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Abstract. In this paper we argue the case for integrating the distinctive func-
tionalities of logic programs and production systems within an abductive logic 
programming agent framework. In this framework, logic programs function as 
an agent’s beliefs and production rules function as the agent’s goals. The se-
mantics and proof procedures are based on abductive logic programming, in 
which logic programs are integrated with integrity constraints that behave like 
production rules.  

Similarly to production systems, the proof procedure is an operational se-
mantics, which manipulates the current state of a database, which is modified 
by actions implemented by destructive assignment. The semantics can be 
viewed as generating a model, based on the sequence of database states and 
logic program, which makes the production rules true.  

Keywords: Abductive logic programming, Production systems, Integrity con-
straints, agents. 

1   Introduction  

Rules are the basic form of knowledge representation in many areas of Artificial Intel-
ligence, including both production systems and logic programming, and more recently 
in BDI (Belief Desire Intentions) agent languages. Despite their wide-spread use, 
there is a great deal of confusion between the different kinds of rules, and little 
agreement about the relationship between them. 

In this paper we argue that production rules and logic programming rules have 
complementary characters and that one cannot usefully be reduced to the other. We 
show how abductive logic programming (ALP) combines the two kinds of rules in a 
single unified framework. The ALP framework gives a model-theoretic semantics to 
both kinds of rules and provides them with powerful proof procedures, combining 
both backward and forward reasoning. We present evidence from BDI agents, deduc-
tive databases and psychological experiments to support the distinct nature of the two 
kinds of rules.  

We discuss the impact of including the two kinds of rules in a production system or 
agent cycle, which embeds the rules in a destructively changing environment, which is 
like a production system working memory. In this embedding, the environment can be 
viewed as the semantic structure that gives meaning to the two kinds of rules. Although 
the rules themselves need to be understood as explicitly or implicitly representing 
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change of state, the fact that the environment changes destructively and exists at any 
given time only in its current state gives an efficient solution to the frame problem. 

We assume the reader is familiar with the basic concepts of logic programming 
and production systems, although not necessarily with all of their technicalities. 

1.1   Confusions  

The most popular textbook on Artificial Intelligence Russell and Norvig [45] views 
production rules as just logical conditionals used to reason forward (page 286). In 
contrast, in one of the main textbooks on Cognitive Science, Thagard [50] argues that 
“Rules are if-then structures …very similar to the conditionals…, but they have dif-
ferent representational and computational properties.” (page 43). “Unlike logic, rule-
based systems can also easily represent strategic information about what to do. Rules 
often contain actions that represent goals, such as IF you want to go home for the 
weekend and you have bus fare, THEN you can catch a bus.” (page 45). 

Thagard [50] characterizes Prolog as “a programming language that uses logic rep-
resentations and deductive techniques”. Simon [48], on the other hand, includes 
Prolog “among the production systems widely used in cognitive simulation.”  

There is a similar confusion in the field of agents. Rao [41], for example, charac-
terises AgentSpeak as similar to logic programming. But in his comparison, he con-
siders only the similarities between the operational semantics of plans in AgentSpeak 
and the execution of clauses in logic programming. He ignores the declarative seman-
tics of logic programs (LPs).  

1.2   Production Systems and Logic Programs in Practice 

There have been many theoretical studies of the relationship between production rules 
and logic programs, which we discuss below in Section 2. Most of this work has been 
focussed on giving a declarative semantics to production systems by translating them 
into logic programs. However, there seems to have been little attention paid to the 
way in which logic programs and production rules are used in practice, and conse-
quently little attempt to use this practice to guide the theoretical analysis. We argue 
that in practice, the two kinds of rules have both distinct and overlapping functional-
ities, and that the distinct functionalities are lost by translating one kind of rule into 
the other. We will show that abductive logic programming (ALP) both capitalises on 
the distinct functionalities and eliminates the overlap. 

We argue that, in addition to the production rule (PR) cycle and destructively 
changing database, which are absent in LP, PRs offer three distinct functionalities: 
reactive rules that implement stimulus-response associations; forward chaining logic 
rules; and goal-reduction rules.  

Reactive rules are, arguably, the most distinctive type of production rules, which 
are responsible for their general characterisation as condition-action rules. This kind 
of rule typically has implicit or emergent goals. For example, the rule if a car coming 
towards you then get out of its way has the implicit goal to stay safe. Reactive rules 
provide a functionality that is not directly available in logic programming. 

The second kind of rule, for example if X is a cat then X is an animal  uses forward 
chaining to implement forward reasoning with a logical conditional. It is probably this 
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kind of rule that gives the impression that production rules are just conditionals used 
to reason forward. 

It is the third kind of rule, exemplified by Thagard’s example of the goal-reduction 
rule “IF you want to go home for the weekend and you have bus fare, THEN you can 
catch a bus.”, that overlaps the most with logic programming. In logic programming, 
such strategic rules would be obtained by reasoning backward with the clause you go 
home for the weekend if you have bus fare and you catch a bus. The two best known 
cognitive models of human thinking, SOAR [34] and ACT-R [3], are based on pro-
duction systems and focus on the use of production rules for goal-reduction.  

Logic programming has its own confusions, mostly about whether clauses are to be 
understood declaratively or procedurally. The purely declarative interpretation of 
clauses, which is neutral about reasoning method, is probably the one that is most 
attractive to its admirers. It is well-suited for high-level program specifications and 
for certain applications where efficiency is not a major concern. 

However, it is probably the procedural interpretation, in which clauses are used to 
obtain goal-reduction by backward reasoning, that is the main way in which logic 
programs are used in practice. This is also where there is the greatest overlap with 
production rules. Arguably, logic programs with backward reasoning are more suit-
able for this purpose than production rules with forward reasoning, because logic pro-
grams can also be interpreted declaratively. The declarative interpretation of logic 
programs makes it possible to give goal-reduction procedures the declarative seman-
tics that is missing with production rules. 

The confusion between the declarative and procedural uses of logic programs and 
how best to combine them is well-known even though it is not very well solved. 
However, there is another use of logic programs that has received less attention, and 
is perhaps even more confusing. It is the use of logic programs for forward reasoning. 
This use is not very common in practice, but is prevalent in theoretical investigations 
of logic programming. We will see that in ALP, clauses can be used to reason both 
backward and forward. 

