ n , s1 = s and
sn+1 = s ′, and s τ∗→ s ′ iff s = s ′ or s

τ,···,τ→ s ′. The set of states reachable from s
by performing zero or more τ transitions is τ∗(s) = {s ′ : S | s τ∗→ s ′}. Let tr : Σ∗

be a sequence of visible events. s tr⇒ s ′ if and only if there exist e1, e2, · · · , en ∈ Στ

such that s
e1,e2,···,en→ s ′ and tr = 〈e1, e2, · · · , en〉 � τ is the trace with invisible events

removed. The set of traces of L is traces(L) = {tr : Σ∗ | ∃ s ′ ∈ S , init tr⇒ s ′}.
For example, Fig. 1 shows a LTS3 generated from ReaderA process in Example 1,

where τ labels are omitted for simplicity. Due to the use of shared variables, a state of
the system is a pair (P ,V ), where P is the current process expression, and V is the

3 The dotted circles will be explained in Section 4 and should be ignored for now.



326 Y. Liu et al.

451 2 3
read_inv read_inv
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Fig. 1. A LTS Example

current valuation of the shared variables represented as a mapping from names to values.
Given a LTS (S , init ,T ), the size of S can be infinite for two reasons. First, variables
may have infinite domains. Second, processes may allow unbounded replication by
recursion, e.g., P = (a → P ; c → Skip) � b → Skip, or P = a → P ||| P . In this
paper, we consider only LTSs with a finite number of states. In particular, we bound
the sizes of value domains and the number of processes by constants. In our examples,
bounding the sizes of value domains also bounds the depths of recursions.

Definition 3 (Refinement). Let Lim = (Sim , initim ,Tim) be a LTS for an implemen-
tation. Let Lsp = (Ssp , initsp ,Tsp) be a LTS for a specification. Lim refines Lsp , writ-
ten as Lim $T Lsp , iff traces(Lim) ⊆ traces(Lsp).

3.2 Linearizability

This section shows how to create high-level linearizable specifications and how to use
a refinement relation to define linearizability of concurrent implementations.

To create a high-level linearizable specification for a shared object, we rely on the
idea that in any linearizable history, any operation can be thought of as occurring at
some linearization point. We define the specification LTS Lsp = (Ssp , initsp ,Tsp) for
a shared object o in the following way. Every execution of an operation op of o on a
process pi includes three atomic steps: the invocation action inv(op)i , the lineariza-
tion action lin(op)i , and the response action res(op, resp)i . The linearization action
lin(op)i performs the computation based on the sequential specification of the object.
In particular, it maps the invocation and the object state before the operation to a new
object state and a response, changes the object to the new state, and buffers the re-
sponse resp locally. The response action res(op, resp)i generates the actual response
resp using the buffered result from the linearization action. Each of the three actions is
executed atomically without being interfered by any other action, but the three actions
of one operation may be interleaved with the actions of other operations. In Lsp , all
inv(op)i and res(op, resp)i are visible events, while lin(op)i are invisible events.

In a LTS Lsp = (Ssp , initsp ,Tsp), each process pi has (a) an idle state spi ,0, (b)
a state s(op)pi ,1 for every operation op of object o, representing the state after the
invocation of op but before the linearization action of op, and (c) s(op, resp)pi ,2 for
every operation op and every possible response resp of this operation, representing the
state after the linearization action of op but before the response of op. Then Ssp is
the cross product of all object values and all process states. initsp is the combination
of the initial value of object o and spi ,0’s for all processes pi . For s ∈ Ssp , let svo be
the value of object o encoded in s , spi be the state of pi in s , and s−pi and s−pi ,−vo be



Model Checking Linearizability via Refinement 327

the state s excluding spi and excluding spi and svo , respectively. The labeled transition
relation Tsp is such that for (s , e, s ′) ∈ T , (a) if e = inv(op)i , then s−pi = s ′−pi

,
spi = spi ,0, and s ′pi

= s(op)pi ,1; (b) if e = lin(op)i , then s−pi ,−vo = s ′−pi ,−vo
,

spi = s(op)pi ,1, and s ′pi
= s(op, resp)pi ,2, such that s ′vo

and resp are the new object
value and the response, respectively, based on the sequential specification of object o
as well as the old object state svo and the state spi = s(op)pi ,1 of process pi ; (c) if
e = res(op, resp)i , then s−pi = s ′−pi

, spi = s(op, resp)pi ,2, and s ′pi
= spi ,0.

Example 1 (K-valued register). We use a shared K-valued single-reader single-writer
register algorithm (Section 10.2.1 of [4]) to demonstrate the ideas above. The lineariz-
able abstract model is defined as follows, where R is the shared register with initial
value K , and M is a local variable to store the value read from R.

ReaderA() = read inv → read{M = R; } → read res.M → ReaderA();
WriteA(v) = write inv .v → write{R = v ; } → write res → Skip;
WriterA() = (WriteA(0) � WriteA(1) � . . . � WriteA(K − 1)); WriterA();
RegisterA() = (ReaderA() ||| WriterA())\{read , write};

The ReaderA process repeatedly reads the value of register R and stores the value
in local variable M . Event read res .M returns the value in M . WriteA(v) writes the
given value v into R. Event write inv .v stores the value v to be written into the register.
The WriterA process repeatedly writes a value in the range of 0 to K − 1. External
choices are used here to enumerate all possible values. RegisterA interleaves the reader
and writer processes and hides the read and write events (linearization actions). The
only visible events are the invocation and response of the read and write operations.
This model generates all the possible linearizable traces.

We now consider a LTS Lim = (Sim , initim ,Tim) that supposedly implements ob-
ject o. The visible events of Lim are also those inv(op)i ’s and res(op, resp)i ’s. For
example, the following models an implementation of a K -valued register using an ar-
ray B of K binary registers (storing only 0 and 1).

Reader() = read inv → UpScan(0);
UpScan(i) = DownScan(i − 1, i) � B [i ] = 1 � UpScan(i + 1);
DownScan(i , v) = (read res.v → Reader()) � i < 0 �

(DownScan(i − 1, i) � B [i ] = 1 � DownScan(i − 1, v));
Write(v) = write inv .v → τ{B [v ] = 1; } →WriterScan(v − 1);
WriterScan(i) = (write res → Skip) � i < 0 �

(τ{B [i ] = 0; } →WriterScan(i − 1));
Writer() = (Write(0) � Write(1) � . . . � Write(K )); Writer();
Register() = Reader() |||Writer();

The Reader process first does a upward scan from element 0 to the first non-zero ele-
ment i , and then does a downward scan from element i − 1 to element 0 and returns
the index of last element whose value is 1. Event read res .v returns this index as the
return value of the read operation. The Write(v) process first sets the v -th element of
B to 1, and then does a downward scan to set all elements before i to 0. Note that
in this implementation, the linearization point for Reader is the last point where the
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parameter v in DownScan process is assigned in the execution. Therefore, the lin-
earization point can not be statically determined. Instead, it can be in either UpScan or
DownScan . We remark that one liveness property can be verified by model checking
�read inv ⇒�read res where � and � are modal operators which read as ‘always’
and ‘eventually’ respectively. �

Theorem 1 characterizes linearizability of the implementation through a refinement
relation and thus establishes our approach to verifying linearizability. Different ver-
sions of this result appeared in distributed computing literature, for example, in Lynch’s
book [16], Theorems 13.3-13.5.

Theorem 1. All traces of Lim are linearizable iff Lim $T Lsp .

Proof (sketch). Sufficient condition: For any trace σ ∈ traces(Lim), because Lim $T

Lsp , σ is also a trace of Lsp . Let ρ be the execution history of Lsp that generates the
trace σ. We define the sequential permutation π of σ as the reordering of operations in
σ in the same order as the linearization actions lin(op)i ’s of all operations op and all
processes pi in ρ. If op1 <σ op2, the linearization action of op1 must be ordered before
the linearization action of op2 in ρ, and thus op1 <π op2. It is also easy to verify that π
is a legal sequential history of object o, since the linearization action of every operation
in ρ is the only action in the operation that affects the object state based on its sequential
specification, and the order of operations in π respects the order of linearization actions
in ρ.

Necessary condition: Let σ be a trace of Lim . By assumption σ is linearizable. We
need to show that σ is also a trace of Lsp . Since σ is linearizable, there is a sequential
permutation π of σ such that π respects both the sequential specification of object o and
the run-time ordering of the operations in σ. We construct an execution history ρ of Lsp

from σ and π as follows. Starting from the first event of σ, for any event e in σ, (a) if it
is an invocation event, append it to ρ; (b) if it is a response event res(op, resp)i , locate
the operation op in π, and for each unprocessed operation op′ by a process j before
op in π, process op′ by appending a linearization action lin(op′)j to ρ, following the
order of π; finally append lin(op)i and res(op, resp)i to ρ. It is not difficult to show
that the execution history ρ constructed this way is indeed a history of Lsp . Moreover,
obviously the trace of ρ is σ. Therefore, σ is also a trace of Lsp . �

The above theorem shows that to verify linearizability of an implementation, it is
necessary and sufficient to show that the implementation LTS is a refinement of the
specification LTS as we defined above. This provides the theoretical foundation of our
verification of linearizability. Notice that the verification by refinement given above
does not require identifying low-level actions in the implementation as linearization
points, which is a difficult (and sometimes even impossible) task. In fact, the verifica-
tion can be automatically carried out without any special knowledge about the imple-
mentation beyond knowing the implementation code.

In some cases, one may be able to identify certain events in an implementation as
linearization points. We call these linearization events. For example, three linearization
events have been identified in the stack algorithm [2]. In these cases, we can make these
events visible and hide other events (including the invocation and response events) and
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verify refinement relation only for these events. More specifically, we obtain a speci-
fication LTS L′

sp by the following two modifications to Lsp : (a) for each linearization
action lin(op)i , we change it to lin(op, resp)i so that the response resp computed by
this linearization action is included; and (b) all linearization actions are visible while all
inv(op)i and res(op, resp)i are invisible. Let L′

im be an implementation LTS such that
its linearization events are visible and all other events are invisible, and its linearization
events are also specified as lin(op, resp)i .

Theorem 2. Let L′
sp and L′

im be the specification and implementation LTSs such that
linearization events are specified as lin(op, resp)i and are the only visible events. If
L′

im $T L′
sp , then the implementation is linearizable. Conversely, if the implementation

is linearizable, and it can be shown that no other actions in the implementation can be
linearization actions, then L′

im $T L′
sp .

The proof of the theorem can be found [15]. With this theorem, the verification of lin-
earizability could be more efficient based on only linearization events. However, one
important remark is that, as stated in the theorem, to make refinement a necessary con-
dition of linearizability in this case, one has to show that no other actions in the im-
plementation can be linearization points. In other words, the determined linearization
points have to be complete. Otherwise, even if the verification finds a counterexample
for the refinement relation, we cannot conclude that the implementation is not lineariz-
able since we may have failed in determining all possible linearization events. Examples
of implementations modeled using linearization points can be found in [15].

4 Verification of Linearizability

This section presents a general algorithm for refinement checking, which is further ex-
tended with partial order reduction and other optimizations.

4.1 Refinement Checking Algorithm

To establish a refinement relationship, every reachable state of the implementation must
be compared with every state of the specification reachable via the same trace. Because
of nondeterminism caused by interleaving of multiple clients and invisible events, there
may be many such states in the specification. Thus, the specification is normalized, by
standard subset construction. A normalized state is a set of states that can be reached
by the same trace from a given state.

Definition 4 (Normalized LTS). Let (S , init ,T ) be a LTS. The normalized LTS is
(NS ,Ninit ,NT ) where NS is the set of subsets of S , Ninit = τ∗(init), and NT =
{(P , e,Q) | P ∈ NS ∧ Q = {s : S | ∃ v1 : P , ∃ v2 : S , (v1, e, v2) ∈ T ∧ s ∈
τ∗(v2)}}.

Given a normalized state s ∈ NS , enabled(s) is
⋃

x∈s enabled(x ). Given a LTS con-
structed from a process, the normalized LTS corresponds to the normalized process. A
state in the normalized LTS groups a set of states in the original LTS which are all con-
nected by τ -transitions. For instance, the dotted circles in Fig. 1 shows the normalized
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procedure linearizability(Impl ,Spec)
1. checked := ∅; pending .push((initim , τ∗(initsp)));
2. while pending is not empty do
3. (Im,NSp) := pending .pop();
4. checked := checked ∪ {(Im,NSp)};
5. if enabled(Im) � (enabled(NSp) ∪ {τ}) then – C1
6. return false;
7. endif
8. foreach (Im ′,NSp′) ∈ next(Im, NSp)
9. if (Im ′,NSp′) �∈ checked then
10. pending .push((Im ′,NSp′));
11. endif
12. endfor
13. endwhile
14. return true;

Fig. 2. Algorithm: linearizability(Impl ,Spec)

states. Notice that, given a trace, the normalized transition relation NT is deterministic,
i.e., for any normalized state P and any event e, there is at most one normalized state
Q such that (P , e,Q) ∈ NT .

Based on the refinement checking algorithms in FDR [19], we present a modi-
fied on-the-fly refinement checking algorithm that applies partial order reduction. We
remark that partial order reduction is an effective reduction method due to the na-
ture of concurrent algorithms. Let Spec = (Ssp , initsp ,Tsp) be a specification and
Impl = (Sim , initim ,Tim) be an implementation. Refinement checking is reduced to
reachability analysis of the product of Impl and normalized Spec. Because normaliza-
tion in general is computationally expensive, our checking algorithm in Fig. 2 performs
normalization on-the-fly, whilst searching for a counterexample.

The algorithm in Fig. 2 performs a depth-first search for a pair (Im,NSp) where Im
is a state of the implementation and NSp is a normalized state of the specification such
that, the set of enabled events of Im is not a subset of those of NSp (C1). The algorithm
returns true if no such pair is found. If C1 is satisfied, a counterexample violating trace
refinement is found. The procedure for producing a counterexample is straightforward
and hence omitted. Lines 8 to 12 proceed to explore new states of the product of Impl
and Spec and push them onto the stack pending . Function next(Im,NSp) returns the
children of state (Im,NSp) in the product, which is the following set,

{(Im ′,NSp) | (Im, τ, Im ′) ∈ Tim} ∪ {(Im ′,NSp′) | ∃ e, (Im, e, Im ′) ∈ Tim ∧
∀ s : NSp′, ∃ s1 : NSp, ∃ s2 : NSp′, (s1, e, s2) ∈ Tsp ∧ s ∈ τ∗(s2)}

A new state of the product is obtained by either the implementation taking a τ transition
(and the specification remains unchanged) or the implementation and the specification
engaging the same event simultaneously. To compute next(Im,NSp) (e.g., calculating
τ∗(s2)), it is necessary to compute the set of states reached by a τ -transition from a
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procedure tau(S)
1. foreach Pi

2. por := enabledPi (S) ⊆ τ ∪X ∧ enabledPi (S) = current(Pi );
3. foreach e ∈ enabledPi (S)
4. por := por ∧ ¬ onstack(e) ∧ ∀ e ′ : Σj , j �= i ⇒ ¬ dep(e, e ′);
5. endfor
6. if por then return {(((· · · ||| P ′

i ||| · · ·) \ X ),V ) | (Pi ,V ) e→ (P ′
i ,V )};

7. endfor
8. return {S ′ | S τ→ S ′};

Fig. 3. Algorithm: tau(S)

given state. This function is implemented by procedure tau(S ) (Fig. 3), which explores
all outgoing transitions of S and returns the set of states reachable from S via one
τ -transition. It uses partial order reduction and is explained in the next section.

The linearizability algorithm is linear in the number of transitions in the prod-
uct. Assume both Impl and Spec have finite states. The algorithm terminates because
checked is monotonically increasing. The soundness of the algorithm follows from [19].
Because normalization is done on-the-fly, it is possible to find a counterexample before
the specification is completely normalized.

4.2 Optimizations

Like any model checking algorithm, linearizability checking suffers from state space
explosion. This section describes several optimization techniques to solve this problem.

Partial order reduction (POR) is effective for checking linearizability. Our reduc-
tion realizes and extends early works on POR for process algebras [28] and refine-
ment checking [31]. The idea of the reduction is that events may be independent, e.g.,
read inv of different readers are independent of each other. Given P = P1 ||| · · · ||| Pn

and two enabled events e1 and e2, e1 depends on e2, written as dep(e1, e2), if e1 and e2
are from the same process or e1 updates a variable to be accessed by e2, or vice versa.
Notice that dep(e1, e2) ⇔ dep(e2, e1). Two events are independent if neither depends
on the other. Because the ordering of independent events is irrelevant to the correctness
of linearizability checking, we may ignore some of the ordering so as to reduce the
search space. Since interleaving composition is the main source of state space explo-
sion, we consider that Im is in the form of ((P1 ||| P2 ||| · · · ||| Pn) \ X ,V ), where
Pi is a process, X is a set of events and V is the valuation of the variables. We show
how to explore only a subset of enabled transitions and yet preserve soundness.

Function next(Im,NSp), which depends on function tau(S ), is used to expand the
search tree. POR is mainly applied to function tau(S ). Because tau is applied to the
specification or implementation independently, as long as we guarantee that the reduced
state graph (of either Impl or Spec) is trace-equivalent to the full state graph, there is
a refinement relationship in the reduced state space if and only if there is one in the
full state space. Fig. 3 shows function tau(S ). The idea is to identify one process Pi
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such that all τ -transitions from Pi are independent of those from other processes, by
checking a set of heuristic conditions. Intuitively, a process Pi is chosen if and only if,

– enabledPi (S ) ⊆ τ ∪ X , i.e., events enabled in process Pi are all invisible,
– enabledPi (S ) = current(Pi), i.e., given Pi and any valuation of the global vari-

ables, all events that could be enabled in process Pi (denoted by current(Pi)) are
enabled (denoted by enabledPi (S )). This is a sufficient condition to guarantee that
an event that is dependent on a transition from Pi cannot be executed without a
transition from Pi occurring first,

– ¬ onstack(e), i.e., executing e does not result in a state on the search stack,
– ∀ e ′ : Σj , j �= i ⇒ ¬ dep(e, e ′), i.e., all enabled events are independent of events

from other process Pj (denoted as Σj ).

If no such Pi is found, we expand the node with all enabled events (line 8). Following
the arguments of [28] and [31], it can be shown that the reduced state graph is trace-
equivalent to the full graph.

The above applies POR to τ -transitions only. PAT is capable of applying POR to
visible events. Because both Impl and Spec must make corresponding transitions for a
visible event, reduction for visible events is complicated. Fig. 4 presents the algorithm,
i.e., the refined next . If Im is not stable (i.e., tau(Im) �= Im), we apply the algorithm
tau ′ (tau ′ is same as tau in Fig. 3 except that line 8 returns ∅) to identify a subset
of τ -transitions (line 2). If no such subset exists, the pair (Im,NSp) is fully expanded
(line 10). An algorithm visible similar to tau ′ is used to check if a given visible event
e is a candidate for POR. Function processes(e) returns all process components (of the
composition) whose alphabet contains e. Firstly, we choose a possible candidate from
Im using the algorithm visible. Event e is chosen if and only if, for each process in
processes(e), e is the only event from the process that can be enabled, all other enabled
events are independent of e, and performing e does not result in a state on the stack.
Next, we check if e satisfies the same set of conditions for each state in the normalized
state of the specification. If it does, e is used to expand the search tree at line 9 (and all
other enabled events are ignored). In order to find such e efficiently, the candidate events
are selected in a pre-defined order, i.e., events that have the least number of associated
processes are chosen first. The soundness proof of the algorithm can be found in our
technical report [15].

Our approach works without knowledge of linearization points. Nonetheless, having
the knowledge would allow us to take full advantage of POR. Because the linearization
points are the only places where data consistency must be checked, we may amend
the above algorithm to perform data consistency check at the linearization points. As
a result, encoding relevant data as part of the event is not necessary and the model
contains fewer events, which translates to fewer traces. Furthermore, because only the
linearization points need to be synchronized, we may hide all other events, and turn
visible transitions into τ -transitions that are subject to POR.

Besides partial order reduction, our approach is compatible with other state space
reduction techniques or abstract interpretation techniques. Distributed algorithms and
protocols are usually designed for a large (or even unbounded) number of similar pro-
cesses. They are therefore subject to symmetric reduction [12]. For instance, different
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procedure next ′(Im,NSp)
1. if τ ∈ enabled(Im) then
2. nextmoves := tau ′(Im);
3. if (nextmoves �= ∅) then return nextmoves;
4. else
5. foreach e ∈ enabled(Im)
6. por := visible(Im, e);
7. foreach S ∈ NSp

8. por := por ∧ visible(S , e);
9. if por then return {(Im ′, τ∗(NSp′)) | Im e→ Im ′ ∧ NSp

e→ NSp′};
10. return next(Im,NSp);

procedure visible(Im, e)
1. por := ¬ onstack(e) ∧ ∀ e ′ : Σj , e ′ �= e ⇒ ¬ dep(e, e ′);
2. foreach Pi ∈ processes(e)
3. por := por ∧ enabledPi (Im) = current(Pi ) = {e};
4. return por ;

Fig. 4. Algorithm: next ′(Im,NSp) and visible(Im, e)

writers (i.e., WriterA(i)) in Example 1 are symmetric and therefore, it is sound (subject
to property-specific conditions) to only explore one writer and conclude the same for
all other writers. If the processes are identical, then it is subject to process counter ab-
straction. For example, in the concurrent stack algorithm, the processes invoking push
and pop are symmetric and therefore, we only keep track of the number of processes,
instead of the exact processes. In this way, we may prove the property for arbitrary
number of processes. We skip the details due to space constraints.

5 Experiments

Our method has been implemented and applied to a number of concurrent algorithms,
including register—the K-valued register algorithm4 in Section 3, stack—a concur-
rent stack algorithm [25], queue—a concurrent non-blocking queue algorithm in Fig.
3 of [18], buggy queue—an incorrect queue algorithm [21], and mailbox and SNZI—
the first algorithms for the mailbox problem [3] and scalable Non-Zero indicators [11],
respectively. Details for verifying these examples can be found in our technical re-
port [15]. Table 1 summarizes part of our experiments, where ‘-’ means out of memory
or more than 4 hours, and ‘(points)’ means that linearization points are given.

The number of states and running time increase rapidly with data size and the num-
ber of processes, e.g., 3 processes for register, stack, queue, and SNZI vs. 2 processes.
The results conform to theoretical results [1]: model checking linearizability is in EX-
PSPACE for both time and space. When linearization points are known, the complexity

4 We extend this example with 2 readers and 1 writer. The correctness is verified using PAT.
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Table 1. Experiment results on a PC with 2.83 GHz Intel Q9550 CPU and 2 GB memory

Algorithm #Proc. Linear- Time(sec) #States Time(sec) #States
izable w/o POR w/o POR with POR with POR

4-valued register 2 true 6.14 50893 5.72 43977
5-valued register 2 true 44.9 349333 60.4 307155
6-valued register 2 true 297 2062437 789 1838177
3-valued register with 3 true 294 479859 393 361255
2 readers and 1 writer
stack of size 12 2 true 138 540769 65.9 395345
stack of size 14 2 true 411 763401 99.4 599077
stack of size 2 3 true - - 4321 4767519
stack of size 12 (points) 2 true 0.62 9677 0.82 9677
stack of size 14 (points) 2 true 0.82 12963 1.11 12963
stack of size 2 (points) 3 true 1.14 10385 1.56 10385
stack of size 2 (points) 4 true 37.6 219471 49.4 219471
queue of size 6 2 true 134 432511 86.2 343446
queue of size 8 2 true 256 104582 218 938542
buggy queue of size 10 2 false 10.9 32126 6.87 32126
buggy queue of size 20 2 false 52.73 105326 41.1 105326
mailbox of 3 operations 2 true 71.6 272608 27.8 120166
mailbox of 4 operations 2 true 2904 9928706 954 3696700
SNZI of size 2 2 true 1298 712857 322 341845
SNZI of size 3 3 true - - 6214 8451568

is still EXPSPACE, but the state space reduces significantly since the state spaces of im-
plementation and specification are smaller. We show that the speedup of knowing lin-
earization points is in the order of O(2k ·2n ·(k2n−kn)), where k is the size of the shared
object and n is the number of processes [15]. Use of partial order reduction effectively
reduces the search space and running time in most cases, including stack and queue,
and especially mailbox and SNZI because their algorithms have multiple internal tran-
sitions. For register, the state space is reduced but running time increases because of
computational overhead. For buggy queue [21], the counterexamples (discovered firstly
in [7]) are produced quickly after exploring only part of the state space.

Vechev and Yahav [29] also provided automated verification. Their approach needs
to find a linearizable sequence for each history, whose worst-case time is exponential in
the length of the history, as it may have to try all possible permutations of the history. As
a result, the number of operations they can check is only 2 or 3. In contrast, our approach
handles all possible interleaving of operations given sizes of the shared objects. Because
of partial order reduction and other optimizations, our approach is more scalable than
theirs. For instance, we can verify stacks of size 14, which means any number of stack
operations that contain up to 14 consecutive push operations.

Experiments suggest that PAT is faster than FDR for systems without variables [22].
Modeling variables using processes and lack of partial order reduction will make FDR
even slower. Therefore we skip comparison with FDR on these examples.
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6 Discussions

In terms of modeling of linearizability, our approach is based on the trace refinement of
LTSs, which is similar to [1]. Our refinement checking algorithm is related to existing
on-the-fly behavioral equivalence and pre-order checking algorithms (e.g., [19,9]). The
non-atomic refinement defined in [8] separates the data explicitly as state-based formal-
ism Object-Z. This modeling requires to have the knowledge of linearization points, and
also prevents automatic verification techniques such as model checking to be used.

Formal verification of linearizability is a much studied research area, since lineariz-
ability is a central property for the correctness of concurrent algorithms. There are var-
ious approaches in the literature, as discussed below.

Manual proving. Herlihy and Wing [13] present a methodology for verifying lineariz-
ability by defining a function that maps every state of an concurrent object to the set of
all possible abstract values representing it. Vafeiadis et. al. [27] use rely-guarantee rea-
soning to verify linearizability for a family of implementations for linked lists. Neither
of them requires statically determined linearization points, but they are manual.

Using theorem provers. Verification using theorem provers (e.g., PVS) is another
approach [10,6]. In these works, algorithms are proved to be linearizable by using sim-
ulation between input/output automata modeling the behavior of an abstract set and the
implementation. However, theorem prover based approach is not automatic. Conversion
to IO automata and use of PVS require strong expertise.

Static analysis. Wang and Stoller [30] present a static analysis that verifies linearizabil-
ity for an unbounded number of threads. Their approach detects certain coding patterns,
which are known to be atomic regardless of the environment. This solution is not com-
plete (i.e., not applicable to all algorithms).

Model checking. Amit et al. [2] presented a shape difference abstraction that tracks the
difference between two heaps. This approach works well if the concrete heap and the
abstract heap have almost identical shapes. Recently, Manevich et al. [17] and Berdine
et al. [5] extended it to handle larger number and unbounded number of threads, re-
spectively. Vafeiadis [26] further improved this solution to allow linearization points in
different threads. The main limitation of these approaches is that users need to pro-
vide linearization points, which are unknown for some algorithms. In [29], Vechev
and Yahav provided two methods for linearizability checking. The first method is a
fully automatic, but inefficient as discussed in Section 5. The second method requires
algorithm-specific user annotations for linearization points, which is not generic.

In this work, we expressed linearizability using a refinement relation. A fully auto-
matic model checking algorithm for linearizability verification is developed and built in
a practical tool PAT. Several case studies show that our approach is capable of verifying
practical algorithms and identifying bugs inX faulty implementations. Several future di-
rections are possible. Algorithms that accept an infinite number of threads or unbound
data structures make model checking impossible. Symmetric properties among threads
can reduce infinite number of threads to a small number. Shape analysis can also be
incorporated into the model checking to handle unbounded data size.
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Abstract. Programming errors found early are the cheapest. Tools ap-
plying to the early stage of code development exist but either they suffer
from false positives (“noise”) or they require strong user interaction. We
propose to avoid this deficiency by defining a new class of errors. A pro-
gram fragment is doomed if its execution will inevitably fail, in whatever
state it is started. We use a formal verification method to identify such er-
rors fully automatically and, most significantly, without producing noise.
We report on preliminary experiments with a prototype tool.

1 Introduction

Software engineers agree on that bugs found early are the cheapest. Tools apply-
ing to this stage of development, however, usually suffer from false positives or
require strong user interaction. Perhaps the only “cheap” bugs are those found
by the compiler. Fixing them is cheap since they are fixed by the programmer
as they appear. We note that no programmer would doubt the relevance of a
compiling error in a program fragment because this is an error regardless of the
intended use of the program fragment, i.e., there is no way it can be dismissed
(there is no “noise”).

In this paper, we propose the definition of a class of program errors that
can be detected as early (i.e., for a possibly isolated program fragment), as
automatically (i.e., by a tool, without user input and without user interaction)
and as precisely (no noise) as, e.g., a missing semicolon.

We define that a program fragment is doomed if an execution that reaches
it will inevitably fail, i.e., executing the program fragment will never lead to a
normal termination of the program.

We present a formal verification method (on top of an existing static checker)
to identify such errors fully automatically and, most significantly, without pro-
ducing noise. We report on a prototype implementation on top of Boogie
[2, 4] that can be used in combination with Spec# or VCC [6] to either ana-
lyze C# or C programs. Preliminary experimental results indicate its practical
potential.
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Related Work. We first want to point out that the class of errors our approach
finds is subsumed by almost every bug detection tool and that most tools will
find even more real bugs. However, the increased error detection rate comes
at a price: these tools either produce a lot of noise or they require heavy user
interaction. For instance, a set of unit tests that executes every statement in the
program at least once will detect all errors related to doomed program points
but one has to write or generate the test cases.

Our work can best be compared to Findbugs [1], which tries to find a rea-
sonable amount of bugs using different control and dataflow analysis approaches
while having in mind that flooding the user with false positives would ruin ev-
erything. With Findbugs, we share the idea of searching for contradictions in the
dataflow. For this purpose, Findbugs uses a special pattern detection mechanism
which is very fast but can miss errors and produce false positives. We give an
experimental comparison of our approach and Findbugs in Section 7.

Other static analysis tools like e.g., Splint [9] are less comparable since they
focus on finding as many bugs as possible and therefore produce noise or require
special code annotations.

The results produced by our tool could be reproduced using full fledged auto-
matic verifiers such as Blast [12] by first trying to prove the program, collecting
all unverified assertions, negating them and rerunning the verification. If the ver-
ifier is able to prove such a negated assertion then, the corresponding statement
will fail under any circumstances. However, this would be a rather convoluted
and costly way to find doomed program points. Also, tools such as Blast are
meant to be applied to the whole program, i.e., at a rather late stage of devel-
opment when the errors we are targeting have probably already been fixed.

From the algorithmic point of view, our approach is strongly related to ex-
tended static checkers such as ESC/Java [10] and modular program verifiers such
as Spec# [4, 2]. While these tools issue warnings whenever they cannot prove
the absence of an error, as opposed to issuing warnings only for definite errors,
we share their approach of transforming the program and the idea of using pred-
icate transformers to obtain a representation that can be checked by a theorem
prover [17]. These tools use special annotations such as invariants to prove cer-
tain properties. For the purpose of error detection, though, these annotations are
not required. As we show later on, the user can still provide such information in
order to increase the error detection rate.

Proving the existence of bad states, as done by Rümmer and Shah [21], differs
from our approach in that they prove the existence of inputs for which something
bad might happen while a doomed program point guarantees that nothing good
can happen when reaching it. Their approach will find more errors, but requires a
specification of the desired inputs or will otherwise be imprecise. Doomed points
are errors regardless of the desired program behavior.

There is also previous work on refinement and noise reduction techniques for
existing error detection and verification approaches. That work has the effect of
reducing false positives, but we instead take a new approach.
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2 Examples

In the following, we present a collection of examples that demonstrate what
kinds of errors our approach is able to find and, more importantly, what kinds
of vulnerabilities it does not report.

Example 1. Our first example is given in Figure 1. It demonstrates a trivial,
yet common error that can happen during development. In fact, the example is
inspired by an error that was found in an old version of Eclipse [14].

If our algorithm identifies an error in a program, then it will report not just the
statement that crashes, but also the statements that actually lead to the crash.
This provides additional hints to the developer that help him to fix the error. If
we apply our algorithm to the example program, then it will report lines 5 and
6 as a guaranteed error. It reports line 6 because whenever the expression *ptr
is evaluated, this will cause a null pointer dereference. It further reports line 5
because if the else branch of the conditional is taken, ptr==0 has been evaluated
to true, which guarantees the error in line 6.

1 int ac c e s s ( int ∗ptr )
2 {
3 i f ( ptr )
4 ∗ptr = 0 ;
5 else
6 p r i n t f ( ”%d” , ∗ptr ) ;
7
8 return 0 ;
9 }

Fig. 1. Trivial

1 int getMin ( int ∗a , int x) {
2 int i , j , temp ;
3 for ( i= x−1; i >= 0 ; i−−) {
4 for ( j= 1 ; j <= i ; j++) {
5 i f ( a [ j −1] > a [ j ] ) {
6 temp = a [ j −1] ;
7 a [ j −1] = a [ j ] ;
8 a [ j ] = temp ;
9 }

10 }
11 }
12 return a [ i ] ;
13 }

Fig. 2. Loop

Example 2. Our second example is less trivial, yet contains a common error.
The function getMin in Figure 2 returns the minimal element of an array. For
this purpose, it first sorts the array and then returns the first element. However,
there is a mistake in the loop bound of the for loop in line 3. The loop will
decrease the variable i until it has a negative value. This leads to an out-of-
bounds array access in line 12. Our algorithm detects that the out-of-bounds
access is inevitable. It reports lines 3 and 12 as what leads to the error. This is
the only warning emitted by our algorithm. Since there is no precondition saying
that array a is allocated and its size is given by x, any attempt to verify that the
procedure is safe without taking into account its calling context would generate
additional warnings of potential boundary errors.
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1 /∗ Sorted t r e e ∗/
2
3 typedef void∗ T;
4 typedef struct
5 entry ∗Entry ;
6 struct entry
7 {
8 Entry l e f t ;
9 Entry r i gh t ;

10 int key ;
11 T data ;
12 } ;

12 void update ( Entry root ,
13 int key , T dat ) {
14 Entry x = root ;
15 while (x−>key != key ) {
16 i f ( key < x−>key )
17 x = x−> l e f t ;
18 else
19 x = x−>r i gh t ;
20 }
21 x−>data = dat ;
22 }

Fig. 3. Complex

Example 3. Our last example demonstrates how the user of our tool benefits
from the fact that it detects guaranteed errors rather than arbitrary errors. The
program fragment in Figure 3 is taken from a library that implements a map data
structure using a sorted binary tree. The function update takes three parameters:
the root of the data structure, a key to an entry in the data structure, and a
data value. It then traverses the tree to find the entry for the given key and
updates the data value associated with this key. The function works correctly if
the calling context guarantees that there is already an entry for the given key
in the data structure. If this assumption is violated, the function crashes. Note
that there is no null pointer check that guards the dereference of variable x in
the while condition at line 16. The fact that there is an entry for the given key
guarantees that x is not null.

It is a real challenge for any bug finding tool to prove that line 15 does
not cause a null pointer dereference and, thus, not report this line as a potential
error. For extended static checking or a modular program verifier, the user needs
to specify the precondition saying that there exists an entry in the tree for
the given key. However, this is not sufficient to prove the absence of a null
pointer dereference. The user further needs to specify a data structure invariant
that expresses the fact that the tree is sorted. This information is required in
the loop invariant of the while loop. Even if all necessary specifications are
given, automatically proving that the loop invariant implies the absence of null
pointer dereferences is still tricky. Extended static checkers use theorem provers
to automate this task. The theorem prover needs to conclude from the sortedness
property and the existence of an entry for the given key that this entry is located
in the subtree that the while loop traverses into. Modern theorem provers still
require proof hints from the user to accomplish such proofs. All these tasks are
time consuming and require the expertise of a verification engineer.

If, on the other hand, one attempts to use abstraction based program analyses
to automatically infer the necessary preconditions, then only the use of a very
sophisticated shape analysis would leave any hope for success. However, such
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analyses are expensive and do not yet scale well to large programs. Using them
online while coding is unrealistic.

In contrast, our algorithm will not report any errors, simply because there
exist executions that never dereference any null pointers.

3 Doomed Program Points

We now formally define the new class of errors that we consider in this paper.
In order to abstract away from the details of a concrete programming lan-

guage, we only assume that a program defines a set of possibly infinite executions
(sequences of states).

We assume that executions are divided into two types: admissible executions
and inadmissible executions. An execution is inadmissible if it causes some un-
desirable behavior; in particular, it is inadmissible if it diverges or violates an
assertion. Syntactically, we only assume that a program comes with a finite set
of program points.
Each state in an execution belongs to a unique program point. We say that an
execution passes through a program point � if one of its states belongs to �.

Definition 1. A program point � is called doomed if all executions that pass
through � are inadmissible.

In particular, a program containing a doomed program point has an inadmissible
execution, or no execution passes through it (i.e., it is part of dead code). Once a
doomed program point is reached in an execution, this execution is guaranteed
to fail. In this sense, doomed program points are the witnesses of guaranteed
errors.

We define the problem of error verification as the problem of identifying all
doomed program points in a given program. We say that an algorithm for this
problem is sound if, for any given program, it identifies only doomed program
points. We say that it is complete if it identifies all doomed program points.

4 Preliminaries

We define our algorithm with respect to a subset of the Boogie language [2,18].
Boogie is an intermediate verification language designed for program analysis.
It provides a small set of control constructs that, yet, allows the encoding of
full-fledged programming languages such as C, C#, and Java (see, e.g., [2,5,6]).

The syntax of our simple language is defined in Figure 4. A program consists of
a sequence of blocks. Each block consists of a unique program point, a sequential
statement, and a goto statement that connects the block with a non-empty set
of successor blocks. The atomic statements of our language are assignments,
non-deterministic assignments (havoc) of program variables, assert statements,
and assume statements. We do not specify the concrete syntax of expressions
that are used in these statements. In principle, they can be arbitrarily complex
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Program ::= Block+

Block ::= PPId : Stmt ; gotoPPId+

Stmt ::= VarId := Expr | havocVarId+

| assertExpr | assumeExpr

| Stmt ; Stmt

Fig. 4. Simple Language

logical formulae. Each block either has a transition to other blocks or goes to a
unique program point called Term which means that the program has terminated
normally.

A program state is a valuation of the program variables and a program counter
that evaluates to a program point id. A program gives rise to a set of executions.
An execution consists of a sequence of states describing the successive execution
of the program blocks starting from some block in the program. An execution
terminates normally if it reaches the block Term, it ends in an error if an assert
in some block evaluates to false, and it is infinite if the program does not termi-
nate. A sequence of states where an assume in a block evaluates to false models
an infeasible computation. The admissible executions are the feasible executions
that terminate normally.

If we translate a real program into our simple language, we can model arrays
and the program’s heap using function-valued program variables that map in-
dices or memory addresses to values. The concrete representation of the heap
depends on the semantics of the translated language. For example, one way to
model a Java-like language is to use a function-valued program variable per field
in a class; other possible memory models are discussed, e.g., in [6,16,18,19]. For
brevity of exposition, our simple language does not support procedures (although
Boogie does).

5 Error Verification Algorithm

Outline. We now give the outline of our algorithm for error verification. It is
implemented by the procedure Exorcise given in Figure 5. Procedure Exorcise
takes a program as input and returns a set of doomed program points. The
procedure first transforms the input program P into a program P ′ in loop-free
passive form. This means, that (1) program P ′ has no cycle in the graph formed
by its blocks and goto statements and (2) blocks in P ′ consist only of assume and
assert statements. The transformation is such that the set of doomed program
points in P ′ is a subset of the set of doomed program points of P .

After the transformation, procedure Exorcise iterates over all program points
in program P ′. For each program point �, it generates a logical formula
EVC(�, P ′). We call EVC(�, P ′) an error verification condition. The error veri-
fication condition is valid if and only if program point � is doomed in P ′. The
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proc Exorcise(P : program)
var Doomed : set of doomed program points
var P ′ : program
var ϕ : formula

begin
P ′ := Transform(P )
for each program point � in P ′ do

ϕ := EVC(�, P ′)
if Valid(ϕ) then

add � to Doomed
od
return Doomed

end

Fig. 5. Error verification algorithm

procedure then calls the subroutine Valid, which checks whether the error verifi-
cation condition is valid. We assume that Valid is a sound test for logical validity,
e.g., implemented by a theorem prover. If the error verification condition is valid,
then the program point � is added to the set of doomed program points.

For exposition purposes, we will present simplified versions of subroutines
Transform and EVC, and argue that procedure Exorcise is sound. Afterwards, we
discuss improvements of these subroutines that are crucial for scalability of the
algorithm and increased error detection rate.

Program transformation. In the following, we describe a simple version of sub-
routine Transform that transforms a program into loop-free passive form [11, 3].
Note that the transformation described below is by now standard and is used in
several extended static checkers and program verifiers (e.g.,, [10,2]). We therefore
provide only a brief description. For a more detailed discussion, see [3].

The first step in Transform(P ) is to transform program P into a loop-free
program. We now think of our program P as a control flow graph where each
block is a single node labeled with the program point associated with the block.
We assume that each cycle in the graph has a unique entry point, the loop header
(if not, one can first apply node splitting, see e.g., [15]). Edges from nodes inside
a cycle back to the loop header are called back edges. We assume without loss of
generality that a loop header is a block that consists of just one goto statement
that either goes to the first block of the loop body or skips the loop, jumping to
a block that we call the loop exit. The variables that are modified by a statement
in the loop are called loop targets. We can now over-approximate any number of
loop iterations as follows: first, wipe out all information about the loop targets
by inserting appropriate havoc statements on entry to the loop body; then,
replace each back edge of the loop with an edge to the loop exit. We can think
of this transformation as eliminating loops using trivial loop invariants. In fact,
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if the user or some preceding analysis provides loop invariants, they can be
incorporated into the transformation to increase precision (see [3]).

Once our program is loop free, procedure Transform(P ) transforms it to passive
form. First, we apply a single assignment transformation [7] where auxiliary
variables are introduced to ensure that each program variable is assigned at
most once per execution path [11]. The general idea is to replace each read of a
variable by the auxiliary variable that represents its value at that point in the
program, and to introduce a new auxiliary variable for every write. For example,
an assignment x := x + 1 may be transformed into xk+1 := xk + 1, where k is
some sequence number (see [11, 3] for details). Second, since no assignment of
an auxiliary variable is preceded by a use of that variable, we can replace each
assignment xk := e by an assume statement assume(xk = e).

The following proposition states soundness of the transformation into loop-
free passive form.

Proposition 1. For any program P , the set of doomed program points of pro-
gram Transform(P ) is a subset of the doomed program points of program P .

The proof relies on the fact that the program obtained from loop elimination
preserves all admissible executions of the original program. Furthermore, there is
a mapping from executions of the loop-free program to executions of the passive
program that preserves admissibility.

Error Verification Conditions. We now describe how we generate an error veri-
fication condition for a given program point in a loop-free passive program.

Recall that the weakest precondition wp.S.Q of a statement S with respect
to predicate Q describes the pre-states of S from which every execution of S
terminates normally in a state satisfying Q [8]. Thus, if the weakest precondition
wp.S.true is universally valid, then all executions of statement S are admissible.
Therefore, weakest preconditions are used for generating verification conditions
that prove program correctness.

We can use a similar approach to check for doomed program points. The
weakest liberal precondition of a statement S with respect to a predicate Q
describes the pre-states of S from which every terminating execution of S ends in
Q [8]. Thus, wlp.S.false is the set of all states such that any normally terminating
execution of S ends in a state satisfying false , which means that there are no
executions of S that terminate normally. Thus, weakest liberal preconditions
allow us to precisely characterize statements with guaranteed errors.

Proposition 2. Let S be a passive loop-free program. If wlp.S.false is univer-
sally valid, then all executions of S are inadmissible.

The proof of Proposition 2 goes by structural induction over S using the predi-
cate transformer semantics of passive loop-free programs from [20] that is given
in Table 1. Hereby, the statement S � T stands for non-deterministic choice be-
tween statements S and T . Since our program is in passive form, the statements
of the program do not affect the program state. The only effect of a passive
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Table 1. Semantics of predicate transformers

Stmt wp.Stmt .Q wlp.Stmt .Q

assert E E ∧Q E =⇒ Q
assume E E =⇒ Q E =⇒ Q

S; T wp.S.(wp.T.Q) wlp.S.(wlp.T.Q)
S � T wp.S.Q ∧ wp.T.Q wlp.S.Q ∧ wlp.T.Q

statement is to choose whether the execution is admissible. As described in [11],
this allows us to capture the semantics of a passive program in terms of so called
outcome predicates. Given a statement S, the predicate N.S denotes the pre-
states of S from which the execution of S may be admissible, while predicate
W.S denotes the pre-states from which the execution of S may be inadmissible.
The formal semantics of these two outcome predicates is given in Table 2. Using

Table 2. Semantics of outcome predicates

Stmt N.Stmt W.Stmt

assert E E ¬E
assume E E false

S; T N.S ∧N.T W.S ∨ (N.S ∧W.T )
S � T N.S ∨N.T W.S ∨W.T

these outcome predicates, it is shown in [17] that weakest preconditions can be
characterized as

wp.S.Q ≡ ¬(W.S) ∧ (N.S =⇒ Q) .

Similarly, we can characterize weakest liberal preconditions as follows.

Proposition 3. Let S be a program in passive form and Q a predicate. Then
the following equivalence holds:

wlp.S.Q ≡ (N.S =⇒ Q) .

The size of predicate N.S is linear in the size of statement S. We can, thus,
conclude that the size of the weakest liberal precondition wlp.S.false is also
linear in S. In contrast, the weakest precondition is worst-case quadratic.

For a program point � in a loop-free passive program P we denote by st(�, P )
the statement that corresponds to the subprogram following this program point.
The statement st(�, P ) can be computed from the control-flow structure of the
program as follows: given the block

� : S; goto �1, . . . , �n

for a program point � in P , the corresponding statement st(�, P ) is defined
recursively as

st(�, P ) def= S; (st(�1, P ) � · · ·� st(�n, P )) .
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For the terminating program point Term , the statement st(Term , P ) is the
empty statement. Since program P is loop-free, statement st(�, P ) is well-defined
for all program points.

We can now define the error verification condition EVC(�, P ) as follows:

EVC(�, P ) def= wlp.st(�, P ).false .

Hereby, wlp.st(�, P ) is computed according to Proposition 3. From Proposition 2
we conclude that error verification condition generation is sound.

Proposition 4. Let P be a program in loop-free passive form and � a program
point in P . Then, � is doomed if the error verification condition EVC(�, P ) is
valid.

Soundness. From Proposition 1 and 4 we can now conclude the soundness of our
algorithm.

Theorem 1. Procedure Exorcise is a sound algorithm for the error verification
problem.

Avoiding exponential blow-up. The weakest liberal precondition for statement
st(�, P ) and a predicate Q can be computed recursively as follows:

wlp.st(�, P ).Q = wlp.S.

⎛⎝ wlp.st(�1, P ).Q
∧ . . .
∧ wlp.st(�n, P ).Q

⎞⎠ (1)

However, there is a crucial problem when one computes wlp.st(�, P ).false using
Equation 1. If a program point �′ is reachable from � then wlp.st(�′, P ).false
occurs as a subformula in wlp.st(�, P ).false as many times as there are paths in
the control-flow graph from � to �′. This can lead to an exponential blow-up in
the size of the resulting verification condition. We follow the idea of [3] and [17]
and avoid this blow-up by defining Equation 1 in the underlying logic. For this
purpose, we introduce auxiliary Boolean variables B� for wlp.st(�, P ).false and
build the formula

FBdef :
∧
�∈P

(
B� ≡ wlp.S.(B�1 ∧ · · · ∧B�n

)
∧ (BTerm ≡ false)

Using this definition we redefine our EVC as follows.

EVC(�, P ) def= FBdef =⇒ ¬B� .

6 Extended EVC Generation

Until now, our algorithm only detects errors that occur in every path that starts
in a program point �. Code that precedes the program point is not taken into
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account when checking EVC(�, P ). An example is given in Figure 6. The program
point in line 3 is doomed, since the value of i is never a valid pointer at this
program point. To prove this, one needs to consider the assignment in line 1. It is
not enough to just consider every conditional block by itself. We detect program
points in conditional blocks by introducing a new variable R� that indicates that
the block B� was reached. The variable is initially false; an assignment that sets
the variable to true is added to the block and we change the post-condition from
false to R� =⇒ false .

1 int ∗ i = 0 ;
2 i f ( k != 0)
3 ∗ i = 3 ;

Fig. 6. PathProg

We introduce all reachability variables at the same time but set only one
R� to false in the precondition. Thus, we do the following transformation of
the program (before passifying the program). The Block � : S;goto �1, . . . , �n is
transformed to

� : R� := true;S;goto �1, . . . , �n

and in the block Term we add the assertion

assert(
∧
�∈P

R�)

We compute FBdef for this annotated program as described in the previous
section.

We now redefine our EVC. To check if there is a doomed program point in
block B� we check the validity of

EVC(�, P ) def= ¬R� ∧ FBdef =⇒ ¬Bstart .

Proposition 5. Let P be a program in loop-free passive form and � a program
point in P . Then, � is doomed if and only if the error verification condition
EVC(�, P ) is valid.

As for the weaker Proposition 4, we can conclude from Proposition 1 and 5, that
our algorithm is sound.

Completeness. Our algorithm is not complete for unrestricted programs because
the error verification problem is in general undecidable1. However, if we start
from a loop-free program then the algorithm is complete under the assumption
that the generated verification conditions are expressible in some logical theory
for which validity checking is decidable.
1 An instance of the error verification problem is to decide whether a given program

never terminates.
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Faster Theorem Prover Interaction. Instead of checking validity of EVC, we check
the unsatisfiability of its negation

¬R� ∧ FBdef ∧Bstart .

Since the part FBdef ∧ Bstart does not change, we can push it as axiom and
then just check unsatisfiability of ¬R� for each Block B�. This way the theorem
prover has to parse the main part of the verification condition only once and can
reuse lemmas that are derived from this formula.

7 Implementation and Experiments

We have built a prototype implementation of algorithm Exorcise on top of Boo-
gie [2] and applied it to a C# version of the Findbugs Null Pointer Microbench-
mark [13] and the examples in Figures 1, 2, and 3. For our prototype, we have
used heuristics for dealing with loops and function calls. We describe these
heuristics in the following.

Loops: In order to increase detection rate we unroll each loop body three times.
One unrolling for the first, the last, and an arbitrary iteration. For the arbitrary
iteration, we set all variables modified inside the loop body to havoc at the
beginning and at the end of the unrolled iteration. The back edges of the original
loop are replaced. For the first iteration, the back edges are changed to the first
block of the arbitrary and the last iteration. For the arbitrary iteration, the
back edge is changed to the last iteration. The last iteration will always leave
the loop. This simple unrolling allows us e.g., to find doomed program points
caused by iteration across array bounds as in Figure 2 as well as simple cases of
non-termination where an iterator is not iterated inside the loop body.

By unrolling the first and last iteration, we might have introduced unreachable
control flow (e.g., there is a condition in the loop body that is satisfied only in
the third iteration). We are not allowed to check these program points since
they might be false positives. Thus we only check the first block of the unrolled
iterations. Most guaranteed errors inside the loop body will propagate to this
point.

Function Calls: We handle functions calls by simple inlining. As for loops, we
have to be careful that we do not introduce additional control flow paths. Thus,
we check only the first block of an inlined function.

Obviously, inlining will not scale, since we still have to check all functions
separately. Therefore, we inline only up to a certain depth and use trivial con-
tracts for any further calls. So far, we have experienced that this is not as bad
as it would seem, since doomed program points tend to have a local scope, i.e.,
in practice there are only few guaranteed errors that involve multiple function
calls.
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Experiments: The results of our experiments are shown in Table 3. The result
columns show whether the respective tool detects an existing error (true posi-
tive), a non-existing error (false positive), misses an error (false negative), or does
not produce a warning on correct code (true negative). The benchmark contains
nine functions with one null pointer error and five without. Our algorithm is able
to detect all nine null pointer errors without producing false positives. Findbugs
misses three errors, but does not produce false positives either. Spec# misses true
positives and produces false positives if no further information is provided. More
benchmarks on the Findbugs Null Pointer Micro Benchmark can be found in [13].

All benchmarks were executed several times on a 2.4 GHz machine with 2 GB
of RAM running Windows XP. Our approach is slower than Spec#. While Spec#
checks each function once, our tool has to check each block of a function sep-
arately in the worst case. We are working on optimizations concerning the size
and construction of the formula and the interaction with the theorem prover,
but for the worst case our algorithm will always be slower than Spec#.

Table 3. Comparison of Exorcise, Findbugs and Spec# on the Findbugs Null Pointer
Micro Benchmark and the example from Figures 1, 2, and 3. The columns list the
analyzed function, whether it contains a bug, the running time and result of Exorcise,
the result of Findbugs, and running time and result of Spec#. Results can either be
true positives if an error is found, true negatives if no error is reported on correct
programs, false positives if a non-existing error is reported, or false negatives if an
existing error is overlooked.

Exorcise Findbugs [13] Spec# [2]
program incorrect? time (in ms) result result time (in ms) result
fp1 no 156 true neg true neg 39 true neg
tp1 yes 171 true pos false neg 27 true pos
fp2 no 160 true neg true neg 35 true neg
tp2 yes 160 true pos false neg 27 true pos
fp3 no 175 true neg true neg 50 true neg
tp3 yes 187.5 true pos true pos 58.5 true pos
tp4 yes 109.2 true pos true pos 35 true pos
fp4 no 171 true neg true neg 43 true neg
tp5 yes 152 true pos true pos 15.5 true pos
tp6 yes 144 true pos true pos 31 true pos
itp1 yes 109.2 true pos false neg 15.6 false neg
ifp1 no 93.6 true neg true neg 46.8 true neg
itp2 yes 15.6 true pos true pos 0 false neg
itp3 yes 46.8 true pos true pos 15.6 false neg
Trivial yes 179.5 true pos true pos 54.5 true pos
Loop yes 699 true pos false neg 129 true pos,

3 false pos
Complex no 246 true neg true neg 43 2 false pos
Total Time 3.2 s 4.53 s 0.67 s
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The times measured for Findbugs are not directly comparable to those for
our analysis, since Findbugs computes many pieces of additional information.
For larger programs, Findbugs should be faster than Spec# and Exorcise, but so
far we have not found a good benchmark that is available in both C# and Java.

The big bottleneck of this approach is that our algorithm has to check for
each block if it contains a doomed program point. Using the insight that a block
that has only one successor will be doomed if the successor is doomed, we can
reduce the number of checked blocks. Furthermore, using the optimization from
the previous section, we observe that the theorem prover, after checking the first
block, can reuse large parts of its work for the remaining blocks. Table 4 shows
how much time our implementation spends on constructing the EVC, checking
the first block, and checking all further blocks. Looking at e.g., the function
Loop, we observe that the time spent on checking all blocks but the first one is
less then checking the first block.

Table 4. Number of total blocks checked and the time (in ms) consumed for construct-
ing the EVC, checking the first block, and the average time for all further blocks

program # queries EVC construction (ms) 1st block (ms) avg ms/block
tp1 5 17 134 2
Trivial 3 17 150 2
Loop 7 62 391 23
Complex 5 18 166 5

8 Conclusion

The main contribution of this work is the idea of error verification and the
demonstration that this idea can be realized in practice. We have shown that
error verification can easily be integrated in extended static checkers or program
verifiers that provide the infrastructure for generating verification conditions and
automatic theorem provers to check them. We therefore believe that this idea can
now be adopted and extended by many others. We see a huge potential in this
work as this can be a formal method which is applicable by every programmer.
Using the fact that it can be built on top of e.g., Spec#, it also allows the
programmer to annotate his program using e.g., pre- and postconditions to see
if certain properties are always violated. This allows a smooth learning curve
towards the use of full program verification.

We see much room for further improvements of our method. For instance,
we want to optimize error verification by developing specialized techniques for
finding correct executions, so that error verification conditions are quickly rec-
ognized as invalid. Doomed program points are sparse; i.e., almost all generated
error verification conditions are not valid in practice (this is in contrast with the
usual verification conditions, for correctness). Every programmer’s experience
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confirms the intuition that it is easier to find a correct execution (for a program
fragment that has no guaranteed error) than to find an incorrect one (for a pro-
gram fragment that may lead to an error). This gives an interesting potential
for optimization.

Maybe the best reason to use our approach is that there is no argument
against it: our method is fully automatic and it remains invisible to the user as
long as no doomed program point is found. If a warning is emitted, then this is
a definite indication that the program is incorrect.
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Abstract. Bounding resource usage is important for a number of ar-
eas, notably real-time embedded systems and safety-critical systems. In
this paper, we present a fully automatic static type-based analysis for
inferring upper bounds on resource usage for programs involving general
algebraic datatypes and full recursion. Our method can easily be used
to bound any countable resource, without needing to revisit proofs. We
apply the analysis to the important metrics of worst-case execution time,
stack- and heap-space usage. Our results from several realistic embed-
ded control applications demonstrate good matches between our inferred
bounds and measured worst-case costs for heap and stack usage. For time
usage we infer good bounds for one application. Where we obtain less
tight bounds, this is due to the use of software floating-point libraries.

1 Introduction

Programs often produce undesirable “emissions”, such as littering the memory
with garbage. Our work is aimed at predicting limits on such emissions in advance
of execution. “Emissions” here refer to any quantifiable resource that is used by
the program. In this paper, we will focus on the key resources of worst-case
execution time, heap allocations, and stack usage. Predicting emissions limits is
clearly desirable in general, and can be vital in safety-critical, embedded systems.

Our method can be explained by analogy to an attempted countermeasure to
global warming: some governments are attempting to reduce industrial pollution
by issuing tradable carbon credits. The law then dictates that each CO2 emission
must be offset by expending an appropriate number of carbon credits. It follows
that the total amount of emissions is a priori bounded by the number of car-
bon credits that have been previously issued by the authorities. Following this
analogy, we will similarly issue credits for computer programs. The “emissions”
of each program operation must then be immediately justified by spending a
corresponding number of credits. The use of “carbon credits” for software anal-
ysis does, however, have several advantages over the political situation: i) we can

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 354–369, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



“Carbon Credits” for Resource-Bounded Computations 355

prove that each and every emission that occurs is legitimate and that it has been
properly paid for by spending credits; ii) we have zero bureaucratic overhead,
since we use an efficient compile-time analysis, there need be no modifications
whatever to the original program, and we therefore do not change actual execu-
tion costs; and iii) we provide an automatic static analysis that, when successful,
provides a guaranteed upper bound on the number of credits that must be issued
initially to ensure that a program can run to completion, rather than using a
heuristic to determine the requirements. The amount of credits a program is
allowed to spend is specified as part of its type. This allows the absolute number
of credits to vary in relation to the actual input, as shown below.

Example: Tree Processing. Consider a tree-processing function mill , whose argu-
ment has been determined by our analysis to have type tree(Node〈7〉 | Leaf〈0.5〉).
Given this type, we can determine that processing the first tree below requires
at most 23 = %23.5& credits1: 7 credits per node and 0.5 credits for each leaf
reference; and that processing either of the other trees requires at most %15.5&
credits, regardless of aliasing.

z

�� �� ��
y

�� ��

x w

�� ��
v u t s

a

�� ��
b c

�� ��
d e

a

��

��

c

�� 		
e

In fact, the type given by our analysis allows us to easily determine an upper
bound on the cost of mill for any input tree. For example, for a tree of 27 nodes
and 75 leaves, we can compute the credit quota from the type as 7 ·27+0.5 ·75 =
226.5, without needing to consider the actual node or leaf values. The crucial
point is that while we are analysing mill , our analysis only needs to keep track
of this single number. Indeed, the entire dynamic state of the program at any
time during its execution could be abstracted into such a number, representing
the total unspent credits at that point in its execution. Because the number of
credits must always be non-negative, this then establishes an upper bound on
the total future execution costs (time or space, etc.) of the program. Note that
since this includes the cost incurred by all subsequent function calls, recursive or
otherwise, it follows that our analysis will also deal with outsourced emissions.

Novel contributions made by this paper: We present a fully automatic compile-
time analysis for inferring upper bounds on generic program execution costs, in
the form of a new resource-aware type system. The underlying principle used
in our automatic analysis is a modified version of Tarjan’s amortised cost anal-
ysis [17], as previously applied to heap allocation by Hofmann and Jost [11].
We prove that the annotated type of terms describes its maximal resource re-
quirement with respect to a given operational semantics. Our analysis becomes
automatic by providing type inference for this system and solving any constraints
that are generated by using an external linear programming solver.
1 Note while only whole credits may be spent, fractional credits can be accumulated.
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Moreover, we extend previous work:

a) by dealing with arbitrary (recursive) algebraic datatypes;
b) by providing a unified generic approach that presents a soundness proof that

holds for arbitrary cost metrics and for many different operational models;
c) by applying the approach to real-world examples, notably worst-case execu-

tion time on the Renesas M32C/85U processor.

Section 2 introduces a simple functional language that exhibits our analysis.
We consider the soundness of our analysis in Section 5, discuss several example
programs in Section 6 and cover related work in Section 7. Section 8 concludes.

2 The Schopenhauer Notation

We illustrate our approach using a simple, strict, purely functional programming
language Schopenhauer (named after the German philosopher), which includes
recursive datatypes and full recursion, and which is intended as a simple core
language for richer notations, such as our own Hume language [9]. Schopenhauer
programs comprise a set of one or more (possibly mutually recursive) function
declarations. For simplicity, functions and datatypes are monomorphic (we are
currently investigating the extension to polymorphic definitions).

prog ::= varid1 vars1 = expr1 ; . . . ; varidn varsn = exprn n ≥ 1
vars ::= 〈 varid1 , . . . , varidn 〉 n ≥ 0
expr ::= const | varid | varid vars | conid vars

| case varid of conid vars -> expr1 | expr2
| let varid = expr1 in expr2
| LET varid = expr1 IN expr2

The Schopenhauer syntax is fairly conventional, except that: i) we distinguish
variable and constructor identifiers; ii) pattern matches are not nested and only
allow two branches; iii) we have two forms of let-expression; and iv) function
calls are in let-normal form, i.e. arguments are always simple variables. The
latter restriction is purely for convenience, since it simplifies the construction of
our soundness proof in Section 5 by removing some tedious redundancies. There
is no drawback to this since Schopenhauer features two kinds of let-expressions,
let and LET, the former appearing in source programs, and the latter introduced
as a result of internal translation. Both forms have identical semantics but they
may have differing operational costs, depending on the desired operational model
and on the translation into let-normal form. Since the ordinary let-expression
usually incurs some overhead for managing the created reference, it cannot be
used to transform expressions into let-normal form in a cost-preserving manner.

3 Schopenhauer Operational Semantics

Our operational semantics (Figure 1) is fairly standard, using a program sig-
nature Σ to map function identifiers to their defining bodies. The interesting
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n ∈ Z � /∈ dom(H)

V, H
q′ + KmkInt

q′ n � �, H
[
� �→ (int, n)

] V(x) = �

V, H
q′ + KpushVar

q′ x � �, H

Σ(fid) =
(
ef ; y1, . . . , yk; C; ψ

)
[y1 �→V(x1), . . . , yk �→V(xk)] , H

q − Kcall(k)
q′+ Kcall′(k) ef ��,H′

V, H
q
q′ fid 〈x1, · · · , xk〉 � �,H′

c ∈ Constrs � /∈ dom(H) k ≥ 0 w =
(
constrc, V(x1), . . . , V(xk)

)
V, H

q′ + KCons(k)
q′ c 〈x1, . . . , xk〉 � �, H[� �→ w]

H(k ) =
(
c, k 1, . . . , k k

)
V[y1 �→ k 1, . . . , yk �→ k k], H

q − KCaseT(k)
q′+ KCaseT′(k) e1 � �,H′

V[x �→ k ], H
q
q′ case x of c 〈y1, . . . , yk〉 -> e1|e2 � �, H′

H
(
V(x)

) �= (
c, k 1, . . . , k k

)
V, H

q − KCaseF(k)
q′+ KCaseF′(k) e2 � �, H′

V, H
q
q′ case x of c 〈y1, . . . , yk〉 -> e1|e2 � �, H′

V, H
q1 − KLet1

q2 e1 � �1, H1 V[x �→ �1], H1
q2 − KLet2

q′ + KLet3 e2 � �2, H2

V, H
q1

q′ let x = e1 in e2 � �2, H2

Note that the rule for LET . . . IN is identical to that for let . . . in above, except in
replacing constants KLet1, KLet2 and KLet3 with KLET1, KLET2 and KLET3, respectively.

Fig. 1. Schopenhauer Operational Semantics

feature of our semantics is that it is instrumented by a (non-negative) resource
counter, which defines the cost of each operation. This counter is intended to
measure execution costs, with the execution being stuck if the counter becomes
negative. We will prove later that our analysis determines an upper bound on
the smallest starting value for this counter, and so prevents this from happening.

An environment, V, is a mapping from variables to locations, denoted by �. A
heap, H, is a partial map from locations to values w. H[� �→ w] denotes a heap
that maps � to value w and otherwise acts as H. Values are simple tuples whose
first component is a flag that indicates the kind of the value, e.g. (bool, tt) for
the boolean constant true, (int, 42) for the integer 42, etc. The judgement

V,H
n

n′ e � �,H′

then means that under the initial environment V and heap H, the expression
e evaluates to location � (all values are boxed) and post-heap H′, provided
at least n units of the selected resource are available before the computation.
Furthermore, n′ units are available after the computation. Hence, for example,
V,H

3
1 e � �,H′ simply means that 3 resource units are sufficient for evaluat-

ing e, and that exactly one is unused after the computation. This one unit might,
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or might not, have been used temporarily. We will simply write V,H ' e � �,H′

if there exists n, n′ such that V,H
n
n′ e � �,H′.

Cost Parameters. The operational rules involve a number of constants which
serve as parameters for an arbitrary cost model. For example, the constant
KmkInt denotes the cost for an integer constant. If an integer occupies two heap
units, and we are interested in heap usage, we set this constant to two; if each
pointer occupies a single stack unit, and we are interested in stack usage, we set
this value to one; and so on. Some cost parameters are parametrised to allow
better precision to be obtained, e.g. for execution time, the cost of matching a
constructor may vary according to the number of arguments it has.

It is important to note that our soundness proof does not rely on any spe-
cific values for these constants. Any suitable values may be used according to
the required operational cost model. While it would be possible to expand the
cost parameters to vectors, in order to deal with several simultaneous metrics,
for example, this would require similar vector annotations in our type systems,
requiring a high notational overhead, without making a new contribution.

4 Schopenhauer Type Rules

The annotated types of Schopenhauer are given by the following grammar:

T ::= int | X | µX.{ c1:(q1,
−→
T1 ) | . . . | ck:(qk,

−→
Tk ) } | −→T −→pp′ T ′

where X is a type variable, ci ∈ Constrs are constructor labels; p, p′, qi are either
non-negative rational constants or resource variables belonging to the infinite
set of resource variables CV ranging over Q+; and we write

−→
T for 〈 T1 . . . Tn 〉

where n ≥ 0. For convenience, we extend all operators pointwise when used in
conjunction with the vector notation i.e.

−→
A =

−→
B stands for ∀i . Ai = Bi. Let

ψ, φ, ξ range over sets of linear inequalities over resource variables. We write
ψ ⇒ φ to denote that ψ entails φ, i.e. all valuations v : CV → Q+ which satisfy
ψ also satisfy all constraints in φ. We write v ⇒ φ if the valuations satisfies
all constraints. We extend valuations to types and type contexts in the obvious
way. Valuations using non-negative real numbers are permissible, but rational
annotations are of most interest since they allow the use of in-place update, as
described in [11].

Algebraic datatypes are defined as usual, except that the type carries a re-
source variable for each constructor. The type rules for Schopenhauer then gov-
ern how credits are associated with runtime values of an annotated type. The
number of credits associated with a runtime value w of type A is denoted by
Φv

H(w : A), formalised in Definition 2 in Section 5. Intuitively, it is the sum over
all constructor nodes reachable from w, where the weight of each constructor in
the sum is determined by the type A. As we have seen in the tree/mill example
in the introduction, a single constructor node may contribute many times to this
sum, possibly each time with a different weight, determined by the type of the
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reference used to access it. While this definition is paramount to our soundness
proof, any practical application only requires the computation of this number
for the initial memory configuration, for which it can always be easily computed.
It is easy to see, for example, that the number of credits associated with a list
of integers having the type µX.{Nil : (z0, 〈〉)|Cons : (z, 〈int, X〉)} is simply
z0 +n · z, where n is the length of the list. We naturally extend this definition to
environments and type contexts by summation over the domain of the context.

We can now formulate the type rules for Schopenhauer (which are standard
apart from the references to cost and resource variables). Let Γ denote a typing
context mapping identifiers to annotated Schopenhauer types. The Schopen-
hauer typing judgement Γ

q

q′ e : A | φ then reads “for all valuations v that
satisfy all constraints in φ, the expression e has Schopenhauer type v(A) under
context v(Γ ); moreover evaluating e under environment V and heap H requires
at most v(q) + Φv

H(V : Γ ) credits and leaves at least v(q′) + Φv
H(V : Γ ) credits

available afterwards”. The types thus bound resource usage and we will formalise
the above statement as our main theorem (Theorem 1), which requires as a pre-
condition that the context, environment and heap are all mutually consistent.

A Schopenhauer program is a mapping Σ, called the signature of the program,
which maps function identifiers fid belonging to the set Var to a quadruple con-
sisting of: i) a term defining the function’s body; ii) an ordered list of argument
variables; iii) a type; and iv) a set of constraints involving the annotations of the
type. Since the signature Σ is fixed for each program to be analysed, for sim-
plicity, we omit it from the premises of each type rule. A Schopenhauer program
is well-typed if and only if for each identifier fid

Σ(fid) = (efid ; y1, . . . , ya; 〈A1, . . . , Aa〉−→
p

p′ C;ψ) =⇒

y1:A1, . . . , ya:Aa
p − Kcall(a)
p′ + Kcall′(a) efid : C | ψ

Basic Expressions. Primitive terms have fixed costs. Requiring all available cred-
its to be spent simplifies proofs, without imposing any restrictions, since a sub-
structural rule allows costs to be relaxed where required.

n ∈ Z

∅
KmkInt

0 n : int | ∅
(Int)

x:A
KpushVar

0 x : A | ∅
(Var)

Function Call. The cost of function application is represented by the constants
Kcall(k) and Kcall′(k), which specify, respectively, the absolute costs of setting
up before the call and clearing up after the call. In addition, each argument may
carry further credits, depending on its type, to pay for the function’s execution.
For simplicity, we have prohibited zero-arity function calls.

Σ(fid) =
(
efid ; y1, . . . , yk; 〈A1, . . . , Ak〉−→

p

p′ C;ψ
)

k ≥ 1

y1:A1, . . . , yk:Ak
p + Kcall(k)
p′−Kcall′(k) fid 〈y1, · · · , yk〉 :C | ψ

(App)
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Algebraic Datatypes. The Constr rule plays a crucial role in our annotated
type system, since this is where available credits may be associated with a new
data structure. Credits cannot be used while they are associated with data.

c ∈ Constrs C = µX.{· · ·|c : (p, 〈B1, . . . , Bk〉)| · · · }
Ai = Bi ∨ (Ai = C ∧Bi = X) (for i = 1, . . . , k)

x1:A1, . . . , xk:Ak
p + KCons(k)

0 c 〈x1, . . . , xk〉 : C | ∅
(Constr)

The dual to the above rule is the Case rule; the only point where credits as-
sociated with data can be released again. This is because this is the only point
where we know about the actual constructor that is referenced by a variable, i.e.
where we know whether a variable of a list type refers to a non-empty list, etc.

c ∈ Constrs Γ, y1:B1[A/X ], . . . , yk:Bk[A/X ]
qt

q′
t

e1 : C | ψt

A = µX.{· · ·|c : (p, 〈B1, . . . , Bk〉)| · · · } Γ, x:A
qf

q′
f

e2 : C | ψf

ψ =

{
p + q = qt + KCaseT(k) q′t = q′ + KCaseT′(k)

q = qf + KCaseF(k) q′f = q′ + KCaseF′(k)

}
Γ, x:A

q

q′ case x of c 〈y1, . . . yk〉 -> e1|e2 : C | ψ ∪ ψt ∪ ψf

(Case)

Let-bindings. The two rules for let-expressions are the only ones that thread
credits sequentially through the sub-rules. As in the operational semantics rules,
the type rule for LET . . . IN is identical to that below, except in replacing KLet1,
KLet2, KLet3 with KLET1, KLET2, KLET3, respectively. Note that we use a comma
for the disjoint union of contexts throughout, hence duplicated uses of variables
must be introduced through the Share rule, described in the next paragraph.

Γ
q1

q′
1

e1 : A1 | ψ1 ∆,x:A1
q2

q′
2

e2 : A2 | ψ2

ψ0 =
{
q1 = q − KLet1 q2 = q′1 − KLet2 q′ = q′2 − KLet3

}
Γ,∆

q

q′ let x = e1 in e2 : A2 | ψ0 ∪ ψ1 ∪ ψ2
(Let)

Substructural rules. We use explicit substructural type rules. Apart from
simplifying proofs, the Share rule makes multiple uses of a variable explicit.
Unlike in a strictly linear type system, variables can be used several times.
However, the types of all occurrences must “add up” in such a way that the
total credit associated with all occurrences is no larger than the credit initially
associated with the variable. It is the job of the Share rule to track multiple
occurrences, and it is the job of the �-function to apportion credits.

Γ, x:B
q

q′ e : C | φ ψ ' A<:B

Γ, x:A
q

q′ e : C | φ ∪ ψ
(Supertype)

Γ
q

q′ e : D | φ ψ ' D<:C

Γ
q

q′ e : C | φ ∪ ψ
(Subtype)
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Γ
p
p′ e : A | ψ

φ⇒ ψ ∪ {q ≥ p, q − p ≥ q′ − p′}
Γ

q

q′ e : A | φ
(Relax) Γ

q
q′ e : C | ψ

Γ, x:A
q

q′ e : C | φ
(Weak)

Γ, x:A1, y:A2
q
q′ e : C | φ

Γ, z:A
q

q′ e[z/x, z/y] : C | φ ∪ �(A |A1, A2 )
(Share)

The ternary function �(A |B,C ) is only defined for structurally-identical type-
triples which differ in at most the names of resource variables. It returns a set
of constraints that enforce the property that each resource variable in A is equal
to the sum of its counterparts in B and C. The crucial property of this function
is expressed in Lemma 4. For example,

A = µX.{Nil:(a,〈〉)|Cons:(d,〈int, X〉)} B = µX.{Nil:(b,〈〉)|Cons:(e,〈int, X〉)}
C = µX.{Nil:(c,〈〉)|Cons:(f,〈int, X〉)} �(A |B,C ) = {a = b + c, d = e + f}

Subtyping. The type rules for subtyping depend on another inductively defined
relation ξ ' A<:B between two types A and B, relative to constraint set ξ. For
any fixed constraint set ξ, the relation is both reflexive and transitive.

ξ ' A<:A

for all i holds ξ ⇒ {pi ≥ qi} and ξ ' −→Ai <:
−→
Bi

ξ ' µX.{· · ·|ci:(pi,
−→
Ai )| · · · }<:µX.{· · ·|ci:(qi,

−→
Bi )| · · · }

ξ ⇒
{
p ≤ q , p′ ≥ q′

}
ξ ' −→B <:

−→
A ξ ' C <:D

ξ ' −→A −→pp′ C <:
−→
B −→qq′ D

The inference itself follows straightforwardly from these type rules. First, a stan-
dard typing derivation is constructed, and each type occurrence is annotated
with fresh resource variables. The standard typing derivation is then traversed
once to gather all the constraints. Since we found this easier to implement, sub-
structural rules have been amalgamated with the other typing rules. Because all
types have been annotated with fresh resource variables, subtyping is required
throughout. Subtyping simply generates the necessary inequalities between cor-
responding resource variables, and will always succeed, since it is only permitted
between types that differ at most in their resource annotations. Likewise, the
Relax rule is applied at each step, using the minimal constraints shown in the
rule. (However, inequalities are turned into equalities using explicit slack vari-
ables, in order to minimise wasted credits.) The Weak and Share rule are
applied based on the free variables of the subterms.

In the final step, the constraints that have been gathered are fed to an LP-
solver [2]. Any solution that is found is presented to the user in the form of an
annotated type and a human-readable closed cost formula. In practice, we have
found that these constraints can be easily solved by a standard LP-solver running
on a typical laptop or desktop computer, partly because of their structure [11].
Since only a single pass over the program code is needed to construct these
constraints, this leads to a highly efficient analysis.
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5 Soundness of the Analysis

We now sketch the important steps for proving the main theorem. We first
formalise the notion of a “well-formed” machine state, which simply says that
for each variable, the type assigned by the typing context agrees with the actual
value found in the heap location assigned to that variable by the environment.
This is an essential invariant for our soundness proof.

Definition 1. A memory configuration consisting of heap H and stack V is
well-formed with respect to context Γ and valuation v , written H�vV :Γ , if and
only if H�vV(x) :Γ (x) can be derived for all variables x ∈ Γ .

H(�) = (int, n) n ∈ Z

H�v� :int

H�v� :A ∃φ . v ⇐ φ ∧ φ ' A<:B
H�v� :B

H(�) = (constrc, �1, . . . , �k) ∀i ∈ {1, . . . , k} .H�v�i :Bi

H�v� :µX.{· · · |c : (q, 〈B1, . . . , Bk〉)| · · · }
It is obvious that evaluation must maintain a well-formed memory configuration.

Lemma 1. If H�v V :Γ and V,H ' e � �,H′ then also H′�vV :Γ .

We remark that one might wish to prove a stronger statement to the effect that
the result � of the valuation is also well-formed given that the expression e was
typeable. Unfortunately such a statement cannot be proven on its own and must
necessarily be interwoven in Theorem 1.

We now formally define how credits are associated with runtime values, fol-
lowing our intuitive description from the previous section.

Definition 2. If H�v� :A holds, then Φv
H(�:A) denotes the number of credits

associated with location � for type A in heap H under valuation v . This value is
always zero, except when A is a recursive datatype in which case it is recursively
defined by

Φv
H(�:A) = v(q) +

∑
i

Φv
H(�i:Bi[A/X ])

when A = µX.{· · ·|c:(q, 〈B1, . . . , Bk〉)| · · · } and H(�) = (constrc, �1, . . . , �k).
We extend to contexts by Φv

H(V : Γ ) =
∑

x∈dom(Γ ) Φv
H

(
V(x):v

(
Γ (x)

))
Subsumption cannot increase the number of associated credits.

Lemma 2. If H�v � :A and φ ' A<:B holds and v is a valuation satisfying φ,
then Φv

H(�:A) ≥ Φv
H(�:B)

If a reference is duplicated, then the type of each duplicate must be a subtype
of the original type.

Lemma 3. If �(A |B,C ) = φ holds then also φ ' A<:B and φ ' A<:C.

The number of credits attached to any value of a certain type is always linearly
shared between the two types introduced by sharing. In other words, the overall
amount of available credits does not increase by using Share.
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Lemma 4. If the judgements H�v� :A and �(A |B,C ) = φ hold and v satisfies
the constraint set φ then Φv

H(�:A) = Φv
H(�:B) + Φv

H(�:C). Moreover, for A = B
and A = C, it follows that Φv

H(�:A) = 0 also holds.

We can now formulate the main theorem (described intuitively in Section 4).

Theorem 1 (Soundness). Fix a well-typed Schopenhauer program. Let r ∈ Q+

be fixed, but arbitrary. If the following statements hold

Γ
q

q′ e:A | φ (5.1)
V,H ' e � �,H′ (5.2)

v : CV→ Q+, satisfying φ (5.3)
H�vV :v(Γ ) (5.4)

then for all m ∈ N such that

m ≥ v(q) + Φv
H

(
V :v(Γ )

)
+ r (5.5)

there exists m′ ∈ N satisfying

V,H
m

m′ e � �,H′ (5.6)
m′ ≥ v(q′) + Φv

H′
(
�:v(A)

)
+ r (5.7)

H′�v� :v(A) (5.8)

The proof is by induction on the lengths of the derivations of (5.2) and (5.1)
ordered lexicographically, with the derivation of the evaluation taking priority
over the typing derivation. This is required since an induction on the length of
the typing derivation alone would fail for the case of function application, which
increases the length of the typing derivation. On the other hand, the length of the
derivation for the term evaluation never increases, but may remain unchanged
where the final step of the typing derivation was obtained by a substructural
rule. In these cases, the length of the typing derivation does decrease, allowing
an induction over lexicographically ordered lengths of both derivations.

The proof is complex, but unsurprising for most rules. The arbitrary value
r is required to “hide” excess credits when applying the induction hypothesis
for subexpressions, which leaves those credits untouched. We show one case to
provide some flavour of the overall proof:
� Case Succeed: By the induction hypothesis, we obtain for all m0 ≥ v(qt)+

Φv
H(k i:Bi[A/X ]) + Φv

H(V:Γ ) + r a suitable m′
0 ≥ v(q′t) + Φv

H(�:C) + r such
that e1 evaluates under the annotated operational semantics with m0 and
m′

0. Observe that we have Φv
H(k :A) = v(p)+

∑
i Φv

H(k i:Bi[A/X ]) and v(p)+
v(q) = v(qt) + KCaseT(k) and v(q′t) = v(q′) + KCaseT′(k). Therefore m =
m0 + KCaseT(k) ≥ v(q) + v(p) + Φv

H(k i:Bi[A/X ]) + Φv
H(V:Γ ) + r = v(q) +

Φv
H(k :A)+Φv

H(V:Γ )+ r and m′ = m′
0−KCaseT′(k) ≥ val(q′)+Φv

H(�:C)+ r
as required.
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Table 1. Table of Resource Constants for Stack, Heap and Time

Constant Stack Heap WCET2 Constant Stack Heap WCET2

KmkInt

KpushVar

Kcall(k)
Kcall′(k)
KCons(k)
KCaseT(k)
KCaseT′(k)

1
1

4 + k
− (4 + k)

1− k
k − 1
− k

2
0
0
0

2 + k
0
0

83
39

142
53 + Ret

107 + 54k
301 + 80k
65 + Ret

KCaseF(k)
KCaseF′(k)

KLet1

KLet2

KLet3

KLET1

KLET2

KLET3

0
0
1
0

− 1
0
0
0

0
0
0
0
0
0
0
0

205
56 + Ret

142
0

3 + Ret

0
0
0

Table 2. Measurement and Analysis Results for Tree-Flattening
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revApp
Analysis 14 25 2440 24 26 3596 34 27 4752 44 28 5908 54 29 7064
Measured 14 24 1762 24 24 2745 34 24 3725 44 24 4707 54 24 5687
Ratio 1 1.04 1.39 1 1.08 1.31 1 1.13 1.27 1 1.17 1.26 1 1.21 1.24
flatten
Analysis 17 24 3311 34 34 6189 51 44 9067 68 54 11945 85 64 14823
Measured 17 24 2484 34 33 4372 51 43 6260 68 43 8148 85 43 10036
Ratio 1 1.00 1.33 1 1.03 1.42 1 1.02 1.45 1 1.26 1.47 1 1.49 1.48

6 Example Cost Analysis Results

In this section, we compare the bounds inferred by our analysis with concrete
measurements for one operational model. Heap and stack results were obtained
by instrumenting the generated code. Time measurements were obtained from
unmodified code on a 32MHz Renesas M32C/85U embedded micro-controller
with 32kB RAM. The cost parameters used for this operational model are shown
in Table 1. The time metrics were obtained by applying AbsInt GmbH’s aiT
tool [8] to the compiled code of individual abstract machine instructions.

Our first example is a simple tree-flattening function and its auxiliary function,
reverse-append. The heap space consumption inferred by our analysis is encoded
as the following annotated type

SCHOPENHAUER typing for HumeHeapBoxed:

0, (tree[Leaf<10>:int|Node:#,#]) -(2/0)-> list[C:int,#|N] ,0

which reads, “for a given tree with l leaves, the heap consumption is 10l +
2.” Table 2 compares analysis and measurement results. As test input, we use
2 Returns are performed through a fixed size table. On the Renesas M32C/85U this is

compiled to a series of branches and the WCET therefore depends on the number of
calling points in the program. We have Ret = max

(
116, 51+15 · (#ReturnLabels)

)
.
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balanced trees with N = 1 . . . 5 leaves. Heap prediction is an exact match for the
measured results. Stack prediction follows a linear bound over-estimating actual
costs, which are logarithmic in general, using a tail-recursive reverse function.
This linear bound is due to the design of our analysis, which cannot infer re-
use of stack space in all cases (Campbell has described an extension to our
approach [4] that may improve this). The predicted time costs are between 33%
and 48% higher than the measured worst-cases.

6.1 Control Application: Inverted Pendulum

Our next example is an inverted pendulum controller. This implements a simple,
real-time control engineering problem. A pendulum is hinged upright at the end
of a rotating arm. Both rotary joints are equipped with angular sensors, which
are the inputs for the controller (arm angle θ and pendulum angle α). The
controller should produce as its output the electric potential for the motor that
rotates the arm in such a way that the pendulum remains in an upright position.

The Hume code comprises about 180 lines of code, which are translated into
about 800 lines of Schopenhauer code for analysis. The results for heap and stack
usage (upper part of Table 3) show exact matches in both cases. For time we
have measured the best-case (36118), worst-case (47635) and average number of
clock cycles (42222) required to process the controlling loop over 6000 iterations
during an actual run, where the Renesas M32C/85U actually controlled the
inverted pendulum. Compared to the worst-case execution time (WCET) bound
given by our automated analysis (63678) we have a margin of 33.7% between the
predicted WCET and the worst measured run. The hard real-time constraint on
this application is that the pendulum controller can only be made stable with a
loop time of less than about 10ms. The measured loop time is 1.488ms, while our
predicted loop time would be 1.989ms, showing that our controller is guaranteed
to be fast enough to successfully control the pendulum under all circumstances.

6.2 Control Application: Biquadratic Filter

Our final control application is a second-order recursive linear filter, a biquadratic
filter, so named because the transfer function is a ratio of two quadratic polyno-
mials. It is commonly used in audio work and can be used to implement low-pass,
high-pass, band-pass and notch filters. Well-known algorithms exist for comput-
ing filter coefficients from the desired gain, centre frequency and sample rate [14].

The lower part of Table 3 compares analysis results against measured costs for
the components of the biquadratic filter. For heap, we obtain exact bounds for
all but one box. For stack, we find a close match of the bounds with the measured
values (within 12% units). For time, however, the bounds are significantly worse
than the measured values. This is mainly due to the heavy use of floating-point
operations in this application, which are implemented in software on the Renesas
M32C/85U. This means that the WCET bounds for the primitive operations in
the analysis cost table are already very slack.
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Table 3. Comparison of Results for Pendulum and Biquad Filter Applications

Box Analysis Measured Ratio
Heap Stack Time Heap Stack Time Heap Stack Time

pendulum
control 299 93 63678 299 93 47635 1.00 1.00 1.34
biquad
biquad 33 32 10330 33 32 5848 1.00 1.00 1.77
compute filter 73 62 26392 73 59 13176 1.00 1.05 2.00
compute params 40 38 47307 40 34 16107 1.00 1.12 2.94
scale in 14 15 3919 10 15 1844 1.40 1.00 2.13
scale out 33 33 16044 33 33 5920 1.00 1.00 2.71

The critical path through the system comprises the scale in, biquad and
scale out boxes. If we sum their bounds, we obtain a total of 30293 clock cy-
cles, or 947µs. This gives us a sample rate of about 1.056kHz, obviously well short
of audio sampling rates of about 48kHz. However, this is a concrete guarantee
for the application, and it tells us at an early stage, without any measurement,
that the hardware we are using is not fast enough for real-time audio process-
ing. The heap and stack bounds confirm, however, that we can fit static and
dynamic memory on the board. The components are executed sequentially, so
the largest component governs the dynamic memory for the entire system: this
is 73 heap + 62 stack cells for the compute filter box, or a maximum of 540
bytes of memory, well within our design maximum of 32kB.

One distinctive feature of our analysis is that it attributes costs to individual
data type constructors. Therefore, our bounds are not only size-dependent, as
would be expected, but more generally data-dependent. For a worst-case execu-
tion time analysis of compute filter, we produce the following explanation:

Worst-case Time-units required to compute box compute_filter once:

359 + 9374*X1 + 16659*X2 + 16123*X3 + 14570*X4 where

X1 = one if 1. wire is live, zero if the wire is void

X2 = number of "BPF" nodes at 1. position

X3 = number of "HPF" nodes at 1. position

X4 = number of "LPF" nodes at 1. position

In particular, since BPF, HPF and LPF are elements of an enumeration type,
selecting a band pass, high pass or low pass filter, respectively, we know that
only one of the three costs attached to these constructors (16659, 16123 or 14570)
will apply. Furthermore, in the case where a null filter is selected, by providing
NULLF as input, none of these three costs applies and the time bound for this case
is, therefore, 9733 clock cycles. Being data-dependent, this parametrised bound
is more accurate than the worst-case bound specified in Table 3, where we take
the worst-case over all constructors to derive a value of 26392 clock cycles.
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7 Related Work

While there has been significant interest in the use of amortised analysis for
resource usage, in contrast to the work presented in this paper, none of this work
considers multiple resources, none of the work has studied worst-case execution
time, and none of it covers arbitrary recursive data structures. In particular, a
notable difference to Tarjan’s seminal work [17] (in addition to the fact that we
perform automatic inference) is that credits are associated on a per-reference
basis and not on the basis of the pure data layout in the memory. Okasaki [15]
resorted to the use of lazy evaluation to solve this problem. In contrast, our
per-reference credits can be directly applied to strict evaluation.

Hofmann and Jost were the first to develop an automatic amortised analysis
for heap consumption [11], exploiting a difference metric similar to that used
by Crary and Weirich [7] (the latter, however, only check bounds, and do not
infer them, as we do). Hofmann and Jost have extended their method to cover
a comprehensive subset of Java, including imperative updates, inheritance and
type casts [12]. Shkaravska et al. subsequently considered heap consumption
inference for first-order polymorphic lists, and are currently studying extensions
to non-linear bounds [16]. Finally, Campbell [4] has developed the ideas of depth-
based and temporary credit uses to give better results for stack usage.

A related idea is that of sized types [13], which express bounds on data struc-
ture sizes, and are attached to types in the same way as our weights. The differ-
ence to our work is that sized types express bounds on the size of the underlying
data structure, whereas our weights are factors of the corresponding sizes, which
may remain unknown. The original work on sized types was limited to type
checking, but subsequent work has developed inference mechanisms [5,18].

A number of authors have recently studied analyses for heap usage. Al-
bert et al. [1] present a fully automatic, live heap-space analysis for an object-
oriented bytecode language with a scoped-memory manager. Most notably it is
not restricted to a certain complexity class, and produces a closed-form upper
bound function over the size of the input. However, unlike our system, data-
dependencies cannot be expressed. Braberman et al. [3] infer polynomial bounds
on the live heap usage for a Java-like language with automatic memory manage-
ment. However, unlike our system, they do not cover general recursive methods.
Finally, Chin et al. [6] present a heap and a stack analysis for a low-level (as-
sembler) language with explicit (de-)allocation, which is also restricted to linear
bounds.

8 Conclusions and Further Work

By developing a new type-based analysis, we have been able to automatically in-
fer linear bounds on real-time, heap and stack costs for strict functional programs
with algebraic data-types. The use of amortised costs allows us to determine a
provable upper bound on the overall resource cost of running a program, by
attaching numerical annotations to constructors. Thus, our analysis is not just
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size-dependent but also data-dependent. We have extended previous work on
the inference of amortised costs [11] by considering arbitrary (recursive) data
structures and by constructing a generic treatment of resource usage through
our resource tables. In this way, we are able to separate the mechanics of our
approach from the operational semantics that applies to the usage of a given
resource. Previous work [10,11,12,18] has been restricted to the treatment of a
single resource type, and usually also to list homomorphisms. For all programs
studied here, we determine very tight bounds on both heap and stack usage.
Our results show that the bounds we infer for worst-case execution times can be
within 33.7% of the measured costs. However, in some degenerate cases they can
be significantly higher (in some cases due to the use of software floating-point
operations whose time behaviour can be difficult to analyse effectively).

We are currently experimenting with a number of further extensions.
We have developed a working prototype implementation dealing with
higher-order functions with flexible cost annotations and partial application
(http://www.embounded.org/software/cost/cost.cgi). The corresponding
(and extensive) theoretical proof is still, however, in preparation. This imple-
mentation also deals with many useful extended language constructs, such as
optimised conditionals for a boolean base type, pattern-matches having multi-
ple cases, multiple let-definitions, etc. Most of these extensions are theoretically
straightforward, and in the interest of brevity, we have therefore excluded them
from this paper.

We now intend to study how to improve our time results, to determine how
to extend our work to non-linear bounds, and to determine whether sized types
can be effectively combined with amortised analysis. We are also working to
extend our study of worst-case execution time so that it covers other interest-
ing embedded systems architectures, e.g. the Freescale MPC555 for automotive
applications. Since this has a hardware floating-point unit, we anticipate that
the issues we have experienced with software floating-point operations on the
Renesas M32C/85U will no longer be a concern on this new architecture.
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Abstract. Shared and mutable data-structures pose major problems in
static analysis and most analyzers are unable to keep track of the values
of numeric variables stored in the heap. In this paper, we first identify
sufficient conditions under which heap allocated numeric variables in
object oriented programs (i.e., numeric fields) can be handled as non-
heap allocated variables. Then, we present a static analysis to infer which
numeric fields satisfy these conditions at the level of (sequential) bytecode.
This allows instrumenting the code with ghost variables which make
such numeric fields observable to any field-insensitive value analysis. Our
experimental results in termination analysis show that we greatly enlarge
the class of analyzable programs with a reasonable overhead.

1 Introduction

Static analyses which approximate the value of numeric variables have a large
application field which includes its use for invariant generation, for finding rank-
ing functions [15] which bound the number of iterations of loops in cost analysis,
etc. Most existing value analyses are only applicable to numeric variables which
satisfy two conditions: (1) all occurrences of a variable refer to the same memory
location, and (2) memory locations can only be modified using the correspond-
ing variable. Some notable exceptions are [8,11,10]. In general, the conditions
above are not satisfied when numeric variables are stored in shared mutable
data structures such as the heap. Condition (1) does not hold because memory
locations (numeric variables) are accessed using reference variables, whose value
can change during the execution. Condition (2) does not hold because a memory
location can be modified using different references which are aliases and point
to such memory location.

Example 1. Consider the following loop where size is a field of integer type:
while (x.f.size > 0) {i=i+y.size; x.f.size=x.f.size-1;}

This loop terminates in sequential execution because x.f.size decreases at each
iteration and, for any initial value of x .f .size, there are only a finite number
of values which x.f.size can take before reaching zero. Unfortunately, applying
standard value analyses on numeric fields can produce wrong results, and further
conditions are required. E.g., if we add the instruction x=x.next; within the loop
body, the memory location pointed to by x.f changes, invalidating Condition 1.
Also, if we add y.size++; as x.f and y may be aliases, Condition 2 is false. �
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This paper presents a novel approach for approximating the value of numeric
fields in object-oriented programs which greatly improves the precision over ex-
isting field-insensitive value analyses while introducing a reasonable overhead.
Our approach is developed for object-oriented bytecode, i.e., code compiled for
virtual machines such as the Java virtual machine [9] or .NET, and consists of
the following steps: (1) partition the program to be analyzed into scopes, (2)
identify trackable numeric fields which meet the above conditions and hence can
be safely handled by field-insensitive value analysis, (3) transform the program
by introducing local ghost variables whose values represent the values of the cor-
responding numeric fields, and (4) analyze the transformed program scope by
scope using existing field-insensitive value analysis. This allows reusing the large
body of work devoted to numerical static analysis: polyhedra [7], intervals [6],
octagons [12], etc.

Example 2. Consider the loop in Ex. 1, with a single scope. There are three
program points where a numeric field with signature size is accessed for reading
and one where it is accessed for writing. In this paper, we develop a Reference
Constancy Analysis (RCA for short) which is able to infer that the references
used in all four accesses are constant in the sense that, in all iterations of the
loop, such references do not change their value. For brevity, in the rest of the
paper we say that an access is constant to indicate that the reference used
in the corresponding program point is constant. Our analysis also provides a
symbolic representation of such values. This allows determining that the two
read accesses and the write access through x .f .size not only are constant but
also they have the same value in the three different program points. This is
sufficient for guaranteeing Condition 1 above. Besides, since in the loop there
are no other write accesses using the signature size, Condition 2 above is also
guaranteed. Thus, we can safely introduce a ghost variable, which becomes local
variable v , and corresponds to the value of the numeric field x .f .size in all three
program points. As regards the read access y.size, RCA is able to prove that
it is constant. However, Condition (2) cannot be proved since by looking at the
loop alone it is not possible to know whether x.f and y are aliases. Therefore no
ghost variable can be introduced for y.size. The transformed loop is as follows:

v = x .f .size; while (v>0 ) {i=i+y.size; x.f.size=x.f.size-1; v=v-1;}
Read accesses to x .f .size are replaced by equivalent accesses to the ghost variable
v. For write accesses, we keep the original access and replicate it using the corre-
sponding ghost variable. This is because there may be aliases for x .f .size outside
the loop which may need the value of the original numeric field. A standard value
analysis can now infer that v decreases, which guarantees termination. �

2 The Bytecode Language in Rule-Based Form

Since reasoning about bytecode programs is complicated, it is customary to for-
malize analyses on intermediate representations of the bytecode (e.g., [18]). We
consider a simplified form of the rule-based recursive language of [2]. A bytecode
program consists of a set of procedures and classes. A procedure p with k input



372 E. Albert et al.

arguments x̄=x1, . . . , xk and m output arguments ȳ=y1, . . . , ym is defined by one
or more guarded rules. Without loss of generality, we assume that there are no
two procedures with the same name and different number of arguments. Though
Java bytecode methods only have one output argument, we allow multiple out-
put arguments since, as discussed in Sec. 4, our program transformation may
introduce additional output arguments. Rules are defined as:

rule ::= p(〈x̄〉, 〈ȳ〉) ←g, b1, . . . , bt g ::= true | bexp1 op bexp2 | type(x, c)
b ::= x:=exp | x :=new c | x :=y .f | x .f :=y | q(〈x̄〉, 〈ȳ〉)

bexp ::= x | null | n exp ::= bexp | x−y | x+y | x∗y | x/y
op ::= > | < | ≤ | ≥ | = | �=

where p(〈x̄〉, 〈ȳ〉) is the head of the rule; g its guard, i.e., necessary conditions
for the rule to be applicable; b1, . . . , bt the body of the rule; n an integer; x and
y variables; f a field signature (i.e., globally unique), and q(〈x̄〉, 〈ȳ〉) a proce-
dure call (by value). We often do not write guards which are true. The language
supports class definition, object creation, field manipulation, and type compar-
ison through the instruction type(x, c), which succeeds if the runtime class of x
is exactly c. A class c is a finite set of typed field names, where the type can
be integer or a class name. The key features of this language are: (1) recursion
is the only iteration mechanism, (2) guards are the only form of conditional,
(3) there is no operand stack, (4) objects can be seen as records, and the be-
haviour induced by dynamic dispatch is compiled into dispatch blocks guarded
by type checks, and (5) rules may have multiple return values. The translation
from (Java) bytecode to the rule-based form is performed in two steps. First, a
control flow graph (CFG) is built. Second, a rule is defined for each block and
the operand stack is flattened by considering its elements as local variables [2].

We now introduce some terminology used to define an operational semantics
for rule-based bytecode. An activation record is of the form 〈p, bc, tv〉, where p
is a procedure name, bc is a possibly empty sequence of instructions and tv a
variable mapping. Executions proceed between configurations of the form A;h,
where A is a stack of activation records (which grows leftward) and h is the
heap, i.e., a partial mapping from an infinite set of memory locations to objects.
We use h(r) to denote the object referred to by r in h and h[r �→ o] to indicate
the result of updating the heap h by making h(r) = o. An object o is a pair
consisting of the object class tag and a mapping from field names to values
which is consistent with the types of the fields. We use o.f or o(f) to refer
to the value of the field f in the object o, and o[f �→v] to set the value of o.f
to v. The operational semantics is quite standard and consists of the following
rules:

(1)
b ≡ x:=exp, v = eval(exp, tv)

〈p, b·bc, tv〉·A; h � 〈p, bc, tv [x �→ v]〉·A; h

(2)
b ≡ x:=new c, o=newobject(c), r �∈dom(h)
〈p, b·bc, tv〉·A; h � 〈p, bc, tv [x �→ r]〉·A; h[r �→ o]

(3)
b ≡ x:=y.f, tv(y) ∈ dom(h), o = h(tv(y))
〈p, b·bc, tv〉·A; h � 〈p, bc, tv [x �→ o.f ]〉·A; h

(4)
b ≡ x.f :=y, r = tv(x) ∈ dom(h), o = h(r)

〈p, b·bc, tv〉·A; h � 〈p, bc, tv〉·A; h[r �→ o[f �→ tv(y)]]
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(5)
b ≡ q(〈x̄〉, 〈ȳ〉), there is a program rule q(〈x̄′〉, 〈ȳ′〉)←g, b1, · · · , bt

such that tv ′=newenv(q), ∀i.tv ′(x′
i) = tv(xi), eval(g, tv ′) = true

〈p, b·bc, tv〉·A; h � 〈q, b1 · . . . · bt, tv
′〉·〈p[ȳ, ȳ′], bc, tv〉·A; h

(6) 〈q, ε, tv〉·〈p[ȳ, ȳ′], bc, tv ′〉·A; h � 〈p, bc, tv ′[ȳ �→ tv(ȳ′)]〉·A; h

Intuitively, rule (1) accounts for all rules in the bytecode semantics which perform
operations on variables. The evaluation eval (exp, tv) returns the evaluation of the
arithmetic or Boolean expression exp for the values of the corresponding variables
from tv in the standard way, and for reference variables, it returns the reference.
Rules (2), (3) and (4) deal with objects. We assume that newobject(c) creates a
new object of class c and initializes its fields to either 0 or null, depending on
their types. Rule (5) (resp., (6)) corresponds to calling (resp., returning from) a
procedure. The notation p[ȳ, ȳ′] records the association between the formal and
actual return variables. It is assumed that newenv creates a new mapping of
local variables for the corresponding method, where each variable is initialized
as newobject does. Guards in different rules for the same procedure are always
mutually exclusive. Execution is thus deterministic. An execution starts from
an initial configuration 〈start, p(〈x̄〉, 〈ȳ〉), tv〉;h and ends in a final configuration
〈start, ε, tv ′〉;h′ where start is a marker for the initial entry which is guaranteed
not to coincide with any procedure name, tv and h are initialized to suitable
initial values, and tv ′ and h′ include the final values. Program executions can be
represented as traces C0�C1� · · ·�Cω, where Cω is a final configuration. We
use C�∗C′ to denote that the execution starting from C reaches C′ in a finite
number of steps. Non terminating executions have infinite traces.

Example 3. Consider the following rule-based form and bytecode (inside its
CFG) corresponding to the method in Ex. 1 plus a final return i ; instruction:

(1) loop(〈x, y, i〉, 〈r〉)←
s0:=x,

1©s0:=s0.f,
2©s0:=s0.size,

loopc(〈x, y, i, s0〉, 〈r〉).
(2) loopc(〈x, y, i, s0〉, 〈r〉)←

s0 ≤ 0, s0:=i, r:=s0.

(3) loopc(〈x, y, i, s0〉, 〈r〉)←
s0 > 0, s0:=i, s1:=y,

3©s1:=s1.size,
s0:=s0+s1, i:=s0, s0:=x,

4©s0:=s0.f, s1:=s0

5©s1:=s1.size,
s2:=1, s1:=s1−s2,

6©s0.size :=s1, loop(〈x, y, i〉, 〈r〉).

Variable names of the form si indicate that they originate from stack positions.
Each block in the CFG is translated into a rule. The conditions on the edges
become guards for the corresponding rules. Bytecode instructions are converted
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to a new representation. E.g., in the rule for block (2), the guard s0≤0 corre-
sponds to the condition ifle and iload 3 (3 refers to the third local variable i) is
converted to s0:=i. Instruction s1:=s0 corresponds to dup. Numbered circles are
program point markers introduced for later reference. A is a class with a field of
type B, and B is a class with an integer field. �

3 Reference Constancy Analysis

We present a reference constancy analysis, which aims at identifying reference
variables which are constant at certain program points. The program points
considered are the union of the program points of all program rules. All program
points are made unique by numbering the program rules. The k-th program rule
p(〈x̄〉, 〈ȳ〉)←g, bk

1 , . . . , b
k
t has t+1 program points. The first one, (k, 0), after the

execution of the guard g and before the execution of b1, then (k, 1) between the
execution of b1 and b2, until (k, t) after the execution of bt. The analysis receives
as input a program P and a procedure name p, which we refer to as entry. For
any configuration C = 〈q, bk

i · bc, tv〉 ·A;h which is not initial, the program point
to which C corresponds is (k, i− 1). Given a program P , we denote by RF (P )
(resp. NF (P )) the set of reference (resp. numeric) field signatures declared in P .

Definition 1 (access path function). An access path function for a program
P and an entry p is a syntactic construction of the form lj .f1. . .fn, with fi ∈
RF (P ) for i = 1, . . . , n and it represents a partial function from initial configu-
rations to references. Given an initial configuration C = 〈start, p(〈x̄〉, 〈ȳ〉), tv〉;h
we define lj .f1. . .fn(C) ≡ h(· · · (h(h(tv(lj))(f1))(f2)) · · · )(fn).

Essentially, for determining the value of an access path in an initial configuration,
we use the variable table and heap at such configuration in order to dereference
w.r.t. the reference variable and reference fields in the access path. This function
is undefined at paths that traverse objects which have not been allocated in the
heap. Otherwise, it either returns a memory location in dom(h) or the value null.
Equivalent notions have been defined for other languages (see, e.g. [1]).

Definition 2 (constant reference variable). A reference variable z is con-
stant at a program point (k, i) in a program P for an entry p w.r.t. the access
path function lj.f1 . . . fn if ∀C �∗ C′ such that C is an initial configuration and
C′ = 〈q, bk

i+1 · bc, tv ′〉 · A;h′, we have tv ′(z) = lj.f1 . . . fn(C).

Intuitively, a reference is constant w.r.t. an access path lj .f1 . . . fn in a program
point if, starting the execution from any initial configuration C, whenever we
reach a configuration C′ which corresponds to such program point, the reference
always has the same value lj .f1 . . . fn(C). Note that if execution reaches C′ then
lj .f1 . . . fn(C) is defined since otherwise we must have attempted to dereference
a null reference or a dangling pointer. In either case, the derivation would stop.

The idea behind RCA is similar in spirit to that of the classical numeric
constant propagation analysis [6]. However, an important feature of RCA is that



Field-Sensitive Value Analysis by Field-Insensitive Analysis 375

the values which are computed are not absolute constants but rather functions
which, when provided with a particular initial configuration, return a fixed value
in terms of the heap at the initial –and not the current– configuration.

Example 4. Consider the examples below (shown in Java source for clarity). We
use l1 and l2 to represent the initial values of x and y, respectively.

while (x.f.getSize() > 0)
i+=y.getSize();
x.f.setSize(x.f.getSize()-1);

a©

if (k > 0) then x=z else x=y;
x.f=10;
for(; i<x.f; i++)
b© b[i]=x.b[i];

while ( x != null ) {
for(; x.c<n; x.c++)

value[x.c]++;
c©x=x.next;}

while (x.size < 10)
d© {x.size++; x=x.next;}

while (x.size < 10)
e© {x.size++; acc+=y.size;}

while (x.r.size < 10)
f© {x.r.size++; y.r=z;}

Program a© will be discussed later. In b©, the reference x remains constant
w.r.t. l1 within the loop. However, if we consider the whole code fragment, x is
no longer constant, since x can take two different values before the loop. In c©,
all occurrences of x are constant w.r.t. the same access path function, l1, within
the inner loop. However, x takes different values in different iterations of the
outer loop, and thus x is not constant in the whole code fragment. In d©, x
is not constant because it is updated at each iteration of the loop. In e©, x is
constant w.r.t l1 and y is constant w.r.t l2, but it is unknown whether l1 and l2
are identical or not. In f©, it cannot be ensured that x .r is constant, since if x
and y are aliases, updating y.r changes x .r. �

3.1 A Global Reference Constancy Analysis for Bytecode

We assume familiarity with the concepts of abstract interpretation [6]. The basic
idea of abstract interpretation is to infer information on programs by interpreting
(“running”) them using abstract values rather than concrete ones, thus obtain-
ing safe approximations of the behavior of the program. Essentially, programs
are interpreted over an abstract domain (Dα) which is simpler than the corre-
sponding concrete domain (D). An abstract state in Dα is a finite representation
of a possibly infinite set of actual states in D.

Definition 3 (access path). An access path for a variable y at a given pro-
gram point (k, j) is a syntactic construction which can take the forms:

- �any. Variable y is not guaranteed to be constant at (k, j).
- �num (resp. �null). Variable y holds a numeric value (resp. null) at (k, j).
- li.f1. . .fn. Variable y is constant w.r.t li.f1. . .fn at (k, j).

We use AP to denote the set of all access paths. Given �1, �2 ∈ AP , we define
�1 �ap �2 to be �2 if �1 = �2 and �any otherwise. An abstract state over a set of
variables V and a set of reference fields RF (P ) has the form 〈φ, θ〉 where φ : V �→
AP maps variables to access paths, and θ ⊆ RF (P ) contains a set of reference
field signatures which are guaranteed to be constant in the sense that such field
has not been updated w.r.t. its value at the initial configuration in any object of
the class where f is declared. We say 〈φ1, θ1〉 �as 〈φ2, θ2〉 if θ2 ⊆ θ1 and ∀x ∈ V
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either φ1(x) = φ2(x) or φ2(x) = �any. We define 〈φ1, θ1〉�as 〈φ2, θ2〉 = 〈φ, θ1 ∩ θ2〉
s.t. φ(x) = φ1(x)�as φ2(x). ASd is the lattice 〈AS ,)as,⊥as,�as,�as〉 where AS
is the set of abstract states, )as is the top of the lattice which is equal to 〈φ, ∅〉
s.t ∀x ∈ V .φ(x) = �any, and ⊥as is the bottom.

RCA assigns an abstract state from AS to each program point by relying on
the transfer function τ : Instr ×AS �→ AS depicted in the following table:

b τ (b, 〈φ, θ〉) conditions b τ (b, 〈φ, θ〉) conditions

(1) x:=y.f 〈φ[x �→ �], θ〉 f ∈ RF(P ) (6) x:=null 〈φ[x �→ �null], θ〉
(2) x.f :=y 〈φ, θ\{f}]〉 f ∈ RF(P ) (7) x:=exp 〈φ[x �→ �num], θ〉 exp �≡null
(3) x:=y 〈φ[x �→ φ(y)], θ〉 (8) x �= null ⊥as φ(x)=�null

(4) x:=y.f 〈φ[x �→ �num], θ〉 f ∈ NF(P ) (9) x.f :=y 〈φ, θ〉 f∈NF (P )
(5) x:=new c 〈φ[x �→ �any], θ〉 (10) otherwise 〈φ, θ〉
where in (1) � is defined as: if f ∈ θ and φ(y) �= �any then � = φ(y).f else
� = �any and Instr denotes the set of all possible instructions that can appear in
the body of a rule. Note that τ(b,⊥as) = ⊥as. In (1), when a reference variable
x is assigned the value of a (reference) field, the transfer function updates the
access path of x accordingly. In (2), when a reference field with signature f
is assigned a value, f is eliminated from θ, since we can no longer guarantee
that fields with the f signature preserve their initial value. Note that if in a
subsequent program point, a reference variable x is assigned a field with the f
signature, then the access path for x becomes �any in rule (1). This is needed to
guarantee correctness w.r.t. Condition 1 in Sec. 1. In (3), assignments between
variables are handled by just assigning their access paths as well. This allows
capturing equality of access paths: if the analysis computes the same access path
function � for two reference variables x and y then x and y refer to the same
memory location or they are both null. Although this notion is related to aliasing,
note that we do not propagate aliasing information among scopes, but rather
we concentrate on computing aliasing information which is guaranteed to hold
regardless of the contents of the heap at the initial configuration. This allows
analyzing scopes separately. In (4) and (7) numeric variables are abstracted to
�num. They will be the target of the subsequent value analysis performed after
instrumentation. In (5), when a new object is created in a fresh memory location
r which is associated to a reference variable x, x is given �any as access path, as r
does not exist in the heap at the initial configuration. In (8), if the abstract state
tells us that a variable x definitely has the value null and we encounter a guard
which checks that x is not null then such guard is guaranteed to fail and the
rest of the rule will not be executed. This is captured by the abstract state ⊥as

which represents unreachable configurations. The remaining instructions do not
alter reference constancy information. The transfer function is used to define a
set of data-flow equations, whose least solution provides the reference constancy
information. Below, ∃̄w̄ denotes the projection on w̄ (i.e., eliminates all variables
not in w̄).

Definition 4 (RCA). Given a program P and an entry p, the set of reference
constancy equations of P w.r.t. p, denoted Ep

P (or EP or E when it is clear from
the context), is defined as follows:
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1. The entry p contributes the equation p↓(x̄) = 〈φ, θ〉 where φ maps each ref-
erence variable xi to a symbolic reference li and numeric variables to �num,
and θ = RF (P );

2. Each rule Rk ≡ p(〈x̄〉, 〈ȳ〉)←g, bk
1 , . . . , b

k
n ∈ P , s.t. z̄ = vars(R), contributes:

(a) an initial equation ek
0(z̄)=τ(g, init(p↓(x̄), z̄ \ x̄)) such that init(〈φ, θ〉, v̄) =

〈φ[vi �→�], θ〉, where �=�null if vi is a reference variable, otherwise �=�num;
(b) for each bk

j :
i. if bk

j is an instruction, we generate ek
j (z̄) = τ(bk

j , e
k
j−1(z̄));

ii. if bk
j is a call of the form q(〈w̄〉, 〈s̄〉), we generate q↓(w̄) = ∃̄w̄.ek

j−1(z̄)
and ek

j (z̄) = extend(ek
j−1(z̄), q↑(s̄)) s.t. extend(〈φ1, θ1〉, 〈φ2, θ2〉) =

〈φ1[si �→ φ2(si)], θ1 ∩ θ2〉 for si ∈ dom(φ2);
(c) a final equation p↑(ȳ) = ∃̄ȳ.ek

n(z̄). �

Point 1 above indicates that on entry to p(x̄) each xi trivially holds its initial
value li and all reference field signatures are constant. Point 2 traverses all rules
in P . In Point 2a, we initialize the value of all variables in Rk which are not
input arguments, which results in equation ek

0(z̄). Point 2(b)i states that if we
have an instruction bk

i , information for the next program point ek
i (z̄) can simply

be obtained as τ(bk
i , e

k
i−1(z̄)). Point 2(b)ii states that if bk

i is a call q(w̄, s̄) then:
the first equation declares a call q↓(w̄) using ek

i−1(z̄) as initial input values,
the second one uses the exit information of q, namely q↑(s̄), together with the
previously computed ek

i−1(z̄) in order to generate the analysis information at the
next program point ek

i (x̄). In point 2c, we obtain information about the exit state
for p, denoted p↑(ȳ), by removing all non-output variables from the information
at the last program point in Rk, i.e., ek

n(z̄).
Once the set of equations Ep

P is generated, the analysis results are obtained by
computing the least solution of Ep

P , which assigns an abstract element 〈φ, θ〉 ∈
AS to each equation. This can be done by bottom-up iterations, where we start
from an initial solution ⊥as for all equations and, then, at each iteration we
use the results from the previous iteration in order to obtain a new solution for
Ep

P . To ensure termination, new abstract states are merged with previous states
using �as such that if a variable takes two different access paths, it becomes
�any. As customary, �as merges the analysis results obtained for the different
rules defining a procedure. The least solution of Ep

P over ASd is denoted I(Ep
P ).

Example 5. Let loop be the entry of the program in Ex. 3. The initial equation for
loop is loop↓(x, y, i)=〈{x�→l1, y �→l2, i �→�num}, {f}〉. The equations contributed by
rule 1, where z̄={x, y, i, s0, r}, w̄={x, y, i, s0} and w̄′={x, y, i} are shown at the
end of the example. The fixed point computation proceeds as follows. From
loop↓(w̄′) we generate e1

0, which adds the initial values for s0 and r. Then e1
0 is

used to learn the information for e1
1 and so on. Note the change in value of s0

in equations e1
1 and e1

2. Once we learn the information for e1
3, we declare that

we have a call to procedure loopc. This is done by equation loopc↓(w̄), which in
turn activates (in the next iteration) the computation for the equations for loopc

(rules 2 and 3). In each iteration, the new information is merged with that of the
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previous iterations using �as. Column “analysis results” shows the information
obtained once a fixpoint has been reached.

rule 1 analysis result
e1
0(z̄)=τ (true, init(loop↓(w̄

′), {s0, r})) 〈{x �→l1, y �→l2, s0 �→�null, i�→�num, r �→�num}, {f}〉
e1
1(z̄)=τ (s0:=x, e1

0(z̄)) 〈{x �→l1, y �→l2, s0 �→l1, i�→�num, r �→�num}, {f}〉
e1
2(z̄)=τ (s0:=s0.f, e1

1(z̄)) 〈{x �→l1, y �→l2, s0 �→l1.f , i�→�num, r �→�num}, {f}〉
e1
3(z̄)=τ (s0:=s0.size, e1

2(z̄)) 〈{x �→l1, y �→l2, s0 �→�num, i�→�num, r �→�num}, {f}〉
loopc↓(w̄)=∃̄w̄.e1

3(z̄) 〈{x �→l1, y �→l2, s0 �→�num, i�→�num}, {f}〉
e1
4(z̄)=extend(e1

3(z̄), loopc↑(r)) 〈{x �→l1, y �→l2, s0 �→�num, i�→�num, r �→�num}, {f}〉
loop↑(r)=∃̄r.e1

4(z̄) 〈{r �→�num}, {f}〉

3.2 Compositional Reference Constancy Analysis

We now present a compositional RCA which can be used for analyzing different
parts of the program, i.e., scopes, separately.

Example 6. Consider the program a© in Ex. 4. It is similar to the one in Ex. 3, but
we introduce two auxiliary methods getSize and setSize defined, resp., as follows:
“int getSize(){return this.size;}” and “void setSize(int n){this.size=n;}” and
whose rule-based forms are, “getSize(〈this〉, 〈r〉)←s0:=this , s0 :=s0 .size, r :=s0”
and “setSize(〈this, n〉, 〈〉)←s0:=this , s1 :=n, s0 .size:=s1”, respectively. Now, the
read accesses to field size (at program points 2©, 3©, and 5©) are replaced by calls
to getSize and the write access at program point 6© by a call to setSize. Note
that now, in the whole program, instead of three, we only have one read access
(s0:=s0 .size, in the body of getSize) to the size field. Unfortunately, s0 is not
constant at that program point, as it sometimes has the value y (when calling
from program point 3©) and sometimes x .f (when calling from program points
2© and 5©). Instead of giving up, compositional analysis should let us analyze
getSize separately and infer that s0 is constant within each call to getSize. �

The first step for achieving compositionality is to split the program P into scopes
S1, . . . , Sn by partitioning the procedures (and therefore rules) in P into groups
such that there are no mutual calls (directly or indirectly) between any two
different groups. Therefore, the strongly connected components (or SCCs) of the
program are the smallest scopes we should consider. For the sake of simplicity,
we assume that each scope S has a single entry p. This is not a restriction, as
we can repeat the analysis for each entry separately. Scopes are analyzed in a
reverse topological order. Since there are no cycles among scopes, when analyzing
a scope S, we have already analyzed all scopes reachable from S.

The only change required in the analysis presented in Sect. 3.1 is to modify
the transfer function in order to handle calls to procedures defined in external
scopes. Let q(〈w̄〉, 〈s̄〉) be a call to a procedure defined in S′ �= S for which
we have computed q↑(s̄) = 〈φ′, θ′〉 ∈ I(Eq

S′ ). To avoid variable renamings, we
assume that such answer q↑ is returned with the same variable names. Now, we
define the transfer function for this call as τ(q(〈w̄〉, 〈s̄〉), 〈φ, θ〉) = 〈φ′′, θ′′〉 where:

(1) θ′′ = θ ∩ θ′;
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(2) we distinguish three kinds of variables to define φ′′:
(2.1) ∀z ∈ dom(φ) \ s̄, we have φ′′(z) = φ(z); otherwise
(2.2) ∀z ∈ dom(φ) which is numeric, φ′′(z) = �num; otherwise
(2.3) ∀sk ∈ s̄ if φ′(sk) = lj .f1 . . . fn ∧ {f1, . . . , fn} ⊆ θ ∧ φ(wj) �= �any then

φ′′(sk) = φ(wj).f1 . . . fn, else φ′′(sk) = �any.
Intuitively, field updates that might occur in the execution of q are learned in (1).
Variables which are not output variables of q (2.1) are not affected by this step.
In point (2.2), output numeric variables become �num. In (2.3), the answer for
reference output variables of q is renamed to use them in this calling context.
For this, we need to use the access paths computed for the input variables to
perform the renaming on the output variables. We require that the involved field
signatures are in θ and that the access path for wj is not �any.

Example 7. We now split the program in Ex. 6 in three scopes: S1 = {getSize},
S2 = {setSize} and S3 = {loop, loopc}. The analysis of S1 results in getSize↑(r) =
〈{r �→ �num}, {f}〉 ∈ I(ES1). The analysis of S3 generates Eloop

S3
, which is as the

one in Ex. 5 except for the equation that refers to the size field. In particu-
lar, equation e1

4(z̄) is replaced by: e1
4(z̄) = τ(getSize(〈s0〉, 〈s0〉), e1

3(z̄)). It results
in the same value for e1

4 as in Ex. 5, i.e., compositional analysis allows con-
sidering size constant in getSize without losing accuracy when composing the
results. Thus, as for the program in Ex. 3, we conclude that in the calls to
getSize(〈this〉, 〈r〉), this has the value l1 .f at program points 2©, 5© and the value
l2 at 3©. Reasoning similarly, we get that for the call to setSize(〈this , n〉, 〈〉),
variable this always has the value l1 .f at program point 6©. �

Theorem 1 (soundness). Let S be a scope and p be an entry. For any equation
ek

i (x̄) = 〈φ, θ〉 ∈ I(Ep
S) and variable z ∈ dom(φ), if φ(z) = lj .f1 . . . fn, then z is

constant w.r.t. lj.f1 . . . fn at program point (k, i). �

Our method is parametric w.r.t. the choice of scopes. As a rule of thumb, the
larger scopes are, the more context information we can propagate in the subse-
quent value analysis, but the less likely that numeric field accesses can be consid-
ered trackable. As motivated above, scopes should not be larger than methods,
unless they are mutually recursive. For cost and termination, defining the scopes
by first computing the SCCs and then grouping non-recursive SCCs that form
a chain (consecutive SCCs in topological order) works well in practice.

4 An Instrumentation for Tracking Numeric Fields

We now identify sufficient conditions for instrumenting the program by adding
ghost variables which correspond to the value of numeric fields. As for RCA, we
define the instrumentation in a compositional way, guided by a set of scopes.

4.1 Finding Trackable Numeric Fields

Given an instruction bk
j and a reference variable y, we use acc path(y, bk

j ) = � as
a shortcut for ek

j−1(x̄) = 〈φ, θ〉 ∈ I(ES) ∧ φ(y) = �. We use S∗ to refer to the
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union of S and all other scopes reachable from S. Given a scope S and a numeric
field signature f , the set of read access paths for f in S, denoted R(S, f), is the
set of access paths of all variables y used for reading (i.e., instructions of the form
x:=y.f) a field with the f signature in S∗. R+(S, f) denotes the set of access
paths that originate from read accesses in S, and R∗(S, f) those which originate
from read accesses in S∗\{S}. Thus, R(S, f) = R+(S, f) ∪R∗(S, f) where:

R+(S, f) =
{
acc path(y, bk

j )
∣∣ bk

j ≡ x:=y.f ∈ S
}

R∗(S, f) =
{
�′
∣∣∣∣ bk

j ≡ q(〈x̄〉, 〈ȳ〉) ∈ S, q ∈ S′ �= S, � ∈ R(S′, f)
if � = lh.p then �′ = acc path(xh, b

k
j−1).p else �′ = �any

}
In R+(S, f), for each access x:=y.f , we add the access path that the analysis
has computed for y. Computing the read access paths for a scope S requires
computing the read access paths for all other scopes in S∗. Since scopes subsume
SCCs, read access paths can be computed in reverse topological order without
iterating. For each call q(〈x̄〉, 〈ȳ〉) such that q is the entry of scope S′, we take
R(S′, f) and rename it according to the calling context. This requires renaming
each lh using the access path of xh at bk

j−1. The set of write access paths for f in
S, denoted W (S, f), is computed in a similar way by just considering the access
path of all variables y in instructions of the form y.f :=x, instead of x:=y.f .

Example 8. Following Ex. 7, the set R+(S1, size) = {l1}, due to the instruction
s0 = s0.size, and R∗(S1, size) = ∅, since S1 does not have calls to other scopes.
R+(S2, size) = R∗(S2, size) = ∅ since no read accesses to the field size occur
in setSize. Also, R+(S3, size) = ∅, since S3 does not access size directly, but
R∗(S3, size) = {l1.f, l2}. Note that l1.f originates from program point 2© and 5©
and l2 from program point 3©. Finally, W (S1, size) = ∅, W (S2, size) = {l1} and
W (S3, size) = {l1.f}, where l1.f originates from program point 6©. �

Definition 5 (trackable numeric field signature). Given a scope S from a
program P and a numeric field signature f ∈ NF (P ), f is trackable in scope S
if (1) f is trackable in all scopes in S∗\{S} and one of the following conditions
holds: (2) W (S, f) = ∅; or (3) W (S, f) = {�} and � is of the form lj .f1 . . . fn.

Condition (1) is required in order to have a sound transformation, as we cannot
track accesses which are not trackable in transitively reachable scopes. Then,
Condition (2) refers to scenarios where we do not have any write access to f ,
like example b©. In such case, the value of numeric fields read through (possibly)
different access paths will be stored in different ghost variables. Condition (3)
requires that all write accesses are done through the same path, like examples a©,
c© (inner loop) and e©. This is the reason why the field accesses in the examples
d© and f© are not trackable. An essential point is that, though it is allowed to
have read accesses to f through access paths different from �, they cannot be
tracked. This is the case in the read access y.size in example e©.

4.2 Instrumenting Trackable Numeric Fields

The following transformation describes how to instrument a scope S with ghost
variables for the different trackable uses of a numeric field f :
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1. If f is not trackable go to 4
2. Add Arguments: each head or call p(〈x̄〉, 〈ȳ〉) such that p ∈ S is con-

verted to p(〈x̄·v̄r〉, 〈ȳ·v̄w〉) with v̄w = {v�.f | � ∈ W (S, f)} and
(a) if W (S, f) = ∅ then v̄r = {v�.f | � �=�any ∈ R(S, f)}
(b) if W (S, f) = {�} then if � ∈ R(S, f) then v̄r = {v�.f} else v̄r = ∅

3. Replicate Field Accesses:
(a) each bk

j ≡ y.f :=x ∈ S produces a subsequent assignment v�.f :=x, if
acc path(y, bk

j ) = �
(b) each bk

j ≡ x:=y.f ∈ S produces a subsequent assignment x:=v�.f , if
acc path(y, bk

j ) = � �= �any ∧W (S, f) ⊆ {�}
4. Handle External Calls: Let bk

j ≡ q(x̄, ȳ) ∈ S be an external call, and
q(〈x̄′·v̄′

r〉, 〈ȳ′·v̄′
w〉) be the head of the definition of q after transforming

its corresponding scope. The call is translated to q(〈x̄·v̄r〉, 〈ȳ·v̄w〉) where,
given a variable v′

� ∈ v̄′
r ∪ v̄′

w with � = lh.f1 . . . fn.f , its corresponding
variable vm is:
(a) if acc path(xh, bk

j−1) = �any or f is not trackable in S, then vm = ∗;
(b) otherwise, m = acc path(xh, bk

j−1).f1 . . . fn.f .

The scopes in a program are instrumented in a reverse topological order. For sim-
plicity, in the presentation, a scope S is instrumented iteratively, once for each
field in NF (P ). However, in the implementation, each scope is instrumented just
once, simultaneously for all field signatures. The key features in our instrumen-
tation are: (i) Ghost variables have names of the form vl.f , where l is an access
path function and f a numeric field. (ii) If the field access is not trackable in the
current scope, then it is not safe to propagate the value of numeric fields to/from
external calls. To handle this, we use the mark ’∗’ which, at the input, should be
interpreted as a random integer and, at the output, it indicates that we should
ignore the corresponding output value when we return from a call. This syntax
can be easily supported by modifying rules 5 and 6 in the semantics, and treat-
ing it in value analysis is straightforward. (iii) When there are updates to a field
signature, we can only track read accesses which refer to the same access path
function used for the updates (see explanation of condition 3 in Def. 5).

Intuitively, each step in the instrumentation of a scope S w.r.t. a field signature
f is: (1) If f is not trackable in S, we only need to instrument external calls
(step 4a) by ignoring the value of ghost variables. E.g., when we instrument the
calling scope to the loop in example b©, we cannot track the value of the field
x.f . (2) Input and output ghost variables are added as follows. For output ghost
variables, the definition of trackable ensures that there is at most one access
path in the write set. For the input ones, if there are no write accesses, we can
track all their possible read uses (step 2a); otherwise, we can only track the
accesses through the same access path (step 2b), hence we have at most one
variable. The same arguments are also added to internal calls. (3) We replicate
field accesses with accesses to its corresponding ghost variable. The condition
W (S, f) ⊆ {�} takes care of issue (iii) above. (4) For calls to other scopes, it is
guaranteed that they have been already instrumented. We have to look up at
the reference constancy information to find out which ghost variables we must



382 E. Albert et al.

use in the calling context, step 4b. In step 4a, if the field is not trackable or its
access path is not constant, it is not safe to track its value.

Example 9. We first transform S1 in Ex. 7 w.r.t. size. Recall that R(S1, size) =
{l1} and W (S1, size) = ∅. Thus, we add an input variable v1 for the ghost
variable vl1.size, resulting in: “ getSize(〈this, v1〉, 〈r〉)←s0:=this , s0 :=v1 , r :=s0”.
Note that we have replaced the read access statement s0=s0.size by s0=v1, which
reads the ghost variable v1. Similarly, the transformation of S2 w.r.t. size gen-
erates the rule: “setSize(〈this , n〉, 〈v1〉) ←s0:=this , s1:=n, s0.size:=s1, v1:=s1”,
where now v1 is an output value which stores the modification of vl1.size. Note
that the write access s0.size:=s1 is replicated using variable v1, which results in
the additional statement v1:=s1. This corresponds to the intuition shown in the
instrumentation of the Java code in Sec. 1, though it is more sophisticated as
we have an inter-procedural transformation which allows multiple output vari-
ables. Hence, it could not be directly done in the original Java program. The
instrumented version of rules (1), (2) and (3) of S3 is:
(1) loop(〈x, y, i, v1〉, 〈r, v1〉)←

s0:=x, s0:=s0.f,
getSize(〈s0, v1〉, 〈s0〉),
loopc(〈x, y, i, s0, v1〉, 〈r, v1〉).

(2) loopc(〈x, y, i, s0, v1〉, 〈r, v1〉)←
s0 ≤ 0, s0:=i, r:=s0.

(3) loopc(〈x, y, i, s0, v1〉, 〈r, v1〉) ←
s0 > 0, s0:=i, s1:=y, getSize(〈s1, ∗〉, 〈s1〉),
s0:=s0 + s1, i:=s0, s0:=x, s0:=s0.f,
s1:=s0, getSize(〈s1, v1〉, 〈s1〉),
s2:=1, s1:=s1 − s2, setSize(〈s0, s1〉, 〈v1〉),
loop(〈this, x, y, i, v1〉, 〈r, v1〉).

Since the write set is {l1.f}, only one variable v1 can be added for the read access
l1.f (i.e., ghost variable vl1.f.size) and we cannot track the one corresponding to
the read access l2 (step 2b). An important point is that, in the calls to getSize, we
use either v1 or ∗ depending on the access path of the first argument, computed in
step 4b. Field-insensitive value analysis of the instrumented program is now able
to infer that v1 (i.e., x .f.size) is decreasing and has 0 as lower limit. This is due to
the fact that, for getSize(〈this , v1 〉, 〈r〉), field-insensitive value analysis can now
infer that r = v1 (which corresponds to this .size) and for setSize(〈this ,n〉, 〈v1 〉)
it infers that v1 decreases by one. Cost and termination analyses hence succeed
to bound the number of loop iterations by the ranking function v1. �

The following theorem guarantees that we can safely use the instrumented pro-
gram for value analysis instead of the original one.

Theorem 2. Let P be a program, PF be its instrumentation for NF (P ), and
C = 〈start, p(〈x̄〉, 〈ȳ〉), tv 〉;h an initial configuration. If there is a trace t of
the form C �n

P Cn then there exists a trace t′ of the form C′ �m
PF

Cm s.t.
C′=〈start, p(〈x̄ · ∗̄〉, 〈ȳ · ∗̄〉), tv〉;h; m ≥ n; s.t. if we remove all ghost variables
and states that originate from the instrumentation from t′, we obtain t. �

Even though the instrumented program may have non-deterministic behaviour
due to ghost variables whose values are unknown (’∗’), this does not introduce
a loss of precision w.r.t. field-insensitive value analysis, since such unknowns
correspond to numeric fields which are also unknown in field-insensitive analysis.
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5 Experiments in the costa System

costa [2] is a static analyzer able to prove termination and obtain upper bounds
on resource usage for a relatively large class of Java bytecode programs. We
have integrated our method in costa as a pre-process to the existing field-
insensitive value analysis. In order to assess its practicality on realistic programs,
we have tried to infer termination of all the loops which contain numeric field
accesses in their guards for all classes in the subpackages of “java” of the Sun’s
implementation of J2SE 1.4.2. In total, we have found 133 methods which contain
loops of this form, which we have taken as entries. costa has an application
extraction algorithm (or class analysis) which pulls methods transitively used
from each entry. costa failed to analyze 11 methods because when analyzing
context-independently, it is required to analyze more methods than it can handle.