1.3   Combining Production Systems and Logic Programs 

Broadly speaking, there are four motivations for combining PRs and LPs: 
  
1. To eliminate the overlap between forward logic rules in PRs and for-

ward/declarative clauses in LP. For example, one very simple combination of PRs and 
LPs is to use LPs to define ramifications of the working memory/database. Then exist-
ing PRs could simply query a deductive database rather than a relational database. This 
would hand over the forward reasoning logic rules from the PR to the LP component. 
Moreover, it would allow the decision about how to execute the ramifications to be 
taken by the implementation. The declarative semantics of ramifications would be com-
patible with executing them forward, backward, or any combination of the two.  

2.  To eliminate the overlap for goal-reduction, by using LPs for this purpose. Us-
ing LP for goal-reduction provides system support for managing goals as and-or trees, 
which is missing in production systems. Whereas most production systems just treat 
goals as ordinary facts in the working memory, SOAR and ACT-R manipulate them 
in goal stacks. Using LP for goal-reduction allows the declarative nature of LP 
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clauses to be exploited, so they can be used either for goal-reduction or for forward 
reasoning, as the context requires. 

3.  To provide a declarative semantics for PRs and for the combination of LP and 
PRs. Declarative semantics provides an independent specification for implementa-
tions, as illustrated by the discussion above about the implementation of ramifica-
tions. Declarative semantics also clarifies the nature of PRs as a representation  
language. Without a declarative semantics, which establishes a relationship between 
syntactic expressions and semantic structures, of the kind provided by the model  
theory of logic, the term “representation” has no meaning. 

Our proposal is to combine LP and PR in the same way that ALP combines LP and 
integrity constraints (ICs), and to use the model-theoretic semantics of ALP to give a 
model-theoretic semantics to the combination of LP and PR. We will show that integ-
rity constraints in ALP, especially when embedded in ALP agents, generalise produc-
tion rules to include condition-goal rules, where the goal is like the body of a plan in 
BDI agents. 

4. To provide a cycle and destructive database of facts, missing in LP. Without a 
cycle, LP is both closed and passive – closed because logic programs cannot be up-
dated by the environment, and passive because they cannot perform updates on the 
environment. Without a destructive database of facts, LP suffers from the inefficien-
cies of the frame problem.  

2   Other Approaches 

Typically PRs, as well as event-condition-action (ECA) rules and active integrity con-
straints are defined by means of an operational semantics based on state transitions. 
However several authors have studied the relationship between these various kinds of 
rules and LP, with the aim of providing the rules with a declarative LP-based seman-
tics. In the majority of these approaches PRs, ECA rules or active integrity constraints 
are mapped into LP to provide them with LP-based semantics. To our knowledge, 
there has been no proposal that would accommodate both LP and PR (or ECA rules or 
active integrity constraints) side-by-side with an integrated semantics or proof proce-
dure that would exploit the strengths of both paradigms.  

Raschid [52] combines LPs and ICs, but focuses on only two functionalities of 
PRs, namely on their use as reactive rules and as forward logic rules. She represents 
rules that add facts as LPs, and rules that delete facts as ICs. She then transforms their 
combination into LP, and uses the fixed point semantics of LP to chain forward and 
thereby simulate the production system cycle.  

Ceri and Widom [7] and Ceri et al. [6] implement ICs by PRs. Dung and Man-
carella [14] use an argumentation theoretic framework to provide semantics for PRs 
with negation as failure.  

Caroprese et al. [5] transform active integrity constraints into LPs. They character-
ise the set of “founded” repairs for the database as the stable model of the database 
augmented by the LP representation of the active integrity constraints. Fraternali and 
Tanca [17] also consider active databases but provide a logic-based core syntax for 
representing low-level, procedural features of active database rules. They provide 
procedural semantics for core rules and show how this can capture the procedural 
semantics of known active database systems.  
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Most other work regards the cycle and actions in condition-action rules and ECA 
rules declaratively as performing a change of state. Zaniolo [54], for example, uses a 
situation calculus-like representation with frame axioms, and reduces PRs and ECA 
rules to LPs. Statelog [53] also uses a situation-calculus-like representation for the 
succession of database states. Like Zaniolo, Statelog represents PRs and ECAs as 
LPs, and gives them LP-based semantics. Neither is concerned with the role of ICs or 
with the use of LPs and PRs for goal-reduction.  

Fernandes et al. [16] also view ECAs in terms of change of state, but use the event 
calculus as the basis for an ECA language coupled with a deductive database. The 
event calculus is used to evaluate the condition part of the ECA rules and to provide a 
specification for the effects of executing the action part. The ECA language also  
allows the recognition of complex events from an event history. 

ERA (Evolving Reactive Algebraic Programs), developed by Alferes et al.  [1], ex-
tends the dynamic logic programming system EVOLP [2] by adding complex events 
and actions as well as external actions. ERA combines ECA and LP rules, and the 
firing of the ECA rules can generate actions that add or delete ECA or LP rules, as 
well as external actions. In the operational semantics the ECA and LP rules maintain 
their distinct characteristics, but in the declarative semantics the ECA rules are trans-
lated to LP. The declarative semantics is based on a variant of stable models devel-
oped for EVOLP. 

3   The Selection Task 

Psychological evidence from the selection task suggests that people reason differently 
with two kinds of conditionals. One school of thought is that the difference depends, 
at least in part, on whether conditionals are interpreted descriptively or deontically. 
We will argue that descriptive conditionals are like logic programs, and deontic con-
ditionals are like integrity constraints in abductive logic programming. 

In Wason’s original selection task, there are four cards, with letters on one side and 
numbers on the other. The cards are lying on a table, and only one side of each card is 
visible, showing the letters D and F, and the numbers 3 and 7. 

The task is to select those and only those cards that need to be turned over, to  
determine whether the following conditional is true: 

 

If there is a D on one side, 
then there is a 3 on the other side. 

 

Variations of this experiment have been performed numerous times. The surprising 
result is that only about 10% of the subjects give the correct answer according to the 
norms of classical logic. 

Almost everyone recognizes, correctly, that the card showing D needs to be turned 
over, to make sure there is a 3 on the other side. Most people also recognize, cor-
rectly, that the card showing F does not need to be turned over. But many subjects 
also think, incorrectly, that it is necessary to turn over the card showing 3, to make 
sure there is a D on the other side. This is logically incorrect, because the implication 
does not claim that conversely: 
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If there is a 3 on one side, 
then there is a D on the other side. 
 