Bench. Ru Ln Rs Ri Trca Ttr Tgh Ti Ts SD
lang 315 13 13 0 0.12 0.01 0.02 3.33 5.47 1.64
util 685 24 24 0 0.58 7.88 4.90 20.21 39.36 1.95
beans 90 3 3 0 0.05 0.00 0.00 1.42 1.65 1.16
math 662 15 12 1 0.22 0.18 0.17 7.84 9.84 1.26
text 1743 24 20 1 0.79 0.34 0.37 37.33 141.04 3.78
awt 4524 90 87 0 2.44 7.56 7.59 98.56 248.49 2.52
io 716 6 5 2 0.61 0.49 0.27 17.79 23.94 1.35
security 58 1 1 0 0.03 0.01 0.00 0.90 0.98 1.09
total 8793 176 165 4 4.84 16.47 13.32 187.38 470.77 2.51

The above table shows our experimental results for the 122 methods which costa

can handle which belong to the packages whose name appears in the first col-
umn. For each package, we provide the size of the code to be analyzed, given as
number of rules (Ru), the number of loops (Ln) analyzed in each package which
contain numeric field accesses in their guards. The column Rs shows the number
of loops involving numeric guards for which costa has been able to find a rank-
ing function using our proposed approach to field-sensitive analysis. Column Ri

shows the same for field-insensitive analysis. It can be observed that, before ap-
plying our technique, costa could prove termination of only 4 of the 176 loops.
In those 4 loops it is possible to prove termination using a field-insensitive an-
alyzer because, for example, termination is guaranteed by reaching exceptional
states. When we apply our approach to field-sensitive analysis, we prove termi-
nation of 165 of the 176 loops. It is also worth mentioning that only in 3 loops we
fail to prove termination because the numeric field in the guard is not trackable
(in particular, the reference is not constant). In the other 8 loops, though the
fields are trackable, we failed due to limitations of the underlying termination
techniques used in costa, and which are not related to our approach. In most
cases, the problem is that the termination condition does not depend on the size
of the data structure, but rather on the particular value stored at some location
within the data structure, and also to the use of linear arithmetic operations.
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The next set of columns evaluate time efficiency. The experiments have been
performed on an Intel Core 2 Quad Q9300 at 2.5GHz with 1.95GB of RAM,
running Linux 2.6.27-11. Analysis times are shown in seconds. The time of the
RCA is shown in Trca . Columns Ttr and Tgh show, resp., the times to infer the
trackability condition and to instrument the program with ghost variables. We
have observed that the examples which require more time to infer trackability
always involve a high number of numeric fields and thus the transformation also
has to consider a high number of ghost variables. The total analysis time of
the field-sensitive analysis, which includes the previous three columns is in Ts .
The field-insensitive analysis time is shown in Ti . Finally, the SD column shows
the slowdown introduced by field-sensitive analysis. The total overhead is 2.51.
We argue that our results are quite positive since the overhead introduced is
reasonable in return for the quite significant accuracy gains obtained.

6 Conclusions and Related Work

This paper proposes, to the best of our knowledge, the first static analysis to
support numeric fields in cost and termination analysis of object-oriented byte-
code. A complementary analysis for reference fields is [17]. Traditionally, existing
approaches to reason on shared mutable data structures either track all possible
updates of fields (endangering efficiency) or abstract all field updates into a sin-
gle element (sacrificing accuracy). Our work does not fall into either category,
as it does not track all field updates but rather only those which behave like non
heap-allocated variables. Miné’s [11] value analysis for C takes a different ap-
proach by enriching the abstract domain to make the analysis field-sensitive. His
motivation is different from ours, such analysis is developed to improve points-
to analysis in the presence of pointer arithmetics. We argue that our approach
is sufficiently precise for context-independent analysis as required by important
applications of value analysis such as termination analysis, while introducing a
reasonable overhead. Also, [4] enriches a numeric abstract domain with alien
expressions (field accesses). Without additional information, such as our RCA,
this domain would be rather limited (imprecise) for bytecode. The notion of
restricted variables used in [1] for C programs is related to our notion of ref-
erence constancy. However, [1] imposes more restrictive conditions, namely it
avoids global pointers to be used locally and local copies to escape from the
local context and, thus, it does not imply our reference constancy condition. In
general, more accurate aliasing analysis (see [1] and its references) can be used
to improve the precision of our analysis when computing the read and write sets,
but at a higher performance cost and, besides, such further precision might not
be required in practice for analyzing subprograms context-independently. Must-
aliasing (aliases at program points) does not imply constancy of references, since
the values of two variables might but still alias at the program point of interest.
However, infering transitive relations of must-aliasing, i.e., between variables at
different program points might enable the inference of constancy information,
but this results in a much more expensive analysis than ours. Our work shares
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its motivation with the evolving field of local reasoning [14], such as separation
logic [16] and regional logic [3] which provide expressive frameworks to reason
about programs with shared mutable data structures. While our goals are more
restricted, our technique has the advantage of allowing fully automatic inference.
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11. Miné, A.: Field-sensitive value analysis of embedded c programs with union types
and pointer arithmetics. In: LCTES (2006)
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Abstract. In temporal logic, calculational proofs beyond simple cases
are often seen as challenging. The situation is reversed by making tempo-
ral logic calculational, yielding shorter and clearer proofs than traditional
ones, and serving as a (mental) tool for unification and discovery. A side-
effect of unifying theories is easier access by practicians. The starting
point is a simple generic (software tool independent) Functional Tempo-
ral Calculus (FTC). Specific temporal logics are then captured via en-
dosemantic functions. This concept reflects tacit conventions throughout
mathematics and, once identified, is general and useful. FTC also yields
a reasoning style that helps discovering theorems by calculation rather
than just proving given facts. This is illustrated by deriving various theo-
rems, most related to liveness issues in TLA+, and finding strengthenings
of known results. Educational issues are addressed in passing.

1 Introduction and Overview

1.1 Motivation and Choice of Topic

Calculational proofs. Lamport observes [27, p. 99] that, in temporal logic, proof
by calculation beyond simple cases becomes challenging. We show how to reverse
the situation by making temporal logic amenable to the calculational style, turn-
ing it into a (mental, conceptual) tool for unification and discovery. Still, there
are also broader concerns deserving some further elaboration.

Diversity versus disparity. In [2] and a companion tutorial “Why formal verifica-
tion remains on the fringes of commercial development”, Arvind stresses that no
single model, technique or tool can cover all needs of systems design. Diversity is
an evident fact conceptually, but accepting it is hampered by needless disparity
in the formulation of models and methods in the literature and the presentation
(notation, paradigm) of tools. Even the underlying theories are often stated as
special logics, outside the mainstream of mathematics, and miss the directness
and elegance engineers appreciate in algebra and calculus [31]. The more mature
fields yield diversity in modeling (e.g., electrical, mechanical) without disparity.

In formal methods as well, mathematics is the most powerful intellectual tool,
so “hiding the math” is not as helpful as is often suggested. Habrias et al. rightly
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warn that tool use without awareness is the ruin of formal specification [22]. In
analysis, pitfalls are notorious [34]. Since software is discrete, one might think
the pitfalls are less subtle, but this is risky: even simple programs can be difficult
to get right, as shown by Bentley’s historical notes on binary search [5].

Moreover, “hiding the math” keeps tool users ignorant of major opportuni-
ties, especially in reasoning about systems requirements and realizations (e.g.,
programs). For instance, the link between informal and formal description, tradi-
tionally the weak link, can be made strong by formalizing various informal views
and formally exploring their relationships [12]. Even using different notations can
be advantageous if captured by a unifying framework [10] for reasoning. Again
diversity is an asset, and mathematics can offer it without causing disparity.

Improving accessibility for practicians. Given the preceding remarks, wide use of
formal methods in industry is best served by a constant supply of well-prepared
students [12]. Yet, this is still a long-term option, since curriculum design lags
behind insights in formal methods [35]. Meanwhile we should attempt lowering
the threshold formal methods still represent in practice, but without sacrificing
the safety and effectiveness that only mathematics can provide for tool users.

So, rather than “hiding the math”, we aim at making it very accessible. Rec-
onciling this goal with the need for diversity is possible by unifying theories. For
programming theories, one unifying approach is due to Hoare and Jifeng [24].

The calculational semantics approach is arguably more accessible [11] as its
style matches common engineering mathematics and its scope is broader. The
main unifying element is a functional predicate calculus [10], allowing engineers
to calculate with predicates and quantifiers (∀, ∃) as fluently as taught with
derivatives and integrals. As expected, reasoning is calculational, the style also
advocated by Dijkstra [15], Gries [20,21] and others. The other element, generic
functionals [9], supports unification with classical signals and systems modeling,
together with the point-free style so convenient in computing science [1,9,30].

This is a rather wide program, but here we focus on a more restricted topic.

Choice of topic: model checking and temporal logic. Model checking [3,14,26,27]
is a convenient method for verifying systems with automated tools. Apparently,
it makes the task easy for the user: given a formal system description and a con-
dition to be satisfied, the tool either confirms success or yields a counterexample.
This has made model checking one of the most popular formal methods.

This simplicity of use is deceptive. Formalizing the description as well as the
condition requires essentially mathematical aptitudes. Indeed, the conditions
are typically expressed by temporal formulas, which are not very intuitive, as
also noted by Lamport [27]. This can be alleviated by patterns [17,18,19], i.e.
given temporal formulas “known” to express some property of interest. Such an
approach is used in the Bandera project [4,19] for concurrent Java software.

However, no predefined collection of patterns is complete for practical applica-
tion, and the tool user must be able to design new ones. Clarifying the intuitive
meaning of patterns, exploring the relationship between them and designing new
ones, is again most conveniently done using mathematics [8].
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Rationale: proper formality as a tool for discovery. Insular logics have fostered
the common belief that formality and intuition poorly match. By contrast, func-
tional predicate calculus was found to be an asset for intuition, even developing
it when exploring new domains. Calculational semantics [11] is an example.

This paper extends such benefits to model checking by a temporal calculus
that is very accessible, helps discovery and develops intuition. In deriving the
calculation rules, extensions of basic notions arise, such as strengthened weak in-
duction. In illustrating applications, temporal calculations become simpler than
classical proofs [27] and yield stronger results without prior knowledge.

1.2 Overview

Section 2 discusses style choices and presents a generic temporal calculus (FTC).
Section 3 captures TLA+ calculationally, facilitates reading by pruning repeti-
tive parts, and derives some basic theorems for illustration. Section 4 illustrates
calculational temporal reasoning by application to patterns about liveness issues.

2 Style Issues in Temporal Calculi and in General

2.1 From Temporal Logics to Temporal Calculi

Most formulations of temporal logic [28] follow the usual style of formal logic in
presenting it as a separate language with axioms, and defines models via semantic
functions in a metalanguage. This is suitable to study metamathematical issues.

For introducing temporal logic to the practicing engineer, it is helpful casting
them into a calculus with the smooth algebraic flavor so appreciated in classi-
cal mathematics, as just another theory in the common framework. A simple
approach is viewing temporal operators as an algebra of functions on (infinite)
sequences. Here so-called linear time is assumed; branching time has slightly
different rules, but derivable similarly using trees instead of sequences [3,33].

Here we briefly mention some other work on unifying frameworks for temporal
logics. An abstract algebra approach based on Galois connections is Temporal
Algebra [37], whereas correspondence theory takes a modal logics viewpoint [36].
A predicative semantics approach using generic composition is found in [13].

Our approach differs by its more concrete basis. Starting from the model
rather than pure axioms reflects the systems view (model given, various aspects
requiring various formalisms) as opposed to the pure formal logic view (single
formalism, perhaps various models), as further discussed in [6,7]. In the analysis
and design of patterns, the model is the domain of discourse anyway. Moreover,
in this manner the usual temporal logic axioms [28] can still be cast into textually
identical theorems [6], so calculations can have the same abstract flavor.

Different styles are possible, also depending on other desiderata.
Indeed, to support awareness when using a model checking tool, the calculus

should match the tool’s language. We illustrate later how to do this for TLA+.
Yet, it is also conceptually helpful to start with a very elementary form of

temporal calculus that captures the common concepts independently of tools.
The derived results are easily ‘re-used’ in designing calculi for specific tools.
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2.2 A Purely Functional ‘Bare Bones’ Temporal Calculus (FTC)

a. Principle and operator definitions A very basic temporal calculus is obtained
by defining temporal operators as predicate transformers, the predicates of in-
terest pertaining to system behaviors (infinite sequences of system states).

Formally, let S be the state space (instantaneous values). Behaviors (infi-
nite sequences) are functions of type N→S, also written S∞. The predicates of
interest are Boolean-valued functions over S∞, hence of type BP :=S∞→B.

Logical operators of FTC are just pointwise extensions of the usual proposi-
tional operators: for any infix operator � (say, ∧, ∨, ⇒, ≡) and any β in S∞,

(P � Q)β ≡ P β � Qβ . (1)

Propositional operators of type B2→B (for ∧, ∨, ⇒, ≡) or B→B (for ¬) are
thereby overloaded to type BP2→BP or BP→BP (“predicate transformers”).
The extension can be made explicit if desired [9], but it is unambiguous here.

Temporal operators of FTC are predicate transformers of type BP→BP, e.g.,

� (“next”) defined by �P β ≡ P (σ β) (2)
(“henceforth”) defined by P β ≡ ∀n : N . P (σnβ) (3)

+ (“eventually”) defined by +P β ≡ ∃n : N . P (σnβ) (4)

As usual in functional formalisms, f x y is read (f x) y, so P β = ( P )β. Also,
σ is the shift operator defined on any sequence s by σ sm = s (m+1). Informally:
σ drops the first symbol, e.g., σ (a, b, c, d) = b, c, d. The n-th power of a function
is n-fold composition: f0 x = x and fn+1 x = f (fn x) inductively.

By these definitions, FTC reduces temporal reasoning to predicate calculus.
Convention. As in functional predicate calculus, ∀P expresses that predicate

P is satisfied by all elements in its domain [10]. However, to highlight analogy
with expressions of the form ϕ in typical temporal logics [28], we define
for predicates P in BP by P ≡ ∀P . In pointwise form, P ≡ ∀β :S∞ . P β.

Aside: in formal logic, is usually a metasymbol for “theoremhood”. Adopt-
ing within the language, as done here, adds flexibility for elucidating analogies
and paradigm shifts. Also, to the “working mathematician” provability and va-
lidity are tantamount. Lamport [27, p. 92] simply states “A temporal theorem is
a temporal formula that is satisfied by all behaviors”. For dealing with language
and tool design technicalities, the usual sharper distinctions can be useful.

b. Illustration: deriving point-free theorems in FTC By point-free style we mean
avoiding references to domain elements of functions [1,9,30]. Here the domain
elements are the behaviors, typically referenced by a variable β (of type S∞).

The point-free style allows writing formulas looking formally identical to the
metatheorems and axioms of typical temporal logics [28].

The first stage in building this collection is deriving formulas by predicate
calculus and getting rid of the variable β along the way. The second stage is
using only point-free formulas already obtained, as a matter of style.
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To convey the flavor, here are a few first-stage examples, chosen assuming
minimal knowledge of predicate calculus, yet each yielding something interesting.

Example A: showing ( P ) ≡ P .

( P ) ≡ 〈Definition 〉 ∀β :S∞ . P β

≡ 〈Definition 〉 ∀β :S∞ . ∀n : N . P (σnβ) (∗)
(∗) ⇒ 〈Inst. n := 0〉 ∀β :S∞ . P (σ0β)
≡ 〈f0x = x〉 ∀β :S∞ . P β

≡ 〈Definition 〉 P

(∗) ⇐ 〈Inst. β′ := σ nβ〉 ∀β :S∞ . ∀n : N . ∀β′ :S∞ . P β′

≡ 〈Definition 〉 ∀β :S∞ . ∀n : N . P

⇐ 〈Const. pred.〉 P .

Gourmets may replace this ‘ping-pong’ proof by an equational one using domain
change [10] under f :S∞ ×N→S∞ with f (β, n) = σnβ, noting Range f = S∞.

Example B, “temporal instantiation”: P ⇒ P . Here is a detailed proof:

( P ⇒ P ) ≡ 〈Definition 〉 ∀β :S∞ . ( P ⇒ P )β
≡ 〈Pointw. ext. (1)〉 ∀β :S∞ . P β ⇒ P β

≡ 〈Definition 〉 ∀β :S∞ . ∀ (n : N . P (σnβ))⇒ P β

≡ 〈f0x = x〉 ∀β :S∞ . ∀ (n : N . P (σnβ))⇒ P (σ0β)
≡ 〈Instant., n := 0〉 ∀β :S∞ . 1
≡ 〈Const. pred.〉 1 . Note: WLOG, truth values are 0, 1.

Note: P ⇒ P , is not a theorem (try β n = n and P β ≡ β 0 = 0).
Remark. Proofs can be compacted by noting that proving P amounts to

proving P β for arbitrary β. For the P ⇒ P example, the calculation is

P β ≡ 〈Definition 〉 ∀n :N . P (σnβ)
⇒ 〈Inst. n := 0〉 P (σ0 β)
≡ 〈Definition fn〉 P β ,

which shows P β ⇒ P β and hence, by pointwise extension (1), ( P ⇒ P )β.
Example C: induction. This example is chosen because it involves a nice

generalization of the weak induction principle over natural numbers (WIN). A
typical form of WIN is the following: for any predicate Q :N→B,

∀ (n : N . Q n⇒ Q (n + 1))⇒ (Q 0⇒ ∀m : N . Qm) . (5)

The converse does not hold (try Qn ≡ n = 1). However, let us calculate

∀n :N . Q n⇒ Q (n + 1)
≡ 〈Dom. ch. f :=n,m :N2 . n + m〉 ∀n,m :N2 . Q (n + m)⇒ Q (n + m + 1)
≡ 〈Nesting, σnsm = s (n + m)〉 ∀n :N . ∀m : N . σnQm⇒ σnQ (m + 1)
⇒ 〈WIN (5) with Q :=σnQ〉 ∀n :N . σnQ 0⇒ ∀m :N . σnQm

≡ 〈Definition σ〉 ∀n :N . Q n⇒ ∀m : N . Q (n + m) ;
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∀n :N . Q n⇒ ∀m : N . Q (n + m)
⇒ 〈Inst. with m := 1〉 ∀n :N . Q n⇒ Q (n + 1) .

The result is a strengthened weak induction principle over N (SWIN):

∀ (n : N . Q n⇒ Q (n + 1)) ≡ ∀ (n : N . Q n⇒ ∀m :N . Q (n + m)) , (6)

from which WIN (5) is easily recovered by instantiating the r.h.s. with n := 0.
SWIN also yields a temporal counterpart in FTC by calculating

(P ⇒ �P )β
≡ 〈Definition 〉 ∀n : N . (P ⇒ �P ) (σnβ)
≡ 〈Pointw. ext. (1)〉 ∀n : N . P (σnβ)⇒ �P (σnβ)
≡ 〈Definition �〉 ∀n : N . P (σnβ)⇒ P (σ (σnβ))
≡ 〈f (fnx) = fn+1x〉 ∀n : N . P (σnβ)⇒ P (σn+1β)
≡ 〈(6) with Qn ≡ P (σnβ)〉 ∀n : N . P (σnβ)⇒ ∀m :N . P (σn+mβ)
≡ 〈fn+mx = fm(fnx)〉 ∀n : N . P (σnβ)⇒ ∀m :N . P (σm(σnβ))
≡ 〈Definition 〉 ∀n : N . P (σnβ)⇒ P (σnβ)
≡ 〈Pointw. ext. (1)〉 ∀n : N . (P ⇒ P ) (σnβ)
≡ 〈Definition 〉 (P ⇒ P )β .

Hence (P ⇒ �P ) = (P ⇒ P ) by function equality (note [9]: f = g ≡
D f = D g ∧ ∀x :D f . f x = g x whereD f = domain f). This is the strengthened
(weak) temporal induction principle (STI); in temporal theorem style:

( (P ⇒ �P ) ≡ (P ⇒ P )) . (7)

Example D, “infinitely often”. Writing +ϕ is typical in specifications to
express that a formula ϕ is satisfied “infinitely often”. Note that this is a model-
centric statement. More importantly, it is nearly always given without justifica-
tion, perhaps assuming the intuitive interpretation “no matter how often ϕ has
already happened, it will again”. So a formal proof is all the more revealing.

In mathematics, the usual characterization of finiteness is by correspondence
to the set of the first n natural numbers for some n, or even a subset thereof.
Adopting this characterization, expressing that a general (i.e., non-temporal)
predicate Q is satisfied for finitely many argument values is achieved by

FinQ ≡ ∃n : N . ∃ f : N<n→DQ . (DQ)Q ⊆ R f . (8)

Note: SQ is the set of elements in set S satisfying Q, and R f is the range of f .
Infiniteness is just the negation of finiteness, so we define ∃∞ Q ≡ ¬(FinQ) for

any predicate Q. Specializing to predicates on natural numbers (DQ = N) allows
showing that ∃∞ Q ≡ ∀n :N . ∃m :N . Q (m+n). The proof is quite instructive,
but, being pure predicate calculus [10], not elaborated here.

It simply follows that, for any temporal predicate P in BP and any β in S∞,

(+P )β ≡ ∃∞ n : N . P (σnβ) . (9)
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This formally proves that (+P ) is indeed equivalent to P being satisfied “in-
finitely often” according to the common mathematical characterization.

Example E, distributivity(-like) properties An important batch is
Distribut. /∧: (P ∧Q) ≡ P ∧ Q Dual: + (P ∨Q) ≡ +P ∨ +Q
Dispatch. +/∧: + (P ∧Q)⇒ +P ∧ +Q Dual: (P ∨Q)⇐ P ∨ Q
Equal predic.: (P ≡ Q)⇒ ( P ≡ Q) Also: (P ≡ Q)⇒ (+P ≡ +Q)
Weaker predic.: (P ⇒ Q)⇒ P ⇒ Q Also: (P ⇒ Q)⇒ +P ⇒ +Q

These are similar to certain properties in functional predicate calculus [10]. A
noteworthy addition is ∃∞(P ∨Q) ≡ ∃∞P ∨ ∃∞Q for general predicates P and
Q satisfying DP = DQ. For temporal predicates P and Q in BP, this yields

(+ (P ∨Q)) ≡ (+P ) ∨ (+Q); dual: + ( (P ∧Q)) ≡ + ( P ) ∧ + ( Q).
We conclude this subsection with two important observations.
(a) FTC is entirely formulated within functional predicate calculus, without

a separate temporal logic language. The operators are predicate transformers.
(b) FTC captures the essence of temporal logic (shown for linear temporal

logic; branching logics can be handled analogously). It can thereby serve as an
archetype for studying existing temporal logics, an issue addressed next.

2.3 Adapting the Style to Capture Various Existing Temporal
Logics

FTC is functional whereas existing temporal logics are essentially expressional.
Note that terminology in the computing literature is often somewhat confus-

ing, referring to “functions” and “predicates” when “expressions” and “propo-
sitions” (boolean expressions) respectively would be more appropriate to keep
distinctions clear as outlined, for instance, by Gries and Schneider [21]. A clas-
sical misnomer is “the function f(x) (‘effovex’)” to mean “the function f”.
Specifically in program semantics, “predicate transformer” is often confused with
“proposition transformer”. For instance, in the weakest precondition formula

wp(x := x + 3)(x > 7) = x > 4 ,

“x > 7” and “x > 4” have the form of propositions (boolean expressions).
Dijkstra and Scholten [16] avoid this discrepancy by considering program vari-

ables as functions over the state, and all arithmetic, relational and logical oper-
ators as implicitly extended pointwise to structures. Then “x > 7” and “x > 4”
are indeed predicates and wp(x := x + 3) is a predicate transformer.

Whereas implicit extension to structures is viable in a specific context (pro-
gram semantics), it is too restrictive in general mathematics, where extensions
are better made explicit [9]. So a wider context requires a different approach.

Viewing “wp(x := x + 3)(x > 7)” as a “normal” mathematical expression
leads to errors right from the start, as Leibniz’s principle [21] would yield

x > 7 ⇒ wp(x := x + 3)(x > 7) = wp(x := x + 3) 1 (WRONG!) .

Our solution consists in viewing wp(x := x + 3) as a function that takes its
argument (say, x > 7) as purely syntactic, yet its result (say, x > 4) as a normal
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mathematical expression unless, of course, it is again in a syntactic argument
position, as in composing wps. Hence, for instance, it is correct to write

x > 5 ⇒ wp(x := x + 3)(x > 7) .

We call such functions endosemantic. Whereas typical semantic functions (mean-
ing functions mapping syntax to denotations) are used only at the meta-level,
endosemantic functions are adopted within the language (of mathematics).

To remove the impression that this is a new concept requiring (much) further
explanation, note that we introduce the term “endosemantic” just for discussing
explicitly some familiar tacit conventions throughout mathematics.

Substitution, for instance, is basically an endosemantic function.
Indeed, adopting here the notation from Gries and Schneider [21],

(x + y)[x, y := y, x] = y + x

holds syntactically, by the definition of [x, y := y, x]. Yet, by the same token, in

(x + y)[x, y := y, x] = x + y

the left-hand side evaluates syntactically to y + x, but the complete equality is
read within the language of mathematics as expressing commutativity of +.

A quite different example is the Fourier transform. In purely functional style,

F f ω =
∫ +∞

−∞
e−j·ω·t · f(t) · dt . (10)

Here variable bindings are systematic as in functional formalisms [10] and hence
FTC. By contrast, in the traditional math/engineering textbook formulation

F {f(t)} =
∫ +∞

−∞
e−j·ω·t · f(t) · dt (11)

the same conventions would consider t free on the left and ω free on the right,
making (11) nonsensical. However, we can salvage (11) by defining F as an
endosemantic function taking an expression ϕ as a syntactic argument:

F {ϕ} =
∫ +∞

−∞
e−j·ω·t · ϕ · dt . (12)

As a matter of bookkeeping, the variable names are assumed as given in the
context, e.g., ϕ is assumed an “expression in t” (i.e., possibly containing t free).
The images are expressions in ω. This salvages classical transform notations like

F {e−a·t · h(t)} =
1

a + j · ω ,

where h(t) is the Heaviside unit step.
Temporal logics are captured by mapping temporal formulas (expressions) ϕ

to predicates (functions) on S∞ using an endosemantic functionM, as inMϕβ.
However, adopting the symbol (normally a metalevel symbol) for that purpose
and writing β ϕ rather than Mϕβ yields convenient visual correspondence
with common notations.

The next section illustrates this approach in detail for TLA+.
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3 Capturing TLA+ and Making Proof Rules Calculational

As an example, we chose Lamport’s Temporal Logic of Actions [27] or TLA+,
and show how the aforementioned approach captures it as TCA. Since [27] is
readily available on the web, no detailed account of TLA+ is necessary here.

3.1 Basic Definitions for the Temporal Calculus of Actions (TCA)

Types For talking about functions, it is convenient to have their types at hand.
Although TLA+ is untyped, types for the variables follow from an initial state

and a next state specification. Moreover, as in [27], a well-structured specification
is documented by a type invariant stating types explicitly. Hence in the sequel
we pretend that variables have been declared with a type.

Let T : I→T be the family of types for the variables in the specification. The
index set I is for bookkeeping, and can be tuned to the desired style. Then the
state space is S :=×T , a Cartesian product [10]. Behaviors have type S∞.

We assume that basic arithmetic, relational and logical operators are available
on these types (no details needed), and categorize expressions as follows.

E state expressions B state propositions
E ′ transition expressions A transition propositions, called “actions”
X temporal expressions F temporal propositions (“temporal formulas”)

In state expressions, state variables occur unprimed, in transition expressions
they can also be primed, and in temporal expressions temporal operators (see
below) can occur, so E ⊂ E ′ ⊂ X . Propositions are boolean-valued expressions.

Conventions. Substituting an expression d for variable v in expression e is writ-
ten e[v := d] as in [21], or as e[vd. For multiple substitution, d and v can be tuples
(of the same length), for instance, (y + x)[x,y

z·y,a·x= a · x + z · y.
As in [11], s is a syntactic shorthand that stands in all bindings and mathe-

matical expressions for the tuple formed by all state variable names in some fixed
order (e.g., as declared). The tuple of the names of the variables as syntactic el-
ements is written ∼s. The set of variables is then V :=R∼s and we let I :=D ∼s .
So, for n state variables, the state space S is a set of n-tuples. Furthermore, for
any expression e, we write e′ for e[ss′ , noting also that s′ = s[ss′ .

Example: given the declaration variable num : Z; cond : B, then S := Z × B
and s literally stands for num, cond , e.g., ∀ s :S . p stands for ∀ (num, cond) :S . p.

Operators. In the tables, the leftmost colomns describe the syntax via the syn-
tactic categories. The rightmost columns give translation into common notation.

a. Action operators

— ·— :A×A→A a · b ≡ ∃ t :S . a[s
′

t ∧ b[st
[—]— :A× E →A [a]e ≡ a ∨ e = e′

〈—〉— :A× E →A 〈a〉e ≡ a ∧ e �= e′

unchanged : E →A unchanged e ≡ e = e′

enabled :A→B enabled a ≡ ∃ s′ :S . a
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b. Temporal operators are characterized using the endosemantic function ,
defined recursively on the structure of expressions. In view of E ⊂ E ′ ⊂ X , the
recursion basis are the state and transition expressions e in E and E ′, for which

β e = e[s,s′
β 0,β 1 .

Note: for state expressions, e[s,s′
β 0,β 1= e[sβ 0 since primed variables are absent.

For temporal expressions (in X ) and formulas (in F).
�:X →X β �e = σ β e ( �does not appear in TLA+)
:F →F β ϕ ≡ ∀n : N . σn β ϕ

+ :F →F β +ϕ ≡ ∃n : N . σn β ϕ

∀∀— :V →F →F β ∀∀v ϕ ≡ ∀ γ :S∞
ϕ . (� γ)T	=i = (� β)T	=i where i = ∼s

− v

∃∃— :V →F →F β ∃∃v ϕ ≡ ∃ γ :S∞
ϕ . (� γ)T	=i = (� β)T	=i where i = ∼s

− v

The temporal quantifiers ∀∀ and ∃∃ are mentioned for completeness only and may
be safely skipped. The rather terse notation uses generic operators from [9], and
for the compacting operator � removing successive duplicates (stuttering),

� β = ++ n :D β . (n > 0 ∧ β (n− 1) = β n) ? ε τ (β n) , (13)

where ++ is catenation, ε the empty sequence and τ e the sequence of just e.
Boolean combinations of temporal formulas are defined by distributivity:

β ¬ϕ ≡ ¬ (β ϕ) β ∀ (x :X .ϕ) ≡ ∀x :X . β ϕ

β (ϕ � ψ) ≡ β ϕ � β ψ β ∃ (x :X .ϕ) ≡ ∃x :X . β ϕ
(14)

Here � is any infix logical operator in {⇒,≡,≡/ ,⊕,∧,∨}.
At the left-hand sides of the equivalences, �, ¬, ∀, ∃ are TCA/TLA+ operators,

and at the right-hand side they are the “normal” logical operators. Risk of
confusion is minor, since the calculation rules will be fully analogous. Because
temporal formulas appear only syntactically, we can adopt the syntax of the
target language, e.g., for optional parentheses, +ϕ stands for (+ϕ) etc.

3.2 Calculational Reasoning in TCA/TLA+

Introduction. For any ϕ, the partial application ϕ is a predicate of type BP.
This differs from FTC predicates only in using postfix notation (β stands before
ϕ in β ϕ, but after P in P β). Up to this lexical detail, all calculation rules

are inherited from FTC.
The operator from is adapted (or overloaded) to temporal formulas ϕ by

ϕ ≡ ∀β :S∞ . β ϕ . (15)

Hence ϕ expresses the fact that ϕ is a (temporal) theorem in Lamport’s sense.
A (temporal) tautology is a (temporal) theorem containing only arbitrary for-

mulas, which can be instantiated by specific ones as desired.
“Proving ϕ” then means “proving ϕ” but, as for FTC, expanding ϕ in

pointwise form according to (15) is necessary only in proving the basic theorems.
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A calculational style for TCA/TLA+ First, all calculations from FTC are in-
herited. It suffices replacing P β by β ϕ and, when desired, removing optional
parentheses, e.g., duality +P ≡ ¬ ( (¬P )) becomes +ϕ ≡ ¬ ¬ϕ.

Basic tautologies are named correspondingly, again (as in FTC) borrowing
the terminology from similar rules in general predicate calculus [10], for instance

(ϕ ∧ ψ) ≡ ϕ ∧ ψ (Dist. /∧) (ϕ ∨ ψ)⇐ ϕ ∨ ψ (Coll. /∨)
+ (ϕ ∨ ψ) ≡ +ϕ ∨ +ψ (Dist. +/∨) + (ϕ ∧ ψ)⇒ +ϕ ∧ +ψ (Disp. +/∧).

We also recall the extra equational distributivity rules due to the underlying
model (behaviors) and based on properties of the natural numbers, e.g.,

+ (ϕ ∨ ψ) ≡ +ϕ ∨ +ψ (Dist. +/∨)
+ (ϕ ∧ ψ) ≡ + ϕ ∧ + ψ (Dist. + /∧).

Rules for “equal/weaker predicates”, e.g., ∀ (P ⇒̂ Q)⇒ ∀P ⇒ ∀Q (WKP\∀)
from general predicate calculus [10] and rule (P ⇒ Q)⇒ P ⇒ Q (WKP\ )
from FTC are renamed with “formula”, as in (ϕ⇒ ψ)⇒ ϕ⇒ ψ (WKF\ ).

Even when calculating directly with β ϕ, the remark after Example B in
section 2.2 shows how to omit repetitive parts, such as the prelude “We calculate,
for arbitrary β :S∞,” and the postlude “Hence β ϕ � β ψ which yields
(ϕ � ψ)”, where � is implication or equivalence as in the calculation chain.
Finally, we establish a calculational style within TCA/TLA+ as follows. Thus

far, all steps in all derivations were linked by propositional equivalences and
implications, and β appeared explicitly. However, after deriving the /+-related
tautologies, further calculations typically contain (only) steps of the form

β ϕ ⇒ 〈Justification for β ϕ⇒ β ψ〉 β ψ

β ϕ ≡ 〈Justification for β ϕ ≡ β ψ〉 β ψ .

The justifications can be temporal tautologies of the form ϕ⇒ ψ or ϕ ≡ ψ, since
these can be instantiated for β :S∞ using (15). There are more tautologies than
just /+-related ones. Every rule from propositional calculus yields a temporal
tautology by substituting β ϕ, β ψ etc. for p, q etc., distributivity (14) for
every operator to bring β in front, and generalization for ∀.

As β appears in every line in the same position, we omit it as a matter of
convention, linking the steps by temporal equivalences and implications.

All these observations are illustrated in the following calculation, yielding the
interesting modus ponens-like property + ϕ ∧ + (ϕ⇒ ψ)⇒ + ψ.

+ ϕ ∧ + (ϕ⇒ ψ) ≡ 〈Dist. + /∧〉 + (ϕ ∧ (ϕ⇒ ψ))
≡ 〈MP equiv.〉 + (ϕ ∧ ψ)
≡ 〈Dist. + /∧〉 + ϕ ∧ + ψ

⇒ 〈Weakening〉 + ψ .

Rule 〈MP equiv.〉 is “Modus Ponens as an equivalence”: ϕ ∧ (ϕ⇒ ψ) ≡ ϕ ∧ ψ.
The redundancy is to obtain + ϕ ∧ + (ϕ⇒ ψ) ≡ + ϕ ∧ + ψ in passing.

Calculation is now fully within TCA. When possible, we use this style as it
reduces writing, makes patterns conspicuous, and raises the abstraction level.
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4 Applications to Liveness and Fairness in TLA+

This section is an extended chain of examples about patterns related to liveness
and fairness. The patterns are taken from Chapter 8 in Specifying Systems [27],
which is readily available on the web. We show how TCA yields significantly
simpler proofs and how the theorems themselves are discovered by calculation,
sometimes even in a stronger form. Formulas are labeled as in the cited reference.

From [27, pp. 97–98], we quote the following equivalent patterns for “weak
fairness”, denoted WFv (A). The motivation is discussed in the cited reference.

( enabled 〈A〉v ⇒ +〈A〉v) (8.7)
+ (¬ (enabled 〈A〉v) ∨ +〈A〉v (8.8)
+ (enabled 〈A〉v)⇒ +〈A〉v (8.9)

These will be the basis for the following calculational TCA/TLA+-derivations.

Application example A. The motivation of (8.7) in [27, page 97] went via the
intermediate form (enabled 〈A〉v ⇒ +〈A〉v), later giving rise [27, page 99] to
the question under which condition this form is equivalent to (8.7).

The answer in [27, page 99] is given in the form of a theorem:

(E ⇒ E ∨ +A) ⇒ ( (E ⇒ +A) ≡ ( E ⇒ +A)) . (8.11)

Formula (8.11) was designated as “complicated” and unfavorable to a proof by
calculation (not to be confused with the technical term “calculational proof”,
which is not used in [27]), and a classical proof taking about one page was given.

Here follows a calculational derivation, which differs from a proof in the sense
that the desired condition is discovered without knowing it in advance.

(E ⇒ +A) ≡ ( E ⇒ +A) ⇐ 〈Equal form.\ 〉 (E ⇒ +A ≡ E ⇒ +A)
≡ 〈RSDist. ⇒\≡〉 (¬ (E ≡ E)⇒ +A)
≡ 〈Inst. ϕ⇒ ϕ〉 (¬ (E ⇒ E)⇒ +A)
≡ 〈From ⇒ to ∨〉 ((E ⇒ E) ∨ +A)
≡ 〈From ⇒ to ∨〉 (¬E ∨ E ∨ +A)
≡ 〈From ∨ to ⇒〉 (E ⇒ E ∨ +A)

Application example B. In [27, page 101 ff.] the question is asked when separate
fairness conditions can be combined in a single one, more specifically, When can
WF v(A) ∧WF v(B) be written as WF v(A ∨B)?

The answer in [27, page 102] is given in the form of a theorem:

DR1 ∧DR2 ⇒ (WF v(A) ∧WF v(B) ≡ WF v(A ∨B)) , (8.20)
where DR1 ∆= (enabled 〈A〉v ⇒ ¬enabled〈B〉v ∨ + 〈A〉v)

DR2 ∆= (enabled 〈B〉v ⇒ ¬enabled〈A〉v ∨ + 〈B〉v)

The classical proof in [27, page 102 ff.] takes two and a half pages. It uses contra-
diction, which also requires knowing the result. Here we proceed calculationally,
and by discovery, which happens to yield a stronger result along the way.
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To avoid clutter in formulas and calculations, we introduce w defined by the
following equivalent expressions for wA, from which to choose as convenient.

( eA⇒ +A) (8.7’) +¬eA ∨ +A (8.8’) + eA⇒ +A (8.9’)

Obviously WF v(A) ≡ w〈A〉v . Note also that e and 〈 〉v distribute over ∨.
The central question is when WF v(A∨B) captures WF v(A)∧WF v(B). Hence

we investigate w (A ∨B)⇒ wA ∧wB by calculating

w (A ∨B)⇒ wA

≡ 〈Definition w (8.9’)〉 (+ e (A ∨B)⇒ + (A ∨B))⇒ + eA⇒ +A
≡ 〈Shunt ⇒, dist. e/∨〉 + eA⇒ (+ (eA ∨ eB)⇒ + (A ∨B))⇒ +A
≡ 〈ϕ⇒ ϕ ∨ ψ, WKF〉 + eA⇒ + (A ∨B)⇒ +A
≡ 〈Distributiv. +/∨〉 + eA⇒ +A ∨ +B ⇒ +A
≡ 〈ϕ∨ψ⇒ϕ ≡ ψ⇒ϕ〉 + eA⇒ +B ⇒ +A
≡ 〈Shunt ⇒, def. w)〉 +B ⇒ wA (∗)

Hence w (A ∨B)⇒ wA ∧wB ≡ ( +B ⇒ wA) ∧ ( +A⇒ wB).
The r.h.s. is sufficient for w (A ∨ B) ⇒ wA ∧ wB but also necessary and

hence the weakest condition possible. Hence the essential goal is amply met.
Just for completeness, we investigate wA ∧wB ⇒ w (A ∨B) by calculating

wA ⇒ wB ⇒ w (A ∨ B)

≡ 〈Def. w (8.7’)〉 ( eA ⇒ +A)⇒ ( e B ⇒ +B)⇒ ( e (A ∨B)⇒ + (A ∨B))

⇐ 〈WQF reverse〉 (( eA ⇒ +A)⇒ ( e B ⇒ +B)⇒ e (A ∨B)⇒ + (A ∨B))

≡ 〈Shunting ⇒〉 ( e (A ∨B)⇒ ( eA ⇒ +A)⇒ ( eB ⇒ +B)⇒ + (A ∨B))

≡ 〈Distrib. +/∨〉 ( e (A ∨B)⇒ ( eA ⇒ +A)⇒ ( eB ⇒ +B)⇒ +A ∨+B)

≡ 〈Lemma a〉 ( e (A ∨B)⇒ eA ∨+A ∨ eB ∨+B)

≡ 〈Distrib. e/∨〉 ( (eA ∨ e B)⇒ e A ∨+A ∨ e B ∨+B)

⇐ 〈Lemma c〉 ( (eA ∨ e B)⇒ e¬B ∨+A ∨ e¬A ∨+B)

⇐ 〈Inst. ϕ ⇒ ϕ〉 (eA ∨ e B ⇒ ¬ eB ∨+A ∨ ¬ eA ∨+B)

⇐ 〈Lemma b〉 ((eA ⇒ ¬ e B ∨+A) ∧ (eB ⇒ ¬ eA ∨+B))

≡ 〈Distrib. /∧〉 (eA ⇒ ¬ e B ∨+A) ∧ (eB ⇒ ¬ eA ∨+B)

≡ 〈Def. d below〉 d (A,B) ∧ d (B, A) .

Lemma c is (ϕ∨ψ)⇒ ¬ϕ⇒ ψ. Lemmata a and b are just propositional:
Lemma a. (p⇒ p′)⇒ (q ⇒ q′)⇒ p′ ∨ q′ ≡ p ∨ p′ ∨ q ∨ q′

Lemma b. (p⇒ p′) ∧ (q ⇒ q′)⇒ (p ∨ q)⇒ (p′ ∨ q′)
The definition we introduce for d to abbreviate the last line in the calculation is

d(A,B) ≡ (eA⇒ ¬eB ∨ +A) .
Clearly, DR1 ≡ d(〈A〉v, 〈B〉v) and similarly DR2 ≡ d(〈B〉v, 〈A〉v).
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Let us finally check the relationship with (∗) by calculating

+B ⇒ wA ≡ 〈Definition w (8.7’)〉 +B ⇒ ( eA⇒ +A)
⇐ 〈WQF in reverse〉 (+B ⇒ eA⇒ +A)
⇐ 〈WQF rev., B ⇒ eB〉 (+ eB ⇒ eA⇒ +A)
⇐ 〈WQF rev., ϕ⇒ ϕ〉 (+ eB ⇒ eA⇒ +A)
≡ 〈Shunting ⇒〉 (eA⇒ + eB ⇒ +A)
≡ 〈From ⇒ to ∨〉 (eA⇒ ¬+ eB ∨ +A)
≡ 〈Duality /+〉 (eA⇒ ¬eB ∨ +A)
≡ 〈Definition d〉 d (A,B) .

5 Conclusions

In general, systems design requires diversity without the distraction and over-
head of disparity. This is best achieved by offering the designer unified mathemat-
ical theories, with suitably lowered threshold to improve acessibility in practice.

Specifically, awareness in the use of model checking requires a higher math-
ematical standard than often suggested when advocating the use of automated
tools. For accessibility, we have made the “user-friendliness” of the calculational
style available in temporal reasoning. Unifying the various tool- or language-
dependent temporal logics is made possible by a generic form (FTC), which
is pure predicate calculus. Specific logics are then captured by endosemantic
functions in a very direct and simple way, illustrated in detail for TLA+.

Note that Lamport’s Specifying Systems [27] concentrates on writing specifi-
cations. Proofs are considered in one chapter only, since introducing a temporal
proof style (as in [28]) and meeting more proof obligations would have doubled
the size of the book. Yet, not surprisingly, the proofs given concern patterns.

Formal reasoning about patterns keeps the complexity of temporal specifica-
tions manageable and within the grasp of intuition. The calculational approach
makes this easier, and even supports discovery by newcomers in the field.

Still, when using this approach in an educational setting, it must be remem-
bered that predicate calculus clearly remains a prerequisite, but this is amply
compensated by its very wide usefulness.
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Abstract. We present a sound, complete and relatively straightforward
tableau method for deciding valid formulas in the propositional version
of computation tree logic CTL*. This is the first such tableau.

CTL* is an exceptionally important temporal logic with applications
from hardware design to agent reasoning but there is no easy automated
reasoning approach to CTL*. The tableau here is a traditional tree-
shaped or top-down style tableau and affords the possibility of reasonably
quick decisions on the satisfiability of sufficiently short formulas and
construction of models for them. Handling looping is subtle.

1 Introduction

CTL*, or full computation tree logic, was introduced in [9] to extend both the
simple branching logic, CTL, of [2], and the linear temporal logic, PLTL of [15].

The language of CTL*, which is a propositional temporal language, is built
recursively from the atomic propositions using the next X and until U operators
of PLTL, and the universal path switching modality A of CTL as well as classical
connectives. This language is appropriate for describing properties of all paths of
states through a transition structure, or applications which can be modelled as
such. This standard semantics for CTL* is called the semantics over R-generable
models.

The main uses of CTL* in computer science are for developing and checking
the correctness of complex reactive systems [10] and as a basis of more complex
modal languages for reasoning about multi-agent systems [18]. CTL* is also
used widely as a framework for comparing other languages more appropriate for
specific reasoning tasks of this type. See the description in [4]. These include the
purely linear and purely branching sub-languages.

Validity of formulas of CTL* is known to be decidable. This was proved in
[9]. The specific form of some linear automata is used in [8] to give decision
procedure of deterministic double exponential time complexity in the length of
the formula. This agrees with the lower bound found in [26].

As with other temporal logics and despite these conclusive results, the search
for other reasoning methods has been a major undertaking. Even for the basic
task of deciding validity (or dually satisfiability) of a CTL* formula, there is
interest in finding approaches which are more straightfoward, or more traditional,
or more amenable to human understanding, or yield meaningful intermediate
steps, etc. See, for example, the Hilbert-style axiomatization for CTL* in [19].

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 403–418, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Tableaux are a popular style of reasoning technique and there has been a
substantial amount of work on applying them to temporal logics: see [12] and
[22] for surveys. They can be presented in an intuitive way, they are often suitable
for automated reasoning and it is often not hard to prove complexity results for
their use. It is also often the case that tableau procedures can quickly build
models of satisfiable formulas even though the worst case performance is bad.
Tableaux were first used for modal logics in [13] and [11] and there has been
much work since on tableaux for temporal logics [27,5,6,23].

Despite all the interest in tableaux for temporal logic and for reasoning
with CTL*, a tableau approach to CTL* has been a long standing open prob-
lem. Tableau-style elements do appear in the somewhat intricate CTL* model-
checking systems in [1], [14] and [17] but model-checking is a distinct task from
deciding validity. Model-checkers are given a formula and a structure and they
check whether the given formula holds of the given system: useful for the ver-
ification of implementations. Validity deciders can be used to model-check but
model-checkers can not in general decide validity: model-checking is an “eas-
ier” or less computationally complex reasoning task. In [24] there is a tableau
system for model-checking with predicate CTL*. In [17] there is a complete de-
ductive system for model-checking formulas in predicate CTL* and some of the
derivation steps look similar to tableau-building steps.

There is a tableau for a related logic called “bundled” CTL* or BCTL* in
[20]. BCTL* uses the same language as CTL* but has more satisfiable formulas
and is easier to reason with (as discussed in [20]).

There are good reasons to try to devise a not too complicated tableau-style
system for deciding validity in CTL*. Even though there is the seriously incon-
venient double exponential lower bound on the complexity, there are reasons
to believe that experienced tableau practitioners will be able to use a range of
techniques to make fast implementations capable of delivering results for a wide
range of practical reasoning problems. A general CTL* tableau can be the basis
for searching for more practical sublanguages, and for assisting with human-
guided derivations on bigger tasks. It can be the basis of proofs of correctness
for alternative reasoning techniques like resolution or rewrite systems. It may
assist with model-checking and program synthesis tasks. It may be extended to
cope with some predicate reasoning.

The tableau construction we describe for CTL* is of the tree, or top-down,
form. To decide the validity of φ, we build a tree with the nodes built from sets of
formulas from a finite closure set defined from φ. A novel aspect is the fact that
the nodes in the tableau are labelled with sets of sets of formulas. We use certain
sets of formulas called hues, and then put together sets of hues called colours.
This notation reflects some similar ideas in the CTL* axiomatic completeness
proof in [19]. The proof of correctness is an interesting mixture of techniques
from linear and branching temporal logic, and it has some subtleties.

The approach here is significantly modified from that for BCTL* given in
[20] as that paper presents a bottom-up, or graph-based, tableau system and for
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BCTL* we do not need any mechanism to check for loops, repetition and an
important limit closure property (which we do not discuss here).

With CTL* in this paper, on the other hand, issues of looping become complex
and are of paramount importance. We will see that there are two types of looping.
There is good looping which allows us to put up-links in our tableau tree and help
make a finite structure: we give a practical subroutine for checking quickly when
this can happen. But there are also bad loops in the form of repetitive branch
construction: the same colours coming up again and again along ever lengthening
branches without the ability to loop those branches back on themselves. These
turn out to be very subtle to deal with and we are only able to give some
preliminary results on mechanisms for tackling repetition. This short paper side
steps the issue of repetition and just puts a simple but grossly impractical bound
on the length of branches allowed.

In section 2 we give a formal definition of CTL* and then see some example
formulas in section 3. In section 4 we describe some of the mechanisms underlying
the tableau and the following section 5 gives a loop checking algorithm. Section 6
presents the tableau definition and its soundness. An example tableau is set out
in section 7. The next section sketches completeness. We briefy describe a pro-
totype implementation before, in the conclusion, we mention some preliminary
work on speeding up the tableau construction by preventing repetitive branch
construction.

A long version of the paper [21] has full details of the intricate proofs.

2 Syntax and Sematics

CTL*, sometimes called the full computational tree logic, can be presented in
different ways. The language of CTL* is presented here with what is called the
logic of R-generable sets of paths on transition structures: this is the standard
CTL* logic. We fix a countable set L of atomic propositions.

Definition 1. A transition frame is a pair (S,R) where:
S is the non-empty set of states
R is a total binary relation ⊆ S × S

i.e. for every s ∈ S, there is some t ∈ S such that (s, t) ∈ R.

Formulas are defined along infinite (i.e. ω-long) sequences of states. A fullpath
in (S,R) is an infinite sequence 〈s0, s1, s2, ...〉 of states such that for each i,
(si, si+1) ∈ R. For the fullpath σ = 〈s0, s1, s2, ...〉, and any i ≥ 0, we write σi for
the state si and σ≥i for the fullpath 〈si, si+1, si+2, ...〉.

CTL* semantics is defined with respect to the set of all possible fullpaths.
Formulas of CTL* are evaluated in transition structures:

Definition 2. A (transition) structure is a triple M = (S,R, g) where:
(S,R) is a transition frame;
g : S → ℘(L) is a labelling of the states with sets of atoms.
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The formulas of CTL* are built from the atomic propositions in L recursively
using classical connectives ¬ and ∧ as well as the temporal connectives X , U and
A: if α and β are formulas then so are Xα, αUβ and Aα. As well as the standard
classical abbreviations, true, ∨, →, ↔, we have linear time abbreviations Fα ≡
trueUα and Gα ≡ ¬F¬α, and we have the path switching modal diamond
Eα ≡ ¬A¬α.

Truth of formulas is evaluated at fullpaths in structures. We write M,σ |= α
iff the formula α is true at the fullpath σ in the structure M = (S,R, g). This is
defined recursively by:
M,σ |= p iff p ∈ g(σ0), for any p ∈ L
M,σ |= ¬α iff M,σ �|= α
M, σ |= α ∧ β iff M,σ |= α and M,σ |= β
M, σ |= Xα iff M,σ≥1 |= α
M, σ |= αUβ iff there is some i ≥ 0 such that M,σ≥i |= β

and for each j, if 0 ≤ j < i then M,σ≥j |= α
M, σ |= Aα iff for all fullpaths σ′ such that σ0 = σ′

0 we have M,σ′ |= α

We say that α is valid in CTL*, and write |= α, iff for all transition structures
M , for all fullpaths σ in M , we have M,σ |= α. α is satisfiable iff �|= ¬α.

3 Examples of CTL*

In this section we will give a taste of the kinds of properties expressible in CTL*
and the issues which our decision procedure will have to deal with. We do this
by listing a range of simple example CTL* formulas: their respective negations
are also all useful examples to consider.

In helps our discussion to mention briefly the related logic BCTL* [20]. The
two logics use the same language but BCTL* only considers a certain fixed set
or bundle of fullpaths in the semantics. See [20] for details. It is much easier to
reason with BCTL* but it is not a logic with many practical uses. If a formula
is valid in BCTL* then it will also be valid in CTL* (but not vice versa).

Valid formulas of CTL* and of BCTL* appear in axiom systems for BCTL*
in [25] and for CTL* in [19]. They include all the valid formulas of PLTL such
as θ1 = G(p → q) → (Gp → Gq), θ2 = Gp → (p ∧ Xp ∧XGp), θ3 = (pUq) ↔
(q ∨ (p ∧ X(pUq))) and θ4 = (pUq) → Fq. There are also S5 axioms such as
θ5 = p → AEp and θ6 = Ap → AAp. The main interaction between the path
switching and the linear time modalties is the valid formula θ7 = AXp→ XAp.
There is also a special axiom saying that atomic propositions only depend on
states: θ8 = p→ Ap (for atom p).

Some more interesting valid formulas of CTL* are:

θ9 = E(pU(E(pUq)))→ E(pUq)
θ10 = (AG(p→ qUr) ∧ qUp)→ qUr

θ11 = G(EFp→ XFEFp)→ (EFp→ GFEFp).

The reader can verify the validity of these examples using semantic arguments.
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Three interesting examples of formulas which are valid in CTL* but not valid
in BCTL* are: θ12 = AG(p→ EXp)→ (p→ EGp),

θ13 = AG(Ep→ EX((Eq)U(Ep)))→ (Ep→ EG((Eq)U(Ep))),
θ14 = (AG(p→ EXr) ∧AG(r → EXp))→ (p→ EG(Fp ∧ Fr)).

These come from [20] where they are related to the so-called limit closure prop-
erty of CTL*.

The next three examples are not valid in CTL* nor valid in BCTL* but they
are satisfiable in both CTL* and BCTL* They are θ15 = p, θ16 = p∧Xp∧F¬p,

θ17 = AG(p↔ X¬p) ∧AG(p→ ¬q) ∧AG(p→ ¬r)
∧AG(q → ¬r) ∧ E(Fq ∧ Fr), and

θ18 = AG(EXp ∧ EX¬p) ∧AG(Gp ∨ (¬r)U(r ∧ ¬p)).

4 Preliminaries

Most of the work on temporal tableaux involves a move away from the tradi-
tional tree-shaped tableau building process of other modal logics. The standard
approach for temporal logics is to start with a graph and repeatedly prune away
nodes, according to certain removal rules, until there is nothing more to remove
(success) or some failure condition is detected ([27,6]).

We return to the tree shape for CTL*.
We want to use a tableau approach to decide validity of a formula in CTL*.

We will start with a formula φ and determine whether φ is satisfiable in CTL*
or not. To decide validity we will simply determine satisfiabilty of the negation.

As in the usual tree-style tableau processes, we can non-deterministically build
a tree from root to successors and backtrack on our choices if there is no way to
continue building. So we have conditions for a successful termination.

The main difference here is that the nodes in our tree will be labelled with
sets of sets of formulas rather than just sets of formulas. Obviously there is a
risk of getting a very large tree to deal with.

From the closure set for φ, which is just the subformulas and their negations,
we will define a certain set of subsets of the closure set called the hues of φ. The
colours of φ will be certain sets of hues of φ. The nodes in our tableau tree will
each be labelled with one colour. Whether a given colour can label a successor
node will be determined by certain conditions on the formulas in the hues in the
label colours on the successor and the parent.

Fix the formula φ whose satisfiability we are interested in.

Definition 3 (closure set). The closure set for φ is clφ = {ψ,¬ψ|ψ ≤ φ}: its
subformulas and their negations.

Definition 4 (MPC). a ⊆ clφ is maximaly propositionally consistent (MPC)
iff for all α, β ∈ clφ,
M1) if β = ¬α then (β ∈ a iff α �∈ a); and
M2) if α ∧ β ∈ clφ then (α ∧ β ∈ a iff both α ∈ a and β ∈ a).
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A hue is supposed to (approximately) capture a set of formulas which could all
hold together of one fullpath.

Definition 5 (Hue). a ⊆ clφ is a hue for φ iff all these conditions hold:
H1) a is MPC;
H2) if αUβ ∈ a and β �∈ a then α ∈ a;
H3) if αUβ ∈ clφ \ a then β �∈ a;
H4) if Aα ∈ a then α ∈ a.

For example, if φ = ¬θ12 then

h38 = {¬(AG(p→ EXp)→ (p→ EGp)), (AG(p → EXp) ∧ ¬(p→ EGp)),
AG(p→ EXp), G(p→ EXp), true,¬¬(p→ EXp),
(p→ EXp), p,¬¬EXp,EXp,¬¬Xp,Xp,
¬(p→ EGp), (p ∧ ¬EGp),¬EGp,A¬Gp,¬Gp, F¬p,¬¬p}

is a hue (which we will revisit later as h38 in an example tableau in section 7).
To check that it is a hue involves some simple syntactic checks. For example,
checking H2, we see that trueU¬p = F¬p is in the hue but ¬p is not. Thus true
should be in the hue and it is. The careful reader might notice that although
this satisfies the definition of a hue, it is not actually exactly the set of formulas
satisfied by any fullpath in any model. It turns out to be unsatisfiable but that
is beyond the simple syntactic checks to determine.

Another, very slightly different hue which we will look at in a moment is h37
which is the same as h38 except that it contains ¬Xp instead of Xp and ¬¬Xp.

Let Hφ be the set of hues of φ.
The usual temporal successor relation plays a role in determining allowed

steps in the tableau. The relation rX is put between hues a and b if a fullpath σ
satisfying a could have a one-step suffix σ≥1 satisfying b:

Definition 6 (rX). For hues a and b, we say that a rX b iff the following four
conditions all hold:
R1) Xα ∈ a implies α ∈ b.
R2) ¬Xα ∈ a implies ¬α ∈ b.
R3) αUβ ∈ a and ¬β ∈ a implies αUβ ∈ b.
R4) ¬(αUβ) ∈ a and α ∈ a implies ¬(αUβ) ∈ b.

For example, the reader can check h38 rX h38, h38 rX h37 but h37� rXh38.
The next relation aims to tell whether two hues could correspond to fullpaths

starting at the same state. We just need the hues to agree on atoms and on
universal path quantified formulas:

Definition 7 ( rA). For hues a and b, put a rA b iff the following two conditions
both hold:
A1) Aα ∈ a iff Aα ∈ b; and
A2) for all p ∈ L, p ∈ a iff p ∈ b

The reader can check that this is an equivalence relation on hues and that, for
example, h37 rA h38.
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Now we move up from the level of hues to the level of colours. Could a set of
hues be exactly the hues corresponding to all the fullpaths starting at a particular
state? We would need each pair of hues to satisfy rA but we would also need
hues to be in the set to witness all the existential path quatifications:

Definition 8 (Colour). Non-empty c ⊆ Hφ is a colour (of φ) iff the following
two conditions hold. For all a, b ∈ c,
C1) a rA b
C2) if a ∈ c and ¬Aα ∈ a then there is b ∈ c such that ¬α ∈ b.

The set {h37, h38}, for example, is a colour. The formula EXp = ¬A¬Xp ∈ h37
but Xp ∈ h38 witnesses the existential path quantification. Thus {h37} is not a
colour.

Let Cφ be the set of colours of φ.
We define a successor relation RX between colours. It is defined in terms

of rX between the component hues and is supposed to approximately capture
the successor relation between nodes in terms of the colours which they exhibit.
Note that colours will in general have a non-singleton range of successors.

Definition 9 ( RX). For all c, d ∈ Cφ, put c RX d iff for all b ∈ d there is
a ∈ c such that a rX b.

As an example, {h37, h38} RX {h37, h38} as the reader can check.
It is worth noting that colours and hues can be found in actual transition

structures. We will need these concepts in our completeness proof.

Definition 10 (actual hues and colours). Suppose (S,R, g) is a transition
structure. If σ is a fullpath through (S,R) then we say that the actual (φ-) hue
of σ in (S,R, g) is h = {α ∈ clφ|(S,R, g), σ |= α}.

If s ∈ S then the set of all actual hues of all fullpaths through (S,R) starting
at s is called the actual (φ-) colour of s in (S,R, g).

Building branches node by node in our tree-shaped tableaux will be straightfor-
ward using the mechanisms of colours and hues. The top three nodes in the later
Figure 3, for example, shows the start of a tableau for ¬θ12. The root node is
coloured {h37, h38} with φ = ¬θ12 ∈ h37. As the root label has two hues there
are two successor nodes ordered left to right. Both successor label colours are in
the RX relation to the root colour. Further, the left has a hue which is in the
rX relation to h37 and the right has a hue which is in the rX relation to h38.

Tableaux can be built node by node. This can be done quickly by guessing
successor hues and extending them to colours. The challenges for us will be to
do with looping and repetition.

In our tableaux there will be “good looping” and “bad looping”. Good looping
will be when we discover that an ancestor of a node can serve as the successor of
that node. Our tableaux will stray from being strictly tree-shaped in that they
will allow us to loop up from nodes to their ancestors. This will be a way of
making a finite model which nevertheless has infinite fullpaths. There will be
subtle conditions determining when we are alowed to loop up in this way.
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“Bad looping” on the other hand will be when we determine that we have
extended a branch in a certain way which exhibits too much repetition with no
allowed loops back up, and so no prospect of terminating this development in a
successful and finite way. We will refer to this as repetition rather than looping.
Again, there will be subtle rules to determine when we have such repetition.
This allows us to stop constructing a branch and backtrack to a previous choice,
or fail in a finite way.

As mentioned, in this paper we will use a simple but not particularly efficient
method for terminating the development of repetitive branches. A better method
would allow us to report unsatisfiable formulas earlier. It would also allow us to
stop making unneccessarily long variations of branches which could be successful
and shorter: thus it would help us report satisfiability earlier.

The simple method we will just use is imposing a branch length bound based
on a function which bounds the size of minimal finite models of a formula in
terms of the length of the formula.

Theorem 1 ([9]). There is a function N from N to N such that if CTL* formula
φ of length |φ| is satisfiable then it has a finite model with at most N(|φ|) states.

The “small model” result sketched in [9] describes (but not explicitly) a function
of triple exponential complexity in the length of the formula. However, later work
sketched in [16] allows us to conclude that there is also a double exponential
function (see [21]).

To proceed, choose any such function N which bounds the size of a minimal
finite model of any satisfiable CTL* formula in terms of the length of the formula.
In our tableau, we actual use a slightly bigger function to bound the allowed
length of branches, namely

Definition 11. The bound on the length of branches allowed in tableaux will be
M(n) = 2n.2n.N(n) in terms of the length n of the input formula.

The tableaux we construct will be roughly tree-shaped albeit the traditional
upside down tree with a root at the top: predecessors and ancestors above,
successors and descendants below. However, we will allow up-links from a node
to one of its ancestors. Each node will be labelled with a colour, with the hues
ordered and, unless it is a leaf, it will have one (ordered) successor for each hue.

First, in Figure 1, we define a structure with this basic format and then we
add a couple of extra conditions to define a tableau.

It is worth noting here that condition PT7, which relates the colour label at
one node with the label of any of it successors, is the essence of the tableau.
Along with PT10, this is effectively a tableau construction rule. For any given
colour there are only a limited set of other colours which lie in the RX relation
to the given colour, and they can be constructed in a straightforward way (from
the formulas in the label of the given node): although we do not have space to
spell out the corresponding tradional tableau rules here.

Definition 13 (tableau path). σ is a path through (T, s, z), iff it is a sequence
of nodes from T , with length |σ| ≤ ω, proceeding such that for each j < |σ|, there
is some i < |sσj | such that σj+1 = sσj (i)
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Definition 12 (COPT). A Coloured Ordered Pseudo-Tree for φ is a tuple (T, s, z)
such that:
PT1) T is a set (of nodes), with one, rootT ∈ T , called the root;
PT2) each node t ∈ T has a finite number |st| of successors,

{st(0), st(1), ..., st(|st| − 1)} ⊆ T (leaf nodes have no successors);
PT3) each node t ∈ T has a unique finite sequence of distinct nodes

t0 = rootT , t1, t2, ..., tk = t,
called the ancestors of t, such that each ti+1 is a successor of ti

PT4) for each t ∈ T , for each i < |st|, either t is the parent of st(i) or
st(i) is an ancestor of t;

PT5) z : T → Cφ is the colouring;
PT6) for each t ∈ T , zt is a map enumerating the hues in z(t) in some order;
PT7) for each t ∈ T , for each i < |st|, z(t) RX z(st(i));
PT8) φ ∈ zrootT

(0);
PT9) for each t ∈ T , either |st| = 0 or there are |st| > 0 hues in z(t);
PT10) for all t ∈ T , for all i < |st|, (zt(i)) rX (zst(i)(0)).

Fig. 1. Definintion of a COPT

Definition 14 (tableau fullpath). A path σ is a fullpath through (T, s, z), iff
it only ends at a leaf node, if it ends at all: i.e. if |σ| = n < ω then σn−1 is a
leaf node.

The idea of eventualities in hues which need to be fulfilled will be important in
our proof:

Definition 15 (Eventuality). β ∈ clφ is an eventuality in hue h iff αUβ ∈ h.

At various places in our proofs we will need to find hue threads, i.e. sequences of
hues which lie within sequences of coloured nodes. In this subsection we introduce
some tools for dealing with such a situation.

For the rest of this section, suppose that (T, s, z) is a COPT for φ.

Definition 16 (Hue thread). Suppose σ is a path through (T, s, z). A hue
thread through σ is a sequence η of hues such that |η| = |σ|, for each j < |η|,
ηj ∈ z(σj) and for each j < |η| − 1, ηj rX ηj+1.

Definition 17 (Fulfilling hue thread). Suppose σ is a path through (T, s, z)
and η is a hue thread through σ. We say that η is fulfilling iff either |σ| < ω or
|σ| = ω and all the eventualities in each ηi are witnessed by some later ηj; i.e.
if αUβ ∈ ηi then there is j ≥ i such that β ∈ ηj.

The predecessor hue aspect of the definition of the successor relation RX be-
tween colours of nodes PT7, ensures, by definition of RX , that any hue in any
colour has an rX predecessor in any predecessor colour. In fact, it is unique
as we now show. This enables us to traceback threads of hues backwards along
paths.

Lemma 1. If u is a successor of t in a COPT (T, s, z) and h ∈ z(u) then there
is a unique hue h′ ∈ z(t) such that h′ rX h.
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By iteratively tracing predecessor hues backwards from a leaf node, it is easy to
see that any finite path has a hue thread:

Lemma 2. Each path σ through (T, s, z) has at least one hue thread.

Note that if two hue threads (of the same path) agree at any index then they
must agree at all lesser indices all the way back to zero. This is because of
(iterated application of) the traceback property lemma 1. It follows that:

Lemma 3. Each path σ through (T, s, z) has only a finite number of hue threads.

The following condition is rather non-algorithmic in its presentation. In the next
section below we give some details of a model-checking style algorithm which we
show determines whether this condition holds amongst other things.

Definition 18 (Fullpaths fulfilled). We say that a COPT (T, s, z) has full-
paths fulfilled iff for every fullpath σ through (T, s, z), there is a fulfilling hue
thread through σ.

Notice that property PT10 puts a special significance on the initial hue in each
colour label. This, along with the next condition, helps us ensure that each
hue actually has a fullpath witnessing it. Note that the NTP is easy to check
computationally.

Definition 19 (The nominated thread property). We say that a COPT
(T, s, z) has the nominated thread property (NTP) iff the following holds. Sup-
pose t ∈ T , 0 < |st|, st(0) is an ancestor of t and that t0 = st(0), t1, ..., tk =
t is a non-repeating sequence with each tj+1 = stj (0). Let σ be the fullpath
〈t0, t1, ..., tk, t0, t1, ..., tk, t0, t1, ...〉. Then 〈zt0(0), zt1(0), ..., ztk

(0), zt0(0), ...〉 is a
fulfilling hue thread for σ.

5 How to Check That Labels Are Grounded

The condition of labels being grounded (LG) is the most important extra con-
dition which we are putting on COPTs in order to allow them to be a tableau.
Roughly, this means that the colour labels of nodes make sense in terms of the
fullpaths which pass through them. This notion is intimately connected with the
idea that all fullpaths looping around in our tableau must have corresponding
sequences of hues which have their eventualities fulfilled. If a tableau search al-
gorithm tries to add a new up-link to a tableau and finds that LG fails then it
will know that the up-link should not be added.

We have invented a model-checking style procedure for doing this. The proce-
dure is somewhat complicated to describe but is a straightforward polynomial-
time algorithm looping around a few times to collect sets of sets of formulas from
clφ for each node.

Given a φ-tableau (T, s, z) we think of (T, s, z) as representing a different
CTL* structure (T, s, z)∗ called the hypothetical structure of (T, s, z) based on
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assuming that each leaf t in (T, s, z) is joined to a separate sub-structure which
validates its label z(t).

This structure (T, s, z)∗ will have slightly specialised semantics for evaluating
CTL* formulas. We also use a special definition of fullpaths. A fullpath σ through
(T, s, z)∗ is either 1) a normal ω-long fullpath through (T, s, z); or 2) a finite
fullpath through (T, s, z) ending at a leaf t along with one of the hues end(σ)
from z(t).

We write M,σ |= α iff the formula α is true of the fullpath σ in the structure
M = (T, s, z)∗. This is defined recursively by (uninteresting clauses omitted):
M,σ |= p iff atom p is in some hue in z(σ0);
M,σ |= Xα iff either σ0 is not a leaf and M,σ≥1 |= α

or σ0 is a leaf and Xα ∈ end(σ)
M,σ |= αUβ iff either there is some i ≥ 0 such that M,σ≥i |= β

and for each j, if 0 ≤ j < i then M,σ≥j |= α
or there is some i ≥ 0 such that σi is a leaf and

αUβ ∈ end(σ) and for each j, if 0 ≤ j < i then M,σ≥j |= α
In the long version of this paper [21], we present the algorithm (LG), which

we can not even sketch here. LG is essentially trying to determine what hues of
the hypothetical structure exist at each node. It proceeds by adding more and
more complex formulas (from cl(φ)) to its sets of hues and working out what
new hues can be realised by fullpaths.

Careful examination of the LG algorithm in some detailed lemmas, allows us
to conclude:

Lemma 4. The LG algorithm determines exactly the colours of nodes in the
hypothetical model.

Definition 20. The hue of σ through (T, s, z)∗ is {α ∈ cl(φ)|(T, s, z)∗, σ |= α}.
The hypothetical colour of a node t in (T, s, z) is the colour (∈ Cφ) being the

set of hues of fullpaths through (T, s, z)∗ which start at t.

Definition 21 (LG). COPT (T, s, z) has its labels grounded iff the hypothetical
colour of each node t matches its label colour z(t).

6 The Tableau

Definition 22. A φ-tableau is a finite COPT such that:
LG) labels are grounded;
NTP) the nominated thread property holds;
BB) no node has more than M(|φ|) ancestors (see definition 11 for M).
It is a successful tableau iff it has no leaves.

A tableau algorithm or decision procedure here is any systematic way of finding
from all tableaux for φ whether there is a successful one or not. There are clearly
only finitely many tableaux for any particular φ so we don’t need to be more
prescriptive here about any particular algorithm.
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It must be emphasized, however, that the very specific forms of the RX

relationship between one colour and any successor colour means that in fact, as
we build a tableau (i.e. a COPT), there are only a very limited number of choices
for successor colours. Furthermore, these choices can be determined efficiently
and constructively from the formulas in the label of a node. Thus, this is no blind,
“generate and test” algorithm. The unsophisticated implementation described
in [21] is fast enough to be almost immediate on a wide range of interesting
formulas as long as they do not contain much more than 50 symbols.

In this definition of tableau we have guaranteed termination of any reasonable
tableau construction algorithm by putting a simple but excessive bound on the
length of branches. This allows us to conclude failure in a finite time and to also
abbreviate the search for successful tableaux.

Our work on the LG algorithm above actually takes us very close to the
soundess result for the tableau. We can show that when there are no leaves then
at the final stage of LG we have determined the standard colours of nodes in the
corresponding standard model. As we have φ itself in a hue in a label we have
soundness:

Lemma 5 (Soundness). If φ has a successful tableau then it is satisfiable.

7 A Tableau Example

Consider the example θ−12 = ¬θ12 = ¬(AG(p→ EXp)→ (p→ EGp)).
This formula is not satisfiable in CTL* as it is the negation of a validity.
The formula has length 30 and we find it has 39 hues and 258 colours. For

convenience, we can label the hues h1, h2, ..., h39. Some of the important contents
of some of the most interesting hues are listed in Figure 2.

Hue Contents
h28 {¬p,¬Xp, EXp, F¬p, A¬Gp, θ12, AG(p → EXp), p→ EGp, ...}
h30 {¬p, Xp, EXp, F¬p,A¬Gp, θ12, AG(p → EXp), p → EGp, ...}
h34 {p,¬Xp, EXp, F¬p,EGp,¬θ12, AG(p → EXp),¬(p → EGp), ...}
h35 {p, Xp, EXp, Gp,EGp,¬θ12, AG(p → EXp),¬(p→ EGp), ...}
h36 {p, Xp, EXp, F¬p,EGp,¬θ12, AG(p → EXp),¬(p → EGp), ...}
h37 {p,¬Xp, EXp, F¬p,A¬Gp,¬θ12, AG(p → EXp),¬(p→ EGp), ...}
h38 {p, Xp, EXp, F¬p,A¬Gp,¬θ12, AG(p → EXp),¬(p → EGp), ...}

Fig. 2. θ−12: some contents of some hues

The construction of a tableau for θ−12 can easily lead to very large graphs.
The implementation by the author, produces a graph like that in Figure 3 at a
certain stage. Only the first eleven nodes labeled n0, n1, ..., n10 are considered
here. Their respective colours can be gleaned from examining the labels on edges
in the tree in Figure 3: The edge labels in the diagram of the respective successor
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n0

n1

h37

h28

n3

h30

h34

n6

h35

h35

h36

n2

h38

n4

h37

h28

n7

h30

h34

n10

h35

h35

h36

n5

h38

n8

h37

n9

h38

Fig. 3. A Partial Tableau for θ−12

nodes, list the hues in the colour of the parent. Thus, n0, for example, is coloured
with {h37, h38}.

In Figure 3 we show the nodes n0, ..., n10 in the tree starting from the root
at the top. Successor relations are given in solid lines in left to right order
across the page. The successor edges are labeled with that hue of the parent
which requires their presence. Dashed lines indicate an up-link heading up to
its destination. So, for example, the first successor of n3 is actually its parent
n1, and there is a hue in the colour of n1 which is a successor hue of the first
hue h34 in the colour of n3. The tableau can continue below n8 and n9. In fact,
the sequence n0, n2, n5, n9, ..., of nodes which are all the same colour {h37, h38}
could continue indefinately if there was no limit on the length of branches.

The interested reader can check that we can not put an up-link in the tableau
instead of this branch: for example, an up-link from n2 to itself (instead of having
n5) would contradict the LG property as it would produce a fullpath satisfying
Gp and that formula is in neither h37 nor h38.

However, we do have a limit on the length of branches and that eventually
causes this tableau construction for θ−12 to fail. There is no successful tableau
for θ−12.

8 Completeness

In this section we give a high-level overview of the proof that if a model exists
for φ then a successful tableau exists for φ. Say (S,R, g), σ0 |= φ where (S,R, g)
is any labelled transition structure and σ0 is any fullpath through (S,R). We
may assume that S has at most N(|φ|) elements.

We first show that there is a structure (T, s, z) which is like a tableau for φ
but does not necessarily obey the bound BB on the length of branches: in fact,
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it will be a tree with infinitely many nodes. There will be no up-links but we
still need to check that some conditions like label groundedness and nominated
threading hold on infinite paths.

We simply work by induction to unwind (S,R, g) one node (i.e. state) at a
time, but only introducing as many successors as there are hues in the actual
colour at each node. There are some extra properties to obtain and a map w
which allow us to keep track of the relationship between nodes in (S,R, g) and
the unwinding.

In the next few stages of the construction, we change (T, s, z) with w so that
nodes x with descendant y say, on the same branch which agree under w (i.e.
x and y both map back from T to w(x) = w(y), the same original state in S)
are counted as “repeated” nodes and we replace the subtree rooted at the lower
node y by a new up-link from y’s parent back up to the original node x.

First we deal with leftmost branches which need special attention due to the
nominated thread property: they need to witness all eventualities in initial hues.
Other branches are dealt with later in a similar but easier process.

At this stage some of our finite loops may be too long to fit into the required
bound on branch length. To solve this problem we now identify pairs of nodes
along these paths which define an interval which can be cut out from the tableau.
Basically, the bound is long enough that we can see all witnesses and be guar-
anteed of passing through nodes with the same w image again. We make cuts
between such matching nodes when the interval in between does not add a new
witness.

The construction sketched above allows us to conclude:

Lemma 6. If a CTL* formula is satisfiable then it has a successful tableau.

Thus any algorithm which systematically searches through all possible
φ-tableaux for a successful one will thus eventually find one for φ.

9 Implementation

Implementation of a CTL* tableau search is relatively straightforward although
it is a sizeable undertaking. A (Java) prototype implementation written by the
author shows that for many interesting, albeit relatively small formulas, results
can be obtained quickly despite the double exponential theoretical bounds. There
are some preliminary results reported in [21].

We can only summarize the results briefly here. Apart from five cases where
the computations do not halt in a reasonable time (say a few minutes), all
answers given on the 18 example formulas and their negations are correct.

Amongst these 36 formulas of maximum length 56, the implementation gener-
ally gives the correct answer very quickly after less than ten tableau construction
steps (including backtracking). Models of satifiable formulas amongst these ex-
amples, which are constructed by the implementation have less than ten states.

Setting the program an unsatisfiable formula which involves a lot of different
colours generally causes it to take a long time. For example, ¬θ12 has 258 colours
while ¬θ14 has over 280 colours! The program does not halt on these.
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10 Ongoing and Future Work

We have provided a sound and complete tableau system for the propositional
full computational tree logic CTL*. This is the first such. It is also simple to
implement [21].

Even though there is an existing decision procedure for CTL* (based on au-
tomata) there are many potential uses of new tableaux systems for CTL*. We
can often extract counter-models and formal proofs from tableaux. They could
be a base for developing, or proving correctness of, other techniques such as res-
olution or term rewriting. They may give indications of simpler more reasonable
sub-languages. Tableaux help manual proofs of validity. They can be extended to
help with reasoning in the predicate case, for example for software verification.

Although this tableau approach is usable in interesting ways already there is
much work to do to make more practical use of this. In ongoing work described
in [21] a reasonably general and quite usable repetition mechanism is proposed
and proved correct.

Worst case performance is necessarily bad (at least double exponential) be-
cause of the complexity of the decision problem but there is great potential for
vast improvements in running times in general or on certain classes of formulas.
Nevertheless, even a naive implementation of the tableau procedure by the au-
thor is able to quickly decide some interesting non-trivial formulas and provide
models for satisfiable formulas [21].

The first task is to have a general and efficient repetition detection mechanism.
This needs to be developed and proved correct to replace the wasteful but simple
bound based on maximum size of model for formulas of certain input length.

We have not mentioned directions for other improvements in this paper but
important tasks include making use of preprocessing of relationships between
hues, or at least remembering properties such as which ones do not have successor
hues. Developing ways of reasoning ahead with partially determined colours and
hues will also be useful.
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Abstract. A novel approach to the specification and verification of C
programs through an annotation language that is a mixture between
JML and the language of Isabelle/HOL is proposed. This yields three
benefits: specifications are concise and close to the underlying mathe-
matical model; existing Isabelle theories can be reused; and the leap of
faith from specification language to encoding in a logic is small. This
is of particular relevance for software certification, and verification in
application areas such as robotics.

1 Introduction

Software verification is used to many ends, and each end has its own means.
In this paper, we present an approach for the specification and verification of
mathematically-oriented C programs in the context of software certification,
where correctness and reliability of the verification process are a major con-
cern. Therefore we emphasise trustworthiness and correctness, by reduction to
a proof in a trusted theorem prover (in our case, Isabelle/HOL), such that the
only leap of faith required is the embedding of the semantics of the programming
language into the prover, and the actual definition of correctness.

To ensure consistency between specification and program code, we annotate
the source code with specifications of its intended behaviour, but instead of
extending the programming language with specification constructs (as in JML
or ACSL [1,2]), we use the higher-order logic of the underlying prover, extended
by convenient ways to relate to values of the program state. In our application
domain, safety software in robotics1, programs live in a fairly rich application
domain, involving in particular concepts from geometry such as points, lines, or
convex polygons. Using the prover’s native higher-order language, specifications
become concise and easy to read, since these concepts lend themselves well to
higher-order formalisation. Moreover, we can use Isabelle’s rich libraries.

The actual correctness proofs follow previous work [3,4,5]: we encode the pro-
gramming language and its semantics into the theorem prover, define a semantic
way of when a specification is satisfied, and show the verification rules as the-
orems. Verification conditions are generated (and proven) in Isabelle. However,
1 http://www.sams-project.org/
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BaseLoc0 Type0 Val0,0 Val0,1 V al0,2 · · ·
BaseLoc1 Type1 Val1,0

...
...

...
...

...
BaseLocn Typen Valn,0 Valn,1

Fig. 1. A state maps base locations to types and sequences of scalar values

some work is necessary to scale this up for realistic programs: one has to make
sure the proof state remains manageable, and we have to provide a modular way
to verify each function separately. Hence, our main contribution is an approach
which allows comprehensible, concise specifications of C programs in a rich prob-
lem domain, together with a well-defined, rational verification process, by tight
integration of programming language and theorem prover.

The paper is structured as follows: Sec. 2 describes the semantic foundations,
such as the supported C language subset, its denotational semantics, the seman-
tic notion of specification, satisfiability, and how it is proven. Sec. 3 introduces
the novel hybrid specification language we annotate program functions with, fol-
lowed by an account on how programs are formally verified, given in Sec. 4. We
look at related work and conclude in Sec. 5.

2 Semantic Foundations

Overall, our model is a text-book semantics as found in e.g. [6]. Its distinctive
features are a deep embedding of a (subset of) the C language, to which we give
a deterministic denotational semantics as a mapping from states to states, and
a shallow embedding of functions.

2.1 The Low-Level State Model

The state represents a program’s memory. Abstractly, it is a map from locations
Loc to values Val. In contrast to the usual memory model as a stack of local
variables and a heap containing allocated objects, we use a flat model where
all objects are given a base location. An object is defined in the C standard as
a “region of storage [...], the contents of which can represent values” [7, 3.14].
We represent it as a sequences of scalar values [7], modelled as partial functions
from N to Val. Scalar values are integer and floating-point numbers—which we
model as unbounded integers and reals—and references, Val = Int + Real + Ref,
where a reference is a location or undefined (the null pointer) Ref = Loc + 1.
Fig. 1 depicts the structure of the state space.

Concretely, a state is then a finite partial function Σ : BaseLoc ⇀ (Type ×
(N ⇀ Val)) mapping base locations to representations of objects and their (run-
time) type Type. To access scalar values (possibly inside structures or arrays)
we use locations, which are pairs Loc = BaseLoc × N. Thus, locations represent
addresses. They allow a limited form of arithmetic, as defined in the standard:
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Supported Not supported
Addresses of local objects (via &) Casts to and from void ∗
Pointer offsets and subtraction Function pointers
sizeof operator switch, goto, continue
Function calls in expressions Arbitrary side effects

Fig. 2. Summary of supported and unsupported language features

we can add and subtract the offsets of locations sharing the same base location.
(A simplifying assumption here is that all scalar values have the same size.)
Our model precludes the use of structured values in expressions, so they cannot
occur as arguments to assignment or functions. The basic operations on states
are reading, writing, allocation and deallocation:

read : Loc→ Σ → Val update : Loc→ Val→ Σ → Σ

fresh-loc : Σ → BaseLoc extend, dealloc : BaseLoc→ Σ → Σ

The fresh-loc operator returns a base location that is not yet used. Dealloca-
tion is currently used for local variables on function exit; malloc and free could
easily be supported by our model as well. State updates always succeed, i.e. at
the state level we do not perform type checks, array bounds checks or pointer
validity checks. Sanity checks are instead inserted into the semantics of pointer
dereferencing and array access.

We do not follow the split heap approach [8] literally, but recover the needed
inequalities through appropriate lemmas on field and array access. This keeps
the state model reasonably close to the C standard.

2.2 Modelled Language Subset

We support a subset of the language given by the MISRA programming guide-
lines [9] (Fig. 2). Prominent features include those which are heavily used in our
application domain: arbitrary nesting of structures and arrays, limited form of
address arithmetic, function calls in expressions, and an &-operator that can be
used on both global and local objects. Fig. 3 shows excerpts of the datatypes
modelling the language. An external front-end parses the actual C source code
into the Isabelle datatypes, and also performs static checks for type correctness,
and conformance to our language subset, including the MISRA guidelines.

A rather drastic simplification from a theoretical point of view is the exclusion
of recursive functions by the guidelines [9, Rule 16.2]. This allows us to give
semantics to functions without the need for an explicit fixed-point operator.

Since expressions can have side-effects, evaluation order would be important.
However, [9, Rule 12.2] requires that an expression must yield the same value
under every evaluation order. We check this on the syntactic level in the front
end, by ruling out problematic expressions such as (x= 2)/x−−, but allowing
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basic-type ::= int | double | void
type ::= basic-type

| ∗ type
| struct id (id× type) list
| type [Nat]

stmt ::= while expr { ∗ stmt}
| lval = expr
| id (expr list)stmt
| stmt; stmt | . . .

id ::= String
arith-op ::= + | − | ∗ | . . .

comp-op ::= == | != | < | . . .

lval ::= idtype

| ref-expr [ int-expr] type

| lval . id type

| ∗ ref-expr type

ref-expr ::= NULL
| lval
| & lval
| id (expr list)ref

int-expr = Int
| lval
| int-expr comp-op int-expr
| int-expr arith-op int-expr
| id (expr list)int | . . .

expr = int-expr | double-expr | ref-expr

Fig. 3. The datatypes of the deep C embedding (abridged). Names of datatypes are
denoted in italics, and constructors written in concrete syntax. Note how we annotate
lvalues with their type, such that we can compute necessary state offsets easily.

calls to side-effect free functions. As we only consider MISRA-conformant pro-
grams, it is adequate to fix the evaluation order, proceeding from left to right
for both function argument lists and expression trees.

2.3 Denotational Semantics

Our semantics is deterministic and identifies all kinds of faults like invalid mem-
ory access, non-termination, or division by zero as complete failure. We use
the overloaded semantic brackets [[−]] for all semantic functions, which assign a
meaning to each of the datatypes modelling programs, amongst them

[[stmt ]]:Γ → Σ ⇀ 1×Σ [[expr ]]:Γ → Σ ⇀ Val×Σ [[lval ]]:Γ → Σ ⇀ Ref×Σ

where Γ is an environment which maps identifiers to locations. Note that in the
presence of pointers, the evaluation of an lvalue (e.g. ∗x) depends on the state.
State transformers are composed with the Kleisli composition [10] (where α and
β are type variables) ,= : (Σ ⇀ α ×Σ) → (α → Σ ⇀ β ×Σ) → Σ ⇀ β ×Σ
which passes the result tuple of the first argument into the second function. The
semantic function for an assignment evaluates the lvalue l to a location m, then
the rvalue e side to a value v, and uses update to change the state:

[[l = e ]]Γ def= [[l]]Γ ,= λm. [[e]]Γ ,= λv. update m v

The conditional statement and iteration are interpreted by corresponding opera-
tions on state transformers. A bounded iteration operator models the unfolding
of the loop at most n times, and the semantics of iteration is the least number of
unfoldings to make the loop condition false, if it exists, and undefined otherwise.
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We consider the idealisation of machine integers to mathematical integers a
sensible separation of concerns, as the absence of under-/overflow can in many
practical cases be proven by means of abstract interpretation [11], and using
modular arithmetic makes interactive verification unbearably cumbersome. Mod-
elling floating-point numbers as real numbers ignores the issue of numerical pre-
cision. For the time being, we simply do not treat it formally.

2.4 Modelling Functions

Functions are modelled as HOL functions. The semantic function of a C function
with n parameters takes n values, and returns a state transformer:

[[type id(x1, . . . , xn) block ]] : Γ → Valn → Σ ⇀ Val×Σ

Both parameters and local declarations are translated into state extensions, and
the new locations added to the environment, but parameters are initialised with
the argument values, and are visible in the pre- and postconditions of the func-
tion. Ignoring specifications — which are also included in the full environment —
the environment Γ maps variables to their allocated base location, and function
identifiers to their semantics:

Γ ∼= (Id ⇀ BaseLoc)× (Id ⇀ (Valn → Σ ⇀ Val×Σ))

When calling a function f, we evaluate the n argument values, look up its value
in the environment, written as Γ ! f , and call the resulting state transformer:

[[f (args)]]Γ def= [[args ]]Γ ,= (Γ ! f)

2.5 Specifications

Semantically, we consider specifications to be state predicates. In the classic total
Hoare calculus, a specification for a program p consists of a precondition P and
a postcondition Q, written [P ]p[Q]. In our typed setting, the precondition is a
state predicate P :Σ → bool, the program is a state transformer p :Σ ⇀ α×Σ,
and the postcondition a predicate over the state and the result of the program,
Q : α×Σ → bool. The specification is satisfied by p if each state satisfying P is
mapped to one satisfying Q:

|= : (Σ → bool)→ (Σ ⇀ α×Σ)→ (α×Σ → bool)→ bool
|= [P ] p [Q] def= ∀S. P S −→ def (p S) ∧Q(p S)

To show that a program satisfies a specification, we introduce a syntactic notion
of satisfiability for each datatype in Fig. 3, which is defined in terms of the
semantic notion (shown here for expressions and statements)

'e :Γ → (Σ → bool)→ expr→ (Val×Σ → bool)→ bool
's :Γ → (Σ → bool)→ stmt→ (1 ×Σ → bool)→ bool

Γ 'e [P ] e [Q] def= |= [P ] [[e]]Γ [Q] Γ 's [P ] s [Q] def= |= [P ] [[s]]Γ [Q]
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2.6 Modular Verification

In order to handle realistic programs, verification needs to be modular, i.e. we
want to verify each function in the program separately and use only its specifica-
tion during the verification of its callers. Further, we want to keep the specifica-
tion of each function local to its direct effects. For simple imperative languages,
this is achieved by frame rules [12]. The presence of pointers complicates the sit-
uation as possible aliasing forces these rules to become inelegant and complex.
Our solution is to make changes to the state possibly caused by a function (se-
mantically, a state transformer) part of the specification. Recall that the state
is essentially a finite map. We restrict a state S to a set of locations L by a
restriction operation S �L, and define the modifies predicate for two states S, T
and a set of locations Λ which holds if S and T agree everywhere except for Λ:

S -Λ T
def= S �¬Λ= T �¬Λ .

We extend the notion of satisfaction by a modification set, which contains the
only locations this state transformer may change, thus effectively integrating the
frame rule into the notion of satisfaction.

|= : Loc set→ (Σ → bool)→ (Σ ⇀ α×Σ)→ (α×Σ → bool)→ bool
Λ |= [P ] p [Q] def= ∀S. P S −→ def (p S) ∧Q(p S) ∧ S -Λ (p S)
's :Loc set→ Γ → (Σ → bool)→ stmt→ (1×Σ → bool)→ bool
Λ, Γ 's [P ] s [Q] def= Λ |= [P ] [[s]]Γ [Q]

The syntactic proof rules integrate checks that only locations in the modification
set are modified. Sec. 4.2 gives further details, and an example (Fig. 7).

3 Program Specifications with Isabelle

Programs are specified through annotations embedded in the source code in spe-
cially marked comments (beginning with /∗@, as in JML or ACSL). This way,
annotated programs can be processed by any compiler without modifications.
Annotations can occur before function declarations, where they take the form of
function specifications, and inside functions in front of loops, where they serve
as loop specifications, which play a technical rôle in that they allow automatic
generation of verification conditions. A function specification consists of a pre-
condition (@requires), a postcondition (@ensures) which relates the state before
entry into the function (the pre-state) to the state after the function has returned
(post-state), and a modification set (@modifies). Loop specifications consist of an
invariant (@invariant), a variant (@variant; a measure function on program states,
mapping program states to N given an appropriate C expression) ensuring ter-
mination of the loop, and an optional modification set; Fig. 4 gives an example.
We first explore the design rationale before delving into the technicalities.
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/∗@ @mod i f i e s a [ 0 : l e n ] , ∗ r e s @∗/
vo id avg ( i n t ∗a , i n t l en , doub le ∗ r e s ) {

i n t i ;
/∗@ @mod i f i e s i , ∗ r e s , a [ 0 : l e n ]

@va r i a n t l e n − i @∗/
f o r ( i =0; i<l e n ; ++i ) { ∗ r e s += a [ i ] ; a [ i ] = 0 ; }
∗ r e s /= l e n ;
}

Fig. 4. Annotated function demonstrating features as found in e.g. JML

3.1 Design Rationale

Our aim is to specify and verify program modules for the domain of safety-
relevant robotics and automation. Functions in these programs often represent
mathematical operations. They range from simple vector operations (scalar prod-
uct, transformations) over computing the convex hull of a point set to the ap-
proximation of the behaviour of a moving object. The data structures these
operations work upon is rather restricted. For simplicity and memory safety,
they tend to be static; dynamic objects are sparse. In many cases, these data
types are structurally just tuples and sequences of real numbers and integers.

In contrast to their representations, the objects of interest in the mathemati-
cal domain are not necessarily discrete and finite. They include time-dependent
functions, areas, polygons etc. Therefore, to obtain the desired degree of abstrac-
tion and detail in function specifications, an expressive, mathematically oriented
language is required. Fundamental concepts like real numbers, sets, geometric
transformations, but also concepts from analysis like derivations, integrals or lim-
its should be easily definable or preferably predefined. Moreover, for the actual
verification, a plethora of lemmas about these operations and their interaction
will be needed. Also, for readability, the language should be syntactically flexible
(e.g. support infix notation), and have a larger glyph set than 7-bit ASCII.

Finally, we do not expect to be able to prove the domain-related parts of
program specifications automatically, by calling provers like Z3 [13] or CVC3 [14],
despite the impressive advances these tools have made. For the interactive proof
work it is then a real benefit if only one formal language needs to be understood.

These considerations led to the decision to directly use Isabelle as the spec-
ification language for state predicates as used in pre-/postconditions and in-
variants, in contrast to JML and ACSL, where extensions of the programming
language are used in specifications. However, we need a way to refer to the pro-
gram state, and in particular the value of variables in the specifications, and
further there are technical specifications like ranges of array indices or validity
of pointers, that are best written down in the C syntax. This resulted in a hybrid
approach, where Isabelle and an extension of the C syntax can be combined by
a quote/antiquote-mechanism, combining the best of both worlds.
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3.2 The Specification Language

State predicates are boolean expressions over atomic formulas, formed by the op-
erators &&, || , !,−−> (implication) and <−> (equivalence), and the quantifiers
\ forall T i ; P and \exists T i ; P. An atomic formula is one of the following:
(i) a side-effect free C expression of integer type (with a valuation of 0 denoting
false and anything else true), which may additionally contain bound variables
introduced by the quantifiers above, the operator \old(e) referring to the value
of expression e in the pre-state, and the special symbol \result which refers to
the function’s return value; (ii) a pointer predicate; or (iii) a quotation.

Pointer predicates use keywords to state common properties of pointers. These
are \valid(p) (expressing validity of a pointer), \array(a, n) (array a has at least
n elements), and \separated(a, m, b, n) (the memory areas denoted by a [0:m]
and b[0:n] are fully disjoint arrays).

Quotations are the means to embed Isabelle terms of type bool into specifica-
tions, e.g. to formulate the domain-related parts of a specification. A quotation
consists of an arbitrary Isabelle term enclosed in $ {...} . Reference to the pro-
gram state within quoted Isabelle terms is made possible via anti-quotations,
which allow expressions in C syntax to be spliced into a quotation. Anti-quota-
tions are syntactically enclosed in ‘{...} . Intuitively, an anti-quoted C expression
is interpreted by its semantic value (Sec. 2.3). As an example, using the prede-
fined Isabelle functions cmod and Complex , ${cmod (Complex ‘{x+1} ‘{y}) < c}
expresses that the complex number (x+ 1) + iy has a modulus below c, where x
and y are program variables of floating-point type. As a shorthand, for identifiers
one may write ‘x for ‘{x}, and $x for ${x}.

3.3 Translation to Isabelle

In contrast to programs, specifications are embedded shallowly as Isabelle func-
tions, where the translation from the specification language to Isabelle is per-
formed by the front-end. Preconditions P , postconditions Q and invariants I are
translated to Isabelle functions of types

P : Γ → Σ → Valn → bool I : Γ → Σ → bool
Q : Γ → (Σ ×Val ×Σ)→ Valn → bool

Note that the denotation of a modification set can also depend on the pre-
state, e.g. to specify that ∗x is changed when passing a pointer x to a function.
Modification sets are given the semantics [[mlist]] : Γ → Σ → Loc set , and the
front-end simply outputs the modification set as a value of the datatype mlist.

The translation is performed by a collection of operations {#,#l,#r,#i,#d}
on the abstract syntax of specification terms, for predicates, locations and the
expression types. We only sketch the translation of preconditions, as the others
are analogous. The generated Isabelle term for a precondition Pre will have form

λ Γ Σ (v1, . . . , vn) •#(Pre) (1)
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Predicates: #(A && B) def= (#(A) ∧ #(B))
#(\valid (p)) def= (valid_ptr Σ ([[p]] Γ Σ))

#(\array(p, n)) def= (valid_arr Σ ([[p]] Γ Σ) ([[n]] Γ Σ))
#(E1 < E2) def= #x(E1) < #x(E2) (x ∈ {l, d})

#(${s1 ‘{a1} s2 ‘{a2} · · · sk }) def= (s1 #x1(a1) s2 #x2(a2) · · · sk)
(xi ∈ {l, r, i, d})

Expressions: #x(E1 + E2) def= #x(E1) + #x(E2) (x ∈ {l, d})
#i( lval ) def= int (read #l(lval) Σ)

#l( lval [e]) def= array-acc #l( lval ) #i(e)
#i($a)

def= a

Fig. 5. Rules for the translation from abstract to Isabelle syntax

The translation operation # generates the body of the lambda term (1). This
means we translate state predicates in the implicit context of an environment Γ ,
the pre-state Σ and function argument values vi. We cannot define this trans-
lation within Isabelle in terms of the semantic functions [[·]], since Isabelle code
may appear in quotations, and antiquotations may refer back to bound vari-
ables introduced in quotations, but the translation via # resembles the defined
expression semantics on the quotation-free part of a specification term.

Fig. 5 shows representative translation rules. The logical connectives are di-
rectly translated to their Isabelle equivalents. For each pointer predicate there is
an Isabelle counterpart with the additional arguments Γ and Σ; e.g. valid_ptr
interprets \valid. Since the arguments to pointer predicates are unextended C
expressions, we can use the semantic function to interpret the abstract syn-
tax in Isabelle. Quotations are output verbatim, except for anti-quotations, the
translation of which is spliced into the quotation on the point of occurrence.
The translation of expressions behaves like the respective semantic function, but
outputs references to bound Isabelle variables ($a) by their name (a).

3.4 Representation Functions

A representation function maps objects represented implicitly in the state to
their explicit denotation. For example, in the specification stating that the sum of
the elements of a vector p.v is less than δ: ${ sum (Vec Σ ‘{p.v} ‘{p.vlen}) < δ}
the function Vec :: Σ → Loc → int → int list is a representation function,
yielding a list as the denotation for a vector represented implicitly by an array
p.v and its length p.vlen. Representation functions always refer to the state Σ, a
location, and a tuple of C scalar values (of type Valn). As they occur frequently,
our language provides representation anti-quotations to express them easily: a
representation function R : Σ → Loc → ValN → α can be refered to inside a
quotation as ^R{x_0, x_1, .., x_N}, where the x_i are C lvalues. Fig. 6 shows
a matrix inversion operation specified using representation anti-quotations.
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/∗@
@ r e q u i r e s \ v a l i d (m) && \ v a l i d ( i n v ) &&

${ i n v e r t i b l e ^Matr ix {m} }
@mod i f i e s ∗ i n v
@ensures \ r e s u l t != −1 −−>

${ ^Matr ix {m} ∗ ^Matr ix { i n v } = (1 : : mat3 ) }
@∗/

i n t i n v e r t_ t r an s f o rm ( const mat r i x3 ∗m, mat r i x3 ∗ i n v ) ;

Fig. 6. Example specification: matrix inversion. m and inv are not required to be
distinct. The specification assumes that a type of 3× 3 matrices mat3 and a constant
Matrix : Σ → Loc → mat3 are defined in Isabelle. 1 is an overloaded constant, used
here for the type mat3 .

An alternative to using representation functions in our setting would be to
develop a component-based state model that can be used in specifications di-
rectly (as in [5]). In our opinion, no state model can be conceived that is generic,
yet makes it comfortable to directly work with representations of C values as
provided by that model. In particular, this would require that all domain theo-
rems are formulated in terms of the state model, which is unrealistic. Further,
not all objects can be referenced as lvalues (in particular, there is no expression
evaluating to a whole array).

4 Generating Verification Conditions

In this section we describe how specifications are translated to theorems in Is-
abelle, how these theorem are proven, and what automatic support we provide.

4.1 Translation to Correctness Propositions

All translated annotation elements given for a function specification are com-
posed to form a proposition whose validity entails that the function at hand (call
it f) satisfies its specification. This proposition basically is a Hoare triple as of
Sec. 2.6. To be exact, it states that under the assumption that all functions called
by f do satisfy their specification, execution of f in an arbitrary pre-state satis-
fying the precondition will, for all possible arguments of the right type and arity,
(1) terminate, (2) not alter objects except those mentioned in the modification
set, (3) not access arrays outside their bounds,(4) not dereference invalid (or
NULL) pointers,(5) not perform a division by zero, and (6) end in a state that
together with the pre-state satisfies the postcondition. Note that this propo-
sition is formulated over the semantic interpretation of a C function, in which
we abstract the numeric types. It is therefore possible to write code that will
verify, but display unwanted behaviour in practice, by combining floating-point
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arithmetic and pointer manipulation.2 We argue, however, that this kind of in-
terplay is not common in applications, and can be avoided by other means.

Formally, the correctness proposition is as follows. Consider the specification

/∗@ @requ i r e s Pre @mod i f i e s m l i s t @ensure s Post @∗/
i n t f ( double x )

Let Γ be an appropriate environment which contains the relevant global variables
and specifications of f’s callees; further let arg_types p a express that the list
of actual parameters a matches the formal parameter list p w.r.t. their types.
Then the specification gets translated to the following Isabelle proposition:

∀ Λ args S1 • Λ = [[mlist]]Γ S1 ∧ arg_types [x] args −→
Λ, Γ 'f [λS. S = S1 ∧#(Pre) Γ S [x]]f(double x)

[λ(r, S). #(Post) Γ (S1, r , S) [x]]
(2)

4.2 Program Proof Rules

To derive verification conditions for a concrete program and specification, we
perform a backwards proof. Starting with proposition (2), we match the corre-
sponding rule on the current state. By reducing the program term, we build up
the postcondition. For this, there has to be at least one rule for each constructor
of the datatypes representing the language, and the rules have to be formulated
in such a way that the postcondition of the conclusion is a single variable, so it
can match on any postcondition. The proof is performed by an Isabelle tactic
that transforms the initial proof obligation (2) into a single intermediate veri-
fication condition (iVC) by applying proof rules that subsequently reduce the
program term to purely logical expressions. In total, we have ∼ 80 rules for
function definitions, local declarations, blocks, statements, expressions and all
constituent parts of these. Fig. 7 shows three of the rules.

As usual, the rules are best read from bottom to top. Rule (IntLVal) reduces
an lvalue integer expression (whose value is an integer) to the lvalue itself (whose
value is the location of the integer). This is done by reflecting the action of read-
ing a location within the predicate: the postcondition Q expecting the integer
value becomes (λlv S • let iv = read_int lv S in Q iv S), which expects a
location, reads it as an integer, binds that value to an intermediate variable iv
and then passes iv to Q. The let-binding avoids a blowup in predicate size and
keeps the number of read operations in predicates small.

2 The following code snippet will cause a segmentation fault on an IA-32 system, but is
verifiable since i <= 10000 && d > 0 is an invariant in the semantic interpretation.
int i = 0; int ∗ p = &i; double d = 1.0;
while ( i++ < 10000) d /= 2.0;
if (d <= 0) p = NULL;
∗p = 0;
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Λ, Γ (lv [P ] lval [λlv S • let iv = (read_int lv S) in Q iv S]
Λ, Γ (i [P ] lval [Q]

(IntLVal)

∀l • (Λ, Γ (e [R l] t [λa S • let T = update l a S in Q T ])
Λ, Γ (lv [P ] lv [λl S •R l S ∧ l ∈ Λ]

Λ, Γ (s [P ] lv = t [Q]
(Assign)

∀Λ′ S N • Λ′ = [[mlist]] Γ S −→
(Λ′, Γ (s [J Λ′ S N ] c [λT • invar Γ T ∧ [[var]] Γ T < N ] ∧
Λ′, Γ (b [K Λ′ S N ] b [λb T • (b −→ J Λ′ S N T ) ∧ (¬b −→ F T )])

Λ, Γ (s [λS • let M = [[mlist]] Γ S in
(invar Γ S ∧M ⊆ Λ ∧
(∀T • S )M T −→ invar Γ T −→ K M S ([[var]] Γ T )T ))]

while b c (loopanno invar mlist var)
[F ] (WhileTotal)

Fig. 7. Proof rules for integer lvalues, assignments and while statements

Since our pre- and postconditions are boolean-valued functions, we cannot
use substitution to reflect assignments in predicates. Instead, we explicitly mod-
ify the program state. Rule (Assign) shows this: to prove an assignment with
postcondition Q, we evaluate the lvalue we assign to (in the second premiss),
showing it is a modifiable location (l ∈ Λ). We then evaluate the expression t
(in the first premiss); the updated state is bound to an auxiliary variable T ,
which is passed to Q. This is equivalent to substitution: we create the predicate
stating that updating the state at lv with t yields a state satisfying Q. The state
predicate R is both the precondition of the first premiss and the postcondition
of the second, thus logically connecting Q and P in the conclusion.

We shall only illustrate the rule for loops (WhileTotal) here. It demonstrates
that proof rules for real program verification are a little more complex than what
idealised textbook variants might suggest, and shows why it is useful to be able
to prove the rules formally correct, making a manual correctness inspection of
rules like these unnecessary. The precondition of the conclusion requires that the
annotated invariant invar holds; that the annotated set of modifiable locations,
M , is a subset of the modifiable location set Λ in the context; and that in each
state T with S-M T we may infer K from the invariant. We want to show that F
holds after execution of the while statement. This holds given two premises. The
first premiss states that an arbitrary run of the body in a state satisfying J re-
establishes the invariant invar . The second premiss states that after evaluation
of the condition b under the precondition K we either obtain F directly — for the
case where b evaluates to false – or we end in a state satisfying some intermediate
predicate J , if b evaluates to true. Both premises are formulated in the context
of the annotated modification set mlist , instead of the context Λ of the loop
itself, ensuring the loop body only modifies locations as annotated in the loop
specification. Termination of the loop is also ensured, employing the annotated
variant var; without going into details, the rule encodes the requirement that
the variant, interpreted as a natural number, strictly decreases in each iteration.
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Weakened weakening through modification sets. Modification sets introduce the
essential property of framing (see Sec. 2.6), which shows up in what we call weak-
ened weakening. In the conclusion of rule (WhileTotal) we weaken the invariant,
roughly: ∀T • S -M T −→ invar T −→ K T . This is essentially the statement
that the invariant implies the weakest precondition of the loop body w.r.t. the
invariant itself, K. We do not need to be able to do this for any state, but only
for those states T with S -M T . Thus, facts about S can be used in proving
the weakening, since these are also valid for the quantified states T if they are
independent of the locations M . E. g., if the loop is the first statement of the
function to be verified, then we know the function’s precondition holds in S. The
invariant therefore only needs to specify those properties that concern locations
in M , which is exactly the desired framing property.

4.3 Reduction to Domain-Related and Program Safety VCs

The iVC is a single logical expression whose validity ensures program correct-
ness. This expression is simplified through a set of tactics which ultimately yield
verification conditions of three kinds, which then need to be proven interactively.
The first ones are domain-related VCs, e.g. that a function specified to compute
the inverse of an affine transform actually does so. The second ones are program
safety VCs that could not automatically be proven. These are comprised of non-
trivial array bounds checks, where the array is indexed in other ways than by an
iteration variable, pointer dereferencing checks and checks for division by zero.
Since pointer arithmetic is hardly used in mathematical operations, the safety of
pointer dereferencing can be proven automatically by the tactics in most cases.
The third kind of VC is concerned with modification sets; these VCs demand
that only the specified locations have been modified. The only VCs of this kind
that cannot be proved fully automatically are, again, those involving non-trivial
array indexing. These are seldom and mostly easy to prove manually, since an
assumption about the validity of the relevant array access will be available due
to an earlier proof of that fact.

There are three main technical features of these tactics worth mentioning. (1)
Thanks to the structure of the iVC, where every intermediate value and state
is let-bound, we can avoid a combinatorial explosion in the size and number
of VCs, similar to [15], because complex expressions do not occur repeatedly.
(2) Concerning aliasing, we have proven ∼ 100 lemmas about our state model
that allow to exploit a restricted property of the split heap model [8], namely
that structure fields with different names cannot be aliased for properly aligned
structures. (a−>f and b−>g always denote different locations for valid pointers
a and b). This eliminates many unnecessary VCs that would normally arise in a
basic state model like ours. (3) Finally, properties of representation functions are
known to the simplification tactics, such that, e. g., an update on a struct Point
in the code is reflected by an associated update on the model point in the VC.
Likewise, equalities such as R (update l v Σ)m = RΣm, expressing that the R-
representation at location m is independent of updates at l (with appropriate
conditions on m and l, of course) are built into the tactics.
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/∗@ @ r e q u i r e s \ sepa ra ted ( ps , l en , r s , r s_ len )
&& \ sepa ra ted ( qs , l en , r s , r s_ len )
&& l e n <= rs_ len && −$p i /2 <= a lpha && a lpha <= $p i /2

@mod i f i e s r s [ 0 : l e n ] . x , r s [ 0 : l e n ] . y
@ensures (\ r e s u l t == OK) −−>
${ ALL ( s : : r e a l ) . (ALL i . 0 <= i & i < ‘ l e n −−>

arc_end s ‘ a lpha ^Po in t { ps [ $ i ] } = ^Po in t { qs [ $ i ] } ) −−>
(ALL i . 0 <= i & i < ‘ l e n −−>

arc s ‘ a lpha ^Po in t { ps [ $ i ] } <= convex_hu l l
{^ Po in t {ps [ $ i ]} ,^ Po in t { r s [ $ i ]} ,^ Po in t { qs [ $ i ] } } )

} @∗/
s t a t u s a r c h u l l ( doub le alpha , vec2d ∗ps , vec2d ∗qs , i n t 32 len ,

vec2d ∗ r s , i n t 32 r s_ len ) ;

Fig. 8. Example specification: the archull function

4.4 Example: Verification at Work

α

r

r P

Q

R

Fig. 9. The arc hull

Fig. 8 shows the specification of a function archull which
calculates convex hulls of arcs. Each arc is given by its
endpoints Pi and Qi and the opening angle α of the cor-
responding circle segment which uniquely determines the
radius r. The convex hull is constructed with the inter-
section point Ri of the tangents through Pi and Qi, see
Fig. 9. This is a typical function of medium complexity,
which mixes domain-related and technical requirements.
The function takes an array of start- and endpoints, and
a single angle α, and stores the Ri in a result array.

The function is about 40 lines of C code, with calls to five other functions. The
translated Isabelle theory is about 500 lines. Our tactic reduces this function to
4 domain-related proof obligations, 8 technical and program safety obligations,
and 10 pointer-validity obligations (which are proven automatically).3

5 Related Work and Conclusion

This paper has presented an approach to the verification of C programs in the
context of software certification in the area of mobile robotics. Its distinctive
features are a deep embedding of a subset of C into Isabelle, and specification
by annotation in a language directly based on Isabelle’s higher-order language.

Closely related approaches such as Frama-C [17], Caduceus [3] or JML have a
comparatively weak, essentially first-order specification language, which in turn
can be used with many prover backends. In contrast, we have an expressive,
3 The relevant Isabelle theories are provided at
http://www.informatik.uni-bremen.de/~cxl/sources/fm09.tgz; a public release
of the tool will be made avaibable at http://www.sams-project.org/

http://www.informatik.uni-bremen.de/~cxl/sources/fm09.tgz
http://www.sams-project.org/
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higher-order language, geared towards a specific prover. We believe the added
expressivity of higher-order logic compensates for the loss of versatility. By that
we appeal to both conciseness of specifications (hence readability) and logical
expressivity. We cannot imagine how one would give a functional specification
of, e.g., geometric algorithms in pure first-order logic. Another difference is the
direct embedding of the programming language, as opposed to using an inter-
mediate language such as Simpl [5] or Why [3]. Thus, we have to rely less on
the transformations performed by a syntactical front-end, increasing confidence
in the correctness of the verification process.

There is other work using theorem provers (including Isabelle) to verify C
programs in different application domains, such as the L4 Verified project [18]
verifying an operating system kernel, Verisoft [19] concerned with comprehensive
verification (from the hardware to applications, including a verified compiler),
etc. The different application domains emphasize that there must be different
tools for different application scenarios [20] as each have their own requirements.
Moreover, it makes a big difference whether verification is used for external
certification, debugging or quality assurance. For example, model-checkers are
far more useful for debugging (e.g. [21]) than for certification.

Refinement calculi like VDM and Z are close to our approach concerning the
rich mathematical language used. However, we do not follow a refinement ap-
proach, although this is feasible in Isabelle. Instead, the concrete source code that
will run on the real system comes under formal scrutiny, which is particularly
relevant for safety-critical systems.

A denotational semantics (as opposed to an operational one, which captures
the C standard more closely [22]) has not only the advantage of easier verification
of the proof rules, but we can also use the denotations in the specification.

Our framework can presently handle C functions of medium length. The lim-
iting factor is the size of the proof state produced during the generation of the
verification conditions, which is—as usual for verification condition generators—
exponential in the number of sequential conditional branches and linear for other
program constructs. Care has been taken to keep the number of generated VCs
small. A join construct helps to keep the exponentional growth incurred from
conditionals in check. To be able to verify longer functions, one breaks them
down into smaller components. Presently, the framework consists of the fron-
tend, which is 14 kloc of Haskell (including a checker for MISRA conformance),
and the Isabelle backend. This contains 30 theories with a total of 1150 theo-
rems. The tactical support is 1700 lines of SML code. Using the prover language
for specification has the further advantage that it allows a comprehensive formal
approach, from domain modelling down to the code in one formalism [16].

The approach has been presented to the certification authority (TÜV Süd),
and preliminarily approved. The final presentation of the project results is sched-
uled for October 2009. The current experience is positive. The design of the
specification language has been validated in the weekly code and specification
reviews within the project, where researchers with no previous exposure to for-
mal methods and Isabelle were able to grasp specifications such as Fig. 8 quickly.
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Abstract. Expectation (average) properties of continuous random vari-
ables are widely used to judge performance characteristics in engineer-
ing and physical sciences. This paper presents an infrastructure that
can be used to formally reason about expectation properties of most of
the continuous random variables in a theorem prover. Starting from the
relatively complex higher-order-logic definition of expectation, based on
Lebesgue integration, we formally verify key expectation properties that
allow us to reason about expectation of a continuous random variable in
terms of simple arithmetic operations. In order to illustrate the practical
effectiveness and utilization of our approach, we also present the formal
verification of expectation properties of the commonly used continuous
random variables: Uniform, Triangular and Exponential.

1 Introduction

Probabilistic analysis is a tool of fundamental importance to virtually all scien-
tists and engineers as they often have to deal with systems that exhibit random
or unpredictable elements. Traditionally, computer simulation techniques [6] are
used to perform probabilistic analysis. However, they provide less accurate re-
sults and cannot handle large-scale problems due to their enormous processing
time requirements. Due to the recent increase in the usage of hardware and soft-
ware systems in safety-critical applications, such as medicine and transportation,
the precision and accuracy of their analysis has become imperative. Therefore,
simulation should not be relied upon for the analysis of such systems.

To overcome the above mentioned limitations, it has been recently proposed to
conduct probabilistic analysis of systems in a higher-order-logic theorem prover
[11]. The main idea behind this approach is to formally specify the behavior of
systems, with random or unpredictable components, in higher-order logic, while
representing the random components as formalized random variables. The prob-
abilistic and statistical properties of random variables are then used to formally
reason about systems characteristics, such as downtime, availability, number of
failures, capacity, and cost, in a theorem prover. The analysis carried out in this
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way is free from any approximation issues or flaws due to the mathematical na-
ture of the models and the inherent soundness of the theorem proving approach.
The milestones achieved so far, in this endeavor of developing a complete theo-
rem proving based probabilistic analysis framework that is capable of analyzing
any hardware or software system, include the formalization of probability theory
[15], the ability to formalize discrete and continuous random variables and verify
their probabilistic properties [15,11] and the ability to verify statistical proper-
ties of discrete random variables [11]. Whereas, to the best of our knowledge,
the formal reasoning about statistical properties regarding continuous random
variables has not been tackled in the open literature so far.

In this paper, as a first step towards filling the above mentioned gap, we
present an infrastructure that allows us to formally reason about the expecta-
tion properties of most of the commonly used continuous random variables in
a higher-order-logic theorem prover. Expectation plays a major role in decision
making as it tends to summarize the probability distribution characteristics of a
random variable in a single number. Thus, the contribution of this paper paves
the way to formally analyze many engineering and physical science systems with
continuous random components in a theorem prover. Some of the interesting
examples include the performance analysis of computer arithmetic systems like
floating-point arithmetic [19], where the Uniform random variable can be used to
model the roundoff error, algorithms that utilize continuous random variables,
such as the Balls and Bins with feedback [16] and network protocols by modeling
the request arrival rates by the exponential random variables.

The most commonly used definition of expectation, for a continuous random
variable X , is the probability density-weighted integral over the real line [16].

E[X ] =
∫ +∞

−∞
xf(x)dx (1)

The function f in the above equation represents the probability density function
(PDF) of X and the integral is the well-known Reimann integral. The above
definition is only limited to continuous random variables that have a well-defined
PDF. A more general, but not so commonly used, definition of expectation for
a random variable X , defined on a probability space (Ω,Σ, P ) [7], is as follows:

E[X ] =
∫

Ω

XdP (2)

This definition utilizes the Lebesgue integral and is general enough to cater
for both discrete and continuous random variables. The reason behind its lim-
ited usage in the probabilistic analysis domain is the complexity of solving the
Lebesgue integral, which takes its foundations from the measure theory that
most engineers and computer scientists are not familiar with.

The obvious advantage of using Equation (1) is the user familiarity with
Reimann integral that facilitates the reasoning process regarding the expectation
properties in the theorem proving based probabilistic analysis approach. On the
other hand, it requires extended real numbers, R = R ∪ {−∞,+∞}, whereas
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all the foundational work regarding theorem proving based probabilistic analy-
sis has been built upon the standard real numbers R, formalized by Harrison
[10]. Thus, the formalization of the expectation definition, given in Equation
(1), and making it compatible with the available formal probabilistic analysis
infrastructure would require creating a new data type R, and re-verifying the
already proven results in a theorem prover for this new data-type, which is a
considerable amount of work. Now, the expectation definition, given in Equation
(2), does not involve extended real numbers, as it accommodates infinite limits
without any ad-hoc devices due to the inherent nature of the Lebesgue integral.
It also offers a more general solution. The limitation, however, is the compromise
on the interactive reasoning effort, as it is not a straightforward task for a user to
build on this definition to formally verify the expectation of a random variable.

In this paper, we address the above mentioned limitation of using Lebesgue in-
tegration for defining expectation. Starting from Equation (2), we mainly utilize
the properties of the Lebesgue integral to formally verify two simplified expres-
sions for the expectation. The first one is for the case when the random variable
X is bounded in the positive interval [a, b]

E[X ] = lim
n→∞

[
2n−1∑
i=0

a +
i

2n
(b− a)P

{
a +

i

2n
(b− a) ≤ X < a +

i + 1
2n

(b− a)
}]
(3)

and the second one is for an unbounded positive random variable [7].

E[X ] = lim
n→∞

[
n2n−1∑

i=0

i

2n
P

{
i

2n
≤ X <

i + 1
2n

}
+ nP (X ≥ n)

]
(4)

Both of the above expressions do not involve any concepts from Lebesgue in-
tegration theory and are based on the well-known arithmetic operations like
summation, limit of a real sequence, etc. Thus, users can simply utilize them,
instead of Equation (2), to reason about the expectation properties of their ran-
dom variables and gain the benefits of the original Lebesgue based definition.
It is also important to note that we have a different expression for the bounded
case in order to facilitate the formal reasoning about the probability term, which
becomes very challenging to reason about if the unbounded expectation equation
is used for a bounded random variable.

To demonstrate the effectiveness of the above expressions, we utilize them for
the formal verification of the expected values for the commonly used continuous
random variables Uniform, Triangular and Exponential. Besides being illustra-
tive examples, these results can be essentially utilized in conducting the formal
performance analysis of many system that utilize these random variables.

The work described in this paper is done using the HOL theorem prover [8],
which is based on higher-order logic. The main motivation behind this choice
is the fact that most of the work that we build upon is developed in HOL,
such as the formalization of the real number theory [10], probability theory [15],
continuous random variables [11] and Lebesgue integration [4]. Though, it is
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important to note here that the ideas presented in this paper are not specific
to the HOL theorem prover and can be adapted to any other higher-order-logic
theorem prover as well, such as Isabelle, Coq or PVS.

The rest of the paper is organized as follows: Section 2 provides a review of
related work. Then, in Section 3, we present some foundations regarding higher-
order-logic based probabilistic analysis approach, such as the formalization of
probability theory, random variables and Lebesgue integration. Next, Section 4
outlines the formal proof details regarding Equations (3) and (4). We utilize these
theorems to illustrate the formal reasoning process regarding the expectation
properties of the above mentioned three continuous random variables in Section
5. In Section 6, we present the formal probabilistic analysis of rounding error in
floating-point numbers, in order to demonstrate the usefulness of our results in
the domain of probabilistic analysis. Finally, Section 7 concludes the paper.

2 Related Work

Early foundations of probabilistic analysis in a higher-order-logic theorem prover
were laid down by Nȩdzusiak [17] and Bialas [3] when they proposed a for-
malization of measure and probability theories in higher-order logic. Hurd [15]
implemented their work and developed a framework for the verification of prob-
abilistic algorithms in the HOL theorem prover. Random variables are basically
probabilistic algorithms and thus can be formalized and verified, based on their
probability distribution properties, using the methodology proposed in [15]. In
fact, building upon Hurd’s formalization, most of the commonly used discrete
[15] and continuous [11] random variables have been formalized. The above men-
tioned formalization of probability theory has also been used to formally reason
about statistical properties, such as expectation and variance, of discrete random
variables [11]. Due to the fact that the discrete random variables can only attain
a countable number of values, the expectation in this case has been formally
defined using a summation rather than integration. Obviously such a definition
cannot be used with continuous random variables, which have an uncountable
range. The probabilistic analysis foundations, mentioned above, have been suc-
cessfully used to conduct precise probabilistic analysis of many systems, such as
computation algorithms [15,11], real-time systems [11], communication protocols
[13], wireless systems [14], and hardware components [12].

As mentioned in the last section, Lebesgue integration is the core concept
in the definition of expectation. Richter [18] formalized a significant portion of
the Lebesgue integration theory in higher-order logic using Isabelle/HOL. But,
this formalization can only handle functions that map subsets of real numbers
to real numbers. This limitation somewhat restricts the usage of this formaliza-
tion to define the expectation, where the function that needs to be integrated
is the random variable that in its most general form maps the subsets of an
arbitrary sample space to real numbers. More recently, Coble [4] formalized the
Lebesgue integration theory in HOL. This formalization overcomes the limita-
tion of Richter’s work as it allows integration over functions that are measurable
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from a space of any arbitrary data-type to any subset of the real numbers.
Coble’s formalization of the Lebesgue integral has been used to formally define
expectation of a random variable [4]. But in this formalization, some theorems
have been verified under the assumption that measurable sets have to be equal
to the power set of the sample space. This fact restricts Coble’s formalization
for sample spaces that do not contain any non-measurable subsets. Whereas,
this condition is not satisfied for sample spaces for continuous random variables.
Daumas et. al. [5] have also formalized some Lebesgue integration theory in the
PVS theorem prover. The authors claim to have formally defined expectation
based on this formalization, but no details were given in [5]. Moreover, to the
best of our knowledge, no information regarding the utilization of this definition
to formally reason about the expectation of continuous random variables has
been provided in this work, which is the main contribution of our paper.

In this paper, we extend the measure theoretic formalization infrastructure,
based on the works, presented in [15,11], available in the HOL theorem prover,
with the ability to formally reason about expectation properties of continuous
random variables. This would be a novelty that to the best of our knowledge has
not been presented in the open literature so far. The main motivation behind
using the measure theoretic approach instead of the one proposed by Aude-
baud [2] is to be able to utilize the Lebesgue integral, which has a foundational
relationship with the measure theory. We utilize the Lebesgue integral formal-
ization, presented in [4], for our work because it is available in the HOL theorem
prover and is thus compatible with the other theories [15,11] that we build upon.
Though, we make it general enough to tackle sample spaces for continuous ran-
dom variables as well.

3 Preliminaries

In this section, we provide an overview of the higher-order-logic formalizations
of probability theory, continuous random variables and Lebesgue integration
theory. The intent is to introduce the main ideas along with some notation that
is going to be used later in this paper.

3.1 Probability Theory and Random Variables in HOL

A measure space is defined as a triple (Ω,Σ, µ), where Ω is a set, called the
sample space, Σ represents a σ-algebra of subsets of Ω and the subsets are
usually referred to as measurable sets, and µ is a measure with domain Σ [7]. A
probability space is a measure space (Ω,Σ, P ) such that the measure, referred to
as the probability and denoted by P , of the sample space is 1.

Hurd [15] formalized some measure theory to define a measure space as a pair
(Σ,µ). Whereas the sample space, on which this pair is defined, is implicitly
implied from the higher-order-logic definitions to be equal to the universal set
of the appropriate data-type. Building upon this formalization, the probability
space was also defined in HOL as a pair (E ,P), where the domain of P is the set
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E , which is a set of subsets of infinite Boolean sequences B∞. Both P and E are
defined using the Carathéodory’s Extension theorem, which ensures that E is a
σ-algebra: closed under complements and countable unions.

Now, a random variable, which is one of the core concepts in probabilistic
analysis, is fundamentally a probabilistic function and thus can be modeled in
higher-order logic as a deterministic function, which accepts the infinite Boolean
sequence as an argument. These deterministic functions make random choices
based on the result of popping the top most bit in the infinite Boolean sequence
and may pop as many random bits as they need for their computation. When
the functions terminate, they return the result along with the remaining portion
of the infinite Boolean sequence to be used by other programs. Thus, a random
variable which takes a parameter of type α and ranges over values of type β can
be represented in HOL by the function F .

F : α→ B∞ → β ×B∞

As an example, consider the Bernoulli(1
2 ) random variable that returns 1 or 0

with equal probability 1
2 . It can be formalized in HOL as follows

' bit = (λs. if shd s then 1 else 0, stl s)

It accepts an infinite Boolean sequence, where shd and stl are the sequence
equivalents of the list operation ‘head’ and ‘tail’. The formalized P and E can
be used to verify the basic laws of probability as well as probabilistic properties
regarding random variables in the HOL theorem prover. For example:

' P {s | fst (bit s) = 1} = 1
2

where the HOL function fst selects the first component of a pair and {x|C(x)}
represents a set of all x that satisfy the condition C. It is important to note here
that, since the probability measure P is only defined on sets in E , it is absolutely
necessary to verify that the set that appears in a probabilistic property is in E
before we can formally verify that property in HOL. For the above example, this
condition translates to the verification of {s | fst (bit s) = 1} ∈ E .

The above approach has been successfully used to formalize and verify most of
the commonly used discrete random variables [15]. The sampling algorithms for
discrete random variables are either guaranteed to terminate or satisfy proba-
bilistic termination, meaning that the probability that the algorithm terminates
is 1. On the other hand, the formalization of continuous random variables in-
volves non-terminating algorithms and hence require a different approach than
discrete random variables.

Building upon the above mentioned probability theory framework, an ap-
proach for the formalization of continuous random variables has been presented
in [11]. The main idea is based on the concept of the Inverse Transform Method
(ITM) [6], according to which, the random variable X , for any continuous cu-
mulative distribution function (CDF) F , can be defined as X = F−1(U), where
F−1 is the inverse function of F , and U represents the Standard Uniform random
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Table 1. Continuous Random Variables in HOL

Distribution CDF Formalized Random Variable

Uniform(a, b)
0 if x ≤ a;
x−a
b−a

if a < x ≤ b;
1 if b < x.

( ∀s l. uniform rv a b s =
(b− a)(std unif rv s) + a

Triangular(0, a)
0 if x ≤ 0;
( 2

a
(x− x2

2a
)) if x < a;

1 if a ≤ x.

( ∀s a . triangular rv l s =
a(1−√1− std unif rv s)

Exponential(l)
0 if x ≤ 0;
1− e−lx if 0 < x.

( ∀s l. exp rv l s =
− 1

l
ln(1− std unif rv s)

variable. The formal proof of this proposition is based on the CDF characteris-
tic of the Standard Uniform random variable and some of the CDF properties
[11]. ITM allows us to formalize any continuous random variable, which has a
well-defined CDF, in terms of a formalized Standard Uniform random variable
(std unif rv). Based on this approach, the CDFs and higher-order-logic defi-
nitions of three continuous random variables are given in Table 1 [11]. In this
paper, we will utilize formally verified expressions, corresponding to Equations
(3) and (4), to verify the expectation relations for these random variables in
Section 5.

3.2 Lebesgue Integration in HOL

Lebesgue integration is based on the concept of measure and is defined for a
class of functions called measurable functions, which are well-behaved functions
between measurable spaces. Coble [4] formalized the Lebesgue integration theory
in HOL based on a generalized measure space (S, S, λ). It is important to note
here that, unlike Hurd’s formalization of the measure space, we do have the
flexibility to choose any sample space S in this case. The higher-order-logic
definition of the Lebesgue integral utilizes the concepts of indicator function
and positive simple-function [7]. The indicator function is defined as follows for
a set A

IA(a) =
{

1 if a ∈ A;
0 otherwise. (5)

Whereas, a function g is said to be a positive simple-function for the measure
space (S, S, λ) iff it can be expressed as follows

g =
n∑

i=0

ciIai (6)

where ci is a sequence of positive real values and ai is a sequence of disjoint
measurable sets such that

⋃n
i=0 ai forms a partition of S. Now the integral for

such a positive-simple function g can be defined as follows.
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∫
S

g dλ =
n∑

i=0

ci(λai) (7)

The next step towards the formal definition of the Lebesgue integral is to define
the integral for a positive function f that is measurable from (S, S) to (S′, S′)∫

S

f dλ = sup

{∫
S

gdλ

∣∣∣∣ (∀x.g(x) ≤ f(x))
}

(8)

where g is a positive-simple function w.r.t the measure space (S, S, λ).
The Lebesgue integral of a real-valued measurable function from (S, S) to

(S′, S′) can now be formalized in terms of Equation (8) as follows∫
S

f dλ =
∫

S

f+ dλ−
∫

S

f− dλ (9)

where f(x) = f+(x) − f−(x) and f+ and f− are the positive and negative
portions of f , respectively, and are both positive functions. It is also important
to note that the integral of f is well-defined iff both f+ and f− are measurable
from (S, S) to (S′, S′) and their integrals do not both diverge to infinity.

Besides the formalization of the above definitions, many useful properties
regarding the Lebesgue integral have also been verified in [4] as higher-order-
logic theorems. For example, we utilize the following convergence of a positive
measurable function to the Lebesgue integral property.

(
∀x ∈ S.(∀n x.fn(x) ≤ f(x)) ∧ ( lim

n→∞ fn(x) = f(x)
)
∧
(

lim
n→∞

∫
S

fn dλ = r
)

⇒
∫

S

f dλ = r

(10)

The function f , in the above equation, is a positive real-valued function that
is measurable from (S,P(S)) to (S′,P(S′)), where P(A) denotes the power set
of the set A. Whereas, the sequence fn is a monotonically increasing sequence
of positive simple-functions. It is important to note here that this theorem and
many others in Coble’s work [4] have been verified for the case when the mea-
surable sets S is equal to the power set of the sample space S. This restricts
the usage of these theorems to sample spaces for which all possible subsets are
measurable. This condition is not satisfied for sample spaces that are used to
model continuous random variables.

4 Verification of Expectation Relations

In this section, we utilize the probability and Lebesgue integration theories,
described in the previous section, to formally verify the expectation relations for
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the bounded and unbounded random variables, given in Equations (3) and (4),
respectively.

The first step in this regard is to formally define the expectation in terms
of the Lebesgue integral. For this purpose, we utilize the definition of Lebesgue
integral, given in Equation (9), as follows:

Definition 1. Expectation of a Random Variable
' ∀ f. expec (U , E ,P) f =

∫
U f dP

The function expec accepts a probability space, (U , E ,P), and a random variable
f that maps infinite Boolean sequences to real numbers. It is important to note
that by using Hurd’s formalization of the probability space (U , E ,P), where U
represents the universal set of all Boolean sequences, as outlined in Section 3, we
can utilize the above definition to reason about expectation of random variables
formalized in [15,11]. Though, we had to generalize the Lebesgue integration the-
orems, proposed in Coble’s work [4]. Since, the existing theorems are based on the
assumption S = P(S), which is not true for our probability space (U , E ,P), where
the power set of the set of all Boolean sequences do contain non-measurable sets
as has been formally verified in [15]. Our more generalized version of these theo-
rems are based on the assumption that S = {x|(x ∈ P(S))∧ (x is measurable)},
which is obviously true for our probability space (U , E ,P).

4.1 Bounded Random Variables

The expectation property, given in Equation (3), can be expressed as a higher-
order-logic theorem using Definition 1 as follows:

Theorem 1. Expectation of Bounded Random Variables
' ∀ a b f. (0 ≤ a) ∧ (a < b) ∧ (∀ s. a ≤ f s ≤ b) ∧
(∀ x y. x < y ⇒ {s

∣∣ x ≤ f s < y} ∈ E) ⇒(
expec (U , E ,P) f =

lim
n→∞

[∑2n−1
i=0 (a + i

2n
(b − a))P

{
s

∣∣∣∣ a + i
2n

(b− a) ≤ f s < a + i+1
2n

(b − a)
}])

The first three assumptions ensure that the random variable f is bounded in
the positive interval [a, b]. Whereas, the fourth assumption ensures that the set
involved in this verification is measurable.

In order to utilize any definition or property of Lebesgue integration theory
with the above theorem, we first need to show that the triple (U , E ,P) is a
measure space with a positive measure. We verified these conditions based on the
corresponding theorems available in Hurd’s formalization of the probability space
(E ,P) along with the definition of measure in [4] under the given assumptions.

Since our random variable f is a positive-valued real number, we do not have
the term involving the f− term in the Lebesgue integral definition and thus, for
this specific case, Equations (8) and (9) become equivalent. This allows us to
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use the convergence of a positive measurable function to the Lebesgue integral
property, given in Equation (10), to reason about Theorem 1. Using Modus
Ponens (MP) rule, we can split the proof goal of Theorem 1 to the following
five subgoals, corresponding to the monotonicity and positive simple-function
requirement on fn and the three assumptions of Equation (10):

mono increasing

⎡⎢⎢⎣2
n−1∑
i=0

(a +
i

2n
(b − a))I⎧⎨⎩s

∣∣∣∣ a+ i
2n

(b−a)≤f s<a+ i+1
2n

(b−a)

⎫⎬⎭
(x)

⎤⎥⎥⎦
(11)

(
∀i.(i < 2n)⇒

{
s

∣∣∣∣ a +
i

2n
(b− a) ≤ f s < a +

i + 1

2n
(b− a)

}
∈ E

)
∧(

∀i.0 ≤ a +
i

2n
(b − a)

)
∧
(
FINITE{i|i < 2n}

) (12)

⎡⎢⎢⎣2n−1∑
i=0

(a +
i

2n
(b − a))I⎧⎨⎩s

∣∣∣∣ a+ i
2n

(b−a)≤f s<a+ i+1
2n

(b−a)

⎫⎬⎭
(x)

⎤⎥⎥⎦ ≤ f(x) (13)

lim
n→∞

⎡⎢⎢⎣2n−1∑
i=0

(a +
i

2n
(b− a))I⎧⎨⎩s

∣∣∣∣ a+ i
2n

(b−a)≤f s<a+ i+1
2n

(b−a)

⎫⎬⎭
(x)

⎤⎥⎥⎦ = f(x) (14)

∃y. lim
n→∞

[
2n−1∑
i=0

(a +
i

2n
b− a)P

{
s

∣∣∣∣ a +
i

2n
b − a ≤ fs < a +

i + 1

2n
b− a

}]
= y

(15)

The monotonically increasing property in the first subgoal is verified based on the
facts that (1) the indicator function is 1 in only one interval or for one particular
value of i and (2) as the argument of the sequence increases, i.e., n, the intervals
become finer and thus the resulting value of the sequence increasingly gets closer
to the value of f x. The second subgoal corresponds to the pre-conditions for
the positive simple-function function fn and consists of three subgoals. These
three subgoals are discharged based on the fourth assumption of Theorem 1,
arithmetic reasoning and set theory principles, respectively. The third subgoal
is true as there is only one i, say i′, for which the real value of f x falls in the
interval [a+ i

2n (b−a), a+ i+1
2n (b−a)) out of the 2n possible values for i. Thus the

indicator function is 1 for this particular i only and 0 otherwise, meaning that
the summation is equal to (a + i′

2n (b − a)). Now, substituting this value for the
summation in the third subgoal along with the fact that f x lies in the interval
[a + i′

2n (b − a), a + i′+1
2n (b − a)) leads to its verification. The fourth subgoal is

discharged based on reasoning similar to the previous subgoal, the monotonicity
of the given sequence and the definition of the limit of a real sequence. Finally,
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the real sequence in the fifth subgoal is verified to be convergent by verifying
that it is monotonic and that the probability term in the sequence is non-zero
for only one particular value of i. The sequence thus has an upper bound b since
the value of i is always less than 2n and the maximum value for the probability
term is 1. The verification of these five subgoals also concludes the verification
of Theorem 1.

4.2 Unbounded Random Variables

The expectation property, given in Equation (4), can be expressed as a higher-
order-logic theorem using Definition 1 as follows:

Theorem 2. Expectation of Unbounded Random Variables
' ∀ f. (∀ s. 0 ≤ f s) ∧ (∀ x. {s

∣∣ f s ≥ x} ∈ E)
(∀ x y. x < y ⇒ {s

∣∣ x ≤ f s < y} ∈ E) ⇒(
expec (U , E ,P) f =

lim
n→∞

[∑n2n−1
i=0 ( i

2n
)P
{
s

∣∣∣∣ i
2n
≤ f s < i+1

2n

}
+ nP

{
s

∣∣∣∣ f s ≥ n

}])
The first assumption ensures that the random variable f is positive. The second
and third guarantee that the sets that arise in this verification are measurable
events. The summation range has been extended to [0, n2n − 1] so that the
first probability term in the above theorem covers the interval [0, n). While, the
second probability term covers the rest of the positive unbounded interval.

The verification steps for Theorem 2 are very similar to the ones for Theorem
1. The major step is to split this goal into subgoals using Equation (10). These
subgoals are then verified using arithmetic reasoning, set theory principles and
the fact that the events in the two probability terms of the proof goal are disjoint,
which means that one of the probability term is always equal to 0.

Our verification results matched the paper-and-pencil analysis counterpart for
Theorem 2, which is available in [7], and confirmed the correctness of Theorem 1,
which we had worked out ourselves and were not able to find it in any published
texts. Besides checking for correctness for these mathematical relationships, the
major motivation behind their verification is to utilize them to reason about
the expected values of continuous random variables and thus in turn use these
results for conducting formal probabilistic analysis of systems.

5 Expectation of Continuous Random Variables

To illustrate the effectiveness of the expectation relations, proved in the previous
section, we now utilize them to verify the expectation of three continuous random
variables, i.e., Uniform, Triangular and Exponential.
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5.1 Uniform Random Variable

The expectation relation for the continuous Uniform random variable bounded
in the interval [a, b] can be formalized as follows:

Theorem 3. Expectation of the Uniform(a,b) Random Variable
' ∀ a b. (0 ≤ a) ∧ (a < b) ⇒(

expec (U , E ,P) (uniform rv a b) = a+b
2

)
In order to utilize Theorem 1 to reason about the correctness of the above theo-
rem, we first verify that the Uniform random variable satisfies all pre-conditions,
given in Theorem 1, based on the theorems given in [11]. Next, we rewrite the
probability term in Theorem 1, using the CDF for the Uniform random variable,
given in Table 1, to simplify our proof goal as follows:

lim
n→∞

[
2n−1∑
i=0

(a +
i

2n
(b− a))

(
a + i+1

2n
(b − a)− a

b− a
−

a + i
2n

(b− a)− a

b− a

)]
=

a + b

2

(16)
The above subgoal can now be discharged using arithmetic reasoning, along with
the properties of summation of a real sequence and the limit of a real sequence.
This also concludes the verification of Theorem 3.

5.2 Triangular Random Variable

The expectation relation for the continuous Triangular random variable bounded
in the interval [0, b] can be formalized as follows:

Theorem 4. Expectation of the Triangular(b) Random Variable
' ∀ b. (0 < b) ⇒

(
expec (U , E ,P) (triangular rv b) = b

3

)
The verification steps are similar to the ones for Theorem 3 and are primarily
based on Theorem 1 and the CDF of the Triangular random variable.

5.3 Exponential Random Variable

The expectation for the continuous Exponential random variable, which is un-
bounded at the upper end, i.e., defined in [0,∞), can be formalized as follows:

Theorem 5. Expectation of the Exponential(l) Random Variable
' ∀ a. (0 < a) ⇒

(
expec (U , E ,P) (exp rv a) = 1

a

)
Due to its unbounded nature, we use Theorem 2 to reason about the expectation
of Exponential random variable. Now, after rewriting the probability term and
some arithmetic simplification, we get the following subgoal:

lim
n→∞

[(
1− e−

a
2n

)( n2n−1∑
i=0

i

2n
e−a i

2n

)
+ ne−an

]
=

1

a
(17)



Formal Reasoning about Expectation Properties 447

which can be broken into the following two subgoals.

lim
n→∞

(
ne−an

)
= 0 (18)

lim
n→∞

[(
1− e−

a
2n

2n

)( n2n−1∑
i=0

i(e−
a
2n )i

)]
=

1

a
(19)

We proceed with the verification of the first subgoal by rewriting the exponential
term e−an as (1 + x)−n, where x > 0. Next, we verify that the term (1 + x)n is
greater than 1 + nx+ 1

2
n(n− 1)x2, for all values of n, as the latter represents a

truncated form of its Binomial expansion. This fact leads us to verify that the
value of the real sequence (λn.n(1 + x)−n) will be less than the real sequence
(λn.n( 1

2
n(n− 1)x2)−1) for all values of n. This reasoning allows us to discharge

the first subgoal, given in Equation (18), as the limit value of the real sequence
(λn.n( 1

2
n(n− 1)x2)−1) = (λn. 2

x2(n−1)) is 0.
In order to simplify the verification of the second subgoal, given in Equation

(19), we first evaluate the summation term by verifying the summation of a finite
arithmetic-geometric series in HOL.

n∑
k=0

kqk =
q

(1− q)2
(1 − qn)− nqn+1

1− q
(20)

The above relationship allows us to rewrite the second subgoal as follows:

lim
n→∞

(
e−

a
2n (1 − e−an)

2n(1− e−
a
2n )
− ne−an

)
=

1

a
(21)

Now, Equation (18) and the already proved fact that the limit value of the real
sequence (λn.e−ln) is 0 allows us to simplify the above subgoal as follows.

lim
n→∞

(
e−

a
2n

2n(1− e−
a
2n )

)
=

1

a
(22)

We reason about the correctness of the above limit by first evaluating the fol-
lowing limit relationship.

lim
x→0

(
xe−ax

(1− e−ax)

)
=

1

a
(23)

The proof of the above equation is primarily based on the L’Hopital’s Rule, which
we also verified in HOL as part of this project. Now, the variable x in Equation
(23) can be specialized to 1

2n
. This expression along with the definitions of limit

of a real sequence and the limit of a function when its arguments approaches a
real value leads to the verification of the remaining subgoal, given in Equation
(22). This also concludes the proof of Theorem 5.

The verification of the above three expectation properties does not involve
any reasoning based on the Lebesgue integral. As a consequence, the verification
process, which just took around 80 man hours with approximately 3500 lines of
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HOL code, was very straightforward and quick in comparison to the verification
of Theorems 1 and 2, which took around 350 man-hours and approximately 5000
lines. This clearly demonstrates the strength of our work, which is to provide the
ability to build upon Theorems 1 and 2 and reduce the interactive reasoning ef-
forts regarding the expectation properties of continuous random variables. Also,
our theorems are quite general and can be built upon to reason about expected
values of many other random variables as well, such as the Rayleigh and Pareto.

6 Round-Off Error in Floating-Point Representation

Algorithms involving floating-point numbers are extensively used these days in
almost all digital equipment ranging from computer and digital processing to
telecommunication systems. Due to their complexity and wide spread usage in
safety critical domains, formal methods are generally preferred over traditional
testing to ensure correctness of floating-point algorithms. A classical work in
this regard is Harrison’s error analysis of floating-point arithmetic in higher-order
logic [9]. Harrison presents a formalization of floating point numbers, verification
of upper bounds on the error in representing a real number with floating-point
system and the error in floating-point arithmetic operations. Even though this
analysis is very useful in identifying the worst case conditions, it doest not reflect
upon the typical or average errors. In fact, the assumed worst case conditions
rarely occur in practice. So the error analysis, based under these worst-case
conditions can improperly suggest that the performance of the algorithm is poor.

In paper-and-pencil analyses, probabilistic techniques are thus utilized in the
error analysis of floating-point algorithms [19]. The main idea behind this prob-
abilistic approach is to model the error in a single floating-point number by an
appropriate random variable and utilize this information to judge the expected
value of error while representing a real number in floating-point system. This
expected value of error can then be used to find the expected value of error in
different floating-point arithmetic operations.

The above mentioned probabilistic analysis involves reasoning about the ex-
pectation value of a continuous random variable, since the error between a real
number and its corresponding floating-point representation is continuous in na-
ture. Thus, our proposed infrastructure can be directly utilized to conduct such
analysis, something that to the best of our knowledge was not possible before.

We built upon Harrison’s error bounds for floating-point representations of
big (|x| ∈ [2k, 2k+1), small (|x| ∈ [ 1

2k+1 ,
1
2k ] : k < 126), and tiny (|x| ∈ [0, 1

2126 ])
real numbers [9]. The error is defined as the difference between the real value
of the floating-point representation and the actual value of the corresponding
real number (error(x) = float(x)− x), with round-to-nearest rounding mode.
Based on this definition, upper bounds on the absolute value of error are verified
to be equal to 2k

224 , 1
2k+1224 and 1

2150 , for the three cases above, respectively.
Assuming any value of error to be equally likely [19], we constructed formal

probabilistic models for representing the above mentioned rounding errors us-
ing Uniform random variables defined in the intervals [0, 2k

224 ], [0, 1
2k+1224 ] and
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[0, 1
2150 ], respectively. Theorem 3 was then used to verify the expectation values

of these floating-point errors using the HOL theorem prover.

Theorem 6. Expectation of Floating-Point Errors
' ∀ k x.

(
expec(uniform rv 0 2k

224 ) = 2k−1

224

)
∧(

expec(uniform rv 0 1
2k+1224 ) = 1

2k+1225

)
∧(

expec(uniform rv 0 1
2150 ) = 1

2151

)
The above theorem plays a pivotal role in the statistical error analysis of floating-
point arithmetic. Based on these average values of error in a single floating-point
number, the average errors in floating point operations, like addition, subtrac-
tion and multiplication, that involve multiple floating-point numbers, can be
evaluated. Similarly, this information can be further utilized in conducting the
statistical error analysis of basic digital signal processing (DSP) systems by
building on top of the DSP verification framework in HOL [1], which as of now
does not include any probabilistic and statistical considerations.

7 Conclusions

In this paper, we have presented an infrastructure to reason about expectation
properties of continuous random variables using a higher-order-logic theorem
prover. This capability allows us to conduct formal statistical analysis of systems
with continuous random components, a novelty, which is not supported by most
of the existing probabilistic analysis tools.

We built upon a formalized Lebesgue integration theory to define expecta-
tion and based on this definition we verified two alternate expectation relations.
These relations do not involve any concepts from the mathematically complex
Lebesgue integration theory and thus facilitate reasoning about expected val-
ues of continuous random variables significantly. We utilized these relations to
verify the expected values of the extensively used continuous random variables
Uniform, Triangular and Exponential. To the best of our knowledge, this is the
first time that the formal reasoning about the expectation of these continuous
random variables has been presented in a higher-order-logic theorem prover.

Our formally verified expectation relations are valid for discrete random vari-
ables as well, due to the generic nature of the Lebesgue integral. In fact, we plan
to link these relations to the summation based definition of expectation [11] in
order to come up with a unified reasoning framework for both discrete and con-
tinuous random variables. Also, the presented results can be extended to be used
for random variables that are not positive functions, since the Lebesgue integral
allows integration over negative functions, as can be observed from Equation
(9). Other interesting future research directions, that benefit from this work,
include the formal reasoning frameworks for variance properties and tail distri-
bution bounds and the ability to reason about statistical properties of systems
that involve multiple continuous random variables.
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The Denotational Semantics of slotted-Circus
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Abstract. This paper describes a complete denotational semantics, in
the UTP framework, of slotted-Circus, a generic framework for reason-
ing about discrete timed/synchronously clocked systems. The key result
presented here is a comprehensive semantics of the entire language that
addresses various semantics issues that have been uncovered, whilst lay-
ing foundations for future extensions, particularly towards prioritized
choice.

1 Introduction

1.1 Circus and slotted-Circus

The formal notation Circus is a unification of Z and CSP, and has been given
a UTP semantics [OCW09]. A Circus text describes behaviour as a collection
of actions, which are a combination of processes with mutable state. However,
apart from event sequencing, there is no notion of time in Circus. A timed version
of Circus (Circus Time Action or CTA) has been explored [SH02, She06] that
introduces the notion of discrete time-slots in which sequences of events occur.
The semantics of CTA has been developed using UTP, and there we find a
two-level notion of history: the top-level views history as a sequence of time-
slots; whilst the bottom-level records a history of events within a given slot.

Our interest in hardware compilation languages such as Handel-C [Cel02] led
to a development of semantic theories based on the notion of time-slots in CTA,
but with much more structure (“microslots”) to the events within the timeslots
[BW05]. Looking for a way to formally link Circus as a specification language
to Handel-C as an implementation language, and given that CTA was a step in
this direction, we decided to explore a UTP semantics for Handel-C.

As the Handel-C semantics had three levels of complexity, each supporting
a larger range of language features, it was decided to develop a generic the-
ory (called slotted-Circus), with time-slots whose bottom-level contents could be
parameterised, as simple traces, or multisets of events, or as one of the three
successively more complex “micro-slot” structures [BSW07]. That paper dis-
cussed a number of fundamental issues that had to be addressed, most regarding
healthiness conditions. More recent work [GBW09] looked at subtleties involving
communication and state update.
∗
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Another reason for using UTP was that it will allow us, in the future, to ex-
plore refinement links to other specification/programming languages also treated
using the UTP framework.

This paper describes a complete denotational semantics, in the UTP frame-
work, of slotted-Circus, finishing off earlier work. The key contribution here, apart
from the completion, is an understanding of the key role played by refusals in
the theory, particularly with respect to the semantics of hiding.

1.2 UTP: General Principles

Theories in UTP are expressed as second-order predicates1 over a pre-defined
collection of free observation variables, referred to as the alphabet of the theory.
The predicates are generally used to describe a relation between a before-state
and an after-state, the latter typically characterised by dashed versions of the
observation variables. A predicate whose free variables are all undashed, referring
only to the before-state, is called a condition. So for example, the program below
on the left could be described by the predicate on the right:

f := f ∗ x; x := x− 1 f ′ = f ∗ x ∧ x ′ = x − 1

Here logical variables f and f ′ denote the before- and after-values of the program
variable f. We note that UTP follows the key principle that “programs are
predicates” [Hoa85b] and so does not distinguish between the syntax of some
language and its semantics as alphabetised predicates. In practise, we also need
auxiliary logical variables to capture other aspects of a programs behaviour. For
example, in a theory of simple imperative programming, we might use ok and
ok ′ to model respectively the successful start and termination of a program. Our
above example would then have its full semantics as follows:

ok ⇒ ( ok ′ ∧ f ′ = f ∗ x ∧ x ′ = x − 1 )

A given theory is characterised by its alphabet, and a series of healthiness condi-
tions that constrain the valid assertions that predicates may make. A healthiness
condition is a property of a predicate that distinguishes sensible predicates from
nonsense. So, for example the following predicate is clearly nonsense under our
intended interpretation:

¬ ok ∧ ok ′

It asserts that a program has not been started, but yet has terminated! It can
be ruled out by the following healthiness condition (which yields false for the
above predicate):

P = (ok ⇒ P)

Note that healthiness conditions should not be confused with ordinary conditions
(predicates with only before-variables).

1 Most definitions are in fact 1st-order, but we need 2nd-order in order to handle the
notion of “healthiness”, and recursion.
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Action ::= Skip | Stop | Chaos |Wait t
| Comm → Action | Action � Action | Action � Action
| Action |[VS | CS | VS ]| Action | Action\CS | µ Name • F (Name)
| Name+ := Expr+ | Action ; Action | Action �Expr� Action | Expr ∗ Action

Comm ::= Name.Expr | Name!Expr | Name?Name
Expr ::= expression

t ::= positive integer valued expression
Name ::= channel or variable names

CS ::= channel name sets
VS ::= variable sets

Fig. 1. Slotted-Circus Syntax

1.3 Structure and Focus

The main technical emphasis of this paper is on the details of the semantics
definitions of the language constructs, to ensure that the desired laws can be
verified. We first present the syntax §2, generic framework §3, and healthiness
conditions §4. We then discuss semantics §5 in some detail, and present some
laws with a sketch of the proof of one of interest §6. We finish by mentioning
related §7 and future §8 work, and concluding §9.

2 Syntax

The syntax of Slotted-Circus is similar to that of Circus, and a subset, relevant
to this paper, is shown in Figure 1. The notation X + denotes a sequence of
one of more X . We assume an appropriate syntax for describing expressions and
their types, subject only to the proviso that at least booleans and non-negative
integers are included.

The basic actions Skip, Stop, Chaos , as well as event prefix (e → A) and
hiding (A \ H ) are similar to the corresponding CSP behaviours [Hoa85a, Sch00],
while we also introduce variable assignmement (:=). Actions can be combined
with internal (�) or external (�) choice, sequential composition (; ), parallel
composition (|[ | | ]|), or conditional choice (�c�). Iteration can be described
explicitly (∗), or defined recursively (µ • ). The key construct related to
time-slots, and hence not part of Circus, is Wait t which denotes an action that
simply waits for t time-slots to elapse, and then terminates.

As an example we present a simple one-shot“factorial server” (Fig. 2) that
waits for a request (channel freq) containing a natural number n, and then com-
putes its factorial, exploiting parallelism where possible, finally returning the
result as a response message (channel fresp). The server has the timing of a
Handel-C program, where each assignment and channel communication takes
a full time-slot (a.k.a. “clock-cycle”). A run of the server showing communi-
cation events, state variable changes, and the passage of time-slots is shown in
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FS =̂ freq?n →Wait 1 ; FCOMP ; fresp!f →Wait 1
FCOMP =̂ f := 1 ; Wait 1 ;

(n > 1) ∗ ((f := n ∗ f ; Wait1) |[ {f } | ∅ | {n} ]| (n := n − 1 ; Wait1))

Fig. 2. Factorial Server

Slot 1 2 3 4 5 6 7 8 9
Event − freq .4 − − − − − − fresp.24
Var:n − 4 4 3 2 1 1 1 1
Var:f − − 1 4 12 24 24 24 24

Fig. 3. Factorial Server Run

Figure 3. Here we wait one slot for a request to compute 4!, and the client looks
for the result two slots after it becomes available.

3 Generic Slot-Theory

Both the semantics of Handel-C [BW05] and the timed extension to Circus called
“Circus Timed Actions (CTA)” [SH02, She06] have in common the fact that the
models involve a sequence of “slots” that capture the behaviour of the system
between successive clock ticks. In [BSW07] a comprehensive account is given of
a generic UTP framework that captures the common aspects of these semantic
models. The reason for developing a generic slot theory is that the way that
events are recorded within a slot in CTA and Handel-C differ, with the latter
semantics itself having three distinct variants. Here we provide a summary of
the key concepts involved.

Although we are modelling a “discrete-time” theory, it has to be stressed that
we can allow events to be ordered within a time-slot, albeit without timestamps
at a finer granularity. The key concept is of a system governed by a global clock,
and each slot models all that happens in-between two consecutive clock ticks. A
slot contains information about the events that occurred during one time slot
(“history”) as well as the events being refused at that point. In CTA, a history
is just a sequence (“trace”) of events in the order in which they occurred during
a slot. So the following example shows a run of CTA where events a and b both
occur at least once in some order in every second time-slot:

〈〈〉, 〈a, b〉, 〈〉, 〈b, a, a〉, 〈〉, 〈b, a〉, 〈〉, . . .〉

In the multi-set action (MSA) variant, we ignore event ordering within slots,
viewing history as a bag of events, so the above example appears as

〈{}, {a �→ 1, b �→ 1}, {}, {a �→ 2, b �→ 1}, {}, {a �→ 1, b �→ 1}, {}, . . .〉
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In fact with each slot we not only record an event history of some form but also
the events being refused during a time-slot. So if we have an event type E and
a history type constructor H, then the type of slots is defined as:

S =̂ HE × P E

Essentially we now have a semantic domain that is parametric in the choice of
H (plus some supporting definitions). We then build up event observations as
“slotted-sequences”, which are non-empty sequences of slots. The presence of
clock-ticks in the history is denoted by the adjacency of two slots, so a slot-
sequence of length n + 1 describes a situation in which the clock has ticked n
times. The CTA example above can now be written in full, assuming that neither
a nor b are refused during slots when they don’t occur, but are refused at the
end of the slot in which they do occur:

〈(〈〉, ∅), (〈a, b〉, {a, b}), (〈〉, ∅), (〈b, a, a〉, {a, b}), (〈〉, ∅), (〈b, a〉, {a, b}), (〈〉, ∅), . . .〉

We can now describe the observational variables of our generic UTP theory:

ok : B —True if the process is stable, i.e., not diverging.
wait : B —True if the process is waiting, i.e., not terminated.
state : Var �→ Value —An environment giving the current values of slotted-Circus

variables
slots : S+ : —A non-empty sequence of slots recording the timed event be-

haviour of the system.

The variables ok , wait play the same role as the in the reactive systems theory
in [HH98, Chp. 8], while state follows the trend in [SH02] of grouping all the
program variables under one observational variable, to simplify the presentation
of the theory. We need to be very clear about the distinction between events
and program variables — events denote visible communication actions used for
synchronisation and/or to transfer data, whilst program variables are considered
global in this paper, and the state component tracks their values as the program
executes. In particular, the action of assigning to a variable updates state, but
is not an event, and so is not recorded in slots .

In order to give the generic semantics of the language, we need, in addition
to H, to have definitions supplied of operations on such histories, that satisfy
key properties. For example, we need to know what an empty history looks like,
and how to concatenate histories, so that concatenation is associative, with the
empty history as the identity element. Other operations to be defined include a
history prefix relation, history subtraction, event hiding in histories, and event
synchronisation between histories running in parallel — all satisfying a key set
of laws — see [BSW07] for details.

Given the definition of H, and the associated functions and relations, we need
to lift many of these to work with slots and slot-sequences (see Fig. 4). Relation
EqvTrace(tr , slots), asserts that tr , an event sequence, is compatible with the
history in slots , ignoring time and refusals. Function Refs extracts refusals from
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EqvTrace : E∗ ↔ S+

Refs : S+ → (P E )+

�,∼= : S+ ↔ S+

��, �� : S+ × S+ �→ S+

SSync : PE → S+ × S+ → S+

SHide : SLOT × PE → S

Fig. 4. Slot-Sequence Functions/Relations

slot-sequences. The relations � and ∼= denote prefixing and equivalence of slot-
sequences respectively — in this case equivalence is almost equality, except that
the refusals in the last slot are ignored. Operations $$ and �� denote slot con-
catenation and subtraction respectively — analogously to sequences, �� is only
defined if its second argument is a �-prefix of its first. The key point to note
here is that in the result of s1 $$ s2, the last slot of s1 is merged with the first
slot of s2. Function SSync(c)(s1, s2) shows the effect of forcing the histories of
s1 and s2 to synchronise on the events in set c, while SHide(s ,H ) gives a slot
were events in H are hidden (removed).

4 Healthiness Conditions

Healthiness conditions are characterised by idempotent predicate transform-
ers, with a healthy predicate being a fixed point of such a transformer. The
healthiness conditions we introduce here for slotted-Circus parallel some of those
in [HH98, Chp. 8] for general reactive systems, namely R1, R2, R3, CSP1 and
CSP2. Here we shall only consider R3, CSP1,2 in detail as they are explicitly
invoked. R1 and R2 deal with the infeasibility of time travel and (direct) mem-
ory of past events, and are well covered elsewhere, and satisfied by all definitions
we present in any case. The reactive conditions are aggregated as R, defined as
the composition of R1–3.

The healthiness condition R3 is one associated with all “reactive” systems in
the UTP, covering process-algebras like ACP, CSP, and CCS.

R3(P) =̂ II �wait� P
II =̂ DIV ∨ ok ′ ∧ wait ′ = wait ∧ slots ′ = slots

DIV =̂ ¬ ok ∧ slots � slots ′

R3 deals with the situation when a process has not actually started to run,
because a prior process has yet to terminate, characterised by wait = True. In
this case the action of a yet-to-be started process should simply be to do nothing,
an action we call “reactive-skip” (II). Reactive skip has two behavioural modes: if
started in an unstable state (i.e the prior computation is diverging), then all it
guarantees is that the slots may get extended somehow; otherwise it stays stable,
and leaves most other observations unchanged.
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Conditions CSP1 and CSP2 In [HH98, Chp. 8] there are five of these pre-
sented, but for our purposes it suffices to consider only the first two.

A process is CSP1 healthy if all it asserts, when started in an unstable state
(due to some serious earlier failure), is that the event history may be extended:

CSP1(P) =̂ P ∨ ¬ ok ∧ slots � slots ′

Healthiness condition R1 simply states that we can never undo past events, but
CSP1 deals with behaviour in a particular starting condition — it says that
if ok is false, then the only thing we can assert is that events may happen in
accordance with R1.

A process predicate is CSP2 healthy if it does not mandate instability, so
if true with ok ′ = False, it is also true with ok ′ = True, all other observation
variables being unchanged.

CSP2(P) =̂ P ; (ok ⇒ ok ′) ∧ wait ′ = wait ∧ slots ′ = slots ∧ state ′ = state
(1)

The effect of post-composing P with (ok ⇒ ok ′) ∧ . . . is remove any assertion
of ¬ ok ′, so for example calculation shows that CSP2(P ∧ ¬ ok ′) = P whereas
by contrast CSP(P ∧ ok ′) = P ∧ ok ′.

5 Slotted Semantics

The language constructs of sequential composition, internal and conditional
choice, iteration all have the same semantics as in standard UTP:

P ; Q =̂ ∃ obsm • P [obsm/obs ′] ∧ Q [obsm/obs ]
P � Q =̂ P ∨ Q

P �c� Q =̂ c ∧ P ∨ ¬ c ∧ Q
c ∗ P =̂ µL • (P ; L) �c� Skip

Recursion (µX • F (X )) is defined as the least fixed-point of F w.r.t to the
refinement ordering (reverse implication), and obs is shorthand for all the ob-
servational variables.

5.1 Semantic Building Blocks

We define the semantics of slotted-Circus in terms of a number of basic building-
blocks, largely to do with events and communication, that we now describe.
This building blocks are all R1-,R2-healthy, but in general will not satisfy R3
or the CSP healthiness conditions in themselves— they are intended to be used
in constructions that do.

First we provide a predicate NOEVTS that describes a situation that allows
time to pass (#slots ′ > #slots) but disallows the occurrence of any events:

NOEVTS =̂ EqvTrace(〈〉, slots ′ �� slots)
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It asserts that if we take the difference between before- and after-slots, then this
will only be equivalent to the empty list 〈〉, which requires that every slot must
contain an empty history component. A CTA example of this might be (ri are
arbitrary refusals):

slots ′ �� slots = 〈(〈〉, r1), (〈〉, r2), (〈〉, r3), (〈〉, r4)〉

Another very useful predicate asserts that a given set of events (E ) have occurred,
but that the clock has not yet ticked:

EVTSNOW (E )
=̂ ∃ tt • elems(tt) = E ∧ EqvTrace(tt , slots ′ �� slots) ∧ #slots = #slots ′

We are describing a situation where events occur in the first, and to date only
time slot. We can find a trace tt equivalent to the observed slots, whose elements
are the events in E , and where the before- and after-slots are of the same length,
signifying that no clock tick has occurred. In CTA, this might be (r an arbitrary
refusals, E = {a, b}):

slots ′ �� slots = 〈(〈a, b, a〉, r)〉

In some situations, we want to describe events that occur immediately (in the
first slot), as described by the predicate IMMEVTS :

IMMEVTS =̂ ∃E • E �= ∅ ∧ EVTSNOW (E ) ; slots � slots ′

We require the existence of a non-empty sets of events that occur “now” (i.e. in
the first time-slot), followed by an arbitrary extension of slots.

5.2 Semantics of Basic Actions

We now give the semantics of the basic actions, construct by construct.

Chaos =̂ R(true)

The worst possible action in slotted-Circus is Chaos . It is the most unpredictable
healthy process, and bottom of the refinement lattice.

Stop =̂ CSP1(R3(ok ′ ∧ wait ′ ∧ NOEVTS ))

Action Stop has deadlocked — is stable, never terminates and never performs
any event.

Skip =̂ R3(CSP1(state = state ′ ∧ ¬wait ′ ∧ ok ′ ∧ slots ∼= slots ′))

Action Skip terminates immediately in a stable state, without performing any
events. In keeping with the CSP definition, Skip ignores the refusals of any
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preceding process, hence the use of slot-equivalence rather than slot-equality
here.

Wait t =̂ CSP1(R3(ok ′ ∧ del(t) ∧ NOEVTS ))
del(t) =̂ (#slots ′ −#slots < t) �wait ′� (#slots ′ −#slots = t ∧ state ′=state)

The action that introduces explicit timed behavior is Wait t . It never performs
any events and has only two possible behaviors. The first one is to wait for t
clock ticks, the second to terminate when the right time is reached.

x := e =̂ CSP1
(
R3

(
ok ′ ∧ ¬wait ′ ∧ slots ∼= slots ′

∧ state ′ = state ⊕ {x �→ val(e, state)}

))
Assignment is performed immediately, and for that reason is very similar to
Skip — stable termination with no events or passing time observed. Valuation
function val evaluates an expression given an environment. A key point to keep
in mind here is that state-changes are recorded in the state variable and are not
regarded as “events”. The state here is globally visible — there are provisions in
UTP and Circus for delimiting variable visibility but these are beyond the scope
of this paper.

comm → A =̂ (comm → Skip); A

Unlike in CSP/CCS, an input communication binds an input value to a program
variable, rather than the free occurrences of that name in the following process,
so, for example, the input communication c?x → Skip ends by assigning the
communicated value to the variable x . This allows us to treat the action comm →
Skip as a basic building block and define more general prefixes in terms of it. We
distinguish two basic behaviors of the prefix action: waiting for communication
and performing it.

WTC (c) =̂ POSS (c) ∧ NOEVTS

POSS (c) =̂ c /∈
⋃

Refs(slots ′ �� slots)

TRMC (c) =̂ EVTSNOW {c}

While waiting for communication (WTC ) we allow time to pass but we perform
no events. We also inform the environment that we are ready to perform the
specified event, by not refusing it (here Refs returns the refusals in each slot as
a list). When we finally perform an event and terminate (TRMC ) we have to
make sure that the event is noted in the trace model. We also have to ensure
that the specified event was not refused during the time-slots before the event
occurred. For that reason we define the behavior of performing an event as
WTC (c); TRMC (c). We assemble all of this to get the following definition of
prefix, noting in passing a key point that program variable state information is
only propagated once the prefix action has terminated.

c → Skip =̂ CSP1
(

ok ′ ∧ R3
(

WTC (c) �wait ′�
(

state ′ = state ∧
WTC (c); TRMC (c)

)))
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The prefix action is also used to define channel-based communication. As per
the usual CSP convention, sending a value is defined as performing an event
- channelName.value, whilst receiving is defined as an external choice over all
possible values allowable on a channel followed by assignment of the received
value to the target variable. If we assume that channel c carries values of type
T = {k1, k2, . . .}, then

c!e → Skip =̂ c.e → Skip
c?x → Skip =̂ �

k :T
• (c.k → Skip; x := k)

Here �k :T • P(x ) is shorthand for P(k1) � P(k2) � . . ..

5.3 Semantics of Composite Actions

External choice (A � B) allows external events to determine which action runs,
so for example if we have (a → A) � (b → B), then, if the environment performs
a, we see that event occur, followed by an execution of action A. Unfortunately
the very simple definition2 of external choice proposed in [HH98], no longer
suffices, as we may have to wait for several clock-ticks before an external event
arises that resolves the choice.

A � B =̂ CSP2(Stop ∧ A ∧ B ∨ Choice(A,B) ∨ Choice(B ,A) )

Choice(C ,R) =̂ C ∧
(

R ∧ NOEVTS ;
(

IMMEVTS ∨
slots ∼= slots ′ ∧ (¬wait ′ ∨ ¬ok ′)

))
Predicate Choice(C ,R) describes the circumstances where action C has been
chosen, whilst R has been refused, which occurs in situation where R has per-
formed no events. We capture these cases as follows: conjoin R with NOEVTS ,
and follow it sequentially with some “end”-condition E . All of this is conjoined
with C to give

C ∧ (R ∧ NOEVTS ; E )

i.e an execution of C consistent with R having done no events, and then ending
in the situation described by E .

Now we can characterise three possible cases were C either: (i) performs an
event after a delay: E = IMMEVTS ; (ii) terminates without performing any
events: E = slots ∼= slots ′ ∧ ¬wait ′ or (iii) diverges but performs no event:
E = slots ∼= slots ′ ∧ ¬ok ′.

The parallel composition A |[ sA | {| cs |} | sB ]| B runs A and B in lock-
step parallel (clock ticks at same time for both), with both actions required to
synchronise on any channels mentioned in cs . Both actions run on local copies
of the variables and are only allowed to modify those variables in their disjoint
permission sets (sA for A, sB for B). The construct terminates when both actions
have terminated — if one ends early then its behaviour is padded out with empty

2 A � B =̂ A ∧ B �Stop� A ∨ B .
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slots. If sA and sB overlap, or A (B) assigns or inputs into variables not in sA
(sB ), then the construct is ill-formed. At present, we do not consider shared-write
access to variables as constituting a healthy or well-formed process. The reason
for this restriction is that reasoning about parallel processes with global shared
variables is a complex business [WH02]. There is of course scope for investigating
more liberal forms of parallel composition, but that is left for future work.

The definition of parallel composition (for well-formed compositions) is large
but conceptually straightforward:

A |[ sA | {| cs |} | sB ]| B =̂ ∃ obsA, obsB • A[obsA/obs ′] ∧ B [obsB/obs ′] ∧
ok ′ = okA ∧ okB ∧
wait ′ = (waitA ∨ waitB ) ∧
ValidMerge(cs)(slots , slots ′, slotsA, slotsB ) ∧
(waitA ⇒ $slotsA ≥ $slotsB ) ∧
(waitB ⇒ $slotsA ≤ $slotsB ) ∧
(¬wait ′ ⇒ state ′ = (stateA−sB)⊕ (stateB−sA))

Both actions are running on local copies of observation variables A[obsA/obs ′] ∧
B [obsB/obs ′] and the outcome is determined as an appropriate merge of these:
The composition is stable if both A and B are, and is waiting if either action
is. The resulting slots are a valid merge of compatible slot-sequences from each
action. If an action is still waiting for events then it has seen at least as many
clock ticks as the other process (which may have terminated). When the whole
construct has terminated, the final state ′ value is determined by merging the
changes from each side.

ValidMerge : P E → ((S E )+)4 → B

ValidMerge(cs)(s , s ′, s0, s1) =̂ (s ′ �� s) ∈ TSync(cs)(s0 �� s), (s1 �� s))

Merging the traces of parallel actions is captured by a predicate (ValidMerge) that
asserts that the final slots execution (slots ′ �� slots) is a member of all the valid
ways in which the two actions slots can be merged, taking the synchronisation
sets cs into account (TSync). The TSync function returns all the possible fus-
ings of two slot-sequences, slot-by-slot, with individual slots merged using SSync,
the history-specific synchronisation parameter (see Fig 4). If one slot sequence is
shorter than the other, then the shortest is padded out with null slots.

Our semantics, and that of CTA, differs here from that of timed-CSP [Sch00].
There Skip need not terminate immediately, but can delay, so facilitating the
following law:

(a → Skip ‖ Skip) = a → Skip

The same law holds for slotted-Circus, even though Skip terminates immediately,
because the singleton slots-sequence for the righthand Skip is padded out by the
definition of parallel, to match that of the lefthand action as it waits for, and
eventually performs the event a.

A \ H =̂ R3

⎛⎝∃ s ′ • A[s ′/slots ′] ∧
slots ′ �� slots = map(SHide(H ))(s ′ �� slots)
∧ H ⊆

⋂
Refs(s ′ �� slots)

⎞⎠ ; Skip
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Wait n � Wait n + m = Wait n
(Skip � (Wait n; P)) = Skip, n > 0

(c → P) � (Wait n; (c → P)) = (c → P)
Stop � A = A

(c → Skip) \ {c} = Skip

Fig. 5. (Some) Laws of slotted-Circus

The hiding operator A \ H denotes an execution of action A, but with any
events in event-set H hidden. The last assertion above about H and Refs(. . .)
is implied by the definition of SHide, but is useful for proofs to have stated
explicitly here. It has the effect of forcing a key properting of hiding, namely
that of maximal progress, i.e. hidden events occur as soon as they are enabled.
Without this semantic feature the following undesirable law would hold:

(a → Skip) \ {a} = Wait 0 �Wait 1 � ... �Wait n � ...

This law is undesirable because it makes the performance of a single hidden event
followed by termination equal to a wait for an arbitrary number of clock cycles
— effectively a weak form of livelock. By forcing hidden events to be refused
during every slot, we prevent them from waiting for a clock-tick, because the
definition of prefix action requires events not to be refused when waiting. This
results in the desired law, namely

(a → Skip) \ {a} = Skip

At the end we add Skip to unconstrain the refusals set of the last slot.

6 Laws

The language constructs displayed here obey a wide range of laws, many of which
have been described elsewhere [HH98, WC01, SH02, She06] for those constructs
that slotted-Circus shares with other related languages like CSP or Circus(e.g.
non-deterministic choice, sequential composition, conditional, guards, STOP ,
SKIP). Here we simply indicate (Fig.5) some of the laws that are peculiar to
slotted-Circus, or whose proof was a challenge. The first law is a consequent of
the fact that external choice treats termination as an “event” that can resolve
an external choice. The proof of the latter two laws forced a lot of the design
of the details of the semantic model described here. The definition of external
choice and the its properties lead to the discovery of the state visibility issue
addressed in [GBW09]. The last law vindicates the semantic choice (used here,
in CTA, and Timed-CSP) that entangles refusals up with the individual slots,
rather than keeping them seperate from the event history, as in the Failures
model of CSP [Ros97].

The proof of (c → Skip) \ {c} = Skip was long and difficult, based on a
large range of properties from the very top level (healthiness conditions and
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circus specific actions), to a very low level, that of a single slot. The whole proof
is roughly sixteen pages and for that reason we leave it to a technical report
[BG09]. What makes this law special is that interaction between hiding and
communication is the only place where refusals influence the behavior of the
action and is actually responsible for a set of accepted traces. This can been
seen by considering the following lemma which forms the core of the proof:

(WTC (c); TRMC (c)) ∧ c ∈
⋂

Refs(slots ′ �� slots)

= TRMC (c) ∧ c ∈
⋂

Refs(slots ′ �� slots)

Predicate WTC (c); TRMC (c) is a part of the prefix definition which describes
a situation where the action waited (for zero or more clock ticks) to perform
c, and then did so. During the waiting period, c was not being refused. By
contrast, the predicate c ∈

⋂
Refs(slots ′ �� slots) comes from the definition of

hiding and requires that c be refused during any slots that have occurred. The
only observations that satisfy both these requirements are ones where no clock
ticks occur and communication is immediate, i.e TRMC (C ).

7 Related Work

In addition to the work done on state-rich reactive processes in UTP [OCW09]
there has been attention paid to merging state and concurrency by others. The
implementors of occam [SGS95] had to deal with the integration of state with
its concurrency aspects, those being derived from CSP. An early integration
of state and concurrency was the work on joining Object-Z and CSP [SD01],
which was then followed up with real-time extensions [Smi02]. However these
languages are very much at the specification level, with no explicit notion of
assignment or global shared variables, as Object-Z schemas are interpreted as
message-passing objects, so the concerns of this paper do not arise. The work on
unifying CSP and B [But00] looks at linking the process of CSP with the actions
of B. However while it converts CSP-like descriptions of behaviour into B state-
machines, it has concept, at the CSP level of assignment to variables. Taking the
denotational semantics of CSP and merging it with the algebraic semantics of
CASL has resulting in a “data-rich’ process algebra called CSP-CASL [Rog06].
Here the richness of CASL datatypes is made available for use as the types of
values transmitted over communications channels. However there is no notion of
state update through assignment in the theory.

A UTP semantics for Timed Communicating Object-Z (TCOZ [MD00]) is
given in [QDC03]. The theory presented there has a communication component
which is a variant of He and Sherif’s CTA [SH02], with a richer notion of event
that differentiates between interprocess communication, and the interaction of
the environment with sensors and actuators. Like the CTA semantics, it embeds
R3 into the definition of sequential composition, and defines communication to
only assert the state is unchanged when communications has completed. Again
“active objects” in TCOZ have their variable-state encapsulated. However TCOZ
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has an asynchronous interface mechanism of sensors and actuators, with the
actuators linking a local variable to a global one. This mechanism can be used
for internal communication as well as with the external environment.

8 Future Work

In [BSW07] we described a number of different ways to instantiate event histories
within a time-slot, including:

– CTA: histories are just events sequences (essentially the CTA theory [She06]).
– MSA: histories are multisets or bags, so ordering within a slot is irrelevant
– SCSP : histories are simple event sets — however these fails to satisfy the

required laws on which the theory depends.

An important aspect that has yet to be covered is what distinguishes the various
instantiations from one another, i.e. how do the laws of CTA differ from those
of MSA, for instance. We know for example that the following is not a law of
MSA, but does apply in CTA:

(a → b → P) ‖ (b → a → P) = Stop

InMSA the deadlock can be avoided if both a and b occur in the same time-slot.
Another key concept, which has guided the precise form of the definition

of external choice, is that of modelling priority among choices, which makes
sense in a slotted-theory because we have a deadline (next clock-tick) against
which any priority resolution scheme can operate. We plan to explore schemes
to give semantic support to prioritised choice by appropriate modifications to
the external choice definition. Interestingly, early indications are that a notion
of priority will work in the MSA instantiation, but not the CTA incarnation !

Also worthy of exploration are the details of the behaviour of the Galois links
[HH98, Chp 4] between different instances of slotted-Circus, and between those
and standard Circus. These details will provide a framework for a comprehen-
sive refinement calculus linking all these reactive theories together. The goal
is a scheme whereby Circus is a specification language and slotted-Circus is a
refinement stage, on the way to a hardware implementation.

9 Conclusions

A denotational semantics for slotted-Circus has been presented, backed up by a
techreport giving fuller details[BG09]. The general layers of the theory have been
shown along with higher level building blocks used for defining the semantics.
The key result presented here is a comprehensive semantics of the entire language
that addresses various semantics issues that have been uncovered whilst laying
foundations for future extensions, particularly towards prioritized choice.

A disadvantage of UTP is that some of the key proofs can be quite long and
involved, as seen in the discussion regarding the hiding law. However, UTP also
brings certain key advantages, which for our purposes outweigh this disadvantage:
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– We are involved in a program of semantics unification — in this case bringing
together Circus(itself a Z/CSP fusion), with related timed languages that
combine both state and concurrency with message passing (CTA, Handel-
C).

– Whilst standalone semantic models for each of the above are simpler, con-
necting them together formally is not.

– UTP is a common semantics foundation framework that supports both the
merging of theories and the formal linking of them: given a predicate linking
the observations of two different theories, the derivation of a galois connec-
tion putting them together in a refinement relationship is almost automatic
[HH98, pp40–41]

The pain of developing formal models of languages, already well understood and
formalised by other means, is, in our opinion, rewarded by the ease with which
their formal interrelationships can then be explored.

Finally, the need to explicitly identify healthiness conditions, rather than have
them emerge implicitly from the structure of a tailored semantic domain, seems
to us to provide key comparative insights into the nature of languages under
study.

The large amount of hand-proving involved has thrown the need for tool-
support into sharp relief. This is exacerbated by the additional complexity that
arises once time is added to the theory.
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Abstract. Early support for reasoning about probabilistic system be-
haviour replaced nondeterminism with probabilism. Only relatively re-
cently have formalisms been studied that combine the two, and hence
facilitate reasoning about probabilistic systems at levels of abstraction
more general than code. Such studies have revealed an unsuspected
subtlety in the interaction between nondeterministic and probabilistic
choices that can be summarised: the demon resolving the nondetermin-
istic choice has memory of previous state changes, whilst the probabilis-
tic choice is made spontaneously. As a result, assignments to distinct
variables need no longer commute. This paper introduces a model with
explicit control of the length of the demon’s memory. It does so by ex-
panding the standard (initial-final) state view of computation to incorpo-
rate a third state, the ‘original’ state which checkpoints the most recent
nondeterministic choice. That enables a nondeterministic choice to be
made on the basis of only certain past probabilistic choices and so facil-
itates independent nondeterministic combinations to be chosen against
just those. Sound laws are presented and used to analyse first an exam-
ple in which no new behaviour should result, and second one that lies
beyond the scope of traditional models.

1 Introduction

Models of sequential systems that account for both (demonic) nondeterministic
and probabilistic choice are necessary in order to reason about system behaviour
at levels of abstraction more general than code. They find use, for example, in
the top-down incremental derivation of implementations that have been unpop-
ular since Dijkstra introduced them in the wp setting. However the interaction
between the two forms of choice turned out to be more subtle than was at first
supposed. Here is a representataive example [4]: for programs A and B, let A�B
and A 1

2
� B denote their nondeterministic and fair probabilistic choices respec-

tively; in the latter case, the result is equally likely to be A or B. Then, using
standard notation for assignment,

(x:= 0 � x:= 1) � (y:= 0 1
2
� y:= 1) �=

(y:= 0 1
2
� y:= 1) � (x:= 0 � x:= 1) . (1)

Indeed, the probabilistic choice on the left is made after a value is assigned
to x by the nondeterministic choice. Thus the probability of guaranteeing the
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condition x= y is 1/2. But the right-hand program behaves more nondetermin-
istically: the nondeterministic choice can observe, and so exploit, the preceding
probabilistic choice, so that in the worst case it may keep ensuring x �= y; thus
the probability of guaranteeing x= y is reduced to 0. In the presence of both
probability and nondeterminism, disjoint assignments no longer commute!

Of course in standard sequential programming, disjoint assignments commute
as a result of the two distributivity laws:

(B � C) � A = (B � A) � (C � A)
A � (B �C) = (A � B) � (A � C).

It is the second that fails in probabilistic programming. That feature of prob-
abilistic systems has been used to good effect in modelling information flow
(for example [1,9] will be discussed in Section 4). But ‘unadulterated’ nonde-
terminism has been found to be too strong, so that weaker versions have been
considered. For instance, complementing [9], a restricted form of choice able to
read only certain declared variables has been considered in [12]. Here we adopt
a different approach and curtail the demons’s memory. With little effort modifi-
cations are possible to make the demon prescient, if that is required, or to have
more complex memory (see Section 5).

We consider probability, as has become standard, in the guise of a binary
combinator A p� B that chooses program A with probability p and B with the
deficit probability (1−p). That suffices to express known probabilistic algorithms
and to reason about a moderately broad range of probabilistic behaviour [8].
It is shown there that Dijsktra’s guarded-command language augmented with
p� provides a remarkably simple uniform notation facilitating the simultaneous
treatment of functional and probabilistic behaviour. So with almost no extra
complexity, probabilistic behaviour need not be handled by a ‘second pass’, but
all at once with the consideration of input/output behaviour.

Two models of probability and nondeterminism have been developed in which
the revised laws are sound: an expectation-transformer model [8] corresponding
to the predicate-transformer model of standard programming, and a distribu-
tional model [8], corresponding to the standard binary-relational model. In the
transformer model, each computation is modelled by transforming a random
variable over final states (seen as an expectation) to the (pointwise) greatest
expected value over initial states that can be guaranteed by executing the com-
putation with ‘reward’ the post random variable. In the distributional model,
each computation is seen as transforming an initial state to a set of distributions
over final states (though in this paper we prefer to make it a relation between
distributions). The distributional model is embedded in the transformer model
by a Galois connection [8]. In the distributional model where nondeterminism
is union, if sequential composition were to be the usual sequential composition
of relations then equality would hold in (1). Thus the definition of sequential
composition is more sophisticated in [4]. In common sequential programming, a
relational composition (S � T ) relates the final state of S and the initial state
of T , reflecting the sequential state changes. The sequential composition of [4],
however, also relates the initial state (distribution) of S with the final state of



Unifying Probability with Nondeterminism 469

T . Note this difference remains even when the state-distribution transformers
are lifted to distribution transformers.

Here we follow the alternative of using the standard relational definition of
sequential composition but a slightly more sophisticated definition of nondeter-
minism. We start from the observation that nondeterministic choices made after
a sequential composition may be correlated with what happened well before.
Thus we introduce a model of computation that enables a ‘nondeterministic log’
to be maintained and a ‘nondeterministic checkpoint’ to be taken to reset the
log. The state from which the log extends is called the ‘original’ state of the
computation; and we consider distributions over final state. A nondeterministic
choice is resolved by reference to the log. But when the log is reset, original and
current states coincide and there is no history for the demon to work from; the
result is ‘nondeterministically closed’. A computation then becomes a relation
between such distributions. Three novel aspects of the model are:

1. each program construct is able to observe not only current state but also
some original state, allowing sequential composition to be defined succinctly
as a simple relational composition;

2. nondeterministic choice is separated into two operators: one binary operator
� that arbitrarily combines probabilistic outcomes of two programs without
the ‘demonic’ ability to act against previous probabilistic choices and another
unary operator � that performs the demonic act; such separation opens the
door to include multiple nondeterministic choices with different backward-
looking abilities;

3. the above two aspects explicitly reveal the interaction between probabil-
ity and nondeterminism, and allow a (generalised) assignment to take into
account observation of the original state, and ‘angelically’ act against a pre-
vious (demonic) nondeterministic choice, effectively achieving a kind of com-
pensation.

In Section 2 the new model is described and sound laws presented. Proofs are
largely routine using relational or predicate calculus. Section 3 contains a discus-
sion of (1) to demonstrate that the new model preserves its properties; it then
discusses the well-known Monty-Hall puzzle, and discusses a variant not able to
be handled by previous models.

2 A Relational Model for Probabilistic Programming

In this section we introduce the notion of ‘original state’ and probability distri-
butions that depend on original states. The semantic model supports seven basic
commands. Healthiness conditions are introduced and sound algebraic laws are
identified and used to transform programs into a normal form.

2.1 Distributions

Let S = (V →C) be the (finite) set of all states, each a mapping from program
variables (denoted x, y, · · · , z ) to constants. Let r, s, t, s0, · · · denote individual
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states. A (conditional) probability distribution is a function: h :S → (S → [0, 1])
whose first argument s denotes the original state and second argument denotes
the current state. Let H denote the set of such distributions, with members
h, h0, h1, · · · . Distributions are partially ordered: h1 	h2 iff h1.s.t 	 h2.s.t for
all s, t∈S.

A well-formed distribution d satisfies: from any original state s, the total
probability of all current states is at most 1:

∑
t d.s.t	 1. Let D denote the set

of well-formed distributions, with members d, d0, d1, · · · . A well-formed distri-
bution is a probability distribution over current states conditional on a specific
original state. A well-formed distribution satisfying d.s.t= p records that if the
original state is s, then the probability of reaching this point of the program in
a current state t is p. Thus the final distribution of a nonterminating program
may have total probability less than 1. A functional distribution f is a well-
formed distribution and f.s.t is either 0 or 1 for all s and t. For example, the
delta distribution δ is functional and yields probability 1 when the current state
equals the original state: δ.s.t=1 iff s= t . Let F denote the set of functional
distributions. We have F ⊆ D ⊆ H .

For program reasoning, we adopt convenient notation. Suppose V = {x, y } ;
then 〈x+ y, x− y〉 denotes a functional distribution indicating that the vari-
ables x and y have been updated to x+ y and x− y respectively since the
original state. The functional distribution 〈x, y〉 , on the other hand, corresponds
to the delta function in this context.

A uniform distribution u is a probability distribution such that for all t1 and
t2 we have u.s.t1 = u.s.t2 . Let U denote the set, with members u, u0, u1, · · · . A
constant distribution is uniform and for all s1 and s2 , it satisfies u.s1.t=u.s2.t .
Let C denote the set of constant distributions. For example, 1∈ C : for all states
1.s.t=1. We have C ⊆ U ⊆ H . Symmetrically, a current distribution v is a
probability distribution that is unchanged for every original state. Let V denote
the set of current distributions, with members v, v0, · · · ; then C ⊆ V ⊆ H .

A boolean distribution b is such that for all s and t , the probability b.s.t
is either 0 or 1. Let B denote the set of boolean distributions, with mem-
bers b, b0, b1, · · · . Functional distributions are singleton boolean distributions
which may depend on the original state. Evidently, F ⊆ B ⊆ H .

We will use a notation [S0] where S0⊆S to denote a boolean condition in-
dependent of the original state: [S0].s.t=1 = (t∈S0) . For example, [x= 1 ∧
y= 2] is equal to functional distribution 〈1, 2〉 , and [x= y] denotes the distri-
bution such that b.s.t=1 iff t(x)= t(y) and b.s.t=0 otherwise, and [x= y] =
〈0, 0〉+ 〈1, 1〉 . We have [S0]∈V .

2.2 Operations on Distributions

The inner product (over current states from every original state) between a
well-formed distribution and a distribution is defined: (d ·h).s.t =̂

∑
r d.s.r×

h.s.r . The result distribution is always uniform. For example, the inner product
d · [x= y] represents the total probability of the current states that satisfy x= y
from each original state.
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The linear combination of two distributions h1 and h2 by a factor (uniform)
distribution u is defined: (h1 u⊕ h2).s.t =̂ h1.s.t ∗ u.s.t + h2.s.t ∗ (1 − u.s.t).
This definition allows the choosing factors (probabilities) to depend on original
states. The convex combination (d1 u⊕ d2) of two well-formed distributions by
a uniform factor u is also well-formed. Inner product distributes over convex
combination: (d1 u⊕ d2) · h = (d1 · h) u⊕ (d2 · h).

The state update of a well-formed distribution by a program expression
e :S→ (S→S) is defined: (d † e).s.t =̂

∑
r:e(s,r)= t d.s.r . From any original

state (i.e. the first argument), the probability of a final state is the total prob-
ability of the initial states mapped into the final state. The result of an up-
date is always well-formed. Assignments with program expressions that depend
on the original state can be applied to perform backward compensation (see
Section 3). The current-state composition (e1 ◦ e2) of two expressions is de-
fined: (e1 ◦ e2)(s, t) =̂ e1(s, e2(s, t)) (see its use in Law 1(3)). Two consecutive
state updates correspond to the current-state composition of the expressions:
(d † e1) † e2 = d † (e2 ◦ e1) . A similar composition for distribution and program
expression is defined: (h ◦ e).s.t =̂ h.s.e(s, t) (see its use in Law 2(5)). State
update distributes over convex combination: (d1 u⊕ d2) † e = (d1 † e) u⊕ (d2 † e).
A useful equation relating inner product, state update and current-state com-
position is: (d † e) · h = d · (h ◦ e) .

The convolution composition between a well-formed distribution d and a dis-
tribution h is defined: (d⊗ h).s.t =̂

∑
r d.s.r × h.r.t (like matrix product it

is associative). This composition represents the conditional probabilities in cor-
respondence with the original states. It is easy to check that the result is always
well-formed, and if h is uniform so is the result. The delta distribution δ is the
unit of ⊗ . In general, convolution does not distribute over probabilistic choice
for well-formed distributions, although the distributivity does hold in special
cases when the first argument of convolution is a functional distribution, the
factor function on the right is a current distribution, or the factor function on
the left is uniform:

f ⊗ (d1 h⊕ d2) = (f ⊗ d1) h⊕ (f ⊗ d2)
d⊗ (d1 v⊕ d2) = (d⊗ d1) v⊕ (d⊗ d2)
(d1 u⊕ d2)⊗ d = (d1 ⊗ d) u⊕ (d2 ⊗ d).

2.3 The Semantic Model

A computation is represented by a relation A(d, d′) between an initial (well-
formed) distribution d and a final (well-formed) distribution d′. The initial (or
final) distribution represents the probability distribution over the initial (or final)
states conditional on the probabilistic choice taken back in the original state. The
basic commands are defined as follows.

Abort ⊥, representing nontermination, is the most nondeterministic compu-
tation and may end up in any final distribution from every initial distribution.
The assignment t:= e(s, t) uses a program expression e to modify the state ac-
cording to the initial state t and the original state s. The probability of a final
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state is the sum probabilities of the initial states mapped to it, all dependent
on the original states. The final distribution may contain as much probability
for nontermination as the initial distribution. Skip II =(t:= t) (or alternatively
II = (d′ 
 d)), is the unit of sequential composition. We adopt the view that if
a computation, with a certain probability, does not terminate, then within that
probability, its behaviour is chaotic: it may be in any state or may be in no state.
Technically, the final distribution is always upwards-closed.

⊥ =̂ true
t:= e =̂ d′ 
 d † e
A � B =̂ ∃d0 ·A(d, d0) ∧B(d0, d

′)
A h� B =̂ ∃d1, d2 ·A(d, d1) ∧B(d, d2) ∧ d′ 
 d1 d·h⊕ d2

A� B =̂
⋃

h A h� B

�(A) =̂ ∃d0 ·A(δ, d0) ∧ d′ 
 d⊗ d0

µF =̂
⋃
{A | A ⊆ F (A) }

Sequential composition A � B equates, and hides, the final distribution of A
and the initial distribution of B. Probabilistic choice A h� B with a choosing dis-
tribution h linearly combines the result distributions from A and B. Open non-
deterministic choice A� B applies the universal union of convex combinations
(with arbitrary choosing distributions) between relations. Note that finite union
of relations, violating convexity closure, is not closed in the semantics, but open
nondeterminism is. Nondeterministic closure �(A) resets the initial state of A
to be the original state; it is achieved with the delta distribution δ . The results
from all possible initial states are recorded in d0 , representing how the final dis-
tributions depend on the initial states. The result distribution is convoluted with
the initial distribution d to reflect the influence of the probability distribution
of initial states. The definition of closure illustrates how a computation can take
advantage of the history (as far back as the beginning of the nearest closure). Re-
cursion is defined as the weakest (or largest) fixpoint µF where F =F (X) is a
program context that maps each relation X to another relation F (X).

A derived command, the backward-looking nondeterministic choice
A � B =̂ �(A� B) , corresponds to that of the standard probabilistic models
and performs arbitrary convex combinations against the state at the beginning.
Section 3.1 will show how this allows nondeterminism to act against the original
probabilistic choices. Binary conditional that chooses A if b is true and oth-
erwise B is a special case of probabilistic choice, equalling A b� B where b is
a boolean distribution. Note that both assignment and binary conditional may
depend on original states. Their combined uses can support more sophisticated
forms of compensation (see Section 3.2).

2.4 Healthiness Conditions

Healthiness conditions can be viewed as imposed properties that yield desirable
laws. The total probability (over initial states) from each original state is at
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most 1. When it is less than 1, the deficiency represents the probability of non-
termination. A principle of the unifying approach [5] and other totally-correct
models is to assume that if the computation has not started then the computa-
tion becomes chaotic. In our probabilistic model, this is ensured by a healthiness
condition: A = (d= 0 ∨ A) . Another healthiness condition ensures that if the
computation may not terminate, the final distribution is chaotic for the proba-
bility of nontermination: A = (A � II) . Note that II itself also satisfies the first
healthiness condition. Symmetrically, as a healthiness condition, skip is the left
unit of sequential composition: A = (II � A) . This ensures that for a specific
final distribution, the possible initial distributions are downwards-closed. Arbi-
trary convex combinations of the final distributions (independently) from each
initial state are closed (i.e. idempotence of �): A = (A� A) . This healthiness
condition ensures idempotence of probabilistic choice in Law 2(1). In this paper,
we assume that all computations are feasible (i.e. free of miracles) so that from
any initial distribution, there exists some final distribution: (A � ⊥) = ⊥ . The
fixpoint of our model uses Tarski’s fixpoint theory and hence does not require
the healthiness condition of Cauchy closure for continuity.

A specification A is called nondeterministically closed if A = �(A) . Such a
computation does not depend on original states. An assignment t:= e is closed if
e= e(t) does not depend on the original state s . A probabilistic choice A h� B
is closed if h∈V does not depend on the original state. Open nondetermin-
ism A�B and sequential composition A � B are closed if both arguments are
closed. Standard probabilistic programming corresponds to the sub-theory of
nondeterministically closed specifications in the new model. Open specifications
are useful if there exists some implementation mechanism (e.g. using a log file)
that allows a computation to compensate against nondeterministic damage of
undesirable errors in the past.

2.5 Algebraic Laws and Normal Form

The algebraic laws of this section are semantically sound. Law 1(1) and (2) are
direct results of the healthiness conditions:

Law 1. (1) ⊥ � A = ⊥ = A � ⊥ (2) II � A = A = A � II
(3) t:= e1 � t:= e2 = t:= e2 ◦ e1.

The following laws identify expected properties of probabilistic choice:

Law 2
(1) A h� A = A (2) A h� B = B 1−h� A
(3) (A h� B) h′� C = A hh′� (B h′′� C) where h′′ =h′(1−h)/(1−hh′), h< 1
(4) (A h� B) � C = (A � C) h� (B � C)
(5) t:= e � (A h� B) = (t:= e � A) h◦e� (t:= e � B).

Pure nondeterministic choice � is similar to nondeterminism in the (non-
probabilistic) sequential model. In particular, it satisfies right distributivity for
sequential composition, which does not hold in previous probabilistic models,
suggesting that the operator does not exploit history:



474 Y. Chen and J.W. Sanders

Law 3. (1) The composition � is idempotent, commutative and associative.
(2) Sequential composition is associative and distributes over �.
(3) The probabilistic choice h� distributes over �.

Abort and skip are fixpoints of nondeterministic closure, which forces the current
state to coincide with the original state for the assignment:

Law 4. (1) �(⊥) = ⊥ (2) �(II) = II
(3) �(t:= e(s, t)) = t:= e(t, t).

A nondeterministic closure resets the original state to be the initial state of its
argument. Thus adjacent closures have the same effect as one closure. Closure
distributes over convex combination with a current choosing distribution. If the
second half of a sequential composition in a closure is closed, the outer closure
can be decomposed into two closures in a sequential composition:

Law 5
(1) �(A � B) = �(�(A) � B)
(3) �(A� B) = �(�(A)� B)

(2) �(A h� B) = �(�(A) h� B)
(4) �(A v� B) = �(A) v� �(B)

(5) �(A � �(B)) = �(A) � �(B).

The proof for Law 5(5) is included to illustrate the semantic reasoning style.

Proof. For all well-formed distributions d and d′ ,

[�(A � �(B))](d, d′)
⇔ definitions
∃d0, d1, d2 ·A(δ, d1) ∧ B(δ, d2) ∧ [�(B)](d1, d0) ∧ d0 = d1 ⊗ d2 ∧ d′ = d⊗ d0

⇔ predicate calculus
∃d1, d2 ·A(δ, d1) ∧ B(δ, d2) ∧ d′ = d⊗ (d1 ⊗ d2)
⇔ associativity
∃d1, d2 ·A(δ, d1) ∧ B(δ, d2) ∧ d′ = (d⊗ d1)⊗ d2

⇔ predicate calculus
∃d0, d1, d2 ·A(δ, d1) ∧ B(δ, d2)∧

[�(A)](d, d0) ∧ d0 = d⊗ d1 ∧ [�(B)](d0, d
′) ∧ d′ = d0 ⊗ d2

⇔ definitions
[�(A � �(B))](d, d′) .

Thus the two programs correspond to the same relation.
�

Two usual laws hold for the weakest fixpoint operator:

Law 6. (1) F (µF ) = µF (1) if A ⊆ F (A) then A ⊆ µF .

A program is called finite if it consists of only abort ⊥, closed assignment
t:= e(t), sequential composition, closed probabilistic choice A v� B, open non-
determinism � and nondeterministic closure � . A finite program is equal to
⊥ , II or can be written as:⊕

i

⊕
j,vij

(t:= eij(t, t) � �(Nij))
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where each Nij is a program in normal form and for any i, we assume
∑

j vij =1.
Here we are using a collective form of probabilistic choices under which A v� B
is represented as

⊕
i,vi

Ai where i=1, 2 , v1 = v, v2 =1−v , A1 =A and A2 =B.
Adjacent probabilistic choices can be aggregated using Law 2(3). The following
syntax represents the normal form formally.

Theorem 1. Every finite program is semantically equal to a program in the
following normal form N:

N ::= M | N� N
M ::= ⊥ | II | (t:= e(t) � �(N)) | M v� M.

Proof. Notice that every program M ∈M is closed according to Law 4(3) and
Law 5(5).

1. Primitives are already in normal form: ⊥, t:= e(t)∈N .
2. For two finite programs N,N ′ ∈N , their sequential composition (N � N ′)

can be reduced to normal form, because by induction:
(a) If N is a primitive, (N � N ′) is reducible according to Law 2(5) and

Law 3(2).
(b) Assume all (Ni � N ′) are reducible. Then for M,M ′ ∈M such that

M =
⊕

i,vi
(t:= ei � �(Ni)) and M ′ =

⊕
j,v′

j
(t:= e′j � �(N ′

j)) , ac-
cording to Law 2(4), we have (M � M ′) =

⊕
i,vi

(t:= ei � �(Ni) �
M ′) =

⊕
i,vi

(t:= ei � �(Ni � M ′)) ∈ N . Thus in general N =
⊕

i Mi

and N ′ =
⊕

j M
′
j , and (N � N ′) =

⊕
ij(Mi � M ′

j) ∈ N .
3. According to Law5(4), for all M,M ′ ∈M , we have (M v� M ′) ∈M . Thus

for finite programs N,N ′ ∈N , their probabilistic choice is reducible:
(N v� N ′) =

⊕
ij(Mi � M ′

j) ∈ N.
4. Obviously (N � N ′) ∈ N for all N,N ′ ∈ N .
5. If N ∈N , then �(N) =

⊕1
i=1

⊕1
j=1,v1

(II � �(N)) ∈ N where v1 =1 .

Thus every finite program can be transformed to normal form using just the
laws, which are themselves sound in the semantic model.

�

2.6 Program Verification

An assertion can be regarded as a predicate of a single distribution variable d.
It is therefore more convenient to use a set of well-formed distributions to rep-
resent an assertion. If A is a program and P, Q ⊆ D are subsets of well-formed
distributions, then annotation (P A Q) =̂ ∀d, d′ · (d∈P ∧ A(d, d′) ⇒ d′ ∈Q)
states that if the computation A starts from an initial distribution in P , then
the final distributions that it yields lie in Q . As our model is relational, if all
assertions P∈P and Q∈Q in some set clusters satisfy (P A Q) , so does their
universal union: (

⋃
P A

⋃
Q) .
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3 Two Case Studies

In this section, we consider two case studies. In the first we revisit (1) and
show that the new semantic model distinguishes the two sides, just like previous
models; it illustrates the style of reasoning with the model. The second case study
illustrates how the properties of realistic probabilistic programs are treated. The
Monty-Hall problem is introduced and modified in a manner that demonstrates
the power of the model.

3.1 The Example Mentioned in Introduction

Example (1) was originally studied in [4]. The difference between the two seem-
ingly equal programs is due, semantically, to the fact that open nondeterministic
choice can make different probabilistic choices from different original states. All
commands normally share the same original state, but a nondeterministic clo-
sure can alter this and reset the original state, allowing the computation within
the closure to act against the recorded probabilistic choice in the original state.
We consider both informal and formal versions.

Let V = {x, y } be the set of all program variables whose values are boolean:
C = { 0, 1 } . To distinguish the two programs, we simply need to show that from
some initial distribution (i.e. 〈0, 0〉 ), the two programs may yield different sets of
final distributions. The functional distribution 〈0, 0〉 denotes that the probability
is 1 for x= 0 and y =0 regardless of original state.

We first consider the program on the left. The nondeterministic closure re-
sets the distribution with the delta distribution 〈x, y〉 , equating the current
state to the original state. The open nondeterministic choice performs convex
combination with an arbitrary factor distribution u between the results 〈0, y〉
and 〈1, y〉 of the assignments x:= 0 and x:= 1 . The result of arbitrary convex
combination is convoluted with the functional initial distribution. Convolution
distributes over the convex combination. The effect is equivalent to choosing be-
tween 〈0, 0〉 and 〈1, 0〉 with an arbitrary constant factor. The fair probabilistic
choice combines the result distributions with equal probability. For any constant
factor, the overall probability for x= y is always 1/2. Formally,

{ 〈0, 0〉 }
� { 〈x, y〉 }

x:= 0 { 〈0, y〉 } � x:= 1 { 〈1, y〉 }
{ 〈0, y〉 u⊕ 〈1, y〉 | u∈U }
{ 〈0, 0〉 ⊗ (〈0, 0〉 u⊕ 〈1, 0〉) | u∈U }
{ 〈0, 0〉 c⊕ 〈1, 0〉 | c∈C }
y:= 0 1

2
� y:= 1{

(〈0, 0〉 c⊕ 〈1, 0〉) 1
2
⊕ (〈0, 1〉 c⊕ 〈1, 1〉) | c∈C

}
{ d | d · [x= y] = c/2 + (1− c)/2 = 1/2 }.
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The annotation for the probabilistic choice requires the universal union rule of
Section 2.6 and:

{ 〈0, y〉 c⊕ 〈1, y〉 }
y:= 0 { 〈0, 0〉 c⊕ 〈1, 0〉 } 1

2
� y:= 1 { 〈0, 1〉 c⊕ 〈1, 1〉 }

{ (〈0, 0〉 c⊕ 〈1, 0〉) 1
2
⊕ (〈0, 1〉 c⊕ 〈1, 1〉) }.

On the right-hand side of Example (1), the distribution before the nondetermin-
istic choice has equal probability for distributions 〈0, 0〉 and 〈0, 1〉. That means
the arbitrary uniform factor u ’s values at two original states (0, 0) and (0, 1)
are exploited for convex combination in the subsequent nondeterminism. So no
non-zero probability for x= y can be guaranteed. Formally,

{ 〈0, 0〉 } y:= 0 1
2
� y:= 1

{
〈0, 0〉 1

2
⊕ 〈0, 1〉

}
� { 〈x, y〉 }

x:= 0 { 〈0, y〉 } � x:= 1 { 〈1, y〉 }
{ 〈0, y〉 u⊕ 〈1, y〉 | u∈U }{
(〈0, 0〉 1

2
⊕ 〈0, 1〉)⊗ (〈0, y〉 u⊕ 〈1, y〉) | u∈U

}{
(〈0, 0〉 c1⊕ 〈1, 1〉) 1

2
⊕ (〈1, 0〉 c2⊕ 〈1, 1〉) | c1, c2 ∈C

}{
d | d · [x= y] = c1 1

2
⊕ (1− c2), c1, c2 ∈C

}
.

3.2 The Monty-Hall Problem

This case study illustrates how the nondeterministic demon and the computation
can both benefit from the extra information recorded in the original state. The
last variation of the case study is not captured by previous models.

The famous Monty-Hall puzzle (in this context, from [8]) describes a game
show with a host, a contestant and three closed doors: one of them hides a car,
which the contestant wishes to win, whilst the other two hide goats, which the
contestant intends to avoid. The contestant begins by choosing a door, but it
is not opened immediately. Instead, the host opens a door different from the
one just chosen by the contestant and then offers the contestant the option of
switching choices to one of the other two unopened doors. Contrary to common
perception that the chance of winning the car is unchanged by whether or not
the contestant switches, the correct move is to switch, and it doubles the overall
chance from 1/3 (independent initial right choice among three) to 2/3 (initial
wrong choice to be corrected with the host’s assistance).

This puzzle and its solution involve both probability and nondeterminism.
Let the variable x denote the host’s initial choice (in program HC ) of the door
(number 1, 2 or 3) for the car, which is completely unknown to the contestant:

HC =̂ x:= 1 � (x:= 2 � x:= 3).
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The variable y denotes the contestant’s choice. The contestant, with no knowl-
edge of the position of the car, chooses fairly among the three:

PC =̂ y:= 1 1
3
� (y:= 2 1

2
� y:= 3).

Note that this is one possible strategy for the contestant, and a program may well
adopt a different (and possibly bad) strategy. The contestant’s only knowledge is
that the host chooses the door before the contestant’s initial choice, and that the
host is not prescient. The host’s subsequent door opening (denoted with variable
z) depends on the contestant’s initial choice. If the choice is right, then the host
chooses one of the two remaining goat doors; otherwise, the host chooses the
only remaining goat door:

HC1 =̂ (z:= goat1(x) � z:= goat2(x)) [x= y]� z:= goat(x, y)

where the function goat1(x) returns the smaller door number other than x ,
goat2(x) returns the larger number, and goat(x, y) , defined only when x �= y ,
returns the only other number. For example, goat2(2)= 3 and goat(1, 2)= 3 .
The contestant’s second choice results either in stay ST =̂ II or switch
SW =̂ y:= goat(y, z) . The game corresponds to the computation:

HC � PC � HC1 � ? .

A routine calculation guarantees probability 1/3 if the question mark is replaced
by ST but 2/3 if that is replaced by SW . Note that the position of the car must
not depend on the contestant’s initial choice. The host’s placement of the car
after the contestant’s choice is:

PC � HC � HC1 � ? .

It is unknown whether the (nondeterministic) host places the car against or for
the contestant’s interests, or indeed chooses neutrally. As a result, no matter
what the contestant does in the end, the strategy cannot guarantee even a small
probability of success. That phenomenon is modelled correctly by both this and
previous models.

Now consider a less honest host who, though setting the car before the con-
testant, has detected the contestant’s tendency to switch. He secretely tries to
move the car to the door of the contestant’s first choice with probability 1/3 (no
move if the contestant is right):

HC2 =̂ (x:= y 1
3
� II).

The host performs this dishonest act after opening a door but before the con-
testant’s final choice:

HC � PC � HC1 � HC2 � ? .

Now the probability of initial correctness and staying with the original choice
is increased to 1/3 + (2/3 × 1/3) = 5/9, while the probability of success for
switching drops to 4/9.
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However, an alert contestant decides to stay whenever he detects any noise of
car movement (i.e. detecting a change of state; we assume that the host is not
devious enough to move the car around behind the same door) but to switch
otherwise:

AC =̂ SW δ� ST .

The contestant performs that scrutiny by comparing the original state, immedi-
ately after the host opens a door, with the current state before the final decision:

HC � PC � HC1 � �(HC2 � AC ) .

The car moves with probability 2/3 × 1/3 = 2/9 when the contestant’s initial
choice was wrong. It is always favourable for the contestant to stay after detecting
noise. Switching yields probability 2/3×2/3 = 4/9 of success for the contestant’s
unswitched initial wrong choice (greater than the success probability 1/3 for
staying). The overall probability of success of AC is 2/9+ 4/9 = 2/3. Formally:

{ 〈1, 1, 1〉 }
� � { 〈x, y, z〉 } Host’s choice

x:= 1� (x:= 2� x:= 3) �
{ 〈1, 1, 1〉 c1� (〈2, 1, 1〉 c2� 〈3, 1, 1〉) | c1, c2, ∈C }
y:= 1 1

3
� (y:= 2 1

2
� y:= 3) � Player’s choice

{ d | d · [x= y] = 1/3 }
(z:= goat1(x) � z:= goat2(x)) [x = y]� z:= goat(x, y) � Host opens a door
{ d | d · [x= y] = 1/3 ∧ d · [y �=x= goat(y, z)] = 2/3 }
� { 〈x, y, z〉 }

x:= y 1
3
� II � Car move{

〈y, y, z〉 1
3
⊕ 〈x, y, z〉

}
y:= goat(y, z) δ� II Alert contestant’s choice{

d | d · [x= y] = 2
3 ×

1
3 + 2

3 ×
2
3 = 2/3

}
.

4 Related Work

This work is most closely related to the distributional model of He et al. [4]
which appeared more than two decades after Rabin’s demonstration [11] of the
remarkable effectiveness of probabilistic algorithms. The obvious difference is
that in our model distributions are conditional (depending on two states rather
than just one). That has an interesting consequence for the definition of se-
quential composition. In [4] the definition is complicated by having to take the
average over each intermediate distribution in the composition; our definition is
simply composition of binary relations as a result of our use of conditional dis-
tributions. That makes our definition more properly ‘relational’ in the style of
UTP [5]. Rabin’s paper was followed more closely by a succession of interesting
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probabilistic algorithms and of logics to facilitate model checking of probabilis-
tic properties. For example Hansson and Jonsson [3] incorporate both time and
probability. However in most of that work (demonic) nondeterminism is replaced
by probabilism.

Our interest is in semantic models and (sound) laws for the top-down in-
cremental derivation of an implementation from its specification. That requires
nondeterminism (seen as arising from specification and modelling) as well as
probabilism. McIver and Morgan’s textbook [8] provides the fundamentals and
indicates how a theory in the Dijkstra-Hoare style unfolds. It also contains Ga-
lois connections relating He et al.’s distributional model to the relational and
predicate-transformer models of nonprobabilistic sequential programs and to the
expectation-transformer model of probabilistic (nondeterministic) programs.

In order to handle original states we have adopted the view standard in math-
ematics but less so in computation where it has great relevance—that a condi-
tional probability P (A|B) may be used to update knowledge about P (A) (for
example by Bayes’s formula) in the light of further, in our case sequentially pro-
vided, information. The idea of using conditional probabilities for a semantics
of probabilistic programs, is not new. Incisive use of it has been made, notably,
by Panangaden [10] and Ying [17]. Pananganden makes a convincing case that
conditional probability distributions are the counterpart—in general—of ‘prob-
abilistic relations’. His treatment is aimed at the more general continuous case,
but his insights apply here. It would be interesting to calculate his duality start-
ing from our (nonstandard) state-based model to see what transformer model
results; also to apply, to the model proposed here, the ideas captured in those
extensions to ‘probabilistic’ predicates or relations, both at the level of the types
of our semantics and in the monadic setting. Ying, on the other hand, uses
conditional probability as the basis for a semantics of guarded-command-like
programs with angelic choice and (of course) demonic choice but without recur-
sion, iteration or explicit probabilistic choice that has the strength to support a
refinement calculus. His models extend the distributional and expectation trans-
former models, by considering instead probabilistic predicates. As a result his
semantics makes finer distinctions between programs and he is able to introduce
a refinement relation that is probabilistic rather than Boolean in nature.

Varacca and Winskel [16] give an elegant analysis of how the monads for prob-
ability and nondeterminism might be combined. They contrast the distributive
combination of the two (used, for instance, by Mislove et al. [7]) with their com-
bination after modifying the probabilistic monad to contain only affine identities
(hence ensuring the result can be lifted to the power set).

As indicated by our treatment of the Monty Hall problem and its variations,
a framework incorporating probability and nondeterminism addresses issues of
secrecy and information flow. Most closely related to our approach in that direc-
tion is the work of Morgan [9]. Whilst our nondeterminism has limited memory,
his has limited vision, since program state is separated into visible and hidden
parts; but then his novel refinement relation becomes the primary tool (whilst
we retain the standard equivalence connecting nondeterminism and refinement:
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P � Q iff P = P �Q). Morgan’s approach is demonstrated on Chaum’s ‘Dining
Cryptographers’ and Rivest’s ‘Oblivious Transfer’. Pananganden’s work men-
tioned above also provides an approach to the analysis of information flow in
security protocols; see for instance [1] which contains further references.

There is a very much greater literature devoted to the difficult topic of prob-
ability in reactive and parallel programs. See [14] for a survey to 2004, in the
setting of probabilistic automata. Inevitably some of those contributions are rel-
evant to the sequential case. Typically there demonic nondeterminism is viewed
as freedom to be exploited by a scheduler [13]. Whilst true as far is that is able
to be exploited in the sequential case (for ‘scheduler’ read ‘implementer’), here
it is not the overriding consideration, which is the interaction between proba-
bilistic choice and sequential composition. Focusing on that, the sequential case
might be viewed as a convenient starting point for a later study of reactive non-
deterministic and probabilistic computation, in which the interaction between
nondeterminism and probability is studied without the concerns of deadlock,
divergence and so on. Contributions to the reactive case that will no doubt be
influential due to the combination of nondeterminism and probability include the
work of Mislove et al. [7] and Tix et al. [15] which construct models of process
algebra with nondeterminism and probability, as a solution to a domain equa-
tion using the Plotkin powerdomain. Also the probabilistic automata of Segala
[13] embody important principles. As theories for reactive probabilistic systems
account largely for the various forms of ‘process testing’, they appear currently
to be surprisingly divergent from those for sequential probabilistic systems.

5 Conclusion and Further Work

This paper has introduced a relational probabilistic model containing both prob-
abilistic choice and nondeterministic choice. The standard demonic nondetermin-
istic choice is decomposed into two operators: one that performs convex closure
and the other that performs nondeterministic closure. The introduction of orig-
inal states and consequent use of conditional probability distributions help to
relate sequential specifications with some past state, whilst at the same time
ensuring that sequential composition remains relational.

That clarifies what nondeterminism really does, and facilitates further gen-
eralisations. One such is to allow commands, like assignment and probabilistic
choice, to observe original state. That allows a later computation to perform
compensation back to the starting point of the closest nondeterministic closure.
Another possibility is to strengthen the manner in which a nondeterministic
choice can exploit further history by introducing more original states; then an
open nondeterministic choice can act against the probabilistic choices at several
points set by nested nondeterministic closures. Such generalisations become pos-
sible only after we explicitly reveal what nondeterministic choices really do and
they have, as we have seen, important application beyond the realm of prob-
abilistic programs (for example in the design of security protocols, where the
adversary can be regarded as nondeterministic if it is unknown whether it can
observe certain information and take advantage of the observation).
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Sequential composition of programs has been modelled as composition of bi-
nary relations, but at the expense of a mild complexity in the semantics. In the
distributional model, the reverse is the case: the definition of sequential com-
position requires imposition of healthiness conditions. As a result, our version
may prove easier in the so-far-unachieved goal of unifying probabilism with other
programming constructs in the style of Unifying Theories of Programming, [5].
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Abstract. The Alloy modeling language has a mathematically rigorous denota-
tional semantics based on relational algebra. Alloy specifications often represent
operations on a state, suggesting a transition-system semantics. Because Alloy
does not intrinsically provide a notion of state, however, this interpretation is
only implicit in the relational-algebra semantics underlying the Alloy Analyzer.

In this paper we demonstrate the subtlety of representing state in Alloy spec-
ifications. We formalize a natural notion of transition semantics for state-based
specifications and show examples of specifications in this class for which analysis
based on relational algebra can induce false confidence in designs. We
characterize the class of facts that guarantees that Alloy’s analysis is sound for
state-transition systems, and offer a sufficient syntactic condition for membership
in this class. We offer some practical evaluation of the utility of this syntactic dis-
cipline and show how it provides a foundation for program synthesis from Alloy.

1 Introduction

Alloy [1], a popular relational modeling language, provides a syntax reminiscent of
class-based programming languages, and its semantics is essentially equivalent to first-
order logic with transitive closure. The language is accompanied by an Analyzer; this
explores whether a specification has models through compilation into SAT problems
and checking for satisfiability. Users can employ a graphical browser to explore in-
stances of models and counter-examples to claims.

Though Alloy relations are powerful enough to encompass many common modeling
techniques, Alloy does not have a native executable or machine model. For instance,
the Alloy book says:

Typically an instance represents a state, or a pair of states (corresponding to
execution of an operation), or a execution trace. The language has no built-in
notion of state machines, however, ...
—Software Abstractions [1, page 258]

This is in contrast to B [2] and Z [3], for each of which a notion of state machine is
built into the language. Alloy’s flexibility is one of its main selling points: it supports
a variety of idioms. However, this means the user of Alloy must always be vigilant:
they must first choose an idiom and then ensure that they are constantly faithful to it.
The language itself does not provide any special support for encoding or checking con-
formance to specific idioms. Furthermore, failure to adhere is punished not explicitly
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but implicitly: in the best case through unexpected outcomes, and in the worst case by
incorrect decisions based on the Analyzer’s output.

Our first contribution is to show that representing state in Alloy specifications is more
subtle than it appears at first glance. We present what might seem to be the obvious
operational semantics, the one that a designer would intuit based on the descriptions
in, for instance, the Alloy book. But we show that this fails: there are specifications
in this class that are very naturally viewed as representing executions whose logical
(Alloy) semantics is not faithful to the operational semantics. The consequences of
this misalignment are drastic: there are situations in which the Alloy Analyzer will
unavoidably fail to report invalid assertions about the code and situations in which the
Analyzer will give the designer spurious simulations of specified operations that cannot
in fact be implemented.1

Based on this analysis, we offer a proposal to rectify the situation. Concretely, we
give a characterization of the class of facts for which we can guarantee that Alloy’s anal-
ysis is sound for state-transition systems, and we offer a sufficient syntactic condition
on the form of facts that guarantees that they are in this class.2

Experienced Alloy users might argue that they would not be stumped by these ex-
amples (though in our experience, even expert Alloy users do not immediately spot the
problems). One shouldn’t, however, have to be an expert to use a tool safely. We iden-
tify the difficulties and explain why things go wrong, and most importantly prescribe
a discipline which, if followed, ensures that specifications will not go wrong. We give
a precise definition of a state-based modeling idiom with accompanying guarantees,
obeying the discipline “satisfiability iff implementability”.

Specifications of stateful systems are useful in their own right, and they would be
especially useful if they can support not only analysis but also synthesis of executable
code. A synthesizer must, however, maintain a sound relationship between transition
system specifications and the executable code it produces. This is especially interesting
to us due to our prior work on Alchemy [4], a synthesizer that generates executable
libraries over databases from Alloy specifications. Our observations while designing
Alchemy about the difficulties of pinning down the meaning of stateful specifications
inspired this work. But it should be stressed that the problem of reconciling the denota-
tional and operational semantics of a language like Alloy is of fundamental importance
to analysis itself, and is independent of any attempt at automatic code generation.

Contributions To summarize:

– we formalize a natural way to extract transition-system executions from relational-
algebra instances;

– we show examples of specifications in this class for which analysis based on rela-
tional algebra can induce false confidence in designs;

1 It is important to note that these are mismatches relative to the semantics of Alloy [1, Appendix
C] and independent of the bounded-scope used by the Analyzer.

2 Facts are statements used to eliminate invalid models—and hence always true in the resulting
models—whereas assertions are statements that may be true or false.
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– we characterize of the class of facts that guarantees that Alloy’s analysis is sound
for state-transition systems and offer a sufficient syntactic condition for ensuring
this behavior; and

– we offer some practical evaluation of the utility of this syntactic discipline.

A by-product of these contributions is a firm foundation for establishing correctness of
a synthesizer for state-based specifications [4,5].

2 Examples

We use a series of examples to illustrate the potential pitfalls in analysis and mod-
elling of specifications with both relational and stateful interpretations. Figure 1 shows
a sample Alloy specification. Signatures define domains and relations over domains:
this example defines two domains (State and Data) and a relation lastUsed that maps
each element of State to an element of Data (the domains are treated as unary relations):
such a collection of domains and relations determines an instance, or for emphasis, a
relational algebra instance. Facts capture closed formulas that must hold of every in-
stance of the domains and relations specified through signatures. A common idiom for
stateful specifications uses predicates to model operations over pre- and post-instances
of some state object (a prime conventionally connotes the post-state): this example con-
tains an operation updateLastUsed that caches the last datum accessed.

We are interested here in examples in which the Alloy Analyzer (which enforces
the relational semantics) yields results that contradict stateful interpretations of the ex-
ample. The Analyzer supports two kinds of analysis: simulation (running a predicate
to obtain a satisfying instance) and checking (verifying that an assertion is valid of all
instances). Both are important: as Jackson notes [6, page 4], simulation catches errors
of overconstraint, while checking detects underconstraint. The soundness of both forms
is essential to Alloy’s contributions: quoting Jackson [op cit., page 16], “The analysis
is guaranteed to be sound, in the sense that a model returned will indeed be a model.
There are therefore no false alarms, and samples are always legitimate (and demonstrate
consistency of the invariant or operation)”.

In the context of stateful interpretations, simulating a predicate (such as updateLas-
tUsed from Figure 1) should correspond to the execution of some code that induces the
effect of the predicate (updating the cache). Notions of satisfiability and implementabil-
ity for predicates are therefore at the heart of our explorations. While formal definitions
are given later (Section 3), for now we rely on the following informal characterizations.
Let p be a predicate (for example updateLastUsed in Figure 1) in a specification A ; p
has a set of parameters (for example s, s′, and d in updateLastUsed) and a body (the
remainder of the predicate text). We say that p is satisfiable if there is a relational al-
gebra model of the facts of the specification and a binding of the parameters to values
such that the body of p holds. We say that p is implementable if, when viewed as a
procedure, it can be realized as a transition—between nodes bound to s and s′—in a
transition system in which each node is an instance satisfying the facts.

Suppose we ask the Alloy Analyzer to check the newStamp assertion of Figure 1.
This assertion is not valid: there is nothing in the specification as written that requires
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sig State {lastUsed : Data}
sig Data {stamp : Clock}
sig Clock {}

// remembering a new most recently used value
pred updateLastUsed [s, s’ : State, d : Data] {

s’.lastUsed = d and s.lastUsed != d}

// statically inconsistent with updateLastUsed
fact storeOne {#lastUsed = 1}

// not valid
assert newStamp { all s, s’ : State| all d : Data |

updateLastUsed [s,s’,d] implies s’.d.stamp != s.d.stamp}

Fig. 1. An Alloy specification that is implementable but not satisfiable

stamps to be fresh. But rather than generate a countermodel to the assertion, the An-
alyzer will report that newStamp “may be valid.” Since the Analyzer always works
with a bounded domain size it is properly modest in suggesting validity. But in fact the
Analyzer cannot find a countermodel for newStamp even in principle. The problem is
that the updateLastUsed predicate is unsatisfiable. Thus, since no instance satisfies the
antecedent of the implication in newStamp, the assertion is in fact valid.

Why is updateLastUsed not satisfiable? At first glance, it seems to be an entirely
reasonable predicate specification. And indeed the natural implementation of this spec-
ification seems to obey the predicate body as well as the storeOne fact, which expresses
the constraint that exactly one item should be cached via lastUsed: each call to up-
dateLastUsed replaces the value of lastUsed in the current state. Unfortunately, the
specification as written is not satisfiable because the storeOne fact captures more than
the author intended. Under the Alloy semantics, the fact constrains instances to a total
of one lastUsed value across all states, not per state. Indeed, the effect of writing #las-
tUsed = 1 is to constrain Alloy models of this specification to conflate what are really
two distinct states (pre and post), whereas in an imperative implementation only one is
ever active at a time. (If the author had written #lastUsed = 1 as a “signature fact”, that
is, within the paragraph declaring State, then under the Alloy semantics this constraint
would be treated as syntactic sugar for the constraint that for all States s, s.lastUsed has
one item. The above scenario would arise if an author mistakenly moved a signature fact
into a standalone fact.) This highlights the first pitfall to using the Analyzer to reason
about a stateful system:

False confidence in assertion-checking: the Analyzer cannot generate coun-
termodels for invalid assertions about implementable predicates that are unsat-
isfiable under the facts.

Figure 2 shows a richer model of caches, in which each state contains a cache that maps
keys to data. Keys are unique within each state. Adding a cache entry with a new key
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sig State {cache : set Key→ Data}
sig Key {}
sig Data {}

fact cacheKeysUnique {
all s : State | no k : Key | #s.cache[k] > 1}

// cache d under a key that is not used in s
pred addEntryNewKey [s, s’ : State, d : Data] {

some k : Key | no s.cache[k] and
s’.cache = s.cache + k→d}

fact oddCached {#cache = 1 or #cache = 3 or #cache = 5}

Fig. 2. An Alloy specification that is satisfiable but not implementable

inserts a datum into the cache using a key that was unused in the previous state. To
limit the cache size, the specification author includes a fact that the number of cache
lines must always be a small odd number (we use concrete numbers in light of Alloy’s
domain-size restrictions). Under Alloy’s semantics, this predicate is satisfiable. It is not,
however, implementable: using the addEntryNewKey operation, the number of cache
lines will alternate between being odd and even in successive states. The fact, then, is
not an invariant in the implementation. This illustrates another pitfall when reasoning
about stateful specifications:

False confidence in simulation: a design can include a predicate that cannot—
in the context of the stated facts—correspond to any transition at all, yet this
impossibility will go undetected by the analysis, in the sense that the Analyzer
will build a satisfying instance without complaint.

These two examples exploit a similar problem: the Alloy specification includes a fact
on the full model, rather than just facts on individual states. If the specification hap-
pens to talk about multiple points in time, special care must be taken to separate them.
Imperative interpretations, in contrast, view only a single state at a time. In effect, the
implementation views facts at a different level of granularity than the specification.

The lack of alignment between implementability and satisfiability under conven-
tional relational algebra semantics exposes potentially serious problems for lightweight
formal methods. Implementability without satisfiability implies that designers cannot
reason about their designs through their specifications (once a model is unsatisfiable,
the designer does not get useful feedback about its other properties). Satisfiability with-
out implementability implies that assertions verified about the model might not hold of
an actual implementation, so the verification effort has been wasted.

3 Transition Semantics

In order to formalize (and address) the problems with assertion checking over unimple-
mentable predicates, we need a transition-system semantics for relational specifications,
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as well as characterizations of relational specifications for which those semantics yield
meaningful results.

An Alloy specification A = (Sigs,Facts,Preds) is given by a set of signatures, facts,
and predicates. It will be convenient to assume that all constraints on signatures are
expressed as elements of Facts (this is without loss of generality).

The signature and facts in a specification provide the setting and constraints under
which predicates and assertions are explored.

3.1 State-Based Frameworks

In a state-based modeling setting the most typical use of facts is to express state invari-
ants, and this will be reflected in the semantics we define. But facts are not necessarily
state-invariants: a naturally-occurring example is the use of trace constraints. For ex-
ample one might impose the constraint that certain properties hold in the initial state of
a system (such a property is not an invariant) or the constraint that all transitions must
be an operation specified by one of the predicates (such a property is not a property of
individual states).

So a transition system must obey two different kinds of constraints: local constraints
on the states, and global constraints across states. We recognize this distinction in the
following definition.

Definition 1. An Alloy framework F = (Sigs,Facts, Inv) is given by a set of signatures,
a set of facts, and a distinguished subset of the facts, the “state invariant” facts.

This designation of certain facts as state invariants is not part of the Alloy language
definition. So for each Alloy specification the semantics we develop in this paper is
parametrized by the author’s intentions as to which constraints in the set Facts are to be
treated as invariants.

Our work on Alchemy [4] shows that identifying the updates required by relational
specifications is the key challenge to interpreting Alloy specifications statefully. In par-
ticular, the relational semantics of arbitrary terms over the pre- and post-state atoms in
predicates allow substantial leeway in how to perform an update. This work aligns rela-
tional and stateful interpretations using some restrictions on signatures and facts. These
require some terminology:

Fix a distinguished signature, which we will call State. We call an Alloy relational
type immutable if it has no occurrences of the State signature.

Definition 2. An Alloy framework is a state-based framework if the type of each de-
clared relation name is either immutable or is a sum of types of the form
State→ A1→ ··· → An where each Ai is immutable.

The restriction that the State signature be the leftmost sig occurring is a matter of no-
tational convenience; the essential requirement is that no relation name have more than
one occurrence of State. For a formal treatment of the notion of type of a relation name
see Edwards et al. [7].

Trace-based reasoning over states is typically done in the context of the Alloy
util/ordering module: if the specification orders the State with this module then the func-
tions first, next, and last are available. In this case the types of these functions violate
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the conditions in Definition 2. But such specifications are still considered “state-based”
since first, last, and next are not “declared” in the specification. Indeed the semantics of
these functions will be hard-wired into the transition semantics below.

For the rest of the paper we assume that all specifications are state-based.

3.2 Transition Systems

We base our operational semantics on transition systems. In anticipation of the use of
the util/ordering module, we define ordered transition systems.

To avoid subtleties having to do with underlying data models we take the states in
our transition systems to be relational algebras precisely of the sort that the Alloy Ana-
lyzer constructs; these can be viewed as database instances. In this case the transitions
between states are the obvious database updates transforming one state to another.

If we are to think of the individual instances as each representing one state of the
application we should certainly expect that each of the instances has a unique atom
in the extension of the State signature name. And if we take seriously the notion that
the State signature is supposed to capture the data that changes, we should require that
the extensions of the immutable relation names should be the same in each state. This
motivates the notion of a coherent set of instances, a set of instances comprising the set
of nodes in a transition system.

Definition 3. A set Q of instances is said to be coherent if

– each immutable relation name r has the same interpretation in each instance:
∀I, I′ ∈ Q . I(r) = I′(r),

– each instance has a unique atom in the State signature: ∀I ∈ Q .|I(State)|= 1, and
– no two instances have the same state atom: if I �= I′ then I(State) �= I′(State).

We do not assume that the set Q is finite in this definition.

Definition 4. Let F = (Sigs,Facts, Inv) be a framework. A transition system T over the
signatures of F is a pair 〈Q,δ〉, where Q is a coherent set of relational algebra instances
whose signature is given by Sigs, and δ⊆ Q×Q is a transition relation.

T is an ordered transition system if it has a designated linear ordering next on states
and distinguished first and last states.

Note that in the definition above we have not insisted that T obey the constraints im-
posed by the facts of F . In fact we need to do some work to make sense of that notion,
since transition systems are not themselves relational algebras, and so do not come
equipped with a way to evaluate relational algebra expressions and formulas. The result
of this work will be Definition 7.

We turn to the task of defining how to interpret expressions and formulas over F in a
transition system. To do so we use a natural construction that allows us to treat a finite
transition system as a single relational-algebra instance.

Definition 5 (Merging). Let Q be a finite coherent set of instances. The instance �Q
is given by setting, for each relation name r,

�Q (r) =
⋃
{I(r) | I ∈ Q }

When T = (Q ,δ) is a transition system it will be convenient to write �T for �Q .
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Observe that the notion of merging is well-defined only by virtue of our assumption that
the instances in question are coherent. (Indeed, we note that the “

⋃
” in Definition 5 is

somewhat of a red herring for immutable relations, since they have the same value in
each instance of Q .)

Definition 6. Let T = (Q ,δ) be a transition system.
The value T (e) of an expression e is the set of tuples that is the value of e in the

relational algebra �T .
Say that sentence σ is true in T , written T |=T S σ if σ is true in �T in the ordinary

relational algebra sense, that is, if T |=RA σ

We are now ready for the key definition for the transition-system semantics of a state-
based framework, the notion of a transition system for framework F .

Definition 7. Let F = (Sigs,Facts, Inv) be a framework. A transition system for F is a
transition system T over the signatures of F such that

– each node I satisfies each fact in Inv, and
– �T satisfies each fact not in Inv.

If F includes an ordering on State then we require that T be an ordered transition
system.

Definition 7 highlights the distinction between the facts that are intended to be viewed
as state invariants and those that play the role of global constraints on the system. As-
sertions and the bodies of predicates that define operations must obviously be able to
make reference to more than one state and so must be evaluated globally, that is, over
the merge of the nodes as described in Definition 5.

The Transition Semantics of Predicates. For those predicates written in order to de-
fine operations we may define their transition-system semantics as follows.

The meaning of a predicate p is a set of transitions because p can be applied to
different nodes, with different bindings of the parameters, of course, but also because
predicates typically underspecify actions: different implementations of a predicate can
yield different outcomes I′ on the same input I. These should all be considered accept-
able as long as the relation between pre- and post-states is described by the predicate.

Definition 8. Fix an Alloy framework F , and let p be a predicate over F with the prop-
erty that p has among its parameters exactly two variables s and s’ of type State. Let
T be a transition system for F . The meaning �p�T of p in T is the set of triples 〈I, I′,η〉
such that

– η maps the parameters of p into the set of atoms of I (which equals the set of atoms
of I′), mapping the unprimed State parameter to the State-atom of I and the primed
State parameter to the State-atom of I′;

– �{I, I′} makes the body of p true under the environment η.

We say that predicate p is implementable if there exists a transition system T for F such
that �p�T S �= /0.
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Our definition of “implementable” might appear odd at first glance. One might initially
expect that an implementable predicate be defined as one for which there exists code
that carries any I to an I′ such that (I, I′) makes the body of p true. Further consideration
suggests that that is too much to ask: we should only insist that our code behave properly
on nodes I that satisfy the pre-conditions of the predicate. But that won’t work either,
since there is no well-defined notion of “pre-condition” in an Alloy specification: in
the rich language of Alloy predicates primed and unprimed elements mix freely within
expressions and formulas. In this light the definition of “implementable” above seems to
be the most restrictive reading that encompasses the intuitively implementable operation
specifications.

3.3 Transition Systems from Instances

Having developed an “abstract” general notion of transition system for a framework the
obvious question presents itself: what is the relationship of this class of structures to the
relational algebra instances that are the foundation of Alloy?

The relationship is straightforward. In a natural way we can extract transition systems
from relational algebra instances, formalizing the mental construction that Alloy users
do whenever they are confronted with an instance for an analysis constraint in a state-
based framework.

An instance that is intended to capture a transition typically has two atoms in the
extension of the State signature and we read off the pre- and post-instances by projecting
over these two atoms. Similarly for an instance modeling a trace: we think of each state
atom in the instance as being an index into the part of the instance relevant to a particular
transition-system node. (This is exactly what the standard Alloy visualization does, if
one were to select a projection on State.) The next definition formalizes this intuition.
It is convenient for our purposes to do this operation while retaining the state-atom, so
it corresponds to an ordinary database join.

Definition 9 (Localizing). Let I be an instance for a state-based specification and let
a ∈ I(State). The instance Ia is defined by

– Ia(r) = I(r) when r is an immutable relation name;
– Ia(r) = a %& I(r) when r is a mutable relation name.

Here %& is standard database join, so that a %& I(r) is the set of tuples in I(r) whose
entry in the State-column is a.

So any instance yields a transition system. What about the converse? We have seen
in Definition 5 how to merge a transition system to obtain an instance; it remains to
observe that merging and localization interact smoothly.

Lemma 10. Merging and localizing are mutual inverses. That is,

– merging undoes localization: if I is an instance with I(State) = {a j | j ∈ J} then
�{Ia j | j ∈ J}= I;

– localization undoes merging: If Q is a finite coherent set of instances, then the set
of instances obtained by localizing �Q is Q : {(�Q )a | a ∈ (�Q )(State)}= Q .
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It would, however, be a mistake to conclude from Lemma 10 that transition systems
can be identified with relational-algebra instances. The central point is that there is no
reason to expect facts to be preserved by merging or by localizing. And the facts that
are viewed by the designer as state invariants are in consequence treated specially by
our semantics: see Definition 7.

Example. Consider the relations in Figure 1. An Alloy instance would have this form:

State = {s0, s1, . . .}
Data = {d0, d1, . . .}

Clock = {t0, t1, . . .}
lastUsed = {(s0, d0), (s1, d1), . . .}

stamp = {(d0, t0), (d1, t1), . . .}
When this instance is systematically localized at the values in State we get a family of
instances—

State = {s0}
Data = {d0, d1, . . .}

Clock = {t0, t1, . . .}
lastUsed = {(s0, d0)}

stamp = {(d0, t0), (d1, t1), . . .}

State = {s1}
Data = {d0, d1, . . .}

Clock = {t0, t1, . . .}
lastUsed = {(s1, d1)}

stamp = {(d0, t0), (d1, t1), . . .}

. . .

—which form the nodes in a transition system.

4 Achieving Confidence in Analysis

The notions of localization and merging shed light on the examples from Section 2.
Consider the specification in Figure 1. We observed that the predicate updateLastUsed
was intuitively implementable; it is not hard to see that it is indeed implementable in
the sense of Definition 8. But the predicate is not satisfiable. We understood intuitively
that the source of the difficulty is the fact storeOne; now we can make the precise
observation that the fact storeOne is not preserved under merging.

Next consider the specification in Figure 2. We observed that the predicate addEn-
tryNewKey was (intuitively) not implementable; indeed it is not implementable in the
sense of Definition 8. But the predicate is not satisfiable. This time the reason is the fact
oddCached; this fact precludes implementation. Now we note that the fact oddCached
is not preserved under localization.

These phenomena are perfectly general, as we summarize here.

Theorem 11. Let F = (Sigs,Facts, Inv) be a framework.

1. The following are equivalent:
– The sentences in Inv are preserved by arbitrary merging;
– Every implementable predicate over F is satisfiable.

2. The following are equivalent:
– The sentences in Inv are preserved by arbitrary localization.
– Every satisfiable predicate over F is implementable.
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We have noted that the mismatch between satisfiability and implementability mani-
fests itself in practical terms as an obstacle to having confidence in constraint-solving
analyses. Specifically, confidence in assertions-checking arises precisely when counter-
models to assertions in the relational algebra semantics encode countermodels in the
transition semantics. This in turn means that validity in the transition system semantics
implies validity in the relational algebra semantics. Dually, confidence in simulation (of
predicates) arises from a guarantee that a relational algebra instance of a predicate does
indeed correspond to a transition.

The next definition and result formalize these remarks.

Definition 12. Let F be a framework and σ a sentence.

– We write F |=RA σ to mean that σ holds in every relational algebra instance for F .
– We write F |=T S σ to mean that σ holds in every transition system over F , in the

sense of Definition 6.

Then to say we can have confidence in assertions-checking in a framework F is to say
that for any σ, F |=T S σ implies F |=RA σ. To say we can have confidence in simulation
in a framework F is to say that for any σ, F |=RA σ implies F |=T S σ.

Proposition 13. Let F = (Sigs,Facts, Inv) be a framework.

1. The following are equivalent:
– the sentences in Facts are preserved by arbitrary merging.
– for any σ, F |=TS σ implies F |=RA σ. (We can have confidence in assertions-

checking.)
2. The following are equivalent:

– the sentences in Facts are preserved by arbitrary localization.
– for any σ, F |=RA σ implies F |=TS σ. (We can have confidence in predicate

simulation.)

A Sufficient Condition for Reliable Analysis

It may be illuminating to identify the preservation of properties under localization and
merging as being at the heart of sound analysis, but since they are described in semantic
terms they do not in themselves provide much guidance to the specification author. We
next present a simple syntactic criterion that ensures that analysis can be trusted.

The difficulties explored in this paper all arise from the following dichotomy: certain
expressions and formulas are naturally interpreted in individual states from the point
of view of the implementer yet are interpreted globally by Alloy. The latter condition
occurs because all states relevant to a formula being modeled are encoded into each
individual Alloy instance.

Observe that for an immutable relation name r, the meanings of r in the various nodes
of T are identical since Q is coherent. On the other hand, the interpretation mutable
relations will of course vary across nodes. As a consequence, if e is an expression
involving mutable relations, the value of e computed at a particular node I in T will
in general be different from the “global” value T (e), and similarly for formulas. There
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is no surprise here, but this points to the need for care in defining the semantics of
predicates and assertions since these typically involve formulas explicitly referring to
more than one state. Indeed, it might suggest that our device of defining semantics in T
in terms of standard semantics in �T does not capture intended usage.

These considerations motivate the next definition.

Definition 14 (Absoluteness). Let e be an expression with at most a single State vari-
able s occurring (more than one occurrence of s is permitted). Say that e is absolute if
the following holds for every transition system T . Let I be the unique node of T such
that I(State) = T (s); then

T (e) = I(e)

So the meaning of an absolute expression survives the pun of viewing a relational alge-
bra instance as representing a fragment of a transition system. Next we give a sufficient
condition for expressions to be absolute, and a sufficient condition for facts to be pre-
served and reflected by the passage from instances to transition systems.

Definition 15 (State-bound expressions). A state-bound expression is one for which
every occurrence of a mutable relation name r is within the scope of some state variable
s: that is, for each occurrence of r there is a subterm of the form s. f such that r is a
subterm occurrence of f .

A sentence σ is a state-bound sentence if

– every expression occurring in σ is a state-bound expression, and
– either σ has no occurrence of State variables, or is of the form all s: State . B with

s the only State variable possibly occurring in B.

For example, in Figure 2, the occurrence of s.cache in the fact cacheKeysUnique is
state-bound; but the occurrence of cache in the fact oddCached is not state-bound. Of
course, an expression involving only immutable relations is automatically state-bound.

Theorem 16. State-bound expressions with at most one state-variable are absolute.
State-bound facts are preserved by localizing and by merging.

As an immediate consequence of Proposition 13 and Theorem 16 we obtain the fol-
lowing sufficient condition for achieving confidence in both assertions-checking and
simulation.

Corollary 17. Let F be a framework whose associated set of facts is state-bound. Then
a predicate is satisfiable if and only if it is implementable.

Constraints in Predicate Bodies. Our results have so far constrained the form of facts,
but not of predicates. This is perhaps surprising, as stateful predicate specifications
often contain clauses that seem similar to facts (such as those capturing pre-conditions,
post-conditions, or framing conditions). If is therefore natural to ask what happens if a
predicate body violates our state-bound discipline. The answer is interesting, and sheds
some additional light on the nature of the transition system semantics we have defined.
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As a concrete example, let us revisit the updateLastUsed predicate from Figure 1,
but with the problematic fact “inlined” into the body of the predicate.

// remembering a new most recently used value
pred updateLastUsed [s, s’ : State, d : Data] {

#lastUsed = 1 and
s’.lastUsed = d and s.lastUsed != d}

This predicate poses no problems in assertions-checking or in the relationship between
satisfiability and implementability. With the constraint that lastUsed is a singleton, the
updateLastUsed predicate becomes unimplementable as well as unsatisfiable. This is
a consequence of interpreting the predicate body using relational semantics over the
merge of the individual states. As the inlined fact will never be true in any merged in-
stance, the predicate is not satisfiable in any transition system. Although this may seem
odd, it is consistent with the observations made in the discussion prior to Definition 6.

A similar analysis applies to the situation where a non-state-bound sentence that is
not preserved under localization is used in a predicate body.

5 Advice to Alloy Users

Our results identify a subset of (or idiom over) Alloy specifications that capture transi-
tion systems without sacrificing accuracy of analysis in the relational semantics. Alloy
users who wish to write such specifications should adopt two concrete guidelines:

1. Facts intended to capture state invariants must be preserved under localization and
merging. Writing such facts either as signature constraints on the State signature or
as state-bound sentences (Definition 15) ensures this.

2. Relations that are intended to be mutable (in an implementation) must be declared
within the State signature.

Violating these rules can yield unreliable results from simulation or assertions-checking
relative to the transition semantics defined in this paper.

As an example of these guidelines, imagine a designer trying to model a simple
social networking application. The model captures each person’s friends, as well as the
members of the social network using two signatures:

sig Person {friends : set Person}
sig SocNetwork {members : set Person}

The designer proposes the following predicate to capture making one person (p2) a new
friend of another (p1) (where & denotes intersection and + denotes union):

pred makefriends (s, s’ : SocNetwork, p1, p2 : Person) {
p2 not in p1.friends and
(s’.members) & p1.friends =
(s.members) & p1.friends + p2}
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This predicate violates guideline 2: the predicate is trying to update the friends relation,
but that relation is not a component of the SocNetwork signature (which provides the
State signature for this model). Instead, the designer should write the model as

sig Person {}
sig SocNetwork {members : set Person,

friends : Person→ Person}

pred makefriends (s, s’ : SocNetwork, p1, p2 : Person) {
p2 not in s.friends.p1 and
s’.friends[p1] = s.friends[p1] + p2}

This example also helps illustrates a subtlety in guideline 1. Imagine adding the con-
straint that all friends are also members. The guideline (specifically, Definition 15)
suggests writing this fact as forall s: State — s.friends in s.members, rather than the
logically equivalent, and admittedly simpler, friends in members. Given the equiva-
lence, the latter form is also preserved under localization and merging, despite the syn-
tactic mismatch. This reflects the syntactic nature of guideline 1. In practice, we have
not found this difference to be a problem, as discussed in the next section.

6 Validation: From Semantics to Synthesis

Until now, we have presented an idiomatic sub-language of Alloy for which we can
define a coherent operational semantics. We now discuss two practical issues: usability
in the sense of expressiveness for specification, and the potential for synthesis.

Usability. While usability can be hard to evaluate in an unbiased manner, we can at
least ask whether existing specifications fall within the idiom defined here. In addition
to several small and synthetic specifications, we are aware of at least two large speci-
fications that fall within this language. The first is a specification of the access-control
and execution behavior of Continue [8], a conference management application in use
by several actual conferences (continue2.cs.brown.edu). Though Continue is co-
authored by the fourth author, the specification was written by students unrelated to the
project several years before the present research. Despite this, their specification nicely
falls entirely within our subset (with all facts treated as state invariants).

The second such specification is for a new collaborative, Web-based programming
environment that is under construction. That specification also has several diverse el-
ements: operations for content creation, sharing, hiding, rating, commenting, and so
forth. Again, the author of the specification was working entirely independently of this
research and was unaware of it. That specification has one fact, of the form —forall x:X
exists s:State ...—, that falls outside our subset. We interviewed the author to learn that
this fact was included only to constrain the space of models to improve performance of
the Analyzer; it does not capture a constraint of the logical model (and thus would not
be required for code synthesis).

continue2.cs.brown.edu
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Synthesis. These specifications can also be processed by the Alchemy synthesizer.
It cannot be re-used as a black-box, however, because the operational behavior of
Alchemy is overly broad; for instance, given the specification

sig State {r : A}
sig B {t : A}
pred p {s.r in s’.r + B.t}

Alchemy would be free to modify —t— (as we discuss in section 7). By restricting
the operations Alchemy can generate, we can therefore obtain a synthesizer for speci-
fications in the language of this paper whose generated code behaves consistently with
the semantics defined here. Furthermore, Alchemy already produces systems with rea-
sonable performance, at least for prototyping purposes [4]; by restricting the space of
synthesized operations, we would be further improving its performance.

7 Related Work

We can view our work as providing an adequate semantics for Alloy. The notion of
adequacy is usually credited to Plotkin’s seminal work on the treatment of LCF as a
programming language [9]. In our case, adequacy is a relationship between the denota-
tional world of models and analysis, and the operational world of the implementation.

DynAlloy [10] originates, as does our work, from the observation that Alloy has
only an “implicit” notion of operational semantics. Their response is different: they add
another primitive notion, that of actions, to the language, together with a way of making
partial correctness assertions. The emphasis in the DynAlloy work is on expressiveness
of, and analysis of specifications in, their expanded language. In contrast, our focus is
on the semantics of the common state-based idiom as expressed in pure Alloy.

Massoni, Gheyi and Borba [11] address the question of “conformance” between
object-models and programs. They define a notion of “syntactic coupling” (defined in
the PVS language) that relates object models with representations of run-time heaps.
The main goal is to define and reason about the correctness of refactorings; the em-
phasis is on preservation of data properties expressed in the specification. They do not
analyze the way that Alloy predicates induce operations on data.

Three of the present authors, with Yoo, introduced the Alchemy [4] program synthe-
sizer for Alloy. Due to the lack of a crisp operational interpretation of Alloy, Alchemy
relies on ad hoc syntactic criteria to determine the specification author’s intent with
respect to state changes. In contrast, this paper presents a precise operational character-
ization, providing a more rigorous formal footing for Alchemy.

Several efforts have tried to relate proofs to running programs. Bates and Constable
[12] initiated a significant research program on the extraction of computational context,
in the form of programs, from constructive proofs. This effort continues in popular
proof assistants such as Coq [13]. Of course Alloy has no notion of proof structure.
Nevertheless, we share their desire to have the executable code behave consistently
with the outcome of any static analysis.
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Our work can be seen as a result toward software synthesis, an effort initiated by
Green [14] and Waldinger and Lee [15] and summarized by Rich and Waters [16]. Our
prior work [4] discusses in detail the relationship between our approach and others.
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Abstract. In this paper we explore how formal models are interpreted and to
what degree meaning is captured in the formal semantics and to what degree
it remains in the informal interpretation of the semantics. By applying a robust
approach to the definition of refinement and semantics, favoured by the event-
based community, to state-based theory we are able to move some aspects from
the informal interpretation into the formal semantics.

1 Introduction

As engineers proud of our reputations and our subject we want aeroplanes to fly and
banks to be trustworthy. As engineers we want real systems to function in the way
we have specified them and for there to be no unpleasant surprises. But with increasing
complexity we, like members of all other engineering disciplines, are forced to fall back
on mathematics to help us achieve this. Mathematics offers us the ability to unambigu-
ously communicate requirements and offers us proof as a basis for a formal notion of
correctness. But mathematics works only with formal models, so we might be able to
prove a refinement relation exists between abstract and concrete versions of a model at
a formal level, but the models at that level have to reflect the actual, informal world and
its requirements and implementations. Thus we have a gap that we must narrow as far
as we can:

Requirements

Abstract Concrete

Implementation Informal

Formal

Interpretation Gap

To an engineer formality without interpretation is useless. Engineers must pay close
attention to how to interpret formal models if they wish to stop planes falling out of the
sky and other unwanted events from occurring in the actual but informal world around
us.

Consider this 13th century Sufi teaching story [1]:

Once, a man found Mulla Nasruddin searching for something on the ground
outside his house. On being asked, Nasruddin replied that he was looking for
his key. The man also joined in the search and in due course asked Mulla:
“Where exactly did you drop it?”
Mulla answered: “In my house.”
“Then why are you looking here?” the man asked.
“There is more light here than in my house,” replied Mulla.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 499–515, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Theoreticians design languages and methodologies that, when successful, illuminate
a path so engineers can construct reliable working software. But occasionally both the-
oreticians and engineers need to spend time looking not in the bright light of the formal
theory but in the shadowy world of its interpretation. The problem with interpretations
is that by their very nature they are to a greater or lesser extent informal since they must
always have informal components which “connect” with the actual world. Thus we can
completely formally prove nothing about interpretations, no matter that it is important
to make the correct interpretation and for interpretations to seem natural to the engineer.

Of course, what we do is to compile actual world collections of properties that we
want our system to have and properties that we want it not to have, represent these (i.e.
build a model) in our formal world and try to prove that the properties, so represented,
that we want to hold do hold, and those that we do not want to hold do not hold. The
more properties we can compile, and the more we can prove hold or do not hold, the
more confidence we can have that our formalisation reflects the actual, informal world.
Thus the model is justified through experiments in the informal world, that is exper-
iments on the program and the requirements. For any realistically large or complex
system, this process can never be completed; the best we can do is make it as complete
as possible.

In this paper we are interested in writing specifications and then constructing imple-
mentations that satisfy them. The formal construction of a more concrete specification
from a more abstract one we will call a refinement step. Given that the very reason
for writing the specification is to construct implementations that satisfy it we believe
that it is very natural for the semantics of a specification to be intimately connected
to the semantics of refinement (and not just share some common formal basis). This
is true for many event-based formal methodologies: in CSP failures semantics is in-
timately related to failures refinement. Failures refinement is not always satisfactory
when non-terminating processes are considered. Consequently failures/divergences re-
finement [2], NDFD refinement [3] and CFFD refinement [3] have been defined, but in
each case not only is a new refinement defined but also a new semantics is defined.

In some state-based formal methods the same semantics are defined (partial rela-
tions) but with several distinct refinement preorders [4,5,6]. Although there is nothing
wrong with this state-based approach we will argue that it leaves some of the meaning
of operations out of the formal semantics and may cause some difficulties.

Our approach will be to use a general parameterised framework, taken from [7,8],
where this intimate relation between semantics and refinement is a central idea and
explore what effect it can have on a state-based formal method.

We are all familiar with mathematicians writing down terms that describe actual
things and via (formal) reasoning drawing conclusions (other terms) from the original
terms. It is the engineer who has the responsibility to interpret the terms and decide
whether the formal reasoning steps correctly reflect the informal world. We can help
the engineers by defining a semantics for the terms that is closer to the engineers’ un-
derstanding of the world around them. Subsequently engineers only need think about
the semantics rather than the terms. This works well as long as the correct semantics
(and reasoning) is chosen.
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Next we give a simple example to illustrate how easy it is to use the wrong semantics
and how considering the formal model alone cannot clarify the situation.

1.1 Example

As the truth of a statement is ascertained by the construction of a valid proof, reason-
ing about the proof of statements should be reliable. By reasoning about what can be
proved we are going to offer a rigorous but informal argument that the following formal
statement FS is invalid.

From assumption (Pa ∧ Pb)→ R we can show (Pa→ R) ∨ (Pb→ R) FS
Informal Argument: The assumption is that from a proof of Pa ∧ Pb we can construct
a proof of R. But this does not necessarily mean that we can construct a proof of R just
from a proof of Pa or construct a proof of R just from a proof of Pb. This is clearly true
as knowing either Pa or Pb is to know less that to know both Pa and Pb and there is
at least the possibility that the truth of both Pa and Pb were needed in the construction
of the proof of R.

But despite this (hopefully) convincing informal argument we can provide a formal
proof that from (Pa ∧ Pb)→ R we can indeed show (Pa→ R) ∨ (Pb→ R).

1. (Pa ∧ Pb)→ R
2. ¬((Pa→ R) ∨ (Pb→ R)) Ass
3. ¬((¬Pa ∨R) ∨ (¬Pb ∨R)) Def → .2
4. Pa ∧ ¬R ∧ Pb ∧ ¬R DeMorgan,¬E
5. ¬(Pa ∧ Pb) ∨R Def → .1
6. ¬(Pa ∧ Pb) Ass
7. ⊥ From− 4, 6
8. R Ass
9. ⊥ From− 4, 8
10. ⊥ ∨E, 5, 6, 7, 8, 9
11. (Pa→ R) ∨ (Pb→ R) Cont, 2, 10

What has gone wrong?

1.2 Explanation

The first mistake in Section 1.1 is the assumption that the interpretation of formal state-
ments is both obvious and universally agreed upon. Indeed the statement FS can be
given a classical or a constructive [9,10] interpretation.

With a constructive interpretation the informal argument is indeed correct. And the
formal argument is incorrect as it is based upon classical logic. But if, as is common, the
statement is given a classical logic interpretation then the mistake was made before the
informal argument was constructed and indeed before the formal statement was given.
The very first two sentences of Section 1.1 are mistaken. Classical logic is a logic of
truth (or at least truth as formalised by truth-table semantics). It is constructive logic that
is a logic of proof and hence choosing to base the argument on what can be proved is
a mistake, as it makes use of the wrong semantics. Hence any informal argument based
on proof cannot be said to relate to a classical interpretation of any formal statement.
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In particular the previously given informal argument does not relate to the classical
interpretation of FS.

As using the semantics can so easily lead us astray it might be tempting to avoid it,
but this is not always very practical. To reason syntactically that one statement cannot
be proved from another would require reasoning about all proofs, which is not easy to
do. In such situations it is usual to reason about a semantics and appeal to a soundness
and completeness result. This example illustrates that:

1. reasoning with semantics can be very helpful;
2. it is important to select the correct semantics; and
3. an apparently innocent change to the semantics, in the example the change is from

truth to proof, can have disastrous effects.

One of the worst aspects of such “mistakes” is that they cannot be found by considering
the formal arguments alone.

Naturally if changing the semantics is difficult then one solution is simply not to do
it. But as illustrated later (Section 6) semantics are often changed even by theoreticians.
It is useful to engineers and theoreticians alike to have different ways to safely interpret
formal statements and choose the most appropriate interpretation for a given situation.

Here we are interested in the refinement of specifications and it is very clear from the
many definitions in the literature that there is certainly no one universally agreed upon
definition of refinement or indeed one interpretation of what refinement means.

We will next look at how an engineer might informally interpret the statement that
A is a refinement of C and provide some answers to the question: what use is a formal
refinement to an engineer?

2 Interpretation and Robustness of Refinement

We are interested in refinement, that is in the formal transformation of an abstract spec-
ification into a more concrete specification.

Before we give our formalisation of refinement we look at three informal interpreta-
tions of refinement each based on an associated interpretation of a specification. Each
of these different interpretations may be of use to the engineer in different situations.

Refinement interpreted as preservation of guarantee, A �p C. Under this interpre-
tation a specification is interpreted as a guarantee that “if the entity is used in the
prescribed way then one of the prescribed observable behaviours will be seen and
nothing else”. Then we have the following natural informal notion of refinement,
which appears in many places in the literature [6,4,5,11,12,13]

The entity C is a refinement of a more abstract entity A when no user of
A could observe if they were given C in place of A, which is to say that
nothing they observe of C would suggest that they were not observing A,
so the guarantee given with A is preserved.

Refinement interpreted as implication, A �→ C. Under this interpretation a specifi-
cation is interpreted as an assertion about the behaviour of an entity (formalised
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naturally as a logical term I→(A)) [14]. A refinement relation holds between enti-
ties C and A if and only if the behaviours asserted by the interpretation of C satisfy
the interpretation of A, formalised by A �→ C iff I→(C)→ I→(A).

Refinement interpreted as subset of implementations, A �i C. Under this interpre-
tation a specification is given by the set of its implementations. A concrete
specification is a refinement of a more abstract specification if and only if the imple-
mentations satisfying the concrete specification are a subset of the implementations
satisfying the abstract specification.

Definition 1. Two interpretations of refinement�x and �y are called consistent if and
only if for all entities A and C (A �x C)↔ (A �y C).

Definition 2. The more consistent interpretations a definition of refinement has the
more robust is the definition.

In what follows, we advocate robustness both because it is useful to have different
ways to interpret the same intuition and because we believe errors with the semantics of
refinement are less likely to occur given a robust definition characterising the intuition.

We also see that, in the three sorts of refinement listed above, the refinement preorder
characterises the semantics of a specification, and vice versa. This is another way in
which a definition of refinement and a semantics of specifications can both be regarded
as very robust, and intimately connected.

The idea that refinement and specification should characterise each other is not a
new idea, nor is the usefulness of having more than one semantics. In the event-based
world it would seem strange to use failures semantics and not use failures refinement,
although it would be possible to do this.

In the event-based literature the definition of refinement frequently characterises the
denotational semantics and hence it is not uncommon to use the definition of refinement
to define the meaning or denotation of the operational semantics. This has been so
popular an approach that a survey of over 150 different semantics, all based on different
definitions of refinement, can be found in [15,16].

In the state-based literature this approach is not so common, but what is common is
to define the semantics of an operation as a partial relation. Then different definitions
of refinement, based on different interpretations of the partial relations, can be given
without changing the semantics. In Section 6 we will discuss some consequences of
this approach that could be avoided by using a semantic definition that, as in event-
based approaches, is closely related to a robust definition of refinement.

3 A Robust Interpretation of Refinement

This section gives an outline of a formal definition of refinement and three consistent
interpretations that follow from it (for further details see [7,8]).

Our first step towards formalising refinement is to decide what the user can observe,
so we make some assumptions. In practice we are interested in reasoning about and
refining small entities (modules) which are combined to make a larger entity. Thus we
model an entity E as existing in some context X (the rest of the larger whole) interacting
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on the set of actions Act. All E’s actions interact with X at the E-X interface (see
Figure 1). X and U interact at a different interface and on a disjoint set of actions. We
model the observer as a passive user U that is a third entity that observes or interacts
with X, but neither blocks the X actions nor interferes with E-X communication.

We will give formal general definitions of refinement with ex-

E
X

U

Fig. 1. Entity, con-
teXt and User and
their interfaces

plicit parameters representing both Ξ , the contexts in which enti-
ties will be placed, and O, an observation function from entities
to sets of traces from ℘(O) (of event names or states), where each
trace tr ∈ O is a potential observation.

This general theory can be made more concrete by instantiating
its parameters defining : one, how we represent our entities; two,
the sets of contexts Ξ; and three, the observation function O from entities to sets of
traces.

This instantiation of the general theory results in what we call a special theory. It has
been shown ([17]) that some of the classic theories of operations, abstract data types
(ADT) and processes that appear in the literature are special theories of the general
theory given here.

3.1 Refinement Interpreted as Preservation of Guarantee

Definition 3. Let Ξ be a set of contexts each of which the entities A and C can commu-
nicate privately with, and let O be a function which returns a set of traces, each trace
being what a user observes of an execution. Then1

A �Ξ,O C � ∀x ∈ Ξ.O([C]x) ⊆ O([A]x)

3.2 Refinement as Implication

It is easy to see that we can give entities in our general theory a relational semantics.
We are not the first to use relations as a semantics for a diverse range of models: indeed
Hoare and He in their Unifying Theories of Programming (UTP, [14]) do just this.
The main difference between this work and others is that we motivate our relational
semantics by defining a consistent testing semantics.

Definition 4. Let Ξ be a set of contexts each of which the entity A can communicate
privately with, and O be a function which returns a set of traces, each trace being
a sequence of snap-shots that a user might observe of an execution. The relational
semantics of an entity A is a subset of Ξ ×O. Let

AΞ,O(x, o) � x ∈ Ξ ∧ o ∈ O([A]x)

then
�A�Ξ,O � {(x, o)|AΞ,O(x, o)}

1 [E]x denotes the execution of entity E in context x.
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Refinement is now the subset relation between relations or implication between the
predicates that define them. When Ξ and O are fixed and obvious from context we will
omit them. For any entities A and C let

A �→,Ξ,O C � CΞ,O → AΞ,O A �⊆,Ξ,O C � �C�Ξ,O ⊆ �A�Ξ,O

then we have our first consistency result:

A �Ξ,O C⇔ A �⊆,Ξ,O C⇔ A �→,Ξ,O C

3.3 Refinement as Subset of Implementation

Given that refinement is frequently characterised as the reduction of non-determinism
and that software is currently run on deterministic computers we will define what it
means to be deterministic in our general model.

Definition 5. An entity A is deterministic iff its relational semantics is a function:

DetΞ,O(A) � (x, o) ∈ �A�Ξ,O ∧ (x, p) ∈ �A�Ξ,O ⇒ o = p

We now say that implementations are deterministic entities and so we can define the
semantics of an entity A to be the set of implementations that satisfy it:

�A�I,Ξ,O � {I ∈ I|DetΞ,O(I) ∧ �I�Ξ,O ⊆ �A�Ξ,O}
and then for any entities A and C:

A �I,Ξ,O C � �C�I,Ξ,O ⊆ �A�I,Ξ,O

Using this we recreate the relational semantics of the entity by taking the union of the
functions and see our second consistency result:

A �I,Ξ,O C⇔ A �Ξ,O C

4 Interfaces

In this section we will show why both contexts and users are needed to define refine-
ment by demonstrating situations where two different types of interfaces are needed:
a transactional interface between entities and contexts and an interactive interface be-
tween contexts and users.

We will refer to an interface as transactional if interaction (including observation)
occurs at no more than two distinct points: initialisation and finalisation of the entity.
If termination is successful then there may be distinct snap-shots that could be taken at
finalisation, but if termination is unsuccessful then no final snap-shot is taken and all
that can be inferred is that the entity fails to terminate.

An example of an entity with transactional interaction is a program that accepts a
parameter when called and returns a value when it terminates. Clearly if the program
fails to terminate no value can be returned.
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In contrast we refer to an interface as interactive when interaction can occur at many
points throughout the execution. Hence with interactive interfaces more than one snap-
shot can be taken prior to termination and even prior to non-termination.

An example of an interactive entity is a coffee machine. To obtain two cups of coffee
the user first inserts a coin, then pushes the appropriate button and takes the first cup of
coffee. But if after inserting a second coin the vending machine now “fails to terminate”
by not producing a second cup of coffee the previously successful interactions mean
that what has been observed cannot be represented by noting non-termination alone.
(We still have our first cup of coffee!)

5 Abstract Data Type Refinement

With entities being abstract data types, contexts being the programs that use the ADTs
(by using, calling, the operations the ADT provides) and users being the users of the
program, we must have an interactive ADT/program interface. But the definition of
refinement is sensitive to the type of program/user interface (see [7] for details).