Only a few subjects realise that it is necessary to turn over the card showing 7, to 
make sure that D is not on the other side. It is necessary to turn over the 7, because the 
original implication is logically equivalent to its contrapositive: 

 

If the number on one side is not 3 (e.g. 7), 
then the letter on the other side is not D. 

 

It has been shown that people perform far better, according to the norms of classical 
logic, when the selection task experiment is conducted with certain other formulations 
of the problem that are formally equivalent to the card version of the task. The classic 
experiment of this kind considers the situation in which people are drinking in a bar, 
and the subject is asked to check whether the following conditional holds: 

 

If a person is drinking alcohol in a bar, 
then the person is at least eighteen years old. 
 

Again the subject is presented with four cases to consider, but this time instead of four 
cards there are four people. We can see what two people are drinking, but cannot see 
how old they are; and we can see how old two people are, but not what they are drink-
ing. In contrast with the card version of the selection task, most people solve the bar 
version correctly. They realise that it is necessary to check the person drinking alco-
hol to make sure that he is at least eighteen years old, and to check the person under 
eighteen to make sure that she is not drinking alcohol. They also realise that it is not 
necessary to check the person who is eighteen years old or older, nor the person who 
is drinking a non-alcoholic beverage. 

Cognitive psychologists have proposed a bewildering number of theories to ex-
plain why people are so much better at solving such versions of the selection task 
compared with the original card version. One of the most influential of these is the 
theory put forward by Cheng and Holyoak [8] that people tend to reason in accor-
dance with classical logic when conditionals involve deontic notions concerned with 
permission, obligation and prohibition. However, except for [49] and [25], there has 
been little attempt to explain why people reason as they do with descriptive variants 
of the selection task, such as the card version. 

 Stenning and van Lambalgen [49] propose that understanding and solving the se-
lection task is a two stage process: interpreting the conditional and then reasoning 
with the interpretation. They argue that people interpret conditionals of the kind in-
volved in the card version of the task as logic programs. Interpreted as a logic pro-
gramming clause, a conditional is understood, according to the completion semantics, 
as the if-half of a definition in if-and-only-if form [9]. The completion semantics en-
tails the converse of conditionals in the selection task and inhibits the application of 
reasoning with contrapositives. This is exactly the kind of reasoning most people dis-
play in the card version of the selection task. 

Stenning and vanLambalgen also argue that it is natural to interpret conditionals of 
the kind involved in the bar version of the task in deontic logic. However, Kowalski 
[25] has argued that the deontic interpretation can be obtained more simply by inter-
preting conditionals as integrity constraints. 
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It is curious that, although production systems, such as SOAR and ACT-R, are 
widely used in cognitive psychology as a model of human thinking, it seems that con-
ditionals in the form of condition-action rules have not been studied in relation to the 
selection task. 

4   Intelligent Agents 

The psychological evidence that people reason differently with descriptive and deon-
tic conditionals is mirrored by the notion that the mental state of an intelligent agent is 
best understood as having separate goals and beliefs. An agent’s beliefs represent the 
way things are, and its goals represent the way the agent would like them to be. Thus 
beliefs have a descriptive character, whereas goals have a prescriptive or deontic 
character.  The BDI (Belief, Desire, Intention) [4] model of agents adds to beliefs and 
desires (or goals) the notion of intention, which is an agent’s plan of actions for 
achieving its goals. Intentions are derived from goals using beliefs to reduce goals to 
subgoals. 

Arguably, the most influential of the BDI agent models is that of Rao and Geor-
geff [42] and its successors dMARS [13] and AgentSpeak [41]. The abstract agent 
intermediate language AIL of Dennis et al. [12] is an abstraction of these languages, 
based mainly on AgentSpeak and its successors.  

The earliest BDI agent systems were specified in multi-modal logics, with separate 
modal operators for goals, beliefs and intentions. However, their procedural imple-
mentations bore little resemblance to their logical specifications. AgentSpeak aban-
doned the attempt to relate the modal logic specifications with their procedural  
implementations, observing instead that “…one can view agent programs as multi-
threaded interruptible logic programming clauses”. This abandonment of modal logic 
specifications is inherited by AgentSpeak’s successors and their abstraction AIL. 

However, this view of AgentSpeak in logic programming terms applies only to the 
procedural interpretation of clauses. In fact, programs in AgentSpeak are better 
viewed as a generalisation of production rules than as variant of logic programming. 
AgentSpeak programs, also called plans, have the form: 

 

 Event E: conditions C  goals G and actions A. 
 

AgentSpeak plans manipulate a “declarative” database, like the working memory in 
production systems. The database contains both belief literals (atoms and negations of 
atoms) and goal atoms. The belief literals represent the current state of the environ-
ment and are added and deleted destructively, simulating the execution of atomic ac-
tions. Goal atoms are added when they are generated as sub-goals, and deleted when 
they are solved. 

The event E in the head of a plan can be the addition or deletion of a belief or of a 
goal. Plans are embedded in a cycle similar to the production system cycle, and are 
executed in the direction in which they are written. With the arrow written backwards, 
the execution of plans can be viewed as backward chaining. However, if the arrow is 
reversed, their execution can be viewed as forward chaining. No matter how their 
execution is viewed, plans have only an operational semantics. 
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The following are examples of possible AgentSpeak plans: 
 

 + there is a fire: true    +there is an emergency. 
 +?there is an emergency: true   ? there is a fire. 
 +! there is an emergency: true   ! there is a fire. 
 

Observations and actions do not have associated times, and the database provides only 
a snapshot of the current state of the world. To compensate for this lack of a temporal 
representation, the prefixes +,-, !, and ? are used to stand for add, delete, achieve, and 
test, respectively.  

Notice that the first plan behaves like a logical conditional used to reason for-
wards, but in the opposite direction of the arrow, to conclude there is an emergency if 
it is observed that there is a fire. The other two plans are goal-reduction rules, one for 
testing whether there is an emergency and the other for creating an emergency. 