A computational method for deciding whether data refinement holds between ADTs
is problematic as the definition of data refinement involves quantification over all pro-
grams (usually an infinite collection). But the classic Hoare, He and Saunders result
[18] uses retrieve or simulation relations between the state spaces of the two ADTs to
define a forward or backward simulation between them. Usefully, the simulations are
quantified only over all operations (a finite collection) in the ADTs, and it is proved
that they are sound and jointly complete with respect to refinement. Thus the Hoare,
He and Saunders guarantee is that if A is a forward or backward simulation of C then
any observation that can be made of any program using C could have been made of the
same program using A.

The Hoare, He and Saunders proof is based on the operations having a relational
semantics and the behaviour of the program under consideration being defined by rela-
tional composition of the relational semantics of individual operations. The proof makes
no restriction on the relations used to model the operations and to define the retrieve or
simulation relation.

Partial relations are open to a variety of interpretations, the angelic and demonic in-
terpretations (see Refinement Calculus [19]) and the distinct interpretations from [5,6,4]
that we will discuss.

For example, let D � {a, b} be a state space of two states and take an operation P
where �P� ⊆ D ×D and define the semantics of P by �P� � {(a, a)}. This specifica-
tion can be considered either as requiring a partially correct implementation: when an
implementation of P is started from state a then if it terminates it will terminate in state
a; or as requiring a totally correct implementation: when an implementation of opera-
tion P is started from state a then it will terminate and it will terminate in state a. In
addition the implementation’s behaviour from state b could be interpreted as undefined
or as blocked.

We need to be wary of using the sequential composition of partial relations since
as Spivey pointed out modelling sequential composition of operations as the relational
composition of partial relations has a meaning that “differs from the meaning that would
be natural in a programming language”, Spivey [20, p136].
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For example let �O� � {(a, a), (a, b)} and �P� � {(a, a)} and let �O; P� � �O�; �P�.
Spivey’s problem can be seen by considering �O; P� = {(a, a)} and asking what has
happened when an implementation of O terminates in state b.

It is easy to see that modelling the relational semantics of a sequence of operations as
the relational composition of the relational semantics of the individual operations, as in
the Hoare, He and Saunders paper, is consistent with a partial correctness interpretation
and with a demonic total correctness interpretation but not consistent with an angelic
total correctness interpretation.

6 Semantic Changes: The Benign and the Problematic

In the state-based world Z, B and Event B use partial relations as their operational
semantics. Thus Z, B and Event B formal models are of interest to us as they possess a
formal operational semantics and yet are, by design, open to a variety of interpretations.

This has the desirable consequence of allowing these methods to be flexible in that
they can be used in a wide range of situations, though this opens up the possibility that
problems, of the kind discussed in Section 1, might be introduced.

Experts in Z know only too well that, given some common interpretations of Z, to
use Z safely (avoiding the problems discussed in Section 5) you need to restrict how it
is used to a particular (informal) methodology, a good example of which is the informal
methodology followed in [5].

One of B’s semantics for operations is give by (rel, pre) where rel is a relation be-
tween states and pre is a subset of states interpreted as an explicit precondition. From
[13, pp. 296, 297 Property 6.4.1] we can see that the domain of rel defines the set of
states on which operation is feasible. From the predicate definition of the application
of an operation, from a state in which the operation is infeasible anything can be es-
tablished and hence any invariant can be invalidated. Since one of the proof obligations
required by B refinement is the preservation of the machine invariant by initialisation
and all operations, we know that infeasible states are never reached. Hence Spivey’s
problem can be ignored as it is safe to consider the relational semantics of the opera-
tions over only the reachable, hence feasible, states, which are all in dom(rel).

The toolkits of both B and Event B compute forward simulation, which is shown to
imply their definitions of refinement. Although the definition of B refinement is essen-
tially the same as data refinement found elsewhere [5, 19, 4, 6] the definition of Event
B refinement [21] is based on what is called a simulation relation in [4], so it is not
based on data refinement. Spivey’s problem is avoided in B by using a set and relation
semantics, but in Event B by using simulation in place of data refinement.

6.1 Data Types or Processes

Woodcock and Davies’ definition of data refinement in [5] is that taken from [18] and
applied to ADTs with operations that are interpreted as undefined outside of precondi-
tion, which some call contractual. Although using Z, with its partial relation semantics,
they define data refinement while using a total correctness interpretation of the relational
semantics. They have achieved this by changing the semantics of operations from Z par-
tial relations to a lifted totalised semantics prior to computing data refinement. Another
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view is that the semantics has not changed and the transformation to total relations is
just a step in the computation of refinement. Whatever your view, the transformation
exists. For ease of discussion we will refer to it as a transformation of the semantics.

The engineer must therefore bear in mind that the Hoare, He and Saunders guarantee
applied to the data types in [5] is based on operations with a total relation semantics due
to the transformation of the semantics, not on Z’s “official” partial relation semantics.

In [5, Table 16.1] value passing operations are modelled by winding the input values
into a sequence initialised at the start of the program execution and the output values
wound into a sequence to be observed. In addition another set of rules [5, Table 16.2] is
defined in which input and output occurs and can be seen at each step.

In our terminology there is, therefore, a change in the program/user interface from
transactional to interactive, and thus a change in the definition of refinement. Because
we advocate using robust definitions of refinement where refinement can be used to
define the semantics, we choose to view this change of refinement as a second transfor-
mation in the semantics. However, this is benign, as the two sets of rules are to the best
of our knowledge equivalent.

Subsequently, Bolton and Davies’ definition of data refinement in [6] is also that
taken from [18] but is applied to ADTs with operations that are interpreted as blocked
or guarded outside of precondition, which some call behavioural. They go on to make
similar semantic transformations to those in [5]. But this time the second semantic trans-
formation, that of changing the program/user interface from transactional to interactive,
results in a subtly different refinement relation, singleton failures refinement, for which
backward simulation is not sound [22]. One of the difficulties is that having made the
apparently benign transformation in the semantics the lack of soundness cannot be dis-
covered simply by looking at the formality. Just as in our example Section 1.1, looking
at the formal proof alone will not reveal any errors.

6.2 Relational Semantics or Logical Semantics

The initial semantic transformation in Section 6.1 replaces partial relations with lifted
total relations. The logical or axiomatic approach provides an alternative to using a
transformation because it keeps the partial relation semantics but defines sets of axioms
to characterise refinement.

Which semantics, the relational or logical, was used was regarded as unimportant as
any refinement based on the logical definition was also, it was assumed, a refinement
based on the relational definition.

But recently Boiten and Derrick have shown [23] a key result: the completeness
of forward and backward simulation with respect to data refinement fails to hold for
operations that are blocked outside of precondition when their semantics is given in
the logical style, although it still holds for the relational-style semantics [22]. Further,
using a restricted simulation relation, a soundness and completeness result can be re-
established [22] for singleton failures refinement. This again shows us that an apparently
innocent change in semantics can have unforeseen consequences.

If we regard Z’s semantics as given by partial relations (where outside of precondi-
tion a specification is necessarily silent about what happens due to the partiality), yet
use an axiomatic or logical definition of refinement, based for example on “undefined
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outside of precondition”, then we have a semantics that is silent about what happens out-
side of precondition but a definition of refinement that is not silent about what happens
outside of precondition. We can view this as saying that the definition of refinement
extends the semantics with additional meaning, not found in the semantics (in this case
the additional meaning defines the behaviour outside of the precondition).

It is now not clear if the meaning of the specification is given by the semantics or by
the definition of refinement. If the meaning is given by the semantics then why use this
definition of refinement that is based on a different meaning? If the meaning is given by
refinement then why not formalise this in the semantics?

A way to make the formal model more robust would be, as we have advocated, to
change the semantics to keep it “consistent” with the definition of refinement.

6.3 Conclusions

There is, of course, nothing wrong with the semantics of Z or B. But care is needed in
interpreting Z and B. Z officially has a partial relational semantics but different people
interpret this semantics differently and define different refinement relations. So are the
different meanings formalised by the different refinement relations or is the official Z
semantics now to be replaced (by the total relation version)? From the previous two
sections and our example in Section 1.1 we conclude that understanding or interpreting
formal models to the extent required to prevent failure of real (software) systems is far
from easy. Apparently innocent changes to the semantic model can very easily introduce
errors that are hard to detect even by theoreticians. Despite the difficulty of designing
safe, useful theoretical frameworks we still need to give engineers greater freedom in
how they develop software.

7 Stepwise Design

To design reliable complex systems that are open to human understanding we need both
simple and intuitive high-level descriptions that clearly reflect the required behaviour
and detailed low-level descriptions that an implementation can be clearly seen to satisfy.

If we tried to specify everything down to the last detail early in the design process
we would fail to see any clear, big picture. Consequently we wish to add detail in a
stepwise fashion through out the design process. But we wish to avoid leaving informal
any essential methodological restrictions, so we wish to follow the design of B and
formalise, as much as we can, any essential methodology.

7.1 Stepwise Semantics

The advantage of basing a wide variety of semantic models all on one common se-
mantics is that we can uniformly define some operations, such as parallel composi-
tion, choice, event hiding, recursion on the semantics and then, with some effort, lift
these definitions to the more detailed semantic models. For example, [15,16] referred
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to earlier, needs one definition of parallel composition not 150 definitions (one for each
refinement they look at).

We advocate the following steps towards a target semantics.

Step 1. Any formal statement is written using some well-defined syntax. For example,
let there be terms TΣ constructed from some signature Σ � {⊕} ∪Act, where Act is a
set of actions of interest, and Act ⊆ A, where A is the set of all possible actions, and ⊕
is an in-fixed binary operator⊕ ∈ A× A→ A.

To be of use to an engineer this must have some interpretation in the informal world
where they work and do their designing. Such an interpretation ISy of terms in our
example language is very flexible in as much as the terms can be interpreted as repre-
senting any entity from a set of things with a binary operation on this set. This syntax
puts no further restrictions on what interpretations can be made.

We can reduce the flexibility in the way the terms can be interpreted by specifying a
formal semantics for them. So, continuing our example, let us define the formal seman-
tics of an action a to be a relation �a� ⊆ S×S over some set S, �Act� � {�a�|a ∈ Act}
and the semantics of the binary operator to be set union �⊕� � ∪.

From the semantic interpretation we can infer an equation: �a ⊕ a� = �a�. So now
the valid interpretations are restricted to a subset of the valid interpretations given by
ISy , namely by eliminating those that do not obey the equation.

We will write ISem for the standard and obvious informal interpretation of S as some
set of states, a in Act as being an operation which moves between states and �a� as the
state-to-state relational semantics of the operation a. ISem is a valid interpretation for
this more restricted semantics. And of course ISem talks about less of the informal
world than ISy did, as our diagram suggests.

Syntax

(⊕,Act)
Sem

(∪, �Act�)

Inf. world

� �

ISy

ISem

Let IA and IC .� � be informal mappings from some formal domain D to the real
world. We will refer to IC as an I-refinement of IA when for all d in D, IC(�d�) is a
subset of IA(d).

We have used some English here rather than using only mathematical notation to
remind the reader that this has to be an informal definition (the informal world is in-
volved), but from now we will rely on the reader to remember that all interpretations are
an informal mapping into the informal (“real”) world. Clearly in our example ISem(�d�)
is a subset of ISy(d) and hence ISem is an I-refinement of ISy .

To help make intuitions more robust we require that:

1. interpretations are homomorphic, e.g. ISy(a ⊕ b) � ISy(a)ISy(⊕)ISy(b) and
ISem(a⊕ b) � ISem(a)ISem(⊕)ISem(b)
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2. so are semantic mappings, � � the semantics of a term is given by the semantics of
its components, e.g. �a⊕ b� � �a��⊕��b�

3. informal intuitions are preserved, ISy(⊕) = ISem(�⊕�)
Step 2. Let us extend our example and assume that �a� = {(1, 1)} and the state space
is given by S = {1, 2}. This relational semantics can be interpreted in several different
ways, see Section 5 for four distinct interpretations.

Just as we refined how we interpret the syntax by defining the semantics of the terms
we can also refine how we interpret the initial semantics Sem by defining a meaning
(second semantics, Sem2) for the initial semantics. In our example we can define how
to lift and totalise the initial partial relation semantics. Lifting adds ⊥ to S to give
S⊥ and operations now have S⊥ × S⊥ relational semantics and ⊥ on the left of the
relation is interpreted as the operation fails to start and on the right of the relation it is
interpreted as the operation fails to terminate2. How we totalise the relation formalises
the interpretation we wish to give it.

Syntax

(⊕,Act)
Sem

(∪, �Act�)
partial relations

Sem2

(�∪�S , ��Act��S)
lifted total relations

Inf. world

� � � �S

ISy

ISem

ISem2

Interpreting �a� = {(1, 1)} as blocked (guarded) outside of precondition and re-
quiring a totally correct implementation (so it must terminate from state 1) we map
all, and only, states outside of the precondition to ⊥ and only to ⊥. Thus we have
�{(1, 1)}�S = {(1, 1), (2,⊥), (⊥,⊥)}.

In our example the meaning of the partial relation semantics has been formalised by
the application of a semantic function � �S that lifts and makes total the partial relations.
Of course we do not need to go through the intermediate semantics (partial relations) we
could simply use a mapping �� ��S from the syntax to the new semantics. The advantage
of using an intermediate semantics is that mathematical definitions and results can be
established for the initial, or intermediate, semantics and this used to establish similar
results for a whole range of more detailed semantics.

Because care is needed to make sure that intuitions at a high level of abstraction, for
example with partial relation semantics � �, transfer correctly to a less abstract level, for
example for the lifted totalised semantics � �S we advocate keeping to the three points
raised at the end of step 1.

7.2 Refining Interpretations

Applying stepwise design to one of our robust interpretations of a high-level refinement,
as defined in Section 3, can be done by including an explicit refinement operator �H

2 For details of how to interpret the usual pre-state/post-state relations as relations between con-
texts and observation traces (time ordered sequence of snap-shots) see [7,22] and for details of
how to extend this interpretation to cover lifted relations S⊥ × S⊥ see [22].
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in the signature of our terms in the definition of our syntax in step 1. This allows us
to talk about refinement at some level of abstraction, or equivalently gives a theory of
refinement at some level of abstraction. We can now interpret this theory as a distinct
further theory based at another level of abstraction. We will often use this method to
view the original refinement in the original theory as taking place at a high-level of
abstraction and the further theory given by the interpretation of the high-level theory
as giving us a lower-level theory with its own lower-level refinement, which we will
call �L (see [8] for more details). This interpretation between theories is formalised
by defining two semantic mappings. We use a semantic mapping � �v to interpret, or
embed, high-level entities EH as low-level entities EL and a separate semantic mapping
vA to interpret, or embed, low-level entities as high-level entities. When they form
a Galois connection we call such pairs of semantic mappings a vertical refinement,
denoted by �v.

In Section 3.2 we have refinement as implication and we can view the context and
observation function pair from that section as defining a logical theory and then apply
the well-known reading of Galois connections as theory transformations between two
theories, one at a high level based on (ΞH, OH) and the other at a lower level based on
(ΞL, OL). Galois connections thus provide a very strict design step between theories
and preserve many features of the theories including union, subset (which we use to
define refinement), and fixed points. For our purposes all we need consider are simple
Galois connections that capture a silent outside of frame intuition. Let the range of OH

be OH and ΞH × OH be the high-level frame. Subset refinement where EH �⊆ EL

implies (ΞH ×OH) ⊆ (ΞL ×OL) and �EH�ΞH,OH
is the same as �EL�ΞL,OL

restricted to
the high-level frame. We note that we can use silent outside of frame to give yet another
valid interpretation to partial relational semantics.

The embedding refinement where � �i is an embedding of the high-level frame in the
low-level frame and EH �i EL implies �(ΞH × OH)�i ⊆ (ΞL ×OL) and ��EH�ΞH,OH

�i

is the same as �EL�ΞL,OL
restricted to the high-level frame.

The simple version of vertical refinement with subset or embedding morphisms is
able to introduce nondeterminism, outside of frame, unlike one of our refinements de-
fined in Section 3 which never introduces nondeterminism. Nevertheless, we call it a
refinement because it offers an engineer a simple guarantee: that any behaviour of the
low-level (concrete) specification that lies within the frame is a behaviour of the high-
level (abstract) specification.

We consider an example when entities are operations and snapshots are evaluations
(given by lists of bindings between angled brackets), that is variable-to-value mappings.
Let variable vi be a real (in R) in an abstract operation Op specifying correct behaviour,
and

ΞH = {< vi �→ x > | x ∈ R}

OH(Op) = {(< vi �→ x >,< vi �→ y >) | x, y ∈ R ∧ (y = x2 ∨ y = x)}

(the pairs here are pre/post condition pairs of valuations). To introduce the error be-
haviour we refine H into the more concrete L by adding the Boolean vb (in B) and

ΞL = {< vi �→ x, vb �→ a > | x ∈ R ∧ a ∈ B}
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OL(�Op�v) = {(< vi �→ x, vb �→ a >,< vi �→ y, vb �→ b >) | x, y ∈ R ∧ a, b ∈ B ∧

(((y = x2 ∨ y = x) ∧ b = true ∧ a = true) ∨ (b = false ∨ a = false))}

The vertical semantic mapping � �v is the obvious embedding of the abstract state into
the concrete state when vb �→ true, the interesting point being that vertical refinement
introduces nondeterminism, albeit outside the abstract frame, and � �v tells us that the
behaviour of the concrete operation only behaves like the abstract specification when
vb remains true.

What happens to Spivey’s problem and the lack of monotonicity when we use robust
definitions of refinement and semantics? We are not attempting to offer a magic solu-
tion to these problems because we believe there are none, but assume we start with a
robust definition of semantics and refinement where the semantics are partial relations.
Recall that fixing the refinement fixes the semantics, so if we change the refinement to
formalise the behaviour outside the precondition, e.g to being undefined, or to being
guarded, then we are forced to change the semantics. We can do this by constructing a
Galois connection between two theories. This is where our approach insulates us from
relying on informal methodology as we now explain.

Let operation Op have partial relation semantics ROp. Thus for Op we have contexts
ΞOp = dom(ROp) and observations {(a, b)| a ∈ dom(ROp) ∧ b ∈ ran(ROp)}. This
will be true for all our operations, so different operations exist on different layers, or in
different theories (ΞOp, OOp).

The only formal way we define to reason about operations in different theories is,
where possible, to embed one theory in another. Thus only after this has been done
for all operations and all operations exist in the same theory or layer, and so all opera-
tions are defined over the same domain, can our robust refinements from Section 3 or
sequential composition being applied.

What we have ended up with is a very familiar two-step approach: first, reason about
partial relations (in their own theories) and avoid refinement and sequencing; and, sec-
ondly, only when these partial relations have been used to build total relations (by em-
bedding them all in the same theory) do we apply refinement and sequencing.

We make no claim for novelty here as it can argued that it appears in the B tool kit,
in the informal methodology of [5] and even in Dijkstra’s early work [24]. What is new
is that we have a very abstract framework that can be applied to operations with a wide
variety of semantics and informal interpretations. Finally, this section could just have
easily been applied to examples that are ADTs or processes.

8 Conclusion

The use of robust definitions of semantics and refinement as favoured in the event-based
literature has been used as the basis for a state-based approach that keeps track of what
is in the formal model and what remains to be interpreted informally. We advocate
three broad principles: define refinement and the semantics of specifications to be ro-
bust; even small changes to a formal semantics should be checked formally; in stepwise
design the semantic mappings should respect how specifications are composed by their
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operators, so the semantics of a term is built from the semantics of its components, and
our informal intuitions are preserved. By following these principles we have interpreted
partial relations as silent outside of frame and only if we consider operations that are all
total on some domain have we been able to proceed by formal stepwise development.
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Abstract. We study a clock synchronization protocol for the Chess
WSN. First, we model the protocol as a network of timed automata
and verify various instances using the Uppaal model checker. Next, we
present a full parametric analysis of the protocol for the special case of
cliques (networks with full connectivity), that is, we give constraints on
the parameters that are both necessary and sufficient for correctness.
These results have been checked using the proof assistant Isabelle. Fi-
nally, we present a negative result for the special case of line topologies:
for any instantiation of the parameters, the protocol will eventually fail
if the network grows. This result suggests a variation of the fundamen-
tal result of Fan and Lynch on gradient clock synchronization, where
the synchronization eventually fails as the network diameter grows, for
a setting with logical clocks whose value may also decrease.
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1 Introduction

Wireless sensor networks (WSNs) consist of potentially thousands of autonomous
devices that communicate via radio and use sensors to cooperatively monitor
physical or environmental conditions, such as temperature, sound or motion,
at different locations. WSNs have numerous exciting applications, ranging from
monitoring of dikes to smart kindergartens, and from forest fire detection to
monitoring of the Matterhorn. It is an active research area with numerous work-
shops and conferences arranged each year.

The Dutch company Chess is currently developing a WSN architecture using
an epidemic (gossip) communication model [15]. Gossiping in distributed sys-
tems refers to the repeated probabilistic exchange of information between two
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members [8,6]. The effect is that information can spread within a group just
as it would in real life. Their simplicity, robustness and flexibility make gossip
based algorithms attractive for data dissemination and aggregation in wireless
sensor networks. However, formal analysis of gossip algorithms is a challenging
research problem [2]. The Chess WSN currently distinguishes three protocol lay-
ers: the Medium Access Control (MAC) layer, which is responsible for regulating
the access to the wireless shared channel,the intermediate Gossip layer, which
is responsible for insertion of new messages, forwarding of current messages and
deletion of old messages, and the Application layer, which has the business logic
that interprets messages and may generate new messages. In our research we
focus on the MAC layer of the Chess WSN. Characteristics of the other layers
influence the design decisions for the MAC layer. For instance, the redundant
nature of the Gossip layer justifies occasional message loss in the MAC layer.

The MAC layer uses a Time Division Multiple Access (TDMA) protocol. Time
is divided in fixed length frames, and each frame is subdivided into slots (see
Figure 1). Slots can be either active or idle. During active slots, a node is either

RX TX

Time as a Sequence of “Time Frame”s

A time frame is divided to C “Time Slot”s
idleRXRX idleidleidleidle idle

Fig. 1. The structure of a time frame

g SENDING

RECEIVING

t

guard time

TX slot

RX slot

Fig. 2. TX and RX slots

listening for incoming messages from neighboring nodes (“RX ”) or it is sending
a message (“TX ”). During idle slots a node is switched to energy saving mode.
These are battery operated devices with an expected uninterrupted field deploy-
ment of several years. Hence, energy efficiency is a major concern in the design of
WSNs, the number of active slots is typically much smaller than the total num-
ber of slots (less than 1% in the current implementation [15]). The active slots are
placed in one contiguous sequence which currently is placed at the beginning of
the frame. A node can only transmit a message once per time frame in its TX slot.
The MAC protocol takes care that neighboring nodes have different TX slots.

One of the greatest challenges in the design of the MAC layer is to find suit-
able mechanisms for clock synchronization: we must ensure that whenever some
node is sending all its neighbors are listening. In this paper, we study clock
synchronization in the Chess WSN. Each wireless sensor node comes equipped
with a low-cost 32 KHz crystal oscillator that drives an internal clock that is
used to determine the start and end of each slot. This may cause the TDMA
time slot boundaries to drift and thus lead to situations in which nodes get out
of sync. To overcome this problem, the notion of guard time is introduced: at
the beginning of its TX slot, a sender, ready with its transmission, waits a certain
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Fig. 3. Battery life as a function of guard time

amount of time for the receiver to be ready to receive messages, and it also waits
for some time period at the end of its TX slot (see Figure 2). In the current
implementation, each slot consists of 29 clock cycles, out of which 18 cycles are
used as guard time. Assegei [1] calculated how the battery life of a wireless sensor
node is influenced by the guard time. Figure 3, taken from [1], summarizes these
results. Clearly, it is of vital importance to reduce the guard time as much as
possible, since this directly affects the battery life, which is a key characteristics
of WSNs. Reduction of the guard time is possible if the hardware clocks are
properly synchronized.

Many clock synchronization protocols have been proposed for WSNs. In most
of these protocols, clocks are synchronized to an accurate real-time standard
like Universal Coordinated Time (UTC). We refer to [18] for an overview of this
type of protocols. However, these protocols are based on the exchange of time
stamp messages, and for the Chess WSN this creates an unacceptable computa-
tion and communication overhead. It is possible to come up with more efficient
algorithms since for the MAC layer a weak form of clock synchronization suffices:
a node only needs to be synchronized to its immediate neighbors, not to faraway
nodes or to UTC. Fan and Lynch [7] study the gradient clock synchronization
(GCS) problem, in which the difference between any two network nodes’ clocks
must be bounded from above by a non-decreasing function. Thus nearby nodes
must be closely synchronized but faraway nodes are allowed to be more loosely
synchronized. In the approach of [7], nodes compute logical clock values based
on their hardware clocks and message exchanges, and the goal is to synchronize
the nodes’ logical clocks as closely as possible, while satisfying certain validity
conditions. Logical clocks have been introduced by Lamport [9] to totally order
the events in a distributed system. A key property of Lamport’s logical clocks
is that they never run backwards: their value can only increase. In fact, Fan
and Lynch [7] assume that the rate of increase of each node’s logical clock is
at least 1

2 , at all times. Also Meier and Thiele [11], who adapt the work of Fan
and Lynch to the setting of wireless sensor networks, make this assumption, but
then Pussente and Barbosa [13] assume this rate to be at least 1

D , where D is
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the network diameter. For certain applications of WSNs it is important to have
Lamport style logical clocks. For example, if two sensor nodes observe a moving
object, then logical clocks allow one to establish the object’s direction by deter-
mining which node observed the object first [11]. However, for the MAC layer
there is no need to compute a total order on events: we only need to ensure that
whenever one node is sending all neighbors are listening. If we are willing to set
back clocks now and then, we obtain even more efficient clock synchronization
protocols.

The current implementation of the Chess WSN uses Median, an extension
of an algorithm proposed by Tjoa et al [19]. The idea is that in every frame
each node computes its phase error to any of its direct neighbors. After the last
active slot, each node adjust their clock by the median of the phase error of
their immediate neighbors. Assegei [1] points out that the performance of the
Median algorithm decreases if the network becomes more dynamic, and proposes
a variation of this algorithm that uses Kalman filters. In this paper, we use formal
methods to analyze another variation of the Chess algorithm in which a node
adjusts its clock whenever a message arrives. Advantages of this algorithm are
(a) unlike the Median approach and its variants we need almost no guard time
at the end of a sending slot (2 clock ticks suffice instead of 9 ticks in the current
implementation), and (b) the computational overhead becomes essentially zero.
However, robustness of our algorithm still needs to be explored further.

In Section 2, we model the algorithm using timed automata. Section 3 de-
scribes the use of the timed automata model checker Uppaal[4,3] to analyze
WSNs with full connectivity. We verify various instances and identify three
different scenarios that may lead to situations where the network is out of
sync, Section 4 presents a full parametric analysis of the protocol for cliques
(networks with a connection between every pair of nodes), that is, we give
constraints on the parameters that are both necessary and sufficient for cor-
rectness. We have checked our results using the proof assistent Isabelle [12].
Section 5 presents some result for the special case of line topologies: for any
instantiation of the parameters, the protocol will eventually fail if the network
grows. This result suggests a variation of the fundamental result of Fan and
Lynch [7] on gradient clock synchronization for a setting with logical clocks
whose value may also decrease. Section 6, finally, discusses related work and
draws conclusions. Uppaal models and proofs for our paper are available at
http://www.ita.cs.ru.nl/publications/papers/fvaan/HSV09/.

2 Uppaal Model

In this section, we describe the Uppaal model that we constructed of the Chess
protocol. For a detailed account of the timed automata model checking tool
Uppaal, we refer to [4,3] and to http://www.uppaal.com.

We assume a finite, fixed set of wireless nodes Nodes = {0, . . . ,N − 1}. The
behavior of an individual node i ∈ Nodes is described by three timed au-
tomata Clock(i) (Section 2.1), WSN(i) (Section 2.2) and Synchronizer(i)
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(Section 2.3). Automaton Clock(i) models the hardware clock of node i, the
WSN(i) automaton takes care of sending messages, and the Synchronizer(i)
automaton resynchronizes the hardware clock of i upon receipt of a message.
The complete protocol is modeled as a network that consists of timed automata
Clock(i), WSN(i) and Synchronizer(i), for each i ∈ Nodes.

Table 1 lists the parameters that are used in the model (constants in Uppaal

terminology), together with some basic constraints. The domain of all parameters
is the set of natural numbers.

Table 1. Protocol parameters

Parameter Description Constraints
N number of nodes 0 < N
C number of slots in a time frame 0 < C
n number of active slots in a time frame 0 < n ≤ C
tsn[i] TX slot number for node i ∈ Nodes 0 ≤ tsn[i] < n
k0 number of clock ticks in a time slot 0 < k0

g guard time 0 < g
t tail time 0 < g, g + t + 2 ≤ k0

min minimal time between two clock ticks 0 < min
max maximal time between two clock ticks min ≤ max

2.1 Clock

Timed automaton Clock(i) (Fig. 4) models behavior of the hardware clock of
node i. It has a single location and a single transition. It comes equipped with
a local clock variable x, which is initially 0, that is used to measure the time
between clock ticks. Whenever x reaches the value min, the automaton enables
an action tick[i]!. Broadcast channel tick[i] is used to synchronize all activities
within node i. The tick[i]! event must occur before x has reached value max. Then
x is reset to 0 and the (integer) value of i’s hardware clock clk[i] is incremented by
1. For convenience and in order to enable model checking, we reset the hardware
clock after k0 ticks, that is, the clock takes integer values modulo k0 (we use
Uppaal’s modulo operator %). This is not an essential modeling assumption
and we can easily change this.

2.2 Wireless Sensor Node

The WSN(i) automaton, displayed in Figure 6, is the most important automa-
ton in our model. It has three locations and four transitions. The automaton
uses an integer variable csn[i], initially 0, to record its current slot number. The
automaton stays in initial location WAIT until the current slot number of i equals
the TX slot number of i (csn[i] = tsn[i]) and the gth clock tick in this slot oc-
curs. It then jumps to location GO SEND. This is an urgent location that is left
immediately via a start message[i]!-transition to location SENDING. Broadcast
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x<=max

tick[i]!
x:=0,
clk[i]:=(clk[i]+1)%k0

X0 x >= min

Fig. 4. Clock(i)

S1S0

tick[i]?
clk[i]:= g+1

j:Nodes
csn[i] < n
start_message[j]?

Fig. 5. Synchronizer(i)

channel start message[i] is used to inform all neigboring nodes that a new mes-
sage transmission has started. The automaton stays in location SENDING until
the start of the tail interval, that is, until the (k0 − t)th tick in the current slot,
and then jumps back to location WAIT. At the end of each slot, i.e., when the
k0

th tick occurs, the automaton increments its current slot number (modulo C).

GO_SEND

WAIT

SENDINGstart_message[i]!

clk[i]==k0-1
tick[i]?
csn[i] := (csn[i]+1) % C

clk[i]==k0 - t -1
tick[i]?

csn[i]==tsn[i]
&& clk[i]==g -1
tick[i]?

Fig. 6. WSN(i)

GO_SEND

WAIT

SENDINGstart_message[i]!

y :=0,
last := csn[i]

clk[i]==k0-1
tick[i]?
csn[i] := (csn[i]+1) % C

clk[i]==k0 - t -1
tick[i]?

csn[i]==tsn[i]
&& clk[i]==g -1
tick[i]?

Fig. 7. WSN(i) with history variables

2.3 Synchronizer

The Synchronizer(i) automaton (Fig. 5) is the last component of our model. It
performs the role of the clock synchronizer in the TDMA protocol. The automa-
ton has two locations and two transitions. The automaton waits in its initial
location S0 until some node j starts to transmit a new message, that is, until a
start message[j]? event occurs. We use the Uppaal select statement to nondeter-
ministically select j. The automaton then moves to location S1, provided node i
is active (csn[i] < n). Remember that at the moment when the start message[j]?
event occurs, the hardware clock of node j, clk[j], has value g. Therefore, node i
resets its own hardware clock clk[i] to g+1 upon occurrence of the first clock tick
following the start message[j]? event. The automaton then returns to its initial
location S0.

Note that in our model there is no delay between sending and receipt of mes-
sages. Following [11], we assume delay uncertainties to be negligible, and we there-
fore eliminate the delays themselves from our analysis. When communication is
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infrequent, this is reasonable since the impact of clock drift dominates over the
influence of delay uncertainties.

Automaton Synchronizer(i) (Fig. 4) has no constraint on the value of j,
that is, we assume that node i can receive messages from all other nodes in the
network. Hence the network has full connectivity. It is easy to generalize our
model to a setting without full connectivity by adding a guard neighbor(i, j) to
the transition from S0 to S1 that indicates that i is a direct neighbor of j.1 For
networks with full connectivity, we assume that all nodes have unique TX slot
numbers:

(∀i, j ∈ Nodes)(tsn[i] = tsn[j] ⇒ i = j).

For networks that are not fully connected, this assumption can be relaxed to the
requirement that neighboring nodes have distinct TX slot numbers.

3 Uppaal Analysis Results

A wireless sensor network is called synchronized if whenever a node is sending all
neighboring nodes have the same slot number as the sending node. For networks
with full connectivity this means that all nodes in the network agree on the
current slot. We obtain the following formal definition of correctness.

Definition 1. A network with full connectivity is synchronized if and only if
for all reachable states

(∀i, j ∈ Nodes)(SENDINGi ⇒ csn[i] = csn[j]).

Our objective is to find necessary and sufficient constraints on the system pa-
rameters that ensure that a network with full connectivity is synchronized. To
this end, we assign different values to the parameters of the model and use
Uppaal to verify the property of Definition 1. Based on the outcomes (and in
particular the counterexamples generated by Uppaal) we try to derive general
constraints. For networks with up to 4 nodes, Uppaal is able to explore the
state space within a few seconds.

It turns out that there are essentially three different scenarios that may lead
to a state in which the network is not synchronized. In order to describe these
scenarios at an abstract level, we need a bit of notation.

Let s ∈ {0, . . . ,C−1} be a slot. Then s is a transmitting slot, notation TX(s),
if there is some node i that is transmitting in s, that is,

TX(s) ⇔ (∃i ∈ Nodes)(tsn[i] = s).

We let PREV(s) denote the nearest transmitting slot that precedes s (cyclically).
Formally, function PREV : {0, . . . ,C− 1} → {0, . . . ,C− 1} is defined by

PREV((s + 1)%C) =
{
s if TX(s)
PREV(s) otherwise (1)

1 The neighbor(i, j) predicate does not have to be symmetric. In a wireless sensor
network it may occur that i can receive messages from j, but not vice versa.
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We write D(s) to denote the number of slots visited when going from PREV(s)
to s, that is, D(s) = (s − PREV(s))%C. We define M = maxs D(s) to be the
maximal distance between transmitting slots. As we will see, M plays a key role
in defining correctness.

3.1 Scenario 1: Fast Sender - Slow Receiver

In the first error scenario, a sending node is proceeding maximally fast whereas
a receiving node runs maximally slow. The sender can then start with the trans-
mission of a message while the receiver is still in an earlier slot. The scenario
is illustrated in Figure 8. It starts when the fast and the slow node receive a

g
Fast Node

Slow Node

M.k0-1

M.k0-g

k0-g-1

k0-g k0

clk=g+1

clk=g

Fig. 8. Scenario 1: Fast Sender - Slow Receiver

synchronization message. Immediately following receipt of this message (at the
same point in time), the hardware clock of fast node ticks and the synchronizer
resets this clock to g + 1. Now, in the worst case, it may take M · k0 − 1 ticks
before the fast node is in its TX slot with its hardware clock equal to g. Since
the hardware clock of the fast node ticks maximally fast, the length of the cor-
responding time interval is (M · k0 − 1) · min. The slow node will reach the TX
slot of the fast node after M · k0 − g ticks. With a clock that ticks maximally
slow, this may take (M ·k0−g) ·max time. To prevent the fast node from starting
transmission before the slow node has moved to the same slot, we must have:

(M · k0 − g) ·max < (M · k0 − 1) ·min (2)

Rather than the lower bound min and the upper bound max on the time between
clock ticks, we sometimes find it convenient to consider the ratio

ρ =
min

max

Since 0 < min ≤ max, it follows that ρ is contained in the interval (0, 1]. The
following elementary lemma turns out to be quite useful.

Lemma 1. Constraint (2) is equivalent to g > (1− ρ) ·M · k0 + ρ.

This implies that the worst case scenario occurs when the distance between TX
slots is maximal: if the constraint holds for M it also holds when we replace M
by a smaller value.



524 F. Heidarian, J. Schmaltz, and F. Vaandrager

Example 1 (The Chess implementation). Constraint (2) allows us to infer a lower
bound on the guard time g. In the current implementation of the protocol by
Chess [15], a quartz crystal oscillator is used with a clock drift rate θ of at most
20 ppm (parts per million). This means that

ρ =
1− θ

1 + θ
=

1− 20 · 10−6

1 + 20 · 10−6 ≈ 0, 99996

In the Chess implementation, one time frame lasts for about 1 second. It consists
of C = 1129 slots and each slot consists of k0 = 29 clock ticks. The number of
active slots is small (n = 10). A typical value for M is C− n = 1119. Hence

g > (1− ρ) ·M · k0 + ρ ≈ 0, 00004 · 1119 · 29 + 0, 99996 = 2.298

Thus, according to our theoretical model, a value of g = 3 should suffice. Chess
actually uses a guard time of 9. Of course one should realize here that our model
is overly simplified and, for instance, does not take into account (uncertainty
in) message delays and partial connectivity. We will see that these restrictions
greatly influence the minimal guard time.

3.2 Scenario 2: Fast Receiver - Slow Sender - before Transmission

In the second scenario, a receiving node runs maximally fast whereas a sending
node proceeds maximally slow. The receiving node already leaves the slot in
which it should receive a message from the sender before the sender has even
started transmission. This scenario is illustrated in Figure 9. It when the fast

g

1(M+1).k0-g-2

M.k0

Fast Node

Slow Node

k0-1k0-g-1

k0-g

clk=g+1

clk=g

Fig. 9. Scenario 2: Fast Receiver - Slow Sender - before transmission

and the slow node receive a synchronization message. But now the node that has
to send the next message runs maximally slow. It sends this message after M ·k0

ticks have occurred, which takes M · k0 ·max time. Meanwhile, the fast node has
made maximal progress: immediately after receipt of the first synchronization
message (at the same point in time), the hardware clock of the fast node ticks
and the synchronizer resets this clock to g + 1. Already after (k0 − g − 1) · min
time the node proceeds to the next slot. Another (M · k0 − 1) · min time units
later the fast node sets its clock to k0− 1 and is about to leave the slot in which
the slow node will send a message. If the slow node starts transmission after
this point it is too late: after the next clock tick the fast node will increment its
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slot counter and the network is no longer synchronized. In order to exclude the
second scenario, the following constraint must hold:

M · k0 ·max < ((M + 1) · k0 − g − 2) ·min (3)

Also this constraint can be rewritten:

Lemma 2. Constraint (3) is equivalent to g < (1− 1
ρ ) ·M · k0 + k0 − 2.

Thus constraint (3) imposes an upper bound on guard time g. Since in practice
one will always try to minimize the guard time in order to save energy, this
constraint is only of theoretical interest. If we fill in the values of Example 1, we
obtain g < 25.8, which is close to the slot length k0 = 29.

3.3 Scenario 3: Fast Receiver - Slow Sender - during Transmission

Our third scenario concerns a fast receiver and a slow sender. The receiver moves
to a new slot while the sender is still transmitting a message. Figure 10 illus-
trates the scenario. As usual, the hardware clock of the fast node is set to g + 1
immediately after receipt of the synchronization message.

g

Fast Node

Slow Node sending
t

k0-g-t

k0-g-1

Fig. 10. Scenario 3: Fast Receiver- Slow Sender - during transmission

To exclude this scenario, the following condition should be satisfied:

(k0 − g − t) ·max < (k0 − g − 1) ·min (4)

Essentially, constraint (4) provides a lower bound on t: to rule out the scenario
in Fig. 10, the sender should wait long enough before proceeding to the next
slot.

Lemma 3. Constraint (4) is equivalent to t > (1− ρ)(k0 − g) + ρ.

If we fill in the values of Example 1 with g set to 3, we obtain t > 1.001. Hence
a value of t = 2 should suffice. For the simple case of a static network with full
connectivity and no uncertainty in message delays, we only need to reserve 5
clock cycles for guard and tail time together. In Section 5, we will see that for
different network topologies indeed much larger values are required.
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4 Proving Sufficiency of the Constraints

In this section, We outline our proof that the three constrains derived in Section 3
are sufficient to ensure synchronization in networks with full connectivity. We
start our proof by stating some elementary invariants.

Lemma 4. For any network with full connectivity the following invariant as-
sertions hold, for all reachable states and for all i ∈ Nodes:

0 ≤ xi ≤ max (5)
0 ≤ clk[i] < k0 (6)
0 ≤ csn[i] < C (7)

GO SENDi ⇒ xi = 0 (8)
GO SENDi ⇒ csn[i] = tsn[i] (9)
GO SENDi ⇒ clk[i] ∈ {g, g + 1} (10)
SENDINGi ⇒ csn[i] = tsn]i] (11)
SENDINGi ⇒ g ≤ clk[i] < k0 − t (12)

Invariants (5), (6) and (7) assert that the state variables indeed take values
in their intended domains: clock variables stay within the (real-valued) range
[0,max], hardware clocks stay within the integer range [0, k0), and current slot
numbers stay within the integer range [0,C). Invariants (8)-(12) directly follow
from the definitions of the automata in the network. For invariant (10), observe
that since the tick?-transition from WAIT to GO SEND may synchronize with
the tick?-transition from S1 to S0, the value of clk[i] in GO SENDi is potentially
g + 1.

To be able to state more interesting invariants, we introduce two auxiliary
global history (or ghost) variables. Clock y records the time that has elapsed
since the last synchronization message (or the beginning of the protocol). Vari-
able last records the last slot in which a synchronization message has been sent
(initially last = −1). Figure 7 shows the version of the WSN(i) automaton ob-
tained after adding these variables. The only change is that upon occurrence of
a synchronization start message[i]! clock y is reset to 0 and variable last is reset
to csn[i].

We first state a few basic invariants which restrict the values of the new
variables.

Lemma 5. For any network with full connectivity the following invariant as-
sertions hold, for all reachable states and for all i ∈ Nodes:

0 ≤ y (13)
−1 ≤ last < C (14)

S1i ⇒ y ≤ xi (15)
last = −1⇒ S0i (16)
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Invariant (13) says that y is always nonnegative and invariant (14) says that
last takes values in the integer domain [−1,C− 1). If the system is in S1i then
a synchronization occurred after the last clock tick (invariant (15)), and if the
system is in S0i then no synchronization occurred yet (invariant (16)).

The key idea behind our correctness proof is that, given the local state of
some node i and the value of last, we can compute the number c(i) of ticks of
i’s hardware clock that has occurred since the last synchronization. Since we
know the minimal and maximal clock speeds, we can then derive an interval
that contains the value of y, the amount of real-time that has elapsed since the
last synchronization. Next, given the value of y, we can compute an interval that
contains the value of c(j), for arbitrary node j. Once we know the value of c(j),
this gives us some information about the local state of node j. Through these
correspondences, we are able to infer that if node i is sending the slot number
of i and j must be equal.

Formally, for i ∈ Nodes, the state function c(i) is defined by

c(i) = if last = −1 then clk[i] else
if S1i then 0 else

((csn[i]− last)%C) · k0 + clk[i]− g

fi
fi

If there has been no synchronization yet (last = −1) then c(i) is just equal to the
hardware clock clk[i]. If the synchronizer is in location S1i, then we know that
there has been no tick since the last synchronization, so c(i) is set to 0. Otherwise,
c(i) is k0 times the number of slots since the last synchronization, incremented
by the number of ticks in the current slot, minus g to take into account that the
hardware clock has been reset to g + 1 after the last synchronization.

We can now state the main invariant result from this section.

Theorem 1. Assume constraints (2), (3) and (4) hold. Then for any network
with full connectivity the following invariant assertions hold, for all reachable
states and for all i, j ∈ Nodes:

y ≤ c(i) ·max + xi (17)
c(i) > 0⇒ y ≥ (c(i)− 1) ·min + xi (18)

csn[i] = tsn[i] ∧ (clk[i] < g ∨ GO SENDi)⇒ last �= csn[i] (19)
csn[i] = tsn[i] ∧ clk[i] = g⇒ (GO SENDi ∨ SENDINGi) (20)
csn[i] = tsn[i] ∧ clk[i] > g⇒ last = csn[i] (21)

SENDINGi ⇒ csn[i] = csn[j] = last (22)
GO SENDi ⇒ csn[i] = csn[j] ∧ clk[i] = g (23)

last �= −1 ∧ last �= PREV(csn[i])⇒ (TX(csn[i]) ∧ last = csn[i]) (24)
TX(csn[i]) ∧ clk[i] = k0 − 1⇒ last = csn[i] (25)
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S1i ⇒ clk[i] < k0 − 1 ∧ last = csn[i] (26)
c(i) ≥ 0 (27)

last = −1⇒ csn[i] = 0 (28)

Proof. By induction, using the auxiliary invariants from Lemma’s 4 and 5. The
manual proof is about 14 pages long.

Invariants (17) and (18) are the key invariants that relate the values of c(i)
and y. Invariant (22) implies that the network is synchronized. This is the key
correctness property we are interested in. All the other invariants in Theorem 1
are auxiliary assertions, needed to make the invariant inductive.

5 Line Topologies

The line topology has the minimum connectivity. The number of clock syn-
chronization events per time frame is the least possible value for all (connected)
topologies. To maintain synchronization, we need more accurate hardware clocks
and a larger guard time. We assert that for a fixed value of the guard time, the
network fails to synchronize if one keeps increasing the number of nodes. We
claim that for a line network of size N, guard time g should be at least N.

To reduce the state space of the Uppaal analysis, we consider only networks
with perfect clocks, in which clock drift is zero. In Uppaal concurrent events
are non-deterministically ordered. Depending on this choice, clock misalignment
and loss of synchronization are possible.

Figure 11 shows a scenario extracted from a Uppaal counter-example. This
scenario shows that for a network of size N the guard time cannot be N− 1.

The scenario consists of two ”staircases”. One ”fast” staircase has stairs with
the minimum width, where the sender transmits the synchronization signal im-
mediately before the receiver experiences a tick event and the receiver resets its
clock counter to g + 1 in no time as the transitions are urgent, while the other
“slow” staircase has stairs with the maximum width, where the sender trans-
mits the synchronization signal immediately after the receiver experienced a tick
event, so the receiver should wait a the duration of a tick before resetting its
clock counter to g + 1. The staircases start from the same point, viz. when node
number 1,the second node, tries to send messages to its neighbors, nodes 0 and
2. After N − 1 steps, which takes a guard time period, the two staircases join
again when node N − 2 tries to communicate with node N − 1. At that point,
node N−2 has gone through g time units since its previous synchronization and
is about to send a message to node N − 1. On the other hand, node N − 1 is
about to make a clock tick and enter its new time slot, which is convenient for
receiving the message from its neighbor. Synchronization is lost when node N−2
starts sending before node N− 1 ticks.
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Fig. 11. An error scenario for line topologies

6 Conclusions and Related Work

Using timed automata model checking, we discovered some interesting error
scenarios for line topologies: for any instantiation of the parameters, the protocol
will eventually fail if the network grows. We believe that this error scenario is
generic and may serve as a basis for a variation of the fundamental result of
Fan and Lynch [7], reasserted by Locher and Wattenhofer [10], on gradient clock
synchronization in a setting with logical clocks whose value may also decrease.
We also succeeded in presenting a parametric verification for the very restrictive
case of cliques (network with full connectivity). We used model checking to find
the key error scenarios that underly the parameter constraints for correctness,
and theorem proving to check the correctness of our manual invariant proof. In
practical applications of WSNs, cliques rarely occur and therefore our results
should primarily be seen as a first step towards a correctness proof for arbitrary
and dynamically changing network topologies. Nevertheless, these results could
give us an upper bound on allowable clock drift of a generic WSN.

The use of simulations will be essential for providing additional insight into
the robustness and usefulness of our algorithm, also because occasional flaws of
the MAC layer protocol may be resolved by the redundancy of the gossip layer.
However, we believe simulation techniques will not be able to produce worst case
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counterexamples, such as the example of Figure 11 that was produced by the
model checker Uppaal.

Methodologically, the approach of this paper is similar to our study of the
Biphase Mark Protocol [21], which also uses Uppaal to analyze instances of
the protocol and a theorem prover for the full parametric analysis. Theorem
provers have been frequently and successfully applied for the analysis of clock
synchronization protocols, see for instance [16,17]. An interesting research chal-
lenge is to synthesize (or prove the correctness of) the parameter constraints
for the Chess protocol fully automatically. Recently, some approaches have been
presented by which, for instance, the (parametric) Biphase Mark Protocol can
be verified fully automatically [5,20]. However, we think these approaches are
not powerful enough (yet) to handle the Chess protocol.

Acknowledgement. Many thanks to Frits van der Wateren, Marcel Verhoef and
Bert Bos from Chess for explaining their WSN algorithms to us.
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Abstract. This paper relates an industrial experience in the field of formal veri-
fication of avionics software products. Ten years ago we presented our very 
first technological research results in [18]. What was just an idea plus some ex-
perimental results at that time is now an industrial reality. Indeed, since 2001, 
Airbus has been integrating several tool supported formal verification tech-
niques into the development process of avionics software products. Just like all 
aspects of such processes, the use of formal verification techniques must com-
ply with DO-178B [9] objectives and Airbus has been a pioneer in this domain.  

Keywords: avionics software, safety, development process, verification, formal 
verification, Abstract Interpretation, static analysis. 

1   Introduction 

Industrial context. Avionics software products in onboard computers are major 
components of the systems of an aircraft. Such software products are developed  
according to very stringent rules imposed by the DO-178B standard. Of course verifi-
cation, although being one activity among others, is the heaviest task of the develop-
ment of an avionics software product. Verification, as defined by DO-178B, is  
performed by reviews, analyses or tests. The first two ones are purely intellectual 
while the latter basically consists in executing the program to be verified and in 
checking whether the results of this execution are those expected.  

Airbus technological research in Formal Verification. The above mentioned veri-
fication means constituted the state of the art at the time DO-178B was written. Dur-
ing the last decade, new verification techniques coming from research in Computer 
Science have become usable in the industry of critical embedded software. These 
techniques are formal and are usually categorized as follows: Abstract Interpretation 
based static analysis, theorem proving and model-checking. 
                                                           
* Onera is the French aerospace lab and is working with Airbus on methods and certification 

aspects of formal verification. 
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Transfer to operational teams. Since 2001, Airbus has been transferring formal 
verification tools – and associated methods of use – to its teams who develop avionics 
software. The first set of tools to be transferred have been: Caveat [18], aiT [12] and 
Stackanalyzer [23] . They are all used for achieving some DO-178B verification ob-
jective. This means that they have been qualified in the sense of this standard. 

The aim of this paper is to show how the development of avionics software could 
benefit from formal verification techniques far beyond their first use mentioned just 
above. This paper is based on the synthesis of ongoing technological research work at 
Airbus, in close cooperation with academic and industrial labs. The various aspects of 
this research are handled – or have been handled – in the context of the following past 
or ongoing research projects: DAEDALUS [5], ASTREE [1], THESEE [24], CAT 
[2], U3CAT [25], ASBAPROD (French civilian aviation project), ES_PASS [11]. 

 
Structure of the paper. Section 2 is a quick overview of the development and verifi-
cation process of a DO-178B conforming avionics product. In section 3, the formal 
verification technologies used by Airbus are presented, whether already used industri-
ally or close to be. Sections 4 and 5 show what development activities it is possible to 
base on the use of the tools introduced in section 3, and what are possible develop-
ment processes including these activities. Considerations about the compliance of 
these new processes to DO-178B and, beyond, to DO-178C (the standard being de-
fined) are discussed in section 6. Section 7 concludes and introduces future work.  

2   DO-178B Compliant Development Process of an Avionics 
Software Product 

The development of avionics software products has to conform to the DO-178B [9] 
standard. DO-178B does not prescribe a specific development process, it identifies 
important steps inside a development process and defines objectives for each of these 
steps. DO-178B distinguishes the development processes from “integral” processes 
that are meant to ensure correctness control and confidence of the software life cycle 
processes and their outputs. The verification process is part of the integral processes. 
In this section, we give an overview of the development and verification processes. 

2.1   Development Processes 

Four processes are identified: 

- The software requirements process develops High Level Requirements 
(HLR) from the outputs of the system process; 

- The software design process develops Low Level Requirements (LLR) and 
Software Architecture from the HLR; 

- The software coding process develops source code from the software archi-
tecture and the LLR; 

- The software integration process loads executable object code into the target 
hardware for hardware/software integration.  

Each of the above mentioned processeses is a step towards the actual software prod-
uct, Figure 1 presents the different steps.  
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Fig. 1. DO-178B development processes 

 
So far, for the software products it develops, Airbus has been defining the Low 

Level Requirements as being applied to design entities that are later implemented in 
the form of modules and functions of the programming language (C, most of the time) 
in a one-to-one manner. The way those design entities collaborate in order to imple-
ment the High Level Requirements is first defined during the software architecture 
phase. 

2.2   Verification Process 

The results of all activities1 of the development must be verified. Detailed objectives 
are defined for each step of the development, typically some objectives are defined on 
the output of a development process itself and also on the compliance of this output to 
the input of the process that produced it. For example, Figure 2 presents the objectives 
related to LLR. Arrows are labeled with verification objectives; the loop arrow on 
LLR means the objectives only concern LLR while the arrow between LLR and HLR 
means that objectives address relationships between LLR and HLR.  

On one hand, LLR shall be accurate and consistent, compatible with the target 
computer, verifiable, conform to requirements standards, and they shall ensure algo-
rithm accuracy. On the other hand, LLR shall be compliant and traceable to HLR. 

Verification means identified by DO-178B are reviews, analyses and test. Reviews 
provide a qualitative assessment of correctness. Analyses provide repeatable assess-
ment of correctness. Reviews and analyses are used for all the verification objectives 
regarding HLR, LLR, software architecture and source code. Test is used to verify  
 

                                                           
1 We use the terms activity and process, a process is a set of activities.  
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Fig. 2. Verification objectives associated to LLR 

that the executable object is compliant with LLR and HLR. Test is always based on 
the requirements (functional test) and shall include normal range and robustness 
cases. A structural coverage analysis is performed to ensure that the software has been 
tested enough (different coverage criteria are used depending on the criticality level of 
the software).   

3   Formal Verification Technologies Applicable to Avionics 
Programs 

In this section, we briefly present the two kinds of formal techniques used for the 
verification of avionics programs (deductive methods and Abstract Interpretation 
based static analysis) and we describe the associated tools.  

3.1   Deductive Methods 

The first kind of formal technique we consider for the verification of programs is de-
ductive proof based on Hoare logic [15], and the computation of Dijkstra’s weakest 
precondition predicate transformer [8]. The objective is to prove user defined proper-
ties on a given program. Properties must be formally expressed in logic. This tech-
nique proceeds in two steps:  

- computation of the verification conditions: post-conditions (properties that 
should hold after the execution of the program) are defined, this first step 
analyses the program and computes the conditions that must hold for these 
post-conditions to be verified; 

- proof of the verification conditions: a theorem prover is used to prove the 
conditions computed before.  

The first step is completely automated, the second step usually requires interaction 
with the user, but automation can be improved by the definition of specific heuristics. 

Several tools exist for different programming languages (mostly C and java). The 
tools considered in this paper are Caveat and Frama-C [14].  



536 J. Souyris et al. 

3.2   Abstract Interpretation Based Static Analysis 

The second kind of techniques is techniques based on Abstract Interpretation [4]. The 
principle of Abstract interpretation is the construction of a sound approximation of the 
semantics of programs. A specific approximation is generated for each particular 
property being analysed. Abstract interpretation is a completely automated technique. 
It may produce so called “false positives” (errors that can occur on the approximation 
of the program that has been computed, but cannot occur on the real program). The 
challenge is thus to be able to build a precise enough approximation in order to have 
as few false positives as possible. This usually implies a specialisation of the tech-
nique with respect to the analysed programs.  

The Abstract Interpretation based tools considered in this paper are Astrée [3], aiT 
[12], Stackanalyzer [23] and Fluctuat [6].  

3.3   Tools 

We only present briefly the tools, the use of tools in the Airbus process will be de-
scribed in section 4.  

Caveat [18] is the first formal verification tool that Airbus has been using in devel-
opment (since 2002). Caveat analyses C programs (with some restrictions in terms of 
language constructs) and has its own specification (or property) language based on  
first order logic.  

Caveat proposes two main functionalities:  

• data and control flow analysis; 
• proof of user-specified properties. 

Data and control flows analyses are fully automatic on the set of C modules given to 
Caveat. 

Proof of user-specified properties is in general not automatic. For completing a 
proof or understanding why it cannot be completed, the user can use Caveat Interac-
tive Predicate Transformer. This interactive part of the tool takes a first order logic 
formula as input that the user can handle in order to prove it equivalent to true or to 
understand that it is not possible. Each predicate transformation is performed under 
the control of the tool. 

Frama-C [14] is a toolbox that aims at analysing C programs. It is extensible by 
means of plug-ins. A plug-in implements a specific analysis and can exchange data 
with other plug-ins or with the core of Frama-C thanks to a common specification 
language called ACSL.  

Examples of existing plug-ins are: 

• Abstract Interpretation based value analysis; 
• Slicing; 
• Weakest Precondition (WP) computation whose proof obligations are 

given to the WHY platform of provers. 

It must be noticed that the development of simple but useful plug-ins is accessible to 
industrial Frama-C users. 
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Whereas Frama-C mixes several techniques coming from research in Computer 
Science, the following tools are all based on Abstract Interpretation. 

Astrée  [3] analyses – a subset of - C programs on which it aims at proving the ab-
sence of Run-Time Errors (RTE). Since it has been designed in the context of the  
Abstract Interpretation theory [13], it might produce false alarms, also called false 
positives, due to the abstraction of the concrete semantics of the analysed program. In 
order to make it industrially usable on safety-critical programs, Astrée had to be spe-
cialized for a family of programs. This has been made for control-command synchro-
nous programs produced from SCADE (or SAO, SCADE ancestor) models. The  
result is that Astrée precision is very high (almost zero false positives) when analysing 
programs that belong to the family for which it has been specialized. Scalability is 
also very good, i.e., 500,000 lines of code are analysed successfully within a time-
scale compatible with industrial development constraints. 

aiT [12] analyses a program in its binary form for computing an upper bound of the 
Worst Case Execution Time (WCET) of the program tasks. This static analyser con-
tributes to proving that the timing constraints assigned to a program are met. Indeed 
all kinds of schedulability analyses take the WCET of the tasks of the system as input. 
Because the execution time of a piece of code also depends on the hardware on which 
it is intended to be executed, aiT includes a model of the target processor and its asso-
ciated memory controller. Whereas the drawback of abstraction is the false positive in 
the case of an Abstract Interpretation based static analyser dealing with RTE, the 
counterpart for aiT is the overestimation of the WCET (upper bound). 

Stackanalyzer [23] analyses a program in its binary form for computing an upper 
bound of the amount of memory actually used by the program task stack. This static 
analysis contributes to proving that no execution of the program will cause a stack 
overflow. 

Fluctuat [6]. Whereas in mathematics the set of real numbers is infinite, the set of 
floating-point numbers is finite, be it float, double, etc. So, during the float operations 
performed by a program, rounding errors affect the results. This might lead to a sig-
nificant difference between a floating-point value and the real one that should have 
been computed. Furthermore, a calculus scheme might be stable in the real arithmetic 
and become instable in the floating-point arithmetic. With respect to this problem, 
Fluctuat analyses C programs – note that there is a Fluctuat for a specific assembly 
language (TMS320C33 processor) – for computing safe ranges for: 

• The floating-point values the variables still alive at the end of the program 
may have; 

• The error between the floating point value and the real one that should 
have been computed if operations were in the real numbers, for each vari-
able still alive at the end of the program. 

Fluctuat does not only compute these ranges, it also allows the user to find the origin 
of imprecisions in its code. Problems like lacks of precision, instability, sensitivity are 
detected by this static  analyser. 

 
Certified compilation. There are various approaches for proving that a program in its 
binary (or assembly) form is semantically equivalent to the source program (in C, for 
instance) from which it has been compiled. Two of them are being considered: the 
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Translation validation [19] and the Certified compiler [17]. The first one consists in 
proving that after each production of a binary file, this executable program is seman-
tically equivalent to the input source program (e.g., in C files). This is a kind of vali-
dator separated from the compiler. The second selected approach, i.e., the Certified 
compiler, consists in developing a compiler formally and proving once and for all that 
it produces target programs semantically equivalent to source programs. 

Certified compilation is of utmost importance in itself, especially for safety-critical 
software products. It is also natural to consider it when formal verification is per-
formed on source programs. Indeed, a bug of a compiler might lead to produce a code 
on which some proof of a property made on the source code does not longer hold. 

4   Development Process Activities Based on the Use of Formal 
Techniques 

4.1   Operational Use of Formal Methods 

Unit Proof [10, 21]. Within the development process of the most safety-critical avi-
onics programs, the unit verification technique is used for achieving DO-178B objec-
tives related to the verification of the executable code with respect to the Low Level 
Requirements, the classical technique being the Unit Tests. Since 2002, a formal ap-
proach to Unit Verification is also used industrially: Unit Proof. The tool used for this 
activity is Caveat (see section 3.3). Basically, it consists in: 

• Writing formal Low Level Requirements in Caveat property language 
during the detailed design activity of the development process; 

• Once a C module has been written during the coding activity, the formal 
requirements of this C module and the module itself are given to Caveat 
for proving. This activity is performed for each C function of each C 
module. When a C function is called by the one being proved it is stubbed 
according to a sound technique. 

 
Worst Case Execution Time analysis [22]. In real-time systems, computing correct 
values is not enough. Indeed, the program must also compute these values in due time 
in order to remain synchronised with the physical environment. The scheduling of the 
most critical avionics real-time programs is an off-line scheduling. This means that the 
serialisation (single processor) of the various program tasks is performed at design 
time, leading to a fixed interleaving of these tasks. In this context, schedulability 
analysis boils down to the safe computation of an upper bound of the Worst Case 
Execution Time of the program tasks, almost exclusively. This computation is per-
formed with aiT (see section 3.3). 

 
Maximum stack usage computation. The amount of memory given to a task of an 
avionics program is determined statically when the program is built. If any task stack 
of a program actually requires more memory than what has been allocated statically, a 
stack overflow exception is raised during execution. In order to avoid this serious 
problem, a safe upper bound of each stack of the program must be computed. With 
these figures, the computation a safe upper bound of the total amount of memory used 
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for stacks is performed, by means of an analysis that takes into account some mecha-
nisms such as interrupt tasks or Operating System calls.  

4.2   Envisaged Use of Formal Methods 

Integration Proof. The kind of defects that are covered by the Unit Proof technique 
does not include the ones that arise when a C function calls another one with a wrong 
interpretation of the service provided by the latter. Let us call this sort of bugs “design 
bugs” since they are introduced during the activity which aims at defining the inter-
faces between the future C functions.  

Integration Proof is being elaborated in the frame of the research project AS-
BAPROD and can be defined as an extension of the Unit Proof technique. Indeed, in-
stead of considering C functions individually, Integration Proof deals with sub-trees 
of the program call tree. Let us consider an example. Suppose four C functions: f(), 
g(), h() and i(), f() being the entry point of a call-tree (sub-tree of the whole program 
call-tree) containing the other C functions. Whereas the Unit Proof technique aims at 
proving that f (), g(), h() and i() satisfy their individual formal requirements without 
taking into account the semantics of their callees (the C functions they call), the goal 
of Integration Proof technique is to prove that the formal requirements of function f() 
are satisfied by taking into account the semantics of all C functions contained in “its” 
call-tree.  The relevant design entities are bigger than the ones considered in Unit 
Proof but smaller than the whole program. The reason why we did not move from the 
proof of each C function individually to the proof of the whole – sequential – program 
made of these C functions is the fact that we want to keep a great automatic proof 
rate, for obvious industrial reasons. It is a design-time issue to define these intermedi-
ate-level entities in such a way that their further proof is as automatic as possible. 

 
Proof of absence of Run-Time error [7, 20]. The underlying notion has been pre-
sented in several academic papers, such as [3, §2]: “The absence of runtime errors is 
the implicit specification that there is no violation of the C norm (e.g., array index of 
bounds), no implementation-specific undefined behaviours (e.g., floating-point divi-
sion by zero), no violation of the programming guidelines (e.g., arithmetic operators 
on short variables should not overflow the range [-32768,32767] although, on 
the specific platform, the result can be well-defined through modular arithmetic).”  

This includes checking that no floating-point overflow can occur, as suggested by 
DO-178B. So far, this need has been addressed through a combination of design and 
coding guidelines, testing activities and source code reviews. Today, the ASTRÉE 
static analyzer makes it possible to perform sound global proofs of absence of run-
time errors on complete applications. The analysis process is highly automatic, espe-
cially when dealing with Airbus large control programs, generated from SCADE 
models. 
 
Quality of floating-point calculus [6]. Freedom from run-time errors is not enough 
when dealing with complex control programs that make massive use of floating-point 
arithmetic. The accuracy of computations has to be addressed also, as requested by 
DO-178B. The usual way to deal with this issue is to conduct: 
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- a set of dedicated test cases on real hardware; 
- intellectual analyses of the numerical precision of all floating-point opera-

tions. The goal is to check that the program parts using floating-point arith-
metic can only generate negligible rounding errors, and cannot propagate 
errors on inputs (sensitivity analysis).  Such an activity is both time-
consuming and error-prone. 

Today, the FLUCTUAT static analyser enables us to automate the latter activity in a 
sound and precise way for libraries of widely-used basic operators of control pro-
grams. Besides, this tool can also be used to assess the numerical accuracy of some 
critical system-level functions, through static analyses of the C code generated from 
limited sets of SCADE nodes. 

 
Certified compilation. As stated in section 2, the development of an avionics pro-
gram is made of four basic steps to which verification activities are applied. One step 
being the production of the object code from the source code by compilation (and 
production of the absolute binary code), it is natural to think about checking that this 
step does not introduce bugs. In the “traditional” development process (see section 2), 
an important verification activity consists in testing the program against its Low Level 
requirements and, later on, against its High Level Requirements, by execution on the 
real target (or on a very representative hardware). This verification covers the com-
piler outputs. With the use of formal verification techniques that apply to source code, 
the compiler outputs are not included in what is verified; the risk being that proofs 
made on the source code no longer hold on the binary code. This almost new activity 
will be supported by the use of either a “Certified” compiler [17] or by a validator 
[19] in order to prove that source and binary programs are semantically equivalent 
(see  section 3.3). 

4.3   Lessons Learnt and Deployment Aspects 

We will give here some quantitative data for the techniques that have been deployed 
operationally at Airbus. 

• Stack Analyzer is used on all the embedded software products developed 
by Airbus teams, on more than 10 projects for A380 and A400M air-
crafts. All software developers use it, no specific training is necessary. 

• AiT is used on approximately 6 projects and more are on the way. All 
software developers use it, without specific training, there is one special-
ised engineer who has more specific knowledge, is responsible for the 
tuning of the tools and can be consulted for advice by the other engineers. 
It is important to note that this specialist is not a formal method specialist, 
but a specialist of execution time estimation. 

• Unit proof is deployed on three projects and necessitates a specific three-
day training.  

 
In the course of experimenting formal techniques, Airbus has defined five criteria for 
the choice of the techniques and the conditions of their operational use. These criteria 
are given and explained below. 
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− Soundness: the technique used has to be sound, i.e. it does not say a prop-
erty is true if it might not be true. 

− Applicability to the code that will be embedded onboard the aircraft: no 
specific model has to be developed to perform the verification, it is done di-
rectly on the code. 

− Usability by “normal” engineers on “normal” computers: formal verification 
is performed on the computers that are used for software development (no 
need for super computers) and by the engineers (no need for formal method 
gurus). 

− Ability to optimise an existing industrial process: formal techniques must 
bring better performances than classical methods.  

− Certifiability: the objective is to get certification credits for the use of for-
mal methods.   

 
The three techniques that have been deployed operationally meet these five criteria. 
Moreover, in some cases, formal methods are the only way to keep the same rigor in 
verification and have an acceptable precision. For example, for stack analysis and 
worst case execution time computation, classical methods lead to safe but much over-
estimated results (because of the complexity of the software), formal tools provide 
better results that allow an optimisation of hardware resources. Finally, formal meth-
ods are used if they are automated. The experimental phase is used to augment auto-
mation (by defining proof heuristics for proof techniques or code annotations for  
abstract interpretation based techniques), deployment of the technique is done when 
sufficient automation is reached. Automation brings high efficiency to the mainte-
nance phase, verification can indeed be redone very easily. 

The operational deployment of several formal techniques necessarily modifies the 
verification process and more generally the development process. The next section 
will present foreseen evolution of the processes.  

5   Towards Product-Based Assurance 

5.1   Process and Product Based Assurances 

In the Process based Assurance, the confidence in the fact that any execution of the 
software product conforms to the system specification for that product is obtained by 
the strict observance of DO-178B development process rules. It is the whole devel-
opment process that allows to get reasonable confidence in the software product. In 
other words, if a software product is developed by performing the activities prescribed 
by DO-178B successfully it will be considered as “good for flight” by the regulation 
authorities. The main reason why DO-178B emphasizes the quality of the develop-
ment process is that classical verification techniques do not make it possible to prove 
the absence of software errors. 

In the product based assurance, the confidence is obtained by making sure that the 
software product has the required characteristics (or properties). The most ambitious 
goal would be to have a set of formal requirements of the program to develop which 
specify all aspects of the program execution, and to be able to prove that all possible 
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executions of the binary program satisfy these requirements. If it was possible, this 
would prove that there is no software error.  

5.2   Formal Verification Activities and Product Based Assurance  

Executability. By this term we refer to the ability of the program to have well defined 
behaviours with respect to: 

• The “ISO/IEC 9899:1999 (E)"  standard (including IEEE 754 standard [16]); 
• Specific coding and code generation rules; 
• Timing constraints; 
• Numerical precision constraints; 
• Synchronisation / communication mechanisms. 

It must be noticed that without proving the above properties, any proof of user defined 
requirements (see below) by partial formal verification techniques might be invali-
dated by some undefined behaviour. Therefore, whenever a formal verification tech-
nique not covering the detection of undefined behaviours is used, additional activities 
must be performed, either based on tools or on intellectual analyses. 

Formally proving the executability of a program is the basic kind of Product based 
assurance. Furthermore, most of the tools mentioned in section 3 are able to analyse 
whole applications. 

 
Proof of user-defined requirements. So far, there is no cost-effective industrial 
technique able to verify that whole avionics C programs satisfy their user-defined re-
quirements formally. As stated in section 4, Unit Proof and Integration Proof tech-
niques aim at such formal verification but on program pieces taken individually. The 
fact that the pieces considered in the Integration Proof technique are bigger than the 
ones of the Unit Proof technique leads to a better coverage but cannot stand for a for-
mal verification of the whole application with respect to its High Level Requirements. 

Nevertheless, we can look at the program pieces which are formally verified as in-
termediate software products, each of them being specified formally, and then con-
sider such verifications as an application of the Product based assurance paradigm 
within the development process (Process based assurance). 

 
Certified compilation. As stated in section 4.2, evidences that proofs performed at 
source code level still hold on the executable program is mandatory. This is another 
way of saying that in the Product based assurance, the actual software product is the 
executable program. 

5.3   Mix of Formal Verification and Tests  

Checking real program executions on real hardware will always be required by  
DO-178. The basic reason for that is the activity called software/hardware integration. 

Beyond this reason, one must also take into account that the huge test campaigns 
performed on the real hardware during the “traditional” avionics software develop-
ment process also allow to detect hardware defects. Indeed, most of the time, espe-
cially for flight control functions, both hardware and software are developed almost 
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from scratch when a new aircraft is developed. This means that software tests on the 
real – new – hardware contribute to achieve hardware maturity earlier. 

This second reason makes the reduction of the amount of tests an issue. It is clear 
that the test amount will not be reduced down to the sole software / integration tests.  

Therefore, a trade-off between tool-aided formal verification and testing will have 
to be set, which combines the main advantages of both kinds of techniques, i.e.,  the 
automation and good coverage on the one hand, maximal representativity of the tests 
by execution on the hardware, on the other hand.  

5.4   Development Processes Including Some Product Based Assurance  

A “traditional” DO-178B conforming process could use static analysers to replace or 
strengthen some intellectual analyses in order to prove executability (see above). 
Since some static analysers deal with source code, one must trust the compilation in 
order to get sure that proofs still hold on the binary code. 

Another way of improvement is to introduce Unit Proof technique (see section 4) 
for formal verification of the source code against its Low Level Requirements. One 
can also introduce Integration Proof technique (see section 4) for formal verification 
of the source code against its Low Level Requirements. In both cases, certified com-
pilation is a way to secure the formal verification process. 

Actually, there are many ways to introduce formal verification techniques in an 
avionics development process. An important criterion of such an introduction is 
whether a “certification credit” is based on the use of a technique or not. So far, Air-
bus has always been introducing formal verification techniques from which a certifi-
cation credit has been derived. Nevertheless, it might be the case that some formal 
verification technique could be used for debugging rather than for achieving some 
DO-178 objective. 

6   Certification Aspects 

In this section, we will highlight the specificities of the certification process when 
formal methods are used for part of the verification. We consider certification with re-
spect to DO-178B, the current software certification standard for avionics software. 
DO-178 is currently being updated by a dedicated international working group, ver-
sion C of the standard should be available in 2010, we will end the section with a 
brief presentation of the current proposal regarding formal methods. 

Several cases exist for what concerns certification: 

• Formal techniques are used in places where reviews or analyses were used 
previously to reach the same verification objective. In that case formal meth-
ods are simply an alternative means to reach the objective, the main differ-
ence being that formal techniques are implemented by a tool and so this tool 
must be qualified with respect to DO-178B rules for the qualification of  
verification tools. More information on qualification of tools is given in  
subsection 6.1. 

• Formal techniques replace verifications that were previously done by test.  
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o A first difference that occurs is that the verification is thus done on 
the source code instead of the object code. To reach the same level 
of confidence than with test, complementary analyses must be per-
formed to ensure that the properties that are verified on source code 
are still satisfied by the object code (this can be done using formal 
methods also, see the work on certified compilation in section 3).  

o The most complex case for certification is the unit or integration 
proof case, where formal methods are used to verify properties of a 
C program and replace unit test or integration test. The issue here is 
the coverage of the verification with respect to the c code. This is-
sue is discussed in subsection 6.2. 

6.1   Qualification of Tools 

DO-178B distinguishes two kinds of tools: development tools that have an effect on 
the code being produced (for example code generators) and verification tools that are 
used to verify some properties on the code (but cannot insert errors). Formal methods 
tools have to be qualified as verification tools. It must be shown that the tool complies 
with its operational requirements under normal operational conditions. In practice, it 
means that a set of representative cases will be defined and it will be checked that the 
tool provides the expected results for these cases. Stackanalyzer, aiT and Caveat have 
been qualified as verification tools. No specific requirements are defined for formal 
method tools in DO-178B, but it might change in version C of the standard where the 
current proposal is to add objectives targeted for this kind of tools.  

6.2   Coverage 

When test is used to verify a function against its requirements, a set of requirement-
based test cases are defined and executed. A functional coverage analysis is  
performed to ensure that test cases have been defined for every requirement and a 
structural coverage analysis is performed to ensure that all the code has been covered 
and that there is no dead code (for level A software, the most critical one, 100% 
MC/DC [13] is required).  When formal proof is used to verify a C function against a 
set of properties, it ensures an exhaustive coverage for a given property, but it must 
also be demonstrated that the set of properties that has been defined covers all the  
behaviours of the code.  

In the case of the unit proof, the argument provided to the certification authorities 
was based on a demonstration that the set of properties was complete (demonstration 
using formal proof and reviews). In the case of integration proof, the argument is still 
the object of research. The general issue that will have to be solved is to be able to 
measure the coverage of the code obtained by formal verification, and in some cases 
to be able to mix it with a coverage obtained by test in order to argument the complete 
coverage of code for certification authorities.  

6.3   DO-178C 

The update of DO-178 will leave the core of the standard mostly unchanged but will 
propose several technical supplements dealing with the use of specific techniques 
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such as object-oriented languages or formal methods, a technical supplement on tools 
is also expected. The current draft of the formal method technical supplement defines 
what formal methods are, gives criteria for such methods, explains how and under 
which conditions formal methods can be used to reach DO-178 verification objectives 
at each step. For verification objectives on the executable object code, it replaces the 
testing objectives by more generic verification objectives, some testing is still re-
quired but some objectives can also be reached using formal methods. 

7   Conclusion and Future Work 

In this paper it has been shown how formal verification techniques can be used in the 
development process of avionics software products.  

The authors are convinced that the story is far from being finished and that more 
and more formal verification techniques will be used in the future, as tools become 
available for industrial use. These techniques are the only way to face the dramatic in-
crease of software complexity, especially when safety is at stake. Technological re-
search is therefore continued in the following three areas: Computer Science research, 
by means of collaboration with labs, contribution to the development of tools and 
definition of methods of use. 

Regulation aspects are a crucial issue for the industrial use of formal methods, the 
authors are working on means to conform to the standards but also on evolution of 
standards in the hope to facilitate future use of formal techniques.  
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Formal Verification of Curved Flight Collision
Avoidance Maneuvers: A Case Study�
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Abstract. Aircraft collision avoidance maneuvers are important and
complex applications. Curved flight exhibits nontrivial continuous behav-
ior. In combination with the control choices during air traffic maneuvers,
this yields hybrid systems with challenging interactions of discrete and
continuous dynamics. As a case study illustrating the use of a new proof
assistant for a logic for nonlinear hybrid systems, we analyze collision
freedom of roundabout maneuvers in air traffic control, where appropri-
ate curved flight, good timing, and compatible maneuvering are crucial
for guaranteeing safe spatial separation of aircraft throughout their flight.
We show that formal verification of hybrid systems can scale to curved
flight maneuvers required in aircraft control applications. We introduce
a fully flyable variant of the roundabout collision avoidance maneuver
and verify safety properties by compositional verification.

1 Introduction

In air traffic control, collision avoidance maneuvers [1,2,3,4] are used to resolve
conflicting flight paths that arise during free flight. See Fig. 1 for a series of
increasingly more realistic—yet also more complicated—aircraft collision avoid-
ance maneuvers. Fig. 1c shows a malfunctioning collision avoidance attempt.
Collision avoidance maneuvers are a “last resort” for resolving air traffic con-
flicts that could lead to collisions. They are important whenever conflicts have
not been detected by the pilots during free flight or by the flight directors of the
Air Route Traffic Control Centers. Consequently, complicated online trajectory
prediction or maneuver planning may no longer be feasible in the short time
that remains for resolving the conflict. In the tragic 2002 mid-flight collision in
Überlingen, the aircraft collided tens of seconds after the on-board traffic alert
and collision avoidance system TCAS signalled a traffic alert. Thus, for safe
aircraft control we need particularly reliable reactions with maneuvers whose
correctness has been established previously by a thorough offline analysis. To
ensure correct functioning of aircraft collision avoidance maneuvers under all
circumstances, the temporal evolution of the aircraft in space must be analyzed
carefully together with the effects that maneuvering control decisions have on
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a. b. c. d.

Fig. 1. Evolution of collision avoidance maneuvers in air traffic control

their dynamics. This results in complicated superpositions of physical system
dynamics with control, which is an example of what is called hybrid system [5].

Several numerical [1,6,7,8,4] or optimization-based [6,7,9,4] approaches have
been proposed for air traffic control. It is difficult to give sound formal verification
results for these approaches due to errors in numerical computations or implicit
definition of maneuvers in terms of complicated optimization processes. Formal
verification is important to avoid collisions, see Fig. 1c. Formal results have been
given by geometrical reasoning [2,3,10,11] in PVS. Yet, one still has to prove
by other techniques that the hybrid dynamics of a flight controller actually
follows the geometrical shapes. In contrast, we verify the hybrid system dynamics
directly using a formally sound approach (assuming sound elementary decision
procedures), consider curved flight, and achieve better automation.

Control Challenges. Because of the complicated spatio-temporal movement of
aircraft, their maneuvers are challenging for verification. Unlike in ground trans-
portation, braking and waiting is not an option to resolve conflicts. Consequently,
aircraft maneuvers have to be coordinated such that the aircraft always respect
minimal and maximal lateral and angular speed constraints yet always remain
safely separated. Further, angular velocity for curving is the primary means of
control, because changes in thrust and linear speed are less efficient for aircraft.

Technical Challenges. Complexities in analysis of aircraft maneuvers manifest
most prominently in difficulties with analysing hybrid systems for flight equa-
tions. General solutions of flight equations involve trigonometric functions that
depend on the angular velocity ω and the orientation of the aircraft in space.
For straight line flight (ω = 0), the movement in space is just linear so that
classical analysis techniques can be used [5]. These include pure straight line
maneuvers [1,12,2,3,4]; see, e.g., Fig. 1a. They have to assume instant turns for
heading changes of the aircraft between multiple straight line segments. Instant
turns, however, are impossible in midflight, because they are not flyable: Aircraft
cannot suddenly change their flight direction from 0 to 45 degrees discontinu-
ously. They need to follow a smooth curve instead, in which they slowly steer
towards the desired direction by adjusting the angular velocity ω appropriately.
Moreover, the area required by maneuvers for which instant turns could possibly
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be understood as adequately close approximations of properly curved flight is
huge. Curved flight is thus an inherent part of real aircraft control.

During curved flight, the angular velocity ω is non-zero. For ω �= 0, flight equa-
tions have transcendental solutions, which generally fall into undecidable classes
of arithmetics; see [13]. Consequently, maneuvers with curves, like in Fig. 1b–1d,
are more realistic but also substantially more complicated for verification than
straight line maneuvers like that in Fig. 1a. We have recently developed a sound
verification algorithm that works with differential invariants [14] instead of so-
lutions of differential equations to address this arithmetic. Now we show how a
fully curved maneuver can be verified by extending our work [14].

In this paper, we introduce and verify the fully flyable tangential round-
about maneuver (FTRM). It refines the non-flyable tangential roundabout ma-
neuver (NTRM) from Fig. 1d, which has discontinuities at the entry and exit
points of roundabouts, to a fully flyable curved maneuver. Unlike most previ-
ously proposed maneuvers [1,7,12,2,15,3,4], FTRM does not have non-flyable
instant turns. It is flyable and smoothly curved. Unlike other approaches em-
phasizing the importance of flyability [6], we give formal verification results.

Contribution. Our main contribution is to show that reality in model design and
coverage in formal verification are no longer incompatible desires even for appli-
cations as complex as aircraft maneuvers. As a case study illustrating the use
of differential dynamic logic for hybrid systems [16], we demonstrate how tricky
and nonlinear dynamics can be verified with our verification algorithm [14] in our
verification tool KeYmaera. We introduce a fully curved flight maneuver and ver-
ify its hybrid dynamics formally. In contrast to previous approaches, we handle
curved flight, hybrid dynamics, and produce formal proofs with almost complete
automation. Manual effort is still needed to simplify arithmetical complexity
and modularize the proof appropriately. We further illustrate the resulting veri-
fication conditions for the respective parts of the maneuver. Finally, we identify
the most difficult steps during the verification and present new transformations
to handle the enormous computational complexity. To reduce complexity, we
still use some of the simplifications assumed in related work, e.g., synchronous
maneuvering (i.e. aircraft make simultaneous maneuver choices).

Related Work. Lafferriere et al. [17] gave important decidability results for
hybrid systems with some classes of linear continuous dynamics but only random
discrete resets. These results do not apply to air traffic maneuvers, because they
have non-trivial resets: the aircraft’s position does not just jump randomly when
switching modes but, rather, systematically according to the maneuver.

Tomlin et al. [1] analyze competitive aircraft maneuvers game-theoretically
using numerical approximations of partial differential equations. As a solution,
they propose roundabout maneuvers and give bounded-time verification results
for straight-line approximations (Fig. 1a). We verify curved roundabouts with a
sound symbolic approach that avoids approximation errors.

Flyability has been identified as one of the major challenges in Košecká et al.
[6], where planning based on superposition of potential fields has been used to re-
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solve air traffic conflicts. This planning does not guarantee flyability but, rather,
defaults to classical vertical altitude changes whenever a nonflyable path is de-
tected. The resulting maneuver has not yet been verified. The planning approach
has been pursued by Bicchi and Pallottino [7] with numerical simulations.

Numerical simulation algorithms approximating discrete-time Markov Chain
approximations of aircraft behavior have been proposed by Hu et al. [8]. They
approximate bounded-time probabilistic reachable sets for one initial state. We
consider hybrid systems combining discrete control choices and continuous dy-
namics instead of uncontrolled, probabilistic continuous dynamics.

Hwang et al. [4] have presented a straight-line aircraft conflict avoidance ma-
neuver that involves optimization over complicated trigonometric computations,
and validate it using random numerical simulation and informal arguments.

The work of Dowek et al. [2] and Galdino et al. [3] is probably closest to ours.
They consider straight-line maneuvers and formalize geometrical proofs in PVS.

Attempts to Model Check discretizations of roundabout maneuvers [12,15]
indicated avoidance of orthogonal collisions (Fig. 1b). Counterexamples found
by our Model Checker in previous work show that collision avoidance does not
extend to other initial flight paths of the classical roundabout (Fig. 1c).

Pallottino et al. [18] have presented a spatially distributed pattern for multiple
roundabout circles at different positions. They reason manually about desirable
properties of the system and estimate probabilistic results as in [8]. Pallottino
et al. thus take a view that is complementary to ours: they determine the global
compatibility of multiple roundabouts while assuming correct functioning within
each local roundabout. We verify that the actual hybrid dynamics of each local
roundabout is collision free. Generalizing our approach to a spatial pattern of
verified local roundabouts could be interesting future work.

Similarly, the work by Umeno and Lynch [11,10] is complementary to ours.
They consider real-time properties of airport protocols using Timed I/O Au-
tomata. We are interested in proving local properties of the actual hybrid
system.

Our approach has a very different focus than other complementary work:

– Our maneuver directly involves curved flight unlike [1,8,2,3,4,11,10]. This
makes our maneuver more realistic but much more difficult to analyze.

– Unlike [6,8,4], we do not give results for a finite (sometimes small) number
of initial flight positions (simulation). Instead, we verify uncountably many
initial states and give unbounded-time horizon verification results.

– Unlike [1,6,7,8,9,4], we use symbolic instead of numerical computation so
that numerical and floating point errors cannot cause soundness problems.

– Unlike [7,12,8,2,3,4,11,10], we analyze hybrid system dynamics directly.
– Unlike [6,1,7,8,4,12,18] we produce formal, deductive proofs. Further unlike

the formal proofs in [2,3,11,10], our verification is much more automatic.
– In [2,3,4,11,10], it remains to be proven that the hybrid dynamics and flight

equations follow the geometrical thoughts. In contrast, our approach directly
works for the hybrid flight dynamics. We illustrate verification results graph-
ically to help understand them, but the figures do not prove anything.
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– Unlike [19], we consider collision avoidance maneuvers, not just detection.
– Unlike [7,9], we do not guarantee optimality of the resulting maneuver.

2 Background: Differential Dynamic Logic

Hybrid Programs. We use a hybrid program (HP) notation [16] for hybrid systems
that include hybrid automata (HA) [5]. Each discrete and continuous transition
corresponds to a sequence of statements, with a nondeterministic choice (∪) be-
tween these transitions. Line 2 in Fig. 2 represents a continuous transition in a
simplistic altitude controller. It tests (denoted by ?q = up) if the current loca-
tion q is up, and then follows a differential equation z′ = 1 restricted to invariant
region z ≤ 9 (conjunction z′ = 1 ∧ z ≤ 9). Line 3 tests guard z ≥ 5 when in state
up, resets z by a discrete assignment, and then changes location q to down. The ∗

at the end indicates that the transitions of a HA repeat indefinitely. We will build
HP directly, which gives more natural programs than HA-translation.

up
z′ = 1
z ≤ 9

down
z′ = −1

z ≥ 5

z := z − 1

z ≤ 2

q := up; /* initial location is up */(
(?q = up; z′ = 1 ∧ z ≤ 9)

∪ (?q = up ∧ z ≥ 5; z := z − 1; q := down)
∪ (?q = down; z′ = −1)
∪ (?q = down ∧ z ≤ 2; q := up; ?z ≤ 9)

)∗
Fig. 2. Hybrid automaton vs. hybrid program (simplistic altitude control)

As terms we allow polynomials over Q with variables in a set V . Hybrid
programs (HP) are built with the statements in Table 1. The effect of x := θ
is an instantaneous discrete jump assigning θ to x. Instead, x := ∗ randomly
assigns any real value to x by a nondeterministic choice. During a continu-
ous evolution x′

1 = θ1 ∧ . . . ∧ x′
n = θn ∧ χ with terms θi, all conjuncts need to

hold. Its effect is a continuous transition controlled by the differential equation

Table 1. Statements and (informal) effects of hybrid programs (HP)

notation statement effect
x := θ discrete assignment assigns term θ to variable x ∈ V
x := ∗ nondet. assignment assigns any real value to x ∈ V
x′

1 = θ1 ∧ . . .
continuous evolution

diff. equations for xi ∈ V and terms θi,
. . . ∧ x′

n = θn ∧ χ with formula χ as evolution domain
?χ state check test formula χ at current state
α; β seq. composition HP β starts after HP α finishes
α ∪ β nondet. choice choice between alternatives HP α or β
α∗ nondet. repetition repeats HP α n-times for any n ∈ N
doα until χ evolve until evolve HP α until χ holds
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x′
1 = θ1, . . . , x

′
n = θn that always satisfies the arithmetic constraint χ (thus re-

mains in the region described by χ). This directly corresponds to a continuous
evolution mode of a HA. The effect of state check ?χ is a skip (i.e., no change)
if χ is true in the current state and that of abort, otherwise. Non-deterministic
choice α ∪ β expresses alternatives in the behavior of the hybrid system. Se-
quential composition α;β expresses a behavior in which β starts after α finishes
(β never starts if α continues indefinitely). Non-deterministic repetition α∗, re-
peats α an arbitrary number of times (≥0). The operation doα until χ expresses
that the system follows α exactly until condition χ is true.

Formulas of dL. To express and combine correctness properties of HP, we use
a verification logic for HP: The differential dynamic logic dL [16] is an exten-
sion of first-order logic over the reals with modal formulas like [α]φ, which is
true iff all states reachable by following the transitions of HP α satisfy prop-
erty φ (safety). Reachability properties are expressible using the dual modality
〈α〉φ, which is true iff there is a state satisfying φ that α can reach from its initial
state. Formulas of dL are defined by the following grammar, where θ1, θ2 are
terms, ∼ ∈ {=,≤, <,≥, >}, φ, ψ are formulas, x ∈ V , and α is an HP (Table 1):

Formula ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ .

A Hoare-triple {ψ}α{φ} can be expressed as ψ → [α]φ, which is true iff all states
reachable by HP α satisfy φ when starting from an initial state that satisfies ψ.

3 Curved Flight in Roundabout Maneuvers

3.1 Flight Dynamics

x1

x2

y1

y2

d

ω e

ς

*

Fig. 3. Aircraft flight

The parameters of two aircraft at (planar) po-
sition x = (x1, x2) and y = (y1, y2) in R2 fly-
ing in directions d = (d1, d2) ∈ R2 and e = (e1, e2)
are illustrated in Fig. 3. Their dynamics is de-
termined by their angular speeds ω, * ∈ R and
linear velocity vectors d and e, which de-
scribe both the linear velocity ‖d‖ :=

√
d2
1 + d2

2
and orientation of the aircraft in space. Round-
about maneuvers are horizontal collision avoid-
ance maneuvers so that, like [1,12,9,15,18,3,4], we simplify to planar po-
sitions. We denote the flight equations for the aircraft at x and y
with angular velocities ω, * by F(ω) and G(*) respectively, see [1,13]:

[x′ = d d′ = ωd⊥] (F(ω)) [y′ = e e′ = *e⊥ ] (G(*))
There d⊥ := (−d2, d1) is the orthogonal complement of vector d. Differential
equations F(ω) express that x is moving in direction d, which is rotating with
angular velocity ω, i.e., evolves orthogonal to d. Equations G(*) are similar for
y, e and *. In safe flight configurations, aircraft respect protected zone p. That
is, they are separated by at least distance p, i.e., the state satisfies formula S(p):

S(p) ≡ ‖x− y‖2 ≥ p2 ≡ (x1 − y1)2 + (x2 − y2)2 ≥ p2 for p ∈ R (1)
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a.

free

ω := ∗
� := ∗ agree

entry

circ
exit

b.

c

entry

r

r

h

x r
ω < 0

ex
it

ω > 0

circ y

Fig. 4. Protocol cycle and construction of flyable roundabout maneuver

Like all other parameters, we treat p purely symbolically without a specific value.
In practice, horizontal separation should be ≥5mi, vertical separation ≥1000ft.

3.2 Roundabout Maneuver Overview

FTRM consists of the phases in the protocol cycle in Fig. 4a which correspond
to the marked flight phases in Fig. 4b. During free flight, the aircraft move with-
out restriction by repeatedly choosing arbitrary new angular velocities ω and *
respectively (as indicated by the self loop at free in Fig. 4a). When the aircraft
come too close to one another, they agree on a roundabout maneuver by nego-
tiating a compatible roundabout center c = (c1, c2) in coordination phase agree
by communication. Next, the aircraft approach the roundabout circle in a right
curve with ω < 0 (entry mode) according to Fig. 4b, and reach a tangential
position around center c. During the circ mode, the aircraft follow the circular
roundabout maneuver around the agreed center c with a left curve of common
angular velocity ω > 0. Finally, the aircraft leave the roundabout in cruise mode
(ω = 0) in their original direction (exit) and enter free flight again when they
have reached sufficient distance (the protocol cycle repeats as necessary).

3.3 Compositional Verification Plan

For verifying safety properties and collision avoidance of FTRM, we decompose
the verification problem and pursue the following overall verification plan:

AC1 Tangential roundabout maneuver cycle: We prove that the protected zones
of aircraft are safely separated at all times during the whole maneuver
(including repetitive collision avoidance maneuver initiation and includ-
ing multiple aircraft) with a simplified but not yet flyable entry operation
entryn. Subsequently, we refine this verification result to a flyable maneu-
ver by verifying that we can replace entryn with its flyable variant entry.

AC2 Bounded control choices for aircraft velocities : We show that linear speeds
remain unchanged during the whole maneuver (the aircraft do not stall).

AC3 Flyable entry: We prove that the simplified entryn procedure can be re-
placed by a flyable curve entry reaching the same position as entryn.
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AC4 Bounded entry duration: Flyable entry procedure succeeds in bounded
time, i.e., aircraft reach the roundabout circle in some bounded time ≤T .

AC5 Safe entry separation: Most importantly, we prove that the protected zones
of aircraft are still respected during the flyable entry procedure.

AC6 Successful negotiation: We prove that the negotiation phase (agree) satis-
fies the respective requirements of multiple aircraft simultaneously.

AC7 Safe exit separation: We show that, for its bounded duration, the exit
procedure cannot produce collisions and that the initial far separation for
free flight is reached again so that the FTRM cycle repeats safely.

This plan modularizes the proof and allows us to identify the respective safety
constraints imposed by the various maneuver phases successively. We present
details of these verification tasks in the sequel and summarize the respective
verification results into a joint safety property of FTRM in Section 5. The proof
and formulation for AC2 is a simple variation of AC1 and will not be discussed.

3.4 Tangential Roundabout Maneuver Cycles (AC1)

First, we analyze roundabouts with a simplified instant entry procedure and
without an exit procedure (AC1), i.e., the non-flyable NTRM depicted in Fig. 1d.
We refine this maneuver and its verification to the flyable FTRM afterwards.

Modular Correctness of Tangential Roundabout Cycles. We verify that NTRM
safely avoids collisions, i.e., the aircraft always maintain a safe distance≥p during
the curved flight in roundabout. In addition, these results show that arbitrary
repetitions of the protocol cycle are always safe when, as a first step, we simplify
the entry maneuver. The NTRM model and property are summarized in Fig. 5.

ψ ≡ S(p)→ [NTRM]S(p)
NTRM ≡ (free; agree; entryn; circ)∗

free ≡ (ω := ∗; * := ∗; F(ω) ∧ G(*) ∧ S(p))∗

agree ≡ ω := ∗; c := ∗
entryn ≡ d :=ω(x− c)⊥; e :=ω(y − c)⊥

circ ≡ F(ω) ∧ G(ω)

Fig. 5. Nonflyable tangential roundabout collision
avoidance maneuver NTRM

The simplified flight con-
troller in Fig. 5 performs col-
lision avoidance maneuvers
by tangential roundabouts
and repeats these maneu-
vers any number of times as
needed. During each cycle of
the loop of NTRM , the air-
craft first perform arbitrary
free flight (free) by choosing
arbitrary new angular veloc-
ities ω and * (repeatedly as
indicated by the loop in free).
Aircraft only fly freely while they are safely separated, which is expressed by con-
straint S(p) in the differential equation for free. Then the aircraft agree on an
arbitrary roundabout center c and angular velocity ω (agree). We model this
communication by nondeterministic assignments to the shared variables ω, c.
Refinements include all negotiation processes that reach an agreement on com-
mon ω, c in bounded time. Next, they perform the simplified non-flyable entry
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procedure (entryn) with instant turns (Fig. 1d). This operation identifies the goal
state that entry needs to reach:

R ≡ d = ω(x− c)⊥ ∧ e = ω(y − c)⊥ (2)

c

x

y

d

e

Fig. 6. R

It expresses that, at the positions x and y, respectively, the di-
rections d and e are tangential to the roundabout circle at cen-
ter c and angular velocity ω; see Fig. 6. Finally, the roundabout
maneuver itself is carried out in circ. The collision avoidance
roundabouts can be left again by repeating the loop and en-
tering arbitrary free flight at any time. When further conflicts
occur during free flight, the controller in Fig. 5 again enters
roundabout conflict resolution maneuvers.

Multiple Aircraft. We prove separation for up to 5 aircraft participating in the
roundabout at the same time. There, the safety property is mutual collision
avoidance, i.e., each aircraft has a safe distance ≥p to every other aircraft, which
yields a quadratic number of separation properties that have to be verified. This
quadratic increase in the size of the property that actually needs to be proven
for a safe roundabout of n aircraft and the increased dimension of the underlying
continuous state space increase verification times. Also see [13].

3.5 Flyable Entry Procedures (AC3)

For property AC3 in Section 3.3, we generalize the verification results about
NTRM with simplified entry procedures (Fig. 1d) to FTRM (Fig. 4b) by replac-
ing the non-flyable entryn procedure with flyable curves (called entry). This
turns the non-flyable NTRM into the flyable FTRM maneuver.

Flyable Entry Properties. A flyable entry maneuver that follows the smooth entry
curve from Fig. 4b is constructed according to Fig. 7a and specified formally as:

(rω)2 = ‖d‖2∧‖x−c‖ =
√

3r∧∃λ≥0 (x+λd = c)∧ ‖h−c‖ = 2r∧ d = −ω(x−h)⊥

→ [F(−ω) ∧ ‖x− c‖ ≥ r]
(
‖x− c‖ ≤ r→ d = ω(x− c)⊥

)
(3)

a.

c

r

r

h

x
ω < 0 ω > 0

y

b.

x

d ω

ye

≥p

Fig. 7. Flyable entry maneuver: characteristics and separation
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The assumptions in (3) express that r is the radius corresponding to speed ‖d‖
and angular velocity ω ((rω)2 = ‖d‖2) and that entry starts with distance

√
3r to

c heading towards c (∃λ≥0 (x + λd = c)). For the construction of the maneuver
and positioning in space, we use the auxiliary anchor point h ∈ R2 identified in
Fig. 7a and line 1 of (3). It is positioned relative to the roundabout center c and
the x position at the start of the entry curve (i.e., with x at the right angle
indicated in Fig. 7a). The entry curve around h is similar to the roundabout
curve around c. Formally, h is characterized by distance r to x, distance 2r to c
(‖h− c‖ = 2r) and, further, vector x− h is orthogonal to d and obeys the relative
orientation of the curve belonging to −ω (hence d = −ω(x− h)⊥). The property
in (3) specifies that the tangential goal configuration (2) around c is reached
by a flyable curve when waiting until aircraft x and center c have distance r,
because the domain restriction of the dynamics is ‖x− c‖ ≥ r (line 2) and the
postcondition assumes ‖x− c‖ ≤ r, which imply ‖x− c‖ = r. The feasibility of
choosing anchor point h can be shown by proving an existence property; see [13].

Spatial Symmetry Reduction. The property in (3) can be verified in a simplified
version. We use a new spatial symmetry reduction to simplify property (3) com-
putationally. We exploit symmetries to reduce the spatial dimension by fixing
variables. Without loss of generality, we recenter the coordinate system with c
at position 0. Further, we can assume aircraft x comes from the left by chang-
ing the orientation of the coordinate system. Finally, we assume, without loss
of generality, linear speed 1 (by rescaling units appropriately). Observe that we
cannot fix a value for both the linear speed and the angular velocity, because the
units are interdependent. In other words, if we fix the linear speed, we need to
consider all angular velocities in order to verify the maneuver for each possible
radius r of the roundabout maneuver (and corresponding ω). The x position re-
sulting from these symmetry reductions can be determined easily by Pythagoras
theorem (i.e., (2r)2 = r2 + x2

1 for the triangle enclosed by h, x, c in Fig. 7a):

x = (
√

(2r)2 − r2, 0) = (
√

3r, 0) . (4)

3.6 Bounded Entry Duration (AC4)

As the first step for showing that the entry procedure finally succeeds at goal (2)
and maintains a safe distance all the time, we show that entry succeeds in
bounded time and cannot take arbitrarily long to succeed (AC4 in Section 3.3).

By a simple consequence of (3), the entry procedure follows a circular motion
around anchor point h, see Fig. 7a. That is, when r is the radius belonging to
angular velocity ω and linear speed ‖d‖, the property ‖x− h‖ = r is an invariant
of entry; see [13]. By AC2, which can be proven easily, the speed ‖d‖ is constant
during the entry procedure. Thus, the aircraft proceeds with nonzero minimum
progress rate ‖d‖ around the circle. The flight duration for a full circle of radius r
around h at constant linear speed ‖d‖ is 2πr

‖d‖ , because its arc length is 2πr. From
the trigonometric identities underlying equation (4), we can read off that the
aircraft completes a π

3 = 60◦ arc, see Fig. 7a. Hence, the maximum duration T
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of the entry procedure is: T := 1
6 ·

2πr
‖d‖ = πr

3‖d‖ Instead of π, which is not definable
in first-order real arithmetic, we can use any overapproximation, e.g., 3.15.

3.7 Safe Entry Separation (AC5)

c

Fig. 8. Multiple air-
craft

In Section 3.5, we have shown that the simplified entryn

procedure from NTRM can be replaced by a flyable entry
maneuver that meets the requirements of approaching tan-
gentially for each aircraft. Unlike in instant turns (entryn),
we have to show that the flyable entry maneuvers of mul-
tiple aircraft do not produce mutually conflicting flight
paths, i.e., spatial separation of all aircraft is maintained
during the entry of multiple aircraft (AC5). See Fig. 8 for
multiple aircraft FTRM where separation is important.

Bounded Overapproximation. We show that entry separation is a consequence
of the bounded speed (AC2) and bounded duration (AC4) of the flyable entry
procedure when initiating the negotiation phase agree with sufficient distance.
We prove that, when following bounded speed for a bounded duration, aircraft
only come closer by a bounded distance. Let b denote the overall speed bound
during FTRM according to AC2 and let T be the time bound for the duration
of the entry procedure due to AC4. We overapproximate the actual behavior
during the entry phase by arbitrary curved flight (see Fig. 7b). When the entry
procedure is initiated with sufficient distance

√
2(p + 2bT ), the protected zone

p≥0 will still be respected after the 2 aircraft follow any curved flight (including
the actual choices during the entry phase and subsequent circ phase) with speed
‖d‖ ≤ b and ‖e‖ ≤ b up to T ≥ 0 time units (see Fig. 7b):

‖x− y‖ ≥
√

2(p + 2bT ) ∧ p ≥ 0 ∧ ‖d‖2 ≤ ‖e‖2 ≤ b2 ∧ b ≥ 0 ∧ T ≥ 0
→ [entry] (‖x− y‖ ≥ p) (5)

In [13], we show that this property follows from the more general fact that
aircraft only make limited progress in bounded time from some initial point z
when starting with bounded speeds (even when changing ω arbitrarily):

x = z ∧ ‖d‖2 ≤ b2 ∧ b ≥ 0 → [τ := 0; F(ω) ∧ τ ′ = 1] (‖x− z‖∞ ≤ τb) (6)

The maximum distance ‖x− z‖∞ from z depends on clock τ and bound b. To
reduce the polynomial degree and the verification complexity, we overapproxi-
mate distances from quadratic Euclidean norm ‖ · ‖ in terms of linearly definable
supremum norm ‖·‖∞, instead, which is ‖x‖∞ ≤ c ≡ −c ≤ x1 ≤ c ∧−c ≤ x2 ≤ c.

Far Separation. By combining the estimation of the entry duration (3.6) at
speed ‖d‖ = b with the entry separation property (5), we determine the following
magnitude as the far separation f , i.e., the initial distance guaranteeing that the
FTRM protocol can be repeated safely in case new collision avoidance is needed:

f :=
√

2(p + 2bT ) =
√

2
(
p +

2
3
πr

)
(7)
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4 Synchronization of Roundabout Maneuvers

Following our verification plan in Section 3.3, we show that the various actions
of multiple aircraft can be synchronized appropriately to ensure safety of the
maneuver. We analyze the negotiation phase and compatible exit procedures.

4.1 Successful Negotiation (AC6)

For negotiation to succeed (AC6), we have to show that there is a common choice
of the roundabout center c and angular velocity ω (or radius r) so that multiple
participating aircraft can satisfy the local requirements of their respective entry
procedures simultaneously, i.e., of the property (3) for AC3.

We prove that all corresponding choices of agree satisfy the mutual require-
ments of multiple aircraft simultaneously. As one possible option among others:
when choosing roundabout center c as the simultaneous intersection (intersec-
tion x + λd = y + λe after time λ) of the flight paths of the aircraft at x and y,
the choices for c, r, ω are compatible for multiple aircraft; see Fig. 9a:

λ > 0 ∧ x + λd = y + λe ∧ ‖d‖ = ‖e‖ →
[c := x + λd; r := ∗; ?‖x− c‖ =

√
3r; ?‖y − c‖ =

√
3r; ω := ∗; ?(rω)2 = ‖d‖2](

‖x− c‖ =
√

3r ∧ λ ≥ 0 ∧ x + λd = c ∧ ‖y − c‖ =
√

3r ∧ y + λe = c
)

(8)

The tests in the dynamics ensure that the entry curve starts when x, y and c
have appropriate distance

√
3r identified in Section 3 and that r is the radius

belonging to angular velocity ω and linear speed ‖d‖. This property expresses
that, for aircraft heading towards the simultaneous intersection of their flight
paths with speed ‖d‖ = ‖e‖ (line 1), the intersection of the linear flight paths
(line 2) is a safe choice for c satisfying the joint requirements (line 3) identified
in Section 3. For an analysis of far separation during negotiation and of the
feasibility of these choices, see[13]. Other choices of c, ω than Fig. 9a are possible
for asymmetric initial positions of aircraft, but computationally more involved.

4.2 Safe Exit Separation (AC7)

NTRM (Fig. 1d) does not need an exit procedure for safety, because the ma-
neuver repeats when further air traffic conflicts arise. For FTRM, instead, we

a.

√
3r

c

√
3r

γ

≥ √2(p + 2
3
πr)

x
d

y
e

b.

c

c.

c

Fig. 9. Separation of negotiation and good and bad exit procedure separation
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need to show that the exit procedure produces safe flight paths until the air-
craft are sufficiently separated: When repeating the FTRM maneuver, the entry
procedure needs far separation (7) not just distance p for safety, see Fig. 4b.

Safe Separation. If the aircraft enter simultaneously, they can exit simultane-
ously. For AC7, we first show that aircraft that exit simultaneously (from tan-
gential positions of the roundabout circle) always respect their protected zones:

R∧ ‖x− y‖2 ≥ p2 → [x′ = d ∧ y′ = e] (‖x− y‖2 ≥ p2) (9)

Thus, safely separated aircraft exiting simultaneously along straight lines from
tangential positions (R by eqn. 2) of a roundabout always remain safely sepa-
rated. We prove an overapproximation: exit rays (Fig. 9b–9c) are separated [13].

Far Separation. Aircraft reach arbitrary separation when following the exit pro-
cedure long enough. Using overapproximation Fig. 9b, we prove that—due to dif-
ferent exit directions d �= e—the exit procedure will finally separate the aircraft
arbitrarily far (starting from tangential configuration (2) of the roundabout):

R∧ d �= e → ∀a 〈x′ = d ∧ y′ = e〉 (‖x− y‖2 > a2) (10)

5 Flyable Tangential Roundabout Maneuver

We combine the results about the individual phases of flyable roundabouts into
a full model of FTRM that inherits safety modularly. We collect the maneuver
phases according to the protocol cycle of Fig. 4 and take care to ensure that the
safety prerequisites are met, as identified for the respective phases in Section 3-4.

One possible instance of FTRM is the HP in Fig. 10, which is composed of
previously illustrated parts of the maneuver. The technical construction and
protocol cycle of the entry procedure have already been illustrated in Fig. 4. In
FTRM, Π denotes the synchronous parallel product. By communication, FTRM
operates synchronously, i.e., all aircraft make simultaneous mode changes [4].

ψ ≡ ‖d‖ = ‖e‖ ∧ r > 0 ∧ S(f) → [FTRM∗]S(p)

C ≡ ‖x− c‖ =
√

3r ∧ ∃λ≥0 (x + λd = c) ∧ ‖y − c‖ =
√

3r ∧ ∃λ≥0 (y + λe = c)

FTRM ≡ free∗; agree; Π(entry; circ; exit)

free ≡ ω := ∗; � := ∗; F(ω) ∧ G(�) ∧ S(f)

agree ≡ c := ∗; r := ∗; ?(C ∧ r > 0); ?S(f);

ω := ∗; ?(rω)2 = ‖d‖2; x0 := x; d0 := d; y0 := y; e0 := e

entry ≡ doF(−ω) until ‖x− c‖2 = r2

circ ≡ doF(ω) until ∃λ≥0∃µ>0 (x + λd = x0 + µd0)

exit ≡ F(0); ?S(f)

Fig. 10. Flight control with flyable tangential roundabout collision avoidance
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free

agree

entry

circ

exit

S(f) S(f) ∧ C

S(
p)
∧R

S(p) ∧R

S(
f
)

Decomposed property of system dynamics See

S(f)→ [free]S(f) Fig. 5
S(f)→ [agree](S(f) ∧ C) (8), [13]

C ∧ S(f)→ [entry]S(p) (5)
C ∧ S(f)→ [entry]R (3)
R∧ S(p)→ [circ](S(p) ∧R) Fig. 5
R∧ S(p)→ [exit]S(p) (9)
R∧ S(p)→ [exit]S(f) (9), (10)

Fig. 11. Composing verification for flyable tangential roundabout maneuvers

Consequently, the parallel product Π(entry; circ; exit) of HP simplifies to the con-
junction of the respective differential equations in the various modes and can be
defined easily: (entryx ∧ entryy) ; (circx ∧ circy) ; (exitx ∧ exity) where entryx is
the entry procedure of the aircraft at position x (likewise for more aircraft).

To verify this maneuver, we split the proof into the modular properties that
we have already shown previously following the verification plan from Section 3.3.
Formally, we split the system at its sequential compositions, giving the subprop-
erties depicted in Fig. 11. Formula R is due to equation (2) and S(p) by (1).

By combining the results about the FTRM flight phases as summarized in
Fig. 11, we conclude that FTRM avoids collisions safely. The modular proof
structure in Fig. 11 still holds when replacing any part of the maneuver with a
different choice that still satisfies the specification, e.g., for different entry pro-
cedures that still succeed in tangential configuration R within bounded time.
This includes roundabouts with asymmetric positions, i.e., where the initial dis-
tance to c can be different, and with near conflicts, where the flight paths do
not intersect in one point but in a larger critical region [4]. Most notably, the
separation proof in Section 3.7 tolerates asymmetric distances to c (Fig. 7b).

Theorem 1 (Safety property of flyable tangential roundabouts). FTRM
is collision free, i.e., the collision avoidance property ψ in Fig. 10 is valid. Fur-
thermore any variation of FTRM with a modified entry procedure that safely
reaches tangential configuration R in some bounded time T is safe. That is if
the following formula holds, saying that, until time T , the aircraft have safe
distance p and will have reached configuration R at time T , where τ is a clock:

S(f) → [τ := 0; entry ∧ τ ′ = 1]
(
(τ ≤ T → S(p)) ∧ (τ = T →R)

)
.

6 Experimental Results

Table 2 summarizes experimental results obtained using the tool KeYmaera on
a 2.6GHz AMD Opteron with 4GB memory; we use different proof search set-
tings than in [14]. Rows marked with ∗ indicate a property where simplifications
like symmetry reduction have been used to reduce the computational complex-
ity. Table 2 shows that even aircraft maneuvers with challenging hybrid curve



Formal Verification of Curved Flight Collision Avoidance Maneuvers 561

Table 2. Experimental results for air traffic control (see [13] for details)

Case study See Time(s) Memory(MB) Steps Dimension

tangential roundabout 2 aircraft 10.4 6.8 197 13
tangential roundabout 3 aircraft 253.6 7.2 342 18
tangential roundabout 4 aircraft 382.9 10.2 520 23
tangential roundabout 5 aircraft 1882.9 39.1 735 28
bounded maneuver speed AC2 0.5 6.3 14 4
flyable roundabout entry∗ (3) 10.1 9.6 132 8

flyable entry feasible∗ [13] 104.5 87.9 16 10
flyable entry circular [13] 3.2 7.6 81 5
limited entry progress (6) 1.9 6.5 60 8
entry separation [13] 140.1 20.1 512 16
mutual negotiation successful (8) 0.8 6.4 60 12
mutual negotiation feasible∗ [13] 7.5 23.8 21 11
mutual far negotiation [13] 2.4 8.1 67 14
simultaneous exit separation∗ [13] 4.3 12.9 44 9
different exit directions [13] 3.1 11.1 42 11

dynamics can be verified formally. Memory consumption of quantifier elimination
is shown in Table 2, excluding the front-end. The dimension of the continuous
state space and number of automatic proof steps are indicated. Except for simple
help in the proof of one property, the proofs for Table 2 are automatic.

7 Summary

We have analyzed complex air traffic control applications. Real aircraft can only
follow sufficiently smooth flyable curves. Hence, mathematical maneuvers that
require instant turns give physically impossible conflict resolution advice. We
have developed a new collision avoidance maneuver with smooth, fully flyable
curves. Despite its complicated dynamics and maneuvering, we have verified col-
lision avoidance in this flyable tangential roundabout maneuver formally using
our verification algorithm for a logic of hybrid systems. Because of the intricate
spatio-temporal movement of aircraft in curved roundabouts, some of the prop-
erties require intricate arithmetic, which we handled by symmetry reduction and
degree-based reductions. The proof is automatic except for modularization and
arithmetical simplifications to overcome the computational complexity.

While the flyable roundabout maneuver is a highly nontrivial and challenging
study, we still use modeling assumptions that should be relaxed in future work,
e.g., synchronous, symmetric conflict resolution. Further generalizations include
different varying cruise speeds, disturbances or new aircraft. The proof structure
behind Theorem 1 is already sufficiently general, but the computational com-
plexity high. It would be interesting future work to see if the informal robustness
studies of Hwang et al. [4] can be carried over to a formal verification result.

Acknowledgements. We would like to thank the anonymous referees for their
helpful comments and César Muñoz for his feedback.
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Abstract. Most formal method notations are text based, while tools used in in-
dustry often use graphical notations, such as UML. This paper demonstrates how
the power of both approaches can be combined by providing the automatic trans-
lation of VDM++ models to and from UML. The translation is implemented as
a plugin for the popular Eclipse development environment by the open-source
Overture initiative. Both UML class diagrams and sequence diagrams can be
translated, the latter enabling the novel ability to link with the combinatorial test
facility of Overture.

1 Introduction

Currently, UML is the most popular abstract notation for describing software systems
in industry. Thus, by automatically linking VDM and UML, VDM can be made avail-
able to a wider range of developers. This paper describes how an automatic connection
between these two notations has been established [1]. The tool support resulting from
this work enables both a classical connection to UML Class Diagrams (CDs) as well
as a novel connection from UML Sequence Diagrams (SDs) to a new part of VDM++.
The tool presented in this paper is part of the Overture open source project [2] linking
to and from Enterprise Architect [3] (EA). The EA tool has been chosen in preference
to other available products for two main reasons: It has excellent import and export
functionality with the XMI represention of UML diagrams; and EA supports several
new UML2 constructs, e.g. the n-ary association.

Conversions between formal languages and UML have been attempted several times
in the past (e.g. [4,5,6,7,8,9]). A connection between VDM++ and UML CDs was de-
veloped as a part of VDMTools [10,11], but this only supports version 1.4 of UML
whereas the work presented here extends that to version 2 of UML. In addition, this
new research covers a novel connection to UML SDs. This connection exploits a recent
extension of VDM++ for combinatorial testing using traces resembling regular expres-
sions [12,13]. This means that SDs can be used as test sequence descriptions that can
subsequently be executed automatically in VDM++.

Section 2 of this paper presents the basics of VDM++ and UML necessary to under-
stand the selected translation rules presented in the rest of the paper. Section 3 provides
an overview of the architecture of the tool support. Section 4 demonstrates the trans-
formations between VDM++ and UML CDs. Section 5 illustrates the corresponding
transformations with SDs. Section 6 provides examples illustrating the CD rules on
extracts of the transformation between VDM++ and UML at VDM++ level. Finally,
section 7 compares this work with related work and section 8 rounds off the paper with
concluding remarks, including future work.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 563–578, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 VDM++ and UML

VDM is a well-established formal method that uses a group of formal modelling lan-
guages, each supporting different forms of system specification. VDM++ [14] extends
the ISO standardised VDM-SL [15] with features for object-oriented modelling and
concurrency. An object-oriented model in VDM++ is composed of class specifications
which may be linked by single or multiple inheritance. The internals of each class
definition are similar to those of a regular VDM-SL model except that the visibility
of each definition is controlled using access modifiers (public, protected and private).
Each object’s state consists of typed instance variables. Operations are able to access
such instance variables whereas functions are pure in the sense that they cannot access
or modify the state. Both functions and operations have a signature that describes the
types of the parameters and return value. VDM++ classes may be active or passive.
Active classes represent entities that have their own thread of control.

In order to automate the testing process, VDM++ contains a traces notation enabling
the definition of different sequences of function/operation calls that one would like to
have tested exhaustively [13]. These traces can use constructs for repetition, alternatives
and trace bindings over finite sets. In a sense this is similar to model checking limita-
tions, except that in VDM this is done with real and not symbolic values. However,
errors in test cases are filtered away so other test cases starting with the same failed call
sequence will be skipped automatically. The combinatorial testing feature is inspired by
the TOBIAS tool [16,17].

VDMTools [10,11] provides a linking interface between VDM++ and the IBM Ra-
tional Rose1 UML tool2. However, this tool support was developed when UML version
1.4 [18] was current. In this work we examine to what extent it is possible to take ad-
vantage of the new features in UML 2.0 [19].

The Unified Modeling Language (UML) is a semi-formal visual language for mod-
eling object-oriented systems at a certain level of abstraction. It is widely used in the
field of software engineering and is standardised by OMG [19]. UML is good for pre-
senting and discussing models due to its visual capabilities, i.e. different structural and
behavioral views of a system. Of the different views, CDs and SDs are of particular
interest to our work. A CD is a structural or static view which provides a means of
presenting classes and their relation to each other. Some of the main features are the
visualization of classes, attributes, operations and associations between classes. An SD
is a behavioral (dynamic) view which provides features for presenting interactions be-
tween instances of objects in a system e.g. showing how one instance of a class interacts
with another at runtime.

3 Transformation Overview

The transformation between VDM++ and UML is performed at an abstract level, and
specified using VDM++ itself in a bootstrapping fashion [20]. An Abstract Syntax Tree
(AST) is specified for both VDM++ and UML. A transformation is then specified in

1 Now known as the IBM Technical Developer.
2 In recent years, XMI support for JUDE and Enterprise Architect has been added.
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Fig. 1. Overview of components involved in the VDM++ and UML transformation process

VDM++ to accomplish the transformation between the two abstract representations.
Fig. 1 gives an overview of the architecture of the transformation. The gray boxes denote
Java implementations whereas all other boxes are specified in VDM++ and subsequently
automatically converted to Java using VDMTool’s support for automatic generation of
Java code. Starting with a VDM model, it is first parsed to populate the VDM++ AST
which is then transformed to a UML AST equivalent. The UML AST must then be de-
parsed to the XML Metadata Interchange (XMI) format in order to be integrated with
UML modeling tools. The dotted arrows in Fig. 1 shows transformation from UML to
VDM++ whereas the solid arrows show the transformation from VDM++ to UML.

The XML Metadata Interchange (XMI) is a standard for exchanging meta data in-
formation via Extensible Markup Language (XML). It can be used for any meta model
that can be expressed in the Object Management Group (OMG) Meta-Object Facility
(MOF). XMI is standardized by the OMG [21]. XMI is widely used to exchange UML
models by UML modeling tools.

The modelling of data in XMI is split into two parts: an abstract model and a con-
crete model, which is the vision of OMG. The abstract model represents the semantic
information (e.g. UML class definitions) and it is an instance of an arbitrary MOF-based
modeling language, such as UML. The concrete model represents the visual diagrams,
such as SDs in UML. The Diagram Interchange [22] (XMI[DI]) is a standard specifying
how visual diagrams should be specified.

There are several incompatibilities between different tool vendors’ implementations
XMI for UML. At the diagram interchange level the standard is almost nonexistent, and
there are multiple incompatibilities between abstract models. Unfortunately this means
that the goal of XMI, i.e. to enable the free interchange of UML models, is rarely
possible. Moreover the new XMI 2.1 standard is even less widespread which limits the
interchange of models even further.
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4 Transformations for UML Class Diagrams

The static structure representation offered by a UML CD is largely conceptually com-
patible with VDM++ models. This includes concepts such as classes, inheritance, asso-
ciations and multiplicities which all have a one-to-one relationship between UML and
VDM++ making it possible to move both ways. However, only the static structure of
a VDM model can be efficiently transformed to UML. VDM++ has a well-defined se-
mantics for determining properties about a model, e.g. using pre- and post-conditions.
Such elements are awkward to display in a visual UML model, because they can only
be expressed in text. It would be possible to transform such bodies to OCL in UML and
give the user access to the relevant definitions via a UML tool, but with the disadvan-
tage of having to do a lot of navigation to access the definitions. This could be easily be
done for a subset of VDM++ but OCL has a number of limitations that would increase
the complexity of the mapping and make the bi-directional transformation harder to
understand for the user. This can easily be reconsidered at a later stage if the analysis
tools of such OCL expressions are improved.

A UML CD consists of classes connected by associations or generalizations to form
a coherent system. Similarly, VDM++ classes constituting a VDM++ model are related
by instance variables and inheritance. Fig. 2 show a CD which is generated automati-
cally from a corresponding VDM++ model. The Train class, for example, would cor-
respond to the VDM++ class shown below.�
class Train is subclass of Vehicle
instance variables

passengers : map int to Passenger;
capacity : nat := 345

thread
...
end Train

�� �

Note how the is subclass of clause corresponds to the inheritance arrow in the
UML CD. Similarly, the capacity instance variable is represented as an attribute of
the Train class. However, the instance variable passengers is more complex and is
thus represented as a qualified association (it is a map) to the Passenger class.

4.1 UML 2 Class Diagrams

The building blocks of UML CDs have not changed radically since version 1.x, when
VDMTools was released with its model transformation tool, Rose-VDM++ Link, sup-
porting UML 1.4. However, the Rose-VDM++ Link left out a number of features of
VDM, which have been captured by our tool. Also, the remaining features have all been
examined and updated to comply with UML 2. In particular, this work has the ability to
transform the following types, none of which is present in Rose-VDM++ Link:
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1. Union types as constrained associations.
2. Product types as n-ary associations.
3. Active classes.

As well as explaining basic transformations, the subsection below explains how selected
VDM constructs from the list above are related to a UML CD counterpart by one or
more transformation rules. In total 17 such transformation rules have been defined for
the mapping to CDs and here we will show 4 of these.

Fig. 2. Class diagram for a hypothetical case of a software system

4.2 Transformation Rules

In this paper we present a subset of the transformation rules to illustrate the principles
underlying the transformation. The rules are both formulated in natural language and
specified in VDM++. For space reasons only the natural language version of the rules
is included. A reference to the full VDM++ specification for each rule is supplied in the
text.

Each transformation rule describes how to move from a VDM construct to a UML
equivalent. The phrase meta class refers to classes in the UML meta model, which
defines all possible constituents of a UML model. For example, an instance of the meta
class Association corresponds to the UML model construct association.

Transformation Rule 1
A VDM class with the keyword is subclass of followed by class-names is
mapped as a sequence of superclass-names in the inheriting class. Notice that this
approach is a simplification and that it does not comply with the UML specification.
To comply with the specification, the UML meta-class Generalization, with the
attributes general and specific referencing the superclass and subclass, respec-
tively, should have been used. In this context, more than one subclass results in more
than one instance of Generalization.
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VDM supports single and multiple inheritance which is supported in the same way in
UML. In fig. 2 it can be seen that the class Train inherits from the Vehicle class. The
array in the UML diagram specifies which class is the base class. The corresponding
VDM specification can be seen in listing 1 where the is subclass of key word is
used to specify inheritance.�
class Train is subclass of Vehicle
...

end Train

class Vehicle
...
end Vehicle

�� �
Listing 1. Inheritance between Train and Vehicle

In fact this transformation rule, along with all the others, has been formalised in
VDM itself. The relevant operation dealing with inheritance is:�
public build_Class : IOmlClass ==> IUmlClass
build_Class(c) ==
(let name = c.getIdentifier(),

inh = if c.hasInheritanceClause()
then c.getInheritanceClause()
else nil,

...
supers = getSuperClasses(inh)

in
return new UmlClass(name, ..., supers, ...);

�� �
where the getSuperClasses function is defined as:�
public getSuperClasses : [IOmlInheritanceClause] ->

seq of IUmlClassNameType
getSuperClasses(inh) ==
if inh = nil
then []
else let list = inh.getIdentifierList()

in
[new UmlClassNameType(list(i))
| i in set inds list];

�� �
For space reasons, the remaining VDM specifications of the transformations have

been left out of this article.

Transformation Rule 2
A union type is mapped as the meta-class Association between the owning class
and the types specified in the union type. The resulting associations are decorated
with a textual constraint {xor}. The constraint is an instance of the meta-class
Constraint.
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A VDM union type is a union of values from different types [14]. UML offers the
meta class Constraint to represent a restriction stated in natural language, or in a
language with a well defined semantics. Fig. 2 illustrates this rule with the {xor} con-
straint between ElectricEngine and DieselEngine. The rule states that the type
constituents of a union type are mapped as separate UML classes (regardless of whether
they are simple or constructed types). This is equivalent to the following VDM++
definition:�
class Vehicle
...
instance variables

protected engine : DieselEngine | ElectricEngine;

end Vechicle
�� �

Transformation Rule 3
A VDM product type maps to:

3 a: The UML meta-class Class if it is declared as a data type.
3 b: The UML meta-class Association if it is not defined as a type (i.e. it is anony-

mous).

Each association-end that represents an entry in the product type is named according
to the product type. The types constituting the product type are sorted alphabetically
according to the name of the types used in the product type.

A product type is a composite structure, consisting of tuples of values. Since UML
does not have an ordering for an N-ary association this construct is complicated to move
to or from VDM++ because an ordering is required in a product type at the VDM level.
A product type is shown in fig. 2 for the address instance variable in the Passenger
class. If the product type had been declared as a type and thus used explicitly, the data
type name would figure as a class in the UML CD. The Passenger class represented
in VDM is shown below.�
class Passenger

instance variables
name : seq of char;
ssn : seq of char;
address : City * HouseNumber * Street;

end Passenger
�� �

The first statement of rule 3 explains that an explicitly declared product type is trans-
formed as an ordinary UML class, named according to the data type definition. The
second statement explains that an implicitly declared product type is transformed as
a UML association linking each product type constituent. Because of the alphabetic
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sorting of the elements of a product type the mapping will only be bi-directional if
the elements are sorted in the original VDM model. Otherwise the mapping of CDs is
bi-directional.

Transformation Rule 4
A VDM class with a thread compartment is mapped as the UML meta-class Class
with the meta-attribute isActive set to true.

A VDM class with a thread block has an independent thread of control. It corre-
sponds to an active class in UML, exemplified in fig. 2 as the active class Train. In
UML CDs, active classes are denoted by the extra vertical bars on each side of the class
(in earlier versions of UML it was denoted by a bold line for the box of a class).

Fig. 2 also shows how the relationship map is represented as an association with a
qualifier of type int. The association with a multiplicity of 0..* at the target class
Piston indicates a set type definition inside the DieselEngine class.

The access modifiers of class attributes are shown as prepended ’-’, denoting private
visibility. Also, notice that the attributes of class Passenger are not shown as separate
classes, because of their simple data type, char.

5 Transformations for UML Sequence Diagrams

The primary transformation direction chosen in this work is to transform UML SDs to
VDM++ trace definitions, since it is considered to have the greatest value. By trans-
forming an SD into a trace definition, a trace can be seen both textually or visually. In
this section the focus will be to present a subset of the rules to enable this transforma-
tion. The rules will be specified in such a way that a round-trip between VDM++ and
UML is possible [13].

5.1 VDM++ Trace Definitions

A new VDM++ definition block has been introduced for trace definitions. The listing
below shows an ordinary VDM++ class Stack followed by another class, UseStack,
which has a traces block containing trace definitions. Each trace definition is given
a name which is separated from its body by a colon. The body of a trace definition
is similar to a regular expression for identifying sequences of function/operation calls
on different instances of classes. It is possible to introduce bindings (also with loose-
ness that is expanded to all possible combinations), alternatives (using the | operator)
and repeat patterns (using different kinds of repeat patterns). Tool support exists for
automatic test case generation using combinatorial testing principles.

5.2 UML 2 Sequence Diagrams

UML 2 SDs are intended to present a dynamic interaction between objects of a system.
SDs show a collection of scenarios illustrating how the flow of control between different
instances of classes evolves. The vertical line below each instance displayed at the top
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Fig. 3. A SD showing a simplified trace definition

of an SD indicates a lifeline. The horizontal arrows stemming from the lifeline indicate
interactions with other lifelines. An arrow going from such a lifeline indicates a call of
an operation named above the line with its parameters. An operation call on the same
instance is showed as an arrow originating from and arriving at the same lifeline.

A significant improvement made to SDs in UML 2 is the ability to express proce-
dural logic and the ability to nest fragments to an unlimited degree. Most important is
the ability to express repetitions and alternatives using the loop and alt constructs,
respectively. Both of these constructs may also be nested.

5.3 Sequence Diagrams and Trace Definitions

A UML SD visually represents a sequence of executions. As an example, fig. 3 shows
the message calls Reset, Push and Pop which can be directly related to the applica-
tion of these operations:�
class Stack
... The usual kinds of basic Stack definitions
end Stack
class UseStack
instance variables
stack : Stack := new Stack();

traces
TS: stack.Reset() ;

let x in set {2,8} in stack.Push(x){1,4};
(stack.Push(9) | stack.Pop())

end UseStack
�� �
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Traces like this will expand to 16 test cases (each being a sequence of operation calls):�
TC1: stack.Reset();stack.Push(2);stack.Push(9)
TC2: stack.Reset();stack.Push(8);stack.Push(8);stack.Pop()
... 14 more

�� �

5.4 Transformation Rules

In order to combine SDs and VDM++ trace definitions, essential similarities must be
found and described. The SD shown in fig. 3 is used to relate SDs’ constructs to VDM++
trace definitions.

Transformation Rule 5
The class in which the trace is placed is the one from which all Messages in an SD
originates.
An interaction transformation is only possible if all Messages originate from a single
Lifeline (e.g. an instance of UseStack above).

Rule 5 describes that an SD must have one LifeLine from which all messages
originate, since the object represented by this lifeline will be the class containing the
trace definitions. This can be statically determined and if the limitation is not satisfied,
a VDM++ trace definition cannot be derived.

Transformation Rule 6
The method name in a trace apply expression is transformed from the Operation

property of the meta class CallEvent and the variable on which the method should be
executed is transformed from the LifeLine at the receive end of the message, where
a message object is linking it to a LifeLine representing the object. The arguments
are directly transformed from the meta class Message.

Rule 6 describes that for every message in an SD, a function/operation call on an
object will occur in a VDM++ trace. In relation to Fig. 3 this rule corresponds to the
horizontal lines between UseStack and s.

Transformation Rule 7
The repeat pattern of an apply expression is transformed from the Interaction-

Constraint of an Operand contained in a CombinedFragment where the
InteractionOperator equals loop. The constraint of the Operand holding the
message specifies how the repeat pattern should be set:

Table 1: Transformation rules for VDM++ constructs modelling collections

Constraint (Guard)
RepeatPattern

a* a+ a? a{x} a{x,y}
minint 0 1 0 x x
maxint * * 1 x y
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Rule 7 is one of the most important features of the trace definitions since it describes
the constructs of a trace definition which makes it possible to create a large number of
test cases with minimum effort. A combined fragment, shown in Fig. 3 as a labelled
box (loop) covering both lifelines, shows how a trace definition calling Push should
be repeated. To enable the transformation between UML and VDM++ a constraint is
added to the combined fragment specifying the exact repeat pattern of all the messages
within the fragment.

6 Examples of the VDM++/UML Transformations

To illustrate the usage of the UML transformation described in this paper the UML
transformation specification itself can be transformed by the final implementation of
the transformation as a Java program. In fig. 4 a class diagram can be seen which is a
subset of the classes generated by the UML transformation. The figure shows a class
diagram of the interface classes of from the UML AST. The specification is quite large;
it consists of around 600 classes divided between the VDM language specification AST
(OML), the UML AST and the actual transformation. In total the specification consists
of around 6.900 lines of VDM excluding the VDM AST where, 3.400 of the lines are
automatically generated from the UML AST VDM-SL type hierarchy which only con-
sists of only 212 lines. When the model is code generated to Java the it has a size of
more than 20.000 lines excluding parsing/deparsing and graphical user interface inte-
gration. A complete transformation from the UML VDM specification to a UML XMI
file can be performed in around 3.5 sec, handling all 600 classes and the 6.900 lines plus
around 17.000 lines for the VDM AST. The same time applies for transformations in
both directions measured with a Intel(R) Core(TM) 2 CPU T7200 and 4 GB of RAM,
running Microsoft Windows Vista SP2 32-bit with Java 1.6.0.12.