In general, in the case where a plan has the form: 
 

 Goal E: conditions C  goals G and actions A 
 

and the triggering event E is the addition of a goal, the plan can be reformulated as a 
logic programming clause:  

 

 E’ if C’ and G’ and A’and temporal constraints 
 

where the prefixed predicates of AgentSpeak are replaced by predicates with explicit 
associated times. The corresponding clause subsumes the behaviour of the plan, but 
also has a declarative reading.  

In the simple example of the three plans above, the corresponding clause is: 
 

   there is an emergency at time T if there is a fire at time T. 
 

Represented in this way, the clause can be viewed as defining a ramification, which 
views fires more abstractly as emergencies. 

Thus, although BDI agent models were inspired by the modal logic representation 
of goals and beliefs, this inspiration has largely been lost in recent years. Most agent 
systems today represent goals as facts, mixed with belief facts in database or repre-
sented in a separate stack, as in ACT-R and SOAR. Belief facts and goal facts are 
manipulated uniformly by procedures, often called plans, which generalise production 
rules.  

The only kind of goal that can easily be represented as a fact in a database or in a 
goal stack, in this way, is an achievement goal, which is a one-off problem to be 
solved, including the problem of achieving some desired future state of the world. The 
higher-level notion of maintenance goal, which persists over all states of the world, is 
lost in the process.  

In ALP agents, as we will see below, maintenance goals are integrity constraints, 
which have the form of universally quantified conditionals with existentially quanti-
fied conclusions. Thus maintenance goals are higher-level than achievement goals in 
ALP, because an achievement goal is derived as an instance of the conclusion of a 
maintenance goal, whenever an instance of the conditions of the maintenance goal are 
satisfied. For example, given the maintenance goal: 
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 For all times T1 
 If there is an emergency at time T1 then there exists a time T2 such that   
 I get help at time T2 and T1 < T2 
 

and an emergency at some specific time t1, forward reasoning in ALP would derive 
the achievement goal of getting help at some later time. The later time could be 
bounded by an additional conjunct in the conclusion, or it could be left to the deci-
sion-making component of the agent cycle to take into account how urgently the 
achievement goal needs to be accomplished. 

In AgentSpeak and its successors, maintenance goals and goal-reduction rules are 
just different kinds of plans. Our aim is to restore the high level distinction between 
goals and beliefs, to recognise the importance of maintenance goals in particular, to 
combine the distinctive forms of reasoning appropriate to the distinction between 
goals and beliefs, and to give their combination a logical, model-theoretic semantics. 
For this purpose we interpret beliefs as logic programs, goals as integrity constraints, 
and combine goals and beliefs in the way that logic programs and integrity constraints 
are combined in abductive logic programming. 

5   Deductive Databases 

The combination of logic programs and integrity constraints in ALP evolved from 
their relationship in deductive databases. The semantics of integrity constraints and 
the development of proof procedures for constraint satisfaction were active research 
areas in deductive databases in the 1980s.  

The distinction between a database and its integrity constraints is intuitively clear 
in database systems, where integrity constraints have the same semantics as database 
queries. But, whereas ad hoc queries are concerned with properties that hold in a 
given state of the database, integrity constraints are persistent queries that are in-
tended to hold in all states of the database. Ad hoc queries can be viewed as achieve-
ment goals, and integrity constraints can be viewed as maintenance goals and include 
prohibitions as a special case. The database itself can be thought of as a set of beliefs. 
Thus conventional database systems can be viewed as passive agents, which are open 
to updates from the environment, but are unable to perform actions themselves. 

In relational databases, there is a clear distinction between the syntax of beliefs in 
the database and the syntax of goals. Beliefs are simple, ground, atomic sentences. 
Goals, both ad hoc queries and persistent integrity constraints, are sentences of first-
order logic. However, the syntactic distinction is less clear in deductive databases, 
where the database consists of both ground facts and more general logic programs 
(also called deduction rules). The distinction is complicated by the fact that it is often 
natural to express both deduction rules and integrity constraints in a similar condi-
tional form.  Informal criteria for distinguishing between deduction rules and integrity 
constraints were proposed by Nicolas and Gallaire [37]. Consider, for example, the 
two conditionals: 

 

 The bus leaves at time X:00 if X is an integer and 9 ≤ X ≤  18. 
 

 If the bus leaves at time X:00, then for some integer Y,  
 the bus arrives at its destination at time X:Y  and  20 ≤ Y ≤  30  
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The first conditional defines bus departure times constructively and therefore can 
function as a general rule in a deductive database. However, the second conditional 
has an existential quantifier in the conclusion, which means that it cannot be used to 
define data, but can only be used to constrain data, as an integrity constraint. In a pas-
sive database, the integrity constraint can be used to check updates to the database. 
But in an agent, the integrity constraint can be used as a maintenance goal, to generate 
achievement goals, which can then be reduced to plans of action. Thus an agent can 
be thought of as an active database, and its maintenance goals can be regarded as  
active database rules. 

Several competing views of the semantics of integrity constraints were intensively 
investigated in the 1980s. The two main views, to begin with, were the consistency 
view and the theorem-hood view, both of which were defined relative to the comple-
tion of the database. In the consistency view, an integrity constraint is satisfied if it is 
consistent with the completion of the database. In the theorem-hood view, it is satis-
fied if it is a theorem, logically entailed by the completion. 

Reiter [44] proposed an epistemic view of integrity constraints, according to which 
integrity constraints are statements about what the database knows. For example, the 
integrity constraint: 

 

 If X is an employee then for some integer Y 
 X has social security number Y 
 

would be interpreted as: 
 

 If the database knows that X is an employee then for some integer Y 
 the database knows that X has social security number Y 
 

However, Reiter [44] also showed that all three views are equivalent in many cases 
for databases augmented with the closed world assumption [43] which is the set of all 
the negations of atomic sentences that are not entailed by the database. For relational 
databases, the three views are also equivalent to the standard view in relational data-
bases that a database satisfies an integrity constraint if it is true in the database  
regarded as a Herband model.  

More generally, the four views of integrity satisfaction (consistency, theorem-
hood, epistemic and truth-theoretic) coincide for any database whose closure has a 
single model, In the case of Horn clause databases, the four views are equivalent to 
the view that an integrity constraint is satisfied if (and only if) it is true in the unique 
minimal model of the set of Horn clauses. 

 However, whether or not the different views of integrity satisfaction are equivalent 
for a given database, it is generally accepted that queries and integrity constraints 
have the same semantics. Therefore, the most obvious way to check integrity satisfac-
tion is to treat each integrity constraint as a query, using the same procedure for integ-
rity checking as for query evaluation. The problem with this approach, is that in a 
dynamic setting, where the current database state is largely identical to the previous 
state, much of the work involved in processing the constraints in a new state dupli-
cates the work performed in the previous state.  

To alleviate this problem, the vast majority of integrity checking procedures 
developed in the 1980s incrementally checked the integrity of a new state of the data-
base, assuming that the integrity constraints already hold in the previous state. As a 
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consequence any new violation of integrity must be due to the update itself, and integ-
rity checking can be focused on the update and its consequences. This focus can be 
achieved by using resolution to perform forward reasoning. 

The combination of a sequence of updates to a database and forward reasoning 
triggered by updates can be viewed in terms that resemble the production system cy-
cle. Early work on such an approach for integrity checking in deductive databases 
includes the integrity checking procedure of Sadri and Kowalski [46, 47, 30]. In this 
approach integrity constraints are formalised as denials (clauses with conclusion 
false), for example:   

 

If X is an employee and not X has a social security number then false 
 

Transactions are sets of literals, in which the positive atoms represent requested addi-
tions, and the negated atoms represent requested deletions. In the simple case where 
all the requested updates are additions: 

 
  If an update matches one of the conditions of a clause or integrity constraint, 
  forward reasoning (via resolution) is performed to generate the resolvent. 
  SLDNF is used to try to verify the remaining conditions of the resolvent. 
  If the conditions are verified, then 
  the instantiated conclusion is added as a new update.  
  If the new update is false, the procedure terminates,  
  and integrity has been violated. 
  Otherwise, the procedure is repeated, and 
   the new update is treated as an (implicit) update in the same transaction.  
  If the procedure terminates without generating false  
  then the transaction satisfies the integrity constraints. 
 

If any of the updates is a deletion, a similar procedure is applied with an extended 
resolution step that allows resolution with negative literals. Here is an example with-
out deletions: 

 
ICs:    If P and not R then false  If S and Q then false 
Database:  S if M    Q if T   R if T     
Updates:  {P, T} 
 

Forward reasoning from the two updates produces two resolvents: 
 
     if not R then false 
     if S then false. 
 

Forward reasoning from the update P produces the first resolvent, using the first IC. 
Forward reasoning from the update T produces the second resolvent, using the second 
database clause to derive Q and then using the second IC. 

 
The SLDNF evaluation of the two conditions not R and S terminates unsuccessfully, 
and therefore the integrity checking procedure terminates successfully.  
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In the Sadri Kowalski (SK) integrity checking procedure sketched above, ICs are 
represented as denials, which conceptually represent prohibitions. However, the pro-
cedure can be modified easily to deal with ICs in conditional form. Integrity checking 
with ICs in conditional form highlights their relationship with production rules, and 
was introduced in the IFF proof procedure for ALP. 

6   Abductive Logic Programming  

Deductive databases and the closely related Datalog were sidelined in the late 1980s 
with the arrival of object-oriented and active databases. As we have seen in section 2, 
some of the attention of the Datalog community turned to the problem of providing a 
declarative semantics for active database rules. In the meanwhile, some of the work 
on integrity checking in deductive databases contributed to the development of abduc-
tive logic programming (ALP) [19]. 

ALP can be viewed as a variant of deductive databases in which integrity con-
straints are used actively to generate new facts that are candidates for addition to the 
database. However, ALP is normally viewed as an extension of logic programming, 
combining closed predicates that are defined in the conclusions of clauses with ab-
ducible (or open) predicates that occur in the conditions, but not in the conclusions of 
clauses. Abducible predicates are like extensional predicates in deductive databases, 
and closed predicates are like intensional predicates. 

The classical application of abduction is to generate hypotheses, which are atomic 
sentences in the abducible predicates, to explain observations. The best known exam-
ple of this is the use of abduction to explain the observation that the grass is wet, us-
ing the clauses: 

 
 the grass is wet if it rained. 
 the grass is wet if the sprinkler was on. 
 

Abduction generates the two alternative hypotheses, it rained and the sprinkler was 
on. Assuming that the state of the environment is stored in a database, the hypotheses 
are alternative candidates for adding to the database. We will argue in the next section 
that deciding which of the alternatives to add is like conflict resolution in production 
systems. 

ALP extends classical abduction in two ways: First, it not only generates abduc-
tive hypotheses to explain observations, but also it generates hypothetical actions to 
achieve goals; and second it constrains hypothetical explanations so that they do not 
violate integrity constraints.  

Suppose that, in addition to the two clauses in the example above, we have: 
 
Fact:     the sun was shining. 
Integrity constraint: not (it rained and the sun was shining)       
or equivalently:  if it rained and the sun was shining then false.  
   

Then the hypothesis it rained violates the integrity constraint, leaving the alternative 
hypothesis the sprinkler was on as the only acceptable explanation of the observation 
that the grass is wet. 
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In general, given a logic program LP, integrity constraints IC and a problem 
G, which is either an achievement goal or an observation to be explained, a set 
Δ of atomic sentences in the abducible predicates is an abductive explanation 
or a solution of G if and only if both IC and G hold with respect to the ex-
tended logic program LP  Δ. 

 
This characterisation of ALP is compatible with different semantics specifying what it 
means for a goal or integrity constraint to hold with respect to a logic program. It is 
also compatible with different proof procedures. 

The most straight-forward proof procedures for ALP [15, 11, 20] are simple exten-
sions of SLD or SLDNF in which the integrity constraints IC are represented as deni-
als. The constraints IC and problem G are conjoined together and transformed into the 
form of a normal logic programming goal clause. The set Δ is constructed incremen-
tally, adding new hypotheses to Δ to solve sub-goals in the abducible predicates that 
would otherwise fail. The incremental construction of Δ is interleaved with checking 
that the new hypotheses added to Δ satisfy the integrity constraints. Checking the in-
tegrity constraints may cause further updates to Δ. 

For the sake of simplicity, these proof procedures avoid general-purpose integrity 
checking, and instead perform only one step of forward reasoning to match a newly 
added abductive hypothesis with a condition of an integrity constraint. For this pur-
pose, the integrity constraints are preprocessed into a form in which at least one con-
dition is abducible. The resulting preprocessed integrity constraints are similar to 
event-condition-action rules where the event and action predicates are abducible. 