In the following subsections the transformation rules described in section 4 will be
illustrated by small extracts from the VDM to UML transformation specification.

6.1 Generalization

The generalization rule 1 describes that VDM and UML support the same ways of using
inheritance: both single and multiple inheritance is possible in both VDM and UML.

Fig. 4. Class diagram for the interfaces of the UML AST used in the transformation
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Fig. 5. Zoom of fig. 4 showing the class diagram with inheritance of value specifications

Fig. 6. A class diagram showing the Util class of the UML transformation with a constraint
association

In fig. 5 a small sub part of fig. 4 is selected to show how the interface classes used in
the UML AST are transformed from VDM classes to UML classes shown in a class
diagram.

6.2 Union Types

The transformation of a union type in VDM will only be visible on a class diagram if
a class has an instance variable or value of a union type. A union type is transformed
into a constraint association where the constraint denotes an xor as described in rule 2.
In fig. 6 the Util class, used to provide functionality for storage, is shown where the
private instance variable describing the current writeType states if the current file
should be appended or a new one created. The corresponding VDM model showing an
extract of the Util class is shown in listing 2.�
class Util is subclass of StdLib
instance variables

static writeType : Append | Start := new Start();
...

end Util
�� �

Listing 2. VDM specification of the Util class
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6.3 Product Types

The transformation of a product type will only be visible in a class diagram if used as an
instance variable or a value inside a VDM class. A product type can hold a number of
fields of individual types without having to name the elements. In fig. 7 a small extract
of the Vdm2Uml class is shown. This is used for the abstract transformation between
the VDM AST and UML AST. The class contains an instance variable which holds
the model elements while they are being constructed until they are ready for further
processing by the XMI mechanism.

Fig. 7. The VDM specification class for the abstract transformation from VDM to UML showing
a product type instance variable which holds the model elements which is being constructed

In listing 3 a sub part of the Vdm2Uml class is shown to illustrate how the product
type is specified in VDM. The ordering matters in VDM since a product type is indexed
with a number like in an array. A guide line is needed to describe how the associations
would be mapped to VDM as seen in fig. 7. This is specified in rule 3 where it is stated
that an N-ary association will be mapped so all associations are sorted by name.�
class Vdm2Uml
instance variables

modelElements :
int * -- runningElementId
set of IUmlAssociation * -- Associations
set of IUmlConstraint; -- Constraints

...
end Vdm2Uml

�� �
Listing 3. Extract from the Vdm2Uml class with a product type holding the model elements
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7 Related Work

The idea of combining formal and informal languages to exploit the best of both worlds
has been investigated by others before [4,5,6,7,8,9,23]. Common to these is the map-
ping between a formal method (Alloy, B, Z, Z++, VDM++) and the UML CDs which
provides a static view. Most of these focus on a one-way translation from UML CDs to
a formal notation. B and Z lack the basic notions of the object-oriented paradigm, thus
they would not be able to make the same kind of bidirectional mapping that has been
shown in this paper. Regarding UML CDs this work is similar to VDMTools [9] with a
few improvements such as those from transformation rule 2, 3 and 4.

Connections to other parts of UML have been considered in the context of trans-
formation between formal and informal models. UML Sequence diagrams and state
machines have also been the subject of model transformations [6]. To enable such a
transformation, rules must be stated before an actual transformation can take place. The
specification of such rules is critical and is often not explicitly defined [4]. These rules
can be specified in a formal way and proved as in [7], where they proved 80 per cent
of the rules specified in B by isabelle/HOL. In this work the rules are formalised us-
ing VDM++ and validated using traditional testing techniques. In the UML community
there exists a lot of work on the UML testing profile [24]. This also includes subsets of
UML making use of OCL for model based testing [25]. However, we are not aware of
any other work that uses UML diagrams as input for test automation.

8 Concluding Remarks and Further Work

This paper has described how a bi-directional translation between UML and VDM++
can be established. The tool support resulting from this work enables both a classical
connection to UML Class Diagrams (CDs) as well as a novel connection from UML
Sequence Diagrams (SDs) to a new part of VDM++ meant for test automation using
combinatorial testing principles. The Overture tools including the UML connection are
freely available and will be demonstarted at the FM’09 conference.

The transformation between UML and VDM++ is bidirectional and it is itself spec-
ified in VDM++. A few limitations exists for the transformation between UML and
VDM++. The VDM++ model for this transformation has been largely left out of this
paper for space reasons but the full model is available in [1]. The informal explanation
for a subset of the rules have been presented in the paper.

At the moment the SD transformation is only available from UML to VDM++ but it
is anticipated that the transformation in the opposite direction will be trivial to imple-
ment. It is also expected that UML SDs will be used to display logfiles from executions
of VDM++ models. The current transformation is not able to cope with incremental
changes both at the UML and VDM++ levels. It will be extended with merge function-
ality similar to that of VDMTools. Research investigating whether more general SDs
can be transformed into a collection of trace definitions is planned. It is also antici-
pated that it will be expanded with support for UML 2 state machine diagrams. Finally
it is our hope that it will be possible to extend the tool to be compatible with more UML
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tools. However, experience has demonstrated that the different tool vendors do not ad-
here to the XMI standard thus impeding the development of a tool supporting a wider
range of UML tools (see also [26]).
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Abstract. UML-B is a ’UML-like’ graphical front end for Event-B that provides
support for object-oriented modelling concepts. In particular, UML-B supports
class diagrams and state machines, concepts that are not explicitly supported in
plain Event-B. In Event-B, refinement is used to relate system models at different
abstraction levels. The same abstraction-refinement concepts can also be applied
in UML-B. This paper introduces the notions of refined classes and refined state
machines to enable refinement of classes and state machines in UML-B. Together
with these notions, a technique for moving an event between classes to facilitate
abstraction is also introduced. Our work makes explicit the structures of class
and state machine refinement in UML-B. The UML-B drawing tool and Event-B
translator are extended to support the new refinement concepts. A case study of
an auto teller machine (ATM) is presented to demonstrate application and effec-
tiveness of refined classes and refined state machines.

Keywords: Visual modelling languages, Formal specification, UML, Event-B,
Refinement.

1 Introduction

UML-B [1] is a graphical formal modelling notation that has some resemblance with
UML [2,3] and is based on Event-B [4] which is a new variant of classical B [8]. UML-
B supports class diagrams and state machines, concepts that are not explicitly supported
in plain Event-B. The UML-B notation is supported by the UML-B tool which is a plug-
in feature for the Rodin Event-B verification tool [6,11]. The UML-B tool generates
Event-B models corresponding to a UML-B development and the Rodin tool is then
used to discharge proof obligations associated with the generated Event-B models. As
detailed in [12], our motivations for developing UML-B are twofold. Firstly, in our
experience industrial users find the UML-like language and tool appealing. Secondly,
UML-B provides additional complementary structuring of Event-B models in the form
of classes and state machines.

A development in classical B or Event-B is performed through refinement. Refine-
ment [8,9] is a technique which is used to relate the abstract model of a software system
to another model that is more concrete while maintaining the properties of the abstract

� This work has been presented at the IM FMT 2009 workshop of the IFM2009 conference,
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model. Refinement is an important technique for managing the complexity of a system
being developed.

At the most abstract level of a refinement-based development, it is usual to spec-
ify invariants that define the properties of the system being modelled. These invariants
must be preserved by all the events of the model. Each refinement step will add fur-
ther invariants relating the abstract model and the refined model (gluing invariants). In
Event-B, both state and events may be refined. This is achieved by extending the list
of state variables (possibly suppressing some of them) and by replacing each abstract
event by corresponding concrete events.

There are two main differences between Event-B and classical B with regards to re-
finement of events. In Event-B, several events may refine an abstract event whereas in
classical B, only one event can refine an abstract event. The other difference is that in
Event-B, we may have new events that refine skip whereas in classical B, this is not
allowed. Another difference between classical B and Event-B is that Event-B distin-
guishes between contexts and machines. A context contains definitions and properties
of types and constants. A machine contains state variables, invariants and events that
update the variables. A machine may see several contexts.

UML-B incorporates the Event-B machine construct and a single UML-B machine
may contain multiple classes and multiple state machines. Previously, UML-B sup-
ported machine refinement (a refinement relationship between UML-B machines) but
had no support for refinement of classes or state machines (which are nested within
UML-B machines). The work reported here enriches UML-B to support class and state
machine refinement. The main contributions of our work are introducing notions of re-
fined classes and inherited attributes which are described in Section 3 and notions of
refined state machines and refined states which are described in Section 4. The other
contribution is introducing a technique of event movement in Section 5. A further con-
tribution is that we have implemented the UML-B extensions in the UML-B tool. In
this work we focus on safety-preserving refinement and do not deal with liveness.

Section 3 describes class refinement using the notion of refined classes and inherited
attributes which includes techniques for adding new classes and adding new attributes
and associations to refined classes in a refinement. Section 4 describes state machine
refinement and a technique for elaborating refined states into sub-states and the transi-
tions elaboration technique. Section 5 describes a technique for moving class events of
an abstract machine to a refined class or a new class in a refinement.

Before the technical details of the contributions are describes, we give some back-
ground on UML-B and the generated Event-B in Section 2 that outlines the existing
relevant features of UML-B. Section 6 presents the ATM case study using the refine-
ment techniques describes in Sections 3, 4 and 5. Section 7 concludes the paper.

2 Background of UML-B and Generated Event-B

UML-B provides four kind of diagrams. They are package, context, class and state ma-
chine diagrams. A package diagram is a top-level diagram that shows the structure and
relationships between components (machines and contexts) in a project. A context is
described in a context diagram which is similar to a class diagram but has only constant
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data and structured types. A machine is specified by a class diagram and state machine
diagram(s) representing data structures that may be changed by events or transitions.
Events may be attached to classes in a class diagram. Events can also be represented by
the transitions in a state machine diagram. Further descriptions focus on the class and
state machine diagrams as the rest of the sections mostly concerns these. The semantics
of a UML-B model is given by the Event-B generated by the UML-B tool according to
a set of translation rules.

A class diagram may contain classes. Each class may have attributes, associations,
events and state machines. An attribute defines a data value of an instance of a class.
An association is a special case of an attribute that defines a relationships between two
classes. Events and state machines may modify some or all the attributes of any class.
Each UML-B context gives rise to an Event-B context (i.e., the UML-B tool generates
a corresponding Event-B context). Each UML-B machine gives rise to both an implicit
Event-B context and an Event-B machine. The implicit context is used to define types
for the classes and states in the UML-B machine. In the generated Event-B machine,
classes, class attributes and associations become variables. Events and transitions in
classes and state machines become events in the generated Event-B machine.

Fig. 1 contains screenshots from the UML-B tool showing an example of a package
diagram that contains machine M1 (a) which has a class diagram (b) containing classes

Fig. 1. Package diagram and the UML-B specification of the Abstract Machine M1
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CA and CB. These classes give rise to the sets CA SET and CB SET in the generated
Event-B implicit context. In the generated Event-B machine the classes CA and CB
give rise to variables. The class CA consists of the attribute x of type N and also the
association a b of type CB. The multiplicity property for the association a b shown in
Fig. 1(c) specifies a many-to-one relationship (i.e., total function). A full explanation
of association multiplicity may be found in [12]. The attributes x and a b give rise to
variables in the generated Event-B machine.

For each class, attribute and association, a type invariant will be generated in the
Event-B machine. For example, the class CA corresponds to the type invariant which
specifies that CA is a subset of CA SET (CA ∈ P (CA SET)). Attribute x corresponds
to the type invariant x ∈ CA→ N that specifies x is defined for all CA. Each class has
a self name property with a default value self, i.e., the default identifier that represents
an instance of a class (which may be changed by the modeller). The self name property
of the class CA is shown in Fig. 1(d). A class may have events and for each event, its
parameters, guards and actions can be defined explicitly as properties. µB (micro B)
notation [12] that borrows from the Event-B notation is used for textual guards and
actions. µB uses an object-oriented style dot notation to show ownership of entities,
i.e., attributes and associations, by classes. Variables used in an expression can represent
owned features using the dot notation. For example, i.x refers to the value of the variable
x which belongs to instance i. Another example of this will be presented later (Fig. 5).

Attached to the class CA is its state machine, SM, listing its four transitions t1, t2, t3
and t4. The state machine SM in Fig. 1(e) shows its two states, A and B and the transi-
tions. The solid circle is the initial state, whereas, the solid circle with an outer circle is
the final state. The translation to Event-B for a state machine can either be a disjoint sets
representation or state function representation. These two styles are introduced in [10]
and they are supported in the UML-B tool. UML-B allows modellers to switch between
these two representations.

For a disjoint sets representation, a disjoint sets of CA are introduced as variables as
follows:

A ∈ P(CA)
B ∈ P(CA)
A ∩ B = ∅

That is, variable A represents the set of instances of CA that are in the state A and
similarly for B. For a state function representation, a variable SM (i.e., the state ma-
chine belonging to the class CA) is introduced representing a function mapping CA to
an enumerated set of states, SM STATES as follows:

SM STATES = {A,B}
SM ∈ CA −→ SM STATES

That is, SM maps each instance of CA to its state. In this paper, the translation to Event-
B is described using the disjoint sets representation. The generated Event-B machine for
M1 is shown in the Rodin screenshot of Fig. 2. Each Event-B statement is preceded by
its label which describes its purpose. For example, CA.type is a label for the Event-
B statement CA ∈ P (CA SET ). The states A and B of SM state machine represent
variables of type CA (i.e., the state machine owner). An instance of CA changes its
state when a transition fires. For the states, an additional invariant stating that they
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Fig. 2. Generated Event-B specification of M1

are disjoint is generated (i.e., A ∩ B = ∅). For each transition there is a guard that
specifies an instance source state (labelled as .. isin ..) and actions that specify its target
state (labeled as .. enterState ..) and its departure from the current state (labelled as
.. leaveState ..). The parameter, self, indicates an instance of a class. A transition from
an initial state such as t1, defines a constructor for the class. The translation of t1 selects
an unused instance and adds it to the set of CA (labelled self.type). A transition to a final
state such as t4 is a destructor which removes an instance from current instances and
from the domain of all the class variables. The transition t3 is a self loop transition
which does not changes state. In the generated Event-B the event t3 has a guard that
specifies its source state but with a skip action i.e., not changing state. Invariants and
theorems (assertions requiring proofs) can be attached to classes or states and become
part of the Event-B machine. A full explanation and examples of these is in [1].

3 Refinement of Classes in UML-B

In this section, the refinement techniques concerning the notion of refined classes and
inherited attributes are described.

The motivation for refined classes and inherited attributes come from performing
refinement in Event-B. The notion of refined classes and inherited attributes in UML-B
reflect the refinement of variables in Event-B. A refined class is one that refines a more
abstract class and an inherited attribute is one that inherits an attribute of the abstract
class. A notion of refined classes is needed in UML-B because some elements of an
abstract UML-B model need to be retained by the refinement.

In Event-B refinement, a machine that refines a more abstract machine may keep
variables of an abstract machine, may drop some of the variables and may introduce new
variables. In UML-B refinement, a machine that refines a more abstract machine may
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contain refined classes where each refined class refines a class of its abstract machine
(i.e., keeps variables of its abstract machine). In UML-B refinement, a machine may
drop some of refined classes (i.e., drop some variables). Also in UML-B refinement, a
machine may introduce new classes (i.e., new variables) in a class diagram.

In UML-B refinement, a refined class may inherit attributes of its abstract class (i.e.,
keeps variables of its abstract machine). A refined class may drop some of the attributes
of its abstract class (i.e., drop some variables of its abstract machine) and a refined
class may introduce new attributes (i.e., new variables). The following schematic table
illustrates a refined class that inherits and drops abstract attributes and introduces new
attributes. The table lists the attributes for class C and a refined class C. Class C contains
attributes a1, a2 and a3. In refinement, the refined class C inherits attributes a1 and a2,
drops attribute a3 and has new attributes a4 and a5. In the generated Event-B machine,
both a class and a refined class give rise to variables. A type invariant is generated for an
abstract class i.e., Class C but not for a refined class because its type is already defined in
the abstract Event-B machine. Similarly both the inherited attributes and new attributes
give rise to variables and a type invariant is generated for each new attribute but not for
the inherited attributes.

Class C Refined Class C
a1 a1 (inherited)
a2 a2 (inherited)
a3 a4 (new)

a5 (new)
We describe here a simple example of performing refinement in UML-B using the

notion of refined classes and inherited attributes. Fig. 3(a) shows an example of a pack-
age diagram that manages a refinement relationship between machines. The package
diagram shows that machine M2 refines machine M1 (of Fig. 1). The class diagram
of M2 is shown in Fig. 3(b) where it consists of refined classes CA and CB refining
the classes CA and CB of M1 respectively. The refined class CA inherits attribute x and
association a b. The refined class CB has a new association cb cc. Machine M2 has a
new class, CC which gives rise to a new set (CC SET) in the generated Event-B implicit
context. In the generated Event-B machine for machine M2, the variables CA, CB, x
and a b are retained. The machine M2 has new variables CC and cb cc with their type
invariants CC ∈ P (CC SET) and cb cc ∈ CB→ CC respectively.

Fig. 3. Package diagram and Class Diagram of Machine M2
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In Event-B refinement, a machine must provide a refinement of each abstract event.
This can be either one or many event(s) refining one abstract event. New events may
be introduced in a refinement. Similarly, in UML-B refinement, at least one concrete
event must refine each abstract event and new events may be introduced. These concrete
events can either be attached to a refined (or a new) class or a state machine of a refined
(or a new) class. In UML-B refinement, we can also define additional invariants and
theorems by attaching them to refined classes and states that reflect adding invariants
and theorems in Event-B refinement.

4 Refinement of State Machines in UML-B

In this section, the refinement techniques concerning the notion of refined state ma-
chines and refined states are described. The motivation for refined state machines and

Fig. 4. Refinement of State machine (machine M2 refines machine M1)

refined states come from combining the state machine hierarchy in UML-B with refine-
ment in Event-B. The essential concept is that state machines are refined by elaborating
an abstract state with nested sub-states. A refined state machine is one that refines a
more abstract state machine and a refined state is one that refines a more abstract state.

In UML-B refinement, a machine may contain refined state machines and refined
states. We describe first an example of performing refinement in UML-B using the
notion of refined state machines and refined states. We will then describe the general
rules. Fig. 4 shows an example of a state machine refinement. The refined class CA of
M2 (Fig. 3(b)) has a refined state machine SM (Fig. 4(b)) refining the state machine SM
of M1 (Fig. 4(a)). The states of refined state machine SM are refined state A and refined
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state B refining state A and state B of M1. The refined state machine SM contains the
transitions t1, t2a, t2b, t3 and t4 which refine the corresponding abstract transitions
of machine M1. In Fig. 4(b), the abstract transition t2 is replaced with transitions t2a
and t2b which refine the abstract transition t2 of machine M1. This refinement of a
state machine reflects refinement in Event-B where many events can refine one abstract
event. The transitions t2a and t2b have different source sub-states (i.e., representing
different guards in Event-B) which are defined in the nested state machine SM A.

The nested state machine SM A (Fig. 4(c)) elaborates the refined state A (Fig. 4(b)) of
M2. The nested state machine, SM A has three states A1, A2 and A3. The transitions t1,
t2a, t2b and t3 in the nested state machine SM A are labelled the same as the incoming
and outgoing transitions of the refined state A. The same labels indicates that the tran-
sition t1 of the state machine SM A is the transition t1 of the refined state machine SM
and similarly for t2a, t2b and t3. The transition t1 of the nested state machine SM A in
Fig. 4(c) elaborates the incoming transition t1 of the refined super-state A. This means,
in the refinement, the target state of the transition t1 is the sub-state A1. The transitions
t2a and t2b of the nested state machine SM A elaborate the outgoing transition t2a and
t2b of the refined super-state A. In Fig. 4(b) we do not see a distinction between transi-
tions t2a and t2b. In Fig. 4(c) we can see a distinction: t2a has sub-state A1 as a source
while t2b has A3 as a source. The transition t3 of the nested state machine SM A elab-
orates the self loop transition of the refined super-state A specifying its source state as
the state A1 and its target state as A2. In the nested state machine SM A, the transition
t5 is a new transition representing a new event in the generated Event-B machine.

In the generated Event-B machine, type invariants are created for all sub-states,
where their types are their super-state, for example A1 ∈ P (A) is a type invariant for
the state A1. An additional invariant is generated to specify that all sub-states constitute
their super-state. For example, A = A1 ∪ A2 ∪ A3. Other generated invariants are a
number of disjointness invariants specifying that all sub-states are disjoint.

In the next paragraphs, we give a general definition of state machine refinement
based on the example given above. A refined state machine refines a more abstract state
machine. The structure of a refined state machine is an elaboration of the structure of
its abstraction in two possible ways:

– Each transition is replaced by one or more transitions.
– An abstract state may be elaborated by a nested state machine (see below).

In the given example, we used the techniques of state elaboration and transition elab-
oration. In UML-B refinement, a refined state may be elaborated to sub-states con-
tained in a nested state machine forming a state machine hierarchy. State elaboration
enables more transitions to be added to a nested state machine. Some of these transi-
tions elaborate the incoming and outgoing transitions of the refined super-state. Some
of these transitions are new transitions (i.e, reflects introducing new events in Event-B
refinement).

In UML-B, nested state machines are modelled in separate state machine diagrams
from their parent state machine diagrams. Therefore, the transition elaboration tech-
nique is needed so that transitions in a nested state machine can elaborate the incoming
and outgoing transitions of the super-state. In a nested state machine, a transition with
an initial source state elaborates at most one incoming transition to the super-state and
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a transition with a final target state elaborates at most one outgoing transition from the
super-state. Our experience is that having separate diagrams for nested state machines
scales better than embedding them directly in a single diagram. A single diagram can
result in scalability problems when there are many levels of state machine hierarchy
and a nested state machine has many states. On the other hand, it can be useful to see at
least one level of nesting in a single diagram. We will investigate this in future.

An abstract state may have a self loop transition. In UML-B refinement, while the
state is elaborated into sub-states, the self loop transition may be elaborated as one of the
transitions between any two of the sub-states. The elaborated transition defines the state
changes from a sub-state to another sub-state when the transition fires. When refining a
self loop transition, the occurrence of the transition can either be many times or can be
restricted to once. Restriction to once means removing looping behaviour and this is a
valid refinement since we focus on preserving safety, not liveness, in our current work.

5 Event Movement

This section describes the technique of moving a class event in UML-B refinement.
There are two methods of moving a class event in a refinement, these are (1) move
to a refined class as a transition of a state machine and (2) move to a new class in a
refinement either as a class event or a transition in a state machine. Method (1) does not
need any new UML-B language feature. However, method (2) creates a motivation for
the need to be able to change the default self name in UML-B.

We describe both methods by giving first an example of an abstract machine in which
a refinement is based upon. Figure 5(a) shows a class CA with attribute x and event ev1.
Figure 5(b) shows the properties of the event ev1 showing its parameter y, a guard and
an action. The action is defined using µB notation and uses a default identifier self,
i.e., the self name property which represents an instance of a class CA. The self name
property becomes a parameter of the ev1 event in the corresponding Event-B machine.

For method (1), in a refinement, the class event of the abstract machine may be
moved to a state machine of the refined class CA as a transition ev1 between the states
A1 and A2. In the generated Event-B machine for the event ev1, an additional guard
specifying the current state A1 for the event to take place (self ∈ A1) and also addi-
tional actions specifying an instance move to the state A2 (A2 := A2 ∪ {self}) and

Fig. 5. Example of the UML-B specification of an abstract machine
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an action specifying an instance leaves the current state A1 (A1 := A1 \ {self}) are
generated. The effect of this refinement is to constrain when the event occur.

For method (2), in a refinement, a class event may be moved to a new class as a
class event or as a transition in a state machine. We describe here the event movement
technique when a class event is move to a new class as a transition in a state machine.
Assume that the UML-B specification in Fig. 6 is a refinement of the abstract machine
in Fig. 5. In the refinement, a new class CC is introduced and event ev1 is moved to the
class CC (Fig. 6(a)). The event ev1 become a transition between the states C1 and C2
of state machine CCsm (Fig. 6(c)).

The self name property of the class CC is changed to selfCC from the default self (Fig-
ure 6(b)). This change is necessary to avoid conflicts with the default self name of the
refined class CA. In a class event or a transition refining an abstract class event, a pa-
rameter whose type is the abstract class is introduced to replace a self parameter of the
abstract class. For example, a parameter ca, of type CA is added to the ev1 transition
as shown in the property view in the Figure 6(d). A witness property is defined for
the transition ev1 which specifies that ca in the refinement level represents self of its
abstract level (i.e., ca = self ).

The witness property is adapted from Event-B. In Event-B, a witness is used when
replacing a parameter of an abstract event with a different parameter in a concrete event
in the refinement. The witness is defined by a predicate involving the abstract parameter.

Section 6 of the ATM case study will demonstrate the usefulness of moving events
from one class to another in refinement. In the first refinement of the ATM case study,
the withdraw event of the Account class is moved to the ATM class as a transition in a
state machine of the class ATM.

Fig. 6. Example of the UML-B refinement for the second method



Language and Tool Support for Class and State Machine Refinement in UML-B 589

6 ATM Case Study

A case study based on an auto teller machine (ATM) was undertaken to validate the
extension of UML-B with regards to the notion of refined classes and refined state
machines. An ATM is a machine that allows bank customers to do some of the banking
transactions 24 hours per day. It allows bank customers to perform a range of functions,
including withdraw cash, check account balance and print mini-statements. In order to
perform these functions through an ATM, bank customers need to use their ATM cards
which are provided to them by the bank. The case study focused on the requirements
for the cash withdrawal and check balance functions. There are seven levels for the
ATM UML-B development. These machines are linked by a refinement relationship.
We described in details the first three levels and described briefly the other four levels.
The summary for the first three machine level is as follows:

Abstract machine (ATM A): Models bank accounts and operations on accounts.
First Refinement (ATM R1): Introduces the ATMs and ATM cards.
Second Refinement (ATM R2): Introduces an explicit validation transition for cards

and splits withdrawal into a bank transition and an ATM transition.

The package diagram in Fig. 7 shows a refinement relationship between the machines.

Fig. 7. ATM Package Diagram

Fig. 8 shows a UML-B specification of the ATM abstract machine. The abstract ma-
chine consists of a class Account (8(a)) with its attribute bal and four events namely,
createAccount, deposit, withdraw and checkBalance. The Account class represents the
set of accounts that currently exist in the system. The attribute bal represents the bal-
ance of an account. The withdraw event has one added parameter, am of type natural
number. The parameter is shown in the property view in Fig. 8(b) including the guard
and action. self is the self name property defined for the class Account. The withdraw
event can only occur if the amount, am, is less than or equal to the balance in the ac-
count. The withdraw event will result in decreasing the balance of the account by am
amount.

The first refinement of the ATM model introduces two new classes which are ATM
and Card which represent the sets of ATMs and ATM cards respectively. The UML-
B specification is shown in Fig. 9. The class diagram (Fig. 9(a)) of ATM R1 contains
the new classes and a refined class Account refining the Account class of ATM A.
The class ATM has an association atm card with the class Card. The class Card has an
association card account with the refined class Account. The refined class inherits the
bal attribute and refines the two events, namely, createAccount and deposit of ATM A.
The other two events namely, withdraw and checkBalance are moved to the new class
ATM in this refinement level as transitions in the state machine ATM SM of the class
ATM. At the abstract level (Fig. 8), we specify the effect of a withdrawal on the account
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Fig. 8. UML-B specification of ATM abstract machine

balance. In the refinement (Fig. 9), we further specify that the withdrawal takes place
via an ATM. At the abstract level it is natural to specify the withdrawal as an event of
the Account class while in the refinement it is natural to specify it as an event of the
ATM class.

The state machine ATM SM in Fig. 9(b) partitions the behaviour of an ATM into ei-
ther an idle state, (i.e., not being used/not active) or active atm state (i.e., is being used).
An ATM changes its state when it is triggered by a transition. The create transition cre-
ates a new instance of an ATM and sets its state as idle. The insertCard transition can
occur when an ATM is in the idle state and the card inserted is a valid ATM card. When
it occurs it changes an ATM state from idle to active atm. The ejectCard transition
changes an ATM state from active atm to idle. While an ATM is in active atm state,
an ATM user can use it for withdrawal or checking an account balance (i.e., check-
Balance transition). The withdrawOK transition represents a successful withdrawal
transaction, whereas, the withdrawFail transition represents a failure possibly because
the withdrawal amount exceeds the account balance. The transitions withdrawOK and
checkBalance refine the abstract event withdraw and checkBalance respectively. The
transitions insertCard, ejectCard and withdrawFail are new events.

Fig. 9(c) shows the properties of the withdrawOK transition with the parameters, wit-
ness, guards and action. The witness specifies that the parameter ac represents the self
parameter of the abstract withdraw event. In this refinement, the guards are strength-
ened so that the withdrawOK transition can only occur when an ATM card is inserted
(selfATM ∈ dom(atm card)) and the card in the ATM is a valid card for the account
whose balance is being modified (selfATM.atm card = c and c.card account =
ac). Fig. 9(d) shows the refines property of the withdrawOK transition.

The second refinement models an explicit validation transition for cards and splits
withdrawal and balance check into a bank transition and an ATM transition. This is
achieved by elaborating the active atm state into sub-states. The class diagram of ma-
chine ATM R2 contains three refined classes refining the classes Account, ATM and
Card of ATM R1. An attribute atm cash, which represents the amount of cash stored
in an ATM is added to the refined class ATM. A new class Pin is introduced which rep-
resents a set of ATM PIN numbers. The refined class Card has an association card pin



Language and Tool Support for Class and State Machine Refinement in UML-B 591

Fig. 9. UML-B specification of ATM First Refinement

with the class Pin.The refined class ATM contains refined state machine ATM SMwhich
contains two refined states refining the states idle and active atm of ATM R1 (Fig.
10(a)). The transitions ejectCard1, ejectCard2, ejectCard3 and ejectCard4 refine the
abstract transition ejectCard. The transitions insertCard, withdrawOK, withdrawFail
and checkBalance refine their corresponding abstract transitions in ATM R1.

A new state machine named active atm SM is added to the refined state ac-
tive atm of ATM R2 and it contains five sub-states, namely, validating, invalidCard,
transOption, performedTrans and endTrans (Fig. 10(b)). The state machine has a tran-
sition insertCard which elaborates the incoming transition to the refined super-state
active atm. The outgoing transitions ejectCard1, ejectCard2, ejectCard3 and eject-
Card4 from the states invalidCard, transOption, performedBankTrans and endTrans
respectively elaborate the outgoing transitions of the refined super-state active atm.
The transitions withdrawOK, withdrawFail and checkBalance elaborate the self loop
transitions of the refined super-state active atm. The transitions validateCardOK, vali-
dateCardFail, withdrawATM and checkBalATM are new transitions.

The third refinement models the request and response communication between the
ATMs and the bank. The fourth refinement models the send and receive events of the
request and response communication between ATMs and the bank. In third and fourth
refinement, nested state machines are added to the ATM state machine forming four
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Fig. 10. UML-B specification of ATM Second Refinement

levels of nested state state machines. The fifth refinement introduces a form of com-
munication between ATMs and the bank using message passing via two channels per
ATM. The sixth refinement merged the channel pairs into single channel.

The state machine refinement in the second, third and fourth refinements introduced
additional levels in the state machine nesting hierarchy. This supports a form of modular
reasoning, since refinement invariants are only required for the states that are being
elaborated, so it localizes proof effort.

All the models for the ATM development were constructed using the UML-B tool
and corresponding Event-B machines were generated. All the proof obligations (POs)
for the seven machines were generated and proved using the Rodin tool provers [6].
The total number of proof obligations (POs) is 962 in which all of them are proved
automatically. The POs for each machine are: ATM A:5, ATM R1:35, ATM R2:169,
ATM R3:156, ATM R4:186, ATM R5:358 and ATM R6:53.
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7 Conclusions

We have introduced notions of refined class and refined state machine for UML-B. We
used these to described the following five refinement techniques:

– Add new attributes and associations to a refined class
– Add new classes in a refinement
– State elaboration
– Transition elaboration
– Move event to a refined class or a new class in a refinement

We extended the UML-B tool to support these new techniques.
UML-B enhances classical UML-B [12] which is a profile of UML that defines

a subset and specialisation of UML. Classical UML-B is based on classical B rather
than Event-B and it has restricted support for refinement. Some of the techniques used
here (state elaboration, transition elaboration) were previously introduced by Snook and
Walden [13] for classical UML-B. However, we provide a more precise definition of re-
fined state machine and we provide tool support based on UML-B giving a different
modeling visualization from the UML diagram symbols used in [13]. We also intro-
duce class refinement techniques, which are not with dealt in [13]. In [14], a process
for refinement involving the application of patterns that are based on the techniques
introduced in [13] is suggested.

The techniques of adding new attributes and associations to a class and adding new
classes to a class diagram have been introduced in informal way for refinement of UML
class diagram [16] but no formal notation nor formal refinement concept is used. Tem-
plates are introduced for attributes and associations to specify the translation of model
elements to low level design and implementation. Also, the technique of state elabora-
tion has been introduced in a refinement of UML state diagram [15] again without a
formal notion of refinement. Simons [21] has presented a theory of compatible object
refinement based on several proposed state-chart refinements that includes state elabo-
ration.

There is much work on combining UML with formal notations and we now out-
line some of this. However, unlike our work, none of this work supports refinement
in UML to the best of our knowledge. Lano, Clark and Androutsopoulos [17] present
the translation of UML-RSDS into classical B. The constraint language used is OCL
whereas we use µB. Idani, Ledru and Bert [18] have investigated the reverse in which
they proposed an approach and tool support for the construction of UML diagrams from
B specifications. Ledang and Souquiéres have introduced an approach for modelling the
communication between UML state charts in B in [23]. Other work on the integration
of UML and B are in [22,24] as outlined in [12]. Integration work of UML with Z has
been investigated in [20]. In this work, class diagrams, state machines and the UML-RT
structure diagrams are translated to CSP-OZ (an integrated formal method) specifica-
tions. In [19], a framework called UML + Z for building, analysing and refining models
based on UML and Z is introduced. In [25], a transformation rules from VDM++ into
UML class diagram and sequence diagram have been investigated.

We have presented the use of the above listed techniques in the ATM case study
which was modelled using the UML-B tool. The Rodin tool was used to generate and
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prove the proof obligations. The approach of elaborating states with sub-states in refine-
ment supports an incremental refinement approach. The hierarchical structure of nested
state machines also supports modular reasoning by localising the invariants required
for refinement proofs into the relevant state and its substates. An archive of UML-B
development for the ATM case study can be uploaded1. Currently, we are working on
the extensions to UML-B to support decomposition. We believe that the result of our
research will be a methodology of refinement in UML-B which will assists modelling
in UML-B.
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Abstract. Many long-lived and distributed systems must remain avail-
able yet evolve over time, due to, e.g., bugfixes, feature extensions, or
changing user requirements. To facilitate such changes, formal methods
can help in modeling and analyzing runtime software evolution. This
paper presents an executable object-oriented modeling language which
supports runtime software evolution. The language, based on Creol, tar-
gets distributed systems by active objects, asynchronous method calls,
and futures. A dynamic class construct is proposed in this setting, pro-
viding an asynchronous and modular upgrade mechanism. At runtime,
class redefinitions gradually upgrade existing instances of a class and
of its subclasses. An upgrade may depend on previous upgrades of other
classes. For asynchronous runtime upgrades, the static picture may differ
from the actual runtime system. An operational semantics and a type
and effect system are given for the language. The type analysis of an
upgrade infers and collects dependencies on previous upgrades. These
dependencies are exploited as runtime constraints to ensure type safety.

1 Introduction

Many long-lived distributed systems require continuous system availability, but
still need to change their code due to bugfixes as well as new, improved, or
redundant functionality. Examples of such systems are found in, e.g., financial
transactions, aeronautics and space missions, biomedical sensors, and telephony
and Internet services. For these systems, code changes must happen at runtime.
In large distributed systems, runtime updates need to be applied in an asyn-
chronous and modular manner, and propagate gradually through the distributed
system. A challenge for software upgrade systems is to balance flexibility, robust-
ness, and user-friendliness. An appropriate upgrade system should propagate up-
grades automatically, provide means to control when components are upgraded,
and ensure the availability of system services during the upgrade [1,20]. In order
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to ensure that upgrades are correct and result in foreseen changes, formal models
and analysis methods for runtime software evolution are needed.

This paper presents a modeling language which supports the runtime evolu-
tion of distributed object-oriented systems. The language extends Creol [17], an
executable formalism in which distributed concurrent objects communicate by
asynchronous method calls and futures [7,8,22], with dynamic class operations.
These may introduce new functionality and interfaces for classes, change data
structures and implementations for existing functionality, and remove legacy
code. Dynamic class operations provide a modular form of software evolution
because upgrades to a class C apply to all existing instances of C and of its
subclasses. Compared to previous approaches [6, 13, 18, 19], our approach sup-
ports the gradual upgrade of active objects and upgrade operations propagate
asynchronously through the system. It is a challenge for formal methods to rea-
son about the runtime evolution of distributed systems. This paper focuses on
ensuring type safety at runtime as class definitions evolve.

An operational semantics and type system for dynamic class operations are
introduced and integrated with the semantics and type system of Creol. Creol is
type-safe in the sense that runtime type errors do not occur for well-typed pro-
grams; in particular, method binding always succeeds. We show that well-typed
dynamic class operations maintain this property. As classes gradually evolve, a
type-safe upgrade of one class may require that an upgrade of another class has
already been applied; e.g., when new code contains calls to methods introduced
in a previous upgrade. Upgrades may be arbitrarily delayed in the asynchronous
setting, so upgrades injected into the system in one order may be applied in an-
other. This causes a discrepancy between the static system view, as provided by
a typing environment for dynamic class operations, and the situation at runtime.
We develop a type and effects system [2] to analyze dynamic class upgrades and
to automatically infer and collect dependencies between class upgrades. Thus,
the dependencies of an upgrade operation need not be provided by the modeler.
A characterizing feature of our approach is that the dependencies inferred dur-
ing type analysis are imposed as constraints on the applicability of a particular
upgrade at runtime. This may delay certain upgrade operations at runtime to
ensure that execution remains type safe. This paper presents the proposed dy-
namic class operations for a kernel language, but the approach is supported in
the complete Creol language. The type system and operational semantics of this
paper have been implemented and integrated with Creol’s execution platform.

Paper overview. Sect. 2 presents the kernel language, its type system, and seman-
tics. Sect. 3 provides an example of dynamic class upgrades. Sect. 4 introduces
operations for dynamic class upgrades, their type system, and semantics. Sect. 5
discusses related work, and Sect. 6 concludes the paper.

2 A Language for Distributed Concurrent Objects

Consider a kernel language for distributed concurrent objects, similar to, e.g.,
Featherweight Java [15]. The language targets distributed systems by supporting
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asynchronous method calls and futures (i.e., returns from asynchronous calls). In
contrast to Java each concurrent object encapsulates its state; i.e., all external
manipulation of the object state is through calls to the object’s methods. In ad-
dition, objects execute concurrently: each object has a processor which executes
the processes of that object. Processes in different objects execute in parallel.
A process corresponds to the activation of a method. Only one process may be
active in an object at a time; the other processes in the object are suspended.
We distinguish between blocking a process and releasing a process. Blocking is
used for synchronization and stops the execution of the process, but does not let
a suspended process resume. Releasing a process suspends the execution of that
process and lets a suspended process resume. Thus, if a process is blocked there
is no execution in the object, if it is released another process in the object may
execute. Although processes need not terminate, the execution of several pro-
cesses may be combined using release points within method bodies. At a release
point, the active process may be released and a suspended process may resume.

Method calls are asynchronous and the result of a call is stored in a future,
which may be read or polled. Return values are accessed by need; i.e., the ex-
ecution blocks if attempting to read from a future without a return value. In
contrast, polling a future never blocks. The scheduling of processes at release
points is influenced by await-statements with Boolean guards, including the
polling of futures. If a guard evaluates to false, the process is released. Only
a process whose guard evaluates to true may resume execution. Remark that
release points make it straightforward to combine active (i.e., nonterminating)
and reactive processes in an object. Thus, an object may behave both as a client
and as a server while abstracting from the exact interleaving of these roles.

The behavior of an object may depend on its context of interaction; we let
object variables (references) be typed by interfaces. These contain method signa-
tures and provide context-dependent encapsulation, as different sets of methods
may be available through different interfaces. Variables typed by different in-
terfaces may refer to the same object. A class implements an interface I if its
instances may be typed by I. A class may implement several interfaces and
different classes may provide different implementations of the same interface.
Reasoning control is ensured by substitutability at the level of interfaces: an ob-
ject supporting an interface I may be replaced by another object supporting I or a
subinterface of I in a context depending on I. This substitutability is reflected in
the semantics by the fact that late binding applies to all external method calls,
as the runtime class of the object reference is not in general statically known.

The syntax is given in Fig. 1. We emphasize the differences with Java. A
program P is a list of interface and class definitions, followed by a method body.
To illustrate the generality of the dynamic class construct, a class may inherit
from a list of superclasses (possibly just Object), extending these with additional
fields f and methods M . Expressions e are standard apart from the asynchronous
method call e!m(e) and the (blocking) read operation v.get. Statements s are
standard apart from release points await g and release. Guards g are conjunctions
of Boolean expressions b and polling operations v? on futures v. When the guard
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P ::= D L {T x; sr} D ::= interface I extends I {Ms}
sr ::= s; return e L ::= class C extends C implements I {T f ; M}
v ::= f | x M ::= Ms{T x; sr}
b ::= true | false | v e ::= v | new C( ) | e.get | e!m(e) | null
T ::= I | bool | fut(T ) s ::= v := e | await g | skip | s; s | if g then s fi | release
Ms ::= T m (T x) g ::= b | v? | g ∧ g

Fig. 1. The language syntax. Variables v are fields (f) or local variables (x), C is a
class name, and I an interface name.

in an await statement evaluates to false, the statement gets preceded by a release,
otherwise it becomes a skip. The release statement suspends the active process.

2.1 Typing

Type analysis is done by a type and effect system [2] in the context of a mapping
family, defined as follows: Let n be a name, d a declaration, i ∈ I a mapping
index, and [n �→id] the binding of n to d indexed by i. A mapping family Γ is
built from the empty mapping family ∅ and indexed bindings by the constructor
+. The extraction of an indexed mapping Γi from Γ is defined by ∅i = ε and (Γ+
[n �→i′d])i = if (i = i′) then Γi +[n �→id] else Γi. The application for the indexed
mapping Γi, is ε(n) = ⊥, and (Γi+[n �→id])(n′) = if (n = n′) then d else Γi(n′).

The typing context uses four indexes; the mappings ΓI and ΓC map interface
and class names to interface and class declarations, and Γv maps program vari-
able names to types. In the absence of class upgrades, ΓI and ΓC correspond to
static tables. The subtype relation T1 3 T2 is defined by interface inheritance.
Only declarations extend Γv. Some auxiliary functions are defined on a mapping
family Γ . The field declarations in a class C and its superclasses are collected by
attr(C, Γ ) and implements(C, I, Γ ) matches signatures for methods declared in
an interface I to those in C (to check that C provides bodies for the declarations
of I). We assume for simplicity that variable declarations T x are well-typed and
denote by [x�→vT ] the associated mapping (built from the bindings [x�→vT ]).

Finally, there is a mapping of dependencies Γd : Dep → Set[Dep], where the
type Dep consist of pairs of class names and natural numbers. An upgrade of a
class C can be uniquely identified by a natural number; e.g., 〈C, 5〉 represents
the fifth upgrade of C. Elements in Γd(〈C, u〉) will represent classes on which an
upgrade u of a class C depends; these dependencies are inferred from the current
class table by the type analysis, and exploited for dynamic classes in Sect. 4.

The type rules are given in Fig. 2. Judgments have the form Γ ' e : T 〈Σ〉
and Γ ' s 〈Σ〉, where Γ is the typing environment and Σ : Set[Dep] the effect.
To simplify the presentation, we assume that method declarations in interfaces
are unique and well-typed and omit the analysis of interfaces. Furthermore, the
(straightforward) definitions of auxiliary functions on Γ are omitted.

The rules (Poll) and (Get) for operations on futures convert types from T to
fut(T ). Let interfaces(ΓC(C)) denote the interfaces of C as declared in ΓC . Rule
(New) shows the connection between the type of the variable and the interfaces
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(Poll)
Γ � v : fut(T ) 〈Σ〉
Γ � v? : bool 〈Σ〉

(Get)
Γ � v : fut(T ) 〈Σ〉
Γ � v.get : T 〈Σ〉

(New)
∃T ′ ∈ interfaces(ΓC(C)) · T ′ � T

Γ � new C( ) : T 〈(C, curr(C, Γ ))〉

(Skip)

Γ � skip

(IntCall)
Γ � e : T 〈Σ〉

∃C ∈ matchint(m, T → T ′, Γv(this), ΓC)

Γ � this!m(e) : fut(T ′) 〈Σ∪(C, curr(C, Γ ))〉

(ExtCall)
Γ � e : T 〈Σ1〉 Γ � e : I 〈Σ2〉
matchext(m, T → T ′, I, ΓI)

Γ � e!m(e) : fut(T ′) 〈Σ1∪Σ2〉

(Null)

I ∈ dom(ΓI)

Γ � null : I

(Var)
Γ (v) = T

Γ � v : T 〈�v�〉

(Assign)
Γ � e : T ′ 〈Σ〉 T ′ � Γv(v)

Γ � v := e 〈�v� ∪ Σ〉

(And)
Γ � g1 : bool 〈Σ1〉 Γ � g2 : bool 〈Σ2〉

Γ � g1 ∧ g2 : bool 〈Σ1 ∪ Σ2〉

(Await)
Γ � g : bool 〈Σ〉
Γ � await g 〈Σ〉

(Release)

Γ � release

(Composition)
Γ � s 〈Σ1〉 Γ � s′ 〈Σ2〉

Γ � s; s′ 〈Σ1 ∪ Σ2〉

(Conditional)
Γ � b : bool 〈Σ1〉 Γ � s 〈Σ2〉
Γ � if b then s fi 〈Σ1 ∪ Σ2〉

(Method)
Γ ′ = Γ + [x�→vT ] + [x′ �→vT ′]
Γ ′ � e : T ′ 〈Σ1〉 Γ ′ � s 〈Σ2〉

Γ � T ′ m (T x){T ′ x′; s; return e} 〈Σ1∪Σ2〉

(Program)
Γ + [x�→vT ] � s

∀L ∈ L · ΓI + ΓC + Γ L
d � L

ΓI + ΓC +
⋃

L∈L Γ L
d � L {T x; s; return true}

(Class)
∀M ∈ M · Γ + [this �→vC] + [attr(C, Γ )] � M 〈ΣM 〉 ∀I ∈ I · implements(C, I, Γ )

Γ + [〈C, 0〉�→d

⋃
M∈M

ΣM ] � class C extends C implements I {T f ; M}

Fig. 2. The type and effect system. Judgments for the Boolean constants true and false
are similar to (Release). We omit empty effects; e.g., Γ ( e 〈∅〉 is written Γ ( e.

of the class; the typing of a class instance depends on the context. The function
curr(C, Γ ) identifies the current version number of a class C. In (IntCall) the
auxiliary predicate matchint, given a method name, signature, and class, checks
that an internal invocation may be bound in the class mapping. Similarly, in
(ExtCall), matchext checks that the interface of the callee can bind the external
call. Any interface can type null in (Null). For a variable v, let �v� : Dep denote the
class in which v is declared and its version number (which is easily retrieved from
the typing environment). The effect of the analysis of expressions and guards is
a set of dependencies to versions of the current class and its superclasses.

In rule (Method), local declarations extend the typing environment used for
statements in the method body. The dependencies from different statements are
accumulated in (Composition). The effect of the analysis of a method is the set of
all dependencies from the body of the method. In (Class), this is bound to the
class name, the context is extended with fields, and each method is typechecked.
For each method M in rule (Class), the dependencies of M are stored in the
effect ΣM . Thus, Γd maps the dependencies of the initial version of C to the
dependencies accumulated from the type analysis of the class; i.e., 〈C, 0〉 �→d⋃

M∈M ΣM . In (Program), a program is type checked in the context ΓI + ΓC .
Here, ΓL

d denotes the dependency mapping derived for class L in the program.
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config ::= ε | class | object | msg | config config o ::= (oid, C#n)

class ::= (C#n, vs, impl, inh, ob, fds,mtds) fds ::= T v val
object ::= (o, pv, processQ, fds, active) active ::= process | idle

processQ ::= ε | process | processQ processQ mc ::= oid.m(val)
msg ::= (fid, mc,mode, val) | (bind, C, fid, mc) val ::= oid | fid | null | b

| (bound, o, process) mtd ::= T m(T x){process}
process ::= (fds, sr) | error mtds ::= ε | mtd | mtds mtds

Fig. 3. Syntax for runtime configurations; oid and fid are object and future identifiers

2.2 Context-Reduction Semantics

The semantics is given by a small-step reduction relation on configurations of
objects, classes, and futures (see Fig. 3). To accommodate upgrades in Sect. 4,
stage and version numbers are introduced in the semantics. A class has an id
(i.e., a name and a stage number n : Nat, which changes when the class or one
of its superclasses is upgraded), a version number vs : Nat (which changes only
when the class itself is upgraded), a list of interfaces, a list of superclasses,
a set of object ids, a set of fields with default values, and a set of methods.
Default values for types are given by a function default (e.g., default(I) = null,
default(bool) = false, and default(!T ) = null). An object has an id oid, a class
with a stage number C$n, a process version set pv : Set[fid× Nat], a queue pq
of suspended processes, fields fds, and an active process. In an object o, pv
tracks the stage of the class for (pending) method activations on o: these may
be either internal calls or incoming requests. The idle process indicates that no
method is active in the object and error that method binding has failed. A future
(fid,mc,mode, val) captures the state of a method call: initially sleeping, then
active, and finally, it becomes completed and stores the result from the call. Let
mode ∈ {s, a, c} represent these states. The initial configuration of a program
L {T x; sr} has classes and one object (o, ∅, ε, ε, (T x default(T )), sr).

Reduction takes the form of a relation config → config′. The main rules are
given in Fig. 4. The context reduction semantics decomposes a statement into
a reduction context and a redex, and reduces the redex [12]. Reduction contexts
are method bodies M , statements S, expressions E, and guards G with a single
hole denoted by •:

M ::= • | S; return e | return E S ::= • | v := E | S; s | if G then s1 fi
E ::= • | E.get | E!m(e) | oid!m(val, E, e) G ::= • | E? | G ∧ g | b ∧ G

Redexes reduce in their respective contexts; i.e., body-redexes in M , stat-redexes
in S, expr-redexes in E, and guard-redexes in G. Redexes are defined as follows:

body-redexes ::= return val
stat-redexes ::= x := val | f := val | await g | skip; s | if b then s else s fi | release
expr-redexes ::= x | f | fid.get | oid!m(val) | new C()

guard-redexes ::= fid? | b ∧ g

Filling the hole of a context M with a redex r is denoted M [r]. Before evaluating
the expression e in the method body s; return e, the body will be reduced to
skip; return e. For simplicity, we elide the skip and write just return e.
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(Red-Call1)
oid = this fid is fresh

(o, pv, pq, fds, (l, M [oid!m(val)]))
→ (o, pv, pq, fds, (l, M [fid]))

(fid, oid.m(val), s, null)

(Red-Call2)
fid is fresh

((oid, C#n), pv, pq, fds, (l, M [this!m(val)]))
→ ((oid, C#n), pv ∪ {(fid, n)}, pq, fds, (l, M [fid]))

(fid, oid.m(val), s, null)

(Red-New)
oid is fresh fds′′ = attr(C#n)

(o, pv, pq, fds, (l, M [new C()])) (C#n, vs, impl, inh, ob, fds′,mtds)
→ (o, pv, pq, fds, (l, M [oid])) (C#n, vs, impl, inh, (ob ∪ {oid}), fds′,mtds)

((oid, C#n), ε, ε, fds”, (ε, skip))

(Red-Poll)
b = (m ≡ c)

(o, pv, pq, fds, (l, M [fid?])) (fid, mc, m, val)
→ (o, pv, pq, fds, (l, M [b])) (fid, mc, m, val)

(Red-Await)
(o, pv, pq, fds, (l, M [await g]))
→ (o, pv, pq, fds, (l, M [if g then

skip else release; await g fi]))

(Red-Bound)
((oid, C), pv, pq, fds, idle)

(bound, oid, process)
→ ((oid, C), pv, pq :: process, fds, idle)

(Red-Release)
(o, pv, pq, fds, (l, M [release]))

→ (o, pv, pq :: (l, M [skip]), fds, idle)

(Red-Return)
l(destiny) = fid pv′ = pv \ {(fid, n)}

(o, pv, pq, fds, (l, return val : T )) (fid, oid.m(val), a, null)
→ (o, pv′, pq, fds, idle) (fid, oid.m(val), c, val)

(Red-Reschedule)
(o, pv, p :: pq, fds, idle)
→ (o, pv, pq, fds, p)

(Red-Bind1)
((oid, C#n), pv, pq, fds, p) (fid, oid.m(val), s, null)
→ ((oid, C#n), pv ∪ {(fid, n)}, pq, fds, p)

(fid, oid.m(val), a, null) (bind, C#n,fid, oid.m(val))

(Red-Get)
(o, pv, pq, fds, (l, M [fid.get]))
(fid, mc, c, val)
→ (o, pv, pq, fds, (l, M [val]))

(Red-Bind2)
lookup(m(val), sig(m(val), fid), fid,mtds) = error

(bind, (C#n; cid), fid, oid.m(val))(C#n′, vs, impl, inh, ob, fds, mtds) →
(bind, (inh; cid),fid, oid.m(val)) (C#n′, vs, impl, inh, ob, fds, mtds)

(Red-Context)
config → config′

config config′′

→ config′ config′′

(Red-Bind4)
process = error n ≤ n′

lookup(m(val), sig(m(val), fid), fid,mtds) = process
(bind, C#n; cid,fid, oid.m(val)) (C#n′, vs, impl, inh, ob, fds, mtds)

→ (bound, oid, process) (C#n′, vs, impl, inh, ob, fds, mtds)

(Red-Bind3)
(bind, ε,fid, oid.m(val))
→ (bound, oid, error)

Fig. 4. The context reduction semantics

Expressions and guards. In (Red-Call1) and (Red-Call2), external and internal
asynchronous calls add a sleeping future to the configuration, returning its id
to the caller. Note that an internal call extends the process version set with a
pair consisting of the new future and the current stage number. This is because
the asynchronous call to an internal method creates an obligation for the object
to keep this method available until the call has been executed. In (Red-Get), a
read on a future variable in the active process only reduces if the corresponding
future is in completed mode. Otherwise, the process is blocked. In (Red-New),
a new instance of a class C is introduced into the configuration (with fields
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collected from C and its superclasses using attr(C)). In (Red-Poll), a future
variable is polled to see if a call has been executed.

Release and rescheduling. Guards determine whether a process should be re-
leased. In (Red-Await), a process at a release point proceeds if its guard is true and
releases otherwise. When a process is released, its guard is reused to reschedule
the process. When an active process is released in (Red-Release) or terminates, it
is replaced by the idle process, which allows a process from the process queue to
be scheduled for execution in (Red-Reschedule).

Method invocation, binding, and return. A method call results in an activation
on the callee’s process queue. As the call is asynchronous, there is a delay between
the call and its activation, represented by the sleeping mode of a future. After the
call, (Red-Bind1) creates a bind request to the callee’s class and the future changes
its mode to active, preventing multiple activations. Note that the bind request
extends the process version set with a pair consisting of the new future and the
current stage number of the object, similar to an invocation for an internal call.
The process version set influences the applicability of upgrades, delaying those
upgrades that may introduce errors into the nonterminated processes. (Red-Bind2)

traverses the implicit inheritance tree until binding fails in (Red-Bind3) or succeeds
in (Red-Bind4). Successful binding results in a bound message to the callee, which
is loaded into the process queue in (Red-Bound). When the process terminates, the
result is stored by (Red-Return) in the future identified by the destiny variable.
This future changes its mode to completed and the active process becomes idle.
When a process terminates, its return value is placed in the associated future
and the future id is removed from the process version set pv by (Red-Return).
Finally, (Red-Context) reduces subconfigurations.

Adapting the type system to runtime configurations, we let ∆ 'R config ok
denote that config is well-typed. The initial state of a well-typed program is well-
typed, and type soundness can be established for the type system and reduction
semantics of this paper (the details of the proof are given in [16]):

Theorem 1. If ∆ 'R config ok and config→ config′, then there is an extension
∆′ of ∆ such that ∆′ 'R config′ ok.

3 Example of Dynamic Class Extensions

Let an interface Account provide basic banking services; e.g., depositing money
and receiving the balance for an account. Class BankAccount implements Ac-
count; an internal method increaseBalance is called by method deposit. The com-
ment V:0 indicates that this is class version 0.

class BankAccount implements Account { −− V:0
Nat bal:=0;
Bool increaseBalance (Nat sum) { bal := bal + sum; return true }
Nat balance ( ) { return bal }
Bool deposit (Nat sum) { return this ! increaseBalance (sum) }}

By dynamically extending the class with new methods transfer and withdraw,
money can be transferred to a receiver account or withdrawn. To log transactions,
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a general method modifyBalance will modify the balance of the account and log
the transaction:
class BankAccount implements Account { −− V:1

Nat bal:=0; Log l ;
Nat modifyBalance (Int sum) {Nat w; w := 0; l:= new Log(); bal := bal + sum;

l .addlog( this , sum); if sum < 0 then w := −sum fi; return w }
Bool increaseBalance (Nat sum) {bal := bal + sum; return true }
Nat balance ( ) { return bal }
Bool deposit (Nat sum) { fut〈Nat〉 w; w:=this!modifyBalance(sum); return true }
Nat withdraw (Nat sum ) { await sum ≤ bal; return this!modifyBalance(−sum) }
Bool transfer (Nat sum, Account acc) { fut〈Nat〉 w; await sum ≤ bal;

w:=this!modifyBalance(−sum); return acc!deposit(w.get()) }}

Here, the class is extended with a new field l, new methods modifyBalance, with-
draw, and transfer. Furthermore, deposit is redefined to use the internal method
modifyBalance. (Remark that allowing asynchronous calls as statements in the
language would remove the need for the future w in deposit.) However, the new
methods withdraw and transfer are only known internally in the class. To export
them the class is extended with a new interface TransferAcc with appropriate
signatures for transfer and withdraw, after which transfer and withdraw may be
invoked on pointers typed by TransferAcc. If we can type check that BankAccount
implements TransferAcc, it is type-safe to bind a pointer typed by TransferAcc to
an instance of BankAccount and call transfer and withdraw on this object:

class BankAccount implements Account, TransferAcc { −− V:2
Nat bal:=0; Log l ;
Nat modifyBalance (Int sum) { Nat w; w := 0; l:= new Log(); bal := bal + sum;

l .addlog( this , sum); if sum < 0 then w := −sum fi; return w }
Bool increaseBalance (Nat sum) {bal := bal + sum; return true }
Nat balance ( ) { return bal }
Bool deposit (Nat sum) { fut〈Nat〉 w; w:=this!modifyBalance(sum); return true }
Nat withdraw (Nat sum ) { await sum ≤ bal; return this!modifyBalance(−sum) }
Bool transfer (Nat sum, Account acc) { fut〈Nat〉 w; await sum ≤ bal;

w:=this!modifyBalance(−sum); return acc!deposit(w.get()) }}

As increaseBalance is now redundant, we dynamically simplify BankAccount by
removing it. After the upgrades, the initial class definition has been replaced by
class BankAccount implements Account, TransferAcc { −− V:3

Nat bal:=0; Log l ;
Nat modifyBalance (Int sum) { Nat w; w := 0; l:= new Log(); bal := bal + sum;

l .addlog( this , sum); if sum < 0 then w := −sum fi; return w }
Nat balance ( ) { return bal }
Bool deposit (Nat sum) { fut〈Nat〉 w; w:=this!modifyBalance(sum); return true }
Nat withdraw (Nat sum ) { await sum ≤ bal; return this!modifyBalance(−sum) }
Bool transfer (Nat sum, Account acc) { fut〈Nat〉 w; await sum ≤ bal;

w:=this!modifyBalance(−sum); return acc!deposit(w.get()) }}

These dynamic upgrades are here realized by three upgrade messages added to
the running system: upgrading BankAccount with the redefinition of deposit and
the new methods modifyBalance, withdraw and transfer; exporting new function-
ality by extending BankAccount with the TransferAcc interface; and removing the
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redundant method increaseBalance. A type-safe introduction of these upgrades in
a distributed system requires a combination of type checking and careful timing
at runtime. Adding the new interface requires the presence of methods withdraw
and transfer, so the first upgrade of BankAccount must already have occurred.
Moreover, the class of l must implement Log. There are similar dependencies for
removing increaseBalance: the redefinition of deposit must occur before the class
simplification, otherwise method binding may fail. Similarly, we must ensure that
the old definition of deposit is not a process in any runtime object.

4 Dynamic Classes

Software evolution in a running system may be perceived as a series of operations
injected into the system, which modify the classes and the class hierarchy. An
upgrade U is any dynamic class operation, as given by the following syntax:

U ::= new-class C extends C implements I {T f ; M} | new-interface I extends I {Ms}
| update C extends C implements I {T f ; M} | simplify C retract C {T f ; M}

A class addition adds the representation of the new class to the system, an
interface addition extends the type system, a class update extends an existing
class with new fields and methods and redefines existing methods in the class,
and a class simplification removes redundant superclasses, fields, and methods
from an existing class. Upgrades propagate asynchronously at runtime. They
first change classes, then subclasses, and eventually the objects of those classes.

4.1 Typing of Dynamic Classes

Dynamic class operations are type checked in a sequence of typing environments
Γ 0, Γ 1, . . ., which extend each other; Γ 0 is the typing environment for the orig-
inal program and Γ i the current static view of the system. We describe the
construction of Γ i+1 for the next well-typed upgrade U . The type system for
judgments Γ i+1 ' U is shown in Fig. 5, extending the system in Fig. 2. For
simplicity, we omit the analysis of new-interface and focus on class updates. We
assume that new interfaces are well-typed and that Γ i

I are correctly extended for
each update. (As before, we omit the straightforward analysis of superinterfaces
and method signatures.) Rule (New-Class) for class additions requires a fresh
name, type checks like a class in the original program, and extends Γ i

C . Remark
that the version number of the new class is different from that of the program’s
original classes. This reflects the fact that the new class may depend on other
dynamic changes to the system. For a new class, we remove the dependency to
the class itself; i.e., (C, 0) is removed from the dependency mapping.

Rule (Class-Extend) for the extension of a class C obeys a substitutability
discipline captured by the predicate refines(M,M1); if M ∈ M redefines M1 ∈
M1, the signature of M must be a subtype of the signature of M1. The extended
class replaces the definition of C in Γ i

C by the binding Γ ′. When retrieving the
old version of the class from Γ i

C , we represent the class compactly as a tuple
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(New-Class)
C ∈ dom(Γ i

C) Γ ′ = [C �→C(I, C, T f, M)] ∀I ∈ I · implements(C, I, Γ + Γ ′)
∀M ∈ M · Γ i + Γ ′ + [this �→vC] + [attr(C, Γ i + Γ ′)] � M 〈ΣM 〉

Γ i + Γ ′ + [〈C, 1〉�→d

⋃
M∈M

ΣM \ {(C, 0)}] � new-class C extends C implements I {T f ; M}

(Class-Extend)
Γ i
C(C) = (I1, C1, T1 f1, M1) Γ ′ = [C �→C (I1; I, C1; C, T1 f1; T f, (M1 ⊕ M))]

vs = curr(C, Γ i
d) refines(M, M1) ∀I ∈ I · implements(C, I, Γ i + Γ ′)

∀M ∈ M · Γ i + Γ ′ + [this �→vC] + [attr(C, Γ i + Γ ′)] � M 〈ΣM 〉
Γ i+Γ ′+[〈C, vs + 1〉�→d

⋃
M∈M

ΣM ∪ {(C, vs)}] � update C extends C implements I {T f ; M}

(Class-Simplify)
Γ i
C(C) = (I1, C1, T1 f1, M1) Γ ′ = [C �→C (I1, (C1 \ C), (T1 f1 \ T f), (M1 \ M))]

D = {C} ∪ below(C, Γ i
C)} dep =

⋃
D∈D{(D, curr(D, Γ i

d))} vs = curr(C, Γ i
d)

∀D ∈ D · Γ i + Γ ′ + [this �→vD] + [attr(D, Γ i + Γ ′)] � (Γ i
C + Γ ′)(D).mtds

∀D ∈ D ∧ ∀I ∈ Γ i
C(D).impl · implements(D, I, Γ i + Γ ′)

Γ i + Γ ′ + [〈C, vs + 1〉�→ddep ∪ {(C, vs)}] � simplify C retract C {T f ; M}

Fig. 5. The type system for dynamic class extensions. Judgments have the form Γ i+1 (
U , where Γ i is the current typing environment before the operation U .

and we denote by M1 ⊕M the union operation which retains methods in M
in case of name conflicts. The function curr(C, Γ i

d) identifies the current version
number of a class C by inspecting the dependency mapping. The new features
of the class extension are type checked in a similar way as rule (Class) and the
resulting dependencies, accumulated by the type analysis of methods, are bound
to the new version curr(C, Γ i

d) + 1 of the class in Γ i+1
d . Moreover, in order to

ensure that multiple upgrades to the same class occur in a correct order, the
current version of the class is also included in this mapping.

In rule (Class-Simplify), which removes features from a class C, the simplifi-
cation is restricted to superclasses, fields, and methods which are not statically
needed in Γ i. To verify this requirement, it is necessary to type check the new ver-
sion of the class as well as its subclasses, identified by the function below(C, Γ i

C),
in the updated typing environment Γ i+1. The dependencies of the simplification
operation are the current versions of the subclasses and of the class itself. As
effects are not needed for the construction of the dependency mapping (the sim-
plification only affects subclasses), for brevity, we elide the effects of methods
and denote by Γ (C).mtds and Γ (C).impl the methods and interfaces of a class
C and type check each single method and interface similar to rule (Class).

In the asynchronous setting of distributed concurrent objects, upgrades may
be delayed and even bypass each other. Hence, the system reflected by the current
typing environment Γ i may differ considerably from the running system. To
ensure that the execution is type safe, we exploit the dependency mapping of Γ i

to impose constraints on the applicability of the i’th upgrade at runtime. The
constraints ensure that if one upgrade depends on another, they will be applied
in the correct order, otherwise, they may be applied in any order, or in parallel.
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(Dep)
hd ∈ {new, ext} vs ≥ n

(hd, C, impl, inh, fds, mtds, ((C′, n) ∪ dep))
(C′#n′, vs, impl′, inh′, ob, fds′,mtds′)
→ (hd, C, impl, inh, fds, mtds, dep)
(C′#n′, vs, impl′, inh′, ob, fds′,mtds′)

(New-Class)
(new, C, impl, inh, fds, mtds, ∅)

→ (C#1, 1, impl, inh, ε, fds, mtds)

(Dep-Simplify)
dep = (C′, n) ∪ dep′ vs ≥ n

odep′ = odep ∪ {(o, C′#n′)|o ∈ ob}
(simp,C, inh, fds,mtds, dep, odep)

(C′#n′, vs, impl, inh′, ob, fds′, mtds′)
→ (simp, C, inh, fds,mtds, dep′, odep′})
(C′#n′, vs, impl, inh′, ob, fds′, mtds′)

(Dep-Object)
oldest(pv) ≥ n′

odep = {(oid, C′#n′)} ∪ odep′

(simp, C, inh, fds, mtds, dep, odep)
((oid, C′#n), pv, pq, fds, active)

→ (simp, C, inh, fds, mtds, dep, odep′)
((oid, C′#n), pv, pq, fds, active)

(Extend-Class)
(ext,C, impl, inh, fds,mtds, ∅)

(C#n, vs, impl′, inh′, ob, fds′,mtds′)
→ (C#(n + 1), vs + 1, impl′; impl,

inh′; inh, ob, fds′; fds,mtds′ ⊕ mtds)

(Simplify-Class)
(simp,C, inh, fds, mtds, ∅, ∅)

(C#n, vs, impl, inh′, ob, fds′, mtds′)
→ (C#(n + 1), vs + 1, impl, inh′ \ inh,

ob, fds′ \ fds,mtds′ \ mtds)

(Class-Inh)
n′′ > n′

(C′#n′′, vs′, impl′, inh′, ob′, fds′,mtds′)
(C#n, vs, impl, (cid; C′#n′; cid′), ob, fds,mtds)

⇀ (C′#n′′, vs′, impl′, inh′, ob′, fds′,mtds′)
(C#n + 1, vs, impl, (cid; C′#n′′; cid′), ob, fds,mtds)

(Red-Context2)
config ⇀ config′

config config′′
⇀ config′ config′′

(Obj-State)
n′ > n fds′ = transf(fds, attr(C))

((oid, C#n), pv, pq, fds, idle)
(C#n′, vs, impl, inh, ob, fds,mtds)
⇀ ((oid, C#n′), pv, pq, fds′, idle)
(C#n′, vs, impl, inh, ob, fds,mtds)

(Upgrade)

config
upg−→ config upg

(Red)
config1 ⇀!config′1
config′1 → config2

config1 −→upconfig2

Fig. 6. The context reduction semantics for class upgrades

4.2 Semantics for Dynamic Classes

We extend the runtime syntax of Figure 3 with upgrade messages as follows:

upg ::= (new, C, impl, inh, fds,mtds, dep)|(ext, C, impl, inh, fds,mtds, dep) dep ::= (C, n)

| (simp, C, inh, fds,mtds, dep, odep)| . . . odep ::= (o, C#n)

An upgrade message for a new class or class extension has a class name C, a list
impl of interfaces, a list inh of superclasses, a list fds of new fields, a set mtds of
new (or redefined) methods, and a set dep of constraints to classes in the runtime
system. For class simplification, inh, fds and mtds are the superclasses, fields and
methods to be removed, respectively. For simplification, applicability not only
depends on class constraints but also propagates to the state of runtime objects,
as there may exist processes in or communication between objects in the runtime
environment that uses fields or methods to be removed. Thus, in addition to class
constraints, a class simplification message includes a set odep of constraints on
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objects, which is initially empty but gradually extended during the verification
of class constraints. If a message injected into the runtime configuration is well-
typed in Γ i, then dep is Γ i

d(〈C, curr(C, Γ i
d)〉). Thus, the static dependencies of

the current upgrade are introduced into the runtime configuration.
The semantics for dynamic class operations extends the reduction system of

Fig. 4 with the rules given in Fig. 6. A reduction step in the extended system
takes the form config1 −→upconfig2 in (Red), where config1 ⇀!config′1 reduces
config1 to normal form by the relation ⇀, which consists of the two rules (Class-

Inh) and (Obj-State), before the relation → applies. The ⇀ relation abstracts
from locking disciplines that would otherwise be needed, as explained below.

Dynamic class operations are initiated by injecting a message upg into the
configuration by (Upgrade). For the extension of a class C, this message is
(ext, C, impl, inh, fds,mtds, dep) which cannot be applied unless the constraints
in dep are satisfied, checked by (Dep). Thus, the upgrade is delayed at runtime
until other upgrades have been applied. When the constraints are satisfied, the
superclasses, fields, and methods of the runtime class definition are extended
and the stage and version numbers increased in (Extend-Class). (For the oper-
ator ⊕, see Sect. 4.1.) Similarly, (New-Class) creates a new runtime class when
the constraints are satisfied. For the simplification of a class C, the message is
(simp, C, inh, fds,mtds, dep, ∅). When verifying class constraints in (Dep-Simplify),
the set ob of instances of a class is used for stage constraints in odep. These are
checked in (Dep-Object). To guarantee that an object is of stage n, we must ensure
that all processes stemming from older versions of the class have completed and
that there are no pending calls from such processes to local methods (which could
be scheduled for removal). Rule (Dep-Object) compares stage constraints to the
oldest stage number in the object’s process version set pv. When no unsatisfied
dependencies remain, the simplification can be applied in (Simplify-Class).

Updating the object state. When an object’s class or superclass has been up-
graded, the object’s state must be updated before new code is allowed to execute.
New instances of a class automatically get the new fields, but the upgrade of
existing instances must be closely controlled; errors may occur if new or rede-
fined methods, which rely on fields that are not yet available in the object, were
executed. With recursive or nonterminating methods objects cannot generally
be expected to reach a state without pending processes. Consequently, it is too
restrictive to wait for the completion of all processes before applying an up-
grade. However, objects may reach quiescent states when the processor has been
released and before any pending process has been activated. Quiescent states
are those in which the active process is idle. Any object which does not deadlock
will eventually reach a quiescent state. In our language, nonterminating activity
is defined by recursion, which ensures at least one quiescent state in each cycle.

Class upgrades propagate to objects in two steps. When a class C is upgraded
in (Extend-Class) or (Simplify-Class), both its stage and version numbers increase.
In order to notify objects of this change, the stage change propagates in rule
(Class-Inh) to the subclasses of C, and the subclasses recursively increment their
stage numbers. Since this notification is given priority, the object gets an upgrade
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the next time it interacts with a class in rule (Red-Bind4). Before the new process is
activated, the active process must become idle, in which case (Obj-State) applies.
The transf function returns the new state, retaining the values of old fields.

The reduction −→up in (Red) reduces a subconfiguration by ⇀ to its normal
form before a → rewrite, simulating locking the object. Thus, the use of the ⇀
relation abstracts from two locking disciplines; one to deny access to classes for
bind messages while (Class-Inh) is applicable and the other to delay processing
bind messages from a callee by an upgraded class until the callee’s state has
been updated. A class may be upgraded several times before the object reaches
a quiescent state, so the object may miss some upgrades. However a single state
update suffices to ensure that the object, once upgraded, is a complete instance
of the present version of its class. Extending Theorem 1, type soundness holds
for the dynamic class system (the details of the proof are given in [16]):

Theorem 2 (Subject reduction). Let P be a well-typed program with initial
configuration init and let U1, . . . , Un be a series of well-typed dynamic class op-
erations with runtime representation upgi for Ui. If init −→upconfig and upgi+1
is injected in the runtime configuration after upgi for all i < n, then there is a
typing context ∆ such that ∆ 'R config ok.

Proof (sketch). The proof is by induction over the number of reduction steps
and then by cases. We show that injecting upgi maintains the well-typedness of
the configuration. Furthermore, we show that the dependencies provided by the
static analysis enforce an ordering of upgrades such that new definitions give
well-typed configurations. Especially, existing processes as well as new processes
and fields in runtime objects are well-typed after the possible reductions.

5 Related Work

For many modern distributed applications, system availability during reconfig-
uration is crucial. Among dynamic or online upgrade solutions, version con-
trol systems aim at modular evolution; some keep multiple co-existing versions
of a class or schema [3, 4, 5, 11, 13, 14], others apply a global update or “hot-
swapping” [1, 6, 18, 19]. The approaches differ for active behavior, which may
be disallowed [6, 13, 18, 19], delayed [1], or supported [14, 21]. Hjálmtýsson and
Gray [14] propose proxy classes and reference indirection for C++, with multiple
versions of each class. Old instances are not upgraded, so their activity is not
interrupted. Existing approaches for Java, using proxies [19] or modifying the
Java virtual machine [18], use global upgrade and do not apply to active objects.

Automatic upgrades by lazy global update has been proposed for distributed
objects [1] and persistent object stores [6], in which instances of upgraded classes
are upgraded, but inheritance and (nonterminating) active code are not ad-
dressed, limiting the effect and modularity of the class upgrade. Remark that
the use of recursion instead of loops in our approach guarantees that all non-
blocked processes will eventually reach a quiescent state. In [6] the ordering of
upgrades is serialized and in [18] invalid upgrades raise exceptions.
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It is interesting to apply formal techniques to systems for software evolution.
Formalizations of runtime upgrade mechanisms are less studied, but exist for
imperative [21], functional [4], and object-oriented [5] languages. In a recent
upgrade system for (sequential) C [21], type-safe updates of type declarations and
procedures may occur at annotated points identified by static analysis. However,
the approach is synchronous as upgrades which cannot be applied immediately
will fail. Closer to our work, UpgradeJ [5] uses an incremental type system in
which class versions are only typechecked once. Our type system is incremental
in this sense for new classes and class extensions, but class simplification requires
rechecking the subclasses of the modified class. In contrast to our work, UpgradeJ
is synchronous and uses explicit upgrade statements in programs. Upgrades only
affect the class hierarchy and not running objects. Multiple versions of a class will
coexist and the programmer must explicitly refer to the different class versions
in the code. Compared to previous work by the authors [23], dynamic classes
allow much more flexible runtime upgrades, including simplification operations
which necessitate additional runtime overhead, yet the type system has been
simplified. However, we do not support the removal of interfaces from classes.
This would increase the runtime overhead significantly, as all objects with fields
typed by that particular interface would need to be inspected.

6 Conclusion

This paper presents a kernel language for distributed concurrent objects in which
programs may evolve at runtime by means of dynamic class operations. The gran-
ularity of this mechanism for reprogramming fits well with object orientation and
it is modular as a single upgrade may affect a large number of running objects.
The mechanism does not impose any particular requirements on the develop-
ers of initial applications and provides a fairly flexible mechanism for program
evolution. It supports not only the addition of new interfaces and classes to run-
ning programs, but also the extension, redefinition, and simplification of existing
classes. The dynamic class operations proposed in this paper integrate naturally
with the concurrency model adapted in the Creol language and a prototype
implementation has been integrated with Creol’s execution platform.

The paper presents a type and effect system for dynamic class operations. A
characteristic feature of our approach is that the type analysis identifies depen-
dencies between different upgrades which are exploited at runtime to impose con-
straints on the runtime applicability of a particular upgrade in the asynchronous
distributed setting, and suffice to guarantee type soundness. We currently inves-
tigate the application of other formal methods to dynamic class operations. In
particular, lazy behavioral subtyping [9] seems applicable in order to extend the
scope of object-oriented program logics to runtime program evolution.
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Abstract. In this paper we give a representation of a weakest precon-
dition calculus for abstract object creation in dynamic logic, the logic
underlying the KeY theorem prover. This representation allows to both
specify and verify properties of objects at the abstraction level of the
(object-oriented) programming language. Objects which are not (yet)
created never play any role, neither in the specification nor in the ver-
ification of properties. Further, we show how to symbolically execute
abstract object creation.

1 Introduction

In object-oriented programming languages like Java, objects can be dynamically
created by the constructor methods provided by their class. This high-level way
of object creation abstracts from the underlying representation of objects and
the implementation of object creation. At the abstraction level of the program-
ming language, objects are described as instances of their classes, i.e., the classes
provide the only operations which can be performed on objects. Moreover, these
operations can only be performed on the created objects, the objects not (yet)
created do not exist and therefore can also not be referred to by any program-
ming construct. For practical purposes it is important to be able to specify and
verify properties of objects at the abstraction level of the programming lan-
guage. Specification languages like the Java Modeling Language (JML) [10] and
the Object Constraint Language (OCL) [12] abstract from the underlying rep-
resentation of objects. In [6] a Hoare logic is presented to verify properties of
an object-oriented programming language at the abstraction level of the pro-
gramming language itself. This Hoare logic is based on a weakest precondition
calculus for object creation which abstracts from the implementation of object
creation.

In this paper we give a representation of a weakest precondition calculus for
abstract object creation in dynamic logic, the logic underlying the KeY theorem
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prover [3]. This representation allows to both specify and verify properties of
objects at the abstraction level of the programming language. Objects which
are not (yet) created never play any role, neither in the specification nor in the
verification of properties.

The generalization of Hoare logic to dynamic logic is of particular interest
because it allows for the specification of properties of dynamic object structures
which cannot be expressed in first-order logic, like reachability. In Hoare logic
such properties require quantification over (finite) sequences or recursively de-
fined predicates in the specification language which seriously complicates both
the weakest precondition calculus and the underlying logic. In dynamic logic we
can restrict to first-order quantification and use the modalities to express for
example reachability properties.

An interesting consequence of the abstraction level of the specification lan-
guage studied in this paper is the dynamic scope of the quantification over objects
because it is restricted to the created objects and as such is also affected by object
creation. However, we show that the standard logic of first-order quantification
also applies in the presence of (object) quantifiers with a dynamic scope.

Further, we show how to symbolically execute abstract object creation in KeY.
In general, symbolic execution in KeY accumulates in a simultaneous substitu-
tion the assignments generated by a computation. This accumulation involves a
pre-processing of the substitution which in general simplifies its actual applica-
tion. However, we cannot simply accumulate abstract object creation because its
side-effects can only be processed by the actual application of the corresponding
substitution. We show how to solve this problem by the introduction of fresh
logical variables which are used as temporary place holders for the newly cre-
ated objects. The use of these place holders together with the fact that we can
always anticipate object creation allows to symbolically execute abstract object
creation.

Related Work

Most formalisations of object-oriented programs, like embeddings into the logic
of higher-order theorem provers PVS [14] and Isabelle [9], or dynamic logic as
employed in the KeY theorem prover, use an explicit representation of objects.
Object creation is then formalized in terms of the information about which
objects are in fact created. Such an explicit representation of objects additionally
requires an axiomatization of certain consistency requirements, e.g., the global
invariant that the values of the fields of created objects only refer to created
objects. These requirements pervade the correctness proofs with the basic case
distinction between “to be or not to be created” and adds considerably to the
length of the proofs, as we will illustrate in Section 5.

The contribution of this paper is the formalization of object creation in dy-
namic logic which abstracts from an explicit representation of objects and the
corresponding implementation of object creation. Proofs in this formalization
only refer to created objects and as such are not pervaded by irrelevant imple-
mentation details.
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Outline

In Section 2 we introduce a dynamic logic for a simple WHILE-language with
object creation. This language allows us to focus on object creation. We present
the axiomatization of the language in terms of the sequent calculus given in
Section 3. Please observe that this calculus can be extended to other program-
ming constructs of existing object-oriented languages like Java as described in
[5]. With the calculus at hand symbolic execution of programs is described in
Section 4. After a discussion of the state of the art in symbolic execution with
respect to object creation and a look into the expressiveness of our approach in
Section 5 we conclude with Section 6.

2 Dynamic Logic

To focus on the abstract object creation we restrict ourselves to a simple WHILE-
language as our object-oriented programming language. The language contains
data of three types Object, Integer, and Boolean. In [5] Becker and Platzer
present a similar dynamic logic for Java Card called ODL. ODL covers the type
system of Java. Besides the type system, dynamic dispatch, side-effects of expres-
sions, and exception handling are presented in terms of program transformations.
However ODL models object creation in terms of an explicit representation of
objects. To obtain a logic covering Java that follows our theory of abstract object
creation this representation can be replaced by our theory or our theory can be
extended analogous to [5].

2.1 Syntax

We assume the sets F of fields and GVar of global variables to be given. Fields
are the instance variables of objects. We assume a partitioning of GVar into
a set PVar of program variables and a set LVar of logical variables. Logical
variables do not change during program execution, i.e. there are no assignments
to logical variables. They are used to express invariant properties and for (first-
order) quantification. All fields and variables are typed. As mentioned before we
restrict to the types Object, Integer, and Boolean. We omit explicit declarations.
We have the following grammar for statements and expressions:

s ::= while e do s od | if e1 then s2 else s3 fi | s1; s2 | skip |
u := new | e1.x := e2 | u := e statements

e ::= u | e.x | null | e1 = e2 | if e1 then e2 else e3 fi | f(e1, ..., en) expressions

The statement while denotes the usual looping. Conditional branching is denoted
by if–then–else. The condition for both looping and branching is given by a
Boolean expression. A semicolon denotes sequential composition. By skip we
denote the empty statement. Object creation is denoted by u := new, where
u is a program variable. An assignment to a program variable is denoted by
u := e. A dot denotes dereferencing, i.e., e1.x := e2 denotes an assignment to
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the field x of the object referenced by e1. For technical convenience only we do
not have assignments e.x := new. In order to separate object creation from the
aliasing problem we reason about such assignments in terms of the statement
u := new; e.x := u, where u is a fresh program variable.

The expression null of type Object denotes the undefined reference. The
Boolean expression e1 = e2 denotes the test for equality between the values
of the expressions e1 and e2, e.g., e1 and e2 refer to the same object in case
e1 and e2 are variables of type Object. A conditional expression is denoted by
if–then–else. The function f(e1, ..., en) denotes an arithmetic or Boolean oper-
ation of arity n. We assume every statement and expression to be well-typed.
It is important to note that object expressions, i.e., expressions of type Object,
can only be compared for equality, dereferenced, or appear as argument of a
conditional expression.

Formulas. Dynamic logic (DL) is a variant of modal logic. Different parts of a
formula are evaluated in different worlds (states), which vary in the interpre-
tation of, in our case, program variables and fields. DL extends full first-order
logic with two additional (mix-fix) operators: 〈 . 〉 . (diamond) and [ . ] . (box).
In both cases, the first argument is a program (fragment), whereas the second
argument is another DL formula. A formula 〈p〉φ is true in a state s if execution
of p terminates when started in s and results in a state where φ is true. As for
the other operator, a formula [p]φ is true in a state s if execution of p, when
started in s, does either not terminate or results in a state where φ is true. In
other words, the difference between the operators is the one between total and
partial correctness.1 DL is closed under all logical connectives. For instance, the
formula ∀ l. (〈p〉 (l = u) ↔ 〈q〉 (l = u)) states equivalence of p and q w.r.t. the
program variable u.

An example formula involving object creation is ∀l.〈u := new〉¬(u = l). It
states that every new object indeed is new because the logical variable l ranges
over all the objects that exist before the object creation u := new. Consequently,
after the execution of u := new we have that the new object is not equal to any
object that already existed before, i.e., ¬(u = l), when l refers to an “old” object.
Note that the formula 〈u := new〉∀l.¬(u = l) has a completely different meaning.
In fact the formula is false (cf. Section 3.3). These examples also illustrate a
further advantage of DL over Hoare logic: the presence of explicit quantifiers in
both formulas make clearer the difference in meaning.

All major program logics (Hoare logic, wp calculus, DL) have in common that
the resolving of assignments requires substitutions in the formula, in one way or
the other. In the KeY approach, the effect of substitutions is delayed, by having
explicit substitutions in the logic, called ‘updates’. In this paper, elementary
updates have the form u := new, e1.x := e2, or u := e. Updates are brought

1 Just as in standard modal logic, the diamond resp. box operators quantify existen-
tially resp. universally over states (reached by the program). In case of deterministic
programs, however, the only difference between the two is whether termination is
claimed or not.
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into the logic via the update modality { . } . , connecting arbitrary updates with
arbitrary formulas, like in 0 < v→{u := v} 0 < u.

A full account of KeY style DL is found in [4].

2.2 Semantics

To define the semantics of our DL we assume given an arbitrary (infinite) set O
of object identities, with typical element o. We define null itself to be an element
of O, i.e., the value of the expression null is null itself. By dom(T ) we denote the
domain of values of type T , e.g., dom(Object)=O.

States. A state Σ = (σ, τ) is a pair consisting of a heap σ and an environment
τ . The heap σ is a partial function such that σ(o) for every o ∈ O, if defined,
denotes the internal state of object o. That is, the value of a field x of an object
o, for which σ(o) is defined, is given by σ(o)(x) ∈ dom(T ). The domain dom(σ)
of objects that exist in a heap σ is given by the set of objects o for which σ(o) is
defined. In order to describe unbounded object creation we require the domain
of a heap to be finite.

The environment τ assigns values to the global variables. The value of a
variable v is given by τ(v).

We require every state Σ = (σ, τ) to be consistent, i.e.,

– null ∈ dom(σ),
– σ(o)(x) ∈ dom(σ) for every o ∈ dom(σ) and field x of type Object,
– τ(v) ∈ dom(σ) for every global variable v of type Object.

In words, null is an existing object, the fields of type Object of existing objects
refer to existing objects and all global variables of type Object refer to existing
objects.

Semantics of Expressions and Statements. The semantics of an expression e of
type T is a partial function [[e]] : Σ ⇀ dom(T ). As an example, if [[e]] is defined
and does not evaluate to null then

[[e.x]](σ, τ) = σ([[e]](σ, τ))(x),

otherwise [[e.x]] is undefined. For a general treatment of failures we assume given
a predicate def(e) which defines the conditions under which the expression e is
defined. For example, we have that def(u.x) ≡ ¬(u = null).

The semantics of a statement s is a partial function [[s]] : Σ ⇀ Σ. We focus on
the semantics of object creation. In order to formally describe the initialisation
of newly created objects, we first introduce for each type T an initial value of
type T , i.e., initObject = null, initInteger = 0, and initBoolean = false. We define
init to be the initial state, i.e., the state that assigns to each field x of type T
its initial value initT . For the selection of a new object we use a choice function
ν on heaps to get a fresh object, i.e., ν(σ) �∈ dom(σ).
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We now define

[[u := new]](σ, τ) = (σ[o := init], τ [u := o]),

where o = ν(σ). The heap σ[o := init] assigns the local state init to the new
object o and the environment τ [u := o] assigns this object to the program
variable u.

Semantics of Formulas. A formula φ in dynamic logic is valid if Σ |= φ holds
for every consistent state Σ. For a logical variable l of type Object, we have the
following semantics of universal quantification

(σ, τ) |= ∀l.φ iff for all o ∈ dom(σ) : (σ, τ [l := o]) |= φ,

where the consistency of (σ, τ [l := o]) implies that the object o exists in σ. Con-
sequently, quantification is restricted to the existing objects. Note that null is
always included in the scope of the quantification (i.e., the scope of the quan-
tification is non-empty).

Returning to the above example, we have

(σ, τ) |= ∀l.〈u := new〉¬(u = l)
iff
(σ, τ [l := o]) |= 〈u := new〉¬(u = l)

for all o ∈ dom(σ). Let o′ = ν(σ). By the semantics of the diamond modality of
dynamic logic and the above semantics of object creation we conclude that

(σ, τ [l := o]) |= 〈u := new〉¬(u = l)
iff
(σ[o′ := init], τ [l := o]) |= ¬(u = l)
iff
o �= o′

Note that since o′ /∈ dom(σ) by definition of ν(σ) indeed o �= o′ for all o ∈ dom(σ).

3 Axiomatization

In this section, we introduce a proof system for dynamic logic with object cre-
ation which abstracts from the explicit representation of objects in the semantics
defined above. As a consequence the rules of the proof system are purely defined
in terms of the logic itself and do not refer to the semantics. It is characteristic
for dynamic logic, in contrast to Hoare logic or weakest precondition calculi, that
program reasoning is fully interleaved with first-order logic reasoning, because
diamond, box or update modalities can appear both outside and inside the log-
ical connectives and quantifiers. It is therefore important to realise that in the
following proof rules, φ, ψ and alike, match any formula of our logic, possibly
containing programs or updates.
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3.1 Sequent Calculus

We follow [5,3] in presenting the proof system for dynamic logic as a sequent
calculus. A sequent is a pair of sets of formulas (each formula closed for logical
variables) written as φ1, ..., φm ' ψ1, ..., ψn. The intuitive meaning is that, given
all of φ1, ..., φm hold, at least one of ψ1, ..., ψn must hold. We use capital Greek
letters to denote (possibly empty) sets of formulas. For instance, by Γ ' φ→ψ,∆
we mean a sequent containing at least an implication formula on the right side.
Sequent calculus rules always have one sequent as conclusion and zero, one or
many sequents as premises:

Γ1 ' ∆1 . . . Γn ' ∆n

Γ ' ∆

Semantically, a rule states that the validity of all n premises implies the valid-
ity of the conclusion (“top-down”). Operationally, rules are applied bottom-up,
reducing the provability of the conclusion to the provability of the premises,
starting from the initial sequent to be proved. Rules with no premise close the
current proof branch. In Fig. 1 we present some of the rules dealing with propo-
sitional connectives and quantifiers (see [8] for the full set). We omit the rules
for the left hand side, the rules to deal with negation and the rule to cover
conditional expressions. φ[l/e] denotes standard substitution of l with e in φ.

impRight
Γ, φ ( ψ, ∆

Γ ( φ → ψ, ∆
andRight

Γ ( φ,∆ Γ ( ψ, ∆

Γ ( φ ∧ ψ, ∆

allRight
Γ ( φ[l/c], ∆
Γ ( ∀l.φ, ∆

with c a new constant

allLeft
Γ, ∀l.φ, φ[l/e] ( ∆

Γ,∀l.φ ( ∆
with e an expression

close
Γ, φ ( φ, ∆

ind
Γ ( φ[l/0], ∆ Γ ( ∀l.(φ→φ[l/l + 1]), ∆

Γ ( ∀l.φ, ∆
with l of type Integer

Fig. 1. Some first-order rules

When it comes to the rules dealing with programs, most of them are not
sensitive to the side of the sequent and can moreover be applied to subformulas
even. For instance, 〈s1; s2〉φ can be split up into 〈s1〉〈s2〉φ regardless of where it
occurs. For that we introduce the following syntax

%φ′ &
%φ &

for a schema rule where the premise is constructed from the conclusion via
replacing an occurrence of φ by φ′.
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In Fig. 2 we present the rules dealing with statements. The schematic modal-
ity 〈[·]〉 can be instantiated with both [·] and 〈·〉, though consistently within a
single rule application. The extension of these rules with the predicate def(e) to
reason about failures is standard and therefore omitted.

split
+ 〈[s1]〉〈[s2]〉φ ,
+ 〈[s1; s2]〉φ ,

if
+ (e→〈[s1]〉φ) ∧ (¬e→〈[s2]〉φ) ,
+ 〈[if e then s1 else s2 fi]〉φ ,

unwind
+ 〈[if e then s;while e do s od else skip fi]〉φ ,

+ 〈[while e do s od]〉φ ,

assignVar
+ {u := e}φ ,
+ 〈[u := e]〉φ , assignField

+ {e1.x := e2}φ ,
+ 〈[e1.x := e2]〉φ ,

createObj
+ {u := new}φ ,
+ 〈[u := new]〉φ ,

Fig. 2. Dynamic logic rules

Total correctness formulas of the form 〈while ...〉φ are proved by first applying
the induction rule ind (possibly after generalising the formula) and applying the
unwind rule within the induction step. For space reasons, we omit the invariant
rule dealing with formulas of the form [while ...]φ (see [5,4]).

3.2 Application of General Updates

Updates are essentially delayed substitutions.2 They are resolved by application
to the succeeding formula, e.g., {u := e}(u > 0) leads to e > 0. Update ap-
plication is only allowed on formulas not starting with either a diamond, box
or update modality. The last restriction is dropped for symbolic execution, see
Section 4.

We now define update application on formulas in terms of a rewrite relation
{U}φ � φ′ on formulas. As a technical vehicle, we extend the update operator to
expressions, such that {U}e is an expression, for all updates U and expressions e.
Accordingly, the rewrite relation � carries over to such expressions: {U}e � e′.

Fig. 3 defines � for all standard cases (see also [13,3]). The symbol U matches
all updates, whereas Unc (‘non-creating’) excludes the form u := new. Further-
more, Lit is the set of literals of all types, in our context {null, true, false} ∪
{. . . ,−1, 0, 1, . . .}. (Recall LVar is the set of logical variables.)

2 The benefit of delaying substitutions in the context of symbolic execution is illus-
trated in Section 4.
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{U}φ1 ∗ {U}φ2 � φ′

{U}(φ1 ∗ φ2) � φ′

with ∗ ∈ {∧,∨,→}

¬{U}φ � φ′

{U}(¬φ) � φ′
Q l. {Unc}φ � φ′

{Unc}(Q l. φ) � φ′

with Q ∈ {∀,∃}, l not in Unc

{U}α � α
with α ∈ LVar ∪ Lit

{Unc}e1 = {Unc}e2 � e′

{Unc}(e1 = e2) � e′
f({U}e1, ..., {U}en) � e′

{U}f(e1, ..., en) � e′

({u := e1}e2).x � e′

{u := e1}(e2.x) � e′
({e.x := e1}e2).y � e′

{e.x := e1}(e2.y) � e′

x, y different fields

{u1 := e}u2 � u2

u1, u2 different variables

{u := e}u � e
if ({e.x := e1}e2) = e then e1 else ({e.x := e1}e2).x fi � e′

{e.x := e1}(e2.x) � e′

Fig. 3. Update Application, standard cases

The aliasing analysis performed by the last rule is the motivation to add
conditional expressions to our language. Object creation of the form u := new is
only covered as far as it behaves like any other update. The cases where object
creation makes a difference are discussed separately in Section 3.3. The relation
� is defined in a big-step manner, such that updates are resolved completely in
a single � step.

Note that � is not defined for formulas of the form {U}〈s〉φ, {U}[s]φ or
{U}{U ′}φ, i.e., they are not subject to update application. We return to formulas
with nested updates, like {U}{U ′}φ, in Section 4.

The following rule links the rewrite relation � with the sequent calculus:

applyUpd
%φ′ &
% {U}φ &

with {U}φ � φ′

3.3 Contextual Application of Object Creation

To define update application on {u := new}e, simple substitution is not suffi-
cient, i.e., replacing u in e by some expression, because we cannot refer to the
newly created object in the state prior to its creation. However, since object ex-
pressions can only be compared for equality, or dereferenced, and do not appear
as arguments of any other function, we define update application by a contextual
analysis of the occurrences of u in e.

We define application of u := new inductively. Some cases are already covered
in Section 3.2, Fig. 3 (the rules dealing with unrestricted U). The other cases
are discussed in the following.

If u1, u2 are different variables, then

{u1 := new}u2 � u2
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Since the fields of a newly created object are initialised we have

{u := new}u.x � initT

where T is the type of x.
If e is neither u nor a conditional expression then

({u := new}e).x � e′

{u := new}(e.x) � e′

Otherwise, if e is a conditional expression then

if {u := new}b then {u := new}(e1.x) else {u := new}(e2.x) fi � e′

{u := new}(if b then e1 else e2 fi .x) � e′

Note that we use here the valid equation:
if b then e1 else e2 fi .x = if b then e1.x else e2.x fi.

The only other possible context of u is that of an equality e = e′. We distin-
guish the following cases.

If neither e nor e′ is u or a conditional expression then they cannot refer to
the newly created object and we define3

({u := new}e) = ({u := new}e′) � e′′

{u := new}(e = e′) � e′′

If e is u and e′ is neither u nor a conditional expression (or vice versa) then after
u := new the expressions e and e′ cannot denote the same object (because one
of them refers to the newly created object and the other one refers to an already
existing object) and so we define

{u := new}(e = e′) � false

On the other hand if both the expressions e and e′ equal u we obviously have

{u := new}(e = e′) � true

If e is a conditional expression of the form if b then e1 else e2 fi then

if {u := new}b then {u := new}(e1 = e′) else {u := new}(e2 = e′) fi � e′′

{u := new}(e = e′) � e′′

And similarly for e′ = e. Note that we use here the valid equation:
(if b then e1 else e2 fi = e′) = if b then e1 = e′ else e2 = e′ fi

Since object expressions can only be compared for equality, dereferenced or
appear as argument of a conditional expression, it is easy to see that for every
boolean expression e there exists an expression e′ such that {u := new}e � e′.

The following lemma states the semantic correctness of the rewrite relation
{u := new}e � e′: The value of e′ in the state before the assignment u := new
equals the value of e after the assignment.
3 To see why the shifting inwards of {u := new} is necessary, consider the case
{u := new}(u.x = u.x).
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Lemma 1
If {u := new}e � e′ and [[u := new]](Σ) = Σ′ then [[e′]](Σ) = [[e]](Σ′).

The proof of this lemma involves a further elaboration of proofs given in [2].
Now we define the rewriting of {u := new}φ, where φ is a first-order formula

in predicate logic (which does not contain modalities). The rules for this gener-
alization are standard. We present a rule for quantification as an example:

({u := new}φ[l/u]) ∧ ∀l.({u := new}φ) � ψ

{u := new}∀l.φ � ψ

where l is a logical variable. This rewrite rule takes care of the changing scope of
the quantified variable l by distinguishing the following cases: p holds for the new
object is expressed by the first conjunct {u := new}φ[l/u] which is obtained by
application of the update to φ[l/u] and p holds for all ’old’ objects is expressed
by the second conjunct ∀l.({u := new}φ).

As an example, we derive {u := new}∀l.¬(u = l) � ¬(true) ∧ ∀l.¬ false:

{u := new}(u = u) � true

{u := new}¬(u = u) � ¬(true)

{u := new}(u = l) � false

{u := new}¬(u = l) � ¬ false

∀l.{u := new}¬(u = l) � ∀l.¬ false

{u := new}¬(u = u) ∧ ∀l.{u := new}¬(u = l) � ¬(true) ∧ ∀l.¬ false

{u := new}∀l.¬(u = l) � ¬(true) ∧ ∀l.¬ false

The resulting formula is equivalent to false. We use this to prove the formula
〈u := new〉∀l.¬(u = l), which states that u is different from all objects exist-
ing after the update (including u itself), invalid. In fact we have the following
derivation for ¬〈u := new〉∀l.¬(u = l).

closeTrue ∀l.¬ false ' true
notLeft ¬(true), ∀l.¬ false '

andLeft ¬(true) ∧ ∀l.¬ false '
applyUpd

{u := new}∀l.¬(u = l) '
assignVar

〈u := new〉∀l.¬(u = l)) '
notRight

' ¬〈u := new〉∀l.¬(u = l)

On the other hand, we have the following derivation of

∀l.〈u := new〉¬(u = l)

which expresses in an abstract and natural way that u indeed is a new object
different from objects existing before the update.

closeFalse
false 'notRight ' ¬ falseapplyUpd

' {u := new}¬(u = c)
assignVar

' 〈u := new〉¬(u = c)
allRight

' ∀l.(〈u := new〉¬(u = l))
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The second example shows that the standard rules for quantification apply to
the quantification over the existing objects.

4 Symbolic Execution

4.1 Simultaneous Updates for Symbolic State Representation

The proof system presented so far allows for classical backwards reasoning, in
a weakest precondition manner. We now generalise the notion of updates, to
allow for the accumulation of substitutions, thereby delaying their application.
In particular, this can be done in a forward manner, giving the proofs a symbolic
execution nature. We illustrate this principle by example, in Fig. 4.

close
u < v ( u < v

applyUpd
u < v ( {w := u |u := v | v := u}v < u

mergeUpd
u < v ( {w := u |u := v}{v := w}v < u

assignVar
u < v ( {w := u |u := v}〈v := w〉v < u

mergeUpd
u < v ( {w := u}{u := v}〈v := w〉v < u

split, assignVar
u < v ( {w := u}〈u := v; v := w〉v < u

split, assignVar
u < v ( 〈w := u; u := v; v := w〉v < u

Fig. 4. Symbolic execution style proof

The first application of the update rule mergeUpd introduces what is called
the simultaneous update w := u |u := v. After applying the second mergeUpd,
note that the w from the inner update was turned into a u in the simultaneous
update. This is achieved by applying the outer update to the inner one:

mergeUpd
% {U1 | . . . | Un | U ′}φ &
% {U1 | . . . | Un}{U}φ &

with {U1 | . . . | Un}U � U ′

For this, we need to extend the rewrite relation � towards defining application
of updates to updates:

u := {Unc}e � U ′

{Unc}(u := e) � U ′
({Unc}e1).x := {Unc}e2 � U ′

{Unc}(e1.x := e2) � U ′

What remains is the definition of the application of simultaneous updates to
expressions. For space reasons, we will not include the full definition here, but
only one interesting special case, where two left-hand sides both write the field
x which is accessed in e.x.

if ((Ue2) = e) then e′2 else if ((Ue1) = e) then e′1 else U(e).x fi fi � e′

U(e.x) � e′

with U = {e1.x := e′1 | e2.x := e′2}
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This already illustrates two principles: a recursive alias analysis has to be per-
formed on all left-hand sides, and moreover, in case of a clash, the rightmost
update will ‘win’. The latter is exactly what reflects the destructive semantics
of imperative programming. Most cases are, however, much simpler. Most of the
time, it is sufficient to think of an application of a simultaneous update as an
application of a standard substitution (of more than one variable). For a full
account on simultaneous updates, see [13].

The idea to use simultaneous updates for symbolic execution was developed in
the KeY project [3], and turned out to be a powerful concept for the validation
of real world (Java) programs. A simultaneous update forms a representation
of the symbolic state which is reached by “executing” the program in the proof
up to the current proof node. The program is “executed” in a forward manner,
avoiding the backwards execution of (pure) weakest precondition calculi, thereby
achieving better readability of proofs. The simultaneous update is only applied
to the post-condition as a final, single step. The KeY tool uses these updates
not only for verification, but also for test case generation with high code based
coverage [7] and for symbolic debugging.

4.2 Symbolic Execution and Abstract Object Creation

A motivation to choose the setting of dynamic logic with updates is to allow
for abstract object creation in symbolic execution style verification. To do so,
we have to answer the question of how symbolic execution and abstract object
creation can be combined. The problem is that there is no natural way of merg-
ing object creation {u := new} with other updates. Consider, for instance, the
following formulas, only the first of which is valid.

〈u := new; v := u〉(u = v) 〈u := new; v := new〉(u = v)

Symbolic execution generates the following formulas:

{u := new}{v := u}(u = v) {u := new}{v := new}(u = v)

Merging the updates naively results in both cases in:

{u := new | v := new}(u = v)

Whichever semantics one gives to a simultaneous update with two object cre-
ations, the formula cannot be both valid and invalid.

The proposed solution is twofold: not to merge an object creation with other
updates at all, but to create a second reference to the new object, to be used
for merging. For this, we introduce a fresh auxiliary variable to store the newly
created object, and generate two updates according to the following rule:

createObj
% {a := new}{u := a}φ &

% 〈u = new〉φ &
with a a fresh program variable
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The inner update {u := v} can be merged with other updates resulting from the
analysis of φ. The next point to address is the “disruption” of the symbolic state,
caused by object creation being unable to merge with their “neighbours”, thereby
strictly separating state changes happening before and after object creation. The
key idea to overcome this is to gradually move all object creations to the very
front (as if all objects were allocated up front) and perform standard symbolic
execution on the remaining updates. We achieve this by the following rule:

pullCreation
% {u := new}Uncφ &
% Unc{u := new}φ &

with u not appearing in Unc

We illustrate symbolic execution with abstract object creation by an example.

notRight, closeFalse ' ¬ falseapplyUpd
' {a := new}¬(v = a)

applyUpd
' {a := new}{u := v | v := a |w := u}¬(w = v)

mergeUpd
' {a := new}{u := v | v := a}{w := u}¬(w = v)

mergeUpd, assignVar
' {a := new}{u := v}{v := a}〈w := u〉¬(w = v)

pullCreation
' {u := v}{a := new}{v := a}〈w := u〉¬(w = v)

split, createObj
' {u := v}〈v := new;w := u〉¬(w = v)

split, assignVar
' 〈u := v; v := new;w := u〉¬(w = v)

5 Discussion

5.1 Object Creation vs. Object Activation

Proof systems for object-oriented languages([1]) usually achieve the uniqueness
of objects via an injective mapping, here called obj, from the natural numbers
to object identities. Only the object identities obj(i) up to a maximum index i
are considered to stand for actually created objects. In each state, the successor
of this maximum index is stored in a ghost variable, here called next. (In case
of Java, next would be a static field, for each class). Object creation increases
the value of next, which conceptually is more an activation than a creation.
Quantifiers cover the entire co-domain of obj, including “not yet created” objects.
In order to restrict a certain property φ to the “created” objects, the following
pattern is used: ∀l.(ψ→φ), where ψ restricts to the created objects. Formulas
of the form ∃n. (n < next ∧ obj(n) = l) are the approach taken in ODL[5]. To
avoid the extra quantifier, ghost instance variable of boolean type, here called
created, can be used to indicate for each object whether or not it has already been
“created” [4]. In this case we set the created status of the “new” object (identified
by next) and increase next. The assertion ∀n.(obj(n).created↔ n < next) retains
the relation between the created status and the object counter next on the level
of the proofs. In both case, we need further assertions to state that fields of
created objects always refer to created objects.
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close
c.cr, obj(next)=c ( c.cr

equality
c.cr, obj(next)=c ( obj(next).cr

notLeft ¬obj(next).cr, c.cr, obj(next)=c (
(2 rules)

(obj(next).cr ↔ next < next), c.cr, obj(next)=c (
allLeft ∀n.(obj(n).cr ↔ n < next), c.cr, obj(next)=c (

assumption(1)
c.cr, obj(next)=c (

notRight
c.cr ( ¬(obj(next)=c)

applyUpd
c.cr ( {u :=obj(next) | obj(next).cr := true | next :=next+1}¬(u=c)

createObj
c.cr ( 〈u := new〉¬(u=c)

impRight ( c.cr→〈u := new〉¬(u=c)
allRight ( ∀l. (l.cr→〈u := new〉¬(u= l))

Fig. 5. Object activation style proof

To state in this setting that a new object indeed is new we need to argument
the formula introduced in Section 3, i.e. ∀l. (l.created→〈u := new〉¬(u = l)). In
fact the formula in Section 3 is not valid in this setting. An object activation
style proof of this is given in Fig. 5 (abbreviating created by cr). Many steps in
this proof are caused by the particular details of the explicit representation of
objects and the simulation of object creation by object activation.

5.2 Expressiveness

Many interesting properties of dynamic object structures, like reachability in dy-
namic linked data structures, cannot be expressed in first-order predicate logic.
There are approaches to simulate reachability by an overapproximation of the
reachable states [11]. In first-order dynamic logic however we can use the modal-
ities to express such properties. For example, if a linked list is given in terms of
a field next and the data is stored in a field data then the following formula in
dynamic logic states that the object denoted by v is reachable from the object
denoted by u:

〈while u �= v do u := u.next od〉(true)

Note that in DL such formulas can be used to express properties themselves.

6 Conclusion

In this paper we gave a representation of a weakest precondition calculus for
abstract object creation in dynamic logic and the KeY theorem prover. Abstract
object creation is formalized in terms of an inductively defined rewrite relation.
The standard sequent calculus for dynamic logic is extended with a schema
rule which allows to substitute formulas in sequents and thus provides a gen-
eral mechanism to import for example specific rewrite relations. The resulting
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logic abstracts from an explicit representation of objects and the corresponding
implementation of object creation. As such it abstracts from irrelevant imple-
mentation details which in general complicate proofs. Moreover, it treats the
dynamic scope of quantified object variables in a standard manner. Finally, we
have shown how to symbolically execute abstract object creation in KeY.

Currently, we are implementing and extending the toy language to other pro-
gramming constructs of object-oriented languages like Java.
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Abstract. Verification methods for memory-manipulating C programs
need to address not only well-typed programs that respect invariants such
as the split heap memory model, but also programs that access through
pointers arbitrary memory objects such as local variables, single struct
fields, or arrays slices. We present a logic for memory layouts that covers
these applications and show how proof obligations arising during the
verification can be discharged automatically using the layouts.

1 Introduction

Verification methods of programs that manipulate the heap necessarily formalize
and reason about the memory layout: each access to the memory generates the
proof obligation that the accessed region is allocated, and the influence of writes
on the validity of assertions needs to be determined by considering the possible
aliasing between pointers. The required reasoning has been automated success-
fully for Burstall’s split heap memory model, which in particular is expressive
enough for object-oriented programming languages (e.g. [1,2]). Single objects as
well as sets of objects are supported by current reasoning technology (e.g. [3]).

Burstall’s memory model assumes that all pointers are object references and
objects with different references do not overlap. It is therefore too imprecise for
many C programs, and the employed reasoning techniques do not scale directly to
more precise memory models [4]. Unfortunately, the excluded “low-level” usage
is not confined to a few border cases, but is well within the range of idiomatic
C code. A few examples from the current Linux kernel, which are deliberately
taken from different modules, will illustrate the point.

Data structures throughout the kernel are, for instance, protected by mutexes.
The following functions (from mutex.c) acquire and release mutexes.

void mutex_lock(struct mutex *lock);
void mutex_unlock(struct mutex *lock);

The mutexes, i.e. memory objects of type struct mutex, are allocated in various
ways. In socket.c, for instance, global mutexes protect the (global) ioctl set-
tings. Calls like mutex_lock(&br_ioctl_mutex) are thus distributed throughout
the module. But mutexes also protect inodes (defined in fs.h):

struct inode { ... struct mutex i_mutex; ... } (1)

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 628–643, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

gast@informatik.uni-tuebingen.de
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Locking such an inode involves passing a pointer to a struct member:

mutex_lock(&inode->i_mutex); (2)

Furthermore, it is common to pass pointers to local variables and also to fields
within local variables (from hrtimer.c, where struct hrtimer_sleeper t;):

hrtimer_init_on_stack(&t.timer, /*... */); (3)

Also elements from local arrays are passed by reference (from compat.h, where
struct timespec tv[2];):

if (get_compat_timespec(&tv[0], &t[0])) { ... } (4)

Indeed, these examples do not represent particularly “low-level” kernel code.
Similar idioms are presented in manuals and textbooks as the established best
practice.

The common challenge in these examples is that the specifications of the called
functions do not foresee these particular uses, but are formulated with respect
to the passed pointers alone — they are small specifications [5]. To verify the
calls, it is necessary to reason about the layout of the data structures and their
components, and to derive frame axioms for the remaining data structures.

This paper’s contribution is a method for automatic reasoning about the above
situations within Hoare logic. We provide a language for expressing layouts and
a logic and proof method for refining and re-interpreting layouts. The approach
is flexible in that it supports user-defined layout components and user-provided
refinements and re-interpretations. This contribution is thus complementary to
the work presented in [6], where unfoldings were left as future work. The treat-
ment of layouts is also independent of the specific Hoare logic used; instead, it
solves proof obligations which generally arise in Hoare logics.

The development presented in this paper is mechanized in Isabelle/HOL to
ensure its soundness. We also use Isabelle/HOL as an example verification envi-
ronment, and the presented proof strategies are implemented as ML tactics to
establish their utility. However, a second perspective is possible: the theorems
that are used for verification can be seen as a first-order axiomatization of the
introduced layout constants and operators. In this perspective, HOL serves as a
meta-logic in which these theorems are proven (see [7] for a similar discussion).
We will emphasize this connection throughout the presentation.

Organization of the Paper. Section 2 analyzes the proof obligations about mem-
ory layouts arising in Hoare logics and summarizes the main concepts from [6].
Section 3 gives a framework for reasoning about memory layouts that covers
both refinements and re-interpretations. Section 4 shows that the framework
can solve the introductory examples. Section 5 surveys related work. Section 6
concludes.
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2 Memory-Related Proof Obligations in the Hoare Logic

This section summarizes the considered programming language and Hoare logic.
It then examines the proof obligations resulting from the use of a low-level
memory model and introduces our formalization of memory layouts. For brevity,
the presentation elides the less important definitions from [6].

2.1 Language and Hoare Logic

The language that we consider is inspired by Norrish’s detailed analysis of C [8].
Its expressions include the usual primitive arithmetic operations, pointer derefer-
encing, and side-effecting operators, as well as pointer arithmetic and an address
operator applicable to arbitrary l-values (i.e. memory objects). As statements,
we support if, while, return, blocks with local variable declarations, and the
execution of expressions. The syntax is the same as in C.

We use a standard big-step operational semantics. Compared with [8], we
introduce mainly two simplifications with the purpose of focussing on memory-
related aspects: first, expressions are executed left-to-right and side-effects are
committed to memory immediately. Second, there is no distinction between al-
located and initialized memory (cf. [8, Sec. 3.1.2] for both).

The memory model is captured by the following Isabelle/HOL type, where
addr is a type isomorphic to 32-bit words [9]. (“⇒” denotes total functions.)

record memory =
m-dom :: ”addr set”
m-cnt :: ”addr ⇒ byte”
m-valid :: ”bool”

A memory state’s domain and content together define a partial function from
the allocated addresses to their content. The history variable m-valid designates
whether any illegal accesses have occurred during the execution [10]. The op-
erational semantics accesses memory only through the functions fetch and store,
which transfer byte representations of values from and to memory. These func-
tions set m-valid to false if unallocated addresses are manipulated.

fetch :: ”addr ⇒ nat ⇒ memory ⇒ byte list×memory”
store :: ”addr ⇒ byte list ⇒ memory ⇒ memory”

Execution is defined relative to a context, given by the following record type,
which contains the definitions of struct types, functions, and local variables (“⇀”
denotes partial functions; ty is the datatype representing the language types).

record ctx =
ctx-structs :: ”string ⇀ struct-def”
ctx-prog :: ”string ⇀ func”
ctx-vars :: ”string ⇀ addr× ty”

Note that this memory model does not make a structural distinction between
local variables and the heap. In particular, it is possible to apply the address
operator and pointer arithmetic for accessing local variables.

We use a Hoare logic for fault-avoiding partial correctness. The rules are
forward-style and generalize Floyd’s assignment axiom [6]. The treatment of
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recursive functions and auxiliary variables are based on Schirmer’s presentation
[11]. Side-effecting expressions are handled using Kowaltowski’s approach [12].
For the purposes of the present paper, only the memory-related proof obligations
are important. They are analyzed subsequently.

2.2 Formalizing Layouts

Memory layouts are usually perceived as recursively nested objects (e.g. [10,13]),
which suggests a formalization by a grammar (or equivalently an algebraic data
type). This approach has, however, the drawback that it fixes the set of possible
memory layouts. The examples in Section 1, on the other hand, suggest that
different views on a single memory state may be necessary. We therefore use a
shallow embedding of memory layouts into HOL, i.e. we define HOL constants
and functions that capture the memory region covered by a layout. The central
notion is therefore that of a cover, which describes a region by comprehension:

cover = ”addr set ⇒ bool”

All covers mentioned subsequently will be well-formed in the sense that they
accept a single address set or none at all. It is then straightforward to define raw
memory regions, and the regions occupied by some typed value, or a variable,
and by arrays.1

block a n ≡ λS. S = {a .. < a ⊕ n} ∧ a ≤ a ⊕ n
typed-block Γ a t ≡ λS. block a (of-nat (sz-of-ty Γ t)) S ∧ is-small-type Γ t
var-block Γ v ≡ typed-block Γ (addr-of Γ v) (type-of Γ v)
array Γ t p i j ≡ λ S. S = { p ⊕[Γ,t] i .. < p ⊕[Γ,t] j } ∧ 0 ≤s i ∧ i ≤s j ∧

p ⊕[Γ,t] i ≤ p ⊕ [Γ,t] j ∧ unat j * (sz-of-ty Γ t) ≤ unat max-word

The covers block a n and array Γ t p i j thus describe continuous regions of ad-
dresses. The side-conditions exclude overflows in the address arithmetic. The
remaining two constants introduce typed views on blocks. Composite structures
are expressed using the following disjointness combinator for covers:

A ‖ B ≡ λS. ∃S1 S2. A S1 ∧ B S2 ∧ S = S1 ∪ S2 ∧ S1 ∩ S2 = {}
Subsequently, a layout block is a cover given by a defined constant, as opposed
to being constructed by the disjointness combinator.

As an example, a variable p (of type int*), and the region it refers to would be
formalized as follows (double quotes surround strings; to-ptr converts the byte
representation of the pointer into an address; rdv reads the byte representation
of the value stored in a variable)):

var-block Γ ”p” ‖ typed-block Γ (to-ptr (rdv Γ ”p”)) int

In a first-order setting, the type cover would be taken as primitive. The intro-
duced constants then become first-order functions and they are used in first-order
axioms about layouts, as shown subsequently.
1 sz-of-ty, addr-of, and type-of look up information on types and variables; of-nat and

unat convert between nat and word [9]; is-small-type asserts that the size of a type
can be represented in 32 bits; max-word is the the largest 32-bit word. λ denotes a
function; {a ..< b} is the Isabelle/HOL notation for the interval [a, b); relations ≤s

and <s are signed comparison on words [9], ⊕ is raw address arithmetic, pointer
arithmetic ⊕[Γ,t] uses a type and the definition context.
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2.3 Normal Form of Assertions

The essence of lightweight separation [6] is that the user simply specifies the
memory layout in addition to a first-order (or higher-order) assertion about the
memory content. The memory layout is captured by covers, using the following
covered predicate (read “M is covered by A”):

M � A ≡ m-valid M ∧ A (m-dom M)

For an assertion P about the content, the normal form of assertions is therefore:

λΓ M. ∃ x1 . . . xn. M � A ∧ P Γ M x1 . . . xn (5)

The variables x1 . . . xn name intermediate results encountered during expression
evaluation as usual in forward-style Hoare logics. In post-conditions of expres-
sions, the result v would be an additional parameter [12]. In a first-order setting,
Γ ,M, and possibly v would be allowed to occur free in A and P.

2.4 Proof Obligations on Allocatedness

Since the Hoare logic is fault-avoiding, any memory access generates the proof
obligation that the region is allocated. This condition is captured by the allocated
predicate (read “A is allocated in M”, where A is a cover and M a memory state):

M � A ≡ m-valid M ∧ ( ∃S. S ⊆ m-dom M ∧ A S)

In the rule for dereference expressions *e, for instance, let P be the post-condition
of the evaluation of e. Following [12], it is a predicate on the current context Γ ,
the memory state M after the possibly side-effecting execution of e, and the
computed result v. The necessary proof obligation is:

∀Γ M v. P Γ M v −→ M � typed-block Γ (to-ptr v) t (6)

By construction of the Hoare rules, P will be in normal form and the allocatedness
can be determined from the layout given in P. The subcover relation captures
just the necessary inclusion of the covered regions:

A � B ≡ ∀S. B S −→ ( ∃S’. S’ ⊆ S ∧ A S’)

The following theorem is then used to reduce (6) to a proof about layouts alone.

M � A B � A

M � B
(7)

2.5 Side-Conditions in Memory Layouts

Memory layouts usually include tacit assumptions about the involved addresses.
The C standard prescribes, for instance, that an allocated block consists of a
sequence of increasing addresses, which motivates the side-condition excluding
overflows in the address arithmetic in the definition of block and array (Sec-
tion 2.2). For the purposes of verification, these assumptions constitute invari-
ants. Including them into the definitions of cover constants facilitates automatic
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reasoning, since theorems about the constants have fewer premises. The defini-
tion of a cover constant c with parameters x1 . . . xn therefore usually has the
following form (where the x1 . . . xn, but not the covered region S, occur in P).

c x1 . . . xn ≡ λS. S = · · · ∧ P x1 . . . xn

To express that the side-conditions hold, the covered region itself is immaterial.
We say that a cover is valid if it covers some memory region; from the validity,
it can be deduced that the side-conditions are satisfied.

is-valid A ≡ ∃S. A S

It is obviously possible to derive validity from a given memory layout by means of
the subcover relation; furthermore, the subcover relation itself preserves validity.

M � A B � A

is-valid B

is-valid A B � A

is-valid B
(8)

With the interpretation of side-conditions as invariants, an is-valid statement
should be read as “the side-conditions hold”. In Section 3, this reading explains
how side-conditions are maintained through unfoldings.

2.6 Side-Effects, Disjointness, and Aliasing

Side-effects in the semantics are formalized in Hoare rules by syntactic manip-
ulations of assertions. Suppose, for instance, that a command c performs some
side-effect f on the memory, i.e. for the pre-state M, the post-state is f M. In a
higher-order setting, the Hoare rule can be given directly (cf. [11, Figure 3.1]):

( { λΓM. QΓ (f M) } c {Q }

In a first-order verification environment, the β-reduction is replaced by a syn-
tactic substitution, as in Hoare’s assignment axiom.

We prefer to use a forward-style Hoare logic in order to emulate the reasoning
possible in separation logic [5,7]. Here, Floyd’s assignment axiom can be gener-
alized by introducing inverse operators [6]. Let F be a function such that F M (f

M) = M, i.e. F undoes the effect of f by replacing a specific region by the content
from its first argument. The forward-style Hoare rule for command c is then
obtained by existentially quantifying over the previous memory state M’:
( { P } c { λΓ M. ∃M’. P Γ (F M’ M) ∧ Q Γ M }

The assertion Q expresses the result of f, such as a particular region now contain-
ing a particular value. Again, in a first-order system, the verification condition
generator would apply a syntactic substitution.

In both cases, therefore, the “current” memory state M in some assertion P is
replaced by a modified state (g M), where g is either the effect itself or its inverse
operator. In both cases, the goal must be to remove the operator g in order to
retrieve an assertion about the “current” state M itself.

To illustrate the point, suppose f is the operator store a v M which writes the
byte-representation of value v at address a in M. Suppose then that precondition
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P contains the assertion to-int (rdvΓ ”x” M) > 0, which reads the content of vari-
able ”x” and interprets the byte-representation as an integer. The postcondition
would be to-int (rdvΓ ”x” (STORE a (length v) M’ M)) > 0 instead. Intuitively, this
assertion reads: “before the side-effect, x contained a positive value”.

We thus wish to simplify terms of the form mac (mop M), where mac is a mem-
ory accessor like rdv Γ x and mop is a memory operator like STORE a (length v) M’.
We capture the behaviour of memory accessors and operators abstractly by the
following constants (where the predicates eqv-inside and eqv-outside assert that
their memory arguments are the same inside and outside, respectively, a region
covered by A).

accesses mac M A ≡ ∀M’. eqv-inside A M M’ −→ mac M = mac M’
modifies mop M A ≡ eqv-outside A M (mop M)

Theorem (9) then allows the desired simplification to take place. Premises 1
and 2 are properties of the involved accessor and modifier constants. Premises 3
and 4 are solved automatically, since all covers we use are well-formed.

is-valid B −→ accesses mac M B
is-valid A −→ modifies mop M A

wf-cover A wf-cover B
M � C A ‖ B � C

mac (mop M) = mac M

(9)

In a first-order setting, the verification condition generator would use (9) to
pre-generate rewrite rules by solving the premises 1–4 with provided theorems.

2.7 Function Calls

The specification of functions introduces the frame inference problem (e.g. [7]):
it must be possible to infer from the specification which parts of the memory
remain unmodified. As the examples in Section 1 show, no reasonable restriction
can be placed on the memory objects that can be passed by reference. Our
solution is to introduce a constant frame which asserts that a memory region
given by a cover R has not been modified between the states M and M’.

frame R M M’ ≡ wf-cover R ∧ eqv-inside R M M’

A function specification then consists of the pre- and post-conditions of the form
M � A ‖ R ∧ frame R M0 M ∧ P
M � B ‖ R ∧ frame R M0 M ∧Q

where A and B capture the memory parts directly manipulated by the function
and R and M0 are auxiliary variables.

The pre-condition of the function call must then imply the function’s precon-
dition. For a pre-condition ∃x1 . . . xn. M � C ∧ P’, the proof obligation becomes:
∀x1 . . . xn . M � C ∧ P’ −→M � A ‖ ?R ∧ frame ?R ?M0 M ∧ P

Here the auxiliary variables have become unknowns ?R and ?M0 that can be
instantiated (cf. [11, Sec. 3.1.1]). The reasoning task is expressed by theorem (10):
we need to rewrite the cover C suitably, assuming that its invariants hold.

M � C is-valid C −→ C = A

M � A
(10)
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3 A Framework for Reasoning about Memory Layouts

Section 2 has identified the memory-related proof obligations arising in Hoare
logics and has reduced them to subcover and equality relations between (first-
order) covers. However, the challenges from Section 1 remain: in each of these
examples, the manipulated memory parts are not directly given in the specified
layout; instead, the layout must first be refined and re-interpreted. This section
presents a matching framework for general unfoldings of memory layouts.

3.1 Unfoldings of Layouts

In the following examples, we use the syntax supported by our Isabelle/HOL
implementation: a variable block for x is written «x» and a typed block at p
with type t is rendered as «p:t»; «:t» alone denotes type t. Context arguments,
rdv, to-ptr, etc. are inserted by translation functions [14, Sec. 8.6].

In the example (2), then, the local variable inode points to a record containing
a mutex object, while the called function expects the mutex object alone. The
required equality in (10) becomes:

«inode» ‖ «inode : struct inode» = «&inode->i mutex : struct mutex» ‖ ?R

The task is to unfold «inode : struct inode» into the constituent fields to expose the
mutex. The examples (3) and (4) do, indeed, not introduce any new complica-
tions, because Hoare logic and memory layouts treat heap- and stack-allocated
memory objects in the same way. The required equality for (3) is

«t» = «&t.timer : struct hrtimer» ‖ ?R

In the final example (4), the only difference is that the variable tv is of type
struct timespec[2], i.e. contains an array rather than a struct:

«tv» = «&tv[0]: struct timespec» ‖ ?R

The automated reasoning support must thus be able to re-write memory layouts
on the fly. The unfolding rules used in our framework are of the form:

P1. . .Pn

is-valid A −→A = B1 ‖· · · ‖ Bm
(11)

Whenever the premises P1. . .Pn hold, the layout A can be refined into layout
B1 ‖· · · ‖ Bm. In the case m = 1, the unfolding is, in fact, a re-interpretation of
layout block A. Note also how the side-conditions associated with A (Section 2.5)
are available during the unfolding — the framework will apply the rule only in
corresponding situations. The invariants associated with A therefore need not be
repeated in the premises P1. . .Pn. If a theorem does not depend on the validity
of A, it can omit the implication in the conclusion.

As a first example, variables can be re-interpreted as typed blocks by (12).
When the program takes the address of a variable, the automated reasoning will
apply the theorem correspondingly.

a = addr-of Γ v t = type-of Γ v

var-block Γ v = typed-block Γ a t
(12)
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By (13), unfolding rules can also be used to prove subcover relations as needed
for allocatedness (7) and disjointness (9) proofs.

is-valid A −→ A = B

B � A
(13)

By reflexivity of the equality and subcover relations and the following theorems,
unfoldings can be applied anywhere within a nested layout:

is-valid A −→ A = A’;
is-valid B −→ B = B’

is-valid (A ‖ B) −→ A ‖ B = A’ ‖ B’

A � A’ B � B’

A ‖ B � A’ ‖ B’
(14)

In principle, the examples from Section 1 can be solved using the above theorems
and the unfolding rules for special data structures from Section 4. For restricted
assertion languages, a brute-force unfolding with all possible rules is viable [7].
For first-order (or higher-order) assertions, we develop a two-step proof search.
For a given proof obligation B 3 A or is-valid A −→A = B, it first locates all
elementary blocks from B in A and then unfolds A to expose the blocks B, using
the information gathered in the first step during the second.

3.2 Locating Memory Blocks

The proof obligations to be treated have the form B1 ‖· · · ‖ Bm� A1 ‖· · · ‖ An or
is-valid(A1 ‖· · · ‖ An)−→A1 ‖· · · ‖ An = B1 ‖· · · ‖ Bm. For the proof search, it is useful
to consider the blocks {B1. . .Bm} as a multiset by associativity and commutativ-
ity of disjointness. By abuse of notation, we will therefore write {B1. . .Bm} � A

for layout blocks B1. . .Bm and cover A. The location phase enriches this notation
further with a justification of the subcover relation. In our Isabelle/HOL imple-
mentation of the proof search, this information is kept in ML data structures;
for using a first-order prover, it can be encoded in terms.

The justification for a subcover relation Bk 3 A (for k ∈ [1,m]) consists in
unfolding A in particular positions. Positions are denoted by paths in (L|R)∗

(for “left” and “right”; the empty path is ε, concatenation is written p · q; the
sub-layout of A at p is A↓p). Since unfoldings can occur recursively, the enriched
notation is: {

(Bk, pk0, ((uk1, pk1) . . . (ukmk
, pkmk

)))
}m

k=1 3 A (15)

The reading, to be defined formally in Section 3.3, is: for each k, the block
Bk is found inside A by first following path pk0, then applying unfolding rule
uk1 (using (13)), then following pk1, and proceeding in this manner until all
unfoldings and paths have been exhausted. Note that for each application of an
unfolding rule ukj , its premises need to be proven (see (11)).

We now show that justifications can be computed efficiently. The central idea
is to prepare in advance a set S for subcover justifications of all possible com-
binations of a given set of unfolding rules. The process starts with the trivial
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justification {(A, ε, ε)} 3 A, which captures the reflexivity of the subcover rela-
tion. Then, for any ({(C, ε, J)} 3 D) ∈ S and unfolding step u of the form (11),
where σC = σA for some σ, i.e. C unifies with A, we insert for k = 1 . . .m into
S a new justification

{(σBk, ε, ((σu, pk), σJ))} 3 σD

The application of substitution σ here is defined by its application to all occurring
terms and theorems. The path pk is the path to Bk on the right-hand side in (11).
Note that these justifications are sound by lemmata (16).

C � C ‖ D D � C ‖ D (16)

If this saturation process terminates with a set S, then by construction B 3 A
can be proven by the given unfolding rules iff there is some path p0, substi-
tution σ, and justification ({(B′, ε, J)} 3 A′) ∈ S such that B = σB′ and
A↓p0= σA′. The resulting justification is then {(B, p0, σJ)} 3 A.

To solve the proof obligations given at the beginning of this section efficiently,
just apply this step to all pairs Ai and Bj . A term index is used to identify possible
justifications. The desired result (15) is found.

Remark 1. The generation phase might fail to terminate. This is, in particu-
lar, the case for recursive, linked data structures such as lists or trees, whose
structural unfoldings can be applied several times in a row. The termination
argument for the only approach handling such unfoldings relies on a restricted
form of assertions that is not sufficient for full functional verification [7]. We
therefore leave the question as future work.

Remark 2. If the unfoldings are not deterministic, a block Bj might be located
in Ai by several justifications. (However, by definition of disjointness, it cannot
be located in a different Ai′ .) In the subsequent presentation, we assume that a
single justification has been computed; if ambiguities arise, they are resolved by
iteration through the possible solutions.

3.3 Computing Unfoldings

The result of the location phase is of the form {(Bk, p0k, Jk)}mk=1 3 A: it captures
precisely where the B1. . .Bm are located inside layout A. To compute the actual
unfolding equality, it is sufficient to follow the justifications {(p0k, Jk)}mk=1 in
a recursive process. We give the process in the form of inference rules for a
judgement

{(Bk, p0k, Jk)|P k} � is-valid A−→A = B

where P selects a subset of [1,m) and the result is-valid A−→A = B is a theorem.
The recursion base consists in a single Bk being actually found:

{(Bk, ε, ε)} � is-valid Bk−→Bk = Bk (17)



638 H. Gast

The first recursion step computes the unfoldings of two disjoint sub-multisets of
the Bk using theorem (14).

{(Bk, p
′
0k, Jk)|P k ∧ p0k = L · p′0k} � is-valid A −→ A = B

{(Bk, p
′
0k, Jk)|P k ∧ p0k = R · p′0k} � is-valid A’ −→ A’ = B’

∀k.P k −→ p0k �= ε

{(Bk, p0k, Jk)|P k} � is-valid (A ‖A’) −→ A ‖A’ = B ‖B’
(18)

Finally, if the paths in the justification have been exhausted, an unfolding takes
place. We denote by u(A) the application of the unfolding rule of the form (11)
to a term A, which yields the unfolded layout. At this point the premises of
step u need to be proven.2 Note how the local paths pk become the new paths
in the justification.