These approaches all use backward reasoning with SLD or SLDNF resolution, to 
reduce goals to sub-goals and to generate abductive hypotheses. An alternative ap-
proach, developed originally by Console, Dupre and Torasso [10] and extended by 
Fung and Kowalski [18] is to reason instead with the completions of the logic pro-
gramming clauses defining the non-abducible predicates.  

The completions in [28] all have the form of if-and-only-if (IFF) definitions: 
 
   atomic formula iff disjunction of conjunctions 
 

where the conjunctions (also called disjuncts) are conjunctions of atomic formulae or 
conditionals. Negative literals not p are written as conditionals if p then false. The 
atomic formula is called the head, and the disjunction of conjunctions is called the 
body of the definition. Integrity constraints are represented as conditionals of the 
form: 

   if conditions then disjunction of conjunctions 
 

where the conditions are a conjunction of atomic formulae and the conclusion has the 
same form as the body of a definition.   

 Because the conclusions of integrity constraints have the same form as the bodies 
of definitions, they can contain existentially quantified variables, and the quantifica-
tion of the constraints can be implicit, as in the example: 

 
 If X is an employee then X has social security number Y. 
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Here X is universally quantified and Y is existentially quantified. 
 Because disjuncts in the bodies of definitions can contain conditionals, these con-

ditionals can have the same form as integrity constraints with the same implicit quan-
tification of variables, for example: 

 
 The banking department gets a 5 % bonus starting tomorrow iff   
 if X is an employee in the banking department today and X has salary S today 
then X has salary S + .05S tomorrow. 
 

Given an initial problem G and integrity constraints IC, IFF conjoins G and IC in an 
initial goal, and rewrites it as a disjunction of conjunctions. Starting from the initial 
goal, equivalence-preserving inferences transform one state of the goal into another, 
equivalent state, also represented in the form of a disjunction of conjunctions. Each 
disjunct corresponds to a branch of the search space of abductive proof procedures 
based on SLD and SLDNF. 

The inference rules of IFF include both backward and forward reasoning. Back-
ward reasoning (also called unfolding) replaces an atomic formulae by the body of its 
definition. Forward reasoning (also called propagation) performs resolution between 
an atomic formula and a conditional in the same disjunct. The resolvent is added to 
the disjunct. An abductive explanation is generated, when a disjunct contains only 
atoms or negative literals in the abducible predicates (or equalities) and no further 
inferences can be performed within that disjunct. 

The fact that every disjunct in the search space contains a copy of all the ICs is a 
potential source of inefficiency. This inefficiency can be avoided, simply by factoring  
out the ICs, representing them explicitly only once, but treating them as though they 
belong to every disjunct.  

The IFF proof procedure was developed with the theorem-hood view of integrity 
satisfaction in mind. It is sound and, with certain modest restrictions on the form of 
clauses and integrity constraints, complete with respect to the completion of the pro-
gram in the Kunen [33] three-valued semantics. The SLP proof procedure [32] is a 
refinement of IFF, in which integrity constraints are also used for constraint handling 
rules in constraint logic programming, but with the consistency view of integrity satis-
faction. SLP is not complete in the general case, because consistency is not semi-
decidable. CIFF [36], which is a successor of SLP, reverts to the theorem-hood  
semantics, and is complete in certain cases.  

Compared with proof procedures that extend SLD or SLDNF, which represent in-
tegrity constraints as denials, the main attraction of the IFF proof procedure and its 
successors is that they include forward reasoning with integrity constraints repre-
sented explicitly as conditionals. Forward reasoning can also be used to derive conse-
quences of abducible hypotheses, to help in choosing between them. This is important 
in ALP agents, as we will discuss in the next section. 

Another useful feature of these proof procedures is that their representation of 
negative literals in the conditional form if p then false means that negative conditions 
can be unfolded even if they contain variables, and the IFF selection function, which 
is the analogue of the SLDNF selection function, can be much more liberal compared 
with SLDNF.  
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The completeness of IFF means that ICs can be satisfied, not only, like condition-
action rules, by satisfying their conclusions when their conditions are satisfied, but 
also by making their conditions fail. For example, the integrity constraint if you com-
mit a mortal sin and don’t go to confession then you will go to hell can be satisfied 
either by not committing a mortal sin, committing a mortal sin and going to confes-
sion, or committing a mortal sin, not going to confession and going to hell. Here is a 
symbolic example: 

 

G:   p 
IC:   if p and not q then a 
LP:   q if b 
 

where p is an observation, and a and b represent actions. IFF derives not q then a by for-
ward reasoning, which it then rewrites as q or a. It unfolds q to obtain b or a. Thus the 
problem has two solutions, either do b or do a. 

 In the informally described abductive agent proof procedures of [23, 24], the for-
ward reasoning integrity checking method of SK is combined with the IFF representa-
tion of integrity constraints as conditionals within an SLD-style framework. A variant 
of this is formalised in LPS [29]. Here is an example from [24, 26]. 

 
Integrity constraint:    If there is an emergency then I get help. 
 
Logic program:   
    A person gets help if the person alerts the driver. 
    A person alerts the driver if the person presses the alarm signal button. 
    There is an emergency if there is a fire. 
    There is an emergency if one person attacks another. 
    There is an emergency if someone becomes suddenly ill. 
    There is an emergency if there is an accident. 
    There is a fire if there are flames. 
    There is a fire if there is smoke. 
 
Abducible predicates: there are flames, there is smoke, a person presses the  

       alarm signal button 
 
Observation:      There is smoke. 
Forward reasoning:    There is a fire. 
Forward reasoning:    There is an emergency. 
Forward reasoning,   Goal:  I get help 
Backward reasoning, Goal:  I alert the driver 
Backward reasoning, Solution: I press the alarm signal button. 
 

Notice that the example integrates the behaviour of the three kinds of production rules 
identified in section 1.2. The first two steps of forward reasoning use clauses of the 
logic program as forward reasoning logic rules; the third step of forward reasoning 
uses the integrity constraint as a reactive rule, and the two steps of backward reason-
ing use clauses of the logic program as goal-reduction rules.  
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An alternative to using forward reasoning with logic programs in the first two steps in 
this example is to preprocess the integrity constraint (by unfolding the definitions of 
there is an emergency and there is a fire) into several separate integrity constraints: 

 
If there are flames then I get help. 
If there is smoke then I get help. 
If one person attacks another then I get help. 
If someone becomes suddenly ill then I get help. 
If there is an accident then I get help. 
 

The use of a single integrity constraint and forward reasoning with logic programs 
simulates forward chaining with production rules, and is arguably more natural. (No-
tice that these integrity constraints could be further pre-processed into condition-
action rules, by unfolding the conclusion I get help, replacing it by the action I press 
the alarm signal button.) 

Following the lead of other abductive proof procedures, the proof procedure illus-
trated in this example can be given a variety of logical semantics. To achieve our  
desired combination of logic programs, production systems and agents, it remains 
only to: 

• represent actions by abducible predicates,  
• embed the abductive proof procedure in an agent cycle, and 
• justify the use of a destructively changing database of facts. 

7   ALP Agents 

The notion of ALP agent, in which ALP is embedded as the thinking component of an 
observation-thought-decision-action cycle, was introduced in [22] and developed in 
[27, 28, 23, 24]. It is the basis of the KGP (Knowledge, Goals and Plans) agent model 
of [21]. The ALP agent proof procedure of [28] is the IFF proof procedure. The proof 
procedure of KGP is the CIFF proof procedure [36] which extends IFF with constraint 
handling procedures. 

The observation-thought-decision-action cycle of an ALP agent is similar to other 
agent cycles. However, in ALP agents, an agent’s beliefs are represented by logic 
programs, its goals are represented by integrity constraints, and its actions are repre-
sented by abducible predicates.  

7.1   Observations  

In the original ALP agent model, observations are added incrementally to the goals, 
and the IFF proof procedure generates explanations of observations as well as actions 
to achieve goals. However, in production systems and BDI agents, observations con-
tribute to the current state of the database of facts. In the KGP agent model, observa-
tions are added to a separate database of facts, similar to the production system/BDI 
agent database. But whereas in PR/BDI systems the database represents only the cur-
rent state of the environment, in KGP the database is a monotonically increasing rep-
resentation of both the current state and all past states.  
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The ALP agent and KGP beliefs include the event calculus axioms [31] to derive 
new time-stamped facts from previous observations. However, the agent can bypass 
reasoning with the event calculus, by directly observing the environment instead. In 
both the ALP agent and KGP proof procedures, facts, whether directly observed or 
derived by the event calculus, are used both to solve atomic goals and to propagate 
with integrity constraints. 

In both the ALP and the KGP agent models, in the routine use of the agent cycle, 
forward reasoning derives consequences of observations and triggers integrity con-
straints; and backward reasoning reduces goals to plans of action. Reasoning can be 
interrupted both by incoming observations and by outgoing actions.  An incoming 
observation, in particular, might trigger an integrity constraint and derive an action 
that needs to be performed immediately, interrupting the derivation of plans and the 
execution of actions that need to be performed only later in the future. 

However, in more demanding situations, backward reasoning can also be used to 
generate explanations of observations, and forward reasoning can also be used to de-
rive consequences of explanations, to help in choosing between alternative explana-
tions. For example, if it rained and the sprinkler was on are alternative explanations for 
the observation the grass is wet, then forward reasoning might derive the street is wet 
from the hypothesis that it rained, and derive the water meter reading is high from the 
hypothesis that the sprinkler was on. Checking these consequences by attempting to 
observe them in the environment can help to prefer one explanation to the other.  

A similar kind of reasoning forward from alternative candidate actions, to derive 
and evaluate their possible outcomes, can also help with decision-making and conflict 
resolution. 

7.2    Decision-Making and Conflict Resolution 

The easy part of the extension of ALP to ALP agents is making ALP open to observa-
tions, and embedding ALP in a down-sized observation-thought cycle, in which the 
agent passively thinks about alternative plans of actions, but doesn’t make any com-
mitments to perform any actions. The hard part is to decide among the alternatives, 
and actually do something. To choose between different actions, an extended cycle 
can incorporate a decision making component, which generalises conflict resolution 
in production systems.  

Consider the following “rules”: 
 

    If someone attacks me then I attack them back 
    If someone attacks me then I run away 

and suppose I observe someone attacks me. Treated as condition-action rules in a 
production system, both rules would be triggered, and conflict resolution would be 
needed to fire only one of them. However, in ALP and ALP agents, both rules and 
both conclusions I attack them back and I run away would need to be satisfied, which 
might not be possible. To avoid this problem and to have a logical semantics, the 
rules need to be re-formulated: 

Maintenance goal:  If X attacks me then I protect myself against X 
Beliefs:           I protect myself against X if I attack X back 
            I protect myself against X if I run away. 
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In ALP, given this re-formulation and the observation someone attacks me, it suf-
fices to satisfy only one of I attack them back or I run away. But this still involves 
making a choice between the two alternatives, and then successfully performing one 
or more actions to make that choice succeed, and thereby to make the given instance 
of the goal become true. In the IFF syntax and proof procedure, the goal and the be-
liefs could be pre-processed, by unfolding the conclusion I protect myself into the 
still simpler form of a single maintenance goal: 

 
Maintenance goal:     If someone attacks me  
        then (I attack them back or I run away).  
 

Viewed in this way, conflict resolution in production systems is partly a compensation 
for the restricted syntax of production rules (no disjunction in conclusions of rules) 
and partly a form of Decision Theory. ALP agents do not suffer from the same restric-
tions on syntax; but, like production systems, they need to be augmented with a deci-
sion-making component. 

In classical Decision Theory, actions are chosen to optimise expected outcomes. 
ALP can help with this, because it can be used, not only to generate alternative ac-
tions, but also to reason forward from candidate actions to derive their likely out-
comes – for example to reason forward from the candidate action we go for a picnic, 
to derive the following outcome from the following belief: 

 
Belief:    We will have a whale of a good time    
      if we go for a picnic and the weather is good. 
Outcome:   We will have a whale of a good time if the weather is good. 
 