{(Bk, pk, Jk)|P k} � is-valid u(A) −→u(A) = B

{(Bk, ε, (u, pk) · Jk)|P k} � is-valid A −→A = B
(19)

Remark 3. Since (18) and (19) apply only to judgments of specific forms, the
completeness of this procedure must be discussed. Consider therefore a justifi-
cation {(Bk, pk, Jk)|P} 3 A where A is a layout block and the Bk can be proven
disjoint by the given unfolding rules. If the multiset is a singleton, rule (17)
applies. Next, since the blocks Bk can be proven disjoint, either all pk must be
non-empty, in which case (18) applies, or they are all empty. (Otherwise, there
would be some k and k′ with Bk′ 3 Bk, contradicting disjointness.) In this latter
case, (19) applies with some common unfolding rule u, since we can assume that
the justifications have been selected correspondingly by Remark 2.

The process of unfolding a memory layout is thus made deterministic by
employing the information gathered in the location phase.

3.4 Unfolding On-Demand

The above presentation of the proof search assumes that unfolding rules have
the static form (11). This is, however, too restrictive in general: locating a set
of array elements and array slices in a given array would require “guessing” a
suitable split of the index range in advance (see Section 4.2). The problem is
solved by lazy computation of unfoldings. The unfolding rules are used only in
two places: to generate the subcover theorems for the location phase by (13) and
to compute the unfolding in (19). The first use can be removed if the subcover
theorems are given directly. When the unfolding rule is required in (19), more
information is available in the form of the proven premises of (11). We therefore
apply a standard strategy (e.g. [14, Sec. 10.2.5]): when (19) is applied, an ML
function is called with the current judgment. The function returns both the
unfolding rule u and the paths pk for each of the blocks in the left-hand side.
Unfoldings in this way are computed lazily, on-demand.
2 Note that the same premises have been proven during the location phase. In the ML

implementation, we keep the proven premises as Isabelle theorems.
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4 Applications

The framework from Section 3 supports automatic reasoning about a wide range
of unfoldings of memory layouts. In this section, we apply it to examples derived
from Section 1 by giving specific unfolding rules. For brevity, we can only show
prototypical examples that focus on the main considerations of the paper.

4.1 Struct Types

The layout of a struct type is given with its type definition. It consists of the
struct’s fields, possibly separated by padding to ensure alignment of the fields’
data. Since it can be added straightforwardly, we neglect padding for brevity.
Using auxiliary constants field-off and field-ty, which determine the offset and type
of a field in a given struct type, we can define a new cover for a single field:

field-block Γ p t f ≡ typed-block Γ (p ⊕ (of-nat (field-off Γ t f))) (field-ty Γ t f)

For a list of fields, their joined layout is then given by a recursive function:
fields-cover Γ t a [] = Empty
fields-cover Γ t a ((f,ty) # fs) = field-block Γ a t f ‖ fields-cover Γ t a fs

With these preliminary definitions, we can prove a general unfolding theorem for
struct types. Its premise captures that type t is a defined struct in the context Γ .

wf-struct Γ t

typed-block Γ a t = fields-cover Γ t a (struct-fields Γ t)
(20)

For a specific struct type such as struct point { int x; int y; }, the special rule (21)
can be generated from (20) directly. Here point-knownΓ captures, again, that the
definition of struct point is present in context Γ .

point-known Γ

typed-blockΓ a (struct point) = field-block Γ a (struct point) ”x” ‖
field-block Γ a (struct point) ”y”

(21)

The re-interpretation of a local variable of struct type as a memory object is given
by the unfolding step (12). Together with (21), the challenges of the introductory
examples can be solved. Suppose, for instance, a function void set(int *p, int i)

sets *p to i. Its precondition requires a layout M � «p : int» ‖ R, the postcondition
asserts that *p = i and R is framed, i.e. not modified. We can then verify the
following triple automatically (where struct point s; and int i; are local variables;
«s.x» is expanded to reading field x from struct variable s).
( { M � «s» ‖ «i» ∧ point-known Γ ∧ P «s. x» i }
set(&s.y, 1);
{ M � «s» ‖ «i» ∧ point-known Γ ∧ P «s. x» i ∧ «s. y» = 1 }

For the function call, the given layout is unfolded to reveal the field-block for s.y

and to show that the remainder R of the memory consists of the field-block for
s.x and the local variable i. Note that the higher-order predicate P represents an
arbitrary further assertion about s.x and i, independently of its actual structure.

This example covers usage (3) directly. It also shows the simpler usage (2) to
be supported, where the variable-block re-interpretation (12) can be omitted.
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4.2 Arrays

The unfolding of arrays poses the problem that the necessary refinement of the
layout cannot be determined in advance, because it depends on the actual slices
and elements that need to be revealed. Unfoldings are therefore computed lazily
(Section 3.4) and explicit subcover theorems are used in the location phase:3 (22)
and (23) allow the prover to locate slices and elements, and (27) re-interprets an
array element as a typed block, thus enabling access by pointer arithmetic.

i ≤s i’ i’ <s j’ j’ ≤s j

array Γ t a i’ j’ � array Γ t a i j
(22)

i ≤s j j <s k

array-elem Γ t a j � array Γ t a i k
(23)

p = a ⊕[Γ ,t] j

array-elem Γ t a j = typed-block Γ p t
(24)

With these rules, the location phase can associate layout blocks with a given
array, proving the premises in the process. When the actual unfolding is required,
an ML function is called to compute an unfolding rule tailored to the situation.
Towards that end, it determines the relative order of the indices from the proven
premises and uses the theorems (25) and (26).

i ≤s j j ≤s k

array Γ t a i k = array Γ t a i j ‖ array Γ t a j k
(25)

is-valid(array Γ t a j (j+1)) −→ array Γ t a j (j+1) =array-elem Γ t a j (26)

Theorem (26) is of particular interest, because it crucially uses the invariants
associated with the single-element array. An array element is simply a typed-
block (see (24)) which does not contain all invariants of arrays (Section 2.2).

Arrays in local variables, which have type Array t n with constant size n and
element type t, are found by the following rule (27), which is applied after (12).

is-valid (typed-block Γ a (Array t n)) −→ typed-block Γ a (Array t n) = array Γ t a 0 n

(27)
Again, this unfolding relies on the validity of the typed block to establish the
side-conditions of the array from the well-formedness of the Array type.

With these unfoldings, the last introductory challenge (4) can be resolved.
Here, a local variable int a[16]; is allocated and some assertion about its first i

elements is given. It can is then proven automatically that setting a[i] does not
influence that assertion, as stated in the following triple.
( {M � «i» ‖ «a» ∧ 0 ≤s i ∧ i <s 16 ∧ ( ∀ k. 0 ≤s k ∧ k <s i −→ «a[k]» =0) }

a[i] = 1;
{M � «i» ‖ «a» ∧ 0 ≤s i ∧ i <s 16 ∧ ( ∀ k. 0 ≤s k ∧ k <s i −→ «a[k]» =0) }

This example shows also that our method goes beyond automated fragments of
separation logic [7,15] in handling local assumptions on quantified variables.
3 The implementation never applies the same rule twice in a row, which prevents

non-termination with (22).
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A final example demonstrates the flexibility of the presented framework. Sup-
pose the function void memcpy(char *src, char *dst, int n) copies memory byte-wise.
Its precondition demands that the source and destination arrays are allocated:

M � array Γ «:char» src 0 n ‖ array Γ «:char» dst 0 n ‖ R

Its post-condition asserts the same layout, that the elements of src have been
copied to dst, and that only the dst array has been modified, such that any
assertions about src and R continue to hold.

M � array Γ «:char» src 0 n ‖ array Γ «:char» dst 0 n ‖ R ∧
array-elems Γ «:char» src 0 n M = array-elems Γ «:char» dst 0 n M ∧
frame (R ‖ array Γ «:char» src 0 n) M0 M

Then, we can implement a low-level string concatenation. We prove the following
triple in a variable context int m; int n; char *a; char *b; char *dst;.

( { M � «a» ‖ «n» ‖ «b» ‖ «m» ‖ «dst» ‖
array Γ «:char» a 0 n ‖ array Γ «:char» b 0m ‖ array Γ «:char» dst 0 (n +m) ∧

array-elems Γ «:char» a 0 nM = A ∧ array-elems Γ «:char» b 0m M = B }
memcpy(a,dst,n);
memcpy(b,dst + n,m);
{ array-elems Γ «:char» dst 0 (n+m)M = (A@ B) }

In the second call, the precondition of memcpy mentions an array starting at
index 0, while the actual argument is a slice starting at n. The re-interpretation
(28) shifts a given array slice to begin at index 0.

b = a ⊕[Γ,t] i m = n - i

is-valid (array Γ t a i n) −→ array Γ t a i n = array Γ t b 0 m
(28)

5 Related Work

The problem of proving the disjointness of memory regions has recently attracted
much attention in connection with the verification of object-oriented programs.
Kassios [16] proposes to express the memory region occupied by an object’s
representation as an additional specification variable. The disjointness of the re-
gions, hence the independence of assertions from particular memory operations,
can then be asserted without breaking encapsulation. The approach has been
implemented by several authors [3,1]. The work addresses Burstall’s memory
model and uses direct pointer comparisons throughout. It does therefore not
scale directly to more low-level memory models. Greve [17] proposes to express
the memory region occupied by data structures by functions with the intention
of proving disjointness of modified memory regions. Neither of these approaches
addresses the problems of re-interpretation and structural refinement of memory
layouts beyond the field-level access encompassed by Burstall’s model.

Automatic unfoldings of memory layouts are supported by the Smallfoot [7]
tool. It is based on a restricted form of separation logic that is suitable for
expressing shape invariants of data structures. Recently, Tuerk [15] has shown
that some assertions of the content of data structures can be be handled in
parallel with their structure. The unfolding mechanism in both works relies on
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the fact that all assertions give rise to finitely many unfoldings, such that an
undirected search is possible. Tuerk uses [18] to cover call-by-reference with
entire local variables, but not with more general memory objects.

Tuch [10] applies separation logic to structured data types. In particular, he
develops a theory for struct types in C. The automatic reasoning provided is
limited: a specialized tactic allows the user to fold and unfold struct definitions
as needed. Neither arrays nor references to local variables are supported. Cohen
et al. [13] establish a typed memory model over untyped C memory states by
expressing the additional disjointness invariants using a ghost variable. Special
statements split and join in the language serve to manipulate the layout. The
approach handles structs and is extensible to bit-fields and arrays. The frame
inference problem for functions is not discussed.

6 Conclusion

We have presented a method for automatic reasoning about memory layouts in
a flexible and extensible manner. A small language of layouts allows memory-
related proof obligations arising in Hoare logics to be formulated succinctly. The
actual elements of layouts are not fixed, but can be defined as needed: local
variables, blocks accessed by pointers, structs, and arrays are readily formalized.
Our reasoning framework supports a general notion of unfoldings of memory el-
ements. Unfoldings comprise both structural refinements and re-interpretations
of layout blocks. Structs and arrays can thus be split automatically into their
constituent elements as needed, and local variables can be interpreted as mem-
ory objects, which allows them to be accessed by pointers in arbitrary ways.
Introducing a new unfolding generally requires nothing more than proving an
unfolding equality theorem about a cover constant. Using the flexibility, it is
possible to verify idiomatic usages of C that are not currently covered by other
verification methodologies.

The presented method is suitable for reasoning about a low-level,byte-addressed
memory model. The key insight is to encode invariants about memory layouts into
the definition of layout constants, and to propagate the invariants through unfold-
ings. As an illustration, the theory reduces reasoning about arrays to proving in-
equalities between indices without further side-conditions; overflows in the address
arithmetic are excluded by the invariants associated with arrays.

Three future directions of the work appear promising. The first one is to apply
standard first-order reasoners rather than specialized ML tactics. Even though
the theory is developed in Isabelle/HOL to ensure soundness, first-order theo-
rems are sufficient for the actual verification. A second direction is the verification
of low-level programs using pointer-casts. The re-interpretations necessary when
using casts can be expressed as unfolding theorems handled by the framework.
Finally, the developed logic of memory layouts is largely independent of the em-
ployed Hoare logic. It would therefore be interesting to integrate the reasoning
with an existing verification condition generator.
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Abstract. We present a new domain for analyzing must-equalities be-
tween address expressions. The domain is a smooth combination of Her-
brand and affine equalities which enables us to describe field accesses
and array indexing. While the full combination of uninterpreted func-
tions with affine arithmetics results in intractable assertion checking al-
gorithms, our restricted domain allows us to construct an analysis of
address must-equalities that runs in polynomial time. We indicate how
this analysis can be applied to infer access patterns in programs manip-
ulating arrays and structs.

1 Introduction

Consistent correlations between memory locations used by a program lies at the
heart of many safety properties. In order to verify absence of data races in multi-
threaded programs, accesses to memory locations need to be correlated with
locks that guard them. In a language with pointer variables, correlating address
expressions requires knowing when two expressions must alias, i.e., evaluate to
the same memory location. In general, techniques for verifying the correct use of
interface methods (e.g., [1]) can be refined with must-alias information to check
that calls in a syntactically correct sequence consistently refer to the right data
elements: a sequence such as open(e1); ...; close(e2); e.g., should access the same
file handle when referring to the address expressions e1 and e2.

More recently, program-specific correlations have been studied: the length of
a list is, perhaps, maintained in a separate variable which is thus semantically
correlated. Lu et al. [11] apply statistical techniques to detect plausible multi-
variable correlations of this kind. Their methods, although successful in detecting
real bugs, are flow-insensitive and essentially syntactic; hence not ideal for formal
verification. As the precise control flow as well as equalities between variables in
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the program are ignored, syntactically similar expressions may not represent the
same semantic correlation, while syntactically different expressions could very
well be correlated. In order to enable sound inference of semantic correlations
between addresses, we propose a novel analysis of must-equalities.

Our analysis is able to interprocedurally relate address expressions which use
array indexing and field selection in structs. An access to a nested struct con-
sists in the base address of the data element followed by sequences of selectors,
such as A.person.name. Two such expressions are definitely equivalent if they
are textually identical. This corresponds to the Herbrand interpretation of the
binary operator “.” and the selector labels. In order to deal with arrays as well,
we enhance this base domain by affine expressions for indexed accesses. Two
index expressions are equivalent iff they are equivalent w.r.t. the arithmetic in-
terpretation. We show that the resulting combination of theories allows to infer
all valid address equalities in polynomial time.

This is in stark contrast to previous work on assertion checking over the do-
mains of uninterpreted functions and linear arithmetic. Detecting affine equal-
ities in programs was pioneered by Karr [9]. This algorithm was extended to
the inter-procedural case by Müller-Olm and Seidl [13]. A long line of research
has provided methods for intra-procedurally detecting Herbrand equalities pre-
cisely [3, 10, 12, 22] — while the inter-procedural case still remains unsolved. A
precise analysis algorithm is known for functions without side effects [16] and
for arbitrary procedures if only unary operator symbols are considered [6].

When it comes to combining affine and Herbrand equalities, the basic approach
is inspired by methods of combining decision procedures [18]. However, Gulwani
and Tiwari [4] have shown that assertion checking over the full combined domain
is coNP-hard. Hence, they subsequently present a highly expressive domain that
allows sound analysis of pointer arithmetic and recursive data-structures in the
style of Deutsch [2], but their algorithm is no longer complete w.r.t. their chosen
abstraction [5]. Our domain construction, based on a sufficiently restricted sub-
class of Herbrand terms carefully enhanced with fragments of linear arithmetic,
enables sound and complete analysis in polynomial time.

2 The Programming Model

One key abstraction on which our method relies is that we only track the values
of int variables and pointers. Thus, we ignore the values stored in arrays or
structs. To simplify our setting, we make the additional assumption that the
tracked variables themselves are never accessed indirectly through pointers; a
common coding practice when developing safety-critical code [8]. Programs to
be analyzed are modeled by systems of flow graphs as in Figure 1.

Let X = {x1, . . . ,xk} denote the set of int-variables and A = {a1, . . . ,am}
the set of pointer variables used by the program. For the moment, we assume all
variables to be global, but we will present methods for local variables in Section
7. In addition, we assume that we are given a set of names C denoting the global
static data-structures of the program. Each of these data-structures is built up
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1main 2 3 4 5
x1

:=
0

a1
:=

c.
(x1)

x1
:=

x1
+ 1

f()

Fig. 1. Example flow-graph for a main-function

by forming structs and arrays from a set of base types, such as int, float or
mutex. In the presence of dynamic memory allocation, we infer must-equality
relationships between pointer variables while also relying on may-alias pointer
analysis, as further explained in Section 8; until then, we only deal with static
data structures.

As we are only interested in assignments to integer and pointer variables, the
set of statements Stmt at edges of programs in our model consists of:

– Affine assignments of the form xj := t0+
∑k

i=1 tixi (with ti ∈ Z and xi ∈ X).
– Address assignments of the form aj:= adr where adr is an address expression

possibly involving variables from X and A in a way we will specify below.
– Non-deterministic assignments, xj := ? and aj := ?, which are used to ab-

stract assignments that our analysis cannot handle.

With C denoting the set of global variable names, an address expressions adr
is constructed from constants B ∈ C and address variables ai according to the
grammar:

adr ::= B | ai | adr.b | adr.(l)

where b is a field selector and l is an index expression of the form l ≡ t0 + t1x1 +
. . . + t1xk. We assume that address expressions are well-typed. In particular, a
selector b can only be applied to an address expression denoting a pointer to a
struct with component b; likewise, only a pointer to an array can be indexed.

A program comprises a finite set Proc of procedure names. Execution starts
with a call to the distinguished procedure main ∈ Proc. Each procedure q ∈ Proc
is given through a control flow graph Gq = (Nq, Eq, eq, rq) which consists of a
set Nq of program points ; a set of edges Eq ⊆ Nq× (Stmt∪Proc)×Nq annotated
with assignments or procedure calls; a special entry point eq ∈ Nq; and a special
return point rq ∈ Nq. We assume here that the program points of different
procedures are disjoint.

Every address pointing somewhere into the global data-structures can be
uniquely represented by an expression B.s1. . . ..sr where B is the base ad-
dress of a global data-structure and each si is either a field selector or an array
index in Z. Since we consider addresses in fixed global data-structures only, the
length r is bounded by some global constant d. Let A denote the set of all these
addresses. Since we ignore the values stored in the global data-structures, a pro-
gram state can be represented by a pair 〈x, a〉 where x ∈ Zk and a ∈ Am describe
the values of the int variables and the address variables, respectively. We denote
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the set of all states by S = Zk × Am. Throughout this paper, we use k and m
to denote the number of the (global) integer and address variables, and we use
d to denote the maximal depth of data structures!

For an affine combination t = t0 + t1x1 + . . . + tkxk and a state σ = 〈x, a〉,
we write [[t]]σ for the value t0 + t1x1 + . . . + tkxk ∈ Z. Likewise, for an address
expression adr we write [[adr ]]σ to denote the address obtained from adr by
substituting the address variables in adr (if there are any) with their values in σ
and by evaluating all affine index expressions w.r.t. the values of the int-variables
in σ. Thus, the semantics of assignments for sets of states S is defined by:

[[xj := t]]S = {〈(x1, . . . , xj−1, [[t]] 〈x, a〉 , xj+1, . . . , xk), a〉 | 〈x, a〉 ∈ S} (1)
[[xj :=?]]S = {〈(x1, . . . , xj−1, z, xj+1, . . . , xk), a〉 | 〈x, a〉 ∈ S, z ∈ Z} (2)

[[aj := adr ]]S = {〈x, (a1, . . . , aj−1, [[adr ]] 〈x, a〉 , aj+1, . . . , ak)〉 | 〈x, a〉 ∈ S} (3)

[[aj :=?]]S = {
〈
x, (a1, . . . , aj−1, a

′
j, aj+1 . . . , ak)

〉
| 〈x, a〉 ∈ S, (4)

a′j ∈ A of appropriate type}

Every program execution π can be considered as a transformation [[π]] : 2S → 2S

of the set of states before the execution into the set of states after the execution.
Here, we find it convenient to define the semantics as the transformation R[u] :
2S → 2S that describes which program states can be attained at program point u
when program execution starts in a given set of states. Given the transformation
R[u], we can recover the collecting semantics of u, i.e., the set of all program
states possibly attained during program execution when reaching u, as the set
R[u](S).

In order to define the transformations R, we additionally consider for every
procedure q, the transformation of a set of program states before a call to q into
the set of program states after the call. In order to determine this transformation,
we introduce for every program point u of q, the auxiliary transformation S[u]
which collects the transformation induced by the executions from u to the end
point rq of q at the same level, i.e., all recursive calls on its path towards the
end of the procedure have returned. Then, the transformation of q is given by
S[eq] for the start point eq of q, and we have:

[S1] S[rq] ⊇ Id

[S2] S[u] ⊇ S[v] ◦ [[s]] if (u, s, v) is an assignment edge
[S3] S[u] ⊇ S[v] ◦ S[eq] if (u, q, v) is a call edge

[R0] R[emain ] ⊇ Id

[R1] R[eq] ⊇ R[u] if (u, q, ) is a call edge
[R2] R[v] ⊇ [[s]] ◦R[u] if (u, s, v) is an assignment edge
[R3] R[v] ⊇ S[eq] ◦R[u] if (u, q, v) is a call edge

Here, the ordering “⊇” on transformers f, g : 2S → 2S is defined by f ⊇ g iff for
every set of states S, f(S) ⊇ g(S).



648 H. Seidl, V. Vojdani, and V. Vene

3 Address Equalities

Our goal is to detect equalities between address expressions. In order to do so,
we additionally need to track affine equalities between int variables. An affine
equality is an assertion t0 + t1x1 + . . .+ tkxk =̇ 0 for t0, . . . , tk ∈ Q. An address
equality is an assertion of the form: adr =̇ adr ′ of address expressions adr , adr ′.
Here, “ =̇ ” serves as a formal equality symbol. A program state σ satisfies the
affine equality t =̇ 0 iff the left-hand side evaluates to zero: [[t]]σ = 0. Likewise,
the state σ satisfies the address equality adr =̇ adr ′ iff [[adr ]]σ = [[adr ′]]σ. This
means that we consider the Herbrand interpretation for the operator “.” as well
as for base addresses and field selectors, but use an arithmetic interpretation
for index expressions. The latter allows us to identify semantically equal index
expressions, such as x1 + 5 + 2x1 and 5 + 3x1.

The state σ satisfies a finite conjunction E of affine and address equalities iff
σ satisfies every equality in E. In this case, we write σ |= E. Likewise for a set
S of states, we write S |= E iff σ |= E for all σ ∈ S. The conjunction E is valid
at a program point u, if E is satisfied by all states possible at u, i.e., R[u] |= E.

Example 1. In the program from Figure 1, we are interested in the equalities
which hold at program point 4. The set of states possible at this point is given
by R[4] = {〈n, c.(n− 1)〉 | n > 0}, and thus the equality a1 =̇ c.(−1 + x1) is
valid at this program point. ��

Given this notion of satisfiability, we say that a conjunction of equalities E
implies another conjunction of equalities E′, iff for all states σ ∈ S, σ |= E
implies σ |= E′. Thus, the conjunctions of address and affine equalities can be
ordered by implication “⇒”. The greatest element ) w.r.t. this ordering is the
empty conjunction or true, as it is satisfied by all states. The bottom element ⊥
in the ordering is false, denoting an unsatisfiable conjunction of equalities.

Consider a finite conjunction E with affine equalities ti0 + ti1x1 + . . . +
tikxk =̇ 0, i = 1, . . . , h. Assume that the conjunction E is satisfiable. Then,
we say that it is in canonical form iff the following conditions are satisfied:

1. the affine equalities — more precisely, the corresponding coefficient matrix
(tij) — is in row echelon form;1

2. the left-hand sides in the address equalities of E are pairwise distinct vari-
ables; and

3. no variable that is on the left-hand side of an address equality in E occurs
in any of the right-hand sides.

By these restrictions, any conjunction in canonical form comprises at most k
affine equalities as well as at most m address equalities.

Example 2. Take the conjunction (a1.d =̇ c.(2x1).d) ∧ (a1.m =̇ c.(x1).m).
An equivalent conjunction in canonical form is (a1 =̇ c.(2x1)) ∧ (x1 =̇ 0). ��
1 A matrix is said to be in row echelon form if all zero rows are at the bottom, the

leading entry of each non-zero row except the first occurs to the right of the leading
entry of the previous row, and the leading entry of any non-zero row is 1.
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Lemma 1. For every finite conjunction of equalities E, a finite conjunction in
canonical form which is equivalent to E can be constructed in polynomial time.

Proof. Assume that the conjunction is of the form E = Ea ∧ Ex where Ea is a
conjunction of address equalities and Ex is a conjunction of affine equalities. We
proceed in three steps. First, we replace every index expression t occurring in
the conjunction Ea with the expression xt for a fresh variable xt. Let E′

a denote
the resulting conjunction of address equalities.

In the second step, we compute a most general unifier σ for E′
a w.r.t. the

Herbrand interpretation. If unification succeeds, then due to the specific form
of address expressions, the substitution σ will map each auxiliary variable xt

either to a field selector or to another auxiliary variable xt′ . If there exists an
xt, such that σ(xt) is a field selector, then the conjunctions are inconsistent and
the whole conjunction is equivalent to false.

Otherwise, let E′
x denote the conjunction of all equalities t1−t2 =̇ 0 for which

the corresponding auxiliaries xti were unified, i.e., σ(xt1 ) = σ(xt2). Then Ea is
equivalent to the conjunction of E′

x with E′′
a =

∧
i(ai =̇ adr i) where the address

expressions adr i are obtained from σ(ai) by substituting back the affine index
expressions t for the auxiliary variables xt.

Thus, a canonical form of the conjunction E is given by E′′
a ∧ E′′

x , where
E′′

x is the echelon form for the conjunction Ex ∧ E′
x. Using a linear unification

algorithm [19] for computing σ, we conclude that the canonical form of E can
be computed in time O((|Ex|+ |E′

x|) · k2) = O((s + r · d) · k2) if E consists of s
affine equalities and r address equalities. ��

Note that we give the complexity estimates in this paper under the uniform cost
measure, i.e., we assume a constant cost for arithmetic operations.

Lemma 2. Assume E is a satisfiable conjunction of equalities in canonical form
with k int-variables, and addresses of length at most d. Then the following holds:

1. For every affine combination t, E ⇒ (t =̇ 0) can be decided in time O(k2).
2. For every address expression adr , E ⇒ (ai =̇ adr) can be decided in time
O(d · k2).

Proof. As the first statement is immediate from linear algebra, we only prove
the second. Let us assume that adr ≡ A.s1. . . ..sh, i.e., adr does not con-
tain an address variable. Then the implication holds iff E contains an equality
ai =̇ A.s′1. . . . .s

′
h, and for each λ = 1, . . . , h, the access expressions sλ and s′λ

are equal under E: either both sλ and s′λ are field selectors and identical, or both
sλ and s′λ are index expressions and E ⇒ (sλ − s′λ =̇ 0).

Now assume that adr ≡ aj.s1. . . . .sh for some address variable aj . Unless
adr ≡ ai, the implication can only hold if E also contains an equality for ai.
Moreover, this equality is of the form ai =̇ a.s′1. . . . .s′h+l for some l ≥ 0 where
a is either an address constant A or an address variable ar. Then the implication
holds iff E also contains an equality aj =̇ a.s′′1. . . . .s′′l where for λ = 1, . . . , l, the
accesses s′λ and s′′λ are equal under E, and for λ = l+1, . . . , h, the accesses s′λ and
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sλ−l are equal under E. Assuming that the address equality inE for particular ad-
dress variables can be retrieved in constant time, at most d affine equalities must
be checked for subsumption by E — giving us the stated complexity bound. ��

Thus, both logical implication and equivalence between satisfiable conjunctions
E,E′ in canonical form can be decided in time O((m2 · d + k) · k2).

Let E denote the set of equivalence classes of finite conjunctions ordered by
implication. The greatest lower bound of (the equivalence classes of) two con-
junctions E,E′ ∈ E is (the equivalence class containing) the conjunction of all
the equalities in E and E′. The partial order E thus is a complete lattice —
given that all descending chains are finite.

Corollary 1. Every chain E0 ⇒ . . .⇒ Ep of pairwise inequivalent conjunctions
Ej using k int variables and m address variables has length p ≤ m + k + 1.

This follows because any two inequivalent conjunctions Ei and Ej have counter-
parts in canonical form, E′

i and E′
j , respectively. The implication E′

i ⇒ E′
j can

only hold, if E′
i contains strictly more equalities than E′

j . Therefore, all chains
in the lattice will eventually stabilize after at most m + k + 1 steps.

In summary, we have proven that the set of equivalence classes of conjunctions
of address equalities ordered with implication (E,⇒) is a complete lattice.

4 Weakest Pre-conditions

Our approach to computing all valid equalities is based on an effective weak-
est pre-condition computation. For a conjunction of equalities E, the weakest
pre-condition for an assignment and a non-deterministic assignment is given by
substitution and universal quantification, respectively:

[[xi := t]]T(E) = E[t/xi] [[ai := a]]T(E) = E[a/ai]

[[xi := ?]]T(E) = ∀xi. E [[ai := ?]]T(E) = ∀ai. E

While our domain is closed under substitution, it does not directly support
universal quantification. We are rescued by the fact that in the sub-domain of
linear arithmetic, determining the weakest pre-condition for a non-deterministic
assignment to an int variable xi, it suffices to consider the conjunction of the
weakest pre-conditions of the assignments xi := 0 and xi := 1 [13]. On the
other hand, ∀ai. E for a conjunction E in canonical form involving the address
variable ai is necessarily false, if ai can range over at least two addresses [16].
For simplicity of presentation, let us assume there are no singleton types. Thus,
the weakest pre-conditions for non-deterministic assignments can be simplified:

[[xi := ?]]T(E) = E[0/xi] ∧ E[1/xi]

[[ai := ?]]T(E) =

{
false if ai occurs in E

E otherwise
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Note that these results do not hold for the general combination of linear arith-
metic with uninterpreted functions.

We now set up a constraint system to characterize the weakest pre-condition
transformers RT[v], which transform conjunctions of equalities at the program
point v into the weakest pre-condition for their validity at program start. The
constraint system uses auxiliary transformers ST[v], which transform the post-
condition of a procedure q into the weakest pre-condition at the program point
v of the same procedure q.

[S1T] ST[rq] ⇒ Id

[S2T] ST[u] ⇒ [[s]]T ◦ ST[v] (u, s, v) an assignment edge
[S3T] ST[u] ⇒ ST[eq] ◦ ST[v] (u, q, v) a call edge

[R0T] RT[emain ] ⇒ Id

[R1T] RT[eq] ⇒ RT[u] (u, q, ) a call edge
[R2T] RT[v] ⇒ RT[u] ◦ [[s]]T (u, s, v) an assignment edge
[R3T] RT[v] ⇒ RT[u] ◦ ST[eq] (u, q, v) a call edge

Here, the ordering “⇒” on transformers f, g : E→ E is defined by f ⇒ g iff for all
conjunctions of equalities E, f(E)⇒ g(E). The greatest solution to the system
will be the weakest pre-condition transformers. We state this as a theorem.

Theorem 1. For every program point u, set of states S ⊆ S, and conjunction
of equalities E ∈ E,

S[u](S) |= E ⇐⇒ S |= ST[u](E) and R[u](S) |= E ⇐⇒ RT[u](E) = true

Proof. The identity and weakest pre-condition transformers for individual edges
are defined in a standard way. Relating the least fixed point of the system S with
the greatest fixed point of the system ST, we are only required to show that the
following conditions are satisfied:

f(S) ∪ g(S) |= E ⇐⇒ S |= fT(E) ∧ gT(E)

(f ◦ g)(S) |= E ⇐⇒ S |= (gT ◦ fT)(E).

These follow from the properties of weakest pre-condition transformers. The
second equivalence follows from an analogous fixed-point induction and the fact
that S |= E only if true⇒ E. ��

Example 3. In our example program, the weakest predicate transformers for
program points 2, 3 and 4 are given by the constraints:

RT[2]⇒ [0/x1] RT[2]⇒ RT[4]

RT[3]⇒ RT[2] ◦ [c.(x1)/a1] RT[4]⇒ RT[3] ◦ [x1 + 1/x1]

Using methods described below, we find that RT[2] maps the post-condition
a1 =̇ c.(−1 + x1) to the pre-condition a1 =̇ c.(−1). ��
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Solving such constraint systems requires effective computation of function com-
parisons, greatest lower bounds and compositions. Thus, we need an finite and
effective representation of these predicate transformers.

5 Finite Representation

Inspired by order-theory, let us call single address equalities ai =̇ adr and affine
equalities t =̇ 0 atomic. Let EA denote the set of atomic equalities. According
to Lemma 1, every conjunction has a canonical form, which is a conjunction
of atomic equalities. Hence, every transformer f : E → E, which is completely
distributive, i.e., preserves true and distributes over conjunctions, is uniquely
determined by its restriction f |EA to atomic equalities.

This observation, though, does not provide yet a finite representation of weak-
est pre-condition transformers, since the number of single equalities is still infi-
nite. The second idea, therefore, is not to track weakest pre-conditions for each
equality separately, but to consider generic equalities. Every generic equality
serves as a template which covers a range of equalities of similar form simulta-
neously.

In order to infer weakest pre-conditions for all affine equalities, we consider
the generic post-condition p ≡ p0 +p1x1 + · · ·+pkxk =̇ 0, where p0, . . . ,pk are
fresh variables not occurring in the program. The weakest pre-conditions for p
can be represented as conjunctions of equalities

k∑
i=0

ci0pi +
k∑

i=0

k∑
j=1

cijpixj =̇ 0 (5)

for constants cij ∈ Q.

Example 4. Since our running example has just one int variable, the generic
affine post-condition is is eaff ≡ p0 + p1x1 =̇ 0. The parametric pre-condition
for eaff w.r.t. the assignment x1 := x1 + 1 is then p0 + p1 + p1x1 =̇ 0. ��

A generic address post-condition is of the form ai =̇ a.s1. . . . .sr (for some
r ≤ d) where a is either an address constant in C or another address variable in
A, and each sl is either a field name or an indexing pattern pl0 + pl1x1 + · · ·+
plkxk. Weakest pre-conditions for such a generic address post-condition will be
conjunctions of parametric affine equalities and parametric address equalities.
The generic coefficients to be considered in the parametric affine equalities now
are elements from the set Pr = {pli | l ∈ [1, r], i ∈ [0, k]}. Thus, the affine
equalities are of the form:

c000 +
k∑

j=1

c00jxj +
r∑

l=1

k∑
i=0

cli0pli +
r∑

l=1

k∑
i=0

k∑
j=1

clijplixj =̇ 0 (6)

for constants clij ∈ Q. Also, the parametric address equalities will be address
equalities where index expressions are of the same form as left-hand sides in (6).
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Example 5. For the address variable a1, a generic post-condition is of the form
eadr ≡ a1 =̇ c.(p10 + p11x1). The parametric pre-condition for eadr w.r.t. the
assignment a1 := c.(x1) is given by c.(x1) =̇ c.(p10 + p11x1), whose canonical
form is −x1 + p10 + p11x1 =̇ 0. ��
The conjunction of parametric equalities forms a lattice Ed, which has the same
structure as the lattice E – except that the set of int variables is now extended
with the set of parameters pl0 and products plixj of parameters and int vari-
ables. The height of the complete lattice Ed therefore is bounded by O(d·k2+m).

In our application, generic post-conditions suffice to arrive at a finite specifi-
cation of weakest pre-condition transformers. Let T denote the set of well-typed
generic address equalities. Then the set T is finite and of cardinality O(m2 ·t ·d),
where t is the maximal size, i.e., number of fields, of a global data structure’s
type. This set T is complete in the sense that for any concrete atomic equality
e ∈ EA, there exists a substitution σ : Pd → Q and a generic post-condition
e′ ∈ T such that e = e′σ. Any function f : T → Ed can be extended to a com-
pletely distributive function ext (f) : E → E defined by (ext (f))(e) = (f(e′))σ
for all atomic equalities e = e′σ (e′ is a generic equality, σ a substitution).

We now show that the weakest predicate transformers that occur in our con-
straint system can indeed be obtained as extensions of functions from T → Ed.
In order to do so, we set up a new constraint system R� over functions from
T → Ed. This is obtained from the constraint system RT by replacing all op-
erations by their parametric counterparts. Thus, implication “⇒�” and greatest
lower bounds ∧� are now defined according to the domain Ed. Also, the transfer
functions for assignments are lifted to parametric equalities. It remains to define
composition ◦� for functions f �, g� : T → Ed.

First, we observe that every parametric equality can be obtained from one of
the generic post-conditions by a transformation σ of the parameters. Therefore
assume that e′ is a generic post-condition and g�(e′) = e1∧· · ·∧er where el = e′lσl

for generic post-conditions e′l and linear transformations σl. Then we define

(f � ◦� g�)(e′) = (f �(e′1))σ1 ∧ · · · ∧ (f �(e′r))σr .

If e′ is the generic affine equality, this amounts to computing the canonical form
of a conjunction of O(k4) parametric equalities. If e′ is a generic address equality,
the canonical form must be computed for a conjunction of O(m2) parametric
address equalities and O(d2k4) parametric affine equalities whose normalization
may at worst consume time O(m2 · d4 · k8).

Example 6. Let f = [[x1 := ?]]T and g = [[a1 := c.(x1)]]
T. We then compute the

composition (f ◦ g)(eadr ) as follows:

(f ◦ g)(eadr ) = f(−x1 + p10 + p11x1 =̇ 0)
= (f(eaff ))σ for σ = [p10/p0, (−1 + p11)/p1]
= ((p0 =̇ 0) ∧ (p0 + p1 =̇ 0))σ
= ((p0 =̇ 0) ∧ (p1 =̇ 0))σ = (p10 =̇ 0) ∧ (−1 + p11 =̇ 0)

This computation occurs during the analysis of our running example, because
the while-loop has the same effect as the non-deterministic assignment of f . ��
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Theorem 2. For any program point u, RT[u] = ext (R�[u]).

Proof. We proceed by fixpoint induction. A crucial step is to show that not only
“∧”, but also composition commutes with ext, i.e., that

ext (f) ◦ ext (g) = ext (f ◦� g)

To see that, we calculate:

(ext (f) ◦ ext (g))(e′σ) = ext (f)(ext (g)(e′σ) = ext (f)(g(e′))σ)
= ext (f)((

∧
e′iσi)σ) = ext (f)(

∧
e′i(σiσ))

=
∧

(f(e′i))(σiσ) = (
∧

(f(e′i))σi)σ
= ((f ◦� g)(e′))σ = (ext (f ◦� g))(e′σ)

where g(e′) =
∧

e′iσi as above. ��

Example 7. We can now compute the solution to the constraint system by fix-
point iteration starting from true. The computation stabilizes after three itera-
tions, giving the following pre-conditions for the address post-condition:

RT[2](eadr ) = (a1 =̇ c.(p10)) ∧ (p10 + p11 =̇ 0) ∧ (−1 + p11 =̇ 0)

RT[3](eadr ) = (p10 =̇ 0) ∧ (−1 + p11 =̇ 0)

RT[4](eadr ) = (p10 + p11 =̇ 0) ∧ (−1 + p11 =̇ 0)

For the affine post-condition eaff , the pre-condition (p0 =̇ 0) ∧ (p1 =̇ 0) is ob-
tained, meaning no non-trivial affine equalities hold at these points. ��

6 Computing All Valid Equalities

Given the weakest pre-condition transformer RT[v] for program point v, com-
puting all equalities which are valid at v then boils down to solving a suitable
inhomogeneous system of equations. We have:

Theorem 3. The equalities that hold at each program point can be computed in
polynomial time.

Proof. Let e′ denote a generic post-condition and e = e′σ an atomic equality
for some substitution σ of the parameters occurring in e′. By Theorem 1, e
holds at program point u iff RT[u](e) = true, which, by Theorem 2, means that
(R�[u](e′))σ = true. The latter means that R�[u](e′) does not contain nontrivial
address equalities, but is a conjunction of at most O(d ·k2) affine equalities t =̇ 0
where tσ =̇ 0 is valid for all values x ∈ Zk.

Assume that p′
1, . . . ,p

′
r are the parameters occurring in t, the affine combi-

nation t is of the form: t ≡ c00 +
∑k

i=1 (c0i +
∑r

l=1 clip′
l)xi for suitable cli ∈ Q.

Then tσ =̇ 0 is valid for all values x ∈ Zk iff c00 = 0 and σ is a solution of each
of the equations c0i +

∑r
l=1 clip′

l =̇ 0 (i = 1, . . . , k). We conclude that finding
all substitutions σ such that e′σ is valid at program point u can be reduced to



A Smooth Combination of Linear and Herbrand Equalities 655

solving a system of O(k · d · k2) = O(d · k3) inhomogeneous equations over Q
where the number of unknowns is bounded by d · (k + 1). The latter task can
be done with a polynomial number of arithmetic operations. By repeating this
procedure for every possible generic post-condition, we obtain a finite represen-
tation of all equalities which are valid at program point u. ��

Example 8. As we saw in Example 7, at all points in the loop the parametric pre-
condition for eaff has p0 = p1 = 0 as its solution. The parametric pre-condition
for the generic post-condition eadr , on the other hand, is given by:

RT[4](a1 =̇ c.(p10 + p11x1)) = (p10 + p11 =̇ 0) ∧ (−1 + p11 =̇ 0)

As no int-variables xi are involved here, this pre-condition is true iff p11 = 1
and p10 = −1. Therefore, the only non-trivial equality which holds at program
point 4 is a1 =̇ c.(−1 + x1). ��

To summarize, the set of all equalities, which hold at a given program point, can
be compactly represented by a polynomially sized set of triples 〈e, σ, V 〉 — each
consisting of a generic post-condition e together with one particular solution for
the conjunction of parametric affine pre-conditions of e and a basis V of the
vector space of solutions of the corresponding homogeneous system. Assuming
that the basis V is in (column) echelon form, we can determine if a given equality
holds at a certain program point in time O(d2 · k2).

7 Local Variables

All program variables have so far been considered global. Along the lines of [15],
we now extend the analysis to possibly recursive programs with local variables
as well. From the k integer variables, we consider the first k′ ≤ k variables
x1, . . . ,xk′ as local and the remaining ones as global. Similarly for pointers, the
first m′ ≤ m variables a1, . . . ,am′ denote local variables while the remaining
ones denote global pointer variables.

For passing of parameters, we adopt w.l.o.g. the convention that all locals of
the caller are passed by value into the locals of the callee. This enables us to
reason about equalities involving local variables of the caller.

We extend the concrete semantics with an extra operator H which transforms
the effect of a procedure body into the effect of a procedure call:

H(f)(S) = {〈(x1, . . . , xk′ , x′
k′+1, . . . , x

′
k), (a1, . . . , am′ , a′m′+1, . . . , a

′
m)〉 |

〈x, a〉 ∈ S, 〈x′, a′〉 ∈ f({〈x, a〉})}

The constraint system for computing weakest pre-conditions of procedure calls
is modified accordingly by introducing the operator HT:

[S1T] ST[rq ] ⇒ Id

[S2T] ST[u] ⇒ [[s]]T ◦ ST[v] (u, s, v) an assignment edge
[S3T] ST[u] ⇒ HT(ST[eq]) ◦ ST[v] (u, q, v) a call edge
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Here, the operator HT must be defined such that statement 1 of Theorem 1 holds
for the new constraint system. Given the concrete transformer f of a procedure
and the corresponding weakest pre-condition transformer fT, the following con-
dition must hold for all sets of states S and conjunctions of equalities E:

H(f)(S) |= E ⇐⇒ S |= HT(fT)(E)

Consider an arbitrary post-condition E for a procedure call to f . This post-
condition may not only speak about globals, but also about locals of the caller
as well as any local variable further down in the call-stack. All these locals,
however, are inaccessible during the execution of the procedure f and thus can
temporarily be considered as constants. In order to deal with these temporary
constants, we introduce place holders •τ for every possible type of local pointer
variables aj or constant addresses.

Accordingly, we consider the following set of parametric post-conditions E′:

(1) ai =̇ aj.s (2) ai =̇ •τ.s
(3) •τ =̇ ai.s (4) •τ1 =̇ •τ2.s

for global pointer variables ai, aj and type-compatible parametric sequences of
selectors s, where each parametric index is of the form pl0 +pl(k′+1)xk′+1 + · · ·+
plkxk. Furthermore, we consider the parametric affine post-condition:

(5) p0 + pk′+1xk′+1 + · · ·+ pkxk =̇ 0

for global variables xk′+1, . . . ,xk. Assume now that we are given the weakest
pre-conditions fT(E′) of the called procedure for all these post-conditions E′

speaking about global variables (and perhaps •τ ).
We now define the weakest pre-condition HT(fT)(E). In each case, we decom-

pose E = E′σ for a generic post-condition E′ of one of the types (1) through (5)
and a suitable substitution σ. Then, we define

HT(fT)(E) = (fT(E′))σ .

It only remains to explain the decomposition of E. We first consider a post-
condition E of the form ai =̇ aj.s for global variables ai, aj . Then E′ is of
the parametric post-condition of format (1). For every index expression sl =
t0 + t1x1 + · · ·+ tkxk in s, σ maps pl0 to the affine combination consisting of t0
together with all occurring multiples of locals, i.e., to t0 + t1x1 + · · ·+ tk′xk′ .

If E is of the form ai =̇ X.s where ai is a global variable and X either is
a local of the caller, a constant address or a place holder •τ all of the type τ ,
we choose E′ of the parametric format (2) and σ is constructed as before, but
moreover maps the place holder •τ in E′ to X .

The case where E is of the form X =̇ ai.s is treated analogously. In case
where E is of the form X1 =̇ X2.s and each Xi is a local of the caller, constant
address or place holder, then we choose the appropriate generic post-condition
E′ now of type (4). The substitution σ treats index expressions as before, but
now maps •τ1 to X1 and •τ2 to X2.
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Finally, if E is an affine equality t0 + t1x1 + · · ·+ tkxk =̇ 0, then we choose E′

to be of format (5) where the substitution σ maps p0 to t0 + t1x1 + · · ·+ tk′xk′ ,
and pi to ti for i > k′.

Example 9. Consider the post-condition a1 =̇ a2.(p10 + p11x1 + p12x2), where
a1, a2, and x1 are local, but x2 is global and may be changed during the pro-
cedure call. Assume that the callee only performs the statement x2 := ?. Since
the post-condition is of the type (4), we compute the pre-condition as follows:

[[x2 =̇ ?]]T(•τ1 =̇ •2.(p10 + p12x2)) =
(•τ1 =̇ •2.(p10)) ∧ (•τ1 =̇ •2.(p10 + p21)) = (•τ1 =̇ •2.(p10)) ∧ (p21 =̇ 0)

To obtain the weakest pre-condition of a1 =̇ a2.(p10 +p11x1 +p12x2), we apply
the substitution σ, which maps p10 to p10+p11x1 and replaces the place-holders
with the local address variables: a1 =̇ a2.(p10 + p11x1) ∧ p21 =̇ 0. ��

The second part of our analysis applies the weakest pre-condition transformers
of procedures, as defined through the first part of the constraint system, to
construct a constraint system for the weakest pre-condition transformers for
post-conditions at program points v:

[R0T] RT[emain ] ⇒ Id

[R1T] RT[eq] ⇒ RT[u] (u, q, ) a call edge
[R2T] RT[v] ⇒ RT[u] ◦ [[s]]T (u, s, v) an assignment edge
[R3T] RT[v] ⇒ RT[u] ◦ HT(ST[eq]) (u, q, v) a call edge

This time, however, the post-conditions for the weakest pre-condition trans-
former RT[v] for a program point of a procedure f need not use •-variables to
refer to variables deeper down in the call-stack. Instead, they may refer to the
locals of f . Accordingly, occurring transformers are described by their weakest
pre-conditions for the generic affine post-condition together with the generic ad-
dress post-conditions ai =̇ aj.s for local or global address variables ai, aj and
suitable selector sequences s.

8 Example Application: Race Detection

One common approach to data race analysis is to ensure the following condition
for every pair of accesses in the program: if the two access expressions may alias,
then the acquired lock expressions must alias [17]. We ensure this condition
by inferring access correlations using the must-equality analysis and associating
these correlations with may-alias equivalence classes, as we will illustrate through
the following example.

Example 10. Assume the address variables aacc and alock represent an access
expression and a lock expression that need to be correlated, and our must-alias
analysis provides the following information:

(aacc =̇ a1.data.(x1)) ∧ (alock =̇ a1.mutex.(x1))
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These equalities imply that the access to the data array of the structure pointed
to by a1 is protected by a corresponding element in the mutex array. ��

The access pattern we can infer in the above example depends on the information
we have about a1. If the analysis can infer that a1 is definitely equal to some
statically allocated structure c, a pattern for access to the elements of c is
obtained. Otherwise, may-alias analysis [7] is called upon to divide the set of
all pointer variables into equivalence classes. The simplest such approach, which
suffices for some applications [11], equates all pointers of the same type. Then our
method allows to infer access patterns for data structures of a given type. A more
refined analysis distinguishes heap objects depending also on their allocation
sites, in which case our analysis derives more refined patterns.

Note that must-equality information complements may-aliasing by ensuring
that aacc and alock are referring to the same object within the equivalence class
of a1. This is crucial in order to verify per-element locking schemes, where each
element in, e.g., a linked list has its own lock. Pratikakis et al. [20] describe a
technique based on existentially typed label-flow to address this issue with the
aid of programmer annotations; must-equality information allows one to infer
per-element correlations automatically.

9 Conclusion

We have presented a must-alias analysis which infers all equalities between address
expressions and can be proven to be valid w.r.t. the chosen abstraction. In this ab-
straction, conditional branching is replaced with non-deterministic branching and
pointers stored in the shared data-structures are not tracked. We indicated how
these equalities can be used to infer correlations between locks and accesses. Our
analysis infers relevant must-equality information also for dynamically allocated
data which combined with may-alias information allows one to infer access pat-
terns. A variant of this approach has been implemented in the Goblint data race
analyzer [23] and also extended by an accompanying may-alias analysis [21].

For simplicity, we have assumed that index expressions are evaluated over the
integral domain Z. Instead, we could have chosen Z2w , i.e., integers modulo a
suitable power of 2, by replacing the linear algebra methods for vector spaces of
affine equalities with the corresponding methods for modules over the principal
ideal ring Z2w [14]. However, if the programs to be analyzed only employ simple
forms of index expressions, it might be sufficient to replace tracking of affine
equalities with tracking of variable equalities alone [15].
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Abstract. The problem of enforcing bounded-time 2-phase recovery
in real-time programs is often necessitated by conflict between fault-
tolerance requirements and timing constraints. In this paper, we address
the problem of synthesizing two types of 2-phase recovery: relaxed and
graceful. Intuitively, relaxed 2-phase recovery requires that in the pres-
ence of faults, the program recovers to an acceptable behavior within
some time θ and recovers to ideal behavior within time δ. And, graceful
2-phase recovery allows us to capture a requirement that the time to
recover from faults is proportional to the perturbation caused by that
fault. We show that the problem of synthesizing relaxed bounded-time
2-phase recovery is NP-complete although a similar problem of graceful
2-phase recovery can be solved in polynomial-time both in the size of
the input program’s region graph. Finally, based on the results in this
paper, we argue that the requirement of intermediate recording of a fault
before reaching legitimate states can increase the complexity of adding
fault-tolerance substantially.

Keywords: Fault-tolerance, Real-time, Bounded-time recovery, Phased
recovery, Program synthesis, Program transformation.

1 Introduction

Achieving correctness is perhaps the most important aspect of using formal
methods in design and development of computing systems. Such correctness
turns out to be a fundamental element in gaining assurance about reliability and
robustness of safety/mission critical embedded systems. These systems are often
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real-time due to their controlling duties and integrated with physical processes
in hostile environments. Hence, time-predictability and fault-tolerance are two
desirable features of programs that operate in such systems. However, these
features have conflicting natures, making achieving and reasoning about their
correctness fairly complex.

One way to deal with this complexity is to design automated synthesis and
revision algorithms that build programs that are correct-by-construction. Al-
gorithmic synthesis of programs in the presence of an adversary has mostly
been addressed in the context of timed controller synthesis (e.g., [12,14,4,5]) and
game theory (e.g., [13,15]). In controller synthesis (respectively, game theory),
program and fault transitions can be modeled as controllable and uncontrollable
actions (respectively, in terms of two players). In both approaches, the objective
is to restrict the actions of a plant or player at each state through synthesizing
a controller or a wining strategy, such that the behavior of the entire system
always meets some safety and/or reachability conditions. However, the notion
of dependability and in particular fault-tolerance requires other functionalities
that are not typically addressed in controller synthesis and game theory. For in-
stance, fault-tolerance is concerned with bounded-time recovery, where a program
returns to its normal behavior when its state is perturbed due to the occurrence
of faults. In this context, a recovery mechanism is normally added to a program
so that it reacts to faults properly.

Although synthesis algorithms are known to be intractable, it has been shown
that their complexity can be overcome through:

– focusing on safety and liveness properties typically used in specifying systems
rather than considering any arbitrary specification,

– rigorous complexity analysis for each class of properties to identify bottle-
necks,

– devising intelligent heuristics that address complexity bottlenecks, and
– exploiting efficient implementation techniques.

By applying these principles, we have been able to synthesize distributed fault-
tolerant programs with reachable states of size 1060 and beyond [9,11], even
though the worst case complexity (NP-completeness in the state space) initially
seemed to be unfeasible to cope with in practice. In case of real-time dependable
systems, however, the problem is more complex, because of conflicting nature of
requirements and high complexity of decision procedures simultaneously.

In this paper, we focus on one aspect of the conflict between real-time con-
straints and fault-tolerance requirements. In particular, the fault-tolerance re-
quirement of the program may require that eventually the program recovers to
its legitimate states from where its subsequent behavior is ideal, i.e., one that
could occur in the absence of faults. Also, the real-time constraints may require
that the recovery to the ideal behavior be achieved quickly. When satisfying both
these requirements is not feasible, one approach is to ensure that the program
recovers quickly to an acceptable behavior and eventually recovers to its ideal
behavior. The recovery requirements for acceptable and ideal behavior can be
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specified in terms of a set of states Q and S respectively. Thus, the requirements
for a real-time fault-tolerant system can be viewed as a 2-phase recovery, where
the program eventually reaches Q within some time θ and eventually reaches S
in some time δ.

There are different variations for such 2-phase recovery problem. The scenario
discussed above can be expressed in terms of constraints of the form (¬S �→≤θ Q)
and (Q �→≤δ S), i.e., starting from any state in ¬S, the program first recovers
to Q (acceptable behavior) in time θ and subsequently from each state in Q, it
recovers to states in S (ideal behavior) in time δ. We denote this variation as
strict 2-phase recovery.

Another variation is (¬S �→≤θ (Q − S)) and (Q �→≤δ S), i.e., the program
first recovers to (Q− S) in time θ and subsequently from each state in Q, it re-
covers to S in time δ. We denote this variation as ordered-strict 2-phase recovery.
One motivation for such a requirement is that we first record the occurrence of
the fault before ideal behavior can resume. Thus, the program behavior while
recording the fault (e.g., notifying the user) is strictly different from its ideal
behavior.

Third possible variation is (¬S �→≤θ Q) and (¬S �→≤δ S), i.e., the program
recovers to Q (acceptable behavior) in time θ and it recovers to states in S
(ideal behavior) in time δ. We denote this variation as relaxed 2-phase recovery.
One motivation for such requirements is to provide a tradeoff for the designer.
In particular, if one can obtain a quick recovery to Q, then one can utilize the
remaining time budget in recovering to S. Observe that such tradeoff is not
possible in strict 2-phase recovery.

Fourth possible variation is (Q �→≤δ S) and (¬S �→≤θ S), i.e., if the program
is perturbed to Q, then it recovers to S in time δ and if the program is perturbed
to any state, then it recovers to a state in S in time θ. We denote this variation
as graceful 2-phase recovery. One motivation for such requirements is a scenario
where (1) faults that perturb the program to Q only are more common and,
hence, a quick recovery (small δ) is desirable in restoring the ideal behavior, and
(2) faults that perturb the program to ¬Q are rare and, hence, slow recovery
(large θ) is permissible.

In [10], we introduced the notion of bounded-time 2-phase recovery in a general
sense. We also addressed the complexity of synthesizing fault-tolerant real-time
programs that mask the occurrence of faults and provide strict and ordered-strict
2-phase recovery. In this paper, we focus on synthesis of relaxed and graceful
2-phase recovery. The main contributions of the paper are as follows:

– We formally define and classify different types of bounded-time 2-phase re-
covery in the context of fault-tolerant real-time programs.

– Regarding synthesizing relaxed 2-phase recovery, we show that
• the general problem is NP-complete,
• the problem can be solved in polynomial-time, if S ⊆ Q and it is required

that Q be closed, i.e., the program cannot begin in a state in Q and reach
a state outside Q, and
• the problem remains NP-complete, if S ⊆ Q but Q is not required to be

closed.
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– Regarding synthesizing graceful 2-phase recovery, we show that the problem
can always be solved in polynomial-time.

We emphasize that all complexity results are in the size of the input program’s
region graph.

Organization of the Paper. The rest of the paper is organized as follows.
Section 2 is dedicated to define real-time programs and specifications. In Section
3, we formally define the different variations of 2-phase recovery. In Section
4, we define the problem statement for synthesizing 2-phase recovery. Section 5
presents our results on the complexity of synthesis of relaxed and graceful 2-phase
recovery. Finally, we conclude in Section 6.

2 Real-Time Programs and Specifications

2.1 Real-Time Program

In our framework, real-time programs are specified in terms of their state space
and their transitions [3,2]. Let V = {v1, v2 · · · vn}, n ≥ 1, be a finite set of discrete
variables and X = {x1, x2 · · ·xm}, m ≥ 1, be a finite set of clock variables.
Each discrete variable vi, 1 ≤ i ≤ n, is associated with a finite domain Di

of values. Each clock variable xj , 1 ≤ j ≤ m, ranges over nonnegative real
numbers (denoted R≥0). A location is a function that maps discrete variables to
a value from their respective domain. A clock constraint over the set X of clock
variables is a Boolean combination of formulae of the form x 3 c or x − y 3 c,
where x, y ∈ X , c ∈ Z≥0, and 3 is either < or ≤. We denote the set of all clock
constraints over X by Φ(X). A clock valuation is a function ν : X → R≥0 that
assigns a real value to each clock variable.

For τ ∈ R≥0, we write ν + τ to denote ν(x) + τ for every clock variable x
in X . Also, for λ ⊆ X , ν[λ := 0] denotes the clock valuation that assigns 0 to
each x ∈ λ and agrees with ν over the rest of the clock variables in X . A state
(denoted σ) is a pair (s, ν), where s is a location and ν is a clock valuation for
X . Let u be a (discrete or clock) variable and σ be a state. We denote the value
of u in state σ by u(σ). A transition is an ordered pair (σ0, σ1), where σ0 and
σ1 are two states. Transitions are classified into two types:

– Immediate transitions: (s0, ν) → (s1, ν[λ := 0]), where s0 and s1 are two
locations, ν is a clock valuation, and λ is a set of clock variables, where
λ ⊆ X .

– Delay transitions: (s, ν) → (s, ν + δ), where s is a location, ν is a clock
valuation, and δ ∈ R≥0 is a time duration. Note that a delay transition
only advances time and does not change the location. We denote a delay
transition of duration δ at state σ by (σ, δ).

Thus, if ψ is a set of transitions, we let ψs and ψd denote the set of immediate
and delay transitions in ψ, respectively.
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Definition 1 (real-time program). A real-time program P is a tuple
〈SP , ψP〉, where SP is the state space (i.e., the set of all possible states), and ψP
is a set of transitions such that ψP ⊆ SP × SP .

Definition 2 (state predicate). Let P = 〈SP , ψP〉 be a real-time program. A
state predicate S of program P is any subset of SP , such that if ϕ is a constraint
involving clock variables in X , where S ⇒ ϕ, then ϕ ∈ Φ(X), i.e., clock variables
are only compared with nonnegative integers.

By closure of a state predicate S in a set ψP of transitions, we mean that (1)
if an immediate transition originates in S then it must terminate in S, and (2)
if a delay transition with duration δ originates in S then it must remain in S
continuously, i.e., intermediate states where the delay is in interval (0, δ] are all
in S.

Definition 3 (closure). A state predicate S is closed in programP = 〈SP , ψP〉
(or briefly ψP) iff

(∀(σ0, σ1) ∈ ψs
P : ((σ0 ∈ S)⇒ (σ1 ∈ S))) ∧

(∀(σ, δ) ∈ ψd
P : ((σ ∈ S)⇒ ∀ε | ((ε ∈ R≥0) ∧ (ε ≤ δ)) : σ + ε ∈ S)).

Definition 4 (computation). A computation of P = 〈SP , ψP〉 (or briefly ψP)
is a finite or infinite timed state sequence of the form:

σ = (σ0, τ0)→ (σ1, τ1)→ · · ·

if the following conditions are satisfied: (1) ∀j ∈ Z≥0 : (σj , σj+1) ∈ ψP , (2) if σ
reaches a terminating state σf where there does not exist a state σ such that
(σf , σ) ∈ ψs

P , then we let σ stutter at σf , but advance time indefinitely, and (3)
the sequence τ0, τ1, · · · (called the global time), where τi ∈ R≥0 for all i ∈ Z≥0,
satisfies the following constraints:

1. (monotonicity) for all i ∈ Z≥0, τi ≤ τi+1,
2. (divergence) if σ is infinite, for all t ∈ R≥0, there exists j ∈ Z≥0 such that

τj ≥ t, and
3. (consistency) for all i ∈ Z≥0, (1) if (σi, σi+1) is a delay transition (σi, δ) in

ψd
P then τi+1 − τi = δ, and (2) if (σi, σi+1) is an immediate transition in ψs

P
then τi = τi+1.

We distinguish between a terminating computation and a deadlocked finite com-
putation. Precisely, when a computation σ terminates in state σf , we include
the delay transitions (σf , δ) in ψd

P for all δ ∈ R≥0, i.e., σ can be extended to an
infinite computation by advancing time arbitrarily. On the other hand, if there
exists a state σd, such that there is no outgoing (delay or immediate) transition
from σd then σd is a deadlock state.
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2.2 Specification

Let P = 〈SP , ψP〉 be a program. A specification (or property), denoted SPEC ,
for P is a set of infinite computations of the form (σ0, τ0)→ (σ1, τ1)→ · · · where
σi ∈ SP for all i ∈ Z≥0. Following Alpern and Schneider [1] and Henzinger [17],
we require that all computations in SPEC satisfy time-monotonicity and diver-
gence. We now define what it means for a program to satisfy a specification.

Definition 5 (satisfies). Let P = 〈SP , ψP〉 be a program, S be a state pred-
icate, and SPEC be a specification for P . We write P |=S SPEC and say that
P satisfies SPEC from S iff (1) S is closed in ψP , and (2) every computation of
P that starts from S is in SPEC .

Definition 6 (invariant). Let P = 〈SP , ψP〉 be a program, S be a state pred-
icate, and SPEC be a specification for P . If P |=S SPEC and S �= {}, we say
that S is an invariant of P for SPEC .

Whenever the specification is clear from the context, we will omit it; thus, “S
is an invariant of P” abbreviates “S is an invariant of P for SPEC ”. Note that
Definition 5 introduces the notion of satisfaction with respect to infinite com-
putations. In case of finite computations, we characterize them by determining
whether they can be extended to an infinite computation in the specification.

Definition 7 (maintains). We say that program P maintains SPEC from S
iff (1) S is closed in ψP , and (2) for all computation prefixes α of P that start
in S, there exists a computation suffix β such that αβ ∈ SPEC . We say that P
violates SPEC from S iff it is not the case that P maintains SPEC from S.

We note that if P satisfies SPEC from S then P maintains SPEC from S as well,
but the reverse direction does not always hold. We, in particular, introduce the
notion of maintains for computations that a (fault-intolerant) program cannot
produce, but the computation can be extended to one that is in SPEC by adding
recovery computation suffixes, i.e., α may be a computation prefix that leaves
S, but β brings the program back to S (see Section 3 for details).
Specifying timing constraints. In order to express time-related behaviors
of real-time programs (e.g., deadlines and recovery time), we focus on a standard
property typically used in real-time computing known as the bounded response
property. A bounded response property, denoted P �→≤δ Q where P and Q are
two state predicates and δ ∈ Z≥0, is the set of all computations (σ0, τ0) →
(σ1, τ1) → · · · in which, for all i ≥ 0, if σi ∈ P then there exists j, j ≥ i, such
that (1) σj ∈ Q, and (2) τj − τi ≤ δ, i.e., it is always the case that a state in P
is followed by a state in Q within δ time units.

The specifications considered in this paper are an intersection of a safety
specification and a liveness specification [1,17]. In this paper, we consider a
special case where safety specification is characterized by a set of bad immediate
transitions and a set of bounded response properties.
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Definition 8 (safety specification). Let SPEC be a specification. The safety
specification of SPEC is the union of the sets SPEC bt and SPEC br defined as
follows:

1. (timing-independent safety) Let SPEC bt be a set of immediate bad transi-
tions. We denote the specification whose computations have no transition in
SPEC bt by SPEC bt.

2. (timing constraints) We denote SPEC br by the conjunction
∧m

i=0(Pi �→≤δi

Qi), for state predicates Pi and Qi, and, response times δi.

Throughout the paper, SPEC br is meant to prescribe how a program should
carry out bounded-time phased recovery to its normal behavior after the occur-
rence of faults. We formally define the notion of recovery in Section 3.

Definition 9 (liveness specification). A liveness specification of SPEC is a
set of computations that meets the following condition: for each finite computa-
tion α, there exists a computation β such that αβ ∈ SPEC .

Remark 1. In our synthesis problem in Section 4, we begin with an initial pro-
gram that satisfies its specification (including the liveness specification). We will
show that our synthesis techniques preserve the liveness specification. Hence,
the liveness specification need not be specified explicitly.

3 Fault Model and Fault-Tolerance

3.1 Fault Model

The faults that a program is subject to are systematically represented by tran-
sitions. A class of faults f for program P = 〈SP , ψP〉 is a subset of immediate
and delay transitions of the set SP ×SP . We use ψP []f to denote the transitions
obtained by taking the union of the transitions in ψP and the transitions in f .
We emphasize that such representation is possible for different types of faults
(e.g., stuck-at, crash, fail-stop, timing, performance, Byzantine, message loss,
etc.), nature of the faults (permanent, transient, or intermittent), or the ability
of the program to observe the effects of the faults.

Definition 10 (fault-span). We say that a state predicate T is an f -span
(read as fault-span) of P = 〈SP , ψP〉 from S iff the following conditions are
satisfied: (1) S ⊆ T , and (2) T is closed in ψP []f .

Observe that for all computations of P = 〈SP , ψP〉 that start from states where
S is true, T is a boundary in the state space of P up to which (but not beyond
which) the state of P may be perturbed by the occurrence of the transitions in f .
Subsequently, as we defined the computations of P , one can define computations
of program P in the presence of faults f by simply substituting ψP with ψP []f
in Definition 4.
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3.2 Phased Recovery and Fault-Tolerance

Now, we define the different types of 2-phase recovery properties discussed in
Section 1.

Definition 11 (2-phase recovery). Let P = 〈SP , ψP〉 be a real-time program
with invariant S, Q be an arbitrary intermediate recovery predicate, f be a set of
faults, and SPEC be a specification (as defined in Definitions 8 and 9). We say
that P provides (ordered-strict, strict, relaxed or graceful) 2-phase recovery from
S and Q with recovery times δ, θ ∈ Z≥0, respectively, iff 〈SP , ψP []f〉 maintains
SPEC br ≡ (¬S �→≤θ Q1) ∧ (Q2 �→≤δ S) from S, where, depending upon the
type of the desired 2-phase recovery, Q1 and Q2 are instantiated as follows:

ordered-strict strict relaxed graceful

Q1 Q− S Q Q S
Q2 Q Q ¬S Q

We call θ and δ intermediate recovery time and recovery time, respectively.

Definition 12 (fault-tolerance). Let P = 〈SP , ψP〉 be a real-time program
with invariant S, f be a set of faults, and SPEC be a specification as defined
in Definitions 8 and 9. We say that P is f -tolerant to SPEC from S, iff (1)
P |=S SPEC , and (2) there exists T such that T is an f -span of P from S and
〈SP , ψP []f〉 maintains SPEC from T .

Notation. Whenever the specification SPEC and the invariant S are clear from
the context, we omit them; thus, “f -tolerant” abbreviates “f -tolerant to SPEC
from S”.

4 Problem Statement

Given are a fault-intolerant real-time program P = 〈SP , ψP〉, its invariant S, a
set f of faults, and a specification SPEC such that P |=S SPEC . Our goal is to
synthesize a real-time program P ′ = 〈SP′ , ψP′〉 with invariant S′ such that P ′ is
f -tolerant to SPEC from S′. We require that our synthesis methods obtain P ′

from P by adding fault-tolerance to P without introducing new behaviors in the
absence of faults. To this end, we first define the notion of projection. Projection
of a set ψP of transitions on state predicate S consists of immediate transitions
of ψs

P that start in S and end in S, and delay transitions of ψd
P that start and

remain in S continuously.

Definition 13 (projection). Projection of a set ψ of transitions on a state
predicate S (denoted ψ|S) is the following set of transitions:

ψ|S = {(σ0, σ1) ∈ ψs | σ0, σ1 ∈ S} ∪
{(σ, δ) ∈ ψd | σ ∈ S ∧ (∀ε | ((ε ∈ R≥0) ∧ (ε ≤ δ)) : σ + ε ∈ S)}.
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Since meeting timing constraints in the presence of faults requires time pre-
dictability, we let our synthesis methods incorporate a finite set Y of new
clock variables. We denote the set of states obtained by abstracting the clock
variables in Y from a state predicate U by U\Y . Likewise, if ψ is a set of
transitions, we denote the set of transitions obtained by abstracting the clock
variables in Y by ψP\Y . Now, observe that in the absence of faults, if S′ contains
states that are not in S then P ′ may include computations that start outside
S. Hence, we require that (S′\Y ) ⊆ S. Moreover, if ψ

′
P |S′ contains a transition

that is not in ψP |S′ then in the absence of faults, P ′ can exhibit computa-
tions that do not correspond to computations of P . Therefore, we require that
(ψP′\Y )|(S′\Y ) ⊆ ψP |(S′\Y ).

Problem Statement 1. Given a program P = 〈SP , ψP〉, invariant S, specifica-
tion SPEC , and set f of faults such that P |=S SPEC , identify P ′ = 〈SP′ , ψP′〉
and S′ such that:

(C1) SP′\Y = SP , where Y is a finite set of new clock variables,
(C2) (S′\Y ) ⊆ S,
(C3) (ψP′\Y ) | (S′\Y ) ⊆ ψP |(S′\Y ), and
(C4) P ′ is f -tolerant to SPEC from S′.

Note that the above problem statement can be instantiated for all four types of
2-phase recovery. In this paper, we focus on relaxed and graceful 2-phase recovery.
Hence, we instantiate the problem statement with these two types and whenever
it is clear from the context, for brevity, we omit the instantiation.

Notice that conditions C1..C3 in Problem Statement 1 precisely express the
notion of behavior restriction (also called language inclusion) used in controller
synthesis and game theory. Moreover, constraint C4 implicitly implies that the
synthesized program is not allowed to exhibit new finite computations, which
is known as the non-blocking condition. It is easy to observe that unlike con-
troller synthesis problems, our notion of maintains (cf. Definition 7) embedded
in condition C4 allows the output program to exhibit recovery computations
that input program does not have.

5 Synthesizing Relaxed and Graceful 2-Phase Recovery

In this section, first, in Subsection 5.1, we show that the problem of synthesiz-
ing relaxed 2-phase recovery is NP-complete. Then, in Subsection 5.2, we show
that it can be solved in polynomial-time if Q is required to be closed in the
synthesized program. Subsequently, we interpret this result and identify its ef-
fect in Subsection 5.3. We present our polynomial algorithm for graceful 2-phase
recovery in Subsection 5.4. Finally, we consider whether there are other types of
2-phase recovery instances in Subsection 5.5.
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5.1 Complexity of Synthesizing Relaxed 2-Phase Recovery

In this section, we show that, in general, the problem of synthesizing fault-
tolerant real-time programs that provide relaxed 2-phase recovery is NP-complete
in the size of locations of the given fault-intolerant real-time program.
Instance. A real-time program P = 〈SP , ψP〉 with invariant S, a set of faults f ,
and a specification SPEC , such that P |=S SPEC , where SPEC br ≡ (¬S �→≤θ

Q) ∧ (¬S �→≤δ S) for state predicate Q and δ, θ ∈ Z≥0.
The decision problem (R2P). Does there exist an f -tolerant program P ′ =
〈SP′ , ψP′〉 with invariant S′ such that P ′ and S′ meet the constraints of Problem
Statement 1 when instantiated with relaxed 2-phase recovery?

We show that the R2P problem is NP-complete by reducing the 2-path problem
[16,6] to R2P.

Theorem 1. The problem of transforming a fault-intolerant real-time program
into a fault-tolerant program that provides relaxed 2-phased recovery is NP-
complete in the size of locations of the fault-intolerant program.

Corollary 1. The problem of transforming a fault-intolerant real-time program
into a fault-tolerant program that provides relaxed 2-phased recovery isNP-complete
in the size of locations of the fault-intolerant program even if S ⊆ Q.

5.2 Synthesizing Relaxed 2-Phase Recovery with Closure of Q

In this section, we show that if the intermediate predicate Q is required to be
closed in the synthesized program, then the problem of synthesizing relaxed 2-
phase recovery can be solved in polynomial time in the size of the time-abstract
bisimulation of the input program. Towards this end, we propose the algorithm
Add RelaxedPhasedRecovery .

Assumption 1. For simplicity of presentation, we assume that the number
of fault occurrences in any computation is at most 1. Note that the proof of
Theorem 1 is valid even with this assumption. In [8], we have shown that if
multiple faults occur within a computation, for a given state, one can compute
the maximum time required to reach a state predicate.

Next, we describe our algorithm Add RelaxedPhasedRecovery:

– (Step 1: Initialization). Using the technique described above from [2], we
obtain the region graph, R(P), for the input program by using the routine
ConstructRegionGraph (Line 1). Vertices of R(P) (denoted Sr

P) are regions.
Edges of R(P) (denoted ψr

P) are of the form (s0, ρ0)→ (s1, ρ1) iff for some
clock valuations ν0 ∈ ρ0 and ν1 ∈ ρ1, (s0, ν0) → (s1, ν1) is a transitions
in ψP . Likewise, we convert state predicates and sets of transitions into
corresponding region predicates and sets of edges. For example, Sr denotes
the region predicate obtained from input S, and it is obtained as Sr =
{(s, ρ) | ∃(s, ν) : ((s, ν) ∈ S ∧ ν ∈ ρ)}.



670 B. Bonakdarpour and S.S. Kulkarni

Algorithm 1. Add RelaxedPhasedRecovery
Input: A real-time program P = 〈SP , ψP〉 with invariant S, fault transitions f , bad transitions

SPEC bt, and SPEC br ≡ (¬S �→≤θ Q) ∧ (¬S �→≤δ S), where Q is an intermediate recovery
predicate, such that S ⊆ Q.

Output: If successful, a fault-tolerant real-time program P′ = 〈SP′ , ψP′〉 and invariant S′ such

that 〈SP , ψ
′
P []f〉 |=S′ SPEC br and Q is closed in ψP′ .

1: 〈Sr
P , ψr

P〉, Sr
1 , Qr , fr, SPEC r

bt := ConstructRegionGraph(〈SP , ψP〉, S, Q, f , SPEC bt);
2: ms := {r0 | ∃r1, r2 · · · rn : (∀j | 0≤j <n : (rj , rj+1) ∈ fr) ∧ (rn−1, rn) ∈ SPEC r

bt};
3: mt := {(r0, r1) ∈ ψr

P | (r1 ∈ ms) ∨ ((r0, r1) ∈ SPEC r
bt)};

4: T r
1 := Sr

P − ms;
5: repeat
6: T r

2 , Sr
2 := T r

1 , Sr
1 ;

7: ψr
P1

:= ψr
P |Sr

1 ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (T r
1 − Qr) ∧ (s1, ρ1) ∈ T r

1 ∧
∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} ∪

{((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (Qr − Sr
1 ) ∧ (s1, ρ1) ∈ Qr ∧

∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} − mt;
8: ψr

P1
, ns := Add BoundedResponse(〈Sr

P, ψr
P1

〉, Qr − Sr, Sr, δ);
9: T r

1 := T r
1 − ns;

10: ψr
P1

, ns := transform (Add BoundedResponse(transform(〈Sr
P , ψr

P1
〉), T r

1 − Qr , Qr, θ));
11: T r

1 , Qr := T r
1 − ns, Qr − ns;

12: while (∃r0, r1 : r0∈T r
1 ∧ r1 	∈T r

1 ∧ (r0, r1)∈fr) do
13: T r

1 := T r
1 − {r0};

14: end while
15: while (∃r0∈ (Sr

1 ∩ T r
1 ) : (∀r1 | (r1 	= r0 ∧ r1 ∈ Sr

1) : (r0, r1) 	∈ ψr
P1

)) do
16: Sr

1 := Sr
1 − {r0};

17: end while
18: if (Sr

1 = {} ∨ T r
1 = {}) then

19: print ‘‘no solution to relaxed 2-phase recovery exists’’; exit;
20: end if
21: until (T1 = T2 ∧ S1 = S2)
22: 〈SP′ , ψP′ 〉, S′, T ′ := ConstructRealTimeProgram(〈Sr

P, ψr
P1

〉, Sr
1 , T r

1 );
23: return 〈SP′ , ψP′ 〉, S′, T ′;

In order to ensure that the synthesized program does not violate timing-
independent safety, we identify the set ms of regions from where a computa-
tion can violate SPEC bt by the occurrence of faults alone (Line 2). Clearly,
the program should not reach a region in ms . Hence, we remove (Line 4)
ms from the region predicate T r

1 , which is used to compute the fault-span of
the program being synthesized. The set of edges that should not be included
in the synthesized program, mt , consists of edges that reach ms and the
edges in SPEC r

bt. These edges are removed while constructing the possible
program transitions (Line 7).

– (Step 2: Adding (Q �→≤δ S) ). In this step, we first recompute the set
ψP1

of program edges (Line 7) that could potentially be used during phased
recovery in the synthesized program. Towards this end, we partition the
edges based on their originating states: If an edge originates from a state in
Sr

1 (estimated invariant of the synthesized program), then by constraint C3
of Problem Statement 1, the edge must be included in the original program.
If the edge originates in a region in Qr

1−Sr
1 then due to closure requirement

of Q, it must end in Qr
1. And, if the edge originates in a region in T r

1−Qr
1 then

due to closure requirement of fault-span, it must end in T r
1 . Furthermore,

the edges must meet the time monotonicity condition and not present in the
set mt . It is straightforward to observe that the edges computed on Line 7
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must be a superset of the edges in a program that satisfies constraints of
Problem Statement 1.
We use the program constructed on Line 7 and invoke the procedure
Add BoundedResponse to add (Q �→≤δ S). Add BoundedResponse (from [7])
adds a clock variable, say t1, which gets reset when Q− S becomes true. It
computes a shortest path from every region in Qr

1 − Sr
1 to some region in

Sr
1 . If the delay on this path is less than or equal to δ, it includes that path

in the synthesized program. If the delay is more than δ then it includes the
corresponding region in Qr

1 − Sr
1 in ns. It follows that regions in ns cannot

be included in the synthesized program. Hence, we remove ns from T r
1 and

Qr on Lines 9 and 11, respectively. Add BoundedResponse can also add ad-
ditional paths whose length is larger than that of the shortest paths but less
than δ. However, for relaxed 2-phase recovery, addition of such additional
paths needs to be performed after adding the second timing constraint in
Line 10.

– (Step 3: Adding (¬S �→≤γ Q) ). For each region r in Qr, we identify wt(r)
that denotes the length of the path from r to a region in Sr. Next, we add
the property (¬S �→≤γ Q), where the value of γ depends upon the exact
state reached in Q. Since we need to ensure (¬S �→≤θ Q), γ must be less
than θ. And, since we need to ensure (¬S �→≤δ S), the time to reach a region
r in Qr must be less than δ − wt(r).
To achieve this with Add BoundedResponse, we transform the given region
graph by the function transform , where we replace each region r in Qr by
r1 (that is outside Qr) and r2 (that is in Qr) such that there is an edge
from r1 to r2. All incoming edges from T r

1 − Qr to r now reach r1. All
other edges (edges reaching r from another state in Qr and outgoing edges
from r) are connected to r2. The weight of the edge from r1 to r2 is set
to max(0, θ + wt(r) − δ). Now, we call Add BoundedResponse add (T1 −
Q �→≤θ Q). Notice that the transformation of the region graph along with
invocation of Add BoundedResponse (Line 10) ensures that any computation
of the synthesized program that that starts from a state σ0 in ¬S and reaches
a state σ1 in Q− S within θ still has sufficient time to reach a state σ2 in S
such that the overall delay between σ0 and σ2 is less than δ. In other words,
the output program will satisfy (T1−Q �→≤δ S) no matter what path it takes
to achieve 2-phase recovery. We now collapse region r1 and r2 (created by
transform) to obtain region r. We use transform to denote such collapsing.

– (Step 4: Repeat if needed or construct synthesized program). Since we remove
some regions from T r

1 , we ensure closure of T r
1 in f by the loop on Lines 12-

14. Furthermore, due to constraint C4 of the problem statement, Sr
1 cannot

have deadlock regions from where there are no outgoing edges. Hence, on
Lines 15-17, we remove such deadlocks. If this removal causes Sr

1 or T r
1 to

be an empty set then the algorithm declares failure (Line 19).
Since removal of regions from Sr

1 or T r
1 can potentially affect the bounded

response properties added on Lines 8 and 10, Steps 2 and 3 may have to be
repeated. If no regions are removed (i.e., we reach a fixpoint), then we con-
struct the corresponding real-time program P ′ = 〈SP′ , ψP′〉 on Line 22. Since
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the construction of the region graph is a bisimulation of the corresponding
real-time program, such reverse transformation is possible.

Theorem 2. The Algorithm Add RelaxedPhasedRecovery is sound, i.e., the
synthesized program satisfies the constraints of Problem Statement 1, and com-
plete, i.e., the algorithm finds a fault-tolerant program provided one exists.

5.3 Interpretation of Closure of Q

One main observation from the results in Subsections 5.1 and 5.2 is that the
requirement of ‘closure of Q’, where Q is the intermediate recovery predicate,
appears to play a crucial role in reducing the complexity. Thus, one may pose
questions on the intuitive implication of this requirement in practice. There are
two ways of characterizing the intermediate recovery predicate:

– One characterization is that predicate Q identifies an acceptable behavior
of the program. In this case, it is expected that once the program starts
exhibiting acceptable behavior, it continues to exhibit acceptable (or ideal)
behavior in future. In such a characterization, closure of Q is satisfied.

– Another characterization is that the predicate Q identifies a special behavior
that does not occur in the absence of faults. This special behavior can include
notification or recording of the fault, suspension of normal operation for a
certain duration, etc. Thus, in such a characterization, the program reaches
Q, then leaves Q and eventually starts exhibiting its ideal behavior. In such
a characterization, closure of Q is not satisfied.

The results in this paper shows that the complexity of the former characteriza-
tion is significantly less than the latter. In other words, requiring that faults be
recorded causes a significant growth in the complexity.

5.4 Complexity of Synthesizing Graceful 2-Phase Recovery

We present a somewhat counter-intuitive result: a sound and complete solution
to the Problem Statement 1 when instantiated for graceful 2-phase recovery.
This algorithm also requires Assumption 1 from Subsection 5.2. Without loss
of generality, we assume that δ ≤ θ. If δ > θ, then graceful 2-phase recovery
corresponds to the requirement (¬S �→≤θ S). We now describe the algorithm.

– (Step 1: Initialization). This step is identical to that in Algorithm 1 and it
constructs the region graph R(P).

– (Step 2: Adding (Q �→≤δ S) ). In this step, we add recovery paths to R(P)
so that R(P) satisfies (Q �→≤δ S). The set of edges used in this step (Line 7)
differs from the corresponding step in Add RelaxedPhasedRecovery. In par-
ticular, if an edge originates in Qr

1, it need not terminate in Qr
1. This is

due to the fact that Q is not necessarily closed in graceful 2-phase recovery.
Thus, the transitions computed for ψP1

of program edges are as specified on
Line 7.
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Algorithm 2. Add GracefulPhasedRecovery
Input: A real-time program P = 〈SP , ψP〉 with invariant S, fault transitions f , bad transitions

SPEC bt, and SPEC br ≡ (¬S �→≤θ S) ∧ (¬Q �→≤δ S), where Q is an intermediate recovery
predicate, such that S ⊆ Q.

Output: If successful, a fault-tolerant real-time program P′ = 〈SP′ , ψP′〉 and invariant S′ such

that 〈SP , ψ
′
P []f〉 |=S′ SPEC br.

// This algorithm is obtained by changing the following lines from Algorithm 1
7 : ψr

P1
:= ψr

P |Sr
1 ∪ {((s0, ρ0), (s1, ρ1)) | (s0, ρ0) ∈ (T r

1 − Sr) ∧ (s1, ρ1) ∈ T r
1 ∧

∃ρ2 | ρ2 is a time-successor of ρ0 : (∃λ ⊆ X : ρ1 = ρ2[λ := 0])} − mt;
10 : ψr

P1
, ns := Add BoundedResponse((〈Sr

P, ψr
P1

〉), T r − Sr
1 , Sr

1 , θ);

After adding recovery edges, we invoke the procedure Add BoundedResponse
(Line 8) with parameters Qr−Sr, Sr, and δ to ensure that R(P) indeed satis-
fies the bounded response property Q �→≤δ S. Since the value of ns returned
by Add BoundedResponse indicates that there does not exist a computation
prefix that maintains the corresponding bounded response property from the
regions in ns, in Line 9, the algorithm removes ns from T r

1 .
– (Step 3: Adding (¬S �→≤θ S) ). This task is achieved by calling

Add BoundedResponse, where from each state in ¬S, we add a shortest path
from that state to a state in S. Note that the paths from states in Q have a
delay of at most δ. If such a path does not exist from a state in Q then, in
Step 2, that state would have been included in ns and, hence, removed from
T r

1 . While the addition of the second bounded response property is possible
for graceful 2-phase recovery, for reasons discussed after Theorem 3, it is not
possible for relaxed 2-phase recovery.

– (Step 4 ). This step is identical to that in Algorithm 1.

Theorem 3. The Algorithm Add GracefulPhasedRecovery is sound and com-
plete.

Next, we discuss the main the main reason that permits solution of graceful
2-phase recovery be in polynomial-time without closure of Q, but causes the
addition of relaxed 2-phase recovery to be NP-complete. Observe that in Line 10
in Add RelaxedPhasedRecovery, we added recovery paths from states in T1 to
states in Q. Without closure property of Q, the paths added for
Add RelaxedPhasedRecovery can create cycles with paths added from Q to S.
Such cycles outside S prevent the program from recovering to the invariant
predicate within the required timing constraint. To the contrary, in Line 10
in Add GracefulPhasedRecovery, we added recovery paths from states in T1 to
states in S. These paths cannot create cycles with paths added from Q − S.
Moreover, the paths also do not increase the delay in recovering from Q to S.
For this reason, the problem of Add GracefulPhasedRecovery could be solved in
polynomial-time.
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5.5 Other Types of 2-Phase Recovery

Let us consider Definition 11 closely. Interesting possible values for Q1 are Q,
S and Q − S and interesting possible values for Q2 are ¬S and Q. Thus, the
different combinations for 2-phase recovery are as shown in the table below.

Q1 = Q Q1 = S Q1 = Q− S

Q2 = Q strict graceful ordered-strict
Q2 = ¬S relaxed single phase ordered-relaxed

Of these, we showed that the problem of relaxed 2-phase recovery is NP-
complete. It is straightforward to observe that this proof can be extended to show
that synthesizing ordered-relaxed 2-phase recovery is also NP-complete. More-
over, in [10], we showed that the problems of synthesizing strict and ordered-strict
2-phase recovery are NP-complete. As mentioned in Subsection 5.4, one surpris-
ing result in this table, however, is that the problem of synthesizing graceful
2-phase recovery can be solved in polynomial-time.

6 Conclusion

In this paper, we focused on complexity analysis of synthesizing bounded-time 2-
phase recovery. This type of recovery consists of two bounded response properties
of the form: (¬S �→≤θ Q1) ∧ (Q2 �→≤δ S). We characterized S as an ideal
behavior and Q1,2 as acceptable intermediate behaviors during recovery. Each
property expresses one phase of recovery within the respective time bounds θ and
δ in a fault-tolerant real-time program. We formally defined different scenarios
of 2-phased recovery, characterized their applications in real-world systems, and
considered two types of them called relaxed (where Q1 = Q and Q2 = ¬S) and
graceful (where Q1 = S and Q2 = Q). We showed that, in general, the problem
of synthesizing relaxed 2-phase recovery is NP-complete. However, the problem
can be solved in polynomial-time, if S ⊆ Q and Q is closed in the synthesized
program. We also found a surprising result that the problem of synthesizing
graceful 2-phase recovery can be solved in polynomial-time even though all other
variations are NP-complete. We emphasize that all complexities are in the size
of the input program’s region graph.

Based on the complexity analysis, we find that the problem of synthesizing
relaxed 2-phase recovery is significantly simpler, if the intermediate recovery
predicate Q is closed in the execution of the synthesized program. This result
implies that if the intermediate recovery predicate is used for recording the fault,
then the complexity of the corresponding problem is substantially higher than
the case where the program quickly provides acceptable behavior.

One future research direction is to develop heuristics to cope with the NP-
complete instances. Based on our experience with synthesizing distributed fault-
tolerant programs [9,11], we believe that efficient implementation of such heuris-
tics makes it possible to synthesize real programs in practice. Another research
problem is to consider the case where a real-time program is subject to different
classes of faults and a different type of tolerance is required for each fault class.
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Abstract. We propose an approach to automatic verification of real-
time systems against scenario-based requirements. A real-time system is
modeled as a network of Timed Automata (TA), and a scenario-based
requirement is specified as a Live Sequence Chart (LSC). We define a
trace-based semantics for a kernel subset of the LSC language. By equiv-
alently translating an LSC chart into an observer TA and then non-
intrusively composing this observer with the original system model, the
problem of verifying a real-time system against a scenario-based require-
ment reduces to a classical real-time model checking problem. We show
how this is accomplished in the context of the Uppaal model checker.

1 Introduction

A model checker typically needs two inputs: a modelM characterizing the state-
transition behaviors of a finite state concurrent system, and a temporal logic
formula P specifying the properties of interest. For real-time model checkers
such as Kronos [20] and Uppaal [3],M might be a network of Timed Automata
(TA) [1], and P might be a formula of the TCTL logic [20] or a fragment of
the CTL logic [3]. While the enhanced versions of TA are relatively expressive
modeling formalisms, the TCTL or CTL logics appear to be property specification
languages of only limited capability, intuitiveness, and convenience:

– The atomic propositions can only be state propositions, where messages
(events) are not allowed to appear [20,3];

– There is no means for specifying non-trivial quantitative timing constraints
(e.g., there is no time-bounded temporal operator like ♦[1,3]) [3].

These limitations imply that straightforward characterizations of event synchro-
nizations, causal relations, or scenarios such as “if process B sends message m1
to process A, and C sends m2 to D (in any order), then B must send m3 to C
within 1 to 3 time units” as a query in Kronos and Uppaal are not possible.

Essentially, the query languages of these model checkers describe only intra-
process properties, i.e., whether all states (�) or at least one state (♦) along
all paths (A) or at least one path (E) of the individual processes or the product

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 676–691, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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process (i.e., the parallelly composed system model) satisfy some particular prop-
erties. In contrast, the inter -process properties describe how different processes
interact, collaborate and cooperate via message or rendezvous synchronizations.

Live Sequence Chart (LSC) [11] is a visual formalism for scenario-based spec-
ification and programming. It extends the classical Message Sequence Charts
(MSC) [13] by adding modalities1. The LSC language is unambiguous because it
has strictly defined semantics, e.g., the executable (operational) semantics [11]
and the trace-based semantics [7].

We envisage LSC as a nice complement to the intra-process property spec-
ification language of (real-time) model checkers in general and of Uppaal in
particular:

– Intuitiveness. LSC has the necessary language constructs to describe a va-
riety of causality and non-trivial scenarios. As a visual formalism, LSC is
more intuitive in capturing scenario-based user requirements than the CTL
fragment of Uppaal in its textual form;

– Expressiveness. It has been shown that a kernel subset [15] of LSC can be
embedded into CTL∗, provided that event occurrences can be used as atomic
propositions [15]. This indicates that LSC cannot always be encoded as CTL∗;

– Counterexample display. LSC provides the possibility of displaying coun-
terexamples also in the requirement specifications.

In this paper we capture a scenario that is to be verified using an LSC chart. We
obtain a behavior-equivalent observer TA from this chart by mapping the LSC
cuts and discrete advancement steps to TA locations and edges, respectively. We
let the observer TA spy on the relevant events of the original system via model
instrumentation, semaphore locking, and parallel composition. In this way, the
problem of verifying a real-time system against a scenario-based requirement
will be reduced to a classical model checking problem in Uppaal.

1.1 Related Work

To model check real-time systems against complex properties or scenario-based
requirements, various approaches have been proposed.

One solution is the observer automata approach [4], i.e., to construct a number
of auxiliary TA to capture the scenario-based requirements, and then parallelly
compose them with the original TA models. While this method can be practically
useful [16], there are some limitations: (1) manual constructions of observer TA
could be labor-intensive and error-prone. To be composed with the observer TA,
the original system model may need to be modified; (2) the observer TA and the
original system engage in normal channel synchronizations, thus specifying pro-
cess interactions only liberally (i.e., no particular sending and receiving process
1 The existential and cold (resp. universal and hot) modalities represent the provi-

sional (resp. mandatory) requirements. For example, an existential (resp. universal)
chart specifies restrictions over at least one satisfying (resp. all possible) system runs;
a cold condition may be violated, whereas a hot one must be satisfied.
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is specified for a message). In our verification framework, automatic construction
of observers from LSC charts overcomes both problems.

Another line of research is first to capture the scenario-based requirements
using the assume-guarantee style visual formalisms such as Triggered MSC [19],
Template MSCs [10], or the even richer LSC [11], and then transform them
into directly verifiable formalisms. In particular LSCs can be translated into
Timed Büchi Automaton (TBA) [14], TA [17], temporal logic [14,12,15,8,6], or
sequences of LSC elements [18], and the verification problem can be converted
to a classical model checking problem [14], or solved directly [18].

In [14] an LSC chart is transformed into a TBA. To specify real-time require-
ments, timers [2,13] and timing annotations (or delayed intervals) [2] are added
to the LSC charts. To enable the transformation, each location of the LSC chart
is equipped with a discrete (integer) clock. Since timers can only express timing
constraints within a single chart and within a single process, and delayed inter-
vals can only express the minimal and maximal delays between two consecutive
locations, these restrict the expression of timing constraints across processes and
across charts. Our LSC charts use TA-like real-valued clock variables. This fla-
vor of timing constraint agrees well with the original system model, and enables
smooth translation of timing information into the observer TA, and seamless
embedding of the observer TA into the Uppaal verification framework.

An LSC-to-TA translation has been proposed in [17], which inspires our cur-
rent translation. Since we use LSC only as a property specification language, and
not also as a modeling language [17], we define a clearer semantics, according to
which there is no need to translate one LSC chart into multiple TA as in [17].

LSCs can also be translated into temporal logic formulas [12,15,8,6]. For the
kernel subset of LSC in [15], it has been shown that existential charts can be
expressed using the CTL logic, and universal charts can be expressed using (LTL∩
CTL) [12,15]. Similar results are achieved in [8]. However, these methods do not
handle explicit time in the charts, and the extraordinary size of the resulting
formula limits the scale of the charts that can be translated and verified.

In [18] properties are extracted from LSCs as sequences of LSC elements, and
algorithms have been developed to check whether these sequences are respected
by the FSM computation graph of the TA model that is exported from Uppaal.
However, simultaneous regions (simregions) in LSCs are used only to model
broadcast communications, and conditions cannot be a part of simregions. Our
notion of simregion uses the “[condition] [message]/[assignment]” pattern, thus
enables smooth translation into a TA edge.

1.2 Contributions

The contributions of this paper include: (1) we define a kernel subset of the
LSC language that is suitable for capturing scenario-based requirements of real-
time systems, and define a trace-based semantics; (2) we propose a behavior-
equivalent translation of an LSC chart into a TA; (3) we present a method of
embedding the translated TA into Uppaal, thus encoding the problem of verifying
systems against LSC requirements as a classical model checking problem.
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2 Modeling and Specification of Real-Time Systems

In Uppaal, a real-time system is modeled as a network of TA. These TA commu-
nicate on shared global variables, or via handshaking on CCS-style synchro-
nization channels. Standard constructs of TA include locations, edges, clock
constraints, clock resets, and location invariants. In addition, Uppaal has a
number of extensions [3] to the TA formalism such as urgent and committed
locations2, broadcast channels, data variables, variable constraints and updates,
etc. Fig. 1(a)-1(d) give an example of a network of TA.

m4?

m2? x <= 5

x <= 5

m2!
x >= 3
m1!

m4!

m3!

m1?

m3?

m4?

(a) TA A (b) TA B (c) TA C (d) TA D (e) LSC chart L

Fig. 1. A real-time system model (network of TA) and its requirement (LSC chart)

Uppaal uses a fragment of the CTL logic as its property specification language.
Atomic propositions can only be state propositions. Properties can be specified
using a number of patterns: reachability (E♦φ), safety (A�φ, E�φ), and liveness
properties (A♦φ, φ�ϕ). In particular the leads-to or response property φ�ϕ
is a shorthand for A�(φ ⇒ A♦ϕ), meaning that whenever φ is satisfied, then
eventually ϕ will be satisfied.

Although a lot of properties can be specified using these patterns, many others
still cannot. Consider a user requirement on the TA in Fig. 1: if we observe that
process B sends message m1 to process C when clock x is no less than 3, then
afterwards (and before m1 can be observed again) we must observe that B sends
m2 to A when x is no less than 2, and C sends m3 to D (in any order). Clearly,
this scenario cannot be specified as a Uppaal CTL formula.

However, the above scenario requirement can be easily captured using Live
Sequence Charts (Fig. 1(e)). For instance, the first block of diagrammatic ele-
ments {m1, x ≥ 3} means that: when m1 in the original model is observed, the
clock value of x should be no less than 3 at that time. If this is the case, then the
monitored execution continues; otherwise, it is a cold violation of the prechart3.

2 A committed location is a TA location where time is frozen, and the outgoing tran-
sitions have higher priority to be taken than those from non-committed ones.

3 A universal chart can optionally contain a prechart, which specifies the scenario
which, if successfully executed, forces the system to satisfy the scenario given in the
actual chart body (the main chart).
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3 From LSC to Uppaal Timed Automata

3.1 Live Sequence Chart

We consider the following LSC elements: instance, location, message, clock vari-
able, condition, assignment, and simregion.

An LSC chart can have a role, a type, and an activation mode. In this paper
we consider the role of system property specification, i.e., a monitored chart will
just “listen to” the messages and read the clock variables in the original system
models, but never emit messages or reset those clocks. We consider the universal
type charts. Furthermore, we consider the invariant activation mode, i.e., the
chart will be activated whenever a minimal event (i.e., an event that is minimal
in the partial order induced by the chart) is matched, regardless of the state of
the main chart.

Each LSC chart L describes a particular interaction scenario of a set I of
processes (or instances, or agents). Along each instance line i ∈ I there are a
finite set of “positions” pos(i) = {0, 1, . . . , p_maxi}, which denote the possible
points of communication and computation. We denote all locations of L as L =
{〈i, p〉|i∈I ∧ p∈pos(i)}.

Let Σ be the alphabet of messages (a.k.a. “channels” in Uppaal). A message
m = (〈i, p〉, σ, 〈i′, p′〉) ∈ L×Σ×L corresponds to instance i, while in position p,
sending σ to instance i′ at position p′. The (finite) set of all messages appearing
in L are denoted as M . We call σ the message label. We say that i and i′ are the
source (src) and destination (dest) instances, respectively. Messages are assumed
to be instantaneous (thus we use the terms message and event interchangeably).
Furthermore, messages are assumed to be of hot temperature, i.e., they never
get lost during transmission. This paper does not consider concurrent messages,
thus each location can be the end point of at most one message in the chart.

Let the finite sets of real-valued clock variables (ranging over R≥0) of L and
of the original system model S be CL and CS , respectively. The set of readable
clock variables in L will be C = CL ∪ CS . Since L is a monitored chart, only
clocks in CL can be reset in the chart.

A clock constraint is of the form x %& n or x− y %& n where x, y ∈ C, n ∈ Z,
and %&∈ {<,≤,=,≥, >}. A condition is a finite conjunction of clock constraints.
The set of conditions are denoted G. Conditions may be either hot or cold.

A clock reset is of the form x := 0 where x ∈ CL. An assignment a is a finite
set of clock resets. For simplicity it is denoted as a set a of clocks to be reset.
The set of all assignments is A = 2CL .

When there is a message m sent from one instance i1 to another instance i2,
the message anchoring point on i1 or i2 could be associated with a condition
g and/or an assignment a. The condition g is a predicate which is evaluated
immediately after the message has been observed, and the assignment is a reset
of the clocks in a providing that g evaluates to true. The message, condition
and assignment can be collectively viewed as an atomic step of LSC execution,
i.e., they take place at the same time, hence the notion of simultaneous region
(simregion), which is inspired by [14].
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Definition 1 (simregion). A simregion s is a set of LSC message, condition,
and assignment, s ⊆ (M ∪G ∪A), which satisfy the following requirements:

– non-emptiness: ∃e∈(M ∪G ∪A).e∈s;
– uniqueness: ∀m,n∈M.(m ∈ s ∧ n ∈ s) ⇒ m = n; (similarly for condition

and assignment.)
– non-overlapping: for any two simregions s and s′, we have ∀e ∈ (M ∪ G ∪

A).(e ∈ s ∧ e ∈ s′)⇒ s = s′. ��

We write a simregion as s = {m, g, a}, where m, g, and a represent the message,
condition, and assignment, respectively. The set of all simregions is denoted
S ⊆ 2(M∪G∪A).

A message spans across two instance lines. A condition spans across one or
more instance lines. In a simregion, the message, condition and assignment (if
any) have exactly one common anchoring point. If a simregion s has a message,
then the condition and/or assignment (if any) of s anchor either at the message
head, or at the message tail. If a simregion s has no message, then s consists
of a condition test, or an assignment, or both of them combined and anchored
together (possibly across multiple instance lines). In this case, s is called a non-
message simregion. For such a simregion, we adopt the As-Soon-As-Possible
(ASAP) semantics for its firing, i.e., the condition test (if any) will be evaluated
immediately after the previous simregion.

Fig. 1(e) is an example LSC chart, where there are three simregions s1 =
{m1, x ≥ 3}, s2 = {m2, x ≥ 2}, and s3 = {m3}.

3.2 Trace-Based Semantics

We define λ : L → S ∪ {nil} as a labeling function. For location l ∈ L, if
λ(l) ∈ S, then there is a simregion anchoring at l; if λ(l) = nil, then l represents
an entry/exit point of the prechart(Pch)/main chart(Mch).

Locations of an LSC chart are partially ordered by the following rules:

– Along each instance line, if location l1 is above l2, then l1 ≤ l2;
– All locations in the same simregion have the same order, ∀s ∈ S, ∀l, l′ ∈

L.(λ(l) = s) ∧ (λ(l′) = s)⇒ (l ≤ l′) ∧ (l′ ≤ l).

The partial order relation �⊆ L× L is defined as a transitive closure of ≤.

Definition 2 (cut). A cut is a downward-closed set of locations that span across
all the instance lines. Downward-closure means that if a location l is included in
cut c, so are all of its preordered locations: ∀c ⊆ L, ∀l, l′ ∈ L.(l ∈ c ∧ l′ � l) ⇒
l′ ∈ c. ��

We define loc : (S ∪ 2L) → 2L to map a simregion s ∈ S to a set loc(s) of
locations that it anchors, and to map a cut c ∈ 2L to its frontier loc(c), which
is a set of locations that constitute the downward border line progressed so far.

Let c ⊆ L be a cut, and s ∈ S be a simregion that follows c immediately. A
cut c′ is an s-successor of c, denoted c

s→ c′, if c′ is achieved by adding the set of
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locations that s anchors into c, or formally, c s→ c′ ⇔ ∀l ∈ loc(s).(l /∈ c) ∧ (c′ =
c ∪ loc(s)).

A cut c is minimal (denoted )) if each location in c is a top location of
some instance line, and c is maximal (denoted ⊥) if the bottom locations of all
instance lines are included in c. The frontiers of cuts ) and ⊥ do not contain
simregion anchoring points. A minimal or maximal cut represents a compulsory
synchronization for all involved instances. Thus the partial order relation � on
L is extended as follows (and finally also extended to its transitive closure):

– All locations in the same minimal or maximal cut have the same order,
∀c ∈ {Pch.), P ch.⊥,Mch.),Mch.⊥}.∀l, l′ ∈ loc(c).(l � l′) ∧ (l′ � l).

Specifically, we view the maximal cut of the prechart and the minimal cut of the
main chart as the same cut, i.e., Pch.⊥ = Mch.).

If cut c has c′ = Mch.⊥ as its s-successor, then we override c′ as Pch.) (if
any) or Mch.), which represents the situation where a universal chart goes back
to its initial state upon the successful completion of a round of monitoring.

For instance in Fig. 1(e), the possible cuts are: {}, {s1}, {s1, s2}, {s1, s3},
{s1, s2, s3}, where e.g. {s1} is a shorthand for the cut where simregion s1 has
been stepped over. Clearly, cuts {s1, s2} and {s1, s3} are the s2-successor and
s3-successor of cut {s1}, respectively.

Definition 3 (configuration). A configuration of an LSC chart is a tuple
(c, v), where c is a cut, and v maps each clock variable to a non-negative real
number, v : CL → R≥0. ��

For d > 0, notation (v + d) : CL → R≥0 means that the function v is shifted by
d such that ∀x ∈ CL.v(x + d) = v(x) + d.

A configuration at the minimal cut ) with all clocks assigned their initial
values (e.g., 0’s) is called the initial configuration.

An assignment a ∈ A can be viewed as a transformer for function v, thus a(v)
represents the new valuation after the assignment.

A configuration can be viewed as the “state” of an LSC chart. A universal
chart starts from the initial configuration, advances from one configuration to a
next one, until hot violation occurs, or until the chart arrives at the maximal
cut and then starts all over again (i.e., to begin a next round execution).

There are three kinds of valid advancement steps between two configurations:

– Synchronization step. Given a chart configuration (c, v), and a simregion s
which has a message m, and optionally a condition g, and/or an assignment
a. There is a synchronization step (c, v) m→ (c′, a(v)) if, c s→ c′ and v |= g;

– Silent step. Given a chart configuration (c, v), and a simregion s which
optionally has a message m, and/or a condition g, and/or an assignment a.
There is a silent step (c, v) τ→ (c′, a(v)) if either
• (silent advancement). (�m ∈M.m ∈ s), and v |= g, and c

s→ c′; or
• (premature termination). g.temp = cold, and v � |=g, and c′ = Pch.);
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– Time delay step. Given a chart configuration (c, v). There is a time delay
step (c, v) d→ (c, v + d) if there exists a simregion that follows cut c, and the
clock constraints in its conditions (if any) will be satisfied after delay d, i.e.,
∃s = {m, g, a}.(v + d) |= g.

Definition 4 (run). A run of a universal LSC chart is a sequence of configu-
rations (c0, v0) · (c1, v1) · . . . that are connected by the advancement steps, i.e.,
∀i ≥ 0.∃ui ∈ (M ∪ {τ} ∪R≥0).(ci, vi)

ui→ (ci+1, vi+1). ��

The transition relation→ as mentioned above each time consumes only a single
letter u ∈ (M ∪ {τ} ∪R≥0). We extend it to →∗ such that it consumes a (finite
or infinite) word w ∈ (M ∪ {τ} ∪R≥0)∗ ∪ (M ∪ {τ} ∪R≥0)ω .

Let Π be the alphabet of all possible advancement steps in the original system
model, which subsumes (M ∪ {τ} ∪ R≥0) and can in addition include other
messages not ever appeared in M .

Definition 5 (satisfaction of a prechart/main chart). A timed trace γ ∈
Π∗∪Πω satisfies an LSC prechart or main chart C if its projection γ|(M∪{τ}∪R≥0)
has a finite prefix µ which is the accepted word of a run that starts from the initial
configuration and ends in a maximal cut configuration of C, i.e., γ |= C ⇔ ∃µ ∈
(M ∪ {τ} ∪R≥0)∗, ξ ∈ (M ∪ {τ}∪R≥0)∗ ∪ (M ∪ {τ}∪R≥0)ω . (γ|(M∪{τ}∪R≥0) =

µ · ξ) ∧ ∃v′.(), v0)
µ

−→∗ (⊥, v′). ��

If a universal chart L has no prechart Pch, then it is treated as being satisfied
by an empty word.

We define � to denote that a finite trace γ ∈ Π∗ satisfies chart C exactly:
γ � C ⇔ (γ |= C) ∧ ∀α, µ, β ∈ Π∗.(α · µ · β = γ) ∧ (α �= ε ∨ β �= ε)⇒ (µ � |= C).

Now we define the satisfaction relation for a full universal chart:

Definition 6 (satisfaction of universal LSC chart). A timed trace γ ∈ Πω

satisfies a universal chart L iff, whenever a finite subtrace of γ matches the
prechart, then the main chart is matched immediately afterwards, γ |= L ⇔
∀α, µ ∈ Π∗, β ∈ Πω.(α · µ · β = γ) ∧ (µ � Pch)⇒ β |= Mch. ��

A timed language Lang ⊆ Πω satisfies L, denoted Lang |= L, iff, ∀γ ∈ Lang.γ |=
L. Clearly, Lang characterizes the system behaviors that respect L.

For a network S of timed automata, we use S |= L to denote that the timed
traces (language) of S satisfy LSC L.

3.3 LSC to TA Translation

For each LSC chart L, we construct a Uppaal TA OL. The basic idea is that
for each cut of the LSC, we assign a TA location in Uppaal; for each discrete
advancement step (i.e., a simregion) that connects two consecutive cuts, we
assign a TA edge. The translation is conducted incrementally based on the partial
order relation �.
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3.3.1 Determining the Partial Order on LSC Simregions
By analyzing the graphical layout of the LSC chart, the partial order � on the
set L of locations is determined according to the rules given in Section 3.2.

Since an advancement of a cut is caused by stepping over a simregion, the
partial order � on L can thus be lifted to �′ on S ∪{Pch.),Mch.),Mch.⊥} as
follows: ∀s1, s2 ∈ (S ∪ {Pch.),Mch.),Mch.⊥}).(s1 �′ s2 ⇔ ∃l1 ∈ loc(s1), l2 ∈
loc(s2).l1 � l2).

For instance in Fig. 1(e), the partial order �′ among the three simregions s1
(middle), s2 (left), and s3 (right) is: s1 �′ s2, and s1 �′ s3.

3.3.2 Translating LSC Cut into TA Location
The initial cut of an LSC chart is the minimal cut ) of the prechart (if any)
or of the main chart (otherwise). While respecting �′, the cut advances towards
Mch.⊥ by stepping over simregions. Each time a simregion is stepped over, a
new cut is reached.

If we view all the instances of an LSC chart collectively as a whole system,
then a cut can be viewed as a “location” of the TA of this whole system. For
the minimal cut of the prechart (if any) and the minimal and maximal cuts of
the main chart, we assign the TA locations lpmin, lmin, and lmax, respectively.
Note that lmax is a committed location, which will be connected to lpmin (if any)
or lmin via an edge of internal action transition, meaning that a next round of
monitoring will begin immediately. The lpmin, lmin, and lmax locations are three
mandatory synchronization points for all the instances in the chart.

Time can elapse while staying in an LSC cut just like in a TA location.
Specifically, a cut that is followed by a non-message simregion corresponds to a
committed TA location. In that cut time is frozen and cannot elapse.

Since there are only finitely many instances and finitely many simregions in
an LSC chart, the number of cuts will also be finitely many.

3.3.3 Translating LSC Simregion into TA Edge
If s is a message-simregion, then we map the message, condition (if any) and
assignment (if any) of s into one edge of the TA. See Fig. 2(a)-2(b).

Due to the restriction of Uppaal that broadcast channels cannot be guarded
by timing constraints, in the TA of Fig. 2(b), m1 cannot be simply treated as

x >= 3 &&
(A -> B)
m1?
y := 0

x >= 1
y := 0

(a) A message-simregion (b) The TA edge (c) A non-msg. simregion (d) The TA edge

Fig. 2. From simregion to TA edge
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a broadcast channel. Instead, some spying techniques will be adopted such that
the translated TA will be notified of each message synchronization in the original
system immediately after its occurrence (cf. Section 4.1).

In an LSC chart, a message m is sent from one particular instance to another
one (e.g., from A to B). To preserve this sender/receiver information in the
translated TA, the TA edge will be further guarded by the predicate A → B
(shorthand for “src = A && dest = B”). See Fig. 2(b).

If s is a non-message simregion, then the ASAP semantics is adopted. To
enforce the ASAP semantics, the source location of the translated TA edge will
be marked as a committed location. See Fig. 2(c)-2(d) for an example.

3.3.4 Incremental Construction of the TA
The LSC to TA translation is carried out incrementally. Assume that a TA loca-
tion l has already been created for the current LSC cut (see Fig. 3(b), location
l, and Fig. 3(a), cut {s1}). Following that cut there could be a number of simre-
gions that can be stepped over. Each of them should correspond to an outgoing
edge from TA location l. Without loss of generality, we assume that there are
two such immediately following simregions s2 and s3.

If s2 and s3 are both message-simregions (Fig. 3(a)), then the two new TA
edges will be concatenated to location l. Let the two new edges be (l1, l2) and
(l3, l4), respectively. Then l1 and l3 will be superposed on l. See Fig. 3(b).

l4l2

l (l1, l3)

C -> D
m3?

x >= 2 &&
(B -> A)
m2?

x >= 3 &&
(B -> C)
m1?

l4

l2 (l3)

l (l1)

C -> D
m3?

u >= 1

x >= 3 &&
(B -> C)
m1?

l4l2

l (l1, l3)

u != 0u >= 1

x >= 3 &&
(B -> C)
m1?

(a) The simregions (b) case #1 (c) case #2 (d) case #3

Fig. 3. TA edge construction for two subsequent simregions

If in Fig. 3(a) s2 is replaced by a non-message simregion, then according to
the ASAP semantics, the edge (l1, l2) will be executed immediately, and edge
(l3, l4) will follow, but cannot be the other way around. When concatenating
these two edges to the TA, we mark l1 as a committed location, and superpose
it on l. There is only one possible interleaving where edge (l3, l4) follows (l1, l2).
See Fig. 3(c).

If in Fig. 3(a) s2 and s3 are both non-message simregions, then according
to the ASAP semantics, both (l1, l2) and (l3, l4) will be executed immediately,
therefore the executions will be interleaved. See Fig. 3(d).

3.3.5 Implicitly Allowed Behavior
In addition to the explicitly specified behaviors in the chart, there are also im-
plicitly allowed behaviors that are due to: (1) unconstrained events, (2) cold
violations, and (3) prechart pre-matching.
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Errlmax

lmin

lpmin

A -> B
m1?

C -> D
m2?

B -> C
m3?

C -> D
m2?

A -> B
m1?

B -> C
m3?

B -> C
m3?

B -> C
m3?

A -> B
m1?

C -> D
m2?

C -> D
m2?

A -> B
m1?

(a) An LSC chart (b) The translated TA

Fig. 4. Prechart matching

Let Chan be the set of channels of S, and Chan′ ⊆ Chan be the set of
channels of L. Clearly, channels in (Chan\Chan′) are not constrained by L. For
each message m whose label belongs to (Chan\Chan′), we add an m?-labeled
self-loop edge to each non-committed location l of the translated TA OL. For
readability they are not shown in Fig. 4.

According to the LSC semantics, cold violations of prechart or main chart
are not failures. Instead, they just bring the chart back to the minimal cut. To
model this, for a cut c and each following simregion s that has a cold condition
g, we add edges from the corresponding TA location l to lpmin (if Pch exists) or
lmin (otherwise) to correspond to the ¬g conditions (of DNF form). Similarly,
given a cut c in the prechart, for each message m that occurs in L but does not
follow c immediately, we also add an m?-labeled edge (l, lpmin). See Fig. 4.

According to the LSC semantics, under invariant mode the prechart will be
continuously monitored. Thus for instance in Fig. 4(a), the sequence m1 ·m1 ·m2
will match the prechart. To enforce this semantics, for each message m that
appear in the chart, we add an m?-labeled self loop to location lpmin.

3.3.6 Undesired Behavior
The construction of the TA so far considers only the legal (or admissible) behav-
iors. When the current configuration (c, v) is in the main chart, if an observed
message m is not enabled at cut c, or the hot condition of the simregion that
immediately follows c evaluates to false under v, then there will be a hot viola-
tion. In this case, we add a dead-end (sink) location Err in the TA, and for each
such violation we add an edge to Err.

3.3.7 Complexity
Let the number of simregions appearing in L be n. In the worst case, the number
of locations in the translated TA OL is 2n + 1. This happens when L consists of
only the prechart or the main chart, and the messages in L are totally unordered.

The number of outgoing edges from a location l of OL depends on: (1) the
number of unconstrained events, ue; (2) the number of the following simregions
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in the corresponding cut c of L, fs; (3) the length of the condition (in case
the condition evaluates to false), lc; and (4) the number of messages that cause
violations of the chart, cv. Therefore, the number of outgoing edges from a TA
location is at the level O(ue + fs + lc + cv).

3.4 Equivalence of LSC and TA

Since all the clocks in the original system model S are also visible to the LSC
chart L, we extend the configuration of L from CL to CL ∪ CS .

If in the translated OL we ignore the undesired and implicitly allowed behav-
iors, i.e., we ignore the edges that correspond to hot violations, unconstrained
events, cold violations, and prechart pre-matching, then we have:

Lemma 1. If a configuration (c, v) of L corresponds to a semantic state (l, v)
of OL, then: (1) each simregion s that follows (c, v) in L uniquely corresponds
to an outgoing edge (l, l′) in OL, and (2) the target configuration (c′, v′) of s in
L uniquely corresponds to the target semantic state (l′, v′) in OL. ��

Theorem 1. For any trace tr in OL: tr |= L ⇔ (OL, tr) |= (lmin � lmax). ��

Proofs of the lemmas and theorems can be found at the authors’ webpages.
The prechart pre-matching mechanism does introduce undesired extra behav-

iors and non-determinacy. For instance in Fig. 4(b), tr = m1 ·m2 ·m1 ·m2 ·m3
could be an accepted trace in OL. But since its prefix tr′ = m1 ·m2 ·m1 can be
rejected, thus tr does not really satisfy L. It coincides that the particular trace
tr in the model OL does not satisfy the property (lmin � lmax).

Theorem 1 indicates that OL has exactly the same set of legal traces as L.

4 Embedding into Uppaal

4.1 Synchronizing with the Original System

When composing OL with S, we want OL to “observe” S in a timely and non-
intrusive manner. To this end, for each channel ch ∈ Chan, we make the follow-
ing modifications:

(1) In S (e.g., Fig. 5(a)-5(b)), for each edge (l1, l2) that is labeled with ch!,
we add a committed location l′1 and a cho!-labeled edge in between edge
(l1, l2) and location l2. Here cho is a dedicated fresh channel which aims to
notify OL of the occurrence of the ch-synchronization in S. The location
invariant (if any) of l2 will be copied on to l′1. Furthermore, we use a global
boolean flag variable (or a binary semaphore) mayFire to further guard the
ch-synchronization. This semaphore is initialized to true at system start. It
is cleared immediately after the ch-synchronization in S is taken, and it is
set again immediately after the cho-synchronization is taken. See Fig. 5(d).

(2) In OL, each synchronization label ch? is renamed to cho?. See Fig. 5(c), 5(e).
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l2 Inv1

l1

g1
ch!
a1

l4 Inv2

l3

g2
ch?
a2

g3
ch?
a3

l2 Inv1

l1’ Inv1

l1

cho!
mayFire := true

g1 && (mayFire == true)
ch!
a1, mayFire := false

g3
cho?
a3

(a) emt. edge (b) recv. edge (c) obs. edge (d) mod. emt. edge (e) mod. obs. edge

Fig. 5. Edge modifications in the original system model S and the observer TA OL

If L has non-message simregions, then OL has committed locations. If in a
certain state both OL and some TA in S are in committed locations (e.g., lm+1
in Fig. 6(c), l2 in Fig. 6(a)), there will be a racing condition. But according to the
ASAP semantics of L, the (internal action) edge in OL has higher priority. To
this end, for each edge (li, li+1) in OL, if li+1 is a committed location, then we add
“NxtCmt := true” to the assignment of the edge, otherwise we add “NxtCmt
:= false”. Here the global boolean flag variable (or semaphore) NxtCmt denotes
whether the observer TA will be in a committed location. This semaphore is
initialized to false at system start. See Fig. 6(d). Accordingly, for each ch-labeled
edge (li, li+1) in S where ch ∈ Chan and li is a committed location, we add
“NxtCmt == false” to the condition of the edge, see Fig. 6(b).

Our method of composing the observer TA OL with the original model S
is similar to that of [9]. While their method works only when the target state
of a communication action is not a committed location in the original model,
in our method, due to the first locking mechanism (using mayFire), we have
no restrictions on whether a location in S is a normal, urgent or committed
one. Broadcast channels can be handled the same way as binary synchronization
channels in our method. Furthermore, due to the second locking mechanism
(using NxtCmt), we guarantee the enforcement of the ASAP semantics in OL.

Since our method involves only syntactic scanning and manipulations, the
method is not expensive. For each ch ∈ Chan, we need to introduce a dedicated

l5

l2 Inv1

l1’ Inv1

l1

g5 && (mayFire == true)
ch2!
a5, mayFire := false

cho!
mayFire := true

g1 && (mayFire == true)
ch!
a1, mayFire := false

l5

l2 Inv1

l1’ Inv1

l1

g5 && (mayFire == true) 
&& (NxtCmt == false)
ch2!
a5, mayFire := false

cho!
mayFire := true

g1 && (mayFire == true)
ch!
a1, mayFire := false

lm+2

lm+1

lm

g4
a4

g3
cho?
a3

lm+2

lm+1

lm

g4
a4, NxtCmt := false

g3
cho?
a3, NxtCmt := true

(a) emitting edge (b) modified emitting edge (c) in obs. TA (d) in modified obs. TA

Fig. 6. Edge modifications when there are committed locations in the obs. TA
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fresh channel cho. For each occurrence of the emitting edge ch!, we need to
introduce a fresh committed location in S. Moreover, we need two global boolean
flag variables (mayFire, NxtCmt) as the semaphores.

4.2 Verification Problem

After the modifications, the original system model S becomes S′, and the ob-
server TA OL for chart L becomes O′

L. Let the minimal and maximal cuts of
the main chart of L correspond to locations lmin and lmax of O′

L, respectively.
Recall that the Uppaal “leads-to” property (φ � ϕ) stands for A�(φ ⇒ A♦ϕ),
where φ, ϕ are state formulas.

Lemma 2. If OL has no committed location, and all ch ∈ Chan are binary
synchronization channels, then S |= L ⇔ (S′||O′

L) |= (lmin � lmax). ��

In a more general form, we have:

Theorem 2. S |= L ⇔ (S′||O′
L) |= (lmin � lmax). ��

Theorem 2 indicates that the problem of checking whether a system model S
satisfies an LSC requirement L can be equivalently transformed into a classical
model checking problem (“φ leads-to ϕ”) in Uppaal.

5 An Example

We put things together by using the example in Fig. 1. The original system S
consists of timed automata A, B, C, and D, having channels m1, m2, m3, m4,
and clock variable x. The scenario-based requirement L is given in Fig. 1(e).

After modifying S and the translated observer TA OL, we get the newly
composed network of TA (S′||O′

L), see Fig. 7 and Fig. 8.
For this newly composed model, we check in Uppaal the property (lmin �

lmax), and it turns out to be satisfied. This indicates that S does satisfy the
requirements that are specified in L.

m4?

m2?
dest := A x <= 5

x <= 5 m2o!
mayFire := true

m1o!
mayFire := true

mayFire == true
m2!
mayFire := false,
src := B

x >= 3 && 
(mayFire == true)
m1!
mayFire := false,
src := B

m4o!
mayFire := true

m3o!
mayFire := true

mayFire == true &&
NxtCmt == false
m4!
mayFire := false

mayFire == true
m3!
mayFire := false,
src := C

m1?
dest := C

m3?
dest := D

m4?

(a) TA A′ (b) TA B′ (c) TA C′ (d) TA D′

Fig. 7. The modified model S ′ of the original system in Fig. 1(a)-1(d)
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lmax

Err

L1 L2

lmin

lpmin

x < 3
m1o?

NxtCmt := false

!(src == B && 
dest == A)
m2o?

!(src == C && 
dest == D)
m3o?

!(src == C && 
dest == D)
m3o?

!(src == B && 
dest == C)
m1o?

!(src == B && 
dest == A)
m2o?

!(src == B && 
dest == C)
m1o?

!(src == B && 
dest == C)
m1o?

!(src == C && 
dest == D)
m3o?

!(src == B && 
dest == A)
m2o?

!(src == B && dest == C)
m1o?

m3o?

m2o?

src == B && 
dest == A
m2o?

src == B && 
dest == C
m1o?

src == B && 
dest == C
m1o?

src == C && 
dest == D
m3o?

src == B && 
dest == C
m1o?

m4o?m4o?

m4o?

m4o?

src == C &&
dest == D
m3o?
NxtCmt := true

x >= 2 && src == B 
&& dest == A
m2o?
NxtCmt := truesrc == C && 

dest == D
m3o?x >= 2 && src == B 

&& dest == A
m2o?

x >= 3 && src == B 
&& dest == C
m1o?

Fig. 8. The translated and modified observer TA O′
L of the chart in Fig. 1(e)

If in L the condition of m2 is changed from x ≥ 2 to e.g. x ≥ 4, then the
property will not be satisfied. There will be a counterexample, e.g., when O′

L
has to synchronize on the channel m2o in location L2 of Fig. 8, but the value of
clock x falls in [3, 4), then it gets stuck there.

6 Conclusions

This paper deals with the verification of real-time systems against scenario-based
requirements by using model transformation and event spying techniques. Since
both the LSC to TA translation and the non-intrusive composing method are
automatic steps, our approach can be fully automated.

Based on previous work [17], the translation algorithms in this paper have
been implemented as a prototype LSC-to-TA translator, which has been in-
tegrated into the Uppaal GUI and verification server. Experiments with some
non-trivial examples showed the effectiveness of this method and tool.

Future work includes: (1) empirical evaluations for studying the applicability
and scalability of this approach; (2) to support the translations of more chart
elements such as subchart, if-then-else structure, loop, forbidden and ignored
event, co-region, symbolic instances, and other chart modes; (3) to consider
multiple charts for system modeling as well as for property specification; (4) to
specify interaction scenarios for timed game solving and controller synthesis.

Acknowledgements. We thank Sandie Balaguer and Alexandre David for
(re-)implementing the translation algorithms and tool, and integrating them
into Uppaal. This research has received funding from the EuropeanCommunity’s
Seventh Framework Programme under grant agreement no. 214755.
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Abstract. The International Grand Challenge project on Verified Soft-
ware is a long-term research program involving people from all over the
world and is aimed to stimulate the creation of new theories and tools to
be applied on industrial-scale problems. One of the challenges proposed
is to make a formal development of a cardiac pacemaker. In this paper,
we present a formal specification of this system using the Z notation and
also discuss our experience in building this formal model and the deci-
sions made during the process.

Keywords: industrial applications, formal modelling, Z, pacemaker.

1 Introduction

The lack of formalism in most software developments raises difficulties in devel-
oping relatively low cost trustworthy software within a well-defined and control-
lable time frame. For decades, software failures have costed billions of dollars a
year [17]. During this period, software have been delivered with restricted war-
ranties of failures and errors, resulting in the well-known software crisis. For
this reason, more rigourous approaches have been adopted in the development
processes of safety-critical systems. These approaches offer a depth in the anal-
ysis of computing systems that would otherwise be impossible. The lack of tools
were initially a problem in the adoption of these approaches. Nevertheless, for-
mal methods and their tools have already reached a level of usability that could
be applied even in industrial scale applications allowing software developers to
provide more meaningful guarantees to their projects.

In 2005, Tony Hoare suggested the Verification Grand Challenge [8] that is
aimed to stimulate many researchers around the world to create a verification
toolkit assuring that a software system meets the user’s needs. In this chal-
lenge, many application areas were proposed by the Verified Software Initia-
tive [9]. During the last year, our group has been working on the pacemaker
challenge [10], which consists of creating a formal model of a cardiac pacemaker
based on the informal requirements given by Boston Scientific [3]. The motiva-
tion of this challenge is the high-security nature of the system: once implanted,
any software failure could affect the patient’s health adversely and also lead to
death.

As part of the Verified Software Initiative, different groups must take the same
challenges and use different formalisms in their solution. Because of our previous

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 692–707, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Innerview of the human heart

experience on using the Z notation [16], we have taken it as the specification
language to formally model the pacemaker. Besides, we also intend to validate
that the formal specification satisfies the informal requirements. This can be
achieved by using a theorem prover, like ProofPower-Z [13], to formulate proofs
of specification-to-model correspondence for high-assurance secure systems like
the one presented here.

In Section 2, we explain how the heart works and present an overview of
the pacemaker. Section 3 presents the formalisation of the Pacemaker using Z.
Finally, in Section 4, we discuss our results, along with directions for future work.

2 The Pacemaker

The contractions of the heart are made by electrical stimuli provided by cells
specialised in producing electricity, the so-called pacemaker cells. They produce
electricity by quickly changing their electrical charge from positive to negative
and back. Signals arising in the Sinus node (Figure 1) stimulate the left and
right atria to contract together and travel to the Atrioventricular node (AV
node). After a delay (AV delay), the stimuli are conducted through fibers to the
left and right ventricle, causing them to contract at the same time.

When working properly, the heart’s electrical system automatically responds
to the body’s changing need for oxygen. However, sometimes the native pace-
maker has difficulties to keep the correct pace; in these cases, a pacemaker (here-
after called as pacemaker or pulse generator) [15] is needed to restore the normal
rhythm of the heart. A pacemaker is a medical device, powered by batteries, that
uses electrical impulses to fix an abnormal rhythm of the heart rate. The pace-
maker uses electrodes, called leads, which are in contact with the heart muscles,
senses and stimulates them. Each heartbeat is monitored continuously and regis-
tered by the pacemaker. With the help of a built-in accelerometer, the pacemaker
is able to detect when the patient is moving faster, by sensing the degree of vibra-
tion in the body. For example, it speeds up the heartbeat when climbing stairs
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and slows it down when you sleep. Also a Device Controller-Monitor (DCM)
is used to communicate to the pacemaker allowing the cardiologist to program
correct parameters, and to test and extract reports from the pacemaker.

For each patient, the cardiologist must define the correct pacing mode (Brady-
cardia Operating Mode) in the pacemaker. When the lead is implanted in the
atrium or in the ventricle, a single chamber pacemaker is used. However, when
leads are implanted in both chambers, atrium and ventricle, a dual chamber
pacemaker is used. After programmed with the correct pacing mode, the pace-
maker is able to sense the heart and to determine the interval of each pace. In
combination with the pacing mode, the cardiologist must control a subset of the
programmable parameters used to deliver the correct bradycardia therapy.

3 Formalization of the Pacemaker in Z

The overall state of the pacemaker is based on a Z state called PulseGen whose
structure is illustrated in Figure 2. Many operations over that state were mod-
elled according to its informal specification [10] and according to more detailed
sources like [15]. The PulseGen state will be presented next along with many
operations in order to illustrate our approach to the pacing and sensing modules.
For conciseness, we assume some basic knowledge on the Z notation.

3.1 The PulseGen Components

The pacemaker is composed by programmable parameters, measured parame-
ters, lead support, telemetry information, battery status information, implant
data, event markers, accelerometer, a clock, and sensing and pacing modules.
We start our approach by modelling the state of the pulse generator. We illus-
trate our model using following components of PulseGen state: the PacingPulse
used to deliver pulses to the heart; the SensingPulse used to sense the heart;
the TimeSt used as a clock; the EventMarkers used to control sensed and paced
events; the BatteryStatus used to store information from the battery; and the
ProgrammableParameters used in bradycardia operating modes to deliver pulses
responding to sensed pulses. These components are necessary to construct the
pacing and sensing modules presented here.

PacingPulse Component. The component PacingPulse, presented below, is
part of the pacing module, which is responsible to deliver pulses to the heart.

Fig. 2. Overview of the Pulse Generator state
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Some of these parameters like pulse width and pulse amplitude of the atrium
and the ventricle should be programmed by the cardiologist in order to give the
heart the correct therapy. Moreover, PacingPulse keeps track of the last activity
from the heart by using the state components last p a pulse and last p v pulse
– a from atrium and v from ventricle – which are necessary to determine the
delay between delivered pulses. The informal specification states that some of the
bradycardia operation modes, discussed later in this paper, restricts the pulse
generator to deliver pulses to ventricle only, atrial only or even to both chambers.

PacingPulse
paced a pulse width, paced a pulse amp, last p a pulse : R
paced v pulse width, paced v pulse amp, last p v pulse : R

SensingPulse Component. On the other hand, the pulse generator must
store information concerning the heart activity. It means that a SensingPulse
component should be capable to store information like the cardiac cycles length,
the sensing threshold (atrium and ventricle), the measurement of the pulse width
and of the pulse amplitude for both chambers, and the last heart activity for
both chambers. Furthermore, it also stores the current rate of the heartbeats.
These information have to be regularly updated and used to decide if the heart
failed and how the pulse generator should respond.

SensingPulse
card cycles l : R; current rate : N
a sensing threshold , v sensing threshold : R
sensed a pulse width, s v pulse w : R
sensed a pulse amp, s v pulse amp : R
last s a pulse, last s v pulse : R

TimeSt Component. A very important component used by sensing operations
is TimeSt . It allows the pacemaker to keep all measurements of pulses coming
from the heart that are detected by the leads. It is not very clear from Boston
Scientific’s document how timing should be dealt with. We represented time
using a timestamp with discrete intervals of 1 ms. Using these intervals, our
specification is able to cope with intervals between pulses, since the shortest
interval takes much longer than this (around 300ms). Pulse data coming from
the atrium and the ventricle are constantly updated by an operation and stored
in the variables a curr measurement and v curr measurement.

TimeSt
time, a start time, v start time, a max , v max : R
a delay, v delay, a curr measurement , v curr measurement : R

There are three important moments during the measurement that should be
taken into account: the time when any voltage has been sensed by the pacemaker
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in the atrium or in the ventricle (a start time and v start time); the maximal
pulse amplitude that has been detected in the atrium or in the ventricle for each
sensed pulse (a max and v max ); and the time in which the pulse delay ends
in the atrium or in the ventricle (a delay and v delay).