To fit into a full-fledged decision-making procedure, outcomes (e.g. We will have a 
whale of a good time) need to be evaluated for their utility, and abducible conditions 
beyond the agent’s control (e.g. the weather is good) need to be assigned a probabil-
ity. ALP is particularly well-suited to this, as Poole [39, 40] has shown, because it is 
very natural and very easy to associate probabilities with abducible predicates. The 
resulting Decision Theoretic analysis, or some computationally less expensive ap-
proximation to it, fits comfortably into an ALP agent cycle [24, 38] 

Having done the analysis and made the decision, the agent must still commit to 
performing an action. The action may be part of a plan; and even if the action suc-
ceeds the plan might fail, because for some reason or other the agent might not be 
able to perform the other actions in the plan. For example the preconditions of later 
actions might not hold or the actions might get timed out. The upshot of all these 
complications is that it may not be possible to commit to only one alternative plan for 
achieving a higher level goal. It might be necessary to embark upon one plan, and 
then switch to another plan if the first plan fails. It may also be necessary to re-
perform an action in the same plan. The ALP agent cycle allows all these options. 

7.3   Semantics 

The semantics of ALP agents can be understood in ALP terms. The fact that observa-
tions and actions occur in a temporal order can be dealt with simply by including the 
time or state of observations and actions as explicit parameters of predicates. The 
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effect of executing actions can be taken into account by including an action theory, 
such as the situation calculus or event calculus in the agent’s set of beliefs B. With 
these assumptions, and the further assumption that the observations do not include 
any post-conditions (effects) of the agent’s own actions, the semantics of the ALP 
agent cycle is a special case of the ALP semantics. 

 
Given beliefs B, goals G, initial database state S0 and possibly an infinite set  
O = {O1 , O2 ,…, On, … } of input (external) observations, an ALP agent solution 
is a possibly infinite set  ∆ = {A1, A2 ,…., Am ,…} of actions such that G is satis-
fied by the logic program B ∪  O ∪ ∆ . 

 
Theorem 7.1 of [28] establishes a correspondence between the static behaviour of the 
IFF proof procedure and the dynamic behaviour of ALP agents with observations. 
The soundness of the ALP agent cycle follows from that theorem. 

8   The Representation of State Change and the Frame Problem 

For the ALP agent semantics to work, observations and actions need to have an ex-
plicit representation of time or state. This gives rise to the frame problem of how to 
represent and reason about change of state correctly and efficiency. It is generally 
held that the frame problem can be solved by means of an appropriate action theory 
such as situation calculus or event calculus. These and similar calculi all include some 
form of frame axiom, such as: 

 
 fact F holds in state S+1 if fact F holds in state S  
 and S+1 is obtained from S by action/event A  
 and A does not terminate F.  
 

Given an appropriate semantics, including the various semantics developed for logic 
programming, it has been argued that these formulations of the frame axiom solve the 
frame problem.  

 However, all of these solutions reason explicitly, whether forward or backward, 
that a fact holds in a state S+1 if it held in state S and was not terminated in the state 
transition. Reasoning in the forward direction, for example, every unterminated fact 
holding in state S needs to be explicitly copied to the new state S+1. Moreover, with-
out sophisticated optimisations and garbage collection, the same unterminated facts 
need to be duplicated in both states S and S+1, and indeed in all states from the initial 
state to the current state. Backward reasoning does not store unterminated facts re-
dundantly, but requires a potentially expensive calculation instead. Thus it can be 
argued that that aspect of the frame problem that is concerned with efficiently reason-
ing about change of state has no solution within a purely logical representation. 

 It is probably for such reasons of efficiency that production systems and BDI 
agents store only the current state, use destructive assignment to generate a new cur-
rent state from the previous state, and do not employ an explicit representation of 
states or time at all.  
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It can be argued that the ALP agent model with its event calculus representation  
of change also suffers from the inefficiencies associated with the frame problem. 
However, in ALP agents, to determine whether a fact holds in the current state, these 
inefficiencies can be avoided, by directly observing whether the fact holds in the envi-
ronment instead. In such a case, the environment serves as an auxiliary, external data-
base, which contains a complete record of the current state. To test these ideas, we 
have developed LPS (Logic-based Production System) [29], which is a variant of 
ALP agents without frame axioms, but with an operational semantics that incorpo-
rates a destructively changing database. For simplicity, as is common in production 
systems, we assume that there are no external observations, once the initial state of 
the database has been given as input. 

 The LPS operational semantics maintains the current state of a deductive database, 
with facts (atomic sentences) defining the extensional predicates and logic programs 
(or deduction rules) defining intensional predicates. The actions that change the cur-
rent state affect only the extensional predicates, which are represented without  
explicit state parameters. As a consequence, to execute an action and to change the 
current state, it suffices to delete the facts terminated by the action and to add the facts 
initiated by the action. Facts that are not affected by the action persist without the 
need to reason that they persist, simply because they do not change. Intentional predi-
cates change implicitly as ramifications of changes to the extensional predicates. 

 In contrast with the operational semantics, which maintains only the current state, 
the LPS declarative semantics is based on the sequence of database states with the 
implicit state parameter of the operational semantics made explicit. The semantics 
also requires that the sequence of states conforms to a logical representation of 
change, such as the event calculus EC represented in logic programming form: 

 
Given beliefs B in the form of a logic program, goals G in the form of a set 
of integrity constraints, and an initial database state S0, a possibly infinite set 
∆ = {A1, A2 ,…., Am ,…} of actions is an LPS solution if and only if G is satis-
fied by the logic program B ∪  S0 ∪  ∆ ∪  EC. 

 
As shown in [29], LPS is sound, but is not complete for the same reason that condi-
tion-action rules are not complete (because they cannot make their conditions false). 

9   Conclusions 

We have argued for combining the functionalities of production systems and logic 
programs, while retaining their individual contributions and eliminating their overlap. 
To defend our thesis that the two kinds of rules provide distinct functionalities and 
need to be combined, we have appealed to the distinctions  

 
• in psychology between descriptive and deontic conditionals,  
• in intelligent agents between beliefs and goals,  
• in deductive databases between deduction rules and integrity constraints, and  
• in ALP between logic programs and integrity constraints. 
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We have advocated an approach that combines the two kinds of rules in an observa-
tion-thought-decision-action cycle, along the lines of ALP agents, and sketched an 
approach that combines a declarative, logic-based semantics with an operational se-
mantics that operates with the current state of a destructively changing database.  
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