BatteryStatus Component. The battery status is used to control the pace-
maker’s function. The battery is fully charged in the beginning of life (BOL).
During its lifetime, it may be near a replacement, in which case it is considered
Elective Replacement Near (ERN ). These two first stages do not restrict any
function of the pacemaker. When it is time to replace the battery (ERT ), the
pacemaker restricts its functions in order not to compromise the therapy. The
last stage, elective replacement past (ERP), indicates that the replacement time
has passed. We have modelled these values as the following Z free type.

BATT STATUS LEVEL ::= BOL | ERN | ERT | ERP

The variable batt status level of the BatteryStatus component indicates the cur-
rent level of the battery life, as follows.

BatteryStatus
batt status level : BATT STATUS LEVEL

Bradycardia Operating Modes. The pacemaker is able to apply 23 different
programmed pacing modes or bradycardia operating modes. These modes have
an important role in the pacemaker because they allow the pacemaker to deliver
the correct therapy. Some of the bradycardia operating modes, however, are only
able to sense the heartbeat, with no interference to the heart.

Our model of the bradycardia operating modes uses some free types that
we describe in the sequel. First, we define the availability of the modes using
the SWITCH free type with two constants: ON and OFF . The chambers in
which the bradycardia operating mode will sense and pace are defined using
the free type CHAMBERS . Variables of this type can assume values according
to the chambers that must be sensed and paced: C NONE for no chambers;
C ATRIUM for the atrium only; C VENTRICLE for the ventricle only; and
C DUAL for both the atrium and the ventricle. Finally, the way in which the
bradycardia operating mode must respond to sensed events is modelled by the
type RESPONSE : R NONE for no response; TRIGGERED for an indication
that the heart is beating too slowly; INHIBITED for an indication that the heart
is beating at a proper rate; and TRACKED for cases whether the pacemaker is
able to decide the best response between INHIBITED and TRIGGERED .

SWITCH ::= ON | OFF
CHAMBERS ::= C NONE | C ATRIUM | C VENTRICLE | C DUAL
RESPONSE ::= R NONE | TRIGGERED | INHIBITED | TRACKED
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The schema BOM represents a bradycardia operation mode. It is composed
of five variables: switch, chambers paced, chambers sensed, response to sensing
and rate modulation. The availability of the bradycardia operating mode is indi-
cated by the variable switch. The variables chambers paced and chambers sensed
inform which chambers, during the therapy, the pacemaker will pace and sense,
respectively. The response that should be given to sensed pulses is stored in
the variable response to sensing. Finally, the rate modulation informs when the
pacemaker uses an accelerometer to monitor the body’s movement. The modes
that use an accelerometer are named as rate-adaptive pacing modes.

BOM
switch : SWITCH ; chambers paced , chambers sensed : CHAMBERS ;
response to sensing : RESPONSE ; rate modulation : B

By way of illustration we present the VOO bradycardia operation mode, a non-
rate-adaptive mode, in which the pacemaker works without sensing the heart,
and only paces the ventricle. According to the informal specification, all non-
rate-adaptive modes, as VOO , are available during the entire battery life.

VOO
BOM ; BatteryStatus

switch = ON ∧ rate modulation = false
chambers sensed = C NONE ∧ response to sensing = R NONE
chambers paced = C VENTRICLE
batt status level ∈ BOL ∪ ERN ∪ ERT ∪ ERP

We have modelled further 22 operation modes like this. They belong to the set
of all bradycardia operating modes, defined as the type MODE presented below,
which used in the BO MODE component of the PulseGen state.

MODE =̂ VOO ∨ AOO ∨ DOO ∨ . . .

The bradycardia operating mode (BO MODE) component of the PulseGen
state is presented below. The pacemaker therapy depends on the programmed
bradycardia operation mode.

BO MODE
bo mode : MODE

ProgrammableParameters Component. In the informal specification, a set
of 26 programmable parameters is described. These parameters can be used by
the cardiologist to set up the pacemaker according to each individual patient.
The component ProgrammableParameters was modelled as the conjunction of
each individual programmable parameter like BO MODE.

ProgrammableParameters =̂ BO MODE ∧ LRL ∧ URL ∧ . . .
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This concludes the description of the ProgrammableParameters . We now turn
our attention to the component that is responsible for the events markers.

EventMarkers Component. The event markers are a report of how the pace-
maker is responding to the heart. It makes it possible for the cardiologist to
know if the pacemaker is delivering the correct pace. According to the informal
specification, there are markers to atrial events, ventricle events, and markers
for occurrences of abnormal activities between the heart and the pacemaker. In
this paper, we use the ventricular markers to illustrate our approach to model
the markers. A free type was defined in order to model occurrences of pacing
events (VP) or sensing events (VS ) in the ventricle, premature ventricular con-
traction (PVC ) and noise indication (TN ).

V MARKERS ::= VS | VP | PVC | TN

We modelled the real time ventricular markers (RT V MARKERS ) as a se-
quence of tuples, illustrated below. Each tuple stores information on what event
occurred, the actual pulse width and amplitude, as well as noise indication and
the time that the event occurred. The only restriction is that no two event mark-
ers from the same chamber can occur at the same time. In the definition below,
we use ProofPower-Z’s notation m1.5 and m2.5 to denote the fifth element of
the tuples, which represent the time of occurrence of m1 and m2, respectively.

RT V MARKERS =̂
{ s : seq {marker : V MARKERS ; width : R; amp : R;

noise : R; time : R • (marker ,width, amp,noise, time) }
| ∀ i , j : dom s | i �= j
• (∃m1,m2 : ran s | m1 = s(i) ∧ m2 = s(j ) • m1.5 �= m2.5)}

Three of the four event markers available to the pacemaker were modelled. Atrial
markers are generated for each event that occurs in the atrium. Similarly, ven-
tricular markers are generated for events in the ventricle. Augmentation markers
are generated simultaneously with atrial or ventricular markers, during atrial
tachycardia response (ATR) or an post ventricular atrial refractory period ex-
tension (PVARP-Ext). Markers modifiers were not modelled due to difficulties
to understand when these events occur.

EventMarkers
a marker : RT A MARKERS ;
v marker : RT V MARKERS ;
augmentation marker : RT AUGMENTATION MARKERS

As a result of the absence of the event markers modifiers, we have not been
able to model the following functionalities of the pacemaker: hysteresis pacing,
which is used as a delay used for pulses coming from the heart before pacing
pulses; rate smoothing, which is used to avoid sudden changes in the pacing rate;
and sensor rate, which is used during rate-adaptive pacing modes to establish
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limits for pacing rates as a result of the rate-adaptive algorithm. We are currently
looking for further sources of information that are capable to provide us with
the answers needed (see Section 4).

3.2 The PulseGen State

The state of the pacemaker is modelled as PulseGen and contains all information
concerning the pacemaker. The schema bellow is the composition of all compo-
nents like ProgrammableParameters , EventMarkers , PacingPulse, SensingPulse
and bradycardia operation modes. The PulseGen is also composed by oth-
ers components that have not been presented here for the sake of concise-
ness1. For instance, we have omitted the specification of other components like
ImplantData, which is able to store information concerning the implant like
date and serial numbers, and MagnetTest , which stores information of the mag-
net test that is used to determine the device battery levels. These components
and operations are not used in the pacing and sensing modules.

PulseGen =̂ PacingPulse ∧ SensingPulse ∧ TimeSt ∧ Leads
∧ MeasuredParameters ∧ MagnetTest ∧ Accelerometer
∧ EventMarkers ∧ BatteryStatus ∧ ImplantData
∧ TelemetrySession ∧ ProgrammableParameters

The PulseGen proved to be very large and complex, and as consequence, the
industrial theorem prover we use, ProofPower, was not able to cope with the
specification. The main problem was the time spent to load the specification. In
order to overcome this problem, the ProofPower development team suggested us
to use the following notation to formalise the pacemaker’s overall state.

PG =̂ [PGcomp : PulseGen]

The system is modelled as a state with one component of type PulseGen. Using
this approach, loading the state and the operations presented in the next section
did not present any problems.

3.3 Operations on the Pacemaker

We modelled the pacemaker as the state PG presented above. The general ap-
proach to define any operation Op on this state is as follows.

Op
ΞPG

∃PulseGen; PulseGen ′

| PGcomp = θPulseGen ∧ PGcomp′ = θPulseGen ′ • P

1 The pacemaker full specification can be downloaded from
http://www.consiste.dimap.ufrn.br/~artur/pacemaker/pacemaker-in-z.pdf

http://www.consiste.dimap.ufrn.br/~artur/pacemaker/pacemaker-in-z.pdf
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The predicates P of the operation refer to PulseGen. For this reason, we use
PGcomp = θPulseGen ∧ PGcomp′ = θPulseGen ′ to ensure that PGcomp is the
initial PulseGen and PGcomp′ is the final PulseGen ′. Obviously, operations that
change the state work on ∆PG instead of ΞPG.

3.4 Time Notion in the Pacemaker

The pacing and sensing modules of the pulse generator update the state every
millisecond. We model this increment by the operation below, SetTimer , that
increments time in 1 ms.

SetTimer
∆PG

∃PulseGen; PulseGen ′ |
PGcomp = θPulseGen ∧ PGcomp′ = θPulseGen ′ •

time ′ = time + real1 ∧
θ(PulseGen \ (time)) = θ(PulseGen \ (time))′

The predicate θ(PulseGen \ (time)) = θ(PulseGen \ (time))′ guarantees that
only the variable time is changed in the state. This operation is used by the
operation BradTherapy presented in Section 3.7.

3.5 Pacing Pulse Module

In our approach, operations of the pulse generator state were modelled as a
disjunction of two operations, in which the first one – suffixed by ok – changes
the state if its constraints are satisfied. On the other hand, the second operation
– suffixed by nok – leaves the state unchanged when the operation constraints
are not satisfied. Using this approach, we guarantee that our operations are total,
avoiding undefinedness as much as possible.

The operation SetMode is used by the pulse generator to deliver pulses to
the heart according to its bradycardia operation mode. The selection of the
correct mode depends on the patient’s needs and is up to the cardiologist. As
an example, we present below the operation SetVOO.

SetVOO =̂ SetVOOok ∨ SetVOOnok

In VOO mode, the pulse generator should output pulses between programmed
intervals, known as the lower rate limit (lower rate limit). The precondition
of this operation ensures that the bradycardia operation is VOO (bo mode ∈
VOO) and also that the operation is available in all stages of the battery
life (batt status level ∈ BOL ∪ ERN ∪ ERT ∪ ERP). Furthermore, the oper-
ation should only be invoked if, by adding the timestamp of the last delivered
pulse to the ventricle (last p v pulse) to the lower rate limit interval, we have
the same value as the actual timestamp (time). On these conditions, the pacing
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module sets the pulse amplitude and width. The variable v pulse amp regulated
is a tuple whose first part is a SWITCH typed value and the second part is
the amplitude value. The current timestamp is updated using the time of the
last delivered pulse time (last p v pulse′ = time). Finally, a new ventricular
pulse (VP) marker is created to register the delivery of the pulse.

SetVOOok
∆PG

∃PulseGen; PulseGen ′ |
PGcomp = θPulseGen ∧ PGcomp′ = θPulseGen ′ •
bo mode ∈ VOO ∧
batt status level ∈ BOL ∪ ERN ∪ ERT ∪ ERP ∧
last p v pulse + PulseWidth(lower rate limit) = time ∧
(time − last p v pulse) ≥ PulseWidth(upper rate limit) ∧
paced v pulse amp′ = v pulse amp regulated .2 ∧
paced v pulse width′ = v pulse width ∧
last p v pulse′ = time ∧
v marker ′ =

v marker � 〈(VP , v pulse amp regulated .2,
v pulse width, real 0, time )〉 ∧

θ(PulseGen \ ( v marker , paced v pulse amp,
paced v pulse width, last p v pulse) )′ =

θ(PulseGen \ ( v marker , paced v pulse amp,
paced v pulse width, last p v pulse) )

The operation SetVOOnok below guarantees that the state of the pulse generator
remains unchanged if we have no output pulses delivered to the heart.

SetVOOnok
∆PG

∃PulseGen; PulseGen ′ |
PGcomp = θPulseGen ∧ PGcomp′ = θPulseGen ′ •
(bo mode ∈ VOO) ∧
batt status level ∈ BOL ∪ ERN ∪ ERT ∪ ERP ∧
¬ ( (last p v pulse + PulseWidth(lower rate limit)) = time ∧

(time − last p v pulse) ≥ PulseWidth(upper rate limit) ) ∧
θ(PulseGen)′ = θ(PulseGen)

During the pacemaker’s lifetime, only one bradycardia operation mode can be
used at a time. The SetMode operation illustrated below is defined as the dis-
junction of all setting operations of each individual mode.

SetMode =̂ SetVOO ∨ SetAOO ∨ SetVVI ∨ SetAAI ∨ . . .

This concludes the specification of the pacing pulse module. In the next section
we present the specification of the module that is capable to sense pulses coming
from the heart, the sensing module.
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3.6 Sensing Module

The mechanism that measures the voltage of pulses coming from the heart was
modelled as the operation SensingModule, which is composed by two opera-
tions: VentricularMeasurement and AtrialMeasurement.

SensingModule =̂ VentricularMeasurement ∨ AtrialMeasurement

We only present the VentricularMeasurement operation, which is defined below
as a disjunction of three operations. The specification of the AtrialMeasurement
is similar and omitted here for conciseness.

VentricularMeasurement =̂ VentricleStart ∨ VentricleMax ∨ VentricleEnd

Each one of these operations is used in a specific moment during the measure-
ment of sensed pulses. The first operation, VentricleStart, updates the pulse gen-
erator with the exact time in which the pulse coming from the ventricle starts.
This pulse is detected if the current sensed voltage (v curr measurement) is
strictly greater than the current value of the ventricle pulse (r wave) and if
there were no registered pulse activity (r wave = real 0). In this case, the start
time (v start time) is stored and r wave is updated.

VentricleStart
∆PG

∃PulseGen; PulseGen ′ |
PGcomp = θPulseGen ∧ PGcomp′ = θPulseGen ′ •
(v curr measurement > r wave) ∧ r wave = real 0 ∧
(r wave ′ = v curr measurement) ∧ v start time ′ = time ∧
θ(PulseGen \ (r wave, v start time))′ =

θ(PulseGen \ (r wave, v start time))

The pacemaker should also store the higher measurement of the pulse detected.
This task is achieved by the VentricleMax operation: while the current mea-
surement is increasing (v curr measurement > r wave), the maximum voltage
sensed in the ventricle (v max ) and the current value of r wave are updated
with the current measurement.

VentricleMax
∆PG

∃PulseGen; PulseGen ′ |
PGcomp = θPulseGen ∧ PGcomp′ = θPulseGen ′ •
v curr measurement > r wave ∧
v max ′ = v curr measurement ∧
r wave ′ = v curr measurement ∧
θ(PulseGen \ (r wave, v max ))′

= θ(PulseGen \ (r wave, v max ))
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The last sensing operation, VentricleEnd, updates the time in which the cur-
rent sensed pulse (v delay) and the sensed pulse itself ends, when there is no
activity (v curr measurement = real 0).

VentricleEnd
∆PG

∃PulseGen; PulseGen ′ |
PGcomp = θPulseGen ∧ PGcomp′ = θPulseGen ′ •
v curr measurement = real 0 ∧
r wave ′ = v curr measurement ∧ v delay ′ = time ∧
θ(PulseGen \ (r wave, v delay))′ = θ(PulseGen \ (r wave, v delay))

The information stored is used to calculate the duration of the pulse sensed. This
duration is used to determine the heartbeat rate as we discuss in the sequel.

Sensing Markers. We now turn our focus to the operations that create event
markers, which correspond to heart activities. By way of illustration, we present
the operation VentricularSensedMarker , which creates markers from ventricular
sensed activities and updates the pulse generator with new information.

VentricularSensedMarker
∆PG

∃ v sense, v sense prev : V MKR ANN ; a sense : A MKR ANN
| a sense = last(a marker) ∧ v sense = last(v marker)
∧ v sense prev = last(front(v marker))
• ∃PulseGen; PulseGen ′

| PGcomp = θPulseGen ∧ PGcomp′ = θPulseGen ′

• card cycles l ′ = (v sense.5− v sense prev .5) ∧
s v pulse w ′ = (delay − start time) ∧
s v pulse amp′ = v max ∧ last s v pulse ′ = start time ∧
( ( (v sense.5 ≤ a sense.5 ≤ start time) ∧

(v marker ′ = v marker � 〈(VS , s v pulse w ,
s v pulse amp, real 0, last s v pulse)〉) )

∨ ( (¬(v sense.5 ≤ a sense.5 ≤ start time)) ∧
v marker ′ = v marker � 〈(PVC , s v pulse w ,

s v pulse amp, real 0, last s v pulse)〉 ) ) ∧
θ(PulseGen \ (v marker , s v pulse w ,

s v pulse amp, last s v pulse))′

= θ(PulseGen \ (v marker , s v pulse w ,
s v pulse amp, last s v pulse))

The cardiac cycle length, which is the delay between two consecutive pulses from
the same chamber (card cycles l ′ = (v sense.5− v sense prev .5)); ventricular
pulse width, which is the time interval between the beginning of the sensed pulse
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and its end; ventricular pulse amplitude, which is the higher voltage sensed in
the pulse (s v pulse amp′ = v max ); and the last sensed ventricular pulse,
which is the start time of the sensed pulse (last s v pulse′ = v start time).
The ventricular markers are also updated with a new marker: if the pacemaker
detected an atrial event after the previous ventricular event ((v sense.5 ≤
a sense.5 ≤ start time)), we have a ventricular sensed pulse (VS ); otherwise,
we have a premature ventricular contraction (PVC ).

The operation SensingMarkers interprets the data that was measured and
creates the appropriate markers as discussed above.

SensingMarkers =̂ AtrialSensedMarker ∨ VentricularSensedMarker ∨
AugmentationMarker

Some other markers are also stored. For instance, the atrial tachycardia marker
is caused by intermittent pulses faster than the natural heartbeat. Furthermore,
the augmentation markers are created simultaneously with atrial and ventri-
cle markers to store information concerning a PVC if no atrial activity oc-
curred before the contraction. Finally, information about the atrial tachycardia
response (ATR) like its starting time and duration period are also stored.

3.7 Pacing and Sensing Module: The Bradycardia Therapy

The BradTherapy operation models one cycle of the pacemaker’s behaviour.

BradTherapy =̂ SetTimer o
9 SensingModule o

9 SensingMarkers o
9 SetMode

As a result of this operation, the time is incremented, the SensingModule mea-
sures the heart activities, the SensingMarkers analyzes these activities, and fi-
nally, SetMode responds to the heart needs accordingly (delivering pulses or
skipping), depending on each programmed bradycardia operation mode. This
concludes our specification of the pacemaker.

4 Conclusions

In this paper, we presented parts of a pacemaker specification, one of the chal-
lenges proposed by the Verified Software Initiative. This specification differs from
the previous one [6] in that it includes new features of the pacemaker like event
markers, restrictions on the parameter changes, and functionalities based on the
battery level.

The specification was loaded in ProofPower-Z in less than two minutes, using
a Intel Core2 Duo 2.4Ghz with 3Gb DDR2 RAM machine. Initially, however,
ProofPower-Z presented a long delay to load our specification. The delay was
caused by the extensive use of the schema calculus, which allows us to modu-
larise the definition of the state of the PulseGen. Our system was represented
a large conjunction of many different schemas, each of them corresponding to
a component of the pacemaker. In the background, ProofPower-Z has to define
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the HOL types that represent the corresponding Z types. As a result, we have a
background processing, whose complexity is exponential on the number of com-
ponents. An alternative solution to the one we presented here is to eliminate
some conjunctions of schemas by assembling these in a single schema. How-
ever, proofs would probably be more complex since the number of variables for
that new component is much higher than the approach chosen. Furthermore, we
would possibly loose the modularity of the proofs.

So far, we created over 250 schemas, including the pulse generator state and
149 operations. This amounts to over 4000 lines of Z specification in a 84 pages
document. The current version of our specification covers over 95 percent of the
entire informal specification.

The consistency of our specification has been partially checked through rea-
soning. So far, we have only focused in checking the consistency of the model;
no validation experiments regarding safety conditions were performed yet. As
part of our reasoning, we have proved that the initialisation of the system is a
valid one and we have calculated the preconditions of the operations. The latter
has been executed to guarantee that our intention to have total operations has
been fulfilled. We have achieved the proof of the initialisation in parts. First, we
proved the validity of the initialisation of each one of the PulseGen’s compo-
nents. Finally, we proved, using a more general theorem that the initialisation
of the whole system is valid. Proofs were quite simple, and achieved with few
rewriting steps and the input of a few simple witnesses. For the same reasons,
the calculi of the pre-conditions were also quite simple. In total, we have proved
46 theorems resulting in over 1291 lines of proof script.

The formal specification of the pacemaker proved to be a complex task and
required an intensive research on the system’s domain, whose understanding
was the main problem. The informal specification [3] does not provide enough
information for a software development team to construct a pacemaker system
without any previous knowledge on basic cardiological information such as pac-
ing modes, timing cycles, and event markers.

We have contacted experts from Boston Scientific many times to obtain a more
detailed specification of some components originally presented in [10]. Unfortu-
nately, some answers were not enough to formally specify parts of the system.
As a consequence, few operations have not yet been modelled like the rate-
adaptive algorithm, an specific algorithm that is used to recognise the body’s
movement and increase the frequency of pulses delivered. Another example of
under-specification is the threshold test and event markers modifiers. For us,
it is clear that researchers involved in this challenge must look for additional
resources as cardiological books [4] and pacemaker guides [15], in order to un-
derstand the vast functionalities of the pacemaker system.

4.1 Related Work

Using VDM, colleagues from Newcastle University, Engineering College of Århus
and Universidade do Minho [11] have developed a partial model of the pace-
maker. Besides a sequential model of the pacemaker, Macedo et. al [11] also
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modelled a concurrent and a distributed real-time model of the pacemaker using
VDM++ [5]. Their approach in the sequential model is similar to ours. Both use
the notion of event sensing and reaction to specify the pacemaker operations.
The pacemaker logs each event using markers that are used by the operations.
The VDM’s group modelled 8 of the 19 bradycardia operation modes including
the corresponding programmable parameters. The inclusion of event markers on
the PulseGen state allows us to create a model similar to the one proposed by
them. Moreover, by adding an Accelerometer to the PulseGen, we are able to
formally model the detection of human movement, allowing the pacemaker to
operate in rate-adaptive bradycardia operation modes.

The sequential model of [11] has been validated through several tests like
absence of sensed pulses and outputted pulses at the correct time. Some of these
test cases have been re-used in the validation of their concurrent model and also
their distributed real-time model. The extension of our model and their validation
is in our research agenda as we discuss in the sequel.

4.2 Future Work

Our final aim is to create a prototype of the pacemaker that deals with the
informal specification provided. Ideally, we would like to acquire the original
hardware provided by Software Quality Research Labs. Due to budget restric-
tions, we will simulate the verified pacemaker on a Field Programmable Gate
Array (FPGA). For that, we will refine our model into Handel-C [2] code using
a refinement calculus like ZRC [1], and then, load the resulting program into a
FPGA. An interesting piece of future work is to create some test scenarios to
validate our system.

It is also in our agenda the extension of our model to to include concurrency
using Circus [12], a combination of Z and CSP, and the derivation of the Circus
specification into code using its refinement calculus and tool support [7]. Notions
of real-time are also to be incorporated in our model in a later stage using Circus’
timed version [14].
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Abstract. In this paper we describe the successful application of the
ProB validation tool on an industrial case study. The case study cen-
tres on the San Juan metro system installed by Siemens. The control
software was developed and formally proven with B. However, the de-
velopment contains certain assumptions about the actual rail network
topology which have to be validated separately in order to ensure safe
operation. For this task, Siemens has developed custom proof rules for
AtelierB. AtelierB, however, was unable to deal with about 80 properties
of the deployment (running out of memory). These properties thus had
to be validated by hand at great expense (and they need to be revalidated
whenever the rail network infrastructure changes).

In this paper we show how we were able to use ProB to validate all of
the about 300 properties of the San Juan deployment, detecting exactly
the same faults automatically in around 17 minutes that were manu-
ally uncovered in about one man-month. This achievement required the
extension of the ProB kernel for large sets as well as an improved con-
straint propagation phase. We also outline some of the effort and fea-
tures that were required in moving from a tool capable of dealing with
medium-sized examples towards a tool able to deal with actual indus-
trial specifications. Notably, a new parser and type checker had to be
developed. We also touch upon the issue of validating ProB, so that it
can be integrated into the SIL4 development chain at Siemens.
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Industrial Applications.
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Fig. 1. Overview of the Constants Validity Problem

the software for the fully automatic driverless Line 14 of the Paris Métro, also
called Météor (Metro est-ouest rapide) [4]. But since then, many other train
control systems have been developed and installed worldwide by STS [7,3,9].
One particular development is in San Juan (Puerto Rico), which we will use
as case study in this paper. The line consists of 16 stations, 37 trains and a
length of 17.2 km, transporting 115,000 passengers per day. Several entities of
Siemens produced various components of this huge project, such as the rolling
stock and the electrification. STS developed the ATC (Automatic Control Sys-
tem) named SACEM (Système d’Aide à la Conduite, à l’Exploitation et à la
Maintenance).

STS are successfully using the B-method and have over the years acquired
considerable expertise in its application. STS use Atelier B [19], together with
in-house developed automatic refinement tools. In this paper, we describe one
aspect of the current development process which is far from optimal, namely
the validation of properties of parameters only known at deployment time. The
parameters are typically constants in the B model. Figure 1 gives an overview
of this issue. Note, the figure is slightly simplified as there are actually two code
generators and data redundancy check during execution. The track is divided
into several sub-sections, each sub-section is controlled by a safety critical soft-
ware. In order to avoid multiple developments, each software is made from a
generic B-model and parameters that are specific to a sub-section. The proofs
of the generic B-model rely on assumptions that formally describe the topology
properties of the track. We therefore have to make sure that the parameters used
for each sub-section actually verify the formal assumptions.
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For example, in case of the San Juan development, about 300 assumptions
were made.2 It is vital that these assumptions are checked when the system is
put in place, as well as whenever the rail network topology changes (e.g., due to
line extension or addition or removal of certain track sections).

For this, Siemens Transportation Systems (STS) have developed the following
approach:

1. The topology is extracted from the ADA program and encoded in B syntax,
written into AtelierB definition files.

2. The relevant part of the B model is extracted and conjoined with the defi-
nition files containing the topology.

3. The properties and assertions3 are proven with Atelier B, using custom proof
rules and tactics.

There are two problems with this approach.

– If the proof of a property fails, the feedback of the prover is not very useful
in locating the problem (and it may be unclear whether there actually is a
problem with the topology or “simply” with the power of the prover).

– The constants are very large (relations with thousands of tuples) and the
properties so complex (see Figure 2) that Atelier B quite often runs out of
memory. For example, for the San Juan development, 80 properties (out of
the 300) could not be checked by Atelier B.

The second point means that these properties have to be checked by hand (e.g.,
by creating huge spreadsheets on paper for the compatibility constraints of all
possible itineraries). For the San Juan development, this meant about one man
month of effort, which is likely to grow much further for larger developments
such as [9].

The starting point of this paper was to try to automate this task, by using
an alternative technology. Indeed, the ProB tool [13,15] has to be capable of
dealing with B properties in order to animate and model check B models. The
big question was, whether the technology would scale to deal with the industrial
models and the large constants in this case study.

In Section 2 we elaborate on what had to be done to be able to parse and load
large scale industrial B models into the ProB tool. In Section 3 we present the
new constraint propagation algorithms and datastructures that were required to
deal with the large sets and relations of the case study. The results of the case
study itself are presented in Section 4, while in Section 5 we present how we plan
to validate ProB for integration into the development cycle at Siemens. Finally,
in Section 6 we present more related work, discussions and an outlook.

2 Our model contains 226 properties and 147 assertions; some of the properties, how-
ever, are extracted from the ADA code and determine the network topology and
other parameters.

3 In B assertions are predicates which should follow from the properties.
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cfg_ipart_cdv_dest_aig_i : t_nb_iti_partiel_par_acs --> t_nb_cdv_par_acs;

!(aa,bb).(aa : t_iti_partiel_acs & bb : cfg_cdv_aig &
aa |-> bb : t_iti_partiel_acs <| cfg_ipart_cdv_transit_dernier_i |> cfg_cdv_aig
=> bb : cfg_ipart_cdv_transit_liste_i[(cfg_ipart_cdv_transit_deb(aa)

.. cfg_ipart_cdv_transit_fin(aa))]);

cfg_ipart_pc1_adj_i~[{TRUE}] /\ cfg_ipart_pc2_adj_i~[{TRUE}] = {};

!(aa,bb).(aa : t_aig_acs & cfg_aig_cdv_encl_deb(aa) <= bb &
bb <= cfg_aig_cdv_encl_fin(aa)

=> cfg_aig_cdv_encl_liste_i(bb) : t_cdv_acs);

!(aa).(aa : t_aig_acs
=> t_cdv_acs <| cfg_aig_cdv_encl_liste_i~ |>
cfg_aig_cdv_encl_deb(aa)..cfg_aig_cdv_encl_fin(aa):t_cdv_acs +-> NATURAL);

cfg_canton_cdv_liste_i |> t_cdv_acs : seq(t_cdv_acs);

cfg_cdv_i~[{c_cdv_aig}] /\ cfg_cdv_i~[{c_cdv_block}] = {};

dom({aa,bb|aa : t_aig_acs & bb : t_cdv_acs &
bb : cfg_aig_cdv_encl_liste_i[(cfg_aig_cdv_encl_deb(aa) ..

cfg_aig_cdv_encl_fin(aa))]}) = t_aig_acs;

ran({aa,bb|aa : t_aig_acs & bb : t_cdv_acs &
bb : cfg_aig_cdv_encl_liste_i[(cfg_aig_cdv_encl_deb(aa) ..

cfg_aig_cdv_encl_fin(aa))]}) = cfg_cdv_i~[{c_cdv_aig}];

Fig. 2. A small selection of the assumptions about the constants of the San Juan
topology

2 Parsing and Loading Industrial Specifications

First, it is vital that our tool is capable of dealing with the actual Atelier B
syntax employed by STS. Whereas for small case studies it is feasible to adapt
and slightly rewrite specifications, this is not an option here due to the size and
complexity of the specification. Indeed, for the San Juan case study we received
a folder containing 79 files with a total of over 23,000 lines of B.

Improved Parser. Initially, ProB [13,15] was built using the jbtools [20]
parser. This parser was initially very useful to develop a tool that could handle
a large subset of B. However, this parser does not support all of Atelier B’s
features. In particular, jbtools is missing support for DEFINITIONS with pa-
rameters, for certain Atelier B notations (tuples with commas rather than |->)
as well as for definition files. This would have made a translation of the San
Juan example (containing 24 definition files and making heavy usage of the un-
supported features) near impossible. Unfortunately, jbtools was also difficult to
maintain and extend.4 This was mainly due to the fact that the grammar had
to be made suitable for top-down predictive parsing using JavaCC, and that it
used several pre- and post-passes to implement certain difficult features of B
(such as the relational composition operator ’;’, which is also used for sequential

4 We managed to somewhat extend the capabilities of jbtools concerning definitions
with parameters, but we were not able to fully support them.
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composition of substitutions), which also prevented the generation of a clean
abstract syntax tree.

Thus, the first step towards making ProB suitable for industrial usage, was
the development of a new parser. This parser was built with extensibility in
mind, and now supports almost all of the Atelier B syntax. We used SableCC
rather than JavaCC to develop the parser, which allowed us to use a cleaner
and more readable grammar (as it did not have to be suitable for predictive
top-down parsing) and to provide fully typed abstract syntax tree.

There are still a few minor differences with Atelier B syntax (which only
required minimal changes to the model, basically adding a few parentheses). In
fact, in some cases our parser is actually more powerful than the Atelier B variant
(the Atelier B parser does not distinguish between expressions and predicates,
while our parser does and as such requires less parentheses).

Improved Type Inference. In the previous version of ProB, the type infer-
ence was relatively limited, meaning that additional typing predicates had to be
added with respect to Atelier B. Again, for a large industrial development this
would have become a major hurdle. Hence, we have also implemented a complete
type inference and checking algorithm for ProB, also making use of the source
code locations provided by the new parser to precisely pinpoint type errors. The
type inference algorithm is based upon Prolog unification, and as such is more
powerful than Atelier B’s type checker,5 and we also type check the definitions.
The machine structuring and visibility rules of B are now also checked by the
type checker. The integration of this type checker also provides advantages in
other contexts: indeed, we realised that many users (e.g., students) were us-
ing ProB without Atelier B or a similar tool for type checking. The new type
checker also provides performance benefits to ProB, e.g., by disambiguating
between Cartesian product and multiplication for example.

The scale of the specifications from STS also required a series of other ef-
ficiency improvements within ProB. For example, the abstract syntax tree of
the main model takes 16.7 MB in Prolog form, which was highlighting several
performance issues which did not arise in smaller models.

All in all, about eight man-months of effort went into these improvements,
simply to ensure that our tool is capable of loading industrial-sized formal spec-
ifications. The development of the parser alone took 4-5 man months of effort.

One lesson of our paper is that it is important for academic tools to work
directly on the full language used in industry. One should not underestimate
this effort, but it is well worth it for the exploitation avenues opened up. Indeed,
only in very rare circumstances can one expect industrialists to adapt their
models to suit an academic tool.

In the next section we address the further issue of effectively dealing with the
large data values manipulated upon by these specifications.

5 It is even more powerful than the Rodin [1] type checker, often providing better error
messages.
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3 Checking Complicated Properties

The San Juan case study contains 142 constants, the two largest of which
(cfg ipart pos aig direct i, cfg ipart pos aig devie i) contain 2324 tuples. Larger
relations still can arise when evaluating the properties (e.g., by computing set
union or set comprehensions).

The previous version of ProB represented sets (and thus relations) as Prolog
lists. For example, the set {1, 2} would be represented as [int(1),int(2)]. This
scheme allows to represent partial knowledge about a set (by partially instan-
tiating the Prolog structure). E.g., after processing the predicates card(s) = 2
and 1 ∈ s, ProB would obtain [int(1),X] as its internal representation for s
(where X is an unbound Prolog variable).

However, this representation clearly breaks down with sets containing thou-
sands or tens of thousands of elements. We need a datastructure that allows us
to quickly determine whether something is an element of a set, and we also need
to be able to efficiently update sets to implement the various B operations on
sets and relations.

For this we have used an alternative representation for sets using AVL trees —
self-balancing binary search trees with logarithmic lookup, insertion and deletion.

To get an idea of the performance, take a look at the following operation,
coming from a B formalisation of the Sieve of Eratosthenes, where numbers was
initialised to 2..limit and where cur=2:

numbers := numbers - ran(%n.(n:cur..limit/cur|cur*n))

With limit=10,000 the previous version of ProB ran out of memory after about 2
minutes on a MacBook Pro with 2.33 GHz Core2 Duo processor and 3 GB of RAM.
With the new datastructure this operation, involving the computation of a lambda
expression, the range of it and a set difference, is now almost instantaneous (0.2
seconds). For limit = 100,000 it requires 2.1 seconds, for limit = 1,000,000 ProB

requires about 21.9 seconds, and for limit = 10,000,000ProB requires about 226.8
seconds. Figure 3 contains an log-log plot of the runtime for various values of limit,
and clearly shows that ProB’s operations scale quasi linearly with the size of the
sets operated upon (as the slope of the runtime curve is one).

There is one caveat, however: this datastructure can (for the moment) only
be used for fully determined values, as ordering is relevant to store and retrieve
values in the AVL tree. For example, we cannot represent the term [int(1),X]
from above as an AVL tree, as we do not know which value X will take on.
Hence, for partially known values, the old-style list representation still has to be
used. For efficiency, it is thus important to try to work with fully determined
values as much as possible. For this we have improved the constraint propa-
gation mechanism inside the ProB kernel. The previous version of ProB [15]
basically had three constraint propagation phases: deterministic propagation,
non-deterministic propagation and full enumeration. The new kernel now has a
much more fine-grained constraint propagation, with arbitrary priorities. Every
kernel computation gets a priority value, which is the estimated branching fac-
tor of that computation. A priority number of 1 corresponds to a deterministic
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Fig. 3. Performance of the new ProB datastructure and operations on large sets

computation. For example, the kernel computation associated with, x = z would
have a priority value of 1 while x ∈ {1, 2, 3} would have a priority value of 3. A
value of 0 indicates that the computation will yield a fully determined value. At
every step, the kernel chooses the computation with the lowest priority value.

Take for example the predicate x:NAT +-> NAT & x={y|->2} & y=3. Here,
y=3 (priority value 0) would actually be executed before x={y|->2}, and thus
ensure that afterward a fully determined AVL-tree would be constructed for x.
The check x:NAT +-> NAT is executed last, as it has the highest priority value.

Compared to the old approach, enumeration can now be mixed with other
computations and may even occur before other computations if this is advan-
tageous. Also, there is now a much more fine-grained selection among the non-
deterministic computations. Take for example, the following predicate:
s1 = 9..100000 & s2 = 5..100000 & s3 = 1..10 & x:s1 & x:s2 & x:s3.
The old version of ProB would have executed x:s1 before x:s2 and x:s3. Now,
x:s3 is chosen first, as it has the smallest possible branching factor. As such,
ProB very quickly finds the two solutions x = 9 and x = 10 of this predicate.

In summary, driven by the requirements of the industrial application, we have
improved the scalability of the ProB kernel. This required the development of a
new datastructure to represent and manipulate large sets and relations. A new,
more fine grained constraint propagation algorithm was also required to ensure
that this datastructure could actually be used in the industrial application.

4 The Case Study

As already mentioned, in order to evaluate the feasibility of using ProB for
checking the topology properties, Siemens sent the STUPS team at the Univer-
sity of Düsseldorf the models for the San Juan case study on the 8th of July
2008. There were 23,000 lines of B spread over 79 files, two of which were to be
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analysed: a simpler model and a hard model. It then took us a while to under-
stand the models and get them through our new parser, whose development was
being finalised at that time.

On 14th of November 2008 we were able to animate and analyse the first
model. This uncovered one error in the assertions. However, at that point it
became apparent that a new datastructure would be needed to validate bigger
models. At that point the developments described in Section 3 were undertaken.
On the 8th of December 2008 we were finally able to animate and validate the
complicated model. This revealed four errors.

Note that we (the STUPS team) were not told about the presence of errors in
the models (they were not even hinted at by Siemens), and initially we believed
that there was still a bug in ProB. Luckily, the errors were genuine and they
were exactly the same errors that Siemens had uncovered themselves by manual
inspection.

The manual inspection of the properties took Siemens several weeks (about a
man month of effort). Checking the properties takes 4.15 seconds, and checking
the assertions takes 1017.7 seconds (i.e., roughly 17 minutes) using ProB 1.3.0-
final.4 on a MacBook Pro with 2.33 GHz Core2 Duo (see also Figure 4).

Note that all properties and assertions were checked twice, both positively and
negatively, in order to detect undefined predicates (e.g., 0/0 = 1 is undefined).
We return to this issue in Section 5.

The four false formulas found by ProB are the following ones:

1. ran(cfg aig cdv encl) = cfg cdv aig

2. cfg ipart aig tild liste i : t liste acs 2 --> t nb iti partiel par acs

3. dom(t iti partiel acs <| cfg ipart cdv dest aig i |> cfg cdv aig) \/

dom(t iti partiel acs <| cfg ipart cdv dest saig i |> cfg cdv block)

= t iti partiel acs

4. ran(aa,bb|aa:t aig acs & bb:t cdv acs & bb:cfg aig cdv encl liste i[

(cfg aig cdv encl deb(aa)..cfg aig cdv encl fin(aa))]) =

cfg cdv i~[c cdv aig]

Inspecting the Formulas. Once our tool has uncovered unexpected properties
of a model, the user obviously wants to know more information about the exact
source of the problem.

This was one problem in the Atelier B approach: when a proof fails it is
very difficult to find out why the proof has failed, especially when large and
complicated constants are present.

To address this issue, we have developed an algorithm to compute values of B
expressions and the truth-values of B predicates, as well as all sub-expressions
and sub-predicates. The whole is assembled into a graphical tree representation.

A graphical visualisation of the fourth false formula is shown in Figure 5. For
each expression, we have two lines of text: the first indicates the type of the
node, i.e., the top-level operator. The second line gives the value of evaluating
the expression. For predicates, the situation is similar, except that there is a third
line with the formula itself and that the nodes are coloured: true predicates are
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Fig. 4. Analysing the Assertions

green and false predicates are red. (An earlier version of the graphical viewer is
described in [17].)

Note that the user can type custom predicates to further inspect the state
of the specification. Thus, if the difference between the range expression and
cfg cdv i [c cdv aig] is not sufficiently clear, one can evaluate the set difference
between these two expressions. This is shown in Figure 6, where we can see
that the number 19 is an element of cfg cdv i [c cdv aig] but not of the range
expression.

In summary, the outcome of this case study was extremely positive: a man-
month of effort has been replaced by 17 minutes computation on a laptop.
Siemens are now planning to incorporate ProB into their development life cycle,
and they are hoping to save a considerable amount of resources and money. For
this, validation of the ProB tool is an important aspect, which we discuss in
the next section.

5 Validation of ProB

In this case study, ProB was compared with Atelier B. For this specific use, the
performances of ProB are far better than the performances of Atelier B, but
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Fig. 5. Analysing the fourth false assertion

Fig. 6. Analysing a variation of the fourth false assertion

ProB is not yet qualified for use within a SIL 4 (the highest safety integrity level)
development life cycle. If ProB evaluates an assumption to be true, Siemens
would like to be able to rely on this result and not have to investigate the
correctness of this assumption manually.

There are two ways this issue can be solved:

– Use a second, independently developed tool to validate the assumptions. One
possibility would be Atelier B, but as we have already seen it is currently
not capable to deal with the more complicated assumptions. Another pos-
sibility would be to use another animator, such as Brama [18] or AnimB.
These tools were developed by different teams using very different program-
ming languages and technology, and as such it would be a strong safety
argument if both of these tools agreed upon the assumptions. This avenue
is being investigated, but note that Brama and AnimB are much less devel-
oped as far as the constraint solving capabilities are concerned.6 Hence, it is
still unclear whether they can be used for the complicated properties under
consideration.

6 Both Brama and AnimB require all constants to be fully valued, AnimB for the
moment is not capable of enumerating functions, etc.
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– Validate ProB, at least those parts of ProB that have been used for check-
ing the assumptions. We are undertaking this avenue, and provide some
details in the remainder of this section.

The source code of ProB contains >40,000 lines of Prolog, >7,000 lines of
Tcl/Tk, > 5,000 lines of C (for LTL and symmetry reduction), 1,216 lines of
SableCC grammar along with 9,025 lines of Java for the parser (which are ex-
panded by SableCC into 91,000 lines of Java).7

1. Unit Tests:
ProB contains over a 1,000 unit tests at the Prolog level. For instance, these
check the proper functioning of the various core predicates operating on B’s
datastructures. E.g., it is checked that {1} ∪ {2} evaluates to {1, 2}.

2. Run Time Checking:
The Prolog code contains a monitoring module which — when turned on —
will check pre- and post-conditions of certain predicate calls and also detect
unexpected failures. This overcomes to some extent the fact that Prolog has
no static typing.

3. Integration and Regression Tests:
ProB contains over 180 regression tests which are made up of B models
along with saved animation traces. These models are loaded, the saved ani-
mation trace replayed and the model is also run through the model checker.
These tests have turned out to be extremely valuable in ensuring that a bug
once fixed remains fixed. They are also very effective at uncovering errors in
arbitrary parts of the system (e.g., the parser, type checker, the interpreter,
the ProB kernel, ...).

4. Self-Model Check:
With this approach we use ProB’s model checker to check itself, in particular
the ProB kernel and the B interpreter. The idea is to formulate a wide
variety of mathematical laws and then use the model checker to ensure that
no counter example to these laws can be found.
Concretely, ProB now checks itself for over 500 mathematical laws. There
are laws for booleans (39 laws), arithmetic laws (40 laws), laws for sets (81
laws), relations (189 laws), functions (73 laws) and sequences (61 laws), as
well as some specific laws about integer ranges (24 laws) and the various basic
integer sets (7 laws). Figure 7 contains some of these laws about functions.
These tests have been very effective at uncovering errors in the ProB kernel
and interpreter. So much so, that even two errors in the underlying SICStus
Prolog compiler were uncovered via this approach.

5. Positive and Negative Evaluation:
As already mentioned, all properties and assertions were checked twice, both
positively and negatively. Indeed, ProB has two Prolog predicates to eval-
uate B predicates: one positive version which will succeed and enumerate
solutions if the predicate is true and a negative version, which will succeed

7 In addition, there are > 5,000 lines of Haskell code for the CSP parser and about
50, 000 lines of Java code for the Rodin [1] plugin.
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law1 == (dom(ff\/gg) = dom(ff) \/ dom(gg));
law2 == (ran(ff\/gg) = ran(ff) \/ ran(gg));
law3 == (dom(ff/\gg) <: dom(ff) /\ dom(gg));
law4 == (ran(ff/\gg) <: ran(ff) /\ ran(gg));
law5 == ( (ff \/ gg)~ = ff~ \/ gg~);
law6 == (dom((ff ; (gg~))) <: dom(ff));
...
law10 == (ff : setX >->> setY <=> (ff : setX >-> setY & ff~: setY >-> setX));
law11 == (ff : setX >+> setY <=> (ff: setX +-> setY &

!(xx,yy).(xx:setX & yy:setX & xx/=yy & xx:dom(ff) &
yy: dom(ff) => ff(xx)/=ff(yy)))) ;

law12 == (ff : setX +->> setY <=> (ff: setX +-> setY &
!yy.(yy:setY => yy: ran(ff))));

Fig. 7. A small selection of the laws about B functions

if the predicate is false and then enumerate solutions to the negation of the
predicate. With these two predicates we can uncover undefined predicates:8

if for a given B predicate both the positive and negative Prolog predicates
fail then the formula is undefined. For example, the property x = 2/y & y =

x-x over the constants x and y would be detected as being undefined, and
would be visualised by our graphical formula viewer as in Figure 8 (yellow
and orange parts are undefined).
In the context of validation, this approach has another advantage: for a
formula to be classified as true the positive Prolog predicate must succeed
and the negative Prolog predicate must fail, introducing a certain amount
of redundancy (admittedly with common error modes). In fact, if both the
positive and negative Prolog predicates would succeed for a particular B
predicate then a bug in ProB would have been uncovered.

In order to complete the validation of ProB we are planning to do the fol-
lowing steps:

1. Validation of the parser (via pretty-printing and re-parsing and ensuring
that a fixpoint is reached).

2. Validation of the type checker.
3. The development of a formal specification of core parts of ProB and its

functionality.
4. An analysis of the statement coverage of the Prolog code via the above

unit, integration and regression tests. In case the coverage is inadequate, the
introduction of more tests to ensure satisfactory coverage at the Prolog level.

5. The development of a validation report, with description of ProB’s func-
tions, and a classification of functions into critical and non-critical, and a
detailed description of the various techniques used to ensure proper func-
tioning of ProB.

8 Another reason for the existence of these two Prolog predicates is that Prolog’s built-
in negation is generally unsound and cannot be used to enumerate solutions in case
of failure.
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Fig. 8. Visualising an undefined property

6 More Related Work, Conclusion and Outlook

More Related Work. In addition to the already discussed approach using Ate-
lier B and proof, and the animators Brama and AnimB we would like to mention
the BZ-TT [12], a test generation tool for B and Z specifications. A specification
is translated into constraints and the CLPS-B constraint solver [5] is used to
find boundary values and to determine test sequences [2]. BZ-TT is now part of
a commercial product named LEIRIOS Test Generator. The tool is focused on
test generation; many of the features required for the Siemens case study are not
supported by BZ-TT (e.g., set comprehensions, machine structuring, definitions
and definition files, ...).

Alternative Approaches. We have been and still are investigating alternative
approaches for scalable validation of models, complementing ProB’s constraint
solving approach.

One candidate was the bddbddb package [23], which provides a simple rela-
tional interface to binary decision diagrams and has been successfully used for
scalable static analysis of imperative programs. However, we found out that for
dealing with the B language, the operations provided by the bddbddb package
were much too low level (everything has to be mapped to bit vectors), and we
abandoned this avenue of research relatively quickly.

We are currently investigating using Kodkod [21] as an alternative engine to
solve or evaluate complicated constraints. Kodkod provides a high-level interface
to SAT-solvers, and is also at the heart of Alloy [10]. Indeed, for certain com-
plicated constraints over first-order relations, Alloy can be much more efficient
than ProB. However, it seems unlikely that Kodkod will be able to effectively
deal with relations containing thousands or tens of thousands of elements, as it
was not designed for this kind of task. Indeed, Alloy is based upon the “small
scope hypothesis” [11], which evidently is not appropriate for the particular in-
dustrial application of formal methods in this paper. In our experience, Alloy
and Kodkod do not seem to scale linearly with the size of sets and relations. For
example, we reprogrammed the test from Figure 3 using Kodkod, and it is about
two orders of magnitude slower than ProB for 1,000 elements and three orders
of magnitude for 10,000 elements (363.2 s versus 0.21 s; see also the log-log plot
in Figure 9 which indicates an exponential growth as the slope of the Kodkod
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Fig. 9. Performance of the new ProB vs Kodkod on large sets

curve is > 1). In addition, the higher-order aspects of B would in all likelihood
still have to be solved by ProB (Alloy and Kodkod only support first-order
relations).

We are also investigating whether the SMT solver Yices [8] could be used
to complement ProB’s constraint solving engine. First experiments with SAL
(which is based upon Yices) were only partially successful: some simple examples
with arithmetic give big speedups, but for more complicated datastructures the
translation to SAL breaks down (see also the translation from Z to SAL in [6]
and the discussion about the performance compared to ProB in [16]). However,
not all features of SAL are required and some useful features of Yices are not
accessible via SAL. So, we plan to investigate this research direction further.

Conclusion and Outlook. In order to overcome the challenges of this case
study, various research and development issues had to be addressed. We had to
develop a new parser with an integrated type checker, and we had to devise a
new datastructure for large sets and relations along with an improved constraint
propagation algorithm. The result of this study shows that ProB is now capable
of dealing with large scale industrial models and is more efficient than Atelier
B for dealing with large data sets and complex properties. About a man month
of effort has been replaced by 17 minutes of computation. Furthermore, ProB
provides help in locating the faulty data when a property is not fulfilled. The
latest version of ProB can therefore be used for debugging large industrial
models.

In the future, Siemens plan to replace Atelier B by ProB for this specific use
(data proof regarding formal properties). STS and the University of Düsseldorf
will validate ProB in order to use it within the SIL4 development cycle at
STS. We have described the necessary steps towards validation. In particular,
we are using ProB’s model checking capabilities to check ProB itself, which
has amongst others uncovered two errors in the underlying Prolog compiler.
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We also plan to work on even bigger specifications such as the model of the
Canarsie line (the complete B model of which contains 273,000 lines of B [9], up
from 100,000 lines for Météor [4]). As far as runtime is concerned, there is still a
lot of leeway. In the San Juan case study 17 minutes were required on a two year
old laptop to check all properties and assertions. The individual formulas could
actually be easily split up amongst several computers and even several hours of
runtime would still be acceptable for Siemens. As far as memory consumption is
concerned, for one universally quantified property we were running very close to
the available memory (3 GB). Luckily, we can compile ProB for a 64 bit system
and we are also investigating the use ProB’s symmetry reduction techniques
[14,22] inside quantified formulas.
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Abstract. There is growing need to develop formal verification tools for Mes-
sage Passing Interface (MPI) programs to eliminate bugs such as deadlocks and
local assertion violations. Of all approaches, dynamic verification is most prac-
tical for MPI. Since the number of interleavings of concurrent programs grow
exponentially, we devise a dynamic interleaving reduction algorithm (dynamic
partial order reduction, DPOR) tailor-made for MPI, called POE. The key con-
tributions of this paper are: (i) a formal semantics that elucidates the complex
dynamic semantics of MPI, and played an essential role in the design of the POE
algorithm and the construction of the ISP tool, and (ii) a formal specification
of our POE algorithm. We discuss how these ideas may help us build dynamic
verifiers for other APIs, and summarize a dynamic verifier being designed for ap-
plications written using a recently proposed API for multi-core communication.

1 Introduction

It has been widely observed that exploiting concurrency efficiently and correctly is an
issue of growing importance. Practical concurrent programs are written using various
shared memory and message passing application programming interfaces (APIs). The
execution semantics of these programs are governed largely by the API semantics, the
compiler induced semantics, and the runtime (e.g., scheduling, memory allocation) se-
mantics. Therefore, it has been widely recognized that two popular forms of formal
verification – namely model based verification and static analysis – can play only a sup-
portive role, with dynamic verification [1] being the most practical primary approach for
real-world concurrent programs. Except for debugging concurrent algorithms, model
based verification would be prohibitively expensive – especially if it were to be em-
ployed to directly model the API semantics, the C semantics, or the runtime semantics.
Similarly, static analysis methods cannot accurately predict the synchronizations and
communications in programs where locks or message communicators are determined
through complex synchronizations.

Dynamic verification tools take as their input the user code and a user provided test
harness. Then, using customized scheduling algorithms, they enforce specific classes
of concurrent schedules to occur. Such schedules are effective in hunting down bugs,
and often are sufficient to provide important formal coverage guarantees. Dynamic ver-
ification tools almost always employ techniques such as dynamic partial order reduc-
tion (DPOR) [2,3], bounded preemption searching [4,5], or combinations of DPOR
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and symmetry [6] reduction to prevent redundant state/interleaving explorations. While
many such tools exists for verifying shared memory concurrent programs, there is a
noticeable dearth of dynamic verification tools supporting the scientific programming
community that employs the Message Passing Interface (MPI, [7]) API as their lingua
franca. The importance of MPI is well known: it is employed in virtually all scientific
explorations requiring parallelism, such as weather simulation, medical imaging, and
earthquake modeling that are run on expensive supercomputers. Our group has devel-
oped the only formal dynamic verification tool for MPI programs currently in existence,
called ISP [8,9,10,11,12]. As complete verification of MPI programs is infeasible, ISP
focuses on detecting common errors in MPI programs such as deadlocks, assertion vi-
olations, and resource leaks. For these bug classes, ISP guarantees completeness of
coverage under reasonable assumptions [8,9,10] that are almost always met in practice.

The main contributions of this paper are: (i) a simple and intuitive formal seman-
tics for MPI that was developed hand-in-hand with the construction of ISP, and (ii) a
rigorous description of the primary algorithm underlying ISP called “POE” (Partial Or-
der avoiding Elusive Interleavings), which was sketched in [8]. This paper covers four
MPI constructs in detail, highlighting the primary differences between our previous
work [13,14] in which we wrote a reasonably comprehensive higher level reference se-
mantics for about 150 MPI constructs in TLA+ [15]. We now highlight why dynamic
verification of MPI programs is different from previous dynamic verification methods
for shared memory programs. Then, beginning § 2, we elaborate on our formal seman-
tics and formally describe the POE algorithm in § 3. In § 5, we sketch ongoing work,
as well as our concluding remarks.

Challenges of Designing a Dynamic Verifier for MPI: MPI is inherently a low level
notation, and the process of optimizing an MPI program increases the use of non-
deterministic as well as asynchronous (non-blocking) MPI calls. In such programs,
many MPI bugs remain latent, and surface when ported to a new MPI platform where
the buffer allocations, node-to-node speeds, or MPI runtime scheduling policies may
be different. ISP has been used with great success on many such programs of several
thousands of lines of code such as ParMETIS [16] and MADRE [17], in addition to
analyzing [18] almost all the examples from popular MPI textbooks such as [19], and
has found numerous issues in these programs (e.g. [20]). We now list the challenges in
developing a dynamic verifier that can handle such a range of programs, and is capable
of running on ordinary laptop computers with acceptable runtimes.

Consider Figure 1 in which we employ non-blocking sends (Isend) and non-
blocking receives (Irecv) – both typically used for efficiency. After issuing an Isend,
the process can continue issuing subsequent statements that are in the delay slot

P1 P2 P3
--- --- ---
Isend(to P3,d1,&h1); Isend(to P3,d2,&h2); Irecv(from ANY_SRC,x,&h3);
..delay slot.. ..delay slot.. ..delay slot..
Wait(h1); Wait(h2); Wait(h3);

if(p(x)) then OK else BUG

Fig. 1. MPI Example Showing Need for Formalization



726 S. Vakkalanka et al.

P1 P2 P3
--- --- ---
Isend(to P3,d1,&h1); Barrier(); Irecv(from ANY_SRC,x,&h3);
Barrier(); Isend(to P3,d2,&h2); Barrier();
Wait(h1); Wait(h2); Wait(h3);

if(p(x)) then OK else BUG

Fig. 2. Augmented MPI Example Showing Need for MPI-specific DPOR

(the region from Isend till the following Wait or Test). Statements in the delay
slot must not access the send/receive buffer. The same assumptions also apply to the
Irecv call. The Wait detects whether the non-blocking operation has finished. Some
MPI systems have enough memory that they can serve as temporary storage, absorbing
the sent data and causing the Wait to return instantaneously; others will wait for the
receiving process to come along and convey the data directly. Now in the first inter-
leaving, it is possible that the MPI wildcard receive (receive from any sender, written
‘MPI Irecv(from MPI ANY SRC)’) of P3 matches P1. ISP must then replay the
MPI program, ensuring that P2’s send will match P3’s receive (else, the data dependent
bug may be missed). Now, in a dynamic verification tool for shared memory concurrent
programs such as [5,3,2], one can force desired schedules simply by controlling the
issue order of API calls. However, with MPI, if we issued the Isend of P1 followed
by the wildcard Irecv of P3 and then issue the Isend of P2, we may still have P2’s
Isend race ahead (inside the MPI runtime) and match the Irecv. Thus, building a
dynamic verifier for a complex API such as MPI requires a deep understanding of the
evolution states of each individual MPI call. This understanding is the focus of the for-
mal model proposed in this paper, where we show that each MPI call goes through four
states: issued (notated as �), returned (�), matched (♦), and completed (•).

Figure 2 provides additional insights into the need for a focused formal semantics
that guides implementations. All MPI processes must issue (�) the Barrier call before it
can be crossed; also no instruction after a barrier can be performed until all prior instruc-
tions have been issued (but perhaps not matched, ♦) in every process. Now suppose we
want to replay the execution of this program so as to cause Isend(to P3,d2,&h2)

in P2 to match P3’s wildcard receive. Because of the MPI barrier semantics, we must
issue Isend(to P3,d1,&h1) in P1 before we can issue Isend(to P3,d2,&h2) of
P2. But now, all bets are off: the MPI runtime may again match P1’s call with P3. POE
handles Figure 2 by first collecting, but deliberately not issuing the Isend and Irecv
into the MPI runtime. Then ISP issues all the barrier calls into the MPI runtime. Thus,
notice that we have issued the Barrier before issuing a statement prior to it! Our for-
mal semantics helps us justify that this out of order issue of MPI commands is sound,
as these commands are not related by the MPI intra happens-before [21] relation that is
formally defined here.

After determining which Isends can match a wildcard receive, ISP dynamically
rewrites Recv(ANY_SRC) to Recv(from P1) in one play and Recv(from P2)
in the replay. This is to ensure that both these matches happen, regardless of the speed of
the cluster machine or the MPI library on which the dynamic verification is occurring.
In other words, the scheduler can “fire and forget” dynamically determinized MPI com-
mands into the MPI runtime, knowing that they will match eventually. Such practical
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details of ISP are well described in [9]; this paper’s focus is on a suitable formalization
of MPI.

The formal semantics presented in this paper not only explicate the salient events
(namely, �, �, ♦, and •) marking the progress of an MPI API call, but also formally
define the intra process happens-before order that then allows us to schedule MPI ac-
tions in ISP. As opposed to our earlier formal specifications [13,14], our emphasis in
this formalization has been to decide what to leave out, i.e., focus on a few core MPI
constructs, their constituent events, and the relationships between the events of various
calls. Even so, we leave out many details of these constructs such as communicators,
tags, etc., as our objective is to understand the happens-before relation under a given
set of communication matches. Doing it all – i.e., describing hundreds (of the total of
over 300) MPI calls as well as all their event details and arguments – would be imprac-
tical and/or pointless. For example, even without revealing the event details, the work
of [14] that covers about 150 MPI calls in detail occupies 192 printed (11-point font
formatted) pages of TLA+. Another formal semantics for a small subset of MPI has
recently been provided in [22]. It employs a fairly elaborate state machine to describe
how MPI commands execute and interact with each other. One of the earliest MPI for-
mal specifications was in [23]. These works do not meet our objectives of guiding the
implementation of a dynamic verification tool.

Summary of Features of ISP: Since the rest of this paper is on the aforesaid formal se-
mantics of MPI, we close off this section with a summary of ISP’s practical nature. ISP
is a practical push-button dynamic verifier for MPI programs that is available for down-
load and study [24]. It has three GUIs that help debug large programs, one written in
Java, the other using Visual Studio, and the third using Eclipse. While we characterize
only four MPI constructs in-depth in this paper, we believe that we can similarly model
the remaining 60 or so frequently used MPI calls currently supported by ISP. For ex-
ample, the call MPI_Send can be regarded as atomic{MPI_Isend;MPI_Wait}.
As reported earlier, ISP has handled many large real-world case studies with success,
including ParMETIS [16], a parallel genome assembler mpiBLAST [25], and a large
benchmark from Livermore called IRS [26]. On ParMETIS (a 14K LOC example),
ISP’s efficient dynamic partial order reduction algorithm POE produced only one inter-
leaving, finishing in seconds on a laptop [9]. ISP handles all practical aspects of MPI
including ANY_SOURCE, ANY_TAG, WAIT_ANY, PROBE and IPROBE, almost all
collectives, as well as communicators. The engineering details of the dynamic schedul-
ing control methods of ISP are reported in [10], and are not included here.

2 MPI Introduction

This section provides an overview of the four MPI functions Isend (S), Irecv (R),
Wait (W), and Barrier (B), based on our understanding of the MPI standard [7],
reading the MPI sources, and from past experiences [13,14]. Most MPI programs have
two or more processes communicating through MPI functions. The MPI library is part
of the MPI runtime and can be thought of as another process. All the processes have
MPI process ids called ranks ∈ Nat = {0, 1, . . .} that range from 0 . . .n − 1 for n pro-
cesses. Every MPI function is in one of the following states:
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issued (�): The MPI function has been issued into the MPI runtime.

returned (�): The MPI function has returned and the process that issued this function
can continue executing.

matched (♦): Since most MPI functions usually work in a group (for example, a S from
one process will be matched with a corresponding R from another process), an MPI
function is considered matched when the MPI runtime is able to match the various MPI
functions into a group which we call a match-set. Another example of a match-set is
the one contributed to by a Barrier (B). All the function calls in the match-set will be
considered as having attained the matched state.

complete (•): An MPI function can be considered to be complete according to the MPI
process that issues the MPI function when all visible memory effects have occurred
(e.g., in case the MPI runtime has sufficient buffering, we can consider an Isend to
complete when it has copied out the memory buffer into the runtime bufer). The com-
pletion condition is different for different MPI functions (e.g., the Irecv matching the
Isend may not have seen the data yet, but still Isend can complete on the send side).

An MPI function F ∈ {S,R,W,B} in state s ∈ {�,�, �, •} will be denoted Fs. We
use Fi to denote that F is invoked by process with rank i. Two distinct MPI functions
M ∈ {S,R,W,B} and N ∈ {S,R,W,B} from the same process i will be denoted as Mi, j

and Ni,k where j and k ∈ Nat and j � k.

(a) ≺S (b) ≺S (c) ≺R (d) ≺W (e) ≺B

Fig. 3. Partial Orders of MPI function states

2.1 MPI Functions

MPI Isend (S) is a non-blocking send that has the following simplified prototype:

Isend (int dest, Datatype buffer, Request &handle);

where dest is the destination process rank where the message is to be sent, buffer
is the actual data payload that must be sent and handle is set by the MPI runtime
and uniquely identifies the S in the MPI runtime. The function call returns immediately
(non-blocking) while the actual send can happen at a later time. An S is considered
complete by the process issuing it if the data from the buffer is copied out. The buffer
can be either copied out into the MPI runtime provided buffer or to the buffer space of
the MPI process receiving this message. Hence, if the MPI runtime has buffer available,
the S can be completed immediately. Otherwise, the S can be completed only after it is
matched with a matching R. It is illegal for the MPI process to re-use the send buffer
before the send is completed. The completion of a send is detected by the process issuing
it using Wait (W). We use S to denote a buffered send and S to denote a send with no
runtime buffering. For a given send, we have a partial order (≺S) of its state transition
as follows:
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– {S� ≺ S�, S� ≺ S♦, S� ≺ S•}.
– When the send cannot be buffered by the runtime we have ≺S=≺S ∪{S♦ ≺ S•}.

Figure 3(a) shows the partial order when the send is not buffered ≺S while Figure 3(b)
shows the partial order when the send is buffered ≺S. The evolution of the state of each
MPI operation according to these partial orders is caused by the processes issuing their
operations and the MPI runtime advancing the state of the operations.
MPI Irecv (R) is a non-blocking receive with the following prototype:

Irecv (int src, Datatype buffer, Request &handle);

where src is the rank of the process from where the message is to be received. The data
is received into buffer and handle is returned by the MPI runtime which uniquely
identifies the receive in the MPI runtime. The function call returns immediately and
is considered complete when all the data is copied into buffer. It is illegal to re-use
buffer before the receive completes. The completion of a receive is detected by the
process using Wait (W). For a given R, we have a partial order (≺R) of its states as
follows: {R� ≺ R�, R� ≺ R♦, R� ≺ R•, R♦ ≺ R•} shown in Figure 3(c).

MPI Wait (W) is a blocking call and is used to detect the completion of a send
or a receive and has the following prototype: Wait(&handle), where handle is
returned in a S or a R. The MPI runtime blocks the call to W until the send or receive is
complete. The MPI runtime resources associated with the handle are freed when a W
is invoked and handle is set to a special field called REQUEST_NULL. A W call with
handle set to REQUEST_NULL is ignored by the MPI runtime. An S or R without an
eventual W is considered as a resource leak. For a given W, we have the following
partial order (≺W): {W� ≺W•, W• ≺W�} as shown in Figure 3(d).

MPI Barrier (B) is a blocking function and is used to synchronize MPI processes
and has the following prototype Barrier (). A process blocks after issuing the bar-
rier until all the participating processes also issue their respective barriers. Note that
unlike the traditional barriers used in threads where all the instructions before the thread
barrier must also be complete when the barrier returns, the MPI B does not provide any
such guarantees. An MPI B can be considered as a weak fence instruction. It is this be-
havior of MPI barriers that makes the traditional DPOR unsuitable for MPI (Figure 2).
Given a B of a process, we have the following partial order (≺B): {B� ≺ B♦ ≺ B• ≺ B�}
(shown in Figure 3(e)).

In addition to the above partial orders, we also have partial order rules for S; W and
R; W (S may or may not be buffered) defined by providing the extra coupling edges
between ≺S and ≺W: ≺SW= {S• ≺ W•}, ≺RW= {R• ≺W•} As we show soon, this level
of elucidation of MPI function states gives rise to an elegant formal semantics for it.

2.2 MPI Ordering Guarantees

We now describe various ordering guarantees for various MPI functions. These ordering
guarantees provided by the MPI runtime according to the MPI standard define the order
in which MPI program execution proceeds. We have already seen ≺S,≺S,≺R≺W,≺B

,≺SW,≺RW orders in Section 2.1 MPI also provides the following FIFO guarantees:
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– For any two sends Si, j(l,&h1), Si,k(l,&h2), j < k from the same process i targeting
the same destination (l), the first send Si, j is matched-before the second send Si,k.
Note that this order is irrespective of the buffering status of the sends.

– For any two receives Ri, j(l,&h1), Ri,k(l,&h2) j < k from the same process i receiv-
ing from the same source (l), the first receive is matched-before the second.

– For any two receives Ri, j(∗,&h1), Ri,k(l,&h2), j < k from the same process i,
when the first receive Ri, j can receive from any source (called wildcard receive and
denoted as ‘∗’ henceforth), the first receive is always matched-before the second.

We call the above guarantees the matches-before (≺mb) ordering where
≺mb= {S♦i, j(l,&h1) ≺ S♦i,k(l,&h2),R♦i, j(l,&h1) ≺ R♦i,k(l,&h2),R♦i, j(∗,&h1) ≺ R♦i,k(l,&h2)}
Matches-before is a fundamental ordering relation in MPI. The MPI standard requires
that two messages sent from process i towards process j must arrive in the same order
(called non-overtaking in MPI). The role of matches-before is to constrain the order
in which sends and receives match so as to guarantee non-overtaking. Notice that the
sends and receives need only to be matched in order. However, since the completion is
only detected by a W, the MPI standard does not enforce any order on the completion
of the sends and receives leaving the choice to the MPI library implementation.

Finally, for blocking MPI functions like W and B, any following MPI functions can
be issued only after the blocking call is complete. We call this the fence-order (≺ f o).
Given an MPI process barrier Bi, j or Wi, j and a following MPI function Fi,k where
F ∈ {S,R,W,B} and ( j < k), ≺ f o= {B�i, j ≺ F�i,k,W

�
i, j ≺ F�i,k}. In addition to the above

orders we have the following issue order: For any two MPI function Mi, j and Ni,k where
M,N ∈ {SR,B,W} and j < k, we have ≺io= {M�

i, j ≺ N�i, j}. The issue order precisely
captures why B and W can block the issue of subsequent instructions.

Note that all the orders are defined on MPI functions within a process. We call the
union of all the above orders the mpi-intra-happens-before-order, denoted as ≺mhb.

Definition 1. MPI-Intra-Happens-Before-Order ≺mhb = ≺S ∪ ≺S ∪ ≺R ∪ ≺W ∪ ≺B

∪ ≺SW ∪ ≺RW ∪ ≺mb ∪ ≺ f o ∪ ≺io.

MPI-Intra-Happens-Before-Order defines the partial order of the salient MPI events
observable at each MPI process.

2.3 Commit States

A commit state is a state that decides the fate of an MPI function. Since this happens
to be when the MPI functions are matched, we call the ♦ state of each MPI function
its commit state. Hence, we consider the following states as commit states: commit =
{S♦,R♦,B♦}. Since W does not have a ♦ state (this is because W is a local process
operation), we do not consider W to have a commit state.

In this paper, we do not define the full semantics of how the local memory of an MPI
program gets updated; should such a definition be desired, we would take the commit
events, consider them occurring according to ≺mhb, and define the state transition se-
mantics for the process memories. These notions will help define the formal semantics
of MPI in subsequent sections.
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3 MPI Formal Semantics for Verification

In Section 3.1, communication records that model the MPI runtime state of each MPI
operation are introduced. In Section 3.2, we show how the operations of the MPI run-
time cause an IntraHB ordering among the communication records. This relation is
obtained from the mhb relation defined earlier, except it is constructed over communi-
cation records and not MPI operations. We will then give transition rules that describe
how MPI processes and their runtimes advance in their execution states. All this defines
the full execution semantics of MPI. In Section 4.1, we present the POE algorithm el-
egantly by constraining the transition rules to fire in a certain priority order. It is well
known that partial order reduction algorithms can be obtained by prioritizing transition
systems in such a manner that a proper subset of executions (interleavings) is obtained.
Section 4.2 provides soundness arguments.

3.1 Communication Records and Global State

Formalizing MPI requires the formalization of the processes and the runtime. We con-
sider the MPI function invocations as visible operations [27] or simply operations, and
any other operations performed by the processes as invisible. The MPI runtime helps
advance the state of the process operations. We also assume that all Isends (S) consid-
ered are non-buffered (ones for which the system does not provide adequate buffering,
to cause their matching W to return immediately). Section 4.4 deals with buffering.

The PID (MPI rank) of each of P processes ranges over {0, . . . ,P − 1}. The MPI
runtime is assigned PID R � {0, . . . ,P − 1}. A process i’s operations are are numbered
{1, . . .ni}, where the first operation is Init and the nth

i operation is Finalize, as
required by the MPI standard (we suppress them). The jth operation executed by the
ith MPI process is pi, j, where operation p ∈ {S,R,B,W}. A state s of an MPI opera-
tion pi, j is denoted as ps

i, j where s ∈ {�,�, ♦, •}. We denote a send and its arguments

as Si, j(l, hij) where i is the rank of the processes issuing the send and j is the dynamic
operation count of process i. l is the destination where the message is to be sent, i.e.,
l ∈ PID and hij is the send’s handle. The wait corresponding to the send is Wi,k(hij)
where k > j. Irecv (R) also follows similar notations, except that the source ar-
gument of R l ∈ PID ∪ {∗}, where ∗ is a wildcard receive. The set of all possible
handles H = ∪i ∈ PID h{i} × {1 . . .ni}. A process that executes an MPI operation cre-
ates a single communication record in the MPI runtime, denoted by the eight tuple
cr = 〈pid, pc, op, src, dest, handle,match, state〉, where pid ∈ PID, ∀i ∈ PID, pc ∈
{1, . . . , ni}, op ∈ {S,R,W,B}, src ∈ PID ∪ {∗}, dest ∈ PID, handle ∈ H, match is a set
of communication records that forms a match set with cr, and state ∈ {�,�, ♦, •}. We
use ⊥ for a communication record field when its value is undefined. For example, src is
undefined for sends, while the dest field is undefined for recvs.

The communication record generated by pi, j is denoted by ci, j, with its field f de-
noted ci, j. f . Often, a communication record ci, j is considered synonymous with pi, j(. . .)
where p ∈ {S,B,W,R}. In fact, this connection is more than superficial: after it issues,
the state of an MPI operation, as defined in Section 2, is defined by the state of the as-
sociated communication record. The dynamic state of the MPI program consists of the
current set of communication records in the MPI runtime and the current PC (program
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PS� :
s : 〈l,C〉, pi,li = Si,li ( j, hi,li )

s′ : 〈l,C ∪ { 〈i, li,S,⊥, j, hi,li ,⊥,�〉 } 〉 PR� :
s : 〈l,C〉, pi,li = Ri,li ( j, hi,li )

s′ : 〈l,C ∪ { 〈i, li,R, j,⊥, hi,li ,⊥,�〉 } 〉

PW� :
s : 〈l,C〉, pi,li =Wi,li (hi, j)

s′ : 〈l,C ∪ { 〈i, li,W,⊥,⊥, hi, j,⊥,�〉 } 〉 PB� :
s : 〈l,C〉, pi,li = Bi,li〈l,C ∪ { 〈i, li,B,⊥,⊥,⊥,⊥,�〉 } 〉

Fig. 4. MPI Process Transitions

counter) of the processes. Let C be the set of all possible communication records. The
total state space of the system is: {1, . . . , n0} × {1, . . . , n1} × . . . × {1, . . . , nP−1} × 2C.
The current state s is denoted as 〈l,C〉 where l is the tuple of all the current program
counters. l = 〈PC0,PC1, . . . ,PCP−1〉 where PCi ∈ {1, . . .ni} and C is the current set of
communication records. li is used to access the program counter of process with rank i.
s.l is used to access the program counter tuple and s.C is used to access the communi-
cation records in the current state.

3.2 Transition Systems

In this section we describe process transitions and runtime transitions that constitute
our formal model for MPI.

Process Transitions: Figure 4 shows the process transitions for the four MPI functions
that we have chosen to model. Since the processes issue the MPI functions into the MPI
runtime, we annotate the name of each transition by �. PS� can be read as ‘Process-
Send-Issue.’ The state transition system shows the current state s on the top and the next
state s′ at the bottom. The initial state denoted by s0 has li for every process i set to 1 and
C = ∅. Every issue event results in the creation of a new communication record which is
created and added to C in the next state s′. We describe the PS� transition in detail. For
PS�, the current state s is 〈l,C〉 and pi,li denotes the MPI operation invoked by process
i at the PC denoted by li. Si,li ( j, hi, li) is the send being issued where j is the destination
to which the message is to be sent. The transition creates a new communication record
whose pid is i, pc is li, op is S, and dest is j. The src and handle fields are set to ⊥.
Finally, the state is set to � denoting that the send is in the issued state. The rest of the
transitions can be understood similarly.

MPI Runtime Transitions perform the actual message passing and synchroniza-
tion operations. However, the transitions must obey the partial order rules described in
Section 2. Given the set of communication records, we construct the IntraHB graph at
every state s that follows from the ≺mhb, as described now. The IntraHB relation helps
define the MPI semantics, mainly by defining how MPI commands match.

Definition 2. For a state s = 〈l,C〉, the graph s.IntraHB = (V,E), where V = s.C.
Further, for communication records ci, j and ci,k, with j < k, 〈ci, j, ci,k〉 ∈ E iff one of these
holds:

– ci, j.op = ci,k.op = S ∧ ci, j.dest = ci,k.dest
– ci, j.op = ci,k.op = R ∧ (ci, j.src = ∗ ∨ ci, j.src = ci,k.src)
– ci, j.op = S ∧ ci,k.op =W ∧ ci,k.handle = hij
– ci, j.op = R ∧ ci,k.op =W ∧ ci,k.handle = hij

– ci, j.op = B ∨ ci, j.op =W
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The edges between the communication records are added based on the partial orders
defined in Section 2. It is called as an IntraHB (intra happens-before) graph since the
edges are between the communication records within the process. ci, j and ci,k are two
communication records of process i. The first condition in Definition 2 is to satisfy
the ordering relation S♦i, j(l, hij) ≺ S♦i,k(l, hi,k). The second condition is to satisfy the or-

dering conditions R♦i, j(l, hi, j) ≺ R♦i,k(l, hik), and R♦i, j(∗, hi, j) ≺ R♦i,k(l, hik). The third and

fourth conditions satisfy the ordering conditions S•i, j(l, hij) ≺W•i, k(hij) and R•i, j(l, hij) ≺
W•i, k(hij) respectively. The last condition is to satisfy the ≺ f o (fence-order).

Definition 3. For communication records ci, j and ci,k and state s, if 〈ci, j, ci,k〉 ∈ E where
E is the second component of s.IntraHB, we refer to ci, j as an ancestor of ci,k.

Figure 6 defines the POE algorithm in terms of execution steps termed as execute. For
any state s in this execution beginning with the initial program state s0, we define the
set s.CR associated with s to be those communication records that have crossed through
their commit points. The update rule to obtain si.CR (the CR set of the current state si)
from si−1.CR (the CR set of the previous state) is the following:

Definition 4. s0.CR = ∅, and for all i > 0, si.CR = si−1.CR ∪ {ci, j ∈ si.C | ci, j.state = ♦}.
Since W’s commit point is the same as completion, we do not add W to CR and instead
add it to Ccpl, where s.Ccpl are the set of communication records that are completed
by the MPI runtime. The completion criteria is different for different MPI functions as
described in Section 2.

Definition 5. si.Ccpl = si−1.Ccpl ∪ {ci, j ∈ si.C | ci, j.state = •}.
Definition 6. For a given state s = 〈l, c〉 let ci,k ∈ s.C and s.IntraCB = (V,E). Define
ci,k ∈ C↓ iff for every c ∈ Ancestors(ci,k) one of the following is true:

– c.op = S ∧ ci,k.op =W ∧ c ∈ s.Ccpl

– c.op = R ∧ ci,k.op =W ∧ c ∈ s.Ccpl

– c.op = S ∧ ci,k.op = S ∧ c ∈ s.CR

– c.op = R ∧ ci,k.op = R ∧ c ∈ s.CR

– c.op = B ∧ c ∈ s.Ccpl

– c.op =W ∧ c ∈ s.Ccpl

s.C↓ is the set of communication records where all the ancestors of every communica-
tion records are either completed or matched (depending on the MPI operations), i.e.,
the ancestors have crossed their commit points. Hence, s.C↓ is the set of communication
records that can now be matched or completed without violating ≺mhb. It must be noted
that each of the condition in Definition 6 satisfies ≺mhb. Our semantics, in effect, defines
the set of all allowed executions of MPI programs.

We now define the MPI runtime transitions in Figure 5. We employ a convenient
notational abbreviation introduced through a simple example:

– For a set s and an item x, let s + x denote s ∪ {x}.



734 S. Vakkalanka et al.

RR :

s : 〈 l,C 〉, cx,i, cy, j ∈ s.C↓, cx,i = Rx,i(y, hx,i),
cy, j = Sy, j(x, hy, j), y ∈ PID

s′ : 〈l,C : cx,i[match← @ + cy, j , state← ♦] 〉

RR∗ :

s : 〈 l,C 〉, cx,i, cy, j ∈ s.C↓, cx,i = Rx,i(∗, hx,i),
cy, j.op = Sy, j(x), y ∈ PID

s′ : 〈l,C : cx,i[match← @ + cy, j, src← y, state← ♦]〉

RS :

s : 〈 l,C 〉, ci, j ∈ s.C↓, ck,l ∈ s.CR, ci, j = Si, j(k, hi, j),
ck,l = Rk,l(i, hk,l), ck,l.match = {ci, j}

s′ : 〈l,C : ci, j[match← @ + ck,l, state← ♦] 〉

RB :
s : 〈 l,C 〉, C1 ⊆ s.C↓, | C1 |= P, ∀ci, j ∈ C1 : ci, j = Bi, j

s′ : 〈 l,C : ∀ci, j ∈ C1 : ci, j[match← @ + C1, state← ♦] 〉

RW :
s : 〈 l,C 〉, ci,k ∈ s.C↓, ci,k.op =W

s′ : 〈 C : ci,k[state← •] 〉 R−• :
s : 〈 l,C 〉, ci,k ∈ s.CR, ci,k.op = R/S/B

s′ : 〈 l,C : ci,k[state← •] 〉

RR� :
s : 〈 l,C 〉, ci,k ∈ C, ci,k .op = R

s′ : 〈 l[li ← li + 1],C : ci,k[state← �] 〉 RS� :
s : 〈 l,C 〉, ci,k ∈ C, ci,k.op = S

s′ : 〈 l[li ← li + 1],C : ci,k[state← �] 〉

RW� :
s : 〈 l,C 〉, ci,k ∈ s.Ccpl, ci,k.op =W

s′ : 〈 l[li ← li + 1],C : ci,k[state← �] 〉 RB� :
s : 〈 l,C 〉, ci,k ∈ s.Ccpl, ci,k.op = B

s′ : 〈 l[li ← li + 1],C : ci,k[state← �] 〉
Fig. 5. MPI Runtime Transitions

– Let C : cx,i[match ← @ + hy, j] stand for “the set C except that the member cx,i in
it has its match component updated by the addition of hy, j” . Here, @ stands for
cx,i.match (a notation inspired by TLA+).

RR (Runtime-Receive) transition matches a send and matching receive. In the current
state s = 〈l,C〉, consider cx,i and cy, j such that both communication records are in s.C↓,
i.e., both the communication records are ready to be matched since all their ancestors
have either been matched or completed. If cx,i is Rx,i(y, hx,i i.e. it is a receive trying
to receive a message from process y and cy, j is Sy, j(x, hy, j) is a send that matches the
receive, then the send is matched with the receive which is the new state s′ where
cx,i’s match is updated. Note that it is acceptable to update either the send or receive
match. We just chose to show the runtime transition with a receive match being set.
We could also have set both the send and receive matches at the same time. However,
our attempt is to keep the MPI runtime as generic as possible to allow all possible sets
of interleavings. Note that the receive is set to the ♦ state but not to the • state. This
is because the receive buffer is still not filled with the sent data. This also allows any
following receive to be matched and completed before cx,i itself is completed. In other
words, as soon as a receive ‘chooses its partner,’ the following receive can choose its
partner.

RR* (Runtime-Receive-wildcard) transition is similar to RR transition except that
the src field of the receive which was a wildcard receive previously is now replaced by
y which is the matching send process rank. This models ‘dynamic source rewriting for
wildcard receives, as was illustrated in Section 1. Strictly speaking, RR* is a family of



Reduced Execution Semantics of MPI 735

transitions involving one receiver and its matching senders; we however choose to view
it as a single transition for convenience.

RS (Runtime-Send) transition is similar to RR transition except that the receive’s
match set is already populated with the send’s communication record. The matching
receive is searched in the s.CR set because a previously fired RR/RR* transition has
set the receive to the ♦ state which, in effect, moves the receive into the CR set. The
matching receive is found by comparing the receive’s match to the send’s communica-
tion record. We only set the send’s match field and move the send to the ♦ state to keep
the runtime as generic as possible as described in RR transition.

RW (Runtime-Wait) transition is in s.C↓ if its corresponding send or receive has
been completed as described in Definition 6. Since the send (receive) is complete, the
W can also be completed.

RB (Runtime-Barrier) transition checks that the C1 ⊆ C↓ where is C1 has only bar-
riers and the number of barriers is equal to P (number of MPI processes). That is, it
checks that all the processes have issued their barriers. In that case, the barriers are
moved to the ♦ state. The barriers are only moved to the ♦ state and not the • state even
though there is no actual data to transfer. The reason for this is to seamlessly support
other MPI collective functions like barriers that also have data to be transferred (e.g.
MPI_Bcast). In such a case, the completion or the transfer of data can happen later. It
can be seen that our runtime transitions can readily be applied to other MPI functions.

R-• (Runtime-any-help-complete) are the runtime transitions to complete any tran-
sitions that have been matched, i.e. are in CR. The S, R and B that are matched can be
moved to complete state. Note that there is a causal order between the RR(S/B)/RR*
and RR(S/B)• transitions for a specific send/receive/barrier.

The RS• transition will be different from what is presented here when the MPI run-
time can buffer sends. In that case, instead of checking that ck,l ∈ s.CR, we must check
that ck,l � s.Ccpl. Since the send is already completed (the send buffer is copied into the
MPI runtime) when the send is buffered, it is already in the s.Ccpl set. Because of this
early copying of the send buffer, a buffered send need not be moved from state ♦ to •.
Hence, when trying to move a send from state ♦ to •, we must first ensure that the send
is not buffered i.e. the send is not yet completed.

RR� (Runtime-Receive-return) and RS� (Runtime-Send-return) transition incre-
ments the program counter and sets the state to �. Note that the receive/send can return
at any time irrespective of their current state because they are non-blocking operations.

RW� (Runtime-Wait-return) and (Runtime-Barrier-return) RB� transitions also in-
crement the PC and set the state to �. However, note that there is a causal order from
RW to RW� and RB to RB�.

It can be easily verifed that the≺mhb order is respected by all the transitions discussed
in this section.

4 POE Algorithm

The reachable state space generated by firing the MPI transitions (both process and
runtime) described in Section 3 describes the full reachable state space of a given MPI
program. The POE algorithm is obtained by erecting a partial order (priority order)



736 S. Vakkalanka et al.

1: POE(s) {
2: if (s is a final state) return;
3: t = getHighestPriorityTrans(s);
4: if (t is not an R* transition) {
5: s’ = execute(s,t); POE(s’);
6: } else {
7: for all (t in R*TransitionsAtState(s)) {
8: s’ = execute(s,t); POE(s’); }}}}

Fig. 6. The Priority Order for getHighestPriorityTrans, and the POEMSE algorithm

among the runtime transitions, as shown in Figure 6, where an arrow point from a
higher priority transition to a lower priority transition.

In Figure 6, P−� stands for the process issue transitions (Notation: P− abbreviates
PS, PR, etc.) This means that all processes will first try to issue transitions through the
P− moves. When no such issue is possible, we can entertain the R− moves (runtime
transitions). The runtime transitions for send and receive return (namely RR�, RS�) are
next in the priority order and have the same priority. This means that every send/receive
issued immediately returns since the return transitions increment the program counter.
The above two priorities also means that the POE algorithm lets each of the processes
execute until they reach the blocking call (W or B) and then executes any runtime transi-
tions. This is because there are no more process transitions available until the blocking
calls complete and return. POE combines the RB and the corresponding RB� transi-
tions into a single RB transition. Similarly, RW and corresponding RW� transitions are
shown in Figure 6 as RW. Once the blocking calls, return, the processes all execute
until they again reach their blocking points. The RS and RR transitions are the com-
bined RS, corresponding RS• and RR together with the corresponding RR•. The RR,
RW, RS and RB transitions have the same priority. Finally, the RR∗ (RR∗ together with
corresponding RR•) transition has the lowest priority. This means that the RR∗ tran-
sition is only executed when there are no other transitions left. This was illustrated in
Section 1 by postponing the wildcard receives till all senders were discovered, so that
one can perform the maximally diverse extent of rewrites. The for loop on Line 7 shows
that we will process even (seemingly) unrelated RR* transition families together. This
is important for soundness, to ensure the C1 condition of [27, Chapter 10], as follows:
firing one of the RR* transitions may enable a send transition that now matches another
RR* transition. We now illustrate the working of POE algorithm on a simple example.

4.1 Illustration of POE

Consider the MPI program shown in Figure 7. The two sends S0,1 and S1,2 can match
the wildcard receive R2,1. The POE algorithm first executes the process transitions cor-
responding to S0,1, B1,1 and R2,1. At this point, process P2 gets blocked on the barrier
call. However, the send and receive both return to now execute their B0,2 and B2,2 calls.
At this point all the processes are blocked on their barrier calls and no more process
transitions are available to be executed. Either RR* transition that matches S0,1 to R2,1

or RB transition that matches and returns the three barriers can be executed. Using the
priority order, since the RB transition has a higher priority, the barriers get matched and
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return. The RR* transition is still not executed by the runtime. Since all the processes
now return from their barriers, the processes start issuing new instructions, since the
process transitions have a higher priority than the RR* transition. The S1,2 is issued and
the W operations of all the processes are issued. Since W is a blocking call, all the
processed block at their W operations. At this point, the only transitions are the two
RR* transitions where one transition matches R2,1 with S0,1 and the other matches R2,1
with S1,2. The POE algorithm executes one interleaving by matching R2,1 with S0,1 by
re-writing the source of receive to 0. The interleaving also matches R2,4 with S1,2. It
then re-starts the process and re-executes the interleaving this time by matching R2,1

with S1,2. But now, since R2,1 is expecting a send from process 1 and there is no such
send available, the program deadlocks which is detected by POE. The example illus-
trates how POE algorithm prioritizes the MPI transitions so that it is able to find all the
matching transitions of a wildcard receive.

4.2 Proof of Correctness

Theorem 1. Assuming non-buffered sends, POE finds all possible deadlocks.

Proof. The only source of non-determinism is due to wildcard receives. To show that
we detect all deadlocks, it is sufficient to prove that we detect all possible sends that
can match a wildcard receive (i.e., ample sets are correctly built according to C1, [27,
Chapter 10]). We prove this by contradiction. Assume that there is a send Si that can
match the wildcard receive Rj under a native MPI program execution, but somehow,
due to our priority ordering, is not matched by the POE algorithm. This means that
when the RR* transition involving Rj is executed (matching another send, say S

′
i), the

Si is not yet issued (if it were issued, then the RR∗ rule would have picked it). Also,
since RR∗ transition is of the lowest priority, this means that there are no other higher
priority transitions that could meanwhile have been executed. Thus, in particular, Si is
blocked at a B or a W instruction of the process of Si. But then, even a native execution
could also not get past this B or W and provide a match to RR∗.

4.3 Implementing POE

POE can be supported by any MPI-standard compliant MPI library. This is because ISP
forwards MPI calls to the MPI runtime only when they are ready to match. One can
consider ISP as an auxiliary runtime that uses the MPI runtime just to transport mes-
sages, and ensure the progress of the MPI processes. The priority order of POE has the
run-time effect of reshuffling the MPI commands – but in a manner that does not vio-
late IntraHB. Clearly, no one can be sure of the exact IntraHB intended by the original
MPI designers or (tacitly) assumed by the scores of MPI users merely by reading [7] or
studying particular MPI library code bases. However, there is sufficient evidence that
we have indeed unearthed this IntraHB relation by the fact that we could effortlessly
port ISP to run on three operating systems (Linux, MAC OS/X, and Windows), and on
four MPI libraries (MPICH2, OpenMPI, Microsoft MPI, and MVAPICH MPI). Further
engineering details of ISP are described in [9,10].
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4.4 Send Buffering Issues

The POE algorithm works only when the sends do not have adequate (system-provided
or user-provided) buffering. However, if sends can be buffered, it can miss deadlocks
present in a program. Consider the MPI example shown in Figure 8.

P0 P1 P2

S0,1(2, h01) B1,1 R2,1(∗, h21)

B0,2 S1,2(2, h12) B2,2

W0,3(h01) W1,3(h12) W2,3(h21)

R2,4(1, h24)

W2,5(1, h25)

Fig. 7. “Crooked” Barrier Example

P0 P1 P2

S0,1(1, h01) S1,1(2, h11) R2,1(∗, h21)

W0,2(h01) W1,2(h11) W2,2(h21)

S0,3(2, h03) R1,3(0, h13) R2,3(0, h23)

W0,4(h03) W1,4(h13) W2,4(h23)

Fig. 8. Buffering Sends and Deadlocks

When none of the sends are buffered, only S1,1 can match the wildcard receive R2,1

and there is no deadlock. However, when S1,1 is buffered, the W1,2 can complete even
before the send is matched. This enabled the the S0,1 and R1,3 to match and since S0,1 is
matched, it can complete unblocking the W0,2. Now, S0,3 is issued and since the wild-
card receive is not yet matched, it can be matched with S0,3 and result in a deadlock
since R2,3 will not have a matching send. Note that this deadlock cannot happen when
none of the sends are buffered. We call this the slack inelastic property [28] of MPI. One
solution would be to buffer all the sends. However, this will mean that any deadlocks
corresponding to non-buffered sends will not be detected by POE. Since buffer alloca-
tion is a dynamic property, our goal is to extend POE so that it can detect all forms of
deadlocks. Currently, we are working on a slack independent error detection algorithm
that improves upon POE.

5 Concluding Remarks

In this paper, we presented a formal semantics for a subset of four MPI operations. Our
semantics first characterize the states through which each MPI function call go through.
It then describes the MPI runtime transitions that help progress the issued MPI functions
through their states. The crux of our definitions was the identification of the relations
MPI Intra Happens Before (≺mhb) as well as the IntraHB graph. Basically these relations
capture how MPI guarantees the non-overtaking property. Our definitions reveal the full
generality of executions admitted by all MPI standard compliant libraries.

We take our formal semantic definitions and simply introduce a priority of firing of
the MPI runtime rules. This gives our MPI-specific partial order reduction algorithm
POE. We also have implemented our ISP tool by closely following our formal seman-
tics.

The broader lessons from our work are that real world APIs such as MPI are re-
ally complex. Yet, by discovering the essential states through with each API call goes
through, one can set up elegant state transition systems that then help guide reduction
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algorithms and implementations. Given the push towards multi-core CPUs and the gen-
eral parallelism “feeding frenzy,” many APIs are being defined by various groups. Our
ideas may play a role in developing dynamic verification tools for these APIs also.
This fact has been reaffirmed not only through ISP but through another line of recent
work [29] on developing a dynamic formal verifier for applications written using the
recently proposed Multi-core Communications API (MCAPI [30]).
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Abstract. In Bounded Model Checking, both the system model and the checked
property are translated into a Boolean formula to be analyzed by a SAT-solver.
We introduce a new encoding technique which is particularly optimized for man-
aging quantitative future and past metric temporal operators, typically found in
properties of hard real time systems. The encoding is simple and intuitive in prin-
ciple, but it is made more complex by the presence, typical of the Bounded Model
Checking technique, of backward and forward loops used to represent an ulti-
mately periodic infinite domain by a finite structure. We report and comment on
the new encoding technique and on an extensive set of experiments carried out to
assess its feasibility and effectiveness.

Keywords: Bounded model checking, metric temporal logic.

1 Introduction

In Bounded Model Checking [1] a system under analysis is modeled as a finite-state
transition system and a property to be checked is expressed as a formula in temporal
logic. The model and the property are both suitably translated into boolean logic formu-
lae, so that the model checking problem is expressed as an instance of a SAT problem,
that can be solved efficiently thanks to the significant improvements that occurred in
recent years in the technology of the SAT-solver tools [9,3]. Infinite, ultimately peri-
odic temporal structures that assign a value to every element of the model alphabet are
encoded through a finite set of boolean variables, and the cyclic structure of the time
domain is encoded into a set of loop selector variables that mark the start and end points
of the period. As it usually occurs in a model checking framework, a (bounded) model-
checker tool can either prove a property or disprove it by exhibiting a counter example,
thus providing means to support simulation, test case generation, etc.

In previous work [10], we introduced techniques for managing bi-infinite time in
bounded model checking, thus allowing for a more simple and systematic use of past
operators in Linear Temporal Logic. In [11,12], we took advantage of the fact that, in
bounded model-checking, both the model and the formula to be checked are ultimately
translated into boolean logic. This permits to provide the model not only as a state-
transition system, but, alternatively, as a set of temporal logic formulae. We call this a
descriptive model, as opposed to the term operational model used in case it consists of
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a state-transition system. The descriptive model is much more readable and concise if
the adopted logic includes past and metric temporal operators, allowing for a great flex-
ibility in the degree of detail and abstraction that the designer can adopt in providing the
system model. The model-checking problem is reduced to the problem of satisfiability
for a boolean formula that encodes both the modeled system and its conjectured prop-
erty to be verified, hence the name Bounded Satisfiability Checking that we adopted for
this approach.

In this paper we take a further step to support efficient Bounded Satisfiability- and
Bounded Model-checking by introducing a new encoding technique that is particularly
efficient in case of temporal logic formulae that contain time constants having a high
numerical value.

In previous approaches [2,10,11,12] the operators of temporal logic that express in
a precise and quantitative way some timing constraints were encoded by (rather in-
efficiently) translating them into combinations of non-metric Linear Temporal Logic
operators. For instance, the metric temporal logic formula ♦=dP , which asserts that
property P holds at d time units in the future (w.r.t the implicit present time at which
the formula is asserted) would be translated into d nested applications of the LTL next-
time operator, ◦dP , and then encoded as a series of operator applications, with obvious
overhead.

The new encoding for the metric operators translates the time constants in a way that
makes the resulting boolean formula much more compact, and hence the verification
carried out by the SAT solver-based tools may be significantly faster.

Thus our technique can be usefully applied to all cases where temporal logic for-
mulae that embed important time constants are used. This is both the case of Bounded
Satisfiability Checking, where the system model is expressed as a (typically quite large)
set of metric temporal logic formulae, and also of more traditional Bounded Model
Checking, when the model of the system under analysis is provided by means of a
state transition system but one intends to check a hard real-time property with explicit,
quantitatively stated timing constraints.

The paper is structured as follows. In Section 2 we provide background and moti-
vations for our work. Section 3 introduces the new metric encoding and analyzes its
main features and properties. Section 4 provides an assessment of the new encoding
by reporting the experimental results obtained on a set of significant benchmark case
studies. Finally, in Section 5 we draw conclusions.

2 Preliminaries

In this section, to make the paper more readable and self-contained, we provide back-
ground material on Metric Temporal Logic and bi-infinite time, on Boundel Model- and
Satisfiability-Checking, and on the Zot toolkit.

2.1 A Metric Temporal Logic on Bi-infinite Time

We first recall here Linear Temporal Logic with past operators (PLTL), in the version
introduced by Kamp [6], and next extend it with metric temporal operators.
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Syntax of PLTL. The alphabet of PLTL includes: a finite set Ap of propositional let-
ters; two propositional connectives¬,∨ (from which other traditional connectives such
as ),⊥,¬,∨,∧,→, . . . may be defined); four temporal operators (from which other
temporal operators can be derived): “until” U , “next-time” ◦, “since” S and “past-time”
(or Yesterday) , •. Formulae are defined in the usual inductive way: a propositional
letter p ∈ Ap is a formula; ¬φ, φ ∨ ψ, φUψ, ◦φ, φSψ, •φ, where φ, ψ are formulae;
nothing else is a formula.

The traditional “eventually” and “globally” operators may be defined as: ♦φ is)Uφ,
�φ is ¬♦¬φ. Their past counterparts are: �φ is )Sφ, �φ is ¬�¬φ. Another useful
operator for PLTL is “Always” Alw, defined as Alw φ := �φ ∧ �φ. The intended
meaning of Alw φ is that φ must hold in every instant in the future and in the past. Its
dual is “Sometimes” Som φ defined as ¬Alw¬φ.

The dual operators of U and S are called “Release”R and “Trigger” T , respectively.
The definition of φRψ is ¬(¬φU¬ψ), while φT ψ is ¬(¬φS¬ψ). They allow the con-
venient positive normal form: Formulae are in positive normal form if their alphabet is
{∧,∨,U ,R, ◦,S, •, T } ∪ Ap ∪ Ap, where Ap is the set of formulae of the form ¬p
for p ∈ Ap. This form, where negations may only occur on atoms, is very convenient
when defining encodings of PLTL into propositional logic. Every PLTL formula φ on
the alphabet {¬,∨,U , ◦,S, •} ∪Ap may be transformed into an equivalent formula φ′

in positive normal form.
For the sake of brevity, we also allow n-ary predicate letters (with n ≥ 1) and the

∀, ∃ quantifiers as long as their domains are finite. Hence, one can write, e.g., formulae
of the form: ∃p gr(p), with p ranging over {1, 2, 3} as a shorthand for

∨
p∈{1,2,3} grp.

Semantics of PLTL. In our past work [10], we have introduced a variant of bounded
model checking where the underlying, ultimately periodic timing structure was not
bounded to be infinite only in the future, but may extend indefinitely also towards the
past, thus allowing for a simple and intuitive modeling of continuously functioning sys-
tems like monitoring and control devices. In [11], we investigated the performance of
verification in many case studies, showing that tool performance on bi-infinite struc-
tures is comparable to that on mono-infinite ones. Hence adopting a bi-infinite notion
of time does not impose very significant penalties to the efficiency of bounded model
checking and bounded satisfiability checking. Therefore, in what follows, we present
only the simpler bi-infinite semantics of PLTL. Each experiment of Section 4 use either
bi-infinite time (when there are past operators) or mono-infinite time (typically, when
there are only future operators).

A bi-infinite word S over alphabet 2Ap (also called a Z-word) is a function S : Z −→
2Ap. Hence, each position j of S, denoted by Sj , is in 2Ap for every j. Word S is also
denoted as . . . S−1S0S1 . . . . The set of all bi-infinite words over 2Ap is denoted by
(2Ap)Z.

For all PLTL formulae φ, for all S ∈ (2Ap)Z, for all integer numbers i, the satisfac-
tion relation S, i |= φ is defined as follows.

S, i |= p,⇐⇒ p ∈ Si, for p ∈ Ap
S, i |= ¬φ⇐⇒ S, i �|= φ
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S, i |= φ ∨ ψ ⇐⇒ S, i |= φ or S, i |= ψ
S, i |= ◦φ⇐⇒ S, i + 1 |= φ
S, i |= φUψ ⇐⇒ ∃k ≥ 0 | S, i + k |= ψ, and S, i + j |= φ ∀0 ≤ j < k
S, i |= •φ⇐⇒ S, i− 1 |= φ
S, i |= φSψ ⇐⇒ ∃k ≥ 0 | S, i− k |= ψ, and S, i− j |= φ ∀0 ≤ j < k

Metric temporal operators. Metric operators are very convenient for modeling hard
real time systems, with quantitative time constraints. The operators introduced in this
section do not actually extend the expressive power of PLTL, but may lead to more
succinct formulae. Their semantics is defined by a straightforward translation τ into
PLTL.

Let ∼∈ {≤,=,≥}), and c be a natural number. We consider here two metric op-
erators, one in the future and one in the past: the bounded eventually ♦∼cφ, and its
past counterpart �∼cφ. The semantics of the future operators is the following (the past
versions are analogous):

τ(♦=0φ) := φ
τ(♦=tφ) := ◦τ(♦=t−1φ), for t > 0
τ(♦≤0φ) := φ
τ(♦≤tφ) := φ ∨ ◦τ(♦≤t−1φ), for t > 0
τ(♦≥0φ) := ♦φ
τ(♦≥tφ) := ◦τ(♦≥t−1φ), for t > 0

Versions of the bounded operators with ∼∈ {<,>} may be introduced as a shorthand.
For instance, ♦>0φ stands for ◦♦≥0φ. Other two dual operators are “bounded glob-
ally”: �∼cφ is ¬♦∼c¬φ, and its past counterpart is �∼cφ, which is defined as ¬�∼c¬φ.
Other metric operators are the bounded versions of U ,R,S, T ((see e.g. [10]), which
are typically defined as primitive in metric temporal logics, with the various ♦ opera-
tors above defined as derived. In our experience, however, ♦ operators above are much
more common in specifications, therefore we chose to implement them as native in the
metric encoding. The latter bounded operators are instead translated into PLTL with-
out a native metric encoding. For instance, φ1U≤tφ2 is defined by τ(φ1U≤0φ2) := φ2,
τ(φ1U≤tφ2) := φ2 ∨ (φ1 ∧ ◦φ1U≤t−1φ2) for t > 0. Hence, all operators of metric
temporal logic are supported, although not all bounded operators have an optimized
definition.

2.2 The Zot Toolkit

Zot is an agile and easily extendible bounded model checker, which can be down-
loaded at http://home.dei.polimi.it/pradella/, together with the case studies and results
described in Section 4. Zot provides a simple language to describe both descriptive
and operational models, and to mix them freely. This is possible since both models
are finally to be translated into boolean logic, to be fed to a SAT solver (Zot supports
various SAT solvers, like MiniSat [3], and MiraXT [8]). The tool supports different
logic languages through a multi-layered approach: its core uses PLTL, and on top of
it a decidable predicative fragment of TRIO [4] is defined (essentially, equivalent to
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Metric PLTL). An interesting feature of Zot is its ability to support different encodings
of temporal logic as SAT problems by means of plugins. This approach encourages ex-
perimentation, as plugins are expected to be quite simple, compact (usually around 500
lines of code), easily modifiable, and extendible.

Zot offers two basic usage modalities:

1. Bounded satisfiability checking (BSC): given as input a specification formula, the
tool returns a (possibly empty) history (i.e., an execution trace of the specified sys-
tem) which satisfies the specification. An empty history means that it is impossible
to satisfy the specification.

2. Bounded model checking (BMC): given as input an operational model of the system
and a property, the tool returns a (possibly empty) history (i.e., an execution trace
of the specified system) which satisfies it.

The provided output histories have temporal length ≤ k, the bound k being chosen
by the user, but may represent infinite behaviors thanks to the encoding techniques
illustrated in Section 3. The BSC/BMC modalities can be used to check if a property
prop of the given specification spec holds over every periodic behavior with period
≤ k. In this case, the input file contains spec ∧ ¬prop, and, if prop indeed holds, then
the output history is empty. If this is not the case, the output history is a counterexample,
explaining why prop does not hold.

3 Encoding of Metric Temporal Logic

We describe next the encoding of PLTL formulae into boolean logic, whose result in-
cludes additional information on the finite structure over which a formula is interpreted,
so that the resulting boolean formula is satisfied in the finite structure if and only if the
original PLTL formula is satisfied in a (finite or possibly) infinite structure. For sim-
plicity, we present a variant of the bi-infinite encoding originally published in [10], and
then introduce metric operators on it. Indeed, when past operators are introduced over
a mono-infinite structure (e.g., [2]), however, the encoding can be tricky to define, be-
cause of the asymmetric role of future and past: future operators do extend to infinity,
while past operators only deal with a finite prefix. The reader may refer to [10], and [11]
for a more thorough comparison between mono- and bi-infinite approaches to bounded
model checking. The complete mono-infinite encoding can be found in the extended
version of the present paper [13].

For brevity in the following we call state Si the set of assignments of truth values to
propositional variables at time i. The idea on which the encoding is based is graphically
depicted in Figure 1. A ultimately periodic bi-infinite structure has a finite representation

Fig. 1. A bi-infinite bounded path
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that includes a non periodic portion, and two periodic portions (one towards the future,
and one towards the past). The interpreter of the formula (in our case, the SAT solver),
when it needs to evaluate a formula at a state beyond the last state Sk, will follow the
“backward link” and consider the states Sl, Sl+1, ... as the states following Sk. Analo-
gously, to evaluate a formula at a state precedent to the first state S0, it will follow the
“forward link” and consider the states S′

l , Sl′−1, ... as the states preceding S0.
The encoding of the model (i.e. the operational description of the system, if any) is

standard - see e.g. [2]. In the following we focus on the encoding of the logic part Φ of
the system (or its properties).

Let Φ be a PLTL formula. Its semantics is given as a set of boolean constraints over
the so called formula variables, i.e., fresh unconstrained propositional variables. There
is a variable |[φ]|i for each subformulaφ of Φ and for each instant 0 ≤ i ≤ k+1 (instant
k + 1, which is not explicitly shown in Figure 1, has a particular role in the encoding,
as we will show next).

First, one needs to constrain the propositional operators in Φ. For instance, if φ1∧φ2
is a subformula of Φ, then each variable |[φ1 ∧ φ2]|i must be equivalent to the conjunc-
tion of variables |[φ1]|i and |[φ2]|i.

Propositional constraints, with p denoting a propositional symbol:

φ 0 ≤ i ≤ k
p |[p]|i ⇐⇒ p ∈ Si

¬p |[¬p]|i ⇐⇒ p �∈ Si

φ1 ∧ φ2 |[φ1 ∧ φ2]|i ⇐⇒ |[φ1]|i ∧ |[φ2]|i
φ1 ∨ φ2 |[φ1 ∨ φ2]|i ⇐⇒ |[φ1]|i ∨ |[φ2]|i

The following formulae define the basic temporal behavior of future PLTL operators,
by using their traditional fixpoint characterizations.

Temporal subformulae constraints:

φ −1 ≤ i ≤ k
◦φ1 |[◦φ1]|i ⇐⇒ |[φ1]|i+1

φ1Uφ2 |[φ1Uφ2]|i ⇐⇒ |[φ2]|i ∨ (|[φ1]|i ∧ |[φ1Uφ2]|i+1)
φ1Rφ2 |[φ1Rφ2]|i ⇐⇒ |[φ2]|i ∧ (|[φ1]|i ∨ |[φ1Rφ2]|i+1)

(1)

φ 0 ≤ i ≤ k + 1
•φ1 |[•φ1]|i ⇐⇒ |[φ1]|i−1

φ1Sφ2 |[φ1Sφ2]|i ⇐⇒ |[φ2]|i ∨ (|[φ1]|i ∧ |[φ1Sφ2]|i−1)
φ1T φ2 |[φ1T φ2]|i ⇐⇒ |[φ2]|i ∧ (|[φ1]|i ∨ |[φ1T φ2]|i−1)

Notice that such constraints do not consider the implicit eventualities that the defini-
tions of U and S impose (they treat them as the “weak” until and since operators), nor
consider loops in the time structure.

To deal with eventualities and loops, one has to encode an infinite structure into a
finite one composed of k + 1 states S0, S1, . . . Sk. The “future” loop can be described
by means of other k + 1 fresh propositional variables l0, l1, . . . lk, called loop selector
variables. At most one of these loop selector variables may be true. If li is true then
state Si−1 = Sk, i.e., the bit vectors representing the state Si−1 are identical to those
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for state Sk. Further propositional variables, InLoopi (0 ≤ i ≤ k) and LoopExists,
respectively mean that position i is inside a loop and that a loop actually exists in the
structure. Symmetrically, there are new loop selector variables l′i to define the loop
which goes towards the past, and the corresponding propositional letters InLoop′

i, and
LoopEsists′.

The variables defining the loops are constrained by the following set of formulae.
Loop constraints:

Base ¬l0 ∧ ¬InLoop0 ∧ ¬l′k ∧ ¬InLoop′
k

1 ≤ i ≤ k

(li ⇒ Si−1 = Sk) ∧ (InLoopi ⇐⇒ InLoopi−1 ∨ li)
(InLoopi−1 ⇒ ¬li) ∧ (LoopExists ⇐⇒ InLoopk)

(l′i ⇒ Si+1 = S0) ∧ (InLoop′
i ⇐⇒ InLoop′

i+1 ∨ l′i)
(InLoop′

i+1 ⇒ ¬l′i) ∧ (LoopExists′ ⇐⇒ InLoop′
0)

The above loop constraints state that the structure may have at most one loop in the
future and at most one loop in the past. In the case of a cyclic structure, they allow the
SAT solver to select nondeterministically exactly one of the (possibly) many loops.

To properly define eventualities, we need to introduce new propositional letters
〈〈♦φ2〉〉i, for each φ1Uφ2 subformula of Φ, and for every 0 ≤ i ≤ k + 1. Analo-
gously, we need to consider subformulae containing the operator R, such as φ1Rφ2,
by adding the new propositional letters 〈〈�φ2〉〉i. This is also symmetrically applied
to S and T , using �,�. Then, constraints on these eventuality propositions are quite
naturally stated as follows.

Eventuality constraints:

φ Base
φ1Uφ2 ¬〈〈♦φ2〉〉0 ∧

(
LoopExists⇒

(
|[φ1Uφ2]|k ⇒ 〈〈♦φ2〉〉k

))
φ1Rφ2 〈〈�φ2〉〉0 ∧

(
LoopExists⇒

(
|[φ1Rφ2]|k ⇐ 〈〈�φ2〉〉k

))
φ1Sφ2 ¬〈〈�φ2〉〉k ∧

(
LoopExists′ ⇒

(
|[φ1Sφ2]|0 ⇒ 〈〈�φ2〉〉0

))
φ1T φ2 〈〈�φ2〉〉k ∧

(
LoopExists′ ⇒

(
|[φ1T φ2]|0 ⇐ 〈〈�φ2〉〉0

))
φ 1 ≤ i ≤ k

φ1Uφ2 〈〈♦φ2〉〉i ⇐⇒ 〈〈♦φ2〉〉i−1 ∨ (InLoopi ∧ |[φ2]|i)
φ1Rφ2 〈〈�φ2〉〉i ⇐⇒ 〈〈�φ2〉〉i−1 ∧ (¬InLoopi ∨ |[φ2]|i)
φ 0 ≤ i ≤ k − 1

φ1Sφ2 〈〈�φ2〉〉i ⇐⇒ 〈〈�φ2〉〉i+1 ∨
(
InLoop′

i ∧ |[φ2]|i
)

φ1T φ2 〈〈�φ2〉〉i ⇐⇒ 〈〈�φ2〉〉i+1 ∧
(
¬InLoop′

i ∨ |[φ2]|i
)

The formulae in the following table provide the constraints that must be included in
the encoding, for any subformula φ, to account for the absence of a forward loop in the
structure (the first line of the table states that if there is no loop nothing is true beyond
the k-th state) or its presence (the second line states that if there is a loop at position i
then state Sk+1 and Si are equivalent).

Last state constraints:

Base ¬LoopExists⇒ ¬|[φ]|k+1

1 ≤ i ≤ k li ⇒ (|[φ]|k+1 ⇐⇒ |[φ]|i)
(2)
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Then, symmetrically to the last state, we must define first state (i.e. 0 time) constraints
(notice that in the bi-infinite encoding instant -1 has a symmetric role of instant k + 1).

First state constraints:

Base ¬LoopExists′ ⇒ ¬|[φ]|−1

0 ≤ i ≤ k − 1 l′i ⇒ (|[φ]|−1 ⇐⇒ |[φ]|i)
(3)

The complete encoding of Φ consists of the logical conjunction of all above compo-
nents, together with |[Φ]|0 (i.e. Φ is evaluated only at instant 0).

3.1 Encoding of the Metric Operators

We present here the additional constraints one has to add to the previous encoding, to
natively support metric operators. We actually implemented also a mono-infinite metric
encoding in Zot, but for simplicity we are focusing here only on the bi-infinite one.

Notice that

♦≤tφ ⇐⇒ ¬�≤t¬φ, ♦=tφ ⇐⇒ �=tφ, ♦≥tφ ⇐⇒ ♦=t♦φ

(the past versions are analogous). Hence, in the following we will not consider the �=t,
♦≥t, �≥t operators, and their past counterparts.

Ideally, with an unbounded time structure, the encoding of the metric operators
should be the following one (considering only the future, as the past is symmetrical):

|[♦=tφ]|i ⇐⇒ |[φ]|i+t, |[�≤tφ]|i ⇐⇒
t∧

j=1

|[φ]|i+j

Unfortunately, the presence of a bounded time structure, in which bi-infinity is en-
coded through loops, makes the encoding less straightforward. With simple PLTL one
refers at most to one instant in the future (or in the past) or to an eventuality. As the
reader may notice in the foregoing encoding, this is still quite easy, also in the presence
of loops. On the other hand, the presence of metric operators, affects the loop-based
structure, as logic formulae can now refer to time instants well beyond a single future
(or past) unrolling of the loop.

To represent the values of subformulae inside the future and past loops, we introduce
new propositional variables, 〈〈MF(·, ·)〉〉 for the future-tense operators, and 〈〈MP(·, ·)〉〉
for the past ones. For instance, for ♦=5ψ, we introduce 〈〈MF(ψ, j)〉〉, 0 ≤ j ≤ 4,
where the propositions 〈〈MF(ψ, j)〉〉 are used to represent the value of ψ j time units
after the starting point of the future loop. This means that, if the future loop selector
is at instant 18 (i.e. l18 holds), then 〈〈MF(ψ, 2)〉〉 represents |[ψ]|20 (i.e. ψ at instant
18+2). Analogously and symmetrically, 〈〈MP(ψ, j)〉〉 are introduced for past operators
with argument ψ, and represent the value of ψ j time units after the starting point of
the past loop. That is, if the past loop selector is at instant 7 (i.e. l′7), then 〈〈MP(ψ, 2)〉〉
represents |[ψ]|7−2.

The first constraints are introduced for any future or past metric formulae in Φ.

φ 0 ≤ j ≤ t− 1
♦=tφ, �≤tφ, ♦≤tφ 〈〈MF(φ, j)〉〉 ⇐⇒

∨k
i=1 li ∧ |[φ]|i+mod(j,k−i+1)

�=tφ, �≤tφ, �≤tφ 〈〈MP(φ, j)〉〉 ⇐⇒
∨k−1

i=0 l′i ∧ |[φ]|i−mod(j,i+1)

(4)
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We now provide the encoding of every metric operator, composed of two parts: the first
one defines it inside the bounded portion of the temporal structure (i.e. for instants i in
0 ≤ i ≤ k), and the other one, based on MF and MP, for the loop portion.

φ −1 ≤ i ≤ k
♦=tφ |[♦=tφ]|i ⇐⇒ |[φ]|i+t, when i + t ≤ k

|[♦=tφ]|i ⇐⇒ 〈〈MF(φ, t + i− k − 1)〉〉, elsewhere
�≤tφ �≤tφ ⇐⇒

∧min(t,k−i)
j=1 |[φ]|i+j ∧

∧t
j=k+1−i〈〈MF(φ, i + j − k − 1)〉〉

♦≤tφ ♦≤tφ ⇐⇒
∨min(t,k−i)

j=1 |[φ]|i+j ∨
∨t

j=k+1−i〈〈MF(φ, i + j − k − 1)〉〉

(5)

φ 0 ≤ i ≤ k + 1
�=tφ |[�=tφ]|i ⇐⇒ |[φ]|i−t, when i ≥ t

|[�=tφ]|i ⇐⇒ 〈〈MP(φ, t− i− 1)〉〉, elsewhere
�≤tφ �≤tφ ⇐⇒

∧min(t,i)
j=1 |[φ]|i−j ∧

∧t
j=i+1〈〈MP(φ, i + j − 1)〉〉

�≤tφ �≤tφ ⇐⇒
∨min(t,i)

j=1 |[φ]|i−j ∨
∨t

j=i+1〈〈MP(φ, i + j − 1)〉〉
The most complex part of the metric encoding is the one considering the behavior

on the past loop of future operators, and on the future loop of the past operators. First,
let us consider the behavior of future metric operators on the past loop.

φ 0 ≤ i ≤ k − 1

♦=tφ l′i ⇒
⎛⎝ ∧min(t,k−i)

j=1 (|[φ]|i+j ⇐⇒ |[φ]|mod(j−1,i+1))∧∧t
j=k−i+1

( 〈〈MF(φ, i + j − k − 1)〉〉 ⇐⇒
|[φ]|mod(j−1,i+1)

)⎞⎠

�≤tφ InLoop′
i ⇒

(
|[�≤tφ]|i ⇐⇒

( ∧min(k−i,t)
j=1 (¬InLoop′

i+j ∨ |[φ]|i+j)∧∧min(i,t−1)
j=0 (InLoop′

min(k,i+t−j) ∨ |[φ]|j)

))

♦≤tφ InLoop′
i ⇒

(
|[♦≤tφ]|i ⇐⇒

( ∨min(k−i,t)
j=1 (InLoop′

i+j ∧ |[φ]|i+j)∨∨min(i,t−1)
j=0 (¬InLoop′

min(k,i+t−j) ∧ |[φ]|j)

))
(6)

The main aspect to consider is the fact that, if l′i (i.e. the past loop selector variable
holds at instant i), then i has two possible successors: i + 1 and 0. Therefore, if ♦=4φ
holds at i (which is inside the past loop), then φ must hold both at i + 4, and at 3. This
kind of constraint is captured by the upper formula for ♦=tφ, which relates the truth
values of φ in instants outside of the past loop (i.e., |[φ]|i+j ) with the instants inside
(i.e., |[φ]|mod(j−1,i+1) represents the value of φ at instants going from 0 to i, if l′i holds).

Another aspect to consider is related to the size of the time constant used (i.e. t in
this case). Indeed, if i + t > k, then we are considering the behavior of φ outside the
bound 0..k. This means that we need to consider the behavior of φ also in the future
loop, hence we refer to 〈〈MF(φ, i + j − k − 1)〉〉 (see the lower formula for ♦=tφ).

As far as �≤tφ is concerned, its behavior inside the past loop is in general expressed
by two parts. The first one considers φ inside the past loop, starting from instant i
and going forward, towards the right end of the loop (i.e. where l′ holds, say i′). This
situation is covered by the upper formula for �≤tφ. If i + t is still inside the past loop
(i.e. i + t ≤ i′), this suffices. If this is not the case, we must consider the remaining
instants, going from i′ + 1 to i + t. Because we are considering the behavior inside the
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past loop, the instant after i′ is 0, so we must translate instants outside of the loop (i.e.
where InLoop′ does not hold), to instants going from 0 to i + t − i′ − 1: in all these
instants φ must hold. This constraint is given by the lower formula for �≤tφ.

The encoding for the past operators is symmetrical, and is the following:

1 ≤ i ≤ k

�=tφ li ⇒
⎛⎝∧min(t,i)

j=2 (|[φ]|i−j ⇐⇒ |[φ]|k−mod(j−1,k−i+1))∧∧t
j=1+i

( 〈〈MP(φ, j − i− 1)〉〉 ⇐⇒
|[φ]|k−mod(j−1,k−i+1)

) ⎞⎠

�≤tφ InLoopi ⇒
(
|[�≤tφ]|i ⇐⇒

( ∧min(i,t)
j=1 (¬InLoopi−j ∨ |[φ]|i−j)∧∧min(k−i,t−1)

j=0 (InLoopmax(0,i−t+j) ∨ |[φ]|k−j)

))

�≤tφ InLoopi ⇒
(
|[�≤tφ]|i ⇐⇒

( ∨min(i,t)
j=1 (InLoopi−j ∧ |[φ]|i−j)∨∨min(k−i,t−1)

j=0 (¬InLoopmax(0,i−t+j) ∧ |[φ]|k−j)

))

The actual implementation of the metric encoding contains some optimizations, not
reported here for the sake of brevity, like the re-use, whenever possible, of the various
〈〈MF(·, ·)〉〉, and 〈〈MP(·, ·)〉〉 propositional letters.

A first assessment of the encoding. The behavior of the new encoding has been first
experimented on a very simple specification of a synchronous shift-register, where, at
each clock tick, an input bit is shifted of one position to the right. A specification of this
system can be described by the following formula:

Alw(in↔ ♦=dout)

where in is true when a bit enters the shift register, out is true when a bit “exits” the
register after a delay d > 0 (a constant representing the number of memory bits in
the register). The Zot toolkit has been applied to this simple specification, using the
nonmetric, PLTL-only encoding of ([10]) and the new metric encoding.

The implemented nonmetric encoding is actually the one presented in the current sec-
tion, without the metric part of Sub-section 3.1. In practice, this means that every metric
temporal operator is translated into PLTL before applying the encoding, by means of its
definition of Section 2.

The experimental results (with the same hardware and software setup described in
Section 4.1) are graphically shown in Figure 2, where Gen represents the generation
phase, i.e., the generation of a boolean formula in conjunctive normal form, starting
from the above specification, and SAT represents the verification phase, performed by
a SAT solver, with a bound k = 400 and various values of delay d (from 10 to 150).
The first two upper diagrams show the time, in seconds, for Gen and SAT phases, using
either a PLTL encoding or the metric encoding, as a function of delay d, while the third
upper diagram shows the speedup, as a percentage of speed increase over the PLTL
encoding, when using the metric encoding, again as a function of delay d. As one can
see, the speedup obtained for both the Gen and SAT phases is proportional to delay d,
and can be quite substantial (up to 250% for SAT and 300% for Gen phases). The three
lower diagrams report, in a similar way, on the size of the generated boolean formula,
in terms of the thousands of variables (Kvar) and clauses (Kcl): the reduction in the size
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Fig. 2. Summary of experimental data for the synchronous version of a Shift Register

of the generated encoding increases with the value of d and tends to reach a stable value
around 60%.

These results can be explained by comparing the two encodings. In general, if a
formula φ contains a time constant, then the number of subformulae is much higher in
the nonmetric enconding than in the metric one. For instance, in the above example,
the non-metric encoding of♦=dout is translated into d nested applications of the next-
time operator, ◦dout, hence there are d + 1 subformulae, ◦iout for 0 ≤ i ≤ d, while
in the metric encoding of ♦=dout there are only two subformulae, ♦=dout itself and
out. Concerning the number of generated boolean variables, this is much higher for
the nonmetric encoding, due to the presence of a larger number of subformulae. Again
with reference to the example, we have (d + 1) · (k + 2) subformula variables in the
nonmetric case and 2·(k+2)+2·d variables for the metric encoding (of which 2·(k+2)
subformula variables and 2 · d MF and MP variables).

Regarding the size of the generated constraints, it is immediate to notice that propo-
sitional, eventuality and loop contraints have the same size, which is O(k), in both
encodings. The size of the remaining constraints is shown in the following table, where
MF and MP constraints are those of type (4), (5), and (6) introduced for the metric
encoding only.

First and last state Temporal Subformula MF and MP Total

Nonmetric (d + 1) · (k + 2) 2 · k(d + 1) 0 3 · d · k + 2 · d + 3 · k + 2
Metric 0 4 · k 2 · d · k + k 2 · d · k + 5 · k

Thus, in the metric encoding we have O(d+k) (i.e., less than in the nonmetric case)
variables and O(d · k) constraints, which is same as in the nonmetric case but with a
smaller constant factor (in this case, 2 rather than 3). This is also clear from Fig. 2,
where the size saving tends to a constant when d is large enough.
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The analysis of the other metric temporal operators, �≤tφ and♦≤tφ, leads to similar
conclusions.

4 Experimental Results

First we briefly describe the five case studies that we adopted for our experiments. For
all of them we provide both a descriptive and an operational model. A complete archive
with the files used for the experiments, and the details of the outcomes, can be found in
the Zot web page at http://home.dei.polimi.it/pradella/.

Real-time allocator (RTA). This case study, described in [12], consists of a real-time
allocator which serves a set of client processes, competing for a shared resource. The
system numeric parameters are the number of processes np and the constants Treq

within which the allocator must respond to the requests, and the maximum time Trel

that a process can keep the resource before releasing it. In our experiments, both a de-
scriptive and an operational model were considered, using three processes, and with
two different system settings for each version: a first one with Trel = Treq = 3, and
a second one with Trel = Treq = 10. We first generated a simple run of the system
(Property Sat); then we considered four hard real time properties, described in [12],
called Simple Fairness, Conditional Fairness, Precedence, and Suspend Fairness. It is
worth noticing that the formula specifying Suspend Fairness includes a relatively high
time constant (Trel · np) and is therefore likely to benefit from the metric encoding.
We adopted the bi-infinite encoding for this case study, which allowed to consider only
regime behaviors, thus abstracting away system initialization.

Fischer’s protocol (FP). FP [7] is a timed mutual exclusion algorithm that allows a
number of timed processes to access a shared resource. We considered the system in
two variants: one with 3 processes and a delay 5 t.u.; the other one with 4 processes and
a delay of 10 t.u. We used the tool to check the safety property (i.e. it is never possible
that two different processes enter their critical sections at the same time instant) and to
generate a behavior in which there is always at least one alive process. We adopted the
bi-infinite encoding, for reasons similar to those already explained for RTA case study.

Kernel Railway Crossing (KRC). This is a standard benchmark in real time systems
verification [5], which we used and described in a previous work [12]. In our example
we adopted a descriptive model and studied the KRC problem with two sets of time
constants, allowing a high degree of nondeterminism on train behavior. In particular,
the first set of constants was: dMax = 9 and dmin = 5 t.u. for the maximum and
minimum time for a train to reach the critical region, hMax = 6 and hmin = 3 for
the maximum and minimum time for a train to enter the critical region once it is first
sensed, and γ = 3 for the movement of the bar from up to down and vice versa. The set
of time constants for the second experiment was dMax = 19, dmin = 15, hMax = 16,
hmin = 13, and γ = 10. For each of the two settings we proved both satisfiability of
the specification (Sat) and the safety property, using a mono-infinite encoding.

Timer Reset Lamp (TRL). This is the Timer Reset Lamp first presented in [12], with
three settings (∆ = 10, ∆ = 15, and ∆ = 20) and two analyzed properties (the first



A Metric Encoding for Bounded Model Checking 753

one, that the lamp is never lighted for more than ∆ t.u.: it is false, and the tool generates
a counter-example; the second one, namely that the lamp can remain lighted for more
than ∆ t.u. only if the ON button is pushed twice within ∆ t.u., is true). This system
was analyzed with a bi-infinite encoding.

Asynchronous Shift Register (ASR). The simplest case study is an asynchronous ver-
sion of the Shift Register example discussed in Section 3, where the shift does not
occur at every tick of the clock, but only at a special, completely asynchronous Shift
command. We consider two cases, with the number of bits n = 16 and n = 24, and
we prove satisfiability of the specification and one timed property (if the Shift signal
remains true for n time units (t.u.) then the value In which was inserted in the Shift
register at the beginning of the time interval will appear at the opposite side of the reg-
ister at the end of the time interval). This case study was analyzed with reference to a
bi-infinite encoding.

4.1 Results

The experiments were run on a PC equipped with two XEON 5335 (Quadcore) pro-
cessors at 2.0 Ghz, with 16 GB RAM, running under Gentoo X86-64 (2008.0). The
SAT-solver was MiniSat. The experimental results are shown in Table 1. The suffix -
de indicates analysis carried out on the descriptive version of the model, while -op is
used for the operational version. The table reports, for various values of the bound k
(30, 60, and 90), both Generation time, i.e., the time in seconds taken for building the
encoding and transforming it into conjunctive normal form, and SAT time, i.e., the time
in seconds taken by the SAT solver to answer. Only the timings of the metric version
is reported, since the ones of the non-metric version can be obtained by the following
speed up measures. Performance is gauged by providing three measures of speed up
as a percentage of the time taken by the metric version (e.g., 0% means no speed-up,
100% means double speed, i.e., the encoding is twice as fast, etc.): TPLTL−Tmetric

Tmetric
, where

Tmetric and TPLTL represent the time taken by the metric and the PLTL encodings, re-
spectively. The first measure shows the speed up in the generation phase, the second in
SAT time and the third one in Total time (i.e., in the sum of Gen and SAT time). On
average, the speed up is 42,2% for Gen and 62,2% for SAT, allowing for a 47,9% speed
up in the total time. The best results give speed up of, respectively, 224%, 377% and
231%, while the worst results are -7%, -34% and -16%.

Speed up for SAT time appears to be more variable and less predictable than the one
for Gen time, although often significantly larger. This is likely caused by the complex
and involved ways in which the SAT algorithm is influenced by the numerical values
of the k bound, of the time constants in the specification formulae and by their inter-
action, due to the heuristics that it incorporates. For instance, the speed up for Gen
increases very regularly with the bound k, because of the smaller size of the formula
to be generated, while SAT may vary unpredictably and significantly with the value of
k (e.g., compare property op-P2 for TRL-10, when the speed up increases with k, and
TRL-20, when the speed up actually decreases with k). A thorough discussion of these
aspects is out of the scope of the present paper, also because they may change from one
SAT-solver to another one.
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Table 1. Summary of collected experimental data

Total Speed-upSAT Speed upGen. Speed-upSAT (s): MetricGen. (s): Metric
PropertyCase k=30 k=60 k=90 k=30 k=60 k=90 k=30 k=60 k=90 k=30 k=60 k=90 k=30 k=60 k=90

RTA-3-de Sat 14,6 42,4 84,0 12,6 45,1 99,5 4% 2% 2% 2% 4% 1% 3% 3% 1%
Simple 16,8 49,6 97,6 14,9 54,6 117,8 8% 8% 9% 11% 10% 11% 10% 9% 10%
Cond 19,7 59,1 116,8 18,6 68,2 146,7 9% 9% 9% 14% 9% 20% 12% 9% 15%
Prec 22,4 69,7 142,0 21,5 78,3 170,9 2% −1% −2% 1% 1% 5% 2% 0% 2%
Suspend 18,5 55,3 109,3 19,6 64,2 145,1 28% 31% 33% 35% 38% 47% 31% 35% 41%

RTA-3-op Sat 2,4 5,3 8,8 0,9 2,6 5,2 3% 9% 12% 2% 2% 2% 3% 6% 8%
Simple 3,6 8,4 14,4 1,7 5,3 11,2 14% 24% 25% 39% 30% 24% 22% 26% 25%
Cond 5,1 12,7 22,4 3,0 9,1 19,2 16% 25% 22% 27% 26% 32% 20% 26% 27%
prec 6,6 17,1 31,3 4,0 13,9 29,2 0% 5% 1% 4% −2% −1% 1% 2% 0%
suspend 4,7 11,2 19,7 3,2 11,1 21,4 49% 72% 75% 94% 58% 74% 67% 65% 75%

RTA-10-de Sat 72,1 243,9 506,8 82,8 324,3 779,9 7% 3% 4% 4% 4% −8% 5% 4% −3%
Simple 76,9 255,2 541,8 100,0 334,9 768,6 20% 18% 19% 23% 24% −34% 22% 21% −13%
Cond 83,9 277,7 586,2 100,7 384,2 539,9 17% 17% 18% 27% 21% −34% 22% 20% −7%
Prec 103,2 344,6 734,5 124,7 498,6 66,4 6% 4% 3% 5% −2% 11% 6% 0% 4%
Suspend 85,3 274,3 577,1 94,8 419,3 6294 53% 63% 62% 79% 57% −23% 67% 60% −16%

RTA-10-op Sat 6,3 13,6 24,7 2,5 7,4 18,2 −1% 3% 1% 0% 0% −6% −1% 2% −2%
Simple 8,1 19,2 33,4 14,7 19,1 50,9 32% 40% 45% 12% 82% 18% 19% 61% 29%
Cond 9,9 24,6 42,4 6,5 24,0 37,0 29% 36% 46% 44% 31% 63% 35% 33% 54%
Prec 15,4 43,0 78,5 10,3 36,2 75,5 2% −1% 5% 3% 1% 3% 2% 0% 4%
Suspend 9,6 24,1 44,5 4,7 45,3 633,6 159% 196% 224% 377% 136% 88% 231% 157% 97%

FP-3-5-de Sat 11,4 31,7 60,3 9,2 31,1 66,9 28% 33% 37% 39% 49% 51% 33% 41% 44%
Safety 11,9 32,5 62,6 9,5 34,1 73,9 28% 33% 37% 42% 44% 50% 34% 39% 44%

FP-3-5-op Sat 2,7 6,2 10,4 1,3 3,9 7,1 0% −1% 0% −1% −3% 0% 0% −2% 0%
Safety 2,9 6,7 11,7 1,5 4,7 10,8 0% −1% 0% −3% 0% 0% −1% −1% 0%

FP-4-10-
de

Sat 26,3 80,3 159,0 25,6 94,9 200,6 67% 74% 81% 95% 115% 102% 81% 96% 93%
Safety 27,3 83,7 163,1 27,7 101,2 221,0 70% 71% 80% 87% 90% 89% 78% 82% 85%

FP-4-10-
op

Sat 4,3 10,6 18,0 4,3 8,4 15,3 0% −1% −1% 0% 0% 0% 0% −1% 0%
Safety 4,8 11,6 19,9 4,1 14,9 27,1 −1% −1% −1% 0% 0% −1% −1% 0% −1%

KRC-9-5-6
-3-de

Sat 2,1 4,7 7,9 0,9 3,3 6,3 24% 30% 34% 57% 34% 80% 34% 32% 54%
Safety 2,2 5,0 8,4 0,2 0,4 0,6 23% 29% 36% 26% 32% 38% 23% 29% 36%

KRC-9-5-6
-3-op

Sat 1,4 3,0 4,8 0,5 1,3 2,9 −1% −1% −0% 0% 0% 1% 0% −1% 0%
Safety 1,5 3,2 5,5 0,1 0,2 0,3 −2% −2% −6% 0% 0% −1% −2% −2% −6%

KRC-19-15
-16-13-de

Sat 2,4 5,4 9,1 1,0 3,4 6,4 102% 127% 149% 213% 231% 279% 135% 167% 202%
Safety 2,5 5,7 9,6 0,2 0,4 0,7 95% 124% 146% 115% 145% 175% 96% 125% 148%

KRC-19-15
-16-13-op

Sat 2,0 4,2 6,8 1,0 1,8 4,0 −1% −1% 3% −1% −1% −1% −1% −1% 1%
Safety 2,0 4,4 7,1 0,1 0,3 0,4 −1% 0% 0% 2% 6% 0% 0% 0% 0%

TRL-10-de p1 2,9 6,9 11,6 1,4 4,4 9,2 34% 39% 48% 61% 67% 70% 43% 50% 58%
p2 3,1 8,0 13,7 2,1 8,5 12,5 49% 49% 61% 66% 60% 83% 56% 55% 71%

TRL-10-op p1 1,1 2,3 3,6 0,3 0,9 1,7 35% 39% 47% 71% 68% 85% 43% 47% 59%
p2 1,4 3,0 4,7 0,5 1,5 2,9 57% 61% 75% 105% 121% 253% 70% 81% 143%

TRL-15-de p1 3,9 9,2 16,3 2,1 6,6 14,0 43% 56% 68% 71% 90% 87% 53% 70% 77%
p2 4,3 10,9 18,3 2,6 12,2 31,0 68% 72% 90% 110% 97% 35% 84% 85% 55%

TRL-15-op p1 1,1 2,4 3,7 0,3 0,9 1,6 63% 60% 69% 104% 117% 140% 72% 75% 91%
p2 1,4 3,1 5,0 0,5 1,6 3,0 95% 107% 130% 186% 208% 242% 120% 141% 172%

TRL-20-de p1 5,3 13,0 23,0 3,0 10,2 21,8 49% 69% 77% 91% 97% 99% 65% 81% 88%
p2 5,7 14,4 26,5 3,6 15,7 46,9 77% 91% 100% 148% 166% 183% 104% 130% 153%

TRL-20-op p1 1,4 3,1 5,1 0,4 1,1 2,1 67% 67% 64% 122% 145% 157% 79% 88% 92%
p2 1,8 3,8 6,3 0,6 2,5 8,5 104% 134% 143% 242% 226% 84% 140% 170% 109%

ASR-24-de Sat 11,3 31,3 59,4 14,6 31,4 67,9 3% −1% −1% −4% 0% −1% −1% 0% −1%
Prop 12,7 33,8 64,0 9,8 34,4 78,5 22% 31% 35% 41% 38% 30% 31% 35% 32%

ASR-24-op Sat 1,9 4,4 6,9 1,7 1,9 3,7 0% −7% −1% −1% −1% −1% 0% −5% −1%
Prop 2,5 5,9 9,4 1,0 3,2 5,7 68% 73% 92% 118% 125% 168% 83% 92% 121%

ASR-16-de Sat 6,7 17,6 33,2 4,6 15,7 33,4 0% 2% 2% 0% 0% 0% 0% 1% 1%
Prop 7,4 20,0 36,4 5,1 18,3 40,3 22% 25% 28% 34% 31% 27% 27% 28% 27%

ASR-16-op Sat 1,4 3,0 5,0 0,7 1,3 2,4 −2% 7% 2% 3% 6% 3% 0% 6% 2%
Prop 1,9 4,2 6,9 0,7 2,1 3,7 57% 67% 69% 94% 97% 131% 67% 77% 90%
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It is easy to realize, as already noticed in Section 3 for the example of the syn-
chronous shift register, that significant improvements are obtained, with the new metric
encoding, for analysing Metric temporal logic properties with time constants having a
fairly high numerical value. The larger the value, the larger the speed up. This is partic-
ularly clear for TRL, RTA and FP case studies.

The fact that the underlying model was descriptive or operational may have a signifi-
cant impact on verification speed, but considering only the speed up the results are much
more mixed. For instance, the operational versions of FP and KRC, although more effi-
cient, had a worse speed up than their corresponding descriptive cases, while the reverse
occurred for the operational versions of RTA, ASR and TRL. The only exception is for
the Sat case, where no property is checked against the model, and hence no gain can be
obtained for the operational model. A decrease in benefit for certain descriptive models
may be caused by cases where subformulae in metric temporal logic with large time
constants are combined with other non-metric subformulae.

The measure of the size of the generated formulae is not reported here, but it is worth
pointing out that, thanks to the new metric encoding, the size may be reduced of 50%
or more when there are high time constants and/or large k bounds. For instance, in case
KRC-19-15-16-13-de (Safety) the number of clauses of the metric encoding is less than
half of the nonmetric one, while in case FP-4-10-de (both sat and Safety), the metric
encoding is around one third smaller.

5 Conclusions

In this paper, a new encoding technique of linear temporal logic into boolean logic
is introduced, particularly optimized for managing quantitative future and past metric
temporal operators. The encoding is simple and intuitive in principle, but it is made
more complex by the presence, typical of the technique, of backward and forward loops
used to represent an ultimately periodic infinite domain by a finite structure.

We have shown that, for formulae that include an explicit time constant, like e.g.,
♦=tφ, the new metric encoding permits an improvement, in the size of the generated
SAT formula and in the SAT solving time, that is proportional to the numerical value
of the time constant. In practical examples, the overall performance improvement is
limited by other components of the encoding algorithm that are not related with the
value of the time constants (namely, those that encode the structure of the time domain,
or the non-metric operators). Therefore, the gain in performance can be reduced in the
less favorable cases in which the analyzed formula contains few or no metric temporal
operators, or the numerical value of the time constants is quite limited.

An extensive set of experiments has been carried out to asses its feasibility and effec-
tiveness for Bounded Model Checking (and Bounded Satisfiability Checking). Average
speed up in SAT solving time was 62%. The experimental results show that the new
metric encoding can successfully be applied when the property to analyze includes time
constants with a fairly high numerical value.

Acknowledgements. We thank Davide Casiraghi for his valuable work on Zot’s metric
plugins.
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Abstract. We present a novel approach to optimize scope-bounded checking 
programs using a relational constraint solver. Given a program and its correct-
ness specification, the traditional approach translates a bounded code segment 
of the entire program into a declarative formula and uses a constraint solver to 
search for any correctness violations. Scalability is a key issue with such ap-
proaches since for non-trivial programs the formulas are complex and represent 
a heavy workload that can choke the solvers. Our insight is that bounded code 
segments, which can be viewed as a set of (possible) execution paths, naturally 
lend to incremental checking through a partitioning of the set, where each parti-
tion represents a sub-set of paths. The partitions can be checked independently, 
and thus the problem of scope-bounded checking for the given program reduces 
to several sub-problems, where each sub-problem requires the constraint solver 
to check a less complex formula, thereby likely reducing the solver’s overall 
workload. Experimental results show that our approach provides significant 
speed-ups over the traditional approach.  

Keywords: Scope-bounded checking, Alloy, first-order logic, SAT, lightweight 
formal method, computation graph, white-box testing. 

1   Introduction 

Scope-bounded checking [1, 4, 5, 9, 11, 17], i.e., systematic checking for a bounded 
state-space, using off-the-shelf solvers [7, 21, 24], is becoming an increasingly popular 
methodology to software verification. The state-space is typically bounded using 
bounds (that are iteratively relaxed) on input size [1], and length of execution paths [9]. 

While existing approaches that use off-the-shelf solvers have been used effectively 
for finding bugs, scalability remains a challenging problem. These approaches have a 
basic limitation: they require translating the bounded code segment of the entire pro-
gram into one input formula for the solver, which solves the complete formula. Due to 
the inherent complexity of typical analyses, many times solvers do not terminate in a 
desired amount of time. When a solver times out, e.g., fails to find a counterexample, 
typically there is no information about the likely correctness of the program checked 
or the coverage of the analysis completed. 

This paper takes a divide-and-solve approach, where smaller segments of bounded 
code are translated and analyzed—even if the encoding or analysis of some segments 
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time out, other segments can still be analyzed to get useful results. Our insight is that 
bounded code segments, which can be viewed as a set of (possible) execution paths, 
naturally lend to incremental checking through a partitioning of the set, where each 
partition represents a sub-set of paths. The partitions can be checked independently, 
and thus the problem of scope-bounded checking for the given program reduces to 
several sub-problems, where each sub-problem requires the constraint solver to check 
a less complex formula, thereby likely reducing the solver’s overall workload. 

We develop our approach in the context of the Alloy tool-set [14]—a lightweight 
formal method—and the Java programming language. The Alloy specification lan-
guage is a first-order logic based on sets and relations.  The Alloy Analyzer [13] per-
forms scope-bounded analysis for Alloy formulas using off-the-shelf SAT solvers.   

Previous work [5, 6, 15, 29] developed translations for bounded execution frag-
ments of Java code into Alloy’s relational logic. Given a procedure Proc in Java and 
its pre-condition Pre and post-condition Post in Alloy, the following formula is 
solved [15, 29]: 

( )Pre translate Proc Post∧ ∧ ¬  

Given bounds on loop unrolling (and recursion depth), the translate() function trans-
lates the bounded code fragments of procedure Proc from Java into a first order logic 
formula. Using bounds on the number of objects of each class, the conjunction of 
translate(Proc) with Pre and Post is translated into a propositional formula. Then, a 
SAT solver is used to search solutions for the formula. A solution to this formula 
corresponds to a path in Proc that satisfies Pre but violates Post, i.e., a counterexam-
ple to the correctness property. 

In our view, the bounded execution fragment of a program that is checked repre-
sents a set of possible execution paths. Before translating the fragment into relational 
logic, our approach implicitly partitions the set of paths using a partitioning strategy 
(Section 4), which splits the given program into several sub-programs—each repre-
senting a smaller bounded execution fragment—such that 

1

( ) ( )
n

i

i

path Proc path Sub
=

= U  

Function path(p) represents the set of paths for a bounded execution segment p. Sub1, 
…, Subn are sub-programs corresponding to path partitioning. To check the procedure 
Proc against pre-condition Pre and post-condition Post, we translate bounded execu-
tion fragment of each sub-program into a first order logic formula and check correct-
ness separately.  

1

( )

( ){ } .... { ( ) }n

Pre translate Proc Post

Pre translate Sub Post Pre translate Sub Post

∧ ∧ ¬ ⇔

∧ ∧ ¬ ∧ ∧ ∧ ∧ ¬
 

Thus, the problem of checking Proc is divided into sub-problems of checking smaller 
sub-programs, Sub1, …, Subn. Since the control-flow in each sub-program is less 
complex than the entire procedure, we expect the sub-problems to represent easier 
SAT problems. 
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This paper makes the following contributions: 

• An incremental approach. To check a program against specifications, we propose 
to divide the program into smaller sub-programs and check each of them individu-
ally with respect to the specification. Our approach uses path partitioning to reduce 
the workload to the backend constraint solver. 

• Implementation. We implement our approach using the Forge framework [5] and 
KodKod model finder [28]. 

• Evaluation. Experiments using Java library code show that our approach can sig-
nificantly reduce the checking time. 

2   Example 

This section presents a small example to illustrate our path partitioning and program 
splitting algorithm. Suppose we want to check the contains() method of class 
IntList in Figure 1 (a): 

An object of IntList represents a singly-linked list. The header field points to 
the first node in the list. Objects of the inner class Entry represent list nodes. The 
value field represents the (primitive) integer data in a node. The next field points to 
the next node in the list. Figure 1 (b) shows an instance of IntList. 

Consider checking the method contains(). Assume a bound on execution length 
of one loop unrolling. Figure 2 (a) shows the program and its computation graph [15] 
for this bound. 

Our program splitting algorithm uses the computation graph and is vertex-based: 
Given a vertex in the computation graph, we split the graph into two sub-graphs—(1) 
go-through sub-graph and (2) bypass sub-graph. The go-through sub-graph has all the 
paths that go through the vertex and the bypass sub-graph has all the paths that bypass 
the vertex. Given the computation graph in Figure 2 (a), splitting based on vertex 11 
generates the go-through sub-graph shown in Figure 2 (b) and the bypass sub-graph  

     
(a)                                                                          (b) 

Fig. 1. Class IntList (contains() method and an instance) 
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  public boolean  
  constains(int key) 
   { 
1 : Entry e = this.header; 
2 : if (e != null){ 
3 :  if (e.value == key){ 
4 :   return true; 
     } 
5 :  e = e.next; 
6 :  if (e != null){ 
7 :   if (e.value == key){ 
8 :    return true; 
      } 
9 :   e = e.next; 
     } 
10:  assume(e == null); 
    }  
11: return false; 
0 :}  

(a) 

 
 
  public boolean  
  go-through(int key) 
   { 
1 : Entry e = this.header; 
2 : if (e != null){ 
3’: assume !(e.value==key); 
4 :  
     
5 :  e = e.next; 
6 :  if (e != null){ 
7’:  assume!(e.value==key); 
8 :    
      
9 :   e = e.next; 
     } 
10:  assume(e == null); 
    }  
11: return false; 
0 :}  

 (b) 

 
 
  public boolean  
  bypass(int key) 
  { 
1 : Entry e = this.header; 
2’: assume(e != null); 
3 : if (e.value == key){ 
4 :   return true; 
    } 
5 : e = e.next; 
6’: assume (e != null); 
7”: assume(e.value == key); 
8 : return true; 
      
9 :  
 
10:  
     
11: 
0 :}  

(c)  

Fig. 2. Splitting of program contains() based on Vertex 11. Broken lines in sub-graph indi-
cate edges removed constructing this sub-program during splitting. Gray nodes in a sub-graph 
denote that a branch statement in original program has been transformed into an assume state-
ment. In programs below computation graph, the corresponding statements are show in Italic. 
Black nodes denote the statements removed during splitting. 

 

shown in Figure 2 (c). Thus the problem of checking the contains method using a 
bound of one loop unrolling is solved using two calls to SAT based on the two com-
putation sub-graphs. 

3   Background 

The goal of our computation graph splitting algorithm is to optimize traditional 
bounded exhaustive checking of programs using constraints in relational logic. The 
traditional approach [5] [15] [29] translates the entire bounded Java code segment into 
one relational logic formula. The conjunction of the code formula and the negation of 
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correctness specifications are passed to a relational logic constraint solver. Solutions 
are translated back to executions that violate the specification.  

3.1   Relational Logic and SAT-Based Analysis 

Traditional approaches use a subset of Alloy [14] as the relational logic for Java code 
translation. Alloy is a first-order declarative language based on relations. A relation is 
a collection of tuples of atoms. A relation can have any finite arity. A set is viewed as 
a unary relation, and a scalar is a singleton set.  

In Alloy, expressions are formed by relations combined with a variety of operators. 
The standard set operators are union (+), intersection (&), difference (-). Unary rela-
tional operators are transpose (~), transitive closure (^), and reflexive transitive  
closure (*), which have their standard interpretation. Binary relational operators are 
join (.), product (->), and update (++).  

Expression quantifiers turn an expression into a formula. The formula ’no e’ is 
true when e denotes a relation containing no tuples. Similarly, ’some e’, and ’one e’ 
are true when e has some, and exactly one tuple respectively. Formulas can also be 
made with relational comparison operators: subset (in), equality (=) and inequality 
(!=). So ’e1 in e2’ is true when every tuple in (the relation denoted by the expression) 
e1 is also a tuple of e2. Alloy provides the standard logical operators: conjunction 
(&&), disjunction (||), implication (⇒ ), bi-implication ( ⇔ ), and negation (!).  

A model of an Alloy formula is an assignment of relational variables to sets of tu-
ples built from a universe of atoms within a given scope. So Alloy Analyzer is a 
model finder for Alloy formula.  

The Alloy Analyzer uses a scope, i.e., a bound on the universe of discourse, to per-
form scope-bounded analysis: the analyzer translates the given Alloy formula into a 
propositional satisfiability (SAT) formula (w.r.t. the given scope) and uses off-the-
shelf SAT technology to solve the formula. 

3.2   Java to Relational Logic Translation 

A relational view of the program heap [15] allows translation of a Java program into an 
Alloy formula using three steps: (1) encode data, (2) encode control-flow, and (3) en-
code data-flow.  

Encoding data builds a representation for classes, types, and variables. Each class or 
type is represented as a set, domain, which represents the set of object of this class or 
values of this type. Local variables and arguments are encoded as singleton sets. A field 
of a class is encoded as a binary, functional relation that maps from the class to the type 
of the field. For example, to translate the program in Figure 2 (a), we define four do-
mains: List, Entry, integer, and boolean. Field header is a partial function from List to 
Entry, and field next is a partial function from Entry to Entry. Field value is a function 
from Entry to integer.  

Data-flow is encoded as relational operations on sets and relations. Within an expres-
sion in a Java statement, field deference is encoded as relational join, and an update to a 
field is encoded as relational override. For a branch statement, predicates on variables or 
expressions are encoded as corresponding formulas with relational expressions. 
Method calls are encoded as formulas that abstract behavior of the callee methods. 
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Given a program, encoding control-flow is based on computation graph. Each edge 
(vi→vj) in the computation graph is represented as a boolean variable Ei,j. True value 
of edge variable means the edge is taken. The control flow from one statement to its 
sequential statement another is viewed as relational implication. For example, code 
segment {A; B; C;} is translated to ’EA,B⇒ EB,C’. Control flow splits at a branch-
ing statement—the two branch edges are viewed as a relational disjunction. For each 
branch edge, a relational formula is generated according to the predicate. Only data 
that satisfied the relational formula can take this edge. In Figure 2 (a), control flow at 
vertex 3 is translated into ’(E2,3 ⇒ E3,4 || E3,5) and (E3,4 ⇒ e.value = key) and 
(E3,5⇒ !(e.value = key))’. If the control flow takes then branch E3,4, the constraint 
’(E3,4 ⇒ e.value = key)’ should be satisfied. An assume statement is translated into 
the formula for its predicate. For example, at vertex 10 of Figure 2 (a), the control-
flow is encoded as ’(E10,3 ⇒ no e)’. This constraint restricts that this edge is taken 
only when e is null.  

In our splitting algorithm, sub-graphs are constructed by removing branch-edges at 
selected branch statements. According to the translation scheme, a branch statement is 
equivalent to two assume statements with complementary predicates. So removing 
one branch can be implemented as transforming the branch statement into an assume 
statement. In Figure 2 (a), removing the then branch of vertex 3, branch statement 
’if(e.value == key)’ will be transformed to ’assume !(e.value == key)’.  Its 
relational logic translation is ’(E2,3⇒ E3,4) and (E3,5⇒ !(e.value = key))’. The seman-
tics of else branch is preserved after the transformation to an assume statement. 

With encoding of data-flow and control-flow, the conjunction of all generated for-
mulas is the formula for the code segment under analysis. A model to this code  
formula corresponds to a valid path of the code fragment. 

4   Algorithm 

The goal of our splitting algorithm is to divide the complexity of checking the pro-
gram while preserving its semantics (w.r.t. to the given scope). This paper presents a 
vertex-based splitting algorithm. Splitting a program into two sub-programs partitions 
paths in the program based on a chosen vertex: one sub-program has all paths that go 
through the vertex and the other sub-program has all paths that bypass that vertex. 
Our vertex-based path splitting guarantees the consistency between the original pro-
gram and sub-programs. For a heuristic measure of the complexity of checking, we 
propose to use the number of branches. Our strategy is selecting a vertex so that the 
number of branches in each of sub-programs is minimized.  

Our approach checks a given program p as follows. 

1. Translate p into p’ where p’ represents the computation graph [15] of p, i.e., 
the loops in p are unrolled and method calls in-lined to generate p; 

2. Represent p’ as a graph CG = (V, E) where V is a set of vertices such that 
each statement in p’ has a corresponding vertex in V, and E is a set of edges 
such that each control-flow edge in p’ has a corresponding edge in E. For 
each edge e = (u, v), u=e.from, and v = e.to;  

3. Apply the splitting heuristic to determine a likely optimal splitting vertex v; 
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4. Split CG into two sub-graphs CG1 and CG2; 
5. Recursively split CG1 and CG2 if needed; 
6. Check the set of sub-programs corresponding to the final set of sub-graphs. 

 Recall a computation graph has one Entry vertex and one Exit vertex for the program. 
Entry has no predecessor and Exit has no successor. A vertex v representing a branch-
statement has two successors: vertex v.then and vertex v.else. Vertices that do not 
represent branch-statements have only one successor, v.next. The computation graph 
of a program is a DAG (Directed Acyclic Graph). An execution path in the computa-
tion graph is a sequence of vertices from Entry to Exit through edges in E. 

 
Definition. Given a CG = (V, E) and a set of edges S ⊂ E,  

then-branch-predecessor(S) =  
{ u | u∈V, u is a branch-statement, at least one edge in S is reach-
able from u.then, but no edge in S is reachable from u.else} 

else-branch-predecessor(S) =  
{ u | u∈V, u is a branch, at least one edge in S is reachable from 
u.else, but no edge in S is reachable from u.then} 

Sub-CG(S) = (V’, E’) 
V’ = V, and 
E’= E – {e | e ∈ E, e = u→u.else if u is in then-branch-
predecessor(S), or e = u→u.then if u is in else-branch-
predecessor(S)} . 
 

Theorem 1. Given a computation graph CG=(V, E) and a set of edges S ⊂ E, an execu-
tion path p visits at least one edge in S if and only if p is a path in Sub-CG(S) = (V’, E’). 
 
Proof. Sub-CG(S) is a sub-graph of CG with fewer edges. An execution path in CG is 
still in Sub-CG(S) if and only if this path does not contain any edge in E - E’. 

⇒ Assume that there is a path p in CG that visits an edge in S but is not in the  
sub-graph. Suppose p visits an edge vi→vj that has been removed. According to the 
definition of the sub-graph, none of the edge in E is reachable from vi→vj, i.e., a con-
tradiction.  

⇐ Assume p is a path in CG that does not visit any edge in S. Let P = {q | q is a 
path of CG, q visits S}. Since S is not empty, P is not empty. For each path q in P, 
match p and q according to their vertex sequence. Let vi be the last vertex in p that 
matches a vertex in P. vi must be a branch vertex. Let edge vi→vj and edge vi→vj’ be 
the two branches from vi. Suppose edge vi→vj is in p. vi→vj cannot reach any edge in 
S. Since vi is the last vertex-match with paths in P, vi→vj’ can reach an edge in S. So 
vi→vj should be removed according to definition of then-branch-predecessor (S) or 
else-branch-predecessor (S). So any path that does not visit an edge in S will be re-
moved from sub-graph.                               ■                                                                                           

Since the computation graph of the program is a DAG after loop unrolling, we can 
linearly order the vertices using a topological sort. 

Given a computation graph CG, let order represent topological-sort(CG) such that 
order[Exit] =0; order[Entry] = n-1; and n is number of vertices in CG. 
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Definition. Let u be a vertex in CG. Define the set go-through-edge(u) = {e | e∈E, 
e.to = u }. 

 
Theorem 2. Given a vertex u in CG, a path visits u if and only if the path visits an 
edge in go-through-edge(u). 
 
Proof. Since CG is a directed graph, all paths visiting vertex u will go through an 
edge whose end point is u.                                                       ■ 

 
Definition. Given a vertex u in CG, bypass-edge(u) = {e | e∈E, order[e.from] > or-
der[u] and order[e.to] < order[u]}.  

 
Theorem 3. Given a vertex u, a path p bypasses u if and only if p visits an edge in 
bypass-edge(u). 
 

Proof. ⇒  Let path p: v0→ v1→v2→ …→vm be a path in CG, v0 = Entry and vm = 
Exit. According to the topological sort, order[v0] > order[v1] > order[v2] > … > or-
der[vm]. For vertex u, if u ≠ Entry and u ≠ Exit, then order[u] < order[Entry]  and 
order[u] >order[Exit]. Since u is not in p, there must be two vertices vi and vj in p such 
that order[vi] > order[u] and order[vj] <order[u].  By definition, edge vi→vj is in by-
pass-edge(u). 

⇐  Let path p: v0→ v1→v2→ …→vm be a path in CG, v0 = Entry and vm = Exit. 
Since p visits a path in bypass-edge(u) there exist an edge vi→vj such that order[vi] > 
order[u] and order[vj] <order[u].  According to the topological sort, order[vk] > or-
der[vi] > order[u] if k < i,  and  order[vk] < order[vj] < order[u] if k>j. So path p can 
not visit u.                                                                                                             ■ 

 
Theorem 4. Given a vertex u in CG, a path visits u if and only if the path is in           
Sub-CG (go-through-edge(u)). 
 
Proof. Follows from Theorem 2 and Theorem 1. Since paths that visit u are the paths 
that visit go-through-edge(u) and paths that visit go-through-edge(u) are the paths in 
Sub-CG(go-through-edge(u)), therefore paths that visit u are the paths in                                
Sub-CG(go-through-edge(u).                                                                                        ■ 

 
Theorem 5. Given a vertex u in CG, a path bypasses u if and only if the path is in       
Sub-CG(bypass-edge(u)). 
 
Proof. Follows from Theorem 3 and Theorem 1. Since paths that visit u are the paths 
that visit bypass-edge(u) and paths that visit bypass-edge(u) are the paths in Sub-
CG(bypass-edge(u)), therefore paths that visit u are the paths in Sub-CG 
(bypass-edge(u)).                                                                                                          ■ 

 

Algorithm 
Figure 3 shows our splitting algorithm. The method branches() returns the branch 
vertices of a given computation graph. If one edge of a branch vertex has been re-
moved in a sub-graph, this branch vertex will not be counted as a branch in that  
sub-graph.  
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To illustrate, consider the example form Section 2.  The split-complexity of v11 can 
be calculated in the following steps: 

1) For go-through sub-graph,  
go-through-edge(v11) = { v2→v11, v6→v11, v10→v11}; 
branches(Sub-CG(go-through-edge(v11)))= {v2, v6}; 

2) For bypass sub-graph,  
bypass-edge(v11) = { v3→v4, v7→v8)}; 
branches(Sub-CG(bypass-edge(v11)))= {v3}; 

3) For split-complexity, 
Split-complexity(v11) = max {|{ v2,v6}|, |{v3}|} = 2. 

According to the definition of Sub-CG, some branch edges will be removed to con-
struct a sub-graph. Given a branch, edge removing is implemented by transforming 
the branch statement into an assume statement. The semantic consistency of this 
transformation is discussed in the background section. 

5   Experiments 

To evaluate our approach, we compare performance of our sub-program-based incre-
mental analysis and the traditional entire program analysis. We select the Forge  
tool-set [6] as the baseline, since it is the most recent implementation of the traditional 
approach from the Alloy group at MIT. We piggyback on Forge to implement our 
incremental approach.  

Experimental evaluation is based on checking four procedures in Java library 
classes: contains() of LinkedList (a singly-linked acyclic list), contains() of 
BinarySearchTree, add() of BinarySearchTree, and topologicalsort()  
of Graph (directed acyclic graph).  

In relational logic based bounded verification, the bound specifies the numbers of 
loop unrolling, scope, and bit-width—the number of bits used to represent an integer 
value. While translating integer into propositional logic, we set the bit-width to 4 in 
all the four experiments. Scope defines the maximum number of nodes in a list, tree, 
or graph. Unrolling specifies the number of unrollings for a loop body. For con-
tains() of LinkedList and contains() of BinarySearchTree, we check them 

 
Fig. 3. Program splitting algorithm 
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with fixed scope and varied unrolling. For add() of BinarySearchTree, and to-
pologicalsort() of Graph, we check them with fixed unrolling and varied scope.  

For each bound, we run our incremental analysis and the traditional entire program 
analysis to check a procedure against its pre-condition and post-condition, which 
represent the usual correctness properties including structural invariants. In incre-
mental analysis, we did two round splitting and generated four sub-programs. While 
checking each sub-program, we record the checking time, number of branches, vari-
ables and clauses of CNF formula. The total time is the sum of the checking time of 
all sub-programs. For the traditional analysis, we similarly record the checking time, 
number of branches, variables and clauses of CNF formula. The speedup is the ratio 
of the checking time of the traditional analysis to the total checking time of our in-
cremental analysis. 

We ran experiments on a Dual-Core 1.8GHz AMD Opteron processor with 2 GB 
RAM. We selected MiniSAT as the SAT solver. We run each experiment three times 
and use the average as the final result. The results are showed in the tables that  
follow.  

Table 1 and Table 2 show the performance comparison for different loop unroll-
ings. Table 3 and Table 4 show the comparison for different scopes. Results from the 
four experiments showed that our splitting algorithm gave at least a 2.71X perform-
ance improvement over the traditional approach, whereas the maximum speed-up was 
36.73X.  

The results also show that our splitting algorithm scales better. As unrolling in-
creasing from 5 to 8, speedup of checking contains() of LinkedList increases 
from 3.99X to 36.73X. As scope increasing from 4 to 7, speedup of checking add() of 
BinarySearchTree increases from 4.78X to 12.6X.   

Table 1. LinkedList.contains() (bit-width = 4, scope = 8) 

unrolling  sub0 sub1 sub2 sub3 total entire speedup
time (sec.) 2 1 82 1 86 343 3.99X
# branch 1 2 2 2 10
# variable 4655 4149 4731 3969 4740

5 

# clauses 10081 8353 10167 7563 14271
time(sec.) 8 1 173 7 189 653 3.46X
# branch 2 2 2 3 12
# variable 4911 4149 4985 4226 4996

6 

# clauses 10945 8353 11031 8436 15213
time(sec.) 66 1 428 3 498 4541 9.12X
# branch 2 3 3 3 14
# variable 5165 4406 5242 4226 5252

7 

# clauses 11809 9218 11904 8436 16155
time(sec.) 179 1 359 44 583 21414 36.73X
# branch 3 3 3 4 16
# variable 5422 4406 5496 4484 5508

8 

# clauses 12674 9218 12768 9310 17097
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Table 2. BinarySearchTree.contains() (bit-width = 4, scope = 7) 

unrolling sub0 sub1 sub2 sub3 total entire speedup

time(sec.) 564 552 390 3881894 6468 3.42X

# branch 4 4 3 4 12

# variable 7776 7369 6961 6724 7808

4 

# clauses 20734191851763516726 21193

time(sec.) 1 2427 1745 301447415015 3.36X

# branch 7 7 5 4 15

# variable 8151 8151 7376 6724 8224

5 

# clauses 22170221781930016726 22859

time(sec.) 698 1879 546 936405918982 4.68X

# branch 7 5 5 6 18

# variable 8599 8192 7539 6976 8640

6 

# clauses 23941224001982217861 24525

time(sec.) 1 2535 2834 686605628435 4.71X

# branch 11 11 6 7 21

# variable 8975 8975 7784 7140 9056

7 

# clauses 25386253942085018392 26191

time(sec.) 794 1085 1289 623379118703 4.94X

# branch 13 13 7 7 24

# variable 9384 9384 7948 7140 9472

8 

# clauses 26945269532138118392 27857

 
The relative lower speedup in contains() of BinarySearchTree and to-

pologicalsort() of Graph show a limitation of our approach. Compared with  
traditional approach which checks correctness against specifications only once, our 
divide-and-solve approach requires multiple correctness checking, one checking for 
one sub-program. In case the complexity of specification formula is much heavier 
than code formula, the benefit from dividing the code formula will be reduced largely 
by the overhead from multiple checking specification formulas. However, even with 
specification of complex data structure invariants, our approach still shows 5X 
speedup in contains() of BinarySearchTree with 8 unrollings and 7 nodes.  

The results show that our splitting heuristic is effective at evenly splitting the 
branches. Moreover, the smaller number of variables and clauses for the incremental 
approach shows the workload to SAT has been effectively divided by splitting entire 
program into sub-programs using our approach. 
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Table 3. BinarySearchTree.add() (unrolling = 3, bit-width = 4) 

scope  sub0 sub1 sub2 sub3 total entire speedup

time(sec.) 2 3 1 3 9 43 4.78X

# branch 5 6 6 7 11

# variable 4878 5092 4692 5083 9686

4 

# clauses 16132 17393 15079 17397 36929

time(sec.) 13 15 3 9 40 249 6.23X

# branch 5 6 6 7 11

# variable 6705 7038 6446 6653 12837

5 

# clauses 22457 24308 20990 22973 49623

time(sec.) 140 316 30 19 505 4339 8.59X

# branch 5 6 6 7 11

# variable 8689 9161 8349 8340 16335

6 

# clauses 29414 31943 27487 28965 63809

time(sec.) 1675 6409 863 76 9023 109730 12.16X

# branch 5 6 6 7 11

# variable 11030 11661 10601 10247 20380

7 

# clauses 37703 40998 35270 35738 80187

Table 4. Graph.TopologicalSort () (unrolling = 7, bit-width = 4) 

 
scope  sub0 sub1 sub2 sub3 total entire speedup 

time(sec.) 183 152 118 1 454 1436 3.16X 

# branch 1 1 1 1  7 

# variable 269908 197682 125456 53230  269962 

7 

# clauses 1073479 785037 496595 208153  1084273 

 

time(sec.) 210 199 114 1 524 1422 2.71X 

# branch 1 1 1 1  7 

# variable 299104 219070 139036 59002  299158 

8 

# clauses 1197974 875832 553690 231548  1210304 

 

time(sec.) 214 278 157 1 650 2113 3.25X 

# branch 1 1 1 1  7 

9 
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Table 4. (continued) 
 

# variable 357978 262236 166494 70752  358032 

# clauses 1457783 1065867 673951 282035  1471649 

 

time(sec.) 357 255 187 2 801 2844 3.55X 

# branch 1 1 1 1  7 

# variable 402696 295010 187324 79638  402750 

10 

# clauses 1659106 1212870 766634 320398  1674508 

 

time(sec.) 611 341 263 2 1217 3694 3.04X 

# branch 1 1 1 1  7 

# variable 439783 322189 204595 87001  439837 

11 

# clauses 1829579 1337181 844783 352385  1846517 

 

time(sec.) 558 519 247 2 1326 4372 3.31X 

# branch 1 1 1 1  7 

# variable 476935 349417 221899 94381  476989 

12 

# clauses 2003834 1464198 924562 384926  2022308 

 

 

6   Related Work 

Our work is based on previous research [15] that models a heap-manipulating proce-
dure using Alloy and finds counterexamples using SAT. Jackson et al. [15] proposed 
an approach to model complex data structures with relations and encode control flow, 
data flow, and frame conditions into relational formulas. Vaziri et al. [29] optimized 
the translation to boolean formulas by using a special encoding of functional relations. 
Dennis et al. [5] provided explicit facilities to specify imperative code with first-order 
relational logic and used an optimized relational model finder [28] as the backend 
constraint solver. Our algorithm can reduce the workload to the backend constraint 
solver by splitting the computation graph that underlies all these prior approaches and 
dividing the procedure into smaller sub-programs. 

DynAlloy [8] is a promising approach that builds on Alloy to directly support se-
quencing of operations. We believe our incremental approach can optimize DynAl-
loy’s solving too. 

Bounded exhaustive checking, e.g., using TestEra [16] or Korat [1] can check pro-
grams that manipulate complex data structures.  Testing, however, has a basic limita-
tion that running a program against one input only checks the behavior for that input. 
In contrast, translating a code segment to a formula that is solved allows checking all 
(bounded) paths in that segment against all (bounded) inputs. 

The recent advances in constraint solving technology have led to a rebirth of sym-
bolic execution [17, 18]. Guiding symbolic execution using concrete executions is 
rapidly gaining popularity as a means of scaling it up in several recent frameworks, 
most notably DART [10], CUTE [26], and EXE [2]. While DART and EXE focus on 



770 D. Shao, S. Khurshid, and D.E. Perry 

properties of primitives and arrays to check for security holes (e.g., buffer overflows), 
CUTE has explored the use of white-box testing using preconditions, similar to Korat 
[1]. Symbolic/concrete execution can be viewed as an extreme case of our approach 
where each sub-program represents exactly one path in the original program.  As the 
number of paths increases, the number of calls to the constraint solver increases in 
symbolic execution.  Our approach is motivated by our quest to find a sweet spot 
between checking all paths at once (traditional approach) and each path one-by-one 
(symbolic/concrete execution). 

Model checkers have traditionally focused on properties of control [12, 22].  Re-
cent advances in software model checking [9, 30] have allowed checking properties of 
data.  However, software model checkers typically require explicit checking of each 
execution path of the program under test. 

Slicing techniques [27] have been used to reduce workload of bounded verifica-
tion. Dolby et al. [6] and Saturn [31] perform slicing at the logic representation level. 
Millett et al. [23] slice Promela programs for SPIN model checker [12]. Visser et al. 
[30] and Corbett et al. [2] prune the parts that are not related to temporal constraints 
and slice at the source code level. Since slicing is based on constraints, the effective-
ness depends on the properties to be checked. Statements that do not manipulate any 
relations in properties will not be translated into formula for checking. If constraints 
are so complex that all the relations show up, no statements will be pruned. Our pro-
gram-splitting algorithm can still reduce workload to backend constraint solvers  
because our path partitioning algorithm is independent of constraints to be checked. 

Sound static analyses, such as traditional shape analysis [25, 19] and recent vari-
ants [20], provide correctness guarantees for all inputs and all execution paths  
irrespective of a bound.  However, they typically require additional user input in the 
form of additional predicates or loop invariants, which are not required for scope-
bounded checking, which provides an under-approximation of the program under test. 

7   Conclusions 

Scalability is a key issue in scope-bounded checking. Traditional approaches translate 
the bounded code segment of the entire program into one input formula for the under-
lying solver, which solves the complete formula in one execution. For non-trivial 
programs, the formulas are complex and represent a heavy workload that can choke 
the solvers.  

We propose a divide-and-solve approach, where smaller segments of bounded code 
are translated and analyzed. Given a vertex in the control-flow graph, we split the 
computation graph of the program into two sub-graphs: go-through sub-graph and 
bypass sub-graph. The go-through sub-graph has all the paths that go through the 
vertex and the bypass sub-graph has all the paths that bypass the vertex. Our vertex-
based path partitioning can guarantee the semantic consistency between the original 
program and the sub-programs. We propose to use the number of branch statements 
as a heuristic to compute an analysis complexity metric of a program. To effectively 
divide the analysis complexity of a program, the heuristic selects a vertex so that the 
number of branch statements in each of sub-programs is minimized.  

We evaluated our divide-and-solve approach by comparison with the traditional 
approach by checking four Java methods against pre-conditions and post-conditions 
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defined in Alloy. The experimental results show that our approach provides signifi-
cant speed-ups over the traditional approach. 

The results also show other potential benefits of our program splitting algorithm. 
Because all sub-graphs are independent, they can be checked in parallel. Since our 
program splitting algorithm can effectively divide the workload, parallel checking the 
sub-programs would likely introduce significant speedups. Incremental compilation 
and solving are likely to provide further optimizations. 

In ongoing work, we are exploring novel strategies for dividing the workload.  We 
aim to leverage concepts from traditional dynamic and static analysis.  For example, 
notions of code coverage in software testing lend to division strategies. 
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Abstract. Decentralized Information Flow Control (DIFC) systems en-
able programmers to express a desired DIFC policy, and to have the
policy enforced via a reference monitor that restricts interactions be-
tween system objects, such as processes and files. Past research on DIFC
systems focused on the reference-monitor implementation, and assumed
that the desired DIFC policy is correctly specified. The focus of this pa-
per is an automatic technique to verify that an application, plus its calls
to DIFC primitives, does indeed correctly implement a desired policy.
We present an abstraction that allows a model checker to reason soundly
about DIFC programs that manipulate potentially unbounded sets of
processes, principals, and communication channels. We implemented our
approach and evaluated it on a set of real-world programs.

1 Introduction

Decentralized Information Flow Control (DIFC) systems [1,2,3,4] allow applica-
tion programmers to define their own DIFC policies, and then to have the policy
enforced in the context of the entire operating system. To achieve this goal, DIFC
systems maintain a mapping from OS objects (processes, files, etc.) to labels—
sets of atomic elements called tags. Each process in the program creates tags,
and gives other processes the ability to control the distribution of the process’s
data by collecting and discarding tags. The DIFC runtime system monitors all
inter-process communication, deciding whether or not a requested data transfer
is allowed based on the labels of system objects.

Example 1. Consider the diagram in Fig. 1 of a web server that handles sensitive
information. A Handler process receives incoming HTTP requests, and spawns
a new Worker process to service each request. The Worker code that services
the request may not be available for static analysis, or may be untrusted. The
programmer may wish to enforce a non-interference policy requiring that infor-
mation pertaining to one request — and thus localized to one Worker process
— should never flow to a different Worker process.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 773–789, 2009.
c© 2009 Carnegie Mellon University
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Fig. 1. An inter-process diagram of a typical web server

DIFC mechanisms are able to block any communication between OS objects.
Thus, in addition to ensuring that the use of DIFC mechanisms implements a
desired security policy, the programmer must also ensure that retrofitting an
existing system with DIFC primitives does not negatively impact the system’s
functionality. In Ex. 1, the desired functionality is that the Handler must be able
to communicate with each Worker at all times. An overly restrictive implemen-
tation could disallow such behaviors. Ex. 1 illustrates a tension between security
and functionality: a näıve system that focuses solely on functionality allows in-
formation to flow between all entities; conversely, the leakage of information can
be prevented in a way that cripples functionality.

Our goal is to develop an automatic method to ensure that security policies
and application functionality are simultaneously satisfied. Our approach to this
problem is to leverage progress in model checkers [5,6] that check concurrent
programs against temporal logic properties (e.g., linear temporal logic). How-
ever, the translation from arbitrary, multiprocess systems to systems that can
be reasoned about by model checkers poses key challenges due to potential un-
boundedness along multiple dimensions. In particular, the number of processes
spawned, communication channels created, and label values used by the refer-
ence monitor are unbounded. However, current model checkers verify properties
of models that use bounded sets of these entities. To resolve this issue, we pro-
pose a method of abstraction that generates a model that is a sound, and in
practice precise, approximation of the original system in the sense that if a secu-
rity or functionality property holds for the model, then the property holds for the
original program. Our abstraction applies the technique of random isolation [6]
to reason precisely about unbounded sets of similar program objects.

The contributions of this work are as follows:

1. We present a formulation of DIFC program execution in terms of transfor-
mations of logical structures. This formulation allows a natural method for
abstracting DIFC programs to a bounded set of structures. It also permits
DIFC properties of programs to be specified as formulas in first-order logic.
To our knowledge, this is the first work on specifying a formal language for
such policies.
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2. We present a formulation of the principle of random isolation [6] in terms
of logical structures. We then demonstrate that random isolation can be
applied to allow DIFC properties to be checked more precisely.

3. We implemented a tool that simulates the abstraction of logical structures in
C source code and then checks the abstraction using a predicate-abstraction-
based model checker.

4. We applied the tool to check properties of several real-world programs. We
automatically extracted models of modules of Apache [7], FlumeWiki [3],
ClamAV [8], and OpenVPN [9] instrumented with our own label-manipula-
tion code. Verification took a few minutes to less than 1.25 hours.

While there has been prior work [10,11] on the application of formal methods
for checking properties of actual DIFC systems, our work is unique in providing
a method for checking that an application satisfies a DIFC correctness property
under the rules of a given DIFC system. Our techniques, together with the
recent verification of the Flume reference-monitor implementation [11], provides
the first system able to (i) verify that the program adheres to a specified DIFC
policy, and (ii) verify that the policy is enforced by the DIFC implementation.

The rest of the paper is organized as follows: §2 describes Flume, an example
DIFC system for which we check applications. §3 gives an informal overview of
our techniques. §4 gives the technical description. §5 describes our experimental
evaluation. §6 discusses related work.

2 A Flume Primer

Our formulation is based most closely on the Flume [3] DIFC system; however,
our abstraction techniques should work with little modification for most DIFC
systems. We briefly discuss the Flume datatypes and API functions provided by
Flume, and direct the reader to [3] for a complete description.

– Tags & Labels. A tag is an atomic element created by the monitor at the
request of a process. A label is a set of tags associated with an OS object.

– Capabilities. A positive capability t+ allows a process to add tag t to the
label of an OS object. A negative capability t− allows a process to remove t.

– Channels. Processes are not allowed to create their own file descriptors. In-
stead, a process asks Flume for a new channel, and receives back a pair
of endpoints. Endpoints may be passed to other processes, but may be
claimed by at most one process, after which they are used like ordinary file
descriptors.

For each process, Flume maintains a secrecy label, an integrity label, and a ca-
pability set. In this work, we only consider secrecy labels, and leave the modeling
of integrity labels as a direction for future work. The monitor forbids a process p
with label lp to send data over endpoint e with label le unless lp ⊆ le. Likewise,
the monitor forbids a process p′ to receive data from endpoint e′ unless le′ ⊆ lp′ .
A Flume process may create another process by invoking the spawn command.
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void Handler() {

1. Label lab;

2. int data;

3. while (*) {

4. Request r = get_next_http_request();

5. data = get_data(r);

7. lab = create_tag();

8. Endpoint e0, e1;

9. create_channel(&e0, &e1);

10. spawn("/usr/local/bin/Worker", {e1}, lab, {}, r);

11. data = recv(claim_endpoint(e0)); }}

Fig. 2. Flume pseudocode for a server that enforces the same-origin policy

spawn takes as input (i) the path to a binary to execute, (ii) a set of endpoints
that the new process may access from the beginning of execution, (iii) an initial
label, (iv) and an initial capability set, which must be a subset of that of the
spawning process. An example usage of spawn is given in Fig. 2.

Example 2. The pseudocode in Fig. 2 enforces non-interference between the
Worker processes from Fig. 1. The Handler perpetually polls for a new HTTP
request, and upon receiving one, it spawns a new Worker process. To do so, it
(i) has Flume create a new tag, which it stores as a singleton label value in
label-variable lab (line 7), (ii) has Flume create a new channel (line 9), and (iii)
then launches the Worker process (line 10), setting its initial secrecy label to
lab—not giving it the capability to add or remove the tag in lab (indicated by
the {} argument)—and passing it one end of the channel to communicate with
the Handler. Because the Handler does not give permission for other processes
to add the tag in lab, no process other than the Handler or the new Worker
can read information that flows from the new Worker.

3 Overview

The architecture of our system is depicted in Fig. 3. The analyzer takes as input
a DIFC program and a DIFC policy. First, the program is (automatically) ex-
tended with instrumentation code that implements random-isolation semantics
(§3.3). Next, canonical abstraction (§3.2) is performed on the rewritten program
to generate a finite-data model. Finally, the model and the DIFC policy are
given as input to the concurrent-software model checker Copper, which either
verifies that the program adheres to the DIFC policy or produces a (potentially
spurious) execution trace as a counterexample. We now illustrate each of these
steps by means of examples.
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Fig. 3. System architecture

3.1 Concrete Semantics

Program states are represented using first-order logical structures, which con-
sist of a collection of individuals, together with an interpretation for a finite
vocabulary of finite-arity relation symbols. An interpretation is a truth-value as-
signment for each relation symbol and appropriate-arity tuple of individuals. For
DIFC systems, these relations encode information such as:

1. “Label variable x does (or does not) contain tag t in its label.”
2. “Process p has (or has not) sent information to process q.”

Tab. 1 depicts structures as they are transformed by program statements. The
convention used is that every boxed node represents a tag individual, and every
circled node represents a label individual. The name of an individual may appear
outside of the circle. An arrow from an identifier to a circle individual denotes
that a particular unary relation holds for the individual, and an arrow between
nodes denotes that a binary relation holds for the individuals. A dotted arrow
indicates that it is unknown whether a given tuple of a relation does or does not
hold, and the relationship is said to be indefinite. Otherwise, the relationship is
said to be definite (i.e., definitely holds or definitely does not hold). A doubled
box indicates a summary individual, which represents one or more concrete
individuals in abstracted structures. The value of the unary relation iso is written
inside the individuals in the diagrams for random-isolation semantics. A program
statement transforms one structure to another, possibly by adding individuals
to the structure or altering the values of relations. State properties are specified
as logical formulas.

Example 3. The top row, left column of Tab. 1 gives an example of how one
concrete state is transformed into the next state by execution of the statement
lab = create tag(). Suppose that the statement has been executed twice pre-
viously, introducing tag individuals t and u, where u is a member of the label
m. This containment is encoded by a relation RTag, denoted in the figure by an
arrow from m to t. The next execution of the statement creates a new tag v and
relates the label m to v while ending the relationship between m and u.

3.2 Canonical Abstraction

Unbounded sets of concrete structures can be abstracted into bounded sets of
abstract structures using canonical abstraction with respect to some set of unary
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Table 1. Illustration of the standard and random-isolation semantics of the statement
lab := create tag() and their corresponding abstract semantics

Concrete Semantics Abstract Semantics

Standard

Random Isolation

relations A [12]: each concrete structure S is mapped to an abstract structure
S# that has exactly one individual for each combination of unary relations in A.
If multiple concrete individuals that map to the same canonical individual yield
different values in some relation R �∈ A, then the abstract structure records that
the abstract individual may or may not be in the relation R.

Example 4. Consider the top row of Tab. 1. Assume that every tag created
belongs to the same relations in A. Thus all tag individuals will be mapped
under canonical abstraction into a single abstract summary tag individual, sum.
This can introduce imprecision. Suppose that in a concrete structure, RTag(m,u)
holds before the latest execution of create tag, at which point it no longer
holds and RTag(m, v) holds. In the abstraction of this structure, tags t, u, and
v are all represented by sum. Thus, after the second execution of the statement
create tag, sum represents all of label m’s tags, but also represents tags that
are not elements of m. This is reflected in Tab. 1 by a dotted arrow from the
label m to the summary tag individual.

3.3 Random Isolation

Ex. 4 demonstrates that abstraction over the unary relations of a program state is
insufficiently precise to prove interesting DIFC properties. We thus use random
isolation [6] to reason about an individual from a set, and to generalize the
properties proved about the individual object to a proof about all individuals
in the set. Random isolation can be formulated as introducing a special unary
relation iso in structures. When freshly allocated individuals are created and
relations over individuals are updated, the invariant is maintained that iso holds
for at most one individual. Furthermore, if iso ever holds for an individual u, then
it must continue to hold for u for the remainder of the program’s execution. The
relation iso can be used to increase the precision of reasoning about an individual
in an abstract structure.
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Example 5. Consider the state transformation given in the bottom row, left col-
umn of Tab. 1. When the program is executed under random-isolation semantics,
the call to create tag non-deterministically chooses whether iso holds for the
newly created tag. Tab. 1 illustrates the case in which the present call returns
a tag for which iso does hold. Now consider the bottom row, right column of
Tab. 1, in which the relations used to abstract program states include iso. There
is now a definite relationship between the label and the most recently allocated
tag. This definite relationship may allow for stronger claims to be made about
a structure when properties of the structure are checked.

4 Formal Definition of Abstraction

4.1 Inputs

Subject Programs. To simplify the discussion, we assume a simple imperative
language LLab in which programs are only able to manipulate DIFC labels, send
and receive data over channels, and spawn new processes. The full grammar for
such a language is given in [13]. The semantics of a program in LLab can be
expressed by encoding program states as logical structures with interpretations
in 2-valued logic. A 2-valued logical structure S is a pair 〈US , ι〉, accompanied
by a vocabulary of relations P and constants C. The set US is the universe of
individuals of S, and for p ∈ P of arity k and every tuple (u1, u2, . . . , uk) ∈
(US)k, the interpretation ι maps p(u1, u2, . . . , uk) to a truth value: 0 or 1. The
interpretation ι also maps each constant in C to an individual.

Let A ⊆ P be the set of unary abstraction relations. For a 2-valued structure
S, S′ is the canonical abstraction of S with respect to A if S′ is a 3-valued
structure in which each individual in the universe of S′ corresponds to a valuation
of the relations in A. Each element in S then maps under an embedding function
α to the element that represents its evaluation under the relations in A. By
construction, for α(u) ∈ US′

and R ∈ A, it is the case that R(α(u)) ∈ {0, 1}.
However, it may be the case that for some individual u ∈ US′

, there exist u1, u2 ∈
α−1(u) and a relation p ∈ P such that p(. . . , u1, . . .) = 0 and p(. . . , u2, . . .) = 1.
It is then the case that p(. . . , u, . . .) = 1/2 where 1/2 is a third truth value
that indicates the absence of information, or uncertainty about the truth of
a formula. The truth values are partially ordered by the precision ordering �
defined as 0 � 1/2 and 1 � 1/2. Values 0 and 1 are called definite values; 1/2
is called an indefinite value. If ϕ is a closed first-order logical formula, then let
�ϕ�S

2 denote the 2-valued truth value of ϕ for a 2-valued structure S, and let
�ϕ�S′

3 denote its 3-valued truth value for a 3-valued structure S′. For a more
complete discussion of the semantics of 3-valued logic, see [12].

By the Embedding Theorem of Sagiv et al. [12], if S is a 2-valued structure, S′

is the canonical abstraction of S with embedding function α, Z is an assignment
that has a binding for every free variable in ϕ, and �ϕ�S′

3 (Z) �= 1/2, then it must
be the case that �ϕ�S

2 (Z) = �ϕ�S′
3 (α ◦Z). In other words, any property that has

a definite value in S′ must have the same definite value in all S that abstract
to S′.
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In the context of label programs, individuals correspond to process identifiers,
per-process variables, tags, channels, and endpoints. Relations encode the state
of the program at a particular program point. The constants represent informa-
tion about the currently executing program statement. Let US = P∪L∪T∪C∪E,
where P is the set of process identifiers, M is the set of labels, T is the set of
tags created during execution, C is the set of channels created during execution,
and E is the set of endpoints created during execution.

We now consider a fragment of the relations and constants used in modeling.
The complete sets of both the relations and constants are given in [13]:

– {isproc(u), islabel(u), istag(u), ischannel(u), isendp(u)} denote membership in
each of the respective sets. These are the “sort” relations, denoted by Sorts.
Each individual has exactly one sort.

– Rx(u) is a unary relation that is true iff the label or endpoint u corresponds
to program variable x.

– RP (u) is a unary relation that is true iff the process identified by u began
execution at program point P .

– RTag(u, t) is a binary relation that is true iff u is a label and t is a tag in
the label of u.

– RChan(e, c) is a binary relation that is true iff e is an endpoint of channel c.
– ROwns(p, u) is a binary relation that is true iff p is a process id and u is a

label or endpoint that belongs to a variable local to p.
– RLabel(u1, u2) is a binary relation that is true iff u1 is a process identifier or

an endpoint and u2 is the label of u1.
– For every set of entry points G, there is a binary relation RFlow:G(u1, u2) that

is true iff u1 and u2 are process ids and there has been a flow of information
from u1 to u2 only through processes whose entry points are in G.

– RBlocked(p1, p2), a binary relation that is true iff p1 and p2 are process ids
and there has been a flow of information from p1 to p2 that was blocked.

We consider the fragment of the vocabulary of constants C = {curp, curlab, cur+,
cur−, newt}. These denote the id, label, positive capability, and negative capa-
bility of the process that is to execute the next statement, along with the newest
tag allocated. For a program with a process p designated as the first process to
execute starting at program point P , the initial state of the program is the log-
ical structure: 〈{pid, plab, p+, p−}, ι〉 where ι is defined such that each individual
is in its sort relation, pid is related to its entry point P , pid is related to its label
and capabilities, and the constants that denote the current process, its label,
and its capabilities are mapped to pid, plab, and p+, p− respectively.

To execute, the program non-deterministically picks a process, say qid, and up-
dates ι to map curid, curlab, cur+, and cur− to the id, label, and capabilities of qid.
The programthen executes the next statement of process qid. The statement trans-
forms the relations over program state as described by the action schemas in [13].
We provide a few of the more interesting schemas in Fig. 4 as examples. For clarity
in presenting the action schemas, we use the meta-syntax if ϕ0 then ϕ1 else ϕ2 to
represent the formula (ϕ0 → ϕ1)∧(¬ϕ0 → ϕ2).Additionally,we define subset(x, y)
to be true iff the label x is a subset of the label y:
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subset(x, y) ≡ ∀t : RTag(x, t)→ RTag(y, t) (1)

Along with transforming relations, some program statements have the additional
effect of expanding the universe of individuals of the structure. In particular:

– create channel adds new endpoint individuals ue0, ue1 and a new channel
individual uc to the universe. It redefines the interpretation to add each of
these individuals to the appropriate sort relations.

– create tag adds a new tag individual ut and similarly defines the interpre-
tation to add this tag to its sort relation.

– spawn adds a new process id pid and new labels plab, p+, p− that represent
the label, positive capability, and negative capability of the process, respec-
tively. It redefines the interpretation to add each of these individuals to their
respective sorts.

Fig. 4 defines formally the action schema for the following two actions:

– send(e); attempts to send data from the current process to the channel
that has e as an endpoint. The action potentially updates both the set of
all flow-history relations and the blocked-flow relation. To update a flow-
history relation RFlow:G(u1, u2), the action checks if u1 represents the id of
the current process. If so, it takes f , the endpoint in u1 to which the variable
e maps, and checks if f is an endpoint of the channel u2. If so, it checks if
the label of u1 is a subset of that of the endpoint of f and if so, adds (u1, u2)
to the flow-history relation. Otherwise, the relation is unchanged.
To update relation RBlocked(p1, p2), let f be the endpoint that belongs to
u1 and mapped by variable e. If f is an endpoint of a channel for which the
other endpoint is owned by p2, and the label of p1 is not a subset of the label
of f , then RBlocked(p1, p2) is updated. Otherwise, the relation is unchanged.

– l := create tag(); creates a new tag and stores it in the variable l. This
updates the relation RTag. To update the value of the entry RTag(u, t), the
action checks if u represents a label belonging to the current process and if
the variable l maps to u. If so, then RTag(u, t) holds in the post-state if and
only if t is the new tag. Otherwise, the relation RTag is unchanged.

Specifications. DIFC specifications can be stated as formulas in first-order
logic. The following specifications are suitable for describing desired DIFC prop-
erties for programs written for DIFC systems.

– NoFlowHistory(P,Q,D) = ∀p, q : (RP (p)∧RQ(q)∧p �= q)→ ¬RFlow:(G−{D})
(p, q). For program points P,Q,D, this formula states that no process that
begins execution at P should ever leak information to a different process
that begins execution at Q unless it goes through a process in D. Intuitively,
this can be viewed as a security property.
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Statement Update Formula

send(e);

R′
F low:G(u1, u2) = isproc(u1) ∧ ischan(u2) ∧ (u1 = curid

∧(∃f, m : Re(f) ∧ROwns(u1, f)
∧RChan(f, u2) ∧RLabel(f, m)
∧ (∃s : RF low:G(s, u1))
∧ subset(curlab, m))) ∨ RF low:G(u1, u2)

R′
Blocked(p1, p2) = isproc(p1) ∧ isproc(p2) ∧ (u1 = curid

∧(∃c, f, g, m : ROwns(f) ∧ Re(f)
∧RChan(f, c) ∧ RChan(g, c)
∧ROwns(p2, g) ∧ RLabel(f, m)
∧¬subset(curlab, m)))
∨RBlocked(p1, p2)

l := create tag();

R′
Tag(u, t) = islabel(u) ∧ istag(t)

∧ if ROwns(curid, u) ∧ Rl(u)
then t = newt else RTag(u, t)

Fig. 4. Example action schemas for statements in LLab. Post-state relations are denoted
with primed variables. Each post-state tuple of a relation R is expressed in terms of
values of pre-state tuples. Post-state relations that are the same as their pre-state
counterparts are not shown above.

– DefiniteSingleStepFlow(P,Q) = ∀p, q : (RP (p) ∧ RQ(q)) → ¬RBlocked(p, q).
For program points P and Q, this formula states that whenever a process
that begins execution in P sends data to a process that begins execution
in Q, then the information should not be blocked. Intuitively, this can be
viewed as a functionality property.

Abstraction. The abstract semantics of a program in LLab can now be defined
using 3-valued structures. Let P be a program in LLab, with a set of program
variables V and a set of program points L. To abstract the set of all concrete
states of P , we let the set of abstraction relations A be A = Sorts ∪ {Rx|x ∈
V} ∪ {RP |P ∈ L}.

By the Embedding Theorem [12], a sound abstract semantics is obtained by
using exactly the same action schemas that define the concrete semantics, but
interpreting them in 3-valued logic to obtain transformers of 3-valued structures.

4.2 Checking Properties Using Random Isolation

A simple example suffices to show that the canonical abstraction of a structure
S based on the set of relations A is insufficiently precise to establish interesting
DIFC properties of programs.

Example 6. Consider again the server illustrated in Fig. 1. In particular, consider
a concrete state of the program with structure S in which n Worker processes
have been spawned, each with a unique tag tk for process k. In this setting, when
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a Worker with label ui attempts to send data to a different Worker that can read
data over a channel with an endpoint uj where i �= j, then subset(ui, uj) = 0.
Thus, no information can leak from one Worker to another. However, an analysis
of the abstract states determines soundly, but imprecisely, that such a program
might not uphold the specification NoFlowHistory(Worker,Worker, ∅). Let S′ be
the canonical abstraction of S based on A. Under this abstraction, all tags in S
are merged into a single abstract tag individual t in S′. Thus, for any process p,
RTag(p, t) = 1/2, and subset yields 1/2 when comparing the labels of any process
and any endpoint. Thus, if a Worker attempts to send data over a channel used
by another Worker, the analysis determines that the send might be successful
and thus that data may be leaked between separate Worker processes.

Intuitively, the shortcoming in Ex. 6 arises because the abstraction collapses
information about the tags of all processes into a single abstract individual.
However, random isolation can prove a property for one tag individual t non-
deterministically distinguished from the other tags, and then soundly infer that
the property is true of all tags individuals. We first formalize this notion by
stating and proving the principle of random isolation in terms of 3-valued logic.
We then examine how the principle can be applied to DIFC program properties.
The proof requires the following lemma:

Lemma 1. Let ϕ[x] be a formula that does not contain the relation iso, and in
which x occurs free. Let S be a 2-valued structure. For u ∈ US, let ρu map S
to a structure that is identical to S except that it contains a unary relation iso
that holds only for element u. Let α perform canonical abstraction over the set
of unary relations A∪ {iso}. Then

�∀x : ϕ[x]�S
2 �

⊔
u∈US

�∀x : iso(x)→ ϕ[x]�α(ρu(S))
3

Proof. See [13]. ��

The benefits of random isolation stem from the following theorem, which shows
that when checking a universally quantified formula ∀x : ϕ[x], one only needs to
check whether the weaker formula ∀x : iso(x)→ ϕ[x] holds.

Theorem 1. For a program P , let T be the set of all logical structures that are
reachable under the standard, concrete semantics of P , and let U be the set of all
abstract 3-valued structures that are reachable under the 3-valued interpretation
of the concrete semantics after the random-isolation transformation has been
applied to P . Let ϕ[x] be a formula that does not contain the relation iso. Then⊔

S∈T
�∀x : ϕ[x]�S

2 �
⊔

S#∈U
�∀x : iso(x)→ ϕ[x]�S#

3 (2)

Proof. Let S ∈ T be a state reachable in the execution of P . Let A be defined
on a two-valued structure S as A(S) =

⋃
u∈US{α(ρu(S))}. By the soundness of
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the abstract semantics, it must be the case that for S′ ∈ A(S), there exists some
S# ∈ U such that S′ embeds into S#. Thus, by the Embedding Theorem [12],⊔

u∈US

�∀x : iso(x)→ ϕ(x)�α(ρu(S))
3 �

⊔
S#∈U

�∀x : iso(x)→ ϕ(x)�S#

3

and thus by Lem. 1, we have

�∀x : ϕ(x)�S
2 �

⊔
S#∈U

�∀x : iso(x)→ ϕ(x)�S#

3

Eqn. (2) follows from properties of � and the soundness of the abstract seman-
tics [12]. ��

Example 7. Consider again the example of the server with code given in Fig. 2
checked against the specification NoFlowHistory(Worker,Worker, ∅). Let the ser-
ver execute under random-isolation semantics with isolation relations isoproc and
isotag. We want to verify that every state reachable by the program satisfies the
formula NoFlowHistory(P,Q,D). Thm. 1 can be applied here in two ways:

1. One can introduce a unary relation isoproc that holds true for exactly one
process id and then check

∀p : isoproc(p)→ ∀q : ((RP (p) ∧RQ(q))→ ¬RFlow:G−{D}(p, q))

Intuitively, this has the effect of checking only the isolated process to see if
it can leak information.

2. Consider instances where a flow relation RFlow:G is updated on a send from
the isolated process. Information will only be allowed to flow from the sender
if the label of the sender is a subset of the label of the endpoint. The code
in Fig. 2 does not allow this to happen, but the abstraction of the (ordi-
nary) concrete semantics fails to establish that the flow is definitely blocked
(illustrated in Ex. 6).
By Thm. 1, one can now introduce a unary relation isotag that holds for at
most one tag and instead of checking subset as defined in Eqn. (1), check
the formula: ∀t : isotag(t) → (RTag(x, t) → RTag(y, t)). When the tag is
in the sender’s label, the abstract structure encodes the fact that the tag
is held by exactly one process: the isolated sender. Thus the abstraction of
the random-isolation semantics is able to establish that the flow is definitely
blocked.

5 Experiments

There is an immediate correspondence between the operations defined in the
grammar of LLab and the API of the DIFC system Flume. We took advantage
of a close correspondence between abstraction via 3-valued logic and predicate
abstraction (details can be found in [13]) and modeled the abstraction of the
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Table 2. Results of model checking

Program Size (LOC) # Procs. (runtime) Property Result Time

FlumeWiki 110 unbounded Correct safe 1h 9m 16s
Interference possible bug 37m 53s

Apache 596 unbounded Correct safe 1h 13m 27s
Interference possible bug 18m 30s

ClamAV 3427 2 Correct safe 7m 55s
NoRead possible bug 3m 25s
Export possible bug 3m 25s

OpenVPN 29494 3 Correct safe 2m 17s
NoRead possible bug 2m 52s

Leak possible bug 2m 53s

random-isolation semantics in C code via a source-to-source translation tool
implemented with CIL [14], a front-end and analysis framework for C (see [13]).
The tool takes as input a program written against the Flume API that may
execute using bounded or unbounded sets of processes, tags, and endpoints. Our
experiments demonstrate that information-flow policies for real-world programs
used in related work [1,2,3,4] can often be expressed as logical formulas over
structures that record DIFC state; that these policies can be checked quickly,
and proofs or violations can be found for systems that execute using bounded
sets of processes and tags; and that these policies can be checked precisely, albeit
in significantly more time, using random isolation to find proofs or violations for
programs that execute using unbounded processes and tags.

We applied the tool to three application modules—the request handler for
FlumeWiki, the Apache multi-process module, and the scanner module of the
ClamAV virus scanner—as well as the entire VPN client, OpenVPN. For each
program, we first used the tool to verify that a correct implementation satisfied
a given DIFC property. We then injected faults into the implementations that
mimic potential mistakes by real programmers, and used the tool to identify
executions that exhibited the resulting incorrect flow of information. The results
are given in Fig. 2.

FlumeWiki. FlumeWiki [3] is a Wiki based on the MoinMoin Wiki engine [15],
but redesigned and implemented using the Flume API to enforce desired DIFC
properties. A simplification of the design architecture for FlumeWiki serves as
the basis for the running example in Fig. 1. We focused on verifying the following
properties:

– Security: Information from one Worker process should never reach another
Worker process. Formally, NoFlowHistory(Worker,Worker, ∅).

– Functionality: A Worker process should always be able to send data to the
Handler process. Formally, DefiniteSingleStepFlow(Worker,Handler).
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We created a buggy version (“Interference”) by retaining the DIFC code that
allocates a new tag for each process, but removing the code that initializes each
new process with the tag. The results for both versions are presented in Fig. 2.

Apache. The Apache [7] web server modularizes implementations of policies
for servicing requests. We analyzed the preforking module, which pre-emptively
launches a set of worker processes, each with its own channel for receiving re-
quests. We checked this module against the properties checked for FlumeWiki
above. Because there was no preexisting Flume code for Apache, we wrote label-
manipulation code by hand and then verified it automatically using our tool.

ClamAV. ClamAV [8] is a virus-detection tool that periodically scans the files
of a user, checking for the presence of viruses by comparing the files against a
database of virus signatures. We verified flow properties over the module that
ClamAV uses to scan files marked as sensitive by a user. Our results demonstrate
that we are able to express and check a policy, export protection (given below as
the security property), that is significantly different from the policy checked for
the server models above. The checked properties are as follows:

– Security: ClamAV should never be able to send private information out
over the network. Formally, NoFlowHistory(Private,Network, ∅).

– Functionality: ClamAV should always be able to read data from private
files. Formally, DefiniteSingleStepFlow(Private,ClamAV).

Because there was no DIFC manipulation code in ClamAV, we implemented
a “manager” module that initializes private files and ClamAV with DIFC la-
bels, similar to the scenario described in [2]. We introduced a functionality bug
(“NoRead”) into the manager in which we did not initialize ClamAV with the
tags needed to be able to read data from private files. We introduced a secu-
rity bug (“Export”) in which the handler accidentally gives ClamAV sufficient
capabilities to export private data over the network.

OpenVPN. OpenVPN [9] is an open-source VPN client. As described in [2],
because VPNs act as a bridge between networks on both sides of a firewall, they
represent a serious security risk. Similar to ClamAV, OpenVPN is a program that
manipulates sensitive data using a bounded number of processes. We checked
OpenVPN against the following flow properties:

– Security: Information from a private network should never be able to reach
an outside network unless it passes through OpenVPN. Conversely, data from
the outside network should never reach the private network without going
through OpenVPN. Formally, NoFlowHistory(Private,Outside,OpenVPN) ∧
NoFlowHistory(Outside,Private,OpenVPN).

– Functionality: OpenVPN should always be able to access data from both
networks. Formally, DefiniteSingleStepFlow(Private,OpenVPN)∧
DefiniteSingleStepFlow(Outside,OpenVPN).

Because there was no DIFC manipulation code in OpenVPN, we implemented
a “manager” module that initializes the networks and OpenVPN with suitable
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labels and capabilities. We introduced a bug (“NoRead”) in which the manager
does not initialize OpenVPN with sufficient capabilities to read data from the
networks. We introduced another bug (“Leak”) in which the manager initializes
the network sources with tag settings that allow some application other than
OpenVPN to pass data from one network to the other. Our results indicate
that the approach allows us to analyze properties over bounded processes for
large-scale programs.

The analyzes of FlumeWiki and Apache take significantly longer than those
of the other modules. We hypothesize that this is due to the fact that both of
these modules may execute using unbounded sets of processes and tags, whereas
the other modules do not. Their abstract models can thus frequently generate
non-deterministic values, leading to the examination of many control-flow paths.

Limitations. Although the tool succeeded in proving or finding counterex-
amples for all properties that we specified, we do not claim that the tool can
be applied successfully to all DIFC properties. For instance, our current meth-
ods cannot verify certain correctness properties for the full implementation of
FlumeWiki [3], which maintains a database that relates users to their DIFC
state, and checks and updates the database with each user action, because to
do so would require an accurate model of the database. The extension of our
formalism and implementation to handle such properties is left for future work.

6 Related Work

Much work has been done in developing interprocess information-flow systems,
including the systems Asbestos [16], Hi-Star [2], and Flume [3]. While the mech-
anisms of these systems differ, they all provide powerful low-level mechanisms
based on comparison over a partially ordered set of labels, with the goal of im-
plementing interprocess data secrecy and integrity. Our approach can be viewed
as a tool to provide application developers with assurance that code written for
these systems adheres to a high-level security policy.

Logical structures have been used previously to model and analyze programs
to check invariants, including heap properties [12] and safety properties of con-
current programs [17]. In this paper, we used the semantic machinery of first-
order logic to justify the use of random isolation, which was introduced in [6] to
check atomic-set serializability problems.

There has been previous work on static verification of information-flow sys-
tems. Multiple systems [18,19] have been proposed for reasoning about finite
domains of security classes at the level of variables. These systems analyze infor-
mation flow at a granularity that does not match that enforced by interprocess
DIFC systems, and they do not aim to reason about concurrent processes.

The papers that are most closely related to our work are by Chaudhuri et
al. [10] and Krohn and Turner [11]. The EON system of Chaudhuri et al. ana-
lyzes secrecy and integrity-control systems by modeling them in an expressive
but decidable extension of Datalog and translating questions about the presence
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of an attack into a query. Although the authors analyze a model of an Asbestos
web server, there is no discussion of how the model is extracted. Krohn and
Turner [11] analyze the Flume system itself and formally prove a property of
non-interference. In contrast, our approach focuses on automatically extracting
and checking models of applications written for Flume and using abstraction
and model checking. Our work concerns verifying a different portion of the sys-
tem stack and can be viewed as directly complementing the analysis of Flume
described in [11].

Guttman et al. [20] present a systematic way based on model checking to
determine the information-flow security properties of systems running Security-
Enhanced Linux. The goal of these researchers was to verify the policy. Our work
reasons at the code level whether an application satisfies its security goal. Zhang
et al. [21] describe an approach to the verification of LSM authorization-hook
placement using CQUAL, a type-based static-analysis tool.
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Abstract. This paper presents a Rewriting Logic framework that for-
malizes the interactions between Web servers and Web browsers through
a communicating protocol abstracting HTTP. The proposed framework
includes a scripting language that is powerful enough to model the dy-
namics of complex Web applications by encompassing the main fea-
tures of the most popular Web scripting languages (e.g. PHP, ASP,
Java Servlets). We also provide a detailed characterization of browser
actions (e.g. forward/backward navigation, page refresh, and new win-
dow/tab openings) via rewrite rules, and show how our models can be
naturally model-checked by using the Linear Temporal Logic of Rewrit-
ing (LTLR), which is a Linear Temporal Logic specifically designed for
model-checking rewrite theories. Our formalization is particularly suit-
able for verification purposes, since it allows one to perform in-depth
analyses of many subtle aspects related to Web interaction. Finally, the
framework has been completely implemented in Maude, and we report
on some successful experiments that we conducted by using the Maude
LTLR model-checker.

1 Introduction

Over the past decades, the Web has evolved from being a static medium to a
highly interactive one. Currently, a number of corporations (including book re-
tailers, auction sites, travel reservation services, etc.) interact primarily through
the Web by means of complex interfaces which combine static content with dy-
namic data produced “on-the-fly” by the execution of server-side scripts (e.g.
Java servlets, Microsoft ASP.NET and PHP code). Typically, a Web applica-
tion consists of a series of Web scripts whose execution may involve several
� This work has been partially supported by the EU (FEDER) and the Spanish

MEC TIN2007-68093-C02-02 project, by the Universidad Politécnica de Valencia
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interactions between a Web browser and a Web server. In a typical scenario,
the browser/server interact by means of a particular “client-server” protocol in
which the browser requests the execution of a script to the server, then the
server executes the script, and it finally turns its output into a response that
the browser can display. This execution model -albeit very simple- hides some
subtle intricacies which may yield erroneous behaviors.

Actually, Web browsers support backward and forward navigation through
Web application stages, and allow the user to open distinct (instances of) Web
scripts in distinct windows/tabs which are run in parallel. Such browser actions
may be potentially dangerous, since they can change the browser state without
notifying the server, and may easily lead to errors or undesired responses. For
instance, [1] reports on a frequent error, called the multiple windows problem,
which typically happens when a user opens the windows for two items in an online
store, and after clicking to buy on the one that was opened first, he frequently
gets the second one being bought. Moreover, clicking refresh/forward/backward
browser buttons may sometimes produce error messages, since such buttons
were designed for navigating stateless Web pages, while navigation through Web
applications may require multiple state changes. These problems have occurred
frequently in many popular Web sites (e.g. Orbitz, Apple, Continental Airlines,
Hertz car rentals, Microsoft, and Register.com) [2]. Finally, näıvely written Web
scripts may allow security holes (e.g. unvalidated input errors, access control
flaws, etc. [3]) producing undesired results that are difficult to debug.

Although the problems mentioned above are well known in the Web com-
munity, there is a limited number of tools supporting the automated analysis
and verification of Web applications. The aim of this paper is to explore the
application of formal methods to formal modeling and automatic verification of
complex, real-size Web applications.

Our contribution. This paper presents the following original contributions.
- We define a fine-grained, operational semantics of Web applications based on a
formal navigational model which is suitable for the verification of real, dynamic
Web sites. Our model is formalized within the Rewriting Logic (RWL) frame-
work [4], a rule-based, logical formalism particularly appropriate to modeling
concurrent systems [5]. Specifically, we provide a rigorous rewrite theory which
i) completely formalizes the interactions between multiple browsers and a Web
server through a request/response protocol that supports the main features of
the HyperText Transfer Protocol (HTTP); ii) models browsers actions such as
refresh, forward/backward navigation, and window/tab openings; iii) supports
a scripting language which abstracts the main common features (e.g. session
data manipulation, data base interactions) of the most popular Web scripting
languages. iv) formalizes adaptive navigation [6], that is, a navigational model
in which page transitions may depend on user’s data or previous computation
states of the Web application.
- We also show how rewrite theories specifying Web application models can be
model-checked using the Linear Temporal Logic of Rewriting (LTLR) [7,8]. The
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LTLR allows us to specify properties at a very high level using RWL rules and
hence can be smoothly integrated into our RWL framework.
- Finally, the verification framework has been implemented in Maude [9], a high-
performance RWL language, which is equipped with a built-in model-checker for
LTLR. By using our prototype, we conducted an experimental evaluation which
demonstrates the usefulness of our approach.

To the best of our knowledge, this work represents the first attempt to provide
a formal RWL verification environment for Web applications which allows one to
verify several important classes of properties (e.g. reachability, security, authen-
tication constraints, mutual exclusion, liveness, etc.) w.r.t. a realistic model of
a Web application which includes detailed browser-server protocol interactions,
browser navigation capabilities, and Web script evaluation.

Plan of the paper. The rest of the paper is organized as follows. Section 2
briefly recalls some essential notions about Rewriting Logic. Section 3 illustrates
a general model for Web interactions which informally describes the navigation
through Web applications using HTTP. In Section 4, we specify a rewrite theory
formalizing the navigation model of Section 3. This model captures the interac-
tion of the server with multiple browsers and fully supports the most common
browser navigation features. In Section 5, we introduce LTLR, and we show how
we can use it to formally verify Web applications. In Section 6, we discuss some
related work and then we conclude.

2 Preliminaries

We assume some basic knowledge of term rewriting [10] and Rewriting Logic
[5]. Let us first recall some fundamental notions which are relevant to this work.
The static state structure as well as the dynamic behavior of a concurrent sys-
tem can be formalized by a RWL specification encoding a rewrite theory. More
specifically, a rewrite theory is a triple R = (Σ,E,R), where:
(i) (Σ,E) is an order-sorted equational theory equipped with a partial order <
modeling the usual subsort relation. Σ, which is called the signature, specifies
the operators and sorts defining the type structure of R, while E is a set of (pos-
sibly conditional) equational axioms which may include commutativity (comm),
associativity (assoc) and unity (id). Intuitively, the sorts and operators contained
in the signature Σ allow one to formalize system states as ground terms of a
term algebra τΣ,E which is built upon Σ and E.
(ii) R defines a set of (possibly conditional) labeled rules of the form (l : t ⇒
t′ if c) such that l is a label, t, t′ are terms, and c is an optional boolean term
representing the rule condition. Basically, rules in R specify general patterns
modeling state transitions. In other words, R formalizes the dynamics of the
considered system.

Variables may appear in both equational axioms and rules. By notation x : S,
we denote that variable x has sort S. A context C is a term with a single hole,
denoted by [ ], which is used to indicate the location where a reduction occurs.
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C[t] is the result of placing t in the hole of C. A substitution σ is a finite mapping
from variables to terms, and tσ is the result of applying σ to term t.

The system evolves by applying the rules of the rewrite theory to the system
states by means of rewriting modulo E, where E is the set of equational axioms.
This is accomplished by means of pattern matching modulo E. More precisely,
given an equational theory (Σ,E), a term t and a term t′, we say that t matches
t′ modulo E (or that t E-matches t′) via substitution σ if there exists a context
C such that C[tσ] =E t′, where =E is the congruence relation induced by the
equational theory (Σ,E). Hence, given a rule r = (l : t ⇒ t′ if c), and two
ground terms s1 and s2 denoting two system states, we say that s1 rewrites to
s2 modulo E via r (in symbols s1

r→ s2), if there exists a substitution σ such that
s1 E-matches t via σ, s2 = C[t′σ] and cσ holds (i.e. it is equal to true modulo E).
A computation over R is a sequence of rewrites of the form s0

r1→ s1 . . .
rk→ sk,

with r1, . . . , rk ∈ R, s0, . . . , sk ∈ τΣ,E .

3 A Navigation Model for Web Applications

A Web application is a collection of related Web pages, hosted by a Web server,
containing Web scripts and links to other Web pages. A Web application is
accessed using a Web browser which allows one to navigate through Web pages
by clicking and following links.

Communication between the browser and the server is given through the HTTP
protocol, which works following a request-response scheme. Basically, in the re-
quest phase, the browser submits a URL to the server containing the Web page P
to be accessed, along with a string of input parameters (called the query string).
Then, the server retrieves P and, if P contains a Web script α, it executes α w.r.t.
the input data specified by the query string. According to the execution of α, the
server defines the Web application continuation (that is, the next page P ′ to be
sent to the browser), and enables the links in P ′ dynamically (adaptive naviga-
tion). Finally, in the response phase, the server delivers P ′ to the browser.

Since HTTP is a stateless protocol, the Web servers are coupled with a session
management technique, which allows one to define Web application states via
the notion of session, that is, global stores that can be accessed and updated by
Web scripts during an established connection between a browser and the server.

The navigation model of a Web application can be graphically depicted at
a very abstract level by using a graph-like structure as follows. Web pages are
represented by nodes which may contain a Web script to be executed (α). Solid
arrows connecting Web pages model navigation links which are labeled by a
condition and a query string. Conditions provide a simple mechanism to imple-
ment a general form of adaptive navigation: specifically, a navigation link will
be enabled (i.e. clickable) whenever the associated condition holds. The query
string represents the input parameters which are sent to the Web server. Finally,
dashed arrows model Web application continuations, that is, arcs pointing to
Web pages which are automatically computed by Web script executions. Con-
ditions labeling continuations allow us to model any possible evolution of the
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Fig. 1. The navigation model of a Webmail application

Web application of interest. Web application continuations as well as adaptive
navigations are dynamically computed w.r.t. the current session (i.e. the current
application state).

Example 1. Consider the navigation model given in Figure 1 representing a
generic Webmail application which provides some typical functions such as
login/logout features, email management, system administration capabilities,
etc. The solid arrow between the welcome and the home page whose label is
∅,{user=x,pass=y} defines a navigation link which is always enabled and re-
quires two input parameters. The home page has got two possible continuations
(dashed arrows) login=ok and login=no. According to the user and pass values
provided in the previous transition, only one of them is chosen. In the former
case, the login succeeds and the home page is delivered to the browser, while in
the latter case the login fails and the welcome page is sent back to the browser.

An example of adaptive navigation is provided by the navigation link con-
necting the home page to the administration page. In fact, navigation through
that link is enabled only when the condition role=admin holds, that is, the role
of the logged user is admin.

4 Formalizing the Navigation Model as a Rewrite Theory

In this section, we define a rewrite theory specifying a navigation model, which
allows us to formalize the navigation through a Web application via a commu-
nicating protocol abstracting HTTP. The communication protocol includes the
interaction of the server with multiple browsers as well as the browser navigation
features. Our formalization of a Web application consists of the specifications of
the following three components: the Web scripting language, the Web application
structure, and the communication protocol.

The Web scripting language. We consider a scripting language which in-
cludes the main features of the most popular Web programming languages.
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Basically, it extends an imperative programming language with some built-in
primitives for reading/writing session data (getSession, setSession), accessing
and updating a data base (selectDB, updateDB), capturing values contained in a
query string sent by a browser (getQuery). The language is defined by means of
an equational theory (Σs, Es), whose signature Σs specifies the syntax as well
as the type structure of the language, while Es is a set of equations modeling
the operational semantics of the language through the definition of an evalua-
tion operator [[ ]] : ScriptState→ ScriptState, where ScriptState is defined by the
operator

( , , , , ) : (Script× PrivateMemory × Session × Query× DB)→ ScriptState

Roughly speaking, the operator [[ ]] takes as input a tuple (α,m, s, q, db) repre-
senting a script α, a private memory m, a session s, a query string q and a data
base db, and returns a new script state (skip,m′, s′, q, db′) in which the script
has been completely evaluated (i.e. it has been reduced to the skip statement)
and the private memory, the session and the data base might have been changed
because of the script evaluation. In our framework, sessions, private memories,
query strings and data bases are modeled by sets of pairs id = val, where id
is an identifier whose value is represented by val. The full formalization of the
operational semantics of our scripting language can be found in the technical
report [11].

The Web application structure. The Web application structure is modeled
by an equational theory (Σw, Ew) such that (Σw, Ew) ⊇ (Σs, Es). (Σw, Ew) con-
tains a specific sort Soup [9] for modeling multisets (i.e. soup of elements whose
operators are defined using commutativity, associativity and unity axioms) as
follows:

∅ :→ Soup (empty soup)
, : Soup× Soup→ Soup [comm assoc Id : ∅] (soup concatenation).

The structure of a Web page is defined with the following operators of (Σw, Ew)

( , , { }, { }) : (PageName× Script× Continuation× Navigation) → Page
( , ) : (Condition× PageName) → Continuation
, [ ] : (PageName× Query)→ Url

( , ) : (Condition× Url) → Navigation

where we enforce the following subsort relations Page < Soup, Query < Soup,
Continuation < Soup, Navigation < Soup, Condition < Soup. Each subsort rela-
tion S < Soup allows us to automatically define soups of sort S.

Basically a Web page is a tuple (n, α, {cs}, {ns}) ∈ Page such that n is a name
identifying the Web page, α is the Web script included in the page, cs represents
a soup of possible continuations, and ns defines the navigation links occurring in
the page. Each continuation appearing in {cs} is a term of the form (cond, n′),
while each navigation link in ns is a term of the form (cond, n′, [q1, . . . , qn]). A con-
dition is a term of the form {id1 = val1, . . . , idk = valk}. Given a session s, we say
that a continuation (cond, n′) is enabled in s, iff cond ⊆ s, and a navigation link
(cond, n′, [q1, . . . , qn]) is enabled in s iff cond ⊆ s. A Web application is defined
as a soup of Page elements defined by the operator 〈 〉 : Page→WebApplication.
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Example 2. Consider again the Web application of Example 1. Its
Web application structure can be defined as a soup of Web pages
wapp = 〈p1, p2, p3, p4, p5, p6, p7, p8〉 as follows:

p1 =(welcome, skip, {∅}, {(∅, home, [user, pass])})
p2 =(home, αhome, {(login = no, welcome), (changeLogin = no, changeAccount),

(login = ok, home)},
{(∅, changeAccount, [∅]), (role = admin, administration, [∅])
(∅, emailList, [∅]), (∅, logout, [∅])})

p3 =(emailList, αemailList, {∅}, {(∅, viewEmail, [emailId]), (∅, home, [∅])})
p4 =(viewEmail, αviewEmail, {∅}, {(∅, emailList, [∅]), (∅, home, [∅])})
p5 =(changeAccount, skip, {∅}, {(∅, home, [user, pass])})
p6 =(administration, αadmin, {(adm = no, home), (adm = ok, administration)},

{∅, adminLogout, [∅]})
p7 =(adminLogout, αadminLogout, {(∅, home)}, {∅})
p8 =(logout, αlogout, {(∅, welcome)}, {∅})

where the application Web scripts might be defined in the following way

αhome =

login := getSession(”login”) ;
if (login = null) then

u := getQuery(user) ;
p := getQuery(pass) ;
p1 := selectDB(u) ;
if (p = p1) then

r := selectDB(u.”-role”) ;
setSession(”user”, u) ;
setSession(”role”, r) ;
setSession(”login”, ”ok”)

else
setSession(”login”, ”no”) ;
f := getSession(”failed”) ;
if (f = 3) then

setSession(forbid,”true”) fi ;
setSession(”failed”, f+1) ;

fi fi

αadmin =

u := getSession(”user”) ;
adm := selectDB(”admPage”) ;
if (adm = ”free”)∨(adm = u) then

updateDB(”admPage”, u) ;
setSession(”adm”, ”ok”)

else
setSession(”adm”, ”no”)

fi

αemailList =
u := getSession(”user”) ;
es := selectDB(u . ”-email) ;
setSession(”email-found”, es)

αviewEmail =
u := getSession(”user”) ;
id := getQuery(idEmail) ;
e := selectDB(id) ;
setSession(”text-email”, e)

αadminLogout = updateDB(”admPage”, ”free”) αlogout = clearSession

The communication protocol. We define the communication protocol by
means of a rewrite theory (Σp, Ep, Rp), where (Σp, Ep) is an equational theory
formalizing the Web application states, and Rp is a set of rewrite rules specifying
Web script evaluations and request/response protocol actions.

The equational theory (Σp, Ep). The theory is built on top of the equational
theory (Σw, Ew) (i.e. (Σp, Ep) ⊇ (Σw, Ew)) and models, on the one hand, the
entities into play (i.e. the Web server, the Web browser and the protocol mes-
sages); on the other hand, it provides a formal mechanism to evaluate enabled
continuations as well as enabled adaptive navigations which may be generated
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“on-the-fly” by executing Web scripts. More formally, (Σp, Ep) includes the fol-
lowing operators.
B( , , , { }, { }, , , ) : (Id× Id× PageName× URL× Session ×Message

×History × Nat)→ Browser
S( , { }, { }, , ) : (WebApplication× BrowserSession × DB×Message

×Message) → Server
H( , { }, ) : (PageName× URL×Message) → History

B2S( , , , [ ], ) : (Id× Id× PageName× Query× Nat)→ Message
S2B( , , , { }, { }, ) : (Id× Id× PageName× URL× Session × Nat)→ Message

BS( , { }) : (Id× Session) → BrowserSession
|| || : (Browser ×Message × Server) → WebState

where we enforce the following subsort relations History < List, URL < Soup,
BrowserSession < Soup, Browser < Soup, and Message < Queue1.

We model a browser as a term of the form

B(idb, idt, n, {url1, . . . , urll}, {id1 = val1, . . . , idm = valm},m, h, i)

where idb is an identifier representing the browser; idt is an identifier modeling
an open tab of browser idb; n is the name of the Web page which is currently
displayed on the Web browser; url1, . . . , urll represent the navigation links which
appear in the Web page n; {id1 = val1, . . . , idm = valm} is the last session that
the server has sent to the browser; m is the last message sent to the server; h
is a bidirectional list recording the history of the visited Web pages; and i is an
internal counter used to distinguish among several response messages generated
by repeated refresh actions (e.g. if a user pressed twice the refresh button, only
the second refresh is displayed in the browser window).

The server is formalized by using a term of the form

S(〈p1, . . . , pl〉, {BS(idb1, {s1}), ..,BS(idbn, {sn})}, {db}, fiforeq, fifores)

where 〈p1, . . . , pl〉 defines the Web application currently in execution; si = {id1 =
val1, . . . , idm = valm} is the session that belongs to browser idbi, which is needed to
keep track of the Web application state of each user; db = {id1 = val1, . . . , idk =
valk} specifies the data base hosted by the Web server; and fiforeq,fifores are two
queues of messages, which respectively model the request messages which still
have to be processed by the server and the pending response messages that the
server has still to send to the browsers.

We assume the existence of a bidirectional channel through which server and
browser can communicate by message passing. In this context, terms of the form

B2S(idb, idt, n, [id1 = val1, . . . , idm = valm], i)

model request messages, that is, messages sent from the browser idb (and tab
idt) to the server asking for the Web page n with query parameters [id1 =
val1, . . . , idm = valm]. Instead, terms of the form

S2B(idb, idt, n, {url1, . . . , urll}, {id′1 = val′1, . . . , id
′
m = val′m}, i)

1 We represent a queue with elements e1, . . . , en by (e1, . . . , en), where e1 is the first
element of the queue.
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model response messages, that is, messages sent from the server to the browser
idb (and tab idt) including the computed Web page n along with the navigation
links {url1, . . . , urll} occurring in n, and the current session information2.

Using the operators described so far, we can precisely formalize the notion of
Web application state as a term of the form

br || m || sv

where br is a soup of browsers, m is a channel modeled as a queue of messages,
and sv is a server. Intuitively, a Web application state can be interpreted as a
snapshot of the system capturing the current configurations of the browsers, the
server and the channel.

The equational theory (Σp, Ep) also defines the operator

eval( , , , ) : WebApplication× Session × DB×Message → Session × DB×Message

whose semantics is specified by means of Ep (see [11] for the precise formal-
ization of eval). Given a Web application w, a session s, a data base db, and a
request message b2s = B2S(idb, idt, n, [q], k), eval(w, s, db, b2s) generates a triple
(s′, db′, s2b) containing an updated session s′, an updated data base db′, and
a response message s2b = S2B(idb, idt, n

′, {url1, . . . , urlm}, s′, k). Intuitively, the
operator eval allows us to execute a Web script and dynamically determine (i)
which Web page n′ is generated by computing an enabled continuation, and (ii)
which links of n′ are enabled w.r.t. the current session.

The rewrite rule set Rp. It defines a collection of rewrite rules of the form
label : WebState⇒WebState abstracting the standard request-response behavior
of the HTTP protocol and the browser navigation features. First, we give the
rules that formalize the HTTP protocol, and then the rules that correspond to
the browser navigation features. More specifically, the HTTP protocol specifies
the requests of multiple browsers, the script evaluations, and the server responses
by means of the following rules.

ReqIni : B(idb, idt, pc, {(np, [q]), urls}, {s}, lm, h, i), br ||m || sv ⇒
B(idb, idt, emptyPage, ∅, {s}, midb,idt, hc, i), br || (m, midb,idt) || sv

where midb,idt = B2S(idb, idt, np, [q], i) and hc = push((pc, {(np, [q]), urls}, midb,idt), h)

ReqFin : br || (midb,idt, m) ||S(w, {bs}, {db}, fiforeq, fifores)⇒
br ||m ||S(w, {bs}, {db}, (fiforeq, midb,idt), fifores)

where midb,idt = B2S(idb, idt, np, [q], i)

Evl : br ||m || S(w, {BS(idb, {s}), bs}, {db}, (midb,idt, fiforeq), fifores)⇒
br ||m || S(w, {BS(idb, {s′}), bs}, {db′}, fiforeq, (fifores, m

′))
where (s′, db′, m′) = eval(w, s, db,midb,idt)

2 Session information is typically represented by HTTP cookies, which are textual data
sent from the server to the browser to let the browser know the current application
state.
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ResIni : br ||m ||S(w, {bs}, {db}, fiforeq, (midb,idt, fifores))⇒
br || (m, midb,idt) || S(w, {bs}, {db}, fiforeq, fifores)

ResFin : B(idb, idt, emptyPage, ∅, {s}, lm, h, i), br || (S2B((idb, idt, p
′, urls, {s′)}, i), m) || sv

⇒ B(idb, idt, p
′, urls, {s′}, lm, h, i), br ||m || sv

where idb, idt : Id, br : Browser, sv : Server, urls : URL, i : Nat, q : Query,
h : History, w : WebApplication, m,m′,midb,idt, fiforeq, fifores : Message, pc, p

′, np :
PageName, s, s′ : Session, and bs : BrowserSession are variables.

Roughly speaking, the request phase is split into two parts, which are re-
spectively formalized by rules ReqIni and ReqFin. Initially, when a browser with
identifier idb requests the navigation link (np, [q]) appearing in a Web page pc

of the tab idt, rule ReqIni is fired. The execution of ReqIni generates a request
message midb,idt which is enqueued in the channel and saved in the browser as
the last message sent. The history list is updated as well. Rule ReqFin simply de-
queues the first request message midb,idt of the channel and inserts it into fiforeq,
which is the server queue containing pending requests. Rule Evl consumes the
first request message midb,idt of the queue fiforeq, evaluates the message w.r.t.
the corresponding browser session (idb, {s}), and generates the response message
which is enqueued in fifores, that is, the server queue containing the responses to
be sent to the browsers. Finally, rules ResIni and ResFin implement the response
phase. First, rule ResIni dequeues a response message from fifores and sends it
to the channel m. Then, rule ResFin takes the first response message from the
channel queue and sends it to the corresponding browser tab.

It is worth noting that the whole protocol semantics is elegantly defined by
means of only five, high-level rewrite rules without making any implementa-
tion detail explicit. Implementation details are automatically managed by the
rewriting logic engine (i.e. rewrite modulo equational theories). For instance, in
the rule ReqIni, no tricky function is needed to select an arbitrary navigation
link (np, [q]) from the URLs available in a Web page, since they are modeled as
associative and commutative soups of elements (i.e. URL < Soup) and hence a
single URL can be extracted from the soup by simply applying pattern matching
modulo associativity and commutativity.

We formalize browser navigation features as follows.

Refresh : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv ⇒
B(idb, idt, emptyPage, ∅, {s}, midb,idt, h, i + 1), br || (m, midb,idt) || sv

where lm = B2S(idb, idt, np,q, i) and midb,idt = B2S(idb, idt, np, q, i + 1)

OldMsg : B(idb, idt, pc, {urls}, {s}, lm, h, i), br || (S2B(idb, idt, p
′, urls′, {s′}, k), m) || sv ⇒

B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv if i �= k

NewTab : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv ⇒
B(idb, idt, pc, {urls}, {s}, lm, h, i), B(idb, idnt, pc, {urls}, {s}, ∅, ∅, 0), br ||m || sv

where idnt is a new fresh value of the sort Id.
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Backward : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv ⇒
B(idb, idt, ph, {urlsh}, {s}, lmh, h, i), br ||m || sv

where (ph, {urlh}, lmh) = prev(h)

Forward : B(idb, idt, pc, {urls}, {s}, lm, h, i), br ||m || sv ⇒
B(idb, idt, ph, {urlsh}, {s}, lmh, h, i), br ||m || sv

where (ph, {urlsh}, lmh) = next(h)

where idb, idt, idnt : Id, br : Browser, sv : Server, urls, url′, urlsh : URL, q : Query,
h : History m, lm, lmh,midb,idt : Message, i, k : Nat, pc, p

′, np, ph : PageName, and
s, s′ : Session are variables.

Rules Refresh and OldMsg model the behavior of the refresh button of a
browser. Rule Refresh applies when a page refresh is invoked. Basically, it first
increments the browser internal counter, and then a new version of the last re-
quest message lm, containing the updated counter, is inserted into the channel
queue. Note that the browser internal counter keeps track of the number of re-
peated refresh button clicks. Rule OldMsg is used to consume all the response
messages in the channel, which might have been generated by repeated clicks of
the refresh button, with the exception of the last one (i = k).

Finally, rules NewTab, Backward and Forward are quite intuitive: an applica-
tion of NewTab simply generates a new Web application state containing a new
fresh tab in the soup of browsers, while Backward (resp. Forward)) extracts from
the history list the previous (resp. next) Web page and sets it as the current
browser Web page.

It is worth noting that applications of rules in Rp might produce an infinite
number of (reachable) Web application states. For instance, an infinite appli-
cations of rule newTab would produce an infinite number of Web application
states, each of which represents a finite number of open tabs. Therefore, to make
analysis and verification feasible, we set some restrictions in our prototypical im-
plementation of the model to limit the number of reachable states (e.g. we fixed
upper bounds on the length of the history list, on the number of tabs the user
can open, etc.). An alternative approach that we plan to pursue in the future is
to define a state abstraction by means of a suitable equational theory in the style
of [12]. This would allow us to produce finite (and hence effective) descriptions
of infinite state systems.

5 Model Checking Web Applications Using LTLR

The formal specification framework presented so far allows us to specify a num-
ber of subtle aspects of the Web application semantics which can be verified
using model-checking techniques. To this respect, the Linear Temporal Logic of
Rewriting (LTLR)[8] can be fruitfully employed to formalize properties which are
either not expressible or difficult to express using other verification frameworks.
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The Linear Temporal Logic of Rewriting. LTLR is a sublogic of the fam-
ily of the Temporal Logics of Rewriting TLR∗ [8], which allows one to specify
properties of a given rewrite theory in a simple and natural way. In particular,
we chosen the “tandem” LTLR/(Σp, Ep, Rp). In the following, we provide an
intuitive explanation of the main features of LTLR; for a thorough discussion,
please refer to [8].

LTLR extends the traditional Linear Temporal Logic (LTL) with state predi-
cates (SP ) and spatial action patterns (Π). A LTLR formulae w.r.t. SP and Π
can be defined by means of the following BNF-like syntax:

ϕ ::= δ | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | © ϕ | ϕUϕ | ♦ϕ |�ϕ
where δ ∈ SP, p ∈ Π, and ϕ ∈ LTLR(SP,Π)

Since LTLR generalizes LTL, the modalities and semantic definitions are entirely
similar to those for LTL (see, e.g., [13]). The key new addition is the semantics
of spatial actions; the relation R, (π, γ) |= δ holds if and only if the proof term
γ(0) of a current computation is an instance of a spatial action pattern δ.

Let us illustrate the state predicates and the spatial action pat-
terns by means of a rather intuitive example. Let (Σp, Ep, Rp) be
the rewrite theory specified in Section 4, modeling the Web applica-
tion states as terms b||m||s of sort WebState. Then, the state predicate
B(ibb, idt, page, {urls}, {s},m, h, i)||m||sv |= curPage(page) = true holds (i.e. evalu-
ates to true) for each state such that page is the current Web page displayed
in the browser. Besides, the spatial action pattern ReqIni(idb\A) allows us to
localize all the applications of the rule ReqIni where the rule’s variable idb are
instantiated with A, that is, all ReqIni applications which refer to the browser
with identifier A.

LTLR properties for Web Applications. This section shows the main ad-
vantages of coupling LTLR with Web applications specified via the rewrite theory
(Σp, Ep, Rp).

Concise and parametric properties. As LTLR is a highly parametric logic, it
allows one to define complex properties in a concise way by means of state
predicates and spatial action patters. As an example, consider the Webmail
application given in Example 1, along with the property “Incorrect login info
is allowed only 3 times, and then login is forbidden”. This property might be
formalized as the following standard LTL formula:

♦(welcomeA) → ♦(welcomeA ∧©(¬(forbiddenA) ∨ (welcomeA ∧©(¬(forbiddenA)∨
(welcomeA ∧©(¬(forbiddenA) ∨©(forbiddenA ∧�(¬welcomeA))))))))

where welcomeA and forbiddenA are atomic propositions respectively describing
(i) user A is displaying the welcome page, and (ii) login is forbidden for user
A. Although the property to be modeled is rather simple, the resulting LTL
formula is textually large and demands a hard effort to be specified and verified.
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Moreover, the complexity of the formula would rapidly grow when a higher
number of login attempts was considered3.

By using LTLR we can simply define a login property which is parametric
w.r.t. the number of login attempts as follows. First of all, we define the state
predicates: (i) curPage(id,pn), which holds when user id4 is displaying Web page
pn; (ii) failedAttempt(id,n), which holds when user id has performed n failed
login attempts; (iii) userForbidden(id), which holds when a user is forbidden
from logging on to the system. Formally,

B(id, idt, pn, {urls}, {s}, lm, h, i), br ||m|| sv |= curPage(id, pn) = true

br ||m ||S(w, {BS((id, {failed = n}), bs}, {db}, freq, fres) |= failedAttempt(id, n) = true

br ||m ||S(w, {BS((id, {forbid = true}), bs}, {db}, freq, fres) |= userForbidden(id) = true

Then, the security property mentioned above is elegantly formalized by means
of the following LTLR formula

♦(curPage(A, welcome) ∧©(♦failedAttempt(A, 3)))→ �userForbidden(A)

Observe that the previous formula can be easily modified to deal with a distinct
number of login attempts —it is indeed sufficient to change the parameter count-
ing the login attempts in the state predicate failedAttempt(A, 3). Besides, note
that we can define state predicates (and more in general LTLR formulae) which
depend on Web script evaluations. For instance, the predicate failedAttempt de-
pends on the execution of the login script αhome which may or may not set the
forbid value to true in the user’s browser session.

Web script evaluation witnesses the “on-the-fly” capability of our framework
which allows us to specify, in a natural way, suitable properties to check the
behavior of the scripts.

Unreachability properties. Unreachability properties can be specified as LTLR
formulae of the form �¬ 〈State〉, where State is an unwanted state the system
has not to reach. By using unreachability properties over the rewrite theory
(Σp, Ep, Rp), we can detect very subtle instances of the multiple windows problem
mentioned in Section 1.

Example 3. Consider again the Webmail application of Example 1. Assume that
a user may interact with the application using two email accounts MA and MB.
Let us consider a Web application state in which the user is logged in the home
page with her account MA. Now, assume that the following sequence of actions
is executed: (1) the user opens a new browser tab; (2) the user changes the
account in one of the two open tabs and logs in using MB credentials; (3) the
user accesses the emailList page from both tabs.

After applying the previous sequence of actions, one expects to see in the two
open tabs the emails corresponding to the accounts MA and MB. However, the

3 Try thinking of how to specify an LTL formula for a more flexible security policy
permitting 10 login attempts.

4 We assume that the browser identifier univocally identifies the user.
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Webmail application of Example 1 displays the emails of MB in both tabs. This
is basically caused by action (2) which makes the server override the browser
session with MB data without notifying the state change to the tab associated
with the MA account.

This unexpected behavior can be recognized by using the following LTLR
unreachability formula �¬ inconsistentState where inconsistentState is a state
predicate defined as:

B(id, idA, pA, {urlsA}, {(user = MA), sA}, lmA, hA, iA),
B(id, idB, pB, {urlsB}, {(user = MB), sB}, lmB, hB, iB), br ||m|| sv

|= inconsistentState = true if(MA �= MB)

Roughly speaking, the property �¬ inconsistentState states that we do not want
to reach a Web application state in which two browser tabs refer to distinct
user sessions. If this happens, one of the two session is out-of-date and hence
inconsistent.

Finally, it is worth noting that by means of LTLR formulae expressing un-
reachability statements, we can formalize an entire family of interesting proper-
ties such as:

– mutual exclusion (e.g. �¬ (curPage(A, administration) ∧
curPage(B, administration)),

– link accessibility (e.g. �¬ curPage(A,PageNotFound)),
– security properties, (e.g. �¬ (curPage(A, home) ∧ userForbidden(A))).

Liveness through spatial actions. Liveness properties state that something good
keeps happening in the system. In our framework, we can employ spatial actions
to detect good rule applications. For example, consider the following property
“user A always succeeds to access her home page from the welcome page”. This
amount to saying that, whenever the protocol rule ReqIni is applied to request
the home page of user A, the browser will eventually display the home page of
user A. This property can be specified by the following LTLR formula:

�([ReqIni(Idb\A, pc\welcome, np\home)]→ ♦curPage(A, home))

Implementation. The verification framework we presented has been im-
plemented in a prototypical system, written in Maude [9], which is publicly
available along with several examples at
http://www.dsic.upv.es/~dromero/web-tlr.html.

The prototype allows one to define Web application models as extended rewrite
theories specified by means of Maude specifications. Then, specifications can be
automatically verified using the Maude built-in operator tlr check[7] which sup-
ports model checking of rewrite theories w.r.t. LTLR. We tested the tool on several
examples including all the examples presented in the paper. Preliminary experi-
ments have demonstrated that the experimental system work very satisfactorily
on several Web applications models. We are currently developing a Web interface
for the tool. Moreover, as future work, we want to define a translator from Web
applications written in a commercial language to our Web models.
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6 Related Work and Conclusions

Web applications are complex software systems playing a primary role of primary
importance nowadays. Not surprisingly, several works have previously addressed
the modeling and verification of such systems. A variant of the µ-calculus (called
constructive µ-calculus) is proposed in [14] which allows one to model-check con-
nectivity properties over the static graph-structure of a Web system. However,
this methodology does not support the verification of dynamic properties— e.g.
reachability over Web pages generated by means of Web script execution.

Both Linear Temporal Logic (LTL) and Computational Tree Logic (CTL)
have been used for the verification of dynamic Web applications. For instance,
[15] and [16] support model-checking of LTL properties w.r.t. Web application
models represented as Kripke structures. Similar methodologies have been de-
veloped in [17] and [18] to verify Web applications by using CTL formulae. All
these model-checking approaches are based on coarse Web application models
which are concerned neither with the communication protocol underlying the
Web interactions nor the browser navigation features. Moreover, as shown in
Section 5, CTL and LTL property specifications are very often textually large
and hence difficult to formulate and understand. [6] presents a modeling and
verification methodology that uses CTL and considers some basic adaptive nav-
igation features. In constrast, our framework provides a complete formalization
which supports more advanced adaptive navigation capabilities.

Finally, both [2] and [19] do provide accurate analyses of Web interactions
which point out typical unexpected application behaviors which are essentially
caused by the uncontrolled use of the browser navigation buttons as well as the
shortcomings of HTTP. Their approach however is different from ours since it is
based on defining a novel Web programming language which allows one to write
safe Web applications: [2] exploits type checking techniques to ensure application
correctness, whereas [19] adopts a semantic approach which is based on program
continuations.

In this paper, we presented a detailed navigation model which accurately
formalizes the behavior of Web applications by means of rewriting logic. The
proposed model allows one to specify several critical aspects of Web applica-
tions such as concurrent Web interactions, browser navigation features and Web
scripts evaluations in an elegant, high-level rewrite theory. We also coupled our
formal specification with LTLR, which is a linear temporal logic designed to
model-check rewrite theories. The verification framework we obtained allows us
to specify and verify even sophisticated properties (e.g. the multiple windows
problem) which are either not expressible or difficult to express within other
verification frameworks. Finally, we developed a prototypical implementation
and we conducted several experiments which demonstrated the practicality of
our approach.

Model checking as a tool is widely used in both academia and industry. In
order to improve the scalability of our technique, as future work we plan to
look at the approach of encoding the model-checking problem into SAT, and the
resulting question of determining the efficiency in Maude of different encodings.
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Abstract. VCC is an industrial-strength verification suite for the formal verifica-
tion of concurrent, low-level C code. It is being developed by Microsoft Research,
Redmond, and the European Microsoft Innovation Center, Aachen. The develop-
ment is driven by two applications from the Verisoft XT1 project: the Microsoft
Hyper-V Hypervisor and SYSGO’s PikeOS micro kernel.

This paper gives a brief overview on the Hypervisor with a special focus on
verification related challenges this kind of low-level software poses. It discusses
how the design of VCC addresses these challenges, and highlights some specific
issues of the Hypervisor verification and how they can be solved with VCC.

1 The Microsoft Hypervisor

The development of VCC is driven by the verification of the Microsoft Hyper-V Hy-
pervisor, which is an ongoing collaborative research project between the European
Microsoft Innovation Center, Microsoft Research, the German Research Center for Ar-
tificial Intelligence, and Saarland University in the Verisoft XT project [1]. The Hyper-
visor is a relatively thin layer of software (100 KLOC of C, 5 KLOC of assembly) that
runs directly on x64 hardware. The Hypervisor turns a single real multi-processor x64
machine with virtualization extensions into a number of virtual multi-processor x64
machines. These virtual machines include additional machine instructions (hypercalls)
to create and manage other virtual machines.

The Hypervisor code is divided into two strata. The kernel stratum is a small multi-
processor operating system, complete with hardware abstraction layer, kernel, memory
manager, and scheduler (but no device drivers). The virtualization stratum runs in each
thread an “application” that simulates an x64 machine without the virtualization fea-
tures, but with some additional Hypervisor specific machine instructions. Simulation
means that the observable effect of a machine instruction executed on the virtualized
machine basically is the same as on the real machine.

For the most part, a virtual machine – also called a guest – is simulated by sim-
ply running the real hardware. However, guests – not necessarily knowing that they
run under the Hypervisor – set up their own address translation on top of the Hypervi-
sor’s virtual address space. The Hypervisor needs to simulate the composition of these

1 Work partially funded by the German Federal Ministry of Education and Research (BMBF) in
the framework of the Verisoft XT project under grant 01 IS 07 008.

A. Cavalcanti and D. Dams (Eds.): FM 2009, LNCS 5850, pp. 806–809, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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two layers of address translation in order to simulate the translation lookaside buffers
(TLBs) of the virtual machines. To do this efficiently, the Hypervisor maintains shadow
page tables (SPTs) which mimic the combined effect of both translation steps. TLB
simulation is the most important factor in system performance. Thus, the Hypervisor
uses a very complex and highly optimized SPT algorithm, which leverages the degrees
of freedom given by the weak hardware TLB semantics.

The verification of a piece of software like the Hypervisor – which was not written
with formal verification in mind – poses a number of challenges to a verification tool:
(1) In an industrial process, developers and testers must drive the verification process.
Thus, verification should be primarily driven by assertions stated at the level of code it-
self, rather than by guidance provided to interactive theorem provers. (2) The Hypervi-
sor is written in C, which has only a weak, easily circumvented type system and explicit
memory (de)allocation, so memory safety has to be explicitly verified. (3) The Hypervi-
sor is a concurrent piece of software and makes heavy use of lock-free synchronization.
In particular, address translations are gathered asynchronously and non-atomically (re-
quiring multiple reads and writes to traverse the page tables), creating races in the SPT
algorithm with guest system code that operates on the page tables. (4) A typical way
to prove properties of a concurrent data type is to show that it simulates some simpler
type. To keep annotations tightly integrated with the code, a way of proving concurrent
simulation in the code itself is needed. (5) Part of the Hypervisor is written in assembly
code. An integrated verification of C and assembly code is needed, which addresses the
subtle interactions between the two and the implications on hardware resources.

2 VCC

VCC is geared towards sound verification of functional properties of low-level concur-
rent C code. An important goal is that the annotations will eventually be integrated into
the codebase and maintained by the software developers, evolving along with the code.
Thus, VCC embeds specifications and annotations (such as function contracts and type
invariants) into the C code. Many of these annotations are similar to those found, e.g.,
in Spec# [2]. Using conditional compilation, the annotations are hidden from standard C
compilers. VCC performs static modular analysis, in which each function is verified in
isolation, using only the contracts of functions that it calls and invariants of types used
in its code. First, VCC translates programs together with annotations into the Boogie
language [3]. Then, the Boogie tool generates verification conditions and passes them
to the first order theorem prover Z3 [4]. If Z3 is not able to verify the verification con-
ditions, several diagnostic tools are available for convenient debugging of the program
and the annotations.

Although C is not typesafe, most code in a well-written C system adheres to a strict
type discipline. Taking advantage of this fact, VCC implements a Spec#-style object
and ownership model. Objects may coincide with (pointers to) C structures, but also
with sub-structures and arrays. System invariants guarantee that valid objects of the
same type with different addresses do not overlap, so they behave like objects in a
modern (typesafe) object oriented system. As in some other concurrency methodologies
(e.g., [5]), the ownership model allows a thread to perform sequential writes only to data
that it owns, and sequential reads only to data that it owns or can prove is not changing.
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Type definitions can have type invariants, which are one- or two-state predicates on
data, describing the properties of “valid” instances of the type, and how they can evolve
from one system state to another.

In addition to contracts and invariants, VCC allows augmenting the operational code
of a program with ghost (specification) data and code, which is seen only by the veri-
fier. One application of ghost code is maintaining abstractions of operational data, e.g.,
representing a list as a set. Ghost code also establishes and maintains the ownership
relations of objects and can provide existential witnesses to the first order prover.

VCC accommodates concurrent access to data that is marked as volatile even if the
data is not owned by the current thread (using operations guaranteed to be atomic on
the given platform), leveraging the observation that a correct concurrent program typ-
ically can only race on volatile data. Indeed VCC does not allow lock-free access to
non-volatile data. Updates of volatile data are required to preserve invariants but are
otherwise unconstrained. Volatile data is, e.g., used to implement locks [6].

Concurrent programs implicitly deal with chunks of knowledge about the shared
state. For example, a program attempting to acquire a spin lock must “know” that
the spin lock has been initialized and is still allocated [6]. But such knowledge is
ephemeral – it could be broken concurrently by other threads – so passing knowledge
to a function in the form of a precondition is too weak. Instead, VCC provides a special
kind of ghost objects called claims. A claim is associated with a number of objects: it
guarantees certain properties of those objects, in particular, that they stay allocated as
long as a claim to them exists. A comprehensive overview of VCC can be found in [7].

3 Verifying the Hypervisor

Usually, the implementation correctness of a system is verified by proving a simulation
theorem between the implementation and an abstract model. The simulation proof of
the Hypervisor depends on a model / specification of the x64 processor architecture,
which has been developed by Saarland University. The model is described in C, which
allows us to combine code correctness proofs and proofs which refer to the processor
model within a single tool, namely VCC.

The model of the processor core is implemented as a number of ghost functions
operating on a ghost structure which represents the processor’s state. In particular, there
are ghost functions which specify the effect of executing individual x64 instructions.
For components outside the processor core we cannot use a functional specification,
because these components might change their state independently of the core: the TLB
is allowed to cache new translations on its own initiative, the memory might be changed
by other processor cores, and the state of the APIC may change due to interrupt requests
from devices or other processor cores. Therefore, these components are specified by
restricting their transitions with two-state invariants.

The x64 processor model is used in two places in the Hypervisor verification project.
First, we use it for the low-level correctness proofs of the Hypervisor implementation,
in particular for the verification of assembly code [8]. Second, the x64 model is used
for the top-level specification of the Hypervisor, i.e., that the Hypervisor correctly sim-
ulates x64 machines for the guests. For each partition, the (volatile) ghost state for the
top-level specification contains, among others, general information about the partition
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(privileges, IPC state), a set of x64 processor states, and the memory content. We use
two-state invariants to specify the legal transitions of the top-level model. Most of the
time, these two-state invariants correspond to the two-state invariants of the x64 model.
However, we need additional invariants to specify the execution of Hyper-V specific
instructions and hypercalls.

The equivalent of the aforementioned simulation proof in our setting is to enforce
a coupling invariant between the (volatile) ghost state of the top-level model and the
implementation state. Verifying this relation in VCC ensures that the implementation
transitions are covered by corresponding admissible transitions of the top-level model.

As of July 2009, the Hypervisor verification is still ongoing. Data structure invari-
ants are in place and the larger part of public interfaces is specified. Several hundred
functions have been verified with VCC. We are confident that VCC is powerful enough
to successfully verify all functions. The specifications provide a detailed documentation
that is provably in sync with the code, which is an added value of the exercise in itself.
The Hypervisor is part of a released product with very low defect density. Therefore,
we did not expect to find many bugs in the code, and indeed less than a handful have
been found during the verification process. All of them are very unlikely to let the Hy-
pervisor fail in practical operation. Applying the now available technology early in the
process of a product development could help to prevent defects and reduce the effort to
meet high quality bars.

Acknowledgment. We thank the great team who contributed to this project!
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Abstract. We examine the the industrial application of formal methods
using data gathered in a review of 62 projects taking place over the last
25 years. The review suggests that formal methods are being applied
in a wide range of application domains, with increasingly strong tool
support. Significant challenges remain in providing usable tools that can
be integrated into established development processes; in education and
training; in taking formal methods from first use to second use, and in
gathering and evidence to support informed selection of methods and
tools.

1 Introduction

The successful transfer of formal methods technology into industrial practice has
been a goal of researchers and practitioners for several decades. Indeed, by the
early 1990s questions were being raised about whether formal methods could ever
be viable in industrial settings. Several reviews in that decade [1,2,3,4] reported
significant successes but also identified challenges to formal methods adoption
including a lack of good tooling and objective evidence for the commercial bene-
fits. Opinions diverged on whether formal methods were delivering hoped-for im-
provements in practice. Standards, tools, and education would “make or break”
industrial adoption [5] and some saw a chasm between academics who “see for-
mal methods as inevitable” and practitioners who “see formal methods as irrel-
evant” [6].

Following a decade of advances in both methods and tools, it seems appropri-
ate to undertake a new review of industrial experience, including past as well as
current projects, with the aim of developing an ongoing, updated resource using
a consistent review format for each project. Here we present a short summary
of the review, its findings, our observations and suggested challenges. We focus
on aspects relevant to developers and users of industry-strength formal methods
and tools. Further detail on the review can be found at [7,8].
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2 A Review of Industrial Applications of Formal Methods

Using a structured questionnaire, data was collected on 62 industrial projects
known from the literature, mailing lists, and personal experience to have em-
ployed formal techniques. Data on 56 of the projects were collected from indi-
viduals who had been involved and data on the remainder were gathered from the
literature. This initial collection may be biased to those with whom we had the
strongest contacts. However, the uniform way in which the data was collected
does allow comparison between projects, and gives some insight into current
practice. It should be stressed that the review is not a statistical survey and so
does not form a basis for general inferences about formal methods applications.

The largest application domains were transport (16 projects) and the financial
sector (12). Other major sectors were defence (9), telecommunications (7), and
office and administration (5). Some 20% of responses indicated that the projects
related to software development tools themselves, suggesting that developers are
to some extent taking their own medicine. The most strongly represented applica-
tion types were real-time (20), distributed (17), transaction processing (12) and
high data volume (13). 30% of responses indicated that certification standards
applied, notably IEC 61508, Common Criteria and UK Level E6 for IT Security
Evaluation. Half of respondents estimated the size of the software: the split was
roughly equal between 1–10, 10–100, and 100–1000 KLOC. Two projects are
from the 1980s, 23 are from the 1990s and 37 are from 2000-2008.

Mild correlations were observed between techniques and software types, indi-
cating higher than average use of model checking in consumer electronics and
of inspection in transaction processing software. The use of model checking has
increased greatly from 13% in the 1990s to 51% in the present decade. No signifi-
cant change was apparent for proof, refinement, execution or test case generation.

Some 85% of responses indicated that project staff had prior formal methods
experience. Of those reporting no previous expertise, half were in teams with
mixed experience levels and half introducing techniques to a novice team. Over
half the responses indicated that training had been given.

Respondents were asked to comment on the time, cost and quality implica-
tions. The effect on time was, on average, seen as beneficial: three times as many
reported a reduction in time as reported an increase. Several projects noted in-
creased time in the specification phase. Of those reporting on costs, five times
as many projects reported reductions as reported an increase. 92% of projects
reported enhanced quality compared to other techniques; none reported a de-
crease. Improvement was attributed to better fault detection (36%); improved
design (12%), confidence in correctness (10%) and understanding (10%).

3 Observations and Challenges

Trends in Tooling. In spite of the observation in 1993 that tools are “neither
necessary nor sufficient” [2], it is now almost inconceivable that an industrial
application would proceed without tools. Nevertheless, one respondent saw tools
as a potential source of rigidity:
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“. . . not having a tool allowed us to modify the notation . . . to appeal to
the target audience. This was crucial to the success of the project.. . . Had
we been locked into an inflexible tool, the project would have failed.”

Although tool capabilities have increased, almost all previous surveys and about a
quarter of the responses in our review report a lack of “ruggedised” tools. Partic-
ular challenges include: support for human interaction in automated deduction,
common formats for model interchange and analysis, the lack of support for tools
offered on a “best efforts” basis and the need to integrate heterogeneous tools into
tool chains. Expectations from tools are also high. One respondent commented:

“. . . formal methods need to provide answers in seconds or minutes rather
than days. . . . model-checking has to be tightly integrated into the . . . tools
that developers are already using.”

Tools usability was poorly rated by many respondents: “Tools don’t lend them-
selves to use by mere mortals.” Such comments challenge the community to
ensure that potential industry users are communicating their requirements effec-
tively to tools providers, and that the tools providers are responding by ensuring
that usability is gaining adequate attention in tools research and development.

Evidence. Previous surveys have noted the lack of evidence to support adoption
decisions [1] and appropriate cost models [2]. Only half the projects that we re-
viewed reported the cost consequences of using formal methods. Some cost data
may be sensitive but nonetheless this suggests that pilot studies are not always
gathering relevant evidence. In our view, the decision to adopt development tech-
nology is often risk-based and convincing evidence of the value of formal techniques
in identifying defects can be at least as powerful as a quantitative cost argument.
We conjecture that it would be more effective for methods and tools developers to
emphasise the de-risking of the development process than to make cost arguments.
Pilot applications should observe factors relevant to the needs of those making crit-
ical design decisions. This would suggest that the construction of a strong body of
evidence showing the utility and ease of use of formal techniques is at least as high
a priority as the gathering of more evidence on development costs.

Second Use. Responses to the review questionnaire suggest that the entry cost
for formal methods is perceived as high, although the cost can drop dramatically
on second use [9]. It is noticeable that very few published reports of formal meth-
ods applications describe second or subsequent use, though 75% of respondents
in our study indicated that they will use similar methods again. This may be
a lack of reporting, or it may represent a challenge to the community to secure
and report on series of applications.

Skills and Psychological Barriers. Several responses identify psychologi-
cal barriers to the use of formal techniques: “people like making things work;
lack of early visible progress”; “many developers are ‘builders’ who do not want
to specify everything”; “Barriers: formal methods people . . . Too much empha-
sis on properties and refinement rather than actually constructing something”.
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Respondents also identified skills deficiencies as a major impediment to formal
methods adoption. We do not believe that it is not possible to de-skill the verifi-
cation process entirely, so the challenges remain of improving education/training
and providing provide technology that is readily adopted by engineering teams,
taking account of skills, psychology and even the social context.

4 Conclusions

Our review paints a picture in which a substantial range of application areas
have been shown to benefit from formal modelling and verification technology.
Some of the impediments identified a decade ago have been addressed, notably in
the focussed use of methods supported by strong tools. Many challenges remain,
particularly in ensuring tools’ usability, integration into development processes,
providing evidence to support second and subsequent use, and overcoming skills
and other barriers to adoption. Initiatives such as the Verified Software Reposi-
tory offer a basis for well-founded experiments that, it is to be hoped, will help
to address these challenges in the next decade. We intend to continue with the
collection of data regarding on industrial practice in formal methods1 and intend
to produce new survey reports at 5-year intervals.
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Abstract. This paper details a collaboration between Aalborg Univer-
sity and Novo Nordisk in developing an automatic model-based test
generation tool for system testing of the graphical user interface of a
medical device on an embedded platform. The tool takes as input an
UML Statemachine model and generates a test suite satisfying some
testing criterion, such as edge or state coverage, and converts the in-
dividual test case into a scripting language that can be automatically
executed against the target. The tool has significantly reduced the time
required for test construction and generation, and reduced the number
of test scripts while increasing the coverage.

1 Introduction

Model-based development (MBD), [6], is a recent and very promising approach
to industrial software development addressing the increasingly complex world
of making correct and timely software. Although originally developed for gen-
eral software systems, MBD has demonstrated great potential within embedded
system and in particular safety critical systems for which failures after field de-
ployment are unacceptable, either due to the catastrophic consequences of such
failures or the impossibility of updating the software after deployment. MBD
techniques address these problems by working with precise mathematical mod-
els of the software system and using these models for e.g., formal verification of
correctness, automatic code generation, and/or automatic test generation.

The benefits from working with models are numerous: Models are easier to
communicate and more precise than textual specifications; models allow for fast
prototyping as models can be simulated effortlessly; correctness of the model can
be established mathematically; with automatic code generation, manual labor is
minimizes assuring faster time to market and less bugs.

The world of model checking has always been a strong proponent for building
models and specifications for hardware and software systems and the research
field is offering many methods for establishing model correctness. Recently, al-
gorithms and methods from model checking have been extended to other types
of model analysis such as automatic controller synthesis, [5,7], and optimal plan-
ning and scheduling, [1,3]. The latter turns out to be particularly applicable for
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automatic test suite generation, as finding a smallest possible test suite satisfying
some coverage criteria is, simply, a planning or scheduling problem.

In this paper, we describe the development of a tool chain for adapting model-
based model checking, planning and scheduling techniques to the application
of automatic test suite generation. The technology underlying the tool chain
is provided by Aalborg University, who with their widely recognized model-
checking tool Uppaal, [2], has made numerous significant contribution to the
field of model checking. The case for the tool chain is testing graphical user
interfaces on an embedded platform and provided by the large Danish health
care company Novo Nordisk A/S. Worldwide, Novo Nordisk employs more than
27,000 employees spread over 81 countries. Novo Nordisk is a world leader in
diabetes care, but their business areas also stretch into haemostasis management,
growth hormone therapy and hormone replacement therapy.

2 The Uppaal Model Checker

Uppaal is a tool for design, simulation and model checking (formal verification)
of real-time systems modeled as networks of timed automata extended with
discrete data types and user-defined functions. Based on more than a decade of
research, Uppaal provides very efficient algorithms and symbolic data structures
for analyzing such models.

Since the release of Uppaal in the mid-nineties, several variants have emerged,
realizing the strength of both timed automata as a modeling language for real-
time behavior and the efficiency of Uppaal’s symbolic model checking engine.
The different variants are available from http://www.uppaal.com:

3 The Case Study: GUI Testing

The purpose of this collaborative work between Aalborg University and Novo
Nordisk has been to develop a test generation tool for system testing of graphical
user interfaces using the Uppaal model checking tool.

The choice of Uppaal as the engine for test generation is motivated by the
groups solid knowledge of this particular tool, so, similar tools could have been
selected. However, this particular project relies heavily upon optimization ex-
tensions of Uppaal developed for solving planning and scheduling problems. In
many ways, this approach is similar to that of Reactis, [4], and Smartesting, [8].
Furthermore, the Novo Nordisk is also exploring the use of Uppaal for protocol
verification, thus, reusing Uppaal eliminates the introduction of more tools.

The company is developing the hardware and software of an embedded de-
vice for medical purposes. This device has a graphical user interface to receive
instructions from and provide feedback to the user. The software department
at Novo Nordisk has the assignment of system testing the GUI to determine
whether all interactions work appropriately and that the expected information
is displayed on the screen. The specification of the behavior is traditionally made

http://www.uppaal.com
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1. Model GUI structure
using MS Visio

2. Manually design covering
test cases

3. Review test cases 4. Generate test cases
in scripting language

5. Execute tests

1. Model GUI structure in 
Rational Systems  Developer 

as UML Statemachines

2. Export model to
XMI format

3. Convert UML model
to Uppaal model

4. Automatically generate
test suite according to 

coverage criteria using Uppaal

5. Export tests to 
scripting language

6. Execute tests

Fig. 1. Old (left) and new (right) testing process

in Microsoft Visio to provide a graphical representation that can be used in the
review process as well as for implementation.

The process for the system testers is to look at the Visio drawings and manu-
ally generate a set of test cases that cover the behavior of the GUI and validate
that the output is correct. These tests need to be reviewed and accepted, be-
fore they are finally converted to a scripting language that can automatically be
executed against the platform. This process is depicted on the left of Figure 1.

This approach has a number of drawbacks, namely, that 1) manual creation of
test cases is error prone and time consuming process (typically 30 days per GUI
scenario model), 2) establishing whether the test cases do in fact cover the model
is difficult, 3) changes to the model require the entire process to be repeated.

By introducing model-based testing in this process, we can alleviate these
drawbacks by removing the manual task of test generation and test review,
knowing that the output of the automatic process is mathematically guaranteed
to cover the model. And finally, since the technology is fully automated, changes
to the model are reflected in the test cases by the push of a button.

To ease the transition to model-based GUI specifications, we have chosen UML
Statemachines as an input model since 1) UML is an establish standard familiar
to most developers and thus requires minimal re-education, 2) Novo Nordisk has
the software infrastructure in place to support the building of UML models, 3)
the UML Statemachine notion is very similar to the current Visio models thus
maintaining the current validation process.

To accommodate this choice, it has been necessary to adapt Uppaal to accept
UML Statemachine models. This has been accomplished by converting the XMI
exchange format into Uppaal models. The engines of Uppaal and Uppaal

Cora are then applied to the models and used to generate a test suite with
either edge or state coverage. The resulting test cases are, finally, converted into
the scripting language that can be executed on the target. This new process is
depicted to the right of Figure 1.

The variant of UML Statemachines that can be translated to Uppaal is a
subset of UML Statemachines allowing only some constructions extended with
features from Uppaal, such as variables and clocks. These elements are inter-
preted with Uppaal semantics. Thus, the extension is not using a certain UML
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profile, however, this is a viable future avenue to explore. Omitted features from
UML Statemachine include associating arbitrary activities as effects of transi-
tions, allowing effects to only update variables and clocks.

4 Conclusion

Using the automated testing tool has reduced the time used on test construction
from upwards of 30 days to 3 days spent modelling and then a few minutes
on actual test generation. The benefits extend into the specification process,
as the model structure is used for specifications and later refined with action
code to allow for automatic test generation. This removes the process of keeping
specifications and test models consistent, an otherwise tedious and error-prone
process. Furthermore, the testing tool has decreased the number of test cases
while at the same time increasing and guaranteeing full model coverage in terms
of edge coverage. The automatically generated test scripts have uncovered a
number of bugs in the software, even “difficult” bugs that can be hard to detect,
since the test generation process makes no assumptions about how the system
should be used; something testers have a tendency to do. The GUI models that
have been constructed have approximately 200 states and 350 transitions, and
test generation for the models takes around one minute.

The company has experienced that creating usable models for test generation
requires time, however, once the model has been generated making changes,
extensions, and doing maintenance is easy. Finally, the fact that specification
changes are immediately reflected in the test suite has proved extremely helpful
for bug detection.

In conclusion, the collaboration has been very successful and beneficial to
both company and university. The project has proven that active research can
result in a commercially usable tool within a few months. The ongoing work of
this project has reached a state where the company has even requested continued
support on the tool, since it has become an integrated part of the development
process.
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